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Glossary

Attractor Region in the state vector space (“q-
space”) to which all neighboring states are
attracted in the course of time.

Control parameter One or a set of (mostly
externally) fixed parameters in the evolution
equations.

Dynamical System System whose state vector
changes in the course of time deterministically.

Evolution equations Determine the temporal
evolution of the state vector. May be determin-
istic, stochastic or both.

Fixed point, stable Point in q space to which all
neighboring trajectories converge in course of time.

Fluctuating forces Stochastic (random) forces
appearing in evolution equations.

Fokker Planck equation Evolution equation for
probability density function, based on drift and
diffusion.

Generalized Langevin equation General evolu-
tion equations that contain both a deterministic
and a stochastic part (“fluctuating forces”).

Group Set of elements with specific multiplica-
tion rules (axioms).

Hamilton operator Classical Hamilton function, in
which variables, e. g. position x andmomentump,
are replaced by quantum mechanical operators.

Heisenberg picture in quantum mechanics The
state vector is time-independent, while the oper-
ators are time-dependent and determined by
Heisenberg equations of motion.

Instability Loss of stability.
Langevin equation Originally: evolution equa-

tion for velocity of a Brownian particle subject
to damping and fluctuating force.

Limit cycle, stable A closed trajectory to which
all neighboring trajectories converge.

Normal form Especially simple polynomial
expression that still captures the essential fea-
tures, e. g. of the right hand side of determin-
istic evolution equations.

Order parameters Collective variables that
determine themacroscopic behavior of systems.

Pattern A pattern is essentially an arrangement.
It is characterized by the order of the elements
of which it is made rather than by the intrinsic
nature of these elements (Norbert Wiener).

Probability distribution function Function that
determines the probability of a random vari-
able r to have fixed value r ¼ r0.

Quantum classical correspondence Establishes
relation between quantum mechanical density
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matrix and classical quasi-probability distribution.
Schrödinger picture of quantum mechanics In

it operators are time-independent, while the
wave-function (“state vector”) is time-
dependent and determined by the Schrödinger
equation.

Self-organization Formation of spatio-temporal
patterns (structures) and/or performance of
functions without an “ordering hand”.

Slaving principle A general theorem that allows
the reduction of the variables of a system to
order parameters (close to instability).

Spatial coordinate (vector x) In one, two or
three dimensions.
DLaplace operator in 1, 2 or 3 dimensionsð Þ:

∇Vector d
dx1

,
d
dx2

,
d
dx3

� �
in 1, 2 or 3 dimensions:

Spectrum Set of eigenvalues belonging to linear
stability equations with boundary conditions.

Stability of a system System returns after a
(small) perturbation of its state vector into
original state.

State vector Set of time- or time-independent
variables that characterize the state of a system.

Symmetry Invariance of a system against spe-
cific transformations (e. g. mirror symmetry).

Synergetics Science of cooperation.
Trajectory Smooth curve q(t) of solution of evo-

lution equation in q-space.

The Role of Synergetics in Science

In science, we may essentially distinguish
between two trends:

1. The accumulation of knowledge
2. Information reduction in the sense of finding

general principles, common features.

In physics, such unifying approaches are well
known: the unification of magnetism, electricity
and, later on, weak and other interactions leading
eventually to a unified field theory. General rela-
tivity unifies concepts of space, time and gravita-
tion. While these unifications take place at a
fundamental level, one may ask whether it is
worthwhile to look also for unifications at say

more macroscopic or phenomenological levels.
One example is thermodynamics, another the the-
ory of phase transitions of systems in thermal
equilibrium by means of the renormalization
group approach, or the concept of fractals, etc.

The main goal of Synergetics is the search for
unifying principles for systems that are composed
of many individual parts or components, and that
may show the phenomenon of self-organization,
i.e. the spontaneous formation of spatial, tempo-
ral, spatial-temporal or functional structures. The
systems under discussion are, in the widest sense
of the word, open physical systems whose states
are maintained by an in- and outflux of energy,
matter and /or information. A typical and well
known example is that of a fluid in a pan that is
uniformly heated from below. When the tempera-
ture difference between the lower and upper sur-
face exceeds a critical value, the formerly
homogeneous fluid develops roll or hexagonal
patterns in which the fluid moves in a specific
manner (Fig. 1).

