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Glossary

Laser dynamics Time evolution of the laser
light within the cavity as well as the time
evolution of the charge-carriers that participate
in the radiative emission process.

Constant wave emission (cw) Laser emission
with a constant intensity.

Relaxation oscillations (RO) If a laser is
perturbed from its steady state (constant wave
emission), it will relax back performing a pure
exponential decay (Class-A laser) or by
performing damped oscillations (Class-B
laser); damping rate and oscillation frequency
are used to quantify the dynamics.

Class-C laser A laser, for which the timescale of
the induced material polarization inside the
gain material is on the same order of magnitude
as the electron and the photon lifetime. These
lasers have to be modeled with Maxwell-Bloch
equations in contrast to Class A and Class B

lasers where laser rate-equations are sufficient
for the modeling.

Bifurcation qualitative change in the system’s
behavior under parameter changes.

1Dbifurcationdiagram Unique extrema detected
within a time series of the laser intensity, plotted
as a function of one system parameter
(bifurcation parameter) to detect bifurcations;
e.g., suddenly occurring harmonic oscillations
(Hopf bifurcation) or a sudden birth of new
solutions (saddle node bifurcation).

2D bifurcation diagram Classification of the
system dynamics in a 2D parameter space; bifur-
cations form the boundaries between parameter
regions of qualitative different dynamics (e.g.,
chaotic pulsing and periodic oscillations).

External cavitymode (ECM) Optical mode that
can exist in an optical resonator that is formed
by a laser and an external cavity (laser with
optical self-feedback); with increasing feed-
back strength the number of ECMs increases
and their stability changes.

Definition of the Subject

The subject of investigating the laser dynamics
under optical feedback is to characterize the changes
in the light emission dynamics, i.e., unravel the
bifurcation structure, when a laser is perturbed by
its own back-reflections. Since optical feedback can
happen due to unwanted reflections in every optical
setup, it is important to note, at first, the tolerance of
a stable laser to perturbations by optical feedback.
Secondly, also complex pulsations and chaotic
emission can be useful for applications and thus
there is a need to understand the conditions for an
emergence of complex laser dynamics. Mathemati-
cally the subject is interesting because the dynamics
is modeled by delay differential equations, where
the delay is given by the time the light needs to
re-enter the cavity. In this entry, we will compare
different semiconductor laser systems which are
quantum dot (QD) and a quantum well
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(QW) lasers with one more wavelength emission as
well as nanolaser systems with very short photon
lifetimes (Class – C laser). We will learn the impor-
tance of internal timescales of the gain medium and
give some general rules about how the internal
degrees of freedom simplify the emerging light
emission under optical feedback.

Introduction

The effect of delay has been investigated in various
systems and recent progress in this field is
documented for instance in focus issues on delay
systems (Erneux et al. 2017; Otto et al. 2019). In this
chapter, the focus lies on the laser dynamics when a
control signal from the laser is fed back into it after a
time delay. This includes setups such as external
optical feedback, which can be realized, for exam-
ple, by a simple mirror in some distance of the laser
which feeds back the emitted light into the laser
cavity. Another implementation is by an external
electronic circuit which feeds back a delayed electric
signal to the laser device depending on the output of
the laser. In this context, the interaction between the
laser and the feedback signal becomes increasingly
complex when the feedback time is similar to the
internal laser timescale. Since in real-world applica-
tions parasitic reflections off surfaces and optical
interfaces can never be suppressed completely,
time-delayed feedback arises naturally in nearly
every laser setup. Immense effort has been put into
improving the resistance of semiconductor lasers
towards optical instabilities caused by feedback
(Lenstra et al. 2019) in applications where a steady
laser output is required. At the same time, the guided
exploitation of feedback leads to novel applications
harnessing the dynamical complexity of the system.
In both cases, a thorough understanding of the
underlying physical and dynamical processes is
required.

The dynamical complexity of lasers with feed-
back is an extremely broad topic which has
attracted much interest in the past and today.
A lot has been done in order to understand the
bifurcation structure of lasers with optical feed-
back and this entry does not aim to give a com-
plete overview. The interested reader is referred to

the pioneering works that can be found in Mørk
et al. (1992), Sano (1994), Simmendinger and
Hess (1996), Ye and Ohtsubo (1998), Ohtsubo
(1999); Erneux et al. (2000), Pieroux et al.
(2000, 2001), Wolfrum and Turaev (2002),
Yanchuk and Wolfrum (2004), Radziunas et al.
(2006), Rottschäfer and Krauskopf (2007). Avari-
ety of experimental data exists, see for example
(Mørk et al. 1990a; Li et al. 1993; Heil et al. 2003;
Wünsche et al. 2008; Kim et al. 2014; Locquet
et al. 2017) or results on integrated devices (Kane
et al. 2015; Karsaklian Dal et al. 2017) which
support and still inspire theoretical analysis. See,
e.g., (van Tartwijk and Agrawal 1998; Soriano
et al. 2013; Ohtsubo 2013) for an overview. Gen-
eral properties of delay systems, like the recur-
rence of solutions (Yanchuk and Perlikowski
2009), play a crucial role to understand the
response of a laser to delayed feedback.

