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Abstract This is an expository article based on the author’s talk in Workshop on
G2 Manifolds and Related Topics held in August 2017 at The Fields Institute. The
aim is to explain the results obtained recently by the author and Jason D. Lotay on
the Laplacian flow for closed G2 structures and some related progress.
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1 G2 Structures on 7-Manifolds

The group G2 is one of the exceptional holonomy groups and is defined as the
stabilizer of the following 3-form on the 7-dimensional Euclidean space R7:

φ = e123 + e145 + e167 + e246 − e257 − e347 − e356,

where ei jk = ei ∧ e j ∧ ek with respect to the basis {e1, e2, . . . , e7} of R7. The group
G2 is a compact, connected, simply-connected, simple Lie subgroup of SO(7) of
dimension 14. The group G2 acts irreducibly on R

7 and preserves the Euclidean
metric and orientation on R7. If ∗φ denotes the Hodge star determined by the metric
and orientation, then G2 also preserves the 4-form ∗φφ.

Let M be a 7-manifold. We say a 3-form ϕ on M is definite if for x ∈ M there
exists an homomorphism u ∈ HomR(TxM,R7) such that u∗φ = ϕx . The space of
definite 3-forms on M will be denoted by �3+(M). Since φ is invariant under the
action of the group G2, each definite 3-form will define a G2 structure on M . The
existence ofG2 structures is equivalent to the property that themanifoldM is oriented
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and spin. Note that as G2 is a subgroup of SO(7), a G2 structure ϕ defines a unique
Riemannian metric g = gϕ on M and an orientation such that

gϕ(u, v)volgϕ
= 1

6
(u�ϕ) ∧ (v�ϕ) ∧ ϕ, ∀ u, v ∈ C∞(T M).

The metric and orientation determine the Hodge star operator ∗ϕ, and we define
ψ = ∗ϕϕ, which is sometimes called a positive 4-form. Notice that the relationship
between gϕ and ϕ, and hence between ψ and ϕ, is nonlinear.

1.1 Type Decomposition of k-Forms

The group G2 acts irreducibly on R
7 (and hence on �1(R7)∗ and �6(R7)∗), but it

acts reducibly on �k(R7)∗ for 2 ≤ k ≤ 5. Hence a G2 structure ϕ induces splittings
of the bundles �kT ∗M (2 ≤ k ≤ 5) into direct summands, which we denote by
�k

l (T
∗M,ϕ) so that l indicates the rank of the bundle. We let the space of sections

of �k
l (T

∗M,ϕ) be �k
l (M). We have that

�2(M) = �2
7(M) ⊕ �2

14(M), �3(M) = �3
1(M) ⊕ �3

7(M) ⊕ �3
27(M),

where

�2
7(M) = {β ∈ �2(M)|β ∧ ϕ = 2 ∗ϕ β} = {X�ϕ|X ∈ C∞(T M)},

�2
14(M) = {β ∈ �2(M)|β ∧ ϕ = − ∗ϕ β} = {β ∈ �2(M)|β ∧ ψ = 0},

and

�3
1(M) = { f ϕ| f ∈ C∞(M)}, �3

7(M) = {X�ψ|X ∈ C∞(T M)},
�3

27(M) = {γ ∈ �3(M)|γ ∧ ϕ = 0 = γ ∧ ψ}.

Hodge duality gives corresponding decompositions of �4(M) and �5(M).
The space �3

27(M) deserves more attention. As in [3] we define a map iϕ :
Sym2(T ∗M) → �3(M) from the space of symmetric 2-tensors to the space of
3-forms, given locally by

iϕ(h) = 1

2
hliϕl jkdx

i ∧ dx j ∧ dxk (1.1)

where h = hi j dxidx j ∈ Sym2(T ∗M). Then C∞(M) ⊗ gϕ is mapped isomorphi-
cally onto �3

1(M) under the map iϕ with iϕ(gϕ) = 3ϕ, and the space of trace-free
symmetric 2-tensors Sym2

0(T
∗M) is mapped isomorphically onto the space�3

27(M).
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1.2 Torsion of G2 Structures

Given a G2 structure ϕ ∈ �3+(M), if ∇ denotes the Levi-Civita connection with
respect to gϕ, we can interpret ∇ϕ as the torsion of the G2 structure ϕ. Following
[25],we see that∇ϕ lies in the space�1

7(M) ⊗ �3
7(M). Thuswe can define a 2-tensor

T which we shall call the full torsion tensor such that

∇iϕ jkl = Timgmnψnjkl . (1.2)

Using the decomposition of the spaces of forms on M determined ϕ, we can also
decompose dϕ and dψ into types. Bryant [3] showed that there exist unique differ-
ential forms τ0 ∈ �0(M), τ1 ∈ �1(M), τ2 ∈ �2

14(M) and τ3 ∈ �3
27(M) such that

dϕ = τ0ψ + 3τ1 ∧ ϕ + ∗ϕτ3, (1.3)

dψ = 4τ1 ∧ ψ + τ2 ∧ ϕ. (1.4)

We call {τ0, τ1, τ2, τ3} the intrinsic torsion forms of the G2 structure ϕ. The full
torsion tensor Ti j is related to the intrinsic torsion forms by the following (see [25]):

Ti j = τ0

4
gi j − (τ #

1 �ϕ)i j − (τ̄3)i j − 1

2
(τ2)i j , (1.5)

where τ̄3 is the trace-free symmetric 2-tensor such that τ3 = iϕ(τ̄3).
If∇ϕ = 0, we say the G2 structureϕ is torsion-free on M . The torsion-free condi-

tion clearly implies that dϕ = 0 = d∗
ϕϕ on M . Fernández and Gray [12] showed that

dϕ = 0 = d∗
ϕϕ also implies ∇ϕ = 0 on M , which also follows from the Eq. (1.5).