As it turned out, the general principles origi-
nally elaborated in physics, can also be applied to
many other systems, such as in biology, economy,
ecology, sociology, management theory, psychol-
ogy etc. In spite of the great variety of the

Synergetics: Basic Concepts, Fig. 1 Hexagonal pattern
of a fluid (liquid helium) uniformly heated from below
(Bodenschatz et al. 2000)
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individual systems with their components quite
different in nature, such principles apply to large
classes of phenomena. This is achieved by
restricting the study to situations where the sys-
tems undergo qualitative changes at macroscopic
scales. Here macroscopic means “with time and
length scales large compared to those of the indi-
vidual components”.

This leads to the definition of Synergetics as
given in the preamble of the Springer Series in
Synergetics: “An ever increasing number of sci-
entific disciplines deal with complex systems.
These are systems that are composed of many
parts which interact with one another in a more
or less complicated manner. One of the most strik-
ing features of many such systems is their ability
to spontaneously form spatial or temporal struc-
tures. A great variety of these structures are found,
in both the inanimate and the living world. In the
inanimate world of physics and chemistry, exam-
ples include the growth of crystals, coherent oscil-
lations of laser light, and the spiral structures
formed in fluids and chemical reactions. In biol-
ogy we encounter the growth of plants and ani-
mals (morphogenesis) and the evolution of
species. In medicine we observe, for instance,
the electromagnetic activity of the brain with its
pronounced spatio-temporal structures. Psychol-
ogy deals with characteristic features of human
behavior ranging from simple pattern recognition
tasks to complex patterns of social behavior.
Examples from sociology include the formation
of public opinion and cooperation or competition
between social groups.”

In recent decades, it has become increasingly
evident that all these seemingly quite different
kinds of structure formation have a number of
important features in common. The task of study-
ing analogies as well as differences between
structure formation in these different fields has
proved to be an ambitious but highly rewarding
endeavor. The Springer Series in Synergetics
provides a forum for interdisciplinary research
and discussions on this fascinating new scientific
challenge. It deals with both experimental
and theoretical aspects. The scientific commu-
nity and the interested layman are becoming
ever more conscious of concepts such as

self-organization, instabilities, deterministic
chaos, nonlinearity, dynamical systems, stochas-
tic processes, and complexity. All of these con-
cepts are facets of a field that tackles complex
systems, namely Synergetics.

The Laser Paradigm

This example elucidates central concepts used in
Synergetics in a qualitative fashion. An example
for the laser device (an acronym for light amplifi-
cation by stimulated emission of radiation, origi-
nally called optical maser (Schawlow and Townes
1958)) is the gas laser in which gas atoms are
enclosed in a tube at the end-faces of which mir-
rors are mounted. Themirrors serve the purpose of
reflecting light running in axial direction suffi-
ciently often so that the corresponding light
wave stays for an extended period in this device
and can interact intensely with the atoms. The
atoms are excited from the outside, e. g. by a
pump light source. After having been excited,
each atom can spontaneously emit a light wave
track. In the usual case of a lamp, these wave
tracks are emitted independently of each other
and the amplitudes are Gaussian distributed.
When the pump intensity is increased beyond a
critical value, the present state gives way to a
single wave with stable amplitude on which
small amplitude fluctuations and phase diffusion
are superimposed (Haken 1964). The pump inten-
sity serves as control parameter. At its critical
value, the old state becomes unstable. The emerg-
ing coherent wave acts as order parameter that via
stimulated emission forces the electrons of the gas
molecules to emit light waves in a coherent fash-
ion. This action of the order parameter on the
individual parts of the system is called slaving
principle. If the pump power is increased further,
more instabilities can appear, and a variety of
temporal but also spatio-temporal patterns of
light waves may appear, such as laser light chaos
(Haken 1975a) or ultrashort laser pulses. The first
laser threshold shows the typical features of a
phase transition of a system in thermal equilib-
rium, namely critical slowing down, critical fluc-
tuations and symmetry breaking (DeGiorgio and
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Scully 1970; Graham and Haken 1968; Haken
1964, 1985; Sargent et al. 1974), as well as the
emergence of a c-number amplitude of the quan-
tized light field (Fig. 2).

