
Chapter 9
Roles of the Choroid Plexus in Aging

Caroline Van Cauwenberghe, Nina Gorlé,
and Roosmarijn E. Vandenbroucke

Abstract The choroid plexus comprises of a monolayer of tightly connected epi-
thelial cells that form an important physical, enzymatic, and immunologic barrier,
called the blood–cerebrospinal fluid (CSF) barrier. It is a highly vascularized
structure located in the brain ventricles and plays a key role in maintaining brain
homeostasis by producing CSF.

During aging, the morphology and normal function of the choroid plexus is
compromised. Different alterations of the choroid plexus have been reported such
as atrophy of the choroid plexus epithelial cells, decreased CSF production and
secretion, decreased CSF clearance and absorption resulting in reduced clearance of
toxic compounds, reduced enzymatic and metabolic activity, loss of barrier integrity,
and insufficient distribution of nutrients. The described degeneration of the structure
and function of the choroid plexus can result in multiple brain deficits and contribute
to cognitive deterioration. In fact, these alterations of the choroid plexus are even
more prominent in age-related neurodegenerative diseases including late-onset
Alzheimer’s disease. A better understanding of the alterations in structure, activity,
and function of the choroid plexus epithelial cells during aging and how the choroid
plexus is implicated in aging and age-associated neurological diseases might reveal
novel strategies to combat age-related cognitive decline and age-related neurological
disorders.

9.1 Introduction

Aging is a complex, multifactorial process influenced by many unknown genetic and
environmental factors. It is associated with progressive decline in normal cell and
organ functioning. An important hallmark of aging is ‘inflamm-aging’, a state of
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chronic, low-grade inflammation, caused by an elevated concentration of inflamma-
tory markers in the circulation (Calder et al. 2017). The balance between pro- and
anti-inflammatory cytokines in the healthy adult brain is shifted with aging towards a
pro-inflammatory state (Franceschi 2007). This immunological fragile state makes
the aged brain more susceptible to diseases, infection, and stress, which might even
influence the onset of age-related neurodegenerative brain diseases (Franceschi and
Campisi 2014; Gorle et al. 2016).

With life expectancy exponentially increasing, age-related diseases will become
an emerging epidemic and a tremendous public health issue due to the high costs of
dementia care. Numbers are predicted to increase to 152 million in 2050 and there
are over 9.9 million new cases of dementia each year worldwide (Report 2018), in
addition no treatment to reverse or halt disease progression exists. Increasing
evidence indicates that degeneration of the choroid plexus can result in brain deficits
and contribute to cognitive impairment. Therefore, extensive insights in the aging
choroid plexus are essential in understanding age-associated neurodegenerative and
neuroinflammatory disorders and pave new ways for therapy.

The role of the choroid plexus in health and disease is being increasingly
recognized and it has been reported to play a central role during aging (Gorle et al.
2016; Vandenbroucke 2016; Marques et al. 2017). The choroid plexus is a highly
vascularized brain structure, consisting of a monolayer of choroid plexus epithelial
cells firmly interconnected by tight junctions (De Bock et al. 2014), that form one of
the brain barriers, called the blood-cerebrospinal fluid (CSF) barrier. Together with
other brain barriers, the blood-CSF barrier assures a balanced and well-controlled
micro-environment in the central nervous system (CNS), providing protection
against external insults such as toxins, infectious agents, and peripheral blood
fluctuations (Gorle et al. 2016). The choroid plexus produces CSF and receives
input from both circulatory, autonomic and immune system. It can respond as a key
regulator to local changes of different physiological signals by changing its
secretome, including proteins (Marques and Sousa 2015; Silva-Vargas et al. 2016)
and extracellular vesicles (EVs) (Balusu et al. 2016b). The normal functioning of the
choroid plexus is severely affected during aging and this dysfunction is even
aggravated in age-related neurodegenerative brain diseases like Alzheimer’s disease
(Balusu et al. 2016a). Understanding how the function and activity of the choroid
plexus is altered in aging might lead to the identification of strategies to attenuate
aging-associated cognitive decline and related diseases (Baruch et al. 2014;
Vandenbroucke 2016; Gorle et al. 2016).

9.2 Morphological Changes of the Choroid Plexus
Epithelium Upon Aging

Several reports have been published describing the morphological alterations of the
choroid plexus epithelium upon aging (Fig. 9.1), which is comparable to other
secretory epithelia. Across species epithelial atrophy and weight increase have
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been observed (Wen et al. 1999), however slightly different modifications have been
described according to species.

In humans, the height of the epithelial cells decreases with approximately 11%
during life and the cells become more flattened (Serot et al. 2000). The aged cell
cytoplasm contains protein inclusions called Biondi ring tangles. In addition, the
presence of lipofuscin deposits can be found. Since this age pigment is a product of
lipid peroxidation by free oxygen radicals it will probably alter the cell functioning
(ZS-Nagy et al. 1995). The nuclei become more irregular in elderly and have a
flattened shape (Serot et al. 2000, 2001). Moreover, the epithelial basement mem-
brane has been reported to become thicker with aging. Also the stroma of the aged
choroid plexus is thicker and contains collagen fibers, hyaline bodies, calcifications,
and psammomas (i.e. dystrophic calcifications) (Eriksson and Westermark 1986;
Jovanovic et al. 2004; Sturrock 1988; Wen et al. 1999). An age-associated increase
in size and volume density of the psammoma bodies has been described (Zivkovic
et al. 2017). The arterial walls become thicker, especially the media and adventitia,
while the blood vessel volume density decreases and elastic fibers are fragmented
(Serot et al. 2000; Shuangshoti and Netsky 1970; Zivkovic et al. 2017), resulting in a
reduced contact area between the blood and the choroid plexus epithelium.

