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Glossary

Econophysics An interdisciplinary research
field where theories and methods originally
developed by physicists are used to model
financial markets and economic systems.

Market panic A state in which correlations
among stock returns are very high together
with highly elevated levels of the VIX Index.

Market volatility Market volatility is the uncer-
tainty of price moves of a given market (rather
than a single stock), such as the US stock
market, which is well represented by the S&P
500 Index.

Stock returns The relative change in value of the
price of a stock over a particular time horizon
(e.g., 1 day or 1 year).

Stylized facts Statistical characteristics of finan-
cial time series that appear to be somewhat
universal across asset classes and geographies.
These include volatility clustering, long-range
memory in absolute price returns, and the fat-
tailed distribution of price returns that persist
over horizons ranging from intraday to weeks.

The VIX Index Also known as the “fear” index,
this represents a forward view of volatility or
uncertainty in the market. It is computed from
stock index option prices.

Volatility The risk or uncertainty of the magni-
tude of a stock’s returns. Realized volatility can
be calculated from the historical time series of
stock returns over some past window, most
commonly as the standard deviation of returns,
but other proxies can be used such as the mean
absolute value of returns.

Introduction

Over the past decades, the field of econophysics
has become established as a subject area that con-
nects concepts, ideas, and models stemming from
physics to explain the underlying dynamics driving
financial markets. In particular physicists have
made advances in applying the fields of statistical
physics and nonlinear dynamics to create models
that explain some of the statistical and dynamic
properties of financial markets. Underlying to
many of these models are notions common to
synergetics (Haken 1977), ranging from interacting
agents and nonlinear feedback to predator-prey
dynamics and spontaneous self-organization.

In reality, market researchers have access to
historical price and volume time series for a col-
lection of stocks. They analyze this data and try to
understand the relationships and dynamics of this
joint stochastic system either for the purpose of
predicting future price changes or analyzing
and predicting future risks. Traders and portfolio
managers will use their inferences to construct
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desirable portfolios which they must construct by
executing buys and sells in the market. But this in
turn affects the market itself which feeds back into
the historical data that they continue to analyze over
time. Furthermore, at any instant, there is not just
one trader interacting with the market but many,
many thousands, across the globe and with their
own unique objective. Their actions also feed back
into the price formation process affecting the data
that they then continue to analyze. In addition, news,
external events, fundamental properties, and macro-
economic phenomena also get incorporated into the
price. These interactions are sketched in Fig. 1, and
it is clear to see that there are multiple feedback
loops at play.

In this entry we’ll provide an overview of
financial market dynamics and some of the
models that have been developed to describe
them and conclude by going in depth for one
example that stems directly from synergetics.

Price Dynamics

In my view the price of a stock is the macroscopic
observable that emerges as a result of the micro-
scopic interactions of many agents in an extremely
complex system. At any given time, there is no
such thing as a well-defined price of a stock. It is

not as simple as when you go to the grocery store,
and prices are clearly marked so a transaction can
be planned and executed exactly. Instead, in finan-
cial markets, all across the globe at any moment in
time, traders are submitting orders to buy and sell a
certain amount of a stock; furthermore, their orders
are not all sent to the same place but rather to one of
several exchanges.

In addition each trader acts with their own view
and utility on a spectrum of timescales; they base
their buy or sell decisions on their individual infor-
mation set for their own individual intent. Traders’
views may depend on fundamental properties of the
company whose stock is being traded, as well as
general trends in the particular industry in question.
Stock-specific events, such as mergers and acquisi-
tions, have a big impact, as do world events, such as
wars, terrorist attacks, and natural disasters. It is
ultimately the collection and interaction of this sup-
ply and demand that drive themicroscopic dynamics
of price formation in conjunction of course with the
rules of individual exchanges and regulations,which
have evolved over the years and continue to do
so. For example, in the United States in the mid-
1990s, the NYSE and the Nasdaq were the only two
exchanges where transactions could occur. Typical
market participants were large institutions, and typ-
ical order sizeswere in the thousands of shares. How
quickly you got your order into the market was not
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Financial Market Dynamics: A Synergetic Perspective, Fig. 1 The big picture: observed asset prices affect traders’
decisions, which feed back into observed asset prices
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an important factor. Today just some 20 years later,
the market structure is quite different. The market is
fragmented, consisting of several “dark pools”
(where traders cannot see the orders of others) and
12 “lit” exchanges where traders can place their
orders to buy or sell a given quantity of a stock at a
given price. The orders on lit exchanges can be seen
by market participants (hence the name). Typical
order sizes are hundreds of shares, and institutional
investors constitute a much smaller percentage since
electronic trading has become accessible to anyone.