In delayed feedback systems, the interplay with
noise sources as they usually appear due to spon-
taneous photon emission can lead to a variety of
dynamical effects and unforeseen behavior. This
issue will only shortly be touched in the course of
this entry and the interested reader is referred to the
literature: The effect of noise was studied in Mørk
et al. (1988a, 1990b) to explain mode hopping in
multimode lasers with feedback, in Otto et al.
(2014) to find coherence resonance, or in Oliver
et al. (2015), Jüngling et al. (2018), Porte et al.
(2014) to quantify the consistency properties of the
laser output via the evaluation of the time delay
signature (Rontani et al. 2007, 2009). Related to
that the linewidth reduction with optical feedback
has attracted recent interest as well (Agrawal 1984;
Flunkert and Schöll 2007; Jaurigue et al. 2016;
Brunner et al. 2017). The complex feedback
induced dynamics that is the focus of this entry is
usually detrimental to the linewidth (Li et al. 1993;
Lenstra et al. 1985), but the bifurcation analysis
that we present below can predict the regions
where the feedback leads to a stabilization.

An important step towards improving the resis-
tance of semiconductor lasers to optical feedback
and other perturbations was the fabrication and
subsequent employment of self-assembled semi-
conductor quantum dots (QDs) as the active
medium in lasers (Bimberg et al. 1999; Bimberg
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and Pohl 2011). In addition to their reduced thresh-
old current and temperature stability, QD lasers are
more robust against such perturbations (Otto et al.
2010, 2012a; Globisch et al. 2012; Lingnau et al.
2013; Duan et al. 2019; O’Brien et al. 2004; Huyet
et al. 2004). As we will see later on, this robustness
is facilitated by a change of the internal dynamical
timescales due to the presence of the QDs.

In recent years there has been a steady push
towards exploitation of complex dynamics
induced by delayed feedback in laser systems.
Right now those laser systems with delay find
great attention in applications for information pro-
cessing, i.e., all-optical reservoir computing
(Argyris et al. 2018; Bueno et al. 2017; Kuriki
et al. 2018; Nguimdo et al. 2017), as random
number generators (Verschaffelt et al. 2017;
Reidler et al. 2009; Oliver et al. 2011), in chaotic
LIDAR systems (Lin and Liu 2004; Cheng et al.
2018), or in nanometric sensing (Choi et al. 2019).

This review article will discuss the interrelation
between dynamic degrees of freedom within the
laser gain medium and the stability of the laser if
subjected to optical self-feedback. We will show
that the response becomes less complex and more
controllable with every additional timescale that is
added to the system dynamics.

In the following, we will first introduce a rate
equation model for nanostructured laser gain media
in section “Dynamic Timescales and Relaxation
Oscillations” and discuss the role of the charge
carrier relaxation timescales that directly or indi-
rectly participate in the laser process and, for their
part, control the laser response to perturbations.
Second, different semiconductor laser with complex
gain media and their response to optical feedback
will be compared in section “Optical Feedback
(Class-B Lasers)” and the nonnegligible dynamic
effect of a model reduction will be discussed. The
effect of feedback on devices with nanoscale dimen-
sions, where the photon lifetime starts to be on the
same order of magnitude as the timescale of the
microscopic polarization, will be discussed in sec-
tion “Optical Feedback of Class-C Lasers” before
we come to quantum dot lasers with simultaneous
two-color emission and their response to feedback
in section “Optical Feedback of Two-State QD
Lasers.”

Dynamic Timescales and Relaxation
Oscillations

The response of dynamical systems towards per-
turbations depends sensitively on the internal
dynamical timescales of the system itself.
A universal example of this is a driven damped
oscillator, showing resonance effects when driven
close to its natural frequency, with the resonance
overshoot depending on its damping. Most semi-
conductor lasers possess an intrinsic resonance
frequency and associated damping due to the pres-
ence of relaxation oscillations (ROs) – oscillations
in the energy exchange between the intracavity
photons and the available gain. In the laser classi-
fication scheme due to Arecchi et al. (1984), such
lasers are labeled Class-B. These intrinsic time-
scales can be readily observed in the laser response
to delayed feedback. Most dynamical features
occur at frequencies related to the RO frequency,
and complex dynamics can be observed if the delay
time is in the order of the RO frequency. The
minimum feedback strength required to induce
complex dynamics is closely related to the
damping of the ROs, with stronger damping usu-
ally leading to a more robust system (Helms and
Petermann 1990). It is therefore natural to assume
that the introduction of additional timescales into a
dynamical system that is subjected to delayed feed-
back changes its response. We want to illuminate
this effect for two examples: At first, a QD laser
that has more than one carrier type and thus an
additional relaxation channel with an associated
dynamic timescale. Secondly, a Class-C laser
where the timescale of the induced material polar-
ization plays a crucial role for the dynamics.

Quantum-dot lasers differ from conventional
semiconductor lasers in the dimensionality of the
active medium. Whereas in quantum-well lasers
the active medium is quasi-two-dimensional, QDs
are effectively zero-dimensional systems, embed-
ded in a two-dimensional charge-carrier reservoir.
The active optical transition is thus formed by
deeper lying atom-like energy states which have
to be gradually filled by surrounding charge-
carriers, see Fig. 1a. This additional scattering
pathway introduces an extra timescale in the
dynamic laser system (Table 1).
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The minimal model to describe a QD laser is
thus at least three-dimensional, as we need to
consider the dynamics of the charge-carrier num-
ber in the reservoir,N(t), the occupation of the QD
states, r(t), and the amplitude of the cavity electric
field, E(t) (the intracavity photon number is pro-
portional to |E(t)|2):

