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Introduction

Several basic mechanisms of chaotic dynamics in
phenomenological and biologically plausible
models of individual neurons are discussed. We
show that chaos occurs at the transition bound-
aries between generic activity types in neurons
such as tonic spiking, bursting, and quiescence,
where the system can also become bi-stable. The
bifurcations underlying these transitions give rise
to period-doubling cascades, various homoclinic
and saddle phenomena, torus breakdown, and
chaotic mixed-mode oscillations in such neuronal
systems.

Neurons exhibit various activity regimes and
state transitions that reflect their intrinsic ionic
channel behaviors and modulatory states. The
fundamental types of neuronal activity can be
broadly defined as quiescence, subthreshold, and
tonic spiking oscillations, as well as bursting com-
posed of alternating periods of spiking activity
and quiescence. A single neuron can endoge-
nously demonstrate various bursting patterns,

varying in response to the external influence of
synapses, or to the intrinsic factors such as chan-
nel noise. The co-existence of bursting and tonic
spiking, as well as several different bursting
modes, have been observed in modeling
(Cymbalyuk et al. 2002; Bertram 1993; Canavier
et al. 1993; Butera 1998; Frohlich and Bazhenov
2006) and experimental (Hounsgaard and Kiehn
1989; Lechner et al. 1996; Turrigiano et al. 1996)
studies. This complexity enhances the flexibility
of the nervous and locomotive systems
(Rabinovich et al. 2006).

The functional role of chaotic behaviors, and
the dynamical and bifurcational mechanisms
underlying their onset at transitions between neu-
ral activity types like spiking, bursting, and qui-
escence, has been the focus of various theoretical
and experimental studies. Bursting is a manifesta-
tion of multiple timescale dynamics, composed of
repetitive fast tonic spiking and a slow quiescent
phase. It has been observed in various fields of
science as diverse as food chain ecosystems
(Rinaldi and Muratori 1992), nonlinear optics
(DeShazer et al. 2003), medical studies of the
human immune system (Shochat and Rom-
Kedar 2008), and neuroscience (Steriade et al.
1990). Various bursting patterns, whether regular
or chaotic, endogenous, or as emergent network
phenomena, are the natural rhythms generated by
central pattern generators (CPG) (Briggman and
Kristan 2008; Kopell 1988; Marder and Calabrese
1996; Katz 2008; Shilnikov et al. 2008). CPGs are
neural networks made up of a small number of
constituent neurons that often control various vital
repetitive locomotive functions (Marder and
Calabrese 1996) such as walking and respiration
of humans, or the swimming and crawling of
leeches (Kristan et al. 2005; Kristan and Katz
2006; Briggman and Kristan 2006). Polyrhythmic
bursting dynamics have also been observed in
multifunctional CPG circuits that produce several
coexisting stable oscillatory patterns or bursting
rhythms, each of which is associated with a par-
ticular type of locomotor activity of the animal
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(Jalil et al. 2013; Alacam and Shilnikov 2015;
Wojcik et al. 2014). Bursting has also been fre-
quently observed in pathological brain states
(Steriade et al. 1993; Rubin and Terman 2004),
in particular, during epileptic seizures (Bazhenov
et al. 2000; Timofeev et al. 2002). Neurons in
bursting modes differ in their ability to transmit
information and respond to stimulation from those
in tonic spiking mode and therefore play an
important role in information transfer and pro-
cessing in normal states of the nervous system.

Understanding and modeling the generic
mechanisms regulating the neuronal connectivity
and the transitions between different patterns of
neural activity, including global bifurcations
occurring in neuron models and networks, pose
fundamental challenges for mathematical neuro-
science, with a number of open problems
(Guckenheimer 1996). The range of bifurcation
and dynamical phenomena underlying bursting
transcends the existing state of the theory
(Belykh et al. 2000; Shilnikov and Cymbaluyk
2004; Doiron et al. 2002; Laing et al. 2003;
Rowat and Elson 2004; Shilnikov and Cymbalyuk
2005; Shilnikov et al. 2005a; Channell et al.
2007a; Cymbalyuk and Shilnikov 2005;
Shilnikov and Kolomiets 2008; Kramer et al.
2008): This includes the blue sky catastrophe
(Shilnikov et al. 2005b, 2014), torus-canard for-
mation and breakdown, and homoclinic
inclination/orbit-flip bifurcations, all of which
can occur on the transition route to bursting in
most square-wave and elliptic bursters. Studies of
bursting require nonlocal homoclinic bifurcation
analysis, which is often based on the Poincaré
return mappings (Shilnikov et al. 1998/2001).
Return mappings have been employed for com-
putational neuroscience in Shilnikov and Rulkov
(2003, 2004), Chay (1985), and Medvedev
(2005). A drawback of mappings constructed
from time series is sparseness, as they reflect
only the dominating attractors of a system. In
some cases, feasible reductions to one or two
dimensional mappings can be achieved through
slow-fast scale decomposition of the phase vari-
ables for the system (Griffiths and Pernarowski
1917–1948). A new, computer assisted method
for constructing a complete family of onto