The Hierarchical Structure of Synergetics

Before I discuss the mathematical approach in detail
and to provide the ground for farther reaching appli-
cations, I hint at the three levels of Synergetics:

1. The microscopic theory, based either on micro-
scopic equations, such as in the laser example,
those of quantum mechanics and quantum field
theory, or in biology on mathematical models on
the behavior of individual parts of a system. At
this level, concepts, such as order parameters and

enslavement (cf. section “The Laser Paradigm”),
can be mathematically derived.

2. Phenomenological Synergetics directly starts
from concepts, such as order parameters and
enslavement, which thenmay be cast into math-
ematical relations.

3. Semantic Synergetics deals with cases where a
mathematical formulation is (at present or in
principle) not possible, but still formulations
using concepts and relationships unearthed in
Synergetics are applicable.

A general goal of Synergetics consists in elab-
orating relationships between levels 1, 2, 3.

In the present article I will mainly focus my
attention on the mathematical formulation dealing
with 1 and 2.

Basic Equations

The basic equations are classical or quantum
mechanical evolution equations, in which the tempo-
ral evolution of the microscopic quantities under
consideration is described by ordinary or partial dif-
ferential equations. Since the systems are open, the
inputs and outputs of energy, matter and/or informa-
tionmust be taken care of,which, quite often, appears
in the form of coupling to heat baths in the sense of
thermodynamics. In open systems, these heat baths
must be kept at different temperatures, in order to
maintain the non-equilibrium state of the system. The
heat bath variables can be eliminatedwhich gives rise
to differential equations which contain “pumping”
and “damping” terms as well as fluctuating
(stochastic) forces. In the case of quantum mechani-
cal equations the stochastic forces are operators.With
the inclusion of stochastic forces, the classical or
quantum mechanical equations acquire the character
of stochastic differential equations which may be
called “generalized Langevin equations”.

Depending on the definition of the random
forces, we may distinguish between the I to, the
Statonovich and the Klimontovich approach
(Haken 2004b; Îto 1969; Stratonovich 1963). As is
well known in statistical physics, Langevin equa-
tions can be converted into equations for distribution
functions, such as e. g. the Fokker–Planck equation.

Synergetics: Basic Concepts, Fig. 2 The stationary dis-
tribution function of the laser light intensity as a function of
the normalized intensity bn. The individual curves refer to
different normalized pump power values a, where a < 0
below threshold, a¼ 0 at threshold, a> 0 above threshold.
(After Risken 1965)

8 Synergetics: Basic Concepts



A further approach, mainly used in quantum
mechanics, but also in models on sociodynamics,
is the master equation.

In order not to overload this article, I will focus
my attention on the treatment of evolution
equations.

This approach seems to be particularly suited
for the treatment of phase transition- like phenom-
ena, i.e. the transitions between qualitatively dif-
ferent states of a system. If noise is neglected and
transients are not treated, these transitions are
called bifurcations (Arnold et al. 1999; Chow
and Hale 1982; Guckenheimer and Holmes
1983; Iooss and Joseph 1980; Kielhöfer 2004;
Kuznetsov 1995; Ma and Wang 2005).

At the microscopic level the systems are
described by a state vector q with components
q1,. . ., qn which may also be space dependent,
qj ¼ qj (x, t), where x is a one, two or three
dimensional vector. The time dependence is
described by evolution equations of the form of
a vector equation.

_q ¼ N q,∇, að Þ þ F q,∇, að Þ: ð1Þ

The dot˙ means time-derivative. N is a vector
valued function that depends on q in a nonlinear
fashion. ∇ indicates spatial derivatives (of any
order) or non-local integrations e. g. of the form

Z
K x, x0ð Þq x0ð Þdx0 ð2Þ

where K is a matrix.
a represents a set of fixed control parameters. If

not otherwise stated, we explicitly treat only one
control parameter. Equation (1) must be
supplemented by appropriate boundary and initial
conditions. F is a vector valued stochastic func-
tion of time with vanishing mean.

Method of Solution

We assume that for a certain control parameter
value a0 the state vector as solution of Eq. (1) is
known, q ¼ q0. The following cases have been
considered, see e. g. (Haken 2004b):

(a) q0 is a stable fixed point (section “Instability
of a Fixed Point”)

(b) q0 is a stable limit cycle (section “Instability
of a Limit Cycle, q0(t) (Haken 2004b)”)

(c) q0 is a stable n-dimensional torus. (section
“Instability of Tori (Haken 2004b)”)

Now the control parameter value is changed
and the stability of the system is checked by
means of linear stability analysis (Hahn 1967).