_N ¼ J � N
T1

� R rth þ d N � Nth
� �� r

� �
, ð1aÞ

_r ¼ R rth þ d N � Nth
� �� r

� �� r
Tsp

� g r� rth
� �þ 1

Tph

� �
Ej j2, ð1bÞ

_E ¼ g
2

1� iað Þ r� rth
� �

E

þ K
Tph

e�iCE t� tð Þ ð1cÞ

The parameters entering the equations are
explained in Table 1. In thermodynamic equilib-
rium, the in- and out-scattering processes between
charge carrier states at different energies obey a
detailed-balance relation, i.e., their ratio is given
by a Boltzmann factor that determines the equi-
librium occupation of the charge-carrier states.
For the quasi-equilibrium within a pumped laser,
this also applies and in the presented minimal QD
laser model it enters via the coefficient d. The
coefficient d ¼ @

@N r
eq
��
th

describes the change of

the quasi-equilibrium QD occupation with respect
to the normalized reservoir density close to the
threshold. With increasing charge-carrier number
in the reservoir, this balance is shifted towards

higher occupation, which is included in the min-
imal QD laser model in a linearized fashion. An
important feature of QD lasers is the imperfect
clamping of charge-carriers above threshold
(Lüdge and Schöll 2009; Röhm et al. 2015), i.e.,
the quantum dots can never be filled completely.

The delayed optical feedback enters the equa-
tions via the delayed optical field, E(t – t) in
Eq. (1c). This modeling approach was first pro-
posed independently by Rosanov (1975), and
Lang and Kobayashi (1980). Within this approach,
only a single round-trip in the external cavity
formed between the laser facet and the external
mirror is taken into account. For strong external
reflectivities, multiple round-trips become impor-
tant and the treatment of the feedback field must be

GS
ES

GS

ES

(a) (b)

Laser Dynamics and Delayed Feedback, Fig. 1 (a)
Sketch of the energy levels in the simplest quantum-dot
(QD) laser. The QD occupation probability r increases due
to inscattering of charge carriers from the reservoir states,
N, with the scattering rate R. The QD transitions are the

active optical transitions. (b)More realistic depiction of the
quantum dot structure. Quantum dots with different sizes
have different energy levels. In addition to the ground state
(GS), one or more excited states (ES) can exist

Laser Dynamics and Delayed Feedback,
Table 1 Parameters used in this chapter and their
meaning

Symbol Meaning

J Normalized pump current

T1 Charge-carrier lifetime

T2 Induced polarization lifetime

Tph Cavity photon lifetime

Tsp QD lifetime

R QD scattering rate

Nth Threshold reservoir density

rth Threshold QD occupation probability

d Detailed balance coefficient

g Normalized gain coefficient

a Amplitude-phase coupling parameter

K Optical feedback strength

C Feedback phase

t Feedback delay time
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extended (Schelte et al. 2019). The optical feed-
back is characterized by the feedback strength K,
the time delay t, and the feedback phase C. The
effect of the feedback and the effect of a will be
discussed in the next section. For nowwe setK= 0
which completely decouples the dynamics of the
phase of the electric field and leaves the intensity |
E(t)|2 as the only important dynamic quantity for
the field inside the cavity.

Depending on size and composition of the QDs,
the effective charge-carrier scattering rate R can
vary significantly. We therefore treat it as a free
parameter and discuss its impact on the dynamic
response of the QD laser in Fig. 2. This allows us to
identify different dynamic regimes and the impor-
tant dynamic timescales of a QD laser system,
Eq. (1a–1c), as a function of R. The internal time-
scales and frequencies can be extracted from the
Lyapunov exponents, which are the eigenvalues of
the Jacobian of the right hand side of the differen-
tial equation system. Real and imaginary part of the
dominating eigenvalue l determine the respective
intrinsic relaxation oscillation frequencies and
damping rates, i.e., Im l = oRO and Re l = GRO.
Figure 2 shows their dependence on the scattering
timescale R. As can be seen, the presence of the
additional scattering process strongly influences
the RO timescales. The most striking feature is
the maximum of the RO damping and the
vanishing RO frequency at values of
R � 1011 s�1. For these moderate scattering rates,

the ROs are overdamped and the eigenvalues
become purely real. For higher values, both
charge-carrier types are closely coupled and the
dynamics has only one effective degree of freedom
in the charge-carrier dynamics. For much smaller
values of R, the carrier reservoir N is only weakly
influenced by the dynamics of r and remains
nearly constant. Thus, it acts as a constant reservoir
for the active charge-carriers and again the charge-
carrier dynamics is effectively one-dimensional. In
the intermediate range of R, where we cannot
neglect the dynamics of either charge-carrier spe-
cies, the internal gain dynamics is more complex
but leads to a very simple dynamic response, i.e.,
without visible relaxation oscillations. At the same
time, the RO damping is largest close to this
parameter range, which explains the resilience of
QD lasers towards external perturbations. This is
usually known for Class-A lasers, which however
do not have any independent degree of freedom of
the carrier dynamics. While we have explicitly
discussed the case of a QD laser, we note that in
most cases an additional slow dynamic scattering
or charge-carrier transport process will lead to
dynamic equations similar to Eq. (1a–1c). The
presence of such a slow dynamic charge-carrier
process will thus lead to similar dynamic behavior.