The key property of a torsion-free G2 structure ϕ is that the holonomy group
Hol(gϕ) ⊆ G2, and thus the manifold (M, gϕ) is Ricci-flat. Moreover, one can char-
acterise the compact G2 manifolds (i.e., compact manifolds with torsion-free G2

structures) with Hol(gϕ) = G2 as those with finite fundamental group. Thus under-
standing torsion-free G2 structures is crucial for constructing Riemannian manifolds
with holonomy G2.

While there are some explicit examples of manifolds which admit torsion-free
G2 structures for which the holonomy of the induced metric is properly contained in
G2, for example the product of circle S1 with a Calabi-Yau 3-fold and the product
of 3-torus T3 with a Calabi-Yau 2-fold, the construction of manifolds which admit
torsion-free G2 structures with holonomy equal to G2 is a hard and important prob-
lem. The first local existence result of metrics with holonomy G2 was obtained by
Bryant [2] using the theory of exterior differential systems. Then Bryant–Salamon
[4] constructed the first complete non-compact manifolds with holonomy G2, which
are the spinor bundle of S3 and the bundles of anti-self-dual 2-forms on S4 andCP2.
In [22], Joyce constructed the first examples of compact 7-manifolds with holonomy
G2 and many further compact examples have now been constructed [7, 24, 29].
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1.3 Closed G2 Structures

Ifϕ is closed, i.e. dϕ = 0, then (1.3) implies that τ0, τ1 and τ3 are all zero, so the only
non-zero torsion form is τ2 ∈ �2

14(M). In this case, we write τ = τ2 for simplicity.
Then from (1.5) we have that the full torsion tensor satisfies Ti j = − 1

2τi j and is a
skew-symmetric 2-tensor. By (1.4) and τ ∈ �2

14(M), we have dψ = τ ∧ ϕ = −∗ϕτ ,
which implies that

d∗τ = ∗ϕd ∗ϕ τ = − ∗ϕ d2ψ = 0 (1.6)

and the Hodge Laplacian of ϕ is equal to �ϕϕ = −d ∗ϕ dψ = dτ . We computed in
[34] (see also [3]) that

�ϕϕ = iϕ(h) ∈ �3
1(M) ⊕ �3

27(M) (1.7)

where h is the symmetric 2-tensor given as follows:

hi j = −∇mTniϕ
mn
j − 1

3
|T |2gi j − Tikg

kl Tl j . (1.8)

Since ϕ determines a unique metric g = gϕ on M , we then have the Riemann cur-
vature tensor Rm = {Ri jkl}, the Ricci tensor Ri j = gkl Ri jkl and the scalar curvature
R = gi j Ri j of (M, gϕ). For closed G2 structureϕ, we computed in [34] that the Ricci
curvature is equal to

Ri j = ∇mTniϕ
mn
j − Tikg

kl Tl j , (1.9)

and then the scalar curvature R = −|T |2. With (1.9) we can write the symmetric
tensor h in (1.8) as

hi j = −Ri j − 1

3
|T |2gi j − 2Tikg

kl Tl j . (1.10)

2 Laplacian Flow for Closed G2 Structures

Since Hamilton [16] introduced the Ricci flow in 1982, geometric flows have been an
important tool in studying geometric structures onmanifolds. For example,Ricci flow
was instrumental in proving the Poincaré conjecture and the 1

4 -pinched differentiable
sphere theorem, and Kähler–Ricci flow has proved to be a useful tool in Kähler
geometry, particularly in low dimensions. In 1992, Bryant (see [3]) proposed the
Laplacian flow for closed G2 structures

⎧
⎪⎪⎨

⎪⎪⎩

∂

∂t
ϕ(t) = �ϕ(t)ϕ(t),

dϕ(t) = 0,

ϕ(0) = ϕ0,

(2.1)
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where�ϕ = dd∗
ϕ + d∗

ϕd is the Hodge Laplacian with respect to gϕ andϕ0 is an initial
closed G2 structure. The stationary points of the flow are harmonic ϕ, which on a
compact manifold are precisely the torsion-free G2 structures, so the Laplacian flow
provides a tool for studying the existence of torsion-free G2 structures on a manifold
admitting closed G2 structures. The goal is to understand the long-time behavior of
the Laplacian flow on compact manifolds M ; specifically, to understand conditions
under which the flow will converge to a torsion-free G2 structure. We remark that
there are other proposedflowswhich also have torsion-freeG2 structures as stationary
points (e.g. [15, 26, 42]).