Rodent models show similar epithelial disruptions of the choroid plexus epithe-
lium compared to humans (Serot et al. 2001; Sturrock 1988). In elderly rats the
epithelial cells lose height, approximately 15%, and become more flattened. The
cells show an irregular, elongated nucleus and shortened microvilli, causing a

Fig. 9.1 Schematic representation of the changes at the choroid plexus during aging. Several
morphological changes are observed at the choroid plexus: the choroid plexus epithelial cells are
flattened with an irregular nucleus and shortened microvilli, more Biondi rings and lipofuscin
are present, and the basement membrane is thickened and contains fragmented vessels, collagen
fibers, hyaline bodies, calcifications, and psammomas. Functionally multiple alterations were
shown: increased cerebrospinal fluid (CSF)/serum albumin ratio, reduced metabolic activity,
decreased extracellular vesicles (EVs) in the CSF, increased levels of lactate and vasopressin, and
altered immune cell recruitment (linked with changes in the interferon (IFN) balance). Key: CSF:
cerebrospinal fluid, EV: extracellular vesicles, IFN: interferon, IL: interleukin, LDH: lactate
dehydrogenase, SDH: succinate dehydrogenase
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decrease in the choroid plexus epithelium-CSF contact area. Lipid vacuoles are
present in the cytoplasm of the choroidal epithelial cells. Irregular fibrosis has
been described in the stroma of elderly rats together with thickening of the basement
membranes (Serot et al. 2001; Sturrock 1988).

Age-associated reduction in contact area between blood-choroid plexus epithe-
lium and choroid plexus epithelium-CSF due to morphological alterations, together
with the changes in choroidal proteins involved in CSF production (Masseguin et al.
2005), negatively influence the CSF production (Vandenbroucke 2016). These
morphological changes will result in functional alterations, which may consequently
have an impact on brain homeostasis.

9.3 Functional Alterations of the Choroid Plexus in Aging

9.3.1 CSF Dynamics

9.3.1.1 CSF Production and Secretion

One of the major functions of the choroid plexus is CSF production and secretion.
CSF flows from the choroid plexus through the ventricular system to the subarach-
noid space and continues to the spinal column. The classic theory suggests that CSF
flow is pulsatile and generated by cardiac pulsations and pulmonary respiration
(Khasawneh et al. 2018; Sakka et al. 2011). CSF not only provides mechanical
support to the brain (Segal 2000) but also helps to remove toxic catabolites of the
brain metabolism (Brown et al. 2004). Furthermore, CSF can be considered as a
route of communication within the brain as it carries hormones, growth factors, and
neurotransmitters between different areas of the brain (Kaur et al. 2016; Marques
et al. 2011; Silva-Vargas et al. 2016; Preston 2001; Brown et al. 2004; Strazielle and
Ghersi-Egea 2000).

The adult brain contains a constant volume of 150 ml CSF, of which 25 ml in the
brain ventricles and 125 ml in the subarachnoid compartments. The total CSF
production is about 500 ml per day in healthy individuals at a rate of about
0.3–0.4 ml per minute and is completely replaced about four times a day (Brown
et al. 2004; Khasawneh et al. 2018). CSF is for 99% composed of water with the
remaining 1% accounted for by proteins, ions, neurotransmitters, and glucose. Ion
concentrations of Na+, Cl�, and Mg2+ are higher in CSF than the levels in plasma,
while K+ and Ca2+ concentrations are lower (Bulat and Klarica 2011; Sakka et al.
2011). The majority of the total CSF volume (60–90%) is being produced and
secreted by the choroid plexus epithelium, the remaining CSF originates from the
brain interstitial fluid, ependyma, and cerebral capillaries (Redzic and Segal 2004;
Sakka et al. 2011). CSF secretion by the choroid plexus is dependent on active
translocation of ions and water from the basolateral membrane to the cytoplasm and
subsequently across the apical membrane into the brain ventricles (Brown et al.
2004). Transport of Na+, Cl�, K+

, and HCO3
� takes place via different transporters
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present on the choroid plexus epithelium. Na+ and Cl� are transported into the
epithelial cells by Cl�/HCO3

� and Na+ linked Cl�/HCO3
� transporters present on

the basolateral surface (Lindsey et al. 1990). Translocation of these ions creates an
osmotic gradient which drives water transport facilitated by aquaporins (AQP) on
the epithelial surface (Liddelow 2015). At the apical surface, the Na+, K+-ATPase
plays an important role creating an osmotic gradient which facilitates transfer of
various molecules in and out the choroid plexus epithelium (Pershing and Johanson
1982; Plotkin et al. 1997; Redzic and Segal 2004; Speake et al. 2001; Johanson et al.
2008). Besides the Na+, K+-ATPase transporter, also the electrogenic sodium-
bicarbonate cotransporter (NBCe2) facilitates Na+ ion transport into the CSF. Inter-
estingly, a knockout of this NBCe2 cotransporter resulted in significant remodeling
of choroid plexus epithelium including abnormal mitochondrial distribution, cyto-
skeletal protein expression, CSF electrolyte imbalance, and neurological impairment
(Kao et al. 2011), reflecting the importance of cotransporter in the normal physiol-
ogy of the nervous system (Christensen et al. 2018).