Trades can be organized into a so-called limit
order book according to the price-time priority. An
order has a time, price, size, and action (e.g., buy,
sell, cancel, among others) associated with it. If two
orders to buy come in with the same price, the one
that came in first gets placed ahead in the order book
queue. However if an order comes in to buy at a
higher price, it goes ahead of the other orders regard-
less of when it entered the book. Orders to sell are
handled in the same fashion. Size doesn’t affect
priority, and the different amounts available to be
bought or sold at different prices constitute the full
order book. At any given moment, at the top of the
book, there is a best price to buy a certain amount
and a best price to sell a certain amount. The differ-
ence between them is called the spread. If an order
comes in that crosses the spread, a transaction will
occur. As long as there is enough volume at the top
of the book, then that is the price that the transaction
will occur at; otherwise some of the orders will be
filled at worse prices as the liquidity at deeper levels
of the book gets consumed.

This illuminates the fact that there is no well-
defined price. Is it the price to sell or the price to
buy? Is it the mid of those? Is it some kind of
volume-weighted mid, depending on how many
orders to buy or sell at a given price? In practice,
the last recorded transaction price is what is used
here, but it is easy to see how this could be prob-
lematic if a stock doesn’t trade very frequently.

Data

Over the past 20 years, the amount of financial data
that is recorded has literally exploded. This is
largely due to the explosion of electronic trading

and its easy access to the community. Apart from
the increased volume of algorithmic and electronic
trading and the increased number of mainly elec-
tronic exchanges, other factors such as increased
regulations for risk management and audit trails,
decreased latencies, and higher time resolution also
contribute to the exponential boom in data. There
are also more traded instruments, new types of
ETFs (exchange-traded funds which are essentially
investable funds that themselves trade like stocks)
and new derivative instruments. As an example of
increased time stamp granularity, the TAQ (Trade
and Quote) database which has been one of the
main sources of transaction data for the NYSE,
AMEX, and Nasdaq exchanges started out record-
ing trades and quotes with times stamps marked at
the second precision from 1993 to 2003. After that
the data was collected at millisecond precision until
2015 and is currently marked at nanoseconds after
a brief microsecond era. This is just one example
showing the evolution of the importance of speed
and the actual timescales that are now relevant.
While in the past, only the price and volume at
the top of the limit order book was available, the
entire depth of the book can be constructed because
every order on each of the many electronic
exchanges are collected and consolidated.

Stylized Facts of Markets

The huge amounts of data started attracting the
attention of physicists around the mid-1990s, and
many of the early seminal papers dealt with
uncovering and understanding properties of the
empirical distribution of returns (or relative price
changes). Returns of stocks can be calculated over
different timescales t, and when the distributions
of these are plotted out, it is clear that they are far
from Gaussian, but rather are well fit with power-
law tails in such a way that the power-law behav-
ior persists from timescales ranging from intraday
to the order of a few weeks. On daily timescales,
the exponent of the power law is about 3, often
referred to as the cubic law of finance
(Gopikrishnan et al. 1999; Gabaix et al. 2003).
The kurtosis of these distributions decays in a
regular fashion, roughly as t�0.2 where t is the
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timescale over which returns are calculated
(Bouchaud and Potters 2004). These distributions
bear many similarities to those of turbulent sys-
tems (see Fig. 2).

