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Introduction

This entry is based on the recent review paper by
the author (Robnik 2016), and other recent papers
with coworkers (Batistić and Robnik 2010,
2013a, b; Batistić et al. 2018). The first part is an
introduction to quantum chaos from the stationary
point of view, where we shall describe the purely
regular eigenstates versus purely chaotic eigen-
states. In the second part, we shall address the

problem of the mixed-type phase space of generic
systems, where regular and chaotic eigenstates
coexist. They are reflecting the complex mixed-
type structure of the corresponding classical phase
space, where regular classical motion on invariant
tori exists for certain initial conditions, while the
motion is chaotic for the complementary initial
conditions. The books by Stöckmann (1999) and
Haake (2010) offer an excellent introduction to
quantum chaos. Stöckmann’s book contains also
many experimental applications of quantum
chaos, most notably on microwave experiments
he has been performing since 1990 up to date,
addressing and realizing practically all important
questions of quantum chaos. Most of the subjects
of this entry can be found in the reviews (Robnik
1998, 2015, 2016).

Quantum chaos is the study of phenomena in
the quantum domain which correspond to the
classical chaotic behavior. Thus, we study the
solutions of the Schrödinger equation of a point
particle in the potential V(q),

iħ @c
@t

¼ bHc ¼ � ħ2

2m
Dcþ V qð Þc, ð1Þ

where h = 2pħ is the Planck constant, c(q, t) the
wave function depending on the N-dimensional
space coordinate vector q and on time t, m the
mass of the point particle moving under the influ-
ence of the potential V(q), and D = @2/@q2 the
N-dimensional Laplace operator. For example, in
the case N = 2, we have

D ¼ @2

@x2
þ @2

@y2
: ð2Þ

In fact, in the following, when dealing with
specific model systems, we shall restrict ourselves
mainly to N = 2.

We investigate the solutions of the Schrödinger
equation and try to relate them to the
corresponding classical dynamics, for which
obviously the limiting behavior ħ ! 0 is of
prime interest. The methods and approximations
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used to find approximate solutions for small ħ are
known under the name semiclassical mechanics,
which offers an important bridge between the
classical and quantum mechanics, and is pre-
sented in detail in Stöckmann (1999) and Haake
(2010). We also might think of this approximation
as short wavelength approximation, which is in
general applicable to all wave systems and their
solutions.

In this entry, we shall restrict ourselves to the
purely binding potential V(q), such that the classical
motion of the particle is bounded (finite) for all
initial conditions, and also quantally the particle
cannot escape to infinity (no ionization threshold).
The energy spectrum of the Hamilton operator bH (1)
is purely discrete and countable infinite. An example
of such Hamiltonian system is a classical billiard
system, where a point particle is moving freely
inside a potential box with hard walls, experiencing
an elastic collision when hitting the boundary.

Classically, in Hamiltonian systems, we can
have regular, stable, quasiperiodic motion on
invariant tori, or irregular, unstable, chaotic
motion. The latter one is characterized by the
property of the sensitive dependence on initial
conditions, which is quantified by the existence
of the positive Lyapunov exponents. In this case,
two nearby orbits in the classical phase space
diverge exponentially with time / exp (lt), and
the relevant exponent l is called the largest posi-
tive Lyapunov exponent. In the example of bil-
liard systems, the shape of the boundary
determines what kind of dynamics the system
exhibits. In quantum mechanics, the concept of
an orbit and trajectory does not exist due to the
Heisenberg uncertainty principle, according to
which the product of uncertainties of position x,
Dx, and the corresponding momentum px, Dpx,
satisfy the rigorous inequality DxDpx � ħ/2. This
implies that also the divergence of nearby trajec-
tories cannot be defined. Indeed, any attempt to
define some kind of meaningful quantum ana-
logue of the asymptotic Lyapunov exponent l
fails in the sense that it is always zero. Therefore,
in quantum mechanics, the sensitive dependence
on initial conditions does not exist, and the time
evolution of the wave function c(t) as the solution
of the time-dependent Schrödinger equation (1) is

stable, almost periodic, and reversible: integration
of the classical chaotic motion for times much
larger than Lyapunov time t = 1/l is fundamen-
tally irreversible once the accuracy of integration
is exhausted, while the corresponding quantum
evolution of the wave function is still reversible.
For details see Haake (2010). Therefore, quantum
chaos in the sense of positive Lyapunov expo-
nents does not exist. In this sense, in the time
evolution, the correspondence of the classical
and quantum chaos does not exist.

However, there is another, stationary, aspect of
classical dynamics in Hamiltonian systems,
namely the structure of the phase space, the
so-called phase portrait, where the phase space is
decomposed into the invariant components
(regions), each one containing a dense orbit. In
the case of classical integrability, to be defined in
detail in the next section, all orbits wind quasi-
periodically on N-dimensional invariant tori (N is
the number of the degrees of freedom, that is the
dimension of the configuration space), and the
entire phase space is foliated into the family of
invariant tori. The torus is uniquely labeled by the
value of N classical canonical actions I, and
the position on the torus is uniquely specified by
the N canonically conjugate angles y. Integrable
systems are very special and rare, but important,
as we can entirely describe them analytically, and
also understand what happens (to the phase por-
trait) if we slightly perturb them, by using a vari-
ety of perturbation methods. The opposite
extreme is complete chaos, ergodicity, where
almost each orbit is chaotic, the set of exceptions
having measure zero, and the orbits visit arbi-
trarily small neighborhoods of any other point in
phase space infinitely many times, as time goes to
infinity. Therefore, the phase average of functions
and the time average are equal. The entire phase
space is just one chaotic invariant component. In
between there are the mixed-type systems with
extremely complex structure of the phase portrait,
where regular islands of stability on the invariant
tori coexist with chaotic sea surrounding them and
which exhibit an infinite hierarchy of statistically
selfsimilar structures. It is the fundamental KAM
theorem which describes the slightly perturbed
Hamiltonian systems. It states that most of the
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invariant tori survive a perturbation, namely they
do still exist after the perturbation with the same
N frequencies of the quasiperiodic motion but are
typically slightly distorted. However, the rational
tori are destroyed, and in place of them, we get an
even number of periodic orbits, half of them stable
and half of them unstable, surrounded by chaotic
region (Poincaré-Birkhoff theorem).

The analogue of the structure of the classical
phase portrait in the quantum mechanics is the
structure of the eigenfunctions, of their
corresponding Wigner functions in the quantum
phase space to be defined below, and of the prop-
erties of the corresponding energy spectra. As we
shall see, in this stationary picture there is a very
well-defined and rich correspondence between the
classical and quantum chaos: The quantum signa-
tures of classical chaos, as the title of Haake’s
book (Haake 2010) goes, are very well defined.