2.1 Gradient Flow of Volume Functional

Another motivation for studying the Laplacian flow comes fromwork of Hitchin [19]
(see also [5]), which demonstrates its relationship to a natural volume functional. Let
ϕ̄ be a closedG2 structure on a compact 7-manifoldM and let [ϕ̄]+ be the open subset
of the cohomology class [ϕ̄] consisting ofG2 structures. Define the volume functional
on M by

Vol(M,ϕ) = 3

7

∫

M
ϕ ∧ ∗ϕϕ, ϕ ∈ [ϕ̄]+. (2.2)

In the arXiv version of [19], Hitchin showed that ϕ ∈ [ϕ̄]+ is a critical point of
Vol(M,ϕ) if and only if d ∗ϕϕ = 0, i.e. ϕ is torsion-free.

Moreover, the Laplacian flow (2.1) can be viewed as the gradient flow of the
volume functional (2.2). Since ϕ(t) evolves in the same cohomology class with the
initial data ϕ0, we can write ϕ(t) = ϕ0 + dη(t) for some time dependent 2-form
η(t). To calculate the variation of the volume functional, we need to compute the
variation of ∗ϕ(t)ϕ(t). This has already been computed in [3, 23]:

∂

∂t
(∗ϕ(t)ϕ(t)) = 4

3
∗ϕ(t) π1

(
∂ϕ(t)

∂t

)

+ ∗ϕ(t)π7

(
∂ϕ(t)

∂t

)

− ∗ϕ(t)π27

(
∂ϕ(t)

∂t

)

,

(2.3)
where πk’s are the respective projections to the invariant subspaces of �3(M) and
are determined by ϕ(t). Then

d

dt
Vol(M,ϕ(t)) =3

7

∫

M

(
∂ϕ(t)

∂t
∧ ∗ϕ(t)ϕ(t) + ϕ(t) ∧ ∂

∂t
(∗ϕ(t)ϕ(t))

)

=
∫

M

∂ϕ(t)

∂t
∧ ∗ϕ(t)ϕ(t)

=
∫

M
〈∂η(t)

∂t
, d∗

ϕ(t)ϕ(t)〉 ∗ϕ(t) 1.
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Thus gradient flow of the volume functional within the same cohomology class is
given by

∂ϕ(t)

∂t
= d

∂η(t)

∂t
= dd∗

ϕ(t)ϕ(t) = �ϕ(t)ϕ(t),

which is exactly the Laplacian flow. Then along the Laplacian flow, the volume will
increase unlessϕ(t) is torsion-free. By examining the second variation of the volume
functional, Bryant [3] showed that if ϕ̄ is torsion-free, then Diff0(M) · ϕ̄ is a local
maximum of the volume functional on the moduli space Diff0(M) \ [ϕ̄]+. This gives
rise to the following natural question:

Question 2.1 ([3]) Starting from a initial data ϕ0 ∈ [ϕ̄]+ which is sufficiently close
to ϕ̄ in an appropriate norm, does the Laplacian flow converge to a point on
Diff0(M) · ϕ̄?

In the statement of Question 2.1, we assumed the existence of a torsion-free G2

structure ϕ̄ on M . In 1996, Joyce [22] proved a criterion for the existence of torsion-
free G2 structures, which says that if one can find a G2 structure ϕ with dϕ = 0 on
a compact 7-manifold M , whose torsion is sufficiently small in a certain sense, then
there exists a torsion-free G2-structure ϕ̄ ∈ [ϕ] on M which is close to ϕ. This result
has been used to construct compact examples of manifolds with G2 holonomy. It
would be interesting to give a new proof of Joyce’s result [22] using the Laplacian
flow.

Generally, one cannot expect that the Laplacian flow will converge to a torsion-
free G2 structure, even if it has long-time existence. There are compact 7-manifolds
with closed G2 structures that cannot admit holonomy G2 metrics for topological
reasons (c.f. [9, 10]), and Bryant [3] showed that the Laplacian flow starting with a
particular one of these examples will exist for all time but it does not converge; for
instance, the volume of the associated metrics will increase without bound. Some
explicit examples of the solution to the Laplacian flow which exist for all time and
converge can be found in [11, 13, 21].