Volatility (defined either as the standard devia-
tion of returns over some past window or simply by
a proxy such as the absolute value of returns)
exhibits clustering behavior such that there appears
to be regimes of higher or lower volatility, on all
timescales (see Fig. 3). Furthermore, there is mem-
ory in volatility in the sense that the autocorrelation
of absolute returns is very strong, decaying slowly
as a power law. More subtle statistical features are
inherent, such as a behavior analogous to the Omori
law for earthquakes in that a large volatility shock
will be followed by aftershocks at a certain rate.
Furthermore, large negative returns are indicative
of higher volatility, an effect known as the leverage
effect (Bouchaud et al. 2001). Figure 3 beautifully
illustrates some of these effects. It shows intraday
prices for a few days surrounding May 6, 2010, the
day of the so-called Flash Crash. After a large
negative return, volatility increases and decays
only slowly. Another interesting property of stock
return time series is the presence of time-reversal
asymmetry in the sense that future volatility condi-
tioned on past observations is not symmetric (Lynch
and Zumbach 2003). Finally, financial time series
exhibits multi-fractal scaling of moments (see, e.g.,

Borland and Bouchaud 2012). All of these so-called
stylized facts are not only observed for stock returns
but also for other financial instruments such as
commodities and currencies, and they are observed
across geographies. Realistic market models should
ideally capture the basics of these features for stock
returns and volatility across time.

Financial Market Modeling

Modeling the intricate dynamics and microstruc-
ture of the limit order book is a field of study
which has gotten some traction over the past
decades. One of the most insightful and detailed
studies attempting to understand the dynamics of
price formation on this level, as well as the market
impact of trading, has been done within the phys-
ics community, for example, by Bouchaud,
Farmer, and Lillo (Bouchaud et al. 2004, 2009;
Lillo et al. 2003). They reveal that the processing
of supply and demand in markets has long-range
memory and is also related to the origin of market
fluctuations among many other interesting find-
ings. Another interesting and rather intuitive
model of the order book was developed by Cont
et al. (2010) who formulated a stochastic equation
for the mid-price based on the order book dynam-
ics. More recently, some authors model the order
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Financial Market Dynamics: A Synergetic Perspec-
tive, Fig. 2 The distribution of financial returns bear
similarity to the distribution of velocity in turbulent sys-
tems. Small scales (top), larger scales (bottom). The y-axis
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flow dynamics of bids and ask via self-exciting
Hawkes processes (Bacry and Muzy 2014;
Alfonsi and Blanc 2015), leading to a nice frame-
work where questions such as optimal trade exe-
cution, for example, can be studied. In spirit and in
analogy to physics, these models eluded to above
can be seen as microscopic models, based on
underlying empirical observations of the actual
order placement and execution process (viz., the
order book). Ultimately though, the price once
formed evolves as a stochastic process, and it is
often more tractable to use a mesoscopic descrip-
tion which aims at describing the price process as
a stochastic Langevin equation where the key
feature is how to capture the volatility, or noise,
that drives the process. This is the most important
effect since stock price changes (or returns) from
moment to moment are essentially unpredictable,
so the deterministic part of the equation is less
interesting. (Though of course, if you can predict
it ever so slightly, you are in luck!)

For many years and in a large body of the
financial literature, the random nature of price
time series was modeled by most as a simple
Brownian motion. The first to propose such a
model was Bachelier in his thesis in 1900, which
lays largely undiscovered until much later when

Black and Scholes wrote their famous paper in
1973 based on a very similar model. They made
important contributions in particular to the pricing
of options, for which they received the Nobel
Prize (Black and Scholes 1973) in 1997. Options
are traded instruments that give the right, not the
obligation, to buy a stock at a later date at a certain
price, called the strike price. In Black and
Scholes’ work, the log price is assumed to follow
a Gaussian distribution, and even today many
trading assumptions and risk control notions are
based off of that prior.

However, as we have seen, the Gaussian model
of Black and Scholes is insufficient to describe the
statistical properties of real financial time series
data. Several alternative models have been pro-
posed, and here we review some that fit well into
the spirit of synergetics.

Predator-Prey, Many Interacting Agents,
and Spin Models

The Lotka-Volterra equation is used to describe
the positive and negative feedback loops between
interacting species, where one preys on the other.
It is also one of the first successful models for

Financial Market Dynamics: A Synergetic Perspective, Fig. 3 A time series of market returns around the Flash
Crash of May 6, 2010
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describing the fact that wealth among members of
the society follows a Pareto power-law distribu-
tion (and hence also that fluctuations in financial
markets follow a power law) (Levy et al. 2000;
Levy and Solomon 1997; Solomon 1998). That
model also recovers realistic features of financial
markets such as bubbles and crashes as well as
volatility clustering.