To start with, quantally, we have to solve the
Schrödinger equation (1) for the eigenstates with
sharply defined eigenenergies En, where c(q, t)
/ cn(q) exp (�iEnt/ħ) and the corresponding
eigenfunctions cn are satisfying the boundary
conditions, always requiring the normalizability
of cn, namely

Ð
|cn(q)|

2dNq < 1. In billiards, we
usually require the Dirichlet boundary conditions,
c = 0 on the boundary, but other possibilities,
e.g., the Neumann boundary conditions of
vanishing normal derivative of cn, might be inter-
esting, depending on the circumstances.

The eigenstates are defined as the normalizable
eigenfunctions of the Hamilton operator bH, namelybHcn ¼ Encn. Thus, we have to solve the station-
ary (time-independent) Schrödinger equation,

ħ2

2m
Dcn þ En � V qð Þð Þcn ¼ 0: ð3Þ

In the following sections, we shall deal with
this task, to characterize different types of solu-
tions cn and the associated energy spectra En.

In closing the introduction, let us make it clear
that the time-dependent and time-independent
Schrödinger equations, (1) and (3), are just special
cases of some wave equations. From the mathe-
matical point of view, they can be equivalent or
similar to some other wave equations of

mathematical physics, such as the wave equations
describing electromagnetic, acoustic, elastic, seis-
mic waves, water surface waves, etc., where pre-
cisely the same questions can be addressed, and
the same conclusions can be reached. For details,
see the books by Stöckmann (1999) and Haake
(2010). Therefore, the terminology quantum
chaos is much too narrow, and instead, we should
speak of wave chaos. Nevertheless, the name
quantum chaos is generally well established, but
we should be aware of the wide spectrum of wave
phenomena that can occur in almost all wave
systems. Of course, understanding the wave
chaos is also closely related to the opposite effects
of the spontaneous formation of ordered structure
in certain wave systems such as reaction-diffusion
systems. It is necessary to understand under what
conditions order or chaos can emerge, which is the
central question of Haken’s fundamental work on
synergetics (Haken 2004).

Quantum Properties of Classically
Integrable Systems

Integrable Hamiltonian systems are extremely
rare but important, as explained above. The total
energy is conserved if their Hamilton function
does not depend on time (autonomous system).
They are characterized by the existence of invari-
ant N-dimensional tori everywhere in the classical
phase space. Examples are centrally symmetric
potentials where the angular momentum is con-
served. In the domain of two-dimensional billiard
systems, we have only the rectangle and the ellip-
tic billiard. In the former case, the absolute value
of the momenta px and py are conserved, while in
the elliptic billiard (Berry 1981), the product of
the angular momenta with respect to the two foci
is the conserved quantity. In the special case of the
circle (zero excentricity), the angular momentum
is conserved.

What can we say about such systems? Do their
eigenfunctions have some special structure, along
with their energy spectra? Let us for a moment
concentrate on the two-dimensional billiard sys-
tems. The general Schrödinger equation, when
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using appropriate units, reduces to the simple two-
dimensional Helmholtz equation

@2c
@x2

þ @2c
@y2

þ Ec ¼ 0, ð4Þ
where we have suppressed the index (quantum
number(s)) n, and let us assume the Dirichlet
boundary conditions c = 0 on the boundary.
The answer to the above question is yes. In both
billiards, the eigenfunctions have an ordered
structure, and in both cases, the solutions can be
easily found, thanks to the separability of the
systems. For the rectangle with horizontal width
a and the vertical width b, it is easy to find the
solution given by cm,n x, yð Þ ¼ C sin pmx

a sin pny
b ,

where the constant C is determined by the nor-
malization. Here, m and n are the two quantum
numbers (positive integers), associated with and
labeling the given eigenfunction. Indeed, the
nodal lines defined by the vanishing of c(q) = 0
are the horizontal straight lines y = jb/n = const.,
where j = 0, 1, . . ., n, and the vertical lines x =
ja/m = const., with j = 0, 1, . . ., m.

In the circle billiard, the nodal lines are defined
by the zeros of the radial Bessel functions, which
are circles, and by the zeros of the angular trigo-
nometric function, which are polar rays, straight
lines, emanating from the center of the circle. If
we perturb the two billiards, and solve the Helm-
holtz equation (4), this structure becomes imme-
diately destroyed by a generic perturbation
breaking the separability and integrability of the
system. In fully chaotic systems, the nodal struc-
ture becomes entirely random.

How about the energy spectra E of the integrable
billiards, determined by solving (4)? They are char-
acterized by two quantum numbers. In the rectangle
billiard with horizontal width a and the vertical
width b, we find using the above eigenfunctions

Em,n ¼ p2
m2

a2
þ n2

b2

� �
, ð5Þ

wherem, n are the two quantum numbers (positive
integers). Although this energy spectrum is simple
and explicit, its statistical properties are not so
simple. As we shall see, the statistical properties
of energy spectra are deeply related to the

dynamical nature of the underlying Hamiltonian
system. If the system is integrable, the statistics is
the Poissonian and characteristic of entirely
uncorrelated energy levels, while in the case of
fully chaotic (ergodic) systems, the statistics of the
random matrix theory applies. This is to be
explained in details in the next section.

Before the statistical analysis is performed, we
must prepare the grounds for comparison of quite
different systems. In order to achieve that, we
must unfold the spectrum, which by definition
means transformation of the actual energy spectrum
En to the unfolded energy spectrum en, such that the
mean spacing De = h(en + 1 � en)i of en is equal to
unity everywhere (for all e). This can be done if we
know the mean energy level spacing DE = 1/r(E),
or the energy level density r(E). Then, the
unfolding is simply en = En/DE = Enr(En). The
density of states is known by the Thomas-Fermi
rule of filling the classical phase space inside the
energy surface E = H(q, p) = const. with the
Planck cells of volume (2pħ)N. Namely, the cumu-
lative number of the energy eigenvalues below
the energy E is given by

ð6Þ

Therefore,

ð7Þ

where d(x) is the Dirac delta function. For two-
dimensional billiards with units defined by (4), we
can get more than that, namely

ð8Þ

where and are the area and the circumference
of the billiard, while c. c. are some small constants
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(curvature and corner corrections) which for large
E are unimportant. The first term in (8) results
directly from (6), while the second one is the
so-called perimeter correction. Asymptotically
when E ! 1, the leading term is important and
dominant, and is known also as the Weyl formula,
as Weyl was the first to derive it.