2.2 Short Time Existence

Recall that theHodgeLaplacian�ϕ is related to the analyst’s Laplacian� = gi j∇i∇ j

by the Weitzenbock formula:

�ϕω = − �ω + R(ω) (2.4)

for any (0, k)-tensor ω, where R is the Weitzenbock curvature operator. Since the
Laplacian flow (2.1) is defined by the Hodge Laplacian, it appears at first sight to
have the wrong sign for the parabolicity. However, if dϕ = 0, using definition (1.2)
of the torsion tensor and the divergence-free property (1.6) of τ , we see that �ϕ
involves only up to first order derivatives of ϕ and thus the second order part of the



Laplacian Flow for Closed G2 Structures 259

Hodge Laplacian �ϕϕ lies in the part R(ϕ) of (2.4). Using DeTurck’s trick in the
Ricci flow, Bryant–Xu [5] modified the Laplacian flow by an operator of the form
LV (ϕ)ϕ = d(V �ϕ) + V �dϕ = d(V �ϕ) for some vector field V (ϕ) and showed that
the Laplacian–DeTurck flow

∂ϕ(t)

∂t
= �ϕ(t)ϕ(t) + LV (ϕ)ϕ(t) (2.5)

is strictly parabolic in the direction of closed forms by choosing a special vector field
V (ϕ). In fact, if dθ = 0, they calculated that the linearization of RHS of (2.5) is

d

dε

∣
∣
∣
∣
ε=0

(
�ϕ+εθ(ϕ + εθ) + LV (ϕ+εθ)(ϕ + εθ)

) = − �ϕθ + d�(θ) (2.6)

where d�(θ) is algebraic linear in θ and d�(θ) = 0 if ϕ is torsion-free. However,
no existing theory of parabolic equations can be used directly since the parabolicity
of (2.5) is only true in the direction of closed forms. Fortunately, by using the Nash
Moser inverse function theorem [17] for tame Féchet spaces, Bryant and Xu proved
the following short time existence theorem.

Theorem 2.2 (Bryant–Xu [5]) Assume that M is compact and ϕ0 is a closed G2

structure on M. Then the Laplacian flow has a unique solution for a short time
t ∈ [0, ε) with ε depending on ϕ0.

As in theRicci flow,we can alsowrite the Laplacian–DeTurck flow (2.5) explicitly
in local coordinates. Let g̃ be a fixed Riemannian metric on M and ∇̃, �̃k

i j be the
corresponding Levi-Civita connection and Christoffel symbols. We know that the
difference �

j
kl − �̃

j
kl of the Levi-Civita connections of the metrics g and g̃ is a well-

defined tensor on M . This gives us a vector field V on M with

Vi = gi jg
kl(�

j
kl − �̃

j
kl), (2.7)

which is just the vector field chosen in Ricci-DeTurck flow [41]. By a direct but
lengthy computation, we can show that if dϕ = 0, the Laplacian–DeTurck flow
Eq. (2.5) with V given by (2.7) has the following expression in local coordinates:

∂

∂t
ϕi jk =g pq∇̃p∇̃qϕi jk + l.o.t (2.8)

and the associated metric gi j evolves by

∂

∂t
gi j =g pq∇̃p∇̃qgi j + l.o.t (2.9)

where the lower order terms only involve the ϕ, g, ∇̃g and ∇̃ϕ and can be written
down explicitly. The readers may find that the vector field V is different at first sight



260 Y. Wei

with the one chosen by Bryant–Xu [5]. However, we can see that they are essentially
the same by considering the linearization of V in the direction of closed forms (see
also [15, pp. 400–401]).

2.3 Evolution Equations

Since each G2 structure induces a unique Riemannian metric on the manifold, the
Laplacianflow (2.1) induces aflow for the associatedRiemannianmetricg(t) = gϕ(t).
Recall that under a general flow for G2 structures

∂

∂t
ϕ(t) = iϕ(t)(h(t)) + X�ψ(t), (2.10)

where h(t) ∈ Sym2(T ∗M) and X (t) ∈ C∞(T M), it is well known that (see [3, 23]
and explicitly [25]) the associated metric tensor g(t) evolves by

∂

∂t
g(t) = 2h(t). (2.11)

By (1.7) and (1.10), we deduce that the associated metric g(t) of the solution ϕ(t)
of the Laplacian flow evolves by

∂

∂t
gi j = −2Ri j − 2

3
|T |2gi j − 4Tikg

kl Tl j , (2.12)

which corresponds to theRicci flowplus some lower order terms involving the torsion
tensor, as already observed in [3]. Then it’s easy to see that the volume form volg(t)

evolves by

∂

∂t
volg(t) =1

2
trg(

∂

∂t
g(t))volg(t) = 2

3
|T |2volg(t), (2.13)

where we used the fact that the scalar curvature R = −|T |2. Hence, along the Lapla-
cian flow, the volume of M with respect to the associated metric g(t) will non-
decrease (as already noted in Sect. 2.1). Since the torsion tensor T is defined by the
first covariant derivative of ϕ and the Riemannian curvature tensor Rm involves up
to second order derivatives of the metric, we calculated in [34] that the evolution
equations of the torsion tensor and Riemannian curvature tensor along the Laplacian
flow are of the form

∂

∂t
T = �T + Rm ∗ T + Rm ∗ T ∗ ψ + ∇T ∗ T ∗ ϕ + T ∗ T ∗ T, (2.14)
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∂

∂t
Rm = �Rm + Rm ∗ Rm + Rm ∗ T ∗ T + ∇2T ∗ T + ∇T ∗ ∇T, (2.15)

where we use ∗ to mean some contraction using the metric g(t) associated with ϕ(t).

3 Foundational Results of Laplacian Flow

In this section, we discuss several foundational results on the Laplacian flow, which
are important for further studies.