The basic ingredients of the model are to intro-
duce feedback between individual and collective
wealth fluctuations of a collective set of traders.
The central feedback loop consists in computing
the market price of the stock as the sum of the
individual wealths wi invested in the stock by the
traders and then determining fluctuations of a
given trader’s wealth as their previous wealth
multiplied by the stock return. The basic idea of
the model is that wealth at time t + 1 is propor-
tional to wealth at time tmultiplied by the random
factor which corresponds to relative gains or
losses over the last period. There is also a coupling
of the individual’s wealth to the global wealth of
the society (e.g., things like social services). In
addition, there is also competition between each
individual and the other members of society,
which plays the part of limiting growth of the
average wealth to values that are sustainable for
the current conditions and resources. The
Solomon-Levy model leads to a power law for
the distribution of individual wealth, namely:

P wð Þ / w�1�� (1)

where � is typically between �1 and �2. In Sol-
omon (1998) the very interesting conclusion is
drawn that any quantity which is a sum of random
increments proportional to the wealths wi will
have fluctuations described by a Levy distribution
of index b equal to the exponent � of the wealth
power distribution. Since the individual invest-
ments are stochastically proportional to the inves-
tors’ wealth, the stock market fluctuations will be
described by a truncated-Levy distribution of
index equal to the measured exponent � = 1.4
(which results in a tail index close to 3 as eluded
to above when we talked about the cubic law of
finance). This is an amazing and nontrivial result:
based on simple notions of competition, local and

global feedback of the wealth of members of
society, a mechanism for describing the distribu-
tion of stock market fluctuations is designed.

Solomon and Levy’s wealth equation is a
mesoscopic description of the stock market
which was written down by the authors as a
description of the outcome of many simulation
runs of their microscopic model (Levy et al.
2000). The microscopic model looks at individual
investors with various ways of deciding how
much stock to buy or sell at a given time. Simu-
lations of that collective group of investors then
gave rise to the dynamics of wealth fluctuations as
described by their Lotka-Volterra equation.

Another approach of interacting agents was pro-
posed by Lux andMarchesi (2000). Individual trad-
ing agents are simulated, including an explicit price
formation process. Agents are modeled as different
types of traders interacting in a speculative market:
“noise traders” and “fundamentalists.” Fundamen-
talists base their action on fundamental valuation of
the stock. The noise traders base their trading deci-
sions on price data andflows,which leads to herding
behavior. They react to the recent past of the market
and can have either positive or negative expecta-
tions of the future based on that past. The dynamic
of the model is that traders compare profits gained
by the noise traders and fundamentalists and then
switch their own strategy to that which was more
profitable in the recent past. Depending on whether
traders want to buy or sell, supply or demandwill be
infused into the market, and the price will be
adjusted according to the excess demand. In addi-
tion, the dynamics of the fundamental value of the
stock follows a standard lognormal Brownian
motion with uncorrelated Gaussian noise.

Lux and Marchesi formulate the state-dependent
transition probabilities that describe, for each group
of traders, the probability of switching to the other
group. For noise traders there is also the internal
switching between a pessimistic and optimistic view
of the market. The price gets adjusted up or down
based on supply and demand according to excess
demand being either on the buy or sell side.

Based on these simple yet realistic dynamics, a
theoretical analysis and simulations show that the
most important features of real financial markets
emerge as a consequence. They find that the
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market is on average efficient in the sense that the
price on average reflects a fundamental equilib-
rium. The amount of pessimistic and optimistic
traders is roughly even, and in equilibrium both
the noise traders and the fundamentalists do
equally well. Though the system always tends
toward a stable equilibrium, it exhibits auto-
correlated fluctuations around that fundamental
equilibrium and simulations of the model show
on-off intermittency of fluctuations. This is very
similar to the properties of real market fluctuations,
where volatility shows memory and clustering.

Other classes of models are spin-based models
in which analogies are made between the interac-
tions and dynamics of spin systems and financial
markets. Some interesting spin models have been
proposed, for example, Cont and Bouchaud
(2000), Chowdhury and Stauffer (1999), and
Bornholdt (2001). These models can reproduce
(under certain parameter settings) features such
as the volatility clustering of financial markets.