In elderly, the CSF production is reduced as shown in multiple studies in human,
rat, and sheep (Table 9.1). The reduced expression of choroidal proteins involved in
CSF secretion such as carbonic anhydrase II and AQP1 have been described in aging
rat models and sheep. In addition, Na+, K+-ATPase mRNA levels decrease with age
(Chen et al. 2009; Kvitnitskaia-Ryzhova and Shkapenko 1992; Masseguin et al.
2005). Next to a decreased CSF production rate, the mean CSF pressure declines
steadily after the age of 50. In comparison to a 20–49 year old group, the 50–54 age
group showed a reduction of 2.5% and this even increased to 13% in individuals
older than 70 years of age (Fleischman et al. 2012).

9.3.1.2 CSF Absorption

The site of CSF absorption is still a point of discussion in the research field. For
decades it was believed that CSF returns to the venous blood in the brain sinuses
through the arachnoid villi and granulations (Kida et al. 1988). These arachnoid
granulations are projections of the arachnoid membrane into the dural venous
sinuses. The driving force of the absorption of CSF into the venous bloodstream is
a difference in fluid pressure between the subarachnoid space and the venous system.
As such, fluid is driven out of the granulations into the circulation (Damkier et al.

Table 9.1 Changes in CSF secretion

Method Change Species Reference

Radiotracer dilution # Human Cutler et al. (1968), May et al. (1990)

MRI $ Human Barkhof et al. (1994), Gideon et al. (1994)

# Human Stoquart-ElSankari et al. (2007)

Ventriculo-cisternal perfusion # Rat Preston (2001)

In-situ perfusion # Sheep Chen et al. (2009)

Key: MRI: magnetic resonance imaging; CSF: cerebrospinal fluid
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2013). In addition, CSF absorption sites have been identified on meningeal recesses
of spinal and cranial nerve roots, particularly the trigeminal and cochlear nerve
(Sakka et al. 2011). Recently, dynamic imaging suggested that lymphatic outflow
might be the major outflow route for CSF. Using non-invasive imaging techniques,
the authors were able to demonstrate that tracers added to the CSF rapidly reach the
lymph nodes using perineural routes through the foramina of the skull to finally
reach the peripheral blood (Ma et al. 2017; Proulx et al. 2017). Interestingly, this
lymphatic outflow system showed significant decline in aged mice (Ma et al. 2017).

9.3.1.3 CSF Turnover and Circulation

Moderate brain tissue atrophy that occurs during healthy aging, leading to an
increase in total cranial CSF compartment and volume, affects the turnover or
replacement time of CSF (Table 9.2) (Preston 2001). The decreased production
and secretion of CSF together with increased CSF volume results in a longer CSF
turnover with age. These observations have been confirmed by reduced clearance of
radio-iodinated human serum albumin from the brain in individuals around 62 years
of age (Henriksson and Voigt 1976). Similarly, reduced clearance of 3H-polyethyl-
ene glycol and 125I-Amyloid beta (Aβ) (1–40) was observed in older rats (Preston
2001). Cross-sectional studies in healthy humans show a doubling of CSF volume
between the age of 30 and 70 years (Foundas et al. 1998; Matsumae et al. 1996a). In
elderly humans, CSF turnover is reduced to two times daily in comparison to three to
four times in young adults (Chiu et al. 2012; Johanson et al. 2008). In humans,
additional factors have been described that contribute to the reduced CSF turnover,
including increased resistance for CSF drainage by fibrosis present in the arachnoid
membranes and an increase in central venous pressure, both noted to be increased in
normal aging (Preston 2001; Bellur et al. 1980; Rubenstein 1998).

The diminished CSF production, secretion, and reduced CSF turnover rate might
have serious complications. In senescence, alterations in CSF composition due to
reduced turnover could bring about inadequate distribution of nutritive components

Table 9.2 CSF volume, turnover and clearance

Observation Change Species Reference

CSF volume " Human Foundas et al. (1998), Matsumae et al. (1996b),
Silverberg et al. (2001, 2003), Wahlund et al. (1996)

" Rat Preston (2001)

Resistance to
CSF drainage

" Human Albeck et al. (1998)

CSF turnover # Rat Preston (2001)

# Human Rubenstein (1998), Silverberg et al. (2003)

Albumin
clearance

# Human Henriksson and Voigt (1976)

Aβ clearance # Rats Preston (2001)

Key: CSF: cerebrospinal fluid; Aβ: beta-amyloid
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and trophic factors, and the diminished CSF clearance leads to accumulation of toxic
compounds and waste products from the brain (Marques et al. 2017; Preston 2001).
Both will result in increased cellular stress and changes in the cerebral metabolism
and blood flow, disrupting cognitive and motor functions (Rubenstein 1998), even-
tually influencing age-related cognitive decline and development of age-associated
neurological diseases (Emerich et al. 2005). In addition, adult neural stem cells
contact the CSF in the ventricular-subventricular stem cell niche of which the lateral
choroid plexus is an important component. This implicates that secreted factors and
toxic compounds accumulated due to diminished CSF clearance can impact the
neural stem cells, which are especially sensitive to age-related changes (Silva-
Vargas et al. 2016).

CSF production, clearance rate, and CSF flow are altered during aging, thereby
affecting brain homeostasis. Interestingly, a highly organized pattern of ependymal
cilia is responsible for the transport of CSF in the ventricles of the mouse brain.
Coordinated cilia beating patterns collectively give rise to a network of fluid flows
that allow for precise CSF directional flow, which may control substance distribution
in the ventricle. A cilia-based switch was discovered that reliably and periodically
alters the flow pattern and may control substance distribution in the ventricle (Faubel
et al. 2016). However, it remains to be determined whether changes in beating
patterns occur in aging and whether this affects the distribution of components
throughout the brain. Peak CSF volume flow is altered in aging and higher
aqueductal peak CSF flow velocities were described in elderly healthy volunteers
(Gideon et al. 1994). In addition, the total cerebral blood flow decreases with aging
and consequently CSF stroke volumes (i.e. mean volume of CSF passing through the
aqueduct during both systole and diastole) and pulsations were significantly reduced
in elderly (Stoquart-Elsankari et al. 2007).

