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Preface

A central theme in differential geometry is the existence and classification of
‘optimal geometric’ structures. An important class of optimal metrics in
Riemannian geometry is the Einstein metrics, especially metrics with special
holonomy. These include, in particular, the Calabi–Yau and more generally the
Kähler–Einstein metrics, the study of which is by now a classical area of research at
the intersection of geometric analysis and algebraic geometry. More recently, there
has been a steadily increasing interest in G2 manifolds and other Riemannian
manifolds with special geometric structures, such as Spinð7Þ manifolds or nearly
Kähler manifolds, whose study are not amenable to classical tools of algebraic
geometry. This rise in interest is partly due to the fact that all of these manifolds
play important roles as ingredients for compactifications in string theory and
M-theory. The area began to really develop in the 1980s and 1990s with the
pioneering work of Bryant, Salamon, Joyce, Kovalev, Hitchin, and others. It is now
one of the most exciting frontiers in modern geometry, especially in geometric
analysis. Some of the key objectives include constructing new complete and
compact examples (both by elliptic glueing methods and by parabolic flow tech-
niques); finding topological invariants and obstructions to existence; and under-
standing the local and global structure of the moduli spaces of such structures.

Very recently, there has been a veritable explosion of research activity on G2

manifolds, guided in part by a general programme initiated by Sir Simon Donaldson
intending to establish analogues in the G2 and Spinð7Þ settings of certain
gauge-theoretic and enumerative invariants from classical low-dimensional geom-
etry and topology. A small sample of some of these recent results include the
spectacular generalization of the Kovalev glueing construction by Corti–Haskins–
Nördstrom–Pacini to increase its applicability by orders of magnitude; new topo-
logical and analytic invariants of G2 structures that allow one to detect diffeomorphic
but non-isotopic G2 structures by Crowley–Nordström and Crowley–Goette–
Nordström; significant progress by Haydys, Oliveira, Sá Earp, and Walpuski in
understanding the analytic aspects of G2 instantons as defined by Donaldson–
Thomas; an analysis of the obstructedness and virtual dimension of the moduli space
of G2 conifolds by Karigiannis–Lotay; and results about short-time existence and
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stability for various natural flows in G2 geometry by Witt–Weiss, Bryant–Xu,
Grigorian, Lotay–Wei, and others.

Because of this incredible surge in research activity, it was decided to host a
‘Minischool’ and Workshop on G2 manifolds and related topics at the Fields
Institute in August 2017, as part of the Major Thematic Program on Geometric
Analysis. The event began on a weekend with a series of introductory lectures
(which are almost all collected in this volume, in expanded form) by recognized
experts in the field, and was followed by five days worth of workshop talks on
many different analytic aspects of current research. Most of the speakers very
graciously agreed to submit survey articles on the topics of their presentations, and
these are also collected here. Despite the focus of the Fields Institute Workshop on
analytic aspects of the theory, we were also very fortunate to solicit a contribution
for the present volume from Crowley–Goette–Nordström on new topological
results.

We express our sincerest gratitude to all the contributors to this volume, which
would not exist without their hard work. A special thanks is also due to Shubham
Dwivedi and Ragini Singhal for their myriad efforts at assisting us with proof-
reading and quality control. We very much hope that this collection will be helpful
to many readers, both to beginners looking for an accessible entry point into the
field and to experts looking for a useful reference.

Waterloo, Canada Spiro Karigiannis
Shatin, Hong Kong Naichung Conan Leung
Oxford, UK Jason D. Lotay
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About the Conferences

Minischool Participants: August 19–20, 20171

Afiny Akdemir, University of Toronto
S. Ali Aleyasin, CIRGET
Yassine Amri
Leonardo Bagaglini, Università degli Studi di Firenze
Ahmad Barari, University of Ontario Institute of Technology
Ki Fung Chan, Chinese University of Hong Kong
Hanci Chi, McMaster University
Xianzhe Dai, University of California, Santa Barbara
Xinle Dai, University of Waterloo
Joe Driscoll, University of Leeds
Shubham Dwivedi, University of Waterloo
Lorenzo Foscolo, Stony Brook University
Udhav Fowdar, University College London
Hossein Gohari Bahabadi, University of Ontario Institute of Technology
Giulia Gugiatti, University College London (LSGNT)
Max Hallgren, Cornell University
Jiyuan Han, University of Wisconsin Madison
Andriy Haydys, Universität Bielefeld
Shaosai Huang, Stony Brook University
ShuTing Huang, National Taiwan University
Spiro Karigiannis*, University of Waterloo
Kotaro Kawai, Gakushuin University
Matt Kazakov, University of Guelph
Ilyas Khan, University of Wisconsin-Madison
Alexander Kolpakov
Eva Kopfer, Universität Bonn

1(* indicates minischool invited speaker.)
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Alexei Kovalev*, University of Cambridge
Adela Latorre, Centro Universitario de la Defensa
Jorge Lauret, Universidad Nacional de Córdoba
Naichung Conan Leung*, Chinese University of Hong Kong
Christopher Lin, University of South Alabama
Jason Lotay*, University College London
Siyuan Lu, McGill University
Jesse Madnick, Stanford University
Eric Massoud, University of Toronto
Kim Moore, University of Cambridge
Amir Mohammad Mostaed, Amirkabir University of Technology
Ákos Nagy, University of Waterloo
Goncalo Oliveira, Duke University
Alberto Raffero, Università degli Studi di Firenze
Sumayyah Saadi, University of Karachi
Anthonath Roslin Sagaya Mary, Universitat Rovira I Virgili
Ragini Singhal, University of Waterloo
Chi Cheuk Tsang, Chinese University of Hong Kong
Leo Tzou, University of Sydney
Raquel Villacampa, Centro Universitario de la Defensa
Thomas Walpuski*, Michigan State University
Guofang Wei, UC Santa Barbara
Yong Wei, Australia National University
Semin Yoo, University of Rochester

Workshop Participants: August 21–25, 20172

S. Ali Aleyasin, CIRGET
Leonardo Bagaglini, Università degli Studi di Firenze
Ahmad Barari, University of Ontario Institute of Technology
Hanci Chi, McMaster University
Andrew Clarke*, Federal University of Rio de Janeiro
Xianzhe Dai, University of California, Santa Barbara
Joe Driscoll, University of Leeds
Shubham Dwivedi, University of Waterloo
Marisa Fernàndez, Universidad del Pais Vasco
Anna Fino*, University of Torino
Lorenzo Foscolo*, Stony Brook University
Udhav Fowdar, University College London
Hossein Gohari Bahabadi, University of Ontario Institute of Technology
Sergey Grigorian*, University of Texas Rio Grande Valley

2(* indicates workshop invited speaker.)
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Giulia Gugiatti, University College London (LSGNT)
Jiyuan Han, University of Wisconsin Madison
Andriy Haydys*, Universität Bielefeld
ShuTing Huang, National Taiwan University
Spiro Karigiannis*, University of Waterloo
Kotaro Kawai*, Gakushuin University
Matt Kazakov, University of Guelph
Ilyas Khan, University of Wisconsin-Madison
Alexei Kovalev*, University of Cambridge
Adela Latorre, Centro Universitario de la Defensa
Jorge Lauret*, Universidad Nacional de Córdoba
Naichung Conan Leung, Chinese University of Hong Kong
Christopher Lin, University of South Alabama
Jason Lotay*, University College London
Siyuan Lu, McGill University
Jesse Madnick, Stanford University
Thomas Bruun Madsen, Aarhus University
Eric Massoud, University of Toronto
Kim Moore*, University of Cambridge
Ákos Nagy, University of Waterloo
Makoto Narita, National Institute of Technology, Okinawa College
Goncalo Oliveira*, Duke University
Tommaso Pacini*, University of Torino
Paolo Piccinni, Sapienza Università di Roma
Alberto Raffero, Università degli Studi di Firenze
Henrique Sá Earp*, Unicamp—University of Campinas
Tim Talbot, University of Cambridge
Raquel Villacampa, Centro Universitario de la Defensa
Thomas Walpuski*, Michigan State University
Changliang Wang, McMaster University
McKenzie Wang, McMaster University
Guofang Wei, UC Santa Barbara
Yong Wei*, Australia National University
Chengjian YAO, Universite Libre de Bruxelles
Semin Yoo, University of Rochester
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Minischool and Workshop on G2-Manifolds

Fields Institute, Toronto, Canada—August 19–25, 2017

Schedule

The Minischool is Sat–Sun (Aug 19–20) and the Workshop is Mon–Fri
(Aug 21–25).

Saturday, 2017-Aug-19 (Minischool Day 1)

09:00–10:20 Spiro Karigiannis (University of Waterloo)
“Introduction to G2-geometry, Part I”

10:20–10:40 BREAK
10:40–12:00 Spiro Karigiannis (University of Waterloo)

“Introduction to G2-geometry, Part II”
12:00–14:00 LUNCH
14:00–15:20 Alexei Kovalev (University of Cambridge)

“Constructions of G2-manifolds, Part I”
15:20–15:40 BREAK
15:40–17:00 Alexei Kovalev (University of Cambridge)

“Constructions of G2-manifolds, Part II”

Sunday, 2017-Aug-20 (Minischool Day 2)

09:00–10:20 Thomas Walpuski (Michigan State University)
“Introduction to G2-Gauge Theory, Part I”

10:20–10:40 BREAK
10:40–12:00 Thomas Walpuski (Michigan State University)

“Introduction to G2-Gauge Theory, Part II”
12:00–14:00 LUNCH
14:00–15:20 Naichung Conan Leung (Chinese University of Hong Kong)

“Calibrated Submanifolds in G2-geometry”
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15:20–15:40 BREAK
15:40–17:00 Jason Lotay (University College London)

“Geometric Flows of G2-structures”

Monday, 2017-Aug-21 (Workshop Day 1)

09:30–10:30 Foscolo, Lorenzo (Stony Brook)
“Non-compact G2-manifolds from asymptotically conical Calabi-
Yau 3-folds”

10:30–11:00 COFFEE BREAK
11:00–12:00 Clarke, Andrew (Federal do Rio de Janeiro)

“Infinitesimal moduli of the G2-Strominger system”
12:00–14:00 LUNCH
14:00–15:00 DISCUSSION PERIOD: TBA
15:00–15:30 COFFEE BREAK
15:30–16:30 Sá Earp, Henrique (Unicamp)

“Gauge theory and G2-geometry on Calabi-Yau links”
16:30–17:00 BREAK
17:00–18:00 RECEPTION
18:00–19:00 Jason Lotay (University College London)

PUBLIC LECTURE: “Adventures in the 7th Dimension”

Tuesday, 2017-Aug-23 (Workshop Day 2)

09:30–10:30 Fino, Anna (Torino)
“G2-structures and Ricci solitons”

10:30–11:00 COFFEE BREAK
11:00–12:00 Kovalev, Alexei (Cambridge)

“Compact holonomy Spinð7Þ manifolds as generalised connected
sums”

12:00–14:00 LUNCH
14:00–15:00 Oliveira, Gonçalo (Duke)

“G2-Instantons on noncompact G2-manifolds”
15:00–15:30 COFFEE BREAK
15:30–16:30 Wei, Yong (ANU)

“Laplacian flow for closed G2-structures”

Wednesday, 2017-Aug-23 (Workshop Day 3)

09:30–10:30 Kawai, Kotaro (Gakushuin)
“Frölicher–Nijenhuis cohomology on G2- and Spinð7Þ-manifolds”

10:30–11:00 COFFEE BREAK
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11:00–12:00 Haydys, Andriy (Bielefeld)
“Degenerations of the Seiberg–Witten monopoles with multiple
spinors and G2-instantons”

12:00–14:00 LUNCH
14:00–15:00 Grigorian, Sergey (Texas Rio Grande Valley)

“G2-structures and octonion bundles”
15:00–15:30 COFFEE BREAK
15:30–16:30 DISCUSSION PERIOD: Open Problems
16:30–18:00 BREAK
18:00–19:00 WORKSHOP DINNER (For those who registered in advance)

Thursday, 2017-Aug-24 (Workshop Day 4)

09:30–10:30 Walpuski, Thomas (Michigan State)
“The ð1; kÞ-ADHM Seiberg–Witten equation and k-fold covers of
associatives”

10:30–11:00 COFFEE BREAK
11:00–12:00 Lauret, Jorge (Córdoba)

“Laplacian flow and Laplacian solitons among closed G2-
structures on solvable Lie groups”

12:00–14:00 LUNCH
14:00–15:00 Pacini, Tommaso (Torino)

“New facts and tools concerning minimal Lagrangian
submanifolds”

15:00–15:30 COFFEE BREAK
15:30–16:30 Moore, Kim (Cambridge)

“Deformation theory of Cayley submanifolds”

Friday, 2017-Aug-25 (Workshop Day 5)

09:30–10:30 Lotay, Jason (University College London)
“Laplacian flow and 4D geometry”

10:30–11:00 COFFEE BREAK
11:00–12:00 Karigiannis, Spiro (Waterloo)

“A new construction of compact G2-manifolds by gluing families of
Eguchi–Hanson spaces”

12:00–14:00 LUNCH
14:00–16:30 Informal discussions/Departures
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Minischool and Workshop on G2-Manifolds

Fields Institute, Toronto, Canada—August 19–25, 2017

Minischool Abstracts

Speaker: Karigiannis, Spiro (Waterloo)
Title: Introduction to G2-Geometry

Abstract: We begin with a very brief review of Berger’s list of Riemannian
holonomy groups and of the more well-known UðmÞ-structures. Then we will
introduce the octonions, cross products, and the exceptional calibrations on R

7,
which will allow us to define G2-structures. Next, we will study the concrete
representation theory of G2, which will allow us to define the torsion forms and
define various classes of G2-structures. Finally, we will end part one by expressing
the Ricci tensor in terms of the torsion, and give a concrete computational proof
of the theorem of Fernández–Gray relating parallel and harmonic calibration forms.
In part two, we will briefly mention Joyce’s perturbative existence theorem of
torsion-free G2-structures given appropriate initial data used for compact con-
structions of smooth compact G2-manifolds. This topic will be treated in great detail
in the later lectures of Kovalev. Finally, we will establish the smoothness of the
moduli space of compact G2-manifolds and discuss some special geometric
structures on this moduli space.

Speaker: Kovalev, Alexei (Cambridge)
Title: Constructions of Compact G2-Manifolds

Abstract: The exceptional Lie group G2-occurs as the holonomy group of
Riemannian metrics on 7-dimensional manifolds. In these lectures I shall explain
the constructions for two geometrically different classes of examples of compact
Riemannian 7-manifolds with holonomy G2. One method uses resolutions of sin-
gularities of appropriately chosen 7-dimensional orbifolds with the help of ALE
spaces. Another method uses the gluing of two asymptotically cylindrical pieces
and requires a certain matching condition for their ‘boundaries at infinity’.

Speaker: Leung, Naichung Conan (Chinese University of Hong Kong)
Title: Calibrated Submanifolds in G2-Geometry

Abstract: Calibrated submanifolds in G2-manifolds are associative submanifolds
and coassociative submanifolds. This lecture will give an introduction to this
important class of submanifolds.

Speaker: Lotay, Jason (University College London)
Title: Geometric Flows of G2-Structures

Abstract: Geometric flows have proved to be a powerful geometric analysis tool,
perhaps most notably in the study of 3-manifold topology, the differentiable sphere
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theorem and Kähler metrics. In the context of G2-geometry, there are several
geometric flows which arise. Each flow provides a potential means to study the
geometry and topology associated with a given class of G2-structures. I will
introduce these flows and describe some of the key known results and open
problems in the field.

Speaker: Walpuski, Thomas (Michigan State University)
Title: Introduction to G2-Gauge Theory

Abstract: A central object of interest in the study of gauge theory are Yang–Mills
connections. Special classes of solutions exist on many classes of manifolds: flat
connections, ASD instantons on 4-manifolds, Hermitian Yang–Mills connections on
Kähler manifolds, etc. The purpose of this minischool is to familiarize the participants
with G2-instantons (which are certain Yang–Mills connections on G2-manifolds).
I will discuss the basic properties of G2-instantons, discuss their deformation the-
ory, and explain one construction method (based on joint work with Henrique Sá
Earp). Time permitting, I will discuss some points of the known compactness
results regarding G2-instantons (due to Uhlenbeck, Price, Nakajima, Tian).

Workshop Abstracts

Speaker: Clarke, Andrew (Federal do Rio de Janeiro)
Title: Infinitesimal Moduli of the G2-Strominger System

Abstract: We consider G2-structures with torsion coupled with G2-instantons, on a
compact 7-dimensional manifold. The coupling is via an equation for 4-forms
which appears in supergravity and generalized geometry, known as the Bianchi
identity. The resulting system of partial differential equations can be regarded as an
analogue of the Strominger system in 7-dimensions. We initiate the study of the
moduli space of solutions and show that it is finite dimensional using elliptic
operator theory.

Speaker: Fino, Anna (Torino)
Title: G2-Structures and Ricci Solitons

Abstract: In this talk we present some general results about G2-structures whose
underlying Riemannian metric is Einstein, as well results on the existence of left
invariant closed G2-forms determining a Ricci soliton metric on nilpotent Lie
groups. For closed G2-structures, we will also show some results related to the
Laplacian flow.

Speaker: Foscolo, Lorenzo (Stony Brook)
Title: Non-compact G2-Manifolds from Asymptotically Conical Calabi-Yau
3-Folds

Abstract: Only four examples of complete non-compact G2-manifolds are currently
known. In joint work with Mark Haskins and Johannes Nordström we construct
infinitely many families of new complete non-compact G2-holonomy manifolds.

Minischool and Workshop on G2-Manifolds xv



The underlying smooth 7-manifolds are all circle bundles over asymptotically
conical (AC) Calabi–Yau manifolds of complex dimension 3. The metrics are
circle-invariant and their geometry at infinity is that of a circle bundle over a
Calabi–Yau cone with fibres of fixed finite length. The G2-manifolds we construct
are therefore 7-dimensional analogues of 4-dimensional ALF hyperKähler metrics.
The dimensional reduction of the equations for G2-holonomy in the presence of a
Killing field was considered by Apostolov–Salamon and by several groups of
physicists. We reinterpret the dimensionally reduced equations in terms of a pair
consisting of an SUð3Þ structure on the 6-dimensional orbit space coupled to an
abelian Calabi–Yau monopole on this 6-manifold. We solve this coupled system of
non-linear PDEs by considering the adiabatic limit in which the circle fibres of the
associated circle-invariant G2-holonomy metrics collapse. The G2-holonomy met-
rics we construct should be thought of as arising from abelian Hermitian–Yang–
Mills connections on AC Calabi–Yau 3-folds, especially AC Calabi–Yau metrics
on crepant resolutions of Calabi–Yau cones.

Speaker: Grigorian, Sergey (Texas Rio Grande Valley)
Title: G2-Structures and Octonion Bundles

Abstract: We use a G2-structure on a 7-dimensional Riemannian manifold to define
an octonion bundle with a fiberwise non-associative product. We then define a
metric-compatible octonionic covariant derivative on this bundle that is also
compatible with the octonion product. The torsion of the G2-structure is then shown
to be an octonionic connection for this covariant derivative with curvature given by
the component of the Riemann curvature that lies in the 7-dimensional represen-
tation of G2. The choice of a particular G2-structure within the same metric class is
then interpreted as a choice of gauge and we show that under a change of this
gauge, the torsion transforms as an octonion-valued connection 1-form. We then
also define an energy functional for octonion sections, the critical points of which
are shown to correspond to an octonionic analogue of the Coulomb gauge. The
gradient flow for this functional is an octonionic harmonic map heat flow that
minimizes the torsion within the same metric class.

Speaker: Haydys, Andriy (Bielefeld)
Title: Degenerations of the Seiberg–Witten Monopoles with Multiple Spinors
and G2-Instantons

Abstract: Both G2-instantons and the Seiberg–Witten monopoles with multiple
spinors can degenerate to Fueter sections, which are Z=2 harmonic spinors in the
simplest case. I will show that there are obstructions for Z=2 harmonic spinors to be
realizable as degenerations of the Seiberg–Witten monopoles.
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Speaker: Karigiannis, Spiro (Waterloo)
Title: A New Construction of Compact G2-Manifolds by Gleuing Families of
Eguchi–Hanson Spaces

Abstract: I will give an overview of the proof of a new construction of compact G2-
manifolds (joint work with Dominic Joyce). We resolve X6 � S1

� �
=Z2 by glueing

in a family of Eguchi–Hanson spaces parametrized by the singular set, two copies
of a special Lagrangian submanifold L3 in X6. There are two key differences from
the previous glueing constructions of Joyce and Kovalev/CHNP. First, there are
three pieces being glued together rather than two, and second, two of the three
pieces do not admit torsion-free G2-structures to start with, so we need to work
harder to construct a closed G2-structure with sufficiently small torsion on the
resolved space in order to apply Joyce’s fundamental existence theorem. I plan to
explain all of the main ideas and to give a few of the details of each of the principal
steps in the proof.

Speaker: Kawai, Kotaro (Gakushuin)
Title: Frölicher–Nijenhuis Cohomology on G2- and Spinð7Þ-Manifolds

Abstract: We show that a parallel differential form W of even degree on a
Riemannian manifold allows to define a natural differential both on X Mð Þ and
X�ðM; TMÞ, defined via the Frölicher–Nijenhuis bracket. For instance, on a Kähler
manifold, these operators are the complex differential and the Dolbeault differential,
respectively. We investigate this construction when taking the differential with
respect to the canonical parallel 4-form on a G2- and Spinð7Þ-manifold, respec-
tively. We calculate the cohomology groups of X�ðMÞ and give a partial description
of the cohomology of X�ðM; TMÞ. This is joint work with Hông Vân Lê and Lorenz
Schwachhöfer.

Speaker: Kovalev, Alexei (Cambridge)
Title: Compact Holonomy Spin(7) Manifolds as Generalised Connected Sums

Abstract: I will explain a construction of compact 8-manifolds with holonomy
Spinð7Þ from pairs of asymptotically cylindrical Spinð7Þ manifolds with compatible
cross-sections ‘at infinity’. The cross-sections are G2-manifolds which may, but
need not, in general, have full holonomy G2. I will discuss examples of the con-
struction, including topologically new examples, and a relation to compact Spinð7Þ
manifolds previously constructed by Dominic Joyce by a different method.

Speaker: Lauret, Jorge (Córdoba)
Title: Laplacian Flow and Laplacian Solitons Among Closed G2-Structures on
Solvable Lie Groups

Abstract: We will present some results on the Laplacian flow of G2-structures and
its solitons in the homogeneous case, including the following:

• Long time existence for any closed Laplacian flow solution in the context of
solvable Lie groups with a codimension-one abelian normal subgroup.
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• Many examples of closed expanding Laplacian solitons which are not
eigenfunctions.

• First examples of closed Laplacian solitons which are shrinking and, in par-
ticular, produce closed Laplacian flow solutions with a finite-time singularity.

• Extremally Ricci pinched G2-structures (introduced by Bryant) which are steady
Laplacian solitons.

Speaker: Lotay, Jason (University College London)
Title: Laplacian Flow and 4D Geometry

Abstract: Using 4D geometry, we can reduce the Laplacian flow in G2-geometry to
a flow in 3 or 4 dimensions. In this expository talk, I will describe Fine–Yao’s
recent work on a flow in 4 dimensions, which is related to a conjecture of
Donaldson on hyperKähler 4-manifolds. Time permitting, I will also describe a
flow in 3 dimensions, which is connected to space-like submanifolds in Euclidean
spaces with mixed signature.

Speaker: Moore, Kim (Cambridge)
Title: Deformation Theory of Cayley Submanifolds

Abstract: Calibrated submanifolds are volume minimizing submanifolds that occur
naturally in manifolds with special holonomy. This talk will focus on the defor-
mation theory of Cayley submanifolds, which live inside Spinð7Þ-manifolds, with
an emphasis on the relationship between Cayley submanifolds and complex sur-
faces inside four-dimensional Calabi–Yau manifolds.

Speaker: Oliveira, Gonçalo (Duke)
Title: G2-Instantons on Noncompact G2-Manifolds

Abstract: I shall start by reporting what is known about G2-instantons on non-
compact G2-manifolds. Then, I will focus on joint work with Jason Lotay con-
cerning existence and classification results for these instantons. That work
investigates the particular case of R4 � S3, with its two explicitly known distinct
G2-holonomy metrics, exhibiting the different existence/behaviour of G2-instan-
tons. We also give an explicit example of sequences of G2-instantons where
‘bubbling’ and ‘removable singularity‘ phenomena occur in the limit. If time per-
mits, I will state some quite accessible (I hope) open problems. (This is joint work
with Jason Lotay.)

Speaker: Pacini, Tommaso (Torino)
Title: New Facts and Tools Concerning Minimal Lagrangian Submanifolds

Abstract: I will present recent work, joint with Jason Lotay (UCL), on the subject of
minimal Lagrangian submanifolds in Kähler geometry. Analogous results may hold
in other geometric settings, including G2. I will try to explain this. Some parts of the
talk will be based on the preprint arXiv:1704.08226.
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Speaker: Sá Earp, Henrique (Unicamp)
Title: Gauge Theory and G2-Geometry on Calabi-Yau Links

Abstract: The 7-dimensional link K of a weighted homogeneous hypersurface on
the round 9-sphere in C

5 has a nontrivial null Sasakian structure which is contact
Calabi–Yau, in many cases. It admits a canonical co-closed G2-structure u induced
by the Calabi–Yau 3-orbifold basic geometry. We distinguish these pairs ðK;uÞ by
the Crowley–Nordström Z48-valued m invariant, for which we prove odd parity and
provide an algorithmic formula.

We describe moreover a natural Yang–Mills theory on such spaces, with many
important features of the torsion-free case, such as a Chern–Simons formalism and
topological energy bounds. In fact compatible G2-instantons on holomorphic
Sasakian bundles over K are exactly the transversely Hermitian Yang–Mills con-
nections. As a proof of principle, we obtain G2-instantons over the Fermat quintic
link from stable bundles over the smooth projective Fermat quintic, thus relating in
a concrete example the Donaldson–Thomas theory of the quintic threefold with a
conjectural G2-instanton count.

This is joint work with Omegar Calvo-Andrade and Lazaro Rodriguez.

Speaker: Walpuski, Thomas (Michigan State)
Title: The ð1; kÞ-ADHM Seiberg–Witten Equation and k-Fold Covers of
Associatives

Abstract: The ð1; kÞ-ADHM Seiberg–Witten equations are a class of generalized
Seiberg–Witten equations associated with the hyperKähler quotient appearing in the
Atiyah, Drinfeld, Hitchin, and Manin’s construction of the framed moduli space of
ASD instantons on R

4. Formally, degenerating solutions of this equation are related
to Fueter sections of bundles of symmetric products of k copies of R4. In this talk I
will explain this relation in more detail and discuss why we believe these equations
to be relevant to issues of multiply covered associatives. This is joint work in
progress with Aleksander Doan.

Speaker: Wei, Yong (ANU)
Title: Laplacian Flow for Closed G2-Structures

Abstract: We will discuss the Laplacian flow for closed G2-structures. This flow
was introduced by R. Bryant in 1992 to study the geometry of G2-structures,
inspired by Hamilton’s Ricci flow in studying the generic Riemannian structures
and the Kähler Ricci flow in studying Kähler structures. The primary goal is to
understand the conditions under which the Laplacian flow can converge to a
torsion-free G2-structure, and thus to a Ricci flat metric with holonomy G2. I will
start with the background of G2-structures and the motivation of introducing the
Laplacian flow, and then describe my recent progress on this flow (Joint work with
Jason D. Lotay).
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Introduction to G2 Geometry

Spiro Karigiannis

Abstract These notes give an informal and leisurely introduction toG2 geometry for
beginners. A special emphasis is placed on understanding the special linear algebraic
structure in 7 dimensions that is the pointwise model for G2 geometry, using the
octonions. The basics of G2-structures are introduced, from a Riemannian geometric
point of view, including a discussion of the torsion and its relation to curvature for
a general G2-structure, as well as the connection to Riemannian holonomy. The
history and properties of torsion-free G2 manifolds are considered, and we stress
the similarities and differences with Kähler and Calabi–Yau manifolds. The notes
end with a brief survey of three important theorems about compact torsion-free G2

manifolds.

1 Aim and Scope

The purpose of these lecture notes is to give the reader a gentle introduction to
the basic concepts of G2 geometry, including a brief history of the important early
developments of the subject.

At present, there is no “textbook” on G2 geometry. (This is on the author’s to-do
list for the future.) The only references are the classic monograph by Salamon [39]
which emphasizes the representation theoretic aspects of Riemannian holonomy,
and the book by Joyce [23] which serves as both a text on Kähler and Calabi–
Yau geometry as well as a monograph detailing Joyce’s original construction [22]
of compact manifolds with G2 Riemannian holonomy. Both books are excellent
resources, but are not easily accessible to beginners. The book by Harvey [17] is
at a more appropriate level for new initiates, but is much broader in scope, so it is
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less focused on G2 geometry. Moreover, both [17, 39] predate the important analytic
developments that started with Joyce’s seminal contributions.

The aim of the present notes is to attempt to at least psychologically prepare the
reader to access the recent literature in the field, which has undergone a veritable
explosion in the past few years. The proofs of most of the deeper results are only
sketched, with references given to where the reader can find the details, whereas
most of the simple algebraic results are proved in detail. Some important aspects
of G2 geometry are unfortunately only briefly mentioned in passing, including the
relations to Spin(7)-structures and the intimate connection with spinors and Clifford
algebras. Good references for the connection with spinors are Harvey [17], Lawson–
Michelsohn [31, Chap. IV. 10], and the more recent paper by Agricola–Chiossi–
Friedrich–Höll [2].

These notes are written in a somewhat informal style. In particular, they are meant
to be read leisurely. The punchline is sometime spoiled for the benefit of motivation.
In addition, results are sometimes explained in more than one way for clarity, and
results are not always stated in the correct logical order but rather in an order that (in
the humble opinion of the author) is more effective pedagogically. Finally, there is
certainly a definite bias towards the personal viewpoint of the author on the subject. In
fact, a distinct emphasis is placed on the explicit details of the linear algebraic aspects
of G2 geometry that are consequences of the nonassociativity of the octonions O, as
the author believes that this gives good intuition for the striking differences between
G2-structures and U(m)-structures in general and SU(m)-structures in particular.

The reader is expected to be familiar with graduate level smooth manifold theory
and basic Riemannian geometry. Some background in complex and Kähler geometry
is helpful, especially to fully appreciate the distinction with G2 geometry, but is not
absolutely essential.

1.1 History of These Notes

These lecture notes have been gestating for many years. In their current form, they
are a synthesis of lecture notes for several different introductions to G2 and Spin(7)
geometry that have been given by the author at various institutions or workshops
over the past decade. Specifically, these are the following, in chronological order:

• October 2006: Seminar; Mathematical Sciences Research Institute; Berkeley.
• November 2008: Seminar series; University of Oxford.
• January/February 2009: Seminar series; University of Waterloo.
• August 2014: ‘G2-manifolds’; Simons Center for Geometry and Physics; Stony
Brook.

• September 2014: ‘Special Geometric Structures in Mathematics and Physics’;
Universität Hamburg.

• August 2017: Minischool on ‘G2-manifolds and related topics’; Fields Institute;
Toronto.
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The current version of these notes is the first part of the “minischool lectures” on G2-
geometry collected in the book Lectures and Surveys on G2-geometry and related
topics, published in the Fields Institute Communications series by Springer. The
other parts of the minischool lectures are

• “Constructions of compact G2-holonomy manifolds” by Alexei Kovalev [30]
• “Geometric flows of G2 structures” by Jason Lotay [36]
• “Calibrated Submanifolds in G2 geometry” byKi Fung Chan andNaichung Conan
Leung [34]

• “Calibrated Submanifolds” by Jason Lotay [35]

1.2 Notation

Let (M, g) be a smooth oriented Riemannian n-manifold. We use both vol and μ
to denote the Riemannian volume form induced by g and the given orientation. We
use the Einstein summation convention throughout. We use S2(T ∗M) to denote the
second symmetric power of T ∗M .

Given a vector bundle E over M , we use �(E) to denote the space of smooth
sections of E . These spaces are denoted in other ways in the following cases:

• �k = �(�k(T ∗M)) is the space of smooth k-forms on M ;
• S = �(S2(T ∗M)) is the space of smooth symmetric 2-tensors on M .

With respect to the metric g on M , we use S0 to denote those sections h of S
that are traceless. That is, S0 consists of those sections of S such that Tr h =
gi j hi j = 0 in local coordinates. Then S ∼= �0 ⊕ S0, where h ∈ S is decomposed
as h = 1

n (Tr h)g + h0. Then we have �(T ∗M ⊗ T ∗M) = �0 ⊕ S0 ⊕ �2, where the
splitting is pointwise orthogonal with respect to the metric on T ∗M ⊗ T ∗M induced
by g.

2 Motivation

Let (Mn, g) be an n-dimensional smooth Riemannian manifold. For all p ∈ M ,
we have an n-dimensional real vector space TpM equipped with a positive-definite
inner product gp, and these “vary smoothly” with p ∈ M . A natural question is the
following:

What other “natural structures” can we put on Riemannian manifolds?

What we would like to do is to attach such a “natural structure” to each tangent
space TpM , for all p ∈ M , in a “smoothly varying” way. That is, such a structure
corresponds to a smooth section of some tensor bundle of M , satisfying some natural
algebraic condition at each p ∈ M . Let us consider two examples. Let V be an n-
dimensional real vector space equipped with a positive-definite inner product g. Note
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that if we fix an isomorphism (V, g) ∼= (Rn, ḡ), where ḡ is the standard Euclidean
inner product onR

n , then the subgroup of GL(n, R) preserving this structure is O(n).

Example 2.1 An orientation on V is a nonzero element μ of �nV ∗. Let β =
{e1, . . . , en} be an ordered basis of V . Then e1 ∧ · · · ∧ en = λμ for some λ �= 0.
We say that β is positively (respectively, negatively) oriented with respect to μ if
λ > 0 (respectively, λ < 0). To demand some kind of compatibility with g, we can
rescale μ so that g(μ,μ) = 1. Thus (V, g) admits precisely two orientations. Note
that if we fix an isomorphism (V, g) ∼= (Rn, ḡ), then the subgroup of O(n) preserving
this structures is SO(n).

On a smooth manifold, an orientation is thus a nowhere-vanishing smooth section
μ of �n(T ∗M). That is, it is a nowhere-vanishing top form. Such a structure does
not always exist. Specifically, it exists if and only if the real line bundle �n(T ∗M)

is smoothly trivial. In terms of characteristic classes, this condition is equivalent
to the vanishing of the first Stiefel-Whitney class w1(T M) of the tangent bundle.
(See [38], for example.) To demand compatibility with g, we can rescale μ by a
positive function so that gp(μp,μp) = 1 for all p ∈ M . This normalized μ is the
Riemannian volume form associated to the metric g and the chosen orientation on
M . It is given locally in terms of a positively oriented orthonormal frame {e1, . . . , en}
of T M by μ = e1 ∧ · · · ∧ en .

An orientation compatible with the metric is called a SO(n)-structure on M . It
is equivalent to a reduction of the structure group of the frame bundle of T M from
GL(n, R) to SO(n). �

Example 2.2 A Hermitian structure on (V, g) is an orthogonal complex structure
J . That is, J is a linear endomorphism of V such that J 2 = −I and g(Jv, Jw) =
g(v,w) for all v,w ∈ V . It is well-known and easy to check that such a structure
exists on V if and only if n = 2m is even. Such a structure allows us to identify the
2m-dimensional real vector space V with a m-dimensional complex vector space,
where the linear endomorphism J corresponds to multiplication by

√−1. Note that
if we fix an isomorphism (V, g) ∼= (R2m, ḡ), then the subgroup of O(n) preserving
this structures is U(m) = SO(2m) ∩ GL(m, C).

On a Riemannian manifold (M, g), a Hermitian structure is a smooth section J
of the tensor bundle T M ⊗ T ∗M = End(T M) such that J 2 = −I (which is called
an almost complex structure) and such that gp(JpX p, JpYp) = gp(X p,Yp) for all
X p,Yp ∈ TpM (whichmakes it orthogonal).As inExample2.1, such a structure does
not always exist, even ifn = dim M = 2m is even. There are topological obstructions
to the existence of an almost complex structure, which is equivalent to a reduction of
the structure group of the frame bundle of T M from GL(2m, R) to GL(m, C). See
Massey [37] for discussion on this question.

Further demanding that J be compatible with the metric g (that is, orthogonal)
is a reduction of the structure group of the frame bundle of T M from GL(2m, R)

to U(m). For this reason a Hermitian structure on M2m is sometimes also called
a U(m)-structure. Readers can consult [12] for a comprehensive treatment of the
geometry of general U(m)-structures. �
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Again, let V be an n-dimensional real vector space equipped with a positive-
definite inner product g. A G2-structure is a special algebraic structure we can
consider on (V, g) only when n = 7. In this case, if we fix an isomorphism
(V, g) ∼= (R7, ḡ), then G2 is the subgroup of SO(7) preserving this special alge-
braic structure. In order to describe this structure at the level of linear algebra, we
first need to discuss the octonions, which we do in Sect. 3. Then G2-structures are
defined and studied in Sect. 4. For the purposes of this motivational section, all the
reader needs to know is that a “G2-structure” corresponds to a special kind of 3-form
ϕ on M7.

Suppose we have a “natural structure” on a Riemannian manifold (Mn, g), such
as that of Examples2.1 or 2.2 or the mysterious G2-structure that is the subject of
the present notes. Since we have a Riemannian metric g, we have a Levi-Civita
connection ∇ and we can further ask for the “natural structure” to be parallel or
covariantly constant with respect to ∇. For example:

• If μ is an orientation (Riemannian volume form) on (Mn, g), then it is always
parallel.

• If J is an orthogonal almost complex structure on (M2m, g), then if we have
∇ J = 0, we say that (M, g, J ) is a Kähler manifold. Such manifolds have been
classically well-studied.

• If ϕ is a G2-structure on (M7, g), then if we have∇ϕ = 0, we say that (M, g,ϕ) is
a torsion-free G2 manifold. Such manifolds are discussed in Sect. 6 of the present
notes.

3 Algebraic Structures from the Octonions

In this section we give an introduction to the algebra of the octonions O, an
8-dimensional real normed division algebra, and to the induced algebraic structure
on ImO, the 7-dimensional space of imaginary octonions. We do this by discussing
both normed division algebras and spaces equipped with a cross product, and then
relating the two concepts. This is not strictly necessary if the intent is to simply con-
sider G2-structures, but it has the pedagogical benefit of putting both G2 and Spin(7)
geometry into the proper wider context of geometries associated to real normed
division algebras. (See Leung [32] for more on this perspective.)

We do not discuss all of the details here, but we do prove many of the important
simple results. More details on the algebraic structure of the octonions can be found
in Harvey [17], Harvey–Lawson [18], and Salamon–Walpuski [40], for example.

3.1 Normed Division Algebras

Let A = R
n be equipped with the standard Euclidean inner product 〈·, ·〉.
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Definition 3.1 We say that A is a normed division algebra if A has the structure
of a (not necessarily associative!) algebra over R with multiplicative identity 1 �= 0
such that

‖ab‖ = ‖a‖ ‖b‖ for all a, b ∈ A, (3.1)

where ‖a‖2 = 〈a, a〉 is the usual Euclidean norm on R
n induced from 〈·, ·〉. Equa-

tion (3.1) imposes a compatibility condition between the inner product and the algebra
structure on A. �
Remark 3.2 This is not the most general definition possible, but it suffices for our
purposes. See [18, Appendices IV.A and IV.B] for more details. �

We discuss examples of normed division algebras later in this section, although
it is clear that the standard algebraic structures on R and C ∼= R

2 give examples. We
now define some additional structures and investigate some properties of normed
division algebras. It is truly remarkable how many far reaching consequences arise
solely from the fundamental identity (3.1).

Definition 3.3 LetAbe a normeddivision algebra.Define the real part ofA, denoted
ReA, to be the span over R of the multiplicative identity 1 ∈ A. That is, ReA =
{t1 : t ∈ R}. Define the imaginary part of A, denoted ImA, to be the orthogonal
complement of ReA with respect to the Euclidean inner product on A = R

n . That
is, ImA = (ReA)⊥ ∼= R

n−1. Given a ∈ A, there exists a unique decomposition

a = Re a + Im a, where Re a ∈ ReA and Im a ∈ ImA.

We define the conjugate a of a to be the element

a = Re a − Im a. �

Note that the map a �→ a is a linear involution of A, and is precisely the isometry
that is minus the reflection across the hyperplane ImA of A. It is clear that

Re a = 1
2 (a + a) and Im a = 1

2 (a − a). (3.2)

As a result, we deduce that

a = −a if and only if a ∈ ImA. (3.3)

We now derive a slew of important identities that are all consequences of the
defining property (3.1).

Lemma 3.4 Let a, b, c ∈ A. Then we have

〈ac, bc〉 = 〈ca, cb〉 = 〈a, b〉‖c‖2, (3.4)

and
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〈a, bc〉 = 〈ac, b〉, 〈a, cb〉 = 〈ca, b〉. (3.5)

Moreover, we also have
ab = ba. (3.6)

Proof First observe that

‖(a + b)c‖2 = ‖ac + bc‖2 = ‖ac‖2 + 2〈ac, bc〉 + ‖bc‖2,
‖a + b‖2 ‖c‖2 = (‖a‖2 + 2〈a, b〉 + ‖b‖2)‖c‖2.

Equating the left hand sides above using the fundamental identity (3.1), and again
using (3.1) to cancel the corresponding first and third terms on the right hand sides,
we obtain

〈ac, bc〉 = 〈a, b〉‖c‖2. (3.7)

Similarly we can show
〈ca, cb〉 = 〈a, b〉‖c‖2. (3.8)

Thus we have established (3.4). Consider the first equation in (3.5). It is clearly
satisfied when c is real, since then c = c and the inner product 〈·, ·〉 is bilinear over
R. Because both sides of the equation are linear in c, it is enough to consider the
situation when c is purely imaginary, in which case c = −c. Then c is orthogonal
to 1, so ‖1 + c‖2 = 1 + ‖c‖2. Applying (3.1) and (3.4), we find

〈a, b〉(1 + ‖c‖2) = 〈a, b〉‖1 + c‖2 = 〈a(1 + c), b(1 + c)〉
= 〈a + ac, b + bc〉 = 〈a, b〉 + 〈ac, bc〉 + 〈a, bc〉 + 〈ac, b〉
= 〈a, b〉 + 〈a, b〉‖c‖2 + 〈a, bc〉 + 〈ac, b〉.

Thus we have 〈a, bc〉 = −〈ac, b〉 = 〈ac, b〉. This establishes the first equation
in (3.5). The other is proved similarly. Using (3.5) and the fact that conjugation
is an isometry, we have

〈ab, c〉 = 〈ab, c〉 = 〈b, a c〉 = 〈bc, a〉 = 〈c, ba〉.

Since this holds for all c ∈ A, we deduce that ab = ba. �

Lemma3.4 has several important corollaries.

Corollary 3.5 Let a, b, c ∈ A. Then we have

a(bc) + b(ac) = 2〈a, b〉c, (3.9)

(ab)c + (ac)b = 2〈b, c〉a, (3.10)

ab + ba = 2〈a, b〉1. (3.11)
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Proof Polarizing (3.4), we have

〈a, b〉‖c + d‖2 = 〈a(c + d), b(c + d)〉
〈a, b〉(‖c‖2 + 2〈c, d〉 + ‖d‖2) = 〈ac, bc〉 + 〈ad, bc〉 + 〈ac, bd〉 + 〈ad, bd〉,

and hence upon using (3.4) to cancel the corresponding first and last terms on each
side, we get

〈ad, bc〉 + 〈ac, bd〉 = 2〈a, b〉〈c, d〉. (3.12)

Using (3.5), we can write the above as

〈d, a(bc)〉 + 〈b(ac), d〉 = 2〈a, b〉〈c, d〉.

Since the above holds for any d ∈ A, we deduce that

a(bc) + b(ac) = 2〈a, b〉c.

Replacing a �→ a and b �→ b and using the fact that conjugation is an isometry,
we obtain (3.9). Equation (3.10) is obtained similarly. Alternatively, one can take
the conjugate of (3.9) and use the relation (3.6). Finally, (3.11) is the special case
of (3.9) when c = 1. �

Corollary 3.6 Let a, b, c ∈ ImA. Then we have

a(bc) + b(ac) = −2〈a, b〉c, (3.13)

(ab)c + (ac)b = −2〈b, c〉a, (3.14)

ab + ba = −2〈a, b〉1. (3.15)

Proof These are immediate from Corollary3.5 and Eq. (3.3). �

Corollary 3.7 Let a, b ∈ A. Then we have

〈a, b〉 = Re(ab) = Re(ba) = Re(ba) = Re(ab) (3.16)

and
‖a‖2 = aa = aa. (3.17)

Proof Using (3.5), we have 〈a, b〉 = 〈a, b1〉 = 〈ab, 1〉 = Re(ab). The remaining
equalities in (3.16) follow from the symmetry of 〈·, ·〉 and the fact that conjugation is
an isometry. From (3.6), we find aa = a a = aa, so aa is real. Equation (3.17) thus
follows from (3.16). �

Corollary 3.8 Let a ∈ A. Then a2 = aa is real if and only if a is either real or
imaginary.
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Proof Write a = Re a + Im a. Since Im a = − Im a, from (3.17)we have (Im a)2 =
−(Im a)(Im a) = −‖ Im a‖2. Thus we have

a2 = (Re a + Im a)(Re a + Im a) = (
(Re a)2 − ‖ Im a‖2)1 + 2(Re a)(Im a).

Since the first term on the right hand side above is always real and the second term is
always imaginary, we conclude that a2 is real if and only if (Re a)(Im a) = 0, which
means that either Re a = 0 or Im a = 0. �

Corollary 3.9 Let a, c ∈ A. Then we have

(ac)c = a(cc) = ‖c‖2a = a(cc) = (ac)c,

a(ac) = (aa)c = ‖a‖2c = (aa)c = a(ac).
(3.18)

Proof Observe from (3.5) and (3.4) that

〈(ac)c, b〉 = 〈ac, bc〉 = 〈a, b〉‖c‖2 = 〈a‖c‖2, b〉 = 〈a(cc), b〉.

Since this holds for all b ∈ A, we deduce that

(ac)c = a(cc).

The rest of the first identity in (3.18) follows by interchanging c and c. The second
identity in (3.18) is proved similarly. �

We now introduce two fundamental A-valued multilinear maps on A.

Definition 3.10 Let A be a normed division algebra. Define a bilinear map [·, ·] :
A

2 → A by
[a, b] = ab − ba for all a, b ∈ A. (3.19)

The map [·, ·] is called the commutator of A.
Define a trilinear map [·, ·, ·] : A

3 → A by

[a, b, c] = (ab)c − a(bc) for all a, b, c ∈ A. (3.20)

The map [·, ·, ·] is called the associator of A. �

It is clear that the commutator vanishes identically on A if and only if A is
commutative, and similarly the associator vanishes identically on A if and only if A

is associative.

Proposition 3.11 The commutator and associator are both alternating. That is, they
are totally skew-symmetric in their arguments.

Proof The commutator is clearly alternating. Because A is an algebra over R, the
associator clearly vanishes if any of the arguments are purely real. Thus, because
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the associator is trilinear it suffices to show that A is alternating on (ImA)3. If
a, b ∈ ImA, then a = −a and b = −b. Thus by (3.18) we find that

−[a, a, b] = [a, a, b] = (aa)b − a(ab) = 0.

Similarly we have−[a, b, b] = [a, b, b] = (ab)b − a(bb) = 0. Thus [·, ·, ·] is alter-
nating in its first two arguments and in its last two arguments. Thus [a, b, a] =
−[a, a, b] = 0 as well. �

The next result says that both the commutator and the associator restrict to vector-
valued alternating multilinear forms on ImA.

Lemma 3.12 If a, b, c ∈ ImA, then [a, b] ∈ ImA and [a, b, c] ∈ ImA.

Proof We need to show that [a, b] and [a, b, c] are orthogonal to 1. Using the fact
that a = −a for any a ∈ ImA, and the identities (3.5) and (3.30), we compute

〈[a, b], 1〉 = 〈ab − ba, 1〉 = 〈b, a〉 − 〈a, b〉
= −〈b, a〉 + 〈a, b〉 = 0.

Similarly, noting that bc = cb = (−c)(−b) = cb, we have

〈[a, b, c], 1〉 = 〈(ab)c − a(bc), 1〉 = 〈ab, c〉 − 〈bc, a〉
= −〈ab, c〉 + 〈bc, a〉 = −〈a, cb〉 + 〈bc, a〉
= 〈a, cb + bc〉 = 〈a, bc + bc〉 = 2〈a,Re(bc)〉 = 0,

as claimed. �

Proposition 3.13 Let a, b, c, d ∈ A. The multilinear expressions 〈a, [b, c]〉 and
〈a, [b, c, d]〉 are both totally skew-symmetric in their arguments.

Proof The commutator and the associator are alternating by Proposition3.11. Thus
we need only show that 〈a, [a, b]〉 = 0 and 〈a, [a, b, c]〉 = 0. Using the identity (3.4)
we compute

〈a, [a, b]〉 = 〈a, ab − ba〉 = ‖a‖2〈1, b〉 − ‖a‖2〈1, b〉 = 0,

and similarly using (3.4) and (3.5) we have

〈a, [a, b, c]〉 = 〈a, (ab)c − a(bc)〉 = 〈ac, ab〉 − ‖a‖2〈1, bc〉
= ‖a‖2〈c, b〉 − ‖a‖2〈c, b〉 = 0

as claimed. �
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3.2 Induced Algebraic Structure on ImA

Let A ∼= R
n be a normed division algebra with imaginary part ImA ∼= R

n−1. We
define several objects on ImA induced from the algebra structure on A. Motivated
by Lemma3.12 and Proposition3.13 the following definition is natural. The factor
of 1

2 is for convenience, to avoid factors of 2 in Eqs. (3.29) and (3.39).

Definition 3.14 Recall the statement of Proposition3.13. Define a 3-form ϕ and a
4-form ψ on ImA as follows:

ϕ(a, b, c) = 1
2 〈a, [b, c]〉 = 1

2 〈[a, b], c〉 for a, b, c ∈ ImA, (3.21)

ψ(a, b, c, d) = 1
2 〈a, [b, c, d]〉 = − 1

2 〈[a, b, c], d〉 for a, b, c, d ∈ ImA. (3.22)

The form ϕ ∈ �3(ImA)∗ is called the associative 3-form, and the form ψ ∈
�4(ImA)∗ is called the coassociative 4-form for reasons that become clear in the
context of calibrated geometry [34, 35].

The 3-form ϕ is intimately related to another algebraic operation on ImA that is
fundamental in G2-geometry, given by the following definition. �

Definition 3.15 Define a bilinear map × : A
2 → A by

a × b = Im(ab) for all a, b ∈ ImA. (3.23)

Essentially, since the product in A of two imaginary elements need not be imaginary,
we project to the imaginary part to define ×. The bilinear map × is called the vector
cross product on ImA induced by the algebraic structure on A. �

The vector cross product × has several interesting properties.

Lemma 3.16 Let a, b ∈ ImA. The we have

a × b = −b × a, (3.24)

〈a × b, a〉 = 0, so (a × b) ⊥ a and (a × b) ⊥ b, (3.25)

Re(ab) = −〈a, b〉1. (3.26)

Proof Recall that a = −a and b = −b. Thus from (3.2) and (3.6), we have

2a × b = ab − ab = ab − ba = [a, b]. (3.27)

Thus a × b = −b × a.
Since a ∈ ImA, Eq. (3.23) show that 〈a × b, a〉 = 〈Im(ab), a〉 = 〈ab, a〉. Thus,

using (3.4) we get 〈a × b, a〉 = 〈ab, a〉 = 〈ab, a1〉 = ‖a‖2〈b, 1〉 = 0 because b ∈
ImA is orthogonal to 1 ∈ ReA.

Since b = −b, Eq. (3.16) gives 〈a, b〉 = Re(ab) = −Re(ab), which is (3.26).
�
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Combining Eqs. (3.26) and (3.23) gives us that the decomposition of ab ∈ A into
real and imaginary parts is given by

ab = −〈a, b〉1 + a × b. (3.28)

It then follows from (3.27) and (3.21) that

ϕ(a, b, c) = 〈a × b, c〉 for a, b, c ∈ ImA. (3.29)

Note that since a × b − ab is real by (3.28), we can equivalently write (3.29) as

ϕ(a, b, c) = 〈ab, c〉 for a, b, c ∈ ImA. (3.30)

Lemma 3.17 Let a, b, c ∈ ImA. Then we have

a(bc) = − 1
2 [a, b, c] − ϕ(a, b, c)1 − 〈b, c〉a + 〈a, c〉b − 〈a, b〉c. (3.31)

Proof Applying the three identities in Corollary3.6 repeatedly, we compute

a(bc) = −b(ac) − 2〈a, b〉c
= −b

( − ca − 2〈a, c〉1) − 2〈a, b〉c
= b(ca) + 2〈a, c〉b − 2〈a, b〉c
= −c(ba) − 2〈b, c〉a + 2〈a, c〉b − 2〈a, b〉c.

Also, putting c �→ c and b �→ ab in (3.11) and using (3.30) gives

c(ba) − (ab)c = c(ab) + (ab)c = 2〈ab, c〉1 = 2ϕ(a, b, c)1.

Combining the above two expressions gives

a(bc) = −(ab)c − 2ϕ(a, b, c)1 − 2〈b, c〉a + 2〈a, c〉b − 2〈a, b〉c.

Using [a, b, c] = (ab)c − a(bc) to eliminate (ab)c above and rearranging gives
(3.31). �

Equation (3.31) is used to establish the following two corollaries.

Corollary 3.18 Let a, b, c ∈ ImA. The vector cross product × on ImA satisfies

‖a × b‖2 = ‖a‖2 ‖b‖2 − 〈a, b〉2 = ‖a ∧ b‖2, (3.32)

and
a × (b × c) = −〈a, b〉c + 〈a, c〉b − 1

2 [a, b, c]. (3.33)

Proof Let a, b ∈ ImA. Using (3.28) we have ab = −〈a, b〉1 + a × b and ba =
−〈b, a〉1 + b × a = −〈a, b〉 − a × b. Thus we have
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〈ab, ba〉 = 〈−〈a, b〉1 + a × b,−〈a, b〉1 − a × b〉 = 〈a, b〉2 − ‖a × b‖2.

Using the above expression and Eq. (3.27) and (3.1), we compute

4‖a × b‖2 = 〈ab − ba, ab − ba〉 = ‖ab‖2 + ‖ba‖2 − 2〈ab, ba〉
= ‖a‖2‖b‖2 + ‖b‖2‖a‖2 − 2(〈a, b〉2 − ‖a × b‖2),

which simplifies to (3.32). Again using (3.28) twice and (3.29) we compute

a × (b × c) = 〈a, b × c〉1 + a(b × c)

= ϕ(a, b, c)1 + a(〈b, c〉 + bc)

= a(bc) + ϕ(a, b, c)1 + 〈b, c〉a〉.

Substituting (3.31) for a(bc) above gives (3.33). �

Corollary 3.19 Let a, b, c, d ∈ ImA. Then the following identity holds:

‖ 1
2 [a, b, c]‖2 + (

ϕ(a, b, c)
)2 = ‖a ∧ b ∧ c‖2. (3.34)

Proof Recall from Lemma3.12 and Proposition3.13 that [a, b, c] is purely imagi-
nary and is orthogonal to a, b, c. Thus, taking the norm squared of (3.31) and using
the fundamental relation (3.1), we have

‖a‖2‖b‖2‖c‖2 = ‖a‖2‖bc‖2 = ‖a(bc)‖2
= ‖ 1

2 [a, b, c]‖2 + (
ϕ(a, b, c)

)2 + ‖a‖2〈b, c〉2 + ‖b‖2〈a, c〉2 + ‖c‖2〈a, b〉2
− 2〈b, c〉〈a, c〉〈a, b〉 + 2〈b, c〉〈a, b〉〈a, c〉 − 2〈a, c〉〈a, b〉〈b, c〉.

This can be rearranged to yield

‖ 1
2 [a, b, c]‖2 + (

ϕ(a, b, c)
)2 = ‖a‖2‖b‖2‖c‖2 − ‖a‖2〈b, c〉2 − ‖b‖2〈a, c〉2

− ‖c‖2〈a, b〉2 + 2〈a, b〉〈a, c〉〈b, c〉,

which is precisely (3.34). �

Remark 3.20 Comparing Eqs. (3.21) and (3.29), one is tempted from (3.22) to think
of the expression 1

2 [a, b, c] as some kind of 3-fold vector cross product P(a, b, c),
as it is a trilinear vector valued alternating form on ImA. However, Eq. (3.34) says
that ‖a ∧ b ∧ c‖2 − ‖P(a, b, c)‖2 is nonzero in general, whereas (3.32) says that
‖a ∧ b‖2 − ‖a × b‖2 = 0 always. There is a notion of 3-fold vector cross product
(see Remark3.23 below) but [·, ·, ·] on ImA is not one of them. In fact, Eq. (3.34)
is the calibration inequality for ϕ. It says that |ϕ(a, b, c)| ≤ 1 whenever a, b, c are
orthonormal, with equality if and only if [a, b, c] = 0. See [34, 35] in the present
volume for more about the aspects of G2 geometry related to calibrations. �
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Equations (3.25) and (3.32) for the vector cross product × induced from the alge-
braic structure on A motivate the following general definition.

Definition 3.21 Let V = R
m , equipped with the usual Euclidean inner product. We

say that V has a vector cross product, which we usually simply call a cross product, if
there exists a skew-symmetric bilinearmap× : V

2 → V such that, for all a, b, c ∈ V,
we have

〈a × b, a〉 = 0, so (a × b) ⊥ a and (a × b) ⊥ b, (3.35)

‖a × b‖2 = ‖a‖2 ‖b‖2 − 〈a, b〉2 = ‖a ∧ b‖2. (3.36)

Note that (3.35) and (3.36) are precisely (3.25) and (3.32), respectively. �
Remark 3.22 The fact that × is skew-symmetric and bilinear is equivalent to
saying that × is a linear map

× : �2(V) → V.

Then (3.36) says that × is length preserving on decomposable elements of�2(V). �
Remark 3.23 In Definition3.21 we have really defined a special class of vector
cross product, called a 2-fold vector cross product. A more general notion of k-fold
vector cross product [3] exists. When k = 1 such a structure is an an orthogonal
complex structure. When k = 3 such a structure is related to Spin(7)-geometry. See
also Lee–Leung [33] for more details. Another extensive recent reference for general
vector cross products is Cheng–Karigiannis–Madnick [7, Sect. 2]. �

We have seen that any normed division algebra A gives a vector cross product on
V = ImA. In the next section we show that we can also go the other way.

3.3 One-to-One Correspondence and Classification

We claim that the normed division algebras are in one-to-one correspondence with
the spaces admitting cross products. The correspondence is seen explicitly as follows.
LetA be a normed division algebra. In Sect. 3.2 we showed thatV = ImA has a cross
product. Conversely, suppose V = R

m has a cross product ×. Define A = R ⊕ V =
R

m+1, with the Euclidean inner product. That is,

〈(s, v), (t, w)〉 = st + 〈v,w〉 for s, t ∈ R and v,w ∈ V.

Define a multiplication on A by

(s, v)(t, w) = (st − 〈v,w〉, sw + tv + v × w). (3.37)

The multiplication defined in (3.37) is clearly bilinear over R, so it gives A the
structure of a (not necessarily associative) algebra over R. It is also clear from (3.37)
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that (1, 0) is a multiplicative identity on A. We need to check that (3.1) is satisfied.
We compute:

‖(s, v)(t, w)‖2 = (st − 〈v,w〉)2 + ‖sw + tv + v × w‖2
= s2t2 − 2st〈v,w〉 + 〈v,w〉2 + s2‖w‖2 + t2‖v‖2 + ‖v × w‖2

+ 2st〈v,w〉 + 2s〈w, v × w〉 + 2t〈v, v × w〉.

Using (3.33) and (3.35), the above expression simplifies to

‖(s, v)(t, w)‖2 = s2t2 + s2‖w‖2 + t2‖v‖2 + ‖v‖2‖w‖2
= (s2 + ‖v‖2)(t2 + ‖w‖2) = ‖(s, v)‖ ‖(t, w)‖,

verifying (3.1).
Normed division algebras were classified by Hurwitz in 1898. A proof using

the Cayley–Dickson doubling construction can be found in [17, Chap. 6] or [18,
Appendix IV.A]. There are exactly four possibilities, up to isomorphism.

The four normed division algebras are given by the following table:

n = dimA 1 2 4 8

Symbol R C ∼= R
2

H ∼= R
4

O ∼= R
8

Name Real numbers Complex numbers Quaternions or Octonions or
Hamilton numbers Cayley numbers

Each algebra in the above table is a subalgebra of the next one. In particular, the
multiplicative unit in all cases is the usual multiplicative identity 1 ∈ R. Moreover, as
we enlarge the algebrasR → C → H → O, we lose some algebraic property at each
step. From R to C we lose the natural ordering. From C to H we lose commutativity.
And from H to O we lose associativity.

The octonions O are also called the exceptional division algebra and the geome-
tries associated to O are known as exceptional geometries.

By the one-to-one correspondence between normed division algebras and spaces
admitting cross products, we deduce that there exist precisely four spaces with cross
product, given by the following table:

m = dimV 0 1 3 7

Symbol {0} ∼= ImR R ∼= ImC R
3 ∼= ImH R

7 ∼= ImO

Cross product × trivial trivial standard (Hodge star) exceptional
the 3-form 0 0 ϕ = μ is the standard ϕ is the
ϕ ∈ �3(V∗) volume form associative 3-form
the (m − 3)-form 0 0 �ϕ = 1 ∈ �0(V∗) ∼= R �ϕ = ψ ∈ �4(V∗) is the
�ϕ ∈ �m−3(V∗) is the multiplicative unit coassociative 4-form
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Remark 3.24 Here are some remarks concerning the above table:

(i) When m = 0, 1, the cross product × is trivial because �2(V) = {0} in these
cases.

(ii) When m = 3 we recover the standard cross product on R
3. It is well-known

that the standard cross product can be obtained from quaternionic multiplication
by (3.23), and that 〈u × v,w〉 = μ(u, v, w) is the volume form μ evaluated on
the 3-plane u ∧ v ∧ w. Equivalently, the cross product is given by the Hodge
star on R

3. That is, u × v = �(u ∧ v). In this case �ϕ = �μ = 1.
(iii) The cross product on R

7 is induced in the same way from octonionic multipli-
cation, and is called the exceptional cross product. In this case ϕ is a nontrivial
3-form on R

7, and �ϕ = ψ is a nontrivial 4-form on R
7. We discuss these in

more detail in Sect. 4.1. �

3.4 Further Properties of the Cross Product in R
3 and R

7

Let us investigate some further properties of the cross product. First, note that forV =
R

3 ∼= ImH, Eq. (3.33) reduces to the familiar a × (b × c) = −〈a, b〉c + 〈a, c〉b,
because H is associative. However, for V = R

7 ∼= ImO, we have

a × (b × c) = −〈a, b〉c + 〈a, c〉b − 1
2 [a, b, c] (3.38)

where the last term does not vanish in general. In fact using (3.22) we canwrite (3.38)
as

a × (b × c) = −〈a, b〉c + 〈a, c〉b + (
ψ(a, b, c, ·))�

(3.39)

where α� is the vector in V that is metric-dual to the 1-form α ∈ V
∗ via the inner

product. Explicitly, 〈α�, b〉 = α(b) for all b ∈ V.

Remark 3.25 The nontriviality of the last term in (3.38) or (3.39) is equivalent to
the nonassociativity of O and is the source of the inherent nonlinearity in geometries
defined using the octonions. See also Remark4.15 below. �

We obtain a number of important consequences from the fundamental iden-
tity (3.38). The remaining results in this section hold for both the cases V = R

3 ∼=
ImH and V = R

7 ∼= ImO, with the understanding that the associator term vanishes
in the R

3 case.

Corollary 3.26 Let a, c ∈ V. Then we have

a × (a × c) = −‖a‖2c + 〈a, c〉a. (3.40)

Proof Let a = b in (3.38). The associator term vanishes by Proposition3.11. �
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Remark 3.27 From Corollary3.26 we deduce the following observation. Let a ∈ V

satisfy‖a‖ = 1.Consider the codimension one subspaceU = (span{a})⊥ orthogonal
to a. Since a × c is orthogonal to c for all c, the linear map Ja : V → V given by
Ja(c) = a × c leaves U invariant, and by (3.40) we have (Ja)2 = −I on U, so Ja is
a complex structure on U. �

Corollary 3.28 Let a, b, c ∈ V be orthonormal, with a × b = c. Then b × c = a
and c × a = b.

Proof Take the cross product of a × b = c on both sides with a or b and use (3.40).
�

Corollary 3.29 Let a, b, c, d ∈ V. Recall that

〈a ∧ b, c ∧ d〉 = det

(〈a, c〉 〈a, d〉
〈b, c〉 〈b, d〉

)
= 〈a, c〉〈b, d〉 − 〈a, d〉〈b, c〉.

Then we have

〈a × b, c × d〉 = 〈a ∧ b, c ∧ d〉 − 1
2 〈a, [b, c, d]〉, (3.41)

〈a × b, a × d〉 = 〈a ∧ b, a ∧ d〉 = ‖a‖2〈b, d〉 − 〈a, b〉〈a, d〉. (3.42)

Proof Equation (3.42) follows from (3.41) by setting c = a and using Proposi-
tion3.13. To establish (3.41), we compute using (3.29) and the skew-symmetry of ϕ
as follows:

〈a × b, c × d〉 = ϕ(a, b, c × d) = −ϕ(a, c × d, b) = −〈a × (c × d), b〉.

Using (3.38), the above expression becomes

〈a × b, c × d〉 = −〈−〈a, c〉d + 〈a, d〉c − 1
2 [a, c, d], b〉

= 〈a, c〉〈b, d〉 − 〈a, d〉〈b, c〉 + 1
2 〈b, [a, c, d]〉.

Using Proposition3.13, the above expression equals (3.41). �

Remark 3.30 Using (3.22), when n = 7 we can also write (3.41) as

〈a × b, c × d〉 = 〈a ∧ b, c ∧ d〉 − ψ(a, b, c, d). (3.43)

Recall from Remark3.25 that the nontriviality of ψ is equivalent to the nonasso-
ciativity of O. Thus the above equation says that the nonassociativity of O is also
equivalent to the fact that

〈a × b, c × d〉 �= 〈a ∧ b, c ∧ d〉

in general.
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By contrast, when n = 3 the associator vanishes, andwe do have 〈a × b, c × d〉 =
〈a ∧ b, c ∧ d〉 in this case. This corresponds, by (ii) of Remark3.24, to the fact that
a × b = �(a ∧ b) and � is an isometry. �

4 The Geometry of G2-Structures

In this section we discuss G2-structures, first on R
7 and then on smooth 7-manifolds,

including a discussion of the decomposition of the space of differential forms and of
the torsion of a G2-structure.

4.1 The Canonical G2-Structure on R
7

In this section we describe in more detail the canonical G2-structure on R
7 ∼= ImO.

This standard “G2-package” on R
7 consists of the standard Euclidean metric go,

for which the standard basis e1, . . . , e7 is orthonormal, the standard volume form
μo = e1 ∧ · · · ∧ e7 associated to go and the standard orientation, the “associative” 3-
formϕo, the “coassociative” 4-formψo, and finally the “cross product”×o operation.
We use the “o” subscript for the standard G2-package (go,μo,ϕo,ψo,×o) on R

7 to
distinguish it from a general G2-structure on a smooth 7-manifold which is defined
in Sect. 4.2. We also use ‖ · ‖o to denote both the norm on R

7 induced from the inner
product go and also the induced norm on �•(R7)∗.

We identify R
7 ∼= ImO. Recall from Definition3.14 that the associative 3-form

ϕo and the coassociative 4-form ψo are given by

ϕo(a, b, c) = 1
2 〈[a, b], c〉 for a, b, c ∈ R

7,

ψo(a, b, c, d) = − 1
2 〈[a, b, c], d〉 for a, b, c, d ∈ R

7.

Using the octonionmultiplication table, one can show thatwith respect to the standard
dual basis e1, . . . , e7 on (R7)∗, and writing ei jk = ei ∧ e j ∧ ek and similarly for
decomposable 4-forms, we have

ϕo = e123 − e167 − e527 − e563 − e415 − e426 − e437,

ψo = e4567 − e4523 − e4163 − e4127 − e2637 − e1537 − e1526.
(4.1)

It is immediate that
ψo = ∗oϕo,

where ∗o is the Hodge star operator induced from (go,μo). The explicit expressions
forϕo andψo = ∗oϕo in (4.1) are not enlightening and need not be memorized by the
reader. There is a particular method to the seemingmadness in whichwe havewritten
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ϕo and ψo, which is explained in [27] in relation to the standard SU(3)-structure on
R

7 = C
3 ⊕ R, where z1 = x1 + i x5, z2 = x2 + i x6, z3 = x3 + i x7 are the complex

coordinates on C
3 and x4 is the coordinate on R.

One piece of information to retain from (4.1) is that

‖ϕo‖2o = ‖ψo‖2o = 7, (4.2)

which is equivalent to the identity ϕo ∧ ψo = 7μo. (These facts are analogous to the
identities ‖ωo‖2o = 2m and 1

m!ω
m
o = μo for the standard Kähler form ωo on C

m with
respect to the Euclidean metric.)

We now use this standard “G2-package” on R
7 to give a definition of the group

G2.

Definition 4.1 ThegroupG2 is defined to be the subgroupofGL(7, R) that preserves
the standard G2-package on R

7. That is,

G2 = {A ∈ GL(7, R) : A∗go = go, A
∗μo = μo, A

∗ϕo = ϕo}.

Note that because go and μo determine the Hodge star operator ∗o, which in turn
from ϕo determines ψo, and because go and ϕo together determine ×o, it follows
that any A ∈ G2 also preserves ψo and ×o. (But see Theorem4.2 below.) Moreover,
since by definition A ∈ G2 preserves the standard Euclidean metric and orientation
on R

7, we see that G2 as defined above is a subgroup of SO(7, R). �

Theorem 4.2 (Bryant [4]) Define K = {A ∈ GL(7, R) : A∗ϕo = ϕo}. Then in fact
K = G2. That is, if A ∈ GL(7, R) preserves ϕo, then it also automatically preserves
go and μo as well.

Proof One can show using the explicit form (4.1) for ϕo in terms of the standard
basis e1, . . . , e7 of (R7)∗ that

(a ϕo) ∧ (b ϕo) ∧ ϕo = −6go(a, b)μo. (4.3)

It follows from (4.3) that if A∗ϕo = ϕo, then

(A∗go)(a, b)A∗μo = go(Aa, Ab)(det A)μo = go(a, b)μo. (4.4)

Thus we have (det A)go(Aa, Ab) = go(a, b), or equivalently in terms of matrices,
go = (det A)AT goA. Taking determinants of both sides, and observing that these are
all 7 × 7 matrices, gives det go = (det A)9 det go, so det A = 1 and A∗μo = μo. But
then (4.4) says that A∗go = go as claimed. �

Remark 4.3 In Bryant [4] the Eq. (4.3) has a +6 on the right hand side rather than
our −6, because of a different orientation convention. See also Remark4.17 below.

�
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Remark 4.4 Theorem4.2 appears in [4]. Robert Bryant claims that it is amuch older
result, due to Élie Cartan. While this is almost certainly true, most mathematicians
know this result as “Bryant’s Theorem” as [4] is the earliest accessible reference for
this result that is widely known. See Agricola [1] for more about this history of the
group G2. �

Corollary 4.5 The groupG2 can equivalently be defined as the automorphism group
Aut(O) of the normed division algebra O of octonions.

Proof Let A ∈ Aut(O). Since A is an algebra automorphism we have A(1) = 1 and
thus A(t1) = t for all t ∈ R. Now suppose p ∈ ImO. Then p2 = −pp = −‖p‖2o is
real. Thus we have

(A(p))2 = A(p)A(p) = A(p2) = A(−‖p‖2o) = −‖p‖2o
is real. By Corollary3.8 we deduce that A(p) must be real or imaginary. Suppose it
is real. Then A(p) = t1 for some t ∈ R. But then A(p) = A(t1) and p �= t1 since p
is imaginary. This contradicts the invertibility of A. Thus A(p) must be imaginary.
This means A(p) = −A(p) whenever p is imaginary.

Now let p = (Re p)1 + (Im p). Since A is linear over R and A(1) = 1, we get
A(p) = (Re p)1 + A(Im p). But then A(p) = (Re p)1 − A(Im p) = A(p). It fol-
lows that

‖A(p)‖2o = A(p)A(p) = A(p)A(p) = A(pp) = A(‖p‖2o) = ‖p‖2o.

Thus ‖A(p)‖o = ‖p‖o, and from A(1) = 1 and A(ImO) ⊆ (ImO)we conclude that
A ∈ O(7). Finally, from (3.30), if a, b, c ∈ ImO we get

(A∗ϕo)(a, b, c) = ϕo(Aa, Ab, Ac) = 〈(Aa)(Ab), Ac〉
= 〈A(ab), Ac〉 = 〈ab, c〉 = ϕo(a, b, c).

Thus A∗ϕo = ϕo, so by Theorem4.2 we deduce that A ∈ G2.
Conversely, if A ∈ G2, then A preserves the cross product and the inner product,

so if we extend A linearly from R
7 ∼= ImO to O = R ⊕ R

7 by setting A(1) = 1,
then it follows immediately from (3.37) that A(ab) = A(a)A(b) for all a, b ∈ O, so
A ∈ Aut(O). �

Remark 4.6 Theorem4.2 is an absolutely crucial ingredient of G2-geometry. It
says that the 3-form ϕo determines the orientation μo and the metric go in a highly
nonlinear way. This is in stark contrast to the situation of the standardU(m)-structure
on C

m , which consists of the Euclidean metric go, the standard complex structure Jo
on C

m , and the associated Kähler form ωo, which are all related by

ωo(a, b) = go(Joa, b). (4.5)
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Moreover, the standard volume form is μo = 1
m!ω

m
o . Equation (4.5) should be com-

pared to (3.29). The almost complex structure Jo is the analogue of the cross product
×o, and the 2-form ωo is the analogue of the 3-form ϕo. However, in the case of the
standard U(m)-structure, the 2-form ωo does not determine the metric. (Although it
does determine the orientation.) The correct way to think about (4.5) is that knowl-
edge of any two of go, Jo,ωo uniquely determines the third. This is encoded by the
following Lie group relation:

O(2m, R) ∩ GL(m, C) = O(2m, R) ∩ Sp(m, R) = GL(m, C) ∩ Sp(m, R) = U(m).

Colloquially, we say that the intersection of any two of Riemannian, complex, and
symplectic geometry isKähler geometry.By constrast,G2 geometrydoes not “decou-
ple” in any such way. It is not the intersection of Riemannian geometry with any
other “independent” geometry. The 3-form ϕo determines everything else. �

Let us consider how we should think about the group G2, which by Theorem4.2
is described as a particular subgroup of SO(7, R). Before we can do that, we need a
preliminary result.

Lemma 4.7 Let f1, f2, f4 be a triple of orthonormal vectors in R
7 such that

ϕo( f1, f2, f4) = 0. Define

f3 = f1 ×o f2, f5 = f1 ×o f4, f6 = f2 ×o f4, f7 = f3 ×o f4 = ( f1 ×o f2) ×o f4.
(4.6)

Then the ordered set { f1, . . . , f7} is an oriented orthonormal basis of R
7.

Proof One can check usingEqs. (3.25), (3.29), and (3.42), togetherwith the hypothe-
ses that { f1, f2, f4} are orthonormal and ϕo( f1, f2, f4) = 0, that 〈 fi , f j 〉 = δi j for
all i, j so the set is orthonormal. Most of these are immediate. We demonstrate one
of the less trivial cases. Using Corollary3.28, we deduce that f3 ×o f1 = f2. Thus
we have

go( f1, f7) = go( f1, f3 ×o f4) = ϕo( f1, f3, f4)

= −ϕo( f3, f1, f4) = −go( f3 ×o f1, f4) = −go( f2, f4) = 0.

It remains to show { f1, . . . , f7} induces the same orientation as {e1, . . . , e7}. When
fk = ek for k = 1, 2, 4, then it follows from the octonion multiplication table
and (4.6) that fk = ek for all k = 1, . . . , 7. It is then not hard to see that the matrix
in A ∈ O(7) given by

A = (
f1 | f2 | f3 | f4 | f5 | f6 | f7

)

can be obtained from the identity matrix by a product of three elements of SO(7).
Thus A ∈ SO(7) and hence { f1, . . . , f7} is oriented. �

Corollary 4.8 The group G2 can be viewed explicitly as the subgroup of SO(7)
consisting of those elements A ∈ SO(7) of the form
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A = (
f1 | f2 | f1 ×o f3 | f4 | f1 ×o f4 | f2 ×o f4 | ( f1 ×o f2) ×o f4

)
(4.7)

where { f1, f2, f4} is an orthonormal triple satisfyingϕo( f1, f2, f4) = 0. (Thismeans
that the cross product of any two of { f1, f2, f4} is orthogonal to the third.)
Proof By Lemma4.7, every matrix of the form (4.7) does lie in SO(7). By The-
orem4.2, a matrix A ∈ SO(7) is in G2 if and only if A preserves the vector cross
product ×o. Since A takes ek to fk , it follows from the fact that

e3 = e1 ×o e2, e5 = e1 ×o e4, e6 = e2 ×o e4, e7 = e3 ×o e4 = (e1 ×o e2) ×o e4,

that such the elements of G2 are precisely the matrices of the form (4.7). �

Remark 4.9 We can argue from Corollary4.8 that dim G2 = 14, as follows. We
know G2 corresponds to the set of orthonormal triples { f1, f2, f4} such that f4 is
orthogonal to f1, f2, and f1 ×o f2. Thus f1 is any unit vector in R

7, so it lies on S6.
Then f2 must be orthogonal to f1, so it lies on the unit sphere S5 of the R

6 that is
orthogonal to f1. Finally, f4 must be orthogonal to f1, f2, and f1 ×o f2, so it lies on
the unit sphere S3 of the R

4 that is orthogonal to these three vectors. Thus we have
6 + 5 + 3 = 14 degrees of freedom, so dimG2 = 14.

(In fact, G2 is a connected, simply-connected, compact Lie subgroup of SO(7).)
�

4.2 G2-Structures on Smooth 7-Manifolds

In this section, as discussed in Sect. 2, we equip a smooth 7-manifold with the “G2

package” at each tangent space, in a smoothly varying way.

Definition 4.10 LetM7 be a smooth 7-manifold. AG2-structure onM is a smooth 3-
formϕ onM such that, at every p ∈ M , there exists a linear isomorphism TpM ∼= R

7

with respect to which ϕp ∈ �3(T ∗
p M) corresponds to ϕo ∈ �3(R7)∗. Therefore,

because ϕo induces go and μo, a G2-structure ϕ on M induces a Riemannian metric
gϕ and associated Riemannian volume form μϕ. These in turn induce a Hodge star
operator �ϕ and dual 4-form ψ = �ϕϕ. �

Thus if ϕ is a G2-structure on M , then at every point p ∈ M , there exists a basis
{e1, . . . , e7} of TpM with respect to which ϕp = ϕo from (4.1). Note that in general
we cannot choose a local frame on an open setU in M with respect to which ϕ takes
the standard form in (4.1), we can only do this at a single point. This is analogous to
how, in a manifold (M2m, g, J,ω) with U(m)-structure, we can always find a basis
of TpM for any p ∈ M in which the “U(m) package” assumes the standard form on
C

m , but we cannot in general do this on an open set. (See [12] for a comprehensive
treatment of U(m)-structures.)
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Not every smooth 7-manifold admits G2-structures. A G2-structure is equivalent
to a reduction of the structure group of the frame bundle of M from GL(7, R)

to G2 ⊂ SO(7). As such, the existence of a G2-structure is entirely a topological
question.

Proposition 4.11 A smooth 7-manifold M admits a G2-structure if and only if M
is both orientable and spinnable. This is equivalent to the vanishing of the first two
Stiefel-Whitney classes w1(T M) and w2(T M).

Proof See Lawson–Michelsohn [31, Chap. IV, Theorem 10.6] for a proof. �

Therefore, while not all smooth 7-manifolds admit G2-structures, there are many
that do and they are completely characterized by Proposition4.11.

There is a much more concrete way to understand when a 3-form ϕ on M is a
G2-structure. It can be considered as a “working differential geometer’s definition of
G2-structure”, and is described as follows. Let ϕ ∈ �3(M7). Let x1, . . . , x7 be local
coordinates on an open set U in M . For i, j ∈ {1, . . . , 7}, define a smooth function
Bi j on U by

− 6Bi j dx
1 ∧ · · · ∧ dx7 =

( ∂

∂xi
ϕ
)

∧
( ∂

∂x j
ϕ
)

∧ ϕ. (4.8)

Since 2-forms commute, we have Bi j = Bji . In fact, comparison with (4.3) shows
that if ϕ is a G2-structure, we must have Bi j = gi j

√
det g, since μ = √

det gdx1 ∧
· · · ∧ dx7 is the Riemannian volume form in local coordinates. Hence det B =
(
√
det g)7 det g = (det g)

9
2 and thus

√
det g = (det B)

1
9 . Solving for gi j gives

gi j = 1

(det B)
1
9

Bi j . (4.9)

We say that ϕ ∈ �3(M7) is a G2-structure if this recipe actually works to construct
a Riemannian metric. Thus we must have both:

(i) det B must be nonzero everywhere on U ,
(ii) gi j as defined in (4.9) must be positive definite everywhere on U .

Of course, these two conditions must hold in any local coordinates x1, . . . , x7 on M .
But the advantage of this way of thinking about G2-structures (besides it being very
concrete) is that it allows us to easily see that the condition of ϕ being a G2-structure
is an open condition. That is, if ϕ is a G2-structure, and ϕ̃ is another smooth 3-form
on M sufficiently close to ϕ (in the C0-norm with respect to any Riemannian metric
on M) then ϕ̃ will also be a G2-structure. This is because both conditions (i) and (ii)
above are open conditions at each point p of M .

We conclude that, if the space of G2-structures on M is nonempty, then it can be
identified with a space �3+ of smooth sections of a fibre bundle �3+(T ∗M) whose
fibres are open subsets of the corresponding fibres of the bundle�3(T ∗M). The space
�3+ is also called the space of nondegenerate or positive or stable 3-forms on M .
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Remark 4.12 There is another way of seeing that the condition of being a G2-
structure is open. At any point p ∈ M , the space of all G2-structures �3+(T ∗

p M) can
be identified with the orbit of ϕo in�3(R7)∗ by the action of GL(7, R) quotiented by
the stabilizer subgroup ofϕo, which isG2 byTheorem4.2. Since dim GL(7, R) = 49,
and dimG2 = 14, we have dim�3+(T ∗

p M) = 49 − 14 = 35 = dim�3(T ∗
p M), and

thus�3+(T ∗
p M) is an open set of�3(T ∗

p M). See Hitchin [20] for a general discussion
of stable forms. �

Remark 4.13 The nonlinear map ϕ → g is not one-to-one. In fact, given a metric g
on M induced from aG2-structureϕ, at each point p ∈ M , the space of G2-structures
at p inducing gp is diffeomorphic to RP

7. Thus the G2-structures inducing the same
metric g correspond to sections of an RP

7-bundle over M . See [6, p. 10, Remark 4]
for more details on isometric G2-structures. �

Let (M,ϕ) be a manifold with G2-structure, and let g be the induced metric.
Let ψ = �ϕϕ denote the dual 4-form. The vital relation (3.39), which is equivalent
to (3.43) leads to fundamental local coordinate identities relating ϕ, ψ, and g.

Theorem 4.14 In local coordinates on M, the tensors ϕ, ψ, and g satisfy the fol-
lowing relations:

ϕi jkϕabcg
kc = giag jb − gibg ja − ψi jab, (4.10)

ϕi jkϕabcg
jbgkc = 6gia, (4.11)

ϕi jkψabcdg
kd = giaϕ jbc + gibϕajc + gicϕabj − gajϕibc − gbjϕaic − gcjϕabi ,

(4.12)

ϕi jkψabcdg
jcgkd = −4ϕiab, (4.13)

ψi jklψabcdg
kcgld = 4giag jb − 4gibg ja − 2ψi jab, (4.14)

ψi jklψabcdg
jbgkcgld = 24gia . (4.15)

Proof These are derived from the relation (3.39) or equivalently (3.43). Indeed, the
first identity (4.10) is precisely (3.43) expressed in local coordinates. The explicit
details can be found in [26, Sect. A.3]. �

Of course, there are many other possible contractions of ϕ, ψ, and g. In Theo-
rem4.14 we only list those that show up most frequently in practice.

Remark 4.15 The identities for G2-structures in Theorem4.14 should be contrasted
with the analogue forU(m)-structures. First,wehave only a single formω, as opposed
to the two formsϕ andψ. Moreover, fromωab = J c

a gcb, which comes from (4.5), and
the fact that J 2 = −I , we find thatωiaω jbg

ab = gi j . This is much simpler than (4.10)
as the right hand side only involves the metric g. This again illustrates the “increased
nonlinearity” of G2 geometry, as mentioned in Remark3.25 above. �
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4.3 Decomposition of �• into IrreducibleG2 Representations

Let (M,ϕ)be amanifoldwithG2-structure.Thebundle�•(T ∗M) = ⊕7
k=1�

k(T ∗M)

decomposes into irreducible representations of G2. This in turn induces a decom-
position of the space �k = �(�k(T ∗M)) of smooth k-forms on M . This is entirely
analogous to how, on a manifold with almost complex structure, the space �•

C
=

�(�•(T ∗M) ⊗ C)of complex-valued formsdecomposes into “formsof type (p, q)”.
By Theorem4.2, all the tensors determined by ϕ will be invariant under G2 and

hence any subspaces of �k defined using ϕ, ψ, g, and � will be G2 representations.
The space �k is irreducible if k = 0, 1, 6, 7. However, for k = 2, 3, 4, 5 we have a
nontrivial decomposition. Since �k = ��7−k , the decompositions of �5 and �4 are
obtained by taking � of the decompositions of �2 and �3, respectively.

In fact we have

�2 = �2
7 ⊕ �2

14,

�3 = �3
1 ⊕ �3

7 ⊕ �3
27,

where�k
l has (pointwise) dimension l and these decompositions are orthogonal with

respect to g. These spaces are described invariantly as follows:

�2
7 = {X ϕ | X ∈ �(T M)} = {β ∈ �2 | �(ϕ ∧ β) = −2β},

�2
14 = {β ∈ �2 | β ∧ ψ = 0} = {β ∈ �2 | �(ϕ ∧ β) = β}, (4.16)

and
�3

1 = { f ϕ | f ∈ �0}, �3
7 = {X ψ | X ∈ �(T M)},

�3
27 = {γ ∈ �3 | γ ∧ ϕ = 0, γ ∧ ψ = 0}. (4.17)

It is sometimes necessary to get our hands dirty, so we need to describe these
subspaces in terms of local coordinates. Consider first the G2-invariant linear map
P : �2 → �2 given by Pβ = �(ϕ ∧ β). If we write β = 1

2βi j dxi ∧ dx j and Pβ =
1
2 (Pβ)abdxadxb, then one can show [26, Sect. 2.2] that

(Pβ)ab = 1
2ψabcdg

cigd jβi j . (4.18)

That is, up to the factor of 1
2 , the map P is given by contracting the 2-formwith the 4-

form ψ on two indices. It is easy to check that P is self-adjoint and thus orthogonally
diagonalizable with real eigenvalues. Using the fundamental identity (4.14) for the
contraction of ψ with itself on two indices, we find

(P2β)ab = 1
2ψabcdg

cigd j (Pβ)i j = 1
4ψabcdg

cigd jψi jstg
spgtqβpq

= 1
4 (4gasgbt − 4gatgbs − 2ψabst )g

spgtqβpq

= βab − βba − 1
2ψabstg

spgtqβpq = 2βab − (Pβ)ab.
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Thus we deduce that P2 = 2I − P , so (P + 2I )(P − I ) = 0. Thus the eigenvalues
of P are−2 and+1, in agreement with (4.16). To verify that λ = −2 corresponds to
�2

7 as given in (4.16), we let βi j = (X ϕ)i j = Xmϕmi j . Then using (4.13) we have

(Pβ)ab = 1
2ψabcdg

cigd j Xmϕmi j = −2Xmϕmab = −2βab,

as claimed. Also, the condition that �2
14 = (�2

7)
⊥ gives that β ∈ �2

14 must satisfy
Xmϕmi jβabg

iag jb = 0 for all Xm . This is equivalent to ϕmi jβabg
iag jb = 0. Thus, we

can describe the decomposition (4.16) of �2 in local coordinates as

βi j ∈ �2
7 ⇐⇒ βi j = Xmϕmi j ⇐⇒ 1

2ψabcdg
cigd jβi j = −2βab,

βi j ∈ �2
14 ⇐⇒ βi jg

iag jbϕabc = 0 ⇐⇒ 1
2ψabcdg

cigd jβi j = βab.
(4.19)

Moreover, it is easy to check using (4.11) that for β ∈ �2
7 we have

βi j = Xmϕmi j ⇐⇒ Xm = 1
6βabg

aigbjϕi jkg
km . (4.20)

Remark 4.16 The description of the orthogonal splitting �2 = �2
7 ⊕ �2

14 in terms
of the−2,+1 eigenspaces of the operatorβ �→ �(ϕ ∧ β) is analogous to the orthogo-
nal splitting�2 = �2+ ⊕ �2− into self-dual and anti-self-dual 2-forms on an oriented
Riemannian 4-manifold with respect to the operator β �→ �β. This analogy is impor-
tant in G2 gauge theory. �

Remark 4.17 Many authors prefer to use the opposite orientation than we do for
the orientation induced by ϕ. (See [27] for more details.) This changes the sign of
�. The upshot is that the eigenvalues (−2,+1) in (4.16) and (4.19) are replaced
by (+2,−1). Readers should take care to be aware of any particular paper’s sign
conventions. �

The local coordinate description of the decomposition (4.17) of �3 can be under-
stood by considering the infinitesimal action of the (1, 1) tensors �(T ∗M ⊗ T M) on
ϕ. Let A = Ai

l ∈ �(T ∗M ⊗ T M). At each point p ∈ M , we have eAt ∈ GL(TpM),
and thus

eAt · ϕ = 1
6ϕi jk (eAtdxi ) ∧ (eAtdx j ) ∧ (eAtdxk). (4.21)

Define A � ϕ ∈ �3 by

(A � ϕ) = d

dt

∣∣∣∣
t=0

(eAt · ϕ). (4.22)

From (4.21) we compute

(A � ϕ) = 1
6 (A

l
iϕl jk + Al

jϕilk + Al
kϕi jl)dx

i ∧ dx j ∧ dxk,

and hence
(A � ϕ)i jk = Al

iϕl jk + Al
jϕilk + Al

kϕi jl . (4.23)
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Use the metric g to identify A ∈ �(T ∗M ⊗ T M) with a bilinear form A ∈
�(T ∗M ⊗ T ∗M) by Ai j = Al

igl j . Recall from Sect. 1.2 that there is an orthogonal
splitting

�(T ∗M ⊗ T ∗M) ∼= �0 ⊕ S0 ⊕ �2.

By the orthogonal decomposition (4.16) on �2 discussed above, we can further
decompose this as

�(T ∗M ⊗ T ∗M) ∼= �0 ⊕ S0 ⊕ �2
7 ⊕ �2

14.

With respect to this splitting, we can write A = 1
7 (Tr A)g + A0 + A7 + A14, where

A0 is a traceless symmetric tensor.
By (4.23), we have a linear map A �→ A � ϕ from �0 ⊕ S0 ⊕ �2

7 ⊕ �2
14 to the

space �3.

Proposition 4.18 The kernel of A �→ A � ϕ is �2
14, and the remaining three sum-

mands �0, S0, �2
7, of �(T ∗M ⊗ T ∗M) are mapped isomorphically onto �3

1, �3
27,

�3
7, respectively. Explicitly, if A = 1

7 (Tr A)g + A0 + A7 + A14, then

A � ϕ = 3
7 (Tr A)ϕ
︸ ︷︷ ︸

�3
1

+ A0 � ϕ︸ ︷︷ ︸
�3

27

+ X ψ︸ ︷︷ ︸
�3

7

,

where
Xm = − 1

2 Ai jg
iag jbϕabcg

cm .

Proof This can be established using the various contraction identities of Theo-
rem4.14. The explicit details can be found in [26, Sect. 2.2]. �

Remark 4.19 The fact that �2
14 is the kernel of A �→ A � ϕ is a consequence of the

fact that G2 is the Lie group that preserves ϕ. Thus the infinitesimal action, which
is the action of the Lie algebra g2, annihilates ϕ. This is consistent with the fact
that G2 ⊂ SO(7), so g2 ⊂ so(7) ∼= �2(R7)∗. Thus, at every point p ∈ M , the space
�2

14(T
∗
p M) is isomorphic to g2. �

4.4 The Torsion of a G2-Structure

Let (M,ϕ) be amanifoldwithG2-structure. Sinceϕ determines a Riemannianmetric
ϕ, we get a Levi-Civita covariant derivative ∇. Thus it makes sense to consider the
tensor ∇ϕ ∈ �(T ∗M ⊗ �3T ∗M).

Definition 4.20 The G2-structure ϕ is called torsion-free if ∇ϕ = 0. Although this
appears to be a linear equation, recall that ∇ is induced from g which itself depends
nonlinearly on ϕ. Thus the equation ∇ϕ = 0 is in fact a fully nonlinear first order
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partial differential equation for ϕ. We say (M,ϕ) is a torsion-free G2 manifold if
ϕ is a torsion-free G2-structure on M . For brevity, we sometimes use the term “G2

manifold” when we mean “torsion-free G2 manifold”. �

The fundamental observation about the torsion of any G2-structure is the follow-
ing.

Theorem 4.21 Let X be a vector field on M. Then the 3-form ∇Xϕ lies in the
subspace �3

7 of �
3. Thus the covariant derivative ∇ϕ is a smooth section of T ∗M ⊗

�3
7(T

∗M).

Proof By Proposition4.18, any 3-form γ can be written as γ = A � ϕ for a unique
A = 1

7 (Tr A)g + A0 + A7. We take the inner product of A � ϕ with ∇Xϕ. Using
(4.23), this is

〈A � ϕ,∇Xϕ〉 = 1
6 (A � ϕ)i jk(∇Xϕ)abcg

iag jbgkc

= 1
6 (A

l
iϕl jk + Al

jϕilk + Al
kϕi jl)X

m∇mϕabcg
iag jbgkc

= 1
2 A

l
iϕl jk X

m∇mϕabcg
iag jbgkc

= 1
2 Aip X

mϕq jk∇mϕabcg
pqgiag jbgkc.

Taking the covariant derivative of (4.11) and using that g is parallel, we get

∇mϕq jkϕabcg
jbgkc = −ϕq jk∇mϕabcg

jbgkc.

This says that∇mϕq jkϕabcg
jbgkc is skew in q, a. Thus the symmetric part of Aip does

not contribute to 〈A � ϕ,∇Xϕ〉 above. That is, ∇Xϕ is orthogonal to any element of
�3

1 ⊕ �3
27, as claimed. �

Theorem4.21 motivates the following definition.

Definition 4.22 Because ∇Xϕ ∈ �3
7, by (4.17) we can write

∇Xϕ = T (X) ψ

for some vector field T (X) on M . That is, there exists a tensor T ∈ �(T ∗M ⊗ T ∗M)

such that
∇mϕi jk = Tmpg

pqψqi jk . (4.24)

We call T the full torsion tensor of ϕ. �

By contracting (4.24) with ψni jk on i, j, k and using (4.15), we obtains

Tmn = 1
24∇mϕi jkψnabcg

iag jbgkc. (4.25)

Moreover, taking the covariant derivative of (4.10) and using (4.24) and (4.12), one
can compute that
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∇pψi jkl = −Tpiϕ jkl + Tpjϕikl − Tpkϕi jl + Tplϕi jk . (4.26)

Observe that Eqs. (4.24) and (4.25) show that ∇ϕ = 0 if and only if T = 0. (In
this case (4.26) shows that ∇ψ = 0 as well, which is also clear because ψ = �ϕ and
∇ commutes with �.)

Hence ϕ is torsion-free if and only if T = 0. The tensor T is a more convenient
measure of the failure of ϕ to be parallel, because we can easily decomposes it into
four independent pieces in �(T ∗M ⊗ T ∗M) ∼= �0 ⊕ S0 ⊕ �2

7 ⊕ �2
14, as

T = T1 + T27 + T7 + T14, (4.27)

where T1 = 1
7 (Tr T )g and T27 = T0 is the traceless symmetric part of T .

Corollary 4.23 Let ϕ be a G2-structure on M. Then ϕ is torsion-free if and only if
both dϕ = 0 and dψ = 0.

Proof Note that dψ = d � ϕ = − � d�ϕ, so dψ = 0 if and only if d�ϕ = 0. Because
both the exterior derivative d and its adjoint d� can be written in terms of ∇, any
parallel form is always closed and coclosed. It is the converse that is nontrivial here. In
fact, dϕ andd�ϕ are linear in∇ϕ andhence linear inT . Sincedϕ ∈ �4 = �4

1 ⊕ �4
7 ⊕

�4
27 and d�ϕ ∈ �2 = �2

7 ⊕ �2
14, it follows by Schur’s Lemma that the independent

components of dϕ and d�ϕ must correspond to the 1, 7, 14, 27 components of T as
in (4.27), up to constant factors. Thus if dϕ = 0 and d�ϕ = 0, we must have T = 0.

�

Corollary4.23 is a classical theorem of Fernàndez–Gray [14]. The present proof
is an extremely abridged version of the argument in [26, Sect. 2.3].

Remark 4.24 Recall that a differential form γ on (M, g) is harmonic if �dγ =
(dd� + d�d)γ = 0. On a compact manifold, by integration by parts harmonicity is
equivalent to dγ = 0 and d�γ = 0. Thus Corollary4.23 says that in the compact case,
a G2-structureϕ is torsion-free if and only if it is harmonicwith respect to its induced
metric. �

Since the torsion T of ϕ decomposes into four independent components as
in (4.27), each component can be zero or nonzero. This gives 24 = 16 distinct classes
of G2-structures. Some of the more interesting classes of G2-structures are given in
the following table.
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T1 T27 T7 T14 G2-structure
0 0 0 0 ∇ϕ = 0 (torsion-free)
0 0 0 ∗ dϕ = 0 (closed)
∗ ∗ 0 0 d�ϕ = 0 (coclosed)
∗ 0 0 0 dϕ = λψ (λ �= 0)

The last class in the table above is called nearly parallel, and one can show that λ
is constant and that the induced metric is positive Einstein, with Ri j = 3

8λ
2gi j . (For

example, see [26, after Remark4.19].)
More details on the 16 classes of G2-structures can be found in [8, 14, 25, 26]. In

particular it is worth remarking [26, Theorem 2.32] that with respect to conformal
changes of G2-structure, the component T7 plays a very different role than the other
three components T1, T27, T14.

Aside.There is an equivalent approach to studyingG2-structures using spin geom-
etry. Let (M7, g) be a Riemannian 7-manifold equipped with a spin structure and
associated spinor bundle /S(M). This is a real rank 8 vector bundle over M . Since
8 > 7, by algebraic topology, this bundle always admits nowhere vanishing sections.
Such a section s determines a 3-form ϕ on M by ϕ(a, b, c) = 〈a · b · c · s, s〉, where
· denotes the Clifford multiplication of tangent vectors to M on spinors. Using the
fact that s is nowhere zero, one can show that the 3-form ϕ is always a G2-structure.
Moreover,ϕ is torsion-free if and only if s is a parallel spinor, with respect to the spin
connection on /S(M) induced from the Levi-Civita connection of g. (The existence
of a parallel spinor for torsion-free G2 manifolds is precisely why they are of interest
in theoretical physics, as this is related to supersymmetry.) Similarly, ϕ is nearly
parallel in the sense defined above if and only if s is a Killing spinor. The reader is
directed to Harvey [17], Lawson–Michelsohn [31, Chap. IV. 10], and the more recent
paper by Agricola–Chiossi–Friedrich–Höll [2] for more on this point of view. This
approach is also very important in the construction of invariants of G2-structures, as
discussed by Crowley–Goette–Nordström [11] in the present volume.

4.5 Relation Between Curvature and Torsion
for a G2-Structure

Let (M,ϕ) be amanifoldwithG2-structure. Sinceϕ determines a Riemannianmetric
gϕ, we have a Riemann curvature tensor R. There is an important relation between the
tensors R and ∇T , called the “G2 Bianchi identity” that originally appeared in [26,
Theorem 4.2].

Theorem 4.25 The G2-Bianchi identity is the following:

∇i Tjk − ∇ j Tik = (TipTjq + 1
2 Ri jpq)g

pagqbϕabk . (4.28)
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Proof Equation (4.28) can be derived by combining the covariant derivative of (4.24)
with (4.26) to get an expression for∇m∇pϕi jk in terms ofϕ,ψ, and T , and∇T . Then
applying the Ricci identity to the difference

∇m∇pϕi jk − ∇p∇mϕi jk

introduces Riemann curvature terms. Simplifying further using the identities of The-
orem4.14 eventually results in (4.28). �

An important consequence of Theorem4.25 is the following.

Corollary 4.26 The Ricci curvature R jk of the metric g induced by a G2-structure
ϕ can be expressed in terms of the torsion T and its covariant derivative ∇T as
follows:

R jk = (∇i Tjp − ∇ j Tip)ϕlqkg
pqgil − Tjpg

pqTqk + (Tr T )Tjk

− TjlTabg
apgbqψpqmkg

lm .
(4.29)

Proof Equation (4.29) can be obtained from (4.28) by combining the first Bianchi
identity of Riemannian geometry together with the identities of Theorem4.14. The
details can be found in [26, Sect. 4.2]. �
Remark 4.27 Equation (4.29) shows that the metric of a torsion-free G2-structure
is always Ricci-flat. (See also item (vi) of Remark5.6 below.) �

On a general Riemannian manifold (Mn, g), the Riemann curvature tensor R
decomposes into the scalar curvature, the traceless Ricci curvature, and the confor-
mally invariant Weyl curvature. When g is induced from a G2-structure ϕ, the Weyl
tensorWdecomposes further intro three independent componentsW27,W64, andW77

as irreducible G2-representations. A detailed discussion of the curvature decomposi-
tion of G2-structures can be found in Cleyton–Ivanov [9] and in the forthcoming [13].

5 Exceptional Riemannian Holonomy

In this sectionwe briefly review the notion of the holonomy of aRiemannianmanifold
(M, g), and place the geometry of torsion-free G2-structures in this context, as one
of the geometries with exceptional Riemannian holonomy.

5.1 Parallel Transport and Riemannian Holonomy

Let (Mn, g) be aRiemannianmanifold, and let∇ be the Levi-Civita connection of the
metric g. We review without proof the well-known basic properties of Riemannian
holonomy. See, for example, [23, Chaps. 2 & 3] for a more detailed discussion.
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Definition 5.1 Fix p ∈ M . Let γ be loop based at p. Thismeans that γ : [0, 1] → M
is a continuous path, and piecewise smooth, such that γ(0) = γ(1) = p. Then, with
respect to ∇, the parallel transport �γ : Tγ(0)M → Tγ(1)M around the loop γ is a
linear isomorphism of TpM with itself, which depends on γ. We define the holonomy
of themetric g at the point p, denotedHolp(g), to be the set of all such isomorphisms.
That is,

Holp(g) = {�γ : TpM ∼= TpM : γ is a loop based at p}.

It follows from the existence and uniqueness of parallel transport (which itself is a
consequence of existence and uniqueness for systems of first order linear ordinary
differential equations) that �γ·β = �γ ◦ �β , where γ · β is the concatenation of
paths, β followed by γ. Consequently, it is easy to see that Holp(g) is closed under
multiplication and inversion. That is, Holp(g) is a subgroup of GL(TpM).

Ifwe instead consider the restricted class of contractible loops at p, which is closed
under concatenation of paths, we obtain the restricted holonomy of g at p, denoted
Hol0p(g). The group Hol0p(g) is a normal subgroup of Holp(g), and is the connected

component of the identity. If M is simply-connected, then Hol0p(g) = Holp(g) for
all p ∈ M .

Because ∇ is the Levi-Civita connection, we have ∇g = 0. Thus parallel trans-
port with respect to ∇ preserves the inner product, and we conclude that in fact
Holp(g) is a subgroup of O(TpM, gp), the group of isometries of the inner product
space (TpM, gp). Similarly Hol0p(g) is a subgroup of SO(TpM, gp), the group of
orientation-preserving isometries of (TpM, gp). �

The following proposition is straightforward to prove using the definitions.

Proposition 5.2 The holonomy group Holp(g) satisfies the following properties.

• Let p, q ∈ M lie in the same connected component of M.ThenHolp(g) ∼= Holq(g).
In fact, if γ is a piecewise smooth continuous path from p to q, and P = �γ :
TpM ∼= TqM is the parallel transport isomorphism from TpM to TqM, then
Holq(g) = P · Holp(g) · P−1.

• Fix p ∈ M, and fix an isomorphism TpM ∼= R
n. Then GL(TpM) ∼= GL(n) and

O(TpM, gp) ∼= O(n). With respect to this identification, Holp(g) corresponds to
a subgroup H ⊆ O(n). If we choose any other isomorphism TpM ∼= R

n, then the
resulting subgroup H̃ of O(n) is in the same conjugacy class as H.

• Suppose M is connected. Then Holp(g) ∼= Holq(g) for all p, q ∈ M. Moreover,
there exists a subgroup H of O(n) such that Holp(g) ∼= H for all p ∈ M, and this
subgroup H is unique up to conjugation.

Analogous statements hold for the restricted holonomy group Hol0p(g), determin-
ing (when M is connected) a subgroup H 0 of SO(n), unique up to conjugation.

Consequently, if M is connected, we abuse notation and call H the holonomy
group and H 0 the restricted holonomy group of (M, g). Observe that H and H 0 are
not just abstract groups, but that they come naturally equipped with isomorphism
classes of representations on TpM for all p ∈ M .
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Recall that a tensor S on M is called parallel if ∇S = 0. There is a fundamental
relationship between the holonomy group of g and the parallel tensors on M , given
by the following.

Proposition 5.3 Let (M, g) be a Riemannian manifold. Fix p ∈ M. Let H ⊆
GL(TpM) be the subgroup that leaves invariant S|p for all parallel tensors S on
M.

• We always have Holp(g) ⊆ H. Moreover, these two subgroups are usually equal.
For example, this is the case if Holp(g) is a closed subgroup of GL(TpM).

• If the group H fixes an element S0 in some tensor space of TpM, then there exists
a parallel tensor S on M such that S|p = S0.

The way to think about Proposition5.3 is as follows. The Riemannian holonomy
H of a Riemannian manifold (M, g) is strictly smaller than O(n) if and only if there
exist nontrivial parallel tensors on M other than the metric g.

Remark 5.4 If M is simply-connected, then H = H 0 and consequently H ⊆
SO(n). This means there exists a (necessarily parallel) Riemannian volume form
μ ∈ �n(M) on M . This is consistent with the well-known fact from topology that
any simply-connected manifold is orientable. �

5.2 The Berger Classification of Riemannian Holonomy

In 1955,Marcel Berger classified the possible Lie subgroups of O(n) that could occur
as Riemannian holonomy groups of a metric g, subject to the following technical
hypotheses.

• We restrict to simply-connected manifolds. In general if (M, g) is not simply-
connected then the holonomy H of (M, g) is a finite cover of the reduced holonomy
H 0. That is, the quotient H/H 0 is a discrete group.

• We must exclude the case when (M, g) is locally reducible. A locally reducible
Riemannianmanifold is locally a Riemannian product (M1, g1) × (M2, g2). In this
case the Riemanian holonomy of (M, g) is a product of the holonomies of (M1, g1)
and (M2, g2).