With the energy spectrum being unfolded, we
start the statistical analysis. Rather than defining
all the correlation functions, we shall consider
only two statistical measures. The first one is the
gap probability E(S), which is the probability that
on an interval of length S there is no level (of the
unfolded spectrum). The second one is the level
spacing distribution P(S): The probability to have
a level spacing within the interval (S, S + dS) is
equal to P(S)dS. It turns out that they are related
through P(S) = d2E(S)/dS2 (see Haake 2010).

For the irrational rectangular billiard (a and
b are not rationally connected), we find the
Poissonian statistics, namely

E Sð Þ ¼ exp �Sð Þ, P Sð Þ ¼ exp �Sð Þ: ð9Þ

There is no parameter involved in this formula,
which is a hint that something similar should be
observed in other integrable systems, like the
elliptic billiard, of which the circle billiard is a
special case. Indeed, this is the case, and we speak
of the universality class of the Poissonian spectral
statistics of integrable systems. There are some
subleties around this problem, regarding the
asymptotic behavior with increasing energy E,
which were studied in Robnik and Veble (1998),
but the major conclusion about the validity of the
Poissonian statistics is confirmed. Intuitively, it is
easy to understand: If a quantum energy spectrum
is characterized by two or more quantum num-
bers, we will have generically a statistically inde-
pendent superposition of infinitely many discrete
number sequences. Independent of the properties
of the individual number sequence, such a super-
position always results in a Poissonian sequence.

In the general case of an N-dimensional classi-
cally integrable system defined by the Hamilton
functionH(q, p), we can perform the construction
of suchN quantum numbers in terms of the action-
angle variables (I, y). In the semiclassical limit of

small ħ, the so-called EBK quantization (torus
quantization) is based on the quantization of the
classical actions I. It is called after Einstein,
Brillouin, and Keller. The phase space has 2N
dimensions, the energy surface E =
H(q, p) = const. has 2N � 1 dimensions, and by
definition we have N integrals of motion Aj, j= 1,
. . ., N, of which A1 is by convention the Hamilton
function, the energy E = H. Then, the
N-dimensional invariant surfaces labeled by
A have the topology of N-dimensional tori. The
actions – the generalized momenta – are defined by
the N circuit integrals on a torus labeled by A or I,

I j ¼ 1

2p

þ
C j

p � dq ð10Þ

The canonically conjugate angle variables yj are
defined by using the action integral as a generating
function of the underlying canonical transforma-
tion. For details, see, e.g., the references (Arnold
1980; Ott 1993). The Hamilton function H(q, p)
becomes only a function of Aj values, and of I,
namely after inverting Aj = Aj(Ik), it is a function
of the actions alone, A1(q, p) = H(q, p) = H(I).
We say that the angles yj are cyclic variables.

For sufficiently small ħ, we obtain the so-called
semiclassical torus quantization, or EBK quanti-
zation, because we quantize the actions of the tori,

Im ¼ mþ a
4

� �
ħ, ð11Þ

where m is an N-dimensional vector of nonnega-
tive integers, and a = a1, a2, . . ., aN are Maslov
indices. The indices aj, j = 1, 2, . . ., N count the
number of caustics (singularities of the wave func-
tion in configuration space) encountered in the
configuration space while traversing round the
fundamental circuit Cj. Thus, aj depends on how
the invariant torus lies in the phase space and on
the structure of its projection singularities in the
configuration space. The energy eigenvalues are
then equal to the value of the Hamilton function at
the quantized actions (11),

Em ¼ H Imð Þ ¼ H mþ a
4

� �
ħ

� �
: ð12Þ

The formula (12) with (11) is basically the
higher dimensional generalization of the one-
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dimensional semiclassical quantization, taking
into account also the Maslov corrections, which
Einstein, Brillouin, and Keller were not aware
of. It is an approximate solution at small ħ of the
Schrödinger eigenvalue problem (3). For further
details, see Stöckmann (1999).

Now we can explain the origin of the
Poissonian statistics for the quantal energy spec-
tra of classically integrable systems: Having
N quantum numbers m = (m1, m2, . . ., mN)
means generically (in almost all cases, such
where no pathological rationalities occur) statis-
tical independent superposition of infinitely
many level sequences, and this must result in a
Poissonian sequence, unless there are some spe-
cial and nongeneric rational relationships or cor-
relations between the individual level sequences.
For some discussions, see Robnik and Veble
(1998), especially regarding the role of rational
relationships in rectangle billiard.

Quantum Chaos of Classically Fully
Chaotic (Ergodic) Systems

We now turn to the other extreme case of fully
chaotic, ergodic systems. An example of fully
chaotic ergodic motion with a positive
Lyapunov exponent is the motion of a point
particle in the well-known stadium billiard,
defined as a rectangle with two semicircles on
the two opposite sides, as introduced by
Bunimovich (1974). Let us assume that the
radius of the two semicircles is unity, while the
width of the rectangle between them is e. The
billiard system is ergodic and chaotic at any
nonzero value of e, but the typical time for a
chaotic trajectory to fill the entire phase space
depends strongly on e. The details of the
diffusion-like motion have been recently stud-
ied by Lozej and Robnik (2018) and its conse-
quences for quantum chaos in reference
(Batistić et al. 2018). If e = 1 this time, called
diffusion time, or transport time tT, is of order
unity, while for very small e it becomes very
large. Thus, an initial small blob of initial con-
ditions spreads diffusively very quickly in the
classical phase space when e = 1, while for

small e, tT can become very large. As we shall
see, this important time scale has to be com-
pared with the important quantum time scale
called Heisenberg time (or break time), defined
by tH = 2pħ/DE, where DE is the mean energy
level spacing of the corresponding quantum sys-
tem DE = 1/r(E) determined by the Thomas-
Fermi rule (7). Namely, empirically it is very
well observed that the quantum diffusion fol-
lows the classical diffusion only up to the Hei-
senberg time (also called break time), and stops
then due to the localization, which is a conse-
quence of the destructive interference effects,
and is called dynamical localization or quantum
localization, first observed by Chirikov, Casati,
Izrailev, and Ford in 1979 (Casati et al. 1979) in
the context of time-periodic (Floquet) systems
(quantum kicked rotator). If the semiclassical
condition is satisfied that the Heisenberg time
is larger than all important classical diffusion
times in the given system, then we find the
universal statistical behavior of the wave func-
tions and of the energy spectra. Let us recall that
according to Eq. (7) DE / (2pħ)N, and therefore
as ħ ! 0, for N � 2, tH will eventually become
larger than any tT, the latter one being
ħ-independent. Thus, at some sufficiently
small ħ, in the ultimate semiclassical limit, the
quantum localization effects disappear and we
can expect the universality to be described in the
following.