3.1 Shi-type Estimates

The first result is the derivative estimates of the solution to the Laplacian flow. For a
solution ϕ(t) of the Laplacian flow (2.1), we define the quantity

�(x, t) = (|∇T (x, t)|2g(t) + |Rm(x, t)|2g(t)

) 1
2 . (3.1)

Notice that the torsion tensor T is determined by the first order derivative of ϕ and
the curvature tensor Rm is second order in the metric gϕ, so both Rm and ∇T are
second order inϕ. We show that a bound on�(x, t)will induce a priori bounds on all
derivatives of Rm and ∇T for positive time. More precisely, we have the following.

Theorem 3.1 ([34]) Suppose that K > 0 and ϕ(t) is a solution of the Laplacian
flow (2.1) for closed G2 structures on a compact manifold M7 for t ∈ [0, 1

K ]. For all
k ∈ N, there exists a constant Ck such that if �(x, t) ≤ K on M7 × [0, 1

K ], then

|∇k Rm(x, t)|g(t) + |∇k+1T (x, t)|g(t) ≤ Ckt
− k

2 K , t ∈ (0,
1

K
]. (3.2)

We call the estimates (3.2) Shi-type estimates for the Laplacian flow, because
they are analogues of the well-known Shi derivative estimates in the Ricci flow. In
Ricci flow, a Riemann curvature bound will imply bounds on all the derivatives of the
Riemann curvature: this was proved by Bando [1] and comprehensively by Shi [41]
independently. The techniques used in [1, 41] were introduced by Bernstein (in the
early twentieth century) for proving gradient estimates via the maximum principle,
and was also the key in [34] to prove Theorem 3.1. A key motivation for defining
�(x, t) as in (3.1) is that the evolution equations of |∇T (x, t)|2 and |Rm(x, t)|2
both have some bad terms, but the chosen combination kills these terms and yields
an effective evolution equation for �(x, t) which looks like
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∂

∂t
�(x, t)2 ≤ ��(x, t)2 + C�(x, t)3

for some positive constant C . This shows that the quantity � has similar properties
to Riemann curvature under Ricci flow. Moreover, it implies that the assumption
�(x, t) ≤ K in Theorem 3.1 is reasonable as �(x, t) cannot blow up quickly. We
remark that the constant Ck depends on the order of differentiation. In a joint work
with Lotay [36], we showed that Ck are of sufficiently slow growth in the order k
and then we deduced that the G2 structure ϕ(t) and associated metric gϕ(t) are real
analytic at each fixed time t > 0.

The Shi-type estimates could be used to study finite-time singularities of the
Laplacian flow. Given an initial closed G2 structure ϕ0 on a compact 7-manifold,
Theorem 2.2 tells us there exists a solution ϕ(t) of the Laplacian flow on a maximal
time interval [0, T0). If T0 is finite, we call T0 the singular time. Using our global
derivative estimates (3.2), we have the following long time existence result on the
Laplacian flow.

Theorem 3.2 ([34]) If ϕ(t) is a solution of the Laplacian flow (2.1) on a compact
manifold M7 in a maximal time interval [0, T0) with T0 < ∞, then

lim
t↗T0

sup
x∈M

�(x, t) = ∞.

Moreover, there exists a positive constant C such that the blow-up rate satisfies

sup
x∈M

�(x, t) ≥ C

T0 − t
.

In other words, Theorem 3.2 shows that the solution ϕ(t) of the Laplacian flow
for closed G2 structures will exist as long as the quantity �(x, t) in (3.1) remains
bounded.

3.2 Uniqueness

Given a closed G2 structureϕ0 on a compact 7-manifold, Theorem 2.2 says that there
exists a unique solution to the Laplacian flow for a short time interval t ∈ [0, ε).
The proof in [5] relies on the Nash–Moser inverse function theorem [16] and the
DeTurck’s trick. In [34], we gave a new proof the forward uniqueness by adapting
an energy approach used previously by Kotschwar [28] for Ricci flow. The idea is to
define an energy quantityE(t) in terms of the differences of theG2 structures,metrics,
connections, torsion tensors and Riemann curvatures of two Laplacian flows, which
vanishes if and only if the flows coincide. By deriving a differential inequality for
E(t), it can be shown that E(t) = 0 if E(0) = 0, which gives the forward uniqueness.
We also proved in [34] a backward uniqueness result for the solution of Laplacian
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flow by applying a general backward uniqueness theorem in [27] for time-dependent
sections of vector bundles satisfying certain differential inequalities.

Theorem 3.3 ([34]) Supposeϕ(t), ϕ̃(t) are two solutions to the Laplacian flow (2.1)
on a compact manifold M7 for t ∈ [0, ε], ε > 0. If ϕ(s) = ϕ̃(s) for some s ∈ [0, ε],
then ϕ(t) = ϕ̃(t) for all t ∈ [0, ε].

An application of Theorem 3.3 is that on a compact manifold M7, the subgroup
Iϕ(t) of diffeomorphisms of M isotopic to the identity and fixing ϕ(t) is unchanged
along the Laplacian flow. Since Iϕ is strongly constrained for a torsion-free G2

structure ϕ on M , this gives a test for when the Laplacian flow with a given initial
condition could converge.