• We must exclude the case when (M, g) is locally symmetric. A locally symmetric
Riemannian manifold is locally isometric to a symmetric space (G/H, g) where
G is a group of isometries acting transitively on G/H with isotropy group H at
any point. In this case the Riemannian holonomy of (M, g) is H .

Theorem 5.5 (Berger classification) Let (M, g) be a simply-connected smooth
Riemannian manifold of dimension n that is not locally reducible and not locally
symmetric. Then the Riemannian holonomy H ⊆ SO(n) can only be one of the
following seven possibilities:
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n = dim M H Parallel tensors Name Curvature
n SO(n) g,μ orientable
2m (m ≥ 2) U(m) g,ω Kähler
2m (m ≥ 2) SU(m) g,ω, � Calabi–Yau Ricci-flat
4m (m ≥ 2) Sp(m) g,ω1, ω2,ω3, J1, J2, J3 hyper-Kähler Ricci-flat
4m (m ≥ 2) (Sp(m) × Sp(1))/Z2 g, ϒ quaternionic-Kähler Einstein
7 G2 g,ϕ, ψ G2 Ricci-flat
8 Spin(7) g,
 Spin(7) Ricci-flat

Sketch of proof. Berger arrived at this classification by studying the holonomy algebra
h of the holonomy group H . There is an intimate relation between h and the Riemann
curvature operator R ∈ S2(so(n))of g. First, because theRiemann curvature operator
can be viewed as “infinitesimal holonomy”, it must be that R ∈ S2(h). Since it also
satisfies the first Bianchi identity, this says that h cannot be too big. Second, by
the Ambrose–Singer holonomy theorem, the span of the image of R at any point
in M must generate h as a vector space, so h cannot be too small. Finally, for
certain possible h, the fact that R must also satisfy the second Bianchi identity forces
∇R = 0, in which case (M, g) is locally symmetric. Much more detailed discussion
of this argument can be found in Joyce [23, Sect. 3.4]. �

Remark 5.6 We make some remarks concerning the above table.

(i) The four restrictions m ≥ 2 in the first column are mostly to eliminate
redundancy, as we have the isomorphisms U(1) ∼= SO(2), Sp(1) ∼= SU(2),
and (Sp(1) × Sp(1))/Z2

∼= SO(4). The case SU(1) does not occur because
SU(1) ∼= {1} is trivial and such a space is flat and thus symmetric.

(ii) Because Sp(k) ⊆ SU(2k) ⊆ U(2k), all hyper-Kähler manifolds are Calabi–
Yau, and all Calabi–Yau manifolds are Kähler.

(iii) Note that quaternionic-Kähler manifolds are in fact not Kähler. This ill-advised
nomenclature has unfortunately stuck and is here to stay.

(iv) Usually, the term special holonomy refers to any of the holonomy groups above
other than the first two, perhaps because Kähler manifolds exist in sufficient
abundance to not be that special.

(v) The last two groups above, namely G2 and Spin(7), are called the exceptional
holonomy groups. These Lie groups are both intimately related to the octonions
O. The connection between G2 and O is explained in Sect. 4.1 above. The
connection between Spin(7) and O can be found, for example, in Harvey [17,
Lemma 14.61] or Harvey–Lawson [18, Sect. IV.1.C.].

(vi) The fact that metrics with special holonomy are all Einstein (including Ricci-
flat) follows from consideration of the constraints on the Riemann curvature
due to its relation with the holonomy algebra h, as explained in the sketch proof
above. (See also Remark4.27 above for the G2 case.) �

It is interesting to note that Berger did not actually prove that all these groups
can actually occur as Riemannian holonomy groups. He only excluded all other
possibilities. It was widely suspected that the exceptional holonomies could not
actually occur, only they could not be excluded using Berger’s method. We now
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know, of course, that all of the possibilities in the above table do occur, both in
compact and in complete noncompact examples. See Sect. 6.2 for a brief survey of
this history in the case of G2.

6 Torsion-Free G2 Manifolds

In this section we discuss torsion-free G2 manifolds, including a brief history of the
search for irreducible examples, the known topological obstructions to existence in
the compact case, and a comparison with Kähler and Calabi–Yau manifolds.

6.1 Irreducible and Reducible Torsion-Free G2 Manifolds

Let (M,ϕ) be a torsion-free G2 manifold. That is, ϕ is a torsion-free G2-structure as
in Definition4.20, and thus by Proposition5.3 the holonomy Hol(gϕ) of the induced
Riemannian metric gϕ lies in G2.

Definition 6.1 We say (M,ϕ) is an irreducible torsion-free G2 manifold if
Hol(gϕ) = G2. �

A torsion-free G2 manifold could have reduced holonomy. That is, we could have
Hol(gϕ) � G2. In fact there are some simple constructions that yield such reducible
examples:

• If gϕ is flat, then Hol(gϕ) = {1}. In this case M is locally isomorphic to Euclidean
R

7 with the standard G2-structure ϕo.
• Let L4 be a manifold with holonomy SU(2) ∼= Sp(1). This is a hyper-Kähler
4-manifold with hyper-Kähler triple ω1, ω2, ω3. Let X3 be a flat Riemannian 3-
manifold with global orthonormal parallel coframe e1, e2, e3. Let M7 = X3 × L4,
and define a smooth 3-form ϕ on M by

ϕ = e1 ∧ ω1 + e2 ∧ ω2 + e3 ∧ ω3 − e1 ∧ e2 ∧ e3.

Thenϕ is a torsion-free G2-structure withHol(gϕ) = SU(2) � G2. In this case we
have

ψ = e2 ∧ e3 ∧ ω1 + e3 ∧ e1 ∧ ω2 + e1 ∧ e2 ∧ ω3 − volL

where volL = 1
2ω

2
1 = 1

2ω
2
2 = 1

2ω
2
3 is the volume form of L .

• Let L6 be a manifold with holonomy SU(3). This is a Calabi–Yau complex 3-fold
with Kähler form ω and holomorphic volume form �. Let X1 be a Riemannian
1-manifold with global unit parallel 1-form e1. Let M7 = X1 × L6, and define a
smooth 3-form ϕ on M by
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ϕ = e1 ∧ ω − Re�.

Then ϕ is a torsion-free G2-structure withHol(gϕ) = SU(3) � G2. In this case we
have

ψ = 1
2ω

2 + e1 ∧ Im�.

Remark 6.2 If (M,ϕ) is a torsion-free G2 manifold, then some criteria are known
to determine if (M,ϕ) is irreducible. Here are two examples:

(i) If M is compact with Hol(gϕ) ⊆ G2, then Hol(gϕ) = G2 if and only if the
fundamental group π1(M) is finite. (See Joyce [23, Proposition 10.2.2].)

(ii) If M is connected and simply-connected, with Hol(gϕ) ⊆ G2, then Hol(gϕ) =
G2 if and only if there are no nonzero parallel 1-forms. (See Bryant–
Salamon [5, Theorem 2].) �

6.2 A Brief History of Irreducible Torsion-FreeG2 Manifolds

The search for examples of irreducible torsion-freeG2 manifolds (that is, Riemannian
metrics with holonomy exactly G2) has a long history. As explained in Sect. 5.2, it
was originally believed such metrics could not exist. In this section we give a very
brief and far from exhaustive survey of some of this history.

The first local (that is, incomplete) examples were found by Bryant [4] in 1987,
using methods of exterior differential systems and Cartan-Kähler theory.

Then in 1989, Bryant–Salamon [5] found the first complete noncompact examples
of G2 holonomy metrics. These were metrics on the total spaces of vector bundles.
Explicitly, these metrics were found on the bundles �2−(S4) and �2−(CP

2), which
are rank 3 bundles over 4-dimensional bases, and on the bundle /S(S3), the spinor
bundle of S3, which is a rank 4 bundle over a 3-dimensional base. These Riemannian
manifold are all asymptotically conical. That is, the metrics approach Riemannian
cone metrics at some particular rate at infinity. These torsion-free G2-structures are
cohomogeneity one. That is, there is a Lie group of symmetries acting on (M,ϕ)with
generic orbits of codimension one. Such symmetry reduces the partial differential
equation ∇ϕ = 0 to a (fully nonlinear) system of ordinary differential equations,
which can be explicitly solved. The fact that the metrics have holonomy exactly G2

was verified by using the criterion in item (ii) of Remark6.2.

Remark 6.3 Since then, several explicit examples and a great many nonexplicit
examples of complete noncompact holonomy G2 metrics have been discovered, with
various prescribed asymptotic geometry at infinity, such as asymptotically conical
(AC), asymptotically locally conical (ALC), and others. In fact, very recent work of
Foscolo–Haskins–Nordström [15, 16] has produced a spectacular new plethora of
such examples. �

The first construction of compact irreducible torsion-free G2 manifolds was given
by Joyce [22] in 1994, and pushed further in the monograph [23]. The idea is the
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following. Start with the flat 7-torus T 7, and take the quotient by a discrete group of
isometries preserving the G2-structure ϕo. The quotient is a singular orbifold with
torsion-free G2-structure. Joyce then resolved the singularities by gluing in (quasi)-
asymptotically locally Euclidean spaces with SU(2) or SU(3) holonomy, to produce
a smooth compact 7-manifold M with closed G2-structure and “small” torsion. He
then used analysis (see Sect. 7.1 below) to prove that M admits a torsion-free G2-
structure. Finally, he showed the metrics had holonomy exactly G2 by using the
criterion (i) of Remark6.2. This first construction is explained in more detail by
Kovalev [30] in the present volume.

The second construction of compact irreducible torsion-free G2 manifolds was
introduced by Kovalev [29] in 2001 and pushed significantly further by Corti–
Haskins–Nordström–Pacini [10] in 2015. It is called the “twisted connect sum con-
struction”. The ideas is the following. Start with two noncompact asymptotically
cylindrical Calabi–Yau complex 3-folds L1 and L2, which are both asymptotic to
X4 × T 2 where X4 is a K3 complex surface. Take L1 × S1 and L2 × S1 and glue
them together with a “twist” by identifying different factors of S1 in order to obtain
a smooth compact 7-manifold. The goal is then to construct a closed G2-structure
on M with “small” torsion that can be perturbed using analysis to a torsion-free
G2-structure (see Sect. 7.1 below). Being able to do this is a very delicate problem
in algebraic geometry involving “matching data”. This second construction is also
explained in more detail by Kovalev [30] in the present volume.

More recently, a third construction of compact irreducible torsion-free G2 mani-
folds appeared in Joyce–Karigiannis [24], involving glueing 3-dimensional families
of Eguchi-Hanson spaces. This construction differs from the previous two because
some of the noncompact “pieces” that are being glued together this time do not come
equippedwith torsion-freeG2-structures. This is dealt with by solving a linear elliptic
PDE on the noncompact Eguchi-Hanson space using weighted Sobolev spaces.

All three of the currently known constructions of compact irreducible torsion-free
G2 manifolds are similar in that they all use glueing techniques to construct a closed
G2-structure ϕ with “small” torsion, and then invoke a general existence theorem of
Joyce to prove that it can be perturbed to a nearby torsion-free G2-structure ϕ̃. This
existence theorem is the subject of Sect. 7.1 below.

Thus, we know that Riemannian metrics with holonomy exactly G2 do exist on
compact manifolds, but they are not explicit. This is analogous to the case of Rie-
mannian metrics with holonomy exactly SU(m) (also called Calabi–Yau metrics) on
compact manifolds. By Yau’s proof of the Calabi conjecture, we know that many
such metrics exist, but we cannot describe them explicitly. In fact, special holonomy
metrics on compactmanifolds should in some sense be thought of as “transcendental”
objects.

So far we have only found G2-holonomy metrics that are “close to the edge of
the moduli space”. That is, these metrics are close to either developing singularities
or tearing apart into two disjoint noncompact pieces. That is, the three known con-
structions of compact irreducible torsion-free G2 manifolds are very likely producing
only a very small part of the “landscape” of holonomy G2 metrics.
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6.3 Cohomological Obstructions to Existence
in the Compact Case

There are several known cohomological obstructions to the existence of torsion-free
G2-structures on a compact manifold. We describe some of these in this section.
Let (M,ϕ) be a compact manifold with a torsion-free G2-structure ϕ. Let gϕ be the
Riemannian metric induced by ϕ. Thus Hol(gϕ) ⊆ G2. Since (M, gϕ) is a compact
oriented Riemannian manifold, the Hodge Theorem applies. That is, any deRham
cohomology class has a unique harmonic representative.

Since ϕ is torsion-free, by Corollary4.23, the form ϕ is closed and coclosed and
thus harmonic. Because ϕ �= 0, we deduce from the Hodge Theorem that [ϕ] is a
nontrivial class in H 3(M, R). Hence we find our first cohomological obstruction:

b3 ≥ 1 if M admits a torsion-free G2 -structure.

where bk = dim Hk(M, R) is the k th Betti number of M . The same argument applies
to ψ, so b4 ≥ 1, but b4 = b3 by Poincaré duality, so this is not new information.

Suppose Hol(gϕ) = G2. Then by item (i) of Remark6.2 we must have π1(M) is
finite. It follows from algebraic topology that H 1(M, R) = {0}. Hence we find our
second cohomological obstruction:

b1 = 0 if M admits an irreducible torsion-free G2 -structure. (6.1)

Before we can discuss the two other cohomological obstructions, we need to
explain the interaction of the representation-theoretic decompositions of Sect. 4.3
with the Hodge Theorem.

Because ϕ is torsion-free, one can show that the Hodge Laplacian �d com-
mutes with the orthogonal projection operators onto the irreducible summands of
the decomposition of �• described in Sect. 4.3. (See Joyce [23, Theorem 3.5.3] for
details.) Combining this fact with the Hodge Theorem, we conclude that the decom-
positions of Sect. 4.3 descend to deRham cohomology. That is, if we define

Hk
l = {γ ∈ �k

l | �dγ = 0}

to be the space of harmonic �k
l -forms, andHk to be the space of harmonic k-forms,

then we have
H2 = H2

7 ⊕ H2
14,

H3 = H3
1 ⊕ H3

7 ⊕ H3
27.

(6.2)

Moreover, it follows from the explicit descriptions of�k
l in Sect. 4.3 and the fact that

�d commutes with the projections and with the Hodge star � that

�d( f ϕ) = (�d f )ϕ, �d(α ∧ ϕ) = (�dα) ∧ ϕ,
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for all f ∈ �0 and all α ∈ �1. These identities imply that

H0
1

∼= H3
1

∼= H4
1

∼= H7
1, H1

7
∼= H2

7
∼= H3

7
∼= H4

7
∼= H5

7
∼= H6

7,

H2
14

∼= H5
14, H3

27
∼= H4

27.

Define bkl = dimHk
l to be the “refined Betti numbers” of (M,ϕ). Then we have

shown that
bkl = bk

′
l ′ if l = l ′.

In particular bk7 = b17 = b1 for k = 2, . . . , 6, and bk1 = b01 = b0 for k = 3, 4, 7. We
deduce that

b2 = b27 + b214 = b1 + b214,

b3 = b31 + b37 + b327 = b0 + b1 + b327.

(Note that if M is connected then b0 = 1, and if in addition ϕ is irreducible then
by (6.1) we get b2 = b214 and b3 = 1 + b327.)

There exists a real quadratic form Q on H 2(M, R) defined as follows. Let [β] ∈
H 2(M, R). Define

Q([β]) =
∫

M
β ∧ β ∧ ϕ. (6.3)

(In fact, it is easy to see using Stokes’s Theorem that Q is well-defined as long as
dϕ = 0, and that Q depends only on the cohomology class [ϕ] ∈ H 3(M, R). We do
not need torsion-free to define Q.)

But now suppose thatϕ is not only torsion-free, but also irreducible. Then by (6.1)
and the discussion above, we have H2 = H2

14. Given a cohomology class [β] ∈
H 2(M, R), the Hodge theorem gives us a unique harmonic representative βH , which
must lie in �2

14. By (4.16), we have βH ∧ ϕ = ∗βH , and hence

Q([β]) =
∫

M
βH ∧ βH ∧ ϕ =

∫

M
βH ∧ ∗βH =

∫

M
‖βH‖2vol ≥ 0

with equality if and only if βH = 0, which is equivalent to [β] = 0. Hence we find
our third cohomological obstruction:

• Let ϕ be a closed G2-structure on a compact manifold M with π1(M) finite. (So
that any torsion-free G2-structure on M must necessarily be irreducible.) If there
exists a torsion-free G2-structure in the cohomology class [ϕ] ∈ H 3(M, R), then
the quadratic form Q defined in (6.3) must be positive definite.

Remark 6.4 Recall Remark4.17. If the other orientation is used, then Q must be
negative definite. Sowe can unambiguously state the third cohomological obstruction
as saying that Q must be definite. Moreover, if ϕ is merely torsion-free but not
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irreducible, it is easy to see from (4.16) that (with our convention for the orientation),
the signature of Q is (b2 − b1, b1). �

Finally, recall from Chern–Weil theory that a compact 7-manifold M has a real
first Pontryagin class p1(T M) ∈ H 4(M, R), defined as the cohomology class rep-
resented by the closed 4-form 1

8π2 Tr(R ∧ R) where R ∈ �(End(T M) ⊗ �2T ∗M)

is the curvature form of any connection on T M . If ϕ is torsion-free, then gϕ has
holonomy contained in G2, and hence, because Riemann curvature is “infinitesimal
holonomy” we have that in fact R ∈ �(End(T M) ⊗ �2

14T
∗M). That is, the 2-form

part of R lies in �2
14. But then by (4.16) we have

Tr(R ∧ R) ∧ ϕ = Tr(R ∧ ∗R) = |R|2vol,

and thus

(p1(T M) ∪ [ϕ]) · [M] = 1

8π2

∫

M
Tr(R ∧ R) ∧ ϕ = 1

8π2

∫

M
|R|2vol,

where [M] ∈ H7(M) is the fundamental class of M and · denotes the canonical
pairing between H 7(M, R) and H7(M). This is clearly positive unless R is identically
zero. Hence we find our fourth cohomological obstruction:

p1(T M) �= 0 if M admits a nonflat torsion-free G2 -structure.

6.4 Comparison with Kähler and Calabi–Yau Manifolds

In this section we make some remarks about the similarities and the differences
between torsion-free G2 manifolds and Kähler manifolds in general and Calabi–Yau
manifolds in particular. A good reference for Kähler and Calabi–Yau geometry is
Huybrechts [21].

Manifolds with U(m)-structure are in some ways analogous to manifolds with
G2-structure, as detailed in the following table.

U(m)-structure on (M2m , g) G2-structure on (M7, g)

Nondegenerate form ω ∈ �2 ϕ ∈ �3

Vector cross product J ∈ �(T M ⊗ T ∗M) × ∈ �(T M ⊗ �2T ∗M)

Fundamental relation ω(u, v) = g(Ju, v) ϕ(u, v, w) = g(u × v,w)

One very important difference between U(m)-structures and G2-structures was
already mentioned in Remark4.6, but it is so crucial that it is worth repeating here.
For a U(m)-structure, the metric g and the nondegenerate 2-form ω are essentially
independent, subject only to mild compatibility conditions, and together they deter-
mine J . In contrast, for a G2-structure the nondegenerate 3-form ϕ determines the
metric g and consequently the cross product × as well.
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Now consider the torsion-free cases of such structures. A U(m)-structure is
torison-free if ∇ω = 0. Such manifolds are called Kähler and have Riemannian
holonomy contained in the Lie subgroup U(m) of SO(2m). AG2-structure is torsion-
free if∇ϕ = 0. Suchmanifolds haveRiemannian holonomy contained in the Lie sub-
group G2 of SO(7). In the torsion-free cases, both ω and ϕ are calibrations. (See [34,
35] in the present volume for more about calibrations.) Both Kähler manifolds and
torsion-free G2 manifolds also admit special connections on vector bundles, namely
the Hermitian–Yang–Mills connections and the G2-instantons, respectively.

Here iswherewe see another very important difference.Aswe saw inRemark4.27,
the metric gϕ of a torsion-free G2-structure is always Ricci-flat. But the metric g of
a Kähler manifold need not be Ricci-flat. In fact, the Calabi–Yau Theorem, gives a
topological characterization (in the compact case) of exactly which Kähler metrics
are Ricci-flat. They are precisely those metrics with holonomy contained in the Lie
subgroup SU(m) of U(m). The precise statement of the Calabi–Yau theorem is as
follows.

Theorem 6.5 Let M be a compactKähler manifold, with Kähler form ω. Then there
exists a Ricci-flat Kähler metric ω̃ in the same cohomology class as ω if and only if
c1(T M) = 0, where c1(T M) is the first Chern class of T M. Moreover, when it exists
the Ricci-flat Kähler metric is unique.

We are very far from having an analogous theorem in G2 geometry. In fact, we do
not even have any idea of what the correct conjecture might be. The main tool that
allowed Yau to reformulate the Calabi conjecture into a statement about existence
and uniqueness of solutions to a complexMonge–Ampère equation is the ∂∂̄-lemma
in Kähler geometry. There is no close analogue of this result for torsion-free G2

manifolds.
Heuristically, the Calabi–Yau Theorem allows us to go from U(m) holonomy to

SU(m) holonomy, which is a reduction in the dimension of the holonomy group
fromm2 tom2 − 1, a difference of 1 dimension, and it corresponds to an (albeit fully
nonlinear) scalar partial differential equation. In contrast, to obtain a Riemannian
metric with holonomy G2, we must start with SO(7) holonomy. Thus we need to
reduce the dimension of the holonomy group from 21 to 14, so we expect a system
of 7 equations, or equivalently a single partial differential equation for an unknown
1-form rather than for an unknown function as in the Calabi–Yau Theorem. Precisely
how such a heuristic discussion can be made into a precise mathematical conjecture
remains a mystery at present.

In fact, a better analogy is the following. Let M2m be a compact manifold that
admits U(m)-structures. What are necessary and sufficient topological conditions
that ensure thatM2m admits aKähler structure?We knowmany necessary conditions.
(See Huybrechts [21], for example.) But we are very far from knowing sufficient
conditions.
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7 Three Theorems About Compact Torsion-Free
G2-Manifolds

In this final section we briefly discuss three important theorems about compact
torsion-free G2 manifolds: an existence theorem of Joyce, the smoothness of the
moduli space (also due to Joyce), and a variational characterization of compact
torsion-free G2 manifolds due to Hitchin. Only the main ideas of the proofs are
sketched. We refer the reader to the original sources for the details.

7.1 An Existence Theorem for Compact Torsion-Free G2
Manifolds

In Sect. 6.2 we discussed known constructions of compact irreducible torsion-free
G2 manifolds. These constructions invoke the only analytic existence theorem that is
know for torsion-freeG2-structures,which is a result of Joyce that originally appeared
in [22] but which can also be found in [23, Sect. 11.6]. As mentioned in Sect. 6.2,
the idea is that if one has a closed G2-structure ϕ on M whose torsion is sufficiently
small, the theorem guarantees the existence of a “nearby” torsion-free G2-structure
ϕ̃ that is in the same cohomology class as ϕ. The statement of the theorem that we
give here is a slightly modified version given in [24, Theorem 2.7].

Theorem 7.1 (Existence Theorem of Joyce) Let α, K1, K2, and K3 be any positive
constants. Then there exist ε ∈ (0, 1] and K4 > 0, such that whenever 0 < t ≤ ε, the
following holds.

Let (M,ϕ) be a compact 7-manifold withG2-structure ϕ satisfying dϕ = 0. Sup-
pose there exists a closed 4-form η such that

(i) ‖ �ϕϕ − η‖C0 ≤ K1 tα,
(ii) ‖ �ϕϕ − η‖L2 ≤ K1 t

7
2 +α,

(iii) ‖d(�ϕϕ − η)‖L14 ≤ K1 t−
1
2 +α,

(iv) the injectivity radius inj of gϕ satisfies inj ≥ K2 t ,
(v) the Riemann curvature tensor Rm of gph satisfies ‖Rm‖C0 ≤ K3 t−2.

Then there exists a smooth torsion-free G2-structure ϕ̃ on M such that ‖ϕ̃ − ϕ‖C0 ≤
K4 tα and [ϕ̃] = [ϕ] in H 3(M, R). Here all norms are computed using the original
metric gϕ.

We make some remarks about the conditions (i)–(iii) of the theorem. Since ϕ is
closed, it would be torsion-free if and only if �ϕϕ were also closed. The hypotheses
(i)–(iii) above say that �ϕϕ is almost closed, in that there exists a closed 4-form η
that is close to �ϕϕ in various norms, namely the C0, L2, and (essentially) the W 14,1

norms.
The idea of the proof of Theorem7.1 is as follows. Since we want ϕ̃ is to be in

the same cohomology class as ϕ, we must have ϕ̃ = ϕ + dσ for some σ ∈ �2, and
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by Hodge theory we can assume that d∗σ = 0. Joyce shows that the torsion-free
condition

d
(
�ϕ+dσ (ϕ + dσ)

) = 0

can be rewritten as
�dσ = Q(σ, dσ) (7.1)

where Q is some nonlinear expression that is at least order two in dσ. Joyce shows
that the above equation can be solved by iteration. Explicitly, taking σ0 = 0, then for
each k ≥ 1, Joyce solves the series of linear equations

�dσk = Q(σk−1, dσk−1).

Using the a priori estimates (i)–(iii), Joyce then shows that limk→∞ σk exists as a
smooth 2-form satisfying (7.1). This is essentially a “fixed-point theorem” type of
argument. The complete details can be found in [23, Sect. 11.6].

7.2 The Moduli Space of Compact Torsion-Free
G2-Structures

Whenever one studies a certain type of structure in mathematics, it is natural to
consider the “set of all possible such structures”, modulo a reasonable notion of
equivalence. Usually this “moduli space” of structures has its own special structure,
and an understanding of the special structure on the moduli space sometimes yields
information about the original object on which such structures are defined.

In our setting, consider a compact torsion-free G2 manifold (M,ϕ). We want to
consider the set of all possible torsion-free G2-structures on the same underlying
smooth 7-manifold M , modulo a reasonable notion of equivalence. The usual notion
of equivalence in differential geometry is diffeomorphism. Indeed, if ϕ is a torsion-
free G2-structure on M and F : M → M is a diffeormorphism, then it is easy to see
that F∗ϕ is also a torsion-free G2-structure on M , with metric gF∗ϕ = F∗gϕ.

In fact, it is more convenient to consider only those diffeomorphisms of M that
are isotopic to the identity. That is, those diffeomorphisms that are connected to the
identity map on M by a continuous path in the space Diff of diffeomorphisms of M .
This is the connected component of the identity in Diff, and we denote it by Diff0.
The reason we prefer the space Diff0 is because it acts trivially on cohomology. That
is, suppose [α] ∈ Hk(M, R) and let F ∈ Diff0. Then we claim that [F∗α] = [α]. To
see this, let Ft be a continuous path in Diff with F0 = IdM and F1 = F , given by the
flow of the vector field Xt on M . Since α is a closed form, we have
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F∗α − α =
∫ 1

0

d

dt
(F∗

t α) =
∫ 1

0
LXtα

=
∫ 1

0
(dXt α + Xt dα) =

∫ 1

0
dXt α

= d
( ∫ 1

0
Xt α

)
,

and thus F∗α − α is exact.

Definition 7.2 Let (M,ϕ0) be a compact torsion-free G2 manifold. Let T be the set
of all torsion-free G2-structures on M . That is,

T = {ϕ ∈ �3
+ | dϕ = 0, d �ϕϕ = 0}.

Themoduli spaceM of torsion-free G2-structures on M is defined to be the quotient
topological space

M = T /Diff0

of T by the action of Diff0. �

Remark 7.3 The spaceM inDefinition7.2 should probablymore properly be called
the Teichmüller space, and then the “moduli space” would be the quotient T /Diff by
the full diffeomorphism group, in analogywith the usage of terminology for Riemann
surfaces. However, the nomenclature we have given in Definition7.2 is standard in
the field of G2 geometry. �

The first important result that was established about the moduli space was the
following theorem of Joyce, that originally appeared in [22] but which can also be
found in [23, Sect. 10.4].

Theorem 7.4 (Moduli Space Theorem of Joyce) Let M be a compact 7-manifold
with torsion-freeG2-structureϕ0. The moduli spaceM of torsion-freeG2-structures
on M is a smooth manifold of dimension b3 = dim H 3(M, R). In fact, the “period
map” P : M → H 3(M, R) that takes an equivalence class [ϕ]M in the quotient
spaceM = T /Diff0 to the deRham cohomology class [ϕ] is a local diffeomorphism.

The idea of the proof of Theorem7.4 is as follows. Joyce constructs a “slice”
Sϕ for the action of Diff0 on T in a neighbourhood of any ϕ ∈ T . A slice Sϕ is a
submanifold of T containing ϕ that is locally transverse to the orbits of Diff0 near
ϕ. This means that all nearby orbits of Diff0 each intersect T at only one point.
ThenM = T /Diff0 is locally homeomorphic in a neighbourhood of [ϕ]M ∈ M to
Sϕ. Since ϕ ∈ T is arbitrary, we deduce thatM is a smooth manifold of dimension
dim S.

In fact a slice Sϕ is given by

Sϕ = {ϕ̃ ∈ �3
+ | dϕ̃ = 0, d �ϕ̃ ϕ̃ = 0,π7(d

∗ϕ̃) = 0}, (7.2)
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where π7 is the orthogonal projection π7 : �2 → �2
7 with respect to the G2-structure

ϕ. The way to understand where the above Sϕ comes from is to consider tangent
vectors to the orbit of Diff0 at ϕ. Such a tangent vector is of the form

d

dt

∣∣∣
∣
t=0

h∗
t ϕ = LXϕ = d(X ϕ)

where ht is the flow of a smooth vector field X on M . By the description (4.16), the
tangent space at ϕ of the orbit of Diff0 is thus the space d(�2

7). It thus makes sense
to define

Sϕ = {ϕ̃ ∈ T | 〈〈ϕ̃ − ϕ, d(X ϕ)〉〉L2 = 0 ∀X ∈ �(T M)}, (7.3)

because for ϕ̃ close to ϕ, the condition of L2-orthogonality to the tangent spaces of
the orbit of Diff0 throughϕwould ensure local transversality. Sinceϕ is torsion-free,
we have d∗ϕ = 0. Thus integration by parts shows that (7.3) is equivalent to (7.2).

It still remains to explain why Sϕ is a smooth manifold of dimension b3. Given
ϕ̃ ∈ T , by Hodge theory with respect to gϕ we can write ϕ̃ = ϕ + ξ + dη for some
ξ ∈ H3 and some η ∈ d∗(�3). For ϕ̃ sufficiently close to ϕ in the C0 norm, Joyce
shows that

ϕ̃ ∈ Sϕ ⇐⇒ �dη = �d
(
Q(ξ, dη)

)
(7.4)

where Q is a nonlinear expression that is at least order two in dη. This is a fully
nonlinear elliptic equation for η given any ξ ∈ H3. Using the Banach Space Implicit
Function Theorem, Joyce shows that the space of solutions (ξ, η) to the right hand
side of (7.4) is a smooth manifold of dimension b3. The complete details can be
found in [23, Sect. 10.4].

Remark 7.5 A consequence of the fact from Theorem7.4 that the period map P :
M → H 3(M, R) is a local diffeomorphism is the following. The manifold M has
a natural affine structure, that is a covering by coordinate charts whose transition
functions are affinemaps. In Karigiannis–Leung [28] this affine structure is exploited
to study special structures onM, including a naturalHessian metric and a symmetric
cubic form called the “Yukawa coupling”. This Hessian metric is obtained from the
Hitchin volume functional defined in Sect. 7.3 below. �

We know very little about the global structure of M. (But see the survey article
by Crowley–Goette–Nordström [11] in the present volume for some recent progress
on the (dis-)connectedness of M.

7.3 A Variational Characterization of Torsion-Free
G2-Structures

It is the case that some natural geometric structures can be given a variational inter-
pretation. That is, they can be characterized as critical points of a certain natural
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geometric functional, which means that they are solutions to the associated Euler-
Lagrange equations for this functional. Some examples of such geometric structures
and their associated functionals are:

• minimal submanifolds (the volume functional),
• harmonic maps (the energy functional),
• Einstein metrics (the Einstein–Hilbert functional),
• Yang–Mills connections (the Yang–Mills functional).

It was an important observation of Hitchin [19] that torsion-free G2-structures on
compact manifolds can be given a variational interpretation. The setup is as follows.
Let M7 be compact, and as usual, let �3+ be the set of G2-structures on M . Given
ϕ ∈ �3+, we get a metric gϕ, a Riemannian volume volϕ, and a dual 4-form �ϕϕ.

Definition 7.6 The Hitchin functional is defined to be the map F : �3+ → R given
by

F(ϕ) =
∫

M
ϕ ∧ �ϕϕ = 7

∫

M
volϕ = 7Vol(M, gϕ), (7.5)

where we have used the fact that |ϕ|2gϕ
= 7 from (4.2). Thus, up to a positive factor,

F(ϕ) is the total volume of M with respect to the metric gϕ. �
Hitchin’s observation was to restrictF to a cohomology class containing a closed

G2-structure. That is, suppose ϕ0 is a closed G2-structure on M , and let

Cϕ = �3
+ ∩ [ϕ] = {ϕ̃ ∈ �3

+ | dϕ̃ = 0, [ϕ̃] = [ϕ] ∈ H 3(M, R)}.

In [19], Hitchin proved the following.

Theorem 7.7 (Hitchin’s variational characterization) Letϕ be a closedG2-structure
on M, and consider the restriction ofF to the set Cϕ defined above. Thenϕ is a critical
point of F |Cϕ

if and only if ϕ is torsion-free. That is,

d

dt

∣∣∣∣
t=0

F(ϕ + tdη) = 0 ⇐⇒ d �ϕϕ = 0.

Moreover, at a critical point ϕ, the second variation of F |Cϕ
is nonpositive. This

means that critical points are local maxima.

The proof of Theorem7.7 is quite straightforward given the following observation,
which is quite useful itself in many other applications. Let ϕ(t) be a smooth family
of G2-structures with d

dt

∣∣
t=0ϕ(t) = γ. Then

d

dt

∣∣∣∣
t=0

�ϕ(t)ϕ(t) = 4
3 � π1γ + �π7γ − �π27γ, (7.6)

where the orthogonal projections πk : �3 → �3
k and the Hodge star � are all taken

with respect to ϕ(0). Two different proofs of (7.6) can be found in [19] and in [26,
Remark 3.6].
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The interesting observation in Theorem7.7 that torsion-free G2-structures are
local maxima of F restricted to a cohomology class motivates the idea to try to flow
to a torsion-free G2-structure by taking the appropriate gradient flow of F . This
yields the Laplacian flow of closed G2-structures. See the article by Lotay [36] in
the present volume for a discussion of geometric flows of G2-structures, including
the Laplacian flow.

Acknowledgements The author would like to acknowledge Jason Lotay and Naichung Conan
Leung for useful discussions on the structuring of these lecture notes. The initial preparation of
these notes was done while the author held a Fields Research Fellowship at the Fields Institute. The
final preparation of these notes was done while the author was a visiting scholar at the Center of
Mathematical Sciences and Applications at Harvard University. The author thanks both the Fields
Institute and the CMSA for their hospitality.

References

1. Agricola, I. (2008). Old and new on the exceptional group G2. Notices of the American Math-
ematical Society, 55, 922–929. MR2441524.

2. Agricola, I., Chiossi, S., Friedrich, T., & Höll, J. (2015). Spinorial description of SU(3)- and
G2-manifolds. Journal of Geometry and Physics, 98, 535–555. MR3414976.

3. Brown, R. B., & Gray, A. (1967). Vector cross products. Commentarii Mathematici Helvetici,
42, 222–236. MR0222105.

4. Bryant, R. L. (1987). Metrics with exceptional holonomy. Annals of Mathematics, 2(126),
525–576. MR0916718.

5. Bryant, R. L., & Salamon, S. M. (1989). On the construction of some complete metrics with
exceptional holonomy. Duke Mathematical Journal, 58, 829–850. MR1016448.

6. Bryant, R. L. (2005). Some remarks on G2-structures. Proceedings of Gökova Geometry-
Topology Conference 2005 (pp. 75–109). MR2282011. arXiv:math/0305124

7. Cheng, D. R., Karigiannis, S., & Madnick, J. (2019). Bubble tree convergence of conformally
cross product preserving maps. Asian Journal of Mathematics (to appear). arXiv:1909.03512

8. Chiossi, S., Salamon, S. (2001). The intrinsic torsion of SU(3) andG2 structures. InDifferential
geometry, Valencia, 2001 (pp. 115–133). River Edge: World Sci. Publ. MR1922042.

9. Cleyton, R., & Ivanov, S. (2008). Curvature decomposition ofG2-manifolds. Journal of Geom-
etry and Physics, 58(2008), 1429–1449. MR2453675.

10. Corti, A., Haskins, M., Nordström, J., & Pacini, T. (2015). G2-manifolds and associative sub-
manifolds via semi-Fano 3-folds. Duke Mathematical Journal, 164, 1971–2092. MR3369307.

11. Crowley, D., Goette, S., & Nordström, J. Distinguishing G2-manifolds. Lectures and surveys
on G2-manifolds and related topics. Fields institute communications. Berlin: Springer. (The
present volume).

12. de la Ossa, X., Karigiannis, S., & Svanes, E. Geometry of U(m)-structures: Kähler identities,
the ddc lemma, and Hodge theory. (In preparation).

13. Dwivedi, S., Gianniotis, P., & Karigiannis, S. Flows of G2-structures, II: Curvature, torsion,
symbols, and functionals. (In preparation).

14. Fernández, M., & Gray, A. (1982). Riemannian manifolds with structure group G2. Annali di
Matematica Pura ed Applicata, 4(132), 19–45. MR0696037.

15. Foscolo, L., Haskins, M., & Nordström, J. Complete non-compact G2-manifolds from asymp-
totically conical Calabi-Yau 3-folds. arXiv:1709.04904.

16. Foscolo, L., Haskins, M., & Nordström, J. Infinitely many new families of complete coho-
mogeneity one G2-manifolds: G2 analogues of the Taub-NUT and Eguchi-Hanson spaces.
arXiv:1805.02612.

http://arxiv.org/abs/math/0305124
http://arxiv.org/abs/1909.03512
http://arxiv.org/abs/1709.04904
http://arxiv.org/abs/1805.02612


50 S. Karigiannis

17. Harvey, R. (1990). Spinors and calibrations. Perspectives in Mathematics (Vol. 9). Boston:
Academic Press Inc. MR1045637.

18. Harvey, R., & Lawson, H. B. (1982). Calibrated geometries. Acta Mathematica, 148, 47–157.
MR0666108.

19. Hitchin, N. The geometry of three-forms in six and seven dimensions. arXiv:math/0010054.
20. Hitchin, N. Stable forms and special metrics. In Global differential geometry: the mathemat-

ical legacy of Alfred Gray (Bilbao, 2000), 70–89, Contemp. Math. 288, Amer. Math. Soc.,
Providence, RI. MR1871001

21. D. Huybrechts, Complex geometry, Universitext, Springer-Verlag, Berlin, 2005. MR2093043
22. D.D. Joyce, “Compact Riemannian 7-manifoldswith holonomyG2. I, II”, J. Differential Geom.

43 (1996), 291–328, 329–375. MR1424428
23. D.D. Joyce, Compact manifolds with special holonomy, Oxford Mathematical Monographs,

Oxford University Press, Oxford, 2000. MR1787733
24. D. Joyce and S. Karigiannis, “A new construction of compact torsion-free G2 manifolds by

gluing families of Eguchi-Hanson spaces”, J. Differential Geom., to appear. https://arxiv.org/
abs/1707.09325

25. Karigiannis, S. (2005). Deformations of G2 and Spin(7) structures on manifolds. Canadian
Journal of Mathematics, 57(2005), 1012–1055. MR2164593.

26. Karigiannis, S. (2009). Flows of G2-structures, I. Quarterly Journal of Mathematics, 60, 487–
522. MR2559631. arXiv:math/0702077.

27. Karigiannis, S. (2010). Some notes on G2 and Spin(7) geometry. Recent advances in geometric
analysis. Advanced lectures inmathematics (Vol. 11, pp. 129–146).Vienna: International Press.
arXiv:math/0608618.

28. Karigiannis, S.,&Leung,N.C. (2009).Hodge theory forG2-manifolds: Intermediate Jacobians
and Abel-Jacobi maps. Proceedings of the London Mathematical Society (3), 99, 297–325.
MR2533667.

29. Kovalev, A. (2003). Twisted connected sums and special Riemannian holonomy. Journal Für
Die Reine und Angewandte Mathematik, 565, 125–160. MR2024648.

30. Kovalev, A. Constructions of compact G2-holonomy manifolds. Lectures and surveys on G2-
manifolds and related topics. Fields institute communications. Berlin: Springer. (The present
volume).

31. Lawson, H. B., & Michelsohn, M.-L. (1989). Spin geometry. Princeton Mathematical Series
(Vol. 38). Princeton: Princeton University Press. MR1031992.

32. Leung, N. C. (2002). Riemannian geometry over different normed division algebras. Journal
of Differential Geometry, 61, 289–333. MR1972148.

33. Lee, J.-H., & Leung, N. C. (2008). Instantons and branes in manifolds with vector cross
products. Asian Journal of Mathematics, 12, 121–143. MR2415016.

34. Chan, K. F., & Leung, N. C. Calibrated submanifolds in G2 geometry. Lectures and surveys
on G2-manifolds and related topics. Fields institute communications. Berlin: Springer. (The
present volume).

35. Lotay, J. D. Calibrated submanifolds. Lectures and surveys onG2-manifolds and related topics.
Fields institute communications. Berlin: Springer. (The present volume).

36. Lotay, J. D. Geometric flows of G2 structures. Lectures and surveys on G2-manifolds and
related topics. Fields institute communications. Berlin: Springer. (The present volume).

37. Massey, W. S. (1961). Obstructions to the existence of almost complex structures. Bulletin of
the American Mathematical Society, 67, 559–564. MR0133137.

38. Milnor, J. W., & Stasheff, J. D. (1974). Characteristic classes. Princeton: Princeton University
Press. MR0440554.

39. Salamon, S. (1989). Riemannian geometry and holonomy groups. Pitman research notes in
mathematics series (Vol. 201). Harlow: Longman Scientific & Technical. MR1004008.

40. Salamon, D. A., & Walpuski, T. Notes on the octonions. In Proceedings of the Gökova
Geometry-Topology Conference 2016 (pp. 1–85). Gökova Geometry/Topology Conference
(GGT), Gökova. MR3676083.

http://arxiv.org/abs/math/0010054
https://arxiv.org/abs/1707.09325
https://arxiv.org/abs/1707.09325
http://arxiv.org/abs/math/0702077
http://arxiv.org/abs/math/0608618


Constructions of Compact G2-Holonomy
Manifolds

Alexei Kovalev

Abstract We explain the constructions for two geometrically different classes of
examples of compact Riemannian 7-manifolds with holonomy G2. One method uses
resolutions of singularities of appropriately chosen 7-dimensional orbifolds, with the
help of asymptotically locally Euclidean spaces. Another method uses the gluing of
two asymptotically cylindrical pieces and requires a certain matching condition for
their cross-sections ‘at infinity’.

1 Introduction

The Lie group G2 occurs as an exceptional case in Berger’s classification of the Rie-
mannian holonomy groups, in dimension 7. Riemannian manifolds with holonomy
G2 are Ricci-flat and admit parallel spinor fields. The purpose of these notes is to
give an introduction to two methods of producing examples of compact Riemannian
7-manifolds with holonomy group G2.

For a detailed introduction to G2-structures on 7-manifolds and the G2 holonomy
group we refer to [25, Chap. 11], [14, Chap. 10] and the article by Karigiannis in
this volume. Here we briefly recall the foundational results that we need.

The Lie group G2 may be defined as the stabilizer, in the action of GL(7,R), of
the 3-form [4, p. 539]

ϕ0 = dx123 + dx145 + dx167 + dx246 − dx257 − dx347 − dx356 ∈ �3(R7)∗, (1)

where xk are the standard coordinates on R
7 and dxklm = dxk ∧ dxl ∧ dxm . Every

linear isomorphism of R
7 preserving ϕ0 also preserves the Euclidean metric
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∑7
i=1(dxi )2 and orientation of R7, thus G2 is a subgroup of SO(7). The GL(7,R)-

orbit of ϕ0 is open in �3(R7)∗.
Let M be a 7-dimensional manifold. Then every G2-structure on M is induced by

a choice of a smooth differential 3-form ϕ such that for each p ∈ M there is a linear
isomorphism ιp : R7 → Tp M with ι∗p(ϕ(p)) = ϕ0. We say a 3-form ϕ is positive
when ϕ satisfies the latter condition and denote by �3+(M) ⊂ �3(M) the subset of
all positive 3-forms on M . Note that for a compact M the subset �3+(M) is open
in the uniform norm topology. We shall sometimes, slightly informally, say that a
differential form ϕ ∈ �3+(M) is a G2-structure on M .

We can see from the above that every G2-structure ϕ ∈ �3+(M) determines on M
a metric g(ϕ) and an orientation, hence also the Hodge star ∗ϕ.

Theorem 1 (cf. [9]) Let M be a 7-manifold endowed with a G2-structure ϕ ∈
�3+(M). Then the following are equivalent.

(a) The holonomy of the metric g(ϕ) is contained in G2.
(b) ∇ϕ = 0, where ∇ is the Levi–Civita connection of g(ϕ).
(c)

dϕ = 0, d∗ϕϕ = 0, (2)

(d) The intrinsic torsion of the G2-structure ϕ vanishes.

Note that the second equation in (2) is non-linear because ∗ϕ depends non-linearly
on ϕ.

We say that (M,ϕ) is a G2-manifold if ϕ is a positive 3-form satisfying (2). If, in
addition, the holonomy of g(ϕ) is all of G2, then we shall call (M,ϕ) an irreducible
G2-manifold.

Proposition 2 ([14, Proposition 10.2.2]) A compact G2-manifold is irreducible if
and only if π1(M) finite.

A key idea in the known methods of constructing irreducible G2-manifolds is that
one first achieves on M a G2-structure ϕ which is, in some sense, an ‘approximate’
solution of (2) with dϕ = 0 and d∗ϕϕ having a small norm, in a suitable Banach
space. In more geometric terms, the G2-structure ϕ then has small torsion. Then one
uses perturbative analysis to obtain a correction term dη, for a 2-form η small in the
C1 norm, so that ϕ + dη is a valid G2-structure and a solution of (2).

We shall explain methods of finding the desired approximate solutions of (2) by
building compact Riemannian manifolds from ‘simpler pieces’. These will be non-
compact or singular G2-manifolds whose metrics are flat or have holonomy SU (2)
or SU (3), which are subgroups of G2. These latter metrics can be obtained by using
the Calabi–Yau analysis or written explicitly. The manifolds are patched together in
a ‘compatible’ way to achieve, on the resulting compact manifolds, G2-structures
with arbitrarily small torsion.

More precisely, one obtains 1-dimensional families of metrics depending on a
certain ‘gluing parameter’ taking values in a semi-closed interval. The limits of these
families may be interpreted as boundary points in a ‘partial compactification’ of the
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G2 moduli space. (It is known that the moduli space of torsion-free G2-structures on
a compact 7-manifold M is a smooth manifold of dimension the third Betti number
b3(M).)

In these notes, we shall explain two ways of implementing the above strategy with
different respective limits in the boundary of the G2 moduli space.

Recently, Joyce and Karigiannis [16] developed a new method of constructing
holonomy G2 manifolds using analysis on families of Eguchi–Hanson spaces. This
construction is not reviewed here. It includes an application of perturbative methods
for G2-structures with small torsion but also requires significant additional methods
to achieve a suitable small torsion.

2 Construction by Resolutions of Singularities

Themethod explained in this sectionwas historically the first construction of compact
7-manifolds with holonomy G2. It is due to Joyce [13, 14].

Joyce’s method produces one-parameter families of holonomy G2 metrics gs ,
0 < s ≤ ε. The limits of these families as s → 0 can be interpreted as boundary
points in the G2-moduli space and are given by flat orbifolds. In particular, the limit
spaces are compact, connected and singular.

More precisely, the construction proceeds via the following steps.

1. (a) Let T 7 = R
7/Z7 be the 7-toruswith a flatG2-structureϕ0 ∈ �3+(T 7) induced

from the standard G2-structure (1) on the Euclidean R
7. Choose a finite group

� of affine transformations of R7 which preserve ϕ0 and descend to diffeo-
morphisms of T 7. The quotient space (T 7/�) is an orbifold with a torsion-free
G2-structure, still denoted by ϕ0, and a flat orbifold metric g0 induced by ϕ0.
(b) For suitable choices of �, all the singularities of T 7/� are locally modeled
onR3 × (C2/G) orR × (C3/G), for G a finite subgroup of respectively SU (2)
or SU (3), and can be resolved using methods of complex algebraic geometry.
Perform the resolutions to obtain a smooth compact 7-manifold M together with
a resolution map π : M → T 7/�.

2. (a) On M , one can ‘explicitly’ define a 1-parameter family of closed positive
3-forms ϕs ∈ �3+(M), with dϕs = 0 for 0 < s ≤ ε, such that the G2-structures
ϕs have small torsion. The forms ϕs converge as s → 0 to π∗ϕ0 (respectively,
the induced metrics g(ϕs) converge to π∗g0). One may also say that the Rieman-
nian manifolds (M, g(ϕs)) converge in the Gromov–Hausdorff sense to the flat
orbifold (T 7/�, g0) as s → 0.
(b) Apply perturbative analysis (more precisely, construct a convergent sequence
of iterations) to show that for every small s > 0, the G2-structure ϕs can be
deformed to a nearby torsion-free G2-structure ϕ̃s . If π1(M) is finite, then
the holonomy of the induced metric g̃s = g(ϕ̃s) is precisely the group G2, i.e.
(M, ϕ̃s) is an irreducible G2-manifold.
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We illustrate thismethodwith an example taken from [14, Sect. 12.2] (cf. also [13])
where some technical details are relatively simple. Consider the group � generated
by

α : (x1, . . . , x7) 	→ ( x1, x2, x3,−x4, −x5, −x6, −x7),

β : (x1, . . . , x7) 	→ ( x1,−x2,−x3, x4, x5,
1
2−x6, −x7),

γ : (x1, . . . , x7) 	→ (−x1, x2,−x3, x4,
1
2−x5, x6,

1
2−x7).

The maps α,β, γ commute and each has order 2, thus � is isomorphic to Z
3
2. The

elements of � descend to T 7 and preserve ϕ0, making the quotient T 7/� into a
G2-orbifold.

One can further check that the only elements of � having fixed points are α,β, γ,
each fixes 16 copies of T 3 and these are all disjoint. The subgroup generated by β, γ
acts freely on the 16 tori fixed by α, so these correspond to 4 copies of T 3 in the
singular locus of T 7/�. Similar properties hold for the tori fixed by β and by γ. Thus
the singular locus S of T 7/� is 12 disjoint copies of T 3. A neighbourhood of each
3-torus component of S is diffeomorphic to T 3 × (C2/{±1}).

The blow-up σ : Y → C
2/{±1} at the origin resolves the singularity with a com-

plex surface Y biholomorphic to T ∗
CP1, with the exceptional divisor E = σ−1(0) ∼=

CP1 corresponding to the zero section of T ∗
CP1. The canonical bundle of Y is triv-

ial and there is a family of Ricci-flat Kähler metrics hs on Y with holonomy equal to
SU (2) depending on a real parameter s > 0. The Kähler form of the metric hs may
be written as ωs = σ∗(i∂∂̄ fs), where

fs =
√

r4 + s4 + 2s2 log r − s2 log(
√

r4 + s4 + s2),

r2 = z1 z̄1 + z2 z̄2 and (z1, z2) ∈ C
2. The radius function r makes sense as a smooth

function on Y \ E and the values of this function near E can be interpreted as the
distance to E in the metric hs . The forms ωs extend smoothly over the exceptional
divisor E ⊂ Y , thus the metrics hs are well-defined on Y . These are the well-known
Eguchi–Hanson metrics [8].

Comparing, for each s > 0, the Kähler potential fs of hs with the Kähler potential
r2 of the Euclidean metric h0 on C

2 we see that

∇k(hs − h0) = O(r−4−k) as r → ∞, for all k = 0, 1, 2, . . . , (3)

which means that hs is an asymptotically locally Euclidean (ALE) metric on Y .
For each λ > 0, the dilation map Y → Y induced by (z1, z2) 	→ λ(z1, z2) pulls

back ωs to λ2ωλs . It follows that s is proportional to the diameter of the exceptional
divisor. One can further check that the injectivity radius of the Eguchi–Hansonmetric
hs is proportional to s and that the uniform norm of the Riemannian curvature is
proportional to s−2.

Every Ricci-flat Kähler metric h on a complex surface is in fact hyper-Kähler: in
addition to the original complex structure I there are (integrable) complex structures
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J and K satisfying quaternionic relations I J = −J I = K . For each p ∈ Y , there
is an R-linear isomorphism R

4 → TpY such that the linear maps I (p), J (p), K (p)

correspond to multiplication by the unit quaternions i, j, k via the standard identi-
fication R

4 ∼= H = 〈1, i, j, k〉 with the algebra of quaternions. Also, the metric h is
Kähler with respect to each I, J, K . We shall denote by κI , κJ , κK the respective
Kähler forms.

For a 3-torus T 3 with coordinates x1, x2, x3, with a flat metric dx2
1 + dx2

2 + dx2
3

and a hyper-Kähler 4-manifold Y as above, the Riemannian product T 3 × Y has
holonomy in SU (2). The product metric is induced by a torsion-free G2 structure on
T 3 × Y , which is

ϕSU (2) = dx1 ∧ dx2 ∧ dx3 + dx1 ∧ κI + dx2 ∧ κJ − dx3 ∧ κK . (4)

We now define, for every small ε > 0, a smooth compact 7-manifold M = Mε by
replacing a neighbourhood T 3 × {r < 2ε} of each 3-torus component in the singular
locus of T 7/� by T 3 × U , where U = σ−1(r < 2ε) ⊂ Y is a neighbourhood of the
exceptional divisor on Y . (Note that the manifolds Mε are diffeomorphic to each
other.)

On each T 3 × U in M , we smoothly interpolate, for ε < r < 2ε, between the flat
G2-structure ϕ0 induced from T 7/� on the complement of the regions T 3 × U and
the product G2-structure arising as in (4) from the appropriately rescaled Eguchi–
Hanson hyper-Kähler hs on σ−1(r < ε) ⊂ U . The ALE property of the Eguchi–
Hanson metric allows to take the product G2-structure on T 3 × Y to be asymptotic
to the flat G2-structure on T 3 × (C2/{±1}). We can obtain, for each sufficiently
small s > 0, a well-defined positive 3-form ϕs on M noting also that �3+(M) is an
open subset of 3-forms in the uniform norm. Furthermore, we can choose these G2

3-forms on M to be closed, dϕs = 0. Thus the G2-structure ϕs is torsion-free away
from the interpolation region {ε < r < 2ε} but ϕs is not co-closed in that region.

The positive 3-forms ϕs are intended as ‘approximate solutions’ of the torsion-
free equations (2), as s → 0. The parameter s may be interpreted geometrically as the
maximal diameter of the pre-image of a singular point in T 7/� under the resolution
map M → T 7/�. We would like to perturb ϕs to actual solutions on M . To this end,
the following two conditions satisfied by ϕs are important, cf. [14, Theorem 11.5.7].

Condition (i) One can construct a smooth 3-form ψs on M such that d∗ϕs = d∗ψs

and
‖ψs‖L2 < A1s4, ‖ψs‖C0 < A1s3 and ‖d∗ψs‖L14 < A1s16/7. (5)

Condition (ii) The injectivity radius δ(gs) and the Riemann curvature R(gs) of the
metric gs = g(ϕs) on M satisfy the estimates

δ(gs) > A2 s, ‖R(gs)‖C0 < A3s−2. (6)

The construction of ψs exploits the asymptotic and scaling properties of the
G2-structure (4) on T 3 × U ‘approximating’ the flat G2-structure on T 3 × C

2/{±1}.
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The estimates (6) follow from the properties of the metric hs around the exceptional
divisor on Y , which give the dominant contributions for small s. In the conditions
(i) and (ii) the norms and the formal adjoint d∗ are taken with respect to the metric
gs = g(ϕs). The constants A1, A2, A3 are independent of s.

We can now state the existence result for torsion-free G2-structures.

Theorem 3 (cf. [14, Theorem 11.6.1]) Let M be a compact 7-dimensional manifold
and ϕs ∈ �3+(M), 0 < s ≤ s0, a family of G2-structures such that dϕs = 0 and the
conditions (i) and (ii) above hold for all s.

Then there is an ε0 > 0 so that for each s with 0 < s ≤ ε0 the manifold M admits
a torsion-free G2 structure ϕ̃s ∈ �3+(M) in the same cohomology class as ϕs and
satisfying ‖ϕ̃s − ϕs‖C0 < K s1/2 with some constant K independent of s.

We next outline the Proof of Theorem 3 following [15, pp. 236–237], dropping
the subscripts s to ease the notation. The desired torsion-free G2-structure ϕ̃ = ϕ̃s

will be obtained in the form ϕ̃ = ϕ + dη, where dη has a small uniform norm, so ϕ̃
is a closed positive 3-form. We then need to satisfy the co-closed condition d∗

ϕ̃ϕ̃ = 0
and this amounts to solving for a 2-form η a non-linear elliptic PDE which may be
written as

d∗dη = −d∗ψ + d∗F(dη) (7)

where F satisfies a quadratic estimate.A solution of (7) is achieved byusing iterations
to construct a sequence {η j }∞j=0 with η0 = 0 and

d∗dη j+1 = −d∗ψ + d∗F(dη j ), d∗η j+1 = 0.

One first argues that the sequence η j converges.
The proof of convergence is based on the following inductive estimates (all the

constants Ci below are independent of s)

‖dη j+1‖L2 ≤ ‖ψ‖L2 + C1‖dη j‖L2‖dη j‖C0 , (8a)

‖∇dη j+1‖L14 ≤ C2(‖d∗ψ‖L14 + ‖∇dη j‖L14‖dη j‖C0 + s−4‖dη j+1‖L2), (8b)

‖dη j‖C0 ≤ C3(s
1/2‖∇dη j‖L14 + s−7/2‖dη j‖L2). (8c)

The estimate (8a) is proved by taking the L2 product of both sides with η j+1 and
integrating by parts, noting also the condition (i) above. The proof of (8b) uses an
elliptic regularity estimate for the operator d + d∗ considered for 3-forms on small
balls on M with radius of order s. The condition (ii) is also required here and in (8c)
which uses the Sobolev embedding of L14

1 inC0 in dimension 7 and is again achieved
by working on small balls with radius of order s.

For every sufficiently small s, we deduce from (8) that if dη j satisfies

‖dη j‖L2 ≤ C4s4, ‖∇dη j‖L14 ≤ C5, ‖dη j‖C0 ≤ K s1/2, (9)
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then these latter estimates hold for dη j+1 and, by induction, for all j . Thus dη j is a
bounded sequence in the L14

1 norm on �3T ∗M and one can further show that dη j

is a Cauchy sequence. Further, we are free to assume that the forms η j are in the
L2-orthogonal complement H⊥ of harmonic forms. As the elliptic operator d + d∗
is bounded below onH⊥ it follows that the sequence η j converges in the L14

2 norm.
In particular, the last inequality of (9) holds for the limit η.

Finally, a careful elliptic regularity argument shows that η is in fact a smooth
solution of (7), thus completing the Proof of Theorem 3.

The metrics on M induced by ϕs have holonomy in G2 and it remains to verify
that the holonomy does not reduce further to a subgroup of G2. In the present case,
the orbifold T 7/� is simply-connected, therefore M is so, by the properties of the
blow-up. Thus (M,ϕs) is an irreducible G2-manifold by Proposition 2.

The discussed example may be considered as a generalization of the Kummer
construction of hyper-Kähler metrics of holonomy SU (2) on K3 surfaces.

It is convenient to obtain the Betti numbers of M ; these are determined by
b2(M) and b3(M). By considering the �-invariant classes in H∗

dR(T 7/�) we obtain
b2(T 7/�) = 0 and b3(T 7/�) = 7. When resolving the singularities, we replaced a
deformation retract of T 3 with T 3 × Y which is homotopy equivalent to T 3 × CP1.
Let S denote the singular locus of T 7/�. Comparing the cohomology long exact
sequence for the pairs (T 7/�, S) and (M,�12

i=1(T
3 × U )), we find that each of the

12 instances of a resolution adds bi (T 3 × Y ) − bi (T 3) to the i th Betti number of M .
Thus b2(M) = 12 · 1 and b3(M) = 7 + 12 · 3 = 43.

Further examples of irreducible G2-manifolds arise by using the above method
with different choices of finite groups � and different choices of resolutions of
singularities of T 7/�. If every component of the singular locus of T 7/� has a
neighbourhood diffeomorphic to T 3 × (C2/G) for a finite subgroup G of SU (2) or
to S1 × (C3/G) for a finite subgroup G of SU (3) acting freely on C

3 \ {0}, then it
is known from complex algebraic geometry that one can find crepant resolutions,
σ2 : Y2 → C

2/G or σ3 : Y3 → C
3/G respectively, with the canonical bundle of Yi

holomorphically trivial.
The Ricci-flat Kähler (thus hyper-Kähler) metrics on the complex surfaces Y2

asymptotic to C
2/G in the sense of (3), for each G, were constructed by Kron-

heimer [21] using hyper-Kähler quotients.
In complex dimension 3, the existence ofALERicci-flat holonomy SU (3)metrics

on Y3 asymptotic to C
3/G follows from the solution of ALE version of the Calabi

conjecture, see [14, Chap. 8] and references therein. The asymptotic rate for the
metrics h is given by

∇k(h − h0) = O(r−6−k) as r → ∞, for all k = 0, 1, 2, . . . ,

where h0 is the pull-back of the Euclidean metric on C
3/G. The Kähler forms of h

and h0 satisfy

ω − ω0 = i∂∂̄u, ∇ku = O(r−4−k) as r → ∞
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(cf. [14, Theorem 8.2.3]). The holonomy being SU (3) means there is a choice
of nowhere vanishing (3, 0)-form � on Y3 (sometimes called a holomorphic vol-
ume form), such that ω3/3! = (i/2)3� ∧ �̄. A torsion-free G2-structure on S1 × Y3

defined by
ϕSU (3) = dx ∧ ω + Re�, (10)

induces a product metric corresponding to (dx)2 and ω, where x is the usual coordi-
nate on S1 = R/Z.

The singularities of T 7/� can be resolved with copies of T 3 × U2 or S1 × U3

(where Ui is a neighbourhood of σ−1
i (0) in Yi ) in a manner similar to the example

above. One obtains compact smooth 7-manifolds M and closed positive 3-forms ϕs

on M satisfying the hypotheses of Theorem 3.More generally, the method extends to
situations when the singularities of T 7/� are only locally modeled onR3 × (C2/G)

or R × (C3/G). In the latter case, G need not act freely on C
3 \ {0} resulting in a

more complicated singular locus of T 7/�.
Joyce found a large number of orbifolds T 7/� with suitable resolutions of sin-

gularities. In particular, 252 examples of topologically distinct compact 7-manifolds
admitting holonomy G2 metrics are worked out in [14, Chap. 12], including some
manifolds with non-trivial fundamental group. The Betti numbers of these examples
are in the range 0 ≤ b2 ≤ 28 and 4 ≤ b3 ≤ 215. There is a evidence that many more
further topological types can be constructed by the same method.

3 Construction by Generalized Connected Sums

The method of constructing compact holonomy G2 manifolds discussed in this
section is sometimes called a ‘twisted connected sum’. The construction was orig-
inally developed by the author in [17] and included an important idea due to Don-
aldson. Generalizations and many new examples appeared in [5, 6, 18, 24].

The connected sum construction produces one-parameter families of holonomy
G2 metrics gT , T0 ≤ T < ∞, on compact manifolds with ‘long necks’. The parame-
ter T here is asymptotic, as T → ∞, to the diameter of themetric gT .Wemay think of
the respective families of torsion-free G2-structures as paths in the G2 moduli space,
going to the boundary as one ‘stretches the neck’, the limit boundary point corre-
sponding to the disjoint union of the initial two asymptotically cylindrical pieces.
So, in this construction, the limit spaces are disconnected, non-compact and smooth.

A twisted connected sum is an instance of generalized connected sum of a pair
of asymptotically cylindrical Riemannian manifolds which, in the present case, are
G2-manifolds. The asymptotically cylindrical G2-manifolds we require are Rieman-
nian products W × S1, where W is a Ricci-flat Kähler manifold with cylindrical end
asymptotic to a Riemannian product D × S1 × [0,∞) with D a K3 surface with a
hyper-Kähler metric. For certain pairs of the K3 surfaces D1, D2 there is a way to
‘join’ the two latter asymptotically cylindrical manifolds at their ends. We obtain a
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compact simply-connected manifold M and a G2-structure with small torsion on M
to which a perturbative analysis can be applied.

We now describe the key steps in the construction in more detail, starting with
the asymptotically cylindrical Calabi–Yau threefolds W .

Theorem 4 ([11, 17, 27]) Let W be a compact Kähler threefold with Kähler form ω
and suppose that a K3 surface D ∈ | − KW | is an anticanonical divisor on W with
holomorphically trivial normal bundle ND/W . Denote by z a complex coordinate

around D vanishing to order one precisely on D. Suppose that W is simply-connected
and the fundamental group of W = W \ D is finite.

Then W admits a complete Ricci-flat Kähler metric, with holonomy SU (3), with
Kähler form ω and a non-vanishing holomorphic (3, 0)-form �. These are asymptotic
to the product cylindrical Ricci-flat Kähler structure on D × S1 × R>0

ω = κI + dt ∧ dθ + dψ,

� = (κJ + i κK ) ∧ (dt + idθ) + d�,

where exp(−t − iθ) = z, for (θ, t) ∈ S1 × R>0 and the forms ψ, � exponentially
decay as t → ∞. Also κI is the Ricci-flat Kähler metric on D in the class [ω|D] and
κJ + iκK is a non-vanishing holomorphic (2, 0)-form on D.

Remark Any threefold W satisfying the hypotheses of Theorem 4 is necessarily
projective and algebraic [18, Proposition 2.2]. The holomorphic coordinate z extends
to a meromorphic function W → CP1 vanishing precisely on D.

Theorem 4 extends to higher dimensions m ≥ 3 with D replaced by a compact
simply-connectedCalabi–Yau (m − 1)-fold. The resultmay be regarded as a solution
of an ‘asymptotically cylindrical version’ of the Calabi conjecture.

It will be convenient to extend the parameter t along the cylindrical end in The-
orem 4 to a smooth function t defined on all of W with t < 0 away from a tubular
neighbourhood of D. We shall also assume that the holomorphic 2-form on a Kähler
K3 surface D is normalized so that κ2

I = κ2
J = κ2

K , with the implied normalization
of a holomorphic 3-form � on W . The Ricci-flat Kähler (hyper-Kähler) structure on
D is in fact determined by the triple κI ,κJ ,κK (cf. [10, p. 91].

The following relation between K3 surfaces is crucial for the connected sum
construction of G2-manifolds.

Definition 1 We say that two Ricci-flat Kähler K3 surfaces (D1,κ
′
I ,κ

′
J + iκ′

K ),
(D2,κ

′′
I ,κ

′′
J + iκ′′

K ) satisfy theDonaldson matching condition if there exists an isom-
etry of lattices h : H 2(D2,Z) → H 2(D1,Z), so that the R-linear extension of h
satisfies

h : [κ′′
I ] 	→ [κ′

J ], [κ′′
J ] 	→ [κ′

I ], [κ′′
K ] 	→ [−κ′

K ]. (11)

It follows, by application of the Torelli theorem for K3 surfaces, that there is a
smooth map

f : D1 → D2, such that h = f ∗.
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Note that f isnot a holomorphicmapbetween D1 and D2 (with complex structures I ),
though f is an isometry of the underlying Riemannian 4-manifolds. In particular, the
pull back f ∗ rotates the 2-forms of the hyper-Kähler triple (not just their cohomology
classes), κ′′

I 	→ κ′
J , κ

′′
J 	→ κ′

I , κ
′′
K 	→ −κ′

K .
Now if (W,ω,�) is an asymptotically cylindrical Calabi–Yau manifold given by

Theorem 4, then W × S1 has a torsion-free G2-structure given by (10)

ϕW = d θ̃ ∧ ω + Re�,

where θ̃ is the standard coordinate on the S1 factor. The form ϕW is asymptotic
to a cylindrical product torsion-free G2-structure ϕ∞ on the cylindrical end D ×
[0,∞) × S1 × S1 ⊂ W × S1,

ϕ∞ = dt ∧ dθ ∧ d θ̃ + d θ̃ ∧ κI + dt ∧ κJ − dθ ∧ κK .

corresponding to the hyper-Kähler structure (κI ,κJ ,κK ) on D (cf. (4)).
For i = 1, 2 and T > 0, let Wi,T be a compact manifold with boundary obtained

by truncating Wi at ti = T + 1 (where ti is the parameter along the cylindrical end
as in Theorem 4). We can smoothly cut off each ϕWi to obtain on Wi,T a closed
G2-structure ϕW,T so that ϕWi ,T equals its cylindrical asymptotic model ϕ∞ on a
collar neighbourhood Di × S1 × S1 × [T, T + 1] of the boundary.

Suppose that D1 and D2 satisfy the Donaldson matching condition. Then we can
define a compact 7-manifold

M = MT = (W1,T +1 × S1) ∪F (W2,T +1 × S1) (12)

by identifying the collar neighbourhoods of the boundaries using a map

F : D1 × S1 × S1 × [T, T + 1] → D2 × S1 × S1 × [T, T + 1],
(y, θ, θ̃, T + t) 	→ ( f (y), θ̃, θ, T + 1 − t).

(13)

The formϕ∞|[T,T +1] is preserved by F , so theG2-structuresϕi,T agree on the overlap
and patch together to a well-defined closed 3-form ϕT on M . It is easy to see that
ϕT is a well-defined G2-structure on M for every large T .

Another important property of the map F is that F identifies the S1 factor in
W1,T +1 × S1 with a circle around the divisor on the other threefold W2 and vice
versa. This eliminates the possibility of an infinite fundamental group of M , in
particular, M will be simply-connected when the threefolds W1 and W2 are so.

TheG2-structure formon M satisfies dϕT = 0, one of the two equations in (2), but
the co-derivative d ∗T ϕT in general will not vanish. The cut-off functions introduce
‘error terms’ which depend on the difference between the SU (3)-structures on the
end of Wi and on its cylindrical asymptotic model, and can be estimated as

‖d ∗T ϕT ‖L p
k

< C p,ke−λT ,
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with λ > 0. Here ∗T denotes the Hodge star of the metric g(ϕT ).
The next result shows that for a sufficiently long neck the G2-structure ϕT on M

can be made torsion-free by adding a small correction term.

Theorem 5 Suppose that each of W 1, D1 and W 2, D2 satisfies the hypotheses
of Theorem 4 and the K3 surfaces D j ∈ | − KW j

| satisfy the Donaldson match-
ing condition. Let M be the compact 7-manifold M defined in (12) with a closed
G2-structure ϕT induced from ϕW1 , ϕW2 .

Then M has finite fundamental group. Furthermore, there exists T0 ∈ R and for
every T ≥ T0 a unique smooth 2-form ηT on M, orthogonal to the closed forms, so
that the following holds.
(a) ‖ηT ‖C1 < A · e−μT , for some constants A,μ > 0 independent of T , where
the norm is defined using the metric g(ϕT ). In particular, ϕT + dηT is a valid
G2-structure on M.
(b) The closed 3-form ϕT + dηT satisfies

d ∗ϕT +dηT (ϕT + dηT ) = 0. (14)

and so ϕT + dηT defines a metric with holonomy G2 on M.

Asdiscussed in the previous section, the perturbative problem (14) canbe rewritten
as a non-linear elliptic PDE for the 2-form η. When η has a small norm this PDE
takes the form a(η) = a0 + Aη + Q(η) = 0, where a0 = d ∗T ϕT , the linear elliptic
operator A = AT is a compact perturbation of the Hodge Laplacian of the form
dd∗ + d∗d + O(e−εT ), ε > 0 and Q(η) satisfies a quadratic estimate in dη.

One can use elliptic theory for manifolds with cylindrical ends and the gluing
analysis for the problem at hand is then simplified, compared to the general situation
of Theorem3. The central idea in the proof of Theorem5may be informally described
as follows. For small η, the map a(η) is approximated by its linearization and so there
would be a unique small solution η to the equation a(η) = 0, for every small a0 in the
range of A. This perturbative approach requires the invertibility of A and a suitable
upper bound on the operator norm ‖A−1

T ‖, as T → ∞. This bound determines what
is meant by ‘small a0’ above.

As we actually need the value of dη rather than η we may consider the equation
for η in the orthogonal complement of harmonic 2-forms on M where the Laplacian
is invertible.We use the technique similar to [20, Sect. 4.1] based on Fredholm theory
for the asymptotically cylindrical manifolds and weighted Sobolev spaces to find an
upper bound ‖A−1

T ‖ < GeδT . Here the constant G is independent of T and δ > 0
can be taken arbitrarily small. So, for large T , the growth of ‖A−1

T ‖ is negligible
compared to the decay of ‖d ∗T ϕT ‖ and the ‘inverse function theorem’ strategy
applies to give the required small solution ηT in a (appropriately chosen) Sobolev
space. Standard elliptic methods show that this ηT is in fact smooth.
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3.1 Some Examples and Further Results

In order to make irreducible G2-manifolds using the connected sum construction, we
require pairs W 1, W 2 of complex algebraic threefolds with matching anticanonical
K3 divisors Di ⊂ W i . We begin with an example based on some classical algebraic
geometry.

Example 1 The intersection of three generically chosen quadric hypersurfaces in
CP6 defines a smooth Kähler threefold X8. It is simply-connected and the charac-
teristic class c1(X8) of its anticanonical bundle is the pull-back to X8 of the positive
generator of the cohomology ring H∗(CP6). This tells us that the anticanonical bun-
dle K −1

X8
is the restriction to X8 of the tautological line bundle O(1) over CP6. It

follows that any anticanonical divisor D on X8 is obtained by taking an intersection
D = X8 ∩ H with a hyperplane H in CP6. A generic such hyperplane section D is
a complex surface, isomorphic to a smooth complete intersection of three quadrics
in CP5. This is a well-known example of a K3 surface.

Conversely, starting from a smooth intersection D of three quadrics in CP5 we
can write down a smooth threefold X8 ⊂ CP6 as above containing the K3 surface
D as an anticanonical divisor.

Consider another anticanonical divisor D′ = X8 ∩ H ′ and let X̃8 → X8 be the
blow-up of the second hyperplane section C = D ∩ D′ = X8 ∩ H ∩ H ′. (It is con-
venient, though not strictly necessary, to choose D′ so that C is a non-singular
connected complex curve.) The pencil defined by D and D′ lifts, via the proper
transform, to a pencil consisting of the fibres of a holomorphic map X̃8 → CP1. In
particular, the K3 divisor D lifts to an isomorphic K3 surface D̃ which is an anti-
canonical divisor on X̃8 and has trivial normal bundle. Moreover, a Kähler metric on
X̃8 may be chosen so that D̃ and D are isometric Kähler K3 surfaces.

It is not difficult to check that X̃8 \ D̃ is simply-connected, noting that D̃ and
X8 are so and considering an exceptional curve in the blow up X̃8. The pair X̃8,
D̃ thus satisfies all the hypotheses of Theorem 4, and so the quasiprojective three-
fold W = X̃8 \ D̃ admits an asymptotically cylindrical Ricci-flat Kähler metric with
holonomy SU (3). Note that the cylindrical asymptotic model for this metric is deter-
mined by the Ricci-flat Kähler structure in the Kähler class of D in X8.

We would like to choose two octic threefolds X (i)
8 , i = 1, 2 and a K3 surface Di

in each, so as to satisfy the Donaldson matching condition. We do this by applying
some general theory of K3 surfaces and their moduli (see [2, Chap. VIII]). The key
point is that one can determine a Ricci-flat Kähler K3 surface D, up to isomorphism,
by a data of the integral second cohomology H 2(D,Z).

Recall that all K3 surfaces are diffeomorphic and the intersection form makes
H 2(D,Z) into a lattice. There is an isomorphism, called amarking, p : H 2(D,Z) →
L to a fixed non-degenerate even unimodular lattice L with signature (3, 19). We
shall refer to L as the K3 lattice; its bilinear form is given by the orthogonal direct
sum L = 3H ⊕ 2(−E8) of 3 copies of the hyperbolic plane lattice H = (

0 1
1 0

)
and 2

copies of the negative definite root lattice−E8 of rank 8. Now if D ⊂ CP5 is an octic
K3 surface, then the image p(κI ) of the Kähler class of D is primitive (non-divisible
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in L by an integer > 1) and p(κI ) · p(κI ) = 8, computed in the bilinear form of L .
The images p(κJ ), p(κK ) span a positive 2-plane P orthogonal to p(κI ) in the real
vector space L ⊗ R. Conversely, the positive 2-planes P arising in this way form
a dense open set in the Grassmannian of positive 2-planes orthogonal to p(κI ) in
L ⊗ R.

It is known that the group of lattice isometries of L acts transitively on the set
of all primitive vectors with a fixed value of v · v in L . We can therefore choose
two octic K3 surfaces with hyper-Kähler structures (in the respective Kähler classes)
(D1;κ′

I ,κ
′
J ,κ

′
K ), (D2;κ′′

I ,κ
′′
J ,κ

′′
K ) and the markings p1, p2 with p1(κ

′
I ) = p2(κ

′′
J ),

p1(κ
′
J ) = p2(κ

′′
I ) in L , and p1(κ

′
K ) = −p2(κ

′′
K ) in L ⊗ R thereby achieving amatch-

ing.
Choosing the ambient octic threefolds X ′

8, X ′′
8 for the latter D1, D2, blowing up

these threefolds to obtain asymptotically cylindrical Ricci-flat threefolds by Theo-
rem 4, and applying Theorem 5 to the respective connected sum, we obtain a simply-
connected compact 7-manifold M with a metric of holonomy G2.

We may consider in a very similar way, in place of one of both X8’s above, a
smooth intersection X6 of a quadric and a cubic in CP5. The respective K3 divisor
then is an intersection of a quadric and a cubic in CP4 and the image of the Kähler
class of this divisor has square 6 in the bilinear form L .

More generally, it was shown in [17, Sect. 6,7] that in place of X8, X6 in the above
examplewe can consider any non-singularFano threefold V , i.e. a projective complex
3-dimensional manifold such that the image of the first Chern class c1(V ) in the de
Rham cohomology can be represented by some Kähler form on V . Equivalently,
the anticanonical bundle K −1

V is ample. Smooth Fano threefolds are completely
classified; up to deformations, there are 105 algebraic types [12, 22].

Every Fano threefold V is simply-connected and a generic anticanonical divisor
D on V is a (smooth) K3 surface [26]. A threefold W is obtained by blowing up a
connected complex curve representing the self-intersection cycle D · D (in the sense
of the Chow ring). Then W and the proper transform of D satisfy the hypotheses of
Theorem 4. Alternatively, if D · D is represented by a finite sequence of curves, then
W may be defined by successively blowing up these curves. We shall refer to any
such threefold W to be of Fano type.

A Kähler K3 surface D and its proper transform in W can be assumed isomorphic
by choosing an appropriate Kähler metric on W . Then the cylindrical asymptotic
model for W is determined by the K3 surface D with the Kähler metric restricted
from V .

For a general Fano V , the class of anticanonical K3 surfaces D arising in the
deformations of V will correspond to an open dense subset of lattice-polarized
K3 surfaces. This latter class is defined by the condition that the Picard lattice
H 1,1(D,R) ∩ H 2(D,Z) contains a sublattice isomorphic to a fixed lattice N and
this sublattice contains a class of some Kähler form. In the case of algebraic K3
surfaces of a fixed degree, as in the example above, N is generated by the Kähler
form κI induced from the embedding of D in the projective space. In general, N
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arises as ι∗ H 2(V,Z) from the embedding ι : D → V . The rank of N is the Betti
number b2(V ) as ι∗ in injective by the Lefschetz hyperplane theorem.

Another source of examples forTheorem4was given byLee and the author in [18].
The construction uses K3 surfaces S with non-symplectic involution, a holomorphic
map ρ : S → S, such that ρ∗ restricts to−1 on H 2,0(S). The K3 surfaces of this type
were completely classified up to deformation by Nikulin [1], who determined the
complete system of invariants and fixed point set of ρ for each deformation family.
We require the fixed point set of ρ to be non-empty; this occurs in all but one of the
75 deformation families.

Let ψ : CP1 → CP1 denote the holomorphic involution ψ(z0 : z1) = z1 : z0 fix-
ing exactly twopoints. Thequotient Z = (S × CP1)/(ρ,ψ) is then anorbifoldwhose
singular locus is a disjoint union of smooth curves. The desired 3-fold W is defined
by the resolution of singularities diagram for Z ,

W̃ −−−−→ W
⏐
⏐
�

⏐
⏐
�

S × CP1 −−−−→ Z ,

where the vertical arrows correspond to blowing up the fixed locus of (ρ,ψ) in
S × CP1 and the singular locus of Z and the horizontal arrows are the quotient
maps.

The anticanonical divisor D on W arises as the (pre-)image of S × {p}, via the
above diagram, where ψ(p) �= p. Such D is clearly isomorphic to the Kähler K3
surface S and has trivial normal bundle in W . It can be checked that W and W =
W \ D are simply-connected (the condition that ρ have fixed points is needed here).
Thus W has an asymptotically cylindrical Ricci-flat Kähler metric by Theorem 4.

The pull-back ι∗ : H 2(W ,Z) → H 3(D,Z) defined by the embedding of D makes
D into a lattice polarized K3 surface with N corresponding to the sublattice of all
classes fixed by ρ∗ in H 2(D,Z). On the other hand, ι∗ has a kernel of dimension
at least 2. A threefold W obtained from K3 surface with non-symplectic involution
is therefore never deformation equivalent to any threefold of Fano type (assuming
D · D in the latter threefold was represented by a single curve).

The matching problem in all the examples becomes entirely a consideration on
the K3 lattice L , as illustrated by the example in the beginning of this subsection.
In general, the argument is more technical and requires results on the lattice embed-
dings [23].

One simple sufficient (though not necessary) condition for the existence of the
Donaldson matching for representatives in the two classes of lattice polarized K3
surfaces is that the rank of each polarizing lattice Ni is ≤5.

All the irreducible G2-manifolds M constructed from threefolds in the above
examples are simply-connected. The cohomology of compact irreducible
G2-manifolds M coming from the connected sum construction may be determined
by application of the Mayer–Vietoris exact sequence and generally depends on the
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choice of matching. However, the sum of the Betti numbers

b2(M) + b3(M) = b3(W 1) + b3(W 2) + 2d1 + 2d2 + 23, (15)

for any matching, depends only on the threefolds W i and the dimensions di of the
kernel of ι∗ : H 2(W i ,R) → H 3(Di ,R). The quantities in (15) can be determined
by standardmethods (adjunction formula, Lefschetz–Bott hyperplane theorem) from
known algebraic invariants of Fano threefolds or, respectively, of non-symplectic
involutions.

In particular, the Fano threefold X8 discussed in Example 1 above has b2(X8) = 1,
b3(X8) = 28 and its blow-up has b2(W ) = 2, b3(W ) = 38. An irreducible compact
G2-manifold M constructed from a pair of X8’s has b2(M) = 0 and then b3(M) = 99
as di vanish in this case. This irreducible G2-manifold is topologically distinct from
the examples given by Joyce via resolution of singularities; the only irreducible
G2-manifold in [14] with b2 = 0 has b3 = 215. The property b2(M) = 0 holds in
many other examples coming from pairs of threefolds of Fano type and these latter
G2-manifolds typically have smaller b2 and larger b3 than the examples given by
Joyce. (Note also that every compact irreducibleG2-manifold M must have b1(M) =
0 by Proposition 2 but b3(M) cannot vanish as the G2 3-form ϕ on M is harmonic.)

Corti, Haskins, Nordström and Pacini [5, 6] generalized the class of threefolds of
Fano type by considering weak Fano threefolds V whose anticanonical bundle K −1

V
is only required to be big and nef. (Every such V may be obtained as a resolution
of an appropriate singular Fano threefold.) They identified a large subclass called
semi-Fano threefolds and generalized for this class the properties required in the
construction of G2-manifolds from threefolds W of Fano type. This generalization
dramatically increased the number of examples of connected sum G2-manifolds.
Some of the examples were shown to be 2-connected which allows to determine
their diffeomorphism type by computing certain standard invariants.

More recently, Braun [3] gave a toric geometry construction, from certain lattice
polytops, of examples of pairs W , D defining asymptotically cylindrical Calabi–Yau
threefolds by Theorem 4. Useful invariants of W e.g. the Hodge numbers can be
computed by combinatorial formulae.

Nordström [24] gave an interesting generalization of the connected sum con-
struction, by replacing (11) with a different ‘hyper-Kähler rotation’ and taking
finite quotients of asymptotically cylindrical Calabi–Yau threefolds W . Applica-
tions of the construction include topologically new examples of compact irreducible
G2-manifolds some of which have a non-trivial finite fundamental group.

In conclusion, we mention two works which contain results concerning relations
between the two types of construction of G2-manifolds discussed in these notes.

Nordström and the author identified in [19] an example of a compact irreducible
G2-manifold given by Joyce [14] where the underlying 7-manifold is diffeomorphic
to one obtainable from the construction in [18]. Further, the two respective families
of G2-metrics on this manifold are connected in the G2-moduli space.
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On the other hand, some of the G2-manifolds given by Joyce cannot possibly
be obtained by the connected sum construction. The result is due to Crowley and
Nordstrom [7] who constructed an invariant of G2-structures which is equal to 24
for each connected sum (12) but is odd for some examples in [14].

Acknowledgements These notes are an expanded version of lectures given in the Minischool on
G2 manifolds at the Fields Institute, Toronto, in August 2017. I would like to thank the organizers
for inviting me.
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Calibrated Submanifolds

Jason D. Lotay

Abstract We provide an introduction to the theory of calibrated submanifolds
through the key examples related with special holonomy. We focus on calibrated
geometry inCalabi–Yau,G2 andSpin(7)manifolds, and describe fundamental results
and techniques in the field.

1 Introduction

A key aspect of mathematics is the study of variational problems. These can vary
from the purely analytic to the very geometric. A classic geometric example is the
study of geodesics, which are critical points for the length functional on curves. As
we know, understanding the geodesics of a given Riemannian manifold allows us
to understand some of the ambient geometry, for example the curvature. The higher
dimensional analoguewould be to study critical points for the volume functional, and
we would hope (and it indeed turns out to be the case) that these critical points, called
minimal submanifolds, encode crucial aspects of the geometry of the manifold.

Just like the geodesic equation, we would expect (and it is true) that minimal sub-
manifolds are defined by a (nonlinear) second order partial differential equation. Such
equations are very difficult to solve in general, so a key idea is to find a special class
of minimal submanifolds, called calibrated submanifolds, which are instead defined
by a first order partial differential equation. The definition of calibrated submanifolds
is motivated by the properties of complex submanifolds in Kähler manifolds, and
turns out to be useful in finding minimizers for the volume functional rather than just
critical points. However, finding examples outside the classical complex setting turns
out to be difficult, leading to important methods coming from a variety of sources,
as well as motivating the study of the deformation theory of these objects.
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Calibrated submanifolds naturally arise when the ambient manifold has special
holonomy, including holonomy G2. In this situation, we would hope that the cali-
brated submanifolds encode even more, finer, information about the ambient mani-
fold, potentially leading to the construction of new invariants. In this setting, there is
also a relationship between calibrated submanifolds and gauge theory: specifically,
connections whose curvature satisfies a natural constraint determined by the special
holonomy group (so-called instantons). For these reasons, calibrated submanifolds
form a hot topic in current research, especially in the G2 setting.

Note These notes are primarily based on a lecture course the author gave at the
LMS–CMI Research School “An Invitation to Geometry and Topology via G2” at
Imperial College London in July 2014.

2 Minimal Submanifolds

We start by analysing the submanifolds which are critical points for the volume
functional. Let N be a submanifold (without boundary) of a Riemannian manifold
(M, g) and let F : N × (−ε, ε) → M be a variation of N with compact support;
i.e. F = Id outside a compact subset S of N with S open and F(p, 0) = p for all
p ∈ N . The vector field X = ∂F

∂t |N is called the variation vector field (which will be
zero outside of S). We then have the following definition.

Definition 2.1 N is minimal if d
dt Vol(F(S, t))|t=0 = 0 for all variations F with

compact support S (depending on F).

Remark Notice that we do not ask for N to minimize volume: it is only stationary
for the volume. It could even be a maximum!

Example Aplane inRn isminimal since any small variationwill have larger volume.

Example Geodesics are locally length minimizing, so geodesics are minimal. How-
ever, as an example, the equator in S2 is minimal but not length minimizing since
we can deform it to a shorter line of latitude.

For simplicity let us suppose that N is compact. We wish to calculate
d
dt Vol(F(N , t))|t=0. Given local coordinates xi on N we know that

Vol(F(N , t)) =
∫
N

√
det

(
g

(
∂F

∂xi
,

∂F

∂x j

))
volN .

Let p ∈ N and choose our coordinates xi to be normal coordinates at p: i.e. so that
∂F
∂xi

(p, t) = ei (t) satisfy g(ei (0), e j (0)) = δi j . If gi j (t) = g(ei (t), e j (t)) and (gi j (t))
denotes the inverse of the matrix (gi j (t)) then we know that
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d

dt

√
det(gi j (t))|t=0 = 1

2

∑
i, j g

i j (t)g′
i j (t)√

det(gi j (t))
|t=0 = 1

2

∑
i

g′
i i (0).

Now, if we let ∇ denote the Levi-Civita connection of g, then

1

2

∑
i

g′
i i (0) = 1

2

∑
i

d

dt
g

(
∂F

∂xi
,

∂F

∂xi

)
|t=0

=
∑
i

g(∇Xei , ei )

=
∑
i

g(∇ei X, ei ) = divN (X)

since [X, ei ] = 0 (i.e. the t and xi derivatives commute). Moreover, we see that

divN (X) =
∑
i

g(∇ei X, ei ) = divN (XT) −
∑
i

g(X⊥,∇ei ei )

= divN (XT) − g(X, H)

(since∇ei

(
g(X⊥, ei )

) = 0) where T and ⊥ denote the tangential and normal parts and

H =
∑
i

∇⊥
ei ei

is the mean curvature vector. Overall we have the following.

Theorem 2.2 The first variation formula is

d

dt
Vol(F(N , t))|t=0 =

∫
N
divN (X) volN = −

∫
N

g(X, H) volN .

Remark The divN (XT) term does not appear in the first variation formula because
its integral vanishes by the divergence theorem as N is compact without boundary.
In general, it will still vanish since we assume for our variations that there exists a
compact submanifold of N with boundary which contains the support of XT and so
that XT vanishes on the boundary.

We deduce the following.

Definition 2.3 N is a minimal submanifold if and only if H = 0.

The equation H = 0 is a second order nonlinear PDE. We can see this explicitly
in the following simple case. For a function f : U ⊆ R

n−1 → RwhereU is compact,
we see that if N = Graph( f ) ⊆ R

n then the volume of N is given by

Vol(N ) =
∫
U

√
1 + |∇ f |2 volU .
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Any sufficiently small variation can be written F(N , t) = Graph( f + th) for some
h : U → R, so we can compute

d

dt
Vol(F(N , t))|t=0 = d

dt
|t=0

∫
U

√
1 + |∇ f + t∇h|2 volU

=
∫
U

d

dt
|t=0

√
1 + |∇ f |2 + 2t〈∇ f,∇h〉 + t2|∇h|2 volU

=
∫
U

〈∇ f,∇h〉√
1 + |∇ f |2 volU

= −
∫
U
h div

(
∇ f√

1 + |∇ f |2
)
volU .

We therefore see that N is minimal if and only if this vanishes for all h. Hence,
Graph( f ) is minimal in Rn if and only if

div

(
∇ f√

1 + |∇ f |2
)

= 0.

We see that we can write this equation as � f + Q(∇ f,∇2 f ) = 0 where Q consists
of nonlinear terms (but linear in ∇2 f ). Hence, if we linearise this equation we just
get� f = 0, so f is harmonic. In other words, the minimal submanifold equation is a
nonlinear equation whose linearisation is just Laplace’s equation: this is an example
of a nonlinear elliptic PDE, which we shall discuss further later.

Example A plane inRn is trivially minimal because if X,Y are any vector fields on
the plane then ∇⊥

X Y = 0 as the second fundamental form of a plane is zero.

Example For curves γ, H = 0 is equivalent to the geodesic equation ∇γ̇ γ̇ = 0.

The most studied minimal submanifolds (other than geodesics) are minimal sur-
faces in R

3, since here the equation H = 0 becomes a scalar equation on a surface,
which is the simplest to analyse. In general we would have a system of equations,
which is more difficult to study.

Example The helicoid M = {(t cos s, t sin s, s) ∈ R
3 : s, t ∈ R} is a complete

embedded minimal surface, discovered by Meusnier in 1776.

Example The catenoid M = {(cosh t cos s, cosh t sin s, t) ∈ R
3 : s, t,∈ R} is a

complete embedded minimal surface, discovered by Euler in 1744 and shown to
be minimal by Meusnier in 1776. The catenoid is another explicit example which is
a critical point for volume but not minimizing.

In fact the helicoid and the catenoid are locally isometric, and there is a 1-parameter
family of locally isometric minimal surfaces deforming between the catenoid and
helicoid: see, for example, [18, Theorem 16.5] for details.
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It took about 70 years to find the next minimal surface, but now we know many
examples of minimal surfaces in R3, as well as in other spaces by studying the non-
linear elliptic PDE given by the minimal surface equation. The amount of literature
in the area is vast, with key results including the proofs of the Lawson [1], Willmore
[63] and Yau [29, 64, 77] Conjectures, and minimal surfaces have applications to
major problems in geometry including the Positive Mass Theorem [75, 76], Penrose
Inequality [24] and Poincaré Conjecture [74].

3 Introduction to Calibrations

As we have seen, minimal submanifolds are extremely important. However there are
two key issues.

• Minimal submanifolds are defined by a second order nonlinear PDE system—
therefore they are hard to analyse.

• Minimal submanifolds are only critical points for the volume functional, but we are
often interested in minima for the volume functional—we need a way to determine
when this occurs.

We can help resolve these issues using the notion of calibration and calibrated
submanifolds, introduced by Harvey–Lawson [20] in 1982.

Definition 3.1 A differential k-form η on a Riemannian manifold (M, g) is a cali-
bration if

• dη = 0 and
• η(e1, . . . , ek) ≤ 1 for all unit tangent vectors e1, . . . , ek on M .

Example Any non-zero form with constant coefficients on R
n can be rescaled so

that it is a calibration with at least one plane where equality holds.

This example shows that there aremany calibrations η, but the interesting question
is: for which oriented planes P = Span{e1, . . . , ek} does η(e1, . . . , ek) = 1? More
importantly, can we find submanifolds N so that this equality holds on each tangent
space? This motivates the next definition.

Definition 3.2 Let η be a calibration k-form on (M, g). An oriented k-dimensional
submanifold N of (M, g) is calibrated by η if η|N = volN , i.e. if for all p ∈ N we
have η(e1, . . . , ek) = 1 for an oriented orthonormal basis e1, . . . , ek for TpN .

Example Any oriented plane in R
n is calibrated. If we change coordinates so that

the plane P is {x ∈ R
n : xk+1 = · · · = xn = 0} (with the obvious orientation) then

η = dx1 ∧ · · · ∧ dxk is a calibration and P is calibrated by η.

Notice that the calibrated condition is now an algebraic condition on the tangent
vectors to N , so being calibrated is a first order nonlinear PDE. We shall motivate
these definitions further later, but for now we make the following observation.
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Theorem 3.3 Let N be a calibrated submanifold. Then N is minimal and, moreover,
if F is any variation with compact support S then Vol(F(S, t)) ≥ Vol(S); i.e. N is
volume-minimizing. In particular, if N is compact then N is volume-minimizing in
its homology class.

Proof Suppose that N is calibrated byη and suppose for simplicity that N is compact.
We will show that N is homologically volume-minimizing.

Suppose that N ′ is homologous to N . Then there exists a compact K with boundary
−N ∪ N ′ and, since dη = 0, we have by Stokes’ Theorem that

0 =
∫
K
dη =

∫
N ′

η −
∫
N

η.

We deduce that

Vol(N ) =
∫
N

η =
∫
N ′

η ≤ Vol(N ′).

We then have the result by the definition of minimal submanifold. �

We conclude this introduction with the following elementary result.

Proposition 3.4 There are no compact calibrated submanifolds in R
n.

Proof Suppose that η is a calibration and N is compact and calibrated by η. Then
dη = 0 so by the Poincaré Lemma η = dζ, and hence

Vol(N ) =
∫
N

η =
∫
N
dζ = 0

by Stokes’ Theorem. �

Although there are many calibrations, having calibrated submanifolds greatly
restricts the calibrations youwant to consider. The calibrations which have calibrated
submanifolds have special significance and there is a particular connection with
special holonomy, due to the following observations.

Let G be the holonomy group of a Riemannian metric g on an n-manifold M .
Then G acts on the k-forms on R

n , so suppose that η0 is a G-invariant k-form. We
can always rescale η0 so that η0|P ≤ volP for all oriented k-planes P and equality
holds for at least one P . Since η0 is G-invariant, if P is calibrated then so is γ · P for
any γ ∈ G, which usually means we have quite a few calibrated planes. We know by
the holonomy principle (see, for example, [42, Proposition 2.5.2]) that we then get
a parallel k-form η on M which is identified with η0 at every point. Since ∇η = 0,
we have dη = 0 and hence η is a calibration. Moreover, we have a lot of calibrated
tangent planes on M , so we can hope to find calibrated submanifolds.
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4 Complex Submanifolds

We would now like to address the question: where does the calibration condition
come from? The answer is from complex geometry. On R

2n = C
n with coordinates

z j = x j + iy j , we have the complex structure J and the distinguished Kähler 2-form

ω =
n∑
j=1

dx j ∧ dy j = i

2

n∑
j=1

dz j ∧ dz j .

More generally we can work with a Kähler manifold (M, J,ω). Our first key result
is the following.

Theorem 4.1 On a Kähler manifold (M, J,ω), ωk

k! is a calibration whose calibrated
submanifolds are the complex k-dimensional submanifolds: i.e. submanifolds N such
that J (TpN ) = TpN for all p ∈ N.

Since dωk = kdω ∧ ωk−1 = 0, Theorem 4.1 follows immediately from the fol-
lowing result.

Theorem 4.2 (Wirtinger’s inequality) For any unit vectors e1, . . . , e2k ∈ C
n,

ωk

k! (e1, . . . , e2k) ≤ 1

with equality if and only if Span{e1, . . . , e2k} is a complex k-plane in Cn.

Before proving this we make the following observation.

Lemma 4.3 If η is a calibration and ∗η is closed then ∗η is a calibration. Moreover
an oriented tangent plane P is calibrated by η if and only if there is an orientation
on the orthogonal complement P⊥ so that it is calibrated by ∗η.

Proof Suppose that η is a calibration k-form on (M, g) with d∗η = 0. Let p ∈ M .
Take any n − k orthonormal tangent vectors ek+1, . . . , en at p. Then there exist
e1, . . . , ek ∈ TpM so that {e1, . . . , en} is an oriented orthonormal basis for TpM .
Since {e1, . . . , en} is an oriented orthonormal basis, we can use the definition of the
Hodge star to calculate

∗η(ek+1, . . . , en) = η(e1, . . . , ek) ≤ 1.

Hence ∗η is a calibration by Definition 3.1. Moreover, the oriented plane P =
Span{ek+1, . . . , en} is calibrated by ∗η if and only if there is an orientation on
Span{e1, . . . , ek} = P⊥ so that it is calibrated by η, since η(e1, . . . , ek) = ± ∗
η(ek+1, . . . , en) = ±1. �

We can now prove Wirtinger’s inequality.
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Proof of Theorem 4.2 We see that |ωk

k! |2 = n!
k!(n−k)! and volCn = ωn

n! so ∗ωk

k! = ωn−k

(n−k)! .
Hence, by Lemma 4.3, it is enough to study the case where k ≤ n

2 .
Let P be any 2k-plane in C

n with 2k ≤ n. We shall find a canonical form for P .
First consider 〈Ju, v〉 for orthonormal vectors u, v ∈ P . This must have amaximum,
so let cos θ1 = 〈Ju, v〉 be thismaximum realised by some orthonormal vectors u, v ∈
P , where 0 ≤ θ1 ≤ π

2 .
Suppose that w ∈ P is a unit vector orthogonal to Span{u, v}, where cos θ1 =

〈Ju, v〉. The function
fw(θ) = 〈Ju, cos θv + sin θw〉

has a maximum at θ = 0 so f ′
w(0) = 〈Ju, w〉 = 0. Similarly we have that 〈Jv,w〉 =

0, and thus w ∈ Span{u, v, Ju, Jv}⊥.
We then have two cases. If θ1 = 0 then v = Ju so we can set u = e1, v = Je1

and see that P = Span{e1, Je1} × Q where Q is a 2(k − 1)-plane in C
n−1 =

Span{e1, Je1}⊥. If θ1 �= 0 we have that v = cos θ1 Ju + sin θ1w where w is a
unit vector orthogonal to u and Ju, so we can let u = e1, w = e2 and see that
P = Span{e1, cos θ1 Je1 + sin θ1e2} × Q where Q is a 2(k − 1)-plane in C

n−2 =
Span{e1, Je1, e2, Je2}⊥.

Proceeding by induction we see that we have an oriented basis {e1, Je1, . . . ,
en, Jen} for Cn so that

P = Span{e1, cos θ1 Je1 + sin θ1e2, . . . , e2k−1, cos θk Je2k−1 + sin θke2k},

where 0 ≤ θ1 ≤ · · · ≤ θk−1 ≤ π
2 and θk−1 ≤ θk ≤ π − θk−1.

Since we can write ω = ∑n
j=1 e

j ∧ Je j we see that ωk

k! restricts to P to give a
product of cos θ j which is certainly less than or equal to 1. Moreover, equality holds
if and only if all of the θ j = 0 which means that P is complex. �

Putting together Theorems 4.1 and 3.3 yields the following.

Corollary 4.4 Compact complex submanifolds of Kähler manifolds are homologi-
cally volume-minimizing.

We know that complex submanifolds are defined by holomorphic functions;
i.e. solutions to the Cauchy–Riemann equations, which are a first-order PDE system,
as one would expect for calibrated submanifolds.

Example N = {(z, 1
z ) ∈ C

2 : z ∈ C \ {0}} is a complex curve in C
2, and thus is

calibrated.

Example An important non-trivial example of a Kähler manifold isCPn , where the
zero set of a system of polynomial equations defines a (possibly singular) complex
submanifold.



Calibrated Submanifolds 77

5 Special Lagrangians

Complex submanifolds are very familiar, but canwe find any other interesting classes
of calibrated submanifolds? The answer is that indeed we can, particularly when the
manifold has special holonomy. We begin with the case of holonomy SU(n)—so-
called Calabi–Yau manifolds. The model example for Calabi–Yau manifolds is Cn

with complex structure J , Kähler form ω and holomorphic volume form

ϒ = dz1 ∧ · · · ∧ dzn,

if z1, . . . , zn are complex coordinates on C
n .

Theorem 5.1 Let M be a Calabi–Yau manifold with holomorphic volume form ϒ .
Then Re(e−iθϒ) is a calibration for any θ ∈ R.

Since dϒ = 0, the result follows immediately from the following.

Theorem 5.2 OnCn, |ϒ(e1, . . . , en)| ≤ 1 for all unit vectors e1, . . . , en with equal-
ity if and only if P = Span{e1, . . . , en} is a Lagrangian plane, i.e. P is an n-plane
such that ω|P ≡ 0.

Proof Let e1, . . . , en be the standard basis for Rn and let P be an n-plane in C
n .

There exists A ∈ GL(n,C) so that f1 = Ae1, . . . , fn = Aen is an orthonormal basis
for P . Then ϒ(Ae1, . . . , Aen) = detC(A) so

|ϒ( f1, . . . , fn)|2 = | detC(A)|2
= | detR(A)|
= | f1 ∧ J f1 ∧ · · · ∧ fn ∧ J fn| ≤ | f1||J f1| · · · | fn||J fn| = 1

with equality if and only if f1, J f1, . . . , fn, J fn are orthonormal. However, this is
exactly equivalent to the Lagrangian condition, sinceω(u, v) = g(Ju, v) soω|P ≡ 0
if and only if J P = P⊥. �

Definition 5.3 A submanifold N of M calibrated by Re(e−iθϒ) is called special
Lagrangian with phase eiθ. If θ = 0 we say that N is simply special Lagrangian. By
Theorem 5.2, we see that N is special Lagrangian if and only if ω|N ≡ 0 (i.e. N is
Lagrangian) and Imϒ |N ≡ 0 (up to a choice of orientation so that Reϒ |N > 0).

Example ConsiderC = R
2 with coordinates z = x + iy, complex structure J given

by Jw = iw, Kähler form ω = dx ∧ dy = i
2dz ∧ dz and holomorphic volume form

ϒ = dz = dx + idy. We want to consider the special Lagrangians in C, which are
1-dimensional submanifolds or curves N in C = R

2.
Since ω is a 2-form, it vanishes on any curve in C. Hence every curve in C is

Lagrangian. For N to be special Lagrangian with phase eiθ we need that

Re(e−iθϒ) = cos θdx + sin θdy
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is the volume form on N , or equivalently that

Im(e−iθϒ) = cos θdy − sin θdx

vanishes on N . This means that cos θ∂x + sin θ∂y is everywhere a unit tangent vector
to N , so N is a straight line given by N = {(t cos θ, t sin θ) ∈ R

2 : t ∈ R} (up to
translation), so it makes an angle θ with the x-axis, hence motivating the term “phase
eiθ”.

Notice that this result is compatible with the fact that special Lagrangians are
minimal, and hence must be geodesics in R2; i.e. straight lines.

Example ConsiderC2 = R
4.Weknow thatω = dx1 ∧ dy1 + dx2 ∧ dy2. Sinceϒ =

dz1 ∧ dz2 = (dx1 + idy1) ∧ (dx2 + idy2), we also know that Reϒ = dx1 ∧ dx2 +
dy2 ∧ dy1, which looks somewhat similar. In fact, if we let J ′ denote the complex
structure given by J ′(∂x1) = ∂x2 and J ′(∂y2) = ∂y1 , then Reϒ = ω′, the Kähler form
corresponding to the complex structure J ′. Hence special Lagrangians in C

2 are
complex curves for a different complex structure.

In fact, we have a hyperkähler triple of complex structures J1, J2, J3, where J1 =
J is the standard one and J3 = J1 J2 = −J2 J1 so that J1 = J2 J3 = −J3 J2 and J2 =
J3 J1 = −J1 J3, and the corresponding Kähler forms are ω = ω1, ω2, ω3 which are
orthogonal and the same length with ϒ = ω2 + iω3.

This shows we should only consider complex dimension 3 and higher to find new
calibrated submanifolds.

Example Let f : Rn → R
n be a smooth function and let N = Graph( f ) ⊆ R

2n =
C

n . We want to see when N is special Lagrangian. We see that tangent vectors to N
are given by

e1 + i∇e1 f, . . . , en + i∇en f.

Hence N is Lagrangian if and only if

ω(e j + i∇e j f, ek + i∇ek f ) = ∇ek f j − ∇e j fk = 0

for all j, k. Since Rn is simply connected, this occurs if and only if there exists F
such that f j = ∇e j F ; i.e. f = ∇F .

Recall that ϒ = dz1 ∧ · · · ∧ dzn . We know that N is special Lagrangian if and
only if N is Lagrangian and Imϒ vanishes on N . Now

ϒ(a1 + ib1, . . . , an + ibn) = detC(A + i B)

where A, B are the matrices with columns ai , b j respectively. Hence

ϒ(e1 + i∇e1∇F, . . . , en + i∇en∇F) = detC(I + iHess F),

where Hess F = ( ∂2F
∂xi∂x j

).
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Therefore N = Graph( f ) is special Lagrangian (up to a choice of orientation) if
and only if f = ∇F and

Im detC(I + i Hess F) = 0.