Instability of a Fixed Point
We first elucidate our general procedure by means
of the instability of an originally stable fixed
point. This procedure differs from the classical
approach of bifurcation theory (Lyapunov 1906;
Schmidt 1908) in two important aspects:

1. The role of the fluctuating forces is fully
taken into account in order to be able to make
contact with the theory of phase transitions in
the Landau sense (Landau and Lifshitz 1959).

2. The approach covers the surrounding of the
fixed point in order to deal with relaxation pro-
cesses towards the newly evolving stable states.

The hypothesis

q tð Þ ¼ q0 þW tð Þ ð3Þ

is inserted into (1) and the Eq. (1) with F � 0
linearized with respect toW(t),

_W ¼ LW ð4Þ

where L may be a linear differential (or integral)
linear operator.

The solutions are of the form

W x, tð Þ ¼ elkt
XD
d¼0

tdvk,d xð Þ ð5Þ

where D > 0 may happen if the corresponding
eigenvalue lk is degenerate. In the following we
consider D ¼ 0 and vk,d ¼ vk. The unstable modes
vk � vu are connected with

Re lk � 0, ð6Þ

the stable modes vk � vs with
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Re lk < 0: ð7Þ

It is assumed that Re lk< A< 0, A fixed, if the
eigenvalues are discrete.

We decompose the wanted solution to the orig-
inal non-linear and stochastic equations into a
super position of modes determined by the insta-
bility analysis whereby we distinguish between the
unstable and stable modes. The amplitudes of the
unstable modes are the order parameters. Inserting

q tð Þ ¼ q0 þ
X
u

xu tð Þvu xð Þ þ
X
s

xs tð Þvs xð Þ ð8Þ

into the Eqs. (1) and projecting both sides of the
resulting equation on the stable and unstable
modes, we obtain equations of the form

_xu ¼ luxu þ bNu xuf g, xsf gð Þ
þ bFu xuf g, xsf gð Þ ð9Þ

_xu ¼ lsxs þ bNs xuf g, xsf gð Þ
þ bFs xuf g, xsf gð Þ: ð10Þ

lu, ls are the eigenvalues (6), (7), which are
assumed to be discrete. By a suitable, in general
nonlinear, transformation to new variables, Ñ
({xu}) can be cast into a particularly simple form
(“normal form” theory (Murdock 2002; Nayfeh
1993), initiated by Poincaré (1960)).

If the eigenvalues lu, 0 > Re ls > – |B| are a
continuous function of an index, e. g. a wave
number k, wave packets of xu(t) are used as new
order parameter variables X and lu(k) is replaced
by an operator Lu �i d

dx

� �
in one space-dimension

or, more generally, Lu ¼ (�i∇) (Haken 2004b).
For a related approach in fluid dynamics
cf. (Newell and Whitehead 1969).

The central idea of further procedure consists
in eliminating the amplitudes of the stable modes.
This is achieved by the slaving principle (Haken
1975b, 2004b; Haken and Wunderlin 1982;
Wunderlin and Haken 1981) which allows us to
express the amplitudes of the stable modes in
terms of the unstable modes

xs tð Þ ¼ f s xu tð Þf g, tð Þ, ð11Þ
where xs, xu, are taken at the same time t. The
explicit time-dependence of fs stems exclusively

from that of the fluctuating forces. fs can be explic-
itly calculated in terms of a series expansion in
powers of the order parameters. For practical pur-
poses, in general only a few terms are needed. For
a general discussion of the convergence of this
series see (Haken 2004b). When noise is
neglected, contact can be made with center man-
ifold theory (Kelley 1967; Pliss 1964), which
originally was a mere existence theory and was
not constructive. For more recent developments,
see books on bifurcation theory. A related
approach is based on time-scale separation: The
slowly damped or undamped modes serve as
order parameters, which enslave the rapidly
damped modes. A special case is adiabatic
elimination.
Resulting Langevin Equations The enslaved mode
amplitudes can be expressed by the order param-
eters and inserted in (9), so that closed equations
for the order parameters alone result.