As we will see, the laser response to delayed
optical feedback is not as complex in QD lasers as
in quantum-well (QW) lasers. QW lasers can be
thought of to operate in the limit of R ! 1, with
only one type of charge-carriers present and a
near-instant equilibration. In this limit, the mini-
mal QD laser model reduces to the QW laser
equations:

_N ¼ J � N
T1

� g N � Nth
� �þ 1

Tph

� �
Ej j2 ð2aÞ

_E ¼ g
2

1� iað Þ N � Nth
� �

E

þ K
Tph

e�iCE t� tð Þ ð2bÞ

These equations are of Rosanov-Lang-
Kobayashi-type, and they constitute the funda-
mental model for the description of Class-B lasers
with weak time-delayed optical feedback.

Laser Dynamics and Delayed Feedback,
Fig. 2 Relaxation oscillation damping GRO (blue) and
frequency oRO (blue) determined from the minimal QD
laser model given in Eq. (1a–1c). (Reproduced from
Lingnau (2015) with permission from Springer)
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Optical Feedback (Class-B Lasers)

As already mentioned in the last section, the most
important timescale when it comes to the response
of a laser gain medium to optical perturbations is the
relaxation oscillation frequency and damping, as
they describe how the laser relaxes to its steady
state. While a Class-A laser just reacts with an
exponential decay of its intensity, the so-called
Class-B laser performs damped oscillations towards
the steady state. We now illuminate three examples
of semiconductor lasers: A conventional quantum
well (QW) laser (Class-B) with one carrier type as
given in Eq. (2a–2b); a quantum dot (QD) laser that
hasmore than one carrier type and thus an additional
dynamic degrees of freedom and is described by the
minimal model in Eq. (1a–1c) and a QD laser that is
described on a different more complex level of the
laser modeling hierarchy.

The time-delayed feedback term introduced
already in the last section will now be discussed
in detail. A sketch of the setup is shown in Fig. 3.
For coherent optical feedback, the response will
depend on the phase of the electric field. The
feedback phase C gives the optical phase shift
accumulated over one feedback round-trip time
and determines whether the light fed back into the
laser interferes destructively or constructively with
the cavity field. The dynamics under time delayed
optical feedback has been shown to sensitively
depend on the feedback phase, especially in the
regime of short delays (Heil et al. 2003) which we
assume in this entry. Short delay, in this context
means that the roundtrip time in the external cavity
t is not larger than the RO period T= 2p/oRO. The
most general formulation of the dynamic equation

of the electric field then reads (van Tartwijk and
Agrawal 1998; Lingnau et al. 2012, 2013):

_E tð Þ ¼ G o, tð Þ � iDo0 � 1

2Tph

� �
E tð Þ

þ K
Tph

e�iCE t� tð Þ, ð3Þ

whereK � [0, 1] is the feedback strength, denoting
the ratio of the light lost through the cavity mirrors
that is coupled back into the cavity. The electric
field is expressed in a rotating frame with fre-
quency Do0, such that its phase velocity vanishes
in the steady-state. The external cavity feedback
time t and the feedback phase C are in principle
both determined from the optical path length of the
feedback section, but since the feedback phase is
much more sensitive to changes in t, it is treated as
an independent parameter (Heil et al. 2003). The
gain G(v, t) is in general a complex valued func-
tion determined by the microscopic polarization of
the gain medium. Its real part, Re[G(v, t)],
describes the amplitude gain of the electric field,
and Im[G(v, t)] is the change of the instantaneous
electric field frequency due to carrier-induced
refractive index changes. The modeling of G(v, t)
can be performed on different levels of complex-
ity. Very common is the introduction of an
amplitude-phase coupling or Henry parameter, a,
which describes the instantaneous coupling of the
electric field frequency to the optical gain. The
amplitude phase coupling factor a is defined as

a ¼ � @Im G vð Þ½ �=@N
@ Re G vð Þ½ �=@N ð4Þ

and significantly simplifies the dependence of the
complex gain G = Re G + iIm G on the carrier
density N. The simplified dynamic equation for the
electric field then reads (van Tartwijk and Agrawal
1998; Ohtsubo 2013; Lingnau et al. 2013):

_E tð Þ ¼ Re G oð Þ � 1

2Tph

� �
1� iað ÞE tð Þ

þ K
Tph

e�iCE t� tð Þ: ð5Þ

The amplitude phase coupling is an important
parameter when discussing the sensitivity of the
laser to optical feedback and for determining the

Laser Dynamics and Delayed Feedback,
Fig. 3 Sketch of a semiconductor laser that is subjected
to optical self-feedback with a delay length of t
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structure of the dynamical solutions. High values
of a generally lead to highly complex dynamics.
The general solution structure of the laser with
delayed optical feedback is largely formed by the
so-called external-cavity modes (ECMs). These
modes denote the solutions of the combined sys-
tem of the laser and the external cavity with con-
stant intensity. The resonant frequencies of the
isolated laser cavity and the external cavity are
in general different. The presence of the feedback
thus introduces a frequency shift of the laser out-
put away from the free-running lasing frequency.
The ECM solutions of the form E(t) = E0e

–Ot are
located on an ellipse in the phase space spanned
by the optical gain ReG and the ECM frequency,
O, as we will discuss further in section “Optical
Feedback of Class-C Lasers.” If the gain is
assumed to be linear, i.e., Re G = g(N – Nth),
which is a common and very good assumption
for laser operation (van Tartwijk and Agrawal
1998; Ohtsubo 2013; Mørk et al. 1988a; Chow
and Koch 1999), the charge-carrier number N and
O can be used for the phase space projection of the
ellipse.