If n = 2,

I + iHess F =
(
1 + i Fxx i Fxy

i Fyx 1 + i Fyy

)
.

Therefore, the determinant gives

1 − Fxx Fyy + F2
xy + i(Fxx + Fyy),

then the imaginary part is Fxx + Fyy . Therefore, N is special Lagrangian if and only
if �F = 0.

As we know, a graph in C
2 of f = u + iv : C → C is a complex surface if and

only if u + iv is holomorphic, which implies that u, v are harmonic. We know that
special Lagrangians in C2 are complex surfaces for a different complex structure, so
this is expected.

If n = 3,

I + iHess F =
⎛
⎝ 1 + i Fxx i Fxy i Fxz

i Fyx 1 + i Fyy i Fyz

i Fzx i Fzy 1 + i Fzz

⎞
⎠ .

Hence,

Im detC(I + i Hess F) = Fxx + Fyy + Fzz

− Fxx (Fyy Fzz−F2
yz) − Fxy(Fyz Fzx − Fxy Fzz)−Fzx (Fxy Fyz − Fyy Fzx ).

Therefore, N is special Lagrangian if and only if

−�F = Fxx + Fyy + Fzz

= Fxx (Fyy Fzz − F2
yz) − Fxy(Fxy Fzz − Fyz Fzx ) + Fzx (Fxy Fyz − Fyy Fzx )

= det Hess F.

We now wish to describe some very important examples of special Lagrangians,
which are asymptotic to pairs of planes.

Example SU(n) acts transitively on the space of special Lagrangian planes with
isotropy SO(n). So any special Lagrangian plane is given by A · Rn for A ∈ SU(n)

where Rn is the standard real Rn in Cn .
Given θ = (θ1, . . . , θn) we can define a plane

P(θ) = {(eiθ1x1, . . . , eiθn xn) ∈ C
n : (x1, . . . , xn) ∈ R

n}
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(where we can swap orientation). We see that P(θ) is special Lagrangian if and
only if Reϒ |P = ± cos(θ1 + · · · + θn) = 1 so that θ1 + · · · + θn ∈ πZ. Given any
θ1, . . . , θn ∈ (0,π) with θ1 + · · · + θn = π, there exists a special Lagrangian N
(called a Lawlor neck) asymptotic to P(0) ∪ P(θ): see, for example, [42, Example
8.3.15] or Sect. 9 for details. It is diffeomorphic toSn−1 × R. By rotating coordinates
we have a special Lagrangian with phase i asymptotic to P(− θ

2 ) ∪ P( θ
2 ).

The simplest case is when θ1 = · · · = θn = π
n : here N is called the Lagrangian

catenoid. When n = 2, under a coordinate change the Lagrangian catenoid becomes
the complex curve {(z, 1

z ) ∈ C
2 : z ∈ C \ {0}} that we saw before. When n = 3, the

only possibilities for the angles are
∑

i θi = π, 2π, but if
∑

i θi = 2π we can rotate
coordinates and change the order of the planes so that P(0) ∪ P(θ) becomes P(0) ∪
P(θ′) where

∑
i θ

′
i = π. Hence, given any pair of transverse special Lagrangian

planes in C3, there exists a Lawlor neck asymptotic to their union.

Remark Using complex geometry it is easy to classify all of the smooth special
Lagrangians in C

2 asymptotic to a pair of transverse planes, and one sees that the
Lawlor necks in C2 are the unique exact special Lagrangians with this property. It is
now known that the Lawlor necks are the unique smooth exact special Lagrangians
asymptotic to a pair of planes in all dimensions [25].

We can find special Lagrangians in Calabi–Yau manifolds using the following
easy result.

Proposition 5.4 Let (M,ω, ϒ) be a Calabi–Yau manifold and let σ : M → M be
such that σ2 = Id, σ∗(ω) = −ω, σ∗(ϒ) = ϒ . Then Fix(σ) is special Lagrangian, if
it is non-empty.

Example Let X = {[z0, . . . , z4] ∈ CP
4 : z50 + · · · + z54 = 0} (the Fermat quintic)

with its Calabi–Yau structure (which exists by Yau’s solution of the Calabi conjec-
ture since the first Chern class of X vanishes). Let σ be the restriction of complex
conjugation on CP

4 to X . Then the fixed point set of σ, which is the real locus in
X , is a special Lagrangian 3-fold (if it is non-empty). (There is a subtlety here: σ is
certainly an anti-holomorphic isometric involution for the induced metric on X , but
this is not the same as the Calabi–Yau metric on X . Nevertheless, it is the case that
σ satisfies the conditions of Proposition 5.4.)

Example There exists a Calabi–Yaumetric on T ∗Sn (the Stenzel metric [78]) so that
the base Sn is special Lagrangian: When n = 2 this is a hyperkähler metric called
the Eguchi–Hanson metric [11].

6 Constructing Calibrated Submanifolds

It is easy to construct complex submanifolds in Kähler manifolds algebraically. Con-
structing other calibrated submanifolds is much more challenging because one needs
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to solve a nonlinear PDE, even in Euclidean space. There are approaches in Euclidean
space and other simple spaces which have involved reducing the problem to ODEs
or other problems which do not require PDE (for example, algebraic methods). For
example, we have the following methods, which you can find out more about in [42]
or the references provided.

• Symmetries/evolution equations [17, 20, 21, 28, 30, 31, 33, 34, 39–41, 52, 54].
• Use of integrable systems to study calibrated cones [8, 9, 22, 43, 65].
• Calibrated cones and ruled smoothings of these cones [2, 4, 13, 14, 32, 52, 53,
59].

• Vector sub-bundle constructions [27, 45, 46].
• Classification of calibrated submanifolds satisfying pointwise constraints on their
second fundamental form [4, 12, 26, 59, 60].

However, an important direction which has borne fruit in calibrated geometry and
special holonomy recently has been to study the nonlinear PDE head on, especially
by perturbative and gluing methods.

We want to solve nonlinear PDE, so how do we tackle this? The idea is to use the
linear case to help. Suppose we are on a compact manifold N and recall the theory
of linear elliptic operators L of order l on N , including:

• the definition of ellipticity of L via the principal symbol σL (which encodes the
highest order derivatives in the operator) being an isomorphism;

• the use ofHölder spaces Ck,a to give elliptic regularity theory (so-called Schauder
theory), namely that if w ∈ Ck,a and Lv = w then v ∈ Ck+l,a and there is a uni-
versal constant C so that

‖v‖Ck+l,a ≤ C(‖Lv‖Ck,a + ‖v‖C0)

(and we can drop the ‖v‖C0 term if v is orthogonal to Ker L);
• the adjoint operator L∗ and that σL∗ = (−1)lσ∗

L so that L∗ is elliptic if and only if
L is elliptic; and

• the Fredholm theory of L , namely that Ker L (and hence Ker L∗) is finite-
dimensional, and we can solve Lv = w if and only if w ∈ (Ker L∗)⊥.

We shall discuss this in a model example which we shall use throughout this
section.

Example The Laplacian on functions is given by � f = d∗d f which in normal
coordinates at a point is given by f �→ −∑

i
∂2 f
∂x2i

, so it is a linear second order

differential operator. We see that its principal symbol is σ�(x, ξ) f = −|ξ|2 f which
is an isomorphism for ξ ∈ T ∗

x N \ {0}, so � is elliptic. We therefore have that if
h ∈ Ck,a(N ) and � f = h then f ∈ Ck+2,a(N ), and we have an estimate

‖ f ‖Ck+2,a ≤ C(‖� f ‖Ck,a + ‖ f ‖C0).
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We also know that �∗ = � and Ker� is given by the constant functions (since if
f ∈ Ker� then

0 = 〈 f,� f 〉L2 = 〈 f, d∗d f 〉L2 = ‖d f ‖2L2

so d f = 0). Hence, we can solve � f = h if and only if h is orthogonal to the
constants, i.e.

∫
N h volN = 0.

The operator defining the minimal graph equation for a hypersurface is

P( f ) = − div

(
∇ f√

1 + |∇ f |2
)

,

which is a nonlinear second order operator whose linearisation L0P at 0 is�. Thus P
is a nonlinear elliptic operator at 0. If we linearise P at f0 we find amore complicated
expression depending on f0, but it is still a perturbation of the Laplacian.

Suppose we are on a compact manifold N and we want to solve P( f ) = 0 where
P is the minimal graph operator on functions f . Let us consider regularity for f . We
can re-arrange P( f ) = 0 by taking all of the second derivatives to one side as:

R(x,∇ f (x))∇2 f (x) = E(x,∇ f (x))

where x ∈ N . Since L0P = � is elliptic and ellipticity is an open condition we know
that the operator L f (depending on f ) given by

L f (h)(x) = R(x,∇ f (x))∇2h(x)

is a linear elliptic operator whenever ‖∇ f ‖C0 is small, in particular if ‖ f ‖C1,a is
sufficiently small. The operator L f does not have smooth coefficients, but if f ∈ Ck,a

then the coefficients R ∈ Ck−1,a .
Suppose that f ∈ C1,a and ‖ f ‖C1,a is small with P( f ) = 0. Then L f ( f ) = E( f )

and L f is a linear second order elliptic operator with coefficients in C0,a and E( f )
is in C0,a . So by elliptic regularity we can deduce that f ∈ C2,a . We have gained
one degree of regularity, so we can “bootstrap”, i.e. proceed by induction and deduce
that any C1,a solution to P( f ) = 0 is smooth.

Example C1,a-minimal submanifolds (and thus calibrated submanifolds) are
smooth.

Remark More sophisticated techniques can be used to deduce that C1-minimal
submanifolds are real analytic [69]. Notice that elliptic regularity results are not
valid for Ck spaces, so this result is not obvious.

We can also arrange our simple equation P( f ) = 0 as � f + Q(∇ f,∇2 f ) = 0,
where Q is nonlinear but linear in ∇2 f . If we know that

∫
N P( f ) volN = 0, i.e. that

P( f ) is orthogonal to the constants, thenwe can always solve� f0 = −Q(∇ f,∇2 f ).
We do know that

∫
N P( f ) volN = 0 since P has a divergence form. This means we
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are in the setting for implementing the Implicit Function Theorem for Banach spaces
to conclude that we can always solve P( f ) = 0 for some f near 0, and f will be
smooth by our regularity argument above. In general, we will use the following.

Theorem 6.1 (Implicit Function Theorem) Let X,Y be Banach spaces, let U � 0
be open in X, let P : U → Y with P(0) = 0 and L0P : X → Y surjective with
finite-dimensional kernel K .

Then for some U, P−1(0) = {u ∈ U : P(u) = 0} is a manifold of dimension
dim K. Moreover, if we write X = K ⊕ Z, P−1(0) = GraphG for some map G
from an open set in K to Z with G(0) = 0.

This gives us away to describe all perturbations of a given calibrated submanifold,
as we now see in the special Lagrangian case, due to McLean [66].

Theorem 6.2 Let N be a compact special Lagrangian in a Calabi–Yau manifold
M. Then the moduli space of deformations of N is a smooth manifold of dimension
b1(N ).

Remark One should compare this result to the deformation theory for complex
submanifolds in Kähler manifolds. There, one does not get that the moduli space is a
smoothmanifold: in fact, it can be singular, and one has obstructions to deformations.
It is somewhat remarkable that special Lagrangian calibrated geometry enjoys amuch
better deformation theory than this classical calibrated geometry. The deformation
theory of embedded compact complex submanifolds in Calabi–Yau manifolds has
recently been revisited using analytic techniques [67].

Proof The tubular neighbourhood theorem gives us a diffeomorphism exp : S ⊆
ν(N ) → T ⊆ M which maps the zero section to N ; in other words, we can write
any nearby submanifold to N as the graph of a normal vector field on N . We know
that N is Lagrangian, so the complex structure J gives an isomorphism between
ν(N ) and T N and the metric gives an isomorphism between T N and T ∗N : v �→
g(Jv, .) = ω(v, .) = αv . Therefore any deformation of N in T is given as the graph
of a 1-form. In fact, using the Lagrangian neighbourhood theorem, we can arrange
that any N ′ ∈ T is the graph of a 1-form α, so that if fα : N → Nα is the natural
diffeomorphism then

f ∗
α (ω) = dα and − ∗ f ∗

α (Imϒ) = F(α,∇α) = d∗α + Q(α,∇α),

where the second formula follows from a calculation using the special Lagrangian
condition on N and the fact that the ambient structure is Calabi–Yau. Hence, Nα

is special Lagrangian if and only if P(α) = (F(α,∇α), dα) = 0. This means that
infinitesimal special Lagrangian deformations are given by closed and coclosed 1-
forms, which is the kernel of L0P .

Since Imϒ = 0 on N wehave that [Imϒ] = 0 on Nα,whichmeans that f ∗
α (Imϒ)

is exact. Thus F(α,∇α) = − ∗ f ∗
α (Imϒ) is coexact and so

P : C∞(S) → d∗(C∞(T ∗N )) ⊕ d(C∞(T ∗N )) ⊆ C∞(�0T ∗N ⊕ �2T ∗N ).
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If we let X = C1,a(T ∗N ), Y = d∗(C1,a(T ∗N )) ⊕ d(C1,a(T ∗N )) and U = C1,a(S)

we can apply the Implicit Function Theorem if we know that

L0P : α ∈ X �→ (d∗α, dα) ∈ Y

is surjective, i.e. given dβ + d∗γ ∈ Y does there exist α such that dα = dβ and
d∗α = d∗γ? If we let α = β + d f then we need � f = d∗d f = d∗(γ − β). Since

∫
N
d∗(γ − β) volN = ±

∫
N
d ∗ (γ − β) = 0

we can solve the equation for f , and hence L0P is surjective.
Therefore P−1(0) is a manifold of dimension dimKer L0P = b1(N ) by Hodge

theory. Moreover, if P(α) = 0 then Nα is special Lagrangian, hence minimal and
since α ∈ C1,a we deduce that α is in fact smooth. �

Example The special Lagrangian Sn in T ∗Sn has b1 = 0 and so is rigid.

Observe that if we have a special Lagrangian T n in M then b1(T n) = n and, if
the torus is close to flat then its deformations locally foliate M (as there will be n
nowhere vanishing harmonic 1-forms), so we can hope to find special Lagrangian
torus fibrations. This cannot happen in compact manifolds without singular fibres,
but still motivates the SYZ conjecture in Mirror Symmetry. The deformation result
also motivates the following theorem [3].

Theorem 6.3 Every compact oriented real analytic Riemannian 3-manifold can be
isometrically embedded in a Calabi–Yau 3-fold as the fixed point set of an involution.

Remark Theorem 6.2 has also been extended to certain non-compact, singular and
boundary settings, for example in [6, 36, 72].

Another well-known way to get a solution of a linear PDE from two solutions
is simply to add them. However, for a nonlinear PDE P(v) = 0 this will not work.
Intuitively, we can try to add two solutions to give us a solution v0 for which P(v0)

is small. Then we may try to perturb v0 by v to solve P(v + v0) = 0.
Geometrically, this occurs when we have two calibrated submanifolds N1, N2 and

then glue them together to give a submanifold N which is “almost” calibrated, then
we deform N to become calibrated. If the two submanifolds N1, N2 are glued using
a very long neck then one can imagine that N is almost the disjoint union of N1, N2

and so close to being calibrated. If instead one scales N2 by a factor t and then glues
it into a singular point of N1, we can again imagine that as t becomes very small
N resembles N1 and so again is close to being calibrated. These two examples are
in fact related, because if we rescale the shrinking N2 to fixed size, then we get a
long neck between N1 and N2 of length of order − log t . However, although these
pictures are appealing, they also reveal the difficulty in this approach: as t becomes
small, N becomes more “degenerate”, giving rise to analytic difficulties which are
encoded in the geometry of N1, N2 and N .
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These ideas are used extensively in geometry, and particularly successfully in
calibrated geometry e.g. [7, 23, 35, 37, 38, 51, 57, 62, 73]. A particular simple case
is the following, which we will describe to show the basic idea of the gluing method.

Theorem 6.4 Let N be a compact connected 3-manifold and let i : N → M be a
special Lagrangian immersion with transverse self-intersection points in a Calabi–
Yau manifold M. Then there exist embedded special Lagrangians Nt such that Nt →
N as t → 0.

Remark One might ask about the sense of convergence here: for definiteness, we
can say that Nt converges to N in the sense of currents; that is, if we have any
compactly supported 3-form χ on M then

∫
Nt

χ → ∫
N χ as t → 0. However, all

sensible notions of convergence of submanifolds will be true in this setting.

Proof Here we only provide a sketch of the proof: see, for example, [35, Sect. 9] for
a detailed proof.

At each self-intersection point of N the tangent spaces are a pair of transverse 3-
planes, which we can view as a pair of tranverse special Lagrangian 3-planes P1, P2
in C3. Since we are in dimension 3, we know that there exists a (unique up to scale)
special Lagrangian Lawlor neck L asymptotic to P1 ∪ P2. We can then glue t L into
N near each intersection point to get a compact embedded submanifold St = N#t L
(if we glue in a Lawlor neck for every self-intersection point). We can also arrange
that St is Lagrangian, i.e. that it is a Lagrangian connect sum.

Now we want to perturb St to be special Lagrangian. Since St is Lagrangian, by
the deformation theory we canwrite any nearby submanifold as the graph of a 1-form
α, and this graph will be special Lagrangian if and only if (using the same notation
as in our deformation theory discussion)

Pt (α) = (− ∗ f ∗
α (Imϒ), f ∗

α (ω)) = 0.

Since St is Lagrangian but not special Lagrangian we have that

f ∗
α (ω) = dα and − ∗ f ∗

α (Imϒ) = Pt (0) + d∗
t α + Qt (α,∇α)

where Pt (0) = − ∗ Imϒ |St and d∗
t = L0Pt , which is a perturbation of the usual d∗

since we are no longer linearising at a point where Pt (0) = 0. By choosing α = d f ,
we then have to solve

�t f = −Pt (0) − Qt (∇ f,∇2 f )

where �t is a perturbation of the Laplacian.
For simplicity, let us suppose that �t is the Laplacian on St . The idea is to view

our equation as a fixed point problem. We know that if we let Xk = { f ∈ Ck,a(N ) :∫
N f volN = 0} then�t : Xk+2 → Xk is an isomorphism so it has an inverseGt . We

know by our elliptic regularity result that there exists a constant C(�t ) such that
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‖ f ‖Ck+2,a ≤ C(�t )‖�t f ‖Ck,a ⇔ ‖Gth‖Ck+2,a ≤ C(�t )‖h‖Ck,a

for any f ∈ Xk+2, h ∈ Xk .
We thus see that Pt ( f ) = 0 for f ∈ Xk+2 if and only if

f = Gt (−Pt (0) − Qt ( f )) = Ft ( f ).

The idea is now to show that Ft is a contraction sufficiently near 0 for all t small
enough. Then it will have a (unique) fixed point near 0, which will also be smooth
because it satisfies Pt ( f ) = 0 and hence defines a special Lagrangian as the graph
of d f over St .

We know that Ft : Xk+2 → Xk+2 with

‖Ft ( f1) − Ft ( f2)‖Ck+2,a = ‖Gt (Qt ( f1) − Qt ( f2))‖Ck+2,a ≤ C(�t )‖Qt ( f1) − Qt ( f2)‖Ck,a .

Since Qt and its first derivatives vanish at 0 we know that

‖Qt ( f1) − Qt ( f2)‖Ck,a ≤ C(Qt )‖ f1 − f2‖Ck+2,a (‖ f1‖Ck+2,a + ‖ f2‖Ck+2,a ).

We deduce that

‖Ft ( f1) − Ft ( f2)‖Ck+2,a ≤ C(�t )C(Qt )‖ f1 − f2‖Ck+2,a (‖ f1‖Ck+2,a + ‖ f2‖Ck+2,a )

and
‖Ft (0)‖Ck+2,a = ‖Gt (Pt (0))‖Ck+2,a ≤ C(�t )‖Pt (0)‖Ck,a .

Hence, Ft is a contraction on Bεt (0) ⊆ Xk+2 if we can choose εt so that

2C(�t )‖Pt (0)‖Ck,a ≤ εt ≤ 1

4C(�t )C(Qt )
.

(This also proves Theorem 6.2, where we used the Implicit Function Theorem, by
hand since there Pt (0) = P(0) = 0 so we just need to take εt small enough.) In other
words, we need that

• Pt (0) is small, so St is “close” to being calibrated and is a good approximation to
Pt ( f ) = 0;

• C(�t ),C(Qt ), which are determined by the linear PDE and geometry of N , L
and St , are well-controlled as t → 0.

The statement of the theorem is then that there exists t sufficiently small and εt so
that the contraction mapping argument works.

This is a delicate balancing act since as t → 0 parts of the manifold are collaps-
ing, so the constants C(�t ),C(Qt ) above (which depend on t) can and typically do
blow-up as t → 0. To control this, we need to understand the Laplacian on N , L
and St and introduce “weighted” Banach spaces so that t L gets rescaled to constant



Calibrated Submanifolds 87

size (independent of t), and St resembles the union of two manifolds with a cylin-
drical neck (as we described earlier). It is also crucial to understand the relationship
between the kernels and cokernels of the Laplacian on the non-compact N (with
the intersection points removed), L and compact St : here is where connectedness is
important so that the kernel and cokernel of the Laplacian is 1-dimensional. �
Remark In more challenging gluing problems it is not possible to show that the
relevant map is a contraction, but rather one can instead appeal to an alternative
theorem (e.g. Schauder fixed point theorem) to show that it still has a fixed point.

7 Associative and Coassociative Submanifolds

We now want to introduce our calibrated geometry associated with G2 holonomy.
The first key result is the following.

Theorem 7.1 Let (M7,ϕ) be a G2 manifold (so ϕ is a closed and coclosed positive
3-form). Then ϕ and ∗ϕ are calibrations.

Proof Let u, v, w be oriented orthonormal vectors in R7. There exists an element A
of G2 so that Au = e1. The subgroup of G2 fixing e1 is isomorphic to SU(3), and we
know from the proof of Wirtinger’s inequality (Theorem 4.2) there exists a (special)
unitary transformation so that v = e2 and w = cos θe3 + sin θv for some θ and v

orthogonal to e1, e2, e3. Since ϕ(e1, e2, .) = dx3 by the formula below, we see that
ϕ(u, v, w) = cos θ. Hence, since ϕ is closed, ϕ is a calibration and the calibrated
planes are given by A.Span{e1, e2, e3} for A ∈ G2.

By Lemma 4.3, ∗ϕ is also a calibration. �
Let us look at the calibrated planes and start with ϕ, which we take to be the

following on R
7:

ϕ = dx123 + dx145 + dx167 + dx246 − dx257 − dx347 − dx356,

where we use the short-hand notation dxi j ...k = dxi ∧ dx j ∧ · · · ∧ dxk . Hence, ∗ϕ
on R7 is given by:

∗ϕ = dx4567 + dx2367 + dx2345 + dx1357 − dx1346 − dx1256 − dx1247.

If u, v, w are unit vectors in R
7 ∼= ImO (the imaginary octonions), then

ϕ(u, v, w) = 〈u × v,w〉 = 1 if and only if w = u × v, so P = Span{u, v, w} is a
copy of ImH in ImO; in other words, Span{1, u, v, w} is an associative subalgebra
of O. Moreover, suppose we define a vector-valued 3-form χ on R

7 by

χ(u, v, w) = [u, v, w] = u(vw) − (uv)w,

known as the associator. Then we observe the following.
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Lemma 7.2 A 3-plane P in R
7 satisfies χ|P ≡ 0 if and only if P admits an orien-

tation so that it is calibrated by ϕ.

Proof Since the associator is clearly invariant under G2 we can put any plane P
in standard position using G2, i.e. as in the proof of Theorem 7.1, we can write
P = Span{e1, e2, cos θe3 + sin θv} for some v orthogonal to e1, e2, e3. We can cal-
culate that [e1, e2, e3] = 0 whereas [e1, e2, v] �= 0 for any v orthogonal to e1, e2, e3.
Moreover, P is calibrated by ϕ if and only if θ = 0. We thus see that P is calibrated
by ϕ (up to a choice a orientation) if and only if χ|P ≡ 0. �

Hence we call the ϕ-calibrated planes associative. In general on a G2 manifold
we can define a 3-form χ with values in T M using the pointwise formula above.

For ∗ϕwe see that ∗ϕ|P = volP for a plane P if and only ifϕ|P⊥ = volP⊥ . Hence
the planes calibrated by ∗ϕ are the orthogonal complements of the associative planes,
so we call them coassociative. We have a similar alternative characterisation for 4-
planes calibrated by ∗ϕ.

Lemma 7.3 A 4-plane P in R
7 satisfies ϕ|P ≡ 0 if and only if P admits an orien-

tation so that it is calibrated by ∗ϕ.

Proof We know that given a 4-plane P we can choose coordinates such that P⊥ =
Span{e1, e2, cos θe3 + sin θ(a4e4 + a5e5 + a6e6 + a7e7)} where ∑

j a
2
j = 1. Then

P = Span{ − sin θe3 + cos θ(a j e j ), a5e4 − a4e5 + a7e6 − a6e7,

a6e4 − a7e5 − a4e6 + a5e7, a7e4 + a6e5 − a5e6 − a4e7}.

We can then see directly that ∗ϕ|P = cos θ. We also have ϕ(ei , e j , ek) = 0 for
i, j, k ∈ {4, 5, 6, 7} and e3�ϕ = −dx47 − dx56, so that ϕ(− sin θe3 + cos θ(a j e j ),
v,w) is a non-zero multiple of sin θ for some v,w ∈ P . Hence ϕ|P = 0 if and only
if θ = 0, which is if and only if P is calibrated by ∗ϕ (again up to a choice of
orientation). �

We thus can define our calibrated submanifolds.

Definition 7.4 Submanifolds in (M7,ϕ) calibrated by ϕ are called associative 3-
folds.Moreover, N is associative if and only ifχ|N ≡ 0 (up to a choice of orientation).

Submanifolds in (M7,ϕ) calibrated by ∗ϕ are called coassociative 4-folds.More-
over, N is coassociative if and only if ϕ|N ≡ 0 (up to a choice of orientation).

It is instructive to see the form that the associative or coassociative condition takes
by studying associative or coassociative graphs in R7: see [20] for details.

A simpleway to get associative and coassociative submanifolds is by using known
geometries.

Proposition 7.5 Let x1, . . . , x7 be coordinates on R
7 and let z j = x2 j + i x2 j+1 be

coordinates on C
3 so that R7 = R × C

3.
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(a) N = R × S ⊆ R × C
3 is associative or coassociative if and only if S is a com-

plex curve or a special Lagrangian 3-fold with phase −i , respectively.
(b) N ⊆ {0} × C

3 is associative or coassociative if and only if N is a special
Lagrangian 3-fold or a complex surface, respectively.

Proof Recall the Kähler form ω and holomorphic volume form ϒ on C
3. We can

write

ϕ = dx1 ∧ ω + Reϒ and ∗ ϕ = 1

2
ω2 − dx1 ∧ Imϒ.

For associatives,we see thatϕ|R×S = dx1 ∧ volS if and only ifω|S = volS andϕ|N =
Reϒ |N for N ⊆ C

3. For coassociatives, we see that ∗ϕ|R×S = dx1 ∧ volS if and only
if − Imϒ |S = volS and ∗ϕ|N = 1

2ω
2|N for N ⊆ C

3. The results quickly follow. �

We can also produce examples in G2 manifolds with an isometric involution.

Proposition 7.6 Let (M,ϕ) be a G2 manifold with an isometric involution σ �= id
such that σ∗ϕ = ϕ or σ∗ϕ = −ϕ. Then Fix(σ) is an associative or coassociative
submanifold in M respectively, if it is non-empty.

We also have explicit examples of associatives and coassociatives.

Example The first explicit examples of associatives in R
7 not arising from other

geometries are given in [52] from symmetry and evolution equation considerations.
The first explicit non-trivial examples of coassociatives in R

7 are given in [20].
There are two dilation families: one which has one end asymptotic to a cone C
on a non-round S3, and one which has two ends asymptotic to C ∪ R

4. The cone
C was discovered earlier by Lawson–Osserman [50] and was a key example of a
volume-minimizing submanifold which is not smooth (it is Lipschitz but not C1).

Example In the Bryant–Salamon holonomy G2 metric on the spinor bundle of S3

[5], the base S3 is associative. In the Bryant–Salamon holonomy G2 metrics on
�2+T ∗S4 and �2+T ∗

CP
2 [5], the bases S4 and CP

2 are coassociative.

We nowwant to understand deformations of associatives and coassociatives, from
which perturbation or gluing results will follow. We begin with associatives.

Notice that if P is an associative plane, u ∈ P and v ∈ P⊥ then u × v ∈ P⊥
since ϕ(w, u, v) = g(w, u × v) = g(v,w × u) = 0 for all w ∈ P since w × u ∈
P . Thus, if N is associative, cross product gives a (Clifford) multiplication m :
C∞(T ∗N ⊗ ν(N )) → C∞(ν(N )) (viewing tangent vectors as cotangent vectors via
the metric). Hence, using the normal connection ∇⊥ : C∞(ν(N )) → C∞(T ∗N ⊗
ν(N )) on ν(N ) we get a linear operator

/D = m ◦ ∇⊥ : C∞(ν(N )) → C∞(ν(N )).

We call /D the Dirac operator. We see that its principal symbol is given by
σ /D(x, ξ)v = iξ × v, so /D is elliptic, and we also have that /D∗ = /D.
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Remark Since a 3-manifold is always spin, we have a spinor bundle S on N , a
connection ∇ : C∞(S) → C∞(T ∗M ⊗ S) (a lift of the Levi-Civita connection) and
we have Clifford multiplication m : C∞(T ∗M ⊗ S) → C∞(S) given by m(ξ, v) =
ξ · v. Hence we have a composition /D = m ◦ ∇ : C∞(S) → C∞(S), which is a first
order linear differential operator called the Dirac operator. Locally it is given by
/Dv = ∑

i ei · ∇ei v, so we have that σ /D(ξ, v) = iξ · v. Hence /D is elliptic. Moreover
/D is self-adjoint.
In fact, it is possible (see e.g. [66]) to see that the complexified normal bundle

ν(N ) ⊗ C = S ⊗ V for a C2-bundle V over N , so that the Dirac operator on ν(N )

is just a “twist” of the usual Dirac operator on S.

Consider a compact associative N . We want to describe the associative deforma-
tions of N , just as in the case of special Lagrangians above. To be consistent with
that previous setting, we will now use P to denote a nonlinear deformation map: we
trust that this will not cause confusion given the context.

We know that expv(N ) = Nv , which is the graph of v, is associative for a normal
vector field v if and only if ∗ exp∗

v(χ) ∈ C∞(T M |N ) is 0. In fact, it turns out that
P(v) = ∗ exp∗

v(χ) ∈ C∞(ν(N )) since N is associative and

L0P(v) = ∗d(v�χ) = /Dv.

Here L0P is not typically surjective so we cannot apply our Implicit Function The-
orem, except when Ker /D = Ker /D∗ = {0}. However, we can still say something
in these circumstances, for which we make a small digression to a more general
situation.

Suppose X,Y are Banach spaces. Let U ⊆ X be an open set with 0 ∈ U and let
P : U → Y be a smooth map with P(0) = 0 such that L0P : X → Y is Fredholm.

Let I = Ker L0P and let O be such that Y = L0P(X) ⊕ O, which exists and is
finite-dimensional by the assumption that L0P is Fredholm.We then let Z = X ⊕ O
and define F : U ⊕ O → Y by F(u, y) = P(u) + y. We see that L0F : X ⊕ O →
Y = L0P(X) ⊕ O is given by L0F(x, y) = L0P(x) + y which is surjective and
L0F(x, y) = 0 if and only if L0P(x) = 0 and y = 0, thus Ker L0F = Ker L0P ×
{0}.

There exists W ⊆ X such that Ker L0P ⊕ W = X . Applying the Implicit Func-
tion Theorem, there exist open setsU1 ⊆ Ker L0P containing 0,U2 ⊆ W containing
0 and U3 ⊆ O containing 0 and smooth maps G2 : U1 → U2, G3 : U1 → U3 such
that

F−1(0) ∩U1 ×U2 ×U3 = {(u,G2(u),G3(u)) : u ∈ U1}.

We also know that P(x) = 0 if and only if F(x, y) = 0 and y = 0. Hence

P−1(0) ∩U1 ×U2 = {(u,G2(u)) : u ∈ G−1
3 (0)}.

Let U = U1 and define π : U → O by π(u) = G3(u). Then P−1(0) ∩U1 ×U2 is a
graph over π−1(0), and hence P−1(0) is locally homeomorphic to π−1(0).
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Sard’s Theorem says that generically π−1(y) is a smooth manifold of dimen-
sion dim I − dimO = dimKer L0P − dim Coker L0P , which is the index of L0P .
Hence, the expected dimension of P−1(0) is the index of L0P .

In the associative setting we have that the linearisation is /D, which is elliptic
and thus Fredholm, and we know that index /D = dimKer /D − dimKer /D∗ = 0. We
deduce the following [66].

Theorem 7.7 The expected dimension of the moduli space of deformations of a
compact associative 3-fold N in a G2 manifold is 0 and infinitesimal deformations
of N are given by the kernel of /D on ν(N ). Moreover, ifKer /D = {0} then N is rigid.

Remark The dimension of the kernel of /D typically depends on the metric on N
rather than just the topology, so it is usually difficult to determine. However, there
are some cases where one can ensure the moduli space is smooth cf. [15].

Example For the associative N = S3 in S(S3), ν(N ) = S(S3) so /D is just the usual
Dirac operator. A theorem of Lichnerowicz states that Ker /D = {0} asS3 has positive
scalar curvature so N is rigid.

Example Corti–Haskins–Nordström–Pacini construct rigid associative S1 × S2s in
compact holonomy G2 twisted connected sums [10].

For coassociatives, the deformation theory is much better behaved, like for special
Lagrangians [66].

Theorem 7.8 Let N be a compact coassociative in a G2 manifold (or just a
7-manifold with closed G2 structure). The moduli space of deformations of N is
a smooth manifold of dimension b2+(N ).

Proof Since N is coassociative the map v �→ v�ϕ = αv defines an isomorphism
from ν(N ) to a rank 3 vector bundle on N , which is �2+T ∗N , the 2-forms on N
which are self-dual (so ∗α = α). We can therefore view nearby submanifolds to N
as graphs of self-dual 2-forms.

We know that Nv = expv(N ) is coassociative if and only if exp∗
v(ϕ) = 0. We see

that
d

dt
exp∗

tv(ϕ)|t=0 = Lvϕ = d(v�ϕ) = dαv.

Hence nearby coassociatives N ′ to N are given by the zeros of P(α) =
dα + Q(α,∇α). Moreover, since ϕ = 0 on N , [ϕ] = 0 on N ′ and hence P :
C∞(�2+T ∗N ) → d(C∞(�2T ∗N )).

Here P is not elliptic, but L0P = d has finite-dimensional kernel, the closed
self-dual 2-forms, since dα = 0 implies that d∗α = − ∗ d ∗ α = 0 so α is har-
monic. Moreover, L0P has injective symbol so it is overdetermined elliptic, which
means that elliptic regularity still holds. Another way to deal with this is to consider
F(α,β) = P(α) + d∗β for β a 4-form. Now F−1(0) is the disjoint union of P−1(0)
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and multiples of the volume form, as exact and coexact forms are orthogonal. More-
over, L0F(α,β) = dα + d∗β is now elliptic. Overall, we can apply our standard
Implicit Function Theorem if we know that

d(Ck+1,a(�2
+T

∗N )) = d(Ck+1,a(�2T ∗N )).

This is true because by Hodge theory if α is a 2-form, we can write α = d∗β + γ for
a 3-form β and a closed form γ, so dα = dd∗β = d(d∗β + ∗d∗β) and d∗β + ∗d∗β
is self-dual. �

Example The S4 and CP
2 in the Bryant–Salamon metrics on �2+T ∗S4 and

�2+T ∗
CP

2 have b2+ = 0 and so are rigid.

For a K3 surface and T 4 we have b2+ = 3 and �2+ is trivial, so we can hope
to find coassociative K3 and T 4 fibrations of compact G2 manifolds. There is a
programme [47] for constructing a coassociative K3 fibration (with singular fibres).
Towards completing this programme, the first examples of compact coassociative
4-folds with conical singularities in compact holonomy G2 twisted connected sums
were constructed in [61].

Again, we have a similar isometric embedding result for coassociative 4-folds,
motivated by the deformation theory result [3].

Theorem 7.9 Any compact oriented real analytic Riemannian 4-manifold whose
bundle of self-dual 2-forms is trivial can be isometrically embedded in aG2 manifold
as the fixed points of an isometric involution.

Remark The deformation theory results for compact associative and coassociative
submanifolds have been extended to certain non-compact, singular and boundary
settings, for example in [16, 44, 48, 55, 56, 58].

8 Cayley Submanifolds

We now discuss our final class of calibrated submanifolds.

Theorem 8.1 On a Spin(7) manifold (M8,�) (so � is a closed admissible form),
� is a calibration.

Proof Let P be a plane in R
8 ∼= C

4. Since SU(4) ⊆ Spin(7), by the proof of
Wirtinger’s inequality (Theorem 4.2), we can choose A ∈ Spin(7) so that A(P)

is spanned by
{e1, cos θ1e2 + sin θ1e3, e5, cos θ2e6 + sin θ2e7}.

We take the standard Spin(7) form � on R
8 to be:
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� = dx1234 + dx1256 + dx1278 + dx1357 − dx1367 − dx1458 − dx1467
+ dx5678 + dx3478 + dx3456 + dx2468 − dx2457 − dx2367 − dx2358,

again using the notation dxi j ...k = dxi ∧ dx j ∧ · · · ∧ dxk . Then �|P =
(cos θ1 cos θ2 + sin θ1 sin θ2) volP = cos(θ1 − θ2) volP . Hence � is a calibration as
it is closed. �

We can thus define our calibrated submanifolds in Spin(7) manifolds.

Definition 8.2 Submanifolds in (M8,�) calibrated by � are called Cayley 4-folds.

Remark The name Cayley submanifolds is because of the relation between the
submanifolds and the octonions or Cayley numbers O.

We can relate Cayley submanifolds to all of the other calibrated geometries we
have seen.

Proposition 8.3 (a) Complex surfaces and special Lagrangian 4-folds in C
4 are

Cayley in R8 = C
4.

(b) Write R8 = R × R
7. Then R × S is Cayley if and only if S is associative in R

7

and N ⊆ R
7 is Cayley in R8 if and only if N is coassociative in R7.

Proof Recall the Kähler form ω and holomorphic volume form ϒ on C4 and the G2

3-form ϕ on R
7.

Part (a) is immediate from the formula� = 1
2ω

2 + Reϒ , since complex surfaces
are calibrated by 1

2ω
2, special Lagrangians are calibrated by Reϒ , ϒ vanishes on

complex surfaces and ω vanishes on special Lagrangians.
Part (b) follows immediately from the formula � = dx1 ∧ ϕ + ∗ϕ. �

We can also use an isometric involution to construct Cayley submanifolds as in
our previous calibrated geometries.

Proposition 8.4 Let (M,�) be a Spin(7) manifold and let σ �= id be an isometric
involution with σ∗� = �. Then Fix(σ) is Cayley submanifold, if it is non-empty.

Example The first interesting explicit examples of Cayleys in R
8 not arising from

other geometries were given in [53] and are asymptotic to cones.

Example The base S4 in the Bryant–Salamon holonomy Spin(7) metric on S+(S4)

[5] is Cayley.

We now discuss deformations of a compact Cayley N , for which we need some
discussion of algebra related to Spin(7). Since�2(R8)∗ is 28-dimensional and the 21-
dimensional Lie algebra of Spin(7) sits inside the space of 2-forms, we must have a
distinguished 7-dimensional subspace�2

7 of 2-forms onR8. Sowhat is this subspace?
Let u, v ∈ R

8. Then we can construct a 2-form u ∧ v, viewing u, v as cotangent
vectors. We can also construct a 2-form from u, v by considering �(u, v, ., .). It is
then true that
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�2
7 = {u ∧ v + �(u, v, ., .) : u, v ∈ R

8}.

When P is a Cayley plane and u, v ∈ P are orthogonal we see that �(u, v, ., .) =
∗P(u ∧ v) so that u ∧ v + �(u, v, ., .) is self-dual on P . Since �2+P∗ is 3-
dimensional, we see that there must be a 4-dimensional space E of 2-forms on
P such that �2

7|P = �2+P∗ ⊕ E . Moreover, if u ∈ P and v ∈ P⊥ then m(u, v) =
u ∧ v + �(u, v, ., .) ∈ E and the map m : P × P⊥ → E is surjective.

Now let us move to a Cayley submanifold N in a Spin(7)manifold (M,�). On M
we have a rank 7 bundle �2

7 of 2-forms and we have that �2
7|N = �2+T ∗N ⊕ E for

some rank 4 bundle E over N . The map m above defines a (Clifford) multiplication
m : C∞(T ∗N ⊗ ν(N )) → C∞(E) (viewing tangent vectors as cotangent vectors via
the metric), and thus using the normal connection ∇⊥ : C∞(ν(N )) → C∞(T ∗N ⊗
ν(N )) we get a linear first order differential operator

/D+ = m ◦ ∇⊥ : C∞(ν(N )) → C∞(E).

Again this is an elliptic operator called the positive Dirac operator, but it is not
self-adjoint: its adjoint is the negative Dirac operator from E to ν(N ).

Remark If N is spin, the spinor bundleS splits asS+ ⊕ S−, and theDirac operator /D
splits into /D± from S± to S∓ so that /D(v+, v−) = ( /D−v−, /D+v+). Hence /D∗ = /D
says that /D∗

± = /D∓.
It turns out (see, for example, [66]) that there exists a C2-bundle V on N so that

ν(N ) ⊗ C = S+ ⊗ V , E ⊗ C = S− ⊗ V and /D+ on ν(N ) is a “twist” of the usual
positive Dirac operator. However, not every 4-manifold is spin, so we cannot always
make this identification.

On O there exists a 4-fold cross product, whose real part gives � and whose
imaginary part we call τ . Perhaps unsurprisingly, we have the following result, which
we will leave as an exercise for the reader.

Lemma 8.5 A4-plane P inR8 satisfies τ |P ≡ 0 if and only if it admits an orientation
so that it is calibrated by �.

We can extend τ to a Spin(7)manifold, except that we need a rank 7 vector bundle
on M in which τ takes values: we have one, namely �2

7. So we have the following
alternative characterisation of Cayley 4-folds.

Lemma 8.6 A submanifold N in a Spin(7) manifold is Cayley (up to a choice of
orientation) if and only if τ ∈ C∞(�4T ∗M;�2

7) vanishes on N.

Now suppose that N is a compact Cayley 4-fold. Then the zeros of the equation
F(v) = ∗ exp∗

v(τ ) for v ∈ C∞(ν(N )) define Cayley deformations (as the graph of
v). We know that F takes values in �2

7|N = �2+T ∗N ⊕ E and it turns out that

L0F(v) = ∗d(v�τ ) = /D+v



Calibrated Submanifolds 95

since N is Cayley. So, we potentially have a problem because F does not necessarily
take values only in E (and in general it will not just take values in E). However, the
Cayley condition on N means that F(v) = 0 if and only P(v) = πE F(v) = 0, where
πE is the projection onto E (again,we are using P to denote the nonlinear deformation
map as in our previous discussion, andwe expect it will not cause confusion given the
context). Then the operator P : C∞(ν(N )) → C∞(E) and L0P = /D+ is elliptic.

Again, we cannot say that L0P is surjective, so we have the following using the
same argument as in the lead up to Theorem 7.7, cf. [66].

Theorem 8.7 The expected dimension of themoduli space of deformations of a com-
pact Cayley 4-fold N in a Spin(7)manifold is ind /D+ = dimKer /D+ − dimKer /D∗

+
with infinitesimal deformations given by Ker /D+ on ν(N ). Moreover,

ind /D+ = 1

2
σ(N ) + 1

2
χ(N ) − [N ].[N ], (1)

where σ(N ) = b2+(N ) − b2−(N ) (the signature of N), χ(N ) = 2b0(N ) − 2b1(N ) +
b2(N ) (the Euler characteristic of N) and [N ].[N ] is the self-intersection of N ,
which is the Euler number of ν(N ).

Example For the Cayley N = S4 in S+(S4), ν(N ) = S+(S4) and /D+ is the usual
positive Dirac operator. Again, since N has positive scalar curvature, we see that
Ker /D± = {0} so N is rigid.

Remark Theorem 8.7 has been extended to various other non-compact, singular
and boundary settings, for example in [68, 70, 71].

9 The Angle Theorem

To conclude these notes, we now discuss a very natural and elementary problem in
Euclidean geometry where calibrations play a major, and perhaps unexpected, role.

If one takes two lines in R
2 intersecting transversely, then their union is never

length-minimizing. A natural question to ask is: does this persist in higher dimen-
sions? In other words, when is the union of two transversely intersecting n-planes in
R

2n volume-minimizing? Two such planes are determined by the n angles between
them as follows.

Lemma 9.1 Let P, Q be oriented n-planes in R
2n. There exists an orthonormal

basis e1, . . . , e2n for R2n such that P = Span{e1, . . . , en} and

Q = Span{cos θ1e1 + sin θ1en+1, . . . , cos θnen + sin θne2n}

where 0 ≤ θ1 ≤ · · · ≤ θn−1 ≤ π
2 and θn−1 ≤ θn ≤ π − θn−1. These angles are called

the characterising angles of P, Q.
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Proof The proof is very similar to the argument in the proof of Wirtinger’s inequal-
ity (Theorem 4.2). Choose unit e1 ∈ P and maximise 〈e1, u1〉 for u1 ∈ Q, and let
en+1 ∈ P⊥ be defined by u1 = cos θ1e1 + sin θ1en+1. Now choose e2 ∈ P ∩ e⊥

1 and
maximise 〈e2, u2〉 for u2 ∈ Q ∩ u⊥

1 , then proceed by induction. �
If the characterising angles of P, Q are θ1, . . . , θn , then the characterising angles

of P,−Q are ψ1, . . . ,ψn where ψ j = θ j for j = 1, . . . , n − 1 and ψn = π − θn .
The idea of the following theorem is that the union of P ∪ Q is area-minimizing

if P,−Q are not too close together [49].

Theorem 9.2 (Angle Theorem) Let P, Q be oriented transverse n-planes in R
2n

and let ψ1, . . . ,ψn be the characterising angles between P,−Q. Then P ∪ Q is
volume-minimizing if and only if ψ1 + · · · + ψn ≥ π.

Notice that this criteria is impossible to fulfill in 1 dimension.

Proof We will sketch the proof which involves calibrations in a fundamental way in
both directions. For details, we recommend looking at [19].

First if P ∪ Q does not satisfy the angle condition, we can choose coordinates
by Lemma 9.1 so that P = P(−ψ

2 ) and −Q = P(
ψ
2 ) where ψ = (ψ1, . . . ,ψn) and

P(ψ) = {(eiψ1,x1, . . . , eiψn xn) : (x1, . . . , xn) ∈ R
n} as given earlier. We know that

we have a special Lagrangian Lawlor neck N asymptotic to P(−ψ′
2 ) ∪ P(

ψ′
2 ) for any

ψ′ where
∑n

i=1 ψ′
i = π. The claim is then that since

∑
ψi < π we can find ψ′ so that∑

ψ′
i = π and N ∩ P(±ψ′

2 ) is non-empty (in fact, an ellipsoid). This is actually a
way to characterise N . Hence since N is calibrated by Imϒ and Imϒ |P∪Q < volP∪Q

by the condition on the characterising angles, P ∪ Q cannot be volume-minimizing
by the usual Stokes’ Theorem argument for calibrated submanifolds.

We now provide a few extra details, for which we need to describe N . For maps
z1, . . . , zn : R → C define

N = {(t1z1(s), . . . , tnzn(s)) ∈ C
n : s ∈ R, t1, . . . , tn ∈ R,

n∑
j=1

t2j = 1}.

It is not difficult to calculate that N is special Lagrangian with phase i (so calibrated
by Imϒ) if and only if

z j
dz j
ds

= i f j z1 . . . zn

for positive real functions f j .
Suppose that f j = 1 for all j .Write z j = r j eiθ j , let θ = ∑n

j=1 θ j and suppose that
z j (0) = c j > 0. From the differential equation, one quickly sees that r2j = c2j + u
for some function u with u(0) = 0 and r1 . . . rn cos θ = c1 . . . cn .

If we now suppose that u = t2, we see that

θ j (t) =
∫ t

0

a jdt

(1 + a j t2)
√

1
t2

(
(1 + a1t2) . . . (1 + ant2) − 1

)
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where a j = c−2
j . We observe that θ → ±π

2 as t → ±∞ and hence N , which is a
Lawlor neck, is asymptotic to a pair of planes where the sum of the angles is ±π

2 .
Now fix t > 0 and define

f : X = {(a1, . . . , an) ∈ R
n : a j ≥ 0}

→ Y = {(θ1, . . . , θn) ∈ R
n : θ j ≥ 0,

n∑
j=1

θ j <
π

2
}

by f (a1, . . . , an) = (θ1, . . . , θn) where

θ j =
∫ t

0

a jdt

(1 + a j t2)
√

1
t2

(
(1 + a1t2) . . . (1 + ant2) − 1

) .

It is clear that ifn = 1, f : X → Y is surjective.Wewant to show it is surjective for all
n. For θ ∈ (0, π

2 ) define Hθ = {(θ1, . . . , θn) ∈ Y : ∑n
j=1 θ j = θ}. By our discussion

above we see that

f −1(Hθ) ⊆ Sθ = {(a1, . . . , an) ∈ X : (1 + a1t
2) . . . (1 + ant

2) = cos−2 t}.

Notice that if the degree of f : ∂Sθ → ∂Hθ is 1 then the degree of f : Sθ → Hθ is
1. Thus, by induction on n, we see that f : Sθ → Hθ is surjective.

Now, given any plane {(eiθ1x1, . . . eiθn xn) : (x1, . . . , xn) ∈ R
n} where (θ1, . . . ,

θn) ∈ Y , θ j �= 0 for all j , we see that we can choose a Lawlor neck N which
intersects the plane in a hypersurface as claimed.

We now move to the other direction in the statement of the Angle Theorem.
If P ∪ Q does satisfy the angle condition, then (by choosing coordinates so that
P = R

n and Q is in standard position) we claim that it is calibrated by a so-called
Nance calibration:

η(u1, . . . , un) = Re
(
(dx1 + u1dy1) ∧ · · · ∧ (dxn + undyn)

)

where u1, . . . , un ∈ S2 ⊆ ImH. If um = i for allm then η = Reϒ , so it is believable
that it is a calibration in general, but we now show that it is indeed true.

Let x1, y1, . . . , xn, yn be coordinates on R2n . We call an n-form η on R2n a torus
form if η lies in the span of forms of type

dxi1 ∧ · · · ∧ dxik ∧ dy j1 ∧ · · · ∧ dy jl

where {i1, . . . , ik} ∩ { j1, . . . , jl} = ∅ and {i1, . . . , ik} ∪ { j1, . . . , jl} = {1, . . . , n}.
We now claim that a torus form η is a calibration if and only if

η(cos θ1e1 + sin θ1en+1, . . . , cos θnen + sin θne2n) ≤ 1
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for all θ1, . . . , θn ∈ R.
For n = 1, η = dx1 ∧ dy1 which is a calibration. Suppose that the result holds

for n = k. Let η be a torus form on R
2(k+1) and rescale η so that the maximum of

η is 1 and is attained at some plane. The idea is to show using the argument in the
proof of Wirtinger’s inequality to put planes in standard position that we can write
η = e1 ∧ η1 + e2 ∧ η2 where e1, e2 are orthonormal and span an R

2 and η1, η2 are
torus forms on R

2k . The claim then follows by induction on n.
Hence, the Nance calibration η above is a calibration andmoreover we know P(θ)

is calibrated by η(u) if and only if

n∏
j=1

(cos θ j + sin θ j u j ) = 1.

We then just need to find the u j determined by θ j . Notice that the condition that
ψ1 + · · · + ψn ≥ π holds if and only if θn ≤ θ1 + · · · + θn−1. If we write cos θ j +
sin θ j u j = w jw j+1 where wn+1 = w1 and w j are unit imaginary quaternions, then
the product condition is satisfied and we just need 〈w j , w j+1〉 = cos θ j , which is
equivalent to finding n points on the unit 2-sphere so that d(w j , w j+1) = θ j , where
θn ≤ θ1 + · · · + θn−1. This is indeed possible, by considering an n-sided spherical
polygon. �
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Calibrated Submanifolds in G2 Geometry

Ki Fung Chan and Naichung Conan Leung

This article summarizes the lecture given by the second author at the Minischool on
“G2 manifolds and related topics” which was held at the Fields Institute in August
2017, and is based on notes made by the first author.

All the content in this note is well-known, and the authors make no claim of
originality. In this note, the symbols R, C, H, and O denote the real numbers, the
complex numbers, the quaternions, and the octonions, respectively, equipped with
the standard Euclidean inner product.

1 Vector Cross Products

We start by introducing a general notion: vector cross products.

Definition 1.1 Let V, 〈·, ·〉 be a finite dimensional (positive definite) inner product
space, and let r be a non-negative integer. An r -fold vector cross product on V is an
r -linear map

P : V ⊗r → V

satisfying the axioms

(1) 〈P(u1, . . . , ur ), ui 〉 = 0 for all u1, . . . ur ∈ V and 0 ≤ i ≤ r .
(2) ‖P(u1, . . . , ur )‖2 = det(〈ui , u j 〉) for all u1, . . . ur ∈ V .

�
Using the inner product, it is easy to see that prescribing an r -fold vector cross
product P is equivalent to prescribing the associated (r + 1)-linear map �P :
(u1, . . . , ur+1) 	→ 〈P(u1, . . . , ur ), ur+1〉. Condition (1) is the same as saying that
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�P is alternating, and condition (2) implies that for orthonormal vectors e1, . . . ,
er+1 ∈ V , we have�P(e1, . . . , er+1) ≤ 1. This will be important when we talk about
calibration forms.

Example 1.2 A 0-fold vector cross product is just a unit vector v ∈ V , and the
corresponding 1-form �v is 〈·, v〉. �
Example 1.3 A 1-fold vector cross product is a linear map J : V → V . Condition
(2) says J is an isometry, and we write ω for�J . Suppose u, v ∈ V with Ju = v. By
the skew-symmetry of ω, we have 〈Jv, u〉 = −〈Ju, v〉 = −‖v‖2 = −‖Jv‖ · ‖u‖,
which implies Jv = −u, and this proves J 2 = − id. That is, J is an orthogonal
complex structure. Conversely, suppose J : V → V is a linear isometry satisfying
J 2 = − id, then 〈Ju, v〉 = 〈J 2u, Jv〉 = −〈Jv, u〉, and hence J is a 1-fold vector
cross product. This in particular says that an inner product space V admits a 1-fold
vector cross product if and only if dim V is even. �
Example 1.4 Let P be a 2-fold vector cross product on V . We will write u × v for
P(u, v). Condition (2) says that |u × v| equals the area of the parallelogram spanned
by u and v. Now, we define a ring R which is isomorphic toR ⊕ V as a vector space,
whose product structure is given by extending linearly the following relations:

a · b = ab

a · u = au

u · v = −〈u, v〉 + u × v

for a, b ∈ R and u, v ∈ V . The ring R so defined is a (not necessarily associative)
divisionR algebra. Because, if a + u �= 0, then (a + u)(a − u) = (a − u)(a + u) =
a2 + 〈u, u〉 > 0 is a unit inR. By the theorem of Frobenius on classification of finite
dimensional (non-associative) division R algebras, we must have R ∼= R,C,H or
O. In the two former cases, the vector cross product must vanish, therefore, up to
isomorphism, there are only two non-trivial examples of 2-fold vector cross products.
�
Example 1.5 On ImH ∼= R

3, the cross product is defined by

u × v = Im (uv).

One can check that this vector cross product can be identified with the usual cross
product on R

3 under the isomorphism (a, b, c)t 	→ ai + bj + ck. �
Example 1.6 On ImO = ImH ⊕ eH ∼= R

7, the cross product is similarly defined
by

u × v = Im (uv).

Under the isomorphism ImO ∼= ImH ⊕ H, if φi , i = 1, 2, 3 are coordinates of the
first factor ImH and xi , i = 1, 2, 3, 4 are coordinates of the second factor eH, the
associated three form �× has the explicit formula:
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�× = dφ1dφ2dφ3 + dφ1 ∧ (dx1dx2 + dx3dx4) + dφ2 ∧ (dx1dx3 − dx2dx4)

+ dφ3 ∧ (dx1dx4 + dx2dx3)

This vector product is the basis for our definition of G2 structure. We will write
(ImO, 〈·, ·〉,�×) to refer to this standard model. �

Definition 1.7 The group G2 is the subgroup of O(ImO) ∼= O(7,R) that preserves
�×. �

Definition 1.8 We make the following two definitions.

(a) A G2 structure on a 7-dimensional Riemannian manifold (M, g) is a smoothly
varying (2-fold) vector cross product × defined on each tangent space. Equiva-
lently, aG2 structure on (M, g) is a differential 3-form� such that at each p ∈ M ,
(Tp M, g|Tp M ,�|Tp M) is isomorphic to our standard model (ImO, 〈·, ·〉,�×).

(b) Furthermore, if ∇� = 0 for the Levi-Civita connection ∇ of g, then (M, g,�)

is said to be a G2 manifold. This is the same as saying Hol(g) ⊂ G2.

�

The following is a useful property of the vector cross product.

Lemma 1.9 Let (V, 〈·, ·〉) be an inner product space equipped with a 2-fold vector
cross product × and let � be the associated 3-form. Suppose u, v ∈ V are orthonor-
mal. If w = u × v, then w × u = v.

Proof From condition (2) of a vector cross product, we see that w is of unit length,
and hence �(u, v, w) = 〈u × v,w〉 = 〈w,w〉 = 1. But this implies 〈w × u, v〉 =
�(w, u, v) = 1 as well. Now w × u is a unit vector whose orthogonal projection to
the direction of v is v, so we must have w × u = v as claimed. �

This lemma allow us to define linear complex structures on the hyperplanes of V .
More precisely, let u ∈ V be any normal vector. Then u × · defines a complex
structure on the orthogonal complement u⊥ of u. For if v is an element in u⊥,
then 〈u × v, u〉 = 0 by property (1). Using the notations in the lemma. we have
u × (u × v) = u × w = −v.

2 Calibrations

Definition 2.1 We make the following two definitions.

(a) Let (X, g) be a Riemannian manifold, and φ ∈ �k(X). Suppose dφ = 0 and
φ(e1, e2, . . . , ek) ≤ 1 whenever e1, e2, . . . , ek form an orthonormal subset in
Tx X . Then φ is called a calibration form.
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(b) Let φ be a calibration form, and let C be an oriented k-dimensional submanifold
of X . Then C is said to be calibrated by φ if φ|C = volC . (Here volC is the
volume form of C as an oriented Riemannian submanifold of X .)

�

By the discussion after Definition 1.1, we see that the associated (r + 1)-form of
an r -fold vector cross product is a calibration form.

Example 2.2 A 1-fold vector cross product on X is a vector field X. Its associated
1-formα = 〈·,X〉 is a calibration form if and only it is closed. In this case, an oriented
1-dimensional submanifold C ⊂ X is calibrated by α if and only it is a flow line of
X. �

Example 2.3 Let X be a Kähler manifold. A 2-dimensional oriented submanifold
C of M is calibrated by the Kähler form ω = 〈J (·), ·〉 if and only if for each p ∈ C ,
and each unit vector u ∈ TpC , the pair {u, Ju} forms an orthonormal basis for TpC .
That is, each TpC is preserved by J , so C is a complex curve in X . Similarly, a
2k-dimensional oriented submanifold M of X is calibrated by the k-form ωk

k! if and
only if M is a complex submanifold of X . �

Example 2.4 If (X, g,�) is a G2 manifold, then � is a calibration form, and the
oriented submanifolds calibrated by � are called associative submanifolds of M .
Equivalently, an oriented 3-dimensional submanifold M ⊂ X is an associative sub-
manifold if T M is preserved by the vector cross product ×. �

Example 2.5 If an 8-dimensional manifold X admits a closed 3-fold vector cross
product, then the corresponding calibrated submanifolds are called Cayley subman-
ifolds. �

Example 2.6 We may regard ImO = ImH ⊕ eH as a Riemannian manifold with
the canonical vector cross product structure. One can check easily that ImH ⊂ ImO

is an associative submanifold. �

Now, we come to an easy but important theorem.

Theorem 2.7 If C is calibrated by some form φ, and C ′ is another k-dimensional
submanifold of X such that [C] = [C ′] in Hk(X), then vol(C) ≤ vol(C ′).

Proof We have vol(C) = ∫
C φ = ∫

C ′ φ ≤ ∫
C ′ volC ′ = vol(C ′). �

Wemay also want to extend this theorem to the case when the calibrated subman-
ifold has a boundary. Let X2n be a Kähler manifold, and let C be a 2-dimensional
submanifold (possibly with boundary) calibrated by the Kähler form ω. Suppose the
boundary C lies in some submanifold L . In order to repeat the above proof to show
thatC attains the absolute minimum volume in Hk(X, L), we ought to have ω|L = 0.
By simple linear algebra, we must have dim L ≤ n.
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Definition 2.8 A submanifold L ⊂ (X2n,ω) is called a Lagrangian submanifold if

(i) dim L = n, and (i i) ω|L = 0.

�

Remark 2.9 We have
NL/X = T ∗L .

The reason for this is as follows. We have the following commutative diagram:

0 T L
i

α

T X
π

β= ω∼=

NL/X

γ

0

0 N ∗ π∗
T ∗ X

i∗
T ∗L 0

By the non-degeneracy of ω, the middle map β is an isomorphism. We have
the composite map i∗ ◦ β ◦ i : T L → T X → T ∗ X → T ∗L . Condition (i i) of the
Lagrangian condition says this composition vanishes, and this defines the maps α
and γ. The map γ is surjective since γ ◦ π = i∗ ◦ β is, and α is injective since
π∗ ◦ α = β ◦ i is. By dimension count, both maps must be isomorphisms.

Suppose L is a manifold, and X = T ∗L is its cotangent bundle. We have a canon-
ical symplectic form ω on X defined by ω(p, q) = dp ∧ dq. The inclusion L ⊂ X
makes L a Lagrangian submanifold. The above says any Lagrangian submanifold L
of X looks like the inclusion L ⊂ X in a tubular neighbourhood of L . In fact, this
identification can be made into a symplectomorphism, by the Weinstein neighbor-
hood theorem.

Nowwe return to theG2 case. Let (X, g,�)be aG2 manifold, andC a submanifold
with boundary. Suppose the boundary of C lies in some submanifold K ⊂ X . As
before, in order for C to achieve absolute minimal volume in H3(X, K ), we require
�|K = 0. It is also not hard to show that we must have dim K ≤ 4. To see this,
supposeW is a subspace of our standardmodel (ImO,�×), and dim W = s. Suppose
�×|W = 0. Then for any non-zero w ∈ W , we must have (w × W ) ∩ W = {0}, and
hence (s − 1) + s ≤ 7 and our claim follows.

Definition 2.10 A submanifold K ⊂ (X, g,�) is called a coassociative submani-
fold if

(i) dim K = 4, and (i i) �|K = 0.

One may also check that the condition �|K = 0 is equivalent to the condition that
K is calibrated by the 4-form ∗�. �

Let W be a coassociative subspace of (ImO,�×). That is, dim W = 4 and �×|W =
0. By a change of basis, we may write ImO = ImH ⊕ eH, where W under this
identification is isomorphic to eH. Let {e1, e2, e3} be an orthonormal subset of W .
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One can then check that {e1, e2, e3, (e1 × e2) × e3} forms an oriented orthonormal
basis of W . Suppose u ∈ ImH is a unit vector, we may assume u = e1 × e2 without
loss of generality. We can form interior product of u with �× and project it to a
2-form �u ∈ �2W ∗ with �u = �×(u, ·, ·). Then one can check that

�2
u(e1, e2, e3, (e1 × e2) × e3) = �(e1 × e2, e1, e2)�(u, e3, u × e3) = 1.

Recall that in a 4-dimensional inner product space (V, 〈·, ·〉) with an orientation
vol ∈ �4V ∗, we have theHodge dualmap∗ : �2V ∗ → �2V ∗ definedby 〈a, b〉vol =
a ∧ ∗b. We have ∗2 = id, and therefore we can decompose�2V ∗ into the direct sum
�2+V ∗ ⊕ �2−V ∗ of eigenspaces of ∗ with eigenvalues 1 and −1 respectively. The
paragraph above simply says that the assignment u 	→ �u is an injective map from
W ⊥ into�2+W ∗. Due to dimension reason, this must be an isomorphism. Globalizing
this observation, we deduce the following.

Theorem 2.11 Let (X, g,�) be a G2 manifold, and let K ⊂ X a coassociative
submanifold. Then we have

NK/X

�∼= �2
+T ∗K .

Observe that we have also established an isomorphism ImO = ImH ⊕ eH ∼=
�2+(H∗)4 × H

4, given by �|× ⊕ (−e). Let xi for i = 1, 2, 3, 4 be the standard
coordinates ofH. Then�2+(H∗)4 has a basis formed by e1 = dx1dx2 + dx3dx4, e2 =
dx1dx3 + dx4dx2, and e3 = dx1dx4 + dx2dx3. Let {φ1,φ2,φ3} be its dual basis.With
this identification, the three form �|× is now given by

�|× = dφ1 ∧ dφ2 ∧ dφ3 + dφ1 ∧ e1 + dφ2 ∧ e2 + dφ3 ∧ e3.

We can easily see that each fibre �2+(R∗)4 × {x} is an associated submanifold.
Although the theory is good for finding volume minimizing submanifolds, in

general it is difficult to find forms that restrict to volume forms.

Remark 2.12 We outline some similarities between Kähler manifold and G2 man-
ifold:

(a) When X is a Kähler manifold, C2k ⊂ X is calibrated by ωk

k! if and only if C is
a complex submanifold of X . When X is a G2 manifold, M3 ⊂ X is calibrated
by � if and only if M is an associative submanifold of X .

(b) When X is a Kähler manifold, C2k ⊂ X is calibrated by ωk

k! if and only if T C
is preserved by the 1-fold vector cross product J . When X is a G2 manifold,
M3 ⊂ X is calibrated by � if and only if T M is preserved by the 2-fold vector
cross product ×.

(c) In a Kähler manifold, both φ = ωk

k! and ∗φ = ωn−k

(n−k)! are closed. In a G2 manifold,
both � and ∗� are closed.

(d) In a Kähler manifold, we have the notion of Lagrangian submanifold, defined
as the largest submanifold on which the Kähler form ω restricts to zero. In a G2
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manifold, we have the notion of coassociated submanifold, defined as the largest
submanifold on which the G2 form � restricts to zero.

Example 2.13 Let (M7, g,�) be a G2 manifold. Note that the group G2 acts on
ImO, and for any unit element u ∈ ImO, the subgroup {g ∈ G2|gu = u} of G2 is
isomorphic to the group SU(3). We may consider J = u × · : 〈u〉⊥ → 〈u〉⊥ as an
almost complex structure. We have � = u� ∧ α + β, and ∗� = u� ∧ γ + δ, where
α is a 2-form, β, γ are 3-forms, and δ is a 4-form.

We can also write � = u� ∧ ω + Re�CY and ∗� = u� ∧ Im�CY + 1
2ω

2, where
�CY = Re�CY + iIm�CY ∈ �3,0(〈u〉⊥) is a holomorphic volume form for aCalabi-
Yau manifold.

By the above, we may locally express M7 as the product Y 6 × R, where Y 6

is a Calabi-Yau 3-fold. Then � can be generated by �CY ∈ �3,0(Y ) and ω ∈ �1,1.
Explicitly we have� = dt ∧ ω + Re�CY , and ∗� = u� ∧ Im�CY + 1

2ω
2. Thus G2

geometry is locally Calabi-Yau geometry.
Now let M = Y × R. Then a calibrated submanifold must be of the form C =

C × {pt} or C = D × R.
For an associative submanifold, it may be C × {pt}, where C is a special

Lagrangian submanifold of Y calibrated byRe�CY ; or D × R, where D is a complex
curve in Y calibrated by ω.

For a coassociative submanifold, it may be C × {pt}, where C is a complex sub-
manifold in Y calibrated by 1

2ω
2; or D × R, where D is a special Lagrangian sub-

manifold in Y calibrated by Im�CY . �

3 Two Theorems

Suppose (L , g) is a Riemannian manifold, and X = T ∗L is its cotangent bundle.
Then X has a natural Riemannian metric inherited from L , which we also denote
by g. We can also define a canonical 1-form α on X as follows. Let p be a point on
L , let q be a covector in T ∗

p L , and let (U, V ) be a tangent vector in T(p,q) X , where
U ∈ Tp L and V is tangent to the fibre T ∗

p L . Then α(p,q)(U, V ) is defined by

α(p,q)(U, V ) = q(U ).

In local coordinates, we have α = qdp, and ω = −dα = dp ∧ dq is a symplectic
form on X . An almost complex structure Jg on X can thus be defined by the formula:

ω(U, V ) = g(JgU, V ).

The Weinstein neighbourhood theorem says that any Lagrangian submanifold L
of a symplectic manifold has a tubular neighbourhood isomorphic to the inclusion
L ⊂ T ∗L , so we may reduce the general case to this special situation.
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As we have seen before, the zero section L is a Lagrangian submanifold of X .
Generally, any section s : L → T ∗L can be regarded as the graph of a 1-form αs

on L , and we have the relations s∗α = αs and s∗ω = −dαs . In particular, a section
s : L → T ∗L defines a Lagrangian submanifold if and only if the associated 1-form
αs is a closed form.

Now, suppose β is a closed 1-form on L . For each t ∈ R, the graph Lt of tβ is a
Lagrangian submanifold in X . Suppose further that for some small positive ε, there
exists a family of Jg-holomorphic curves At bounding L ∪ Lt for t ∈ [0, ε].

Since β is closed, when it is restricted to a smaller neighbourhood, wemay assume
that β = d f is exact. Let ∇ f be the gradient of f defined by g(∇ f, ·) = d f . If we
embed T L and T ∗L into to T X in the obvious way, then we have the equality
∇ f = −J (d f ). As the Jg holomorphic curves preserve the Jg structure, one may
well think that At ∩ L is a gradient flow line of f in the limiting case. In fact, we
have the following result of Fukaya–Oh.

Theorem 3.1 With the same notation as above, there exists a constant ε > 0, such
that for any t ∈ (0, ε], there is a one-to-one correspondence between Jg-holomorphic
curves bounding L ∪ Lt and the gradient flow lines of α on L.

We also have a similar theorem for G2 manifolds.
Suppose {Ct }t∈[0,ε] is a family of coassociative submanifolds in a G2 manifold

(M, g,�), regarded as a deformation of C = C0 along the normal vector field n =
dCt
dt |t=0. Then ιn� is a self-dual harmonic 2-form on C . We further impose the
condition that n is nowhere vanishing on C . Then ωn = ιn� defines a symplectic
structure on C as ω2

n = |ωn|2volC is nowhere zero. Moreover, Jn = n
‖n‖ × · defines

a compatible almost complex structure on (C,ωn).

Theorem 3.2 Suppose that (M,�) is a G2 manifold and that Ct is a 1-parameter
smooth family of coassociative submanifolds in M. When ιn� ∈ �+(C0) is non-
vanishing, then

(a) If At is any one-parameter family of associative submanifolds in M satisfying

∂ At ⊂ Ct ∪ C0, and lim
t→0

= �0 in the C1-topology,

then �0 is a Jn-holomorphic curve in C0.
(b) Conversely, every regular Jn-holomorphic curve �0 in C0 is the limit of a family

of associative submanifolds At as described above.
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Geometric Flows of G2 Structures

Jason D. Lotay

Abstract Geometric flows have proved to be a powerful geometric analysis tool,
perhaps most notably in the study of 3-manifold topology, the differentiable sphere
theorem, Hermitian–Yang–Mills connections and canonical Kähler metrics. In the
context of G2 geometry, there are several geometric flows which arise. Each flow
provides a potential means to study the geometry and topology associated with a
given class of G2 structures. We will introduce these flows, and describe some of the
key known results and open problems in the field.

1 Introduction

Our understanding of G2 structures, and particularly the question of when a G2

structure can be deformed to become torsion-free, is very limited. It is therefore useful
to look to new tools to tackle open problems in the area.Anobvious avenue of attack is
to use geometric flows, given their success in other geometric contexts: for example
in analysing Hermitian connections (via Yang–Mills flow), convex hypersurfaces
(via mean curvature flow) and perhaps most notably 3-manifolds and 1

4 -pinched
Riemannian manifolds (via Ricci flow).

The goal of these notes is to explain some of the basics behind the geometric flow
approach to studying G2 structures and give a brief overview of what is known. It is
important to note that several different flows ofG2 structures have been studied, based
on various well-founded motivations. We shall attempt to give a brief description of
each of these flows, the reasons behind them and some of the pros and cons in their
study.

As well as giving this brief survey of the landscape in geometric flows of G2

structures, we will provide some indication of some key open questions that we
believe are worthy of further exploration.

Note These notes are based primarily on a lecture given at a Minischool on “G2
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2 Geometric Flows

What is a geometric flow? Informally, it is amechanism for “simplifying” or “decom-
posing” a given geometric structure into one or several “canonical” or “special”
pieces. Thus, the primary goals of geometric flows are to show the existence of spe-
cial geometric objects and to determine which geometric objects can be deformed
to special ones. By answering these questions, one can then hope to understand
large classes of geometric structures by understanding the much smaller class of
canonical ones.

2.1 Heat Flow

Functions. The motivation for geometric flows comes from the heat flow for func-
tions f on a Riemannian manifold:

(
∂

∂t
+ �

)
f = 0. (2.1)

(Here, and throughout, we will use the geometer’s convention that the Laplacian �

is a non-negative operator, so � = d∗d on functions.) The heat flow is parabolic,
which means that if we consider (2.1) on a compact manifold M , then a short time
solution to (2.1) is guaranteed to exist and the equation is “regularizing” (a notion
we shall clarify in a moment).

We now make an elementary but fundamental observation.

Proposition 2.1 The heat flow is the negative gradient flow for the Dirichlet energy:

1

2

∫
M

|d f |2 volM ≥ 0. (2.2)

Proof We see that for any t-dependent family of functions we have

∂

∂t

1

2

∫
M

|d f |2 volM = 〈 ∂

∂t
d f, d f 〉L2 = 〈d ∂

∂t
f, d f 〉L2 = 〈∂ f

∂t
,� f 〉L2 . (2.3)

�

Thus (2.2) will decrease fastest along the heat flow (2.1), and the critical points for
the Dirichlet energy (which are exactly the stationary points for (2.1)) are given by
the constant functions (i.e. d f = 0) which are the absoluteminimizers for the energy.

From the gradient flow point of view we should expect that given any smooth
function, by following the heat flow we should be able to deform it into a critical
point for (2.2), i.e. a constant function. We now show that this is the case.
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Theorem 2.2 Suppose that f = f (x, t) solves the heat equation (2.1) on a compact
manifold M and f (x, 0) is smooth. Then f (x, t) exists for all t > 0 and f (x, t) →
c ∈ R smoothly as t → ∞, where

c = 1

Vol(M)

∫
M

f (x, 0) volM .

Proof If we suppose that f is smooth at t = 0, then it is smooth for all t > 0 as well
and the eigenfunctions of � span L2(M), so at each time t we can write

f (x, t) =
∑

λ

cλ(t) fλ(x) (2.4)

for functions cλ of time t and functions fλ on M , where� fλ = λ fλ for λ ≥ 0 and the
fλ form a complete orthonormal system for L2(M). It quickly follows from inserting
(2.4) in (2.1) that

cλ(t) = cλ(0)e
−λt , (2.5)

and so the solution of (2.1) actually exists for all time t > 0. Moreover, the solution
converges as t → ∞ to

c0 f0 = 1

Vol(M)

∫
M

f (x, 0) volM , (2.6)

the “average value” of f at time 0. �

Thus, the heat flow “regularizes” the function f in that it simplifies it as much
as possible (it turns it into a constant) and we see that the higher the frequency
(i.e. eigenvalue) of the eigenfunction of � in the expansion (2.4), the faster that
component of f decays under the flow by (2.5). The fλ for high λ correspond to
higher “oscillations” of f , and so these “wiggles” in f get smoothed out by (2.1),
eventually giving a constant. In terms of the Dirichlet energy functional (2.2), it
shows that every function can be deformed to a minimizer (so the space of smooth
functions retracts onto the constant functions, which are the critical points of the
functional), and the minimizer we find is determined by the average value of f .

Notice that our analysis in the proof of Theorem2.2 implies the following.

Lemma 2.3 The integral of f is constant along (2.1).

We are therefore free to modify (2.1) and consider

(
∂

∂t
+ � − λ1

)
f = 0, (2.7)

for functions f with
∫
M f = 0, where λ1 is the first positive eigenvalue of � on

M . It is easy to see that (2.7) is still parabolic and that if
∫
M f = 0 initially then it

stays zero for all t under (2.7). However, under (2.7), we see that the flow no longer
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converges to a constant, but instead to the projection of f to the λ1-eigenspace of �

(which may now have several components if λ1 is not a simple eigenvalue). Again,
this flow “regularizes” f , throwing away all of the higher eigenmodes of � in the
limit.

Forms. We can also consider the heat flow on differential k-forms α on a compact
manifold M : (

∂

∂t
+ �

)
α = 0, (2.8)

where � is the Hodge Laplacian

� = dd∗ + d∗d. (2.9)

The flow (2.8) is now the gradient flow for the Dirichlet energy

1

2

∫
M

|dα|2 + |d∗α| volM ≥ 0 (2.10)

by a similar argument as before. Again decomposing α(t) at each time t using
eigenforms for �, we have the following.

Theorem 2.4 The heat equation (2.8) for α(t) on a compact manifold starting at a
smooth form α(0) exists for all time and converges smoothly to the projection of α(0)
to the 0-eigenforms for �, i.e. the harmonic k-forms

dα = d∗α = 0. (2.11)

The harmonic forms are precisely the critical points of (2.10) and are clearly absolute
minimizers as they are zeros for the energy functional.

Now, the harmonic forms are only a finite-dimensional space in the space of k-
forms, so given any initial k-form it could well be that the heat flow will just send
it to zero, which is clearly a legitimate critical point for the flow (though not an
interesting one!). For example if α(0) is exact or coexact (or the sum of forms of this
type), the heat flow will just go to 0.

To ensure that we find a non-trivial critical point, we could restrict attention to
closed k-forms:

dα = 0. (2.12)

Notice that this is preserved by (2.8) since in this case we have

∂

∂t
α = −�α = −(dd∗ + d∗d)α = −dd∗α, (2.13)

so in fact we have that α(t) lies in the fixed cohomology class [α(0)] for all time as
the right-hand side of (2.13) is exact. Therefore, if we have that [α(0)] 	= 0 is a non-
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trivial cohomology class, we know that (2.13) will exist for all time and converge
to the non-zero harmonic representative of that class (which we know exists and is
unique by Hodge theory).

We could also equally well have restricted to coclosed k-forms

d∗α = 0, (2.14)

since this is also preserved by a similar argument. This time ∗α(t)will lie in the fixed
cohomology class [∗α(0)] for all time and the flow will converge to the Hodge dual
of the harmonic representative of [∗α(0)].

We summarize these findings.

Proposition 2.5 Suppose that α(t) is a family of k-forms on a compact n-manifold
M solving (2.8).

(a) If dα(0) = 0,α(t) exists for all t > 0 satisfying dα(t) = 0 for all t and converges
smoothly to the unique harmonic k-form in [α(0)] ∈ Hk(M).

(b) If d∗α(0) = 0, α(t) exists for all t > 0 satisfying d∗α(t) = 0 for all t and con-
verges smoothly to the Hodge dual of the unique harmonic (n − k)-form in
[∗α(0)] ∈ Hn−k(M).

We might hope, at least naively, that we could have similar good behaviour in
geometric flows as for the heat flow, and thus obtain ways to canonically repre-
sent classes of geometric structures, just as harmonic forms uniquely represent all
cohomology classes.

2.2 Ricci Flow and Mean Curvature Flow

Geometric flows aim to act on the same principle as the heat flow, two canonical
examples being Ricci flow on metrics g and mean curvature flow on immersions F
into a Riemannian manifold:

∂

∂t
g = −2Ric(g) and

∂

∂t
F = H, (2.15)

where Ric(g) denotes the Ricci curvature tensor of g and H denotes the mean cur-
vature vector of the immersion F . (Two other key examples of geometric flows of
significant interest wheremany results have been obtained are the harmonicmap heat
flow and Yang–Mills flow, but we do not discuss them here.) Under suitable choices
of coordinates, (2.15) can be seen as “heat flows”, however this time the Laplacian
depends on the metric or immersion respectively, and so the flows are nonlinear.

Parabolicity. The flows (2.15) are not parabolic due to geometric invariance in the
problem: in Ricci flow this is diffeomorphism invariance, and in mean curvature flow
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this is invariance under reparametrisation. However, once one kills this geometric
invariance, one obtains a parabolic equation.

For example, in Ricci flow, one can apply the so-called DeTurck’s trick:

∂

∂t
h = −2Ric(h) + LX (h)h, (2.16)

where X (h) is a suitably chosen vector field (depending on the metric h) which
ensures that (2.16) is parabolic and so has a short time solution which is regularizing.
We can get a solution to Ricci flow from a solution to (2.16) by considering g = �∗h,
where � are diffeomorphisms defined by

∂

∂t
� = −X (h) and �(0) = id . (2.17)

Proposition 2.6 Suppose that h are metrics satisfying (2.16) and � are diffeomor-
phisms satisfying (2.17). Then g = �∗h satisfies the Ricci flow in (2.15).

Proof By (2.16) and (2.17),

∂

∂t
g = ∂

∂t
�∗h = �∗ ∂

∂t
h − �∗LX (h)h = −2�∗ Ric(h) = −2Ric(g). (2.18)

�

This result is great but, it is natural to ask: what is a good choice of X (h)? The
idea is, given h, for any symmetric 2-tensor k to consider the “gravitational tensor”

G(k) = k − 1

2
(tr k)h, (2.19)

whose divergence is given by the 1-form:

divG(k) = div(k) + 1

2
d(tr k). (2.20)

(Here, by the divergence we mean the formal adjoint of the map X � 
→ 1
2LXh, so

that div(k) is the negative of the trace on the first two indices of ∇k; i.e. div(k) j =
−∇i ki j . The musical isomorphisms, ∇ and trace are all defined by h.) If k is a fixed
Riemannian metric then, using h, we can view k as an invertible map on 1-forms
and so

X (h) = (k−1 divG(k))�, (2.21)

where the musical isomorphism is again given by h, is a well-defined vector field.

Theorem 2.7 If we choose the vector field X (h) as in (2.21), the Ricci–DeTurck
flow (2.16) is parabolic.
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Proof It is straightforward to compute that, with the choice of X (h) in (2.21), the
linearisation of (2.16) is simply

∂

∂t
h = −�h, (2.22)

the heat equation on h. �

Moreover, (2.17) is harmonic map flow, which is parabolic, so we can solve (2.16)
and (2.17) uniquely for short time by parabolic theory, and hence obtain a unique
short time solution to the Ricci flow by Proposition2.6.

Now, by analogy with the heat flow, in Ricci flow the “eigenmodes” we need to
consider are solutions to

Ric(g) = λg; (2.23)

in other words, Einstein metrics. Here the “eigenvalues” λ have no distinguished sign
and so, by analogy with the heat flow analysis above, we cannot say what will happen
along the flow in general. However, if the flow exists for all time and converges, then
it must tend to a Ricci-flat metric—the “zero mode” in the expansion of g in Einstein
metrics, if you will. Similarly, for mean curvature flow, if the flow exists for all
time and converges, we would obtain a minimal immersion (and the “expansion” of
the immersion should be into constant mean curvature immersions). We see in both
cases that we are breaking up our geometric object into pieces of significant interest.
Moreover, the long-time existence and convergence of the flow allows us both to find
the special object (a Ricci-flat metric or minimal immersion) and, at the same time,
show that our initial geometric object can be deformed smoothly into the special one,
which again is an important and challenging problem to solve.

Compact surfaces. To see the power of geometric flows it is instructive to look at
Ricci flow in dimension 2. Here, Ricci curvature is just the Gauss curvature of the
surface (up to a multiple) and there are three possibilities on a compact orientable
surface.

• The flow exists for all time and converges. This means that the surface has a flat
metric, and so must have genus 1 (by Gauss–Bonnet).

• The flow exists for all time but does not converge. In this case, just as when we
perturbed the heat flow in (2.7), we can modify the Ricci flow and show that this
modified flow exists for all time and converges to a hyperbolic metric. Thus the
surface must have genus at least 2.

• The flow exists for only a finite time. This does not have a direct heat flow analogue,
but one can again modify the Ricci flow as in the previous case (now by adding
a term with the opposite sign), and show that this converges now to a constant
positive curvature metric, which means that the surface must be a sphere. This is
the difficult case in the analysis of the Ricci flow and this is typical of geometric
flows: the case corresponding to “negative eigenvalues” (which do not happen for
the Laplacian in the heat flow) is the most challenging to understand.
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Thus, the Ricci flow in dimension 2 gives an alternative means to prove the
uniformization theorem. In particular, that constant curvature metrics exist on any
compact orientable surface, and the topology of the surface uniquely determines the
sign of the constant curvature.

Gradient flow. Finally, one can also interpret (2.15) as gradient flows: in the case
of mean curvature flow this is nothing but the negative gradient flow of the volume
functional on immersions, but for Ricci flow the gradient flow interpretation is more
subtle and involved so we shall not describe it here.

Needless to say, the fact that they are gradient flows is very helpful, since then
one has some expectation of what one might hope to happen along the flow, as one
has a monotone quantity (the analogue of the Dirichlet energy) along the flow which
is trying to reach a critical value for the functional.

However, even with the gradient flow point-of-view, the nonlinearity of the prob-
lem and the potential complexity of the topology of the space of geometric objects
we are considering means that we cannot always hope for the analysis of our flow
to be straightforward and to go as expected. For example, the Ricci flow and mean
curvature flow have special features (both good and bad) due to nonlinearity which
simply cannot possibly occur in the standard heat flow.

2.3 Singularities

A singularity in a geometric flow is a point where the flow cannot be continued,
because some quantity blows up to infinity. We already saw this in the Ricci flow
in dimension 2, where there is always a singularity in finite time if we work on a
sphere. Singularities may sound bad, and they definitely can be, but they can also
be very helpful because they may tell you that you need to break up your geometric
object into several pieces to get canonical objects. This happens for example in 3-
dimensional Ricci flow, where singularities can be used to decide how to break up
the 3-manifold according to Thurston’s Geometrization Conjecture (now a theorem
by Perelman’s work).

The question is: what happens at a singularity geometrically? In good situations
the singularity will be modelled on a special solution to the flow called a soliton. By
“modelled on” we mean that by appropriately rescaling the flow around the singular
point, both in space and time, in the limit we should see a soliton.

Definition 2.8 Asoliton is a solution to theflowwhich is “self-similar”,meaning that
it moves very simply under the flow, just under rigid motions and diffeomorphisms
or reparametrisations (or whatever notion of invariance is present in the problem).

Solitons which just move under diffeomorphisms are called steady, those which
rescale getting smaller are called shrinking, and those which rescale getting larger
are called expanding.

That is usually all of them (like in Ricci flow), but in mean curvature flow a soliton
can also just translate, which is, rather unimaginatively, called a translating soliton.
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Simple examples of solitons in Ricci flow are given by constant curvature metrics:
flat metrics are steady (in fact critical points), constant positive curvature metrics are
shrinking (like standard round spheres) and constant negative curvature metrics are
expanding (like hyperbolic space).

From this point of view we see that shrinking solitons are the ones we should be
most concerned with, since they will become singular in finite time, shrinking away.
However, steady and expanding solitons also play an important role.

Steady solitons are potentially where the flow can get “stuck” going round and
round under diffeomorphisms and never converging. Non-stationary compact exam-
ples of steady solitons are ruled out if you have a standard gradient flow interpretation
of the flow, since the corresponding functional would be constant for steady solitons,
which is a contradiction unless they are stationary. This shows one of the benefits of
knowing that your geometric flow is the gradient flow of some functional.

On the other hand, expanding solitons give a potential mechanism to escape from
a singularity, since they expand away from a singular geometric object.

It is therefore clear that understanding singularities and solitons is an important
part of the study of any geometric flow.

3 G2 Structures

Given this discussion of geometric flows, we are now motivated to ask the question:
are there (useful) geometric flows of G2 structures on a (compact) 7-manifold M
and what do they want to achieve? We should perhaps not expect there to be just one
useful flow to consider: for immersions, both mean curvature flow and inverse mean
curvature flow have important geometric uses, for example. We therefore need to
think about what are the important classes of G2 structures that we want to analyse
and what we expect to be “canonical” representatives for these classes. (For details
about G2 structures, which are equivalent to positive 3-forms, see for example [21].)

3.1 Torsion-Free and Torsion Forms

Clearly the most important class of G2 structures are the torsion-free ones, given by
positive 3-forms ϕ on M satisfying

∇ϕϕ = 0 ⇔ dϕ = d∗
ϕϕ = 0 ⇔ Hol(gϕ) ⊆ G2 . (3.1)

(We are being slightly sloppy in the last equivalence, since given a metric there are
infinitely many G2 structures inducing that metric, so we mean that the holonomy
Hol(gϕ) of gϕ is contained in G2 if and only if there is some G2 structure ϕ inducing
gϕ which is closed and coclosed.) We also know that we may equivalently define G2

structures on oriented, spin, Riemannian 7-manifolds using unit spinors σ , and the
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condition for the G2 structure to be torsion-free is that σ is parallel with respect to
the spin connection :

∇σ = 0. (3.2)

(We can recall the relationship between unit spinors and positive 3-forms:

4σ ⊗ σ = 1 + ϕ + ∗ϕϕ + volϕ, (3.3)

up to appropriate normalizations and sign conventions.)

Closed and coclosed G2 structures. However, there are other obvious (potentially)
important classes of G2 structures, for example closed G2 structures

dϕ = 0, (3.4)

or coclosed G2 structures
d∗

ϕϕ = 0. (3.5)

It is worth noting that, on the face of it, (3.4) is much stronger than (3.5): the first is a
condition on a 4-form in 7-dimensions (so 35 equations at each point), whereas the
second is a condition on a 5-form in 7-dimensions (so 21 equations at each point).

Both conditions (3.4) and (3.5) can be satisfied independently on any open 7-
manifold admitting a G2 structure by a straightforward h-principle argument; thus
one can say (in some sense) that these conditions are only truly meaningful on
compact 7-manifolds. In fact, (3.5) can always be satisfied on a compact 7-manifold
admitting a G2 structure also by an h-principle [7], but it is currently unknown
whether the same is true for condition (3.4) or not: this again reflects the fact that
(3.4) is a stronger condition than (3.5).

Theorem 3.1 Let ϕ be a G2 structure on M.

(a) If M is open, then there exists a G2 structure ϕ̃ C0-close to ϕ satisfying (3.4).
(b) If M is either open or compact, then there exists a G2 structure ϕ̃ C0-close to ϕ

satisfying (3.5).

One can interpret the h-principle result for coclosed G2 structures as both positive
and negative. On the one hand, it is good becausewe can always assume the condition
(3.5) holds for ϕ if we want, though we have very little control on the ϕ produced
by the h-principle: we can assume it is C0-close to our original G2 structure but the
method only produces ϕ which will be very far away in the C1-topology. On the
other hand, it says that the condition (3.5) is, in a sense, meaningless and that talking
about coclosed G2 structures is the same as talking about all G2 structures, which
becomes a topological rather than a geometric question.

Torsion forms. One could also conceivably look at other special torsion classes by
setting various combinations of the intrinsic torsion forms to vanish, recalling that
these are given by
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dϕ = τ0 ∗ ϕ + 3τ1 ∧ ϕ + ∗ϕτ3 and d ∗ϕ ϕ = 4τ1 ∧ ∗ϕϕ + τ2 ∧ ϕ, (3.6)

where τ0 ∈ C∞(M), τ1 ∈ �1(M), τ2 ∈ �2
14(M), τ3 ∈ �3

27(M), with the standard
notation referring to the type decomposition of forms determined by ϕ (see, for
example, [5]). Recall that β ∈ �2

14(M) if and only if

β ∧ ϕ = − ∗ϕ β ⇔ β ∧ ∗ϕϕ = 0, (3.7)

and that γ ∈ �3
27(M) if and only if

γ ∧ ϕ = γ ∧ ∗ϕϕ = 0. (3.8)

Moreover, recall thatwehave an isomorphism iϕ : S2T ∗M = Span{gϕ} ⊕ S20T
∗M →

�3
1 ⊕ �3

27 given on decomposable elements α ◦ β by

iϕ(α ◦ β) = α ∧ ∗ϕ(β ∧ ∗ϕϕ) + β ∧ ∗ϕ(α ∧ ∗ϕϕ).

We also have an explicit way to invert iϕ using jϕ : �3T ∗M → S2T ∗M given by

jϕ(γ )(u, v) = ∗ϕ(u�ϕ ∧ v�ϕ ∧ γ ).

Notice that iϕ(gϕ) = 6ϕ, jϕ(ϕ) = 6gϕ and Ker jϕ = �3
7.

Other classes. A particular class of G2 structures one could consider are the nearly
parallel G2 structures

dϕ = τ0 ∗ϕ ϕ (3.9)

for a constant τ0. These structures define Einstein metrics with non-negative scalar
curvature, and so there is a potential relation between these structures and our dis-
cussion of the Ricci flow above.

One could also view matters in terms of spinors, and study geometric flows of
unit spinors. One can then try studying parallel spinors or, more generally, Killing
spinors, as well as other special types of spinors (e.g. twistor spinors).

3.2 General Flows

Based on this discussion, it is clear that there are many possible geometric flows one
could write down, and each one could potentially tackle different open problems in
G2 geometry.

That said, one can describe how various key quantities vary under a general flow
of G2 structures (see [5, 22]). By the type decomposition of 3-forms, any geometric
flow of G2 structures can be written
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∂

∂t
ϕ = 3 f0ϕ + ∗ϕ( f1 ∧ ϕ) + f3 = iϕ(h) + X� ∗ϕ ϕ (3.10)

where f0 ∈ C∞(M), f1 ∈ �1(M) and f3 ∈ �3
27(M), h ∈ C∞(S2T ∗M) and X ∈

C∞(T M) at each time t . From this one can see that the metric and 4-form evolve as
follows.

Proposition 3.2 Along (3.10) we have

∂

∂t
gϕ = 2 f0g + 1

2
jϕ( f3) = 2h (3.11)

and
∂

∂t
∗ϕϕ = 4 f0 ∗ ϕ + f1 ∧ ϕ − ∗ϕ f3. (3.12)

In particular, along any flow (3.10), the evolution of the metric is independent of
the vector field X , and the volume form evolves as follows.

Proposition 3.3 Along (3.10) we have

∂

∂t
volϕ = 7 f0 volϕ = 1

3

∂

∂t
ϕ ∧ ∗ϕϕ. (3.13)

This formula is useful to study Hitchin’s volume functional [17] on a compact
manifold M . (Note that the published version [18] of [17] omits the material on G2

structures.)

Proposition 3.4 Along (3.10), the volume functional

Vol(ϕ) = 1

7

∫
M

ϕ ∧ ∗ϕ =
∫
M
volϕ = Vol(M, gϕ). (3.14)

satisfies (by (3.13))

∂

∂t
Vol(ϕ) = 7

∫
M

f0 volϕ = 1

3
〈 ∂

∂t
ϕ, ϕ〉L2 . (3.15)

This shows in particular that Vol(ϕ) will be monotone along any flow for which
f0 has a sign, and the critical points of the functional will be characterised by the G2

structures for which f0 = 0. It also shows that the obvious gradient flow for Vol(ϕ)

is
∂

∂t
ϕ = λϕ (3.16)

for some λ > 0 (or λ < 0 for the negative gradient flow). This is clearly useless
since all it does is rescale ϕ! Therefore, if one wants to think about making use of
the volume functional for a gradient flow, we should consider restricting the class of
G2 structures we work with.
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4 Laplacian Flow

The geometric flow of G2 structures that has received the most attention is the Lapla-
cian flow due to Bryant [5].

Definition 4.1 The Laplacian flow is given by

∂

∂t
ϕ = �ϕϕ, (4.1)

where
�ϕ = dd∗

ϕ + d∗
ϕd (4.2)

is the Hodge Laplacian.

On a compact manifold, we see that

�ϕϕ = 0 ⇔ dϕ = d∗
ϕϕ = 0 (4.3)

by integration by parts, and so torsion-free G2 structures will be the critical points
of (4.1).

4.1 Closed G2 Structures

Bryant’s suggestion is to restrict (4.1) to closed G2 structures ϕ as in (3.4). A key
motivation is the usual one in G2 geometry: namely that the torsion-free condition
naturally splits into a linear condition (3.4) and a nonlinear condition (3.5). Thus,
it is useful to assume the linear condition is satisfied then try to solve the nonlinear
one. This strategy is the only one that has proved to be successful, by the work of
Joyce [21, Chap. 11]. Hence, it clearly makes sense to follow the same approach in
a geometric flow.

It will turn out that when (4.1) exists the closed condition is preserved. In that
case

∂

∂t
ϕ = dd∗

ϕϕ, (4.4)

so in fact (4.1) stays within a fixed cohomology class [ϕ(0)].
Proposition 4.2 If ϕ(t) satisfies (4.1) on M and dϕ(t) = 0 then ϕ(t) ∈ [ϕ(0)] ∈
H 3(M) for all t for which the flow exists.

This is perhaps reminiscent of the Kähler–Ricci flow on a manifold with c1 = 0,
which starts with a Kähler form and stays within the Kähler class, but it is not clear
at all whether such an analogy is pertinent or a red herring.

When we restrict to closed G2 structures we can decompose
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�ϕϕ = 1

7
|τ2|2ϕ + f3. (4.5)

We can see this because
d∗ϕϕ = τ2 ∧ ϕ = − ∗ϕ τ2 (4.6)

by (3.6) and (3.7), and therefore

�ϕϕ = dd∗
ϕϕ = dτ2 (4.7)

and differentiating (4.6) gives

0 = dτ2 ∧ ϕ = �ϕϕ ∧ ϕ = 0. (4.8)

This means that f1 = 0 in (3.10). Moreover, (4.6) and (3.7) imply that

dτ2 ∧ ∗ϕϕ = d(τ2 ∧ ∗ϕϕ) − τ2 ∧ d ∗ϕ ϕ = −τ2 ∧ τ2 ∧ ϕ = |τ2|2 volϕ . (4.9)

Hence, for closed G2 structures, (4.5) implies the following.

Lemma 4.3 For a closed G2 structure ϕ, we have

�ϕϕ = 0 ⇔ d∗
ϕϕ = 0. (4.10)

Therefore, the critical points of (4.1) on closed G2 structures are precisely the
torsion-free G2 structures, without assuming compactness. This might seem like a
minor point (since we will mainly only care about the Laplacian flow on compact
manifolds) but it appears to hint at the special character of the Laplacian flow because
it is restricted to closed G2 structures.

Moreover, we can show that

�ϕϕ = iϕ
(

− Ric(gϕ) + 4

21
|τ2|2gϕ + 1

8
jϕ

( ∗ϕ (τ2 ∧ τ2)
))

(4.11)

so that by (3.11) we have the following.

Proposition 4.4 Along (4.1) we have

∂

∂t
gϕ = −2Ric(gϕ) + 8

21
|τ2|2gϕ + 1

4
jϕ

( ∗ϕ (τ2 ∧ τ2)
)
. (4.12)

4.2 Volume Functional

Lemma 4.5 Along (4.1) for closed G2 structures, the volume functional Vol(ϕ) is
monotonically increasing.
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Proof We can already see from (4.5) that, in terms of (3.10),

f0 = 1

7
|τ2|2 ≥ 0. (4.13)

Hence, by (3.15), the volume functional Vol(ϕ) is monotonically increasing along
the Laplacian flow. �

This allows us to give a very quick alternative proof of the main result of [27].

Proposition 4.6 Let ϕ(t) be a steady or shrinking soliton to the Laplacian flow (4.1)
for closed G2 structures on a compact manifold. Then ϕ(t) is stationary, i.e. ϕ(t) =
ϕ(0) is torsion-free for all t .

Proof If ϕ(t) is steady or shrinking then

∂

∂t
Vol(ϕ(t)) ≤ 0. (4.14)

Therefore, by Lemma4.5, Vol(ϕ(t)) is constant. Hence, by (3.15) and (4.13), we
must have that

f0 = 1

7
|τ2|2 = 0, (4.15)

which means τ2 = 0, as required. �

It is important to note that this result fails in the non-compact setting: Lauret [26]
has constructed examples of non-compact shrinking and steady solitons which are
not stationary. The proof of Proposition4.6 is not valid here since the volume is not
well-defined for these non-compact examples.

We now show that the Laplacian flow for closed G2 structures is actually the
gradient flow forVol(ϕ)where, from now on, we only consider the volume functional
restricted to a given cohomology class.

Proposition 4.7 The Laplacian flow (4.1) for closed G2 structures ϕ is the gradient
flow for the volume functional Vol(ϕ) in (3.14) restricted to [ϕ].
Proof We know that the flow stays within a given cohomology class, so we can write

ϕ(t) = ϕ(0) + dη(t) (4.16)

for some 2-forms η and the Laplacian flow is really, in some sense, a flow on 2-forms.
(Again, this is reminiscent of Kähler–Ricci flow with c1 = 0 as the flow becomes
a flow on Kähler potentials, but this analogy is made with the usual caveats.) Then
(3.15) gives us that

∂

∂t
Vol(ϕ) = 1

3
〈 ∂

∂t
ϕ, ϕ〉L2 = 1

3
〈d ∂

∂t
η, ϕ〉L2 = 1

3
〈 ∂

∂t
η, d∗

ϕϕ〉L2 . (4.17)
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Hence, the gradient flow for Vol(ϕ) is

∂

∂t
η = d∗

ϕϕ ⇒ ∂

∂t
ϕ = d

∂

∂t
η = dd∗

ϕϕ = �ϕϕ, (4.18)

the Laplacian flow. (We have ignored the factor 1
3 which amounts to rescaling time

t .) �
Proposition4.7 immediately yields the following.

Proposition 4.8 A closed G2 structure on a compact manifold is a critical point of
Vol(ϕ) within a fixed cohomology class if and only if ϕ is torsion-free.

Wecan even saymore about the critical points of the volume functional. If we look
at the second derivative at a critical point ϕ(0), then by (3.15) along any variation
ϕ(s) = ϕ(0) + dη(s) in the cohomology class

∂2

∂s2
Vol(ϕ)|s=0 = 1

3

∫
M

∂

∂s
ϕ ∧ ∂

∂s
∗ϕϕ|s=0, (4.19)

since

1

3

∫
M

∂2

∂s2
ϕ ∧ ∗ϕϕ|s=0 = 1

3
〈d ∂2

∂s2
η, ∗ϕϕ〉L2 |s=0 = 1

3
〈 ∂2

∂s2
η, d∗

ϕϕ〉L2 |s=0 = 0

(4.20)
as d∗

ϕϕ = 0 at s = 0 by assumption. Now if we write the variation of ϕ(s) at s = 0
as in formula (3.10) then ∗ϕϕ(s) varies by (3.12) and so we see that

∫
M

∂

∂s
ϕ ∧ ∂

∂s
∗ϕϕ|s=0 = c0‖ f0‖2L2 + c1‖ f1‖2L2 − ‖ f3‖2L2 (4.21)

for some positive constants c0, c1. If the variation ϕ(s) is orthogonal to the action
by diffeomorphisms (meaning that ∂ϕ

∂s |s=0 and the tangent directions to the diffeo-
morphism orbit through ϕ(0) are orthogonal), then a slice theorem argument forces
f0 = f1 = 0 (see [17]). In other words, the slice condition

d∗
ϕdη ∈ �2

14(M) ⇒ dη ∈ �3
27(M), (4.22)

so f3 = dη(0). Putting this observation together with (4.19) and (4.21), we see that,
orthogonal to the action by diffeomorphisms, we have

∂2

∂s2
Vol(ϕ)|s=0 = −‖dη(0)‖2L2 ≤ 0. (4.23)

Thus, we have the following.

Theorem 4.9 Critical points of Vol(ϕ) on [ϕ] are strict local maxima (modulo the
action of diffeomorphisms).



Geometric Flows of G2 Structures 129

This suggests that the gradient flow of the volume functional (i.e. (4.1)) could be
well-behaved since its only critical points are maxima.

4.3 Short-Time Existence

A key issue we have avoided in our discussion thus far is the question of whether the
Laplacian flow exists or not. Certainly, if we look at (4.1) and compare it to (2.1) we
would seem to have the wrong sign! In general, (4.1) does not seem to be parabolic
in any sense, which is very bad news analytically.

However, again the fact that we are restricting to closedG2 structures comes to our
rescue. In this case, we have already seen in (4.12) that the metric evolves by Ricci
flow plus lower order terms and so its flow is parabolic modulo diffeomorphisms.

If we do DeTurck’s trick for the Laplacian flow, using dϕ = 0:

∂

∂t
ϕ = �ϕϕ + LX (ϕ)ϕ = �ϕϕ + d(X (ϕ)�ϕ), (4.24)

(as in the Ricci flow case, and with the same vector field X given in (2.21), in fact)
then we might hope that we end up with a genuine parabolic equation in (4.24).
However, this is not the case!

In fact, (4.24) is only parabolic in the direction of closed forms, so one has to
consider the restricted flow in order to prove short-time existence. This is a little bit
tricky but was done by Bryant–Xu [6]. Their paper, which definitely gives a correct
result that is fundamental to the subject, has never been published, so we give an
account of the proof here, which is essentially the same as in [6].

Theorem 4.10 Let ϕ0 be a smooth closed G2 structure on a compact manifold M.
There exists ε > 0 so that a unique solution ϕ(t) to the Laplacian flow (4.1) with
ϕ(0) = ϕ0 and dϕ(t) = 0 exists for all t ∈ [0, ε], where ε depends on ϕ0.

Proof We know that if (4.1) exists then it will stay in the cohomology class [ϕ0] by
Proposition4.2. Therefore, we could write

ϕ(t) = ϕ0 + dη(t) (4.25)

for a family of exact 3-forms dη(t), and (4.1) with the initial condition ϕ(t) = ϕ0 is
equivalent to

∂

∂t
dη = �ϕ0+dηdη and dη(0) = 0. (4.26)

Let X (ϕ) be the vector field given by X (gϕ) in (2.21), where we can choose the
fixed background metric k = gϕ0 for example. Suppose we can solve

∂

∂t
dη(t) = �ϕ0+dηdη + d(X (ϕ0 + dη)�dη) and dη(0) = 0 (4.27)
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uniquely for short time. Then we can find a unique family of diffeomorphisms �

solving (2.17) (since this is the harmonic map heat flow). Therefore, just as in Propo-
sition2.6, it follows that ϕ = �∗(ϕ0 + dη) satisfies (4.1) with ϕ(0) = ϕ0, dϕ(t) = 0
for short time, and the solution is unique. (We have used here that the condition for a
3-form to be positive is open, so for t sufficiently small, ϕ0 + dη(t)will be a positive
3-form.) We are therefore left to show that (4.27) has a unique short-time solution.

