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Glossary

Additive noise Random fluctuations that add to
the phase space flow of model systems.

Center manifold theorem Mathematical theo-
rem describing the slaving principle in com-
plex systems.

Slaving principle Units in a complex system
that interact nonlinearly with other units evolve
on different time scales. Close to instability
points, fast units obey the dynamics of slow
units and are enslaved by them. Such units may
be spatial modes in spatially extended systems
or neural ensembles in neural populations.

Introduction

The dynamics of natural systems is complex, e.g.,
due to various processes and their interactions on
different temporal and spatial scales. Several of
such processes appear to be of random nature, i.e.,

they cannot be predicted by known laws. In this
context, it is not necessary to know whether these
processes are random in reality or whether we just
do not know their deterministic law and they
appear to be random. The insight that unknown
laws of processes may be replaced or modelled by
laws for random processes is helpful in modelling
complex systems. Examples for such a replace-
ment are manifold, and we mention model param-
etrization in meteorology (Noilhan and Planton
1989) and stimulus parametrization in biology
(Doiron et al. 2004).

Considering random processes (or noise) in
dynamical models, it is important how they are
included. If the randomness is taken into account
in multiplicative factors, e.g., parametrizing the
unknown underlying dynamics of the factor, we
call this multiplicative noise. Its effect has been
studied extensively for the last decades in physics
and mathematics, e.g., see the books of
Horsthemke and Lefever (1984) and Garcia-
Ojalvo and Sancho (1999). Conversely, additive
noise is included in a model when the randomness
is just added to the phase space flow. For instant,
considering a model of differential equations in
time additive noise is just added to the temporal
deviation over time. For a long time, it has been
known that multiplicative noise easily shifts the
stability of systems, i.e., may shift bifurcations,
whereas additive noise does not. This paradigm
has been challenged recently in the studies of
spatially extended systems (Hutt et al. 2007,
2008; Hutt 2008) and delayed systems (Lefebvre
et al. 2012; Lefebvre and Hutt 2013; Hutt et al.
2012; Hutt and Lefebvre 2016). These studies
show that additive noise may induce bifurcation
shifts close to bifurcation points. This recent find-
ing is illustrated and explained in a later section.
Moreover, additive noise may not only affect the
stability of systems close to instability points, but
may also tune intrinsic time scales. We show in a
later section that this effect occurs close and far
from the bifurcation point.

Taking a close look at the complex systems
subjected to additive noise, one learns that
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additive noise affects the coupling of the systems
elements. Such elements may be spatial modes in
spatially extended systems ormicroscopic elements,
such as single neurons, whose interactions generate
novel macroscopic order parameter modes, such as
the macroscopic population dynamics. To illustrate
such an interaction before we apply the concept to
complex problems, we present briefly the major
elements of the slaving principle in synergetics
(Haken 1996, 2004) in the subsequent section and
put it into relation to its mathematical equivalent, the
center manifold theorem.

Slaving Principle and Center Manifold
Theorem

We start with the illustration of the major concept
of the center manifold theorem and finally put the
concept into a physical context to explain the
slaving principle.

For illustration, let us consider the dynamical
system

x ¼ axþ ax3 þ xy� xy2

_y ¼ �yþ bx2 þ x2y
(1)

with x, y, a, a, b � R. The stationary state is the
fixed point x= y= 0. Linearizing about this fixed
point shows that there are two eigenvalues l1= a,
l2 = �1. Hence the node is asymptotically stable
if a < 0 and a saddle node for a > 0.

At the Stability Threshold
For the moment, we assume a = 0. Then close to
the fixed point y evolves in the stable subspace
spanned by the eigenvector (0, 1)t of the linearized
system with corresponding eigenvalue l2< 0 and
x evolves in the center subspace. We observe that
x = 0 is an invariant manifold which is a stable
manifold of the origin since dx/dt = 0 and
dy/dt < 0. Hence for initial points (0, y0)

t the
system evolves on the stable manifold.