9.3.1.4 Choroid Plexus Biochemistry

Choroid plexus functioning and metabolism are largely energy-dependent. All the
homeostatic and secretory functions of the choroid plexus are linked to energy
dependent mechanisms, explaining the huge number of mitochondria in the choroid
plexus epithelial cells. Morphometric studies in different model organisms indicate
that mitochondria constitute 10–14% of the choroid plexus cytoplasm (Cornford
et al. 1997). In addition, proteome analysis in rats identified a total of 1400 proteins
in the choroid plexus of which a high percentage (33.5%) are mapped to metabolism,
e.g. several enzymes like hydrolases, oxidoreductases, and transferases. The pres-
ence of a substantial number of mitochondrial proteins in the proteome analyses
suggests a high mitochondrial density (Sathyanesan et al. 2012). Aging however
leads to a reduced metabolic activity of the choroid plexus epithelial cells, as
demonstrated by in vitro choroid plexus cultures (Emerich et al. 2007). Additionally,
the number of epithelial cells deficient in cytochrome C oxidase has been shown to
be increased with age (Cottrell et al. 2001).
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The mammalian brain depends on glucose as main energy source and a contin-
uous supply is essential to sustain neural activity (Siesjo 1978; Simpson et al. 2007).
Glucose provides energy for physiological brain functioning (biosynthesis of neu-
rotransmitters, maintenance of action potentials, information processing) by oxida-
tive metabolism and tight regulation of the glucose metabolism is necessary
(Mergenthaler et al. 2013). Glucose transporter proteins transfer glucose from the
blood circulation to the brain. The blood-CSF barrier expresses GLUT1 (Redzic
2011; Serot et al. 2003; Simpson et al. 2007). Disruption of the glucose metabolism
and the pathways involved in glucose delivery can have pathophysiological conse-
quences and lead to brain diseases. There is compelling evidence that the aging
tissue is unable to maintain appropriate energy output. During aging, the expression
of enzymes necessary for anaerobic respiration and oxidative phosphorylation, such
as lactate dehydrogenase (LDH) and succinate-dehydrogenase (SDH), are dimin-
ished and consequently energy production in choroid plexus epithelial cells
decreases (Fig. 9.1) (Emerich et al. 2005; Ferrante and Amenta 1987; Gorle et al.
2016). Both LDH and SDH play a key role in glucose metabolism and show a major
reduction with age, respectively 9 and 26% (Ferrante and Amenta 1987; Preston
2001). Impairment of glucose dependent energy transduction mechanisms may
influence the functional activity of the choroid plexus epithelial cells (Ferrante and
Amenta 1987). In addition, in humans CSF levels of lactate increase with age
(Fig. 9.1). Since CSF lactate and brain lactate concentration correlate closely, this
might suggest a decline in the efficiency of glucose metabolism in brain tissue
(Yesavage et al. 1982).

Different imaging methods have been developed to allow non-invasive brain
measurements. Functional magnetic resonance spectroscopy (fMRS) is used for the
measurement of metabolite concentrations in the human brain (Jahng et al. 2016). In
addition, alterations of the glucose metabolism in the choroid plexus can be visual-
ized and measured in vivo with dynamic fluorodeoxyglucose positron emission
tomography (dynamic 18F-FDG-PET). By using this technique, the dynamic uptake
of FDG in the choroid plexus and CSF can be measured over time. A recent study
showed the presence of decreased glucose metabolism in Alzheimer’s disease
patients. Conversely, dynamic uptake was higher in CSF for Alzheimer’s disease
patients. The activity of the choroid plexus gradually decreases in patients with
cognitive decline. This results in the disturbance of the glucose exchange at the
blood-CSF barrier and alters the CSF-choroid plexus glucose equilibrium (Daouk
et al. 2016).

9.3.1.5 Iron Metabolism

Iron is an essential element for different metabolic processes, tissue homeostasis, and
brain functioning. However, in excessive amounts, iron becomes toxic for cells.
Therefore, the iron delivery in the brain is strictly regulated through receptor
mediated endocytosis of iron-bound transferrin by the blood-CSF barrier and the
blood-brain barrier (Morris et al. 1992; Deane et al. 2004; Rouault et al. 2009;
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Hubert et al. 2019). During aging, decreased metabolic activity, increased oxidative
stress, impaired barrier functioning, impaired protein secretion, and diminution of
the CSF flow might all affect the iron metabolism and iron-mediated toxic-
ity (Marques et al. 2009, 2007; Chen et al. 2012b). Moreover, pro-inflammatory
cytokines like IL-6, which are increased in the blood with age, can influence the
secretion of hepcidin by choroid plexus epithelial cells. Hepcidin is a central
regulator of iron homeostasis and secretion is influenced through the Stat3 signal
transduction pathway ( Chongbin et al. 2014; Chen et al. 2008; Villeda et al. 2011;
Rouault et al. 2009; Hubert et al. 2019; Leitner and Connor 2012; Lu et al. 1995).