We know from (4.11) and [28, Lemma 9.3] that

�ϕϕ + LX (ϕ)ϕ = 1

2
iϕ

( − 2Ric(gϕ) + LX (gϕ)gϕ + 2

21
|τ2|2gϕ + 1

4
jϕ(∗ϕ(τ2 ∧ τ2))

)

+ 1

2

(
d∗(X (ϕ)�ϕ)

)�� ∗ϕϕ. (4.28)

Given that the terms with τ2 in them in (4.28) are lower order, and the Ricci–DeTurck
flow (2.16) is parabolic, it would seem likely that the linearisation of (4.28) is
parabolic when restricted to closed forms, and hence that (4.27) is parabolic. In
fact, one may explicitly compute as in [6] that the linearisation of (4.27) in the
direction of exact forms is

∂

∂t
dζ = −�ϕ0+dηdζ + d

(
Qϕ0+dη(dζ )

)
, (4.29)

where Qϕ0+dη(dζ ) is order zero in dζ (meaning it depends on just dζ and not its
derivatives). Somewhat surprisingly, the sign has switched and (4.29) is manifestly
parabolic.

However, we have only shown that (4.27) is parabolic in the direction of exact
forms, so we cannot apply standard parabolic theory. Instead we will invoke the
Nash–Moser Inverse Function Theorem (see [16] for a detailed discussion of this
theorem).

We start by setting up the notation. We let

X = d
(
C∞([0, ε] × M,�2T ∗M)

)
and Y = d�2(M), (4.30)

and
U = {dη ∈ X : ϕ0 + dη(t) is a G2 structure for all t}, (4.31)

which is an open set in X containing 0. We define F : U → X × Y by

F(dη) =
(

∂

∂t
dη(t) − �ϕ0+dηdη − d(X (ϕ0 + dη)�dη), dη(0)

)
, (4.32)

so that F(dη) = (0, 0) if and only if dη solves (4.27). If we can show that F is
locally invertible near 0, we have that (4.27) has a unique short-time solution and so
the proof is complete.
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By (4.29), the linearisation of F at dη ∈ U is given by

dF |dη(dζ ) =
(

∂

∂t
dζ + �ϕ0+dηdζ − d

(
Qϕ0+dη(dζ )

)
, dζ(0)

)
. (4.33)

Since (4.29) is parabolic, we see that if dF |dη(dζ ) = (0, 0) then dζ = 0 as this is
the unique solution to the linear parabolic equation (4.29) with zero initial condition.
Further, given (dξ, dξ0) ∈ X × Y , we see that dF |dη(dζ ) = (dξ, dξ0) if and only if

∂

∂t
dζ = −�ϕ0+dηdζ + d

(
Qϕ0+dη(dζ )

) + dξ and dζ(0) = dξ0, (4.34)

which can be solved by linear parabolic theory.
We therefore have that dF |dη : X → X × Y is invertible for all dη ∈ U . However,

this is not yet enough to show that F is locally invertible. Notice that the family of
inverses provides a map G : U × X × Y → X given by

G(dη, dξ, dξ0) = dF |−1
dη (dξ, dξ0). (4.35)

To deduce thatF is locally invertible, as we said, we want to invoke the Nash–Moser
Inverse Function Theorem which means that we need the following:

• X and Y are tame Fréchet spaces and F is a smooth tame map;
• dF |dη is invertible for all dη ∈ U and G is a smooth tame map.

The fact that C∞([0, ε] × M,�2T ∗M) and �2(M) are naturally tame Fréchet
spaces is standard, and it therefore quickly follows (from Hodge theory) that X and
Y are also tame Fréchet spaces. Smooth partial differential operators are smooth
tame maps, so F is a smooth tame map.

The last thing we need to show is that G is a smooth tame map, but this follows
immediately from a general result about the family of inverses given by solutions of
a smooth family of parabolic partial differential equations, due to Hamilton [15].

Thus, the Nash–Moser Inverse Function Theorem applies toF and so it is locally
invertible as desired. �

Actually, before DeTurck’s trick the same method of Bryant–Xu was used by
Hamilton [15] to prove short-time existence of the Ricci flow. The reason is that the
Ricci flow is not a flow amongst all symmetric 2-tensors really, since the Ricci tensor
always satisfies the contracted Bianchi identity. Therefore, one could consider the
flow restricted to those which satisfy this identity. To prove rigorously that one can do
this, one must employ the Nash–Moser Inverse Function Theorem, as Hamilton did.
This is not needed as we have said for the Ricci flow, since DeTurck’s trick already
removes the issue caused by the Bianchi identity there, but it is needed currently for
the Laplacian flow.
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4.4 Results and Questions

Results. There are several important areas in the Laplacian flow for closed G2 struc-
tures where progress has been made.

• Long-time existence criteria based on curvature and torsion estimates along the
flow, uniqueness and compactness theory, and real analyticity of the flow [28, 30].

• Stability of the critical points [29].
• Non-collapsing under assumption of bounded torsion [8].
• Explicit study of the flow in homogeneous situations and other symmetric cases
such as nilmanifolds and warped products with a circle [9, 11, 25, 26, 31, 33].

• Examples and non-existence results for solitons [25–28].
• Eternal solutions for the flow arising from extremally Ricci pinched G2 structures
[12].

• Reduction of the flow to 4 dimensions, with improved long-time existence criteria
[10] and analysis of the 4-torus case [19].

• Reduction of the flow to 3 dimensions, with striking long-time existence and
convergence results [24].

It is worth remarking that the scalar curvature here is given by

R(gϕ) = −1

2
|τ2|2, (4.36)

so having a bound on torsion is equivalent to a bound on scalar curvature.

Questions. There are many open problems in the area.

• Does the flow exist as long as the torsion is bounded?
• Can a volume bound be used to control the flow?
• Are there any compact examples which develop a singularity in finite time?
• Is there a relationship between the flow and calibrated submanifolds, specifically
coassociative submanifolds?

For the last two points, there is an example due to Bryant [5] which shows that
singularities can happen at infinite time (i.e. the flow exists for all time but does not
converge), and that the singularity is related to coassociative geometry.

We can also ask whether the Laplacian flow is potentially useful to study other
classes of G2 structures. For example, naively if we assume ϕ is coclosed and the
flow exists then it should stay coclosed since then

�ϕϕ = d∗
ϕdϕ. (4.37)

So, an obvious question is: does this flow exist? Gavin Ball has informed the author
that, in general, the Laplacian flow will not preserve the coclosed condition, so the
answer would appear to be negative.
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5 Laplacian Coflow

Another approach to studying G2 structures was introduced in [23].

Definition 5.1 The Laplacian coflow for G2 structures is given by:

∂

∂t
∗ϕϕ = �∗ϕϕ∗ϕϕ, (5.1)

where �∗ϕϕ is the Hodge Laplacian of the metric determined by ∗ϕϕ. (Actually, in
[23], they introduced (5.1) with a minus sign on the right-hand side by analogy with
the heat equation (2.1), but as we shall see below the “correct” sign in the equation
is that given, just as in (4.1).)

Here one has to be a little careful since the 4-form ∗ϕϕ is not quite equivalent to
the 3-form ϕ. In particular, the 4-form does not determine the orientation, but we can
assume we have an initial orientation which stays fixed along the flow.

Again by integration by parts it is easy to see that on a compact manifold

�∗ϕϕ∗ϕϕ = 0 ⇔ dϕ = d∗
ϕϕ = 0, (5.2)

so the critical points are again the torsion-free G2 structures.

5.1 Coclosed G2 Structures

The proposal in [23] is to restrict (5.1) to closed 4-forms (so coclosed G2 structures).
If the flow exists, meaning it preserves closed forms as in the Laplacian flow setting,
we would have that:

∂

∂t
∗ϕϕ = dd∗

ϕ∗ϕϕ. (5.3)

Thus, again, the flow will stay in the given cohomology class [∗ϕϕ(0)] as long as it
exists. Therefore, the Laplacian coflow can be seen as a possible means to deform
∗ϕϕ in its cohomology class so that it becomes torsion-free.

Proposition 5.2 If∗ϕϕ(t) satisfies (5.1)on M andd∗ϕ ϕ(t) = 0 then∗ϕϕ ∈ [∗ϕϕ(0)]
∈ H 4(M) for all t for which the flow exists.

We can easily modify our discussion of the volume functional Vol(ϕ), given
in (3.14), and the Laplacian flow in Proposition4.7 and Theorem4.9 to show the
following.

Theorem 5.3 The flow (5.1) for coclosed G2 structures ∗ϕϕ is the gradient flow of
the volume functional in (3.14) restricted to [∗ϕϕ] and the critical points are strict
local maxima for the volume functional (modulo diffeomorphisms).
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At this point, things are looking quite good in the study of the Laplacian coflow.
However, it is now worth going back to the earlier discussion of the coclosed con-

dition (3.5). Taking a positive interpretation of the h-principle result (Theorem3.1),
we can always assume that ourG2 structure is coclosed and therefore (5.1) potentially
allows us to study the space of all G2 structureswhilst restricting to the coclosed ones.
A more negative outlook is to say that studying the Laplacian coflow means that we
are effectively studying all G2 structures, which only has topological rather than geo-
metric content, and so perhaps it is unrealistic to expect the flow to be well-behaved
in such generality.

5.2 Short-Time Existence: A Modification

Given this discussion it is worth confronting the key issue of whether the flow (5.1)
even exists. To tackle this, we would employ the DeTurck‘s trick and hope to show
that (5.1) is parabolic, possibly only in the direction of closed forms, just as in the
case of (4.1) as in Theorem4.10. Unfortunately, this does not work! Therefore, we
cannot currently say (regardless of which sign we choose in (5.1)) that the Laplacian
coflow even exists. Nonetheless, one can find solutions to it in special cases [23],
so we can continue to ask the question: does (5.1) exist restricted to coclosed G2

structures?
An approach taken in [13] is to modify (5.1) to get a family of flows depending

on an arbitrary constant c.

Definition 5.4 The modified Laplacian coflow(s) (recalling the torsion forms in
(3.6)) for c ∈ R is defined by

∂

∂t
∗ϕϕ = �∗ϕϕ∗ϕϕ + d

((
c − 7

2
τ0

)
ϕ

)
, (5.4)

again restricted to coclosed G2 structures.

This again moves in the cohomology class and has the added benefit of defining a
flow which is parabolic in the direction of closed forms (modulo diffeomorphisms),
and therefore (5.4) is guaranteed to exist on a compact 7-manifold by essentially the
same proof as Theorem4.10.

Theorem 5.5 Let ϕ0 be a smooth coclosed G2 structure on a compact manifold M.
There exists ε > 0 so that a unique solution ∗ϕϕ(t) to the modified Laplacian coflow
(5.4) with ∗ϕϕ(0) = ∗ϕ0ϕ0 and d ∗ϕ ϕ(t) = 0 exists for all t ∈ [0, ε].
Critical points. The short-time existence is of course important, but (5.4) is no
longer obviously a gradient flow and there is also no reason why the critical points
of the flow are torsion-free G2 structures. It is clear that if ϕ is torsion-free then the
right-hand side of (5.4) vanishes (since τ0 = 0 and dϕ = 0). However, suppose we
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choose a nearly parallel G2 structure ϕ as in (3.9), recalling that τ0 is constant in that
case. Then we see that

�∗ϕϕ∗ϕϕ = dd∗
ϕ∗ϕϕ = d∗ϕdϕ = d∗ϕ τ0∗ϕϕ = τ0dϕ = τ 2

0 ∗ϕϕ (5.5)

and

d

((
c − 7

2
τ0

)
ϕ

)
= τ0

(
c − 7

2
τ0

)
∗ϕϕ. (5.6)

Hence,

�∗ϕϕ∗ϕϕ + d

((
c − 7

2
τ0

)
ϕ

)
= τ0

(
c − 5

2
τ0

)
∗ϕϕ, (5.7)

which vanishes if c = 5
2τ0. Therefore, we will also get certain nearly parallel G2

structures as critical points. Notice here that we can change τ0 by rescaling our
nearly parallel G2 structure, so the flow will distinguish a certain scale for the nearly
parallel G2 structures. For example, the 7-sphere has a canonical nearly parallel G2

structure, and only the 7-sphere of a certain size (depending on a choice of positive
c) will be a critical point whereas others will not.

Altogether, this is a rather strange situation, which shows that the modified Lapla-
cian coflow, though parabolic, has some potentially undesirable properties.

5.3 Results and Questions

The Laplacian coflow (5.1) and its modification (5.4) have so far received rather little
attention, but the key results in the area include the following.

• Soliton solutions arising from warped products and symmetries [14, 23].
• Explicit study of the flow for symmetric situations [3, 4, 31].
• Long-time existence criteria based on curvature and torsion estimates along the
modified Laplacian coflow, and non-collapsing for (5.4) under assumption of
bounded scalar curvature [8].

There are also many open problems.

• Does the Laplacian coflow exist (possibly under some further assumptions)?
• What are the critical points of the modified Laplacian coflow?
• What do dimensional reductions of the Laplacian coflow or its modification look
like?
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6 Dirichlet Energies and Spinorial Flows

The final set of flows we will discuss are explicitly constructed as gradient flows. We
have already seen gradient flows of the volume functional (3.14) for G2 structures
(when restricted to closed or coclosed G2 structures) but these are actually atypical
examples of gradient flows. The reason is that Vol(ϕ) is of order 0 in ϕ. Typically,
gradient flows are with respect to functionals which are first order in the geometric
quantity in question. For example, mean curvature flow is the gradient flow for the
volume functional which is first order in the immersion.

6.1 Dirichlet Energies

In light of (3.1), there are two clear choices for possible functionals on a compact
7-manifold to consider.

Definition 6.1 We let

C(ϕ) = 1

2

∫
M

|∇ϕϕ|2gϕ
volϕ ≥ 0 and D(ϕ) = 1

2

∫
M

|dϕ|2gϕ
+ |d∗

ϕϕ|2gϕ
volϕ ≥ 0.

(6.1)
Observe that D and C differ by the total scalar curvature functional (see [37]):

D(ϕ) − C(ϕ) =
∫
M
R(gϕ) volϕ . (6.2)

The functionals C and D are both what one might call “Dirichlet energies”, by
analogy with (2.2). Therefore, one could potentially call the gradient flows of these
quantities “heat flows”. There is also the possibility to generalise slightly and consider
(in the notation of (3.6)):

Dν(ϕ) =
∑
i

νi

2

∫
M

|τi |2gϕ
volϕ ≥ 0 (6.3)

for positive constants νi : this encompasses C and D for appropriate choices of νi .
All of these functionals are considered in [36, 37] where the authors show the

following.

Theorem 6.2 The critical points of theDirichlet energiesDν in (6.3) are the torsion-
free G2 structures, which are the absolute minimizers for the functionals (since they
are precisely zero at these points).

They have also shown short-time existence of the gradient flows of the functionalsDν ,
since they are parabolic (modulo diffeomorphisms) and so the standard DeTurck’s
trick approach can be used.
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The key main results are the following (again in [36, 37]).

• Stability of the critical points.
• Some simple examples of solitons.

In [37] the following observation is made.

Proposition 6.3 The volume functional Vol(ϕ) in (3.14) is monotone decreasing
along the gradient flow of C in (6.1). In fact, it is a convex function along the flow.

This is contrary to our earlier results for the Laplacian flow and coflowwhich viewed
Vol(ϕ) as having strictmaxima (modulo diffeomorphisms). In our view, this indicates
a key drawback in this Dirichlet energy approach which we shall return to later.

6.2 Spinorial Flow

Up to a constant multiplicative factor, the functional C can also be written in terms
of unit spinors σ on a 7-manifold as

E(σ ) = 1

2

∫
M

|∇gσ |2g volσ ≥ 0. (6.4)

This formulation of the Dirichlet energy is something which can clearly be extended
beyond G2 geometry.

Definition 6.4 Define the following functional on pairs of metrics and unit spinors
on a compact oriented spin manifold M :

E(g, σ ) = 1

2

∫
M

|∇gσ |2g volg ≥ 0. (6.5)

The gradient flow of E is called the spinorial or spinor flow.

Here, unlike the G2 case, one can vary the metric and spinor independently, with the
caveat that the spinor must remain a g-spinor and be unit length.

In [1] the authors show that the critical points of E(g, σ ), when the dimension of
the manifold M is at least 3, are given by parallel unit spinors σ and so the metric g is
Ricci-flat of special holonomy. They also show that the associated gradient flow (the
spinorial flow) is parabolicmodulo diffeomorphisms and so has short-time existence.
This time the analysis is more involved because the space of unit spinors varies as the
metric varies, but despite these complications the final result is as one would expect.

• All of the ingredients enable one to prove that the critical points of (6.5) are stable
under its gradient flow, as shown in [34].

• The special case of the spinorial flow on Berger spheres is studied in detail in [38].
• The full analysis of the 2-dimensional case, which has special features not covered
in [1], is part of work in progress at the time of writing.
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6.3 Questions

Morse functionals. The motivation for studying gradient flows of functionals is that
one would hope (at least formally) that the functional is Morse (or Morse–Bott) on
the space of geometric objects in question. Therefore, the critical points would be
encoded by the topology of the space of geometric objects. Very often making this
formal picture rigorous is very challenging, but still motivational. For example, in the
study of surfaces in 3-manifolds (or, more generally, hypersurfaces in n-manifolds),
since the topology of the space of such surfaces is infinite and the volume functional is
(in some sense) formally aMorse function on this space, one might hope to construct
infinitely many minimal surfaces in any 3-manifold: this is a conjecture due to Yau
from 1982, which has been proved when the Ricci curvature of the 3-manifold is
positive or generic [20, 32], and recently claimed (at the time of writing) for all
metrics on 3-manifolds in [35].

Here, the Dirichlet functionals are defined on the space of G2 structures (modulo
diffeomorphism). However, unlike the case of the volume functional on hypersur-
faces, the only critical points of the functionals are absolute minimizers. Therefore,
if the functional is a Morse function then the best we can hope for is that the space
of G2 structures on our given manifold could be contractible onto the torsion-free
G2 structures.

Scaling. More than that, just as we saw with the volume functional in (3.14), the best
way to reduce the Dirichlet energy is to send the 3-form to zero by scaling, which
is clearly useless. The same thing of course happens when studying hypersurfaces
undermean curvature flow, but we can stop the hypersurface from being contracted to
a point by simply choosing a nontrivial homology class for our initial hypersurface,
which then obviously cannot contain the “zero” hypersurface. The same happens in
the Laplacian flow and coflow: the cohomology class is fixed so that one kills the
action of rescaling.

Unfortunately, when studying the Dirichlet energies, the class of G2 structure is
not preserved and so all one can do is look at the homotopy class of the initial G2

structure ϕ: this class is always homotopic to 0 in the space of G2 structures just by
rescaling (although 0 is, of course, not a G2 structure). Therefore, one might expect
for generic initial conditions that the Dirichlet energy gradient flows just send the
3-form to 0, which is certainly an absolute minimizer of the energy, but does not
appear to provide any meaningful content.

This discussion leads to the following question: is there a way tomodify or restrict
the gradient flows of (6.1) to ensure that the 3-form does not go to 0?

7 Conclusions

The study of geometric flows of G2 structures has seen some important progress, but
it is fair to say that at the time of writing the subject is still in its relative infancy.
The flows we have described have both pros and cons, and seek to tackle different
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problems, so it is potentially interesting to further investigate all of them to see what
we can learn about G2 structures. There are also potentially further flows of G2

structures that could be useful, such as the flow of isometric G2 structures introduced
in [2]. The field is clearly vibrant and wide open for discovery and progress.

In particular, it we would be very exciting if by studying geometric flows we can
uncover a new criteria (geometric or topological) for the existence or otherwise of
torsion-free G2 structures. Whilst this is an ambitious goal, by seeking to solve it we
may well acquire a much better understanding of the space of G2 structures.
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Distinguishing G2-Manifolds

Diarmuid Crowley, Sebastian Goette, and Johannes Nordström

Abstract In this survey, we describe invariants that can be used to distinguish
connected components of the moduli space of holonomy G2 metrics on a closed
7-manifold, or to distinguish G2-manifolds that are homeomorphic but not diffeo-
morphic. We also describe the twisted connected sum and extra-twisted connected
sum constructions used to realiseG2-manifolds for which the above invariants differ.

2000 Mathematics Subject Classiffication Primary: 57R20 · Secondary: 53C29 ·
58J28

1 Introduction

This is a survey of recent results on the topology of closed Riemannian 7-manifolds
with holonomy G2 and their G2-structures. Among the highlights are examples of

• closed 7-manifolds whose moduli space of holonomy G2 metrics is disconnected,
i.e. the manifold admits a pair of G2-metrics that cannot be connected by a path
of G2-metrics (even after applying a diffeomorphism to one of them)

• pairs of closed 7-manifolds that both admit holonomy G2 metrics, which are
homeomorphic but not diffeomorphic.

The key ingredients are

• invariants that can distinguish homeomorphic closed 7-manifolds up to diffeomor-
phism, or G2-structures on 7-manifolds up to homotopy and diffeomorphism
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• classification theorems for smooth 7-manifolds or G2-structures on smooth
7-manifolds, at least for 7-manifolds that are 2-connected

• a method for producing many examples of closed G2-manifolds, many of which
are 2-connected, and for which the above invariants can be computed.

By a homotopy of G2-structures we simply mean a continuous path of G2-structures
on a fixed manifold. The relevance is that metrics with holonomy G2 are essentially
equivalent to torsion-free G2-structures. If two G2-metrics on M are in the same
component of the moduli space, then their associated G2-structures are certainly
related by homotopy and diffeomorphism. However, studying homotopy classes of
G2-structures is essentially a topological problem, and avoids considering the com-
plicated partial differential equation of torsion-freeness.

This survey will concentrate on describing the invariants and the constructions,
while only stating the classification results.

1.1 Invariants and Classification Results for 2-Connected
7-Manifolds

By Poincaré duality, all information about the cohomology of a closed 2-connected
7-manifold M is captured by H 4(M). For simplicity, let us from now on assume that
H 4(M) is torsion-free. Then in particular the data about the cohomology reduces to
the integer b3(M).

A 2-connected manifold has a unique spin structure. The only interesting relevant
characteristic class of M is the spin characteristic class pM ∈ H 4(M) (which deter-
mines the first Pontrjagin class by p1(M) = 2pM ). Since we assume H 4(M) to be
torsion-free, the data of pM amounts to specifying the greatest integer d that divides
pM in H 4(M) (where we set d := 0 if pM = 0). This d is in fact even, see Sect. 2.2.

Theorem 1.1 ([31, Theorem 3]) Closed 2-connected 7-manifolds with torsion-free
cohomology are classified up to homeomorphism by (b3, d).

If pM = 0, ormore generally, if pM is a torsion class, thenM admits 28 diffeomor-
phisms classes of smooth structures, distinguished by the diffeomorphism invariant
of Eells and Kuiper [15]. A generalisation of this invariant to the case when pM is
non-torsion was introduced in [13]. Under the simplifying assumption that H 4(M)

is torsion-free, this generalised Eells–Kuiper invariant is a constant

μ(M) ∈ Z/ gcd(28, d̃
4 ) ,

where
d̃ := lcm(4, d) .

Theorem 1.2 ([13, Theorem1.3])Closed 2-connected 7-manifoldswith torsion-free
cohomology are classified up to diffeomorphism by (b3, d, μ).
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In particular, the number of diffeomorphism classes of smooth structures on a
2-connected M is exactly gcd(28, d̃

4 ).
Given a G2-structure on M , [11] defines two further invariants ν and ξ . The first

is simply a constant ν ∈ Z/48. Under the assumption that H 4(M) is torsion-free, ξ
is also a constant ξ(M) ∈ Z/3d̃ . Both are invariant not only under diffeomorphisms
but also under homotopies of G2-structures. They satisfy the relations

ν =
3∑

i=0

bi (M) mod 2 (1a)

12μ = ξ − 7ν mod gcd(12 · 28, 3d̃) . (1b)

Theorem 1.3 ([11, Theorem 6.9]) Closed 2-connected 7-manifolds with torsion-
free cohomology equipped with a G2-structure are classified up to diffeomorphism
and homotopy by (b3, d, ν, ξ).

In particular, the number of classes of G2-structures modulo homotopy and dif-
feomorphism on a fixed smooth 2-connected M is determined by computing the
number of pairs (ν, ξ) that satisfy (1); for each of the 24 values of ν allowed by
the parity constraint (1a), there are Num

(
d
112

)
values for ξ that satisfy (1b), so the

number of classes is 24Num
(

d
112

)
. Here, “Num” denotes the numerator of a fraction

written in lowest terms. We can say that ν on its own always distinguishes at least
24 classes of G2-structures on any fixed M , and if d divides 112 then it determines
the classes completely.

The invariantsμ, ν and ξ are all defined as “coboundary defects” of characteristic
class formulas valid for closed 8-manifolds. The definitions of ν and ξ rely on
interpreting G2-structures in terms of non-vanishing spinor fields.

The ν-invariant is a bit more robust than the other two, in that its range does not
depend on d. If the G2-structure is torsion-free, it is also possible to define a closely
related invariant ν̄ ∈ Z in terms of spectral invariants of the metric induced by the
G2-structure, which satisfies

ν = ν̄ + 24 (1 + b1(M)) mod 48 ,

seeCorollary4.3. The analytic refinement is invariant under diffeomorphisms, but not
under arbitrary homotopies of G2-structures. However, ν̄ is invariant under homo-
topies through torsion-free G2-structures. Therefore ν̄ is capable of distinguishing
components of the moduli space of G2-metrics on a manifold M , even when the
associated G2-structures are homotopic.
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1.2 Twisted Connected Sums

The source of examples that we use is the twisted connected sum construction pio-
neered by Kovalev [22] and studied further in [9], and the “extra-twisted” generali-
sation from [10, 28]. Let us first outline the original version of the construction.

Suppose that V+ and V− is a pair of asymptotically cylindrical Calabi–Yau 3-folds:
Ricci-flat Kähler 3-folds with an asymptotic end exponentially close to a product
cylinderR

+ ×U .We require the asymptotic cross-sectionU± of V± to be of the form
S1 × �± where�± is a K3 surface. ThenM± := S1 × V± is an asymptotically cylin-
drical (ACyl)G2-manifold with asymptotic cross-section Y± = T± × �±, where the
2-torus T± is a product of an ‘internal’ circle factor from the asymptotic cross-section
of V± and the ‘external’ circle factor in the definition of M±. Let t : T+ → T− be an
orientation-reversing isometry that swaps the internal and external circle directions.
We call r : �+ → �− a hyper-Kähler rotation if the product map

(−1) × t × r : R × T+ × �+ → R × T− × �− (2)

is an isomorphism of the asymptotic limits of the torsion-free G2-structures of M+
and M− (see Definition3.4). Given a hyper-Kähler rotation r and a sufficiently large
‘neck length’ parameter �, we can truncate the cylinders of M± at distance �, form
a closed 7-manifold M� by gluing the boundaries using t × r and patch the torsion-
free G2-structures from the halves to a closed G2-structure ϕ with small torsion
on M�. By Kovalev [22, Theorem 5.34] or the more general results of Joyce [20,
Theorem 11.6.1], ϕ� can be perturbed to a torsion-free G2-structure ϕ̄.

The cohomology of the twisted connected sum M� can be computed from the
cohomology of V+ and V− using Mayer–Vietoris, given some data about the action
of ron cohomology. It is convenient to describe the latter piece of data in termsofwhat
we call the configuration of r. Call the image N± ⊂ H 2(�±; Z) of the restrictionmap
H 2(V±; Z) → H 2(�±; Z) the polarising lattice of V±. If L is an even unimodular
lattice of signature (3, 19), then H 2(�±; Z) ∼= L by the classification of lattices, so
we can identify N+ and N− with sublattices of L , each well-defined up to the action
of the isometry group O(L). Given rwe can instead consider the pair of embeddings
N+, N− ↪→ L as well-defined up to the action of O(L), and we call such a pair a
configuration of the polarising lattices.

In a similarway, pM can be computed fromdata about V+ and V− togetherwith the
configuration. But even without considering that data, there are some strong general
restrictions on the possible values of the greatest divisor d of pM . It follows from
[20, Proposition 10.2.7] that pM is rationally non-trivial, so d > 0. Note also that M
always contains a K3 surface with trivial normal bundle. Since pK3 ∈ H 4(K3; Z) ∼=
Z corresponds to 24, d must always divide 24. As explained in Sect. 2.2, d is always
even, so a priori the only possible values for d are 2, 4, 6, 8, 12 and 24.

As explained in Sect. 3.4, it is easier to find examples of pairs of ACyl Calabi–Yau
3-folds V+, V− with a hyper-Kähler rotation of their asymptotic K3s where the con-
figuration is ‘perpendicular’ (in the sense that every element of N+ is perpendicular
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to every element of N− in L) than where it is not. In [9] it is shown that there are at
least 108 pairs V+, V− with a perpendicular matching, which are 2-connected with
H 4(M) torsion-free. Computing b3 and d shows that many of the resulting twisted
connected sums are homeomorphic. However, these examples on their own turn out
to be insufficient for addressing the questions above.

If M is 2-connected with torsion-free H 4(M) and d = 2, 4, 6 or 12 then M has
a unique smooth structure (up to diffeomorphism), while if d = 8 or 24 then M
admits exactly two classes of smooth structure distinguished by the generalised
Eells–Kuiper invariant μ ∈ Z/2. For twisted connected sums, μ is computed in [12]
in terms of the same data used to determine pM . It turns out that μ = 0 for any
twisted connected sum with perpendicular configuration. However, [12] studies the
problem of finding twisted connected sums with non-perpendicular configuration,
and thereby also produces some examples with μ = 1.

Example 1.4 The smooth 2-connected 7-manifolds with torsion-free H 4(M) and
(b3, d, μ) = (101, 8, 0) and (101, 8, 1) both admit metrics with holonomy G2 (see
Example3.8); they form a pair of G2-manifolds that are homeomorphic but not
diffeomorphic.

Turning to the G2-moduli space of twisted connected sums, we find that if one
attempts to distinguish components of the moduli space using the ν-invariant, the ν-
invariant of a twisted connected sum turns out to always take the same value. Indeed,
it was computed in [11] in terms of a spin cobordism that all twisted connected
sums have ν = 24, regardless of the ACyl Calabi–Yaus used or the configuration.
Considering the analytic refinement ν̄ does not help either.

Theorem 1.5 ([10, Corollary 3]) ν̄ = 0 for any twisted connected sum.

Ifwewant to use this circle of ideas to exhibit examples of closed 7-manifoldswith
disconnected moduli space of G2 metrics, we are left with two possible approaches.
One is to make use of the ξ -invariant, and this approach has very recently been
successfully followed by Wallis [30]. His computation of the ξ -invariant for twisted
connected sums shows that, like μ, it is uninteresting whenever the configuration is
perpendicular. In particular, none of the examples found in [9] can be distinguished
using ξ . However, [30, Examples 1.6 & 1.7] provide twisted connected sums with
non-perpendicular configuration and d = 6 or 24, where ξ does distinguish compo-
nents of the moduli space.

The other approach available for disconnecting theG2-moduli space is to consider
amore general class of examples andwe review recentwork along this direction in the
following subsection. Among these new examples we will also find G2-manifolds
that are not G2-nullbordant, see Remark1.10 below, so G2-bordism presents no
obstruction against holonomy G2.
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1.3 Extra-Twisted Connected Sums

Our generalisation of the twisted connected sum construction relies on using ACyl
Calabi–Yau manifolds V± with automorphism groups �± ∼= Z/k±. The action of �±
on the asymptotic cross-section S1 × �± of V± is required to be trivial on �± and
free on the ‘internal’ S1 factor. If we also let �± act freely on the ‘external’ S1 factor
of S1 × V±, then the quotient M± := (S1 × V±)/�± is a smooth ACylG2-manifold.
The asymptotic cross-section is of the form T± × �±, for T± := (S1 × S1)/�±. Note
that the 2-torus T± need not be a metric product of two circles; on the other hand it
could be even if k± > 1, depending on the choice of circumferences of the internal
and external circles.

Supposewehave arranged the circumferences of the circles in such away that there
exists an orientation-reversing isometry t : T+ → T−. A key parameter of t is the
angle ϑ between the external circle directions. For a diffeomorphism r : �+ → �−,
the condition that (2) be an isomorphism of the asymptotic limits of M+ and M−
depends on ϑ (see Definition3.4). Given such a ϑ-hyper-Kähler rotation, we can
proceed to glue M+ and M− similarly as before to form a closed manifold M with a
torsion-freeG2-structure.We assume thatϑ is not amultiple ofπ , so thatM has finite
fundamental group, and thus holonomy exactly G2 (otherwise the external circles
are aligned, so that M has an S1 factor). Note that if k+ = k− = 1 then ϑ is forced
to be a right angle and we recover the ordinary twisted connected sum construction
from the previous subsection.

Unlike for ordinary twisted connected sums, the analytic invariant of an extra-
twisted connected sum is affected by the configuration. In fact, when both k± ≤ 2, the
only contributions to ν̄ come from ρ = π − 2ϑ , and the invariantmρ(L; N+, N−) ∈
Z of the configuration defined in (27) (see [10, Def 2.5]).

If k± ≥ 3, there are two more contributions. The generalised Dedekind
sum Dγ±(V±) ∈ Q defined in (28) (see [17]) depends on the action of �± on V±.
It vanishes if no element γ ∈ �± has isolated fixed points. On an odd-dimensional
Calabi–Yau manifold, no structure preserving involution can have isolated fixed
points, so this contribution vanishes if k± ≤ 2.

Finally, (29) defines a number F± ∈ R that depends on the circumferences of the
internal and external S1 and the �±-action on their product (see [17]). It vanishes
in the rectangular case (k± = 1) and in the rhombic case (k± = 2). While it is hard
to compute F± individually in general, we sketch ways to determine F+ + F− in
Sects. 4.3 and 4.4 below.

Theorem 1.6 ([10, Thm 1], see also [17]) Let (M, g) be an extra-twisted connected
sum. Let ϑ be the gluing angle, and let mρ(L; N+, N−), Dγ±(V±) and F± be as
above. Then

ν̄(M) = Dγ+(V+) + Dγ−(V−) + F+ + F− − 72
ρ

π
+ 3mρ(L; N+, N−) .
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Example 1.7 The smooth 2-connected 7-manifold with torsion-free H 4(M)

and (b3, d, μ) = (97, 2, 0) admits two torsion-freeG2-structureswith ν̄ = 0 and ν̄ =
−36, see [10, Ex 3.7]. Hence these torsion-free G2-structures are not homotopic, so
the corresponding holonomy G2 metrics must lie in different components of the G2

moduli space. One of the two G2-structures comes from an extra-twisted connected
sum with gluing angle ϑ = π

4 , while the other is a rectangular twisted connected
sum.

Example 1.8 The smooth 2-connected 7-manifold with torsion-free H 4(M) and
(b3, d, μ) = (109, 2, 0) admits two torsion-free G2-structures with ν̄ = 0 and ν̄ =
−48, see [10, Ex 3.11]. Both have ν = 24, and because d divides 112, the underlying
G2-structures are homotopic (after choosing the diffeomorphism appropriately) by
Theorem1.3. Nevertheless, the analytic invariant ν̄ shows that the corresponding
holonomy G2 metrics are in different components of the G2 moduli space. One
of the two G2-structures comes from an extra-twisted connected sum with gluing
angle π

6 , while the other is a rectangular twisted connected sum.

Remark 1.9 The examples above all have d = d̃ = 4 and 12|ν, so they have ξ = 0
by (1b). On the other hand, the examples found by Wallis all have ν̄ = 0 by Theo-
rem1.5, demonstrating that neither ξ nor ν̄ is a complete invariant of the connected
components of the G2-moduli space. (Nor do we have any reason to believe that
these methods can give a complete set of invariants of the connected components.)

Remark 1.10 The ν-invariants in Theorem1.6 are always divisible by 3 if k± ≤ 2.
If k± > 2, it is possible to construct examples where this is no longer the case, see
Example4.4. Indeed, we expect that ν can attain all values in Z/48 satisfying the
parity constraint (1a).

This is significant because a topological G2-structure is trivial in G2-bordism if
and only if 3|ν (or equivalently, 3|ξ ), see Remark2.1. Hence we see that G2-bordism
does not give an obstruction against the existence of torsion-free G2-structures.

Remark 1.11 The fact that ν̄(M) is always an integer poses interesting restrictions
on the possible asymptotically cylindrical pieces V±, the groups�±, the torus match-
ings, and the matchings of K3 surfaces. For k± ≥ 3, the values of F± and ρ

π
can be

irrational (see Fig. 4). Using elementary hyperbolic geometry, one can prove that the
linear combination of these terms that occurs in Theorem1.6 is always rational.

The generalised Dedekind sums Dγ±(V±) are always rational, too. The fractional
part of their sum is determinedby the remaining terms inTheorem1.6.As an example,
if an asymptotically cylindrical Calabi–Yau manifold V± with an action of �± ∼=
Z/5Z occurs in a matching, then the action of �± on that space must have isolated
fixed points.

Remark 1.12 Finally, one may wonder if it is worthwhile to extend the construction
above by allowing group actions of �± on V± that do not necessarily act trivially on
the K3-factor �±. While on one hand it may be difficult to provide such examples,
it turns out that on the other hand this will only give quotients of the examples we
can produce by our methods above.
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To understand this, let �0,± ⊂ �± be the normal subgroup of �± that fixes �±
pointwise. The cross-section of (V± × S1)/�± at infinity can be regarded as the total
space of a singular fibration

(S1 × S1 × �±)/�± −→ �±/(�±/�0,±)

that is locally of product geometry, andwhose regular fibres are all isometric to (S1 ×
S1)/�0,±.

Now assume that we can glue (S1 × V−)/�− to (S1 × V+)/�+, obtaining a G2-
manifold M . Then the isometry of the cross-sections at infinity on both sides lifts to
an isometry

(S1 × S1)/�0,− × K−
∼=−→ (S1 × S1)/�0,+ × K+

by the de Rham decomposition theorem. Hence, we may write M = M̃/(�±/�0,±),
where M̃ is an extra-twisted connected sum as considered above, using only the
subgroups �0,± ⊂ �±.

1.4 Further Questions

Several questions not answered above are

• What areμ and ξ for extra-twisted connected sums?While ν was originally defined
as a coboundary defect, our computation for extra-twisted connected sums was
analytic. We do not know suitable coboundaries for extra-twisted connected sums
that could be used to compute μ and ξ .

• There are now more than 108 different constructions of G2-manifolds. Only a
small number of these constructions give ν̄ �= 0, even fewer give 3 � ν̄. In case the
number of possibleG2-manifolds up to deformation is finite, itwould be interesting
to know if ν̄ = 0 or 3|ν is preferred, or if all values occur roughly equally often.

• Is there a 2-connected 7-manifold that admits a torsion-free G2-structure in every
homotopy class of topological G2-structures?

2 Coboundary Defects

Suppose that there is a formula valid for closed n-manifolds with a certain structure,
such that each term is well-defined also for n-manifolds with boundary. If each
term is additive under gluing along boundary components, then the failure of the
formula to hold for manifolds with boundary can be interpreted as an invariant of
the boundary itself (with relevant induced structure). We explain how combinations
of the Hirzebruch signature theorem, the Atiyah–Singer theorem for the index of
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the Dirac operator and a relation for the Euler class of the positive spinor bundle of
closed spin 8-manifolds lead to the definitions of the invariants μ, ν and ξ .

2.1 Prototypical Example

The first example of such a “coboundary defect” invariant is Milnor’s λ-invariant of
a closed oriented 7-manifold M with p1(M) = 0. The starting point in this case is
the Hirzebruch signature theorem for a closed oriented 8-manifold X :

σ(X) = 7p2(X) − p1(X)2

45
(3)

Here we have implicitly identified p2(X), p1(X)2 ∈ H 8(X) ∼= Z by evaluation on
the fundamental class.

Now consider instead a compact 8-manifoldW with boundary M . Let H 4
0 (W ) be

the image of the push-forward H 4(W, M) → H 4(W ). For elements x, y ∈ H 4
0 (W )

we can define a product xy ∈ Z by picking a pre-image x̄ ∈ H 4(W, M) of x and
setting xy to be x̄ y ∈ H 8(W, M) ∼= Z. One makes sense of the signature σ(W ) as
the signature of this intersection form on H 4

0 (W ). If we impose the condition that
p1(M) = 0, then p1(W ) ∈ H 4

0 (W ), so p1(W )2 ∈ Z is well-defined.
According to Novikov additivity [2, 7.1], the signature is additive under gluing

boundary components: if X8 = W0 ∪M W1 for manifolds Wi with ∂Wi = M (but
opposite orientations), then σ(X) = σ(W0) + σ(W1). The integral of p21 is additive
in the same sense.

While there is no good way to interpret p2(W ) under these conditions, we can
eliminate the corresponding term from (3) by reducing modulo 7:

45σ(X) + p1(X)2 ≡ 0 mod 7 (4)

for any closed oriented 8-manifold X . The consequence is that if M is a smooth
oriented 7-manifold with p1(M) = 0 and W is an oriented coboundary, then

λ(M) := 45σ(W ) + p1(W )2 mod 7

in fact depends only on M , and not on W (Milnor [24, Theorem 1]). Because the
oriented bordism group �SO

7 is trivial, this allows us to define λ(M) ∈ Z/7 for any
oriented M with p1(M) = 0.
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2.2 The Spin Characteristic Class

Since we are interested in invariants of spin manifolds, it will be important to sum-
marise some properties of the generator of H 4(BSpin; Z). This corresponds to a
degree 4 characteristic class p(E) of spin vector bundles E . It is related to the first
Pontrjagin class by p1(E) = 2p(E), while its mod 2 reduction is the 4th Stiefel–
Whitney class w4(E).

For a manifold M , we will abbreviate p(T M) as pM . For a closed spin manifold
of dim M = n, Wu’s formula [26, Theorem 11.14] implies that w4(M) coincides
with the 4th Wu class v4(M), i.e. the Poincaré dual to the Steenrod square Sq4 :
Hn−4(M; Z/2) → Hn(M; Z/2).

If dim M ≤ 7 then v4(M) = 0, so pM is even.
If X is closed of dimension 8 then the definition of v4(X)means it is a characteristic

element for the intersection form on H 4(X; Z/2), that is

pX x = x2 mod 2 for any x ∈ H 4(X; Z). (5)

The van der Blij lemma (see Milnor–Husemöller [25, Chap. II, Lemma 5.2]) implies
in turn that

p2X = σ(X) mod 8. (6)

One can in fact deduce that (5) and (6) remain valid also if X is compact with
boundary (taking x ∈ H 4

0 (X; Z/2) in (5)). See [13, Sect. 2.1] for further details.

2.3 The Eells–Kuiper Invariant and Its Generalisation

In the context of closed 7-manifolds that are spin, there is another relevant formula
for closed 8-manifolds in addition to the signature theorem (3). A closed spin X8

has a Dirac operator DX , and by the Atiyah–Singer theorem its index is computed
by the Â-genus of X :

ind DX = 7p1(X)2 − 4p2(X)

45 · 27 (7)

While it is possible to define an index of the Dirac operator on a manifold with
boundary, it is not a topological invariant. While we make use of that below, in the
context of defining defect invariants we will need to eliminate this term.

To understand how to extract coboundary defect invariants from (3) and (7), it is
helpful to rearrange them as

7p2(X) = 4p2X + 45σ(X)

45 · 25 ind DX + p2(X) = 7p2X ; (8)
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we have put the terms that have useful interpretations for manifolds with boundary
on the right and the ones that do not on the left, and we also used p1(X) = 2pX to
simplify slightly. Clearly we cannot completely eliminate both p2(X) and ind DX

using these two equations. But if we eliminate the p2(X) term, then we are left with

7 · 45 · 25 ind DX = 45(p2X − σ).

Clearly we can eliminate a common factor of 45. However, in view of (6) it is more
natural to reduce to

28 ind DX = p2X − σ(X)

8
.

Thus, if for a closed spin 7-manifold M with pM = 0 we define

μ(M) := p2W − σ(W )

8
∈ Z/28

for any spin coboundary W , then this will be independent of the choice of W . This
is (up to normalisation) the invariant of Eells and Kuiper [15]. It is the best possible
defect invariant that can be extracted from (8) in the following sense:

• Even given the constraint (6), μ can take any value in Z/28.
• Given (p2W , σ (W )) satisfying (6), there is a solution (ind DX , p2(X)) ∈ Z

2 to (8)
if and only if μ = 0.

If W is a compact spin manifold with boundary M but we drop the condition that
pM = 0, then we can no longer interpret p2W as a well-defined element of Z. How-
ever, if pM is divisible by an integer d, then pW mod d belongs to the image of
H 4(W, M; Z/d), so there is a well-defined p2W ∈ H 8(W, M; Z/d) ∼= Z/d. Because
d is even, there is also awell-definedPontrjagin square in H 8(W, M; Z/2d) ∼= Z/2d.
But if we impose that H 4(M) is torsion-free and that there exists u ∈ H 4(W ) such
that du|M = pM , then there is a more elementary way to interpret p2W even as an
element of Z/2d̃ (for d̃ = lcm(4, d) as in the introduction): if u′ is another such
element then

(pW − du′)2 = (pW − du)2 + 2dpW (u′ − u) + d2(u′ − u)2 ∈ Z

is equal to (pW − u)2 modulo 2d (because d is even) and also modulo 8 (because
pW is a characteristic element for the intersection form as explained in (5)), so they
are equal modulo lcm(8, 2d) = 2d̃.

If H 4(M) is torsion-free then one can always find some spin coboundary W and
u ∈ H 4(W ) such that du|M = pM . Defining

μ(M) := (pW − u)2 − σ(W )

8
∈ Z/ gcd(28, d̃

4 ) (9)

is independent of both W and u (see [13, Definition 1.8]).
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2.4 Defect Invariants of G2-Structures

If we seek invariants ofG2-structures on 7-manifolds rather than just a spin manifold
itself, then one further formula for a closed spin 8-manifold X becomes relevant. The
integral of the Euler class of the tangent bundle T X is just the Euler characteristic
χ(X), while the integral of the Euler class of the positive spinor bundle can be
interpreted as the number of zeros (counted with signs) n+(X) of any transverse
positive spinor field. They are related by

n+(X) = 1

16

(
p1(X)2 − 4p2(X) + 8χ(X)

) ; (10)

this appears to have been first established by Gray and Green [18, p. 89]. The Euler
characteristic of course makes perfect sense also for manifolds with boundary, and
for even-dimensional oriented manifolds it is also additive under gluing of boundary
components.

On a compact spin manifoldW 8 with boundary, the number of zeros of a positive
spinor field is not a topological invariant. However, if we fix a non-vanishing spinor
field s on the boundary M and consider transverse positive spinors s̄ on W that
restrict to s, then the number of zeros n+(W, s) does in fact depend only on s. Since
a non-vanishing spinor field defines a G2-structure, n+(W, s) is a sensible term to
consider (only) in the context of manifolds with G2-structure.

We now consider how to define defect invariants from combinations of (3), (7)
and (10), which we present as

7p2(X) = 4p2X + 45σ(X)

45 · 25 ind DX + p2(X) = 7p2X
p2(X) = p2X + 2χ(X) − 4n+(X)

(11)

In this case we have enough equations that we can eliminate all terms on the LHS,
obtaining

0 = 7χ(X) − 14n+(X) + 3p2X − 45σ(X)

2

Thus for a G2-structure on a closed 7-manifold M with pM = 0, defined by a non-
vanishing spinor field s, we can define

ξ(s) := 7χ(W ) − 14n+(W, s) + 3p2W − 45σ(W )

2
∈ Z

for any spin coboundary W .
To capture the remaining constraints from (11), there are many different ways

that we could eliminate p2(X) while leaving an ind DX term with a coefficient. If
we decide to eliminate the p2X term too then we obtain
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−48 ind DX = χ(X) − 2n+(X) − 3σ(X).

This allows us to define an invariant of G-structures by

ν(s) := χ(W ) − 2n+(W, s) − 3σ(W ) ∈ Z/48. (12)

Note that ξ and ν are not independent: we find using (6) that

ξ(s) = 7ν(s) mod 12 (13)

If we were aiming to identify a “basic” set of coboundary defects from (11), we
would instead be led to consider ξ together with a Z/4-valued invariant.

The advantage of instead considering ν is that it is more robust: if we drop the
condition that pM = 0 then we can no longer define ξ as an integer-valued invariant,
but (12) defines ν(s) ∈ Z/48 for G2-structures on any closed 7-manifold. However,
if we require H 4(M) to be torsion-free then we can define

ξ(s) ∈ Z/3d̃

analogously to (9).
Since we are claiming that ν and ξ capture all the coboundary-defect information

that can be extracted from (11), it should also be possible to recover μ from ν and
ξ . Indeed it is easy to check that

ξ(s) − 7ν(s)

12
= μ(M) mod gcd

(
28, d̃

4

)
.

Remark 2.1 In [11, Definition 1.2 and (10)], ν and ξ are initially defined in terms
of Spin(7)-coboundaries of the G2-structure, i.e. using not just a spin 8-manifold
W such that ∂W = M , but also requiring W to admit a Spin(7)-structure whose
restriction to M is the given G2-structure. This is equivalent to requiring n+(s) = 0,
so leads to a slight simplification of the defining formulas. An elementary argument
([11, Lemma 3.4]) assures that Spin(7)-coboundaries exist for any G2-structure.

One could also ask whether a given G2-structure on a 7-manifold admits a G2-
coboundary W . Reducing the structure group of W to G2 defines a preferred non-
vanishing vector field, so forces χ(W ) = 0. Since G2 ⊂ Spin(7), also n+(s) = 0, so
(12) implies ν = 0 mod 3. In fact, this condition is also sufficient for the existence
of a G2-coboundary [29].

3 Extra-Twisted Connected Sums

Wenowprovide some further details regarding the constructions of twisted connected
sums and extra-twisted connected sums outlined in Sects. 1.2–1.3.
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3.1 ACyl Calabi–Yau Manifolds

The first step in the construction is to produce asymptotically cylindrical Calabi–Yau
3-folds, i.e. complex 3-folds with a complete Ricci-flat Kähler metric ω and a choice
of (normalised) holomorphic 3-form �, exponentially close to a product structure
(ω∞,�∞) on an end R

+ ×U .
We will only be concerned with the case when the asymptotic cross-section U

is of the form S1 × �, for � a K3 surface. Let ζ be the circumference of the circle
factor, and let u be a coordinate on S1 with period ζ . Then there is a hyper-Kähler
triple (ωI , ωJ , ωK ) on � such that

ω∞ = dt ∧ du + ωI ,

�∞ = (du − idt) ∧ (ωJ + iωK ) .
(14)

To produce suchACyl Calabi–Yaumanifolds, we use a non-compact version ofYau’s
solution of the Calabi conjecture. The following result from [19] is a special case of
the Tian–Yau theorem, but with improved control on the asymptotics.

Theorem 3.1 Let Z be a closed complex Kähler manifold, and � an anticanonical
divisorwith trivial normal bundle. Then Z \ � admits ACyl Ricci-flat Kählermetrics.

That � is an anticanonical divisor essentially means it is a complex submani-
fold Poincaré dual to c1(Z). A convenient way to produce examples of ‘building
blocks’ Z to which Theorem3.1 can be applied is to blow up the intersection of
two anticanonical divisors in a Fano 3-fold, i.e. a closed complex 3-fold Y where
c1(Y ) is a Kähler class. The topology of such manifolds is well-understood, as is
their deformation theory which is relevant for the matching problem discussed in
Sect. 3.4.

Example 3.2 Let Y ⊂ P
2 × P

2 be a smooth divisor of bidegree (2, 2). Then the
anticanonical bundle −KY is the restriction of O(1, 1). The intersection of two
generic anticanonical divisors �0, �1 is a smooth curve C of genus 7. Let Z be
the blow-up of Y in C . Then the proper transform of �0 is an anticanonical divisor
in Z with trivial normal bundle.

The ‘Picard lattice’ of Y is H 2(Y ) equipped with the bilinear form (x, y) �→
xy(−KY ). In the basis for H 2(Y ) given by the restrictions of the hyperplane classes
of the P

2 factors, this form is represented by

(
2 4
4 2

)
.

This equals the polarising lattice N of the resulting ACyl Calabi–Yau 3-folds, see
Sect. 1.2.

If Z has a cyclic automorphism group � that fixes a smooth anticanonical divisor
� point-wise, then the restriction of � to Z \ � gives the type of automorphism
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we need on the ACyl Calabi–Yau. For instance, in Example3.2 choosing Y , �0 and
�1 to be invariant under the involution that swaps the P

2 factors ensures that this
involution lifts to Z .

Example 3.3 Let Y be a triple cover of the smooth quadric Q ⊂ P
4, branched over a

smooth cubic section�0 ⊂ Q. Let�1 ⊂ Y be the pre-image of a generic hyperplane
section of Q. Then C := �0 ∩ �1 is a smooth curve of genus 4. Let Z be the blow-
up of Y in C . Then the proper transform � ⊂ Z of �0 is an anticanonical divisor
with trivial normal bundle, and the branch-switching automorphisms of Y lift to
automorphisms of Z that fix �.

The Picard lattice of Y has rank 1, with a generator that squares to 6.

3.2 Gluing ACyl G2-Manifolds

Choose ξ > 0 and let v be a coordinate with period ξ on S1. Given an ACyl Calabi–
Yau structure (ω,�) on V , the 3-form ϕ := Re� + dv ∧ ω defines a torsion-free
ACylG2-structure on S1 × V and hence ametricwith holonomycontained in (but not
equal to)G2; the circumference of the ‘external’ S1 factor equals ξ . If the asymptotic
limit (ω,�) is given by (14), then ϕ is asymptotic to

ϕ∞ = dv ∧ dt ∧ du + dv ∧ ωI + du ∧ ωJ + dt ∧ ωK (15)

If (V, ω,�) admits an isomorphic action by � = Z/kZ with k ≥ 2 as above, then
we can extend the action to S1 × V by making a generator act on the external S1

factor as rotation by angle 2π
k ; let ε ∈ Z/k be the unit such that the action of that

generator on the internal S1 by 2πε
k . TheACylG2-structureϕ descends to the quotient

M := (S1 × V )/�. It has asymptotic limit T 2 × �, where the T 2 factor is isometric
to the quotient of a product of circles of circumference ζ and ξ by �.

More precisely, the T 2 factor could be described as the quotient of C by a lattice
generated by ξ and ξ+iεζ

k , with a complex coordinate

z = v + iu . (16)

Given a pair (ζ+, ξ+, k+, ε+), (ζ−, ξ−, k−, ε−)of sets of data defining such tori T 2+, T 2−
and an angle ϑ �= 0, we consider in the next subsection whether

C → C, z �→ eiϑ z̄

descends to a well-defined orientation reversing isometry

t : T 2
+ → T 2

− . (17)
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If we have such a ϑ , we can attempt to find a diffeomorphism r : �+ → �− such
that (2) is an isomorphism of G2-structures. Let us now identify this condition in
terms of the action on hyper-Kähler structures. In terms of the complex coordinate
z = v + iu in (16), we can rewrite (15) as

ϕ∞ = Re
(
dz ∧ (ωI − iωJ )

) + dt ∧ (
ωK − i

2dz ∧ dz̄
)
. (18)

For (2) to be an isomorphism of cylindrical G2-structures is thus equivalent to the
following.

Definition 3.4 Given ϑ ∈ R and hyper-Kähler structures (ωI±, ωJ±, ωK± ) on K3 sur-
faces�±, call a diffeomorphism r : �+ → �− a ϑ-hyper-Kähler rotation (or simply
a hyper-Kähler rotation if ϑ = π

2 ) if

r∗ωK
− = −ωK

+
r∗(ωI

− + iωJ
−) = eiϑ(ωI

+ − iωJ
+) .

(19)

We will now consider in turn the problems of finding suitable t : T 2+ → T 2− and
r : �+ → �−.

3.3 Isometries of Tori

Given k±, identifying the possible data ε±, ξ±, ζ± and ϑ for which (17) is well-
defined is essentially a combinatorial problem. To study it, it is helpful to associate
to such a t a gluing matrix G = ( m p

n q
)
such that

ξ−∂v− = 1

k+
dt

(
mξ+∂v+ + nζ+∂u−

)
,

ζ−∂u− = 1

k+
dt

(
pξ+∂v+ + qζ+∂u−

)
.

(20)

Let us write s± for the ratio ξ±
ζ± . Amongst other relations, the matrix coefficients

satisfy

det
( m p
n q

) = −k−k+ , (21a)

mnpq ≤ 0 , (21b)

ε+m − n ≡ ε+ p − q ≡ 0 mod k+ , (21c)

ε− p + m ≡ ε−q + n ≡ 0 mod k− , (21d)

see [17]. Because ξ−∂v− and ζ−∂u− are perpendicular, there are three possibilities.
If ϑ = 0, then n = p = 0. This leads to a manifold with infinite fundamental group,
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∂u+

∂u−

∂v−

∂v+

ϑ

Fig. 1 G = (
1 1
1 −1

)
, ϑ = π

4

so we do not consider this case. If ϑ = ±π
2 , thenm = q = 0, and ξ+ = ζ− and ζ+ =

ξ− are independent of each other. If ϑ /∈ π
2 Z, then mnpq < 0, and

s− = ξ−
ζ−

=
√

−mn
pq , s+ = ξ+

ζ+
=

√
− nq

mp , (22a)

ϑ = arg
(
ms+ + in

)
. (22b)

For given k±, Eqs. (21) leave only finitely many possibilities for G and ε±. If k+ =
k− = 1 then essentially the only possible gluing matrix is G = (

0 1
1 0

)
, leading to ϑ =

±π
2 .
For k+ = 2 and k− = 1 there is essentially only one possibility

(
1 1
1 −1

)
. We can

take ζ+ = ξ+ and ζ− = ξ−. That way T 2− is a square torus, and T 2+ is a Z/2-quotient
of a square torus that is again a square torus. If we take ζ+ = √

2ζ− then T 2+ and T 2−
have equal size, and there is an isometry with ϑ = π

4 . To illustrate it we can draw a
single lattice corresponding to the two tori identified by t, while adding vectors ∂u±
and ∂v± indicating the directions of the ‘internal’ and ‘external’ circle directions of
the two tori; see Fig. 1.

For k+ = k− = 2 there are more possibilities, but essentially only two that lead
to simply-connected G2-manifolds. In both of those cases, the tori T 2+ and T 2− are
‘hexagonal’. One possibility is to take ξ+ = ξ− = √

3ζ+ = √
3ζ−, leading to the

existence of an isometry twith ϑ = π
3 illustrated in Fig. 3. The other has ξ+ = ζ− =√

3ζ+ = √
3ξ− and ϑ = π

6 , illustrated in Fig. 2.
Once we allow k+ or k− to be greater than 2, the number of combinatorial possi-

bilities increases (while the supply of examples of building blocks with the relevant
symmetry decreases). For k+ = 3 (and ε+ = −1) and k− = 1, one possibility is to
take ζ+ = √

2ξ+ = √
3ζ− = √

6ξ−. That way T 2+ and T 2− are both rectangular (with
the proportions of European A4 paper), and there is an isometry t with cosϑ = 1√

3

illustrated in Fig. 4; note that ϑ
π
is irrational in this case.
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∂u+

∂u−

∂v−

∂v+

ϑ

Fig. 2 G = (
1 1
1 −3

)
, ϑ = π

6

∂u+

∂u−

∂v−

∂v+

ϑ

Fig. 3 G = (
1 1
3 −1

)
, ϑ = π

3

∂u+

∂u−

∂v−

∂v+

ϑ

Fig. 4 G = (
1 1
2 −1

)
, ϑ = arc cos 1√

3

3.4 The Matching Problem

If we first produce some examples of ACyl Calabi–Yau 3-folds V± with automor-
phism groups�± as in Sect. 3.1 and pick a compatible torus isometry t as in Sect. 3.3,
it is very unlikely that we will be able to find a ϑ-hyper-Kähler rotation between the
asymptotic K3s (for the angle ϑ determined by t). A more fruitful approach is to
first fix a pairZ+,Z− of deformation families of building blocks with automorphism
groups�±, fix t, and then construct the pair V+, V− with the desired r from elements
of Z±.

Fixing a deformation family of blocks Z± also fixes the polarising lattice N±
of the resulting ACyl Calabi–Yaus. Given a ϑ-hyper-Kähler rotation r : �+ → �−
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between some pair (Z+, �+), (Z−, �−), we can identify both H 2(�+) and H 2(�−)

with a fixed copy of theK3 lattice L , and hence obtain a pair of embeddings of N+ and
N− into L . As in the introduction, Sect. 1.2, we refer to this pair as the ‘configuration’
of r, and it controlsmuch of the topology of the resultingG2-manifolds. It is therefore
reasonable to further refine the problem to look for a r compatible with a fixed
configuration.

Remark 3.5 According to Nikulin [27, Theorem 1.12.4], an even indefinite lattice
of rank up to 11 has essentially a unique embedding into L . As long as the ranks of N+
and N− are not toobig, specifying a configuration is therefore essentially equivalent to
describing a “push-out” latticeW that is spanned by images of isometric embeddings
of N+ and N−.

Let us note some necessary conditions on the configuration for the existence of
such a r. Observe that [ωI±] belongs to NR± := N± ⊗ R ⊂ H 2(�±; R), and is also
the restriction of a Kähler class from Z±. On the other hand, [ωJ±] and [ωK ]± are
orthogonal to NR± . If we let π± : L → NR± be the orthogonal projection, then (19)
implies that π±[ωI∓] = (cosϑ)[ωI±], and hence that [ωI±] belongs to the (cosϑ)2-
eigenspace of the self-adjoint endomorphism π+π− on NR± ; let us denote that by
Nϑ± ⊆ NR± .

Since the positive-definite subspace spanned by [ωI+] and [ωI−] is contained in W
while [ωK+] = −[ωK−] is perpendicular to W , we see that W must be non-degenerate
of signature (2, rkW − 2).

Now let �± ⊂ L be the primitive overlattice of N± + N �=ϑ
∓ , where N �=ϑ

∓ ⊂ N∓
is the orthogonal complement of Nϑ∓ in N∓. Recall that the Picard lattice of �±
is H 2(�±; Z) ∩ H 1,1(�±; R). Since H 1,1(�±; R) is the orthogonal complement in
H 2(�±; R) to the span of [ωJ±] and [ωK±], (19) further forces that �± is contained in
the Picard lattice of �±, so “�± is �±-polarised”.

In summary, given a pair of primitive embeddings N+, N− ↪→ L of the polarising
lattices of a pair of deformation families Z+,Z− of building blocks, three necessary
conditions for finding a ϑ-hyper-Kähler rotation between asymptotic K3s in some
ACyl Calabi–Yau 3-folds arising from some elements of Z+ and Z− are that:

(i) W := N+ + N− is non-degenerate of signature (2, rkW − 2)
(ii) Nϑ± contains the restriction of some Kähler class from Z±; in particular Nϑ± is

non-trivial
(iii) there are some elements (Z±, �±) ∈ Z± such that �± is �±-polarised.

On the other hand, a combination of the Torelli theoremwith amore precise statement
of Theorem3.1 turns out to show that a sufficient condition for finding a ϑ-hyper-
Kähler rotation compatible with the configuration is given essentially by (i) and (ii)
together with

(iii′) a generic element of the moduli space of �±-polarised K3s appears as the anti-
canonical divisor in some element of Z±
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A general principle is that a generic N±-polarised K3 surface does appear as an
anticanonical divisor in some element ofZ±. For example, for blocks obtained from
Fano 3-folds, as in Example3.2, this is a consequence of the results of Beauville
[3] on the deformation theory of anticanonical divisors in Fano 3-folds (see [8,
Proposition 6.9]). The matching problem is therefore easiest to solve if one restricts
attention to configurations where �± = N±. That is equivalent to requiring that the
only configuration angles in (27) are 0 and ±2ϑ .

3.5 Examples of Matchings

For ϑ = π
2 , it is very easy to produce such configurations where �± = N±: simply

take the push-outW of Remark3.5 to be the perpendicular direct sum N+ ⊥ N−; then
(i) and (ii) are automatically satisfied too. This way one can produce literally millions
ofmatchings, see [9]. However, there is limited diversity among the topological types
realised this way, e.g. they all have μ = 0 [12, Corollary 3.7].

On the other hand, if ϑ �= π
2 , then for a given pair of polarising lattices N+ and

N− there need not be any configurations at all with N± = �±. For polarising lattices
of rank 1, it is not so difficult to decide whether such a configuration exists.

Example 3.6 LetZ+ be the deformation family of blocks with automorphism group
�+ ∼= Z/3described inExample3.3, and letZ− be the family of blocks obtained from
blow-ups of Fano 3-folds of rank 1, index 1 and degree 2 (see [9, Example 7.112] in
the notation used there). The relevant polarising lattices are N+ = (6) and N− = (2).
By the reasoning in Remark3.5, the matrix

W =
(
6 2
2 2

)

defines a configuration of N+ and N−. The angle ϑ between the basis vectors has

(cosϑ)2 = 22

2 · 6 = 1

3
.

We can find a ϑ-hyper-Kähler rotation compatible with this configuration, and hence
form an extra-twisted connected sum using the torus matching illustrated in Fig. 4.

On the other hand, for polarising lattices of higher rank the existence can be less
immediately obvious.

Example 3.7 LetZ+ be the deformation family of blocks with automorphism group
�+ ∼= Z/2 described in Example3.2, and let Z− be the family of blocks obtained by
blowing up the blow-up of P

3 in a conic (number 30 in theMori–Mukai classification
of rank 2 Fano 3-folds, see [12, Entry 30 of Table3]). The relevant polarising lattices
are
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N+ =
(
2 4
4 2

)
, N− =

(
6 6
6 4

)
.

Then

W =

⎛

⎜⎜⎝

2 4 3 4
4 2 3 2
3 3 6 6
4 2 6 4

⎞

⎟⎟⎠

defines a configuration of N+ and N−, such that N
π
4± = N±. We can find a π

4 -hyper-
Kähler rotation compatible with this configuration, and hence form an extra-twisted
connected sum using the torus matching illustrated in Fig. 1.

Even if we look for configurations without the assumption that N± = �±, the
conditions (i) and (ii) on their own can be still be quite restrictive. But having found
such a configuration, one then has to check condition (iii′). This typically requires
some detailed understanding of the particular families of building blocks involved.

Example 3.8 Take bothZ+ andZ− to be the family of blocks obtained fromblowing
up the blow-up of P

3 in a twisted cubic (number 27 in the Mori–Mukai classification
of rank 2 Fano 3-folds, see [12, Entry 27 in Table3]). In this case the polarising
lattices are

N+ = N− =
(
4 5
5 2

)
.

We can define a configuration satisfying condition (i) (with ϑ = π
2 ) and (ii) using

the push-out

W =

⎛

⎜⎜⎝

4 5 1 −1
5 2 −1 1
1 −1 4 5

−1 1 5 2

⎞

⎟⎟⎠ .

Now �± is a rank 3 overlattice of N±, with quadratic form represented by

⎛

⎝
4 5 16
5 2 −16
16 −16 −272

⎞

⎠ .

It is checked in [12, Lemma 7.7] that any K3 surface with Picard lattice isomorphic
to that can be embedded as an anticanonical divisor in the blow-up of P

3 in a twisted
cubic, so that (iii′) holds. Thus it is possible to form a rectangular twisted connected
sum of two blocks from this family. The resulting G2-manifolds have b3 = 101,
d = 8 and μ = 1, and are used in Example1.4.
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4 The Extended ν-Invariant

By definition, coboundary defect invariants for M can be computed if one knows
enough about some appropriate manifoldW with ∂W = M . For rectangular twisted
connected sums, this was used in [11] to show that ν(s) = 24, in [12] to compute
the generalised Eells–Kuiper invariant, and recently by Wallis to compute ξ(s) [30].
For extra-twisted connected sums, zero-bordisms are harder to find, and we therefore
pursue a different approach to computing ν.

We rewrite the definition of ν(M) using the Atiyah–Patodi–Singer index theorem
formanifoldswith boundary andMathai–Quillen currents. This yields a formula for ν
in terms of η-invariants and Mathai–Quillen currents. In the case of G2-holonomy,
the Mathai–Quillen terms drop out, and the η-invariants become R-valued rather
than just R/2Z-valued. This way, the ν-invariant lifts to a Z-valued invariant ν̄, the
extended ν-invariant, that is locally constant on the moduli space of G2-holonomy
manifolds. It is possible to compute ν̄ for extra-twisted connected sums, see Exam-
ples1.7 and 1.8 above.

4.1 The Analytic Description of the ν-Invariant

The definition of ν(s) in (12) involves the signature σ(X) of an 8-manifold X , which
can be written as the analytic index of the signature operator BX on X . Implicitly,
ν(s) also involves the index of the Atiyah–Singer spin Dirac operator DX on X .

The Atiyah–Patodi–Singer index theorem allows us to write σ(W ) as an analytic
index of the signature operator BW on an 8-manifold with boundary ∂W = M . We
assume that W has product geometry near its boundary. Let ∇TW be the Levi-Civita
connection, and let L

(
TW,∇TW

) ∈ �•(W ) be the Chern–Weil representative of the
L-class. If BM denotes the odd signature operator on the boundary M , with spec-
trum · · · ≤ λ0 ≤ λ1 ≤ · · · counted with multiplicities, we can define its η-invariant
by

η(BM) =
∑

λi �=0

sign(λi ) |λi |−s
∣∣∣
s=0

=
∫ ∞

0
tr
(
BM e−t B2

M
) dt√

π t
.

The spectral expression is defined if the real part of s is sufficiently large and has a
meromorphic continuation that is holomorphic at s = 0. The η-invariant is the value
at s = 0, or equivalently the value of the integral on the right. The Atiyah–Patodi–
Singer signature theorem [1, Thm 4.14] implies that

σ(W ) =
∫

W
L
(
TW,∇TW

) − η(BM) . (23)

Similarly, let DW denote the spin Dirac operator on W with the given spin struc-
ture, and let DM denote the spin Dirac operator on M . Let ind APS(DW ) ∈ Z denote
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the analytic index of the spin Dirac operator with respect to the Atiyah–Patodi–
Singer boundary conditions, let Â(TW,∇TW ) be the Chern–Weil representative of
the Â-class, let η(DM) be the defined as above, and let h(DM) = dim ker(DM). The
Atiyah–Patodi–Singer index theorem [1, Thm 4.2] states that

indAPS(DW ) =
∫

W
Â
(
TW,∇TW

) − η + h

2
(DM) . (24)

The Euler class of the positive spinor bundle has to be treated differently.
Letπ : E → W be a Euclidean vector bundlewithmetric gE and compatible connec-
tion ∇E . Mathai and Quillen [23] defined a current ψ(∇E , gE ) on the total space E ,
which is singular along the zero section W ⊂ TW , such that

dψ(∇E , gE ) = π∗e
(
E,∇E

) − δW .

Here, e(E,∇E ) is the Euler class of E and δW denotes the Dirac delta distribution
on TW along the zero section W . As a bundle E , we consider the positive spinor
bundle S+W → W , so SM = S+W |M is the spinor bundle on M . If s̄ ∈ �(S+W )

extends a nowhere vanishing spinor s onM , then [23, Thm7.6], see also [5, Thm3.7],
implies

n+(W, s) =
∫

W
s̄∗δW =

∫

W
e
(
S+W,∇ S+W ) −

∫

M
s∗ψ

(∇ SM , gSM
)

(25)

by Stokes’ theorem. Thus, at least formally, the integral of the Mathai–Quillen form
over M is analogous to the η-invariants in (23) and (24). We combine (10) and (12)
with (23)–(25) to get an intrinsic formula for the ν-invariant.

Theorem 4.1 Let s ∈ �(SM) define a G2-structure on a spin 7-manifold M. Then

ν(s) = 3 η(BM) − 24 (η + h)(DM) + 2
∫

M
s∗ψ

(∇ SM , gSM
) ∈ Z/48 .��

4.2 The Extended ν-Invariant

Let us now assume that (M, g) has holonomy G2. Then the defining spinor
s ∈ �(SM) is parallel, and s∗ψ(gSM ,∇ SM ) vanishes by construction, see
[10, Lemma 1.3]. Hence, Theorem4.1 becomes

ν(s) = 3 η(BM) − 24 (η + h)(DM) ∈ Z/48 . (26)

We recall that the η-invariants η(BM), η(DM) depend on the spectrum of BM

and DM , and hence on the Riemannian geometry of (M, g). If one varies the met-
ric g, the corresponding variation formula for η-invariants typically contains two
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terms. The first term is an integral of a Chern–Simons class over M , which varies
continuously in g. Since ν(s) is always an integer, the variation terms for the two
η-invariants involved must cancel for families of metrics with holonomy in G2.

The second term is a Z-valued spectral flow, so the η-invariant, or more precisely
the expression η+h

2 , can jump by integers. However, spectral flow can only occur if
eigenvalues of the relevant operator change sign. In this case, the dimension h of the
kernel must change. The kernel of BM describes de Rham cohomology, so h(BM) is
constant and η(BM) never jumps. For the spin Dirac operator this is false in general;
this gives an alternative explanation why ν(s) takes values in Z/48 and not in Z.

However, if the holonomy group of (M, g) is a subgroup of G2, then (M, g) is
Ricci flat. The Lichnerowicz formula becomes D2

M = (∇ SM)∗∇ SM . Because M is
closed, this implies that every harmonic spinor is parallel. If the holonomy group
of M is the full group G2, then the space of parallel spinors is spanned by the
defining spinor s, so we have h(DM) = 1. Otherwise, by Ricci flatness, the entire
first de Rham cohomology can be represented by parallel 1-forms, and Clifford
multiplication c · s gives an isomorphism from H 1(M; R) to the subspace of parallel
spinors perpendicular to s. Hence h(DM) = 1 + b1(M) is constant on the moduli
space of G2-holonomy metrics, and the spin Dirac operator has no spectral flow.
Therefore, the right hand side of (26) is locally constant on the G2-moduli space.

Definition 4.2 ([10, Definition 1.4]) For a closed Riemannian 7-manifold (M, g)
with holonomy contained in G2, put

ν̄(M, g) = 3η(BM) − 24η(DM) .

Corollary 4.3 For a closed Riemannian 7-manifold (M, g) with holonomy con-
tained in G2 and with defining parallel spinor s, we have

ν(s) = ν̄(M, g) − 24 (1 + b1(M)) mod 48 .

One could argue that we should have changed either (12) or Definition4.2 in order
to avoid the correction term 24(1 + b1(M)). But both definitions are the most natural
in their respective realm. In particular, ν̄(M, g) changes sign under reversing the
orientation of M , and so vanishes if (M, g) admits an orientation reversing isometry.

4.3 Extra-Twisted Connected Sums

We return to extra-twisted connected sums and sketch a proof of Theorem1.6.
Let M� = M+,� ∪ M−,� as in Sect. 3 be such that Y = M+,� ∩ M−,� = ∂M+,� =
∂M−,�, and

M±,� = (
S1 × (V± \ ((�,∞) × S1 × �±))

) /
�±
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with�± ∼= Z/k±. The parameter � stands for the length of the cylindrical neck. There
is a closed G2-structure ϕ� on M�, and a torsion free G2-structure ϕ̄� nearby.

We apply the R-valued gluing formula for η-invariants by Bunke [6] and Kirk–
Lesch [21]. In [10], we construct operators DM,� and BM,� that are of product
type on a neighbourhood of Y , and have the same kernels as the corresponding
operators on the G2-manifold (M�, ϕ̄�). The harmonic spinors on Y that extend
to harmonic spinors of the restrictions DM±,�, BM±,� to M±,� form Lagrangian
subspaces LD± ⊂ ker(DY ) independent of �. Similarly, harmonic forms represent-
ing Im

(
H •(M±; R) → H •(Y ; R)

)
form Lagrangians LB± ⊂ ker(BY ). We modify

the APS boundary conditions for the operators DM± and BM± on the two halves M±
by these Lagrangian subspaces and define ηAPS(DM±; LD±) and ηAPS(DM±; LB±)

with respect to those boundary conditions.
Recall the polarising lattices N± inside the K3 lattice L from Sect. 1.2. Let A±

denote the reflections of L ⊗ R = H 2(�; R) in the subspaces N±. Then the configu-
ration angles are the argumentsα+

1 , α+
2 , α+

3 andα−
1 , . . . , α−

19 of the eigenvalues of the
restrictions of A+ ◦ A− to an invariant positive or negative subspace of H 2(�; R),
respectively. We always have {α+

1 , α+
2 , α+

3 } = {0,±2ϑ}. We define

mρ(L; N+, N−) = sign ρ
(
#
{
j
∣∣ α−

j ∈ {π − |ρ| , π} } − 1 + 2 #
{
j
∣∣ α−

j ∈ (π − |ρ| , π)
})

.

(27)
By [6] and [21], see [10, Thm 1], we find that

ν̄(M) = ν̄(M+) + ν̄(M−) − 72
ρ

π
+ 3mρ(L; N+, N−) ,

where ν̄(M±) = lim
�→∞

(
3ηAPS(BM±,�; LB±) − 24η(DM±,�; LD±)

)
.

To describe the remaining ingredients of Theorem1.6, let ζ± and ξ± denote the
lengths of the “interior” and “exterior” circle factors as in Sect. 3, and define s± as in
(22a). We will now set the exterior radius to ξ± = aζ± instead and consider M±,a =
(S1aζ± × V±)/�±. To compute ν̄(M±,a), we will compute its limit as a → 0, and the
variation of ν̄(M±,a) as a changes.

To describe the limit a → 0, let γ± ∈ �± be the generator that rotates the exterior
circle factor by 2π

k± . Let V
0, j
± ⊂ V± be the set of isolated fixed points of γ

j
±, and

for p ∈ V 0, j
± , letα j,1(p),α j,2(p),α j,3(p) denote the angles of the γ

j
±-action on TpV±.

Because the �±-action preserves the holomorphic volume form, these angles can be
chosen such that their sum is 0. Then the isolated fixed points contribute to ν̄(M±)

by

Dγ± (V±) = lim
a→0

ν̄(M±,a) (28)

= 3

k±

k±−1∑

j=1

cot
π j

k±

∑

p∈V 0, j
±

cos
α j,1(p)

2 cos
α j,2(p)

2 cos
α j,3(p)

2 − 1

sin
α j,1(p)

2 sin
α j,2(p)

2 sin
α j,3(p)

2

,

see [17]. This is proved using methods from [16].
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Another contribution arises as a boundary term in the variational formula for η-
invariants on manifolds with boundary by Bismut–Cheeger [4] and Dai–Freed [14].
Assume that the generator γ± of �± rotates the interior circle by an angle 2πε±

k± as

above. Let σ−1(n) = ∑
d|n d−1, and let L(τ ) denote the logarithm of the Dedekind

η-function, defined for τ ∈ H ⊂ C in the upper half plane by

L(τ ) = π iτ

12
−

∞∑

n=1

σ−1(n) e2π inτ .

Then the last contribution to ν̄(M) is

F± =
∫ s±

0

d

da
ν̄(M±,a) = 144

π
Fk±,ε±(s±) ,

where Fk,ε(s) = i L

(
si + ε

k

)
− i L

(
si − ε

k

)
+ ck,ε ,

(29)

see [17]. The constant ck,ε takes the special values

ck,ε =
{

−επ k2−3k+1
6k if ε = ±1, and

πε
6k if ε2 ≡ −1modulo k.

(30)

We are grateful to Don Zagier for the formulas above for Fk,ε(s) and ck,ε.
The explicit values of L are hard to determine. Instead, onemay use the functional

equations

L(τ + 1) = π i

12
+ L(τ ) and L

(
−1

τ

)
= 1

2
log

(τ

i

)
+ L(τ ) (31)

to compute the sum of all values of L occurring in Theorem1.6 for a particular
extra-twisted connected sum.

Example 4.4 We consider Example3.6, where k+ = 3, k− = 1. By construction
in Example3.3, the group �+ acts without isolated fixed points on V+, so we
have Dγ+(V+) = 0. And because k− = 1, also Dγ−(V−) = 0.

From the gluing matrixG = ( m p
n q

) = (
1 1
2 −1

)
in Fig. 4 we conclude that ε+ = −1,

s+ = √
2 = s−. Because k− = 1, we have Fk−,ε−(s−) = 0. Using (30) and (31), we

compute
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Fk+,ε+(s+) = i L

(√
2i − 1

3

)
− i L

(√
2i + 1

3

)
+ c3,−1

= i

2
log

√
2 − i√
2 + i

+ i L
(√

2i + 1
) − i L

(√
2i − 1

) + π

18

= i

2
log

1 − √
8i

3
− π

6
+ π

18
= 1

2
arc cos

1

3
− π

9
.

Because both N+ and N− have rank 1, both lie in H 2,+(�; R). So A+ ◦ A−
acts as the identity on H 2,−(�; R), and hence α−

1 = · · · = α−
19 = 0. The angle ϑ =

arc cos 1√
3
is acute, so ρ > 0, hencemρ(L; N+, N−) = −1. Combining all this infor-

mation, Theorem1.6 gives

ν̄(M) = 144

π

(
1

2
arc cos

1

3
− π

9

)
− 72

π

(
π − 2 arc cos

1√
3

)
− 3 = −19 .

We see that 3 � ν̄(M), so (M, g) is indeed not G2-nullbordant.

4.4 Elementary Hyperbolic Geometry

There is an alternative way to treat the variational term F+ + F−. We can compute it
as the area of a certain ideal hyperbolic polygon, see [17]. To this end, we regard the
upper half planeH as space of conformal structures on a fixed torus. ThenH carries
a tautological family of flat tori. Let η̃(A) ∈ �1(H) be the η-form of the spin Dirac
operator of this family. Using the variation formula for η-invariants on manifolds
with boundary in [4] and [14], we represent F± as

F± = ±288
∫

γ±
η̃(A) . (32)

Using local index theory, one expresses the exterior derivative of the η-form in terms
of the hyperbolic volume form d Ahyp as

dη̃(A) = 1

4π
d Ahyp . (33)

Let γ± : (0, s±] → H represent the families (S1aζ± × S1ζ±)/�±. Then γ± are hyper-
bolic rays. As we explain in [17], the ray γ+ goes from ε+

k+ ∈ R ∪ {∞} = ∂∞H ver-

tically to the point ε++is+
k+ representing T 2+. The ray γ− goes from ε+

k+ − n
k+m to ε++is+

k+
along a hyperbolic geodesic with second endpoint ε+

k+ − q
k+ p . We can now com-

plete γ+ ∪ γ− to an ideal hyperbolic polygon P of finite area using geodesics along
which η̃(A) vanishes for symmetry reasons; these are hyperbolic geodesics joining
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2ϑ

0

∞

γ−

γ+

−1
3−1

2
−1 ∂∞H

P

Fig. 5 The hyperbolic polygon for Example4.5

points a
b ,

c
d ∈ Q with k = |ad − bc| ∈ {1, 2}, corresponding to families of rectangu-

lar (k = 1) and rhombic (k = 2) tori, respectively.
By Stokes theorem and (32) and (33), we can express F+ + F− as the sum

of 72
π
Ahyp(P) and contributions from the cusps of P . Using a strict version of the adi-

abatic limit formula for families by Bunke andMa [7], a cusp at e
f between geodesics

to x and y ∈ ∂∞H contributes to F+ + F− by −24� e
f
(x, y), where the cusp angle

is given as

� e
f
(x, y) = x − y

( f x − e)( f y − e)
∈ R (34)

if e
f is a reduced fraction.Recall that the hyperbolic area of a polygon canbe computed

from its angles and the number of corners. Because the rays γ± meet at angle 2ϑ , this
approach explains in particular why the final value of ν̄(M) is rational even though
the terms −72 ρ

π
and F± in Theorem1.6 can be irrational for k+ > 2 or k− > 2.

Example 4.5 We still consider the example above, but compute F+ + F− using
hyperbolic geometry. Here, γ+ lies on the vertical line with real part − 1

3 , and the
ray γ− lies on the hyperbolic geodesic from −1 to 0. We complete to a hyperbolic
polygonwith another cusp at− 1

2 , see Fig. 5.Because P consists of two ideal triangles,
we have Ahyp(P) = 2π − 2ϑ . By (34), the relevant cusp angles are

�− 1
1

(
0,−1

2

)
= 1 , �− 1

2

(
−1,−1

3

)
= 2 , and �− 1

3

(
−1

2
,∞

)
= 2

3
,

with sum �(P) = 11
3 . Now, we can confirm the computation above because

ν̄(M) = 72

π
Ahyp(P) − 24 �(P) − 72

π
(π − 2ϑ) + 3mρ(L; N+, N−) = −19 .
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Gravitational Instantons
and Degenerations of Ricci-flat
Metrics on the K3 Surface

Lorenzo Foscolo

Abstract The study of degenerations of metrics with special holonomy is an
important theme unifying the study of convergence of Einstein metrics, the study
of complete non-compact manifolds with special holonomy and the construction of
spaces with special holonomy by singular perturbation methods. We survey three
constructions of degenerating sequences of hyperkähler metrics on the (smooth
4-manifold underlying a complex) K3 surface—the classical Kummer construction,
Gross–Wilson’s work on collapse along the fibres of an elliptic fibration, and the
author’s construction of sequences collapsing to a 3-dimensional limit—describing
how they fit into the general theory and highlighting the role played in each construc-
tion by gravitational instantons, i.e. complete non-compact hyperkähler 4-manifolds
with decaying curvature at infinity.

1 Hyperkähler Metrics in Dimension 4

Hyperkähler 4-manifolds are the lowest dimensional non-flat examples of manifolds
with special holonomy.

Definition 1.1 A Riemannian 4-manifold (M4, g) is hyperkähler if the holonomy
Hol(g) is contained in SU(2).

Despite its integro-differential definition in terms of parallel transport, the holonomy
reduction to SU(2) can be recast in terms of a PDE for a triple of 2-forms satisfying
special algebraic properties at each point [18]. Recall that the space of 2-forms on an
oriented 4-dimensional vector space carries a natural non-degenerate bilinear form
of signature (3, 3).

Definition 1.2 Let (M4,μ0) be an oriented 4-manifold with volume form μ0. A
definite triple is a triple ω = (ω1,ω2,ω3) of 2-forms on M such that span(ω) =
span(ω1,ω2,ω3) is a 3-dimensional positive definite subspace of �2T ∗

x M at every
point x ∈ M .
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Given a triple ω of 2-forms on (M,μ0) we consider the matrix Q ∈ �
(
M,

Sym2(R3)
)
defined by

1
2 ωi ∧ ω j = Qi j μ0. (1)

ω is a definite triple if and only if Q is a positive definite matrix. To every definite
triple ω we associate a volume form μω by

μω = (det Q)
1
3 μ0 (2)

and the new matrix Qω = (det Q)−
1
3 Q which satisfies (1) with μω in place of μ0.

Note that the volume form μω and the matrix Qω are independent of the choice of
volume form μ0.

Now, let (M4,μ0) be an oriented 4-dimensional manifold. The choice of a
3-dimensional positive definite subspace of�2T ∗

x M for all x ∈ M is equivalent to the
choice of a conformal class on M , see for example [20, Sect. 1.1.5]. Thus every def-
inite triple defines a Riemannian metric gω by requiring that span(ω)|x = �+T ∗

x M
for all x ∈ M and dvgω

= μω .

Definition 1.5 A definite triple ω is said to be

(i) closed if dωi = 0 for i = 1, 2, 3;
(ii) an SU(2)-structure if Qω ≡ id;
(iii) hyperkähler if it is both closed and an SU(2)-structure.

A closed definite triple is also called a hypersymplectic triple. The metric gω associ-
ated to a hyperkähler triple is hyperkähler in the sense of Definition 1.1.

Let (M,ω) be a hyperkähler 4-manifold. We now make a choice of direction in
R

3. Up to rotations we can assume that the chosen direction is e1. We write ω = ω1,
ωc = ω2 + iω3 and ωc = ω2 − iω3. The complex 2-form ωc defines an almost com-
plex structure J = J1 on M by declaring a complex 1-form α of type (1, 0) if and
only if α ∧ ωc = 0. Since dωc = 0 the differential ideal generated by the (1, 0)–
forms is closed and therefore the almost complex structure J is integrable by the
Newlander–Nirenberg Theorem. Moreover, ωc and ω are, respectively, a holomor-
phic (2, 0)–form and a real (1, 1)–form with respect to J . Since ω is closed and non-
degenerate (M,ω, J ) is a Kähler surface, with g the induced Kähler metric. More-
over, by the expression for the Ricci curvature in Kähler geometry, cf. for example
[32, Sect. 4.6], ω2 = 1

2ωc ∧ ωc implies that g is Ricci-flat. Since the choice of direc-
tion inR3 was arbitrary, we see that hyperkähler metrics are Kähler with respect to a
2-sphere of compatible integrable complex structures—this might be the definition
of hyperkähler manifolds the reader is already familiar with.
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1.1 The K3 Surface

Beside the 4-torus endowed with a flat metric, the only other compact 4-manifold
carrying hyperkähler metrics is the K3 surface. In this note the K3 surface is the
smooth4-manifold M underlying any simply connected complex surface (M, J )with
trivial canonical bundle. The fact that all such complex surfaces are diffeomorphic
to each other was proved by Kodaira [34, Theorem 13]. We say that (M, J ) is a
complex K3 surface if wemake a choice of complex structure. As above, every simply
connected hyperkähler 4-manifold is in particular a complex surface (M, J ) with
trivial canonical bundle (trivialised by ωc). Conversely, every complex K3 surface is
Kähler [47] and therefore admits a Kähler Ricci-flat metric by Yau’s Theorem [52].
Since M is simply connected any Kähler Ricci-flat metric has holonomy contained
in SU(2) and therefore is hyperkähler. Examples of complex K3 surfaces (M, J ) are
smooth quartics in CP

3, complete intersections of a cubic and quadric in CP
4 and

the double cover of CP2 branched along a sextic.
Note also that every Einstein metric on the K3 surface must be hyperkähler [30,

Theorem 1]. Indeed, given any metric g the Chern–Gauss–Bonnet and Signature
Formulas are

8π2χ(M) =
∫

M

1
24Scal

2 + |W |2 − 1
2 |

◦
Ric |2, 12π2τ (M) =

∫

M
|W+|2 − |W−|2,

(3)

where Scal is the scalar curvature,
◦

Ric the traceless Ricci tensor and W = W+ + W−
is the Weyl tensor of g, decomposed into its self-dual and anti-self-dual parts. We
deduce that every Einstein metric g on the K3 surface M must be Ricci-flat and
anti-self-dual since

1

2π2

∫

M

1
48Scal

2 + |W+|2 = 2χ(M) + 3τ (M) = 0.

Indeed the Betti numbers of the K3 surface are b0 = 1, b1 = 0, b+ = 3 and b− = 19.
Furthermore, the Weitzenböck formula on �+ is

��+ = ∇∗∇ − 2W+ + 1
3Scal = ∇∗∇.

Since b+ = 3, we deduce that (M, g) carries a 3-dimensional space of parallel self-
dual 2-forms and therefore the holonomy of g reduces to SU(2).

Let M be the moduli space of Ricci-flat metrics of volume 1 on the K3 surface
M . The deformation theory of Einstein metrics is governed by an index zero elliptic
problem and therefore moduli spaces of Einstein metrics are in general singular. In
contrast, metrics with special holonomy often form smooth moduli spaces. This is
the case for hyperkähler metrics and thus M is a smooth manifold. In fact we also
know what this manifold is. Let Gr+(3, 19) = SO(3, 19)/SO(3) × SO(19) be the
Grassmannian of positive 3-planes inR3,19 	 H 2(M;R) and� be the automorphism
of the lattice H 2(M;Z) endowed with the intersection form (equivalently � is the
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quotient of the group of diffeomorphisms of M by the subgroup of diffeomorphisms
acting trivially on cohomology). The period map

P : M → Gr+(3, 19)/� (4)

associates to each metric the positive definite subspace span[ω] = span([ω1],
[ω2], [ω3]) ⊂ H 2(M,R). The Local Torelli Theorem [34, Theorem 17] implies that
P is a local diffeomorphism.

The period mapP in (4) is not surjective: smooth hyperkähler metrics correspond
to triples [ω] ∈ H 2(M,R) such that

[ω](�) �= 0 ∈ R
3 for all � ∈ H2(M,Z) such that � · � = −2, (5)

cf. [32, Theorem 7.3.16]. Thus the image of P is the complement of codimension-3
“holes” in Gr+(3, 19)/�. In the next section we describe hyperkähler metrics
approaching this excluded codimension-3 locus and explain the significance of (5).

2 Non-collapsed Limits

2.1 The Kummer Construction

We begin with a prototypical example. Soon after Yau’s proof of the Calabi Con-
jecture [52] implied that the K3 surface carries hyperkähler metrics, physicists and
mathematicians alike have been interested in finding a more explicit description of
these Ricci-flat metrics. Gibbons and Pope [23] suggested the construction of explicit
approximately Ricci-flat metrics on Kummer surfaces.

Let � 	 Z
4 be a lattice in R4 and consider the flat 4-torus T 4 = R

4/�. Consider
the Z2–action on T 4 induced by the involution x → −x of R4. Then T 4/Z2 is a flat
4-orbifold which is singular at the 16 points of the half-lattice 1

2�. Each singular
point is modelled on R4/Z2. If we identify R4 with C2 then T 4 becomes a complex
manifold and by blow-upwe can resolve T 4/Z2 to a complex surface (M, J )which is
simply connected and satisfies c1(M, J ) = 0 and therefore is a complex K3 surface.
The blow-up replaces each singularity with a holomorphicCP1 with self-intersection
−2. Thus a tubular neighbourhood of each CP

1 	 S2 in M is identified with a disc
bundle in the R2–bundle T ∗S2 over S2 with Euler class −2.

Gibbons and Pope suggested that Ricci-flat metrics can be brought into this res-
olution picture. The missing ingredient is a model Ricci-flat metric on T ∗S2 that is
asymptotic at infinity to the flat metric on R

4/Z2. Such a metric is explicit and is
called the Eguchi–Hanson metric [21].

Note that T ∗S2 can be identified with the total space of the holomorphic line
bundle O(−2) over CP1. This identification endows T ∗S2 with a complex structure
J . In fact, the blow-down of the zero-section π : O(−2) → C

2/Z2 exhibits O(−2)
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as a crepant resolution of C2/Z2: the standard holomorphic (2, 0)–form dz1 ∧ dz2
on C

2 descends to C
2/Z2 by Z2–invariance and its pull-back to O(−2) extends

to a nowhere-vanishing holomorphic (2, 0)–form ωeh
c on O(−2). We now define a

hyperkähler triple ωeh on T ∗S2 by ωeh
2 = Reωeh

c , ωeh
3 = Im ωeh

c and ωeh
1 the Kähler

form defined outside the zero-section by

ωeh
1 = i

2∂∂ϕeh, ϕeh =
√
1 + r4 + 2 log r − log

(
1 +

√
1 + r4

)
. (6)

Here we identify the complement of the zero-section in T ∗S2 with the complement
of the origin in C

2/Z2 via π and set r = √|z1|2 + |z2|2. One can check that ωeh
1

extends to a smooth Kähler form on the whole of T ∗S2. Note that as r → ∞, ωeh
1

approaches the flat metric i
2∂∂ϕ0, ϕ0 = r2, up to terms that decay as r−4.

Now, Gibbons and Pope suggested to remove neighbourhoods of the 16 singular
points of T 4/Z2 and replace them with 16 copies of a disc bundle in T ∗S2 → S2.
This cut-and-paste construction of the smooth 4-manifold M can be promoted to the
construction of a hypersymplectic triple on M by patching together the flat hyper-
kähler triple ω̂ on T 4/Z2 with 16 copies of the rescaled Eguchi–Hanson hyperkähler
triple. We now provide more details of this construction.

We first need to “prepare” the Eguchi–Hanson metric to be “grafted” into T 4/Z2.
Following [8, Sect. 1.1], fix t > 0 and consider a cut-off function χ = χt such that
χ(r) = 1 for r ≤ 1√

t
and χ(r) = 0 for r ≥ 2√

t
. Define a new triple ωeh,t by ωeh,t

i =
ωeh

i for i = 2, 3 and ωeh,t
1 = i

2∂∂ϕ̃eh
t , where

ϕ̃eh
t (r) = t2ϕ̃eh (

t−1r
)
, ϕ̃eh = χ ϕeh + (1 − χ)ϕ0.

The triple ωeh,t coincides with t2ωeh for r ≤ √
t and with the flat hyperkähler triple

ω0 on C
2/Z2 for r ≥ 2

√
t . In the annulus

√
t ≤ r ≤ 2

√
t , ωeh,t differs from ω0 by

terms of order O(t2). If t is sufficiently small ωeh,t is a closed definite triple which
is approximately hyperkähler in the sense that Qωeh,t − id = O(t2).

Let p1, . . . , p16 denote the singular points of T 4/Z2. We construct a smooth
4-manifold M by replacing (disjoint) balls B3

√
t (pi ) in T 4/Z2 with copies of the

region {r ≤ 3
√

t} ⊂ T ∗S2. Since ωeh,t coincides with the flat triple ω0 for r ≥ 2
√

t ,
M comes equipped with a natural hypersymplectic tripleωt obtained by gluingωeh,t

with the flat hyperkähler triple ω̂ of T 4/Z2. Then ωt is an approximate hyperkähler
triple in the sense that Qωt − id = O(t2).

The question now is to deform the approximate hyperkähler triple ωt into an
exact solution. A first rigorous proof of such a perturbation was given by LeBrun–
Singer [38] (following an earlier attempt by Topiwala [51]); it uses twistor theory
and we will not say anything about it. A different approach exploits the fact that a
complex structure J on M with c1(M, J ) = 0 can be readily constructed by blow-up
π : M → T 4/Z2 of the complex orbifold T 4/Z2: π∗ω̂c, where ω̂c = ω̂2 + i ω̂3 is the
holomorphic (2, 0)–form on T 4/Z2, extends to a nowhere vanishing holomorphic
(2, 0)–form on M . Indeed, we can arrange our gluing so thatωt

c = ωt
2 + iωt

3 is closed
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and satisfies ωt
c ∧ ωt

c = 0 and ωt
c ∧ ωt

c �= 0. Then the problem of perturbing ωt to an
exact hyperkähler triple reduces to solving the complex Monge–Ampère equation

(
ωt
1 + i∂∂u

)2 = 1
2ω

t
c ∧ ωt

c. (7)

Since (t, u) = (0, 0) is a solution one can hope to solve this equation for small
t > 0 by the Implicit Function Theorem. The main issue is that (0, 0) correspond
to a singular solution to the equation and therefore care is needed in applying the
Implicit Function Theorem. This was done by Donaldson [19] exploiting the confor-
mal equivalence between the cone metric dr2 + r2gRP3 (the model for the singulari-
ties of T 4/Z2 and for the geometry at infinity of the Eguchi–Hanson metric) and the
cylindrical metric dt2 + gRP3 . This conformal rescaling allows one to control con-
stants in the application of the Implicit Function Theorem since the cylindrical metric
has bounded geometry. Alternatively, one could work with weighted Banach spaces
as in analogous constructions of complete non-compact hyperkähler 4-manifolds by
Biquard–Minerbe [8].

The result is a family of Kähler Ricci-flat metrics on the K3 surface that develop
16 orbifold singularities modelled on R

4/Z2 in the limit t → 0. Each singularity
is associated with a 2-sphere of self-intersection −2 which shrinks to zero size as
t → 0. Furthermore, appropriate rescalings of the family close to each singular point
converge to the Eguchi–Hanson metric.

We can also introduce further parameters in the construction to recover a full
58-dimensional family of hyperkähler metrics on the K3 surface close to the singu-
lar limit T 4/Z2. Indeed, when gluing the scaled Eguchi–Hanson metric to the flat
metric in a neighbourhood of the point pi we have the choice of an isometric iden-
tification between the tangent cone at a singularity of T 4/Z2 and R

4/Z2. Since the
Eguchi–Hanson metric is U(2)–invariant, this choice lives in SO(4)/U(2) 	 S2. In
other words, at each singular point we can choose a direction in span(ω̂1, ω̂2, ω̂3)

to be identified with the direction of ωeh,t
1 in span(ωeh,t

1 ,ωeh,t
2 ,ωeh,t

3 ). In the previous
situation, where we define a complex structure J on M by blow-up, we make the
same choice of direction at each singular point p1, . . . , p16. If different choices are
made at different points then M does not come equipped with an integrable complex
structure and instead of solving a complexMonge–Ampère equation we need to glue
hyperkähler triples directly. This can be done as follows.

Let ωt be the closed definite triple on M obtained by gluing 16 copies of ωeh,t

with the flat orbifold triple ω̂. We know that ‖Qωt − id‖C0 = O(t2). We look for a
triple of closed 2-forms η = (η1, η2, η3) on M such that

1
2

(
ωt

i + ηi
) ∧ (

ωt
j + η j

) = δi j μωt . (8)

Decompose η into self-dual and anti-self dual parts η = η+ + η− with respect to
gωt . The self-dual part can be written in terms of a M3×3(R)–valued function A by
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η+
i =

3∑

j=1

Ai j ω j .

Denote by η− ∗ η− the symmetric (3 × 3)–matrix with entries ( 12 η−
i ∧ η−

j )/μωt .
Then we can rewrite (8) as

Qωt + Qωt AT + A Qωt + A Qωt AT + η− ∗ η− = id. (9)

Now, consider the map

M3×3(R) −→ Sym2(R3); A −→ Qωt AT + A Qωt + A Qωt AT

and its differential A → Qωt AT + A Qωt . Since Qωt is arbitrarily close to the iden-
tity as t → 0, this linear map induces an isomorphism Sym2(R3) → Sym2(R3) for
t sufficiently small. We can therefore define a smooth function F : Sym2(R3) →
Sym2(R3) such that Qωt AT + A Qωt + A Qωt AT = S if and only if A = F(S).
Hence we reformulate (9) as

η+ = F
(
(id − Qωt ) − η− ∗ η−)

. (10)

Now, letH+
ωt be the 3-dimensional space of self-dual harmonic 2-forms with respect

to gωt . Since ωt
1,ω

t
2,ω

t
3 are closed and self-dual (therefore harmonic) and linearly

independent (since ωt is a definite triple) we deduce that H+
ωt consist of constant

linear combinations of ω1,ω2,ω3. By Hodge theory with respect to gωt we can
finally rewrite (10) as the elliptic equation

d+a + ζ = F
(
(id − Qωt ) − η− ∗ η−)

, d∗a = 0, (11)

for a triple a of 1-forms on M and a triple ζ ∈ H+
ωt ⊗ R

3. Here 2 d+a = da + ∗da
is the self-dual part of da.

Instead of the Monge–Ampère equation (7), one must now solve (11) applying
the Implicit Function Theorem close to the singular limit t → 0 to deform ωt into
an exact hyperkähler triple. Assuming this can be done, if we now count parameters
in the construction we find

(i) 10 moduli of the flat metric on T 4;
(ii) the choice of scale t of the Eguchi–Hanson metric and gauge ψ ∈

SO(4)/U(2) 	 S2 for each singular point.

Thus we have 10 + 3 × 16 = 58 parameters in total, exactly the dimension of the
moduli space of Ricci-flat metrics (without any normalisation for the volume) on the
K3 surface.
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2.2 Orbifold Singularities

From a broader perspective the Kummer construction furnishes the prototypical
example of the appearance of orbifold singularities in non-collapsing sequences of
Einstein 4-manifolds. Bywork of Anderson [1, TheoremC], Nakajima [43, Theorem
1.3] and Bando–Kasue–Nakajima [7, Theorem 5.1], we know that a sequence of Ein-
stein 4-manifolds (Mi , gi ) with a uniform lower bound on volume and upper bounds
on diameter and Euler characteristic converges (after passing to a subsequence) to an
Einstein 4-orbifold M∞ with finitely many singular points. The formation of orbifold
singularities ismodelled on complete Ricci-flat ALE spaceswhich appear as rescaled
limits, or “bubbles”, of the sequence (Mi , gi ) around points that approach one of the
singularities of the orbifold M∞. We now provide a more detailed description of
these results.

Theorem 2.7 Fix �, C, V, D > 0 and let (M4
i , gi ) be a sequence of Einstein

4-manifolds satisfying

(i) |Ric(gi )| ≤ �;
(ii) χ(Mi ) ≤ C;

(iii) Vol(Mi , gi ) ≥ V ;
(iv) diam(Mi , gi ) ≤ D.

Then a subsequence converges to an Einstein orbifold (M∞, g∞) with finitely
many isolated singular points {x1, . . . , xn} with n ≤ n(�, C, V, D). More pre-
cisely, (Mi , gi ) converges to (M∞, g∞) in the Gromov–Hausdorff sense and there
are smooth embeddings fi : M∞ \ {x1, . . . , xn} → Mi such that f ∗

i gi converges
to the smooth Einstein metric g∞|M∞\{x1,...,xn} in C∞ over compact sets of M∞ \
{x1, . . . , xn}.

Here are some ingredients in the proof of the theorem.First of all, there exists a sub-
sequence that converges to a compact metric space (M∞, d∞) in Gromov–Hausdorff
topology and one has to understand the structure of M∞. The Bishop–Gromov vol-
ume comparison and hypotheses (iii) and (iv) imply the non-collapsing condition
Vol (B1(p)) ≥ v for all p ∈ Mi and all i and some uniform v > 0. Moreover, the
hypotheses of the Theorem guarantee that we have uniform control on the Sobolev
constant of (Mi , gi ). Since the Einstein equation implies the differential inequal-
ity �|Rmgi | + c |Rmgi |2 ≥ 0, Moser iteration now yields the following ε–regularity
result: there exists ε > 0, C > 0, r0 > 0 such that for all 0 < r < r0

∫

B2r (p)

|Rmgi |2 dvgi < ε =⇒ sup
Br (p)

|Rmgi | ≤ Cr−2

(∫

B2r (p)

|Rmgi |2 dvgi

) 1
2

. (12)

Given (i), the bound (ii) is equivalent to a global bound ‖Rmgi ‖L2 ≤ C ′ by the
Gauss–Chern–Bonnet Formula (3). Then (12) fails only for a definite number of
balls. Together with a bootstrap argument using the Einstein equation, we conclude
that (M∞, g∞) is a smooth Einstein manifold away from a definite number of points
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x1, . . . , xn . A first step in analysing the structure of these singular points is to study
their tangent cone. Fix a = 1, . . . , n. Consider a sequence ri → 0 and consider the
sequence of pointed manifolds (M∞, r−2

i g∞, xa). The pointed Gromov–Hausdorff
limit (Ya, o∗) of a subsequence ik → ∞ is called a tangent cone to M∞ at xa . A priori
it depends on the sequence of rescaling ri . Now, since ‖Rmg∞‖L2 is bounded by the
lower continuity of the energy, we have

∫
B2r (xa)\Br (xa)

|Rmgi |2 dvgi → 0 as r → 0.
Then using (12) one can show that the annulus B2(o∗) \ B1(o∗) in Ya is flat. In fact
Ya is a flat cone Ya = C(S3/�a) which is smooth outside of its vertex o∗.

Not only does the available theory characterise the singularities of non-collapsed
limits of Einstein 4-manifolds; it also explains how these singularities arise. The key
notion is the one of ALE (asymptotically locally Euclidean) manifolds.

Definition 2.9 A complete Riemannian 4-manifold (W 4, h) is ALE of rate ν < 0
if there exists a finite group � ⊂ SO(4) acting freely on R

4 \ {0}, a compact set
K ⊂ W , R > 0 and a diffeomorphism f : (

R
4 \ BR(0)

)
/� → W \ K such that

|∇k( f ∗h − hR4/�)| = O(rν−k).

Here the norm and covariant derivative are computed using the flat metric hR4/� .

Theorem 2.10 In the same notation and in addition to the statements of Theorem
2.7, for each a = 1, . . . , n there exist xa,i ∈ Mi and ri → ∞ such that, up to subse-
quences,

(i) B(xa,i , δ) ⊂ Mi converges to B(xa, δ) ⊂ M∞ for all δ > 0 sufficiently small;
(ii) (Mi , r2i gi , xa,i ) converges to a Ricci-flat ALE 4-manifold (Wa, ga, xa,∞) of

rate −4 in the following sense: for each R > 0 there exists maps fa,i :
B(xa,∞, R) → Mi such that f ∗

a,i (r
2
i gi ) converges in C∞ to ha on B(xa,∞, R) ⊂

Wa.