Now the question arises how one can find the
invariant manifold for which the origin is neu-
trally stable corresponding to the eigenvalue
l1 = 0, i.e., we want to find the center manifold.
The center manifold theorem (Carr 1981) applies

stating that y= h(x) close to the origin, where h(�)
is a nonlinear function with h(0) = 0, dh(x)/
dx = 0 at x = 0. This stipulates

_y ¼ @h

@x
_x

� yþ bx2 þ x2y ¼ @h

@x
axþ ax3 þ xy� xy2
� �

� h xð Þþbx2 þ x2h xð Þ ¼ @h

@x
axþ ax3 þ xh xð Þ � xh2 xð Þ� �

Inserting the polynomial ansatz

h xð Þ ¼ h2x
2 þ h3x

3 þ � � � (2)

and sorting by orders of x we gain h2 = b, h3 = 0,
h4 = �b(2a � 1) and thus y = bx2 + b(2a � 1)x4

up to fourth order. Thus, for a = 0, the system on
the center manifold obeys

_x ¼ aþ bð Þx3 � 2ab� 1þ b2
� �

x5 þ O x6
� �

:

For a + b < 0, the origin is attractive, and the
manifold is called a slow manifold close to the
fixed point.

In physical terms, the variable x evolves on a
much larger time scale than y since the time scales
are inversely proportional to the corresponding
eigenvalues of the linearized system. Moreover,
the variable y obeys the slow variable x on the
center manifold. In other words, the slow variable
x enslaves the fast variable y and determines the
dynamics of the full system. This prominent role
of x is the reason why it is called an order param-
eter. Hence at bifurcation points, the slow vari-
ables enslave the fast variables. This slaving
concept applies at all bifurcations that fulfil the
rather general conditions of the center manifold
and allows to describe most bifurcations observed
in nature (Haken 1983), be oscillatory instabilities
in the laser (Haken 1985) or human motor-
coordination phase transitions in the brain
(Fuchs et al. 1992; Jirsa et al. 1995). By virtue of
the generality of this concept, it is called slaving
principle. It is often formulated equivalently by an
adiabatic approach in which the fast slaved vari-
able decays rapidly and follows the slow order
parameter dynamics (Haken 1996; Schanz and
Pelster 2003; Schoener and Haken 1986).
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About the Stability Threshold
Now we consider the case a 6¼ 0, i.e., the system
does not evolve necessarily at the bifurcation
point. This is the more general case. To be still
able to apply the center manifold theorem, we
augment the phase space by the variable a and
reformulate the model (1) as

_a ¼ 0

_x ¼ axþ ax3 þ xy�xy2

_y ¼ �yþ bx2 þ x2y:

The linearized problem about the fixed point
(0, 0, 0)t has the eigenvalues l1,2 = 0 and
l3 = �1, since now the term ax is treated as a
nonlinear term. Now the variables a, x evolve in
the center subspace while y is still enslaved by
y= h(a, x). The center manifold is defined to obey
h(0, 0)= 0, @h/@a= @h/@x= 0 at (a, x)t= (0, 0)t.
With the ansatz

h a, xð Þ ¼ h2, 1a2 þ h2, 2axþ h2, 3x
2

we obtain y= bx2 up to second order and the order
parameter obeys

_x ¼ axþ aþ bð Þx3 þ O x4
� �

:

This solution extends naturally the case a = 0.
The latter discussion assumes deterministic

dynamics, while stochastic dynamics on center
manifolds close to bifurcation points can be studied
as well. This is shown in the subsequent section.

Additive Noise in Low-Dimensional
Models: Stochastic Center Manifold
Theory

The effects of additive noise emerge in multi-
dimensional systems, e.g., in low-dimensional
nondelayed systems or in infinite-dimensional
delayed systems. The subsequent sections con-
sider both cases.

Nondelayed Systems
Additive noise in systems close to the bifurcation
point has been shown previously to trigger sto-
chastic bifurcations (Boxler 1989; Arnold 1998;
Schoener and Haken 1986). To see this, we

consider here a reduced system of amplitude
equations describing spatial modes of a stochastic
Turing bifurcation (Hutt et al. 2007, 2008):