9.3.2 Growth Factors and Hormones Secreted by the Choroid
Plexus

The choroid plexus is uniquely located at the interface between blood and CSF. It
expresses many receptors for growth factors and hormones, such as growth hormone
(GH), prolactin, corticotrophin-releasing hormone, vasopressin, and leptin, in order
to respond to local and peripheral signals (Kaur et al. 2016; Marques et al. 2011;
Silva-Vargas et al. 2016). In this way, the choroid plexus is a key component in
neuroendocrine regulation, having an impact on hormonal signaling and in addition,
also the choroid plexus functioning is regulated by a variety of hormones (Preston
2001). Several studies revealed that different hormones and neuropeptides might be
actively processed by the choroid plexus, namely GH, nerve growth factor (NGF),
brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor
(VEGF), insulin-like growth factor (IGF1 and 2), and insulin-like growth factor
binding protein 2 (IGFBP2) (Emerich et al. 2005; Holm et al. 1994; Nilsson et al.
1996; Vega et al. 1992). IGF2 plays an important role in cell growth, in develop-
ment, and maintenance of the nervous system and regulates the functional plasticity
of the adult brain (Lenoir and Honegger 1983; Mill et al. 1985; Mozell and Mcmorris
1991). The production of IGF partially depends on the presence of GH (Cohen et al.
1992). In elderly humans, reduced binding of GH to the choroid plexus has been
reported, resulting in reduced activity of IGF2, which might have an impact on
epithelial cell growth and repair (Nilsson et al. 1992; Preston 2001). Next to changes
in IGF, in vitro studies showed that VEGF secretion in aged choroid plexus epithelial
cells was reduced compared to young epithelial cells (Emerich et al. 2007).

Interestingly, the growth factors secreted by the choroid plexus into the CSF may
be involved in the proliferation, differentiation, and survival of neural progenitor
cells in the subventricular zone (Falcao et al. 2012; Lun et al. 2015). More recently, it
was shown that the lateral ventricle choroid plexus affects the behavior of neural
stem cells of the ventricular-subventricular zone by the secretion of several factors
promoting for colony formation and proliferation (Silva-Vargas et al. 2016). The
functional effect of the lateral ventricle secretome changes throughout life, with
activated neural stem cells being especially sensitive to age-related changes. The
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lateral ventricle choroid plexus is an important compartment that contributes to the
age-related changes of the ventricular-subventricular zone stem cells. Transcriptome
analysis revealed two proteins, BMP5 and IGF1, that might play an important role in
these age-dependent effects of the choroid plexus (Silva-Vargas et al. 2016). The
expression of both proteins decreases with aging, BMP5 levels are lower in aged
human CSF and systemic IGF levels decrease with aging (Baird et al. 2012; Bartke
et al. 2013). Furthermore, a study revealed that implants of young choroid plexus in
rats were potently neuroprotective, whereas the choroid plexus implants from aged
rats were only modestly effective and less potent. This study links aging with a
diminished neuroprotective capacity of the choroid plexus epithelial cells (Emerich
et al. 2007).

Vasopressin is a neurohormone produced by the hypothalamus, involved in the
regulation of blood pressure. A high density of Vasopressin receptors (V1) is present
at the choroid plexus. The activation of the V1 receptors regulates CSF production
by decreased choroidal blood flow or by the effect on the choroidal epithelial cells’
ion channels (Chodobski and Szmydynger-Chodobska 2001; Faraci et al. 1988).
Vasopressin is able to reduce the efflux of Cl� ions by regulating the Na+, K+,
2Cl�cotransporter, and maintains the volume of the choroidal epithelial cells.
Vasopressin levels in blood and CSF can vary substantially, and elevated levels of
vasopressin have been found in the CSF of old rats and in the plasma of elderly
humans (Fig. 9.1) (Frolkis et al. 1999). In addition to vasopressin, also angiotensin II
and endothelin-1, secreted by the choroid plexus, can affect the choroidal blood flow
and CSF secretion (Kaur et al. 2016). A reduced production and secretion of CSF
could influence the delivery of many components to the brain and may interfere with
the normal physiological pathways (Kaur et al. 2016; Preston 2001).