The points xa,i and scales ri are chosen so that |Rmgi |(xa,i ) = r2i is essentially
the maximum of |Rmgi | in a small ball that is converging to a neighbourhood of
xa in the Gromov–Hausdorff topology. The existence of a limit (Wa, ha) which is
a complete Ricci-flat manifold with finite energy and maximal volume growth, i.e.
‖Rmha ‖L2 < ∞ and limr→∞ r−4Vol(Br (xa,∞)) > 0, follows by arguments based on
(12) as before. The fact that any such manifold is ALE of rate ν = −4 follows from
[7, Theorem 1.5].

In fact, the tangent cone at infinity of Wa might not match the tangent cone at
the orbifold singularity xa ∈ M∞ and a series of blow-ups at different scales might
be necessary to capture the full picture of the degeneration of Mi to M∞. Such
bubbling-off of a “bubble-tree” of ALE Ricci-flat orbifolds was made precise by
Bando [6] and Anderson–Cheeger [3]. We will see later some explicit examples of
this phenomenon, cf. Remark 3.3.
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2.3 ALE Gravitational Instantons

Theorem 2.10 provides the motivation for the study and ideally the classification
of all Ricci-flat ALE 4-manifolds. It is here that the hyperkähler case differs dra-
matically from the more general Ricci-flat case: ALE hyperkähler 4-manifolds were
constructed and classified by Kronheimer [35, 36] following earlier work of Eguchi–
Hanson, Gibbons–Hawking and Hitchin (the classification was extended to non-
simply connected Kähler Ricci-flat ALE 4-manifolds by Suvaina [48]); in contrast,
not a single example of an ALE Ricci-flat 4-manifold with generic holonomy SO(4)
is currently known and the question of whether Ricci-flat ALE 4-manifolds must
have special holonomy is wide open.

A gravitational instanton is a complete non-compact hyperkähler 4-manifoldwith
finite energy ‖Rm‖L2 . We will see later that often stronger assumptions of curvature
decay have to be imposed to obtain better control of the asymptotic geometry at
infinity. Note that since every hyperkähler manifold is in particular Ricci-flat, gravi-
tational instantons have constrained volume growth: the volume of a geodesic ball of
radius r grows at most as r4 and at least linearly in r . By the result of Bando–Kasue–
Nakajima [7, Theorem 1.5] mentioned above, gravitational instantons of maximal
volume growth are ALE hyperkähler 4-manifolds in the sense of Definition 2.9.

We now state Kronheimer’s results. Let � be a finite subgroup of SU(2) that acts
freely on C2 \ {0}. Such groups are classified by simply-laced Dynkin diagrams, i.e.
theDynkindiagramsof type ADE . TheKleinian (orDuVal) singularityC2/� admits
a (unique) minimal resolution π : X� → C

2/�: X� is a smooth complex surface,
π is an isomorphism outside of π−1(0) and X� does not contain any rational curve
with self-intersection −1 (which could be blown-down to produce another smooth
resolution). The exceptional locus π−1(0) is a configuration of rational curves with
self-intersection−2 that intersects according to theDynkin diagram of�. Finally, X�

has trivial canonical bundle, i.e. it admits a nowhere vanishing holomorphic (2, 0)-
form ωc that outside of π−1(0) restricts to the pull-back of the standard complex
volume form dz1 ∧ dz2 on C

2/�. In the following theorem we forget the complex
structure and regard X� as a smooth 4-manifold.

Theorem 2.11 Let � be a finite subgroup of SU(2) that acts freely on C
2 \ {0} and

X� be the smooth 4-manifold underlying the minimal resolution of C2/�.

(i) Let α ∈ H 2(X�,R) ⊗ R
3 satisfy

α(�) �= 0 ∈ R
3 for all � ∈ H2(X�,Z) such that � · � = −2. (13)

Then there exists an ALE hyperkähler structure ω on X� with [ω] = α.
(ii) If (X,ω) is an ALE hyperkähler 4-manifold asymptotic to C

2/� then X is
diffeomorphic to X� and [ω] satisfies (13). Moreover, if (X,ω) and (X ′,ω′)
are two such manifolds and there exists a diffeomorphism f : X → X ′ such that
[ f ∗ω′] = [ω] then (X,ω) and (X ′,ω′) are isomorphic hyperkähler manifolds.
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The hyperkähler structures in (i) are obtained by the so-called hyperkähler quo-
tient construction. For example, the Eguchi–Hanson metric can be described as
the hyperkähler quotient of H2 by U(1) acting by eiθ · (q1, q2) = (eiθq1, e−iθq2).
The hyperkähler moment map for this U(1)–action is μ(q1, q2) = q1iq1 − q2iq2 ∈
ImH 	 R

3. Given ζ ∈ R
3, the hyperkähler quotient construction guarantees that,

when smooth,μ−1(ζ)/U(1) is a hyperkähler manifold. When ζ = 0we have the flat
metric onC2/Z2 and when ζ �= 0we have the Eguchi–Hanson hyperkähler structure
on T ∗S2 scaled and rotated so that [ω](S2) = ζ.

For the classification result in (ii) Kronheimer exploits twistor theory and the
natural “1-point” conformal compactification of an ALE gravitational instanton to
an anti-self-dual 4-orbifold. More recently, Conlon–Hein [17, Corollary D] have
obtained a different proof of this result that does not use twistor theory: with respect
to any complex structure, an ALE gravitational instanton asymptotic to C

2/� must
be the crepant resolution of a member of the versal C∗–deformation of the Kleinian
singularity C

2/�; every such deformation has a unique crepant resolution and the
latter admit a unique ALE Kähler Ricci-flat metric in each Kähler class.

3 Codimension One Collapse

If we include hyperkähler orbifolds with finitely many isolated singularities, the
period map (4) can be extended as a map from the completion of the moduli
space M of Einstein metrics on the K3 surface with unit volume in the Gromov–
Hausdorff topology onto Gr+(3, 19)/� [2, Theorem IV]. However Gr+(3, 19)/� is
non-compact so we must still consider sequences of hyperkähler metrics that do not
converge in Gromov–Hausdorff topology. This amounts to understanding collapsing
sequences of hyperkähler metrics on the K3 surface.

Let (M, gi ) be a sequence of unit-volume hyperkähler metrics with
diam(M, gi ) → ∞. Then Volgi (B1(p)) → 0 as i → ∞ for all p ∈ M , since other-
wise we would bound the diameter of (M, gi ) in terms of the total volume [46, Theo-
rem I.4.1]. Under these assumptions, Anderson [2, Theorem II] showed that (M, gi )

collapses in the sense of Cheeger–Gromov outside finitely many points x1, . . . , xn ,
where the number n is controlled by the Euler characteristic χ(M). This means that
for x ∈ M \ {x1, . . . , xn} the injectivity radius injgi

(x) converges to zero and that
we control the curvature after rescaling the metric so that the injectivity radius stays
bounded: injgi

(x)2|Rmgi |gi (x) ≤ ε0, for a universal constant ε0 > 0. In fact, Cheeger
and Tian [10, Theorems 0.1 and 0.8] have proven the much stronger result that the
collapse occurs with bounded curvature away from a definite number of points.

Cheeger–Tian’s result implies that Cheeger–Fukaya–Gromov’s theory of collapse
with bounded curvature [9] can be applied outside of finitely many points. The most
important feature of this theory in our discussion is that the limitinggeometry acquires
continuous symmetries. Here we describe these symmetries only at the level of the
local geometry around each point in the region that collapseswith bounded curvature,
referring to [9] for the globalisation of this local picture. Let (Mn

i , gi ) be a sequence of
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manifoldswith sectional curvature bounded by a uniform constant K > 0. If pi ∈ Mi

and 3r ∈ (0, 1√
K

) then we can consider the sequence of Riemannian metrics ĝi =
exp∗

pi
gi on the ball B3r (0) ⊂ R

n 	 Tpi Mi . For each i there exists a pseudo-group
�i of local isometries of (Br (0), ĝi ) whose action induces the equivalence relation
x ∼�i y if and only if exppi

(x) = exppi
(y) ∈ Mi . Up to passing to a subsequence,

(Br (0), ĝi ) converges in C1,α to (Br (0), ĝ∞) (the limit and the convergence are
smooth if we control higher order derivatives of the curvature, as in the Einstein
case) and the pseudogroups �i converge to a pseudogroup �∞ of isometries of
(Br (0), ĝ∞). TheGromov–Hausdorff limit of (Br (pi ), gi ) is (Br (0), ĝ∞)/�∞. Since
�i acts in an increasingly dense fashion,�∞ contains continuous isometries: in fact, a
neighbourhood of the identity in�∞ is isomorphic to a neighbourhood of the identity
in a nilpotent Lie group.

Now, this general theory of Riemannian collapse with bounded curvature moti-
vates us to study hyperkähler metrics in dimension 4 with a triholomorphic Killing
field, i.e. a Killing field that preserves the hyperkähler triple as well as the met-
ric, as models for regions that collapse with bounded curvature. Thought experi-
ments based on the Kummer construction suggest that we should study gravitational
instantons with non-maximal volume growth as models for regions that collapse
with unbounded curvature. Indeed, consider the Kummer construction of Ricci-flat
metrics on the K3 surface along a family of split tori T 4 = T 4−k × T k

ε with a T k–
factor of volume εk → 0. We can then think of the 2-spheres arising in the resolution
of the 16 singularities of T 4/Z2 as coming in 2k–tuples aligned along the collaps-
ing k-torus over each of the 24−k singular points of T 4−k/Z2. If we now rescale
the sequence of Kähler Ricci-flat metrics on the K3 surface by ε−2 around one of
these 2k–tuples, in the limit ε → 0 we should obtain a complete hyperkähler metric
asymptotic to (R4−k × T k)/Z2. In the case k = 1, the appearance of gravitational
instantons asymptotic to (R3 × S1)/Z2 as rescaled limits was suggested by Page
[45]. Hyperkähler metrics asymptotic to (R4−k × T k)/Z2 for k = 1, 2, 3 have been
constructed by Biquard–Minerbe [8] using a non-compact version of the Kummer
construction (earlier Hitchin [31] used twistor methods in the case k = 1).

3.1 The Gibbons–Hawking Ansatz

The Gibbons–Hawking ansatz [24] describes 4-dimensional hyperkähler metrics
with a triholomorphic S1–action (or more generally metrics with a triholomorphic
Killing field).

Let U be an open set of R3 and π : P → U be a principal U(1)–bundle. Suppose
that there exists a positive harmonic function h on U such that ∗dh is the curvature
dθ of a connection θ on P . Then the metric

ggh = h π∗gR3 + h−1θ2 (14a)
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on P is hyperkähler. Indeed, we can exhibit an explicit hyperkähler triple ωgh that
induces the metric ggh. Fix coordinates (x1, x2, x3) on U ⊂ R

3 and define

ω
gh
i = dxi ∧ θ + h dx j ∧ dxk, (14b)

where (i jk) is a cyclic permutation of (123). One can check that ωgh is an SU(2)–
structure inducing the Riemannian metric ggh . Moreover, the requirement that ωgh

is also closed is equivalent to the abelian monopole equation

∗ dh = dθ. (15)

The fibre-wise circle action on P preserves ωgh and π is nothing but a hyperkähler
moment map for this action. Conversely, every 4-dimensional hyperkähler metric
with a triholomorphic circle action is locally described by (14).

The basic example of the Gibbons–Hawking construction is given in terms of
so-called Dirac monopoles on R

3. Fix a set of distinct points p1, . . . , pn in R
3 and

consider the harmonic function

h = m +
n∑

j=1

k j

2|x − p j | ,

where m ≥ 0 and k1, . . . , kn are constants. Since R3 \ {p1, . . . , pn} has non-trivial
second homology, we must require k j ∈ Z for all j in order to be able to solve (15).
If these integrality constraints are satisfied then ∗dh defines the curvature dθ of a
connection θ (unique up to gauge transformations) on a principal U(1)–bundle P
over R3 \ {p1, . . . , pn} which restricts to the principal U(1)–bundle associated with
the line bundle O(k j ) → S2 on a small punctured neighbourhood of p j . The pair
(h, θ) is a solution of (15) which we call a Dirac monopole with singularities at
p1, . . . , pn .

The Gibbons–Hawking ansatz (14) associates a hyperkähler metric ggh to every
Dirac monopole on the open set where h > 0. When k j > 0 then ggh is certainly
defined on the restriction of P to a small punctured neighbourhood of p j . By a
change of variables one can check that ggh can be extended to a smooth orbifold
metric modelled on C2/Zk j by adding a single point.

Remark 3.3 By considering clusters of points p1, . . . , pn coalescing together at
different rates one can easily construct sequences of (non-compact) hyperkähler
metrics developing orbifold singularities modelled on bubble-trees of ALE spaces.

In particular ggh is a complete metric whenever m ≥ 0 and k j = 1 for all j =
1, . . . , n. When m = 0 one can check that ggh is an ALE metric in the sense of
Definition 2.9. When m > 0 (by scaling we can then assume that m = 1) ggh has a
drastically different asymptotic geometry called ALF (asymptotically locally flat).

Definition 3.4 A gravitational instanton (M, g) is called ALF if there exists a com-
pact set K ⊂ M such that the following holds. The (unique) end M \ K is the total
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space of a circle fibration π : M \ K → (R3 \ BR)/�, where R > 0 and � is a finite
subgroup of O(3) acting freely on S2. Passing to a �–cover we can always assume
that π is a principal circle bundle. Define a model metric g∞ on M \ K by choosing
a connection θ on (the �–cover of) π and setting g∞ = π∗gR3 + θ2. Then we have

|∇k
g∞(g − g∞)|g∞ = O(rν−k) (16)

for some ν < 0 and all k ≥ 0.
There are only two possibilities for �: if � = id we say that M is an ALF grav-

itational instanton of cyclic type; if � = Z2 we say that M is an ALF gravitational
instanton of dihedral type.

Recall that gravitational instantons have constrained volume growth: Vol
(
Br (p)

)

grows at least linearly in r and at most as r4. Under the assumption of faster than
quadratic curvature decay, i.e. |Rm| = O(r−2−ε) for some ε > 0 (or a slightlyweaker
finite weighted energy assumption), Minerbe [40, Theorem 0.1] has shown that if
we assume a uniformly submaximal volume growth, Vol

(
Br (p)

) ≤ Cra for some
3 ≤ a < 4 and all p, say, then the volume growth is at most cubic, a ≤ 3. Minerbe
also described the asymptotic geometry of gravitational instantons of cubic volume
growth and faster than quadratic curvature decay: they are all ALF spaces as in
Definition 3.4.

3.2 ALF Gravitational Instantons

Now we describe the classification of ALF gravitational instantons obtained by
Minerbe [41] and Chen–Chen [12] in the cyclic and dihedral case respectively.

Let H k be the total space of the principal U(1)–bundle associated with the line
bundle O(k) over S2 radially extended to R

3 \ BR for any R > 0. Let θk denote
the (unique up to gauge transformation) SO(3)–invariant connection on H k . The
Gibbons–Hawking ansatz (14) yields a hyperkähler metric

gk =
(
1 + k

2r

)
(dr2 + r2gS2) +

(
1 + k

2r

)−1

θ2k (17)

on H k for all k ∈ Z. Here r is a radial function on R
3. Finally, on H 2k we consider

the Z2–action which is generated by the simultaneous involutions on the base R
3

and the fibre: onR3 we act by the standard involution x → −x and the involution on
the fibre S1 = R/2πZ is the one induced by the standard involution on the universal
cover R. We refer to this involution of H 2k as its standard involution.

Definition 3.7 Let (M4, g) be an ALF gravitational instanton.

(i) We say that M is of type Ak for some k ≥ −1 if there exists a compact set
K ⊂ M , R > 0 and a diffeomorphism φ : H k+1 → M \ K such that
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|∇l
gk+1

(gk+1 − φ∗g)|gk+1 = O(r−3−l)

for every l ≥ 0.
(ii) We say that M is of type Dm for some m ≥ 0 if there exists a compact set

K ⊂ M , R > 0 and a double cover φ : H 2m−4 → M \ K such that the group
Z2 of deck transformations is generated by the standard involution on H 2m−4

and
|∇l

g2m−4
(g2m−4 − φ∗g)|g2m−4 = O(r−3−l)

for every l ≥ 0.

Chen–Chen [12, Theorem 1.1] have shown that every ALF gravitational instanton
is either of type Ak for some k ≥ −1 or Dm for some m ≥ 0. The constraints k ≥ −1
and m ≥ 0 were derived earlier by Minerbe [39, Theorem 0.1] in the cyclic case and
by Biquard–Minerbe [8, Corollary 3.2] in the dihedral case.

3.2.1 ALF Spaces of Cyclic Type

We saw that gravitational instantons of type Ak can be constructed from Dirac
monopoles on R

3 with k + 1 singularities via the Gibbons–Hawking ansatz. These
are usually called multi-Taub–NUT metrics. The case k = 0 is the Taub–NUTmetric
on R

4 and k = −1 is R3 × S
1 with its flat metric. Minerbe [41, Theorem 0.2] has

shown that every ALF space of cyclic type must be isometric to a multi-Taub–NUT
metric.

3.2.2 ALF Spaces of Dihedral Type

ALF metrics of dihedral type are not globally given by the Gibbons–Hawking con-
struction and in most cases are not explicit. A number of different constructions have
appeared over the past decades, but only recently Chen–Chen [12, Theorem 1.2]
have shown that all these constructions yield equivalent families of ALF metrics.

m = 0: The D0 ALF manifold is the moduli space of centred charge 2 monopoles
on R

3 with its natural L2–metric, known as the Atiyah–Hitchin manifold.
The metric admits a cohomogeneity one isometric action of SO(3) and is
explicitly given in terms of elliptic integrals [4, Chap. 11]. The D0 ALF
metric is rigid modulo scaling.

m = 1: The Atiyah–Hitchin manifold is diffeomorphic to the complement of a
Veronese RP

2 in S4 and therefore it retracts to RP
2 and is not simply

connected. The double cover of the Atiyah–Hitchin manifold is a D1 ALF
space. As a smooth manifold it is diffeomorphic to the complement of
RP

2 in CP
2, or equivalently to the total space of O(−4) over S2. This

rotationally invariant D1 ALFmetric admits a 3-dimensional family of D1

ALF deformations, sometimes referred to as the Dancer metrics.
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m = 2: D2 ALF metrics were constructed by Hitchin [31, Sect. 7] using twistor
methods and by Biquard–Minerbe [8, Theorem 2.4] using a non-compact
version of theKummer construction: one considers the quotient ofR3 × S

1

by an involution and resolves the two singularities gluing in copies of the
Eguchi–Hanson metric.

m ≥ 3: Dm ALFmetrics (for allm ≥ 1) appeared in thework of Cherkis–Kapustin
[16] on moduli spaces of singular monopoles on R

3 and were rigor-
ously constructed by Cherkis–Hitchin [15] using twistor methods and
the generalised Legendre transform. In the case m ≥ 3 a more transpar-
ent construction due to Biquard–Minerbe [8, Theorem 2.5] yields Dm

ALF metrics by desingularising the quotient of the Taub–NUT metric
by the binary dihedral group Dm of order 4(m − 2) using ALE dihe-
dral spaces. Using complexMonge–Ampère methods Auvray [5] has then
constructed 3m–dimensional families of Dm ALF metrics on the smooth
4-manifold underlying the minimal resolution of C2/Dm .

3.3 ALF Gravitational Instantons and Collapsing Ricci-flat
Metrics on the K3 Surface

Despite this rich theory ofALF gravitational instantons, until recently it has remained
unclear how they can appear asmodels for the formation of singularities in collapsing
sequences of hyperkähler metrics on the K3 surface. In [22] the author exploited
singular perturbation methods to construct examples of Ricci-flat metrics on the K3
surface collapsing to a 3-dimensional limit and exhibit ALF gravitational instantons
as the “bubbles” appearing in the process.

Theorem 3.8 Let T 3 = R
3/� be a 3-torus for some lattice � 	 Z

3. Endow T 3

with a flat metric gT 3 . Let τ : T 3 → T 3 be the standard involution x → −x and
denote by q1, . . . , q8 its fixed points. Fix a τ–symmetric configuration of fur-
ther 2n distinct points p1, τ (p1), . . . , pn, τ (pn). Denote by T ∗ the complement of
{q1, . . . , q8, p1, . . . , τ (pn)} in T 3.

Let m1, . . . , m8 ∈ Z≥0 and k1, . . . , kn ∈ Z≥1 satisfy

8∑

j=1

m j +
n∑

i=1

ki = 16. (18)

For each j = 1, . . . , 8 fix a Dm j ALF space M j and for each i = 1, . . . , n an Aki −1

ALF space Ni .
Then there exists a 1-parameter family of hyperkähler metrics {gε}ε∈(0,ε0) on the

K3 surface with the following properties. We can decompose the K3 surface into the
union of open sets K ε ∪ ⋃8

j=1 M ε
j ∪ ⋃n

i=1 N ε
i such that as ε → 0:
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(i) (K ε, gε) collapses to the flat orbifold T ∗/Z2 with bounded curvature away from
the punctures;

(ii) for each j = 1, . . . , 8 and k ≥ 0, (M ε
j , ε

−2gε) converges in Ck,α
loc to the Dm j

ALF space M j ;
(iii) for each i = 1, . . . , n and k ≥ 0, (N ε

i , ε
−2gε) converges in Ck,α

loc to the Aki −1

ALF space Ni .

The metric gε is constructed by gluing methods: we first construct an approximate
hyperkähler metric by patching together knownmodels and then perturb it to an exact
solution. The construction of the approximate hyperkähler metric proceeds as fol-
lows. The ALF gravitational instantons provide models for the collapsing geometry
near points of curvature concentration.We aim to construct amodel for the collapsing
sequence of hyperkähler metrics on regions where the curvature remains bounded
using the Gibbons–Hawking ansatz over the punctured 3-torus T ∗. We look for a
Dirac monopole (h, θ) on T ∗ with the following singular behaviour: h is a harmonic
function on T ∗ with prescribed singularities at the punctures

h ∼ 2m j − 4

2r j
as r j → 0, h ∼ ki

2ri
as ri → 0.

Here r j and ri denote the distance functions from the points q j and pi , τ (pi ) with
respect to the flat metric gT 3 . The balancing condition (18) guarantees the existence
of the harmonic function h. Since the weights m j and ki are integers and the config-
uration of punctures is τ–invariant, one can also show the existence of a connection
θ with curvature ∗dh on a principal circle bundle over T ∗.

Fix a (small) positive number ε > 0. The Gibbons–Hawking ansatz (14) yields a
hyperkähler metric

gghε = (1 + εh)π∗gT 3 + ε2(1 + εh)−1 θ2

over the region where 1 + εh > 0. Unless h is constant (which corresponds to Page’s
suggestion of considering theKummer construction startingwith T 3 × S1

ε for a circle
factor of length 2πε → 0) there must exists some j with m j = 0, 1 and therefore the
harmonic function 1 + εh must become negative somewhere. The key observation is
that by taking ε sufficiently small (which geometrically corresponds to making the
circle fibres have small length) it is possible to construct highly collapsed hyperkähler
metrics g

gh
ε outside of an arbitrarily small neighbourhood of the punctures. More

precisely, one can prove that there exists ε0 > 0 such that for every ε < ε0 we have
1 + εh > 1

2 on the complement of
⋃k

j=1 B8ε(q j ).
Now, as we know from Definition 3.7 the asymptotic model of any ALF metric

(up to a double cover in the dihedral case) can be written in Gibbons–Hawking
coordinates. The configuration of punctures and weights on T 3 was chosen so that,
after taking a Z2–quotient, we are able to glue in copies of ALF spaces to extend the
Gibbons–Hawking metric g

gh
ε to an approximately hyperkähler tripleωε: close to the

fixed point q j of theZ2–action on T 3 we glue in the Dm j ALF space M j (this explains
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why we need 8 of them in the theorem); close to the image of pi , τ (pi ) in T 3/Z2 we
glue in the Aki −1 ALF space Ni . In this way one obtains a closed definite triple ωε

which is approximately hyperkähler in the sense that |Qωε
− id| → 0 as ε → 0. The

approximate hyperkähler triple is then deformed into an exact solution by solving
an equation like (11) using the Implicit Function Theorem in appropriately chosen
weighted Hölder spaces.

4 Collapse and Elliptic Fibrations

In this final section we describe an influential work of Gross–Wilson [27] on the
behaviour of hyperkähler metrics on the K3 surface collapsing to a 2-dimensional
limit along the fibres of an elliptic fibration. We will also discuss more recent work
of Hein [29] and related work by Chen–Chen [11–13] on gravitational instantons
with non-maximal volume growth, in which elliptic fibrations also play a key role.

4.1 The Gross–Wilson’s Construction

A complex surface (i.e. a complex manifold of complex dimension 2) (M, J ) is said
to be elliptic if it admits a holomorphic map π : M → C onto a smooth complex
curve C such that the generic fibre is a smooth curve of genus 1. If π : M → C has
a holomorphic section σ, then the generic fibre becomes a smooth elliptic curve. We
say that M is a minimal elliptic surface if there are no (−1)–curves contained in the
fibres.

If (M, J ) is an elliptic complex K3 surface not all fibres can be smooth elliptic
curves because χ (M) = 24. The possible singular fibres of elliptic surfaces have
been classified by Kodaira. They are distinguished by the monodromy. Work locally
with a minimal elliptic surface π : M → � over a disc with a section σ and assume
that all fibres except possibly the one over the origin are smooth elliptic curves. Using
σ, one can describe the restriction M |�∗ of M to the punctured disc as π : (�∗ ×
C)/� → �∗, for a family of lattices � ⊂ C defined by (possibly multi-valued)
holomorphic functions τ1, τ2 on �∗. The monodromy is the representation of the
fundamental group of �∗ on the mapping class group of the smooth fibre. We can
think of it as the conjugacy class of the matrix A ∈ SL(2,Z) generating the action
of π1(�∗) on the oriented pair (τ1, τ2). We refer to [42, Tables I.4.1 and I.4.2] for
Kodaira’s list and limit ourself to the example of a singular fibre of type I1. In this
case M |�∗ is isomorphic to (�∗ × C)/(τ1Z + τ2Z)with τ1 = 1, τ2 = 1

2πi log z. Since
τ2(eiθz) = τ2(z) + θ

2π , the monodromy around an I1 fibre is

(
1 1
0 1

)
. (19)
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The singular fibre π−1(0) is a pinched torus, i.e. a 2-sphere with south and north
poles identified.

Generically a complex K3 surface that admits an elliptic fibration (necessarily
over CP1) has exactly 24 singular fibres, all of type I1. Let π : M → CP

1 be such
such an elliptic K3 surface with 24 singular I1 fibres. Up to changing the complex
structure of M preserving the fibration π : M → CP

1 we can always reduce to the
case that π has a holomorphic section. Gross–Wilson studied the behaviour of Kähler
Ricci-flat metrics on M as we fix this complex structure and deform the Kähler class
so that the elliptic fibres of π shrink to zero size. In other words, they considered
a sequence of Kähler classes converging to the class [π∗ωFS] at the boundary of
the Kähler cone of M and described the behaviour of the Kähler Ricci-flat metric
given by Yau’s Theorem along this sequence. Here ωFS is the Fubini–Study metric
on CP

1. Gross–Wilson’s description of the collapsing Ricci-flat metrics is achieved
by a gluing construction.

4.1.1 The Semi-flat Metric

The model for the collapsing Ricci-flat metrics away from the singular fibres is
provided by a certain semi-flat metric [27, Sect. 2], i.e. a metric that restricts to a flat
metric on each elliptic fibre.

Let π : M → CP
1 be an elliptic K3 surface with a section and restrict the

fibration to a small disc � ⊂ CP
1. Fix a holomorphic coordinate z on �. We

assume that π : M |� → � is a minimal elliptic fibration with a section such that
all fibres are smooth. Using the given holomorphic section, we can identify M |�
with (� × Cw)/(τ1Z + τ2Z) as before. Without loss of generality we assume that
Im(τ1τ2) > 0. Fix a holomorphic symplectic form ωc on M . In coordinates z, w we
can assume that ωc = dz ∧ dw. Given ε > 0, we construct a semi-flat metric ωs f,ε

using the following ingredients.

(i) For each z ∈ � define a flat Kähler metric ωz,ε on π−1(z) by choosing a dual
basis ξ1(z), ξ2(z) to τ1(z), τ2(z) and setting ωz,ε = ε ξ1(z) ∧ ξ2(z). Changing
basis to dw, dw yields ωz,ε = i

2W dw ∧ dw, with W = ε
Im(τ1τ2)

.

(ii) Define ω�,ε as the unique Kähler metric on � such that the pairing T 1,0� ×
(� × C) → C induced by ωc is isometric with respect to the Hermitian metrics
induced by ωz,ε and ω�,ε. Explicitly, ω�,ε = i

2W −1dz ∧ dz.
(iii) The family of lattices τ1Z + τ2Z defines a flat connection on the trivial bundle

� × C by declaring τ1 and τ2 to be flat sections. The associated connection
1-form is

� dz = 1

Im(τ1τ2)

(
Im(τ1w)dτ2 − Im(τ2w)dτ1

)
.

The semi-flat metric is then

ωs f,ε = i
2W −1dz ∧ dz + i

2W (dw − �dz) ∧ (dw − �dz). (20)
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Note that the triple (ωs f,ε,Re ωc, Im ωc) is hyperkähler and that ωs f,ε|π−1(z) is the
flat metric with volume ε.

The construction of the semi-flat metric can be extended to the situation where
M |� has a singular fibre over the origin z = 0. We simply replace � with the punc-
tured disc �∗ and use Kodaira’s normal form for M |�∗ . For example, if π−1(0) is
a fibre of type I1 then M |�∗ is isomorphic to (�∗ × C)/(τ1Z + τ2Z) with τ1 = 1,
τ2 = 1

2πi log z. Note that the assumption Im(τ 1τ2) > 0 forces � to be strictly con-
tained in the unit disc inC. The semi-flat metric (20) on the complement of a singular
fibre of type I1 admits a tri-holomorphic S1–action and, following [27],we can rewrite
it in Gibbons–Hawking coordinates.

First of all, since W Im (�dz) = − Im(w) dW , the imaginary part of W (dw −
� dz) is closed. Hence there exists a function t : �∗ × C → R, unique up to the addi-
tion of a constant, such that−W −1dt = Im(dw − � dz). Thenπ : (�∗ × C)/τ1Z →
�∗ × Rt is a principal U(1)–bundle. Explicitly, t = − 2πεIm(w)

log |z| . Taking the quotient
by τ2Z we obtain a principal U(1)–bundle (�∗ × C)/(τ1Z + τ2Z) → �∗ × R/εZ.
Its Euler class evaluated on |z| = const is ±1, depending on the orientation. Now set
h = W −1, dw − � dz = θ − ih dt and use polar coordinates reiψ = z. The semi-flat
metric (20) can then be written in Gibbons–Hawking coordinates (14)

gs f,ε = − log r

2πε

(
dr2 + r2dψ2 + dt2

) + 2πε

− log r
θ2. (21)

4.1.2 The Ooguri–Vafa Metric

The second building block inGross–Wilson’s construction is theOoguri–Vafametric,
an explicit (incomplete) hyperkähler metric defined in a neighbourhood of a singular
fibre of type I1. This metric was first constructed in [44]. A more thorough analysis
is given in [27, Sect. 3]. The Ooguri–Vafa metric is a periodic version of the Taub–
NUT metric, in the sense that it can be constructed by the Gibbons–Hawking ansatz
on R

2 × S1 with a harmonic function h with a Green’s function singularity at a
point. Since the Green’s function of R2 × S1 changes sign (we say that R2 × S1 is
parabolic), the Ooguri–Vafametric is only defined on a small enough neighbourhood
of the Green’s function singularity.

Fix ε > 0 sufficiently small so that 2ε < 1. Let � be the unit disc in C with
coordinate z = reiψ . Let t be a periodic coordinate of period ε and consider the
product � × S1

t , where S1
t = R/εZ. By abuse of notation we denote by 0 the point

with coordinates z = 0 and t = 0 (mod εZ). Consider the power series

h(z, t) = 1

2

∑

m∈Z

(
1

√
r2 + 4π2(t − mε)2

− a|m|

)

, (22)

where
a|m| = 1

2|m|πε
if m �= 0 and a0 = log 4πε−2γ

πε
.
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Here γ is the Euler constant, γ = limn→∞
∑n

k=1 k−1 − log n. The series converges
uniformly on compact subsets of (� × S1

t ) \ {0} to the Green’s function of R2 × S1
t

with singularity at 0. Whenever z �= 0, h can be expressed as

h(z, t) = − 1

2πε
log r + 1

2πε

∑

m∈Z∗
K0

( |m|r
ε

)
e

2πmi
ε t ,

where K0 is the secondmodified Bessel function. In particular, due to the exponential
decay of the Bessel function, for all k ≥ 0 there exists a constant Ck > 0 such that

∣∣∣
∣∇k

(
h(z, t) + 1

2πε
log r

)∣∣∣
∣ ≤ Ck

ε
e− r

ε (23)

for all r ≥ 2ε.
One can now use the harmonic function h defined in (22) in theGibbons–Hawking

ansatz (14) to produce a hyperkähler metric—the Ooguri–Vafa metric—on a circle
bundle X over � × S1

t . As in the case of the multi-Taub–NUT metrics, a change of
coordinates shows that the Gibbons–Hawking metric on X extends smoothly over a
point corresponding to the singular points 0 of h.

By (23) the Ooguri–Vafa metric approaches the semi-flat metric (21) up to terms
that decay exponentially fast as ε → 0. It remains to check that the Ooguri–Vafa
metric is defined on an elliptic fibration over a disc with a singular fibre of type
I1 over the origin. Choose the complex structure such that dz and θ − ihdt span
the space of (1, 0)–forms. In this complex structure the projection π : X → � is an
elliptic fibration and π−1(0) is the only singular fibre. One can identify the periods
and therefore the monodromy of this elliptic fibration by integrating the (1, 0)–form
θ − ihdt over a basis {γ1, γ2} of the first homology of a fibre π−1(z). If one chooses
γ1 to be an orbit for the S1–action on the circle bundle X → � × S1

t and γ2 to be
the circle parametrised by t in the base then one finds easily that the monodromy
coincides with (19). Alternatively, one can identify π−1(0) with a pinched torus,
since the restriction of the circle fibration X over {z = 0} × S1

t degenerating at the
point 0 is a 2-sphere with the two poles identified.

4.1.3 Behaviour of Ricci-flat Metrics

For ε > 0 sufficiently small, Gross–Wilson now patch together the semi-flat metric
(20) with 24 copies of the Ooguri–Vafa metric to obtain an approximate Ricci-flat
metric ωε on the elliptic K3 surface M . The error (measured in terms of appropriate
Hölder norms of the Ricci-potential of ωε) is of order e−C/ε. This exponential decay
is crucial for the perturbation argument to work. Indeed, by Yau’s proof of the Calabi
Conjecture there exists a unique function uε on M such that

(ωε + i∂∂uε)
2 = 1

4ωc ∧ ωc,

∫

M
uε ω2

ε = 0. (24)
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Gross–Wilson run through Yau’s proof of the existence of uε keeping careful track of
all the constants involved (e.g. the Sobolev constant in the Moser iteration argument
to prove the C0–estimate). All these constants do blow-up as ε → 0, but only poly-
nomially in ε−1. Since the error is exponentially small the Implicit Function Theorem
can still be applied to obtain the following theorem [27, Theorems 5.6 and 6.4].

Theorem 4.7 Let π : (M,ωc) → CP
1 be an elliptic K3 surface with a holomorphic

section and 24 singular I1 fibres. For ε > 0 sufficiently small let ωε be the Kähler
metric on X constructed by gluing the semi-flat metric (20) to 24 copies of the
Ooguri–Vafa metric. Let uε be the unique solution to (24).

(i) For every k ≥ 2, α ∈ (0, 1) and every simply connected open subset U ⊂ CP
1

with closure contained in the complement of the 24 points p1, . . . , p24 corre-
sponding to singular fibres there exist constants C, c > 0 such that ‖uε‖Ck,α(U ) ≤
Ce−c/ε.

(ii) (X,ωε) converges in the Gromov–Hausdorff sense to CP
1 endowed with the

distance induced by the (singular) metric ω0 limit of the semi-flat metric (20)
away from the 24 singular points. Away from p1, . . . , p24, ω0 satisfies Ric(ω0) =
ωW P , where ωW P is the pull-back to CP

1 \ {p1, . . . , p24} of the Weil–Peterson
metric on the moduli space of elliptic curves.

Similar results—convergence after rescaling to the semi-flat metric on the locus
of smooth fibres and global Gromov–Hausdorff convergence toCP1 as in (ii)—have
been obtained more recently for arbitrary elliptic K3 surfaces without a detailed pic-
ture of the collapsing hyperkähler metrics in a neighbourhood of the singular fibres,
cf. [25, 26]. A complete detailed picture as in [26] for arbitrary configurations of
singular fibre was recently given by Chen-Viaclovsky-Zhang [14] exploiting gluing
definite triples instead of complex Monge-Ampère methods.

4.2 ALG and ALH Gravitational Instantons

In [29] Hein constructs families of gravitational instantons with quadratic and
lower-than-quadratic volume growth. The metrics are constructed by applying Tian–
Yau’s method to a rational elliptic surface, i.e. a complex surface (X, J ) which
is birationally equivalent to CP

2 and which admits a minimal elliptic fibration
with a section. All rational elliptic surfaces can be constructed in the following
way. Let C1 be a smooth plane cubic and C2 a second distinct cubic. The pencil
{λ1C1 + λ2C2 | [λ1 : λ2] ∈ CP

1} has C1 · C2 = 9 base points (counted with multi-
plicities). After blowing them up we obtain a rational elliptic surface π : X → CP

1;
X is a minimal elliptic surface because we blew-up just enough to resolve all the
tangencies of the pencil and X has at least a section given by the (−1)–curve obtained
in the last blow-up. As for the K3 surface, if X is a rational elliptic surface not all

fibres can be smooth elliptic curves because χ(X) = χ
(
CP

2#9CP
2
)

= 12.
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The crucial point now is that the class of an elliptic fibre in a rational elliptic
surface is an anti-canonical divisor: there exists a holomorphic symplectic form
ωc on M = X \ π−1(∞) with simple poles along π−1(∞). (Here we choose an
affine coordinate on the base of the fibration CP

1 so that the chosen elliptic fibre is
the fibre over ∞.) Assuming the existence of an appropriate complete background
metric ω0 on M , Tian and Yau’s method [49, 50] can be applied to construct a
Ricci-flat Kähler metric on M by solving the complex Monge–Ampère equation(
ω0 + i∂∂u

)2 = 1
2ωc ∧ ωc on the complement of π−1(∞). In order to be able to

solve this Monge–Ampère equation it is necessary to assume that ω0 is already an
approximate solution at infinity, in the sense that the Ricci potential of ω0 decays
with a certain rate. Note that the choice of the background ω0 is not obvious nor
unique: the flat and Taub–NUT metrics on C

2 = CP
2 \ CP1 are different complete

hyperkähler metrics with the same holomorphic symplectic form [37]. In the case
of rational elliptic surfaces, Hein exploits the elliptic fibration to construct a good
background Kähler metric ω0 which is approximately Ricci-flat at infinity. The type
of fibre π−1(∞) removed dictates the asymptotics of the metric ω0 using Kodaira’s
normal form for a neighbourhood of π−1(∞) and a semi-flat metric as in Gross–
Wilson’s construction.

The simplest examples of Hein’s construction are those obtained by removing a
smooth elliptic fibre (a fibre of type I0 in Kodaira’s classification): in this case the
metric is ALH.

Definition 4.8 A gravitational instanton (M, g) is called ALH if there exists a com-
pact subset K ⊂ M and a diffeomorphism f : R+ × T 3 → M \ K such that

|∇k
gflat

( f ∗g − gflat)|gflat = O
(
e−δt

)

for all k ≥ 0 and some δ > 0. Here gflat = dt2 + gT 3 for a flat metric gT 3 on T 3.

Examples of ALH metrics have also been obtained by Biquard–Minerbe [8] by
desingularising the flat orbifold (R × T 3)/Z2 by gluing in 8 copies of the Eguchi–
Hanson metric. More recently, Chen–Chen [13, Theorem 1.5] have given a complete
classification of ALH gravitational instantons.

Theorem 4.9 Let M be the smooth 4-manifold underlying the minimal resolution
of (R × T 3)/Z2, where T 3 = R

3/(Zv1 + Zv2 + Zv3). For each i = 1, 2, 3 let Fi

be the element of H2(T 3,Z) corresponding to span(v j , vk), where εi jk = 1. Then
H2(M,Z) is spanned by F1, F2, F3 and the classes of the 8 (−2)–curves introduced
by the resolution M → (R × T 3)/Z2.

(i) Let α ∈ H 2(M,R) ⊗ R
3 satisfy

α(�) �= 0 ∈ R
3 for all � ∈ H2(M,Z) such that � · � = −2,

the matrix with rows α(Fi ), i = 1, 2, 3, is positive definite.
(25)
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Then there exists an ALH hyperkähler structure ω on M with [ω] = α, unique
up to triholomorphic isometries acting trivially on H 2(M,R).

(ii) If (X,ω) is an ALH gravitational instanton then X is diffeomorphic to M and
[ω] satisfies (25).

ALH gravitational instantons can be used to produce hyperkähler metrics on
the K3 surface that develop a long neck. Indeed, if (M,ω) and (M,ω′) are two
ALH gravitational instantons asymptotic to the same flat cylinder dt2 + gT 3 , then
one can cut off their cylindrical ends for t � 1 and glue the resulting manifolds
with boundary to produce a sequence of approximately Ricci-flat metrics on the
K3 surface that develop a very long neck. Alternatively, by rescaling the metrics
in the sequence so that the diameter stays bounded, one produces in this way a
sequence of approximately Ricci-flat metrics that collapse to a closed interval with
curvature concentration at the two end points. Chen–Chen [13, Sect. 5] show that
these approximate solutions can be perturbed into exact hyperkähler metrics with
the same collapsing behaviour.

Hein’s examples of gravitational instantons defined on the complement of a
singular fibre of type I ∗

0 , I I, I I I, I V in Kodaira’s classification are also easily
understood, in particular those examples that arise from isotrivial elliptic fibra-
tions. Let E be a smooth elliptic curve admitting a Zr–subgroup of automorphisms
for r = 2, 3, 4 or 6. Thus E is any elliptic curve if r = 2; a Weierstrass equation
for E is y2 = x3 + x if r = 4, with Z4–action generated by (x, y) → (−x, iy);
if r = 3 or 6 then E : y2 = x3 + 1 and the Z3 and Z6–actions are generated by
(x, y) → (e2πi/3x, y) and (x, y) → (e2πi/3x,−y) respectively. Now consider the
orbifold (CP1 × E)/Zr , where the cyclic group Zr acts diagonally on CP

1 and E .
Resolve the singularities and blow down all (−1)–curves in the fibres to obtain a
rational elliptic surface with only two singular fibres over 0 and ∞ and such that
all smooth fibres are isomorphic. Corresponding to r = 2, 3, 4, 6 this construction
yields four pairs of singular fibres—(I ∗

0 , I ∗
0 ), (I I, I I ∗), (I I I, I I I ∗) and (I V, I V ∗)

in Kodaira’s notation. Unless r = 2, the two fibres in each pair are different because
theZr–action onCP1 has different weights at 0 and∞. By removing the fibre of non–
∗–type in each pair, one obtains a crepant resolution of T ∗E/Zr and the resulting
semi-flat metric coincides with the flat metric on T ∗E/Zr . In fact, in this case some
of Hein’s Ricci-flat metrics can also be obtained from the Kummer-type construction
of Biquard–Minerbe [8], gluing rescaled ALE spaces to resolve the singularities of
the flat orbifold. When we remove the fibre of ∗–type in each pair, Hein’s Ricci-
flat metric is asymptotic to the twisted product of a flat metric on E and of a flat
2-dimensional cone which is not a quotient of C [29, Theorem 1.5 (ii)].

All these examples have faster than quadratic curvature decay and their asymptotic
geometry is called ALG. The recent classification result of Chen–Chen [13, Theorem
1.4] states that all ALG gravitational instantons arise from (a slight improvement of)
Hein’s construction on the complement of a fibre of type I ∗

0 , I I, I I ∗, I I I, I I I ∗, I V
or I V ∗. Furthermore, we note that constructions of sequences of Ricci-flat metrics
on the K3 surface obtained by desingularising orbifolds (E1 × E2)/Zr for a product
of Zr–invariant elliptic curves with Vol(E2) → 0 could provide examples of col-
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lapsing sequences of hyperkähler metrics with ALG spaces of type I ∗
0 , I I, I I I, I V

as rescaled limits.
By removing a singular fibrewith infinitemonodromy,Hein is also able to produce

examples with more exotic asymptotic geometry, often referred to as gravitational
instantons of type ALG∗ and ALH∗. The examples of type ALG∗ (ALH∗) have
quadratic volume growth (volume growth r

4
3 ) and are obtained by removing a fibre

of Kodaira type I ∗
b , b = 1, . . . , 4, (Ib, b = 1, . . . , 9) from a rational elliptic surface.

These examples do not have faster than quadratic curvature decay and do not fit into
Chen–Chen’s classification.

The asymptotic geometry of the ALG∗ and ALH∗ examples can be constructed
using the Gibbons–Hawking ansatz on (the Z2–quotient of) R2 × S1 and R × T 2,
respectively, with a finite number of punctures. Since R

2 × S1 and R × T 2 are
parabolic, the sumofGreen’s functions used as the harmonic function in theGibbons–
Hawking construction is only positive at infinity and the construction provides only
good asymptotic models. We expect that a gluing construction as in Theorem 3.8
using Atiyah–Hitchin spaces as building blocks together with the Gibbons–Hawking
construction onR2 × S1 andR × T 2 will yield families of ALG∗ and ALH∗ gravita-
tional instantons close to a collapsed limit (R2 × S1)/Z2 and (R × T 2)/Z2, respec-
tively.We also expect that extensions of Theorem 3.8 where one considers sequences
of flat metrics on T 3 collapsing to T 2 and S1 should provide examples of collapsing
Ricci-flat metrics with ALG∗ and ALH∗ gravitational instantons as rescaled lim-
its. More generally, it is expected that ALG, ALH, ALG∗ and ALH∗ gravitational
instantons will play an important role in understanding relations between collapsing
sequences of Ricci-flat metrics on the K3 surface and degenerations of a compatible
complex structure, cf. for example [33]. Very recently Hein–Sun–Viaclovsky–Zhang
[28] gave a general construction of families of Ricci-flat metrics on the K3 surface
that collapse to a closed bounded interval with curvature concentrating at a finite
number of points (always including the two endpoints). The building blocks for this
gluing construction are a pair ALH∗ metrics bubbling off at the endpoints of the inter-
val and an incomplete “neck” joining the two obtained from the Gibbons–Hawking
ansatz on R × T 3.
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Frölicher–Nijenhuis Bracket on
Manifolds with Special Holonomy
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Abstract In this article, we summarize our recent results on the study of manifolds
with special holonomy via the Frölicher–Nijenhuis bracket. This bracket enables
us to define the Frölicher–Nijenhuis cohomologies which are analogues of the dc

and the Dolbeault cohomologies in Kähler geometry, and assigns an L∞-algebra
to each associative submanifold. We provide several concrete computations of the
Frölicher–Nijenhuis cohomology.
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1 Introduction

The Frölicher–Nijenhuis bracket, which was introduced in [3, 4], defines a natural
structure of a graded Lie algebra on the space of tangent bundle valued differential
forms �∗(M, T M) on a smooth manifold M .

On a Riemannian manifold (M, g), if there is a parallel differential form of even
degree, we can define canonical cohomologies which are analogues of the dc and
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the Dolbeault cohomologies in Kähler geometry. See Sect. 3. We compute these
cohomologies for G2-manifolds in Theorem 4.1 and give a sketch of the proof in
Sect. 4. A similar statement holds for Spin(7) and Calabi–Yau manifolds. See [7, 8].

In the second part of our note, using the Frölicher–Nijenhuis bracket, we assign
to each associative submanifold an L∞-algebra.

Notation: Let (V, g) be an n-dimensional oriented real vector space with a scalar
product g. Define the map ∂ by contraction of a form with the metric g, i.e.

∂ = ∂g : �kV ∗ −→ �k−1V ∗ ⊗ V, ∂g(α
k) := (ıei α

k) ⊗ ei , (1.1)

where (ei ) is an orthonormal basis of V with the dual basis (ei ).

2 Preliminaries

2.1 Graded Lie Algebras and Differentials

We briefly recall some basic notions and properties of graded (Lie) algebras. Let
V := (

⊕
k∈Z Vk, ·) be a graded real vector space with a graded bilinear map · :

V × V → V , called a product on V . A graded derivation of (V, ·) of degree l is a
linear map Dl : V → V of degree l (i.e., Dl(Vk) ⊂ Vk+l) such that

Dl(x · y) = (Dlx) · y + (−1)l|x |x · (Dl y), (2.1)

where |x | denotes the degree of an element, i.e. |x | = k for x ∈ Vk . If we denote by
Dl(V ) the graded derivations of (V, ·) of degree l, then D(V ) := ⊕

l∈Z Dl(V ) is a
graded Lie algebra with the Lie bracket

[D1, D2] := D1D2 − (−1)|D1||D2|D2D1, (2.2)

i.e., the Lie bracket is graded anti-symmetric and satisfies the graded Jacobi identity,

[x, y] = −(−1)|x ||y|[y, x] (2.3)

(−1)|x ||z|[x, [y, z]] + (−1)|y||x |[y, [z, x]] + (−1)|z||y|[z, [x, y]] = 0. (2.4)

In general, if L = (
⊕

k∈Z Lk, [·, ·]) is a graded Lie algebra, then an action of L
on V is a Lie algebra homomorphism π : L → D(V ), which yields a graded bilinear
map L × V → V , (x, v) �→ π(x)(v) such that the map π(x) : V → V is a graded
derivation of degree |x | and such that

[π(x),π(y)] = π[x, y].
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For instance, a graded Lie algebra acts on itself via the adjoint representation ad :
L → D(L), where adx (y) := [x, y].

For a graded Lie algebra L we define the set of Maurer-Cartan elements of L of
degree 2k + 1 as

MC2k+1(L) := {ξ ∈ L2k+1 | [ξ, ξ] = 0}.

If π : L → D(V ) is an action of L on (V, ·), then for ξ ∈ MC2k+1(L) we have
0 = [π(ξ),π(ξ)] = 2π(ξ)2, so that π(ξ) : V → V is a differential on V . We define
the cohomology of (V, ·) w.r.t. ξ as

Hi
ξ (V ) := ker(π(ξ) : Vi → Vi+2k+1)

Im (π(ξ) : Vi−(2k+1) → Vi )
for ξ ∈ MC2k+1(L). (2.5)

Sinceπ(ξ) is a derivation, it follows that ker π(ξ) · ker π(ξ) ⊂ ker π(ξ), whence there
is an induced product on H∗

ξ (V ) := ⊕
i∈Z Hi

ξ (V ).
If L = ⊕

k∈Z Lk is a graded Lie algebra, then for v ∈ L0 and t ∈ R, we define
the formal power series

exp(tv) : L −→ L[[t]], exp(tv)(x) :=
∞∑

k=0

t k

k!ad
k
v (x). (2.6)

Observe that adξ(v) = 0 for some v ∈ L0 iff adv(ξ) = 0 iff exp(tv)(ξ) = ξ for all
t ∈ R. In this case, we call v an infinitesimal stabilizer of ξ.

For ξ ∈ MC2k+1(L), we say that x ∈ L2k+1 is an infinitesimal deformation of ξ
within MC2k+1(L) if [ξ + t x, ξ + t x] = 0 mod t2. Evidently, this is equivalent to
[ξ, x] = 0 or x ∈ ker adξ . Such an infinitesimal deformation is called trivial if x =
[ξ, v] for some v ∈ L0, since in this case, ξ + t x = exp(−tv)(ξ) mod t2, whence
up to second order, it coincides with elements in the orbit of ξ under the (formal)
action of exp(tv). Thus, we have the following interpretation of some cohomology
groups.

Proposition 2.1 Let (L = ⊕
i∈Z Li , [·, ·]) be a real graded Lie algebra, acting on

itself by the adjoint representation, and let ξ ∈ MC2k+1(L). Then the following holds.

(1) If L−(2k+1) = 0, then H 0
ξ (L) is the Lie algebra of infinitesimal stabilizers of ξ.

(2) H 2k+1
ξ (L) is the space of infinitesimal deformations of ξ within

MC2k+1(L) modulo trivial deformations.

2.2 The Frölicher–Nijenhuis Bracket

We shall apply our discussion from the preceding section to the following example.
Let M be a manifold and (�∗(M),∧) = (

⊕
k≥0 �k(M),∧) be the graded algebra

of differential forms. Evidently, the exterior derivative d : �k(M) → �k+1(M) is a
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derivation of �∗(M) of degree 1, whereas insertion ıX : �k(M) → �k−1(M) of a
vector field X ∈ X(M) is a derivation of degree −1.

More generally, for K ∈ �k(M, T M) we define ıKαl as the insertion of K into
αl ∈ �l(M) pointwise by

ıκk⊗Xαl := κk ∧ (ıXαl) ∈ �k+l−1(M),

where κk ∈ �k(M) and X ∈ X(M), and this is a derivation of �∗(M) of degree
k − 1. Thus, the Nijenhuis-Lie derivative along K ∈ �k(M, T M) defined as

LK (αl) := [ıK , d](αl) = ıK (dαl) + (−1)kd(ıKαl) ∈ �k+l(M) (2.7)

is a derivation of �∗(M) of degree k.
Observe that for k = 0 in which case K ∈ �0(M, T M) is a vector field, both ıK

and LK coincide with the standard notion of insertion of and Lie derivative along a
vector field.

In [3, 4], it was shown that �∗(M, T M) carries a unique structure of a graded
Lie algebra, defined by the so-called Frölicher–Nijenhuis bracket,

[·, ·]FN : �k(M, T M) × �l(M, T M) → �k+l(M, T M)

such that L defines an action of �∗(M, T M) on �∗(M), that is,

L[K1,K2]FN = [LK1 ,LK2 ] = LK1 ◦ LK2 − (−1)|K1||K2|LK2 ◦ LK1 . (2.8)

It is given by the following formula for αk ∈ �k(M), βl ∈ �l(M), X1, X2 ∈ X(M)

[9, Theorem 8.7 (6), p. 70]:

[αk ⊗ X1,β
l ⊗ X2]FN = αk ∧ βl ⊗ [X1, X2]

+ αk ∧ (LX1β
l) ⊗ X2 − (LX2α

k) ∧ βl ⊗ X1 (2.9)

+ (−1)k
(
dαk ∧ (ıX1β

l) ⊗ X2 + (ıX2α
k) ∧ dβl ⊗ X1

)
.

In particular, for a vector field X ∈ X(M) and K ∈ �∗(M, T M)wehave [9, Theorem
8.16 (5), p. 75]

LX (K ) = [X, K ]FN , (2.10)

that is, the Frölicher–Nijenhuis bracket with a vector field coincides with the
Lie derivative of the tensor field K ∈ �∗(M, T M). This means that exp(t X) :
�∗(M, T M) → �∗(M, T M)[[t]] is the action induced by (local) diffeomorphisms
of M . Thus, Proposition 2.1 now immediately implies the following result.

Theorem 2.2 Let M be a manifold and K ∈ �2k+1(M, T M) be such that
[K , K ]FN = 0, and define the differential dK (K ′) := [K , K ′]FN . Then
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(1) H 0
K (�∗(M, T M)) is the Lie algebra of vector fields stabilizing K .

(2) H 2k+1
K (�∗(M, T M)) is the space of infinitesimal deformations of K within the

differentials of�∗(M, T M) of the form adξ2k+1 , modulo (local) diffeomorphisms.

3 Frölicher–Nijenhuis Cohomology

Suppose that (M, g) is an n-dimensional Riemannian manifold with Levi-Civita
connection ∇, and � ∈ �2k(M) is a parallel form of even degree. We now make the
following simple but crucial observation. The proof is given by a straightforward
computation in geodesic normal coordinates.

Proposition 3.1 Let �̂ := ∂g� ∈ �2k−1(M, T M)with the contractionmap ∂g from
(1.1). Then �̂ is a Maurer-Cartan element, i.e., [�̂, �̂]FN = 0.

Thus, by the discussion in Sect. 2.1, the Lie derivative L�̂ and the adjoint map
ad�̂ are differentials on �∗(M) and �∗(M, T M), respectively, and for simplicity,
we shall denote these by

L� : �∗(M) −→ �∗(M), ad� : �∗(M, T M) −→ �∗(M, T M),

or, if we wish to specify the degree,

L�;l : �l−2k+1(M) −→ �l(M), ad�;l : �l−2k+1(M, T M) −→ �l(M, T M).

Thecohomologyalgebraswedenote byH∗
�(M) andH∗

�(T M) insteadof H∗
�̂
(�∗(M))

and H∗
�̂
(�∗(M, T M)), respectively. That is, the i-th cohomologies are defined as

Hi
�(M) := kerL� : �i (M) → �i+2k−1(M)

ImL� : �i−2k+1(M) → �i (M)
,

Hi
�(M, T M) := ker ad� : �i (M, T M) → �i+2k−1(M, T M)

Im ad� : �i−2k+1(M, T M) → �i (M, T M)
.

(3.1)

Example 3.2 In the case of a Kähler manifold, using the Kähler form � = ω, the
differential Lω on �∗(M) is the complex differential dc := i(∂̄ − ∂), whereas on
�∗(M, T M), adω coincides with the Dolbeault differential ∂̄ : �p,q(M, T M) →
�p,q+1(M, T M) [4]. Thus, these differentials recover well known and natural coho-
mology theories. In particular, the cohomology algebras H∗

ω(M) and H∗
ω(M, T M)

are finite dimensional if M is closed.

Now we give some general strategies to compute H∗
�(M). First we summarize

formulas of L� .
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Lemma 3.3 ([7, Sect. 2.4])

L�dαl = −dL�αl , L�d
∗αl = −d∗L�αl and thus L��αl = �L�αl .

�(α ∧ �) = (�α) ∧ �, �(α ∧ ∗�) = (�α) ∧ ∗�,

where � is the Hodge Laplacian. As in the case of d∗, the formal adjoint L∗
�;l :

�l(M) → �l−2k+1(M) of L�;l : �l−2k+1(M) → �l(M) is given by

L∗
�;lα

l = (−1)n(n−l)+1 ∗ L� ∗ αl . (3.2)

Recall that for a closed oriented Riemannian manifold (M, g) there is the Hodge
decomposition of differential forms

�l(M) = Hl(M) ⊕ d�l−1(M) ⊕ d∗�l+1(M), (3.3)

where Hl(M) ⊂ �l(M) denotes the space of harmonic forms.
We define the space of L�-harmonic forms as

Hl
�(M) := {α ∈ �l(M) | L�α = L∗

�α = 0}
(3.2)= {α ∈ �l(M) | L�α = L� ∗ α = 0} (3.4)

Evidently, the Hodge-∗ yields an isomorphism

∗ : Hl
�(M) −→ Hn−l

� (M). (3.5)

SinceHl
�(M) ⊂ kerL�;l+2k−1 andHl

�(M) ∩ Im (L�;l) = 0, there is a canonical
injection

ıl : Hl
�(M) ↪→ Hl

�(M). (3.6)

This is analogous to the inclusionof harmonic forms into the deRhamcohomology
of a manifold, which for a closed manifold is an isomorphism due to the Hodge
decomposition (3.3). Therefore, one may hope that the maps ıl are isomorphisms as
well. It is not clear if this is always true, but we shall give conditions which assure
this to be the case and show that in the applications we have in mind, this condition
is satisfied.

Definition 3.4 We say that the differential L� is l-regular for l ∈ N if there is a
direct sum decomposition

�l(M) = ker(L∗
�;l) ⊕ Im (L�;l). (3.7)

A standard result from elliptic theory states that L� is l-regular if the differ-
ential operator L�;l : �l−2k+1(M) → �l(M) is elliptic, overdetermined elliptic or
underdetermined elliptic, see e.g. [1, p. 464, 32 Corollary].
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The following theorem now relates the cohomology H∗
�(M) to the L� -harmonic

formsH∗
�(M).

Theorem 3.5 ([7, Theorem 2.7])

(1) If L� is l-regular, then the map ıl from (3.6) is an isomorphism.
(2) There are direct sum decompositions

Hl
�(M) = Hl(M) ⊕ Hl

�(M)d ⊕ Hl
�(M)d∗ (3.8)

Hl
�(M) = Hl(M) ⊕ Hl

�(M)d ⊕ Hl
�(M)d∗ , (3.9)

where Hl(M) is the space of harmonic l-forms on M, Hl
�(M)d and Hl

�(M)d∗

are the cohomologies of (d�∗(M),L�) and (d∗�∗(M),L�), respectively, and
whereHl

�(M)d := Hl
�(M) ∩ d�l−1(M),Hl

�(M)d∗ := Hl
�(M) ∩ d∗�l+1(M).

Moreover, the injective map ıl from (3.6) preserves this decomposition, i.e.,

ıl : Hl
�(M)d ↪→ Hl

�(M)d and ıl : Hl
�(M)d∗ ↪→ Hl

�(M)d∗ .

(3) There are isomorphisms

d : Hl
�(M)d∗ → Hl+1

� (M)d and d∗ : Hl
�(M)d → Hl−1

� (M)d∗ (3.10)

d : Hl
�(M)d∗ → Hl+1

� (M)d and d∗ : Hl
�(M)d → Hl−1

� (M)d∗ (3.11)

(4) If L� is (l + 1)-regular and (l − 1)-regular, then it is also l-regular.

Next, we consider another important case. We call a form � ∈ �k(M) multi-
symplectic, if d� = 0 and for all v ∈ T M

ıv� = 0 ⇐⇒ v = 0. (3.12)

Lemma 3.6 If� ∈ �2k(M) is multi-symplectic, then the differential operatorL�;l :
�l−2k+1(M) → �l(M) is overdetermined elliptic for l = 2k − 1 and underdeter-
mined elliptic for l = n.

We also can make some statement for Hl
�(M) for special values of l.

Proposition 3.7 For a parallel form � ∈ �2k(M), we have

H 0
�(�∗(M)) ∼= H0

�(M) = { f ∈ C∞(M) | ıd f #� = 0},

If � is multi-symplectic, thenH0
�(M) = H0(M) and Hn

�(�∗(M)) ∼= Hn
�(M) =

Hn(M).

Indeed, it can be shown that H 0
�(�∗(M)) is infinite dimensional if � is not multi-

symplectic.
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Proposition 3.8 Let � ∈ �2k(M) be a parallel multi-symplectic form. Then

H 2k−1
� (�∗(M)) = H2k−1

� (M),

ker(L�;2k) = {α ∈ �1(M) | Lα# (∗�) = 0 and d∗α = 0}.

In particular, if k ≥ 2 then kerL�;2k = H1
�(M) ∼= H 1

�(M) and

Hn−1
� (M) = {α ∈ �n−1(M) | L(∗α)# (∗�) = 0 and dα = 0}.

The first statement is an immediate consequence of Theorem 3.5 and Lemma
3.6. The second and the third statements follow from a direct computation and an
integration by parts argument.

4 The Frölicher–Nijenhuis Cohomology of Manifolds with
Special Holonomy

On aG2-manifold, there is a canonical parallel 4-form ∗ϕ, the Hodge dual of theG2-
structure ϕ. We may consider the differentials L∗ϕ and ad∗ϕ. On closed manifolds,
we obtain the following results on their cohomology groups.

Theorem 4.1 Let (M7,ϕ) be a closed G2-manifold. Then for the cohomologies
Hi∗ϕ(M7) and Hi∗ϕ(M7, T M7) defined above, the following hold.

(1) There is a Hodge decomposition

Hi
∗ϕ(M7) = Hi (M7) ⊕ (Hi

∗ϕ(M7) ∩ d�i−1(M7))

⊕ (Hi
∗ϕ(M7) ∩ d∗�i+1(M7)),

where Hi (M7) denotes the spaces of harmonic forms.
(2) The Hodge-∗ induces an isomorphism ∗ : Hi∗ϕ(M7) → H 7−i∗ϕ (M7).
(3) Hi∗ϕ(M7) = Hi (M7) for i = 0, 1, 6, 7. For i = 2, 3, 4, 5, H i∗ϕ(M7) is infinite

dimensional.
(4) dim H 0∗ϕ(M7, T M7) = b1(M7); in particular, H 0∗ϕ(M7) = 0 if M7 has full

holonomy G2.
(5) dim H 3∗ϕ(M7, T M7) ≥ b3(M7) > 0, as it contains all torsion free deformations

of the G2-structure modulo deformations by diffeomorphisms.

In [7, Theorem 3.5], we give a precise description of the cohomology ring
H∗∗ϕ(M7).

Remark 4.2 On a Spin(7)-manifold, there is also a canonical parallel 4-form and
we obtain the similar results. For more details, see [7, Theorem 4.2].



Frölicher–Nijenhuis Bracket on Manifolds with Special Holonomy 209

Recently, we also computed Hi
�(M) for the real part of a holomorphic volume

form� in 4n-dimensionalCalabi–Yaumanifolds in [8].When n = 1, it is isomorphic
to the de Rham cohomology. When n ≥ 2, as in the G2 and Spin(7)-case, it is
regular again, and all summands involved other than the harmonic forms are infinite
dimensional.

Outline of the proof of Theorem 4.1 We begin by showing the l-regularity of L∗ϕ.
For l < 3 and l > 7, this is obvious as then L∗ϕ;l = 0. By Lemma 3.6, L∗ϕ,l is
overdetermined elliptic for l = 3 and underdetermined elliptic for l = 7, whence
L∗ϕ is also 3- and 7-regular.

By a simple calculation, it follows that L∗ϕ,l is overdetermined elliptic for l = 4
and underdetermined elliptic for l = 6, whence L∗ϕ is 4-regular and 6-regular. Thus
it is also 5-regular by Theorem 3.5(4). Therefore, the l-regularity of L∗ϕ,l for all l is
established, whence by Theorem 3.5(1), Hl∗ϕ(M) = Hl∗ϕ(M).

For l = 0, 7, Hl∗ϕ(M) ∼= Hl(M) by Proposition 3.7.
For l = 1, H 1∗ϕ(M) = kerL∗ϕ|�1(M). Thus, by Proposition 3.8, α ∈ H 1∗ϕ(M)

implies that Lα# (ϕ) = 0, which in turn implies that α# is a Killing vector field.
Since a G2-manifold is Ricci flat, it follows by Bochner’s theorem that α# is paral-
lel, whence so is α. In particular, α is harmonic, showing that H 1∗ϕ(M) = H1(M).
For l = 6, we have H 6∗ϕ(M) = ∗H 1∗ϕ(M) = ∗H1(M) = H6(M). This shows that
Hl∗ϕ(M) ∼= Hl(M) for l = 1, 6.

Next, for l = 2, we have H2∗ϕ(M)d = 0 by (3.10). Thus, we need to determine

H2
∗ϕ(M)d∗ = {α2 ∈ d∗�3(M) | d∗(α2 ∧ ∗ϕ) = 0}.

We can investigate this space in detail by the irreducible decomposition of �∗(M)

under theG2-action and theHodge decomposition. Thenwe canprove thatH2∗ϕ(M)d∗

is isomorphic to an infinite dimensional function space. We can prove the case of
l = 3 similarly.

Again, since ∗ : Hl∗ϕ(M) → H7−l∗ϕ (M) is an isomorphism, the assertions for l =
4, 5 follow.

Next, we consider H∗∗ϕ(M7, T M7). First, note the following.

Lemma 4.3 Let V be an oriented 7-dimensional vector space, and let �3
G2
V ∗ ⊂

�3V ∗ be the set of G2-structures on V . By definition, the group GL+(V ) of
orientation preserving automorphisms of V act transitively on �3

G2
V ∗ so that

�3
G2
V ∗ = GL+(V )/G2. Then the map

C : �3
G2
V ∗ −→ �3V ∗ ⊗ V, ϕ �−→ ∂gϕ

(∗gϕ
ϕ)

is a GL+(V )-equivariant injective immersion. Here, ∂g is the map from (1.1), and
gϕ denotes the metric induced by ϕ.
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Proposition 4.4

H 0
∗ϕ(M7, T M7) = {X ∈ X(M7) | LXϕ = 0} = {X ∈ X(M7) | ∇X = 0}.

This proposition implies the 4th part of Theorem 4.1.

Proof Let X ∈ X(M7) be a vector field, p ∈ M7 and denote by Ft
X the local flow

along X , defined in a neighborhood of p. Then because of the pointwise equivariance
of C we have

(Ft
X )∗

(
∂g ∗ ϕ

)

Ft
X (p)

= (Ft
X )∗

(
C(ϕ)Ft

X (p)

)
= C

(
(Ft

X )∗(ϕFt
X (p))

)

and taking the derivative at t = 0 yields

LX (∂g ∗ ϕ)p = LX (C(ϕ))p = C∗(LXϕ)p. (4.1)

Now LX (∂g ∗ ϕ) = [X, ∂g ∗ ϕ]FN , and since C is an immersion by Lemma 4.3, it
follows that X ∈ H 0∗ϕ(M7, T M7) = ker ad∂g∗ϕ iff LXϕ = 0.

Since ϕ uniquely determines the Riemannian metric gϕ on M7, any vector field
satisfying LXϕ = 0 must be a Killing vector field. Since M7 is closed, the Ricci
flatness of G2-manifolds and Bochner’s theorem imply that X must be parallel,
showing that in this case, dim H 0

�(M7, T M7) = b1(M7). �

It was shown in [6, Theorem 1.1] that a G2-structure ϕ′ is torsion-free if and only
if [χϕ′,χϕ′ ]FN = 0, where χϕ′ := C(ϕ′) = ∂gϕ′ ∗gϕ′ ϕ′ ∈ �3(M7, T M7). Therefore,
for a family of torsion-free G2-structures {ϕt } with ϕ0 = ϕ, we have

0 = d

dt

∣
∣
∣
∣
t=0

[χϕt ,χϕt ] = 2

[

χϕ0 ,
d

dt

∣
∣
∣
∣
t=0

χϕt

]

= 2
[
χϕ0 ,C∗(ϕ̇0)

]
,

so that ϕ̇0 ∈ �3(M7) is a torsion free infinitesimal deformation of ϕ0 iff C∗(ϕ̇0) ∈
ker(adχϕ0

: �3(M7, T M7) → �6(M7, T M7)). Since C is an immersion and hence
C∗ injective by Lemma 4.3, we have an isomorphism

{torsion free infinitesimal deformations of ϕ0}
C∗∼=

ker
(
adχϕ0

: �3(M7, T M7) → �6(M7, T M7)
)

∩ Im (C∗).

Observe that by (4.1)

C∗(LXϕ0) = LX (C(ϕ0)) = [X,χϕ0 ]FN = −adχϕ0
(X),

whence there is an induced inclusion
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{torsion free infinitesimal deformations of ϕ0}
{trivial deformations of ϕ0}

C∗
↪−−−→ H 3

ϕ0
(M7, T M7).

This implies the 5th part of Theorem 4.1. �

5 Strongly Homotopy Lie Algebra Associated with
Associative Submanifolds

In this section we assign to each associative submanifold in a G2-manifold an L∞-
algebra, using the Frölicher–Nijenhuis bracket and Voronov’s derived bracket con-
struction of L∞-algebras. Themain purpose of this section is to explain themotivation
that led us to study the Frölicher–Nijenhuis bracket on G2-manifolds. We refer the
reader to [2] for detailed and general treatment of the theory discussed here.

5.1 Voronov’s Construction of L∞-Algebras

Strongly homotopy Lie algebras, also called L∞-algebras, were defined by Lada and
Stasheff in [10], see also [14] for a historical account. In [14] Voronov suggested a
relatively simple method to construct an L∞-algebra based on algebraic data, now
called V-data. A V -data is a quadruple (L , P, a,�), where

(1) L is a Z2-graded Lie algebra L = L0 ⊕ L1 (we denote its bracket by [., .]),
(2) a is an abelian Lie subalgebra of L ,
(3) P : L → a is a projection whose kernel is a Lie subalgebra of L ,
(4) � ∈ (ker P) ∩ L1 is an element such that [�,�] = 0.

When � is an arbitrary element of L1 instead of ker(P) ∩ L1, we refer to
(L , a, P,�) as a curved V-data.

Recall that a (k, l)-shuffle is a permutation of indices 1, 2, . . . , k + l such that
σ(1) < · · · < σ(k) and σ(k + 1) < · · · < σ(k + l).

Definition 5.1 ([14, Definition 1]) A vector space V = V0 ⊕ V1 endowed with a
sequence of odd n-linear operations mn , n = 0, 1, 2, 3, . . ., is a strongly homotopy
Lie algebra or L∞-algebra if: (a) all operations are symmetric in the Z2-graded
sense:

mn(a1, . . . , ai , ai+1, . . . , an) = (−1)āi āi+1mn(a1, . . . , ai+1, ai , . . . , an),

and (b) the “generalized Jacobi identities”

∑

k+l=n

∑

(k,l)−shuffles

(−1)αml+1(mk(aσ(1), . . . , aσ(k)), aσ(k+1), . . . , aσ(k+l)) = 0



212 K. Kawai et al.

hold for all n = 0, 1, 2, . . .. Here ā is the degree of a ∈ V and (−1)α is the
sign prescribed by the sign rule for a permutation of homogeneous elements
a1, . . . , an ∈ V .

Henceforth symmetric will mean Z2-graded symmetric.
A 0-ary bracket is just a distinguished element � in V . We call the L∞-algebras

with � = 0 strict. In this case m2
1 = 0 and we also write d instead of m1. For strict

L∞-algebras, the first three “generalized Jacobi identities” simplify to

d2a = 0,

dm2(a, b) + m2(da, b) + (−1)āb̄m2(db, a) = 0,

dm3(a, b, c) + m2(m2(a, b), c) + (−1)b̄c̄m2(m2(a, c), b) + (−1)ā(b̄+c̄)m2(m2(b, c), a)

+m3(da, b, c) + (−1)āb̄m3(db, a, c) + (−1)(ā+b̄)c̄m3(dc, a, b) = 0.

Proposition 5.2 ([14, Theorem1, Corollary 1])Let (L , a, P,�) be a curved V-data.
Then a is a curved L∞-algebra for the multibrackets

mn(a1, . . . , an) = P[· · · [[�, a1], a2], . . . , an].

We obtain a strict L∞-algebra exactly when � ∈ ker(P).

Remark 5.3 Usually in the literature a strict L∞-algebra is called an L∞-algebra,
which we also adopt in this paper.

5.2 L∞-algebra Associated with an Associative Submanifold
L ⊂ M7

Let L be a closed submanifold in aRiemannianM . There exists anopenneighborhood
NεL of the zero section L in the normal bundle NL such that the exponentialmapping
Exp : NεL → M is a local diffeomorphism.

Given such an open neighborhood NεL , we consider the pullback operator Exp∗ :
�∗(M, T M) → �∗(NεL , T NL)

Exp∗(K )x (X1, . . . , Xk) = (Exp∗)−1
x (KExp(x)((Exp∗)x (X1), . . . , (Exp∗)x (Xk))

for x ∈ NεL , Xi ∈ Tx NεL and K ∈ �k(M, T M) given by [9, 8.16, p. 74]. It is known
that [9, Theorem 8.16 (2), p. 74]

[Exp∗(K ), Exp∗(L)]FN = Exp∗([K , L]FN ). (5.1)
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Let π denote the projection NL → L . For each section X ∈ �(NL), define the
vector field X̂ on NεL ⊂ NL by the restriction of the vertical lift of X to NεL . That
is,

X̂(y) = d

dt
(y + t X (π(y)))

∣
∣
∣
∣
t=0

for y ∈ NεL .

Let �∗(NεL , T NL) be the space of all smooth T NL-valued forms on NεL . We
define a linear embedding I : �∗(L , NL) → �∗(NεL , T NL) by

I (φ ⊗ X) := π∗(φ) ⊗ X̂

and extend it linearly on the whole �∗(L , NL).
Let P denote the composition of the restriction r : �∗(NεL , T NL) → �∗

(L , T NL) and the projection Pr N : �∗(L , T NL) → �∗(L , NL) defined via the
decomposition T NL |L = NL ⊕ T L . Set

P̃ := I ◦ P : �∗(NεL , T NL) → �∗(NεL , T NL).

Lemma 5.4 The image of the map P̃ is an abelian subalgebra of the Z2-graded Lie
algebra (�∗(NεL , T NL), [., .]FN ). The space ker P̃ is closed under the Frölicher–
Nijenhuis bracket.

Proof Note that the image of P̃ is equal to the image of I . To prove the first assertion
of Lemma 5.4 it suffices to prove that

[π∗(α1) ⊗ X̂1,π
∗(α2) ⊗ X̂2]FN = 0 (5.2)

for any X,Y ∈ �(NL) and any α1,α2 ∈ �∗(L).
Using (2.9) and taking into account the following identities

[X̂1, X̂2]FN = 0,

i X̂1
π∗(α2) = 0 = i X̂2

π∗(α1),

dπ∗(α1) = π∗(dα1),

for any α1,α2 ∈ �∗(L) and any X1, X2 ∈ X(L) we obtain (5.2) immediately.
Now let us prove the second assertion of Lemma 5.4. Since I is injective, we have

ker P̃ = ker P . Moreover, ker P is generated by the T NL-valued differential forms
α ⊗ X such that X (x) ∈ Tx L for all x ∈ L . Assume thatα1 ⊗ X1,α2 ⊗ X2 ∈ ker P .
Using (2.9) and the fact that if X1, X2 ∈ X(NεL) and (X1)|L ∈ X(L), (X2)|L ∈ X(L)

then
[X1, X2]|L ∈ X(L),

we obtain immediately
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[α1 ⊗ X1,α2 ⊗ X2] ∈ ker P = ker P̃ .

This completes the proof of Lemma 5.4. �

Theorem 5.5 Assume that L is an associative submanifold of a G2-manifold
(M7,ϕ). There is an L∞-algebra structure on the space �∗(L , NL) given by the
following family of graded multi-linear maps

mk : �∗(L , NL)⊗k → �∗(L , NL)

mk(ω1, . . . ,ωk) = P[· · · [[Exp∗(χ), I (ω1)]FN , I (ω2)]FN . . . , I (ωk)]FN ,

where χ = ∂g ∗ ϕ ∈ �3(M, T M) with ∂g from (1.1).

Proof By Proposition 3.1 and using (5.1), we have

[Exp∗(χ), Exp∗(χ)]FN = 0. (5.3)

�

Lemma 5.6 A submanifold L in a G2-manifold (M7,ϕ) is associative iff

Exp∗(χ) ∈ ker P̃.

Proof It is known that a 3-submanifold L in aG2-manifold is associative iff χ|L = 0
[5]. Sinceχ(x ∧ y ∧ z) is orthogonal to each x, y, z, it follows that L is associative, iff
Pr N (χ|L) = 0 ∈ �∗(L , NL), where Pr N is the orthogonal projection from T M |L
to the normal bundle of L . This implies Lemma 5.6, taking into account the injectivity
of I and Exp∗. �

Lemmas 5.4, 5.6 and the Eq. (5.3) imply that (�∗(NεL , T NL), I (�∗(L , NL)),

P̃, Exp∗(χ)) is a V -data. This and Proposition 5.2 yield Theorem 5.5 immediately.
�

Lemma 5.7 Let V1, . . . , Vk ∈ �(NL) = �0(L , NL). Then

mk(V1, . . . , Vk) = P(LI (−V1) . . .LI (−Vk )(Exp
∗(χ))).

Proof Let Vi ∈ �(NL). Then {I (Vi )} aremutually commuting vector fields on NεL .
Using (2.10) and noting that

[Exp∗(χ), I (Vi )]FN = [I (−Vi ), Exp
∗(χ)]FN

we obtain Lemma 5.7 immediately. �

Weshall denote themapm1 : �∗(L , NL) → �∗+3(L , NL)bydL . Since dim L =
3, dL is non-trivial only on �0(L , NL).
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Remark 5.8 Using the formal deformation theories developed in [11, 12] it is not
hard to see that the L∞-algebra associated to a closed associative submanifold L
encodes the formal and smooth associative deformations of L . This and further
generalization have been considered in [2]. A search for an L∞-algebra associated
to each associative submanifold in G2-manifolds led us to discover the role of the
Frölicher–Nijenhuis bracket in geometry of G2-manifolds.

References

1. Besse, A. (1987). Einstein manifolds. Berlin: Springer.
2. Fiorenza, D., Lê, H. V., Schwachhöfer, L., & Vitagliano, L. Strongly homotopy Lie algebras

and deformations of calibrated submanifolds. arXiv:1804.05732.
3. Frölicher, A., &Nijenhuis, A. (1956). Theory of vector-valued differential forms. I. Derivations

of the graded ring of differential forms. Indagationes Mathematicae, 18, 338–359 (1956).
4. Frölicher,A.,&Nijenhuis,A. (1956). Somenewcohomology invariants for complexmanifolds.

I, II. Indagationes Mathematicae, 18, 540–564.
5. Harvey, R., & Lawson, H. B. (1982). Calibrated geometry. Acta Mathematica, 148, 47–157.
6. Kawai, K., Lê, H. V., & Schwachhöfer, L. (2018). The Frölicher-Nijenhuis bracket and the

geometry of G2- and Spin(7)-manifolds. Annali di Matematica Pura ed Applicata, 197, 411–
432.

7. Kawai, K., Lê, H. V., & Schwachhöfer, L. (2018). Frölicher-Nijenhuis cohomology on G2 and
Spin(7)-manifolds. International Journal of Mathematics, 29, 1850075.

8. Kawai, K., Lê, H. V., & Schwachhöfer, L. Calculation of Frölicher-Nijenhuis cohomology of
Calabi-Yau manifolds, preprint.

9. Kolar, I., Michor, P.W., & Slovak, J. (1993).Natural operators in differential geometry. Berlin:
Springer.

10. Lada, T., & Stasheff, J. (1993). Introduction to SH Lie algebras for physicists. International
Journal of Theoretical Physics, 32, 1087–1103.

11. Lê, H. V., & Oh, Y.-G. (2016). Deformations of coisotropic submanifolds in locally conformal
symplectic manifolds. Asian Journal of Mathematics, 20, 555–598.

12. Lê, H. V., & Schwachhöfer, L. (2019). Lagrangian submanifolds in strict nearly Kähler 6-
manifolds. Osaka Journal of Mathematics, 56, 601–629.

13. McLean, R. (1998). Deformations of Calibrated submanifolds. Communications in Analysis
and Geometry, 6, 705–747.

14. Voronov, T. (2005). Higher derived brackets and homotopy algebras. Journal of Pure and
Applied Algebra, 202, 133–153.

http://arxiv.org/abs/1804.05732


Distinguished G2-Structures
on Solvmanifolds

Jorge Lauret

Abstract Among closed G2-structures there are two very distinguished classes:
Laplacian solitons and Extremally Ricci-pinched G2-structures. We study the exis-
tence problem and explore possible interplays between these concepts in the context
of left-invariant G2-structures on solvable Lie groups. Also, some Ricci pinching
properties of G2-structures on solvmanifolds are obtained, in terms of the extremal
values and points of the functional F = Scal2

|Ric |2 , 0 < F < 7. Many natural open prob-
lems have been included.

1 Introduction

Our main motivation in this article is the following heuristic though very natural and
intriguing question, which we borrowed from the first page of Besse’s book [6] and
adapted to G2-geometry:

Given a 7-dimensional differentiable manifold M , are there any best (or nicest, or most
distinguished) G2-structures on M?

The question remains natural when restricted to special kinds of manifolds or
particular classes of G2-structures, like the set of all G2-structures with the same
associatedmetric, left-invariantG2-structures on a given Lie group, etc. Themeaning
of the adjectives in the question are of course part of the problem, and any good
candidate is expected to beweak enough to allowexistence results but also sufficiently
strong to imply some kind of uniqueness or finiteness results.

As a first reduction, we consider closed G2-structures, but there are many other
reasonable and natural special classes to start with. We have included in an appendix
(see Sect. 4.3) the definition of several of them, as well as a diagram describing the
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Fig. 1 Special classes of
G2-structures

EP → RS

↙ ↓ ↘ ↗

C LCP NP → EF → LS

↓ ↙ ↘ ↓ ↘

LCC LCNP CC

↘ ↓ ↙

LCB ← ST

inclusion relationships between such classes (see Fig. 1). No topological obstruction
on M to admit a closed G2-structure is known, other than the ones for admitting just
a G2-structure, i.e. orientable and spin.

In the case when a G2-structure ϕ is closed, the only torsion that survives is
contained in a 2-form τ , and the starting situation can be described as follows:

dϕ = 0, τ = − ∗ d ∗ ϕ, d ∗ ϕ = τ ∧ ϕ, dτ = �ϕ,

where ∗ and � denote the Hodge star and Laplacian operator, respectively, defined
by the metric attached to ϕ.

Among closedG2-structures, one finds two concepts which are both distinguished
but from points of view of a very different taste:

• Laplacian solitons: dτ = cϕ + LXϕ for some c ∈ R and X ∈ X (M).
• Extremally Ricci-pinched: dτ = 1

6 |τ |2ϕ + 1
6 ∗ (τ ∧ τ ).

In this paper, we mainly work in the homogeneous setting (see [21] for fur-
ther information); more specifically, in the context of left-invariant G2-structures
on solvable Lie groups (or solvmanifolds). We aim to overview what is known on
the existence of the above two special classes of G2-structures and explore possible
interplays. Diverse open problems have been included throughout the paper.

Any G2-structure or metric on a Lie group is always assumed to be left-invariant.

1.1 Solitons

The spaceG of allG2-structures on a given 7-dimensionalmanifoldM is an open cone
in �3M , whose equivalence classes are Diff(M)-orbits. Assume that at each ϕ ∈ G,
we have a preferred direction q(ϕ) ∈ �3M , an optimal ‘direction of improvement’ in
some sense (e.g. the gradient of a natural functional on G). It is therefore reasonable
to consider an element ϕ ∈ G distinguished when q(ϕ) is tangent to its equivalence
class (up to scaling), i.e.
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q(ϕ) ∈ Tϕ

(
R

∗ Diff(M) · ϕ
)
. (1)

Heuristically, it is like such a ϕ is nice enough that it does not need to be improved.
A G2-structure for which condition (1) holds will be called a q-soliton. It is easy to
see that if q is Diff(M)-equivariant, then the following conditions are equivalent:

• ϕ is a q-soliton.
• q(ϕ) = cϕ + LXϕ for some c ∈ R, X ∈ X(M).
• The solution ϕ(t) starting at ϕ to the corresponding geometric flow

∂

∂t
ϕ(t) = q(ϕ(t)),

is self-similar, i.e. ϕ(t) = c(t) f (t)∗ϕ for some c(t) ∈ R and f (t) ∈ Diff(M).

The q-soliton is said to be expanding, steady or shrinking if c > 0, c=0 or
c<0, respectively. The corresponding self-similar solutions are respectively immor-
tal, eternal and ancient if q(aϕ) = aαq(ϕ) for any a ∈ R

∗ and some fixed α < 1
(see [20, Sect. 4.4]).

We consider in this paper the direction q(ϕ) = �ϕ, which determines the so
called Laplacian solitons and the Laplacian flow introduced by Bryant in [9]. Many
other types of q-solitons have also been studied in the literature, see for example [5,
15, 28, 29].

We next list all the results on Laplacian solitons in the literature that we are aware
of:

• [24, Corollary 1] There are no compact shrinking Laplacian solitons, and the only
compact steady Laplacian solitons are the torsion-free G2-structures (see also [25,
Proposition 9.4] for a shorter proof in the closed case).

• Any nearly parallel G2-structure ϕ satisfies �ϕ = c2ϕ and so it is a coclosed
expanding Laplacian soliton. Examples are given by the round and squashed
spheres (see [29, Sect. 4.1]).

• [17, Section6] Examples of non-compact expanding coclosed Laplacian solitons
which are not nearly parallel. However, they still are all eigenforms (i.e. �ϕ = cϕ
for some c ∈ R).

• [25, Proposition 9.1] The only compact and closed Laplacian solitons which are
eigenforms are the torsion-free G2-structures.

• [20, Section7] A closedG2-structure on a nilpotent Lie group which is an expand-
ing Laplacian soliton and is not an eigenform was found.

• [26] Closed expanding Laplacian solitons were exhibited on seven of the twelve
nilpotent Lie groups admitting a closed G2-structure. There is even a one-
parameter family of pairwise non-homothetic closed Laplacian solitons on one
of them.

• [21] Homogeneous Laplacian solitons are studied using the algebraic soliton
approach. Many continuous families of expanding Laplacian solitons on almost-
abelian Lie groups were given (see [21, Sect. 5.2]).
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• [22, Section4] Examples of steady and shrinking closed Laplacian solitons were
found on solvmanifolds by using coupled SU(3)-structures.

• [14] Closed expanding Laplacian solitons were found on solvmanifolds from sym-
plectic half-flat SU(3)-structures.

The following are open questions on Laplacian solitons:

• Are there compact and closed expanding Laplacian solitons?
• Are there compact expanding Laplacian solitons other than nearly parallel
G2-structures?

1.2 Extremally Ricci Pinched G2-Structures

The following nice interplay between the metric and the torsion 2-form of a closed
G2-structure was discovered by R. Bryant. Let Scal and Ric denote the scalar and
Ricci curvature of the metric attached to a G2-structure.

Theorem 1.1 ([9, Corollary 3]) Ifϕ is a closed G2-structure on a compact manifold
M, then ∫

M
Scal2 ∗1 ≤ 3

∫

M
|Ric |2 ∗ 1,

and equality holds if and only if dτ = 1
6 |τ |2ϕ + 1

6 ∗ (τ ∧ τ ).

The special G2-structures for which equality holds were called extremally Ricci-
pinched (ERP for short) in [9, Remark 13]. Notice the factor of 3 on the right hand
side, much smaller than the factor of 7 provided by the Cauchy-Schwartz inequality,
only attained at Einstein metrics.

As far as we know, there are only two examples of ERP G2-structures in the
literature and they are both homogeneous: the first one was given in [9, Example 1]
on the homogeneous space SL2(C) � C

2/SU(2) (and on any compact quotient by
a lattice), which also has a presentation as a G2-structure on the solvable Lie group
given in [22, Examples 4.13, 4.10], and the one found on a unimodular solvable Lie
group in [22, Example 4.7]. Surprisingly (or not), both examples are also steady
Laplacian solitons. We do not know if there could be an interplay between the two
notions.

Motivated by Theorem 1.1, we consider the invariant (up to isometry and scaling)
functional

F := Scal2

|Ric |2 , 0 ≤ F ≤ 7,

on the space of all non-flat homogeneous closed G2-structures (recall that a Ricci
flat homogeneous Riemannian manifold is necessarily flat; see [2]). Note that after
integrating on M in the compact case, F ≤ 3 by Theorem 1.1. On the other hand,
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we know that F < 7 always since no solvable Lie group admits an Einstein closed
(non-parallel) G2-structure (see [11]) and the Alekseevskii Conjecture, asserting
that any homogeneous Einstein metric of negative scalar curvature is isometric to a
solvmanifold, has recently been proved in dimension 7 (see [4]).

Within the class of closed G2-structures on almost-abelian Lie groups, F ≤ 1
and equality holds precisely at non-nilpotent expanding Laplacian solitons (see [21,
Sect. 5]). At some point it was not unreasonable to expect that F ≤ 3 would also
hold in the homogeneous case. However, we found in [22] a curve ϕt , 1

4 ≤ t ≤ 1, of
closed G2-structures on pairwise non-isomorphic solvmanifolds such that F(ϕt ) is
strictly decreasing and

F(ϕ1/4) = 81
17 (≈ 4.76) > 3 = F(ϕ1).

Furthermore,ϕt is a shrinking Laplacian soliton for any 1
4 ≤ t < 1 andϕ1 is the ERP

steady Laplacian soliton given by Bryant. It is therefore natural to wonder about what
would be the ‘extremally Ricci pinched’ G2-structures in the homogeneous case:

What is the value of sup F and its meaning? Is it a maximum?Are themaximalG2-structures
distinguished in some sense?

We study the behavior of the functional F on solvmanifolds in Sect. 4, after giving
a summary on what is known on Ricci pinching of solvmanifolds in the Riemannian
case in Sect. 3.

2 The Space of Closed G2-Structures on Solvmanifolds

We fix a 7-dimensional real vector space s endowed with a basis {e1, . . . , e7} and the
positive 3-form

ϕ := e127 + e347 + e567 + e135 − e146 − e236 − e245,

whose associated inner product 〈·, ·〉 is the onemaking the basis {ei } orthonormal. Let
S ⊂ �2s∗ ⊗ s denote the algebraic subset of all Lie brackets on swhich are solvable.
Each μ ∈ S will be identified with the left-invariant G2-structure determined by ϕ
on the simply connected solvable Lie group Sμ with Lie algebra (s,μ):

μ ←→ (Sμ,ϕ).

In this way, the isomorphism class GL7(R) · μ stands for the set of all left-invariant
G2-structures on Sμ:

(Sh·μ,ϕ) ←→ (Sμ,ϕ(h·, h·, h·)), ∀h ∈ GL7(R).
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Note that h−1 is an isomorphism determining an equivalence between these two Lie
groups endowed with G2-structures. Recall that any G2-structure or metric on a Lie
group is assumed to be left-invariant.

Thus any two Lie brackets in the same G2-orbit are equivalent as G2-structures,
and if they are in the same O(7)-orbit then they are isometric as Riemannian metrics.
Both converse assertions hold for completely real Lie brackets. We note that the orbit
O(7) · μ consists of all the G2-structures on Sμ defining some fixed metric.

By intersectingS with the linear subspace {μ ∈ �2s∗ ⊗ s : dμϕ = 0}, one obtains
the G2-invariant algebraic subset

Sclosed := {μ ∈ S : dμϕ = 0}.

The space Sclosed therefore parameterizes the set of all closed G2-structures on solv-
manifolds. Note that a Lie group Sμ admits a closed G2-structure if and only if the
orbit GL7(R) · μ meets Sclosed (or equivalently, the above linear subspace). We do
not know much about the topology of the cone GL7(R) · μ ∩ Sclosed of all closed
G2-structures on a given Lie group: is it connected? Is its intersection with a sphere
connected?

Recall that for each μ ∈ Sclosed , the only torsion form that survives is the 2-form
τμ ∈ �2s∗ given by

τμ = − ∗ dμ ∗ ϕ, dμ ∗ ϕ = τμ ∧ ϕ.

We also consider the G2-invariant subset of torsion-free G2-structures,

St f := {μ ∈ S : dμϕ = 0, dμ ∗ ϕ = 0} = {
μ ∈ Sclosed : τμ = 0

}
,

and the O(7)-invariant subset

S f lat := {
μ ∈ S : (Sμ, 〈·, ·〉) is flat

} = {
μ ∈ S : Scalμ = 0

}
.

Since the scalar curvature of μ (i.e. of (Sμ, 〈·, ·〉)) equals Scalμ = − 1
2 |τμ|2, we obtain

that
St f = Sclosed ∩ S f lat .

2.1 Nilpotent Case

There are exactly twelve nilpotent Lie algebras admitting a closed G2-structure
(see [10]). Thus the space Sclosed meets twelve nilpotent GL(s)-orbits, say GL(s) ·
μ1, . . . ,GL(s) · μ12. In [12], the authors classified which of these twelve Lie groups
admit a closed G2-structure which is in addition a Ricci soliton (called nilsolitons
in the nilpotent case), and in [26], the existence of closed Laplacian solitons was
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studied. The following information has been extracted from these two articles (we
use the same enumeration of the algebras):

• μ1: This is the abelian Lie algebra and so Sμ1 = R
7 admits a unique G2-structure

up to equivalence which is torsion-free.
• μ2: The Lie group Sμ2 admits a unique closed G2-structure up to equivalence and
scaling, which is a nilsoliton and also a Laplacian soliton.

• μ3: There exists a curve of closed Laplacian solitons on Sμ3 which are not nilsoli-
tons; however, there are no nilsoliton closed G2-structures on this group.

• μ4: The Lie group Sμ4 admits a pairwise non-equivalent one-parameter family of
closedG2-structures, amongwhich there are a nilsoliton and a (different) Laplacian
soliton.

• μ5: Sμ5 does not admit any closed G2-structure which is a nilsoliton. There is
though a Laplacian soliton belonging to a curve of closed G2-structures.

• μ6: The Lie group Sμ6 admits a curve of closed G2-structures, one of them being
a nilsoliton and another one a Laplacian soliton.

• μ7: Sμ7 does not admit any closed G2-structure which is a nilsoliton. However,
there exists a curve of closed G2-structures containing a Laplacian soliton.

• μ8,μ9,μ11: None of these Lie groups admit a closed G2-structure which is a
nilsoliton.

• μ10: The existence of a nilsoliton closed G2-structure in Sμ10 is still open.
• μ12: The Lie group Sμ12 admits a closed G2-structure which is also a nilsoliton.

The existence of closed Laplacian solitons on the Lie groups Sμ8 , . . . , Sμ12 remains
open.

2.2 Almost-Abelian Case

Closed G2-structures in the class of almost-abelian Lie algebras (i.e. with a
codimension-one abelian ideal) were studied in [21, Sect. 5], we refer the reader there
for further information. One attaches to eachmatrix A ∈ gl6(R) a Lie bracketμA ∈ S
as follows: relative to a fixed orthonormal basis {e1, . . . , e7}, n := span{e1, . . . , e6}
is an abelian ideal for μA and adμA e7|n = A.

We have that μA ∈ Sclosed if and only if A ∈ sl3(C) ⊂ gl6(R), where the complex
structure defining sl3(C) is Jei = ei+1, i = 1, 3, 5, and μA ∈ St f if and only if A ∈
su(3). It is easy to see that μB ∈ GL(s) · μA for A, B ∈ sl3(C) if and only if B ∈
R

∗SL3(C) · A, where the last action is by conjugation. This implies that every almost-
abelian Lie algebra admitting a closed G2-structure is isomorphic to μA for some
matrix A in the following list:

⎡

⎣
α

β
γ

⎤

⎦ ,

⎡

⎣
α 1

α
−2α

⎤

⎦ ,

⎡

⎣
0 1
0
0

⎤

⎦ ,

⎡

⎣
0 1
0 1
0

⎤

⎦ ,

⎡

⎣
i
ai

bi

⎤

⎦ ,

⎡

⎣
i 1
i

−2i

⎤

⎦ ,
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where α,β, γ ∈ C, α + β + γ = 0, |α| = 1, α �= ±i and a, b ∈ R, 1 + a + b = 0.
The two nilpotent matrices in the middle define groups isomorphic to Sμ2 and Sμ6 ,
respectively (see Sect. 2.1). Moreover, each Lie group SμA admits an SL3(C)-orbit
of closed G2-structures up to scaling and each SU(3)-orbit consists of pairwise
equivalent structures. Thus there are continuous families of closed G2-structures
depending on many parameters on most of these Lie groups (see e.g. [21, Example
5.9]).

It is easy to see that if A = S + N for A, S, N ∈ sl3(C), where S is semisimple,
N nilpotent and [S, N ] = 0, then μS,μN ∈ R∗SL3(C) · μA ⊂ Sclosed . It is worth
observing that any kind of geometric quantity associated to closed G2-structures
depends continuously on the Lie bracket μ ∈ Sclosed , so μS and μN inherit any prop-
erty that μA may have. This can also be used to study pinching curvature properties
(see [20, Sect. 3.3] and the next sections).

It is proved in [21, Proposition 5.22] that μA is a Laplacian soliton for any nor-
mal matrix A ∈ sl3(C) (see [21, Propositions 5.22, 5.27] for the Laplacian soliton
conditions for a nilpotent A).

3 Ricci Pinching of Solvmanifolds

In this section, we give a short overview on Ricci pinching of solvmanifolds. We
refer to [23] for a more detailed treatment with a complete list of references.

We fix an n-dimensional real vector space s endowed with an inner product 〈·, ·〉.
Let S ⊂ �2s∗ ⊗ s denote the algebraic subset of all Lie brackets on s which are
solvable. Given μ ∈ S, its isomorphism class GL(s) · μ can be identified with the
set of all left-invariant metrics on the corresponding simply connected solvable Lie
group Sμ in the following way:

(Sh·μ, 〈·, ·〉) ←→ (Sμ, 〈h·, h·〉), ∀h ∈ GL(s).

Consider the following GL(s)-invariant subsets of S:

SiR := {
μ ∈ S : Spec(adμ X) ⊂ iR, ∀X ∈ s

}
,

SR := {
μ ∈ S : either adμ X is nilpotent or Spec(adμ X) � iR, ∀X ∈ s

}
,

ScR := {
μ ∈ S : Spec(adμ X) ⊂ R, ∀X ∈ s

}
,

Sunim := {
μ ∈ S : tr adμ X = 0, ∀X ∈ s

}
,

N := {μ ∈ S : μ is nilpotent} ,

where Spec(adμ X) is the set of eigenvalues of the operator adμ X .
The Lie algebras in SiR and SR are called of imaginary and real type, respectively

(see e.g. [8, Sect. 3]). The closed subset ScR is known in the literature as the class
of completely real or completely solvable Lie algebras, and Sunim is the subset of
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unimodular solvable Lie algebras. It easily follows that SiR is closed, SR � N is
open in S and SiR ∩ SR = N . We also consider the subset

S f lat := {
μ ∈ S : (Sμ, 〈·, ·〉) is flat

}
.

The following inclusions hold,

{0} ⊂ S f lat ⊂ GL(s) · S f lat ⊂ SiR ⊂ Sunim, {0} ⊂ N ⊂ ScR ⊂ SR.

and the following lemma will be very useful.

Lemma 3.1 ([8, Lemma 3.4]) If μ ∈ SR then GL(s) · μ ∩ S f lat = {0}.
From our point of view, the Ricci pinching is captured by the extremal values of

the functional

F : S � S f lat −→ R, F(μ) := Scal2μ
|Ricμ |2 ,

where Scalμ and Ricμ are respectively the scalar curvature and Ricci operator of μ
(recall that μ ↔ (Sμ, 〈·, ·〉)). Note that F is invariant up to isometry and scaling; in
particular, F is O(s)-invariant. Since Scalμ = 0 if and only if μ ∈ S f lat , one obtains
from the Cauchy-Schwartz inequality that

0 < F(μ) ≤ n, ∀μ ∈ S � S f lat ,

with F(μ) = n if and only if μ is Einstein. For each μ ∈ S we define,

mμ := inf F(GL(s) · μ), Mμ := sup F(GL(s) · μ),

that is, the infimum and supremum of F among all left-invariant metrics on the Lie
group Sμ. It follows that

(mμ, Mμ) ⊂ F(GL(s) · μ) ⊂ F
(
GL(s) · μ

)
⊂ [mμ, Mμ].

Recall that F is not defined on S f lat , so when we write F(C) for some subset C ⊂ S
we always mean F(C � S f lat ).

An element μ ∈ S is called a solvsoliton when Ricμ = cI + D for some c ∈ R

and D ∈ Der(μ). Any solvsoliton belongs to SR (see [18, Theorem 4.8]) and any
Ricci soliton metric on a solvable Lie group is isometric to a solvsoliton (see [16]).

The only non-abelian Lie groups with mμ = Mμ are precisely those admitting a
unique metric up to isometry and scaling, i.e.

μheis(e1, e2) = e3, μhyp(en, ei ) = ei , i = 1, . . . , n − 1,
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and zero otherwise. Note that Sμhyp is isometric to the real hyperbolic space RHn

and somμhyp = Mμhyp = n. On the other hand,mμheis = Mμheis = 1
3 , and since μheis ∈

GL(s) · μ for any μ /∈ GL(s) · μhyp, we have that

mμ ≤ 1
3 for any μ ∈ S such that μ /∈ GL(s) · μhyp .

The maximum of F among all left-invariant metrics on a nilpotent Lie group is
attained at a nilsoliton, which is known to be unique up to isometry and scaling, if
one exists. For any nonzero μ ∈ N ,

F(GL(s) · μ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
1
3 , Mμ

]
, Sμ admits a nilsoliton andμ /∈ GL(s) · μheis,

(
1
3 , Mμ

)
, Sμ does not admit any nilsoliton,

{
1
3

}
, μ ∈ GL(s) · μheis .

We also have that F(N ) = [ 13 ,Cn] for some constant Cn < n depending only on
n, which is necessarily the value of F at some nilsoliton. The nilsolitons with
Ric = Dg(1, 2, . . . , n) have F = n(n−1)

2(2n+1) , showing that 1
5n ≤ Cn for all 7 ≤ n. In

the nilpotent case, the functional F is strictly increasing along any Ricci flow solu-
tion g(t), unless g(0) is a nilsoliton (see [19]).

As in Sect. 2.2, in order to study the almost-abelian case, one fixes an orthog-
onal decomposition s = n ⊕ Ren and attaches to each matrix A ∈ gln−1(R) (iden-
tified with gl(n) via any fixed orthonormal basis) the Lie bracket μA defined by
μA(n, n) = 0 and adμA en|n = A. The construction covers, up to isometry, all left-
invariant metrics on almost abelian Lie groups. Note that the class of almost-abelian
Lie brackets is contained in SiR ∪ SR.

Using well-known formulas for the Ricci curvature of solvmanifolds, one obtains
that

F(A) ≤ 1 + (tr A)2

tr S(A)2
≤ n,

where S(A) := 1
2 (A + At ). Moreover, F(A) = n if and only if S(A) = aI , a �= 0,

if and only if μA is isometric to the real hyperbolic space RHn . It was proved in
[3, Proposition 3.3] that A is a solvsoliton if and only if either A is normal or A is
nilpotent and [A, [A, At ]] = cA for some c ∈ R.

In the case when tr A = 0, i.e. μA unimodular, it follows that

F(A) =
(
tr S(A)2

)2
(
tr S(A)2

)2 + 1
4 |[A, At ]|2

,

hence F(A) ≤ 1 and equality holds if and only if [A, At ] = 0. Thus MA = 1 for any
μA ∈ SR and it is a maximum if and only if A is semisimple. Note that the maxima
of F on one of these Lie groups are precisely solvsolitons, as in the nilpotent case.
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More generally, it is proved in [7, (2)] that for any μ ∈ Sunim , F(λ) = Mμ for
some λ ∈ GL(s) · μ if and only if λ is a solvsoliton.

Some general results on Ricci pinching of solvmanifolds follow.

Theorem 3.2 ([23])

(i) 0 < mμ and F
(
GL(s) · μ

)
= [mμ, Mμ] for any μ ∈ SR.

(ii) For n ≥ 4, inf{mμ : μ ∈ SR} = 0; in particular, F(SR) = (0, n].
(iii) F(GL(s) · μ) = (mμ, Mμ] for every μ ∈ SR ∩ Sunim.
(iv) mμ = 0 for any μ ∈ S � SR.

4 Ricci Pinching of G2-Structures on Solvmanifolds

With Sects. 1.2 and 3 as our motivation, we now study the extremal points and values
of the functional

F : Sclosed � St f −→ R, F(μ) := Scal2μ
|Ricμ |2 ,

where Scalμ and Ricμ are respectively the scalar curvature and Ricci operator of
(Sμ, 〈·, ·〉). Since no solvable Lie group admits an Einstein (non-flat) and closed
G2-structure (see [11]),

0 < F(μ) < 7, ∀μ ∈ Sclosed � St f .

For each μ ∈ Sclosed we define,

nμ := inf F(GL(s) · μ ∩ Sclosed), Nμ := sup F(GL(s) · μ ∩ Sclosed),

that is, the infimum and supremum of F among all closed G2-structures on the Lie
group Sμ. Recall that F is not defined on St f , so when we write F(C) for some subset
C ⊂ Sclosed we always mean F(C � St f ).

It follows from Theorem 1.1 that if μ ∈ Sclosed and Sμ admits a lattice (i.e. a
cocompact discrete subgroup), then F(μ) ≤ 3, and equality holds if and only if μ
is ERP. On the other hand, if for a unimodular μ ∈ Sclosed there is a solvsoliton
λ ∈ GL7(R) · μ ∩ Sclosed , then F(λ) = Nμ = Mμ.