duc ¼ acuc þ 2bcu0uc þ 2gcu
3
c

� �
dt

du0 ¼ a0u0 þ 4b0u
2
c

� �
dtþ �dW tð Þ

with the slow order parameter uc, the slaved fast
mode u0, constants ac, a0, bc, b0, gc, and noise level
�. The control parameter ac, the fast mode u0, and
the order parameter uc are scaled as a � O(e) and
u0� O(e) and uc� O(e1/2). The noise processW(t)
is a zero-mean Wiener process with hdW(t)dW
(t)i= 2d(t� t). Here, amplitudes and noise levels
are taken into account up to an order O(ϵ3/2).
Applying the stochastic center manifold analysis
(Boxler 1989; Xu and Roberts 1996; Hutt et al.
2007, 2008; Bloemker et al. 2005; Bloemker 2003)
and an adiabatic Fokker-Planck approximation
(Drolet and Vinals 1998, 2001; Hutt et al. 2007,
2008), we obtain for large times and scaled order
parameter ūc and time T the Fokker–Planck equa-
tion (Hutt et al. 2008)

@P uc, tð Þ
@T

¼ � @

@uc
auc þ au3c
� �

P uc, Tð Þ:

with new constants a, a. We observe that the
additive noise dW(t) in the slaved fast mode u0
has no effect on the order parameter ūc.

For larger orders of amplitude and noiseO(e5/2)
in the same stochastic Turing bifurcation problem,
amplitudes obey

duc ¼ acuc þ bu0uc þ 2gcu
3
c þ 3gcucu

2
0

� �
dt

du0 ¼ a0u0 þ 4b0u
2
c þ b0u

2
0 þ 2g0u0u

2
c

� �
dtþ �dW tð Þ:

After an adiabatic Fokker–Planck approxima-
tion, we obtain the Fokker–Planck equation for
the order parameter (Hutt et al. 2008)

@P uc, tð Þ
@T

¼ � @

@uc
a� ath �ð Þð Þuc þ Cu3c þ Du5cÞP uc, Tð Þ:�

(3)

with the control parameter shift ath(�) � �2.
Figure 1 shows this shift of the bifurcation by
additive noise.
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Equation (3) and Fig. 1 reveal that the bifurca-
tion point of the order parameter uc is shifted by
additive noise in the slaved mode u0. The under-
lying mechanism is known from multiplicative
noise and can be understood as follows: the fast
mode u0 is stochastic and nonlinear coupling ucun0
with even order n yields an effective noise shift
since un0

� � 6¼ 0, whereas nonlinear coupling at odd
order does not yield a shift since un0

� � ¼ 0. In sum,
additive noise in a mode that is nonlinearly
coupled at even order to the order parameter
dynamics acts like multiplicative noise and
hence tunes the bifurcation.

Delayed Systems
The nonlinear coupling of stochastic modes
occurs in systems, where multiple elements cou-
ple nonlinearly. This occurs in high-dimensional
systems, such as spatially extended systems (Hutt
et al. 2008; Bloemker 2003) or delayed systems.
To illustrate the corresponding stochastic effect in
delayed systems, let us consider the stochastic
delay differential equation (Hutt et al. 2012)

dx tð Þ ¼ �x tð Þ þ bx t� tð Þ � gx3 t� tð Þ� �
dt

þ kdW tð Þ (4)

with constants b, g > 0, the noise level k and the
Wiener noise process W(t). A stochastic center
manifold analysis for delayed systems (Hutt and
Lefebvre 2016; Lefebvre et al. 2012; Lefebvre and
Hutt 2013; Hutt et al. 2012) permits to derive a
delay-free stochastic order parameter equation on
the center manifold. Applying an adiabatic
approximation, the Fokker–Planck equation for
the order parameter u reads up to a certain noise
and magnitude order (Hutt et al. 2012)

@P u, tð Þ
@t

¼ � @

@u
A1 þ A1, shift
� �

uþ A3 þ A3, shift
� �

u3
�

þA5u
5 þ A7u

7 þ A9u
9Þ � P u, tð Þ þD

@2

@u2
P u, tð Þ

(5)

with A1,shift, A3,shift, D � k2 and constants A1, A3,
A5, A7, A9. We observe that additive noise in
delayed systems induces a stochastic bifurcation
and shifts the bifurcation point (Hutt and Lefebvre
2016; Lefebvre et al. 2012; Lefebvre and Hutt
2013; Hutt et al. 2012). Figure 2 shows the sta-
tionary probability functions of the original sys-
tem (4) and the Fokker–Planck equation of the
order parameter (5) for two different delay values.
We observe that the stationary probability func-
tion of the order parameter Ps(u) is in good accor-
dance to the original probability density function
Ps(x) for small delays (a), while differences are
visible for larger delays (b). In addition, increas-
ing the noise level k moves the magnitude of
maxima to smaller values and hence shifts the
bifurcation. This effect of additive noise is new
and known for multiplicative noise only.