The Klotho protein is a transmembrane protein that was identified as aging-
suppressor (Kuro et al. 1997). A defect in Klotho gene expression in mice accelerates
aging-like phenotypes and results in a syndrome that resembles human aging
including a short lifespan, impaired cognition (Uchida et al. 2001; Shiozaki et al.
2008), abnormal brain pathology, infertility, arteriosclerosis (Arking et al. 2003),
skin atrophy, osteoporosis (Ogata et al. 2002), and emphysema (Kuro et al. 1997).
Vice versa, the overexpression of Klotho in mice extends life span and improves
memory (Kurosu et al. 2005; Li et al. 2019). Moreover, gene expression analysis of
brain white matter in rhesus monkeys also indicated the implication of Klotho in the
regulation of brain aging (Duce et al. 2008). In humans, a functional variant of the
KLOTHO (KL) gene showed to be associated with high-density cholesterol, blood
pressure, stroke, and longevity (Arking et al. 2002, 2005). The Klotho protein
functions as a circulating hormone that represses intracellular signals of insulin
and IGF1, an evolutionarily conserved mechanism for extending life span. In
Klotho-deficient mice the disruption of insulin and IGF1 signaling lead to the
improvement of aging-like phenotypes, suggesting that Klotho-mediated inhibition
of insulin and IGF1 signaling contributes to its anti-aging properties (Kurosu et al.
2005). Klotho is predominantly secreted by the choroid plexus, the distal tubule cells
of the kidney, and parathyroid glands; high levels of Klotho are expressed in the
choroid plexus of juvenile and adult mice, humans, and mammals (Kuro 2010).
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Soluble Klotho has been demonstrated to be present in human CSF and serum
(Imura et al. 2004; Semba et al. 2014). Aging is associated in mice with decreased
klotho expression in the choroid plexus (Zhu et al. 2018). Moreover, CSF klotho
concentrations are lower in older versus younger cognitive healthy individuals and
in addition, CSF klotho concentrations are significantly lower in Alzheimer’s disease
patients compared to adults without cognitive problems (Semba et al. 2014). Selec-
tive depletion of klotho in the choroid plexus triggered the expression of multiple
proinflammatory factors and macrophage infiltration into the choroid plexus. Fur-
thermore, experimental reduction of klotho in the choroid plexus demonstrated
enhanced microglial activation in the hippocampus following peripheral stimulation
with lipopolysaccharide (Zhu et al. 2018). These results suggest that klotho deple-
tion from the choroid plexus could contribute to the age-dependent priming of
microglia for activation by peripheral infections (Henry et al. 2009; Zhu et al.
2018). In primary macrophage cultures, Klotho suppressed the activation of the
NLRP3 inflammasome by enhancing fibroblast growth factor (FGF)23 (Zhu et al.
2018). This suggests that Klotho controls the brain-immune systems interface in the
choroid plexus. Moreover, Klotho depletion in aging or disease may weaken this
barrier and promote immune-mediated neuropathogenesis (Zhu et al. 2018). In
addition, Klotho secreted by the choroid plexus might enhance oligodendrocyte
maturation and myelination of the CNS (Chen et al. 2013). In this way it may play
a role in the prevention of myelin degeneration in the aging brain (Chen et al. 2013;
Semba et al. 2014).

9.3.3 Barrier Permeability and Transport by the Choroid
Plexus

The blood-CSF barrier ensures a stable, balanced, and well-controlled micro-envi-
ronment of the brain, which is necessary for proper functioning of the CNS.
Transport across the barrier is restricted by tight junctions between the choroid
plexus epithelial cells and require transporter and receptor systems in a directional
way (Redzic 2011; Saunders et al. 2013). The choroid plexus produces CSF by
passive filtration of fluid across the fenestrated capillaries and regulated secretion of
molecules across the choroid plexus epithelial cells (Brinker et al. 2014), together
with active production of molecules by the choroid plexus epithelial cells
(Thouvenot et al. 2006). Dysregulation of choroid plexus transporters and tight
junction complexes subsequently reflects into CSF compositional changes. Several
studies have reported a compromised blood-CSF barrier in response to inflammatory
signals (Brkic et al. 2015; Marques and Sousa 2015; Vandenbroucke et al. 2012). As
described previously, aging is associated with morphological changes of the choroid
plexus epithelial cells and is in addition associated with a state of low grade, chronic
inflammation or inflamm-aging which might lead to the loss of the barrier function at
the choroid plexus. Loss of barrier integrity might result in leakage of components
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from the blood circulation into the CSF, thus changing CSF composition. In
agreement with this, a study performed by Chen et al., showed increased blood-
CSF permeability for proteins upon aging in sheep. However, no complete disrup-
tion of the barrier is present since the passage of larger molecules was still prevented
(>109.51–120 kDa) (Chen et al. 2009, 2012a). Studies conducted in healthy elderly
individuals report only small changes in CSF composition: the concentration of
molecules including Transthyretin (TTR) (Serot et al. 2003; Kleine et al. 1993b),
alpha2-macroglobulin (Garton et al. 1991; Kleine et al. 1993b), and IgG (Blennow
et al. 1993a; Garton et al. 1991; Kleine et al. 1993b; Chen et al. 2018) increases
slightly with age. The CSF versus serum albumin ratio is used to evaluate blood-CSF
barrier functioning and an increased variability in the CSF/serum albumin ratio has
been observed from the age of 45 years, indicating that the blood-CSF barrier is
compromised in elderly humans (Fig. 9.1) (Blennow et al. 1993a, b, c). However, it
is difficult to determine whether this is the result of increased blood-CSF barrier
permeability or altered clearance of the proteins (Preston 2001; Serot et al. 2003,
1997). Often these elevated levels are interpreted as blood-CSF barrier integrity loss.

Choroid plexus epithelial cells are able to secrete EVs, including exosomes, into
the CSF as a mechanism of blood-brain communication (Balusu et al. 2016b). EVs
are membrane-derived vesicles that can enclose specific repertoires of proteins,
lipids, and RNA molecules (Van Niel et al. 2018; Mathieu et al. 2019) and are able
to transport these molecules both to adjacent and distant cells (Baixauli et al. 2014;
Mittelbrunn and Sanchez-Madrid 2012; Paolicelli et al. 2018). In the CNS, EVs have
shown to mediate intercellular communication over long range distances and are
believed to be important for the cross-talk between neurons and glial cells in the brain
(Paolicelli et al. 2018). Inflammation, which is also present in the aging brain, was
shown to induce an increase in EV production, together with an altered EV content
(Balusu et al. 2016b). The number of EVs present in the CSF declines in elderly
humans and their miRNA content changes throughout life (Fig. 9.1) (Tietje et al.
2014). However, the size of the EVs and their size distribution did not change during
aging (Tietje et al. 2014; Yang et al. 2015). EVs in the CSF can be produced by
different cell types and no data is currently available on EV production by the choroid
plexus epithelial cells during aging. However, if affected, this might have conse-
quences for the nutrient delivery to the brain. As an example, exosomes, a specific
type of EVs, which are secreted via the fusion of multivesicular bodies with the
plasma membrane, are important for the delivery of folate, an important vitamin for
the brain, across the choroid plexus epithelial cells into the CSF (Grapp et al. 2013).