Statistical Feedback Models

The abovemodels are useful as frameworks to think
about the dynamics of market participants and the
emergence of the stylized facts one observes. For
certain applications (e.g., risk management or the
pricing of options), a slightly higher level view of
price formation can be useful, namely, in terms of
modeling the price itself as a stochastic process.

As mentioned above most of traditional math-
ematical finance is based on the Black-Scholes
model which assumes a Brownian equation of
motion for stock prices:

dS tð Þ ¼ mSdtþ Ssdo (2)

whereo is drawn from a Gaussian distribution with
zero mean and variance one. This type of model is
very useful because it allows for the analytic calcu-
lation of many important quantities related to risk
management and derivative instruments such as
options. However, that model is too simple to cap-
ture all of the anomalous statistics observed in real
financial time series. In an attempt to rectify that,
several modifications to the standard Black-Scholes

model of price returns have been proposed in the
literature, and they all have in common that they
somehow extend either the assumption of a constant
volatility term s in Eq. 2 or the source of the noise
term o. For example, there is the stochastic volatil-
ity model of Heston (1993) where s itself is
modeled as a mean reverting stochastic process
and the Levy models where the noise o is assumed
to be drawn form a fat-tailed Levy distribution.
Those models are a little more realistic than the
standard model, but both have the shortcoming
that they convolve too quickly to a Gaussian distri-
bution, meaning that they do not capture the persis-
tence of fat tails of return distributions over the
timescales observed in reality, where returns over
timescales ranging from seconds up to about
2 weeks or longer all still exhibit tails. One model
which does really well in this sense (and also earned
a Nobel Prize for Engle (Bollerslev et al. 1994)) is
the GARCH model, which incorporates memory
into s. In fact, the memory of volatility is a key
feature that reproduces many known stylized facts
of financial price series.

Motivated among other things by this, we pro-
posed a model (Borland 2002a, b; Borland and
Bouchaud 2004) within the framework of non-
extensive statistical physics (Tsallis 1988) in
which the volatility term follows a statistical feed-
back process in the sense that it depends on the
probability of past observations, explicitly:

dS ¼ mSdtþ sSdO (3)

where

dO ¼ P Oð Þ 1� q

2
do: (4)

In this equation, P corresponds to the proba-
bility distribution of O, which simultaneously
evolves according to the corresponding nonlinear
Fokker-Planck equation (Tsallis and Bukman
1996; Borland 1998):

@P

@t
¼ @P2�q

@O2
: (5)

It can be solved exactly yielding:

Financial Market Dynamics: A Synergetic Perspective 411



P ¼ 1

Z tð Þ 1� 1� qð Þb tð ÞO tð Þð Þ 1
1�q (6)

The exact form of the coefficients Z and b are
given in Borland (2002a, b). Equation 6 recovers a
Gaussian in the limit q ! 1 while exhibiting
power law tails for q > 1. In that case, our model
is exactly equivalent to the Black-Scholes model.

The statistical feedback term P can be seen as
capturing the market sentiment. Intuitively, this
means that if the market players observe unusu-
ally high deviations of O(t) (which is essentially
equal to the detrended and normalized log stock
price) from the reference value O(0), then the
effective volatility will be high because in such
cases P(O) is small, and the exponent 1 � q is a
negative number. Conversely, traders will react
more moderately if O is close to its more typical
or less extreme values. As a result, the model
exhibits intermittent behavior consistent with
that observed in the effective volatility of markets.
In practice, q can be obtained empirically from a
fit to the data. Remarkably, q = 1.4–1.5 fits very
well to return distributions of very many financial
instruments, corresponding to a tail index of about 3.

This non-Gaussian statistical feedback model
allowed us to derive closed-form option pricing
formulae (Borland 2002a, b; Borland and
Bouchaud 2004) that fit very well to real market
prices over many time horizons, and we used the
model in real-life trading situations. For further
reading about this topic, summarized successes,
applications, and shortcomings of the model, we
refer to Borland (2008).