3.3 Compactness and κ-Non-collapsing

In the study of Ricci flow, Hamilton’s compactness theorem [18] and Perelman’s
κ-non-collapsing estimate [38] are two essential tools to study the behavior of the
flow near a singularity. We also have the analogous results for the Laplacian flow,
which were proved by the author and Lotay [34] and Chen [6] respectively.

Theorem 3.4 ([34]) Let Mi be a sequence of compact 7-manifolds and let pi ∈ Mi

for each i . Suppose that, for each i , ϕi (t) is a solution to the Laplacian flow (2.1) on
Mi for t ∈ (a, b), where −∞ ≤ a < 0 < b ≤ ∞. Suppose that

sup
i

sup
x∈Mi ,t∈(a,b)

�ϕi (x, t) < ∞ (3.3)

and
inf
i
inj(Mi , gi (0), pi ) > 0. (3.4)

Then there exists a 7-manifold M, a point p ∈ M and a solutionϕ(t) of the Laplacian
flow on M for t ∈ (a, b) such that, after passing to a subsequence, (Mi ,ϕi (t), pi )
converge to (M,ϕ(t), p) as i → ∞.

To prove Theorem 3.4, we first proved in [34] a Cheeger–Gromov-type com-
pactness theorem for the space of G2 structures, which states that the space of G2

structures with bounded |∇k+1T | + |∇k Rm|, k ≥ 0, and bounded injectivity radius
is compact. Given this, Theorem 3.4 follows from a similar argument for the anal-
ogous compactness theorem in Ricci flow as in [18], with the help of the Shi-type
estimate in Theorem 3.1.

The κ-non-collapsing estimate is an estimate on the volume ratio which only
involves the Riemannian metric. A Riemannian metric g on a manifold M is κ-non-
collapsed relative to an upper bound on the scalar curvature of the metric on the scale
ρ if for any geodesic ball Bg(p, r) with r < ρ such that supBg(p,r) Rg ≤ r−2, there
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holds Vol(Bg(p, r)) ≥ κrn . By using the same W functional, Chen [6] generalized
Perelman’s κ-non-collapsing theorem [38] for Ricci flow to any flow

∂

∂t
g(t) = − 2Ric(g(t)) + E(t) (3.5)

for the Riemannian metric g(t), where E(t) is a symmetric 2-tensor.

Theorem 3.5 ([6]) If |E(t)|g(t) is bounded along the flow (3.5) for t ∈ [0, s) with
s < ∞, then there exists κ > 0 such that for all t ∈ [0, s), g(t) is κ-non-collapsed
relative to the upper bound on the scalar curvature on the scale ρ = √

s.

Theorem 3.5 applies effectively to our Laplacian flow since the induced metric
flow is just a perturbation of the Ricci flow, see (2.12). The κ-non-collapsing estimate
is useful to estimate the lower bound on the injectivity radius, which together with
the Shi-type estimate in Theorem 3.1 guarantees the condition of the compactness
theorem for the purpose of the blow up analysis.

3.4 Solitons

Given a 7-manifold M , a Laplacian soliton on M is a triple (ϕ, X,λ) satisfying

�ϕϕ = λϕ + LXϕ, (3.6)

where dϕ = 0, λ ∈ R, X is a vector field on M and LXϕ is the Lie derivative of ϕ in
the direction of X . Laplacian solitons give self-similar solutions to theLaplacian flow.
Specifically, suppose (ϕ0, X,λ) satisfies (3.6). Define ρ(t) = (1 + 2

3λt)
3
2 , X (t) =

ρ(t)− 2
3 X , and let φt be the family of diffeomorphisms generated by the vector fields

X (t) such that φ0 is the identity. Then ϕ(t) defined by ϕ(t) = ρ(t)φ∗
t ϕ0 is a solution

of the Laplacian flow (2.1), which only differs by a scaling factor ρ(t) and pull-back
by a diffeomorphism φt for different times t . We say a Laplacian soliton (ϕ, X,λ)

is expanding if λ > 0; steady if λ = 0; and shrinking if λ < 0.
The soliton solutions of the Laplacian flow are expected to play a role in under-

standing the behavior of the flow near singularities. Thus the classification is an
important problem. In this direction, Lin [30] proved that there are no compact
shrinking solitons, and the only compact steady solitons are given by torsion-free
G2 structures. In [34], we show that any Laplacian soliton that is an eigenform (i.e.,
X = 0 in (3.6)) must be an expander or torsion-free. Hence, stationary points of the
Laplacian flow on 7-manifold (not necessarily compact) are given by torsion-free G2

structures. Moreover, we show that there are no compact Laplacian solitons that are
eigenforms unless ϕ is torsion-free. Combining this with Lin’s result, any nontrivial
Laplacian soliton on a compact manifold M (if it exists) must satisfy (3.6) for λ > 0
and X �= 0. This phenomenon is somewhat surprising, since it is very different from
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Ricci solitons Ric + LXg = λg: when X = 0, the Ricci soliton equation is just the
Einstein equation and there are many examples of compact Einstein metrics.