The dynamics of the complex gain G in a QW
laser with a gain medium consisting of only one
carrier type (same dynamics as observed from the
minimal QD laser model Eq. (1a–1c) for large R)
can be closely described by a constant a. The
induced frequency shift then proportionally and
instantly follows the dynamics of the optical gain.
In a QD laser with finite R, both resonant and
nonresonant carriers within different states must
be considered, and thus the gain dynamics are
more complex due to the additional dynamic
degrees of freedom. The minimal QD laser
model takes the dynamics of the nonresonant car-
riers into account but still assumes an a-factor for
the refractive index changes. Figure 4 compares
the reaction to feedback for both laser types.
There, the bifurcation diagram, i.e., the unique
extrema found in a time series of the laser inten-
sity for a given feedback strength K, is displayed
as a function of K. Additionally, two timeseries
are plotted as insets in Fig. 4b which illustrate the
increase in complexity with K. Comparing both
bifurcation diagrams of the QWand the QD laser,
it can be seen that the differences in the charge-
carrier dynamics directly influence the dynamics.

The most significant difference is the value of the
feedback strength K at which the laser starts to
show intensity oscillations. This bifurcation point
is the critical feedback strength. It is labeled KH in
Fig. 4. It is much larger for the QD laser, which
means this laser can withstand a higher amount of
feedback before it starts to show intensity oscilla-
tions. Instead, the point where the two lasers
switch back to stable emission on the next ECM
solution via a homoclinic bifurcation at Khom only
marginally depends on the gain model (vertical
dash-dotted line in Fig. 4). The reason lies in the
solution structure formed by the ECMs of the
electric field equation which are also plotted as
blue lines in Fig. 4 (center). At a K value of 0.45
two new ECM solutions appear: one stable (solid
line) and one unstable (dashed). This bifurcation
point is called saddle node bifurcation and

Laser Dynamics and Delayed Feedback, Fig. 4 1D-
Bifurcation diagram of two different lasers if subjected to
optical self-feedback. It shows the impact of different RO
damping exemplarily for a QW laser (a) and a QD laser (b).
Insets in (b) show time series of the QD laser for two
K values. Vertical dash-dotted lines indicate the critical
feedback strength KH and the homoclinic bifurcation
Khom. SN indicates the saddle-node bifurcation where
new ECM solutions (one stable and one unstable) are
born. C = p, t = 160 ps. (Reproduced from Otto et al.
(2010) with permission from Wiley)
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indicated with SN in Fig. 4 (center). The ECM
solutions themselves are the same for both lasers,
as long as they have the same a-factor, while the
instability of the first solution (the Hopf bifurcation
at KH) strongly depends on the relaxation oscilla-
tion timescales and thus on the internal carrier
dynamics. It can be analytically shown (Otto
et al. 2012a, b; Globisch et al. 2012) that the critical
feedback strength KH, i.e., the Hopf bifurcation
point at which the stable ECM with frequency O
is destabilized, can be approximated via:

KH ¼ 2GROTphffiffiffiffiffiffiffiffiffiffiffiffi
1þa2

p
1� cos oROtð Þð Þcos p�C�Otþ arctan að Þð Þ

ð6Þ

Here, oRO is the frequency of the relaxation
oscillations and GRO their damping rate. Similar
equations for the critical feedback level have
already been derived in Helms and Petermann
(1990), Mørk et al. (1988b), Binder and Cormack
(1989), however, without treating the dependence
on the feedback phase. For long feedback delay,
the phase is hard to control. It is therefore useful to
estimate the smallest value of KH (C) which is
reached for C = �Ot + p + arctan a � p + arctan
a (see for example Fig. 5 for the evolution of the
stability border, i.e., transition from blue to white,
as a function ofC). Thus, the laser is guaranteed to
be stable for

KH < KH
m ¼ GROTphffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2
p : ð7Þ

This stability condition was derived for a
quantum-well laser by Mørk et al. (1992) and
previously suggested by Helms and Petermann
(1990) as a simple analytical criterion for toler-
ance with respect to optical feedback. If the laser
operates at the minimum linewidth mode (Levine
et al. 1995), a slightly different minimal critical
feedback strength is derived from Eq. (6) and is
given by KH

m ¼ GROTph

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p
= a2 � 1ð Þ.

From Eqs. (6) and (7), it becomes clear that the
less complex QW laser with its small RO damping
is more susceptible to back reflections while a QD
laser, engineered such that it shows very strong
RO damping, has a very high feedback tolerance.

For the latter, all involved carriers relax on similar
timescale and the number of dynamic degrees of
freedom is higher.

The numerical and analytical results on the QD
laser presented so far have been obtained for the
minimal model shown in Eq. (1a–1c) with two
carrier types, N and r. If a more sophisticated
modeling approach is chosen, the equations can
be extended to a more microscopic model with a
higher number of degrees of freedom of the car-
riers. The details are discussed in Lingnau et al.
(2013) and we just mention some important ingre-
dients. Besides the pure existence of more con-
fined carrier levels and thus more dynamic
equations, this model also considers dynamic
changes in the imaginary part of the material
gain Im G, i.e., the refractive index can show
dynamics on its own timescale. Surprisingly, the
QD laser that is described by the much more
complex model shows less complex response to
optical feedback. This is visualized in Fig. 5a, b
where the laser dynamics numerically obtained
from the microscopic model and the minimal
model with constant a-factor are compared. The
dashed lines in Fig. 5 represent the saddle-node
(SN) bifurcation along which a new ECM solution
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Fig. 5 Comparison of the feedback induced dynamics
for a full microscopic QD laser model (Lingnau et al.
2013) with many degrees of freedom of the charge carriers
(a) and the corresponding QD laser model that uses an
effective a-factor description (b). The blue color encodes
the intensity of the stable laser emission while other colors
indicate the number of unique maxima observed in the
pulsating time series. Dashed lines represent the saddle-
node (SN) bifurcation along which a new ECM solution is
born. t = 100 ps
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is born. The critical feedback strength where the
first ECM loses stability can be seen along the
transition from blue (cw operation) to white areas
(regular pulsations with one maximum). It can be
seen that taking into account the contribution of
the refractive index dynamics in (a) leads to a
stabilization of the dynamics and consequently
less regions with complex dynamics (orange and
grey colors) occur. If the charge-carrier induced
frequency shift is approximated by an a-factor as
done in (b) (compare also Eqs. (3) and (5)), the
separate time evolution of the imaginary part of
the gain is neglected, and the gain dynamics
becomes less complex. As a result, however, the
dynamic response to optical feedback becomes
more complex (Fig. 5b) and we instead observe
a simplification of the dynamic response for the
higher internal complexity (Fig. 5a). The effect of
increasing the susceptibility to optical perturba-
tions by a model reduction occurs to be rather
general and has to be kept in mind.