_xu ¼ luxu þ ~Nu xuf gð Þ þ ~Fu xuf g, tð Þ ð12Þ

where Ñ is a polynominal of x(x, t) starting with at
least second order. F̃ is a stochastic force.
A simple, yet prototypical example is (with a
single order parameter x ¼ xu)

_x ¼ lxþ ax2 � bx2 þ F tð Þ, b > 0 ð13Þ

_x ¼ � @V xð Þ
@x

þ F tð Þ, ð14Þ

with the potential

V ¼ � l
2
x2 � a

3
x3 þ b

4
x4: ð15Þ

If lu, ls (6, 7) represent a continuous spectrum,
(generalized) Ginzburg–Landau equations result
(Haken 2004b). For example, the complex
Ginzburg–Landau equation with fluctuating
force reads (Aronson and Kramer 2002).

x x, tð Þ � xu, complex order parameterð Þ
_x ¼ lxþ aDx� c xj j2xþ F tð Þ: ð16Þ

A further example is given by the Swift–
Hohenberg equation (Swift and Hohenberg
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1977), see also (Cross and Hohenberg 1993)
(which was derived differently, however)

_x x, tð Þ ¼ a� bDð Þ2x x, tð Þ þ cx x, tð Þ
� dx x, tð Þ3: ð17Þ

The Eqs. (12, 13, 16, 17) allow for a great
variety of solutions. In the case of real l and a
single order parameter, a nonequilibrium phase
transition occurs (see below). In case of l complex,
and (at least) one complex order parameter,
Landau-Hopf bifurcation (Hopf 1942, 1948),
i.e. formation of a limit cycle may happen. In
case of (at least) three order parameters and no
noise, deterministic chaos may occur (Lorenz
1963; Ruelle and Takens 1971; Sparrow 1982)
(in the presence of noise, mixed effects may occur).

Fokker–Planck Equation Below and above the
instability point in control parameters space, in a
first step the fluctuations can be neglected and
then, in the next step, taken care of by means of
lowest order perturbation theory. In order to cover
the transition region, under well defined condi-
tions a Fokker–Planck equation for the probability
density function f ({xu}) of the order parameters
can be derived. For details see (Haken 2004b;
Haken and Graham 1971) and the article by
T. Frank, this volume.

The Fokker–Planck equation is of the general
form

_f xuf gð Þ ¼ �
X
u

@
@xu

~Nuf
� �

þ 1

2

X
uv

@2

@xu@xv
Quvfð Þ: ð18Þ

It is assumed that Fũ in (12) is d correlated in time,

~Fu tð Þ ~Fv t0ð Þ� � ¼ Quv d t� t0ð Þ: ð19Þ
If F̃u depends on xu, the Î to, Stratonovich or
Klimontovich procedure must be applied.

In the case of a single order parameter, where
the Langevin equation (Langevin 1908), origi-
nally with Ñ¼ – ax) is given by

_x ¼ ~N xð Þ þ F tð Þ, F tð ÞF t0ð Þh i ¼ Qd t� t0ð Þ:
ð20Þ

The steady state distribution function of (18) is
given by (Haken 2004b; Risken 1965)

f xð Þ ¼ N exp �2

Zx
~N x0ð Þ=Qdx0� � � N exp �2V xð Þ=Qð

0
@

1
A

ð21Þ

provided the boundary conditions are

f xð Þ ! 0 for xj j ! 1: ð22Þ

In the second Eq. (21),Q¼ const. is assumed.N is
a normalization constant. A generalization of (18)
to continuous variables, xu(x, t), gives rise to a
functional Fokker–Planck equation. An explicit
solution of the Fokker–Planck equation in the
case of several discrete or continuous order
parameters can be found if the drift and diffusion
coefficients obey the rules of detailed balance
(Graham 1981; Graham and Haken 1971).

Nonequilibrium Phase Transition. Connection
with Landau Theory The explicit form of the
solution of the Fokker–Planck Eq. (21) allows us
to make contact with the theory of phase transi-
tions in the sense of the Landau theory (Landau
and Lifshitz 1959) where

f xð Þ ¼ N exp �F x,Tð Þ= kTð Þð Þ,
F x,Tð Þ ¼ F 0,Tð Þ þ a T � Tcð Þx2 þ b

4
x4:

ð23Þ

In (21), V corresponds to the free energy F and the
noise strength Q corresponds to absolute temper-
ature T. Tc is the critical temperature, and (23)
refers to a second order phase transition. In case
of a first order phase transition, an additional term
gx3 appears in (23).