For any class ofG2-structures defined by a closed cone C ⊂ S such that C ∩ St f =
{0}, one has that

C ∩ Sclosed ∩ {μ : |μ| = 1}

is a compact subset of Sclosed � St f . This implies that the infimum and supremum
of F(C ∩ Sclosed) are actually minimum and maximum, respectively, and

0 < min F(C ∩ Sclosed) ≤ max F(C ∩ Sclosed) < 7.
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Examples of classes C for which the above holds include

• N or any closed cone contained in N .
• GL7(R) · μ for any μ ∈ SR (see Lemma 3.1).

It would be really interesting to know the number

Nclosed := sup F(Sclosed).

If Nclosed turns out to be a maximum, then the closed G2-structures with F = Nclosed

should be special in some sense. At the moment, the largest known value for F on
Sclosed is 81

17 ∼ 4.76 and was found in [22, Example 4.11] at a shrinking Laplacian
soliton.

Proposition 4.1

(i) 0 < nμ for any μ ∈ Sclosed ∩ SR.
(ii) inf{nμ : μ ∈ Sclosed ∩ SR} = 0.

Proof Given μ ∈ Sclosed ∩ SR, it follows from [8, Lemma 3.4] that

GL7(R) · μ ∩ Sclosed ∩ {μ : |μ| = 1}

is a compact subset of Sclosed � St f , so part (i) follows. Part (ii) was proved in
Example 4.2 by using the family Ct .

We note that part (i) also follows from Theorem 3.2, (i) and the fact that
mμ ≤ nμ. �

Corollary 4.2 For any non-abelian solvable Lie group S of real type there exists a
constant C(S) > 0 depending only on S such that

|Ric(ψ)| ≤ C(S)|Scal(ψ)|,

for any left-invariant G2-structure ψ on S.

This estimate may have some applications in the study of convergence of geo-
metric flows for G2-structures (see [8]).

4.1 Nilpotent Case

Since μheis does not appear in the list μ1, . . . ,μ12 given in Sect. 2.1, we obtain that
1
3 < min F(Sclosed ∩ N ) and so 1

3 < nμ for any μ ∈ Sclosed ∩ N . In what follows,
we describe what we know about the behavior of F on each of the nilpotent Lie
groups admitting a closed G2-structure (see [26]):
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• μ1: F is not defined.
• μ2: F ≡ 1

2 ; in particular, nμ2 = Nμ2 = 1
2 .

• μ3: F ≡ 1
2 on the curve of closed Laplacian solitons.

• μ4: F = 4
5 = Nμ4 at the nilsoliton and F = 3

4 at the Laplacian soliton.
• μ5: F = 3

4 at the Laplacian soliton, but F > 3
4 on a certain curve of closed G2-

structures.
• μ6: At the nilsoliton, F = 4

5 = Nμ6 , and at the Laplacian soliton, F = 3
4 .

• μ7: At the Laplacian soliton, F = 3
4 , though F > 3

4 on a curve of closed G2-
structures.

• μ12: F = 1 = Nμ12 at the nilsoliton.

We note that Laplacian solitons in general fail to provide the maximum value of
F on a given nilpotent Lie group.

4.2 Almost-Abelian Case

We work in this section on the class of almost-abelian solvable Lie groups (see
Sect. 2.2). For each A ∈ sl3(C) one has that

F(A) = |H(A)|4
|H(A)|4 + 1

8 |[A, A∗]|2 ,

where H(A) := 1
2 (A + A∗) is the hermitian part of A and |B|2 := tr BB∗ for any

B ∈ sl3(C). It follows that F(A) ≤ 1 and equality holds if and only if [A, A∗] =
0. Thus the maximum of F on a given non-nilpotent SμA is only attained if A is
semisimple and it is both a Laplacian and a Ricci soliton. The following example
explicitly shows that the maximum value of F is not always attained at a Laplacian
soliton in the nilpotent case.

Example 4.3 Consider the set of closed G2-structures on the 3-step nilpotent Lie
group Sμ6 parameterized by

⎡

⎣
0 a 0
0 1
0

⎤

⎦ , a > 0.

The Ricci soliton and the Laplacian soliton correspond to a = 1 and a = √
2, respec-

tively. We have that

F(a) = a4 + 2a2 + 1

2a4 + a2 + 2
, 0 < a,

a functionwith only one critical point, a globalmaximumwith F = 4
5 at the nilsoliton

a = 1. Note that at the Laplacian soliton, F(
√
2) = 3

4 .
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Concerning the behavior of F close to St f , we have that

At :=
⎡

⎣
t −1
1 −t

0

⎤

⎦ , F(At ) = t4

t4 + t2
−→
t→0

0; Bt :=
⎡

⎣
t −1
1 t

−2t

⎤

⎦ , F(Bt ) ≡ 1.

This implies that F diverges at the torsion-free G2-structure A0 = B0. Since
Spec(At ) = {±i

√
1 − t2} for any t < 1, we deduce that nA0 = 0. On the other hand,

Spec(Bt ) = {±i + t,−2t}, so the family of Laplacian solitons μBt is pairwise non-
isomorphic.

More generally, nA = 0 for every μA ∈ SiR � N . Indeed, if a �= b, then

Dt :=
⎡

⎣
ai t

bi
ci

⎤

⎦ , F(Dt ) = t4

t4 + (a − b)2t2
−→
t→0

0.

Recall that the class of almost-abelian Lie brackets is contained in the disjoint union
of SR � N , N and SiR � N . In the list of matrices given in Sect. 2.2, the first two
belong to SR � N , the second two to N and the last two to SiR � N .

The following family Ct , 0 < t , in SR given by

Ct :=
⎡

⎣
t −1
1 0

−t

⎤

⎦ , F(Ct ) = 4t4

4t4 + t2
−→
t→0

0,

shows that inf{nA : μA ∈ Sclosed ∩ SR} = 0.
In [21, Example 5.20], the Laplacian flow on the family

⎡

⎣
0 a
b 0

0

⎤

⎦ , F(a, b) = (a + b)4

(a + b)4 + (a2 − b2)2
,

was studied. Using the ODE obtained there for a(t), b(t), it is easy to prove that F is
strictly decreasing along the Laplacian flow solutions starting at closedG2-structures
with ab < 0, a �= −b. This shows that the Laplacian flow does not always improve
the Ricci pinching of closed G2-structures. On the other hand, the functional F was
found to be increasing in some other Laplacian flow solutions like in the above
example with ab > 0 and in the evolution studied in [22, Example 4.9].

4.3 Open Questions

It would be interesting to know the answers to the following natural questions:
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• Given A0 ∈ sl3(C) such that Spec(A0) ⊂ iR, i.e. μA0 ∈ SiR, does lim F as A goes
to A0 exist on the isomorphism class R

∗SL3(C) · A0? Examples At and Bt above
show that such a limit does not exist on the set of all closed almost-abelian Lie
brackets.

• Is nμ = 0 for any μ /∈ Sclosed ∩ SR? This holds in the Riemannian case (see The-
orem 3.2, (iv)) and in the G2 case for almost-abelian Lie groups (see Sect. 4.2).

• Is F(GL7(R) · μ ∩ Sclosed) = (nμ, Nμ] for any μ ∈ SR?
• Does F(λ) = Nμ hold for any solvsoliton λ ∈ GL7(R) · μ ∩ Sclosed? This is
known to be true in the unimodular case and it is open in the non-unimodular
Riemannian case.

• Is F(GL(s) · μ) = (0, Mμ) for any μ ∈ Sclosed � SR? What about for μ ∈ SiR ∩
Sclosed?

• What is the value of sup{Mμ : μ ∈ SiR ∩ Sclosed}?
Acknowledgements The author is very grateful to the organizers of the ‘Workshop on G2 Mani-
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Appendix: Special Classes of G2-structures

The torsion forms of a G2-structure ϕ on M are the components of the intrinsic
torsion ∇ϕ, where ∇ is the Levi-Civita connection of the metric g attached to ϕ.
They can be defined as the unique differential forms τi ∈ �i M , i = 0, 1, 2, 3, such
that

dϕ = τ0 ∗ ϕ + 3τ1 ∧ ϕ + ∗τ3, d ∗ ϕ = 4τ1 ∧ ∗ϕ + τ2 ∧ ϕ. (2)

Some special classes of G2-structures are defined or characterized as follows, we
refer to [13] for further information:

• parallel (P) or torsion-free: dϕ = 0 and d ∗ ϕ = 0, or equivalently, ∇ϕ = 0 (for
M compact, this is equivalent to ϕ harmonic (H), i.e. �ϕ = 0);

• closed (C) or calibrated: dϕ = 0;
• coclosed (CC) or cocalibrated: d ∗ ϕ = 0;
• locally conformal parallel (LCP): dϕ = 3τ1 ∧ ϕ and d ∗ ϕ = 4τ1 ∧ ∗ϕ;
• locally conformal closed (LCC): dϕ = 3τ1 ∧ ϕ (in particular, dτ1 = 0);
• nearly parallel (NP): dϕ = τ0 ∗ ϕ (which implies that �ϕ = τ 2

0ϕ and Ric =
3
8τ

2
0 g);

• locally conformal nearly parallel (LCNP): dϕ = τ0 ∗ ϕ + 3τ1 ∧ ϕ and d ∗ ϕ =
4τ1 ∧ ∗ϕ;

• skew-torsion (ST) or G2T -structures: d ∗ ϕ = 4τ1 ∧ ∗ϕ (in particular, dτ1 = 0);
• locally conformal balanced (LCB): dτ1 = 0;
• eigenform (EF): �ϕ = cϕ for some c ∈ R;
• Einstein (E): Rc = cg for some c ∈ R;
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• Laplacian soliton (LS): �ϕ = cϕ + LXϕ for some c ∈ R and X ∈ X(M) (called
expanding, steady or shrinking if c > 0, c = 0 or c < 0, respectively);

• Ricci soliton (RS): Rc = cg + LXg for some c ∈ R and X ∈ X(M).

We also refer to [27] for a more detailed study of most of these classes of
G2-structures and their possible intersections. Figure1 describes the obvious inclu-
sions among them. For a given classC, aG2-structureϕ is said to be locally conformal
C if for each p ∈ M , there exist an open neighborhood U and a conformal change
ψ := e f ϕ, f ∈ C∞(U ) such that (U,ψ) is a G2-structure of class C.
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On G2-Structures, Special Metrics and
Related Flows
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Abstract We review results about G2-structures in relation to the existence of spe-
cial metrics, such as Einstein metrics and Ricci solitons, and the evolution under
the Laplacian flow on non-compact homogeneous spaces. We also discuss some
examples in detail.
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1 Introduction

AG2-structure on a seven-dimensional manifold M is characterized by the existence
of a globally defined 3-form ϕ which can be pointwise written as

ϕ = e127 + e347 + e567 + e135 − e146 − e236 − e245,

with respect to a suitable basis {e1, . . . , e7} of the cotangent space. Here, the short-
hand ei jk stands for ei ∧ e j ∧ ek . Such a 3-form ϕ gives rise to a Riemannian metric
gϕ and an orientation dVϕ on M.

The intrinsic torsion of a G2-structure ϕ can be identified with the covariant
derivative ∇ϕϕ, ∇ϕ being the Levi Civita connection of gϕ. By [24], it vanishes
identically if and only if both dϕ = 0 and d ∗ϕ ϕ = 0, where ∗ϕ denotes the Hodge
operator of gϕ. When this happens, the G2-structure is said to be torsion-free, its
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associated Riemannian metric gϕ is Ricci-flat and the corresponding Riemannian
holonomy group is a subgroup of the exceptional Lie group G2.

G2-structures can be divided into classes, which are characterized by the expres-
sion of the exterior derivatives dϕ and d ∗ϕ ϕ [11, 24]. A G2-structure ϕ is called
closed (or calibrated according to [32]) if dϕ = 0, while it is called coclosed (or
cocalibrated) if d ∗ϕ ϕ = 0.

Since the Ricci tensor and the scalar curvature of the metric induced by a G2-
structure can be expressed in terms of the intrinsic torsion [11], it may happen that
certain restrictions on the curvature give rise to some constraints on the intrinsic
torsion. For instance, a calibrated G2-structure on a compact manifold induces an
Einstein metric if and only if it is also cocalibrated, i.e., if and only if it is torsion-free
[11, 16]. A natural problem consists then in investigating whether this happens also
in the non-compact case, and whether similar results also hold when the metric is
a Ricci soliton. These problems were studied for calibrated G2-structures on homo-
geneous spaces in [21, 22], and for the wider class of locally conformal calibrated
G2-structures in [26]. We shall review the results in Sect. 3.

A useful tool to study geometric structures on manifolds is represented by geo-
metric flows. Let M be a 7-manifold endowed with a calibrated G2-structure ϕ0. The
Laplacian flow starting from ϕ0 is the initial value problem

⎧
⎪⎨

⎪⎩

∂
∂t ϕ(t) = �ϕ(t)ϕ(t),

dϕ(t) = 0,

ϕ(0) = ϕ0,

where �ϕϕ = dd∗ϕ + d∗dϕ is the Hodge Laplacian of ϕ with respect to the metric
gϕ. This flow was introduced by Bryant in [11] to study 7-manifolds admitting
calibrated G2-structures. Short-time existence and uniqueness of the solution when
M is compact were proved in the unpublished paper [13]. Recently, the analytic and
geometric properties of the Laplacian flow have been deeply investigated in the series
of papers [46–48]. In particular, the authors obtained a long-time existence result,
and they proved that the solution exists for all positive times and it converges to a
torsion-free G2-structure modulo diffeomorphism provided that the initial datum ϕ0

is sufficiently close to a given torsion-free G2-structure.
The first noncompact examples with long-time existence of the solution were

obtained on seven-dimensional nilpotent Lie groups in [22], while further solutions
on solvable Lie groups were described in [27, 44, 45, 50]. Moreover, a cohomogene-
ity one solution converging to a torsion-free G2-structure on the 7-torus was worked
out in [36]. In Sect. 4, we shall discuss the results on nilpotent Lie groups obtained
in [22].
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2 Preliminaries

Let M be a seven-dimensional manifold endowed with a G2-structure ϕ. The Rie-
mannian metric gϕ and the volume form dVϕ are determined by ϕ via the equation

gϕ(X, Y ) dVϕ = 1

6
ιXϕ ∧ ιY ϕ ∧ ϕ,

for all vector fields X, Y on M.

The vanishing of the intrinsic torsion Tϕ of a G2-structure ϕ can be stated in the
following equivalent ways.

Theorem 2.1 ([24]) Let ϕ be a G2-structure on a seven-dimensional manifold M.
Then, the following conditions are equivalent:

(a) the intrinsic torsion of ϕ vanishes identically;
(b) ∇ϕϕ = 0, where ∇ϕ denotes the Levi Civita connection of gϕ;
(c) dϕ = 0 and d ∗ϕ ϕ = 0;
(d) Hol(gϕ) is isomorphic to a subgroup of G2.

A G2-structure satisfying any of the above conditions is said to be torsion-free or
parallel. By [9], the Riemannian metric induced by a torsion-free G2-structure ϕ is
Ricci-flat, i.e., Ric(gϕ) = 0.

More generally, as the intrinsic torsion Tϕ is a section of a vector bundle over
M with fibre R7∗ ⊗ g⊥

2 , G2-structures can be divided into classes according to the
vanishing of the components of Tϕ with respect to the G2-irreducible decomposition

R
7∗ ⊗ g⊥

2
∼= X1 ⊕ X2 ⊕ X3 ⊕ X4 = R ⊕ g2 ⊕ S2

0 (R
7) ⊕ R

7,

where S2
0 (R

7) denotes the space of traceless symmetric 2-tensors and g2 = Lie(G2).
This gives rise to sixteen classes of G2-structures, which were first described in [24].

By [11], it is also possible to characterize each class in terms of the exterior
derivatives dϕ and d ∗ϕ ϕ. In detail, the spaces �k(R7∗

), k = 2, 3, admit the follow-
ing G2-irreducible decompositions (cf. [10])

�2(R7∗
) = �2

7(R
7∗

) ⊕ �2
14(R

7∗
),

�3(R7∗
) = �3

1(R
7∗

) ⊕ �3
7(R

7∗
) ⊕ �3

27(R
7∗

),

where the subscript in �k
r (R

7∗
) denotes the dimension of the summand as an irre-

ducible G2-module, and �2
14(R

7∗
) ∼= g2, �3

27(R
7∗

) ∼= S2
0 (R

7). Consequently, on M
there exist a unique function τ0 ∈ C∞(M) and unique differential forms τ1 ∈ �1(M),
τ2 ∈ �2

14(M) := {
α ∈ �2(M) | α ∧ ∗ϕϕ = 0

}
, τ3 ∈ �3

27(M) := {
β ∈ �3(M) |

β ∧ ϕ = 0,β ∧ ∗ϕϕ = 0
}
such that

dϕ = τ0 ∗ϕ ϕ + 3τ1 ∧ ϕ + ∗ϕτ3,

d ∗ϕ ϕ = 4τ1 ∧ ∗ϕϕ + τ2 ∧ ϕ.
(2.1)
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Table 1 Some classes of G2-structures

Class Type Conditions

X1 Nearly parallel τ1, τ2, τ3 = 0

X2 Closed, calibrated τ0, τ1, τ3 = 0

X4 Locally conformal parallel τ0, τ2, τ3 = 0

X1 ⊕ X3 Coclosed, cocalibrated τ1, τ2 = 0

X2 ⊕ X4 Locally conformal calibrated τ0, τ3 = 0

The differential forms τ0, τ1, τ2, τ3 are called intrinsic torsion forms of the G2-
structure ϕ, and they can be identified with the components of the intrinsic torsion
Tϕ belonging to the G2-modules X1,X4,X2,X3, respectively.

Some classes of G2-structures with the defining conditions are recalled in Table1.

2.1 Link with SU(3)-Structures

An SU(3)-structure on a six-dimensional manifold N is the data of an almost Hermi-
tian structure (g, J ) with fundamental 2-form ω := g(J ·, ·) and a complex volume
form � = ψ + i ψ̂ ∈ �3,0(M) of nonzero constant length.

By [35], an SU(3)-structure (g, J, �) is completely determined by the real 2-form
ω and the real 3-form ψ.

Since G2 acts transitively on the 6-sphere with isotropy SU(3), every G2-structure
on a 7-manifold M induces an SU(3)-structure on each oriented hypersurface. In
particular, if M is endowed with a torsion-free G2-structure ϕ, and N ⊂ M is an
oriented hypersurface, then ϕ induces an SU(3)-structure (ω,ψ) on N which is half-
flat according to the definition given in [14]. This means that the differential forms
ω and ψ satisfy the conditions

d(ω ∧ ω) = 0, dψ = 0.

The inverse problem, i.e., establishing whether a half-flat SU(3)-structure on a
6-manifold is induced by an immersion into a 7-manifold with a torsion-free G2-
structure, can be analyzed using the so-called Hitchin flow equations (see [12, 35]
for details).

We now recall the definition of some special types of half-flat SU(3)-structures.

Definition 2.2 A half-flat SU(3)-structure (ω,ψ) such that dω = cψ for some real
number c is said to be coupled if c �= 0, while it is called symplectic half-flat if
c = 0, i.e., if the 2-form ω is symplectic. A coupled SU(3)-structure satisfying the
additional condition dψ̂ = − 2

3c ω ∧ ω is called nearly Kähler.

If N is a 6-manifold endowed with an SU(3)-structure (ω,ψ), then the product
manifold N × R admits a G2-structure defined by the 3-form
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ϕ := ω ∧ dt + ψ,

where dt is the global 1-form onR. Suchϕ induces the product metric gϕ = g + dt2.
Moreover, ϕ is calibrated (resp. locally conformal calibrated) if the SU(3)-structure
(ω,ψ) is symplectic half-flat (resp. coupled), while ϕ is locally conformal parallel
if (ω,ψ) is nearly Kähler.

3 G2-Structures and Special Metrics

By [11], the Ricci tensor and the scalar curvature of the metric induced by a
G2-structureϕ can be expressed in terms of the intrinsic torsion forms τi . In particular,
the scalar curvature is given by

Scal(gϕ) = 12d∗τ1 + 21

8
τ 2
0 + 30|τ1|2 − 1

2
|τ2|2 − 1

2
|τ3|2,

where | · | denotes the pointwise norm induced by gϕ. Consequently, it has a def-
inite sign for certain classes of G2-structures. For instance, when ϕ is calibrated,
then Scal(gϕ) = − 1

2 |τ2|2 is non-positive, while a nearly-parallel G2-structure always
induces an Einstein metric with positive scalar curvature Scal(gϕ) = 21

8 τ 2
0 .

A generalization of Einstein metrics is given by Ricci solitons. We recall the
definition here.

Definition 3.1 A (complete) Riemannian metric g on a smooth manifold M is a
Ricci soliton if its Ricci tensor satisfies the equation

Ric(g) = λg + LXg,

for some real constant λ and some (complete) vector field X , where L denotes the
Lie derivative. If in addition X is the gradient of a smooth function f ∈ C∞(M), i.e.,
X = ∇ f , then g is said to be of gradient type.

Equivalently, a Riemannian metric g on M is a Ricci soliton if and only if there
exists a positive real valued function h(t) and a family of diffeomorphisms ηt such
that g(t) = h(t) η∗

t (g) is a solution of the Ricci flow starting from g (see e.g. [15,
Lemma 2.4]).

Depending on the sign of λ, a Ricci solitons is called expanding (λ < 0), steady
(λ = 0) or shrinking (λ > 0). Moreover, a Ricci soliton is said to be trivial if it is
either Einstein or the product of a homogeneous Einstein metric with the Euclidean
metric. According to [38], if M is a compact manifold with a Ricci soliton g which
is steady or expanding, then g is Einstein.

A special class of Ricci solitons is given by homogeneous ones, which are defined
as follows
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Definition 3.2 A Ricci soliton g on a smooth manifold M is homogeneous if its
isometry group acts transitively on M.

Properties of non-trivial homogeneous Ricci solitons were given by Lauret in
[43]. In particular, he proved the following.

Proposition 3.3 ([43]) Let g be a non-trivial homogeneous Ricci soliton on a smooth
manifold M. Then, g is expanding and it cannot be of gradient type. Moreover, M
has to be non-compact.

Currently, all known examples of nontrivial homogeneous Ricci solitons are solv-
solitons, that is left-invariant Ricci solitons on simply connected solvable Lie groups.

Since requiring that the metric induced by a G2-structure is Einstein might impose
some constraints on the intrinsic torsion, a natural problem is to investigate which
types of G2-structures can induce an Einstein (or, more generally, a Ricci soliton)
non-Ricci-flat metric, and to see whether there is any difference between the compact
and noncompact cases. For instance, if M is a 7-manifold endowed with a locally
conformal nearly parallel G2-structure ϕ (torsion class X1 ⊕ X4) with gϕ complete
and Einstein, then (M,ϕ) is either nearly parallel or conformally equivalent to the
standard 7-sphere ([17]).

In what follows, we consider the cases of calibrated and locally conformal cali-
brated G2-structures.

3.1 Calibrated G2-Structures

A calibrated G2-structure ϕ satisfies the equations

dϕ = 0, d ∗ϕ ϕ = τ2 ∧ ϕ,

with τ2 ∈ �2
14(M). We collect some known properties of such type of G2-structures

in the next results.

Proposition 3.4 ([11]) Let ϕ be a calibrated G2-structure on M. Then,

1) Scal(gϕ) ≤ 0, and Scal(gϕ) = 0 if and only if gϕ is Ricci-flat;
2) ϕ defines an Einstein metric on M if and only if d ∗ϕ ϕ = τ2 ∧ ϕ, with dτ2 =

3
14 |τ2|2ϕ + 1

2 ∗ϕ (τ2 ∧ τ2).

Corollary 3.5 ([11, 16]) Let M be a compact 7-manifold with a calibrated G2-
structure ϕ. If the underlying metric gϕ is Einstein, then d ∗ϕ ϕ = 0 or, equivalenty,
the holonomy group of gϕ is a subgroup of G2.

The proof of the corollary follows from the identity d
(
1
3τ

3
2

) = 2
7 |τ2|4 ∗ϕ 1 and

Stokes’ theorem. In detail, τ2 must vanish identically since

0 =
∫

M
d

(
1

3
τ 3
2

)

=
∫

M

2

7
|τ2|4 ∗ϕ 1.
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In the non-compact case, there is a known non-existence result involving the
∗-Ricci tensor and the ∗-scalar curvature, where

Ric∗(gϕ)sm = Ri jklϕi jsϕklm, Scal∗(gϕ) = trgϕ
(Ric∗(gϕ)).

Such a result can be stated as follows.

Theorem 3.6 ([16]) Let ϕ be a calibrated G2-structure on a 7-manifold M. If gϕ is

Einstein and ∗-Einstein, i.e., Ric∗(gϕ) = Scal∗(gϕ)

7 gϕ, then gϕ is Ricci-flat.

In light of the previous results, one might investigate the existence of calibrated
G2-structures that are Einstein but non-Ricci-flat on non-compact manifolds. This
problem can be viewed as a G2-analogue of the Goldberg conjecture [30], which
states that a compact Einstein almost-Kähler manifold has to be Kähler. Recall that
a non-compact homogeneous example of Einstein strictly almost Kähler 6-manifold
was constructed in [2].

In the homogeneous setting, an answer to the above problem for calibrated G2-
structures was given in [21].

All known examples of non-compact homogeneous Einstein manifolds are solv-
manifolds, that is, simply connected solvable Lie groups endowed with a left-
invariant Einstein metric. The long-standing Alekseevskii conjecture [7, Question
7.5] states that a connected homogeneous Einstein space G/K of negative scalar
curvature must be diffeomorphic to the Euclidean space. Thus, Einstein solvmani-
folds might exhaust the class of non-compact homogeneous Einstein manifolds. The
conjecture is known to be true in dimensions five and lower by [39, 51], and in
dimension seven by [3]. So, seven-dimensional non-compact homogeneous Einstein
manifolds are necessarily solvmanifolds.

We now review some general results about Einstein metrics on solvmanifolds of
arbitrary dimension.

Theorem 3.7 ([42]) Every Einstein solvmanifold (S, g) is standard, i.e., the corre-
sponding solvable metric Lie algebra (s, 〈·, ·〉) admits the orthogonal decomposition
s = n ⊕ a, with n = [s, s] and a abelian.

Recall that the dimension of the abelian summand a in the decomposition

s = n ⊕ a

is called the rank of the standard solvable metric Lie algebra (s, 〈·, ·〉).
In contrast to the compact homogeneous case (see e.g. [33, §5] and the references

therein), standard Einstein metrics are essentially unique.

Theorem 3.8 ([33])A standard Einstein metric is unique up to isometry and scaling
among invariant metrics.
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Remark 3.9

(1) The study of standard Einstein solvmanifolds reduces to those with dim a = 1
(cf. [33, Theorem 4.18]).

(2) The Lie algebra of any standard Einstein solvmanifold resembles an Iwasawa
subalgebra of a semisimple Lie algebra, since adA is symmetric and non-zero
for any A �= 0 ∈ a, and there exists some A0 ∈ a such that adA0 |n is positive
definite (see [33, Theorem 4.10]).

Using the rank of a standard solvable metric Lie algebra, it is possible to get
a classification of seven-dimensional Einstein solvmanifolds (see e.g. [21, Theo-
rem 4.4]). Then, using the obstructions to the existence of calibrated G2-structures
on Lie algebras given in [18], we have the following result.

Theorem 3.10 ([21]) Let gϕ be the metric determined by a left-invariant calibrated
G2-structure ϕ on a solvmanifold. Then, gϕ is Einstein if and only if gϕ is flat.

Remark 3.11 Note that a similar theorem can be proved also for cocalibrated
G2-structures [21]. Moreover, Theorem 3.10 shows that left-invariant calibrated
G2-structures behave differently from almost Kähler structures [2].

The situation is different if we require that gϕ is a non-trivial Ricci soliton. Indeed,
non-compact examples of manifolds admitting a calibrated G2-structure inducing a
non-trivial Ricci soliton were constructed in [21], and they are all nilsolitons (see
Theorem 3.17 and Example 3.19 below).

Definition 3.12 Let N be a simply connected nilpotent Lie group endowed with a
left-invariant Riemannianmetric g, and denote by (n, 〈·, ·〉) the correspondingmetric
nilpotent Lie algebra. The metric g is called nilsoliton if its Ricci endomorphism
Ric(g) on n differs from a derivation D of n by a scalar multiple of the identity map
I , i.e.,

Ric(g) = λI + D,

for some real number λ.

By [41, Proposition 1.1], a left-invariantRiemannianmetric on a simply connected
nilpotent Lie group is a nilsoliton if and only if it is a Ricci soliton according to
Definition 3.1. It is worth recalling here that non-abelian nilpotent Lie groups cannot
admit any left-invariant Einstein metric unless it is flat [49].

Remark 3.13 As the existence of a nilsoliton on a simply connected nilpotent Lie
group N implies the existence of a non-zero symmetric derivation on the correspond-
ing nilpotent Lie algebra n, nilsolitons might not exist. This is the case, for instance,
of Lie algebras having nilpotent derivation algebra. Such Lie algebras are nilpotent
by Engel’s Theorem, and they are known as characteristically nilpotent in literature.

Before reviewing some properties of nilsolitons, we recall the following.
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Definition 3.14 Let (n, [·, ·]n, 〈·, ·〉n) be ametric nilpotent Lie algebra. Ametric Lie
algebra (s = n ⊕ a, [·, ·], 〈·, ·〉) is a metric solvable extension of (n, [·, ·]n, 〈·, ·〉n) if
the restriction to n of the Lie bracket [·, ·] of s coincides with [·, ·]n and 〈·, ·〉|n×n =
〈·, ·〉n.
Theorem 3.15 ([41]) Let N be a simply connected nilpotent Lie group with Lie
algebra n. Then,

1) A nilsoliton metric on N is unique up to isometry and scaling;
2) N has a nilsoliton metric g if and only if the corresponding metric Lie algebra

(n, 〈·, ·〉) is an Einstein nilradical, i.e., it has a metric solvable extension s =
n ⊕ a, with a abelian, whose corresponding solvmanifold is Einstein.

From now on, we will use the following notation to define a Lie algebra. Sup-
pose that g is a seven-dimensional Lie algebra, whose dual space g∗ is spanned by
{e1, . . . , e7} satisfying

dei = 0, 1 ≤ i ≤ 4, de5 = e12, de6 = e13, de7 = 0,

where d is the Chevalley-Eilenberg differential of g. Then, we will write

g = (0, 0, 0, 0, e12, e13, 0)

with the same meaning.
In order to show the existence of nilpotent Lie algebras with a calibrated G2-

structure inducing a nilsoliton, we need to recall the classification of the nilpotent
Lie algebras admitting a calibrated G2-structure given in [18].

Theorem 3.16 ([18]) Up to isomorphism, there are exactly twelve nilpotent Lie
algebras admitting a calibrated G2-structure. They are:

n1 = (0, 0, 0, 0, 0, 0, 0),

n2 = (0, 0, 0, 0, e12, e13, 0),

n3 = (0, 0, 0, e12, e13, e23, 0),

n4 = (0, 0, e12, 0, 0, e13 + e24, e15),

n5 = (0, 0, e12, 0, 0, e13, e14 + e25),

n6 = (0, 0, 0, e12, e13, e14, e15),

n7 = (0, 0, 0, e12, e13, e14 + e23, e15),

n8 = (0, 0, e12, e13, e23, e15 + e24, e16 + e34),

n9 = (0, 0, e12, e13, e23, e15 + e24, e16 + e34 + e25),

n10 = (0, 0, e12, 0, e13 + e24, e14, e46 + e34 + e15 + e23),

n11 = (0, 0, e12, 0, e13, e24 + e23, e25 + e34 + e15 + e16 − 3e26),

n12 = (0, 0, 0, e12, e23,−e13, 2e26 − 2e34 − 2e16 + 2e25).
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Comparing the previous classification with the results in [20], it turns out that,
up to isomorphism, n9 is the unique nilpotent Lie algebra with a calibrated G2-
structure but not admitting any nilsoliton. Moreover, the existence of a nilsoliton on
the Lie algebra n10 was shown in [19, Example 2], but its explicit expression is not
known. Therefore, it is still an open problem to determine whether the Lie algebra
n10 admits a calibrated G2-structure inducing the nilsoliton. For the remaining Lie
algebras, we have the following.

Theorem 3.17 ([22]) Up to isomorphism, n2, n4, n6 and n12 are the unique s-step
nilpotent Lie algebras (s = 2, 3) with a nilsoliton inner product determined by a
calibrated G2-structure.

Remark 3.18 Note that the Lie algebra ni , i = 3, 5, 7, 8, 11, has a nilsoliton inner
product but no calibrated G2-structure defining the nilsoliton [22].

In the next example, we write the expression of a calibrated G2-structure inducing
the nilsoliton inner product on ni , for i = 2, 4, 6, 12. Moreover, in each case we also
specify the negative real number λ and the derivation D of ni for which Ric =
λI + D.

Example 3.19 ([22]) Consider the nilpotent Lie algebras n2, n4, n6 with the struc-
ture equations given in Theorem 3.16. Then,

n2 : ϕ2 = e147 + e267 + e357 + e123 + e156 + e245 − e346,

λ = −2, D = diag
(
1, 3

2 ,
3
2 , 2,

5
2 ,

5
2 , 2

) ;
n4 : ϕ4 = −e124 − e456 + e347 + e135 + e167 + e257 − e236,

λ = − 5
2 , D = diag

(
1, 3

2 ,
5
2 , 2, 2,

7
2 , 3

) ;
n6 : ϕ6 = e123 + e145 + e167 + e257 − e246 + e347 + e356,

λ = − 5
2 , D = diag

(
1
2 , 2, 2,

5
2 ,

5
2 , 3, 3

)
.

For n12, we firstly consider a basis {e1, . . . , e7} of its dual space n12∗ for which the
structure equations are
(

0, 0, 0,

√
3

6
e12,

√
3

12
e13 − 1

4
e23,−

√
3

12
e23 − 1

4
e13,

√
3

12
e16 −

√
3

6
e34 +

√
3

12
e25 + 1

4
e26 − 1

4
e15

)

.

Then, a calibrated G2-structure satisfying the required properties is

ϕ12 = −e124 + e167 + e257 + e347 − e456 + e135 − e236,

with λ = − 1
4 and D = 1

8 diag(1, 1, 1, 2, 2, 2, 3).

Remark 3.20 The nilsoliton condition is less restrictive for cocalibrated
G2-structures. Indeed, on each 2-step nilpotent Lie algebra admitting cocalibrated
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G2-structures there exists a cocalibrated G2-structure inducing the nilsoliton inner
product (see [4]).

3.2 Locally Conformal Calibrated G2-Structures

A G2-structure ϕ is said to be locally conformal calibrated if the intrinsic torsion
forms τ0 and τ3 vanish identically (cf. Table1). In this case, Eq. (2.1) reduce to

dϕ = 3τ1 ∧ ϕ, d ∗ϕ ϕ = 4τ1 ∧ ∗ϕϕ + τ2 ∧ ϕ.

Let θ := 3τ1 = − 1
4 ∗ϕ (∗ϕdϕ ∧ ϕ) denote the Lee form of the G2-structure. Taking

the exterior derivative of both sides of the equation dϕ = θ ∧ ϕ, we get dθ ∧ ϕ = 0.
This implies dθ = 0. Consequently, each point of the manifold has an open neigh-
borhood U where θ = d f for some f ∈ C∞(U), and the 3-form e− f ϕ defines a
calibrated G2-structure on U . Hence, locally conformal calibrated G2-structures are
locally conformal equivalent to calibrated G2-structures.

Motivated by Corollary 3.5 and Theorem 3.10, it is natural to investigate the
existence of locally conformal calibrated G2-structures whose associated metric is
Einstein andnon-Ricci-flat. Inwhat follows,we refer to a locally conformal calibrated
G2-structure ϕ with gϕ Einstein as an Einstein locally conformal calibrated G2-
structure.

On compact manifolds, the following constraint on the scalar curvature holds.

Theorem 3.21 ([26]) An Einstein locally conformal calibrated G2-structure on a
compact seven-dimensional manifold has non-positive scalar curvature.

Since homogeneous Einstein manifolds with negative scalar curvature are non-
compact (cf. [7, Theorem 7.4]) and since every homogeneous Ricci-flat metric is flat
(see [1]), an immediate consequence of the previous result is the following.

Corollary 3.22 ([26]) A compact homogeneous 7-manifold cannot admit an invari-
ant Einstein locally conformal calibratedG2-structure ϕ unless the underlying metric
gϕ is flat.

Remark 3.23 By [8, Theorem 3.1], the result of Corollary 3.22 is valid more gen-
erally on every compact locally homogeneous space.

In the non-compact setting, there is an example of a simply connected solvable Lie
group endowedwith a left-invariant locally conformal calibrated G2-structureϕ such
that gϕ is Einstein non-Ricci-flat. Thus, the result of [21] recalled in Theorem 3.10 is
not true anymore for locally conformal calibrated G2-structures. Before describing
the example, we recall some useful results.

Consider a 6-manifold N endowed with a coupled SU(3)-structure (ω,ψ), with
dω = cψ (cf. Definition 2.2). As wementioned in §2.1, the 3-formϕ := ω ∧ dt + ψ
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defines a locally conformal calibrated G2-structure on the product manifold N × R.
It is not difficult to check that the corresponding Lee form is θ = −c dt .

In [26], the classification of six-dimensional nilpotent Lie algebras admitting a
coupled SU(3)-structure inducing a nilsoliton was achieved (see also [25, §4.1]). We
recall it in the next theorem.

Theorem 3.24 ([26]) A non-abelian six-dimensional nilpotent Lie algebra admit-
ting a coupled SU(3)-structure is isomorphic to one of the following

h1 = (0, 0, 0, e12, e14 − e23, e15 + e34), h2 = (0, 0, 0, 0, e13 − e24, e14 + e23).

Moreover, the only one admitting a coupled SU(3)-structure inducing a nilsoliton is
h2.

Remark 3.25 Notice that h2 is the Lie algebra of the three-dimensional complex
Heisenberg group.

We are now ready to describe the example.

Example 3.26 ([26]) Consider the coupled SU(3)-structure on h2 defined by the
pair

ω = e12 + e34 − e56, ψ = e136 − e145 − e235 − e246.

It satisfies the equation dω = −ψ, and it induces the nilsoliton inner product g =∑6
k=1(e

k)2 with Ricci operator

Ric = −3I + 4 diag

(
1

2
,
1

2
,
1

2
,
1

2
, 1, 1

)

,

where D = diag
(
1
2 ,

1
2 ,

1
2 ,

1
2 , 1, 1

)
is a symmetric derivation of h2. Consequently, the

metric rank-one solvable extension s = h2 ⊕ 〈e7〉 of h2 with structure equations
(
1

2
e17,

1

2
e27,

1

2
e37,

1

2
e47, e13 − e24 + e57, e14 + e23 + e67, 0

)

is endowed with the Einstein (non-Ricci-flat) inner product g + (e7)2. This is pre-
cisely the inner product gϕ induced by the 3-form

ϕ = ω ∧ e7 + ψ,

which defines a locally conformal calibratedG2-structure on s. A simple computation
shows that the non-vanishing intrinsic torsion forms of ϕ are

τ1 = −1

3
e7, τ2 = −

(
5

3
e12 + 5

3
e34 + 10

3
e56

)

.
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Clearly, left multiplication allows to extend ϕ to a left-invariant Einstein locally
conformal calibrated G2-structure on the simply connected solvable Lie group cor-
responding to s.

We conclude this section recalling a general structure result for compact 7-
manifolds endowed with a locally conformal calibrated G2-structure with nowhere
vanishing Lee form.

Theorem 3.27 ([23]) Let M be a compact, connected seven-dimensional manifold
endowed with a locally conformal calibratedG2-structure ϕ, with nowhere vanishing
Lee form θ. Suppose that LXϕ = 0, where X is the gϕ-dual vector field of θ. Then,

1) M is the total space of a fibre bundle over S1, and each fibre is endowed with a
coupled SU(3)-structure;

2) M has a locally conformal calibrated G2-structure ϕ̂ such that dϕ̂ = θ̂ ∧ ϕ̂,
where θ̂ is a 1-form with integral periods.

The previous theorem implies in particular that M is the mapping torus of a
diffeomorphism ν of a certain 6-manifold N , i.e., M is diffeomorphic to the quotient
of N × R by the infinite cyclic group of diffeomorphisms generated by (p, t) �→
(ν(p), t + 1).

Remark 3.28 It is worth recalling here that compact locally conformal parallel
G2-manifolds can be characterized as fibre bundles over S1 with compact nearly
Kähler fibre (see [37, 52]).

4 The Laplacian Flow on Lie Groups

Consider a 7-manifold M endowed with a calibrated G2-structure ϕ0. The Laplacian
flow starting from ϕ0 is the initial value problem

⎧
⎪⎨

⎪⎩

∂
∂t ϕ(t) = �ϕ(t)ϕ(t),

dϕ(t) = 0,

ϕ(0) = ϕ0,

(4.1)

where �ϕ denotes the Hodge Laplacian of the Riemannian metric gϕ induced by
ϕ. This flow was introduced by Bryant in [11] to study seven-dimensional man-
ifolds admitting calibrated G2-structures. Notice that the stationary points of the
flow equation in (4.1) are harmonic G2-structures, which coincide with torsion-free
G2-structures on compact manifolds.

Short-time existence and uniqueness of the solution of (4.1) when M is compact
were proved in [13].

Theorem 4.1 ([13]) Assume that M is compact. Then, the Laplacian flow (4.1) has
a unique solution defined for a short time t ∈ [0, ε), with ε depending on ϕ0.
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As a consequence of the condition dϕ(t) = 0, the solution ϕ(t) must belong to
the open set

[ϕ0]+ := [ϕ0] ∩ �3
+(M)

in the cohomology class [ϕ0] as long as it exists.

Remark 4.2 By [11, 34], the evolution equation in (4.1) is the gradient flow of
Hitchin’s volume functional

[ϕ0]+ � ϕ �→
∫

M
dVϕ,

with respect to a suitable L2-metric on [ϕ0]+.

4.1 Solutions to the Laplacian Flow on Nilpotent Lie Groups

Lie groups admitting left-invariant calibrated G2-structures constitute a convenient
setting where it is possible to investigate the behaviour of the Laplacian flow in
the non-compact case. In literature, results in this direction have been obtained on
nilpotent and solvable Lie groups in various works [22, 27, 44, 45, 50]. In the non-
solvable case, the first examples of calibrated G2-structures have been exhibited only
recently in [28], and the study of the Laplacian flow starting from some of them was
done in [29].

The main peculiarity of the known non-compact examples is that the solution of
(4.1) exists on an infinite time interval. We recall here a result of [22], while we refer
the reader to [44, 45] for further examples.

Example 4.3 ([22])

1) On the nilpotent Lie algebra n2, the solution of the Laplacian flow starting from
the calibrated G2-structure ϕ2 given in Example 3.19 is

ϕ(t) = e147 + e267 + e357 +
(10

3
t + 1

)3/5
e123 + e156 + e245 − e346,

where t ∈ (− 3
10 ,+∞)

.

2) On the nilpotent Lie algebra n12, the solution of the Laplacian flow starting from
the calibrated G2-structure ϕ12 given in Example 3.19 is

ϕ(t) = −e124 + e167 + e257 + e347 − e456 +
(
1

3
t + 1

)3/4

(e135 − e236),

with t ∈ (−3,+∞).



On G2-Structures, Special Metrics and Related Flows 249

In the previous example, both the calibrated G2-structures considered as initial
value for the Laplacian flow induce the nilsoliton inner product on the corresponding
nilpotent Lie algebra (cf. Theorem 3.17 and Example 3.19). Furthermore, using
suitable analytic techniques it is possible to show that the solution ϕ(t) of (4.1) with
ϕ(0) = ϕ4 on n4 and ϕ(0) = ϕ6 on n6 exists for t ∈ (T,+∞) with T < 0, see [22,
Theorems 4.7, 4.8]. In all cases, it is then possible to analyze the behaviour of the
solution ϕ(t) when t → +∞.

Theorem 4.4 ([22]) On the simply-connected nilpotent Lie groups Ni , i = 2, 4,
6, 12, the Laplacian flow starting from the left-invariant calibrated G2-structure ϕi

has a global solution defined for t ∈ (T,+∞), with T < 0. Moreover, all solutions
converge to a flat G2-structure when t → +∞.

Remark 4.5 The nilpotent Lie algebra n2 may be seen as a product algebra n2 =
n′ ⊕ R with dim(n′) = 6 and R = 〈e7〉, and the calibrated G2-structure ϕ2 on it can
be written as

ϕ2 = ω ∧ e7 + ψ,

where (ω,ψ) is a symplectic half-flat SU(3)-structure on n′ (cf. Definition 2.2).
Moreover, the solution of the Laplacian flow starting from ϕ2 at t = 0 is of the form

ϕ(t) = f (t)ω(t) ∧ e7 + ψ(t),

where (ω(t),ψ(t)) is a family of symplectic half-flat SU(3)-structures on n′, and the
function f : (− 3

10 ,+∞) → R
+ is given by f (t) = (

10
3 t + 1

)−1/10
.

This fact is a consequence of a more general result which holds for a suitable
class of symplectic half-flat SU(3)-structures and allows to construct new examples
of solutions of (4.1) on solvable Lie groups. For more details, we refer the reader to
[27].

Remark 4.6 The investigation reviewed in this section can be carried out also for
the Laplacian coflow for cocalibrated G2-structures [40] and its modified version
introduced in [31]. It turns out that the behaviour of these flows on solvable Lie
groups is slightly different from the behaviour of the Laplacian flow. We refer the
reader to [5, 6] for a detailed treatment.
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Abstract This is an expository article based on the author’s talk in Workshop on
G2 Manifolds and Related Topics held in August 2017 at The Fields Institute. The
aim is to explain the results obtained recently by the author and Jason D. Lotay on
the Laplacian flow for closed G2 structures and some related progress.
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1 G2 Structures on 7-Manifolds

The group G2 is one of the exceptional holonomy groups and is defined as the
stabilizer of the following 3-form on the 7-dimensional Euclidean space R7:

φ = e123 + e145 + e167 + e246 − e257 − e347 − e356,

where ei jk = ei ∧ e j ∧ ek with respect to the basis {e1, e2, . . . , e7} of R7. The group
G2 is a compact, connected, simply-connected, simple Lie subgroup of SO(7) of
dimension 14. The group G2 acts irreducibly on R

7 and preserves the Euclidean
metric and orientation on R7. If ∗φ denotes the Hodge star determined by the metric
and orientation, then G2 also preserves the 4-form ∗φφ.

Let M be a 7-manifold. We say a 3-form ϕ on M is definite if for x ∈ M there
exists an homomorphism u ∈ HomR(TxM,R7) such that u∗φ = ϕx . The space of
definite 3-forms on M will be denoted by �3+(M). Since φ is invariant under the
action of the group G2, each definite 3-form will define a G2 structure on M . The
existence ofG2 structures is equivalent to the property that themanifoldM is oriented
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and spin. Note that as G2 is a subgroup of SO(7), a G2 structure ϕ defines a unique
Riemannian metric g = gϕ on M and an orientation such that

gϕ(u, v)volgϕ
= 1

6
(u�ϕ) ∧ (v�ϕ) ∧ ϕ, ∀ u, v ∈ C∞(T M).

The metric and orientation determine the Hodge star operator ∗ϕ, and we define
ψ = ∗ϕϕ, which is sometimes called a positive 4-form. Notice that the relationship
between gϕ and ϕ, and hence between ψ and ϕ, is nonlinear.

1.1 Type Decomposition of k-Forms

The group G2 acts irreducibly on R
7 (and hence on �1(R7)∗ and �6(R7)∗), but it

acts reducibly on �k(R7)∗ for 2 ≤ k ≤ 5. Hence a G2 structure ϕ induces splittings
of the bundles �kT ∗M (2 ≤ k ≤ 5) into direct summands, which we denote by
�k

l (T
∗M,ϕ) so that l indicates the rank of the bundle. We let the space of sections

of �k
l (T

∗M,ϕ) be �k
l (M). We have that

�2(M) = �2
7(M) ⊕ �2

14(M), �3(M) = �3
1(M) ⊕ �3

7(M) ⊕ �3
27(M),

where

�2
7(M) = {β ∈ �2(M)|β ∧ ϕ = 2 ∗ϕ β} = {X�ϕ|X ∈ C∞(T M)},

�2
14(M) = {β ∈ �2(M)|β ∧ ϕ = − ∗ϕ β} = {β ∈ �2(M)|β ∧ ψ = 0},

and

�3
1(M) = { f ϕ| f ∈ C∞(M)}, �3

7(M) = {X�ψ|X ∈ C∞(T M)},
�3

27(M) = {γ ∈ �3(M)|γ ∧ ϕ = 0 = γ ∧ ψ}.

Hodge duality gives corresponding decompositions of �4(M) and �5(M).
The space �3

27(M) deserves more attention. As in [3] we define a map iϕ :
Sym2(T ∗M) → �3(M) from the space of symmetric 2-tensors to the space of
3-forms, given locally by

iϕ(h) = 1

2
hliϕl jkdx

i ∧ dx j ∧ dxk (1.1)

where h = hi j dxidx j ∈ Sym2(T ∗M). Then C∞(M) ⊗ gϕ is mapped isomorphi-
cally onto �3

1(M) under the map iϕ with iϕ(gϕ) = 3ϕ, and the space of trace-free
symmetric 2-tensors Sym2

0(T
∗M) is mapped isomorphically onto the space�3

27(M).
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1.2 Torsion of G2 Structures

Given a G2 structure ϕ ∈ �3+(M), if ∇ denotes the Levi-Civita connection with
respect to gϕ, we can interpret ∇ϕ as the torsion of the G2 structure ϕ. Following
[25],we see that∇ϕ lies in the space�1

7(M) ⊗ �3
7(M). Thuswe can define a 2-tensor

T which we shall call the full torsion tensor such that

∇iϕ jkl = Timgmnψnjkl . (1.2)

Using the decomposition of the spaces of forms on M determined ϕ, we can also
decompose dϕ and dψ into types. Bryant [3] showed that there exist unique differ-
ential forms τ0 ∈ �0(M), τ1 ∈ �1(M), τ2 ∈ �2

14(M) and τ3 ∈ �3
27(M) such that

dϕ = τ0ψ + 3τ1 ∧ ϕ + ∗ϕτ3, (1.3)

dψ = 4τ1 ∧ ψ + τ2 ∧ ϕ. (1.4)

We call {τ0, τ1, τ2, τ3} the intrinsic torsion forms of the G2 structure ϕ. The full
torsion tensor Ti j is related to the intrinsic torsion forms by the following (see [25]):

Ti j = τ0

4
gi j − (τ #

1 �ϕ)i j − (τ̄3)i j − 1

2
(τ2)i j , (1.5)

where τ̄3 is the trace-free symmetric 2-tensor such that τ3 = iϕ(τ̄3).
If∇ϕ = 0, we say the G2 structureϕ is torsion-free on M . The torsion-free condi-

tion clearly implies that dϕ = 0 = d∗
ϕϕ on M . Fernández and Gray [12] showed that

dϕ = 0 = d∗
ϕϕ also implies ∇ϕ = 0 on M , which also follows from the Eq. (1.5).

The key property of a torsion-free G2 structure ϕ is that the holonomy group
Hol(gϕ) ⊆ G2, and thus the manifold (M, gϕ) is Ricci-flat. Moreover, one can char-
acterise the compact G2 manifolds (i.e., compact manifolds with torsion-free G2

structures) with Hol(gϕ) = G2 as those with finite fundamental group. Thus under-
standing torsion-free G2 structures is crucial for constructing Riemannian manifolds
with holonomy G2.

While there are some explicit examples of manifolds which admit torsion-free
G2 structures for which the holonomy of the induced metric is properly contained in
G2, for example the product of circle S1 with a Calabi-Yau 3-fold and the product
of 3-torus T3 with a Calabi-Yau 2-fold, the construction of manifolds which admit
torsion-free G2 structures with holonomy equal to G2 is a hard and important prob-
lem. The first local existence result of metrics with holonomy G2 was obtained by
Bryant [2] using the theory of exterior differential systems. Then Bryant–Salamon
[4] constructed the first complete non-compact manifolds with holonomy G2, which
are the spinor bundle of S3 and the bundles of anti-self-dual 2-forms on S4 andCP2.
In [22], Joyce constructed the first examples of compact 7-manifolds with holonomy
G2 and many further compact examples have now been constructed [7, 24, 29].
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1.3 Closed G2 Structures

Ifϕ is closed, i.e. dϕ = 0, then (1.3) implies that τ0, τ1 and τ3 are all zero, so the only
non-zero torsion form is τ2 ∈ �2

14(M). In this case, we write τ = τ2 for simplicity.
Then from (1.5) we have that the full torsion tensor satisfies Ti j = − 1

2τi j and is a
skew-symmetric 2-tensor. By (1.4) and τ ∈ �2

14(M), we have dψ = τ ∧ ϕ = −∗ϕτ ,
which implies that

d∗τ = ∗ϕd ∗ϕ τ = − ∗ϕ d2ψ = 0 (1.6)

and the Hodge Laplacian of ϕ is equal to �ϕϕ = −d ∗ϕ dψ = dτ . We computed in
[34] (see also [3]) that

�ϕϕ = iϕ(h) ∈ �3
1(M) ⊕ �3

27(M) (1.7)

where h is the symmetric 2-tensor given as follows:

hi j = −∇mTniϕ
mn
j − 1

3
|T |2gi j − Tikg

kl Tl j . (1.8)

Since ϕ determines a unique metric g = gϕ on M , we then have the Riemann cur-
vature tensor Rm = {Ri jkl}, the Ricci tensor Ri j = gkl Ri jkl and the scalar curvature
R = gi j Ri j of (M, gϕ). For closed G2 structureϕ, we computed in [34] that the Ricci
curvature is equal to

Ri j = ∇mTniϕ
mn
j − Tikg

kl Tl j , (1.9)

and then the scalar curvature R = −|T |2. With (1.9) we can write the symmetric
tensor h in (1.8) as

hi j = −Ri j − 1

3
|T |2gi j − 2Tikg

kl Tl j . (1.10)

2 Laplacian Flow for Closed G2 Structures

Since Hamilton [16] introduced the Ricci flow in 1982, geometric flows have been an
important tool in studying geometric structures onmanifolds. For example,Ricci flow
was instrumental in proving the Poincaré conjecture and the 1

4 -pinched differentiable
sphere theorem, and Kähler–Ricci flow has proved to be a useful tool in Kähler
geometry, particularly in low dimensions. In 1992, Bryant (see [3]) proposed the
Laplacian flow for closed G2 structures

⎧
⎪⎪⎨

⎪⎪⎩

∂

∂t
ϕ(t) = �ϕ(t)ϕ(t),

dϕ(t) = 0,

ϕ(0) = ϕ0,

(2.1)
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where�ϕ = dd∗
ϕ + d∗

ϕd is the Hodge Laplacian with respect to gϕ andϕ0 is an initial
closed G2 structure. The stationary points of the flow are harmonic ϕ, which on a
compact manifold are precisely the torsion-free G2 structures, so the Laplacian flow
provides a tool for studying the existence of torsion-free G2 structures on a manifold
admitting closed G2 structures. The goal is to understand the long-time behavior of
the Laplacian flow on compact manifolds M ; specifically, to understand conditions
under which the flow will converge to a torsion-free G2 structure. We remark that
there are other proposedflowswhich also have torsion-freeG2 structures as stationary
points (e.g. [15, 26, 42]).

2.1 Gradient Flow of Volume Functional

Another motivation for studying the Laplacian flow comes fromwork of Hitchin [19]
(see also [5]), which demonstrates its relationship to a natural volume functional. Let
ϕ̄ be a closedG2 structure on a compact 7-manifoldM and let [ϕ̄]+ be the open subset
of the cohomology class [ϕ̄] consisting ofG2 structures. Define the volume functional
on M by

Vol(M,ϕ) = 3

7

∫

M
ϕ ∧ ∗ϕϕ, ϕ ∈ [ϕ̄]+. (2.2)

In the arXiv version of [19], Hitchin showed that ϕ ∈ [ϕ̄]+ is a critical point of
Vol(M,ϕ) if and only if d ∗ϕϕ = 0, i.e. ϕ is torsion-free.

Moreover, the Laplacian flow (2.1) can be viewed as the gradient flow of the
volume functional (2.2). Since ϕ(t) evolves in the same cohomology class with the
initial data ϕ0, we can write ϕ(t) = ϕ0 + dη(t) for some time dependent 2-form
η(t). To calculate the variation of the volume functional, we need to compute the
variation of ∗ϕ(t)ϕ(t). This has already been computed in [3, 23]:

∂

∂t
(∗ϕ(t)ϕ(t)) = 4

3
∗ϕ(t) π1

(
∂ϕ(t)

∂t

)

+ ∗ϕ(t)π7

(
∂ϕ(t)

∂t

)

− ∗ϕ(t)π27

(
∂ϕ(t)

∂t

)

,

(2.3)
where πk’s are the respective projections to the invariant subspaces of �3(M) and
are determined by ϕ(t). Then

d

dt
Vol(M,ϕ(t)) =3

7

∫

M

(
∂ϕ(t)

∂t
∧ ∗ϕ(t)ϕ(t) + ϕ(t) ∧ ∂

∂t
(∗ϕ(t)ϕ(t))

)

=
∫

M

∂ϕ(t)

∂t
∧ ∗ϕ(t)ϕ(t)

=
∫

M
〈∂η(t)

∂t
, d∗

ϕ(t)ϕ(t)〉 ∗ϕ(t) 1.
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Thus gradient flow of the volume functional within the same cohomology class is
given by

∂ϕ(t)

∂t
= d

∂η(t)

∂t
= dd∗

ϕ(t)ϕ(t) = �ϕ(t)ϕ(t),

which is exactly the Laplacian flow. Then along the Laplacian flow, the volume will
increase unlessϕ(t) is torsion-free. By examining the second variation of the volume
functional, Bryant [3] showed that if ϕ̄ is torsion-free, then Diff0(M) · ϕ̄ is a local
maximum of the volume functional on the moduli space Diff0(M) \ [ϕ̄]+. This gives
rise to the following natural question:

Question 2.1 ([3]) Starting from a initial data ϕ0 ∈ [ϕ̄]+ which is sufficiently close
to ϕ̄ in an appropriate norm, does the Laplacian flow converge to a point on
Diff0(M) · ϕ̄?

In the statement of Question 2.1, we assumed the existence of a torsion-free G2

structure ϕ̄ on M . In 1996, Joyce [22] proved a criterion for the existence of torsion-
free G2 structures, which says that if one can find a G2 structure ϕ with dϕ = 0 on
a compact 7-manifold M , whose torsion is sufficiently small in a certain sense, then
there exists a torsion-free G2-structure ϕ̄ ∈ [ϕ] on M which is close to ϕ. This result
has been used to construct compact examples of manifolds with G2 holonomy. It
would be interesting to give a new proof of Joyce’s result [22] using the Laplacian
flow.

Generally, one cannot expect that the Laplacian flow will converge to a torsion-
free G2 structure, even if it has long-time existence. There are compact 7-manifolds
with closed G2 structures that cannot admit holonomy G2 metrics for topological
reasons (c.f. [9, 10]), and Bryant [3] showed that the Laplacian flow starting with a
particular one of these examples will exist for all time but it does not converge; for
instance, the volume of the associated metrics will increase without bound. Some
explicit examples of the solution to the Laplacian flow which exist for all time and
converge can be found in [11, 13, 21].

2.2 Short Time Existence

Recall that theHodgeLaplacian�ϕ is related to the analyst’s Laplacian� = gi j∇i∇ j

by the Weitzenbock formula:

�ϕω = − �ω + R(ω) (2.4)

for any (0, k)-tensor ω, where R is the Weitzenbock curvature operator. Since the
Laplacian flow (2.1) is defined by the Hodge Laplacian, it appears at first sight to
have the wrong sign for the parabolicity. However, if dϕ = 0, using definition (1.2)
of the torsion tensor and the divergence-free property (1.6) of τ , we see that �ϕ
involves only up to first order derivatives of ϕ and thus the second order part of the
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Hodge Laplacian �ϕϕ lies in the part R(ϕ) of (2.4). Using DeTurck’s trick in the
Ricci flow, Bryant–Xu [5] modified the Laplacian flow by an operator of the form
LV (ϕ)ϕ = d(V �ϕ) + V �dϕ = d(V �ϕ) for some vector field V (ϕ) and showed that
the Laplacian–DeTurck flow

∂ϕ(t)

∂t
= �ϕ(t)ϕ(t) + LV (ϕ)ϕ(t) (2.5)

is strictly parabolic in the direction of closed forms by choosing a special vector field
V (ϕ). In fact, if dθ = 0, they calculated that the linearization of RHS of (2.5) is

d

dε

∣
∣
∣
∣
ε=0

(
�ϕ+εθ(ϕ + εθ) + LV (ϕ+εθ)(ϕ + εθ)

) = − �ϕθ + d�(θ) (2.6)

where d�(θ) is algebraic linear in θ and d�(θ) = 0 if ϕ is torsion-free. However,
no existing theory of parabolic equations can be used directly since the parabolicity
of (2.5) is only true in the direction of closed forms. Fortunately, by using the Nash
Moser inverse function theorem [17] for tame Féchet spaces, Bryant and Xu proved
the following short time existence theorem.

Theorem 2.2 (Bryant–Xu [5]) Assume that M is compact and ϕ0 is a closed G2

structure on M. Then the Laplacian flow has a unique solution for a short time
t ∈ [0, ε) with ε depending on ϕ0.

As in theRicci flow,we can alsowrite the Laplacian–DeTurck flow (2.5) explicitly
in local coordinates. Let g̃ be a fixed Riemannian metric on M and ∇̃, �̃k

i j be the
corresponding Levi-Civita connection and Christoffel symbols. We know that the
difference �

j
kl − �̃

j
kl of the Levi-Civita connections of the metrics g and g̃ is a well-

defined tensor on M . This gives us a vector field V on M with

Vi = gi jg
kl(�

j
kl − �̃

j
kl), (2.7)

which is just the vector field chosen in Ricci-DeTurck flow [41]. By a direct but
lengthy computation, we can show that if dϕ = 0, the Laplacian–DeTurck flow
Eq. (2.5) with V given by (2.7) has the following expression in local coordinates:

∂

∂t
ϕi jk =g pq∇̃p∇̃qϕi jk + l.o.t (2.8)

and the associated metric gi j evolves by

∂

∂t
gi j =g pq∇̃p∇̃qgi j + l.o.t (2.9)

where the lower order terms only involve the ϕ, g, ∇̃g and ∇̃ϕ and can be written
down explicitly. The readers may find that the vector field V is different at first sight
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with the one chosen by Bryant–Xu [5]. However, we can see that they are essentially
the same by considering the linearization of V in the direction of closed forms (see
also [15, pp. 400–401]).

2.3 Evolution Equations

Since each G2 structure induces a unique Riemannian metric on the manifold, the
Laplacianflow (2.1) induces aflow for the associatedRiemannianmetricg(t) = gϕ(t).
Recall that under a general flow for G2 structures

∂

∂t
ϕ(t) = iϕ(t)(h(t)) + X�ψ(t), (2.10)

where h(t) ∈ Sym2(T ∗M) and X (t) ∈ C∞(T M), it is well known that (see [3, 23]
and explicitly [25]) the associated metric tensor g(t) evolves by

∂

∂t
g(t) = 2h(t). (2.11)

By (1.7) and (1.10), we deduce that the associated metric g(t) of the solution ϕ(t)
of the Laplacian flow evolves by

∂

∂t
gi j = −2Ri j − 2

3
|T |2gi j − 4Tikg

kl Tl j , (2.12)

which corresponds to theRicci flowplus some lower order terms involving the torsion
tensor, as already observed in [3]. Then it’s easy to see that the volume form volg(t)

evolves by

∂

∂t
volg(t) =1

2
trg(

∂

∂t
g(t))volg(t) = 2

3
|T |2volg(t), (2.13)

where we used the fact that the scalar curvature R = −|T |2. Hence, along the Lapla-
cian flow, the volume of M with respect to the associated metric g(t) will non-
decrease (as already noted in Sect. 2.1). Since the torsion tensor T is defined by the
first covariant derivative of ϕ and the Riemannian curvature tensor Rm involves up
to second order derivatives of the metric, we calculated in [34] that the evolution
equations of the torsion tensor and Riemannian curvature tensor along the Laplacian
flow are of the form

∂

∂t
T = �T + Rm ∗ T + Rm ∗ T ∗ ψ + ∇T ∗ T ∗ ϕ + T ∗ T ∗ T, (2.14)
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∂

∂t
Rm = �Rm + Rm ∗ Rm + Rm ∗ T ∗ T + ∇2T ∗ T + ∇T ∗ ∇T, (2.15)

where we use ∗ to mean some contraction using the metric g(t) associated with ϕ(t).

3 Foundational Results of Laplacian Flow

In this section, we discuss several foundational results on the Laplacian flow, which
are important for further studies.

3.1 Shi-type Estimates

The first result is the derivative estimates of the solution to the Laplacian flow. For a
solution ϕ(t) of the Laplacian flow (2.1), we define the quantity

�(x, t) = (|∇T (x, t)|2g(t) + |Rm(x, t)|2g(t)

) 1
2 . (3.1)

Notice that the torsion tensor T is determined by the first order derivative of ϕ and
the curvature tensor Rm is second order in the metric gϕ, so both Rm and ∇T are
second order inϕ. We show that a bound on�(x, t)will induce a priori bounds on all
derivatives of Rm and ∇T for positive time. More precisely, we have the following.

Theorem 3.1 ([34]) Suppose that K > 0 and ϕ(t) is a solution of the Laplacian
flow (2.1) for closed G2 structures on a compact manifold M7 for t ∈ [0, 1

K ]. For all
k ∈ N, there exists a constant Ck such that if �(x, t) ≤ K on M7 × [0, 1

K ], then

|∇k Rm(x, t)|g(t) + |∇k+1T (x, t)|g(t) ≤ Ckt
− k

2 K , t ∈ (0,
1

K
]. (3.2)

We call the estimates (3.2) Shi-type estimates for the Laplacian flow, because
they are analogues of the well-known Shi derivative estimates in the Ricci flow. In
Ricci flow, a Riemann curvature bound will imply bounds on all the derivatives of the
Riemann curvature: this was proved by Bando [1] and comprehensively by Shi [41]
independently. The techniques used in [1, 41] were introduced by Bernstein (in the
early twentieth century) for proving gradient estimates via the maximum principle,
and was also the key in [34] to prove Theorem 3.1. A key motivation for defining
�(x, t) as in (3.1) is that the evolution equations of |∇T (x, t)|2 and |Rm(x, t)|2
both have some bad terms, but the chosen combination kills these terms and yields
an effective evolution equation for �(x, t) which looks like
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∂

∂t
�(x, t)2 ≤ ��(x, t)2 + C�(x, t)3

for some positive constant C . This shows that the quantity � has similar properties
to Riemann curvature under Ricci flow. Moreover, it implies that the assumption
�(x, t) ≤ K in Theorem 3.1 is reasonable as �(x, t) cannot blow up quickly. We
remark that the constant Ck depends on the order of differentiation. In a joint work
with Lotay [36], we showed that Ck are of sufficiently slow growth in the order k
and then we deduced that the G2 structure ϕ(t) and associated metric gϕ(t) are real
analytic at each fixed time t > 0.

The Shi-type estimates could be used to study finite-time singularities of the
Laplacian flow. Given an initial closed G2 structure ϕ0 on a compact 7-manifold,
Theorem 2.2 tells us there exists a solution ϕ(t) of the Laplacian flow on a maximal
time interval [0, T0). If T0 is finite, we call T0 the singular time. Using our global
derivative estimates (3.2), we have the following long time existence result on the
Laplacian flow.

Theorem 3.2 ([34]) If ϕ(t) is a solution of the Laplacian flow (2.1) on a compact
manifold M7 in a maximal time interval [0, T0) with T0 < ∞, then

lim
t↗T0

sup
x∈M

�(x, t) = ∞.

Moreover, there exists a positive constant C such that the blow-up rate satisfies

sup
x∈M

�(x, t) ≥ C

T0 − t
.

In other words, Theorem 3.2 shows that the solution ϕ(t) of the Laplacian flow
for closed G2 structures will exist as long as the quantity �(x, t) in (3.1) remains
bounded.

3.2 Uniqueness

Given a closed G2 structureϕ0 on a compact 7-manifold, Theorem 2.2 says that there
exists a unique solution to the Laplacian flow for a short time interval t ∈ [0, ε).
The proof in [5] relies on the Nash–Moser inverse function theorem [16] and the
DeTurck’s trick. In [34], we gave a new proof the forward uniqueness by adapting
an energy approach used previously by Kotschwar [28] for Ricci flow. The idea is to
define an energy quantityE(t) in terms of the differences of theG2 structures,metrics,
connections, torsion tensors and Riemann curvatures of two Laplacian flows, which
vanishes if and only if the flows coincide. By deriving a differential inequality for
E(t), it can be shown that E(t) = 0 if E(0) = 0, which gives the forward uniqueness.
We also proved in [34] a backward uniqueness result for the solution of Laplacian
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flow by applying a general backward uniqueness theorem in [27] for time-dependent
sections of vector bundles satisfying certain differential inequalities.

Theorem 3.3 ([34]) Supposeϕ(t), ϕ̃(t) are two solutions to the Laplacian flow (2.1)
on a compact manifold M7 for t ∈ [0, ε], ε > 0. If ϕ(s) = ϕ̃(s) for some s ∈ [0, ε],
then ϕ(t) = ϕ̃(t) for all t ∈ [0, ε].

An application of Theorem 3.3 is that on a compact manifold M7, the subgroup
Iϕ(t) of diffeomorphisms of M isotopic to the identity and fixing ϕ(t) is unchanged
along the Laplacian flow. Since Iϕ is strongly constrained for a torsion-free G2

structure ϕ on M , this gives a test for when the Laplacian flow with a given initial
condition could converge.

3.3 Compactness and κ-Non-collapsing

In the study of Ricci flow, Hamilton’s compactness theorem [18] and Perelman’s
κ-non-collapsing estimate [38] are two essential tools to study the behavior of the
flow near a singularity. We also have the analogous results for the Laplacian flow,
which were proved by the author and Lotay [34] and Chen [6] respectively.

Theorem 3.4 ([34]) Let Mi be a sequence of compact 7-manifolds and let pi ∈ Mi

for each i . Suppose that, for each i , ϕi (t) is a solution to the Laplacian flow (2.1) on
Mi for t ∈ (a, b), where −∞ ≤ a < 0 < b ≤ ∞. Suppose that

sup
i

sup
x∈Mi ,t∈(a,b)

�ϕi (x, t) < ∞ (3.3)

and
inf
i
inj(Mi , gi (0), pi ) > 0. (3.4)

Then there exists a 7-manifold M, a point p ∈ M and a solutionϕ(t) of the Laplacian
flow on M for t ∈ (a, b) such that, after passing to a subsequence, (Mi ,ϕi (t), pi )
converge to (M,ϕ(t), p) as i → ∞.

To prove Theorem 3.4, we first proved in [34] a Cheeger–Gromov-type com-
pactness theorem for the space of G2 structures, which states that the space of G2

structures with bounded |∇k+1T | + |∇k Rm|, k ≥ 0, and bounded injectivity radius
is compact. Given this, Theorem 3.4 follows from a similar argument for the anal-
ogous compactness theorem in Ricci flow as in [18], with the help of the Shi-type
estimate in Theorem 3.1.

The κ-non-collapsing estimate is an estimate on the volume ratio which only
involves the Riemannian metric. A Riemannian metric g on a manifold M is κ-non-
collapsed relative to an upper bound on the scalar curvature of the metric on the scale
ρ if for any geodesic ball Bg(p, r) with r < ρ such that supBg(p,r) Rg ≤ r−2, there
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holds Vol(Bg(p, r)) ≥ κrn . By using the same W functional, Chen [6] generalized
Perelman’s κ-non-collapsing theorem [38] for Ricci flow to any flow

∂

∂t
g(t) = − 2Ric(g(t)) + E(t) (3.5)

for the Riemannian metric g(t), where E(t) is a symmetric 2-tensor.

Theorem 3.5 ([6]) If |E(t)|g(t) is bounded along the flow (3.5) for t ∈ [0, s) with
s < ∞, then there exists κ > 0 such that for all t ∈ [0, s), g(t) is κ-non-collapsed
relative to the upper bound on the scalar curvature on the scale ρ = √

s.

Theorem 3.5 applies effectively to our Laplacian flow since the induced metric
flow is just a perturbation of the Ricci flow, see (2.12). The κ-non-collapsing estimate
is useful to estimate the lower bound on the injectivity radius, which together with
the Shi-type estimate in Theorem 3.1 guarantees the condition of the compactness
theorem for the purpose of the blow up analysis.

3.4 Solitons

Given a 7-manifold M , a Laplacian soliton on M is a triple (ϕ, X,λ) satisfying

�ϕϕ = λϕ + LXϕ, (3.6)

where dϕ = 0, λ ∈ R, X is a vector field on M and LXϕ is the Lie derivative of ϕ in
the direction of X . Laplacian solitons give self-similar solutions to theLaplacian flow.
Specifically, suppose (ϕ0, X,λ) satisfies (3.6). Define ρ(t) = (1 + 2

3λt)
3
2 , X (t) =

ρ(t)− 2
3 X , and let φt be the family of diffeomorphisms generated by the vector fields

X (t) such that φ0 is the identity. Then ϕ(t) defined by ϕ(t) = ρ(t)φ∗
t ϕ0 is a solution

of the Laplacian flow (2.1), which only differs by a scaling factor ρ(t) and pull-back
by a diffeomorphism φt for different times t . We say a Laplacian soliton (ϕ, X,λ)

is expanding if λ > 0; steady if λ = 0; and shrinking if λ < 0.
The soliton solutions of the Laplacian flow are expected to play a role in under-

standing the behavior of the flow near singularities. Thus the classification is an
important problem. In this direction, Lin [30] proved that there are no compact
shrinking solitons, and the only compact steady solitons are given by torsion-free
G2 structures. In [34], we show that any Laplacian soliton that is an eigenform (i.e.,
X = 0 in (3.6)) must be an expander or torsion-free. Hence, stationary points of the
Laplacian flow on 7-manifold (not necessarily compact) are given by torsion-free G2

structures. Moreover, we show that there are no compact Laplacian solitons that are
eigenforms unless ϕ is torsion-free. Combining this with Lin’s result, any nontrivial
Laplacian soliton on a compact manifold M (if it exists) must satisfy (3.6) for λ > 0
and X �= 0. This phenomenon is somewhat surprising, since it is very different from
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Ricci solitons Ric + LXg = λg: when X = 0, the Ricci soliton equation is just the
Einstein equation and there are many examples of compact Einstein metrics.

Since a G2 structure ϕ determines a unique metric g, it is natural to ask what
condition the Laplacian soliton Eq. (3.6) on ϕ will impose on g. By writing LXϕ
with respect to the type decomposition of 3-forms, we derived from the Laplacian
soliton Eq. (3.6) that the induced metric gϕ satisfies, in local coordinates,

− Ri j − 1

3
|T |2gi j − 2Tikg

klTl j = 1

3
λgi j + 1

2
(LXg)i j (3.7)

and the vector field X satisfies d∗(X�ϕ) = 0. In particular, we deduce that any
Laplacian soliton (ϕ, X,λ) must satisfy 7λ + 3div(X) = 2|T |2 ≥ 0, which leads to
a new short proof of Lin’s result [30] for the closed case.

Remark 3.6 We remark that there are many new results concerning the soliton
solutions of the Laplacian flow. We refer the readers to [11, 31–33, 37] for details.

4 Extension Theorem

As we said in Sect. 3, the compactness theorem and the non-collapsing estimate
could be used to study the singularities of the Laplacian flow. Theorem 3.2 already
characterized the finite time singularities as the points where the quantity �(x, t)
(defined in (3.1)) blow up. Thismeans that the solution of the Laplacian flow exists as
long as�(x, t) remains bounded.Thequantity�(x, t) consists of the full information
of the G2 structure ϕ(t) up to second derivatives. It’s interesting to see whether some
weaker quantity can control the behavior of the flow.Using the compactness theorem,
we improved Theorem 3.2 to the following desirable result, which states that the
Laplacian flow will exist as long as the velocity of the flow remains bounded.

Theorem 4.1 ([34]) Let M be a compact 7-manifold and ϕ(t), t ∈ [0, T0), where
T0 < ∞, be a solution to the Laplacian flow (2.1) with associated metric g(t) for
each t. If the velocity of the flow satisfies supM×[0,T0) |�ϕϕ(x, t)|g(t) < ∞, then the
solution ϕ(t) can be extended past time T0.

Note that for closedG2 structures, the velocity�ϕϕ = dτ is just somecomponents
of the first derivative of the torsion tensor. Theorem 4.1 is the G2 analogue of Sesum’s
[39] theorem that the Ricci flow exists as long as the Ricci tensor remains bounded.
It is an open question whether the scalar curvature (the trace of the Ricci tensor)
is enough to control the behavior of the Ricci flow, though it is known for Type-I
Ricci flow [8] and Kähler–Ricci flow [44]. For a closed G2 structure ϕ, the velocity
�ϕϕ = iϕ(h) is equivalent to a symmetric 2-tensor h with trace equal to 2

3 |T |2. Since
the scalar curvature of the metric induced by ϕ is −|T |2, comparing with Ricci flow
one may ask whether the Laplacian flow for closed G2 structures will exist as long as
the torsion tensor remains bounded. This is also the natural question to ask from the
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point of view of G2 geometry. However, even though −|T |2 is the scalar curvature,
it is only first order in ϕ, rather than second order like �ϕϕ, so it would be a major
step forward to control the Laplacian flow using just a bound on the torsion tensor.

The Proof of Theorem 4.1 involves a standard blow up analysis using the com-
pactness theorem in Sect. 3. However, the non-collapsing estimate is not required
for the proof. In fact, for a closed G2 structure ϕ, �ϕϕ = iϕ(h) and |�ϕϕ|2g =
(trg(h))2 + 2|h|2 with h given by (1.10). Then the condition |�ϕ(t)ϕ(t)|g(t) < ∞
is equivalent to supM×[0,T0) |h(t)| < ∞, which implies the uniform continuity of
the metric g(t). A desired injectivity radius estimate then follows and the blow up
analysis works.

Remark 4.2 By applying the compactness theorem and the non-collapsing estimate
and using the method in [43], Chen [6] improved the result in Theorem 4.1. See [6]
for the details. Moreover, Fine and Yao studied in [14] the hypersymplectic flow on
a compact 4-manifold X related to the Laplacian flow on the 7-manifold X × T

3 and
proved that the flow extends as long as the scalar curvature of the corresponding G2

structure remains bounded.

5 Stability of Torsion-Free G2 Structures

As we stated in Question 2.1, Bryant asked the question whether the Laplacian flow
with initial G2 structure ϕ0 which is sufficiently close to a torsion-free G2 structure
ϕ̄ will converge to a point in the diffeomorphism orbit of ϕ̄. Jointly with Lotay, we
gave a positive answer in [35].

Theorem 5.1 ([35]) Let ϕ̄ be a torsion-free G2 structure on a compact 7-manifold
M. Then there is a neighborhood U of ϕ̄ such that for any ϕ0 ∈ [ϕ̄]+ ∩ U , the
Laplacian flow (2.1) with initial value ϕ0 exists for all t ∈ [0,∞) and converges
to ϕ∞ ∈ Diff0(M) · ϕ̄ as t → ∞. In other words, torsion-free G2 structures are
(weakly) dynamically stable along the Laplacian flow for closed G2 structures.

The Proof of Theorem 5.1 is inspired by the proof of an analogous result in
Ricci flow: Ricci-flat metrics are dynamically stable along the Ricci flow. The idea
is to combine arguments for the Ricci flow case [20, 40] with the particulars of the
geometry of closed G2 structures and new higher order estimates for the Laplacian
flow derived by the author with Lotay in [34].We first look at the Laplacian–DeTurck
flow (2.5). By linearizing (2.5) at the torsion-free G2 structure ϕ̄, we have (see (2.6)):

d

dε

∣
∣
∣
∣
ε=0

(
�ϕ̄+εθ(ϕ̄ + εθ) + LV (ϕ̄+εθ)(ϕ̄ + εθ)

) = − �ϕ̄θ, (5.1)

where θ is an exact 3-form. Note that the operator −�ϕ̄ is strictly negative on the
space of exact 3-forms by Hodge decomposition theorem. Let ϕ̃(t) be the solution
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of Laplacian–DeTurck flow and denote θ(t) = ϕ̃(t) − ϕ̄. By the linearization (5.1),
there exists ε > 0 such that for all t for which ‖θ(t)‖Ck

ḡ
< ε, we have

∂

∂t
θ(t) = − �ϕ̄θ + dF(ϕ̄, ϕ̃(t), θ(t), ∇̄θ(t)),

where F is a 2-form which is smooth in the first two arguments and linear in the
last two arguments. The idea is that if θ(t) is sufficiently small, the behavior of the
Laplacian–DeTurck flow is dominated by the linear term −�ϕ̄θ. If the initial ϕ0 is
sufficiently close to ϕ̄, i.e., θ(0) is sufficiently small, by estimating the velocity of
the Laplacian–DeTurck flow we can show that the solution exists and remains small
at least for time t ∈ [0, 1]. By using the strict negativity of the operator −�ϕ̄, we
show that θ(t) has an exponential decay in L2 norm as long as the solution exists and
remains small. By deriving higher order integral estimates, we can in fact show that
the solution of the Laplacian–DeTurck flow exists for all time and also converges to
ϕ̄ exponentially and smoothly as time goes to infinity. The final step is to transform
back to Laplacian flow via time-dependent diffeomorphisms φ(t) determined by the
vector field V (ϕ̃(t)). The Shi-type esimate and compactness result apply here to
show the smooth convergence of Laplacian flow and completes the proof.

As we mentioned in Sect. 2, Joyce [22] proved an existence result for torsion-free
G2 structures, which states that if we control the C0 and L2-norms of γ and the
L14-norm of d∗

ϕ0
γ = d∗

ϕ0
ϕ0, we can deform ϕ0 in its cohomology class to a unique

C0-close torsion-free G2 structure ϕ̄. By choosing a neighbourhood U appropriately,
controlling derivatives up to at least order 8, we can ensure that we can apply both
the theory in [22] and Theorem 5.1, and thus deduce the following corollary.

Corollary 5.2 ([35]) Let ϕ0 be a closed G2 structure on a compact 7-manifold M.
There exists an open neighbourhood U of 0 in �3(M) such that if d∗

ϕ0
ϕ0 = d∗

ϕ0
γ for

some γ ∈ U , then the Laplacian flow (2.1) with initial value ϕ0 exists for all time
and converges to a torsion-free G2 structure.

The neighbourhood U given by Corollary 5.2 is not optimal, and one would like to be
able to prove this result directly using the Laplacian flowwith optimal conditions and
without recourse to [22], but nevertheless, Corollary 5.2 gives significant evidence
that the Laplacian flow will play an important role in understanding the problem of
existence of torsion-freeG2 structures on 7-manifolds admitting closedG2 structures.

Our results also motivate us to study an approach to the following problem, as
pointed out by Thomas Walpuski. The work of Joyce [22] shows that the natural
map from the moduli space M of torsion-free G2 structures to H 3(M) given by
Diff0(M) · ϕ̄ �→ [ϕ̄] is locally injective, but the question of whether this map is
globally injective, raised by Joyce (c.f. [23]), is still open. Suppose we have two
torsion-free G2 structures ϕ̄0 and ϕ̄1 which lie in the same cohomology class, so
we can write ϕ̄1 = ϕ̄0 + dη for some 2-form η. We would like to see whether ϕ̄1 ∈
Diff0(M) · ϕ̄0. By our main theorem (Theorem 5.1) we know that the Laplacian flow
starting at ϕ0(s) = ϕ̄0 + sdη (which is closed) will exist for all time and converge to
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φ∗
s ϕ̄0 for some φs ∈ Diff0(M) when s is sufficiently small. Similarly, the Laplacian

flow starting at ϕ0(s) for s near 1 will also exist for all time and now converge to
φ∗
s ϕ̄1 for some φs ∈ Diff0(M). The aim would be to study long-time existence and

convergence of the flow starting at any ϕ0(s).
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Flows of Co-closed G2-Structures

Sergey Grigorian

Abstract We survey recent progress in the study ofG2-structure Laplacian coflows,
that is, heat flows of co-closed G2-structures. We introduce the properties of the
original Laplacian coflow of G2-structures as well as the modified coflow, reviewing
short-time existence and uniqueness results for themodified coflowandwell as recent
Shi-type estimates that apply to a more general class of G2-structure flows.

1 Introduction

One of the most successful techniques in geometric analysis has been the application
of geometric flows to various problems in geometry and topology, most notably the
use of the Ricci flow [20, 30] to solve the Poincaré Conjecture [31]. The Ricci flow
is a non-linear weakly parabolic partial differential equation for the Riemannian
metric g

∂g

∂t
= −2Ricg (1.1)

so that the evolution of themetric is given by theRicci curvature defined by themetric.
This can further be interpreted as a heat equation for themetric. InG2-geometry, there
have been a number of proposals for geometric flows of G2-structures. The general
idea is that given an initial G2-structure with weaker assumptions than vanishing
torsion, the flow should eventually seek out a torsion-free G2-structure, if one exists
on the givenmanifold. AG2-structure is defined by a positive 3-formϕ, which in turn
defines the metric g, and the corresponding Hodge dual 4-form ∗ϕ =: ψ. Therefore,
a natural equation to consider is the analog of the heat equation for the 3-form ϕ

∂ϕ

∂t
= �ϕϕ. (1.2)
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This Laplacian flow of the 3-form ϕ is now nonlinear in ϕ, because the metric and
hence the Laplacian depend on ϕ itself. A particular case of this flow has been first
studied by Bryant [5], where he restricted it to closed G2-structures, that is ones
where dϕ = 0. For a closed G2-structure, �ϕ = dd∗ϕ, so in this case, the 3-form ϕ
stays closed under the flow (1.2), and in fact remains within the same cohomology
class since �ϕ is exact. Short-time existence and uniqueness of solutions to (1.2)
was proved in [6]. Moreover, on a compact manifold M , this flow can be interpreted
as the gradient flow of the Hitchin functional V given by

V (ϕ) = 1

7

∫
M

ϕ ∧ ∗ϕϕ. (1.3)

The functional V is then the volume of the manifold M . It was shown by Hitchin in
[21] that ifϕ is closed, then the critical points of the functional V within the cohomol-
ogy class [ϕ] correspond precisely to torsion-free G2-structures, and in particular,
these critical points are maxima in the directions transverse to diffeomorphisms.
Under the flow (1.2), V increases monotonically, so if the growth of V is bounded,
then ϕ (t) would be expected to approach a torsion-free G2-structure as t −→ ∞.
The stability and analyticity of this flow has recently been proved by Lotay and Wei
[26–28].

Alternatively, a G2-structure and the corresponding metric may also be defined
by the 4-form ψ (up to a choice of orientation). Therefore, instead of deforming
ϕ, we may deform ψ. Using this idea, Karigiannis, McKay, and Tsui, introduced
the Laplacian coflow for the 4-form ψ in [25]. Instead of considering the heat flow
equation for ϕ, they instead considered the flow:

∂ψ

∂t
= �ψψ. (1.4)

If restricted to co-closed G2-structures (that is, ones with dψ = 0 and equivalently,
those with a symmetric torsion tensor T ) this flow preserves the co-closed condition
and in fact preserves the cohomology class of ψ. In [14], it was shown that this flow
has similar characteristics to the original Laplacian flow for closed G2-structures. In
fact, (1.4) can also be regarded as a gradient flow of the Hitchin functional (but now
reformulated via 4-forms). However, amajor difference comparedwith the Laplacian
flowof closedG2-structures (1.2) is that (1.4) is not even aweakly parabolic equation.
In fact, the symbol of the linearized equation is indefinite. In order to have any hope
of proving the existence of solutions, a modified Laplacian coflow of co-closed G2-
structures was introduced in [14]:

dψ

dt
= �ψψ + 2d ((A − Tr T ) ϕ) (1.5)

where Tr T is the trace of the full torsion tensor T of the G2-structure defined by
ψ, and A is a positive constant. This flow is now weakly parabolic in the direction
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of closed forms and hence it is possible to relate it to a strictly parabolic flow using
an application of DeTurck’s trick. Recently, the methods of Lotay and Wei for Shi-
type estimates for the flow (1.2) have been extended by Chen [7] to cover a more
general class of G2-structure flows that includes (1.5) as well. We will first survey
the properties of G2-structures and the Laplacian �ϕϕ in Sects. 2 and 3. Then, in
Sect. 4 we will focus on Laplacian coflows.

Despite the apparent similarity between closed and co-closedG2-structures, there
are also important differences. As shown in [10], co-closed G2-structures always
satisfy the h-principle (on both open and closed manifolds) and hence always exist
whenever amanifold admitsG2-structures. This is in contrast to closedG2-structures
for which the h-principle only holds on open manifolds. Therefore, co-closed
G2-structures are in some sense more generic than closed ones. This is both good and
bad—it’s good because they always exist, but bad because one cannot expect their
flows to always behave nicely. This is also in part shown by the non-parabolicity of
the original coflow (1.4).

In this surveywewill focus on analytic properties of flows on general 7-manifolds,
however another approach to understand the specific behavior of geometric flows
and obtain explicit solutions has been to consider manifolds with some symmetry,
in which case the number of degrees of freedom in the PDE will be reduced. Both
the original Laplacian coflow (1.4) and the modified Laplacian coflow (1.5) have
been studied on a variety of such manifolds with symmetry. Note that while in these
situations mostly the original coflow (1.4) with the negative sign has been studied,
results for the coflow with the positive sign (1.4) would be similar because equations
reduce to ODEs. In [16, 25], the coflow and the modified coflow, respectively, have
been studied on warped product manifolds of the form N 6 × L where N 6 is a 6-
dimensional manifold with SU (3)-structure such as a Calabi–Yau or nearly Kähler
manifold and L is either R or S1. In particular, soliton solutions in both cases have
been obtained. In [1], Bagaglini, Fernandez, and Fino, also studied both the coflows
on the 7-dimensional Heisenberg group. In particular, they have shown that the long-
term existence properties of the flow (1.5) depend on the constant A. Similarly, in [2],
Bagaglini andFino studied theLaplacian coflowon7-dimensional almost-abelianLie
groups and showed long-term existence properties and constructed soliton solutions.
In [29], Manero, Otal, and Villacampa studied both the Laplacian flow (4.1) and
the coflow (1.4) on solvmanifolds, but instead of restricting to closed or co-closed
G2-structures, they instead restricted to locally conformally parallel G2-structures,
which are the ones where only the 7-dimensional τ1 component of the torsion may
be nonvanishing.

2 Laplacian of a G2-Structure

Suppose M is a smooth 7-dimensional manifold with a G2-structure ϕ. Then we
know ϕ uniquely defines a compatible Riemannian metric gϕ, the volume form volϕ,
Hodge star ∗ϕ, and the dual 4-formψ = ∗ϕϕ. There is arbitrary choice of orientation,
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which affects the relative sign of ψ. We use the same convention as [4, 13–16, 18],
which is opposite from the convention used in [23, 24]. For further properties of
ϕ and ψ, as well as different identities that they satisfy, we refer the reader to the
above references. We will also use the following notation. The symbol � will denote
contraction of a vector with the differential form:

(u�ϕ)mn = uaϕamn. (2.1)

Note that we will also use this symbol for contractions of differential forms using
the metric, for example (T �ϕ)a = Tmnϕmna . Given a symmetric 2-tensor h on M ,
we define the map iϕ : � (Sym (T ∗M)) −→ �3

1 ⊕ �3
27 as

iϕ (h)abc = hd[aϕbc]d .

We will define the operators π1, π7, π14 and π27 to be the projections of differential
forms onto the corresponding representations. Sometimes we will also use π1⊕27 to
denote the projection of 3-forms or 4-forms into�3

1 ⊕ �3
27 or�

4
1 ⊕ �4

27 respectively.
For convenience, when writing out projections of forms, we will sometimes just give
the vector that defines the 7-dimensional component, the function that defines the 1-
dimensional component or the symmetric 2-tensor that defines the 1 ⊕ 27 component
whenever there is no ambiguity. For instance,

π1 ( f ϕ) = f π1 ( f ψ) = f
π7 (X�ϕ)a = Xa π7 (X�ψ)a = Xa π7 (X ∧ ϕ)a = Xa

π1⊕27
(
iϕ (h)

)
ab = hab π1⊕27

(∗iϕ (h)
)
ab = hab

(2.2)

The above-mentioned references give more information regarding the properties of
decomposition of differential forms with respect to G2 representations.

The intrinsic torsion of a G2-structure is defined by ∇ϕ, where ∇ is the Levi-
Civita connection for the metric g that is defined by ϕ. Following [24], we have

∇aϕbcd = T e
a ψebcd (2.3a)

∇aψbcde = −4Ta[bϕcde] (2.3b)

where Tab is the full torsion tensor. In general we can split Tab according to repre-
sentations of G2 into torsion components :

T = 1

4
τ0g − τ1�ϕ + 1

2
τ2 − 1

3
τ3 (2.4)

where τ0 is a function, and gives the 1 component of T . We also have τ1, which is
a 1-form and hence gives the 7 component, and, τ2 ∈ �2

14 gives the 14 component
and τ3 is traceless symmetric, giving the 27 component. As shown by Karigiannis in
[24], the torsion components τi relate directly to the expression for dϕ and dψ. In
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fact, in our notation,

dϕ = τ0ψ + 3τ1 ∧ ϕ + ∗iϕ (τ3) (2.5a)

dψ = 4τ1 ∧ ψ + ∗τ2. (2.5b)

Note that in [14–16, 18] a different convention is used: τ1 in that convention corre-
sponds to 1

4τ0 here, τ7 corresponds to−τ1 here, iϕ (τ27) corresponds to− 1
3τ3, and τ14

corresponds to 1
2τ2. The notation used here is widely used elsewhere in the literature.

An important special case is when the G2-structure is said to be torsion-free,
that is, T = 0. This is equivalent to ∇ϕ = 0 and also equivalent, by Fernández
and Gray [12], to dϕ = dψ = 0. Moreover, a G2-structure is torsion-free if and
only if the holonomy of the corresponding metric is contained in G2 [22]. On a
compact manifold, the holonomy group is then precisely equal to G2 if and only
if the fundamental group π1 is finite. If dϕ = 0, then we say ϕ defines a closed
G2-structure. In that case, τ0 = τ1 = τ3 = 0 and only τ2 is in general non-zero. In
this case, T = − 1

2τ2 and is hence skew-symmetric. If instead, dψ = 0, then we say
that we have a co-closed G2-structure. In this case, τ1 and τ2 vanish in (2.5b) and
we are left with τ0 and τ3 components. In particular, the torsion tensor Tab is now
symmetric.

We will be using the following notation, as in [14]. Given a tensor ω, the rough
Laplacian is defined by

�ω = gab∇a∇bω = −∇∗∇ω. (2.6)

whereas the Hodge Laplacian defined by ϕ or ψ will be denoted by �ϕ or �ψ,
respectively. For a vector field X , define the divergence of X as

div X = ∇a X
a . (2.7)

This operator can be extended to a 2-tensor β:

(div β)b = ∇aβab. (2.8)

Also, for a vector X , we can use theG2-structure 3-formϕ to define a “curl” operator,
similar to the standard one on R

3:

(curl X)a = (∇bXc)ϕabc. (2.9)

This curl operator can then also be extended to 2-tensor β:

(curl β)ab = (∇mβna

)
ϕ mn
b . (2.10)

Note that when βab is symmetric, curl β is traceless. It is also not difficult to see that
schematically,
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curl
(
(curl β)t

) = −�βt + ∇ (div β) + Riem�β + T � ∇β + (∇T ) � β + T � T � β
(2.11)

where t denotes transpose and � is some multilinear operator involving g,ϕ,ψ.
From the context it will be clear whether the curl operator is applied to a vector or a
2-tensor.

As in [14], we can also use the G2-structure 3-form to define a commutative
product α ◦ β of two 2-tensors α and β

(α ◦ β)ab = ϕamnϕbpqα
mpβnq (2.12)

Note that (α ◦ β)t = (
αt ◦ βt

)
. If α and β are both symmetric or both skew-

symmetric, then α ◦ β is a symmetric 2-tensor. Also, for a 2-tensor we have the
standard matrix product (αβ)ab = α k

a βkb.
From [8, 15, 24] we know that the torsion of aG2-structure satisfies the following

integrability condition:

1

2
Riem βγ

i j ϕα
βγ = ∇i T

α
j − ∇ j T

α
i + T β

i T γ
j ϕα

βγ . (2.13)

Taking projections of (2.13) to different representations of G2, we obtain the follow-
ing expressions:

Lemma 2.1 The torsion tensor T satisfies the following identities

(∇T )�ψ = − (T �ϕ)�T + T 2�ϕ + (Tr T ) (T �ϕ) (2.14a)

0 = d (Tr T ) − div
(
T t

) − (T �ϕ)�T t (2.14b)

Ric = −Sym
(
curl T t − ∇ (T �ϕ) + T 2 − Tr (T ) T

)
(2.14c)

1

4
Ric∗ = curl T + 1

2
T ◦ T (2.14d)

R = 2 Tr (curl T ) − ψ (T, T ) − Tr
(
T 2

) + (Tr T )2 (2.14e)

where (Ric∗)ab = Riemmnpq ϕmn
aϕ

pq
b and ψ (T, T ) = ψabcdT abT cd . Note that from

(2.4), Tr T = 7
4τ0 and T �ϕ = −6τ1.

The symmetric 2-tensor Ric∗ has been defined and studied by Cleyton and Ivanov
in [8, 9]. Note that Tr (Ric∗) = 2R, where R is the scalar curvature. Thus the tensors
Ric and Ric∗ span the components of Riem that lie in 1 ⊕ 27 ⊕ 27 representations of
G2. It is know thatRiem has no components in the 7 or 14 dimensional representations
of G2. The identities (2.14a), (2.14b), as well as the projection of (2.14d) to �2

14 are
a consequence of this. In fact, taking the skew-symmetric part of (2.14d) and using
the fact that Ric∗ is by definition symmetric, gives us

Skew (curl T ) = −1

2
Skew (T ◦ T ) . (2.15)
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In particular, this shows that curl T is symmetric whenever T is skew-symmetric or
symmetric, and in particular, if ϕ is closed or co-closed.

Let us now look at the properties of �ϕϕ = dd∗ϕ + d∗dϕ.

Proposition 2.2 ([14]) Suppose ϕ defines a G2-structure. Then �ϕϕ = X�ψ +
3iϕ (h) with

X = − div T (2.16a)

h = −1

4
Ric∗ +1

6

(
R + 2 |T |2) g − T tT − 1

2
(T �ϕ) (T �ϕ) (2.16b)

+1

4
T ◦ T + 1

4
T t ◦ T t − 1

2
T ◦ T t + Sym

(
(T ) (T �ψ) − (

T t
)
(T �ψ)

)
.

In particular,

Tr h = 2

3
R + 4

3
|T |2 . (2.17)

The leading order terms in �ϕϕ are those that contain second derivatives of ϕ,
and hence first derivatives of T . Thus, div T fully defines the�3

7 component of�ϕϕ
and the leading order terms in �3

1⊕27 are given by

− 1

4
Ric∗ +1

6
R g ∼ − curl T + 1

3
Tr (curl T ) g. (2.18)

3 Flows of G2-Structures

Suppose ϕ (t) is a one-parameter family of G2-structures on a manifold M that
satisfies

∂ϕ (t)

∂t
= X (t)�ψ (t) + 3iϕ(t) (h (t)) . (3.1)

As shown by Karigiannis in [24], the associated quantities g (t) , volt ,ψ (t), T (t)
satisfy the following evolution equations:

Lemma 3.1 ([24]) If ϕ (t) satisfies the Eq. (3.1), then we also have the following
equations:

∂g

∂t
= 2h (3.2a)

∂ vol

∂t
= Tr (h) vol (3.2b)

∂ψ

∂t
= 4iψ (h) − X ∧ ϕ (3.2c)

∂T

∂t
= ∇X − curl h + Th − (T ) (X�ϕ) (3.2d)
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where iψ (h)abcd = −he[aψbcd]e and equivalently, 4iψ (h) = −3 ∗ iϕ (h) + (Tr h)ψ.

Similarly, as in [14], we can consider flows of ψ, given by

∂ψ (t)

∂t
= ∗ (X (t)�ψ (t)) + 3 ∗ iϕ(t) (s (t)) (3.3)

for some symmetric 2-tensor s. Since 3 ∗ iϕ (s) = 4iψ
(
1
4 (Tr s) g − s

)
, comparing

(3.3)with (3.2c) give us corresponding evolution equations forϕ (t), g (t) , volt , T (t)
from (3.1) and (3.2) by taking h = 1

4 (Tr s) g − s.
When constructing geometric flows, there are two main considerations: (1) the

flow’s stationary points should correspond to geometrically interesting objects; and
(2) the flow should be parabolic in some sense. The first property is the main moti-
vation for studying a flow, since we ideally want the flow to deform a geometric
structure to one that has nicer or more constrained properties and the second property
is a minimal requirement to at least guarantee short-time existence and uniqueness
of solutions. In [7], Chen defined a class of reasonable flows (3.1) of G2-structures
that satisfy the following 4 general conditions:

1. The metric should evolve by the Ricci flow to leading order, and be no more than
quadratic in the torsion, that is

∂g

∂t
= 2h = −2Ric+Cg + L (T ) + T � T (3.4)

where C is a constant and L is some linear operator involving g,ϕ,ψ.
2. The vector field X is at most linear in ∇T and at most quadratic in T :

X = L (∇T ) + L (T ) + L (Riem) + T � T + C. (3.5)

3. The torsion tensor should evolve by �T to leading order, and be at most linear in
Riem and ∇T, and at most cubic in T :

∂T

∂t
= �T + L (∇T ) + L (Riem) + Riem�T + ∇T � T (3.6)

+L (T ) + T � T + T � T � T .

4. The flow (3.1) has short-time existence and uniqueness.

As one of the key properties of reasonable flows defined above is that the flow
of the metric is the Ricci flow to leading order, we will instead refer to flows that
satisfy properties 1–4 as Ricci-like flows. This is appropriate because a variety of
techniques that originated from the study of the Ricci flow have been applied to
these flows. In particular, under the Ricci flow, invariants of the metric Riem, Ric,
R, all satisfy heat-like equations. Therefore it is appropriate that for a Ricci-like flow
of a G2-structure, the torsion, which an invariant of the G2-structure also satisfies a
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heat-like Eq. (3.6). This is important because then∇kT and |T |2 also satisfy heat-like
equations and this is necessary to be able to obtain estimates using the maximum
principle.

Using techniques developed by Shi in [32] for the Ricci flow and their adaptation
to G2-structures by Lotay and Wei [26], Chen then showed that a reasonable flow
satisfies the following Shi-type estimate.

Theorem 3.2 ([7, Theorem 2.1]) Suppose (3.1) is a Ricci-like flow of G2-structures,
such that the coefficients inEqs. (3.1), (3.4), (3.5), and (3.6) are boundedby a constant
�. Let Br (p) be a ball of radius r with respect to the initial metric g (0). If

|Riem (x, t)|g(t) + |T (x, t)|2g(t) + |∇T (x, t)|g(t) < � (3.7)

for any (x, t) ∈ Br (p) × [0, t0], then

∣∣∇k Riem (x, t)
∣∣
g(t)

+ ∣∣∇k+1T (x, t)
∣∣
g(t)

< C (k, r,�, t) (3.8)

for any (x, t) ∈ Br/2 (p) × [ t0
2 , t0

]
for all k = 1, 2, 3, . . .

It should be noted that in [26], the condition analogous to (3.7) does not include
a |T |2 term. This is because in the case of a closed G2-structure, |T |2 = −R ≤
C |Riem| . Therefore, the norm of the torsion can always be bounded in terms of the
norm of Riem . For other torsion classes, and in particular, co-closed G2-structures,
this is no longer true, therefore |T |2 needs to be included in (3.7).

Using the estimates from Theorem 3.2, Chen then derived an estimate for the
blow-up rate on a compact manifold.

Theorem 3.3 ([7, Theorem 5.1]) If ϕ (t) is a solution to a Ricci-like flow of G2-
structures on a compact manifold in a finite maximal time interval [0, t0), then

sup
M

(|Riem (x, t)|2g(t) + |T (x, t)|4g(t) + |∇T (x, t)|2g(t)

) 1
2 ≥ C

t0 − t
(3.9)

for some positive constant C.

The estimate (3.9) shows that a solution will exist as long the quantity of the
left-hand side of (3.9) remains bounded.

A classic example of a Ricci-like flow of G2-structures is the Laplacian flow of
G2-structures that was introduced by Bryant in [5]:

∂ϕ

∂t
= �ϕϕ. (3.10)

If the initial G2-structure is closed, then this property is preserved along the flow. It
is then natural to think of (3.10) as a flow of closed G2-structures. In this case, since
T t = −T , from (2.14), Ric∗ = 4Ric+T � T and R = 2 Tr (curl T ) − ψ (T, T ) −
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Tr
(
T 2

) = − |T |2; and thus, from (2.16b), h = −Ric+T � T , and so from (3.2a),
we do find that (3.4) holds. Moreover, from (2.14b), we see that div T = 0 in this
case, and hence X = 0. The expression (3.6) comes from (3.2d) and using h =
− curl T + T � T

∂T

∂t
= curl (curl T ) + ∇T � T + T � T � T . (3.11)

Using (2.11) to expand curl (curl T ) together the facts that curl T is symmetric,
T is skew-symmetric, and div T = 0, allows to express the right-hand side of
(3.11) as �T + Riem�T + ∇T � T + T � T � T . Finally, short-term existence
and uniqueness of the flow (3.10) has been first proved by Bryant and Xu in [6]. For
more on the properties of this flow, as well as the details of the above calculations,
the reader is referred to the series of papers by Lotay and Wei [26–28]. The results
in Theorems 3.2 and 3.3 are extensions of similar results for the Laplacian flow of
closed G2-structures in [26].

4 Laplacian Coflow

In [25],Karigiannis,McKay, andTsui introduced an alternativeflowofG2-structures,
called the Laplacian coflow:

∂ψ

∂t
= −�ψψ. (4.1)

If the initial G2-structure is co-closed, i.e. dψ = 0, then this property is preserved
along the flow. Therefore, the coflow may be regarded as a natural flow of co-closed
G2-structures. In order to understand flows of co-closed G2-structures, we need to
understand better the properties of T and the Hodge Laplacian in this case. Rewriting
Lemma 2.1 and Proposition 2.2 in the case of symmetric T , we find the following.

Proposition 4.1 Suppose ϕ is a co-closed G2-structure, then the torsion tensor T
satisfies the following identities

div T = d (Tr T ) (4.2a)

curl T = (curl T )t (4.2b)

Ric = curl T − T 2 + Tr (T ) T (4.2c)
1

4
Ric∗ = curl T + 1

2
T ◦ T = Ric+1

2
T ◦ T + T 2 − Tr (T ) T (4.2d)

R = (Tr T )2 − |T |2 . (4.2e)

The Hodge Laplacian is given by �ϕϕ = X�ψ + 3iϕ (s) with
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X = − div T (4.3a)

s = −Ric+1

6

(
R + 2 |T |2) g + Tr (T ) T − 2T 2 − 1

2
T ◦ T (4.3b)

= − curl T + 1

6

(
(Tr T )2 + |T |2) g − T 2 − 1

2
T ◦ T (4.3c)

Tr s = 2

3
R + 4

3
|T |2 = 2

3

(
(Tr T )2 + |T |2) . (4.3d)

Comparing (4.1) with (3.3) and using (4.3), we see that to leading order the
evolution of the metric is given by 2Ric, that is the opposite of the Ricci flow. Thus,
in order for the flow to beRicci-like and to have any hope of existence and uniqueness,
the sign in (4.1) needs to be reversed. Therefore, let us redefine the Laplacian coflow
as

dψ

dt
= �ψψ. (4.4)

We then find that
∂g

∂t
= −2Ric+T ◦ T + 2 (Tr T ) T (4.5)

which now satisfies (3.4). Also, X = − div T , which satisfies (3.5). To obtain the
general form of the evolution of the torsion, note that to leading order, h = −s =
curl T , so from (3.2d),

∂T

∂t
= −∇ (div T ) − curl (curl T ) + ∇T � T

however, since both T and curl T are symmetric,

curl (curl T ) = −�T + ∇ (div T ) + Riem�T + (∇T ) � T + T � T � T

Hence, overall,

∂T

∂t
= �T − 2∇ (div T ) + Riem�T + (∇T ) � T + T � T � T . (4.6)

Notice that this does not satisfy (3.6). In fact, we can see that the presence of the
∇ (div T ) term in (4.6) is due to the negative sign of div T in (4.3a). As it was shown
in [14], the sign of div T also causes problems at a much more fundamental level: it
prevents the flow (4.4) from being parabolic even along closed 4-forms. Proposition
4.2 below gives the linearization of �ψ . It is then easy to see that for closed 4-forms,
the symbol will be negative in the �4

7 direction, but non-negative in �4
27.