In contrast to the integrable billiard systems
exemplified by the rectangle and the circle, the
nodal lines of the stadium billiard with e = 1 are
entirely irregular, as found already by McDonald
and Kaufman (1979). In fact, it has been proposed
by Berry (1977) that the wave functions of classi-
cally fully chaotic billiards is a Gaussian random
function, that is the probability amplitude cn(x, y)
has a Gaussian distribution, and this has been
widely confirmed (see Li and Robnik 1994).
This indicates that we can expect again some
kind of universal behavior. Regarding the
unfolded energy spectrum of this billiard system,
it has been shown by Bohigas, Giannoni, and
Schmit in 1984 (Bohigas et al. 1984) that the
level spacing distribution P(S) is quite different
from the Poissonian, and is approximately but
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well described by the Wigner distribution (also
called Wigner surmise) given by

PW Sð Þ ¼ pS
2

exp � pS2

4

� �
, ð13Þ

while the corresponding gap probability is

EW Sð Þ ¼ 1� erf
ffiffiffi
p

p
S

2

� �
¼ erfc

ffiffiffi
p

p
S

2

� �
ð14Þ

The important feature is the linear behavior of
P(S) at small S, starting from zero, meaning that
the levels tend to be away from a degeneracy, and
we speak of level repulsion phenomenon, in this
case the linear level repulsion. This must be seen
in the contradistinction to the Poissonian
P(S) = e�S, where the level repulsion is absent
and the degeneracies are quite likely. Bohigas,
Giannoni and Schmit went on, after numerical
exploration of other fully chaotic ergodic billiards
with short tT, e.g., the Sinai billiard, by proposing
what is now known as Bohigas-Giannoni-Schmit
(BGS) Conjecture, namely that the statistical
properties of the energy spectra of classically
fully chaotic and ergodic systems are described
by the random matrix theory (RMT), which is one
of the fundamental cornerstones of quantum
chaos. Some preliminary ideas were published
already by Percival (1973), and in particular by
Casati, Valz-Gris, and Guarneri (1980).

It has beenwidely numerically confirmed that the
conjecture is correct, and the theoretical foundation
has been laid down in the seminal paper by Berry in
1985 (Berry 1985). He has shown, using the semi-
classical methods developed by Gutzwiller in a
series of papers in late 1960s and early 1970s
(Gutzwiller 1967), that the spectral autocorrelation
function and its Fourier transform, the so-called
spectral form factor, for small times indeed agree
with the RMT. The subject is very difficult, and there
was practically no theoretical progress until 2001,
when Sieber and Richter (2001) extended Berry’s
work to the next order in power expansion for short
times of the form factor. This line of research finally
culminated in a series of papers starting in 2006 by
Haake and his group (Haake 2010; Müller et al.
2009), who succeeded to show that the semiclassical

form factor agrees with the RMT to all orders at least
up to the Heisenberg time tH, and beyond (very
recently). Therefore, BGS Conjecture is proven
and it is no longer a conjecture but a theorem. The
mentioned method of Gutzwiller rests upon the
semiclassical calculation of the quantum energy
spectral density expressed in terms of a series expan-
sion consisting of contributions stemming from clas-
sical periodic orbits. The so-called Gutzwiller trace
formula is the stationary phase approximation of the
relevant Feynman path integral, used to calculate the
Green function. For an excellent introduction, see
the book by Stöckmann (1999).

The RMT has been introduced and developed
mainly by Wigner, Dyson, Mehta (Haake 2010;
Mehta 1991), and others to describe statistical
properties of the energy spectra of heavy complex
nuclei. The main question is what are the statisti-
cal properties of the eigenvalues of appropriate
ensembles of random matrices, that is matrices
with random matrix elements each having a cer-
tain probability distribution. It was expected that a
large complexity of the physical system results in
some randomness. Therefore, it was a surprise
that it applies also to low-dimensional dynamical
systems, such as only two-degrees-of-freedom
billiards, provided that they are fully chaotic
(ergodic) and that the semiclassical condition
tH > tT is satisfied. The idea is that if we do not
know the details of a complex system, and look at
the representation of its Hamilton operator in
some basis of the Hilbert space, the matrix ele-
ments will appear as random variables.

Due to the lack of space, we cannot go into the
details of the RMT, and therefore touch only upon
themain idea. RMTstarts by assuming theGaussian
random distribution of the matrix elements, which
are statistically independent of each other, and the
distribution is invariant against the transformations
that preserve the symmetry of the Hamiltonmatrices
of the ensemble. In the case of real symmetric
Hamilton matrices, the transformations are orthog-
onal transformations, and the ensemble of such ran-
dom matrices is called Gaussian Orthogonal
Ensemble (GOE). If H are complex Hermitian
matrices, the group of symmetry preserving trans-
formations are the unitary transformations, and the
ensemble is called Gaussian Unitary Ensemble
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(GUE). The central question, among others, is what
are the statistical properties of the eigenvalues of
such random matrix ensembles.

Rather than going into the full generality, we
consider the case of just two-dimensional Gauss-
ian randommatrix ensembles, and derive the level
spacing distribution for them.

Quite generally, for a Hermitian matrix

x yþ iz

y� iz �x

� �
,

with x, y, z real, and i2= � 1, the two eigenvalues
are l ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
and the level spacing is

S ¼ l1 � l2 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
. Let us now

assume that x, y, z have so far general distributions
gx(x), gy(y), gz(z), correspondingly. The level
spacing distribution is then

P Sð Þ ¼ð
R3

dx dy dz gx xð Þgy yð Þgz zð Þd S�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þ y2þ z2

p� �
:

ð15Þ
The 2D GUE is obtained if we assume

gx uð Þ ¼ gy uð Þ ¼ gz uð Þ ¼ 1
s
ffiffi
p

p exp � u2

s2

� �
, where

weperform thenecessarynormalization<S> =1,
which fixes the s. Using the spherical coordinates
r¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þ y2þ z2

p
and ’, y, we can perform the

integration, followed by the normalization
<S > = 1, yielding 2D GUE formula

P Sð Þ ¼ 32S2

p2
exp � 4S2

p

� �
, ð16Þ

with quadratic level repulsion.
On the other hand, if we restrict the ensemble

to the real symmetric class, where we must take
gz(u) = d(u) while gx and gy remain unchanged
Gaussian, and using the polar coordinates r ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

and ’, we obtain the 2D GOE formula

P Sð Þ ¼ pS
2
exp � pS2

4

� �
, with the linear level

repulsion, and indeed the result is identical to
PW(S) from eq. (13).

One should be aware of the fact that there is a
clear cut criterion for the GOE orGUE case: If in the
system there exists an antiunitary symmetry exem-
plified by – but not limited to – the time reversal
symmetry, then there exists a large and nontrivial
basis in theHilbert spacewhere the representation of

the Hamilton operator (matrix) is real symmetric,
and GOE statistics applies. If there is no antiunitary
symmetry, the system is a general complex
Hermitian and the statistics is GUE (Mehta 1991;
Robnik and Berry 1986; Robnik 1986).