Multi-timescale Models

In spite of the success at pricing options and other
derivatives such as credit default swaps, as a
model of real returns, the statistical feedback for-
mulation has the drawback that returns relative to
a particular initial time constituting the memory in
the volatility; instead we took inspiration from
that model and proposed that the volatility
depends on returns over multiple timescales
(Borland and Bouchaud 2012). The intuition is

that different traders pay attention to different
timescales. For example, some only care about
returns on an intraday or daily level; others are
more focused on monthly or whatever the
rebalancing frequency is of their trades. Explic-
itly, this multi-timescale model can be written as:

Dy ¼ st Do (7)

st ¼ s0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

XT
t¼0

g

s20ta
yt � yt�t

� �2
vuut (8)

where y denotes the logarithm of the stock price;
hence Dy represents the change in log stock price
and corresponds to stock returns. The parameters
g and a can be calibrated to fit empirical data
(g = 0.85 and a = 1.15) (Borland and Bouchaud
2012), ands0 corresponds to the baseline volatility.
o represents uncorrelated standardGaussian noise.
This model is motivated by the statistical feedback
model that we presented in Borland (2002a, b) and
Borland and Bouchaud (2004) and is very similar
to the FIGARCH models (Lynch and Zumbach
2003; Bollerslev et al. 1994). In fact, without the
summation and setting t� t= 0, this equation can
be shown to be of the same form as our statistical
feedback model. That model has the advantage of
analytic tractability for options pricing, whereas
Eq. 7 doesn’t allow for that. However, it can be
simulated and shown to fit real data remarkably
well, reproducing a slew of known stylized facts
(Borland and Bouchaud 2012), including volatility
clustering, the fat-tailed distributions of returns
persistent over increasing timescales, time-reversal
asymmetry of volatility, and multi-fractal scaling
properties.

Cross-Sectional Dynamics

The models we discussed up to now have focused
on capturing the time series properties of stock
returns. In order to fully understand the joint sto-
chastic process, the cross-sectional dynamics of
stock returns, i.e., the dynamics of the correlation
structure of markets, is also important. Under-
standing how the distribution of returns as well as
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their correlations behaves during such times as the
financial crisis in 2008 can be extremely important
for managing financial risks. Several authors have
studied these cross-sectional dynamics, such as
Borland (2012), Preis et al. (2012), Kaizoji
(2006), Lillo and Mantegna (2000), Munnix et al.
(2012), Ferreira et al. (2015), Raffaelli and Marsili
(2006), and Sornette (2002), but we shall delve
into one model that fits right into the paradigm of
synergetics (Borland 2012).

To set the stage, one should understand that
financial markets go through different types of
regimes (often referred to as “risk on” or “risk
off”) or, as in this paper, “panic” times or “normal”
times. The VIX Index captures forward-looking
expected volatility. In “panic” times, the VIX is
very high, whereas in “normal” times, it is more
moderate. Based on the VIX, one can for US
markets categorize the periods 2008–2009 (the
financial crisis), 2010 (the foreclosure crisis), and
2011 (the debt ceiling crisis) as periods of high
uncertainty or panic. As discussed in Borland
(2012) we showed that, during panic times, the
dispersion (standard deviation) of stock returns
cross sectionally increases, as does the time series
volatility. However, the kurtosis (corresponding to
the tails of the cross-sectional distribution) tends to
decrease. In addition, correlations approach 1.

To further explore the correlation structure, or
co-movement of stocks at a given time, we define
the variable s:

s ¼ sup � sdown
sup þ sdown

(9)

where sup is the number of stocks that has positive
returns over a given interval and sdown is the
number of stocks that has negative moves on
that same interval (e.g., a day). If s = 0 then
roughly the same number of stocks moved up as
down, and the assumption is that the stocks had
little co-movement and so were uncorrelated. If all
stocks move together either up or down, the value
of s will be +1 or�1, and the stocks will have high
correlation. So, the following picture emerges: if
s = 0 there is no correlation, and we are in a
disordered state. However if s 6¼ 0 then there is
correlation, and we are in an ordered state; in other

words, in the spirit of synergetics, s is the order
parameter of the system. This behavior of s under
different market conditions can be seen in histo-
grams calculated for data during periods of panic
versus more normal periods. In normal times, s is
unimodal, and in panic times we obtain a bimodal
distribution (see Fig. 4).

We refer to these phenomena as statistical signa-
tures of market panic: high time series volatility,
high cross-sectional dispersion, low cross-sectional
kurtosis, and a bimodal distribution of s. In order to
create a model that replicates these signatures, we
proposed in Borland (2012) a synergetic model
where the variable s plays the same role as the
magnetic moment in a ferromagnetic spin system.
In the sameway that themagnetic systemwill either
be in an ordered or disordered state depending on
the value of the temperature, the financial system
will be in a correlated or uncorrelated state
depending on the value of volatility.