mappings for membrane potentials, for a better
understanding of simple and complex dynamics
in neuronal models, both phenomenological and
of the Hodgkin–Huxley type (Hodgkin and
Huxley 1952), was proposed in Channell et al.
(2007b). With this approach, one can study, for
example, the spike-adding transitions in the leech
heart interneuron model, and how chaotic dynam-
ics in between is associated with homoclinic tan-
gle bifurcations of some threshold saddle periodic
orbits (Channell et al. 2009). Qualitative changes
in a system’s activity at transitions often reveal the
quantitative information about changes of certain
biophysical characteristics associated with the
transition. This approach has proven to be exem-
plary in neuroscience for understanding the tran-
sitions between silence and tonic-spiking
activities (Rinzel and Ermentrout 1989).Moreover,
knowledge about the bifurcation (transition) pre-
dicts cooperative behavior of interconnected neu-
rons of the identified types (Ermentrout 1993).

In this entry, we discuss nonlocal bifurcations in
generic, representative models of neurodynamics,
described by high order differential equations
derived through the Hodgkin-Huxley formalism.
We consider a number of neuroscience-related
applications to reveal a multiplicity of causes and
their bifurcation mechanisms leading to the onset
of complex dynamics and chaos in these models.

Neuronal Activities and Transition
Mechanisms

This entry deals with neuronal models, both bio-
logically plausible and phenomenological, that
can produce complex and distinct dynamics such
as tonic spiking, bursting, quiescence, chaos, and
mixed-mode oscillations (MMOs) representing
fast spike trains alternating with subthreshold
oscillations. MMOs are typical for many excitable
systems describing various (electro)chemical reac-
tions, including the famous Belousov-Zhabotinky
reaction, and models of elliptic bursters (Wojcik
and Shilnikov 2011). Geometrical configurations
of slow-fast neuron models for bursting were
pioneered in Wang and Rinzel (1995), Rinzel
(1985), Rinzel and Ermentrout (1989) and further

198 Chaotic Dynamics in Neural Systems



developed in Bertram et al. (1995), Izhikevich
(2000, 2007). Dynamics of such singularly
perturbed systems are determined by and centered
around the attracting pieces of the slow motion
manifolds. These are composed of equilibria and
limit cycles of the fast subsystem (Tikhonov 1948;
Pontryagin and Rodygin 1960; Fenichel 1979;
Mischenko and Rozov 1980; Andronov et al.
1966; Mischenko et al. 1994; Jones and Kopell
1994; Arnold et al. 1994) that in turn constitute
the backbones of bursting patterns in a neuronal
model. Using the geometric methods based on the
slow-fast dissection, where the slowest variable
becomes a control parameter, one can detect and
follow the branches of equilibria and limit cycles in
the fast subsystem. The slow-fast decomposition
allows for drastic simplification, letting one clearly
describe the dynamics of a singularly perturbed
system. A typical Hodgkin-Huxley model pos-
sesses a pair of such manifolds (Rinzel 1985;
Jones and Kopell 1994): quiescent and tonic spik-
ing, respectively. The slow-fast dissection has been
proven effective in low-order mathematical models
of bursting neurons far from the bifurcation points.
However, this approach does not account for the
reciprocal, often complex interactions between the
slow and fast dynamics, leading to the emergence
of novel dynamical phenomena and bifurcations
that can only occur in the whole system. Near
such activity transitions, the bursting behavior
becomes drastically complex and can exhibit deter-
ministic chaos (Shilnikov and Cymbaluyk 2004;
Shilnikov et al. 2005a; Cymbalyuk and Shilnikov
2005; Terman 1992; Holden and Fan 1992; Wang
1993; Feudel et al. 2000; Deng and Hines 2002;
Elson et al. 2002).