Since a G2 structure ϕ determines a unique metric g, it is natural to ask what
condition the Laplacian soliton Eq. (3.6) on ϕ will impose on g. By writing LXϕ
with respect to the type decomposition of 3-forms, we derived from the Laplacian
soliton Eq. (3.6) that the induced metric gϕ satisfies, in local coordinates,

− Ri j − 1

3
|T |2gi j − 2Tikg

klTl j = 1

3
λgi j + 1

2
(LXg)i j (3.7)

and the vector field X satisfies d∗(X�ϕ) = 0. In particular, we deduce that any
Laplacian soliton (ϕ, X,λ) must satisfy 7λ + 3div(X) = 2|T |2 ≥ 0, which leads to
a new short proof of Lin’s result [30] for the closed case.

Remark 3.6 We remark that there are many new results concerning the soliton
solutions of the Laplacian flow. We refer the readers to [11, 31–33, 37] for details.

4 Extension Theorem

As we said in Sect. 3, the compactness theorem and the non-collapsing estimate
could be used to study the singularities of the Laplacian flow. Theorem 3.2 already
characterized the finite time singularities as the points where the quantity �(x, t)
(defined in (3.1)) blow up. Thismeans that the solution of the Laplacian flow exists as
long as�(x, t) remains bounded.Thequantity�(x, t) consists of the full information
of the G2 structure ϕ(t) up to second derivatives. It’s interesting to see whether some
weaker quantity can control the behavior of the flow.Using the compactness theorem,
we improved Theorem 3.2 to the following desirable result, which states that the
Laplacian flow will exist as long as the velocity of the flow remains bounded.

Theorem 4.1 ([34]) Let M be a compact 7-manifold and ϕ(t), t ∈ [0, T0), where
T0 < ∞, be a solution to the Laplacian flow (2.1) with associated metric g(t) for
each t. If the velocity of the flow satisfies supM×[0,T0) |�ϕϕ(x, t)|g(t) < ∞, then the
solution ϕ(t) can be extended past time T0.

Note that for closedG2 structures, the velocity�ϕϕ = dτ is just somecomponents
of the first derivative of the torsion tensor. Theorem 4.1 is the G2 analogue of Sesum’s
[39] theorem that the Ricci flow exists as long as the Ricci tensor remains bounded.
It is an open question whether the scalar curvature (the trace of the Ricci tensor)
is enough to control the behavior of the Ricci flow, though it is known for Type-I
Ricci flow [8] and Kähler–Ricci flow [44]. For a closed G2 structure ϕ, the velocity
�ϕϕ = iϕ(h) is equivalent to a symmetric 2-tensor h with trace equal to 2

3 |T |2. Since
the scalar curvature of the metric induced by ϕ is −|T |2, comparing with Ricci flow
one may ask whether the Laplacian flow for closed G2 structures will exist as long as
the torsion tensor remains bounded. This is also the natural question to ask from the
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point of view of G2 geometry. However, even though −|T |2 is the scalar curvature,
it is only first order in ϕ, rather than second order like �ϕϕ, so it would be a major
step forward to control the Laplacian flow using just a bound on the torsion tensor.

The Proof of Theorem 4.1 involves a standard blow up analysis using the com-
pactness theorem in Sect. 3. However, the non-collapsing estimate is not required
for the proof. In fact, for a closed G2 structure ϕ, �ϕϕ = iϕ(h) and |�ϕϕ|2g =
(trg(h))2 + 2|h|2 with h given by (1.10). Then the condition |�ϕ(t)ϕ(t)|g(t) < ∞
is equivalent to supM×[0,T0) |h(t)| < ∞, which implies the uniform continuity of
the metric g(t). A desired injectivity radius estimate then follows and the blow up
analysis works.

Remark 4.2 By applying the compactness theorem and the non-collapsing estimate
and using the method in [43], Chen [6] improved the result in Theorem 4.1. See [6]
for the details. Moreover, Fine and Yao studied in [14] the hypersymplectic flow on
a compact 4-manifold X related to the Laplacian flow on the 7-manifold X × T

3 and
proved that the flow extends as long as the scalar curvature of the corresponding G2

structure remains bounded.

5 Stability of Torsion-Free G2 Structures

As we stated in Question 2.1, Bryant asked the question whether the Laplacian flow
with initial G2 structure ϕ0 which is sufficiently close to a torsion-free G2 structure
ϕ̄ will converge to a point in the diffeomorphism orbit of ϕ̄. Jointly with Lotay, we
gave a positive answer in [35].

Theorem 5.1 ([35]) Let ϕ̄ be a torsion-free G2 structure on a compact 7-manifold
M. Then there is a neighborhood U of ϕ̄ such that for any ϕ0 ∈ [ϕ̄]+ ∩ U , the
Laplacian flow (2.1) with initial value ϕ0 exists for all t ∈ [0,∞) and converges
to ϕ∞ ∈ Diff0(M) · ϕ̄ as t → ∞. In other words, torsion-free G2 structures are
(weakly) dynamically stable along the Laplacian flow for closed G2 structures.