Note that in both cases of the RMT, like in the
Poissonian case of classical integrability, there is
no free parameter: Universality. Thus, we speak
of universality classes of spectral statistics.
Hackenbroich and Weidenmüller (1995) have
shown that the result applies also to a very large
class of other random matrix ensembles, provided
the limiting distribution of the eigenvalues is
smooth and confined to a finite interval, which
are quite mild conditions, thus showing that the
universality classes are very robust. This has been
numerically verified for a number of various non-
Gaussian ensembles (Robnik et al. 2010). One
elementary indication for the robustness of the
linear level repulsion is demonstrated
(Grossmann and Robnik 2007; Robnik et al.
2010) by using (15), assuming gz(u) = d(u), and
for general gx, gy, using the polar coordinates for
the integration over the (x, y) plane, we find:

P Sð Þ¼ S
4

ð2p
0

gx
S
2
cos’

� �
gy

S
2
sin’

� �
d’, ð17Þ

and consequently for small S we obtain

P Sð Þ ¼ pS
2
gx 0ð Þgy 0ð Þ, ð18Þ

showing, that if gx, gy at x= 0 and y= 0 are finite
and nonzero, the level repulsion will be always
linear, independent of the details of gx(x), gy(y).
Indeed, for the Gaussian case, where the normal-
ization <S > = 1 yields s ¼ 1=

ffiffiffi
p

p
, we have

gx(0) = gy(0) = 1 and see at once P(S) = pS/2
for small S, in agreement with (13). The result is
easily generalized for the GUE case by using the
general gz(z), deriving the quadratic level repul-
sion, and reproducing (16) for small S in the
special case of Gaussian gx, gy, gz.

Quantum Chaos of Classically Generic
(Mixed-Type) Systems

Classically integrable and fully chaotic (ergodic)
systems are exceptional. Typical – generic – clas-
sical Hamiltonian systems are of the mixed type,
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with divided phase space. Typically they have
extremely complex structure, with rare exceptions
such as the mushroom billiards introduced by
Bunimovich, where we have exactly one rigor-
ously integrable (regular) component, and exactly
one ergodic chaotic component.

In the general generic case, the regular regions
consisting of N-dimensional invariant tori coexist
in the phase space with chaotic regions. Typically
there is an infinite hierarchy of statistically
selfsimilar structure consisting of islands of stabil-
ity surrounded by the chaotic sea, which by itself
might comprise several disconnected invariant
chaotic components. The phase portrait has a very
rich structure and is difficult to describe in detail.
The quantum mechanics of such systems is also
difficult. In the semiclassical limit ħ ! 0, the
quantum mechanics of the stationary Schrödinger
equation must somehow tend to the classical
mechanics. It was the idea of Percival in 1973
(Percival 1973) who was the first to suggest, qual-
itatively, that one should distinguish between the
regular eigenstates and the chaotic eigenstates
(he called them irregular). However, the question
is:How? It is rather obvious that wemust introduce
some kind of the quantum phase space, where the
quantum structures can be compared with the clas-
sical ones. This can be achieved by introducing the
Wigner functions of the quantum eigenstates.

Quantum Phase Space: The Wigner Functions
The Wigner functions of eigenstates, based on the
stationary orthonormal wave functions cn(q) in
configuration space, are defined in the quantum
phase space (q, p) as follows:

Wn q,pð Þ ¼ 1

2pħð ÞNð
dNX exp � i

ħ p:X
� �

cn q� X
2

� �
c�
n qþ X

2

� �
:

ð19Þ
As one can easily see, they are real valued but

not positive definite, and possess the following
properties:

(P1)
Ð

Wn(q, p)d
Np = |cn(q)|

2 (= probability
density in configuration space)

(P2)
Ð

Wn(q, p)d
Nq = |fn(p)|

2 (= probability
density in momentum space)

(P3)
Ð
Wn(q, p)d

Nq dNp = 1 (normalization)

(P4) (2pħ)N
Ð
dNq dNpWn(q, p)Wm(q, p) = dnm

(orthogonality)
P5ð Þ j Wn q,pð Þ j� 1

pħð ÞN (no singularities;

Cauchy-Schwartz inequality)
P6¼P4ð Þ Ð

W2
n q,pð ÞdNq dNp¼ 1

2pħð ÞN (divergence

in the limit ħ! 0)
P7ð Þ ħ! 0 : Wn q,pð Þ! 2pħð ÞNW2

n q,pð Þ> 0 (posi-
tivity in the limit ħ ! 0)

From this, one can conclude that in the semi-
classical limit ħ! 0 theWigner function becomes
predominantly positive definite, that it is
supported in a volume cell of size (2pħ)N, and
thus condenses in such a cell, and since the Wig-
ner functions are orthogonal, they must “live” in
disjoint supports and therefore become statisti-
cally independent of each other. The question is,
what is the geometry/structure of such a cell.

Principle of Uniform Semiclassical
Condensation (PUSC) of Wigner Functions of
Eigenstates
The Principle of Uniform Semiclassical Conden-
sation (PUSC) of Wigner functions of eigenstates,
based on the papers by Percival (1973), Berry
(1977), Shnirelman (1974), Voros (1979), Robnik
(1998), and Veble, Robnik, and Liu (1999), states
that the Wigner functionWn(q, p) condenses uni-
formly on a classical invariant component in the
classical phase space, when ħ ! 0 and if tH > tT.
This can be an N-dimensional invariant torus, a
chaotic component, or the entire energy surface in
the case of classical ergodicity:

(C1) Invariant N-torus (integrable or KAM):

Wn q, pð Þ ¼ 1

2pð ÞN d I q, pð Þ � Inð Þ: ð20Þ

(C2) Uniform on topologically transitive (inde-
composable invariant) chaotic region:

Wn q, pð Þ ¼ d En � H q, pð Þð Þ wo q,pð ÞÐ
dNq dNp d En � H q, pð Þð Þ wo q,pð Þ

ð21Þ
where wo(q, p) is the characteristic function on

the chaotic component indexed by o
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(C3) Ergodicity (microcanonical Wigner
function):

Wn q, pð Þ ¼ d En � H q,pð Þð ÞÐ
dNq dNp dðEn � H q,pð Þ ð22Þ

Here we also introduce the notation m for the
relative Liouville measure of the relevant classical
invariant component indexed by o:

m oð Þ ¼
Ð
dNq dNp d En � H q, pð Þð Þ wo q,pð ÞÐ

dNq dNp d En � H q,pð Þð Þ
ð23Þ

This principle turns out to have a great predic-
tive power, as demonstrated and used, e.g., in
Veble et al. (1999). However, it must be kept in
mind that the condition for the uniformity of this
semiclassical limit of chaotic states is the fulfill-
ment of the semiclassical condition about the time
scales: The Heisenberg time tHmust be larger than
all relevant classical transport time scales tT.