Slow-Fast Decomposition
Many Hodgkin-Huxley type models can be
treated as a generic slow-fast system

x0 ¼ F x, zð Þ z0 ¼ mG x, z, að Þ, ð1Þ

where 0< m� 1,x � Rn, n� 2 and z is a scalar or
can be a vector in R2 (as in the extended Plant
model with two slow variables below); a is a
control parameter shifting the slow nullcline,
given by G(x, a) = 0, in the phase space. In the

singular limit m = 0, the z-variable becomes a
parameter of the fast subsystem to detect and
continue the equilibrium state (ES), given by
F(x, z) = 0, and the limit cycles (LC) of the fast
subsystem. As long as they (ES/LC) remain expo-
nentially stable, by varying z one can trace down
the smooth invariant manifolds in the phase space
of (1) such asMeq with the distinct Z-shape typical
for many Hodgkin-Huxley type models (see
Fig. 1), while the limit cycles form a cylinder-
shaped surface Mlc. Locally, either is a center
manifold for (1) persisting in a closed system, in
virtue of (Tikhonov 1948; Pontryagin and
Rodygin 1960; Fenichel 1979). The stable upper
and lower branches of Meq correspond to the de-
and hyperpolarized steady states of the neuron,
respectively. Folds on Meq correspond to the
saddle-node equilibrium states of the fast sub-
system. The unstable de-polarized branch of Meq

can be enclosed by the tonic-spiking manifold Mlc

typically emerging through an Andronov-Hopf
bifurcation and terminating through a homoclinic
bifurcation, which are the key features of the fast-
subsystem of the square-wave bursters (Shilnikov
2012), like the Hindmarsh-Rose model (Barrio
et al. 2014) and the Chay model (Chay 1985)
(discussed below).

Poincaré Mappings
To elaborate on the nature of complex oscillations
like bursting and their evolutions, one needs to
examine nonlocal bifurcations that often require
the use of Poincaré return maps (Shilnikov and
Rulkov 2003, 2004; Chay 1985; Holden and Fan
1992; Deng 1999; Hutt and Beim Graben 2017;
Beim Graben et al. 2016; Beim Graben and Hutt
2013, 2015). An obvious drawback of maps
constructed from voltage time series is in their
sparseness, as they can typically reveal some
point-wise attractors of the system that trajectories
fast converge to, unless there is a noise or small
perturbations are added to get a more complete
picture of the underlying structure. In some cases,
a feasible reduction to low-dimensional mapping
can be achieved through slow–fast scale decom-
position of slow phase variables (Shilnikov et al.
1998/2001, 2005b; Griffiths and Pernarowski
1917–1948). We proposed and developed a new
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computer assisted algorithm for constructing a
dense family of onto mappings for membrane
potentials in a Hodgkin–Huxley type neuronal
model (Channell et al. 2007a). Such maps let us
find and examine both the stable and unstable
solutions in detail; moreover, unstable points are
often the primary organizing centers globally
governing the dynamics of the model in question.
The construction of such a map begins with the
localization of the tonic spiking manifold Mlc in

the model, using the parameter continuation tech-
nique or the slow-fast dissection, see Fig. 1. Then,
a curve on Mlc is defined, which corresponds to
minimal (maximal) voltage values, denoted, say,
by V0. By construction, the 1DmapM takes all V0

(outgoing solutions integrated numerically) on
this curve back onto itself, after a single turn
around Mlc, i.e., M: V0 ! V1 for a selected
value of the parameter. Two such maps are
depicted in Figs. 1 and 2. One can see that these

Chaotic Dynamics in
Neural Systems,
Fig. 2 (A) Chaotic
bursting in the phase space
of the leech heart
interneuron model (3) and
the corresponding map (B)
at a transition between two
and three spikes per burst in
the voltage trace (C) due to
proximity of the primary
homoclinic orbit of the
repelling fixed point (red)
corresponding to a single
minimum of the saddle
periodic orbit (red) in (A)