Proposition 4.2 ([14, Prop. 4.7]) The linearization of �ψ at ψ is given by
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π7
(
Dψ�ψ

)
(χ) = d (div X) ∧ ϕ + l.o.t. (4.7a)

π1⊕27
(
Dψ�ψ

)
(χ) = 3

2
∗ iϕ

(
�h + 1

4
Hess (Tr h) − 1

2
(�Tr h) g (4.7b)

−Sym
(∇ div h + curl (∇X)t

) + l.o.t.
)

where χ = ∗ (
X�ψ + 3iϕ (h)

)
. Moreover, if χ is closed, we can write Dψ�ψ as

Dψ�ψ (χ) = −�ψχ − LV (χ)ψ + 2d ((div X) ϕ) + dF (χ) (4.8)

where

V (χ) = 3

4
∇ Tr h − 2 curl X (4.9)

and F (χ) is a 3-form-valued algebraic function of χ.

Looking closer at the leading terms in the linearization (4.8) evaluated at closed
forms, we see that the term 2d ((div X) ϕ) appears for exactly the same reason as the
term −2∇ (div T ) in (4.6)—namely the “wrong” sign of the π7 component of �ψψ.
To fix this problem, in [14], a modified Laplacian coflow has been proposed:

∂ψ

∂t
= �ψψ + 2d ((A − Tr T )ϕ) (4.10)

where A is some constant. Since for co-closed G2-structures, Tr T = div T, the
leading term in the modification precisely reverses the sign of the �4

7 component of
the original flow (1.4). However, because we want the right hand side of the flow
to be an exact 4-form for co-closed G2-structures, there are some additional lower
order terms. The constant A could be set to zero, however adding it may allow for
more flexibility. The linearization of the modified coflow at a closed 4-form is now
given by

∂χ

∂t
= −�ψχ − LV (χ)ψ + d F̂ (χ) (4.11)

where V (χ) is as in (4.9) and F̂ (χ) involves no derivatives of χ. Hence, in the
direction of closed forms, this flow is nowweakly parabolic.Moreover, the undesired
term is removed from the evolution equation for T and its evolution is now given by
(3.6).

The additional term in (4.10) now also allows to prove short-time existence and
uniqueness, hence completing the requirements for (4.10) to be a Ricci-like flow.
The proof, as given in [14], follows a procedure similar to the approach taken by
Bryant and Xu [6] for the proof of short-time existence and uniqueness for the
Laplacian flow (3.10), which is in turn based on DeTurck’s [11] and Hamilton’s [19]
approaches to the proof of short-time existence and uniqueness of the Ricci flow.
Let ψ (t) = ψ0 + χ (t) where χ (t) is an exact 4-form with χ (0) = 0. Then, given
this initial condition, the flow (4.10) can be rewritten as an initial value problem for
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χ (t). From the linearization (4.11) we see that by adding the term LV (χ(t))ψ (t) we
obtain a strictly parabolic flow in the direction of closed forms, which is related to
the original flow by diffeomorphism:

∂χ

∂t
= �ψψ + 2d

((
A − Tr Tψ

) ∗ψ ψ
) + LV (χ)ψ. (4.12)

This is the essence of what is known as “DeTurck’s trick”—turning a weakly
parabolic flow into a strictly parabolic one. In the case of Ricci flow this is enough to
obtain short-time existence and uniqueness, however in this case, the parabolicity is
only along closed forms, hence we cannot apply the standard parabolic theory right
away, and more steps are needed. Let us also define the spaces of time-dependent
and time-independent exact 4-formsF andG, respectively.Moreover, sincewe know
that ψ (t) always defines a G2-structure and is thus a positive 4-form, χ will always
lie in an open subset U ⊂ F defined by

U = {χ ∈ F : ψ0 + χ is a positive 4-form} . (4.13)

Moreover, let us now define a map F : U −→ F × G given by

χ −→
(

∂χ

∂t
− �ψψ − 2d

((
A − Tr Tψ

) ∗ψ ψ
) − LV (χ)ψ, χ|t=0

)
. (4.14)

Adapting the results in [6], it is easy to see F , G, andH := F × G are graded tame
Fréchet spaces. Moreover, it was then shown in [14] that F is smooth tame map of
Fréchet spaces, such that its derivative DF (χ) : F −→ H is an isomorphism for all
χ ∈ U and the inverse (DF)−1 : U × H −→ F is smooth tame. The significance of
these facts are that in the category of Fréchet spaces there exists an inverse function
theorem—the Nash–Moser Inverse Function [19], which tells us that the map F is
locally invertible. From this it follows that the flow (4.12) has short-time existence
and uniqueness.

To prove short-time existence and uniqueness for the flow (4.10) we need to
relate (4.10) and (4.12) via diffeomorphisms. Suppose χ̄ (t) is the unique short-time
solution to (4.12), and ψ̄ = ψ0 + χ̄. Consider the following ODE for a family of
diffeomorphisms φt : {

∂φt

∂t = −V (χ̄ (t))
φ0 = id

(4.15)

This has a unique solutionφt . Now letψ (t) = (φt )
∗ ψ̄ (t), thenψ (0) = ψ0, and since

diffeomorphisms commute with d, ψ (t) is closed for all t . Moreover, as shown in
[14, Theorem 6.9], ψ (t) now satisfies (4.10). Uniqueness is obtained similarly using
the uniqueness of solutions of (4.15). Hence, overall, we obtain a unique short-time
solution for the modified Laplacian coflow (4.10) and can now conclude that it is a
Ricci-like flow.
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Theorem 4.3 The Laplacian coflow (4.10) of co-closed G2-structures is a Ricci-like
flow.

5 Further Directions

There are several important unanswered questions regarding flows of co-closed G2-
structures. An intriguing question is whether it is possible to obtain at least short-time
existence and uniqueness of the unmodified Laplacian coflow (1.4). To leading order
the only difference with the modified coflow is the sign of the �4

7 component which
is given by div T . So in particular, if div T vanishes, then the two flows agree. It is
also known [23] that deformations in the �4

7 directions keep the metric unchanged.
Moreover, in [17], the torsion T has been shown to play a role of an octonionic
connection on the bundle of G2-structures that correspond to the same metric, which
can be given the structure of an octonion bundle. In this interpretation, on a compact
manifold, the condition div T = 0 corresponds to critical points of the functional∫ |T |2 vol, and is hence the analog of a Coulomb gauge. It is therefore tempting
to think that to relate the flows (1.4) and (1.5), a gauge-fixing condition such as
div T = 0 needs to be introduced.

There are also multiple questions relating to the modified coflow itself. As it is a
Ricci-like flow, Shi-type estimates apply to it, so it is likely that in addition to Chen’s
results in [7], more properties such as real analyticity and stability could be proved
using techniques similar to the ones used by Lotay and Wei in [26–28]. Indeed, as
this article was being finalized, the author was made aware that Bedulli and Vezzoni
[3] have generalized the proof of stability from [28] to a wider class of geometric
flows that also includes the modified Laplacian coflow with A = 0.

Apart from the Laplacian flow and the coflows, there could be more interesting
flows of G2-structures. For co-closed G2-structures, it is an open question whether
the flow ∂ϕ

∂t = d∗dϕ satisfies the co-closed condition. More generally, the conditions
for a flow to be Ricci-like is a good set of conditions that flows should satisfy. In
particular, one could try to construct flows using the first 3 conditions, but then also
making sure that short-time existence and uniqueness is satisfied.

Acknowledgements The author is supported by the National Science Foundation grant DMS-
1811754.
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G2-Instantons on Noncompact
G2-Manifolds: Results and Open
Problems

Jason D. Lotay and Goncalo Oliveira

Abstract Wesurvey theknownexistence andnon-existence results forG2-instantons
on non-compact cohomogeneity-1 G2-manifolds and their consequences, including
an explicit example of a family of G2-instantons where bubbling, removable singu-
larities and conservation of energy phenomena occur. We also describe several open
problems for future research.

1 Introduction

A G2-instanton is a special kind of Yang–Mills connection on a Riemannian
7-manifold with holonomy group contained in G2 (a so-called G2-manifold). One
can think of G2-instantons as analogues of anti-self-dual connections in 4 dimen-
sions. This analogy motivates the hope of using G2-instantons to construct enumer-
ative invariants of G2-manifolds. In this review article we shall be focusing on G2-
manifolds and G2-instantons constructed using symmetry techniques. It is important
to note that, using the fact that G2-manifolds are Ricci flat, one sees that holonomy
G2-manifolds1 admitting continuous symmetries must be noncompact. Symmetry
techniques thus have a somewhat limited scope of applicability, but they do lead to
simplifications which make hard problems in the field tractable in this special set-
ting, giving in several cases explicit non-trivial examples as well as significant results
whichmay be useful in the general theory. Here, we shall summarize the known exis-
tence and non-existence results for G2-instantons in the symmetric setting, as well
as their consequences. For example, we shall see an explicit example of a family of
G2-instantons for which bubbling and removable singularities phenomena happen.
We shall also describe several important open problems for future research.

1Those G2-manifolds whose holonomy is exactly G2 will be referred to as holonomyG2-manifolds.
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1.1 Background

Let (X7,ϕ) be a G2-manifold,2 which implies that the 7-manifold X7 is endowed
with a 3-form ϕ which is closed and determines a Riemannian metric g with respect
to which ϕ is also coclosed. We shall denote ∗ϕ by ψ for convenience. Let P → X
be a principal bundle with structure group G which we suppose to be a compact and
semisimple Lie group. A connection A on P is said to be a G2-instanton if

FA ∧ ψ = 0. (1)

Equivalently, G2-instantons satisfy the following G2-analogue of the “anti-self-dual”
condition:

FA ∧ ϕ = − ∗ FA. (2)

As far as the authors are aware, the first time G2-instantons appeared in the literature
was in [6]. This reference investigates generalizations of the anti-self-dual gauge
equations, in dimension greater than 4, andG2-instantons appear there as an example.

More recently, the study of G2-instantons has gained a special interest, primar-
ily due to Donaldson–Thomas’ suggestion [11] that it may be possible to use G2-
instantons to define invariants for G2-manifolds, inspired by Donaldson’s pioneering
work on anti-self-dual connections on 4-manifolds. Later Donaldson–Segal [10],
Haydys [16], and Haydys–Walpuski [17] gave further insights regarding this possi-
bility.

On a compact holonomy G2-manifold (X7,ϕ) any harmonic 2-form is “anti-
self-dual” as in (2), hence any complex line bundle L on X admits a G2-instanton,
namely that whose curvature is the harmonic representative of c1(L). However, the
construction of non-abelian G2-instantons on compact G2-manifolds is much more
involved. In the compact case, the first such examples were constructed byWalpuski
[30], over Joyce’s G2-manifolds (see [18]). Sá Earp and Walpuski’s work [26, 31]
gives an abstract construction of G2-instantons, and currently one example, on the
other known class of compact G2-manifolds, namely “twisted connected sums” (see
[8, 19]). More recently, Ménet–Sá Earp–Nordström constructed other examples of
G2-instantons on twisted connected sum G2-manifolds [21].

On complete, noncompact, holonomy G2-manifolds, the first examples of G2-
instantons where found by Clarke in [9], and further examples were given by the
second author in [23] and by both authors in [20]. We shall describe these examples
in this article, and discuss natural open problems which arise from their study.

2For further background on G2-manifolds, the reader may wish to consult Joyce’s book [18].
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2 Preliminaries

In this section we shall be considering manifolds that (in a dense open set) can be
written as X7 = It × M6 with It ⊂ R an interval with coordinate t ∈ R. Then, we
will write the G2-instanton conditions as evolution equations in the t coordinate and
make some observations about these equations.

2.1 Evolution Equations

Before turning to G2-instantons, we recall here how to write the equations for a
torsion-free G2-structure on X as evolution equations. This requires the notion of an
SU(3)-structure on an almost complex 6-manifold (M, J ), which consists of a pair
(ω, γ2) of a real (1, 1)-form and a real 3-form respectively, such that

ω ∧ γ2 = 0, ω3 = 3

2
γ1 ∧ γ2,

whereγ1 = −Jγ2.Now let (ω(t), γ2(t))be a1-parameter family ofSU(3)-structures,
parametrized by the coordinate t ∈ It , and consider the G2-structure on X given by

ϕ = dt ∧ ω(t) + γ1(t), ψ = ω2(t)

2
− dt ∧ γ2(t). (3)

The equations dϕ = 0 and dψ = 0, for the G2-structure to be torsion-free, turn into
the following evolution equations for the SU(3)-structures (ω(t), γ2(t)):

γ̇1 = dω, ω ∧ ω̇ = −dγ2, (4)

subject to the constraints dγ1 = 0 = dω2 for all t . These evolution equations are
the so-called “Hitchin flow”3 and the constraint dγ1 = 0 = dω2 is usually called the
half-flat4 condition. In fact, this constraint is compatible with the Hitchin flow (4),
meaning that if one imposes the half-flat condition on the SU(3)-structure at some
t0 ∈ It , the evolution equations (4) will preserve it for all t ∈ It . See [22] for more
on half-flat SU(3)-structures in a case relevant to some of the works reviewed in this
article.

3The nomenclature “Hitchin flow” may be misleading. Indeed, the system (4) is not parabolic and
does not satisfy the usual regularity properties of geometric flows [4].
4The name “half-flat” comes from the fact that the condition implies the vanishing of exactly half
of the torsion components of (ω, γ2) as an SU(3)-structure.
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The G2-structure ϕ on X obtained from solving the Hitchin flow induces the
metric g = dt2 + gt , where gt is the metric on {t} × M compatible with the SU(3)-
structure (ω(t), γ2(t)). For example, if we take (ω, γ2) to be nearly Kähler on M ,
i.e.

dω = 3γ1, dγ2 = −2ω2,

and gM is the nearly Kähler metric on M , then the G2-structure ϕ given by solving
(4) is

ϕ = t2dt ∧ ω + t3γ1, ψ = t4ω2/2 − t3dt ∧ γ2, (5)

which gives a conical metric g = dt2 + t2gM on X .
Now let us consider a principal G-bundle P on X pulled back from M . There is

no loss of generality in assuming this, as well as in working in temporal gauge, i.e.
in setting the connection on P over X to be of the form A = a(t), where a(t) is a
1-parameter family of connections on P , now seen as a vector bundle over M . The
curvature of A is given by FA = dt ∧ ȧ + Fa(t), where Fa(t) is the curvature of a(t)
as a connection on P over M . Then, the G2-instanton equation (1) for A, turns into
the following evolution equation for a(t):

ȧ ∧ ω2

2
− Fa ∧ γ2 = 0, Fa ∧ ω2

2
= 0. (6)

Applying ∗t , the Hodge-∗ of the metric gt , to both sides of (6) we have

Jt ȧ = − ∗t (Fa ∧ γ2) , (7)

�t Fa = 0, (8)

with �t denoting the metric dual of the operation of wedging with ω(t). As for the
Hitchin flow, the evolution equation (7) is compatible with the constraint (8). The
discussion above and this claim can be formally stated as follows.

Lemma 1 Let X = It × M be equipped with a G2-structure ϕ as in (3) satisfying
ω ∧ dω = 0 andω ∧ ω̇ = −dγ2, which is equivalent to dψ = 0. Then,G2-instantons
A for ϕ are in one-to-one correspondence with 1-parameter families of connections
{a(t)}t∈It solving the evolution equation

Jt ȧ = − ∗t (Fa ∧ γ2) , (9)

subject to the constraint �t Fa = 0. Moreover, this constraint is compatible with the
evolution: more precisely, if it holds for some t0 ∈ It , then it holds for all t ∈ It .

Proof Both the evolution equation and constraint follow immediately from the pre-
vious discussion, more precisely equations (7) and (8). The proof that the constraint
is preserved by the evolution follows from computing
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d

dt

(
Fa ∧ ω2

) = daȧ ∧ ω2 + Fa ∧ d

dt
ω2 = da(ȧ ∧ ω2) − 2Fa ∧ dγ2

= 2da(Fa ∧ γ2) − 2Fa ∧ dγ2 = 0,

where we used (4), (6), (9) and the Bianchi identity daFa = 0. �

Proposition 1 In the setting of Lemma1, suppose that the family ofSU(3)-structures
(ω(t), γ2(t)) depends real analytically on t, and let a(0) be a real analytic connection
on P such that�0Fa(0) = 0. Then there is ε > 0 and aG2-instanton A on (−ε, ε) ×
M6 with A|{0}×M6 = a(0).

Proof This is immediate from applying the Cauchy-Kovalevskaya theorem
to (9). �

Remark 1 We can similarly derive evolution equations defining G2-monopoles,
i.e. pairs (A,�) where A is a connection on P and � is a section of the adjoint
bundle, gP , satisfying

∗∇A� = FA ∧ ψ.

In this setting we can write A = a(t) in temporal gauge as before and � = φ(t) ∈
�0(It ,�0(M, gP)) as a 1-parameter family of Higgs fields over M . Then, the family
(a(t),φ(t)) of connections and Higgs fields on M gives rise to a G2-monopole if and
only if they satisfy:

Jt ȧ = −daφ − ∗t (Fa ∧ γ2) and φ̇ = �t Fa .

The analysis of these equations for the Bryant–Salamon G2-manifolds [5] is carried
out in [23].

2.2 Hamiltonian Flow

We now turn to a more formal aspect of the theory, which has not yet been used in
applications, but which we have decided to point out here in case it may be of use
in the future. On each slice Mt = {t} × M , we may define a functional Ft onA, the
space of connections a on P , by

Ft (a) = 1

2

∫

Mt

〈Fa ∧ Fa〉 ∧ η(t),

where η(t) = ∫ t
ω(s)ds and the 〈·, ·〉 stands for an Ad-invariant inner product on

gP , here applied to the gP components of the curvature in both entries. Then, given
this 1-parameter family of functionals Ft , which we may also interpret as a single
time-dependent functional, we may compute its gradient with respect to the time-
dependent L2-inner product induced by gt . We see that
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d

ds

∣∣
s=0Ft (a + sb) =

∫

Mt

〈dab ∧ Fa〉 ∧ η(t)

=
∫

Mt

d(〈b ∧ Fa〉 ∧ η(t)) + 〈b ∧ Fa〉 ∧ dη(t)

=
∫

Mt

〈b ∧ Fa〉 ∧ dη(t), (10)

by Stokes’ theorem. Moreover, using Hitchin’s flow equations (4),

dη(t) =
∫ t

dω(s)ds =
∫ t ∂γ1

ds
ds = γ1(t),

and so the outcome of the computation (10) is that the gradient of Ft , with respect
to the time-dependent L2-inner product induced by gt on A, is

∇Ft = ∗t (Fa ∧ γ1(t)).

At this point it is convenient to equip the space of connections on P over each Mt

with a time-dependent (almost)-symplectic form given by

ωA
t (b1, b2) = 〈Jtb1, b2〉L2(gt ),

for b1, b2 two gP -valued 1-forms. Then, the Hamiltonian flow of Ft is −Jt∇Ft and
we can regard the flow equation (9) for G2-instantons as the Hamiltonian flow of
the time-dependent Hamiltonian Ft . Thus, define the space of connections whose
curvature in orthogonal to ωt by

At = {a ∈ A | �t Fa = 0}.

We have shown in proposition 1 that the flow Eq.9 starting at a connection in A0

always lies in At . Putting this together with the discussion above, we have shown
the following.

Proposition 2 On It × M, G2-instantons are the solutions to the time-dependent
Hamiltonian flow of Ft on (A,ωA

t ) starting at time t = 0 in A0.

3 Asymptotically Conical (AC) G2-Manifolds

In this section, we survey the known results on G2-instantons on G2-manifolds X
which are asymptotically conical (AC); i.e. X is complete with one5 non-compact

5A complete non-compact Ricci-flat manifold, which is not an isometric product, can only have
one end due to the Cheeger–Gromoll splitting theorem.
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end where the G2-structure is asymptotic to a conical G2-structure on R
+ × M , as

given in (5), for some nearly Kähler structure (ω, γ2) on M .
It follows from Proposition 3 in [23] (or easily from (7)–(8)) that on an AC G2-

manifold, a G2-instanton whose curvature is decaying pointwise at infinity will have
as a limit (if it exists) a pseudo-Hermitian–Yang–Mills connection a (or nearlyKähler
instanton) on M : i.e. the curvature Fa of a satisfies

Fa ∧ ω2 = 0 and Fa ∧ γ2 = 0.

The known explicit examples of AC G2-holonomy metrics (up to scale) are due
to Bryant–Salamon [5]. These metrics are either defined on the total space of the
bundle of anti-self-dual 2-forms on a self-dual Einstein 4-manifold with positive
scalar curvature, or onR4 × S3 (viewed as the spinor bundle of S3). These examples
are cohomogeneity-1, and thus have a lot of symmetry, and so it is natural to look
for G2-instantons with symmetries on these AC G2-manifolds.

In this section, we describe results from [20, 23] which provide examples of
G2-instantons on the explicitly known AC G2-manifolds. We also review the results
from [20] about the properties of the moduli space of G2-instantons constructed
on R

4 × S3. This forms the content of Sects. 3.1–3.2. We conclude the section, in
Sect. 3.3,with someopen problemswe believe areworthy of investigation concerning
G2-instantons in this AC setting.

3.1 On the Bryant–Salamon Manifolds �2−(N4)

Let (N 4, gN ) be a self-dual Einstein 4-manifold with positive scalar curvature. Then
N is either S4 or CP2 with gN being respectively either the round or Fubini–Study
metric. The AC Bryant–Salamon metric on the total space of the bundle of anti-
self-dual 2-forms X = �2−(N ) on N is such that the zero section N ⊂ �2−(N ) is
the unique compact coassociative submanifold in X (in fact, any compact minimal
submanifold in X is contained in N by Theorem 5.5 in [29]). If π : �2−(N ) → N
denotes the projection (this is the radially extended twistor projection, as the unit
sphere bundle in �2−(N ) can be identified with the twistor space of N ), then the
Bryant–Salamon metric can be written as

g = f 2(s)gR3 + f −2(s)π∗gN ,

where gR3 is the Euclidean metric along the fibers,

f (s) = (1 + s2)−1/4

and s is the Euclidean distance along the fibers to the zero section. The geodesic
distance to the zero section in the metric g is t (s) = ∫ s

0 f (u)du and using it we can
write the metric as
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g = dt2 + s2(t) f 2(s(t))gS2 + f −2(s(t))π∗gN ,

where gS2 is the round metric in the unit normal spheres to N (the twistor spheres).

3.1.1 N = S4

There is a cohomogeneity-1 action of Sp(2) on �2−(S4) whose principal orbits are
the distance sphere bundles over S4, which are diffeomorphic to the twistor space

CP
3 = Sp(2)/(Sp(1) × U(1)).

We shall fix a reductive splitting

sp(2) = h ⊕ m,

as follows. Start by writing sp(2) = m1 ⊕ sp1(1) ⊕ sp2(1) and introduce a basis for
the dual sp(2)∗ with

m∗
1 = 〈e1, e2, e3, e4〉 , sp∗

1(1) = 〈η1, η2, η3〉 , sp∗
2(1) = 〈ω1,ω2,ω3〉, (11)

where the ηi , ωi form a standard dual basis for sp(1) ∼= su(2). Using the notation
e12 = e1 ∧ e2, define the 2-forms:

�1 = e12 − e34 , �2 = e13 − e42 , �3 = e14 − e23 ;
�1 = e12 + e34 , �2 = e13 + e42 , �3 = e14 + e23 .

(12)

The Maurer–Cartan relations yield

dωi = −2ω jk + 1

2
�i , dηi = −2η jk − 1

2
�i , (13)

for i = 1, 2, 3 and (i, j, k) denoting a cyclic permutation of (1, 2, 3). Furthermore,
the Maurer–Cartan relations for the de’s can be used to compute

d�i = 2εi jk
(
� j ∧ ωk − �k ∧ ω j

)
, (14)

for i ∈ {1, 2, 3}. Then, we pick the reductive decomposition sp(2) = h ⊕ m, such
that

m∗ = m1 ⊕ m2 = m1 ⊕ R〈ω2,ω3〉 (15)

h∗ = sp1(1) ⊕ R〈ω1〉. (16)
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Upon fixing the identificationsm ∼= TpCP
3 andm1

∼= Tπ(p)S4. The 2-forms�i (resp.
�i ) form a basis for the anti-self-dual (resp. self-dual) 2-forms at π(p).

In the complement of the zero section�2−(S4)\S4 ∼= R
+ × CP

3, theG2-holonomy
metric can be written as

g̃ = dt ⊗ dt + a2(t)
(
ω2 ⊗ ω2 + ω3 ⊗ ω3

) + b2(t)

(
4∑

i=1

ei ⊗ ei
)

,

where a(s) = 2s f (s2) and b(s) = √
2 f −1(s2). A G2-structure giving rise to this

metric can be written as

ϕ = dt ∧ (
a2ω23 + b2�1

) + ab2
(
ω3 ∧ �2 − ω2 ∧ �3

)
,

and
ψ = b4e1234 − a2b2ω23 ∧ �1 − ab2dt ∧ (

ω2 ∧ �2 + ω3 ∧ �3
)
. (17)

We now consider the bundle

Pλ = Sp(2) ×(λ,Sp(1)×U(1)) SU(2),

where λ : Sp(1) × U(1) → SU(2) is given by λ(g, eiθ) = diag(eilθ, e−ilθ), for some
l ∈ Z and (g, eiθ) ∈ SU1(2) × U2(1). There is a canonical invariant connection,
which as a 1-form in Sp(2) with values in su(2) can be written as

Ac = ω1 ⊗ T1,

where T1, T2, T3 is a standard basis for su(2). Then, one can prove that (up to an
invariant gauge transformation) any other connection A ∈ �1(Sp(2), su(2)) can be
written as A = Ac + (A − Ac) with

A − Ac = a
(
T2 ⊗ ω2 + T3 ⊗ ω3

)
, (18)

with a ∈ R.
Now we consider the bundle P pulled back to �2−S4\S4 ∼= R

+ × CP
3 and

equip it with an invariant connection A ∈ �1(R+
t × Sp(2), su(2)) in radial gauge,

i.e. A(∂s) = 0. Thus Amust be a 1-parameter family of connections as above. This is
determined by a which is now a real-valued function of t ∈ R

+, as it must be constant
along any Sp(2) orbit. A straightforward computation yields that the curvature FA

of the connection A satisfies the G2-instanton equation FA ∧ ψ = 0 if and only if

s2 f 4 = 1 − a2,
da

ds
= −s f −4a.

In terms of t (s) = ∫ s
0 f (l2)dl = ∫ s

0

(
1 + l2

)− 1
4 dl, the second of these is
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da

dt
= −s f −3a. (19)

Moreover, solving the first equation, which is algebraic, yields

a(t) = ± f 2(s(t)),

which one can check does provide a solution of the ODE (19). This proves the
following result.

Theorem 1 The SU(2) connection

A = Ac ± (1 + s2)−
1
2
(
T2 ⊗ ω2 + T3 ⊗ ω3

)

on P → �2−(S4) is an irreducible G2-instanton, with curvature given by

FA =
(

�1

2
− 2s2

1 + s2
ω23

)
⊗ T1 ± 1

2
√
1 + s2

(�2 ⊗ T2 + �3 ⊗ T3)

∓ s

1 + s2
(
ds ∧ ω2 ⊗ T2 + ds ∧ ω3 ⊗ T3

)
.

Remark 2 These instantons are asymptotic to the canonical invariant connection
Ac. This is a t-independent reducible connection which is in fact pseudo-Hermitian–
Yang–Mills with respect to the standard nearly Kähler structure on CP3.

The Levi-Civita connection of the round metric induces a self-dual connection in
the Spin bundle over S4. Lifting this to �2−(S4) also gives rise to a G2-instanton. To
prove this we must construct the Spin bundle

Q = Sp(2) ×(μ,Sp(1)×U(1)) Sp(1),

whereμ : Sp(1) × U(1) → Sp(1) ∼= SU(2) is simply the projection on the first com-
ponent. The canonical invariant connection inQ is theSpin connection and is givenby

θ = η1 ⊗ T1 + η2 ⊗ T2 + η3 ⊗ T3.

Using the Maurer–Cartan relations (13) one can compute the curvature to be

Fθ = dθ + 1

2
[θ ∧ θ]

= 2η23 ⊗ T1 + 2η31 ⊗ T2 + 2η12 ⊗ T3

−
(
2η23 + 1

2
�1

)
⊗ T1 −

(
2η31 + 1

2
�2

)
⊗ T2 −

(
2η12 + 1

2
�3

)
⊗ T3.

We shall state this as follows.
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Proposition 3 The lift of the Spin connection θ on S4 to �2−(S4) is a G2-instanton
with curvature

Fθ = −1

2
�1 ⊗ T1 − 1

2
�2 ⊗ T2 − 1

2
�3 ⊗ T3.

Remark 3 Proposition 3 is a consequence of a more general phenomena. Indeed,
for N either CP2 or S4, the pullback of any self-dual connection on N gives rise
to a G2-instanton on the Bryant-Salamon G2-manifolds �2−(N ). This can be seen
immediately from the calibrating 4-form ψ in Eq.17 as noticed in [23].

3.1.2 N = CP
2

As already remarked above, the sphere bundle in �2−(CP2) is the twistor space of
CP

2, which is the flag manifold F2. This is homogeneous and SU(3) acts transitively
with isotropy the maximal torus U(1)2. The Serre spectral sequence for the fibration
SU(3) → F2 gives H 2(F2,Z) ∼= H 1(U(1)2,Z), which we can further identify with
the integral weight lattice in (u(1)2)∗. An explicit way to make the identification is
as follows. Given an integral weight α ∈ (u(1)2)∗ we construct the line bundle on F2

Lα = SU(3) ×(eα,U(1)2) C.

Now let 1 ∈ SU(3) be the identity and m ⊂ su(3) be a reductive complement
to the Cartan subalgebra generated by the isotropy, i.e. su(3) = u(1)2 ⊕ m with
[u(1)2,m] ⊂ m (for example, we can letm be the real part of the root spaces). Then,
we extend α, first to su(3)∗ by letting it vanish onm, and secondly to�1(SU(3), iR)

by left translations. It is now easy to see that α equips Lα with a connection and
so its first Chern class i

2π [dα] ∈ H 2(F2,Z) gives the corresponding element in the
second cohomology induced by α. The connection α is usually called the canonical
invariant connection on Lα and is uniquely determined by m.

We shall now turn to the construction of SO(3)-bundles over F2, carrying interest-
ing invariant connections. These are constructed by composing the homomorphism
eα : U(1)2 → U(1) with the embedding of U(1) ↪→ SO(3) as the maximal torus,
then setting

Pα = SU(3) ×(eα,U(1)2) SO(3).

These SO(3)-bundles are in fact reducible to the circle bundles inducing Lα and
can be equipped with the induced connections α ∈ �1(SU(3), so(3)) viewed as left
invariant 1-forms in SU(3) with values in so(3) by embedding iR ↪→ so(3). These
induced connections are also SU(3)-invariant and it follows from Wang’s theorem,
[33], that other invariant connections are in 1-to-1 correspondence with morphisms
of U(1)2-representations

� : (m,Ad) → (so(3),Ad ◦ eα).
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Decompose these into irreducible components m ∼= Cα1 ⊕ Cα2 ⊕ Cα3 , where
α1,α2,α3 are the positive roots of SU(3), while so(3) ∼= R0 ⊕ Cα. Hence it fol-
lows from Schur’s lemma that such morphisms of representations exist if and only if
α is one of the roots, in which case � restricts to the corresponding root space as an
isomorphism onto Cα ⊂ so(3) and vanishes in all other components. If α = αi we
shall denote these by �i . Then, notice that fixing a basis of m and a basis of so(3)
(i.e. a gauge) each �i is determined up to a constant.

The problem of constructing instantons on the bundles Pα was analysed in [23].
The first point to settle is that the bundle Pα on which one is solving the instanton
equations must extend to a bundle over all of �2−(CP2), i.e. across the zero section.
It turns out that there is only one such α, say α = α2, which can be characterized by
being in the image of the map

(π2)
∗ : H 2(CP2,Z2) → H 2(F2,Z

2),

where π2 : F2 → CP
2 is the twistor projection. Thus, take α = α2, and extend the

bundle and the connection to the whole of �2−(CP2). Now the connection

A = α + �2(r)

can be seen as an element of �1(R+ × SU(3), so(3)). Then, in [23] the invariant
instanton equations for A are computed, very much in the same way as the case of
�2−(S4) above. They appear as an ODE and an algebraic equation for |�2|, with the
ODE being implied by the algebraic equation which is

2s2(r) f −2(r)|�2|2 = 1.

In order to explicitly write this connection we fix a standard basis {T1, T2, T3} of
so(3) so that the image of α is parallel to T1. Then, the complement Cα ⊂ so(3) is
generated by T2, T3, and there are left-invariant 1-forms ν1, ν2 on SU(3) such that
the restriction to the tangent space to the identity of the map

ν1 ⊗ T2 + ν2 ⊗ T3|Cα2
: Cα2 ⊂ m ⊂ su(3) → Cα ⊂ so(3),

is an isomorphism. Furthermore, as in the case of �2−(S4) we fix �1,�2,�3 a
universal basis for the anti-self-dual 2-forms on CP

2. These are chosen so that∑3
i=1

scal
24 �i ⊗ Ti is the curvature of the Levi-Civita induced connection on �2−.

Then, we can write the G2-instanton A as in the following result.

Theorem 2 The connection on Pα2 over �2−(CP2) given by

A = α ± (1 + s2)−
1
2 (ν1 ⊗ T2 + ν2 ⊗ T3)

is an irreducible G2-instanton with curvature
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FA = 2s2

s2 + 1
ν12 ⊗ T1 + �1 ⊗ T1 ± 1√

s2 + 1
(�2 ⊗ T2 + �3 ⊗ T3)

∓ s

(1 + s2)
3
2

(ds ∧ ν1 ⊗ T2 + ds ∧ ν2 ⊗ T3) .

Remark 4 This instanton converges (at a polynomial rate) to the canonical invari-
ant connection α, which is the pullback to the cone on F2 of a reducible pseudo-
Hermitian–Yang–Mills connection on F2 equipped with its standard nearly Kähler
structure.

In [23] irreducible G2-instantons with gauge group G = SU(3) in this setting are
also investigated. For this we consider the bundle

Q = SU(3) ×U(1)2 SU(3),

where U(1)2 acts diagonally on both SU(3) factors by fixing a maximal torus. As
before we decompose su(3) into irreducible u(1)2 representations, as

su(3) = u(1)2 ⊕ Cα1 ⊕ Cα2 ⊕ Cα3 .

Then, we fix certain isomorphisms l : u(1)2 → u(1)2 and λi : Ci → Ci , which
we interpret as being left-invariant maps from (subspaces of) T1SU(3) ∼= su(3) →
su(3) ∼= g, i.e. as left-invariant 1-forms on SU(3) with values in the Lie algebra of
the gauge group G = SU(3). Then, Theorem 9 in [23] can be written in the following
way.

Theorem 3 There are two real 1-parameter families of irreducible G2-instantons
on Q parametrized by c ≥ 0. These are given by

A = l − uc(s)√
1 + s2

λ2 ∓
√
u2c(s) − 1

s
(λ3 − λ1)

and

A = l + uc(s)√
1 + s2

λ2 ∓
√
u2c(s) − 1

s
(λ3 + λ1) ,

where

uc(s) = 1 − 2c
s2

s2(1 + c) + 2
(√

1 + s2 + 1
) .

In particular, the case c = −1 gives flat connections.
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3.2 On the Bryant–Salamon R
4 × S3

The Bryant–Salamon metric on R
4 × S3 [5] is SU(2)2 × U(1)-invariant and so we

are motivated to study G2-instantons with the same symmetry: in fact, the metric
is SU(2)3-invariant, but it convenient to take the SU(2)2 × U(1)-invariant point of
view for later study.

3.2.1 SU(2)2 × U(1)-Symmetry

Webeginwith some preparation for studying SU(2)2-invariant holonomyG2-metrics
and instantons. Split the Lie algebra su(2) ⊕ su(2) as su+ ⊕ su−, as follows. If
{Ti }3i=1 is a basis for su(2) such that [Ti , Tj ] = 2εi jkTk , then T+

i = (Ti , Ti ) and
T−
i = (Ti ,−Ti ) for i = 1, 2, 3 give a basis for su+ and su− respectively. (Thus su+

and su− are diagonal and anti-diagonal copies of su(2) in su(2) ⊕ su(2).) We shall
let {η+

i }3i=1 and {η−
i }3i=1 be dual bases to {T+

i }3i=1 and {T−
i }3i=1 respectively. The

Maurer–Cartan relations in this case give

dη+
i = −εi jk

(
η+
j ∧ η+

k + η−
j ∧ η−

k

)
, (20)

dη−
i = −2εi jkη

−
j ∧ η+

k . (21)

The complement of the singular orbit can be written asR+
t × M , where M denotes a

principal orbit, which is a finite quotient of S3 × S3 (for the Bryant–Salamon metric,
it will simply be S3 × S3). The SU(2) × SU(2)-invariant SU(3)-structure on the
principal orbit {t} × M is given by ([22])

ω = 4
3∑

i=1

Ai Biη
−
i ∧ η+

i , (22)

γ1 = 8B1B2B3η
−
123 − 4

∑

i, j,k

εi jk Ai A j Bkη
+
i ∧ η+

j ∧ η−
k , (23)

γ2 = −8A1A2A3η
+
123 + 4

∑

i, j,k

εi jk Bi B j Akη
−
i ∧ η−

j ∧ η+
k , (24)

for real-valued functions Ai , Bi of t ∈ R
+, where η±

123 denotes η±
1 ∧ η±

2 ∧ η±
3 . The

compatible metric determined by this SU(3) structure on {t} × M is ([22])

gt =
3∑

i=1

(2Ai )
2η+

i ⊗ η+
i + (2Bi )

2η−
i ⊗ η−

i , (25)

and the resulting metric onRt × M , compatible with the G2-structureϕ = dt ∧ ω +
γ1, is given by g = dt2 + gt . Recall also that this metric has holonomy in G2 if and
only if the SU(3)-structure above solves the Hitchin flow equations (4).
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All known complete SU(2)2-invariant holonomy G2 metrics have an extra U(1)-
symmetry: this U(1) acts diagonally on S3 × S3 with infinitesimal generator T+

1 . As
a consequence, we have A2 = A3 and B2 = B3 and (4) becomes (as in [1]):

Ȧ1 = 1

2

(
A2
1

A2
2

− A2
1

B2
2

)
, (26)

Ȧ2 = 1

2

(
B2
1 + B2

2 − A2
2

B1B2
− A1

A2

)
, (27)

Ḃ1 = A2
2 + B2

2 − B2
1

A2B2
, (28)

Ḃ2 = 1

2

(
A2
2 + B2

1 − B2
2

A2B1
+ A1

B2

)
. (29)

3.2.2 The Bryant–Salamon Metric

As we stated above, the Bryant–Salamon metric on R
4 × S3 is actually SU(2)3-

invariant: the principal orbits are SU(2)3/SU(2) ∼= S3 × S3 and the (unique) sin-
gular orbit is SU(2)3/SU(2)2 ∼= S3. (Here, the SU(2) in SU(2)3 is the subgroup
SU(2)3 = 1 × 1 × SU(2), and SU(2)2 ⊂ SU(2)3 is the subgroup�SU(2) × SU(2),
where �SU(2) ⊂ SU(2)2 is the diagonal.)

In this case the extra symmetry means that A1 = A2 = A3 and B1 = B2 = B3

and the equations (26)–(29) reduce to:

Ȧ1 = 1

2

(
1 − A2

1

B2
1

)
and Ḃ1 = A1

B1
. (30)

Setting B1 = s and A1 = sC(s) we see that (30) becomes d
ds (sC) = 1−C2

2C which we

can easily solve as C(s) =
√

1−c3s−3

3 , so that, for c > 0 and s ≥ c,

A1(s) = s√
3

√
1 − c3s−3 and B1(s) = s. (31)

In particular, choosing c = 1 and using t , the arc length parameter along the geodesic
parametrized by s, we define a coordinate r ∈ [1,∞) implicitly by

t (r) =
∫ r

1

ds√
1 − s−3

, (32)

and solve (30) as follows:

A1 = A2 = A3 = r

3

√
1 − r−3 and B1 = B2 = B3 = r√

3
. (33)
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It is easy to verify that the geometry at infinity is asymptotically conical to the
standard holonomy G2-cone on S3 × S3. In fact, we see from (31) that one obtains a
one-parameter family6 of solutions to (30), equivalent up to scaling, whose limit with
c = 0 is the conical solution. Moreover, the torsion-free G2-structure has a unique
compact associative submanifold which is the singular orbit S3.

3.2.3 Examples of G2-Instantons

It is straightforward to write down the evolution equation (9) for SU(2)2-invariant
G2-instantons on a U(1)-bundle over the Bryant–Salamon R

4 × S3. One can solve
this equation explicitly and obtain the following result.

Proposition 4 Any SU(2)2-invariant G2-instanton A with gauge group U(1) over
the Bryant–Salamon R

4 × S3 can be written as

A = r3 − 1

r

3∑

i=1

xiη
+
i

for some x1, x2, x3 ∈ R, where r ∈ [1,+∞) is determined by (32).

We therefore wish to turn to a non-abelian gauge group, namely SU(2). The
only possible homogeneous SU(2)-bundle P on the principal orbits S3 × S3 is
P = SU(2)2 × SU(2), i.e. the trivial SU(2)-bundle. We therefore consider connec-
tions on this bundle with the SU(2)3-symmetry existent in the underlying Bryant–
Salamon geometry, and derive the following evolution equations for invariant G2-
instantons in this setting from (9) (after some work).

Proposition 5 Let A be an SU(2)3-invariantG2-instanton with gauge group SU(2)
on R+ × SU(2)2 ∼= R

+ × SU(2)3/�SU(2). There is a standard basis {Ti } of su(2),
i.e. with [Ti , Tj ] = 2εi jkTk , such that (up to an invariant gauge transformation) we
can write

A = A1x

(
3∑

i=1

Ti ⊗ η+
i

)

+ B1y

(
3∑

i=1

Ti ⊗ η−
i

)

, (34)

with x, y : R+ → R satisfying

ẋ = Ȧ1

A1
x + y2 − x2 = 1

2A1

(
1 − A2

1

B2
1

)
x + y2 − x2, (35)

ẏ = 2 Ȧ1 − 3

A1
y + 2xy = − 1

A1

(
2 + A2

1

B2
1

)
y + 2xy. (36)

6There are, in fact, distinct SU(2)3-invariant torsion-free G2-structures on R
4 × S3 inducing the

same asymptotially conical Bryant–Salamon metric, determined by their image in H3(S3 × S3).
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Next we must determine the initial conditions in order for an SU (2)3-invariant G2-
instanton A, given by a solution to the ODEs in Proposition 5, to extend smoothly
over the singular orbit S3 = SU (2)2/�SU (2). For that we need to first extend the
bundle over the singular orbit. Up to an isomorphism of homogeneous bundles, there
are two possibilities: these are

Pλ = SU (2)2 ×(�SU (2),λ) SU (2), (37)

with the homomorphism λ : SU (2) → SU (2) being either the trivial one (which we
denote by 1) or the identity id. Depending on the choice of λ, the conditions for the
connection A to extend are different, as we show in the following lemma.

Lemma 2 The connection A in (34) extends smoothly over the singular orbit S3 if
x(t) is odd, y(t) is even, and their Taylor expansions around t = 0 are

• either x(t) = x1t + x3t3 + . . . , y(t) = y2t2 + . . ., in which case A extends
smoothly as a connection on P1;

• or x(t) = 2
t + x1t + . . . , y(t) = y0 + y2t2 + . . ., in which case A extends

smoothly as a connection on Pid.

If we set y = 0 in the notation of Proposition 5, the ODEs there become the single
ODE:

ẋ = Ȧ1

A1
x − x2. (38)

Writing this equation as
d

dt

(
x

A1

)
= −A1

(
x

A1

)2

(39)

makes it separable. Since B1 Ḃ1 = A1 by (30) and B2
1 (0) = 1

3 , (39) can be readily
integrated to show that

x(t) = 2x1A1(t)

1 + x1(B2
1 (t) − 1

3 )
. (40)

We can explicitly see from Lemma 2 that the connection A extends smoothly over
S3 as a connection on P1. This is precisely the one-parameter family of SU (2)3-
invariant G2-instantons on the Bryant–Salamon R

4 × S3 constructed by Clarke [9],
and the parameter can be interpreted as how concentrated the instanton is around the
associative S3.

In fact, it is shown in [20] that these are the only irreducible SU(2)2 × U(1)-
invariant G2-instantons on P1: in particular, this shows that all irreducible SU(2)2 ×
U(1)-invariant G2-instantons on P1 on the Bryant–Salamon R

4 × S3 are actually
SU(2)3-invariant.

Theorem 4 The moduli space MBS
P1

of irreducible SU(2)2 × U(1)-invariant G2-
instantons with gauge group SU(2) defined on P1 on the Bryant–Salamon R

4 × S3

is parametrized by the open interval (0,+∞).
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Specifically, let A be an SU(2)2 × U(1)-invariantG2-instanton with gauge group
SU(2) on the Bryant–Salamon R

4 × S3, which extends smoothly over the singular
orbit on P1.

(a) If A is irreducible, then it is one of Clarke’s examples [9], in which case it is
SU(2)3-invariant and there is x1 ∈ R such that, in the notation of Proposition 5,

x(r) = 2x1r
√
1 − r−3

3 + x1(r2 − 1)
and y(r) = 0,

where r ∈ [1,+∞) is determined by (32). That is, A can be written as

Ax1 = 2x1(r3 − 1)

3r
(
3 + x1(r2 − 1)

)

(
3∑

i=1

Ti ⊗ η+
i

)

.

Observe that Ax1 is defined globally on R
4 × S3 if and only if x1 ≥ 0 and that

A0 is the trivial flat connection.
(b) If A is reducible, it has gauge group U(1) and is given in Proposition 4 with

x2 = x3 = 0, i.e.

A = r3 − 1

r
x1η

+
1

for some x1 ∈ R, where r ∈ [1,+∞) is as in (32).

We now turn to SU(2)2 × U(1)-invariant G2-instantons defined on Pid, for which we
have a local existence result for a 1-parameter family of such G2-instantons.

Proposition 6 Let S3 be the singular orbit in the Bryant–Salamon R
4 × S3. There

is a one-parameter family of SU(2)2 × U(1)-invariant G2-instantons, with gauge
group SU(2), defined in a neighbourhood of S3 and smoothly extending over S3

on Pid. The instantons are actually SU(2)3-invariant and parametrized by y0 ∈ R

satisfying, in the notation of Proposition 5,

x(t) = 2

t
+ y20 − 1

4
t + O(t3), y(t) = y0 + y0

2

(
y20
2

− 3

)
t2 + O(t4).

If we set y = 0, which corresponds to taking y0 = 0 in Proposition 6, we can again
integrate the ODE (38) (or equivalently (39)) and obtain:

x(t) = A1(t)
1
2 (B

2
1 (t) − 1

3 )
.

From Proposition 6 we see that the corresponding instanton extends smoothly over
S3 on Pid, and hence we find another G2-instanton on the Bryant–Salamon R4 × S3.
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Theorem 5 TheG2-instanton Alim arising from the case when y0 = 0 in Proposition
6 is given by

Alim = 2(r3 − 1)

3r(r2 − 1)

(
3∑

i=1

Ti ⊗ η+
i

)

.

Moreover, Alim extends as a SU(2)3-invariant G2-instanton to the Bryant–Salamon
R

4 × S3.

It is straightforward to compute the curvature of Ax1 and Alim and see that they decay
at infinity but that their curvatures do not lie in L2.

3.2.4 The Moduli Space

We have seen from Theorem 4 that we have a moduli space MBS
P1

of irreducible
SU(2)2 × U(1)-invariant G2-instantons on P1 which is parameterized by x1 ∈
(0,+∞). Therefore, this moduli space is clearly non-compact. A natural question
is whether it can be compactified and, if so, what the compactification is: it is clear
what happens at x1 = 0, since we just take the trivial flat connections, but we need
to understand what happens as x1 → +∞. In [20] it is shown that MBS

P1
can be

compactified to the closed interval: it is demonstrated that Alim is, in a certain pre-
cise sense, the limit of the Ax1 as x1 → +∞. The result, stated below, confirms
expectations from [27, 28].

To state the result we now introduce some notation for the re-scaling we wish to
perform: for p ∈ S3 and δ > 0 we define the map s pδ from the unit ball B1 ⊆ R

4 by

s pδ : B1 ⊆ R
4 → Bδ × {p} ⊆ R

4 × S3, x �→ (δx, p).

Recall that if we viewR
4 \ {0} = R

+
t × S3 then the basic ASD instanton onR4 with

scale λ > 0 can be written as

AASD
λ = λt2

1 + λt2

3∑

i=1

Ti ⊗ η+
i . (41)

Theorem 6 Let {Ax1} be a sequence of Clarke’sG2-instantons from Theorem 4 with
x1 → +∞.

(a) After a suitable rescaling, the family {Ax1} bubbles off a basic anti-self-dual
instanton transversely to the associative S3 = {0} × S3.
More precisely, given any λ > 0, there is a sequence of positive real numbers
δ = δ(x1,λ) → 0 as x1 → +∞ such that: for all p ∈ S3, (s pδ )∗Ax1 converges
uniformly with all derivatives to the basic ASD instanton AASD

λ on B1 ⊆ R
4 as

in (41).
(b) The connections Ax1 converge uniformly with all derivatives to Alim, given in

Theorem 5, on every compact subset of (R4 \ {0}) × S3 as x1 → +∞.
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(c) The function |FAx1 |2 − |FAlim |2 is integrable for all x1 > 0. Moreover, as x1 →
+∞ it converges to 8π2δ{0}×S3 as a current, i.e. for all compactly supported
functions f we have

lim
x1→+∞

∫

R4×S3
f (|FAx1 |2 − |FAlim |2) dvolg = 8π2

∫

{0}×S3
f dvolg|{0}×S3

.

Whilst (a) gives the familiar “bubbling” behaviour of sequences of instantons, with
curvature concentrating on an associative S3 by (c), we can interpret (b) as a “remov-
able singularity” phenomenon since Alim is a smooth connection on R

4 × S3. In
proving Theorem 6, we show that as {Ax1} bubbles along the associative S3 one
obtains a Fueter section, as in [10, 16, 32]. Here this is just a constant map from S3

to the moduli space of anti-self dual connections on R
4 (thought of as a fibre of the

normal bundle), taking value at the basic instanton onR4. Since 8π2 is theYang–Mills
energy of the basic instanton, we can also view (c) as the expected “conservation of
energy”.

It is also worth observing that all of the G2-instantons Ax1 for x1 > 0 and Alim

are asymptotic to the canonical pseudo-Hermitian–Yang–Mills connection on the
standard nearly Kähler S3 × S3 given by:

a∞ = 2

3

3∑

i=1

Ti ⊗ η+
i . (42)

Proposition 7 Let a∞ be the canonical pseudo-Hermitian–Yang–Mills connection
on S3 × S3 given in (42).

(a) If A = Ax1 for some x1 ∈ R
+, then for t � 1

|Ax1 − a∞| ≤ c

x1t3
,

where c > 0 is some constant independent of x1;
(b) If A = Alim, then for t � 1, |Alim − a∞| = O(t−4).

3.3 Open Problems

There are several natural open problems which arise for G2-instantons in the asymp-
totically conical setting.

(a) Recently, infinitely many new examples of ACG2-manifolds X have been found
[14]. These examples are cohomogeneity-1 for an action of SU(2) × SU(2) ×
U(1) and so the theory of G2-instantons with these symmetries developed in [20]
applies. Therefore, the local existence of G2-instantons near the singular orbit
in X is guaranteed, and the open question is how many of these local solutions
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extend globally on X . Once one has classified the global solutions and has a
non-trivial family, one can then ask about global properties of the moduli space
of solutions, such as those discussed above. This would be specially interesting
for the family D7 of [14], as this was not considered in [20].

(b) As we have seen, G2-instantons on AC G2-manifolds naturally have limits at
infinity which are pseudo-Hermitian–Yang–Mills (also known as nearly Kähler
instantons) on the nearly Kähler link of the asymptotic cone at infinity. There
are very few examples of such connections on nearly Kähler 6-manifolds, and
it is an important open problem to try to construct some examples on the known
nearly Kähler 6-manifolds which arise as links of asymptotic cones of AC G2-
manifolds: that is, S6, CP3, S3 × S3 (and finite quotients thereof) and the flag
F2. Given these examples of nearly Kähler instantons, one can then ask if they
arise as limits of G2-instantons on AC G2-manifolds. If they do arise, it is then
natural to ask how many G2-instantons have the given nearly Kähler instanton
as their limits at infinity.

(c) An obvious problem in this context is to understand the local geometry of the
moduli space of G2-instantons on AC G2-manifolds; i.e. the deformation the-
ory of such G2-instantons. This is currently being investigated by Joe Driscoll
(a PhD student of Derek Harland) and would potentially help solve several
interesting questions. For example, can one prove a uniqueness result for the
“basic” G2-instanton on R7 [15] (which has gauge group G2)? Do deformations
of G2-instantons with symmetries on ACG2-manifolds also have symmetries? A
positive answer to the latter question would mean that we could describe (at least
a component) of the moduli space of G2-instantons on AC G2-manifolds with
a cohomogeneity-1 action via the techniques and results described in this sur-
vey. There will also be a natural projection map in this context from the moduli
space of G2-instantons to the moduli space of nearly Kähler instantons (studied
in [7]), and so it would be interesting to understand the properties of this map,
e.g. whether it is surjective.

(d) What is the limit as c → +∞ of the G2-instantons in Theorem 3?
(e) We have seen that the local G2-instanton defined on Pid given by Proposition 6

for y0 = 0 extends globally to the Bryant–Salamon R
4 × S3 by Theorem 5. A

concrete question is whether any of the other local G2-instantons from Theorem
3. Proposition 6 for y0 �= 0 extend globally or not. Some numerical investigation
suggests that if they do, their curvature is unbounded at infinity.

4 Asymptotically Locally Conical (ALC) G2-Manifolds

A noncompact G2-manifold is said to be asymptotically locally conical (ALC), if it
is asymptotic (at infinity) to a circle bundle over a 6-dimensional cone. The central
part of this section is to summarize the results of [20], where the authors studied G2-
instantons on the so-called BGGGG2-manifold: this is an ALC holonomyG2-metric
on R

4 × S3 constructed in [2], and coming in a 1-parameter family of torsion-free
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G2-structures found a posteriori in [3]. In fact, the authors construction of instantons
on the BGGG extends to give instantons for any holonomy G2-metric in this whole
1-parameter family, see Remark 13 in [20].

This section is organized as follows. In Sect. 4.1we present some general structure
results on ALC G2-manifolds, for example we describe the induced structure on the
asymptotic circle bundle over a cone, since this asymptotic geometry is less familiar.
Then, in Sect. 4.2we characterise the limits ofG2-instantonswith pointwise decaying
curvature at infinity. Finally, in Sect. 4.3 we summarize the results of [20] and present
some open problems in Sect. 4.4.

4.1 The G2-Structure

A noncompact G2-manifold (X,ϕ) is said to be ALC if there is:

• a U(1)-bundle π : �6 → �5 and a U(1)-invariant G2-structure ϕ∞ on (1,+∞) ×
�, whose associated metric is

gϕ∞ = dr2 + m2η2
∞ + r2π∗g5,

where m ∈ R
+, η∞ is a connection on � and g5 a metric on �;

• a compact set K ⊂ X and (up to adouble cover)7 a diffeomorphism p : (1,+∞)r ×
� → X\K ,

such that if ∇ denotes the Levi-Civita connection of gϕ∞ then

|∇ j (ϕ∞ − p∗ϕ|X\K )|gϕ∞ = O(rν− j ) as r → +∞, (43)

for some ν < 0 and j = 0, 1.
Our next result describes the structure on (1,+∞) × � induced from the torsion-

free G2-structure ϕ on X and limits the range of rates ν to consider.

Proposition 8 Let (X,ϕ) be an ALC G2-manifold and use the notation above.

(a) If ν < 0, the metric g5 is induced by a Sasaki–Einstein SU (2)-structure on �

given by (α,ω1,ω2,ω3) satisfying

dα = −2ω1, dω2 = 3α ∧ ω3, dω3 = −3α ∧ ω2. (44)

Hence, the cone metric dr2 + r2g5 on (1,+∞)r × � is Calabi–Yau.
(b) If ν < −1, then dη∞ = 0, and thus the connection is flat.

Nowweknow fromProposition 8 that the asymptotic cone for anALCG2-manifold is
Calabi–Yau,we can impose a further condition on the connectionη∞ for the definition

7The possible need for the double cover is because X may only be asymptotic to an S1-bundle, but
we can get a principal bundle by taking a double cover.
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of an ALCG2-manifold: namely, that η∞ is Hermitian–Yang–Mills, i.e. dη∞ ∧ ω2 =
0 and dη∞ ∧ �2 = 0.

We now give the example of the standard Sasaki-Einstein structure on S2 × S3 in
terms of the framework above. We shall see that is the most important for our study.

Let S2 × S3 = SU(2)2/�U(1) and let {η+
i , η−

i }3i=1 be as in Sect. 3.2.We can equip
S3 × S3 → S2 × S3 with a connection such that η+

2 , η+
3 , η−

1 , η−
2 , η−

3 is a horizontal
coframing. We define:

η∞ = 2η+
1 , α = −4

3
η−
1 , ω1 = 4

3

(
η+
2 ∧ η−

3 + η−
2 ∧ η+

3

)
,

ω2 = 4

3

(
η+
2 ∧ η+

3 − η−
2 ∧ η−

3

)
, ω3 = 4

3

(
η+
2 ∧ η−

2 + η+
3 ∧ η−

3

)
.

The forms α,ω1,ω2,ω3 are basic for the �U(1)-action and equip S2 × S3 with an
SU(2)-structure. We can check that (44) holds and so this is the standard homoge-
neous Sasaki–Einstein structure on S2 × S3. The conical Calabi–Yau metric aris-
ing from this Sasaki–Einstein structure on S2 × S3 is known as the conifold or 3-
dimensional ordinary double point.

We also see that η∞ is a connection form on S3 × S3 such that

dη∞ = −4
(
η+
2 ∧ η+

3 + η−
2 ∧ η−

3

)

is basic anti-self-dual: i.e. dη∞ ∧ ωi = 0 for i = 1, 2, 3. This implies that η∞ is
Hermitian–Yang–Mills.

4.2 G2-Instantons

We now study the asymptotic behaviour of G2-instantons on ALCG2-manifolds, and
begin by examining the G2-instanton condition on the asymptotic U(1)-bundle over
a Calabi–Yau cone. We shall use the notation of the previous subsection.

Let π : (1,+∞)r × � → (1,+∞)r × � be a U(1)-bundle over a Calabi–Yau
cone, equipped with the G2-structure

ϕ∞ = mη∞ ∧ ω + �1,

as above. Let P be the pullback to (1,+∞) × � of a bundle over M . If A∞ is a
connection on P , then without loss of generality we can write it as

A∞ = a + m� ⊗ η∞, (45)

for a connection a pulled back from (1,+∞) × � and � ∈ �0((1,+∞) × �, gP).
In our case we will be investigating G2-instantons that are invariant under the

U(1)-action on the end of X ; that is, we take a lift of the U(1)-action to the total
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space and the connection is invariant under the lifted action. If we assume η∞ is
Hermitian–Yang–Mills, then the conditions for a U(1)-invariant connection A∞ as
in (45) to be a G2-instanton are then

Fa ∧ �2 = −1

2
da� ∧ ω2, Fa ∧ ω2 = 0. (46)

These are the equations for aCalabi–Yaumonopole (a,�)on (1,+∞) × � equipped
with the conical torsion-free SU (3)-structure (ω,�2).

These observations lead to the following.

Proposition 9 Let A be a G2-instanton on an ALC G2-manifold (X,ϕ) and use the
notation from the start of Sect.4.1. Suppose there exists aU(1)-invariant connection
A∞ = a + m� ⊗ η∞ as in (45) such that p∗FA|X\K is asymptotic at infinity to FA∞ .
Then (a,�) is a Calabi–Yau monopole on the Calabi–Yau cone (1,+∞) × �.

4.3 On the BGGG-Bogoyavlenskaya R
4 × S3

On R
4 × S3, as well as the Bryant–Salamon metric, there is another explicit com-

pleteG2-holonomymetric constructed byBrandhuber and collaborators in [2], which
we will abbreviate to BGGG. The BGGG metric is a member of a family of com-
plete SU(2)2 × U(1)-invariant, cohomogeneity-1, G2-holonomymetrics onR4 × S3

found in [3].

4.3.1 The BGGG Metric

To derive the BGGG example, we return to the setting of SU(2)2 × U(1)-symmetry
in Sect. 3.2.1: in particular we recall the functions A1, A2, B1, B2 defining themetric,
satisfying (26)–(29). One can choose c > 0, set B1 = s and

A1 = c
ds

dt
= c

A2
2 + B2

2 − s2

A2B2

from (28). Letting C± = A2
2 ± B2

2 the equations (27) and (29) yield

d

ds
C+ = s2C+ − C2−

s(C+ − s2)
and

d

ds
C− = −C−

s
− 2c.

The second equation is easily integrated and so we are able to find solutions

C+(s) = 3s2 − c2

2
and C−(s) = −cs.
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We thus obtain a one-parameter family of solutions to (26)–(29):

A1(s) = 2c

√
s2 − c2

9s2 − c2
, A2(s) = 1

2

√
(3s + c)(s − c), (47)

B1(s) = s, B2(s) = 1

2

√
(3s − c)(s + c), (48)

defined for s ≥ c > 0. These solutions give holonomy G2 metrics on R
4 × S3. We

can further scale the metric from g to λ2g and the resulting fields scale as Aλ
i (s) =

λAi (s/λ), Bλ
i (s) = λBi (s/λ). These give the following family of solution to the

ODEs (26)–(29) above:

Aλ
1(s) =2cλ

√
s2 − c2λ2

9s2 − c2λ2
, Aλ

2(s) = 1

2

√
(3s + cλ)(s − cλ),

Bλ
1 (s) = s, Bλ

2 (s) = 1

2

√
(3s − cλ)(s + cλ).

We see that under the scaling we have c �→ cλ, so we can always scale so that
c = 1. In particular, one can set λ = 3/2, c = 1 and as in [2] define the coordinate
r ∈ [9/4,+∞) implicitly by

t (r) =
∫ r

9/4

√
(s − 3/4)(s + 3/4)√
(s − 9/4)(s + 9/4)

ds (49)

and find that

A1 =
√

(r − 9/4)(r + 9/4)√
(r − 3/4)(r + 3/4)

, A2 = A3 =
√

(r − 9/4)(r + 3/4)

3
,

B1 = 2r

3
, B2 = B3 =

√
(r − 3/4)(r + 9/4)

3

solve (26)–(29).We see in this BGGG case that the principal orbits are again S3 × S3

and the singular orbit {0} × S3 is associative.
It is straightforward to see that the BGGG is ALC with rate ν = −1 and m = 1:

in fact, the metric is asymptotic to

h = dt2 + 4(η+
1 )2 + 4t2

3

(
(η+

2 )2 + (η+
3 )2

) + 16t2

9
(η−

1 )2 + 4t2

3

(
(η−

2 )2 + (η−
3 )2

)
,

which is a circle bundle over the Calabi–Yau cone over the standard homogeneous
Sasaki–Einstein structure on S2 × S3 described in Sect. 4.1. This is in particular
shows that Proposition 8(b) is sharp.



312 J. D. Lotay and G. Oliveira

In [3], Bogoyavlenskaya constructed a 1-parameter family (up to scaling) of
SU(2)2 × U(1)-invariant, cohomogeneity-1, G2-holonomy metrics on R

4 × S3,
obtained by continuously deforming the BGGG metric. With these metrics, one
can independently vary the size of the circle at infinity and the associative S3, and
thus, in particular, obtain the BS metric as a limit of the family. The BGGG metric
is the only one from [3] which is explicitly known.

4.3.2 Examples of G2-Instantons

It is again straightforward to write down the evolution equation (9) for SU(2)2-
invariant G2-instantons on aU(1)-bundle over the Bogoyavlenskayametrics onR4 ×
S3. One can solve this equation explicitly in the BGGG case and obtain the following
result.

Proposition 10 Any SU(2)2-invariant G2-instanton A with gauge group U(1) over
the BGGG R

4 × S3 can be written as

A = (r − 9/4)(r + 9/4)

(r − 3/4)(r + 3/4)
x1η

+
1 + (r − 9/4)er√

r(r + 9/4)2
(x2η

+
2 + x3η

+
3 )

for some x1, x2, x3 ∈ R, where r ∈ [9/4,+∞) is given by (49). When x2 = x3 = 0,
A is a multiple of the harmonic 1-form dual to the Killing field generating the U(1)-
action.

We already observe a marked difference in the behaviour of G2-instantons on the BS
and BGGG R

4 × S3 in this simple abelian setting. In particular, the instantons in the
BS case all have bounded curvature, whereas those in the BGGG case have bounded
curvature only when x2 = x3 = 0, in which case the curvature also decays to 0 as
r → ∞.

We now turn to gauge group SU(2) and begin by simplifying the ODEs (9) in the
SU(2)2 × U(1)-invariant setting.

Proposition 11 Let A be an SU(2)2 × U(1)-invariant G2-instanton on
R

+ × SU(2)2 ∼= R
+ × (SU(2)2 × U(1)/�U(1)) with gauge group SU(2). There is

a standard basis {Ti }3i=1 of su(2), i.e. with [Ti , Tj ] = 2εi jkTk , such that (up to an
invariant gauge transformation) we can write

A =A1 f
+T1 ⊗ η+

1 + A2g
+(T2 ⊗ η+

2 + T3 ⊗ η+
3 ) (50)

+ B1 f
−T1 ⊗ η−

1 + B2g
−(T2 ⊗ η−

2 + T3 ⊗ η−
3 ),

with f ±, g± : R+ → R satisfying



G2-Instantons on Noncompact G2-Manifolds: Results and Open Problems 313

ḟ + + 1

2

(
A1

B2
2

− A1

A2
2

)
f + = (g−)2 − (g+)2, (51)

ġ+ + 1

2

(
A2
2 + B2

1 + B2
2

A2B1B2
− A2

1 + 2A2
2

A1A2
2

)
g+ = f −g− − f +g+, (52)

ḟ − +
(
A2
2 + B2

1 + B2
2

A2B1B2

)
f − = 2g−g+, (53)

ġ− + 1

2

(
A2
2 + B2

1 + B2
2

A2B1B2
+ A2

1 + 2B2
2

A1B2
2

)
g− = g− f + + g+ f −. (54)

We can then determine the local conditions for these connections to extend over the
singular orbit.

Lemma 3 The connection A in (50) extends smoothly over the singular orbit S3 if
and only if f + and g+ are odd, f − and g− are even, and their Taylor expansions
around t = 0 are:

• either

f − = f −
2 t2 + O(t4), g− = g−

2 t
2 + O(t4),

f + = f +
1 t + O(t3), g+ = g+

1 t + O(t3),

in which case A extends smoothly as a connection on P1;
• or

f − = b−
0 + b−

2 t
2 + O(t4), g− = b−

0 + b−
2 t

2 + O(t4),

f + = 2

t
+ (b+

2 − 2

3

...
A1(0))t + O(t3), g+ = 2

t
+ (b+

2 − 2

3

...
A2(0))t + O(t3),

in which case A extends smoothly as a connection on Pid.

Wecannowanswer the question of howmanyG2-instantons there are defined near the
singular orbit on any SU(2)2 × U(1)-invariant G2-manifold, which extend smoothly
on P1.

Proposition 12 Let X ⊂ R
4 × S3 contain the singular orbit {0} × S3 of the SU(2)2

× U(1) action and be equipped with an SU(2)2 × U(1)-invariant holonomy G2-
metric. There is a 2-parameter family of SU(2)2 × U(1)-invariant G2-instantons A
with gauge group SU(2) in a neighbourhood of the singular orbit in X smoothly
extending on P1.

TheBS,BGGGandBogoyavlenskayaG2-metrics all haveSU(2)2 × U(1)-symmetry
and so Proposition 12 yields a 2-parameter family of G2-instantons in these cases. In
the BS case, we already stated in Theorem 4 that only a 1-parameter family extends
globally. In contrast, we see in the BGGG case that there is a 2-parameter family
of local G2-instantons which extends globally with bounded curvature and another
2-parameter family which cannot be extended so as to have bounded curvature.
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Theorem 7 The moduli spaceMBGGG
P1

of irreducible SU(2)2 × U(1)-invariantG2-
instantons with gauge group SU(2) on the BGGG metric, smoothly extending on P1,
contains a nonempty (and unbounded) open set which is parametrised by U ⊂ R

2.
Specifically, let A be a SU(2)2 × U(1)-invariant G2-instanton with gauge group

SU(2) defined in a neighbourhood of {0} × S3 on the BGGG R
4 × S3 smoothly

extending over P1 as given by Proposition 12.

(a) If f +
1 ≤ 1

2 , or g+
1 ≥ 0 with g+

1 ≥ f +
1 , then A extends globally to R

4 × S3 with
bounded curvature if and only if A has gauge groupU(1) and is given in Propo-
sition 10 with x2 = x3 = 0; i.e. we must have g+

1 = 0 and for some x1 ∈ R,

A = (r − 9/4)(r + 9/4)

(r − 3/4)(r + 3/4)
x1η

+
1 .

(b) If f +
1 ≥ 1

2 + g+
1 > 1

2 , then A is irreducible and extends globally toR4 × S3 with
bounded curvature.

We also have the following interesting observations.

Theorem 8 In the setting of Theorem 7 the following holds.

(a) The instantons parametrised by U have quadratically decaying curvature.
(b) The map Hol∞ : U → U(1) ⊂ SU(2), which evaluates the holonomy of theG2-

instanton along the finite size circle at +∞, is surjective.

We can now also ask about Pid and we see even the local existence theory is different
to the P1 case.

Proposition 13 Let X ⊂ R
4 × S3 contain the singular orbit {0} × S3 of the SU (2)2

×U (1) action and be equipped with an SU (2)2 ×U (1)-invariant holonomy G2-
metric. There is a 1-parameter family of SU (2)2 ×U (1)-invariant G2-instantons A
with gauge group SU (2) in a neighbourhood of the singular orbit in X smoothly
extending over Pid.

In this setting, unfortunately, we cannot yet find any global solutions on the BGGG
manifold which extend smoothly on Pid.

4.4 Open Problems

There are several natural open problems which present themselves for G2-instantons
on ALC G2-manifolds.

(a) Proposition 9 shows that the natural limits of G2-instantons on ALC G2-
manifolds (if they exist) are Calabi–Yaumonopoles on Calabi–Yau cones. These
observations further motivate the study of Calabi–Yau monopoles on cones or
AC Calabi–Yau 3-folds. See [24] and [25] for some examples and results on
Calabi–Yau monopoles in the AC and conical settings.
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(b) It has been shown that [13] there are many ALC G2-manifolds which are close
to the degenerate Calabi–Yau cone limit, and the typically example will only be
U(1)-invariant. It is therefore interesting to attempt to construct G2-instantons on
these ALC G2-manifolds which are, in a sense, close to Calabi–Yau monopoles
on the cone. The authors of this article are actively pursuing this problem.

(c) As in the AC case, it would be good to have a deformation theory for G2-
instantons on ALC G2-manifolds. This would have obvious relations to the
deformation theory of Calabi–Yaumonopoles on ACCalabi–Yau 3-folds, which
also needs to be developed. In particular, one can ask about the image of the pro-
jection map from the moduli space of G2-instantons on an ALC G2-manifold to
the space of Calabi–Yau monopoles on the Calabi–Yau cone which appears at
the end of the ALC G2-manifold.

(d) On the BGGG G2-manifold R
4 × S3, we have shown non-existence for irre-

ducible SU(2)2 × U(1)-invariant G2-instantons with gauge group SU(2) and
bounded curvature for g+

1 > 0 and f +
1 ≤ 1

2 or g+
1 ≥ f +

1 , and existence for
f +
1 ≥ 1

2 + g+
1 > 1

2 . This currently leaves open the region where 0 < f +
1 − 1

2 <

g+
1 < f +

1 , which should be investigated so as to describe the full moduli space
MBGGG

P1
. Some numerical investigation indicates that some of these initial con-

ditionsmay lead to globally defined instantons with bounded curvature and some
may not. Some of the existence and non-existence results for instantons for the
BGGGmetric extend, with suitable modifications, to all of the Bogoyavlenskaya
metrics, but some do not, so it would be good to address this gap.

(e) An interesting problem is to investigate the behaviour of G2-instantons as the
underlying metric is deformed. For instance, we have G2-instantons on all of the
Bogoyavlenskaya G2-manifolds, and we would want to analyse these instantons
as the size of the circle at infinity gets very large or small. When it gets very
large we expect them to resemble G2-instantons for the Bryant–Salamon metric
in R

4 × S3. When it gets very small, there may be a relation with Calabi–Yau
monopoles on the deformed conifold (as in [25] or problem (b) above).

(f) Even if we can describe the moduli space MBGGG
P1

, it will be non-compact so,
just as in the Bryant–Salamon case, we will want to compactify it. It is therefore
certainly an interesting problem to investigate the behaviour of the family of
instantons from Theorem 7 when one or both of f +

1 and g+
1 go to infinity. We

would expect bubbling phenomena as in the Bryant–Salamon case in Theorem
6, with possible relationship to the ASD instantons on Taub–NUT found in [12].
The lack of an explicit formula for our instantons makes the bubbling analysis
more difficult, but it should clearly be explored.

Acknowledgements We thank Spiro Karigiannis and Ragini Singhal for their comments and sug-
gestions on a previous version of this manuscript.
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Current Progress on G2-Instantons over
Twisted Connected Sums

Henrique Sá Earp

Abstract Wereviewamethod to constructG2-instantons over compactG2-manifolds
arising as the twisted connected sum of a matching pair of Calabi-Yau 3-folds with
cylindrical end, based on the series of articles [16, 24, 32, 33] by the author and oth-
ers. The construction is based on gluing G2-instantons obtained from holomorphic
bundles over such building blocks, subject to natural compatibility and transversality
conditions. Explicit examples are obtained frommatching pairs of semi-Fano 3-folds
by an algorithmic procedure based on the Hartshorne-Serre correspondence.

1 Introduction

This text addresses the existence problem of G2-instantons over twisted connected
sums, as formulated by the author andWalpuski in [32], and the production of the first
examples to date of solutions obtained by a nontrivially transversal gluing process
[24]. It is aimed at graduate students and researchers in nearby areas who might be
interested in a condensed exposition of the main results spread over my articles [16,
24, 32, 33] with Walpuski, Menet et al. and Menet-Nordström. By no means should
this survey convey the impression that the subject is somehow closed or even in its
best notational setup; indeed there is much ongoing work on this topic. A number
of important questions remain open and the most impressive expected results in this
theory are surely still ahead of us.

Recall that a G2-manifold (X, gφ) is a Riemannian 7-manifold together with a
torsion-free G2-structure, that is, a non-degenerate closed 3-form φ satisfying a
certain non-linear partial differential equation; in particular, φ induces a Riemannian
metric gφ with Hol(gφ) ⊂ G2 [18, Part I]. A G2-instanton is a connection A on some
G-bundle E → X such that FA ∧ ∗φ = 0. Such solutions have a well-understood
elliptic deformation theory of index0 [30], and some formof ‘instanton count’ of their
moduli space is expected to yield new invariants of 7-manifolds, much in the same
vein as the Casson invariant and instanton Floer homology from flat connections
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on 3-manifolds [10, 12]. While some important analytical groundwork has been
established towards that goal [35], major compactification issues remain and this
suggests that a thorough understanding of the general theory might currently have to
be postponed in favour of exploring a good number of functioning examples. This
article proposes a method to construct such examples.

Readers interested in amore detailed account of instanton theory onG2-manifolds
are kindly referred to the introductory sections of [32, 33] and works cited therein.

An importantmethod toproduce examples of compactG2-manifoldswithHol(g) =
G2 is the twisted connected sum construction, suggested by Donaldson, pioneered
by Kovalev [21] and later extended and improved by Kovalev–Lee [20] and Corti–
Haskins–Pacini-Nordström [6]. Here is a brief summary of this construction: A
building block consists of a projective 3-fold Z and a smooth anti-canonical K3
surface � ⊂ Z with trivial normal bundle (cf. Definition 2.10). Given a choice of
hyperkähler structure (ωI ,ωJ ,ωK ) on � such that [ωI ] is the restriction of a Käh-
ler class on Z , one can make V := Z \ � into an asymptotically cylindrical (ACyl)
Calabi–Yau 3-fold, that is, a non-compact Calabi–Yau 3-fold with a tubular endmod-
elled onR+ × S

1 × �, see Haskins–Hein–Nordström [13]. Then Y := S
1 × V is an

ACylG2-manifold with a tubular end modelled on R+ × T 2 × �.
When a pair (Z±, �±) of building blocks matches ‘at infinity’, in a suitable sense,

one can glue Y± by interchanging the S
1-factors. This yields a simply-connected

compact 7-manifold Y together with a family of torsion-free G2-structures (φT )T ≥T0 ,
see Kovalev [21, Sect. 4]. From the Riemannian viewpoint (Y,φT ) contains a “long
neck” modelled on [−T, T ] × T 2 × �+; one can think of the twisted connected sum
as reversing the degeneration of the family of G2-manifolds that occurs as the neck
becomes infinitely long. In [5, 6, 21], building blocks Z are produced by blowing
up Fano or semi-Fano 3-folds along the base curve C of an anticanonical pencil
(cf. Proposition 4.6). By understanding the deformation theory of pairs (X, �) of
semi-Fanos X and anticanonical K3 divisors � ⊂ X , one can produce hundreds of
thousands of pairs with the required matching (see Sect. 4.3).

This construction raises a natural programme in gauge theory, aimed at construct-
ing G2-instantons over compact manifolds obtained as a TCS, originally outlined in
[30]. If (Z , �) is a building block and E → Z holomorphic bundle such that E |� is
stable, then E |� carries a unique ASD instanton compatible with the holomorphic
structure [9]. In this situation E |V can be given a Hermitian–Yang–Mills (HYM)
connection asymptotic to the ASD instanton on E |� [33, Theorem 58], whose pull-
back over V to S

1 × V is a G2-instanton, i.e., a connection A on a G-bundle over a
G2-manifold such that FA ∧ ψ = 0 withψ := ∗φ. It is possible to glue a hypothetical
pair of such solutions into a G2-instanton over the compact twisted connected sum,
provided a number of technical conditions are met (cf. Theorem 3.1).

However, the hypotheses of our G2-instanton gluing theorem are rather restrictive
and it is not immediate to obtain suitable holomorphic bundles E± → Z± over the
matching blocks. In particular, a transversality condition over the K3 surface �± ‘at
infinity’ requires some more thorough understanding of the deformation theory of
data (Z±, �±, E±). Assuming the so-called rigid case in which the instantons that
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are glued are isolated points in their moduli spaces,Walpuski [39] was able to exhibit
one such example, by a different systematic approach.

Finally, in [24], we use the Hartshorne-Serre construction (cf. Theorem 4.1) to
obtain families of bundles over the building blocks. Our method allows one to gen-
erate a large number of examples for which the gluing is nontrivially transversal
(see Sect. 4.4.1). These are particularly relevant, because they open the possibility
of obtaining a conjectural instanton number on the G2-manifold X as a genuine
Lagrangian intersection within the moduli space MS+ over the K3 cross-section
along the neck, which can be addressed by enumerative methods in the future.

2 Background on G2-Geometry

Let us recall some G2-trivia, following the exposition in [31, 33]; of course the
immortal introductory references for the topic are [3, 17, 29]. Recall that a G2-
structure on an oriented smooth 7-manifold Y is a smooth 3-form φ ∈ �3 (Y ) such
that, at every point p ∈ Y , one has φp = r∗

p (φ0) for some frame rp : TpY → R
7 and

(with the sign conventions of [29])

φ0 = e567 + ω1 ∧ e5 + ω2 ∧ e6 + ω3 ∧ e7 (2.1)

with
ω1 = e12 − e34, ω2 = e13 − e42, and ω3 = e14 − e23.

Moreover, φ determines a Riemannian metric g(φ) induced by the pointwise inner-
product

〈u, v〉 e1...7 := −1

6
(u�φ0) ∧ (v�φ0) ∧ φ0. (2.2)

under which ∗φφ is given pointwise by

∗ φ0 = e1234 − ω1 ∧ e67 − ω2 ∧ e75 − ω3 ∧ e56. (2.3)

Such a pair (Y,φ) is a G2-manifold if dφ = 0 and d ∗φ φ = 0. Notice that the co-
closed condition is nonlinear in φ, since the Hodge star depends on the metric and
hence on φ itself.

2.1 Gauge Theory on G2-Manifolds

The G2-structure allows for a 7-dimensional analogue of conventional Yang-Mills
theory, yielding a notion analogous to (anti-)self-duality for 2-forms. Working in R7

under the usual identification between 2-forms and matrices, we have g2 ⊂ so (7) 

�2, so we define �2

14 := g2 and �2
7 its orthogonal complement in �2:
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�2 = �2
7 ⊕ �2

14. (2.4)

It is easy to check that �2
7 = 〈e1�φ0, . . . , e7�φ0〉, hence the orthogonal projection

onto �2
7 in (2.4) is given by

L∗φ0 : �2 → �6

η �→ η ∧ ∗φ0

in the sense that [3, p. 541]

L∗φ0 |�2
7
: �2

7 →̃ �6 and L∗φ0 |�2
14

= 0. (2.5)

Furthermore, since (2.4) splits �2 into irreducible representations of G2, a little
inspection on generators reveals that

(
�2

)
7
14
is respectively the −2

+1−eigenspace of the
G2-equivariant linear map

Tφ0 : �2 → �2

η �→ Tφ0η := ∗ (η ∧ φ0) .

2.1.1 Yang-Mills Formalism on G2-Manifolds

Consider now a G-bundle E → Y over a compact G2-manifold (Y,φ); the curvature
F := FA of some connection A decomposes according to the splitting (2.4):

FA = F7 ⊕ F14, Fi ∈ �2
i (Y, gE ), i = 7, 14,

where gE denotes the adjoint bundle associated to E . The L2-norm of FA is the
Yang-Mills functional, which therefore has two corresponding components:

Y (A) := ‖FA‖2 = ‖F7‖2 + ‖F14‖2. (2.6)

It is well-known that the values of Y (A) can be related to a certain characteristic
class of the bundle E , given (up to choice of orientation) by

κ (E) := −
∫

Y
tr

(
F2

A

) ∧ φ.

Using the property dφ = 0, a standard argument of Chern–Weil theory [26] shows
that the de Rham class

[
tr

(
F2

A

) ∧ φ
]
is independent of A, thus the integral is indeed

a topological invariant. The eigenspace decomposition of Tφ implies (up to a sign)

κ (E) = −2 ‖F7‖2 + ‖F14‖2 ,
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and combining with (2.6) we get

Y (A) = −1

2
κ (E) + 3

2
‖F14‖2 = κ(E) + 3 ‖F7‖2 .

HenceY (A) attains its absoluteminimumat a connectionwhose curvature lies either
in �2

7(Y, gE ) or in �2
14(Y, gE ). Moreover, since Y ≥ 0, the sign of κ(E) obstructs

the existence of one type or the other, so we fix κ(E) ≥ 0 and define G2-instantons as
connections with F ∈ �2

14(Y, gE ), i.e., such thatY (A) = κ(E). These are precisely
the solutions of the G2-instanton equation:

FA ∧ ∗φ = 0 (2.7a)

or, equivalently,
FA − ∗ (FA ∧ φ) = 0. (2.7b)

If instead κ(E) ≤ 0, we may still reverse orientation and consider F ∈ �2
14(Y, gE ),

but then the above eigenvalues and energy bounds must be adjusted accordingly,
which amounts to a change of the (−) sign in (2.7b).

2.1.2 The Chern–Simons Functional ϑ

It was pointed out by Simon Donaldson and Richard Thomas in their seminal article
on gauge theory in higher dimensions [12] that, formally, G2-instantons are rather
similar to flat connections over 3-manifolds; in particular, they are critical points
of a Chern–Simons functional and there is hope that counting them could lead to
a enumerative invariant for G2-manifolds not unlike the Casson invariant for 3-
manifolds, see [11, Sect. 6] and [38, Chap.6]. Although this interpretation has no
immediate bearing on the remainder of this material, let us briefly review the basic
formalism, from a purely motivational perspective.

Given a bundle over a compact 3-manifold, with space of connections A and
gauge group G , the Chern–Simons functional is a multi-valued real function on the
quotientB = A /G , with integer periods, whose critical points are precisely the flat
connections [8, Sect. 2.5]. Similar theories can be formulated in higher dimensions
in the presence of a suitable closed differential form [12, 34]; e.g. on a G2-manifold
(Y,φ), the coassociative 4−form ψ := ∗φ allows for the definition of a functional of
Chern–Simons type.1 Its ‘gradient’, the Chern–Simons 1-form, vanishes precisely at
the G2-instantons, hence it detects the solutions to the Yang-Mills equation [8]. The
explicit case of G2-manifolds, which we now describe, was examined in some detail
in [30, 31].

1In fact only the condition dψ = 0 is required, so the discussion extends to cases in which the
G2-structure is not necessarily torsion-free.
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The space A of connections on E → Y is an affine space modelled on �1 (gE )

so, fixing a reference connection A0 ∈ A ,

A = A0 + �1 (Y, gE )

and, accordingly, vectors at A ∈ A are 1-forms a, b, · · · ∈ TAA 
 �1 (Y, gE ) and
vector fields are maps α,β, · · · : A → �1 (Y, gE ). In this notation we define the
Chern–Simons functional by

ϑ (A) := 1
2

∫

Y
tr

(
dA0a ∧ a + 2

3
a ∧ a ∧ a

)
∧ ∗φ,

fixing ϑ (A0) = 0. This function is obtained by integration of the Chern–Simons
1−form

ρ (β)A :=
∫

Y
tr (FA ∧ βA) ∧ ∗φ. (2.8)

It is straightforward to check that the co-closedness condition d ∗ φ = 0 implies
that the 1−form (2.8) is closed, so the procedure doesn’t depend on the path A (t).
SinceA is contractible, by the Poincaré Lemma ρ is the derivative of some function
ϑ, and by Stokes’ theorem ρ vanishes along G−orbits im dA 
 TA {G.A}. Thus ρ
descends to the quotientB and so does ϑ, at least locally. Since ∗φ is not, in general,
an integral class, the set of periods of ϑ is actually dense; however, as long as our
interest remains in the study of the moduli space M = Crit(ρ) of G2-instantons,
there is no worry, for the gradient ρ = dϑ is unambiguously defined onB.

2.2 Analysis on Manifolds with Tubular Ends

In order to get some more depth into the instanton gluing process of Theorem 3.1,
we will need some general results from linear analysis on asymptotically cylindrical
manifolds (cf. Definition 2.3).

Definition 2.1 Amanifold with tubular end (M, X,π) is given by a smoothmanifold
M with a distinguished compact submanifold-with-boundary M0 ⊂ M , a Rieman-
nian manifold X , and a diffeomorphism

π : M∞ := M \ M0 → R+ × X.

The complement M∞ := M \ M0 is called the tubular end, π is the tubular model
and X is the asymptotic cross-section. 2

2The reader interested in analysis on tubular manifolds will find a thorough and very useful toolbox
in [27].
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Of course one could in principle consider, analogously,manifoldswith anynumber
of tubular ends but, in the context of G2-manifolds, the Ricci-flat geometry constrains
that number to one:

Theorem 2.2 ([28, Theorem 1]) If a connected and orientable manifold M with k
tubular ends admits a Ricci-flat metric, then k ≤ 2. Moreover k = 2 if, and only if,
M is a cylinder.

2.2.1 Geometric Structures on Manifolds with Cylindrical End

On a manifold with tubular end (M, X,π), we have the following natural maps on
differential forms (which clearly extend to any tensor fields):

�•(M)
res

�•(M∞)

π∗

�•(R+ × X)

By slight abuse of notation, given σ∞ ∈ �•(X), we will also denote by σ∞ its

pullback to the product under R+ × X
p2−→ X . Denoting by t the coordinate function

on R, we adopt the following notation for asymptotic behaviour:

• σ
δ� σ∞, if |∇k(π∗σ − σ∞)| ≤ O(e−δt ), t ∈ R+, ∀k ≥ 0, for a given δ > 0.

• σ � σ∞, if ∃δ > 0 such that σ
δ� σ∞.

Whenever σ � σ∞, σ is said to be asymptotically translation-invariant and σ∞ is
its asymptotic limit.

Definition 2.3 A manifold with tubular end (M, X,π) is said to be asymptotically
cylindrical (ACyl) if M is also aRiemannianmanifold and itsmetric gM is asymptotic
to the natural cylindrical metric on the tubular model: gM � gX + dt2. In this case,
we will call the map π : M∞ → R+ × X the cylindrical model.

Let E∞ → X be a Riemannian vector bundle. By slight abuse of notation we also
denote by E∞ its pullback to R+ × X . For k ∈ N0, α ∈ (0, 1) and δ ∈ R we define

‖ · ‖Ck,α
δ

:= ‖e−δt · ‖Ck,α ,

denoting by Ck,α
δ (X, E∞) the respective closure of C∞

0 (X, E∞). We set C∞
δ :=⋂

k Ck,α
δ .

Similarly, a Riemannian vector bundle E → M over an ACyl manifold (M, X,π)

is said to be asymptotic to E∞ → X if there is a bundle isomorphism π̄ : E |M∞ →
E∞ covering π such that the push-forward of the metric on E is asymptotic to
the metric on E∞ in the C∞

δ tubular norm above (for some δ > 0). Denote by
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t : M → [1,∞) a smooth positive functionwhich agreeswith t ◦ π onπ−1([1,∞) ×
X), and define

‖ · ‖Ck,α
δ

:= ‖e−δt · ‖Ck,α , δ ∈ R,

denoting by Ck,α
δ (M, E) the respective closure of C∞

0 (M, E).
Finally, a connection A ∈ A (E) is said to be asymptotic to A∞ ∈ A (E∞) if

(A − π̄∗ A∞) � 0 (the difference of two connections being a 1-form).We also denote
by A∞ its pullback to E∞ → R+ × X .

2.2.2 Asymptotically Translation-Invariant Operators on ACyl
Manifolds

Let us briefly review some spectral theory for elliptic operators on sections of vec-
tor bundles over an ACyl manifold M with asymptotic cross-section X . The pri-
mary references for the material in this section are Maz’ya–Plamenevskiı̆ [25] and
Lockhart–McOwen [22].

Let F → X be aRiemannian vector bundle, and let D : C∞(X, F) → C∞(X, F)

be a linear self-adjoint elliptic operator of first order. The operator

L∞ := ∂t − D

extends to a bounded linear operator L∞,δ : Ck+1,α
δ (X, F) → Ck,α

δ (X, F).

Theorem 2.4 ([25, Theorem 5.1]) L∞,δ is invertible if and only if δ /∈ spec(D).

Indeed, elements a ∈ ker L∞ can be expanded in terms of the δ-eigensections of
D, see [8, Sect. 3.1]:

a =
∑

δ∈specD

eδt aδ. (2.9)

Now let E → M be a (Riemannian) vector bundle asymptotic to F and consider
an elliptic operator

L : C∞
0 (M, E) → C∞

0 (M, E)

asymptotic to L∞, that is, such that the coefficients of L are asymptotic to the coeffi-
cients of L∞. The operator L extends to a bounded linear operator Lδ : Ck+1,α

δ (M, E)

→ Ck,α
δ (M, E).

Proposition 2.5 ([13, Proposition 2.4]) If δ /∈ spec(D), then Lδ is Fredholm.

Elements in the kernel of L still have an asymptotic expansion analogous to (2.9).
We need the following result which extracts the constant term of this expansion.
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Proposition 2.6 ([32, Prop. 3.5]) There is a constant δ0 > 0 such that, for all
δ ∈ [0, δ0], one has ker Lδ = ker L0 and there is a linear map ι : ker L0 → ker D
such that

a
δ0� ι(a).

In particular,
ker ι = ker L−δ0 .

2.3 Twisted Connected Sums

An important method to produce examples of compact 7-manifolds with holonomy
exactly G2 is the twisted connected sum (TCS) construction [5, 6, 21]. It consists
of gluing a pair of asymptotically cylindrical (ACyl) Calabi–Yau 3-folds obtained
from certain smooth projective 3-folds called building blocks (see Definition 2.7).
Combining results of Kovalev and Haskins–Hein–Nordström, each matching pair of
building blocks yields a one-parameter family of closed G2-manifolds.

A building block (Z , �) is given by a projective morphism ζ : Z → P
1 such

that � := ζ−1(∞) is a smooth anticanonical K3 surface, under some mild topolog-
ical assumptions (see Definition 2.10); in particular, � has trivial normal bundle.
Choosing a convenient Kähler structure on Z , one can make V := Z \ � into an
ACyl Calabi–Yau 3-fold (cf. Definition 2.9), that is, a non-compact Calabi–Yau
manifold with a tubular end modelled on R+ × S

1 × � [6, Theorem 3.4]. Then
S
1 × V is an ACyl G2-manifold (cf. Definition 2.15) with a tubular end modelled on

R+ × T
2 × �.

Definition 2.7 (cf. [6,Definition 3.9]) Let Z± be complex 3-folds,�± ⊂ Z± smooth
anticanonical K3 divisors and k± ∈ H 2(Z±) Kähler classes. We call a matching of
(Z+, �+,k+) and (Z−, �−,k−) a diffeomorphism r : �+ → �− such that r∗k− ∈
H 2(�+) and (r−1)∗k+ ∈ H 2(�−) have type (2, 0) + (0, 2).

Given a pair of building blocks (Z±, �±), a set of matching data is a collection
m = {(ωI,±,ωJ,±,ωK ,±

)
, r} consisting of a choice of hyper-Kähler structures on�±

such that [ωI,±] = k±|�± is the restriction of a Kähler class on Z± and a matching
r : �+ → �− such that

r∗ωI,− = ωJ,+, r∗ωJ,− = ωI,+ and r∗ωK ,− = −ωK ,+.

In this case (Z±, �±) are said to match via m and r is called a hyper-Kähler rotation
(see Remark 2.12 below).

Identifying a matching pair (Z±, �±) of building blocks by the hyper-Kähler
rotation between the K3 surfaces ‘at infinity’, the corresponding pair S1 × V± of
ACyl G2-manifolds is truncated at a large ‘neck length’ T and, intertwining the
circle components in the tori T2± along the tubular end, glued to form a compact
7-manifold (Fig. 1)
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×
S
1

V+

YT,+

[T,T+1]

×
S
1

V−

YT,−

Σ+
×
S
1

Σ−
×
S
1

r

Fig. 1 The twisted connected sum of a matching pair of building blocks

Y = Z+#rZ− := (
S
1 × V+

) ∪r

(
S
1 × V−

)
.

For large enough T0, this twisted connected sum Y carries a family of G2-structures
{φT }T ≥T0 with Hol(φT ) = G2 [6, Theorem 3.12]. The construction is summarised in
the following statement.

Theorem 2.8 ([6,Corollary 6.4]) Given a matching pair of building blocks (Z±, �±)

with Kähler classes k± ∈ H 1,1(Z±) such that (k+|�+)2 = (k−|�−)2, there exists
a family of torsion-free G2-structures {φT : T � 1} on the closed 7-manifold
Y = Z+#rZ−.

2.3.1 ACyl Calabi–Yau 3-folds from Building Blocks

The twisted connected sum in Theorem 2.8 is based on gluing ACyl G2-manifolds,
which arise as the product of an ACyl Calabi-Yau 3-fold with S1. Let us review how
to produce these from building blocks.

Definition 2.9 Let (V,ω,�) be a Calabi–Yau 3-fold with tubular end and asymp-
totic cross-section � × S

1 given by a hyper-Kähler surface (�,ωI ,ωJ ,ωK ). Then
V is called an asymptotically cylindrical Calabi-Yau 3-fold (ACylCY3) if

ω � dt ∧ dα + ωI ,

� � (dα − idt) ∧ (ωJ + iωK ),

where t and α denote the respective coordinates on R+ and S
1.

Numerous examples of ACylCY3 can be obtained from the following ingredients:

Definition 2.10 (Corti–Haskins–Nordström–Pacini [5, Definition 5.1]) A build-
ing block is a smooth projective 3-fold Z together with a projective morphism
ζ : Z → P

1 such that the following hold:

• The anticanonical class −K Z ∈ H 2(Z) is primitive.
• � := ζ−1(∞) is a smooth K3 surface and � ∼ −K Z .
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• Identifying H 2(�,Z) with the K3 lattice (i.e. choosing a marking for �), the
following embedding is primitive:

N := im(H 2(Z ,Z) → H 2(�,Z)) ↪→ H 2(�)

• The groups H 3(Z ,Z) and H 4(Z ,Z) are torsion-free.

In particular, building blocks are simply-connected [5, Sect. 5.1].

Remark 2.11 The existence of the fibration ζ : Z → P
1 is equivalent to � having

trivial normal bundle. This is crucial because it means that Z \ � has a cylindrical
end, given by an exponential radial coordinate in a tubular neighbourhood of �. The
last two conditions in the definition of a building block are not essential; they are
meant to facilitate the computation of certain topological invariants.

Remark 2.12 Given a matching r between a pair of building blocks (Z±, �±,k±),
one can make the choices in the definition of the ACyl Calabi-Yau structure so that
r becomes a hyper-Kähler rotation (cf. Definition 2.7) of the induced hyper-Kähler
structures [6, Theorem 3.4 & Proposition 6.2].

In his original work, Kovalev [21] used building blocks arising from Fano 3-folds
by blowing-up the base-locus of a generic anti-canonical pencil. This method was
extended to the much larger class of semi Fano 3-folds (a class of weak Fano 3-
folds) by Corti–Haskins–Nordström–Pacini (see Proposition 4.6 below). Kovalev–
Lee [20] construct building blocks starting from K3 surfaces with non-symplectic
involutions, by taking the productwithP1, dividingbyZ2 andblowingup the resulting
singularities. In every instance, one obtains an ACylCY3 by the following theorem:

Theorem 2.13 ([13, Theorem D]) Let (Z , �) be a building block and let (ωI ,ωJ ,

ωK ) be a hyper-Kähler structure on �. If [ωI ] ∈ H 1,1(�) is the restriction of a
Kähler class on Z, then there is an asymptotically cylindrical Calabi–Yau structure
(ω,�) on V := Z \ � with asymptotic cross section (�,ωI ,ωJ ,ωK ).

Remark 2.14 This result was first claimed by Kovalev in [21, Theorem 2.4]; see
the discussion in [13, Sect. 4.1].

2.3.2 Gluing ACyl G2-Manifolds

We may now describe the gluing of matching pairs of ACylG2-manifolds, obtained
from ACylCY3 given by Theorem 2.13.

Definition 2.15 Let (Y,φ) be a G2-manifold with tubular end and asymptotic cross-
section given by a compact Calabi–Yau 3-fold (W,ω,�). Then Y is called asymp-
totically cylindrical (ACyl) if

φ � dt ∧ ω + Re�,

where t denotes the coordinate on R+.
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Taking the product of an ACylCY3 (V,ω,�) with S
1, with coordinate β, yields

an ACylG2-manifold

(Y := S
1 × V,φ := dβ ∧ ω + Re�)

with asymptotic cross section

(W := T
2 × �,ω := dα ∧ dβ + ωK ,� := (dα − idβ) ∧ (ωJ + iωI )).

Let V± be a matching pair of ACylCY3 with asymptotic cross section �± and
suppose that r : �+ → �− is a hyper-Kähler rotation. A pair of ACylG2-manifolds
(Y±,φ±) with asymptotic cross sections (W±,ω±,�±) as above is said to match if
there exists a diffeomorphism

q : T
2 × �+ −→ T

2 × �−
f (α,β, x) := (β,α, r(x)).

such that
q∗ω− = −ω+ and q∗ Re�− = Re�+.

Remark 2.16 If q did not interchange the S
1-factors, then Y would have infinite

fundamental group and, hence, could not carry a metric with holonomy equal to G2

[17, Proposition 10.2.2].

Let (Y±,φ±) be a matching pair of ACylG2-manifolds. For fixed T ≥ 1, define

Q : [T, T + 1] × Z+ −→ [T, T + 1] × Z−
Q(t, z) := (2T + 1 − t, q(z))

and denote by YT the compact 7-manifold obtained by gluing Y± together at neck
length T via Q:

YT,± := (Y0)± ∪Q π−1
± ((0, T + 1] × Z±) .

Fix a non-decreasing smooth cut-off function χ : R → [0, 1] with χ(t) = 0 for
t ≤ 0 and χ(t) = 1 for t ≥ 1. Define a 3-form φ̃T on YT by

φ̃T = φ± − d[(χ(t − T + 1)(ω± − π∗
±ω∞,±))]

on YT,±. If T � 1, then φ̃T defines a closed G2-structure on YT . Clearly, all the YT

for different values of T are diffeomorphic; hence, we often drop the T from the
notation. The G2-structure φ̃T is not torsion-free yet, but can be made so by a small
perturbation:

Theorem 2.17 ([21, Theorem 5.34]) In the above situation there exist a constant
T0 ≥ 1 and, for each T ≥ T0, a 2-form ηT on YT such that φT := φ̃T + dηT defines
a torsion-free G2-structure and for some δ > 0
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‖dηT ‖C0,α = O(e−δT ). (2.10)

In summary, the TCS Theorem 2.8 is established by the following procedure. For
any building block (Z , �), the noncompact 3-fold V := Z \ � admits ACyl Ricci-
flat Kähler metrics (Theorem 2.13) hence an ACylCY3 structure whose asymptotic
limit defines a hyper-Kähler structure on�. Given amatching pair of suchCalabi-Yau
manifolds V±, one can apply Theorem 2.17 to glue S1 × V± into a closed manifold
Y with a 1-parameter family of torsion-free G2-structures [6, Theorem 3.12].

3 The G2-Instanton Gluing Theorem

Let A be an ASD instanton on a PU (n)-bundle F over a Kähler surface �. The
linearisation of the instanton moduli spaceM� near A is modelled on the kernel of
the deformation operator

DA := d∗
A ⊕ d+

A : �1(�, gF ) → (�0 ⊕ �+)(�, gF ).

Let F be the corresponding holomorphic vector bundle (cf. Donaldson–Kronheimer
[10]), and denote by f the Hitchin–Kobayashi isomorphism:

f : H 1(�,E nd0(F))
∼−→ H 1

A := kerDA. (3.1)

Theorem 3.1 ([32, Theorem 1.2]) Let Z± ,�±, k±, r, X and φT be as in Theorem
2.8. Let E± → Z± be a pair of holomorphic vector bundles such that the following
hold:

Asymptotic stability E±|�± is μ-stable with respect to k±|�± . Denote the corre-
sponding ASD instanton by A∞,±.

Compatibility There exists a bundle isomorphism r : E+|�+ → E−|�− covering the
hyper-Kähler rotation r such that r∗ A∞,− = A∞,+.

Inelasticity There are no infinitesimal deformations of E± fixing the restriction to
�±:

H 1(Z±,E nd0(E±)(−�±)) = 0. (3.2)

Transversality If λ± := f± ◦ res± : H 1(Z±,E nd0(E±)) → H 1
A∞,± denotes the

composition of restrictions to �± with the isomorphism (3.1), then the image
of λ+ and r∗ ◦ λ− intersect trivially in the linear space H 1

A∞,+ :

im(λ+) ∩ im(r∗ ◦ λ−) = {0} . (3.3)
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Then there exists a U (r)-bundle E over Y and a family of connections {AT : T � 1}
on the associated PU (r)-bundle, such that each AT is an irreducible unobstructed
G2-instanton over (Y,φT ).

The asymptotic stability assumption guarantees finite energy of Hermitian bun-
dle metrics on E±|V± (see [33, Sect. 2.2]), which are equivalent to asymptotically
translation-invariant HYM connections A± � A∞,±, under the Chern correspon-
dence (cf. Theorem 3.15). The maps λ+ and r∗ ◦ λ− can be seen geometrically as
linearisations of the natural inclusions of the moduli of asymptotically stable bundles
MZ± into the moduli of ASD instantonsM�+ over the K3 surface ‘at infinity’, and
we think of H 1

A∞,+ as a tangent model of M�+ near the ASD instanton A∞,+. Then
the transversality condition asks that the actual inclusions intersect transversally
at A∞,+ ∈ M�+ . That the intersection points are isolated reflects that the result-
ing G2-instanton is rigid, since it is unobstructed and the deformation problem has
index 0.

Remark 3.2 If H 1(�+, End0(E+|�+)) = {0}, then (3.3) is vacuous. If, moreover,
the topological bundles underlying E± are isomorphic, then the existence of r̄ is
guaranteed by [15, Theorem 6.1.6].

Furthermore, condition (3.2) yields a short exact sequence, which is self-dual
under Serre duality:

0 → H1(Z±, End0(E±)) → H1(�±, End0(E±|�± )) → H2(Z±, End0(E±)(−�±)) → 0.

This implies [36, p. 176 ff.] that each

im λ± ⊂ H 1
A∞,±

is a complex Lagrangian subspace with respect to the complex symplectic structure
induced by�± := ωJ,± + iωK ,± or, equivalently,Mukai’s complex symplectic struc-
ture on H 1(Z±, End0(E±)). Under the assumptions of Theorem 3.1 the moduli space
M�+ of holomorphic bundles over �+ is smooth near [E+|�+] and so are the moduli
spacesMZ± of holomorphic bundles over Z± near [E±]. Locally,MZ± embeds as a
complex Lagrangian submanifold intoM�± . Since r

∗ωK ,− = −ωK ,+, bothMZ+ and
MZ− can be viewed as Lagrangian submanifolds of M�+ with respect to the sym-
plectic form induced byωK ,+. Equation (3.3) asks for these Lagrangian submanifolds
to intersect transversely at the point [E+|�+]. If one thinks of G2-manifolds arising
via the twisted connected sum construction as analogues of 3-manifolds with a fixed
Heegaard splitting, then this is much like the geometric picture behind Atiyah–Floer
conjecture in dimension three [2].

In Sect. 4, we will review a constructive method to obtain explicit examples of
such instanton gluing in many interesting cases.
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3.1 Hermitian Yang-Mills Connections on ACyl CY 3-Folds

Suppose (W,ω,�) is Calabi–Yau 3-fold and (Y := R × W,φ := dt ∧ ω + Re�)

is the corresponding cylindrical G2-manifold. In this section we relate translation-
invariant G2-instantons over Y with Hermitian–Yang–Mills connections over W .

Definition 3.3 Let (W,ω) be a Kähler manifold and let E be a PU(n)-bundle over
W . A connection A ∈ A (E) on E is Hermitian–Yang–Mills (HYM) connection if

F0,2
A = 0 and �FA = 0. (3.4)

Here � is the dual of the Lefschetz operator L := ω ∧ ·.
Remark 3.4 Instead of working with PU(n)-bundles, one can also work with U(n)-
bundles and instead of the second part of (3.4) require that�FA be equal to a constant.
These view points are essentially equivalent.