Spectral Statistics in the Mixed-Type Phase
Space
From the PUSC it follows that in the semiclassical
limit, the eigenstates can be clearly classified as
regular and chaotic, just according to the criterion
whether they overlap with an invariant
N-dimensional torus or with a chaotic region.
Using this criterion, one can separate the regular
and chaotic eigenstates and perform the statistical
analysis separately for each of them. Due to the
nonoverlapping supports of the Wigner functions,
they become statistically independent of each other.
Therefore, also the corresponding energy level
sequences become classified as regular and chaotic,
where the regular ones obey the Poissonian statistics
and the chaotic ones obey the RMT statistics, pro-
vided the semiclassical condition (of time scales) is
satisfied. Then, the total spectrum can be
represented as a statistically independent superposi-
tion of regular and chaotic level sequences. The
regular ones can be lumped together in a single
Poissonian sequence, simply because a statistically
random superposition of Poissonian level sequences
is a Poisson sequence again, while the chaotic
sequences must be treated one by one, each of
them associated with its relevant supporting classi-
cal chaotic region. In such a case, it becomes obvi-
ous that the gap probability E(S) factorizes: The

probability of having no level on interval of length
S is the product of probability of having no level of
the regular type, times probability of having no level
of the chaotic types. In the special case of just one
chaotic sequence with the approximate gap proba-

bility EW Sð Þ ¼ erfc
ffiffi
p

p
S

2

� �
and one Poissonian

sequencewith the gap probability EP(S)= exp (�S),
we obtain

E Sð Þ ¼ EP m1Sð Þ EW m2Sð Þ

¼ exp �m1Sð Þ erfc
ffiffiffi
p

p
m2S
2

� �
: ð24Þ

Here m1 is the relative fraction of the phase
space volume of the classical regular regions in
the classical phase space, while m2= 1� m1 is the
complementary relative Liouville measure of the
chaotic component. Also, m1 is the mean relative
density of the regular energy levels, while m2 is the
mean relative density of the chaotic levels. Since
the general relationship P(S) = d2E(S)/dS2
applies, we derive at once the so-called Berry-
Robnik level spacing distribution (Berry and
Robnik 1984)

PBR Sð Þ ¼ e�m1Se�
pm2

2
S2

4 2m1m2 þ
pm32S
2

� �

þ e�m1Sm21erfc
ffiffiffi
p

p
m2S
2

� �
: ð25Þ

Of course, this probability distribution is nor-
malized <1 > = 1, and has the normalized first
moment <S > = 1. It has been tested in many
various billiard systems, and in order to see it,
since the semiclassical condition (of the time
scales) must be satisfied, it is very often necessary
to reach the high-lying levels. Most notable con-
firmation has been achieved by Prosen and
Robnik (1994, 1999), 10–15 years after its deri-
vation. The generalization to many chaotic com-
ponents is quite straightforward (Robnik 1998;
Berry and Robnik 1984).

Dynamical Localization of the Chaotic
Eigenstates
If the semiclassical condition of time scales tH> tT is
not satisfied, the Wigner functions of chaotic eigen-
states do not spread out uniformly over the relevant
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classical chaotic component, but are localized,
which means that their effective support is smaller
than the classically available chaotic region. For
example, this is observed in the stadium billiard if e
is sufficiently small. It has been shown empirically
quite recently (Batistić and Robnik 2010, 2013a, b;
Batistić et al. 2013, 2018) that the aspects of dynam-
ical localization in time-independent systems are
quite analogous to the dynamical localization phe-
nomena in time-dependent Floquet systems, specif-
ically in quantum kicked rotator (Manos and Robnik
2013). Below we shall show examples of localized
chaotic states.

If we neglect the tunneling effects (which cou-
ple regular and chaotic levels, breaking the statis-
tical independence assumption), which we can do
at high energies (small effective ħ, because tunnel-
ing effects decrease exponentially with effective
1/ħ), but treat the dynamical localization effects,
we observe empirically (Batistić and Robnik
2010, 2013a, b; Batistić et al. 2018; Prosen and
Robnik 1994) that the level spacing distribution of
the localized chaotic eigenstates is very well cap-
tured by the Brody distribution

PB Sð Þ ¼ C1S
b exp �C2S

bþ1
� �

, ð26Þ

where the two parameters C1 and C2 are deter-
mined by the two normalizations <1 > =
< S > = 1, and the corresponding gap
probability is

EB Sð Þ ¼ 1

a bþ 1ð ÞQ
1

bþ 1
, aSð Þbþ1

� �
ð27Þ

where a ¼ G bþ2
bþ1

� �
and Q(a, x) is the incomplete

Gamma function

Q a, xð Þ ¼
ð1
x

ta�1e�tdt: ð28Þ

Here the only parameter is b, the level repulsion
exponent in (26), which measures the degree of
localization of the chaotic eigenstates: if the locali-
zation is maximally strong, the eigenstates practi-
cally do not overlap in the phase space (of the
Wigner functions) andwe find b= 0 and Poissonian
distribution, while in the case of maximal extended-
ness (no localization), we have b= 1, and the RMT

statistics of levels applies. Thus, by replacing EW(S)
with EB(S), we get the BRB (Berry-Robnik-Brody)
distribution, which generalizes the Berry-Robnik
distribution such that the localization effects are
included (Batistić and Robnik 2010).

The Billiard Systems and
Poincaré-Husimi Functions

Having established the formalism of Wigner
functions as a kind of the quantum phase space,
we now wish to actually look at the Wigner
functions in mixed-type quantum systems, in
order to separate the regular and the chaotic
ones, by simply looking at whether the given
eigenstateWn(q, p) overlaps with a classical reg-
ular or classical chaotic region. Furthermore, the
question arises whether the chaotic Wigner func-
tion is localized or extended on the classical
chaotic component. The method and approach
is general, but technically difficult to implement
in general. Therefore, we have to choose some
representative model system. The billiard sys-
tems are most suitable for such studies.