Chaotic Dynamics in Neural Systems, Fig. 1 (A1)
Bistability of the coexisting tonic-spiking and bursting in
the 3D phase space of the leech heart interneuron model
(3). Inset (A2) depicts the shape of the corresponding 1D
Poincaré map with stable fixed point corresponding to the
tonic spiking periodic orbit (purple) with a single voltage

minima, and period-7 bursting orbit, and 2 unstable fixed
points (red): the right one separates attraction basins of
tonic-spiking (A4) and bursting (A3) activities, whereas
the left one causes chaotic dynamics at spike adding tran-
sitions, see Fig. 2
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are noninvertible (Mira 1987; Mira and Shilnikov
2005), unimodal maps with a single critical point
(Devaney 1992; Sharkovsky et al. 1997), which
happens to be a universal feature of many other
square-wave bursters in neuroscience applica-
tions. With such maps, one can fully study the
attractors, the repellers, and their bifurcations,
including saddle-nodes, homoclinic orbits, spike-
adding, and period-doubling. We note that detec-
tion of homoclinics of a saddle periodic orbit in
the phase space of a model is in general state-of-
the art and the Poincaré map technique allows us
to locate them with ease.

Classifications of Bursting
The existing classifications (Wang and Rinzel
1995; Rinzel 1985; Rinzel and Ermentrout 1989;
Bertram et al. 1995; Izhikevich 2000, 2007) of
bursting are based on the bifurcation mechanisms
of dynamical systems in a plane, which initiate or
terminate fast trajectory transitions between the
slow motion manifolds in the phase space of the
slow-fast neuronal model. These classifications
allow us to single out the classes of bursting by
subdividing mathematical and realistic models
into the following subclasses: elliptic or Hopf-
fold subclass (FitzHugh-Rinzel (Wojcik and
Shilnikov 2011) and Morris-Lecar models),
square-wave bursters or fold-homoclinic subclass
(Hindmarsh-Rosemodel (Shilnikov andKolomiets
2008; Barrio and Shilnikov 2011), models of pan-
creatic b-cells, cells in the pre-Botzinger complex,
as well as intrinsically bursting and chattering
neurons in neocortex); parabolic or circle-circle
subclass (model of R15 cells in the abdominal
ganglion of the mollusk Aplysia (Butera 1998;
Alacam and Shilnikov 2015), the reduced leech
interneuron model at certain parameter values);
and fold-fold subclass, or top hat models (Best
et al. 2005), including the reduced heart interneu-
ron model (3) discussed below.

Transition Routes
The current description of the transition routes
between tonic spiking and bursting activities is
incomplete and remains a fundamental problem
for both neuroscience and the theory of dynamical
systems. The first theoretical mechanism revealed
in Terman (1992) explained chaos in the so-called

square wave bursters (Rinzel 1985) emerging
between tonic-spiking and bursting. Later, two
global bifurcations that occur at the loss of stabil-
ity of a tonic spiking periodic orbit through quite
novel homoclinic saddle-node bifurcations were
discovered and explained. The first transition,
reversible and continuous, found in the reduced
model of the leech heart interneuron (Shilnikov
and Cymbaluyk 2004, 2005) and in a modified
Hindmarsh-Rose model of a square-wave burster
(Shilnikov and Kolomiets 2008; Shilnikov et al.
1998/2001), is based on the blue sky catastrophe
(Shilnikov et al. 1998/2001; Turaev and Shilnikov
1995; Shilnikov and Turaev 1997, 2000; Gavrilov
and Shilnikov 2000). This was proven in
Shilnikov et al. (2005b) to be a typical bifurcation
for slow-fast systems. This striking term
(Abraham 1985), the blue sky catastrophe, stands
for a novel bifurcation of a saddle-node periodic
orbit with a 2D unstable manifold returning to the
orbit making infinitely many revolutions. After
the bifurcation, this homoclinic connection trans-
forms into a long bursting periodic orbit with
infinitely many spikes. The burst duration of the
orbit near the transition is evaluated by 1=

ffiffiffi
a

p
,

where 0 < a � 1 is a bifurcation parameter. The
second transition mechanism is due to a saddle-
node periodic orbit with noncentral homoclinics
(Lukyanov and Shilnikov 1978). An important
feature of this transition is the bi-stability of
co-existing tonic spiking and bursting activities
in the neuron model, see Fig. 1. In this case, the
burst duration towards the transition increases as
fast as | ln(a) |. Another feature of this bifurcation
is the transient chaos where the neuron generates
an unpredictable number of burst trains before it
starts spiking tonically. This phenomenon is a
direct consequence of the Smale horseshoe finite
shift dynamics in the system (Gavrilov and
Shilnikov 1972), which is a rather atypical phe-
nomenon for such slow-fast systems.