Explicitly, the stock returns for each instrument
across time is modeled by Eq. 7 (inserting Doi

¼ oi
t

ffiffiffiffiffi
Dt

p
according to the assumptions of

Brownian noise):

Dyi ¼ sito
i
t

ffiffiffiffiffi
Dt

p
(10)

with

sit ¼ si0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

XT
t¼0

g

si0
� �2ta

yit � yit�t

� �2
vuut (11)

where yi is the log stock price of the i-th stock and
oi

t is a zero mean Gaussian noise with unit vari-
ance so that oi

to
i
t0

� � ¼ dtt0 . For an ensemble of
N stocks, we assume that the oi

t, i = 1, � � � , N are
correlated proportional to |s| across stocks, so

oi
to

j
t

D E
¼ sj j for i 6¼ j and 1 for i = j.

We hypothesize that s can be described by the
Langevin equation

ds

dt
¼ �as� bs3 þ Ft (12)

with a= g(sc� sM), b a scaling parameter, and sc
a critical volatility level, and sM is the market
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volatility. In this model, s can be thought of as
jiggling around in a potential well. The control
parameter of the system is sM. When sM < sc,
that well only has one minimum at 0, so |s| fluctu-
ates around that point. If sM > sc the potential well
attains two new minima at � ffiffiffiffiffiffiffiffiffiffi

a=2b
p

. |s| becomes
non-zero, and correlations are high: stocks tend to
move up or down together in accordance, which is
manifested in a bimodal distribution of s. We say
that there is a phase transition as sM crosses above

the critical value, since the collective behavior of
the stocks is qualitatively very different. This
type of phase transition model is based on the
dynamics and theories of synergetic self-
organizing systems. In particular, s can be seen
analogous to the magnetic moment m in ferro-
magnetic systems, There, the system goes from
the disordered to the ordered state as the temper-
ature T (which is the control parameter) drops
beneath a critical temperature Tc.
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Hence, the parameter sM in the financial system
plays a role similar to temperature in the magnetic
system.

We model sit as in Eq. 11. Conditions for
stability and values which calibrate to real returns
are discussed extensively in Borland and
Bouchaud (2012). The feedback in the model is
controlled by g, and the power law memory in
time is related to a.

The market volatility sM can increase to values
larger than sc due to either (i) exogenous jumps
(news, external fear) affecting all stocks so that
s0 becomes s0 + sshock or (ii) endogenous, idio-
syncratic jumps which are more stock specific. In
this paper we consider only exogenous jumps
describing market-wide situations such as the
Lehman Brothers collapse, although endogenous
ones akin to the dynamics of the Flash Crash have
been discussed in Borland and Hassid (2010).

Simulations

To simulate the joint cross-sectional dynamics of
the market, the individual dynamics of N = 500
stocks are generated using Eqs. 10 and 11. The
“market” is then defined as the equal weighted
average of those stocks’ returns. This is akin to
how the S&P 500, which represents the US mar-
ket, is composed of 500 stock returns (albeit
weighted by market capitalization). Furthermore,
market-wide exogenous shocks which correspond
to external fear factors or general sentiment are
applied to the base volatility s0. In previous
papers we have injected artificial shocks, but for
this contribution, we let the actual jumps in the
VIX drive the external exogenous volatility
shocks in the model such that if the VIX corre-
sponds to a volatility greater than 0.25, it will
induce a shock sshock to the system such that
s0 becomes s0 + sshock.

The dynamics of each individual stock were
generated using Eqs. 10 and 11. The parameters
used were those determined in Borland and
Bouchaud (2012), namely, the feedback

parameter g = 0.85 and a = 1.15. The base
volatility was chosen at s0 = 0.20 which is the
typical annualized volatility of a stock, and we
allow sit0 ¼ s0 1þ e � � tð Þð Þ where � is a zero
mean white noise, and e = 0.2 was chosen. We
included T = 300 terms in the volatility feed-
back term. The time step for the simulations was
chosen to D t = 1/252, corresponding to 1 trad-
ing day (there are 252 trading days in a year).
The noise sit driving each stock is drawn from a
normal Gaussian distribution uncorrelated in
time with 0 mean and unit standard deviation
yet with a correlation across stocks driven by
Eq. 12.