Remark 3.5 By the first part of (3.4) a HYM connection induces a holomorphic
structure on E . If W is compact, then there is a one-to-one correspondence between
gauge equivalence classes of HYM connections on E and isomorphism classes of
polystable holomorphic bundles E whose underlying topological bundle is E , see
Donaldson [9] and Uhlenbeck–Yau [37].

On a Calabi–Yau 3-fold, (3.4) is equivalent to

FA ∧ Im� = 0 and FA ∧ ω ∧ ω = 0;

hence, using ∗(dt ∧ ω + Re�) = 1
2ω ∧ ω − dt ∧ Im� one easily derives:

Proposition 3.6 ([33, Proposition 8]) Denote by πW : Y → W the canonical pro-
jection. A is a HYM connection if and only if π∗

W A is a G2-instanton.

In general, if A is a G2-instanton on a G-bundle E over a G2-manifold (Y,φ),
then the moduli space M of G2-instantons near [A], i.e., the space of gauge equiv-
alence classes of G2-instantons near [A] is the space of small solutions (ξ, a) ∈(
�0 ⊕ �1

)
(Y, gE ) of the system of equations

d∗
Aa = 0 and dA+aξ − ∗(FA+a ∧ ψ) = 0

modulo the action of �A ⊂ G , the stabiliser of A, assuming either that Y is compact
or appropriate control over the growth of ξ and a. The infinitesimal deformation
theory of [A] is governed by that equation’s linearisation operator

L A :=
(

d∗
A

dA − ∗ (ψ ∧ dA)

)
: (

�0 ⊕ �1
)
(Y, gE ) → (

�0 ⊕ �1
)
(Y, gE ). (3.5)

Definition 3.7 A is called irreducible and unobstructed if L A is surjective.
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If A is irreducible and unobstructed, then M is smooth at [A]. If Y is compact,
then L A has index zero; hence, is surjective if, and only if, it is invertible; therefore,
irreducible and unobstructed G2-instantons form isolated points in M. If Y is non-
compact, the precise meaning of M and L A depends on the growth assumptions
made on ξ and a and M may very well be positive-dimensional.

Proposition 3.8 If A is HYM connection on a bundle E over a G2-manifold Y :=
R × W as in Proposition 3.6, then the operator Lπ∗

W A defined in (3.5) can be written
as

Lπ∗
W A = Ĩ∂t + DA

where

Ĩ :=
⎛

⎝
−1

1
I

⎞

⎠

and DA : (
�0 ⊕ �0 ⊕ �1

)
(W, gE ) → (

�0 ⊕ �0 ⊕ �1
)
(W, gE ) is defined by

DA :=
⎛

⎝
d∗

A
�dA

dA −IdA − ∗ (Im� ∧ dA)

⎞

⎠ . (3.6)

Definition 3.9 Let A be a HYM connection on a PU(n)-bundle E over a Kähler
manifold (W,ω). Set

Hi
A := ker

(
∂̄A ⊕ ∂̄∗

A : �0,i (W, End0(E)) → (
�0,i+1 ⊕ �0,i−1

)
(W, End0(E))

)
.

H0
A is called the space of infinitesimal automorphisms of A and H1

A is called the
space of infinitesimal deformations of A.

Remark 3.10 If W is compact, then Hi
A

∼= Hi (W, End0(E)) where E is the holo-
morphic bundle induced by A.

Proposition 3.11 If (W,ω,�) is a compact Calabi–Yau 3-fold and A is a HYM
connection on a G-bundle E → W , then

ker DA
∼= H0

A ⊕ H1
A

where DA is as in (3.6).

3.2 Gluing G2-Instantons over ACyl G2-Manifolds

Definition 3.12 Let (Y,φ) be an ACylG2-manifold and let A be a G2-instanton on
a G-bundle over (Y,φ) asymptotic to A∞. For δ ∈ R we set
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TA,δ := ker L A,δ =
{

a ∈ ker L A : a
δ� 0

}
.

where a = (ξ, a) ∈ (
�0 ⊕ �1

)
(Y, gE ). Set TA := TA,0.

Proposition 3.13 ([32, Propositions 3.22, 3.23]) Let (Y,φ) be anACylG2-manifold
and let A be a G2-instanton asymptotic to A∞. Then there is a constant δ0 > 0 such
that for all δ ∈ [0, δ0], TA,δ = TA and there is a linear map ι : TA → H0

A∞ ⊕ H1
A∞

such that
a

δ0� ι(a).

In particular, ker ι = TA,−δ0 .

Furthermore,

dim im ι = 1

2
dim

(
H0

A∞ ⊕ H1
A∞

)

and, if H0
A∞ = 0, then im ι ⊂ H1

A∞ is Lagrangian with respect to the symplectic
structure on H1

A∞ induced by ω.

Assume we are in the situation of Proposition 3.13; if moreover ker ι = 0 and
H0

A∞ = 0, then one can show that the moduli space MY of G2-instantons near [A]
which are asymptotic to some HYM connection is smooth. Although the moduli
space MW of HYM connections near [A∞] is not necessarily smooth, formally, it
still makes sense to talk about its symplectic structure and viewMY as a Lagrangian
submanifold. The following theorem shows that transverse intersections of a pair of
such Lagrangians give rise to G2-instantons.

Theorem 3.14 ([32, Theorem 3.24]) Let (Y±,φ±) be a pair of ACylG2-manifolds
that match via f : W+ → W−. Denote by (YT ,φT )T ≥T0 the resulting family of com-
pact G2-manifolds arising from the construction in Sect. 2.3.2. Let A± be a pair of
G2-instantons on E± over (Y±,φ±) asymptotic to A∞,±. Suppose the following hold:

• There is a bundle isomorphism f̄ : E∞,+ → E∞,− covering f such that f̄ ∗ A∞,−=
A∞,+,

• The maps ι± : TA± → ker DA∞,± constructed in Proposition 3.13 are injective and
their images intersect trivially

im (ι+) ∩ im
(

f̄ ∗ ◦ ι−
) = {0} ⊂ H0

A∞,+ ⊕ H1
A∞,+ . (3.7)

Then there exists T1 ≥ T0 and for each T ≥ T1 there exists an irreducible and unob-
structed G2-instanton AT on a G-bundle ET over (YT ,φT ).

Sketch of Proof One proceeds in three steps. We first produce an approximate G2-
instanton ÃT by an explicit cut-and-paste procedure. This reduces the problem to
solving the non-linear partial differential equation

d∗
Ãt

a = 0 and d ÃT +aξ + ∗T (FÃT +a ∧ ψT ) = 0. (3.8)
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for a ∈ �1(YT , gET ) and ξ ∈ �0(YT , gET ) where ψT := ∗φT . Under the hypotheses
of Theorem 3.14 one can solve the linearisation of (3.8) in a uniform fashion. The
existence of a solution of (3.8) then follows from a simple application of Banach’s
fixed-point theorem. �

3.3 From Holomorphic Bundles over Building Blocks to
G2-Instantons over ACyl G2-Manifolds

We now briefly explain how one may deduce Theorem 3.1 from Theorem 3.14.
Let (V,ω,�) be an ACylCY3 with asymptotic cross-section (�,ωI ,ωJ ,ωK ).

The following theorem can be used to produce examples of HYM connections A on
a PU(n)-bundle E → V asymptotic to an ASD instanton A∞ on a PU(n)-bundle
E∞ → � (here, by a slight additional abuse, we denote by E∞ and A∞ their respec-
tive pullbacks to R+ × S

1 × �). Hence, by taking the product with S
1, it yields

examples of G2-instantons π∗
V A asymptotic to π∗

� A∞ over the ACylG2-manifold
S
1 × V . Denote the canonical projections in this context by

πV : S
1 × V → V and π� : T

2 × � → �.

Theorem 3.15 ([33, Theorem 59] & [19, Theorem 1.1]) Let Z and � be as in
Theorem 2.13 and let (V := Z \ �,ω,�) be the resulting ACylCY3. Let E be a
holomorphic vector bundle over Z and let A∞ be an ASD instanton onE |� compatible
with the holomorphic structure. Then there exists a HYM connection A on E |V which
is compatible with the holomorphic structure on E |V and asymptotic to A∞.

Remark 3.16 The last assertion of the exponential decay A � A∞ is claimed in
[33, Theorem 59] but its proof in that reference is not satisfactory. That part of the
theorem is essentially superseded by [19, Theorem 1.1], which additionally extends
this existence result to singular G2-instantons, obtained from asymptotically stable
reflexive sheaves, following in spirit the argument in the compact case, by [4].

This together with Theorem 3.14 and the following result immediately implies
Theorem 3.1.

Proposition 3.17 ([32, Proposition 4.3]) In the situation of Theorem 3.15, suppose
H 0(�, End0(E |�)) = 0. Then

H1
π∗

� A∞ = H 1
A∞ (3.9)

and, for some small δ > 0, there exist injective linear maps κ− and κ such that the
following diagram commutes:
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Tπ∗
V A,−δ Tπ∗

V A H1
π∗

� A∞

H 1(Z , End0(E)(−�)) H 1(Z , End0(E)) H 1(�, End0(E |�)).

κ−

ι

κ ∼= (3.10)

Sketch of Proof Equation (3.9) is a direct consequence ofH0
A∞ = 0. If A is a HYM

connection asymptotic to A∞ over an ACylCY3 then there exists a δ0 > 0 such that,
for all δ ≤ δ0,

Tπ∗
V A,δ =

{
a ∈ ker DA : a

δ� 0
}

(3.11)

with DA as in (3.6). Furthermore, there exists δ1 > 0 such that, for all δ ≤ δ1, one
has H0

A,δ = 0 and
Tπ∗

V A,δ
∼= H1

A,δ

where Hi
A,δ :=

{
α ∈ Hi

A : α
δ� 0

}
. �

4 Transversal Examples via the Hartshorne-Serre
Correspondence

In [5, 6, 21], building blocks Z are produced by blowing up Fano or semi-Fano
3-folds along the base curve C of an anticanonical pencil (see Proposition 4.6). By
understanding the deformation theory of pairs (X, �) of semi-Fanos X and anti-
canonical K3 divisors � ⊂ X , one can produce hundreds of thousands of pairs with
the required matching (see Sect. 4.3). In order to apply Theorem 3.1 to produce
G2-instantons over the resulting twisted connected sums, one first requires some
supply of asymptotically stable, inelastic vector bundles E → X . Moreover, to sat-
isfy the hypotheses of compatibility and transversality, one would in general need
some understanding of the deformation theory of triples (X, �, E). In this Sect. I
outline our approach in [24] to the problem of production of ingredients, in the form
of gluable pairs of holomorphic bundles over building blocks.

The Hartshorne-Serre construction generalises the correspondence between divi-
sors and line bundles, under certain conditions, in the sense that bundles of higher
rank are associated to subschemes of higher codimension. We recall the rank 2 ver-
sion, as an instance of Arrondo’s formulation3 [1, Theorem 1]:

Theorem 4.1 Let S ⊂ Z be a local complete intersection subscheme of codimen-
sion 2 in a smooth algebraic variety. If there exists a line bundle L → Z such that

• H 2(Z ,L∗) = 0,

3For a thorough justification of this choice of reference for the correspondence, see the Introduction
section of Arrondo’s notes.
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• ∧2NS /Z = L|S , where NS /Z denotes the normal bundle of S in Z.

then there exists a rank 2 holomorphic vector bundle F → Z such that

1. ∧2F = L,
2. F has one global section whose vanishing locus is S .

We will refer to such F as the Hartshorne-Serre bundle obtained fromS (and L).

Using the Hartshorne-Serre construction, we can systematically produce families
of bundles over the building blocks, which, in favourable cases, are parametrised
by the building block’s blow-up curve C itself. This perspective lets us understand
the deformation theory of the bundles very explicitly, and it also separates the latter
from the deformation theory of the pair (X, �). We can therefore first findmatchings
between two semi-Fano families using the techniques from [6], and then exploit the
high degree of freedom in the choice of the blow-up curve C (see Lemma 4.7) to
satisfy the compatibility and transversality hypotheses.

4.1 A Detailed Example

As a proof of concept, we will henceforth walk through the process of construction
of examples, with the particular pair adopted in [24]:

Example 4.2 The product X+ = P
1 × P

2 is a Fano 3-fold. Let |�0, �∞| ⊂ ∣∣−K X+
∣∣

be a generic pencil with (smooth) base locusC+ and�+ ∈ |�0, �∞| generic. Denote
by r+ : Z+ → X+ the blow-up of X+ in C+, by C̃+ the exceptional divisor and by
�+ a fibre of p1 : C̃+ → C+. The proper transform of �+ in Z+ is also denoted by
�+, and (Z+, S+) is a building block by Proposition 4.6. For future reference, we
fix classes

H+ := r∗
+(

[
P
1 × P

1
]
) and G+ = r∗

+(
[{x} × P

2
]
) ∈ H 2(Z+).

NB.: Clearly −K X+ is very ample, thus also −K X+|�+ , so X+ lends itself to appli-
cation of Lemma 4.7.

Example 4.3 A double cover π : X−
2:1−→ P

1 × P
2 branched over a smooth (2, 2)

divisor D is a Fano 3-fold. Let |�0, �∞| ⊂ ∣
∣−K X−

∣
∣ be a generic pencil with (smooth)

base locus C− and �− ∈ |�0, �∞| generic. Denote by r− : Z− → X− the blow-up
of X− inC−, and by C̃− the exceptional divisor. The proper transform of�− in Z− is
also denoted by �−, and (Z−, S−) is a building block by Proposition 4.6. For future
reference, we fix classes

H− := (r− ◦ π)∗(
[
P
1 × P

1
]
) and G− = (r− ◦ π)∗(

[{x} × P
2
]
) ∈ H 2(Z−)

and
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h− := 1

2
(r− ◦ π)∗(

[{x} × P
1
]
) ∈ H 4(Z−),

where x is a point.

In that context, the existence of solutions satisfying the hypotheses of the TCS
G2-instanton gluing theorem takes the following form:

Theorem 4.4 ([24, Theorem 1.3]) There exists a matching pair of building blocks
(Z±, �±), obtained as Z± = BlC± X± for X+ = P

1 × P
2 and the double cover

X−
2:1−→ P

1 × P
2 branched over a (2, 2) divisor, with rank 2 holomorphic bundles

E± → Z± satisfying the hypotheses of Theorem 3.1.

Here’s a sketch of the procedure leading to Theorem 4.4:

• We construct holomorphic bundles on building blocks from certain complete inter-
section subschemes, via the Hartshorne-Serre correspondence (Theorem 4.1), as
well as two families of bundles {F± → X±}, over the particular blocks of Theorem
4.4, that are conducive to application of Theorem 3.1.

• Then, in Sect. 4.5, we focus on the moduli space M s
�+,A+(v�+) of stable bundles

on �+, where the problems of compatibility and transversality therefore “take
place”. Here X+ = P

1 × P
2, �+ ⊂ X+ is the anti-canonical K3 divisor and, for a

smooth curveC+ ∈ |−K X+|�+|, the block Z+ := BlC+ X+ is in the family obtained
from Example 4.2.
It can be shown thatM s

�+,A+(v�+) is isomorphic to �+ itself, and that the restric-
tions of the family of bundles F+ correspond precisely to the blow-up curve C .
Now, given a rank 2 bundleF+ → Z+ such that G := F+|�+ ∈ M s

�+,A+(v�+), the
restriction map

res : H 1 (Z+,E nd0(F+)) → H 1(�+,E nd0(G)) (4.1)

corresponds to the derivative at F+ of the map between instanton moduli spaces.
Combining with Lemma 4.7, which guarantees the freedom to choose C+ when
constructing the block Z+ from �+, one has:

Theorem 4.5 ([24, Theorem 1.4]) For every G ∈ M s
�+,A+(v�+) and every line

V ⊂ H 1(�+,E nd0(G)), there is a smooth base locus curve C ∈ |−K X+|�+| and an
exceptional fibre � ⊂ C̃ corresponding by Hartshorne-Serre to an inelastic vector
bundle F+ → Z+, such that F+|�+ = G and the restriction map (4.1) has image V .

• Let r : �+ → �− be a matching between X+ = P
1 × P

2 and X−
2:1−→ P

1 × P
2.

Then for anyF− → Z− as abovewe can (up to a twist by holomorphic line bundles
R± → Z±) choose the smooth curve C+ ∈ |−K X+|�+| in the construction of Z+
so that there is a Hartshorne-Serre bundleF+ → Z+ that matchesF− transversely.
Then the bundles E± := F± ⊗ R± satisfy the gluing hypotheses of Theorem 3.1.
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4.2 Building Blocks from Semi-Fano 3-Folds and Twisted
Connected Sums

For all but 2 of the 105 families of Fano 3-folds, the base locus of a generic anti-
canonical pencil is smooth. This also holds for most families in the wider class of
‘semi-Fano 3-folds’ in the terminology of [5], i.e. smooth projective 3-folds where
−K X defines a morphism that does not contract any divisors. We can then obtain
building blocks using [6, Proposition 3.15]:

Proposition 4.6 Let X be a semi-Fano 3-fold with H 3(X,Z) torsion-free, |�0,

�∞| ⊂ | − K X | a generic pencil with (smooth) base locusC , � ∈ |�0, �∞| generic,
and Z the blow-up of X at C . Then � is a smooth K3 surface, its proper transform
in Z is isomorphic to �, and (Z , �) is a building block. Furthermore

1. the image N of H 2(Z ,Z) → H 2(�,Z) equals that of H 2(X,Z) → H 2(�,Z);
2. H 2(X,Z) → H 2(�,Z) is injective and the image N is primitive in H 2(�,Z).

Let us notice for later use that, whenever −K X |� is very ample, it is possible
to ‘wiggle’ a blow-up curve C so as to realise any prescribed incidence condition
(x, V ) ∈ T �. This fact will play an important role in the transversality argument in
Sect. 4.5.

Lemma 4.7 ([24, Lemma 2.5]) Let X be a semi-Fano, � ∈ |−K X | a smooth K3
divisor, and suppose that the restriction of −K X to � is very ample. Then given any
point x ∈ � and any (complex) line V ⊂ Tx�, there exists an anticanonical pencil
containing � whose base locus C is smooth, contains x, and TxC = V .

Finally, note that if X± is a pair of semi-Fanos and r : �+ → �− is a matching
in the sense of Definition 2.7, then r also defines a matching of building blocks
constructed from X± using Proposition 4.6. Thus given a pair of matching semi-
Fanos we can apply Theorem 2.8 to construct closed G2-manifolds, but this still
involves choosing the blow-up curves C±.

4.3 The Matching Problem

We now explain in more detail the argument of [6, Sect. 6] for finding matching
building blocks (Z±, �±). The blocks will be obtained by applying Proposition 4.6
to a pair of semi-Fanos X±, from some given pair of deformation types X±.

A key deformation invariant of a semi-Fano X is its Picard lattice Pic(X) ∼=
H 2(X;Z). For any anticanonical K3 divisor � ⊂ X , the injection Pic(X) ↪→
H 2(�;Z) is primitive. The intersection form on H 2(�;Z) of any K3 surface is iso-
metric to L K3 := 3U ⊕ 2E8, the unique even unimodular lattice of signature (3, 19).
We can therefore identify Pic(X) with a primitive sublattice N ⊂ L K3 of the K3 lat-
tice, uniquely up to the action of the isometry group O(L K3) (this is usually uniquely
determined by the isometry class of N as an abstract lattice).
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Given a matching r : �+ → �− between anticanonical divisors in a pair of semi-
Fanos, we can choose the isomorphisms H 2(�±;Z) ∼= L K3 compatible with r∗,
hence identify Pic(X+) and Pic(X−) with a pair of primitive sublattices N+, N− ⊂
L K3. While the O(L K3) class of N± individually depends only on X±, the O(L K3)

class of the pair (N+, N−) depends on r, and we call (N+, N−) the configuration of
r. Many important properties of the resulting twisted connected sum only depend on
the hyper-Kähler rotation in terms of the configuration.

Given a configuration N+, N− ⊂ L K3, let

N0 := N+ ∩ N−, and R± := N± ∩ N⊥
∓ .

We say that the configuration is orthogonal if N± are rationally spanned by N0 and
R± (geometrically, this means that the reflections in N+ and N− commute). Given
a pair X± of deformation types of semi-Fanos, then there are sufficient conditions
for a given orthogonal configuration to be realised by some matching [6, Proposition
6.17],

Proposition 4.8 i.e., so that there exist X± ∈ X±, �± ∈ |−K X±|, and a matching
r : �+ → �− with the given configuration.

Now consider the problem of findingmatching bundles E± → Z± in order to con-
struct G2-instantons by application of Theorem 3.1. For the compatibility hypothesis
it is obviously necessary that Chern classes match:

c1(E+|�+) = r∗c1(E−|�−) ∈ H 2(�+).

Identifying H 2(�+;Z) ∼= L K3
∼= H 2(�−;Z) compatibly with r∗, this means we

need
c1(E+|�+) = c1(E−|�−) ∈ N+ ∩ N− = N0.

Hence, if N0 is trivial, both c1(E±|�±) must also be trivial, which is a very restrictive
condition on our bundles. To allow more possibilities, we want matchings r whose
configuration N+, N− ⊂ L K3 has non-trivial intersection N0.

Table4 of [7] lists all 19 possible suchmatchings with Picard rank 2, amongwhich
we can find the pair of building blocks of Examples 4.2 and 4.3, coming from the

Fano 3-folds X+ = P
1 × P

2 and the double cover X−
2:1−→ P

1 × P
2 branched over

a (2, 2) divisor. Several other choices would be possible to produce examples of
G2-instantons.
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4.4 Hartshorne-Serre Bundles over Building Blocks

4.4.1 The General Construction Algorithm

Let X be a semi-Fano 3-fold and (Z , �) be the block constructed as a blow-up of
X along the base locus C of a generic anti-canonical pencil (Proposition 4.6). In
[24, Sect. 3.1] a general approach is provided for making the choices of L andS in
Theorem 4.1, in order to construct a Hartshorne-Serre bundle F → Z which, up to
a twist, yields the bundle E meeting the requirements of Theorem 3.1. The approach
may be summarised as follows:

Summary 4.9 Let (Z±, �±) be the building blocks constructed by blowing-up N±-
polarised semi-Fano 3-folds X± along the base locus C± of a generic anti-canonical
pencil (cf. Proposition 4.6). Let N0 ⊂ N± be the sub-lattice of orthogonal matching,
as in Sect.4.3. Let A± be the restriction of an ample class of X± to �± which
is orthogonal to N0. We look for the Hartshorne-Serre parameters S± and L± of
Theorem 4.1, where S+ = � is an exceptional fibre in Z+, S− is a genus 0 curve in
Z− and L± → Z± are line bundles such that:

1. c1(L±) ∈ N0 mod 2Pic(�±);
2. c1(L±|�±) · A± > 0;
3. χ(L∗±) ≤ 0;
4. c1(L+) · S+ = −1 and (S− − c1(L−)) · S− = 2;
5. c1(L+|�+)2 = −4 and �− · S− − 1

4c1(L−|�−)2 = 2;

Finally, among candidate data satisfying these constraints, inelasticity must be
arranged “by hand’.

The reader who would like to construct other examples might follow this 4-step
programme:

Step 1. Find two matching N±-polarized semi-Fano 3-folds X± such that:

(i) there exists x ∈ N+ such x2 = −4 (or more generally x2 = 2k − 6, for a moduli
space M s

�,A(v) of dimension 2k).
(ii) there exists a primitive element y ∈ N0 such that y2 ≤ −8 and 4 divides y2.

Step 2. FindL± andS− which verify the conditions of Summary 4.9 (perhaps with
a computer).

Step 3. The following must be checked by ad-hoc methods:

1. H 2(L∗±) = 0, for the Hartshorne-Serre construction (Theorem 4.1);
2. divisors with small slope do not containS , for asymptotic stability ([16, Propo-

sition 10]);
3. h1(L∗) = h1(F) = 0 and the dimensional constraint (4.2) for your choice of

dimM s
�,A(v), corresponding to inelasticity (Proposition 4.15).

Step 4. Conclude with similar arguments to Sect. 4.5.
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4.4.2 Construction of F+ over X+ = P
1 × P

2 and F− over

X−
2:1−→ P

1 × P
2

In view of the constraints in Summary 4.9, we apply Theorem 4.1 to Z+ = BlC X+
as above, obtained by blowing up X+ = P

1 × P
2 from Example 4.2, with parameters

S = � and L = OZ+(−�+ − G+ + H+).

Proposition 4.10 ([24, Propositions 3.5, 4.4, 5.7]) Let (Z+, �+) be a building block
as in Example 4.2,C a pencil base locus and � ⊂ Z+ an exceptional fibre of C̃ → C .
There exists a rank 2 asymptotically stable and inelastic Hartshorne-Serre bundle
F+ → Z+ obtained from � such that

1. c1(F+) = −�+ − G+ + H+, and
2. F+ has a global section whose vanishing locus is a fibre � of p1 : C̃ → C .

Similarly, one applies Theorem 4.1 to the building block Z− obtained by blowing

up X−
2:1−→ P

1 × P
2, from Example 4.3, with

[S ] = h− and L = OZ−(G−).

Proposition 4.11 ([24, Propositions 3.9, 4.5, 5.8]) Let (Z−, �−) be a building block
provided in Example 4.3 and S a line of class h−. There exists a rank 2 Hartshorne-
Serre bundle F− → Z− obtained from S such that:

1. c1(F−) = G−, and
2. F− has a global section whose vanishing locus is S , where [S ] = h−.

Remark 4.12 In order to check the stability of Hartshorne-Serre bundles over �±,
we use a tailor-made instance [16, Proposition 10] of a more general Hoppe-type
stability criterion for holomorphic bundles over so-called polycyclic varieties, whose
Picard group is free Abelian [16, Corollary 4].

In the context above, the moduli spaces of the stable bundles F±|�± have the
‘minimal’ positive dimension, for transversal intersection to occur:

Proposition 4.13 Let (Z±, �±) be the building block provided in Examples 4.2 and
4.3, and let F± → Z± be the asymptotically stable bundles constructed in Proposi-
tions 4.10 and 4.11. Let M s

�±,A±(v±) be the moduli space of A±-stable bundles on
�± with Mukai vector v± = v(F±|�±). We have:

dimM s
�±,A±(v±) = 2.
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Recall that (see eg. [14]) that the Mukai vector of a vector bundle F → � on a
K3 surface is defined as

v(F) := (rkF , c1(F), χ(F) − rkF) ∈ (
H 0 ⊕ H 2 ⊕ H 4

)
(�,Z),

with χ(F) = c1(F)2

2 + 2 rkF − c2(F).

4.4.3 Inelasticity of Asymptotically Stable Hartshorne-Serre Bundles

These results hold for general building blocks and may be of independent interest.
Recall that a bundle F over a building block (Z , �) is inelastic if

H 1(Z ,E nd0(F)(−�)) = 0.

This condition means that there are no global deformations of the bundle F which
maintain F|� fixed at infinity. The following characterisation of inelasticity, in the
case of asymptotically stable bundles, relates the freedom to extendF and the dimen-
sion of the moduli spaceM s

�,A(vF ). The proof uses Serre duality and Maruyama’s
characterisation of the moduli space of stable bundles over a polarised K3 surface
[23, Proposition 6.9].

Proposition 4.14 Let (Z , �) be a building block and F an asymptotically stable
bundle on Z. Let M s

�,A(v) be the moduli space of A-μ-stable bundles on � with
Mukai vector v = v(F|�). Then F is inelastic if and only if

dim Ext1(F ,F) = 1

2
dimM s

�,A(v).

For Hartshorne-Serre bundles of rank 2 satisfying certain topological hypotheses,
we may express the half-dimension of the moduli space in terms of the construction
data:

Proposition 4.15 Let (Z , �) be a building block, and let F → Z be an asymp-
totically stable Hartshorne–Serre bundle obtained from a genus 0 curve S ⊂ Z
and a line bundle L → Z as in Theorem 4.1. Let M s

�,A(v) be the moduli space of
A-μ-stable bundles on � with Mukai vector v = v(F|�). We assume:

1. H 1(L∗) = 0,
2. H 1(F) = 0.

Then F is inelastic if and only if

1

2
dimM s

�,A(v) = dim H 0(N ∗
S /Z ⊗ L|S ) − dim H 0(F) + 1. (4.2)
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4.5 Proof of Theorem 4.5

Let X+ = P
1 × P

2 as in Example 4.2, and�+ ⊂ X+ be a smooth anti-canonical K3
divisor. For suitable choices of polarisationA+ on�+ andMukai vectorv�+ , the asso-
ciated moduli space M s

�+,A+(v�+) of (rank 2) A+-stable bundles is 2-dimensional.
For a smooth curve C ∈ |−K X+|�+|, let Z+ := BlC X+ be the building block result-
ing from Proposition 4.6. Then, for each exceptional fibre � ⊂ C̃ , the Mukai vector

vZ+ := (2,−�+ − G+ + H+, �) ∈ (
H 0 ⊕ H 2 ⊕ H 4

)
(Z+,Z)

has the property that, given a bundle F+ → Z+ as in Proposition 4.10 with
(rkF+, c1(F+), c2(F+)) = vZ+ , the restriction to �+ has Mukai vector v�+ , so
G := F+|�+ ∈ M s

�+,A+(v�+). Thus the Hartshorne-Serre construction yields a fam-
ily of asymptotically stable vector bundles {(F+)p → Z+ | p ∈ C } with

(rkF+, c1(F+), c2(F+)) = vZ+ (4.3)

parametrised by C itself.
One crucial feature of the building block obtained from X+ = P

1 × P
2 is the fact

that the moduli space of bundles over the anti-canonical K3 divisor �+ is actually
isomorphic to �+ itself:

Proposition 4.16 ([24, Lemma 4.7 & Proposition 4.8]) For each p ∈ �+, there
exists an A+-μ-stable and rank 2 Hartshorne-Serre bundle Gp → �+ obtained from
p. The induced map

g : �+ −→ M s
�+,A+(v�+)

p �−→ Gp

is an isomorphism of K3 surfaces.

Now let G ∈ M s
�+,A+(v�+) and V ⊂ H 1(�+,E nd0(G)). From Proposition 4.16,

there is p ∈ �+ such that G = Gp and let V ′ = (dg)−1
p (V ). Since −K X+|�+ is very

ample (see Example 4.2), Lemma 4.7 allows the choice of a smooth base locus curve
C ∈ |−K X+|�+| such that p ∈ C and TpC = V ′. By Proposition 4.10, we can find
a family {(F+)q → Z | q ∈ C } of holomorphic bundles parametrised by C , with
prescribed topology (4.3) and (F+|�)q = Gq . Such a bundleF+ has therefore all the
properties claimed in Theorem 4.5.

Corollary 4.17 ([24, Cor. 6.1]) In the context of Example 4.2, for every bundle G ∈
M s

�+,A+(v�+) and every complex line V ⊂ H 1(�+,E nd0(G)), there are a smooth
curve C+ ∈ |−K X+|�+| and an asymptotically stable and inelastic vector bundle
E+ → Z+ such that E+|�+ = G and res : H 1(Z+,E nd0(E+)) → H 1(�+,E nd0(G))

has image V .

Let
E− := F− ⊗ OZ−(−H− + 2G−).



346 H. Sá Earp

Corollary 4.18 ([24, Cor. 6.2]) In the context of Example 4.3, there exists a family
of asymptotically stable and inelastic vector bundles {E− → Z−}, parametrised by
the set of the lines in X− of class h−, such that E−|�− ∈ M s

�−,A−(v�−).

We fix a representative E− → Z− in the family of holomorphic bundles from
Corollary 4.18, to be matched by a bundle E+ → Z+ given by Corollary 4.17, so
that asymptotic stability and inelasticity hold from the outset.

It remains to address compatibility and transversality. Since the chosen con-
figuration for r ensures that r∗ identifies the Mukai vectors of E±|�± , it induces a
map r̄∗ : M s

�−,A−(v′
�−) → M s

�+,A+(v′
�+). In particular, the target moduli space is

2-dimensional, by Proposition 4.13, and r∗(im res−) is 1-dimensional, since the bun-
dles {E−} are parametrised by lines of fixed class h−. So indeed we apply Corollary
4.17 with G = r̄∗(E−|�−) and any choice of a direct complement subspace V such
that

V ⊕ r̄∗(im res−) = H 1 (
�+,E nd0

(
r̄∗(E−|�−)

))
.

Denoting by M�±(v) the moduli space of ASD instantons over �± with Mukai
vector v, the maps f± (cf. (3.1)) in Theorem 3.1 are the linearisations of the Hitchin-
Kobayashi isomorphisms

M s
�±,A±(v′

�±) 
 M�±(v′
�±).

Therefore, our bundles E± indeed satisfy A∞,+ = r̄∗ A∞,− for the corresponding
instanton connections. Moreover, by linearity, λ+(H 1(Z+,E nd0(E+))) is transverse
inTA∞,+M�+(v′

�+) to the imageof the real 2-dimensional subspaceλ−(H 1(Z−,E nd0

(E−))) ⊂ TA∞,−M�−(v′
�−) under the linearisation of r̄∗.
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Complex and Calibrated Geometry

Kim Moore

Abstract This is an expository article based on a talk given by the author at the Fields
Institute in August 2017 for the Workshop on G2 manifolds and related topics. The
aim of the article is to review some recent results of the author [11] investigating the
relationship between calibrated and complex geometry.

1 Introduction

Let M be a four-dimensional Calabi–Yau manifold with Ricci-flat Kähler form ω
and holomorphic volume form �. Since Hol(ω) ⊆ SU (4) ⊆ Spin(7), we can think
of M as a Spin(7)-manifold. In this case, the Spin(7)-form or Cayley calibration is
given by

� = 1

2
ω ∧ ω + Re �.

In particular, we can see from the above expression that (M ,�) has two special
types of Cayley submanifold: two-dimensional complex submanifolds (calibrated
by 1

2ω ∧ ω) and special Lagrangian submanifolds (calibrated by Re �).
Of course,M may admit Cayley submanifolds that are neither complex nor special

Lagrangian. One might ask whether such submanifolds can or must be built out of
complex and special Lagrangian submanifolds. In this expository article, we will
consider the following problem.

Given a compact complex submanifold N of a Calabi–Yau four-fold M , can one
deform N as a Cayley submanifold into a Cayley submanifold N ′ that is not complex?

Of course, it is straightforward to see that the answer to this question is no by the
following result of Harvey and Lawson.

Proposition 1.1 ([3, II.4Thm4.2])Let X be a Riemannian manifold with calibration
α and let Y be a compact α-calibrated submanifold of X . Let Y ′ be any other compact
submanifold of X homologous to Y . Then
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vol(Y ) ≤ vol(Y ′),

with equality if, and only if, Y ′ is also α-calibrated.

Therefore, if N is a two-dimensional compact complex submanifold of a Calabi–
Yau four-fold M , given N ′ a Cayley deformation of N we have that both

vol(N ) ≤ vol(N ′),

applying Proposition1.1 to N and N ′ with calibration 1
2ω ∧ ω, and

vol(N ′) ≤ vol(N ),

applying Proposition1.1 to N ′ and N with the Cayley calibration �. But then we
must have vol(N ) = vol(N ′) and so Proposition1.1 with calibration 1

2ω ∧ ω tells us
that N and N ′ must both be complex submanifolds.

In this article,we explore the geometric reasons for this result, and the implications
for complex submanifold theory. The material in this article is based on the author’s
PhD thesis [12] and paper [11].

2 Deformation Theory of Calibrated Submanifolds

Given amanifoldwith a calibration, onewould like to be able to describe its calibrated
submanifolds. One way of doing this is to study the moduli space of a certain type of
calibrated submanifold. The first study of a moduli space of calibrated submanifolds
may be attributed to Kodaira [6], who studied the moduli space of compact complex
submanifolds of a complex manifold, which we describe in Sect. 2.1 below, although
this result predates the definition of calibration by some twenty years! Later, moti-
vated byCalibrated geometries,McLean [10] sought to prove analogues ofKodaira’s
result for calibrated submanifolds inside manifolds with special holonomy. We will
review McLean’s results on compact Cayley submanifolds in Sect. 2.2.

2.1 Kodaira’s Deformation Theory of Compact Complex
Submanifolds

Kodaira’s approach to the deformation theory of complex submanifolds uses tech-
niques from algebraic geometry. His approach is completely different from the later
method of McLean, but it will be interesting to quote and interpret Kodaira’s result
here in order to compare to our work later.

Let M be a complex manifold with compact complex submanifold N . Denote
by H k(N , ν1,0

M (N )) the kth sheaf cohomology group of the sheaf of holomorphic
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sections of the holomorphic normal bundle of N in M . Define the moduli space M
of complex deformations of N in M to be the set of complex submanifolds N ′ of M
so that there exists a diffeomorphism N → N ′ isotopic to the identity.

Theorem 2.1 ([6, Main Thm]) Let M be a complex manifold with compact complex
submanifold N . If H 1(N , ν1,0

M (N )) = 0, then M is a smooth manifold of dimension
dimRH 0(N , ν1,0

M (N )).

Remark We call H 0(N , ν1,0
M (N )) the infinitesimal complex deformations of N , and

H 1(N , ν1,0
M (N )) the obstruction space. Note that the vanishing of the obstruction

space is sufficient, but not necessary.

We can apply Dolbeault’s theorem [2, pg 45] and the Hodge decomposition the-
orem [4, Thm 4.1.13, Cor 4.1.14] to rephrase Kodaira’s theorem in terms of a differ-
ential operator.

Corollary 2.2 Let M be a complex manifold with compact complex submanifold
N . Then the space of infinitesimal complex deformations of N is isomorphic to the
kernel of

∂̄ : C∞(ν1,0
M (N )) → C∞(�0,1N ⊗ ν1,0

M (N )).

Moreover, the obstruction space is isomorphic to the kernel of

∂̄ + ∂̄∗ : C∞(�0,1N ⊗ ν1,0
M (N )) → C∞(�0,2N ⊗ ν1,0

M (N ) ⊕ ν1,0
M (N )).

2.2 McLean’s Deformation Theory of Compact Cayley
Submanifolds

McLean’s goal in his 1998 paper [10] was to prove analogous results to Kodaira’s
Theorem2.1 for compact calibrated submanifolds of manifolds with special holon-
omy. In particular,McLean proved the following result on themoduli space of Cayley
deformations of a compact Cayley submanifold that admits a spin structure.

Theorem 2.3 ([10, Thm 6-3]) Let Y be a compact Cayley submanifold of a Spin(7)-
manifold X , and suppose that Y admits a spin structure. Then there exists a rank
two complex vector bundle A over Y so that the Zariski tangent space to the moduli
space of Cayley deformations of Y in X is given by the kernel of the twisted Dirac
operator

/D : C∞(S+ ⊗ A) → C∞(S− ⊗ A),

where S+ and S− are respectively the bundles of positive and negative spinors on Y .

Here, elements of the kernel of /D are called infinitesimal deformations, while the
cokernel of /D is called the obstruction space. This is because if the obstruction space
is trivial, then the moduli space of Cayley deformations is a smooth manifold.
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Sketch proof By the work of Harvey and Lawson [3, IV.1.C Cor 1.29] there exists a
bundle-valued differential form τ ∈ �4(�2

7) onX , where�2
7 is the seven dimensional

representation of Spin(7) acting on two-forms on X , satisfying for any oriented four-
dimensional submanifold W of X ,

τ |W ≡ 0,

if, and only if, W is a Cayley submanifold (up to a choice of orientation on W ). This
bundle-valued four-form can be described succinctly by the following expression.
For orthogonal tangent vectors x, y, z, w define

τ (x, y, z, w) = π7(�( · , y, z, w) ∧ x�), (2.1)

where π7 : �2X → �2
7 is the projection map given by

π7(u
� ∧ v�) = 1

2
(u� ∧ v� + �(u, v, · , · ))

and � : TX → T ∗X denotes the musical isomorphism. Recall that if Y is a Cayley
submanifold, then we can view [10, pg 741] �2+Y as a subbundle of �2

7|Y via the
map α → π7(α). We will denote by E the orthogonal complement to �2+Y in �2

7|Y ,
so that

�2
7|Y ∼= �2

+Y ⊕ E.

The tubular neighbourhood theorem [8, IV Thm 5.1] allows us to identify small
normal vector fields on Y with small deformations of Y . If v is a normal vector
field on Y , write expv := exp ◦v : Y → X , with Yv := expv(Y ), the deformation
corresponding to v. Then we can identify the moduli space of Cayley deformations
of Y in X with the zero set of the following partial differential operator:

F : C∞(νX (Y )) → C∞(E),

v → πE(∗ exp∗
v(τ |Yv

)), (2.2)

where ∗ denotes the Hodge star of Y and πE : �2
7|Y → E denotes the projection map.

The linear part of the operator at zero is

dF |0(v) = d

dt

∣
∣
∣
∣
t=0

F(tv) = πE(∗Lvτ |Y ).

This can be computed explicitly as the following operator (see for example [13,
Prop 2.3]). Let {e1, e2, e3, e4} be an orthonormal frame for TX , with dual coframe
{e1, e2, e3, e4}. Define
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D : C∞(νX (Y )) → C∞(E),

v →
4

∑

i=1

π7(e
i ∧ ∇⊥

ei
v), (2.3)

where ∇⊥ is the connection on the normal bundle of Y in X induced by the Levi-
Civita connection of X . To deduce McLean’s result, first observe that [10, pg 741]
there exists a rank two complex vector bundle A so that

νX (Y ) ⊗ C ∼= S+ ⊗ A

E ⊗ C ∼= S− ⊗ A.

Then McLean’s result may be deduced by showing that the following diagram
commutes

C∞(S+ ⊗ A) C∞(S− ⊗ A)

C∞(νM (N ) ⊗ C) C∞(E ⊗ C)

/D

D

��
To study the kernel of the operator defined in (2.2), we can extend the map F to

some Banach spaces and try to apply the Banach space implicit function theorem
[7, Ch 6 Thm 2.1]. To do this, we first need the linear part of F , which is the map
D defined in (2.3), to be Fredholm, which it is since D is elliptic and Y is compact.
Moreover we need D to surject, which unfortunately is not true in general. The
cokernel of D describes the subspace of C∞(E) that D does not reach, and hence
obstructions to elements of the kernel of D, infinitesimal Cayley deformations of Y ,
to be extended to true Cayley deformations of Y . However, if the obstruction space
vanishes, then we may apply the implicit function theorem and deduce that every
infinitesimal Cayley deformation of Y extends to a true Cayley deformation of Y .

3 Cayley Deformations of Compact Complex Submanifolds

Wenow focus onCayley deformations of a compact complex surface inside aCalabi–
Yau four-fold. We saw in the introduction that it is very easy to see from the work
of Harvey and Lawson that there are no Cayley deformations of a compact complex
surface in a Calabi–Yau four-fold that are not complex deformations. This method is
highly efficient, clean and compact, but doesn’t leave us with any geometric intuition
for why one cannot deform a compact complex submanifold into a Cayley submani-
fold that isn’t complex. In particular, it is known that without the assumption that the
submanifold is complex, we may deform such a submanifold into not only a Cayley
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submanifold that is not complex, but a special Lagrangian submanifold, as we will
see in the following example.

Example ([9, Ex 5.8]) Consider R8 with the standard Spin(7)-structure (�0, g0).
Writing any nonzero point of R8 as (r, p), where r ∈ (0,∞) and p ∈ S7 we define a
G2-structure (ϕ, h) on S7 by

�0|(r,p) = r3dr ∧ ϕ|p + r4 ∗h ϕ|p,

with h the usual roundmetric. Notice that since�0 is closed, dϕ = 4 ∗ ϕ, so this G2-
structure is not torsion-free. Then it is easy to check that a cone C = (0,∞) × L is
a Cayley submanifold of (R8,�0, g0) if, and only if, L is an associative submanifold
of (S7,ϕ, h). Homogeneous associative submanifolds of S7 were classified by Lotay
[9], including the following family, diffeomorphic to SU (2)/Z3. The deformation
theory of homogeneous associative submanifolds of S7 was studied by Kawai [5],
while a comparative study of deformations of Cayley cones can be found in a paper
of the author [13, Sect. 5].

Consider the following action of SU (2) on C
4

⎛

⎜
⎜
⎝

z1
z2
z3
z4

⎞

⎟
⎟
⎠

→

⎛

⎜
⎜
⎝

a3z1 + √
3a2bz2 + √

3ab2z3 + b3z4
−√

3a2b̄z1 + a(|a|2 − 2|b|2)z2 + b(2|a|2 − |b|2)z3 + √
3āb2z4√

3ab̄2z1 − b̄(2|a|2 − |b|2)z2 + ā(|a|2 − 2|b|2)z3 + √
3ā2bz4

−b̄3z1 + √
3āb̄2z2 − √

3ā2b̄z3 + ā3z4

⎞

⎟
⎟
⎠

,

where a, b ∈ C satisfy |a|2 + |b|2 = 1. We define L(θ) to be the orbit of the point
(cos θ, 0, 0, sin θ)T under the above action, that is,

L(θ) :=

⎛

⎜
⎜
⎝

a3 cos θ + b3 sin θ

−√
3a2b̄ cos θ + √

3āb2 sin θ√
3ab̄2 cos θ + √

3ā2b sin θ

−b̄3 cos θ + ā3 sin θ

⎞

⎟
⎟
⎠

,

where a, b ∈ C satisfy |a|2 + |b|2 = 1. Then for

Z3 :=
{(

ζ 0
0 ζ̄

)

∈ SU (2) | ζ3 = 1

}

,

L(θ) is invariant under the action of Z3 for all θ, therefore L(θ) ∼= SU (2)/Z3.
We have that L(θ) is associative for θ ∈ [0, π

4 ]. It is easy to check that L(0) = L
is the real link of a complex cone, whereas L( π

4 ) is the link of a special Lagrangian
cone. Therefore C(θ) := (0,∞) × L(θ) defines a family of Cayley cones in C

4. In
particular, this example shows that we can deform a complex cone into a special
Lagrangian cone through Cayley cones. Notice that Harvey and Lawson’s result,
Proposition1.1, doesn’t apply in this situation because the cone is not compact.
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3.1 The Cayley Operator on a Complex Submanifold

Let (M , J ,ω,�) be a four-dimensional Calabi–Yau manifold and let N be a two-
dimensional compact complex submanifold of M . We want to compare complex and
Cayley deformations of N , but we already have some clues to help us. By Kodaira’s
Theorem2.1 in combination with Dolbeault’s theorem we know that infinitesimal
complex deformations of N in M are given by the kernel of

∂̄ : C∞(ν1,0
M (N )) → C∞(�0,1N ⊗ ν1,0

M (N )). (3.1)

Meanwhile, the work of McLean tells us that infinitesimal Cayley deformations of
(a spin manifold) N in M are given by the kernel of the twisted Dirac operator

/D : C∞(S+ ⊗ A) → C∞(S− ⊗ A). (3.2)

At first glance, comparing the kernels of these two operators seems like a fruitless
task. However, since N is Kähler, its spin structure and Dirac operator take a special
form [1, pg 82]. Given a two-dimensional Kählermanifoldwith a fixed spin structure,
we can identify

S+ ∼= (

�0,0N ⊕ �0,2N
) ⊗ Sk ,

S− ∼= �0,1N ⊗ Sk ,

where Sk is a holomorphic line bundle satisfying Sk ⊗ Sk = �2,0N . Under these
identifications, the Dirac operator is

√
2

(

∂̄ + ∂̄∗) : C∞(Sk ⊕ �0,2N ⊗ Sk) → C∞(�0,1N ⊗ Sk). (3.3)

We have already seen that McLean proved that νM (N ) ⊗ C ∼= S+ ⊗ A and E ⊗ C ∼=
S− ⊗ A, for some rank two complex vector bundle A. Comparing the three operators
(3.1), (3.2) and (3.3) it is not unreasonable to hope that we can identify

νM (N ) ⊗ C ∼= ν1,0
M (N ) ⊕ �0,2N ⊗ ν1,0

M (N ),

E ⊗ C ∼= �0,1N ⊗ ν1,0
M (N ),

and for us to be able to show that under these identifications infinitesimal Cayley
deformations of N are given by the kernel of the operator

∂̄ + ∂̄∗ : C∞(ν1,0
M (N ) ⊕ �0,2N ⊗ ν1,0

M (N )) → C∞(�0,1N ⊗ ν1,0
M (N )).

This turns out to be true—and despite the heuristic comparison above, in fact N
is not required to be spin for the following result, taken from [11, Prop 3.5 and Thm
3.9], to hold.
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Theorem 3.1 Let N be a compact complex surface inside a Calabi–Yau four-fold
M . Then infinitesimal Cayley deformations of N in M are given by the kernel of the
operator

∂̄ + ∂̄∗ : C∞(ν1,0
M (N ) ⊕ �0,2N ⊗ ν1,0

M (N )) → C∞(�0,1N ⊗ ν1,0
M (N )).

Moreover, the expected dimension of the moduli space of Cayley deformations of N
in M is given by the index of this operator

ind
(

∂̄ + ∂̄∗) = 1

2
σ(N ) + 1

2
χ(N ) − [N ] · [N ],

where σ(N ) is the signature of N , χ(N ) is the Euler characteristic of N and [N ] · [N ]
is the self-intersection number of N .

Sketch proof We have that the complex structure on M induces a natural splitting of
the complexified normal bundle of N in M into holomorphic and anti-holomorphic
parts

νM (N ) ⊗ C ∼= ν1,0
M (N ) ⊕ ν0,1

M (N ).

We would like to show that

ν0,1
M (N ) ∼= �0,2N ⊗ ν1,0

M (N ).

To understand why this might be true, we consider the holomorphic volume form �

of M , which is a nowhere-vanishing, parallel section of the canonical bundle of M ,
denoted by KM := �4,0M . Recall that the adjunction formula [4, Prop 2.2.17] says
that

KM |N ∼= �2,0N ⊗ �2ν∗1,0
M (N ). (3.4)

In particular, �|N is a well-defined nowhere-vanishing section of �0,2N ⊗
�2ν∗0,1

M (N ). So given any section of ν0,1
M (N ) is is easy to check that

�(v, · , · , · )|N , (3.5)

is a well-defined section of �0,2N ⊗ ν∗0,1
M (N ). Finally, the Riemannian metric on M

defines a musical isomorphism � : ν∗0,1
M (N ) → ν1,0

M (N ). It is easy to verify that these
objects provide the desired isomorphism.

It is simple to check using local coordinates that E ∼= �0,1N ⊗ ν1,0
M (N ), again

with the help of the musical isomorphism, and moreover that the following diagram
commutes:

C∞(ν1,0
M (N ) ⊕ �0,2N ⊗ ν1,0

M (N )) C∞(�0,1N ⊗ ν1,0
M (N ))

C∞(νM (N ) ⊗ C) C∞(E ⊗ C)

∂̄+∂̄∗

D
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where D was defined in (2.3).
The index formula follows from the Hirzebruch–Riemann–Roch Theorem [4, Cor

5.1.4]. ��
Example Let

M := {[z0 : · · · : z5] ∈ CP5 | z60 + · · · + z65 = 0},

and take
N = {z ∈ M | f1(z) = f2(z) = 0},

where fi are irreducible homogeneous polynomials of degree di such that the Jacobian
of g = (f1, f2) has rank two at each point of N . Then we can compute that

[N ] · [N ] = 6d2
1 d2

2 ,

χ(N ) = 90d1d2 + 6d3
1 d2 + 6d2

2 d1 + 6d2
1 d2

2 ,

σ(N ) = −60d1d2 − 2d3
1 d2 − 2d3

2 d1,

so that
ind(∂̄ + ∂̄∗) = d1d2(15 + 2d2

1 + 2d2
2 − 3d1d2).

Examining this expression, we see that the expected dimension of themoduli space of
Cayley deformations of N in M will be strictly positive and even for any d1, d2 ∈ N.

4 Complex Deformations of a Compact Complex Surface

We would like to compare complex and Cayley deformations of a compact complex
surface N in a Calabi–Yau four-fold (M , J ,ω,�). So far we have seen, by Kodaira’s
Theorem2.1, that infinitesimal complex deformations ofN are given by holomorphic
normal vector fields in the kernel of

∂̄ : C∞(ν1,0
M (N )) → C∞(�0,1N ⊗ ν1,0

M (N )), (4.1)

with the dimension of the space of infinitesimal complex deformations of N given
by the real dimension of the kernel of (4.1).

We saw in Sect. 3 that the infinitesimal Cayley deformations of N are given by
forms in the kernel of the operator

∂̄ + ∂̄∗ : C∞(ν1,0
M (N ) ⊕ �0,2N ⊗ ν1,0

M (N )) → C∞(�0,1N ⊗ ν1,0
M (N )), (4.2)
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with the dimension of the space of infinitesimal Cayley deformations of N given
by the complex dimension of the kernel of (4.2) (since we complexified the normal
bundle of N in M to find this operator).

At first glance, comparing the above operators this seems to be a mistake, but it
turns out that there is an isomorphism between the kernel of (4.1) and the kernel of

∂̄∗ : C∞(�0,2N ⊗ ν1,0
M (N )) → C∞(�0,1N ⊗ ν1,0

M (N )). (4.3)

The following result is taken from [11, Lem 4.6].

Lemma 4.1 Let N be a complex surface in a Calabi–Yau four-fold (M , J ,ω,�).
Then the kernels of (4.1) and (4.3) are isomorphic.

Proof (Sketch) Similar to the proof of Theorem3.1 where we constructed an iso-
morphism ν0,1

M (N ) → �0,2N ⊗ ν1,0
M (N ), we take the map

ν1,0
M (N ) → �0,2N ⊗ ν1,0

M (N ),

v → (

v̄��
)�

,

where � : ν∗0,1
M (N ) → ν1,0

M (N ) is the standard musical isomorphism. That this map
sends Ker ∂̄ to Ker ∂̄∗ is essentially a consequence of � being parallel. ��

What we have seen so far suggests therefore that an infinitesimal Cayley defor-
mation of N that is not an infinitesimal complex deformation of N looks like
v ⊕ w ∈ C∞(ν1,0

M (N ) ⊕ �0,2N ⊗ ν1,0
M (N )) with

∂̄v = −∂̄∗w �= 0.

We know by Hodge theory that this cannot happen when N is compact—so this
would explain why we cannot deform a compact complex surface into a Cayley
submanifold that is not complex.

To make these ideas more formal, we will argue in the style of McLean to char-
acterise complex deformations of a compact complex surface. We will first look for
a differential form that vanishes exactly when restricted to a complex surface.

Firstly, let us take a Cayley submanifold N ′ of a Calabi–Yau four-fold
(M , J ,ω,�). We have that

τ |N ′ ≡ 0,

and

�|N ′ = Re �|N ′ + 1

2
ω ∧ ω|N ′ = volN ′ .

So to further ensure that N ′ is complex, we must ask that

Re �|N ′ ≡ 0.



Complex and Calibrated Geometry 359

So we see that v ∈ C∞(νM (N ) ⊗ C) defines a complex deformation of N if, and
only if

G(v) = (exp∗
v τ |Nv

, exp∗
v Re �|Nv

) = (0, 0).

We ask how the linearisation of G at zero differs from the linearisation of F defined
in (2.2) at zero. Finding the linear part of exp∗

v Re �|Nv
, we see that

d

dt

∣
∣
∣
∣
t=0

exptv Re �|Ntv = LvRe � = 1

2
d(v�� + v��).

Writing v = v1 ⊕ v2, where v1 ∈ C∞(ν1,0
M (N )) and v2 ∈ C∞(ν0,1

M (N )), we see that

1

2
d(v�� + v��) = 1

2
d(v1�� + v2��) = 1

2
∂̄(v1��) + 1

2
∂(v2��),

since v1�� ∈ C∞(�2,0N ⊗ ν∗1,0
M (N )) and v2�� ∈ C∞(�0,2N ⊗ ν∗0,1

M (N )). There-
fore a normal vector field v = v1 ⊕ v2 is an infinitesimal complex deformation of
N if, and only if, the linearisation of the first component of G vanishes, which by
Theorem3.1 is

∂̄v1 + ∂̄∗(v2��) = 0,

where we recall the isomorphism of ν0,1
M (N ) and�0,2N ⊗ ν1,0

M (N ) given in Eq. (3.5),
and the linearisation of the second component of G vanishes, which as we’ve just
seen is

∂̄(v1��) = 0 = ∂(v2��),

since ∂̄(v1��) and ∂(v2��) take values in different vector bundles. Similarly to
Lemma4.1, we can show that this is equivalent to

∂̄v1 = 0 = ∂̄∗(v2��),

which moreover by definition of the isomorphism ν0,1
M (N ) → �0,2N ⊗ ν1,0

M (N ) in
the proof of Theorem3.1 is equivalent to the set of v ⊕ w ∈ C∞(ν1,0

M (N ) ⊕ �0,2N ⊗
ν1,0

M (N )) such that
∂̄v = 0 = ∂̄∗w.

This informal argument shows that our assertion that infinitesimal Cayley deforma-
tions of N expressed in the form v ⊕ w ∈ C∞(ν1,0

M (N ) ⊕ �0,2N ⊗ ν1,0
M (N )) that are

not infinitesimal complex deformations must satisfy

∂̄v = −∂̄∗w,

is correct.
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It turns out thatwe can study the complex deformations ofN inM without thinking
about Cayley deformations at all.

Let us think about the holomorphic volume form. The adjunction formula tells
us that, for N , a complex surface inside a four-dimensional Calabi–Yau manifold M
with holomorphic volume form �, we have

�|N ∈ KM |N ∼= KN ⊗ �2ν∗1,0
M (N ).

So this tells us that given any three tangent vector fields v1, v2 and v3 on N we must
have that

�(v1, v2, v3, · ) = 0.

It is natural to wonder whether conversely, if given any three tangent vector fields
v1, v2 and v3 to a real oriented four manifold W in a Calabi–Yau four-fold M we
have

�(v1, v2, v3, · ) = 0,

then W must a complex submanifold of M . This is not quite right, but a similar result
turns out to be true, as we show in [11, Prop 4.2].

Proposition 4.2 An oriented four-dimensional real submanifold X of a four-
dimensional Calabi–Yau manifold (M , J ,ω,�) is a complex submanifold if, and
only if,

σ|X ≡ 0,

where σ ∈ C∞(�3M ⊗ T ∗M |X ) is defined by

σ(v1, v2, v3) = Re �(v1, v2, v3, · ),

for any v1, v2, v3 ∈ C∞(TX ).

This result is purely an exercise in linear algebra. It suffices to check that the
proposition holds for a linear subspace of C4.

Example Let ω and � be the standard Kähler form and holomorphic volume form
on C3. Then we can define a G2-structure on R

7 by

ϕ = dx ∧ ω + Re �,

∗ϕ = 1

2
ω ∧ ω − dx ∧ Im �,

where x is the coordinate onR inR7 = R × C
3. Introducing another factor ofRwith

coordinate t, we can take the following Calabi–Yau structure on C4

ω̃ = dt ∧ dx + ω,

�̃ = (dt + idx) ∧ �.
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Let N be a four-dimensional real submanifold of C3 ⊆ C
4. By Proposition4.2, N is

complex in C4 if, and only if,

Re �̃ = dt ∧ Re � − dx ∧ Im � = 0,

as a three-form on N . So in particular, we must have that

Re �|N = 0 = Im �|N .

This in combination with the fact that N ⊆ C
3 shows that

ϕ|N = 0,

and so N is a coassociative submanifold of R7, and moreover

volN = ∗ϕ|N = 1

2
ω ∧ ω|N − dx ∧ Im �|N = 1

2
ω ∧ ω|N ,

so if N is a complex submanifold of C4 and is contained in C
3 then it is also a

complex submanifold of C3.

It turns out that we can generalise this idea to study any complex submanifold of a
Calabi–Yau manifold.

Proposition 4.3 Let (M , J ,ω,�) be an m-dimensional Calabi–Yau manifold and
let p ∈ N be such that p < m − 1. Then an oriented 2p-dimensional real submanifold
X of M is a complex submanifold of M if, and only if,

σ|X = 0,

where σ ∈ C∞(�p+1M ⊗ �m−p−1M ) is given by

σ(v1, . . . vp+1) = Re �(v1, . . . , vp+1, · , . . . , · ),

for any v1, . . . vp+1 ∈ C∞(TX ). If p + 1 = m, then we must have that

Re �|X = 0 = Im �|X .

Example Applying Proposition4.3 to the previous example, a complex surface N
in C3 must satisfy

Re �|N = 0 = Im �|N ,

so considering N as a submanifold of C4 this implies that as a three-form

Re �̃|N = (dx ∧ Re �)|N − (dx ∧ Im �)|N = 0,
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so N is also a complex submanifold of C4 as one would expect.

Given Proposition4.3, we can study complex deformations of complex submani-
folds of Calabi–Yau manifolds in a similar style to McLean’s Theorem2.3. We focus
on the special case of compact complex surfaces inside Calabi–Yau four-folds here,
but the result below holds for any compact complex submanifold of a Calabi–Yau
manifold, see [11, Prop 4.4, Prop 4.5]. Notice that this recovers a special case of
Kodaira’s theorem [6, Main Thm] using a completely different method.

Theorem 4.4 Let N be a two-dimensional compact complex submanifold of a four-
dimensional Calabi–Yau manifold M . Then the moduli space of complex deforma-
tions of N in M is locally homeomorphic to the zero set of a partial differential
operator

G : C∞(ν1,0
M (N ) ⊕ ν0,1

M (N )) → C∞(�0,1N ⊗ ν1,0
M (N ) ⊕ �1,0N ⊗ ν0,1

M (N )),

with linearisation at zero given by

dG|0(v1 ⊕ v2) = ∂̄v1 ⊕ ∂v2. (4.4)

Remark Notice that the kernels of ∂̄ and ∂ acting on holomorphic and anti-
holomorphic vector fields are naturally isomorphic by complex conjugation.

Sketch proof It is clear by Proposition4.2 that given a complexified normal vector
field v, the corresponding deformation Nv is a complex submanifold of M if, and
only if,

exp∗
v(σ|Nv

) = 0.

This is a three-form on N that takes values in T ∗M |N ⊗ C. A local argument, [11,
Prop 4.4] shows that is suffices to check only the parts of this form that take values
in the space �2,1N ⊗ ν∗1,0

M (N ) ⊕ �1,2N ⊗ ν∗0,1
M (N ). Denote the projection onto this

vector bundle by π. Then Nv is a complex submanifold if, and only if,

π(exp∗
v(σ|Nv

)) = 0.

Finally, we have that the maps

�0,1N ⊗ ν1,0
M (N ) → �2,1N ⊗ ν∗1,0

M (N ),

�1,0N ⊗ ν0,1
M (N ) → �1,2N ⊗ ν∗0,1

M (N ),

given respectively by

α ⊗ v → α ∧ (v��)|N ,

α̃ ⊗ ṽ → α̃ ∧ (ṽ��)|N ,



Complex and Calibrated Geometry 363

define vector bundle isomorphisms [11, Lem 4.3]. Denoting these isomorphisms by
�, we finally define the partial differential operator whose kernel can be identified
with the moduli space of complex deformations of N in M to be

G : C∞(ν1,0
M (N ) ⊕ ν0,1

M (N )) → C∞(�0,1N ⊗ ν1,0
M (N ) ⊕ �1,0N ⊗ ν0,1

M (N )),

v → �−1 ◦ π(exp∗
v(σ|Nv

)).

A short computation [11, Prop 4.5] shows that the linearisation of G at zero is the
operator (4.4) as claimed. ��

5 Further and Future Work

5.1 Can We Describe the Moduli Space of Complex
Submanifolds in Any Ambient Complex Manifold
Using These Techniques?

As long as the ambient manifold is Kähler, its complex manifolds are calibrated sub-
manifolds. In the work described here the existence of a parallel, nowhere vanishing
(m, 0)-form on the ambient (complex m-dimensional) manifold is essential. If the
ambient manifold were Kähler with a nowhere vanishing (m, 0)-form that was not
parallel, one could repeat the above argument, with the linearised operator having
additional zero-order terms.

5.2 Can These Results Be Extended to Noncompact Complex
Submanifolds?

As was mentioned in Sect. 3, we expect a noncompact complex submanifold of
a Calabi–Yau four-fold will admit Cayley deformations that are not complex, as
evidenced by the given example. The author has studied conically singular Cayley
and complex submanifolds [13], andhas shown that infinitesimalCayley and complex
deformations of a conically singular complex surface in a Calabi–Yau four-fold are
still of the same type. Note that Harvey and Lawson’s result stated in Proposition1.1
continues to hold for currents with compact support and therefore will apply in the
setting of conically singular calibrated submanifolds.

The analytic techniques available for studying deformations of a conically singular
submanifold only allow one to consider somewhat rigid classes of deformations. For
example, it is not possible to deform a conically singular calibrated submanifold
into a non-singular calibrated submanifold using current techniques. An interesting
problem would be to produce new techniques to study wider classes of deformations
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of singular calibrated submanifolds, perhaps inspired by techniques from algebraic
geometry.
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Deformations of Calibrated
Submanifolds with Boundary

Alexei Kovalev

Abstract We review some results concerning the deformations of calibrated mini-
mal submanifolds which occur in Riemannianmanifolds with special holonomy. The
calibrated submanifolds are assumed compact with a non-empty boundary which is
constrained to move in a particular fixed submanifold. The results extend McLean’s
deformation theory previously developed for closed compact submanifolds.

1 Preliminaries

Calibrated submanifolds are a particular type of minimal submanifolds introduced
by Harvey and Lawson [12] as a generalization of complex submanifolds of Käh-
ler manifolds; for a detailed reference, see op.cit. and [11]. Harvey and Lawson
[12] also found four new types on calibrations defined on Euclidean spaces and,
more generally, on Ricci-flat Riemannian manifolds with reduced holonomy. Fur-
ther examples of calibrations were subsequently discovered, see [13, Sect. 4.3] and
references therein.

McLean [18] studied deformations for the four types of calibrated submanifolds
defined in [12] and showed that the deformation problem may be interpreted as a
non-linear PDE with Fredholm properties. In some cases, there is a smooth finite-
dimensional ‘moduli space’. The submanifolds in [18] were assumed compact and
without boundary.McLean’s deformation theory in [18]was later extended by several
authors tomore general classes of submanifolds. In this paper, we survey the general-
izations of McLean’s results to compact submanifolds having non-empty boundary.
Proofs will at most be briefly sketched or referred to the original papers.

We begin in this section with some key concepts of calibrated geometry and
foundational results concerning deformations of compact submanifolds (possibly
with boundary). The remainder of the paper is organized in four sections dealing with
the four types of calibrated submanifolds in [12, 18], namely special Lagrangian,
coassociative, associative and Cayley submanifolds.
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Submanifolds are taken to be embedded and connected, for notational conve-
nience (it can be checked that the results extend to immersed submanifolds). Smooth
functions and, more generally, sections of vector bundles on (sub)manifolds with
boundary are understood as ‘smooth up to the boundary’, so at each point of the
boundary these have one-sided partial derivatives of any order in the inward-pointing
normal direction.

1.1 Calibrations

Definition 1 Let (M, g) be a Riemannian manifold. For any tangent k-plane V ,
i.e. a k-dimensional subspace V of a tangent space TxM , a choice of orientation
on V together with the restriction of g determines a natural volume form on V ,
volV ∈ �kV ∗.

A differential k-form φ on M is called a calibration if (i) dφ = 0 and (ii) for
each x ∈ M and every oriented k-dimensional subspace V ⊂ TxM , φ|V = a volV
for some a ≤ 1.

An oriented k-dimensional submanifold N of M is said to be calibrated by φ if
the pull-back of φ to N coincides with the Riemannian volume form for the metric
on N induced by g, i.e. φ|Tx N = volTx N for each x ∈ N .

The next result shows that calibrated submanifolds are minimal, in fact volume-
minimizing (if compact).

Proposition 2 Let M be a Riemannianmanifold and letφ ∈ �k(M) be a calibration
on M.

(a) If a closed k-dimensional submanifold X ⊂ M is calibrated by φ, then X is
volume-minimizing in its homology class. Moreover, if Y is a volume-minimizing
closed k-dimensional submanifold of M in the homology class of X, then Y is
calibrated by φ.

(b) Let W ⊂ M be a submanifold such that φ|W = 0. If X ⊂ M is a calibrated
compact k-dimensional submanifold with non-empty boundary ∂X ⊂ W, then
X is volume-minimizing in the relative homology class [X ] ∈ Hk(M,W ;Z).
Moreover, if Y is a compact submanifold of M with boundary ∂Y ⊂ W and Y
is volume-minimizing in the relative homology class [X ], then Y is calibrated
by φ.

The clause (a) is proved in [12, Thm II.4.2] by application of Stokes’ theorem.
The extension (b) to submanifolds with boundary follows by a similar argument as
the hypothesis φ|W = 0 ensures the vanishing of the additional terms arising from
the boundary (cf. [8, pp. 1233–1234]). Suppose that a submanifold Y with boundary
inW represents the relative homology class [X ]. Considering X and Y as chains, we
can find a (k + 1)-dimensional chain N with boundary in W and a k-dimensional
chain P contained in W so that Y − X = ∂N + P . We then obtain
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Vol(Y ) ≥
∫
Y

φ =
∫
X

φ +
∫

∂N
φ +

∫
P

φ = Vol(X),

noting in the inequality that φ is a calibration, then applying Stokes’ theorem and
taking account of the vanishing of φ on W .

The above argument may be viewed as a generalization of the volume-minimizing
property of compact complex submanifolds of Kähler manifolds by application of
Wirtinger’s inequality. (In a Kähler manifold with Kähler form ω, every
k-dimensional complex submanifold is calibrated by ωk/k!.)

1.2 Normal Deformations of Submanifolds

McLean’s deformation theory [18] was originally developed for closed compact sub-
manifolds. The nearby deformations of a given closed submanifold of a Riemannian
manifold may be assumed to be normal deformations, defined using the Riemannian
exponential map on normal vector fields, i.e. C1 sections of the normal bundle of
this submanifold.

When a submanifold has a boundary, we wish to consider the deformation prob-
lem as an elliptic boundary value problem. We shall in fact require that the boundary
moves in a certain fixed submanifold which, following [4], we call a scaffold. In gen-
eral, we cannot use, as in the case of closed submanifolds, exponential deformations
defined using the given metric g on the ambient manifold, since the scaffold may
not be preserved under such deformations. We shall define on M a modified metric
ĝ whose associated exponential map does preserve the scaffold because the scaffold
will be totally geodesic with respect to the new metric. (The actual construction of
the metric ĝ will depend on the considered calibration.)

Proposition 3 (a) Let P be a closed submanifold of a Riemannian manifold M.
There exist an open subset VP of the normal bundle NP/M of P in M, containing
the zero section, and a tubular neighbourhood TP of P in M, such that the
exponential map expM |VP : VP → TP is a diffeomorphism onto TP .

(b) Let M be a smooth manifold of dimension n and P ⊂ M a compact submanifold
with non-empty boundary ∂P. Let W be a submanifold of M with ∂P ⊂ W and
let ĝ be a Riemannian metric on M such that P and W meet orthogonally and
W is totally geodesic with respect to ĝ.
There exists an open subset VP of the normal bundle N̂P/M of P in M, contain-
ing the zero section, and an n-dimensional submanifold TP of M with boundary
such that P ⊂ TP and êxpM |VP : VP → TP is a diffeomorphism onto TP. Fur-
thermore, if a section v of N̂P/M takes values in VP, then êxpM(v(x)) ∈ W for
all x ∈ ∂P.

The clause (a) is a consequence of the tubular neighbourhood theorem [17,
Chap. IV, Thm. 9]. For the extension (b) to submanifolds with boundary and the
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existence of the adapted metric ĝ modifying a given metric on M on an open neigh-
bourhood of ∂P , cf. [4, Prop. 6] or [16, Prop. 4.4]. We stress that the new auxiliary
metric ĝ in (b) is used solely for the purpose of considering the exponential map
and applications of the tubular neighbourhood theorem—but not for the minimal or
volume-minimizing properties of calibrated submanifolds (for which we continue to
use the original metric on M).

By nearby deformations of a compact submanifold P (with or without boundary)
we shall mean submanifolds of the form Pv = expv(P), where v is a C1-section of
the normal bundle NP/M . The section v is assumed sufficiently small in theC1 norm,
so that Pv is contained in a tubular neighbourhood TP defined by Proposition 3. We
shall call sections of NP/M the normal vector fields on P .

We interpret submanifolds as appropriate equivalence classes of the embedding
(more generally, immersion) maps and the term ‘moduli space of submanifolds’ is
used below in this sense.

2 Special Lagrangian Submanifolds in Calabi–Yau
Manifolds

Let M be a Kähler manifold of complex dimension m, with Kähler form ω and
suppose further that the metric on M has holonomy contained in SU (m). Then the
canonical bundle of M may be trivialized by a holomorphic (m, 0)-form� satisfying

(−1)m(m−1)/2 (i/2)m � ∧ �̄ = ωm/m! . (1)

It also follows that the Kähler metric is Ricci-flat. Conversely, if a Kähler form ω and
a holomorphic (m, 0)-form� satisfy (1) onM , then this Kähler metric has holonomy
in SU (m). We shall call (M,ω,�) as above a Calabi–Yau manifold.

The real m-form Re � is a calibration on M (cf. [12, Thm. III.1.10]) and the
submanifolds calibrated by Re � are called special Lagrangian submanifolds. It
will be convenient to use an equivalent definition.

Proposition 4 ([12, Cor. III.1.11]) Let (M,ω,�) be a Calabi–Yau manifold of com-
plex dimension m. A real m-dimensional submanifold L ⊂ M with some choice of
orientation is special Lagrangian if and only if

ω|L = 0 and Im �|L = 0. (2)

The following result about the deformations of compact special Lagrangian sub-
manifolds without boundary is due to McLean.

Theorem 5 ([18, Thm. 3.6])Let M be aCalabi–Yaumanifold and L a closed special
Lagrangian submanifold in M. Then the moduli space of nearby special Lagrangian
deformations of L is a smooth manifold of dimension the first Betti number b1(L).
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The argument of Theorem 5 uses the equivalent definition (2) of special
Lagrangian submanifolds in terms of the vanishing of differential forms.

Applying Proposition 3(a) to L we may write any nearby deformation of L as
Lv = expv L for a section v ∈ �(NL/M) of the normal bundle. On the other hand,
there is an isometry of vector bundles

jL : v ∈ NL/M → (v �ω)|L ∈ �1T ∗L (3)

defined using the Kähler form on M . Thus the nearby deformations of L are equiv-
alently given by ‘small’ 1-forms on L .

The map

F : α ∈ �1(L) → (exp∗
v(ω), exp∗

v(Im�)) ∈ �2(L) ⊕ �m(L), v = j−1
L (α), (4)

is defined for ‘small’ α, and F(α) = 0 precisely if expv(P) is a special Lagrangian
deformation.

Proposition 6 Let L be a special Lagrangian submanifold of aCalabi–Yaumanifold
and F the ‘deformation map’ defined in (4).

(a) The map F is smooth, with derivative at α = 0 given by

dF |0(α) = (dα, d ∗ α), α ∈ �1(L).

(b) If L is a closed submanifold, then there is a neighbourhood TL of the zero 1-form
such that the image F(TL) consists of pairs of exact forms.

Note that in Proposition 6(a) a special Lagrangian L need not be compact.
The nearby special Lagrangian deformations of L correspond to the 1-forms α

satisfying a non-linear differential equation F(α) = 0 of first order, with F(0) = 0.
One can show using Hodge theory for a closed manifold L and the implicit function
theorem in Banach spaces that the C1-small solutions of the special Lagrangian
deformation problem may be parameterised by the closed and co-closed 1-forms
α on L . By Hodge theory again, as L is a closed manifold, the moduli space of
special Lagrangian deformations is then locally parameterised by the vector space
of harmonic 1-forms on L or, equivalently, by the de Rham cohomology group
H 1(L ,R) of dimension b1(L). Theorem 5 follows.

The constraint (1) determines a holomorphic form � up to a factor eiθ for some
real constant θ and Re(eiθ�) is also a calibration on M . Manifolds calibrated by
Re(eiθ�) are called special Lagrangian with phase θ. Every submanifold calibrated
byRe(eiθ�) is Lagrangian (with respect to the symplectic formω) andminimal (with
respect to the metric on M). Conversely, it is known that every connected minimal
Lagrangian submanifold in aCalabi-Yaumanifold is calibrated byRe(eiθ�) for some
real constant θ [12, cf. Prop. III.2.17].

If L ′ is a minimal Lagrangian deformation of L then by the above L ′ must be
calibrated and volume-minimizing. Therefore, L is special Lagrangian by application
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of Proposition 2(a). It follows that moduli space in Theorem 5 can be equivalently
regarded as the space of nearbyminimal Lagrangian deformations of L . In particular,
there is no loss of generality in restricting attention to submanifolds calibrated by
Re �, i.e. with θ = 0.

Remark Salur [20] extended the result of Theorem 5 to the situation when the
almost complex structure on M is not necessarily integrable. More explicitly, M is
a Hermitian symplectic 2m-manifold with symplectic form ω, the metric on M is
Hermitian with respect to an ω-compatible almost-complex structure and there is
a (non-vanishing) complex (m, 0)-form � on M satisfying (1). The main theorem
in [20] then asserts that the moduli space of nearby special Lagrangian deformations
of L with arbitrary phase is smoothwith dimensionb1(L). In the casewhen d Im� =
0, it can be checked that any special Lagrangian deformations of L necessarily have
the same phase as L (and can be obtained essentially byMcLean’s argument in [18]).

Suppose now that a compact special Lagrangian submanifold L has non-empty
boundary ∂L . We shall need the following definition from [4, p. 1954].

Definition 7 Let M be a Calabi–Yau manifold and let L ⊂ M be a submanifold
with boundary ∂L . Denote by n ∈ �(T∂L L) the inward unit normal vector field. A
scaffold for L is a smooth submanifold W of M with the following properties:

(1) ∂L ⊂ W ;
(2) n ∈ �(T∂LW )ω (here, Sω denotes the symplectic orthogonal complement of a

subspace S of a symplectic vector space V , defined by Sω ≡ {v ∈ V : ω(v, s) = 0
∀s ∈ S});

(3) the bundle (TW )ω is trivial.

The deformations of special Lagrangian submanifolds with boundary constrained
to be in a fixed scaffold were studied by Butscher who proved the following.

Theorem 8 ([4, Main Theorem]) Let L be a compact special Lagrangian subman-
ifold of a Calabi-Yau manifold M with non-empty boundary ∂L and let W be a
symplectic, codimension two scaffold for L. Then the moduli space of nearby mini-
mal Lagrangian deformations of L with boundary on W is finite dimensional and is
locally parameterised by the vector space of closed co-closed 1-forms on L satisfying
Neumann boundary conditions

H1
n(L) = {α ∈ �1(L) : dα = 0, d∗α = 0, (n�α)|∂L = 0}.

Theorem 8 allows special Lagrangian deformations of L with arbitrary phase θ
and the proof uses an extended version of the deformation map including θ as an
additional variable. The deformation map also requires a construction of an auxiliary
metric ĝ so thatW is totally geodesic for ĝ and the appropriate version of the tubular
neighbourhood theorem (Proposition 3(b)). (The condition (3) in the definition of the
scaffold is used in the construction of ĝ.) The argument then proceeds by appealing
to the implicit function theorem in a similar manner to the deformation problem for
closed submanifolds. This requires a version of Hodge theory for compact manifolds
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with boundary [21] to identify appropriate Banach subspaces of forms so that the
linearization of the deformation map be surjective.

The vector spaceH1
n(L) in Theorem 8 is naturally isomorphic to the real cohomol-

ogy group H 1(L ,R) and thus has dimension b1(L) by Hodge theory for manifolds
with boundary, see [5, p. 927].

Observe that the condition (2) in the definition of a scaffold means that Jn is
perpendicular to W . This will be automatically satisfied when W is a complex sub-
manifold of positive codimension in M , so the tangent spaces of W are invariant
under J . In this case, we also have �|W = 0. Then, applying Proposition 2(b), we
obtain that for each specialLagrangian L withboundary inW theminimalLagrangian
deformations of L with boundary confined toW will actually be special Lagrangian.
We thus obtain a variant of Butscher’s result for the space of special Lagrangian
deformations.

Corollary 9 Let L be a compact special Lagrangian submanifold of a Calabi-Yau
manifold M with non-empty boundary ∂L. Let W be a complex codimension one
submanifold of M with trivial normal bundle and with ∂L ⊂ W (in particular, W is
a scaffold for L). Then the moduli space of nearby special Lagrangian deformations
of L is a smooth manifold of dimension b1(L).

3 Coassociative Submanifolds in G2-Manifolds

The two calibrations considered in this and the next section are defined on
7-dimensional manifolds with a torsion-freeG2-structure.We shall first briefly recall
some key definitions. The readers are referred to [12], [13, Chaps. 11, 12] and the
article by Karigiannis in this volume for a more detailed account of G2-structures
and the related calibrations.

The groupG2 can be defined, following [2], as the stabilizer, in the standard action
of GL(7,R) on �3(R7)∗, of the 3-form

ϕ0 = dx123 + dx145 + dx167 + dx246 − dx257 − dx347 − dx356, (5)

where dx123 = dx1 ∧ dx2 ∧ dx3 and so on, with x1, . . . , x7 the usual coordinates on
the EuclideanR7. The 3-form in (5) encodes the cross-product defined by considering
R

7 as pure imaginary octonions and setting ϕ0(a, b, c) = 〈a × b, c〉. The group G2

is a 14-dimensional Lie group and a subgroup of SO(7).
The Hodge dual of ϕ0 is a 4-form given by:

∗ϕ0 = dx4567 + dx2367 + dx2345 + dx1357 − dx1346 − dx1256 − dx1247.

Let M be a 7-dimensional manifold. We say that a differential 3-form ϕ on M
is positive, or is a G2 3-form, if for each p ∈ M there is a linear isomorphism
ιp : R7 → TpM with ι∗p(ϕ(p)) = ϕ0, where ϕ0 is given in (5). Every G2-structure
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onM can be induced by a positive 3-formϕ andwe shall, slightly informally, say that
ϕ is a G2-structure. As G2 ⊂ SO(7), every G2-structure ϕ induces on M a metric
g(ϕ) and orientation and thus also a Hodge star ∗ϕ.

The intrinsic torsion of a G2-structure ϕ on M vanishes precisely when dϕ = 0
and d∗ϕϕ = 0 [6]. In this case, we call (M,ϕ) a G2-manifold.

The 4-form ∗ϕϕ defines on each G2-manifold M a calibration (cf. [12, Sect.
IV.1.B]). In fact, the results in this section only require that the G2 3-form be closed
dϕ = 0. We say that an oriented 4-dimensional submanifold X ⊂ M is a coassocia-
tive submanifold if the equality ∗ϕϕ|X = volX is attained. If in addition d∗ϕϕ = 0
holds, then X is calibrated by ∗ϕϕ and we call X a coassociative calibrated subman-
ifold.

The following equivalent definition of coassociative submanifolds will be useful.

Proposition 10 (cf. [12, Cor. IV.1.20]) For an orientable 4-dimensional submani-
fold X of a 7-manifold M with a G2-structure ϕ ∈ �3+(M), the equality ∗ϕϕ|X =
volX holds for some orientation of X if and only if ϕ|X = 0.

Letϕ be a closedG2 3-form onM and let a submanifold X ⊂ M be coassociative.
Then the infinitesimal deformations of X can equivalently be given by self-dual
2-forms on X via an isometry of vector bundles (cf. [18, Proposition 4.2])

jX : v ∈ NX/M → (v �ϕ)|X ∈ �2
+T

∗X; (6)

where �2+T ∗X denotes the bundle of self-dual 2-forms. (The corresponding state-
ments in [18] use anti-self-dual 2-forms because McLean uses a different sign con-
vention for the G2 3-form.) The map

F : α ∈ �2
+(X) → exp∗

v(ϕ) ∈ �3(X), v = j−1
X (α), (7)

is defined for ‘small’ α, and F(α) = 0 precisely if expv(X) is a coassociative defor-
mation.

The next theorem summarizes the results obtained by McLean about the defor-
mations of closed coassociative submanifolds.

Theorem 11 (cf. [18, Thm. 4.5], [15, Thm. 2.5]) Let M be a 7-manifold with a
closed G2-structure ϕ and X ⊂ M a coassociative submanifold (not necessarily
closed).

(a) Then for each α ∈ �2+(X), one has dF |0(α) = dα and the 3-form F(α) (if
defined) is exact.

(b) If, in addition, X is compact and without boundary then every closed self-dual
2-form α on X arises as α = jX (v), for some normal vector field v tangent to a
smooth 1-parameter family of coassociative submanifolds containing X. Thus,
in this case, the space of nearby coassociative deformations of X is a smooth
manifold parameterized by the space H2+(X) of closed self-dual 2-forms on X.
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Remark Self-dual 2-forms on a compact manifold without boundary are closed
precisely if they are harmonic. ByHodge theory, the dimension ofH2+(X) is therefore
equal to the dimension b2+(X) of a maximal positive subspace for the intersection
form on X . It is thus a topological invariant.

The hypotheses of Theorem 11 do not include the co-closed condition d∗ϕϕ = 0.
In fact, the argument in [18] constructs a smoothmoduli space of closed submanifolds
X satisfying ϕ|X = 0, for a closed G2-structure ϕ.

There is a certain analogy between McLean’s deformation theory of closed coas-
sociative submanifolds ofG2-manifolds and closed special Lagrangian submanifolds
of Calabi–Yau manifolds. In both cases, the respective submanifolds are calibrated
and minimal and have an equivalent definition in terms of the vanishing of appro-
priate real differential forms on the ambient manifold. The deformation theory is
‘unobstructed’ and there is a smooth finite-dimensional moduli space, locally param-
eterised by somefinite-dimensional space of harmonic forms on the submanifoldwith
the dimension a topological invariant obtained by Hodge theory.

On the other hand, when the submanifold has a boundary the deformation theories
become rather different. As we explain below, following [16], the deformation prob-
lem for compact coassociative submanifolds with boundary cannot possibly be set as
a boundary value problem of first order with standard Dirichlet or Neumann bound-
ary conditions. Instead the deformation problem will be ‘embedded’ in a boundary
value elliptic problem of second order.

A suitable choice of boundary considerations is again facilitated by the concept of
(a coassociative version of) a scaffold which we now define. By way of preparation,
we consider an orientable 6-dimensional submanifold S in a 7-manifold M with a
closed G2 3-form ϕ on M . The normal bundle of S is trivial and there is a ‘tubular
neighbourhood’ TS of S diffeomorphic to S × {−ε < s < ε}, such that S corresponds
to {s = 0} and n = ∂

∂s is a unit vector field on TS with n|S orthogonal to S in the
metric g(ϕ).More precisely,we consider a coassociative submanifoldwith (compact)
boundary contained in S and then the required TS exists after shrinking S to some
neighbourhood of this boundary. We can write

ϕ|TS = ωs ∧ ds + ϒs,

for some 1-parameter families of 2-forms ωs and 3-forms ϒs on S.
The formsω0 = (nS�ϕ)|S andϒ0 = ϕ|S together define an SU (3)-structure on S,

in general with torsion. This can be seen point-wise, by a consideration similar to
G2-structures earlier in this section, from the property that the simultaneous stabilizer
of ω0 and ϒ0 in the action of GL(TpS) at each p ∈ S is isomorphic to SU (3). In
particular, ω3

0 defines an orientation on S.

Definition 12 An orientable 6-dimensional submanifold S is a symplectic subman-
ifold of a 7-manifold (M,ϕ) with a closed G2-structure if dSω0 = 0, where ω0 is as
defined above and dS is the exterior derivative on S.

A 3-dimensional submanifold L ⊂ S of a symplectic submanifold S ⊂ M is said
to be special Lagrangian if ω0|L = 0 and ϕ|L = 0.
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Every S in the above definition has a Hermitian symplectic structure compatible
with the SU (3)-structure induced from M . In particular, a non-vanishing (3, 0)-form
on S is obtained as�0 = ∗Sϒ − iϒ , where the 6-dimensional Hodge start ∗S is taken
with respect to the orientation ω3

0 and the induced metric from M . As noted in the
previous section, McLean’s theory remains valid and any closed special Lagrangian
L ⊂ S has a smooth moduli space of dimension b1(L) of nearby special Lagrangian
deformations.

Definition 13 Let (M,ϕ) be a 7-manifold with a closed G2-structure and X ⊂
M a coassociative submanifold with boundary ∂X . We say that an orientable 6-
dimensional submanifold S of M is a scaffold for X if

(a) X meets S orthogonally, i.e. ∂X ⊂ S and the normal vectors to S at ∂X are
tangent to X , n ∈ NS/M |∂X , and

(b) S is a symplectic submanifold of (M,ϕ).

One notable property of a scaffold S in Definition 13 is that for each coassociative
X meeting S orthogonally, the intersection L = X ∩ S is special Lagrangian in S.

The infinitesimal deformations of compact coassociative X with boundary in a
fixed submanifold S correspond via (6) to a subspace of self-dual 2-forms on X
satisfying boundary conditions. We can write the restriction of any 2-form α on X to
a collar neighbourhood C∂X = TS ∩ X of the boundary as α̃ = ατ + αν ∧ ds. The
Dirichlet and Neumann boundary conditions for α are then given by, respectively,
ατ = 0 and αν = 0. When α is self-dual, the two conditions are equivalent and force
α and the corresponding normal vector field j−1

X (α) to vanish at each point of ∂X .
However, if dα = 0 and α vanishes on the boundary then α = 0 by [5, Lemma
2]. This may be understood as an extension of [12, Thm. IV.4.3], which states that
there is a locally unique coassociative submanifold containing any real analytic 3-
dimensional submanifold upon which ϕ vanishes.

It turns out that a suitable choice of the infinitesimal deformations with boundary
condition is given by the following subspace of self-dual 2-forms

�2
+(X)bc = {α ∈ �2

+(X) : n�dα = 0 and d∂X (n�α) = 0 on ∂X}. (8)

The boundary condition n�dα = 0 ensures that every harmonic form in �2+(X)bc is
closed and the boundary condition d∂X (n�α) = d∂Xαν = 0 means that the boundary
∂X will only move in the space of special Lagrangians in S.

The subspace of�2+(X)bc of the coassociative infinitesimal deformations is given
by the harmonic (or closed) forms (H2+)bc. It has a finite dimension ≤ b1(∂X) and
our next theorem asserts that elements of (H2+)bc ‘integrate’ to actual coassociative
deformations of X .

Theorem 14 ([16, Thm. 1.1]) Suppose that M is a 7-manifold with a G2-structure
given by a closed 3-form. The moduli space of compact coassociative local defor-
mations of X in M with boundary ∂X in a scaffold S is a finite-dimensional smooth
manifold parameterized by (H2+)bc. The dimension of this moduli space is not greater
than b1(∂X).
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Here is an example when strict inequality dim(H2+)bc < b1(∂X) occurs.

Example 15 ([16, p. 72]) A Kähler complex 3-fold (Z ,ω) is called almost Calabi–
Yau if it admits a nowhere vanishing holomorphic (3, 0)-form�. Then the 7-manifold
M = Z × S1 has a closed G2-structure ω ∧ dθ + Re�, where θ is a coordinate
on S1. Let X = L × S1 ⊂ M be a compact coassociative 4-fold. Then L is special
Lagrangian in Z . We can think of X as an embedding of a manifold L × [0, 1]
whose two boundary components, L × {0} and L × {1}, are mapped to L in Z . (If
Z is Calabi–Yau, i.e. if (1) also holds, then X is a calibrated coassociative.) It is not
difficult to see that Z × pt is a scaffold for X . Theorem 14 gives us that X has a
smooth moduli space of coassociative deformations with dimension ≤ 2b1(L).

Let α ∈ �2+(X). Then α = ξθ ∧ dθ + ∗Lξθ, for some path of 1-forms ξθ on L . It
follows from [21, Thm. 3.4.10] that a harmonic self-dual 2-form on X is uniquely
determined by its values ξ0, ξ1 on the boundary. The subspace of harmonic α ∈
�2+(X) such that ξ0 and ξ1 are harmonic on L has dimension 2b1(L) and corresponds
precisely to the paths ξθ = (1 − θ)ξ0 + θξ1. On the other hand, α ∈ (H2+)bc if and
only if α is harmonic and ∂ξθ/∂θ = 0, so ξ0 = ξ1. Thus dim(H2+)bc = b1(L) <

b1
(
(L × {0}) � (L × {1})) in this example.
This can also be seen geometrically. If the deformations of the aforementioned

two boundary components coincide in Z × pt then, by taking a product with S1, we
obtain a coassociative deformation of X = L × S1 defining a point in the moduli
space in Theorem 14. On the other hand, if a coassociative deformation X̃ of X is
such that the deformations L̃0 and L̃1 of L × {0} and L × {1} are special Lagrangian
but distinct then X̃ and L̃0 × S1 are two distinct coassociative 4-folds intersecting
in a real analytic 3-fold on which ϕ vanishes, which contradicts [12, Thm. IV.4.3].
Therefore, the moduli space in this example is identified with special Lagrangian
deformations of L in the almost Calabi–Yau manifold Z . As we noted earlier, these
deformations have a smooth moduli space of dimension b1(L).

4 Associative Submanifolds in G2-Manifolds

Let M be again a 7-dimensional manifold with a G2-structure given by a positive
3-formϕ, as defined in the previous section. If dϕ = 0 thenϕ is a calibration onM as
ϕp|V ≤ volV for each oriented 3-plane in TpM (cf. [12, Sect. IV.1.A]). The equality is
attained precisely when V is an associative subspace of TpM , i.e. is closed under the
cross-product on TpM induced by theG2-structureϕ. (The corresponding subalgebra
(V,×) is isomorphic to R3 with the standard vector product.)

The deformation theory discussed in this section does not always require the G2

form ϕ to be closed. Similarly to the discussion of coassociative submanifolds in
the previous section, we shall define the term associative submanifold Y in (M,ϕ)

for an arbitrary G2 structure ϕ, meaning a 3-dimensional submanifold Y satisfying
ϕ|Y = vol Y . If also the G2-structure is closed, dϕ = 0, then we shall call Y an
associative calibrated submanifold; indeed, in this case Y is calibrated by ϕ.
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McLean [18] studied the deformation theory of closed associative calibrated sub-
manifolds in G2-manifolds. His results were later extended by Akbulut and Salur [1]
to arbitrary G2-structures on 7-manifolds. We assume a torsion-free G2-structure to
simplify some details.

As in the previous sections, it is useful to first note that associative submanifolds
of M can be equivalently defined by the vanishing of an appropriate differential form
on M . In the present case, it is a 3-form χ with values in T M ,

χ =
7∑

k=1

(ηk� ∗ϕ ϕ) ⊗ ηk,

for any local orthonormal positively oriented frame field (ηk)
7
k=1 on M [8, p. 1217].

Proposition 16 (cf. [18, Sect. 5]) A 3-dimensional submanifold Y , with some choice
of orientation, is associative if and only if χ|Y = 0.

Suppose that Y is a closed associative submanifold in a G2-manifold (M,ϕ) and
let v ∈ �(NY/M) be a normal vector field along Y . The deformation map for Y is
defined as

F : v ∈ �(NY/M) → exp∗
v τ ∈ �3(Y, T M |Y ).

The linearization of F at v = 0 is given by

Dv =
3∑

i=1

ei × ∇⊥
ei v, (9)

where e1, e2, e3 is any positively oriented local orthonormal frame field of TY (thus
e3 = e1 × e2), the cross-product is induced by ϕ and a connection ∇⊥ on NY/M

is induced by the Levi–Civita connection of (M, g(ϕ)). Since Y is 3-dimensional
and associative, both TY and NY/M are trivial vector bundles [14, Remark 2.14]
and the expression (9) is valid globally over Y . There is an invariant interpretation
of NY/M as a vector bundle associated with a principal Spin(4)-bundle over Y via
the tensor product of a spin representation and some other representation. Then D
becomes the respective Dirac type operator (meaning that the principal symbol of
D2 is σ(D2)(p, ξ) = ‖ξ‖2, for all p ∈ Y ).

The map F makes sense for an arbitrary G2-structure ϕ on M , but when the G2-
structure is not torsion-free the expression (9) for D then has extra terms of order
zero. So in this more general case D is still a Dirac type operator with the same
principal symbol.

We thus obtain.

Theorem 17 ([1, 18]) For a closed associative submanifold Y in a G2-manifold
(M,ϕ), the Zariski tangent space to associative deformations of Y is finite-
dimensional, given by the kernel of the Dirac type operator D in (9), an elliptic
operator of index 0. In particular, Y is either rigid or the associative deformations
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of Y are obstructed, i.e. a section v with Dv = 0 need not arise as ṡ0 from any
1-parameter family Yt = exp st of associative submanifolds with s0 = 0.

The deformations of compact associative submanifolds with boundary contained
in a fixed submanifold (scaffold) were investigated by Gayet and Witt [9], see
also Gayet [8]. An appropriate choice of scaffold in this situation is given by a
4-dimensional submanifold X such that no tangent space TpX contains associa-
tive 3-planes. In particular, X may be any coassociative submanifold and we shall
assume this below for technical convenience. In this case, any associative calibrated
submanifold with boundary in X is volumeminimizing in its relative homology class
as ϕ|X = 0 by Propositions 2(b) and 10.

Let Y be a compact associative submanifold with boundary ∂Y contained in a
coassociative submanifold X . Denote by n ∈ �(TY |∂Y ) the inward-pointing unit
normal along ∂Y . For each point p ∈ ∂Y the cross-product of the G2-structure ϕ

J (v) = np × v

defines an (orthogonal) complex structure on the orthogonal complement (np)
⊥ ⊂

TpM . Further, J acts on the fibres of the normal bundle N∂Y/X , making it into a
complex line bundle. Note that N∂Y/X is a subbundle of NY/M |∂Y ; the respective
orthogonal complement μ∂Y is also invariant under J and can be considered as a
complex line bundle. The tangent spaces of ∂Y are also preserved by J and in this
way ∂Y is made into a compact Riemann surface. The latter complex line bundles
satisfy an adjunction-type relation μ̄∂Y

∼= N∂Y/X ⊗C T∂Y [9, Lemma 3.2].
The infinitesimal associative deformation problem for Y with boundary confined

to X can be expressed as

Dv = 0, B(v|∂Y ) = 0, v ∈ �(NY/M), (10)

where D is the Dirac type operator in (9) and the zero order operator B is induced
by the orthogonal projection NY/M |∂Y → μ∂Y with kernel N∂Y/X .

Gayet and Witt prove.

Theorem 18 ([9, Thm. 4.4, Cor. 4.5]) Let (M,ϕ) be a 7-manifold endowed with a
G2-structure and let Y ⊂ M be a compact associative submanifold with boundary
contained in a coassociative submanifold Y ⊂ M.

Then the linear operator D ⊕ B in (10) defines an elliptic boundary value problem
with finite Fredholm index

index(D ⊕ B) =
∑
j

(

∫
� j

c1(N� j /X ) + 1 − g j ). (11)

Here � j denote the boundary components of ∂Y with g j the genus of � j , and
c1(N� j /X ) is the first Chern class of the complex line bundle N� j /X .
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The key point in the proof of Theorem18 is that the index in question can be computed
as the index of the Cauchy–Riemann operator ∂̄∂Y/X associated with the complex
structure J on N∂Y/X .

Example 19 ([9, p.2364]) When the associative submanifold has a boundary, the
index in Theorem 18 can be positive. One simple example uses a construction by
Bryant and Salamon [3] of torsion-free G2-structure ϕ inducing a complete metric
with holonomy G2 on S = S3 × R

4, the total space of the spinor bundle over the
standard round 3-sphere. The zero section S3 × {0} is an associative submanifold,
being the fixed locus of the G2-involution acting as −1 on the fibres (note [13,
Prop. 12.3.7]). Take Y ⊂ S3 × {0} to be a 3-dimensional ball, so ∂Y = S2. Let a
be a nowhere vanishing section of S|∂Y = ∂Y × R

4 → ∂Y . Then a, Ja (with J as
defined above) generate a trivial complex line bundle, denote its total space by X̃ . It
can be checked that there is a local coassociative submanifold X ⊂ S containing ∂Y
and with TpX = Tp X̃ at each p ∈ ∂Y . Theorem 18 then applies and the deformation
problem has index 1. This example generalizes, under additional assumptions, to a
complex line bundle X̃ having positive degree n, then the respective index is n + 1
[9, p.2364].

Gayet andWitt also gave a generalization of Theorem 18where X is only required
to contain no associative 3-planes in its tangent spaces. The latter property is pre-
served under small perturbations of the G2-structure. The deformation problem
remains elliptic and the index formula (11) still holds (with appropriate modifi-
cation of the definition of the boundary operator B). This does not guarantee a
smooth moduli space of associative deformations even when the index of D ⊕ B is
non-negative. However, Gayet [8, Thm. 1.4] proved that a smooth moduli space of
dimension index D ⊕ B can be obtained by arbitrary small generic perturbation of
the scaffold X .

5 Cayley Submanifolds in Spin(7)-manifolds

The calibration considered in this section is defined on 8-dimensional manifolds with
a torsion-free Spin(7)-structure. We begin with a short summary of the Spin(7)-
structure and the Cayley calibration and refer to [12] and [13, Chap. 11, 12] for
further details. There is a certain, though only partial, analogy with the ‘geometries’
considered in the previous sections.

The group Spin(7) can be defined, following [2], as the stabilizer, in the standard
action of GL(8,R) on �4(R8)∗, of the 4-form �0 written in standard coordinates as

�0 = dx1234 + dx1256 + dx1278 + dx1357 − dx1368 − dx1458 − dx1467
− dx2358 − dx2367 − dx2457 + dx2468 + dx3456 + dx3478 + dx5678, (12)

where dx1234 = dx1 ∧ dx2 ∧ dx3 ∧ dx4 and so on. The form �0 arises by con-
sidering R

8 as the (normed) algebra of octonions, or Cayley numbers, and setting
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�0(x, y, z, w) = 1
2 〈x(ȳz) − z(ȳx), w〉. In this way, Spin(7) is also identified as a

subgroup of SO(8). This form is also self-dual ∗�0 = �0 with respect to the standard
Euclidean metric and orientation.

Given an oriented 8-manifold M , define a subbundle of 4-forms AM ⊂ �4T ∗M
with the fibre ApM at each p ∈ M being the set of all 4-forms that can be identi-
fied with �0 via an orientation-preserving isomorphism TpM → R

8. The fibres of
AM are diffeomorphic to the orbit GL+(8,R)/Spin(7) of �0, a 43-dimensional
submanifold of the 70-dimensional vector space �4(R8)∗.

A choice of 4-form � ∈ �(AM) is equivalent to a choice of a Spin(7)-structure
on M . By the inclusion Spin(7) ⊂ SO(8), every such � induces on M a metric
g = g(�), an orientation and a Hodge star ∗�, with ∗�� = �. We shall sometimes
refer to � as a Spin(7)-structure.

When a form � ∈ AM is closed, d� = 0, we say that the Spin(7)-structure �

is torsion-free and that (M,�) is a Spin(7)-manifold. The condition d� = 0 is
equivalent to the metric g(�) being Ricci-flat with reduced holonomy contained in
Spin(7) [7]. In this case, � defines a calibration on M .

Given a Spin(7)-structure on an 8-manifold M , we say that an oriented 4-
dimensional submanifold P ⊂ M is a Cayley submanifold if �|P = volP . We say
that P is a Cayley calibrated submanifold if in addition d� = 0, i.e. precisely if P
is calibrated by �.

Let P be a compact Cayley calibrated submanifold of a Spin(7)-manifold (M,�).
The infinitesimal Cayley deformations of P are given by the kernel of a first order
elliptic operator D : �(NP/M) → �(E), for a rank 4 vector bundle E over P ,

E = {α ∈ �2
7M |P : α|T P = 0}.

Here�2
7M ⊂ �2T ∗M is a subbundle corresponding to an irreducible representation

of Spin(7) on the space of 2-forms �2(R8)∗. The following result was proved by
McLean.

Theorem 20 ([18, Thm. 6.3]) Let P be a Cayley submanifold of a Spin(7)-manifold
(M,�). Then the Zariski tangent space to Cayley deformations of P is finite-
dimensional, given by the kernel of the elliptic operator

D : v ∈ �(NP/M) →
4∑

i=1

ei × ∇⊥
ei v ∈ �(E), (13)

where e1, e2, e3, e4 is any positively oriented local orthonormal frame field of T P,
the cross-product is induced by the Spin(7)-structure � and a connection ∇⊥ on
NP/M is induced by the Levi–Civita connection of (M, g(�)).

Remarks When P is a spin manifold, there is an invariant interpretation of D using
a spin structure on P [18, Sect. 6]. Denote by S+ and S− the positive and negative
spinor bundles over P . Then

NP/M ⊗R C ∼= S+ ⊗C F and E ⊗R C ∼= S− ⊗C F, (14)
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for some quaternionic line bundle F over P . The operator D is identified, via (14),
with a positive Dirac type operator associated with a connection on F .

Theorem 20 was extended to arbitrary Spin(7)-structures in [10, Sect. 13]. When
the Spin(7)-structure is not torsion-free, the expression (13) for D has extra terms
of order zero. This does not affect the principal symbol or the index of D.

Deformations of Cayley submanifolds were further investigated by Ohst and
included the following.

Theorem 21 ([19, Prop. 3.4 and Thm. 3.10]) Let (M,�) be an 8-manifold with a
Spin(7)-structure and P ⊂ M a closed Cayley submanifold. Then

(a) the index of the operator (13) associated with P is

index D = 1
2χ(P) + 1

2σ(P) − [P] · [P], (15)

where χ(P) is the Euler characteristic, σ(P) is the signature and [P] · [P] is
the self-intersection number of P.

(b) For every generic Spin(7)-structure �̃ on M such that ‖�̃ − �‖ is sufficiently
small and �̃ induces the same metric g(�̃) = g(�) the following holds. The
moduli space of Cayley submanifolds with respect to �̃ which are C1,α-close to
P (0 < α < 1) is either empty or a smooth manifold of dimension index D (if
index D ≥ 0).

Remarks The submanifold P need not be Cayley with respect to �̃, thus P need
not be in the respective moduli space. The norm ‖�̃ − �‖ can be taken to be the
C1,α-norm on a compact neighbourhood of P .

The variant of Theorem 21 also holds with �̃ generic in the set of all Spin(7)-
structures close to �, i.e. without the restriction on the metric g(�̃).

We next turn to deformations of compact Cayley submanifolds with boundary
in a fixed submanifold (scaffold). The result given below is again due to Ohst and
allows a range of dimensions of the scaffold.

Theorem 22 ([19, Thm. 4.18]) Let (M,�) be a Spin(7)-manifold and W a subman-
ifold of M with 3 ≤ dimW ≤ 7. Let P be a compact, connected Cayley submanifold
of M with non-empty boundary ∂P ⊆ W such that P and W meet orthogonally.

Then for every generic torsion-free Spin(7)-structure �̃ which is C2,α-close to
�, the moduli space of all Cayley (calibrated) submanifolds in (M, �̃) which are
C2,α-close to P and have boundary contained in W and meet W orthogonally in the
metric g(�̃) is a finite set (possibly empty). Here 0 < α < 1.

The proof of Theorem 22 uses a second order elliptic boundary problem implied
by the linearization D in (13) of the Cayley deformation map. This is because D
admits no suitable elliptic boundary conditions [19, Prop. 4.21].

The condition �|W = 0 required in Proposition 2(b) for the volume-minimizing
property in the relative homology class of P can only hold if dimW ≤ 4. Suppose



Deformations of Calibrated Submanifolds with Boundary 381

that ∂P is a deformation retract ofW . If dimW = 5, then v = d(∗W (�|W ))	 restricts
to a vector field on ∂P . If, further, v is parallel with respect to the induced metric
on W , then P is volume-minimizing among the nearby deformations in its relative
homology class.

When dimW = 6 and d(∗W (�|W )) = 0, the scaffoldW is a symplectic subman-
ifold. Then P minimizes the volume among all the submanifolds P ′ in its relative
homology class, with boundary ∂P ′ ⊂ W a Lagrangian nearby deformation of ∂P .
In all of the above situations, the minimal volume in the relative homology class of P
is attained precisely by Cayley calibrated submanifolds [19, Sect. 5.1].
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