Chaos in Neuron Models

In this section, we present the basic mechanisms
and routes to chaos in a variety of biophysically
realistic neuronal models exhibiting rich and com-
plex dynamics including tonic spiking, bursting,
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and quiescence. A bifurcation describing a transi-
tion between neuronal activities typically occurs
near saddle (unstable) orbits and results from
reciprocal interactions involving the slow and
fast dynamics of the model. Such interactions
lead to the emergence of new dynamical phenom-
ena and bifurcations that can occur only in the full
model, but not in either of the slow or the fast
subsystem. Chaotic dynamics can be character-
ized by unpredictable variations in the number of
spikes during the active phases of bursting and/or
the subthreshold oscillations. This phenomenon
of chaotic dynamics is generally atypical in
slow–fast systems as it occurs within narrow
parameter windows only near the transition
boundaries. Indeed, robust and regular dynamics
of slow–fast neuron models contrast those of real
bursting neurons exhibiting a phenomenal time
dependent variability of oscillatory patterns.

Leech Heart Interneuron Model: Period
Doubling Cascades and the Blue Sky
Catastrophe
We first illustrate and discuss the onset of chaotic
dynamics in the reduced (3D) model of the leech
heart interneuron (see Eq. (3) of Appendix). This
is a typical slow-fast Hodgkin-Huxley type
(HH) model describing the dynamical interplay
of a single slow variable – persistent potassium
current, IK2, and two fast variable – the sodium
current, INa and the membrane voltage V that can
be recast in this generic form (Shilnikov and
Cymbalyuk 2005; Shilnikov et al. 2005a;
Shilnikov 2012; Neiman et al. 2011):

CV0
i ¼�

X

j

Ij�
X

i

Isyni , thh0 ¼ f1 Vð Þ�h, ð2Þ

where C is a membrane capacitance, V is a trans-
membrane voltage, Ij stands for various
in/outward currents including synaptic ones,
0 � h � 1 stands for a gating (probability) vari-
able, f1 is a sigmoidal function, and th is a time-
scale, fast or slow, specific for specific currents.

This model shows a rich set of dynamics and
can produce various types of complex chaotic and
bistable behaviors, including the period-doubling
cascade en a route from tonic spiking through

bursting (Shilnikov and Cymbaluyk 2004;
Cymbalyuk and Shilnikov 2005), as well as vari-
ous types of homoclinic chaos. Following the
period-doubling cascade, the model demonstrates
a terminal phase of chaotic tonic spiking that
coexists alongside another periodic tonic spiking
activity. For a different set of parameter values
compared to the period doubling cascade, the
model can also exhibit the blue sky catastrophe
as a continuous and reversible mechanism of the
transition between bursting and tonic spiking.
Figure 1 explains the nature of bi-stability in this
model as it exhibits the co-existing tonic-spiking
and bursting oscillations corresponding to the sta-
ble fixed point (FP) (purple) and the period-7 orbit
in the 1D map, whose basins are separated by an
unstable FP representing a saddle periodic orbit
(red) on the 2D manifold Mlc in the 3D phase
space. The role of the other unstable (red) FP is
revealed by Fig. 2. It is shown that the spike-
adding in bursting is accompanied with an onset
of chaotic dynamics orchestrated by the homo-
clinic orbits and bifurcations involving the other
saddle orbit, see more details in Shilnikov et al.
(2014), Channell et al. (2009), Wojcik and
Shilnikov (2011), Shilnikov (2012), Barrio et al.
(2014), Barrio and Shilnikov (2011), and Neiman
et al. (2011). Figure 3 shows the bifurcation dia-
gram of the system constructed as a parametric
sweep using our previously developed symbolic
toolkit called the Deterministic Chaos Prospector
(Pusuluri et al. 2017; Pusuluri and Shilnikov
2018, 2019) to process symbolic sequences extra-
cted from wave-form traces and analyze activity
types and underlying bifurcations. This bifurca-
tion diagram identifies the regions of quiescence,
tonic spiking, as well as bursting with spike
adding cascades. The noisy regions near the
boundaries of spike addition reveal the occurrence
of chaos. In addition, the blue sky catastrophe
takes place at the noisy region near the boundary
between bursting and tonic spiking.