For a 2D billiard, the most natural coordinates
in the phase space (s, p) are the arclength s round
the billiard boundary, s � [0, ℒ], where ℒ is the
circumference, and the sine of the reflection angle,
which is the component of the unit velocity vector
tangent to the boundary at the collision point,
equal to p, which is the canonically conjugate
momentum to s. These are the Poincaré-Birkhoff
coordinates. The bounce map (s1, p1)! (s2, p2) is
area preserving (Berry 1981), and the phase por-
trait does not depend on the speed (or energy) of
the particle. Quantum mechanically we have to
solve the stationary Schrödinger equation, which
in a billiard is just the Helmholtz equation
Dc + k2c = 0 with the Dirichlet boundary condi-
tions c|@ℬ = 0. The energy is E = k2. The impor-
tant quantity is the boundary function

u sð Þ ¼ n � ∇rc r sð Þð Þ, ð29Þ

which is the normal derivative of the
wavefunction c at the point s (n is the outward
unit normal vector). It satisfies the integral
equation
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u sð Þ ¼ �2

þ
dt u tð Þ n � ∇rG r, r tð Þð Þ, ð30Þ

where G r, r0ð Þ ¼ � i
4
H

1ð Þ
0 kjr� r0jð Þ is the Green

function in terms of the Hankel function H0(x). It
is important to realize that boundary function u(s)
contains complete information about the
wavefunction at any point q inside the billiard
by the equation

c j rð Þ ¼ �
þ
dt u j tð Þ G r, r tð Þð Þ: ð31Þ

Nowwe go over to the quantum phase space.We
can calculate the Wigner functions based on cn(r)
and perform the procedure developed in the previ-
ous section. However, in billiards, it is advantageous
to calculate the Poincaré-Husimi functions. The
Husimi functions are generally just Gaussian
smoothed Wigner functions. Such smoothing
makes them positive definite, so that we can treat
them somehow as quasi-probability densities in the
quantum phase space, and at the same time we
eliminate the small oscillations of the Wigner func-
tions around the zero level, which do not carry any
significant physical contents, but just obscure the
picture. Thus, following Tualle and Voros (1995)
and Bäcker et al. (2004), we introduce (Batistić and
Robnik 2013a) the properly ℒ-periodized coherent
states centered at (q, p), as follows

c q,pð Þ,k sð Þ ¼
X
m�Z

exp ikp s� qþ mLð Þf g

exp � k
2

s� qþ mLð Þ2
� �

:

ð32Þ

The Poincaré-Husimi function is then defined
as the absolute square of the projection of the

boundary function u(s) onto the coherent state,
namely

H j q, pð Þ ¼
ð
@ℬ

c q,pð Þ,k j
sð Þ u j sð Þ ds

				
				2: ð33Þ

In Fig. 1, we show examples of a regular and of
a chaotic eigenstate for the billiard introduced in
(Robnik 1983, 1984) with l = 0.15.

Now the classification of eigenstates can be
performed by their projection onto the classical
surface of section. As we are very deep in the
semiclassical regime, we do expect with probabil-
ity one that either an eigenstate is regular or cha-
otic, with exceptions having measure zero,
ideally. To automate this task, we have ascribed
to each point on the grid a number Ai, j whose
value is either +1 if the grid point lies within the
classical chaotic region or �1 if it belongs to a
classical regular region. Technically, this has been
done as follows. We have taken an initial condi-
tion in the chaotic region, and iterated it up to
about 1010 collisions, enough for the convergence
(within certain very small distance). Each visited
cell (i, j) on the grid has then been assigned value
Ai, j = + 1, the remaining ones were assigned the
value �1.

The Poincaré-Husimi function H(q, p) (33)
(normalized) was calculated on the grid points
and the overlap index M was calculated
according to the definition M = �i, j Hi, j Ai, j.
In practice, M is not exactly +1 or �1, but can
have a value in between. There are two reasons:
the finite discretization of the phase space (the
finite size grid), and the finite wavelength (not
sufficiently small effective Planck constant, for
which we can take just 1/kj). If so, the question is,

Recent Advances in Quantum Chaos of Generic Sys-
tems, Fig. 1 Examples of a chaotic (left) and a regular
(right) state in the Poincaré-Husimi representation. kj (M)
are: chaotic: kj (M) = 2000.0181794 (0.981); regular: kj
(M) = 2000.0777155 (�0.821). The gray background is

the classically chaotic invariant component. We show only
one quarter of the surface of section (s, p) � [0, ℒ/2]
� [0, 1], because due to the reflection symmetry and
time-reversal symmetry, the four quadrants are equivalent
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where to cut the distribution of the M-values, at
the threshold value Mt, such that all states with
M < Mt are declared regular and those with
M > Mt chaotic.

There are two natural criteria: (i) The classical
criterion: the threshold value Mt is chosen such
that we have exactly m1 fraction of regular levels
and m2 = 1 � m1 of chaotic levels. (ii) The quan-
tum criterion: we choose Mt such that we get the
best possible agreement of the chaotic level spac-
ing distribution with the Brody distribution (26),
which is expected to capture the dynamical local-
ization effects of the chaotic levels.

Let us now separate the regular and chaotic
eigenstates and the corresponding eigenvalues,
after unfolding, according to our method, using
the classical criterion (i). The corresponding
threshold value of the index M is found to be
Mt = 0.431. The level spacing distributions are
shown in Fig. 2. As we see, we have perfect Brody
distribution with b = 0.444 for the chaotic levels
and almost pure Poisson for the regular levels.

The Localization Measures

After the success in separating the regular and
chaotic eigenstates, we want to quantify the
degree of localization of the chaotic eigenstates
(Batistić and Robnik 2013b). We express the

localization measures in terms of the discretized
Husimi function. For the entropy localization
measure denoted by A, we write A = e<I>/Nc,
where I = � Ð

dq dp H(q, p) ln ((2pħ) fH(q, p))
is the information entropy and Nc is a number of
cells on the classical chaotic domain. The mean
<I> is obtained by averaging I over a sufficiently
large number of consecutive chaotic eigenstates.
In the case of uniform distribution Hij = 1/NC the
localization measure is A= 1, while in the case of
the strongest localization I= 0, and A= 1/NC	 0.

For the correlation localization measure
denoted by C, we first calculate the overlap
(correlation matrix) Cnm ¼ 1

Qn Qm

P
ijH

n
ijH

m
ij ,

where Qn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ij Hn
ij

� �2
r

is the normalizing fac-

tor. Then C= hCnmi, and the averaging is over all
n, m and a large number of consecutive chaotic
eigenstates.