At the borders between stable emission and
regions with complex dynamics (between blue
and grey in Fig. 5), bifurcations occur and the
laser switches to emission at the next ECM, i.e.,
emission at a different wavelength. For the pump
current chosen here this is a homoclinic bifurca-
tion. This transition was already mentioned in

Fig. 4 and marked with Khom. It defines the point
in parameter space where the laser re-stabilizes.
Around this transition point where the laser just
started to emit at the new frequency, the cw solu-
tion is only weakly stable and thus very suscepti-
ble to noise. To get an impression of the dynamics
in phase space, Fig. 6a, b visualizes the trajectory
after a noise perturbation in the vicinity of the
homoclinic bifurcation. These noise-induced pul-
sations are no stable solutions of the delay differ-
ential equation but they follow parts of an attractor
that has been stable before. As such the interspike
interval between pulses, indicated by TISI in
Fig. 6a, changes stochastically. Interestingly an
optimal noise strength can be found, where the
noise-induced pulsations occur most regularly,
i.e., the distribution of interspike intervals TISI
becomes relatively sharp. This effect – called
coherence resonance – occurs due to the non-
linearity of the light-matter interaction and is a
universal effect in excitable nonlinear systems in
the presence of noise (Lindner et al. 2004). Exper-
imentally, these kind of pulses have been
observed, e.g., in Heil et al. (2003, 2001). Note
that for higher laser pump currents, the bifurcation
that causes the laser to start stable emission at the
newly born ECM changes from a homoclinic
bifurcation to a boundary crisis (Otto et al.

Laser Dynamics and
Delayed Feedback,
Fig. 6 Trajectories of a QD
laser with optical feedback
after noise excitation
plotted as a function of time
(a, c) and as a phase space
projection (b, d). (a, b):
close to the homoclinic
bifurcation that was
discussed in Fig. 4;(c, d):
close to the boundary crisis
that exists for higher pump
currents. C= p, t= 160 ps.
(Reprinted with permission
from Otto et al. (2014)
©The Optical Society)
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2014). Nevertheless, coherence resonance can
also be found here (Otto et al. 2014). Figure 6c
shows the chaotic pulse packages induced by a
superthreshold perturbation right after the bound-
ary crisis of the chaotic attractor. The green circle
in Fig. 6d indicates the stable ECM solution that is
perturbed by the noise. The path of the trajectory
along the former chaotic attractor can be seen in
the phase space projection in Fig. 6d.

Optical Feedback of Class-C Lasers

So far the discussion was limited to Class-B lasers
that were solely described by the carrier and photon
dynamics. However, the light matter interaction is
driven via the microscopic polarization within the
medium. For the Class-B laser, the optical gain is
assumed to instantaneously follow the available
charge-carriers in the optically active transitions.
The stimulated emission rate is assumed to adiabat-
ically follow the charge-carrier and electric field
dynamics and thus does not need to be explicitly
considered as a dynamical variable. With the recent
success and progress of semiconductor epitaxy and
wafer processing, the realization of very small
devices has become possible, down to lasers with
cavity dimensions in the order of the wavelength of
the laser light. Due to the small size of their cavity,
those nanolasers have a strong spontaneous emis-
sion and relatively short photon lifetimes. While the
stronger photon losses are compensated by an
increase of the optical gain, the photon lifetime
now is comparable to the lifetime of the induced
material polarization. The active laser medium can
thus no longer be treated as a simple source of
instantaneous optical gain. Rather, the field emitted
by stimulated emission of light becomes a dynami-
cal variable itself. When all three timescales
(electrons, polarization, photons) end up to be of a
similar order of magnitude, the fundamental physics
of the laser system change. These nanolasers,
so-called Class-C lasers, exhibit special behavior
like the second laser threshold (Haken 1986), after
which self-pulsing of the laser emission occurs, but
also react differently to optical feedback (Lingnau
et al. 2019).

Class-C lasers can be described by the Maxwell-
Bloch equations (MBEs), which explicitly include

the dynamics of the induced material polarization
(Chow and Koch 1999; Haken 1986). The delayed
optical feedback extends theMBEs by an additional
driving term in the electric field to include the effects
of time-delayed optical feedback. Since we now
want to focus on the effect of the polarization, a
QW laser with just one carrier type N is modeled.