9.4 Immune Cell Trafficking at the Choroid Plexus

Migration of immune cells into brain tissue and (limited) inflammatory reactions are
fundamental mechanisms to sustain normal physiology, immune surveillance, host
defense, and learning processes (Engelhardt and Coisne 2011; Garner et al. 2006;
Ransohoff and Engelhardt 2012; Galea et al. 2007). However, these mechanisms are
tightly controlled by the presence of different brain barriers. The blood-CSF barrier
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is perfectly located at the interface between blood and CSF to provide active immune
surveillance and serves as active and selective gate for immune cell trafficking
(Demeestere et al. 2015). The tightly connected choroidal epithelium limits
paracellular transport of not only molecules, but also immune cells. Additionally,
the choroid plexus contains fenestrated capillaries, allowing free communication
between the stroma and peripheral blood (Demeestere et al. 2015). The choroid
plexus stroma contains a large population of macrophages, dendritic cells, CD3+ and
CD4+ T cells, and CX3CR1hi Ly6Clow monocytes (Shechter et al. 2013). Macro-
phages at the apical side of the choroid plexus are called epiplexus or Kolmer cells
(Maslieieva and Thompson 2014) and are thought to contribute to the immune
component of the blood-CSF barrier. In healthy conditions, the CSF contains CD4
+ T cells, natural killer cells, and B cells (Ransohoff and Engelhardt 2012). Although
leukocytes enter the CSF, in steady state conditions they do not invade the brain
parenchyma (Shechter et al. 2013). Leukocyte infiltration however is modulated in
response to disease or trauma like meningitis, multiple sclerosis, or peripheral
inflammation. The cells can transmigrate from the blood across the fenestrated
endothelium to enter the stroma matrix. After travelling through the stroma of the
choroidal cells, the immune cells can, in response to specific triggers, cross the
choroid plexus epithelium and enter the CSF where they are able to skew toward
specific effector responses, including regulatory T cells, T helper 2 cells, and
alternatively activated macrophages (Shechter et al. 2013). The CD4+ T cells present
in the CSF are distinct from the T cell populations in the blood circulation and brain
parenchyma, indicating that the influx of T cells via the choroid plexus into the CSF
is highly regulated (Engelhardt and Ransohoff 2012). After entering the CSF,
leukocytes might be able to cross the ependymal cell layer and migrate further into
the brain parenchyma under inflammatory conditions or might travel to the
arachnoidea via the CSF flow.

The expression of adhesion molecules, chemokines, and chemokine receptors
control leukocyte trafficking across the blood-CSF barrier. Inflammation causes the
upregulation of adhesion molecules in the choroid plexus epithelial cells, such as
intercellular adhesion molecule 1 (ICAM-1), vascular cellular adhesion molecule
1 (VCAM-1), and mucosal vascular addressin cell adhesion molecule 1 (MADCAM-
1) (Endo et al. 1998). The expression of cell adhesion molecules at the brain barriers
could possibly be increased during aging because of the pro-inflammatory state of the
brain. The choroid plexus also produces cytokines (e.g. interleukin-1β (Il-1β) and
tumor necrosis factor α (TNFα)) and chemokines (e.g. C-X-C motif chemokine
ligand (CXCL10) and monocyte chemoattractant protein 1 (MCP1)). These cyto-
and chemokines are necessary for the activation and/or recruitment of immune cells
during systemic inflammation (Demeestere et al. 2015). Interestingly, aging leads to
an increased expression of Il-1β in the choroid plexus (Silva-Vargas et al. 2016).

In the healthy adult brain, a balance is present between pro- and anti-
inflammatory cytokines, but Baruch and colleagues observed in the choroid plexus
a shift towards a Th2-like pro-inflammatory state with increasing age (Baruch et al.
2013; Sparkman and Johnson 2008). This pro-inflammatory state is reflected by the
reduced production of interferon (IFN)-γ and increased production of IL-4, which
negatively affect brain functioning (Baruch et al. 2013). Mice lacking the IFNγ
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receptor show a decreased number of leukocytes in the CSF and premature cognitive
decline (Baruch et al. 2013). A type I IFN signature was described in the aged
choroid plexus (Baruch et al. 2014). In both mouse models and human samples, the
choroid plexus showed an increased type I and decreased type II IFN dependent gene
expression profile (Fig. 9.1). This type I IFN signature negatively influences type II
IFN signaling, leading to a reduced expression of homing and trafficking molecules
(Cd34,Madcam1, Ccl2, Cx3cr1, Cxcl13, Il2) that are required for leukocyte entry in
the CSF during aging, eventually leading to increased brain inflammation and
cognitive decline (Baruch et al. 2014; Kunis et al. 2013). Interestingly, blocking
IFN type I signaling restored cognitive functioning and hippocampal neurogenesis
and in addition was able to diminish astrogliosis and microgliosis, and increase the
anti-inflammatory cytokine IL-10 in the hippocampus (Baruch et al. 2014). It was
suggested that this IFN I signaling is a mechanism to attenuate neuroinflammation
which eventually becomes detrimental to brain plasticity resulting in age-associated
cognitive decline (Baruch et al. 2014). However, therapeutically targeting the IFN
pathway could influence the immune surveillance at the choroid plexus, since a tight
balance between type I IFNs and IFNγ is central in leukocyte entry and cognition
(Deczkowska et al. 2016). The importance of this balance is reflected in the IFNβ
treatment, which is used in the clinic to reduce clinical relapses in multiple sclerosis
(Wingerchuk and Carter 2014). Patients treated with IFN experience several adverse
effects including increased risk for developing depression, cognitive decline, and
they develop Parkinson like symptoms (Manouchehrinia and Constantinescu 2012).
Similarly, type I IFNs aggravate disease in multiple mouse models of Parkinson’s
disease (Main et al. 2017).