More explicitly, the correlations across stocks
at a given time point were modeled according to
the phenomenological equation (12) using
b = 0.01 and Ft = 0.1n where n is a standard
Brownian noise. Given a value of s from this
equation, the noise across stocks was then drawn
from a correlated set of noises, with correlation
equal to tanh |s|. The mechanism for attaining that
noise utilized the Cholesky decomposition tech-
nique. The critical volatility sc was chosen to be
sc = 0.4 which is roughly twice the annualized
standard deviation of market returns. At each time
point in the simulation, individual stock paths are
generated, and their mean is taken to represent the
value of the market as a whole at that time point.
The control parameter sM= s0 + sshock feeds back
into Eq. 12 thus affecting the correlation dynamics
that defines the cross-sectional behavior of the
500 stocks in the simulation.

Figure 5 shows actual market returns in the time
period 2003–2017, together with the VIX. Figure 6
shows simulatedmarket returns, together with a plot
of market volatility defined as the recent standard
deviation of market returns. It is clear that the fea-
tures follow the general profile of actual returns
quite closely, and the simulated market volatility
reflects the main features of the VIX (although
remember these will not match exactly since the
VIX is an index calculated from the implied volatil-
ity of options on the S&P 500). The simulation does
have volatility spikes in 2008–2009, 2010, and
2011, as does the VIX. We also show a time series
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of 2 of the 500 simulated stock returns that consti-
tute themarket in aggregate. Individual stocks’ price
paths were generated by Eq. 11 and exhibit idiosyn-
cratic periods of volatility clustering not apparent in
the market, due to the multi timescale feedback
aspect of the dynamics which is stock specific. In
addition, cross-sectional dispersion of the simulated
stock market increases in times of panic, while the
kurtosis appears to dip in those periods. Finally,
histograms of s are bimodal during the times of
panic, and unimodal in normal times, just as in the
real data. These cross-sectional properties are shown

in Fig. 7. It is apparent that the model captures a
similar behavior of cross-sectional features as in the
real market data.

Final Comments

The multi-timescale collective feedback model we
described for the joint stochastic process of a set of
stocks over time agrees qualitatively with actual
features seen in real markets, both across time and
across stocks. Elements of synergetics enter the

90

80

70

60

50

40

30

20

10

0
2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

2002
–0.2

–0.15

–0.1

–0.5

0

0.05

0.1

0.15
S&P 500 Returns

Vix Percent Level

ca_VIX

SPY

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Financial Market Dynamics: A Synergetic Perspective, Fig. 5 The VIX volatility index and daily S&P 500 market
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model in various aspects. The correlation between
stocks acts as the order parameter of the system,
with the volatility, which is related to the collected
external perception of panic or fear acting as the
control parameter. Furthermore, the dynamics of
each individual stock follows a feedback process
that aims to capture the collective behavior of
individual agents acting on different timescales.
In addition, we have reviewed other more agent-
based models that have been proposed within the
physics and econophysics community that all have
similar notions embedded, namely, that it is the
interaction of individual market participants and
the feedback with the overall macroscopic level
of the financial system (be it via price, wealth, or
volatility) that appear to lead to systems that repro-
duce many of the interesting anomalous statistics
observed in real financial markets.

Future Directions

Financial markets are constantly evolving, pro-
ducing ever-increasing sets of data, so the task of
modeling the complexities driving their behavior
will certainly remain a fruitful area of research for
some time to come. Additionally, in spite of the
success of the models we have discussed here
when it comes to reproducing realistic market
features and stylized facts, many financial practi-
tioners still use the simpler notions consistent with
a Black-Scholes-type Gaussian model of financial
time series. One reason for this could be that many
of the models have been developed within the
field of econophysics, using concepts from phys-
ics, and are not yet incorporated in more tradi-
tional mathematical finance programs. An
important area of further work would therefore
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be to try and integrate some of the new insights
that these models lend us into practical applica-
tions which can be used where real money is
managed, in order to have better and more proac-
tive tools both for price modeling and risk
management.
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