The normalized MBEs with delayed optical
feedback are given by:

_N ¼ 1

T1
J � N � 2cRe PE�½ �ð Þ, ð8Þ

_P ¼ 1

T2
EN � 1� iað ÞP½ � � io0P, ð9Þ

_E ¼ 1

Tph
cP � 1

2
E

h i
� io0E

þ K
Tph

e�iCE t� tð Þ: ð10Þ

Here, the additional timescale T2 of the
induced polarization enters the equations. The
stimulated emission is now given by cP, with a
normalization constant c= 1 + (2a/(2 + T2/Tph))

2.
The parameter a in Eq. (9) measures the frequency
difference between the gain maximum and the
cavity mode. For the case of very small T2, when
the MBE model reduces to the Class – B laser
model, it takes the role of the a-factor that we
introduced in the last section.

The lifetime T2 of the polarization plays a cru-
cial physical role as it determines the gain band-
width of the laser transition, with long lifetimes
producing a sharp, narrow gain peak. Conse-
quently, with increasing T2 the gain bandwidth
becomes narrower and the possible deviation of
the lasing frequency from the transition frequency
is limited. This reduces the number of possible
ECMs in Class-C lasers with a single optical tran-
sition. It is depicted in Fig. 7 for four different
values of the dephasing time T2, which is the life-
time of the polarization. The rotating wave solu-
tions of the above equation, i.e., the external cavity
modes (ECMs), are shown as open circles in the
plane of charge-carrier number, N, and ECM fre-
quency, O. It underlines the impact of the addi-
tional dynamic equation and it can be seen that for
T2 = 0 we recover the case of a Class-B laser and
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observe the rotated ellipse in phase space on which
the ECM solutions can exist. For larger values of
T2, the number of solutions (open circles) is
decreased while they all move closer together. Fur-
thermore, the effect of the amplitude-phase cou-
pling a, which usually leads to a high aspect ratio of
the ellipse for the Class – B laser, is reduced as can
be seen by comparing the circles in Fig. 7. The
possible ECM solutions appear in a more symmet-
ric shape around O = 0 for larger T2 times.

The numerically obtained response of the
Class-C laser to optical feedback is plotted in
Fig. 8 for the four different dephasing times T2.
The number of unique maxima is encoded in the
color and thus dark colors indicate complex
dynamics and chaos. While a Class-C laser is
usually known for its second laser threshold after
which it emits chaotic light without any perturba-
tions, it appears to be much more stable than a

Class-B laser if it is subjected to optical feedback
(compare Fig. 8a, d).

In the limit of T2 ! 0 (Fig. 8a), the MBEs
reduce to the conventional Lang-Kobayashi equa-
tions, which show well-known bifurcation cas-
cades and eventually can produce optical chaos.
For this case we also plotted the two bifurcations
that organize the parameter space in Fig. 8a; the
Hopf bifurcation at which the first ECM destabi-
lizes, called critical feedback strength in section
“Optical Feedback (Class-B Lasers),” is plotted in
blue. The saddle node (SN) bifurcation where the
next ECM is born (compare Fig. 4 (center) where
the SN bifurcation is marked) is plotted in red. For
higher values of T2, the dynamical regions in the
feedback parameter undergo a transformation.

Quite counter-intuitively, the addition of
another dynamic dimension to the system can
have a stabilizing effect on its dynamics. This
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Laser Dynamics and Delayed Feedback,
Fig. 7 External cavity solutions (ECMs) of a laser with
optical self-feedback plotted as a function of ECM fre-
quency O and carrier number N. (a) Class-B laser with
dephasing times T2 = 0, (b–d): Class-C laser T2 = Tph,
T2 = 2Tph, and T2 = 5 Tph. Solid closed lines denote all
possible solutions in the (O, N)-plane while open circles
denote solutions obtained for a specific feedback phase

C = p. Crosses mark saddle node (SN) bifurcations
where new solutions are born. The connection between
the crosses separates the ellipse into regions where the
solutions are born unstable (upper part) and stable (lower
part). Other parameters: K = 0.2, t = 20Tph, a = 3.
(Reprinted from Lingnau et al. (2019) with permission
from Royal Soc)
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can be seen for increasing values of T2, for which
the dynamics becomes strikingly less complex,
and only small regions of chaos remain (see
Fig. 8c, d). Following the arguments of the last
sections, the explanation again lies in the
increased dynamic degrees of freedom. Having
the possibility for a dynamic response with inde-
pendent polarization dynamics, a chaotic response
becomes unlikely (Fig. 8d). Driving a dynamic
system into chaos with external perturbations
can thus be seen to become harder with higher
phase space dimension which vary on a dynamic
timescale similar to the rest of the system. This
conclusion is found to be quite robust with respect
to parameter changes.

To get some insights into the impact of the delay
time t, we visualize the dynamics of the Class – C
laser in another parameter plane spanned by T2 and
the delay time t in Fig. 9a. Again the dark colors

represent a high number of different maxima
observed in the timeseries and thus more complex
dynamics. As expected, small values of T2 repro-
duce the dynamics of a Class-B laser and we find
complex dynamics. Between 0.5 Tph < T2 < 2Tph
only continuous wave or periodic emission is
found, while dynamics with a higher number of
unique maxima appears again for larger values of
T2. A high number of unique extrema is not suffi-
cient to classify the dynamics into (quasi-)periodic
or chaotic behavior. We therefore calculate the
largest nontrivial Lyapunov exponent which gives
us a value for the speed at which two adjacent
trajectories diverge in time. A Lyapunov exponent
with a positive value (plotted in red in Fig. 9b)
indicates chaos (sensitive dependence on initial
conditions), while negative values indicate stable
dynamics. A value of zero is an indication for a
periodic solution. We can thus conclude from