Additive Noise in Discrete Network
Models

To extend the gained results of additive noise to
large and more realistic systems, now we consider
network models evolving far from bifurcation
points.

Neural Mass Network
We consider a random network of N elements,
whose elements with activity un(t), n = 1,. . .,
N evolve in time according to (Hutt et al. 2016)

Additive Noise Tunes the
Self-Organization in
Complex Systems,
Fig. 1 Additive noise
shifts the bifurcation point.
The stationary state ustat is
the state at the maximum of
the stationary probability
density of P (ūc, t) from
Eq. (3). (a) � = 0. (b)
�= 0.02 (Modified Fig. 9 in
Hutt et al. 2008)
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1

a
dun
dt

¼ �un þ 1

N

XN
m¼1

wnmf um t� tð Þ½ �

þ In tð Þ: (6)

The network elements are delayed to each
other by delay t > 0, 1/a is the characteristic
time scale of each element, wnm is the random
connection weight between elements n andmwith

wnm ¼ gþ s�nm (7)

and constants g, s > 0 and the statistically
uncorrelated variables �nm with

XN
n¼1

�nm ¼ 0 8m ¼ 1, . . . ,N (8)

XN
m¼1

�nm ¼ 0 8n ¼ 1, . . . ,N (9)

1

N

XN
n¼1

�nm�ln ¼
1

N

XN
n¼1

�nm

" #
1

N

XN
n¼1

�ln

" #
8l,

m ¼ 1, . . . ,N:

(10)

The last equation expresses the assumption
that all columns and rows are statistically inde-
pendent from each other.

The variable In= I0 + xn(t) denotes the external
noise driving each element withXN

n¼1

xn tð Þ ¼ 0, xnxmh i ¼ 2Ddn,m, (11)

where h�i denotes the ensemble average, D is the
noise intensity, and I0 is a spatially constant
stimulus bias.

In neural systems, the model (6) describes the
spatially coarse-grained potential of N spatial
patches subjected to afferent activity from other
neural populations (Hutt et al. 2016). The function
f [�] represents the activation or output function of
each element, typically it is of sigmoidal shape.
Figure 3 presents the topology of the network.

Analysis of the Global Synchronization
In the following, we study the degree of global
synchronization in the network considering the
network mean

u tð Þ ¼ un tð Þ � vn tð Þ (12)

with deviations vn(t) from the mean

u tð Þ ¼ 1

N

XN
n¼1

un tð Þ,
XN
n¼1

vn tð Þ ¼ 0: (13)

Then inserting (12) into (6) leads to

1

a
d

dt
u tð Þþvn tð Þð Þ¼�u tð Þ�vn tð Þ

þ 1

N

XN
m¼1

wnmf u t�tð Þþvm t�tð Þ½ �
þI0þxn tð Þ:

(14)

Global Mode
After averaging Eq. (14) over all elements N one
obtains the evolution equation of the spatial mean

Additive Noise Tunes the Self-Organization in Com-
plex Systems, Fig. 2 Stationary probability density
functions of the original system Ps(x) and the order param-
eter Ps(u) as a solution of Eq. (5). The functions Ps(u)

(dotted line) and Ps(x) (solid line) are computed for
t = 0.5 (a) and t = 1.0 for noise level k = 0.005 (green),
k = 0.01 (red), and k = 0.015 (black) (Taken from Hutt
et al. 2012 by permission)
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1

a
d

dt
u tð Þ¼ �u tð Þ

þ 1

N2

XN
n,m¼1

wnmf u t�tð Þþvm t� tð Þ½ �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼S0

þI0:

(15)

At first we note that with (8)

1

N

XN
n¼1

wnm ¼ gþ s
1

N

XN
n¼1

�nm ¼ g

8m ¼ 1, . . . ,N:

(16)

Hence

S0 ¼ g
1

N

XN
m¼1

f u t� tð Þ þ vm t� tð Þ½ � (17)

If we denote Vm = f [ū(t) + vm(t)], we can write

S0 ¼ gE V½ � ¼ Ð1
�1 vp vð Þdv

¼ Ð1
�1 f u tð Þ þ v tð Þ½ �p v, tð Þdv

(18)

where p(v, t) is the probability density function of
the fluctuations {vn} at time instant t. Then

1

a
d

dt
u tð Þ ¼ �u tð Þ þ Ð1

�1 f u t� tð Þ þ v t� tð Þ½ �
�p v, t� tð Þdvþ I0:

(19)

Fluctuation Modes
Inserting Eq. (15) back into (14) yields

1

a
d

dt
vn tð Þ¼�vn tð Þþxn tð Þ

þ 1

N

XN
m¼1

wnmf m t�tð Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
¼S1

�1

N

XN
n,m¼1

wnmf m t�tð Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼S2

2
66664

3
77775
(20)

with fm(t)= f [ū(t) + vm(t)]. With the definition (7)
and property (8), it is

XN
n¼1

wnm ¼ Ng8m ¼ 1, . . . ,N (21)

and hence

S2 ¼
XN
m¼1

gf m t� tð Þ: (22)

To calculate S1, we note thatXN
m¼1

wnmf m t� tð Þ ¼
XN
m¼1

gf m t� tð Þ

þ s
XN
m¼1

�nmf m t� tð Þ: (23)

If Xm = fm and Ym = �nm 8n are statistically
independent from each other, then

1

N

XN
m¼1

XmYm ¼ 1

N

XN
k¼1

Xk
1

N

XN
m¼1

Ym: (24)

This assumption holds true in most cases, since
�nm are static and chosen independently from any
dynamics and fm evolves over time. Consequently,

Additive Noise Tunes the Self-Organization in Complex Systems, Fig. 3 Simple spatial network topology
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XN
m¼1

�nmf m t� tð Þ ¼ 1

N

�
XN
k¼1

�nk
XN
m¼1

f m t� tð Þ:

(25)
and with condition (9)XN

m¼1

�nmf m t� tð Þ ¼ 0 (26)

and hence

S1 ¼
XN
m¼1

gf m t� tð Þ: (27)

Since S1 = S2, we obtain from Eq. (20)

1

a
d

dt
vn tð Þ ¼ �vn tð Þ þ xn tð Þ (28)

and the fluctuations vn(t) are independent from the
spatial mean, but the spatial mean depends on the
vn(t), cf. Eq. (15).

If the external stimulus is random, uncorrelated
and normal distributed with variance s2 about the
mean I0, then vn(t) is random as well and obeys an
Ornstein–Uhlenbeck process. For large times,
vn(t) approach a stationary state with the station-
ary probability density function

ps vnð Þ ¼ 1ffiffiffiffiffiffiffiffi
2pa

p
s
e�v2n=2as

2

: (29)

Merging Global and Fluctuation Dynamics
The global mode evolution (19) depends on the
probability density function of the fluctuations
p(v, t). For large times, the fluctuations approach
their stationary state much faster than the global
mode evolves, i.e., p(v, t) ! ps(v) given in
Eq. (29). Hence the global mode (19) evolves on
a relative large time scale according to

1

a
d

dt
u tð Þ ¼ �u tð Þ þ 1ffiffiffiffiffiffiffiffiffiffiffi

2pas
p

�
ð1
�1

f u t� tð Þ þ v½ �e�v2=2as2dv

þ I0:

(30)

For illustration reasons, let us consider the
special case of McCulloch–Pitts neurons, whose

transfer function is a step function, i.e., f [u] =
Y(u� uth) with threshold uth. Then the integral in
Eq. (30) has a rather simple form and we gain
(Hutt et al. 2016)

1

a
d

dt
u tð Þ ¼ �u tð Þ

þg

2
1þ erf

u t� tð Þ � uthffiffiffiffiffi
2a

p
s


 �� 

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼F u t�tð Þ½ �

þI0

(31)

with the error function erf(�). The transfer function
F[ū] has a sigmoidal shape and noise variance s2

determines its shape: weak noise, i.e., small s,
reflects a rather steep sigmoidal, whereas strong
noise renders the sigmoidal function more flat.