Period-Doubling in the Chay Model
The Chay model is a simple, realistic biophysical
model for excitable cells, producing endogenous
chaotic behavior (see its Eq. (5) of Appendix).
The model transitions from tonic spiking to
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bursting via period-doubling bifurcations,
whereby chaotic dynamics can also arise. Figure 4
shows the 2D (V, Ca)-phase space projection of
the Chaymodel with a period-4 orbit and a chaotic
bursting orbit, along with the corresponding
Poincaré return map. The model goes through a
period-doubling cascade and then immediate cha-
otic bursting, before regular bursting as the bifur-
cation parameter gK,c increases.

Torus Breakdown in the Bull Frog Hair Cell
Model
Next, we consider the hair cell model based on
experimental studies of basolateral ionic currents
in saccular hair cells in bullfrog (Hudspeth and
Lewis 1988; Catacuzzeno et al. 2003, 2004; Ruth-
erford and Roberts 2009). This is a further exten-
sion of the model of the Hodgkin-Huxley type
developed in Catacuzzeno et al. (2004) that

includes 12 coupled nonlinear ordinary differen-
tial equations, see Neiman et al. (2011) for its
detailed description. In this model, the transition
from bursting to tonic spiking is due to a torus
bifurcation (TB) that leads to onset of quasi-
periodic dynamics (Ju et al. 2018). Closer to this
bifurcation the torus breaks down causing the
onset of chaotic bursting in the system. In case
of a supercritical TB, through which a stable torus
emerges at the fold of the tonic spiking manifold
MLC (like one in Fig. 1), its development, growth
and breakdown can be well studied using the
Poincaré return maps. For example, Fig. 5a
depicts that, right after the supercritical TB in the
hair cell model, a stable torus (invariant circle)
emerges from a stable tonic-spiking periodic
orbit and grows from smooth and ergodic to non-
smooth to resonant as the bifurcation parameter
gK1 increases. Later, when the torus breaks down
(starting at gK1 = 29.213 nS), bursting becomes
chaotic as shown in the Poincaré map (Fig. 5b).
Figure 5c illustrates the route from tonic spiking
to bursting with chaotic dynamics at the torus
breakdown.

Chaotic Mixed-Mode Oscillations in the
Extended Plant Model
The conductance-based Plant model of endoge-
nous parabolic bursters was originally developed
to model the R15 neuron in the abdominal gan-
glion of the slug Aplysia Californica (Butera
1998). This was later extended and adapted to
model the swim CPG of the sea slug Melibe
Leonina, see Alacam and Shilnikov (2015) for
details of the model and the equations. This
model can produce chaotic bursting activity, as
shown in Fig. 6a near the boundary between
tonic spiking and bursting activity. In addition,
the model exhibits complex chaotic mixed mode
oscillations (MMOs) near the transition between
bursting and the co-existing hyper-polarized qui-
escence state. Figure 6b illustrates the model gen-
erating spike-varying bursts and small amplitude
subthreshold oscillations. Such chaotic MMOs
coexist with a hyperpolarized quiescent state
resulting in bistability due to a subcritical
Andronov-Hopf bifurcation that gives rise to a
saddle periodic orbit whose stable manifold

Chaotic Dynamics in Neural Systems, Fig. 3 Bi-
parametric sweep of the leech heart interneuron model (3)
using the symbolic toolkitDeterministic Chaos Prospector
(Pusuluri et al. 2017; Pusuluri and Shilnikov 2018;
Pusuluri and Shilnikov 2019) to process wave-form traces
and to reveal regions of quiescent behavior, tonic spiking,
as well as bursting activity with spike adding cascades:
from 2 spikes (orange zone) to 3 spikes (yellowish zone),
next to 4 spikes (light green zone) and so forth. The noisy
regions near the boundaries of spike addition reveal the
occurrence of chaos, while the noisy boundary between
tonic spiking and bursting portrays the blue sky catastrophe
(Shilnikov and Cymbaluyk 2004) corresponding to infi-
nitely long bursting
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Chaotic Dynamics in
Neural Systems,
Fig. 4 (A) The (V, Ca)
phase space projection
overlaying a period-4 orbit
(green, gK,C = 11.12) and a
chaotic bursting trajectory
(grey, gK,C = 11.5)
generated by the Chay
model. Here Vmin –minimal
values, labeled with green
and black dots in the voltage
traces (C), are used to
generate 1D Poincaré return

maps: V nð Þ
min ! V

nþ1ð Þ
min in

Inset (B)