Laser Dynamics and Delayed Feedback,
Fig. 8 Dynamics observed numerically in the laser emis-
sion for a small feedback delay time t= 10Tph in the plane
of feedback strength K and feedback phase C. (a): Class-B
laser with T2 = 0, (b–d): Class-C laser with T2 = Tph,
T2= 2Tph, and T2= 6Tph. Shown are the number of unique
intensity extrema (color-coded), where zero extrema

correspond to CW operation, and nonzero values to peri-
odic or complex dynamics. In panel (a), we show saddle-
node (SN, red line) and Hopf (blue line) bifurcation curves
of the first ECM, obtained by numerical path continuation.
Other parameters: J = 5, a = 3. (Adapted from Lingnau
et al. (2019) with permission from Royal Soc)
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Fig. 9 that optical chaos only occurs for theClass-B
laser case, mainly for high feedback delay times t,
while Class-C laser remain stable or, for large
dephasing times, show quasi-periodic dynamics.

Optical Feedback of Two-State QD
Lasers

Semiconductor lasers which are emitting on two
distinct laser modes are a highly attractive appli-
cation of laser dynamics due to the interaction of
those modes. Prime examples of such laser sys-
tems include vertical-cavity surface emitting
lasers (VCSELs), which due to their circular cav-
ity symmetry support two orthogonally polarized
modes (Olejniczak et al. 2009; Virte et al. 2012),
or carefully designed laser cavity emitting on
more than one wavelength (Osborne et al. 2009,
2012). Such two-mode lasers show a variety of
complex dynamics related to the switching
between the two laser modes in various setups
including when subjected to time-delayed feed-
back (Osborne et al. 2012; Sciamanna et al. 2003).
Their dynamics is governed by the energy
exchange and gain competition between the two
modes, which can be influenced by the external
perturbation. Different realizations of two
(or multi) mode emission will therefore show

very similar properties, regardless of the exact
system. We want to focus on two-mode emission
with delayed optical feedback in this last section.

Quantum-dot lasers have shown two-state
emission even without specially designed laser
cavities. Due to the nonequlibrium carrier distri-
bution among the different confined levels,
simultaneous emission on two wavelengths is
possible, namely, on the ground state (GS) and
the first (or higher) excited state (ES) (Markus
et al. 2003; Gioannini 2012; Röhm 2015). See
Fig. 1 for a sketch of the energy band structure. In
view of the discussion of the previous sections,
the possibility for the QD laser to switch to an
other optical transition also increases the dynam-
ical degrees of freedom. Compared to single-
color lasers, the presence of the second emission
wavelength again stabilizes the laser output
under delayed feedback. This can be seen in
Fig. 10 where we show the dynamic response
of the two-state QD laser to optical feedback.
There the numerically obtained results for a
two-state laser (panel (a)) and an otherwise iden-
tical single-color laser (panel (b)) are shown. The
regions with pulsations are shown in blue
and green, while the intensity of stable cw oper-
ation is encoded in orange. In the parameter
plane of feedback strength K and feedback
phase C, the optical feedback induces complex
responses within larger parameter regions for the
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Fig. 9 Dynamics of a Class-C laser in dependence of the
feedback delay time t and the polarization dephasing time
T2. (a) Color code represents the number of unique
extrema, thin grey lines show resonances of the relaxation
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largest Lyapunov exponent L. Other parameters: J = 10,
a= 3,K= 0.1,C= p. (Adapted from Lingnau et al. (2019)
with permission from Royal Soc)
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single-color QD laser in Fig. 10b. In these
parameter regions of complex emission, the
two-color laser instead can turn to steady state
emission on the excited state (Fig. 10a) and thus
can partly suppress the pulsations. The green
regions of complex dynamics that occur in the
two-color laser are quasi-periodic pulsations that
are born in a torus bifurcation. The time evolu-
tion of the intensities of the two states is shown in
Fig. 10c. Those two-color bursting oscillations
are found in regions where the single state QD
laser emits chaotic pulse packages as discussed
in Fig. 6 in the vicinity of the homoclinic bifur-
cation. From a dynamic system point of view, the
behavior is very interesting as the existence of
two-color emission allows for an additional
bridge between subsequent ECM, connecting
their solutions in parameter space.

Future Directions

The presence of time-delayed feedback in lasers
offers a possibility to employ the rich dynamics of
delay systems in technological applications. As we
have seen, semiconductor lasers with delayed feed-
back offer a large variety of modes of operation by

choice of proper external parameters. Depending on
the desired laser behavior, the choice of active
medium and cavity design allows control over the
susceptibility towards delayed feedback. Only
recently the periodic or chaotic dynamics induced
by external perturbations such as optical feedback
has been seen as an opportunity for novel applica-
tions, and not as a nuisance detrimental to the laser
operation. A thorough understanding of the material
and charge-carrier dynamics in the laser device is
crucial for modeling and understanding the complex
dynamics that can occur in these laser systems.With
quantum-dot lasers and nanolasers, we have illumi-
nated possible material systems for current and
future technology where laser dynamics can be
employed as an integral part providing the key
functionality. Dynamical wavelength switching in
QD lasers or the controlled dynamics of nanolasers
will possibly allow novel applications in optical
computing and data processing. Time-delayed feed-
back will provide a simple yet effective way of
providing the necessary dynamics.
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