From (30), we learn that F has always a sig-
moidal shape if the single element transfer func-
tion f(u) is a monotonically increasing function
of u (Hutt and Buhry 2014). In the following,
we assume the standard logistic sigmoidal
function F u½ � ¼ F0= 1þ e� u�uthð Þ=c� �

. Here weak
noise with low steepness parameter c reflects a
steep step-like function whereas enhancing noise
with increasing values of c flattens the sigmoid
function. This is illustrated in Fig. 4.

Equation (30) describes the mean-field evolu-
tion of the global mode and permits to illustrate
coherent structures. If ū = 0, then network ele-
ments are not coherent, whereas ū 6¼ 0 reflects
coherent activity. In the following examples, we
will see that coherence emerges in certain fre-
quency bands dependent of the external noise
level s.

To gain some insights how coupling strength
and noise strength modify the system dynamics, at
first let us consider stationary solutions with dun/
dt = 0, i.e., dū(t)/dt = 0. This yields

u0 � I ¼ F u0½ � (32)

Figure 4 shows both sides of this equation and
illustrates that increasing the coupling strength
(increasing F0) changes the stationary state u0
and, even more important, the nonlinear gain dF/
dū computed at ū = u0. Linearizing about that
stationary state yields for deviations x
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1

a
dx tð Þ
dt

¼ �x tð Þ þ gx t� tð Þ, g ¼ @F

@u
u¼u0j :

(33)

Hence the stability and timescale of solutions
about the stationary state depends on the nonlinear
gain. If the level of external noise increases
(decreases), the transfer function becomes more
flat (steep) and g at upper and lower stationary
state in Fig. 4 g increases (decreases). In case of an
oscillatory stable stationary state, the noise level
determines the frequency of solutions (Hutt
et al. 2016).

Coupling Induces Self-Organization in the
Presence of Noise and Noise Affects System
Frequency
To illustrate the network dynamic evolution sub-
jected to noise, we simulate the full network of
N = 100 elements that obeys (6) and increase the
coupling strength between elements g = g/N con-
tinuously, cf. Fig. 5, lower panel. Synchronously,
the noise level s = am, a > 0 is constant. This
holds up to a certain time T.

We compute the time-dependent spectral
power distribution and the phase-locking value
(PLV) (Lachaux et al. 1999) in the course of time.
The spectral power is computed by a windowed
Fourier Transform with a 4s-window width, the
PLV is computed as the circular variance of
phases of 30 randomly chosen elements for

each time-frequency pair. The phases result
from a Morlet wavelet transform. The maximum
value PLV= 1 reflects complete synchronization
in the network, whereas the minimum value
PLV = 0 reflects vanishing synchrony in the
network. Figure 5 shows that the network ele-
ments do not synchronize at low coupling
strengths since power and PLVare low. However,
synchronization emerges with larger coupling
expressed by large power and large PLV at
n= 45 Hz. It is well-known that complex systems
self-organize if the interaction between subunits
are large enough. This is seen in our simple
example. Analytically, the stationary state u0 is
a stable focus when power and PLV are low.
When synchronization sets in at stronger cou-
pling strength, the stable focus becomes unsta-
ble, the system oscillates along a limit cycle, and
power is much stronger.

Until now, the noise level has been kept con-
stant. Now removing the noise while retaining
the coupling strength, cf. Fig. 5, lower panel for
t > T = 20s, the PLV jumps to very high values
while the maximum power jumps to lower
values. Interestingly, the oscillation frequency
with maximum power drops to n = 40 Hz that
represents the systems endogenous oscillatory
rhythm in the absence of noise. This drop
clearly demonstrates that systems’ frequency
observed may depend heavily on the intrinsic
noise level.

Additive Noise Tunes the Self-Organization in Complex Systems, Fig. 4 Illustration of the transfer function and
the resulting stationary constant state. The dashed line denotes the left hand side of Eq. (32) and uth = 3
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We learn that noise diminishes the synchroniza-
tion between network elements and moves the
system frequency. This is confirmed by Fig. 6 pre-
senting epochs of single time series at low (left)

and large coupling strength (center) at high noise
levels and in the absence of any noise (right).