Chaotic Dynamics in Neural Systems, Fig. 5 Poincare

return map, V
nð Þ
min ! V

nþ1ð Þ
min , for the consecutive Vmin-

values in voltage traces generated by the hair cell model.
(A) Evolution of stable invariant circles (IC) from ergodic
to resonant with further nonsmooth torus breakdown as the
gK1 parameter is increased from 29.185 through
29.2073 nS. (B) Chaotic bursting after the torus breakdown

at gK1= 29.213 nS. The flat, stabilizing section of the map
corresponds to hyperpolarized quiescence, while multiple
sharp folds reveal a ghost of the nonsmooth IC in the
depolarized range. (C) En route from tonic spiking to
regular bursting, the voltage trace undergoes quasi-
periodicity and chaotic bursting. (This figure is adapted
from Ju et al. (2018))
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separates the chaotic bursting activity (green)
from the stable (spiraling) hyperpolarized quies-
cent state (red) as shown in Fig. 6c. As the param-
eters are varied, gradually the system transitions
from this bistable state to the monostable hyper-
polarized quiescence, or vice versa, to a dominant
bursting activity.
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Appendix

Leech Heart Interneuron Model
The reduced leech heart model is derived using
the Hodgkin-Huxley formalism:

CV 0 ¼ �INa � IK2 � I leak þ I app,

tNah0Na ¼ h1Na Vð Þ � h,

tK2m0
K2 ¼ m1

K2 Vð Þ � mK2,

(3)

with

I leak ¼ 8 V þ 0:046ð Þ,
IK2 ¼ 30m2

k2 V þ 0:07ð Þ,
INa ¼ 200 m1

Na Vð Þ� �3
hNa V � 0:045ð Þ,

and where V is the membrane potential, C = 0.5;
hNa is a fast (tNa = 0.0405 sec) activation of INa,
and mK2; IL describes the slow (tK2 = 0.25 sec)
activation of IK2, Iapp is an applied current. The
steady states h1Na Vð Þ, m1

Na Vð Þ, m1
K2 Vð Þ, of the of

the gating variables are given by the Boltzmann
equations given by

h1Na Vð Þ ¼ 1þ exp 500 0:0333ð ÞþVð Þ½ Þ��1,

m1
Na Vð Þ ¼ 1þ exp �150 0:0305ð ÞþVð Þ½ Þ��1,

m1
K2 Vð Þ ¼ 1þ exp �83 0:018ð ÞþVshift

K2 þV
� �� ���1:

ð4Þ

The bifurcation parameter Vshift
K2 of the model is

a deviation from the experimentally determined
voltage V1/2 = 0.018 V corresponding to the
half-activated potassium channel, i.e., to
m1

k2 0:018ð Þ ¼ 1=2. In its range, Vshift
K2 is [�0.025;

0.0018]V the upper boundary corresponds to the
hyperpolarized quiescent state of the neuron,
whereas the model produces spiking oscillations
at the lower end Vshift

K2 values and bursts in
between.

Chaotic Dynamics in Neural Systems, Fig. 6 The
extended Plant model can exhibit chaotic bursting near
the boundaries of tonic spiking and bursting with spike-
adding (A) as well as bistability with chaotic mixed mode
oscillations (green) and hyperpolarized quiescence (red)
near the transitions between bursting with spike-adding

and hyperpolarized quiescence (B). The corresponding
phase space projection of the bistable states of (B) is
shown in (C). Following a subcritical Andronov-Hopf
bifurcation, a saddle periodic orbit (not seen) separates
the chaotic mixed mode bursts (green) from the hyper-
polarized quiescent state with spiral convergence (red)
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Chay Model
The 3D Hodgkin-Huxley type Chay model reads
as follows:

V 0 ¼ �gIm
3
1h1 V � V Ið Þ � gK,Vn

4
1 V � VKð Þ

�gK,C
C

1þ C
V � VKð Þ � gL V � VLð Þ,

n0 ¼ n1 V½ � � nð Þ=tn V½ �,
C0 ¼ r m3

1h1 VC � Vð Þ � kCC
� �

,

(5)

where n represents the gating variable of the
voltage-sensitive K+ channel and C represents
the intracellular free calcium concentration. See
(Chay 1985) for the detailed description.
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