Again we use the billiard like in section “The
Billiard Systems and Poincaré-Husimi Functions”
with l = 0.15. For a good approximation of the
localization measures A and C, it was sufficient to
separate and extract about 1.500 consecutive cha-
otic eigenstates. The two localization measures
are linearly equivalent as shown in Fig. 3. To get
a good estimate of b, we need much more levels,
and the separation of eigenstates is then techni-
cally too demanding. We have instead calculated
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Recent Advances in Quantum Chaos of Generic Sys-
tems, Fig. 2 Separation of levels using the classical cri-
terion Mt = 0.431. Left: The level spacing distribution for
the chaotic subspectrum, after unfolding, in perfect

agreement with the Brody distribution b = 0.444. Right:
The level spacing distribution for the regular part of the
spectrum, after unfolding, in excellent agreement with
Poisson
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spectra on small intervals around k 	 2000 and
k 	 4000, about 100.000 consecutive levels (no
separation), and obtained b by fitting the P(S) by
the BRB distribution derived in section “Dynam-
ical Localization of the Chaotic Eigenstates”
using the classical m1. The dependence of b on
A is shown in Fig. 3. For aesthetic reasons, we
have rescaled the measure A! A/Amax such that it
goes from 0 to 1. The maximal value of A,
Amax = 0.68, was estimated as Amax ¼ eImax=Nc,
where Imax is the maximum entropy of 1500 con-
secutive states of the almost fully chaotic l= 0.25
billiard. Thus for fully chaotic systems, the pro-
cedure always yields A = 1. Namely, in real cha-
otic eigenstates, we never reach a perfectly
uniform distribution H(q, p), since they always
have some oscillatory structure.

We clearly see that there is a functional rela-
tionship between A and b. By increasing k from
2000 to 4000, we increase the dimensionless
Heisenberg time by factor 2; therefore, A must
increase, but precisely in such a way, that the
empirical points stay on the scaling curve, as it
is observed and indicated by the arrows. We do
not have yet a semiempirical functional descrip-
tion of the relationship b(A) we found in Fig. 3. In
the quantum kicked rotator, it is just almost linear
(Batistić et al. 2013; Manos and Robnik 2013;
Izrailev 1990). Similarly, it is found to be almost

linear in the stadium of Bunimovich, as recently
published in reference (Batistić et al. 2018) and
shown in Fig. 4. Also, b is found to be a unique
function of a = tH/tT, well described empirically
by the rational function

b ¼ b1
sa

1þ sa
, ð34Þ

as seen in Fig. 5. For details, see reference
(Batistić et al. 2018). Nevertheless, one should
observe some scattering of points around the
mean value, noted already by Izrailev (1990)
in the case of the quantum kicked rotator,
which probably is due to the fact that the local-
ization measure has a certain distribution rather
than a sharp value, as has been observed
recently in the kicked rotator by Manos and
Robnik (2015).

Finally, there is a great lack in theoretical
understanding of the physical origin of the rela-
tionship b(A), even in the case of (the long-
standing research on) the quantum kicked rotator,
except for the intuitive idea, that energy spectral
properties should be only a function of the degree
of localization, because the localization gradually
decouples the energy eigenstates and levels,
switching the linear level repulsion b = 1
(extendedness) to a power law level repulsion
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Recent Advances in Quantum Chaos of Generic Sys-
tems, Fig. 3 Left: Linear relation between the two
entirely different localization measures, namely the
entropy measure A and the correlation measure C,

calculated for several different billiards at k 	 2000 and
k 	 4000. Right: We show the functional relation between
b and the localization measure A. Arrows connect points
corresponding to the same l at two different k
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with exponent b< 1 (localization). The full phys-
ical explanation is open for the future.

Discussion and Conclusions

Quantum chaos, or wave chaos, is a study of the
signatures of classical chaos of the underlying
classical dynamical system, or more generally, of
the ray dynamics of the limiting short-wavelength
asymptotics. The time evolution of the bound
quantum systems (with purely discrete spectrum)

is always almost periodic, stable, and reversible in
the sense of the absence of the sensitive depen-
dence on intitial conditions, and thus it is quite
diferent from the classically chaotic behavior
exhibiting sensitive dependence on initial condi-
tions, due to the positive Lyapunov exponents. In
this sense, there is no quantum chaos. However, in
the time-independent domain, when we look at
the eigenstates of the stationary Schrödinger equa-
tion, we uncover a complexity of the solutions,
fully revealed in the quantum phase space of the
Wigner functions, which exactly correspond to
the structure of the classical phase space. In the
semiclassical limit of sufficiently small effective
Planck constant, the Heisenberg time is larger
than all classical transport (diffusion) time scales,
and the chaotic eigenstates (their Wigner func-
tions) are uniformly extended over the entire
available chaotic region. Then the regular eigen-
states “live” on invariant tori, while the chaotic
ones are associated with the chaotic components.
The energy spectra belong to the universality
classes as for their statistical properties: the regu-
lar spectra obey Poissonian statistics, while the
chaotic ones obey the statistics of the Gaussian
random matrix theory. If the semiclassical condi-
tion on the time scales is not satisfied, the chaotic
Wigner functions are localized due to the quantum
(or dynamical) localization. The degree of locali-
zation (localization measures) can be defined in
various ways, but different localization measures
are found to be equivalent (linearly related). The
degree of localization uniquely determines the
Brody spectral parameter which enters in the
level spacing distribution of localized chaotic
eigenstates. Using the overlap criterion for the
Wigner functions (or Husimi functions), one can
separate the regular and chaotic states, and per-
form the statistical analysis separately. It is con-
firmed, in the sense of Percival (1973) and Berry
and Robnik (1984), as generalized by Batistić and
Robnik (2010–2013), that the regular levels are
Poissonian, while the localized chaotic ones are
Brody-like, where the Brody parameter is a
unique function of the localization measure.
When we go from the semiclassical limit to larger
values of the effective Planck constant (in billiards
it means to lower energies), we reveal the
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0 20 40 60 80 100 120
α(exp)

0.0

0.2

0.4

0.6

0.8

1.0

β

Recent Advances in Quantum Chaos of Generic Sys-
tems, Fig. 5 The level repulsion exponent b as a function
of a fitted by the function (34), based on tT from the
exponential diffusion law, for variety of stadia of different
shapes e and energies E= k2, as in Fig. 4. Here, b1= 0.98
and s = 0.20
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tunneling (correlation) effects, where the regular
and chaotic eigenstates start to overlap consider-
ably, and thus no longer can be classified clearly
as regular or chaotic. The picture becomes quite
complex, and is subject of current research
(Batistić and Robnik 2010; Gehler et al. 2015).

While the fully chaotic and regular eigenstates
are generally very well understood, the descrip-
tion of the localized chaotic states, and of the
mixed-type systems, is still open for further inves-
tigation. In particular, we need to derive a theory
of dynamical localization of stationary chaotic
eigenstates, including the derivation of the phe-
nomenological Brody level spacing distribution
of such localized chaotic eigenstates. Thus, quite
a few fundamental questions of quantum chaos
are open for the future.
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