Analytically, this behavior can be understood
by Eqs. (30) and (32) and Fig. 4: additive noise

Additive Noise Tunes the Self-Organization in Com-
plex Systems, Fig. 5 Spectral distribution and phase-
locking value (PLV) in a simple spatial neural mass

network subjected to varying noise and coupling strength.
It is m ¼ ffiffiffiffiffi

60
p

s and T = 20s, see text body
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tunes the effective transfer function, thus deter-
mines the stationary state and its stability and
consequently the amplitude and frequency of the
systems dynamics.

Noise Can Destruct Self-Organization While It
Changes the System Frequency
The previous section shows that denoising
enhances oscillatory power and shifts frequency
of power peaks. Similarly, increasing the noise
level may tune the systems’ rhythmic activity
and even destroy it at large enough noise levels.
Figure 7 demonstrates that increasing noise level
shifts the frequency of the system and, finally,
destroys the oscillatory state. At large noise levels,
the transfer function F is flat and a single station-
ary state exists. Hence increasing the noise level
either makes the system jump from large values u0
to low values of u0 and/or its corresponding non-
linear gain renders the stationary state stable.

Synchronization in a Spiking Neural Network
To illustrate that the noise-induced change of syn-
chronization also may occur in biologically more
realistic networks, we study a spiking neural

network of Poisson neurons (Lefebvre et al.
2017), cf. Fig. 8.

Figure 9 shows the average electric potential of
cortical neurons (EEG) and their firing activity in
a raster plot for two different noise levels D. We
observe that denoising induces synchronization
between neurons and enhances EEG power.
A corresponding mean-field description of the
spiking neural network, e.g., along the lines of
the derivation shown in (Hutt and Buhry 2014),
permits to describe the noise effect. Essentially,
the mechanism is the same as the one shown in an
above section and in previous studies (Hutt and
Buhry 2014; Hutt et al. 2016; Lefebvre et al. 2015;
Herrmann et al. 2016): increasing additive noise
of network elements smoothens the effective
transfer function, consequently shifts the station-
ary state and tunes its stability and may induce a
transition to a new state.

Future Directions

Additive noise may have a strong impact on com-
plex systems. The previous sections have shown

Additive Noise Tunes the Self-Organization in Com-
plex Systems, Fig. 6 Activity at two spatial locations in
simple spatial network. (Left panel) Weak coupling, with

noise. (Center panel) Strong coupling, with noise. (Right
panel) Strong coupling, no noise

192 Additive Noise Tunes the Self-Organization in Complex Systems



corresponding conditions and mathematical tech-
niques. Additive noise may shift instability
thresholds and tunes frequency and amplitude of
rhythmic activity. We showed that additive noise

in lower levels, e.g., in neurons or neural ensem-
ble patches, may destroy synchronization in an
upper level, e.g., in neural populations or
populations of ensemble patches.

Additive Noise Tunes the Self-Organization in Complex Systems, Fig. 7 Time-frequency spectral power and
global phase locking of simulations of the simple spatial neural mass network with increasing noise level
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The insight, that additive noise affects endog-
enous brain activity, indicates impact of electric
brain stimulation on the behavior of subjects.
Corresponding experiments have been performed
in the last decades, both for rhythmic stimulation
(Herrmann et al. 2013) and noise stimulation
(Terney et al. 2008). Perceptual learning under
noise stimulation has been shown (Fertonani
et al. 2011) to improve considering high-
frequency noise (>100 Hz). Understanding how
noise stimulation affects neural activity and how it
enhances the perceptual learning is one of the
great challenges in future years.

Additive Noise Tunes the Self-Organization in Com-
plex Systems, Fig. 8 Network modeling the thalamo-
cortical feedback circuit present in vertebrates. All neurons
in the network receive spectral-white Gaussian noise with
zero mean and finite variance

Additive Noise Tunes the Self-Organization in Com-
plex Systems, Fig. 9 Noise reduction induces synchro-
nization of spiking neurons. (Top panel) EEG(t) is the

average electric potential of cortical neurons. (Bottom
panel) Firing activity of neurons in the network
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