The Proof of Theorem 5.1 is inspired by the proof of an analogous result in
Ricci flow: Ricci-flat metrics are dynamically stable along the Ricci flow. The idea
is to combine arguments for the Ricci flow case [20, 40] with the particulars of the
geometry of closed G2 structures and new higher order estimates for the Laplacian
flow derived by the author with Lotay in [34].We first look at the Laplacian–DeTurck
flow (2.5). By linearizing (2.5) at the torsion-free G2 structure ϕ̄, we have (see (2.6)):

d

dε

∣
∣
∣
∣
ε=0

(
�ϕ̄+εθ(ϕ̄ + εθ) + LV (ϕ̄+εθ)(ϕ̄ + εθ)

) = − �ϕ̄θ, (5.1)

where θ is an exact 3-form. Note that the operator −�ϕ̄ is strictly negative on the
space of exact 3-forms by Hodge decomposition theorem. Let ϕ̃(t) be the solution



Laplacian Flow for Closed G2 Structures 267

of Laplacian–DeTurck flow and denote θ(t) = ϕ̃(t) − ϕ̄. By the linearization (5.1),
there exists ε > 0 such that for all t for which ‖θ(t)‖Ck

ḡ
< ε, we have

∂

∂t
θ(t) = − �ϕ̄θ + dF(ϕ̄, ϕ̃(t), θ(t), ∇̄θ(t)),

where F is a 2-form which is smooth in the first two arguments and linear in the
last two arguments. The idea is that if θ(t) is sufficiently small, the behavior of the
Laplacian–DeTurck flow is dominated by the linear term −�ϕ̄θ. If the initial ϕ0 is
sufficiently close to ϕ̄, i.e., θ(0) is sufficiently small, by estimating the velocity of
the Laplacian–DeTurck flow we can show that the solution exists and remains small
at least for time t ∈ [0, 1]. By using the strict negativity of the operator −�ϕ̄, we
show that θ(t) has an exponential decay in L2 norm as long as the solution exists and
remains small. By deriving higher order integral estimates, we can in fact show that
the solution of the Laplacian–DeTurck flow exists for all time and also converges to
ϕ̄ exponentially and smoothly as time goes to infinity. The final step is to transform
back to Laplacian flow via time-dependent diffeomorphisms φ(t) determined by the
vector field V (ϕ̃(t)). The Shi-type esimate and compactness result apply here to
show the smooth convergence of Laplacian flow and completes the proof.

As we mentioned in Sect. 2, Joyce [22] proved an existence result for torsion-free
G2 structures, which states that if we control the C0 and L2-norms of γ and the
L14-norm of d∗

ϕ0
γ = d∗

ϕ0
ϕ0, we can deform ϕ0 in its cohomology class to a unique

C0-close torsion-free G2 structure ϕ̄. By choosing a neighbourhood U appropriately,
controlling derivatives up to at least order 8, we can ensure that we can apply both
the theory in [22] and Theorem 5.1, and thus deduce the following corollary.

Corollary 5.2 ([35]) Let ϕ0 be a closed G2 structure on a compact 7-manifold M.
There exists an open neighbourhood U of 0 in �3(M) such that if d∗

ϕ0
ϕ0 = d∗

ϕ0
γ for

some γ ∈ U , then the Laplacian flow (2.1) with initial value ϕ0 exists for all time
and converges to a torsion-free G2 structure.

The neighbourhood U given by Corollary 5.2 is not optimal, and one would like to be
able to prove this result directly using the Laplacian flowwith optimal conditions and
without recourse to [22], but nevertheless, Corollary 5.2 gives significant evidence
that the Laplacian flow will play an important role in understanding the problem of
existence of torsion-freeG2 structures on 7-manifolds admitting closedG2 structures.

Our results also motivate us to study an approach to the following problem, as
pointed out by Thomas Walpuski. The work of Joyce [22] shows that the natural
map from the moduli space M of torsion-free G2 structures to H 3(M) given by
Diff0(M) · ϕ̄ �→ [ϕ̄] is locally injective, but the question of whether this map is
globally injective, raised by Joyce (c.f. [23]), is still open. Suppose we have two
torsion-free G2 structures ϕ̄0 and ϕ̄1 which lie in the same cohomology class, so
we can write ϕ̄1 = ϕ̄0 + dη for some 2-form η. We would like to see whether ϕ̄1 ∈
Diff0(M) · ϕ̄0. By our main theorem (Theorem 5.1) we know that the Laplacian flow
starting at ϕ0(s) = ϕ̄0 + sdη (which is closed) will exist for all time and converge to
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φ∗
s ϕ̄0 for some φs ∈ Diff0(M) when s is sufficiently small. Similarly, the Laplacian

flow starting at ϕ0(s) for s near 1 will also exist for all time and now converge to
φ∗
s ϕ̄1 for some φs ∈ Diff0(M). The aim would be to study long-time existence and

convergence of the flow starting at any ϕ0(s).
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