It remains to be determined whether loss of barrier integrity is responsible for
immune cell trafficking across the blood-CSF barrier. Independent of barrier impair-
ment, other mechanisms might determine the leukocyte migration across the blood-
CSF barrier. Nitric oxide, a negative regulator of leukocyte trafficking has been
found to be upregulated at the choroid plexus during aging (Baruch et al. 2015).
Additionally, transcellular migration events of leukocytes occurring in close prox-
imity of the tight junctions have been undervalued and might have been mistaken for
paracellular migration (Phillipson et al. 2008; Wewer et al. 2011; Wolburg et al.
2005). Steinmann et al. were able to demonstrate transcellular migration of leuko-
cytes across the blood-CSF barrier after bacterial infection as well as T-cell trans-
migration after viral stimulation (Steinmann et al. 2013; Wewer et al. 2011).
Moreover, polymorphonuclear (PMN) and monocytes differentially migrate in a
human blood-CSF barrier model (Steinmann et al. 2013).

9.5 Choroid Plexus and Neurodegenerative Diseases

Interestingly, all the age-related morphological changes in choroid plexus structure
described above, such as the flattening of epithelium, thickening of basement
membrane, and lipofuscin deposits, are significantly more prominent in neurode-
generative diseases.
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The most prevalent neurodegenerative disease, Alzheimer’s disease, is charac-
terized by the decline of memory and other cognitive functions. It is a progressive
deteriorating disease, eventually leading to loss of autonomy and ultimately patients
require full-time medical care (Jost and Grossberg 1995). Pathologically,
Alzheimer’s disease is defined by severe neuronal loss, resulting in the loss of
brain volume, which is most pronounced around the medial temporal lobe areas,
and particularly in the hippocampus. Furthermore, the aggregation of beta-amyloid
(Aβ) in extracellular senile plaques and formation of intraneuronal neurofibrillary
tangles consisting of hyperphosphorylated tau protein have been identified to play a
major role in Alzheimer’s disease pathogenesis (Braak and Braak 1991).

Ultrastructural changes are similar to those described in aging namely epithelial
cell atrophy. In humans, the cells decrease in height with approximately 22%
compared to healthy controls (Serot et al. 2000, 2003). The cytoplasm of the
epithelial cells contains multiple lipofuscin and Biondi tangles (Miklossy et al.
1998). The basement membrane of the epithelium is thickened and irregular. Apical
microvilli become irregular and fibrotic (Serot et al. 2000; Jellinger 1976). The
stroma contains calcifications and psammomas, hyaline bodies, and thickened vessel
walls (Serot et al. 2003).

TTR, a highly expressed protein at the choroid plexus, is a carrier for the thyroid
hormones, but also has the ability to bind to Aβ and prevents the aggregation and
deposition of Aβ plaques in the brain (Marques et al. 2013; Schwarzman et al. 1994).
Studies reporting the production and secretion of TTR by the choroid plexus during
aging show conflicting data: both an increase and decrease of TTR in the CSF has
been described (Kleine et al. 1993a; Redzic et al. 2005; Serot et al. 1997). The blood-
CSF barrier expresses several transporter systems including low-density lipoprotein
receptor-related protein 1 (LRP1), receptor for advanced glycation end products
(RAGE), receptor glycoprotein 330/megalin (LRP2), and Pgp. The LRP and Pgp
receptors are responsible for the receptor-mediated efflux of Aβ from the brain, while
RAGE mediates the influx of Aβ into the brain (Marques et al. 2013; Storck et al.
2016). Expression of LRP2 in the choroid plexus is decreased during aging, but an
increase of LRP1 and Pgp is observed as well as no difference in RAGE expression
(Gorle et al. 2016; Pascale et al. 2011).

Several studies have reported the beneficial effect of the choroid plexus on the
rejuvenation of damaged brain regions because of the production of neurotrophic
factors (Thanos et al. 2010; Borlongan et al. 2004a, b; Bolos et al. 2014). Choroid
plexus epithelial cells treated in vitro with Aβ peptide lead to increased proliferation
and differentiation of neuronal progenitor cells (Bolos et al. 2014). Moreover,
transplantation of healthy choroid plexus epithelial cells into the brain of an
Alzheimer’s disease mouse model induced a significant reduction in brain Aβ and
tau levels and improved memory of the animals (Bolos et al. 2014). Also in other
neurodegenerative diseases, such as Huntington’s disease choroid plexus cell trans-
plantation studies showed successful results (Emerich and Borlongan 2009).
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9.6 Conclusions

The choroid plexus, that contains the blood-CSF barrier, accomplishes important
functions in the CNS and actively contributes to brain homeostasis. The choroid
plexus is able to respond to changes both in the periphery and the brain parenchyma.
However, during aging, the morphology and normal functioning of the choroid
plexus is severely compromised. Alterations in brain barrier transport mechanisms,
CSF production and clearance, receptor-mediated signaling, enzymatic and meta-
bolic activity, loss of barrier integrity, and insufficient distribution of nutrients have
an effect on brain functioning and might influence cognitive performance. Under-
standing how the blood-CSF barrier is altered in aging and how it can contribute to
these age-associated diseases, might lead to novel strategies to attenuate aging-
associated cognitive decline and related diseases.
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