An important difference between phase transi-
tions at thermal equilibrium and in the present
case of non-equilibrium should be mentioned,
however. The decisive constants in the case of
non-equilibrium (Haken 2004b) phase transitions
are rate constants in contrast to thermodynamic
quantities in (23). While non-equilibrium phase
transitions described by (21) were experimentally
very well verified for instance in the case of lasers
(Risken 1965) (Fig. 1), in the case of thermal
equilibrium the Landau theory can not be consid-
ered as a good approximation and had been
replaced by the concept of critical exponents

Synergetics: Basic Concepts 11



etc. as dealt with by renormalization group theory
(Kadanoff et al. 1967; Wilson and Kogut 1974).
For a treatment of the time dependent Fokker–
Planck equations see Risken (1989).

In a number of cases the drift- and diffusion
coefficients of the Fokker–Planck equation are by
themselves expectation values, defined on the
probability density function so that the Fokker–
Planck equation becomes non-linear. For more
details see the article by T.D. Frank in this volume.

Instability of a Limit Cycle, q0(t) (Haken 2004b)
The instability is checked by linear stability anal-
ysis by means of the hypothesis

q tð Þ ¼ q0 tð Þ þW tð Þ, ð24Þ

where q0(t) is a time-periodic solution to (1) with
a ¼ a0, W(t) a small deviation.

Inserting (24) into (1) with F � 0 and lineari-
zation leads to an equation of the form (4), where
L because of q0(t) has become also a time-periodic
function with the same period as q0(t). According
to Floquet theory (Floquet 1883), the solutions to
(4) with periodic L(t) are given by

W tð Þ ¼ el f tv j tð Þ ð25Þ

(in the case of nondegeneracy), where vj(t) has the
same period as q0, i.e. L.

Depending on Re lj � 0 or < 0 we distinguish
between unstable and stable modes (6, 7), respec-
tively. One eigenvalue is ¼ 0 and corresponds to
an indeterminate phase shift, which in nonlinear
analysis is taken care of by a phasef(t) that acts as
additional order parameter. In order to solve the
fully nonlinear and stochastic equations, the
hypothesis

q tð Þ ¼ q0 tþ f tð Þð Þ
þ
X
u

xu tð Þvu tþ f tð Þð Þ

þ
X
s

xs tð Þvs tþ f tð Þð Þ ð26Þ

is inserted in the Eqs. (1). The subsequent proce-
dure follows the lines outlined above and leads to
order parameter equations of the form

_xu ¼ luxu þ bNu xuf g,fð Þ þ bFu xuf g,fð Þ ð27Þ

_f ¼ M xuf g,fð Þ þ G xuf g,fð Þ ð28Þ

where bN , bF, M, G are polynominals in {xu} and
periodic functions of f.

The novelty as compared to the case of an
unstable fixed point consists in the introduction
of a phase as order parameter.

When noise is neglected, the newly evolving,
i.e. bifurcating solutions are either two (or several)
limit cycles or tori. Also basically, depending on
the system, also a “back bifurcation” to a stable
focus can happen.

Instability of Tori (Haken 2004b)
The corresponding theory is rather complex so
that a few words must suffice here. The basic
idea (Haken 2004b) is based on an extension of
(24, 26) where q0 is chosen as a quasi periodic
function

q0 ¼ q0 o1t,o2t, . . . ,oMtð Þ ð29Þ

where the o0smust be sufficiently irrational in the
sense of the KAM (Kolmogorov (1954), Arnold
(1963), Moser (1967)) theorem. Besides ampli-
tudes as order parameters, also phases
f1(t),. . .,fM(T) are introduced. For details
cf. (Haken 2004b), and for alternative approaches
(Chenciner and Iooss 1979; Sell 1979).

A Remark on the Method of Solution of
Evolution Eq. (1)

In this article the central role of order parameters
is stressed because this allows us to establish
profound analogies between quite different sys-
tems. In practical applications it may be prefera-
ble, however, to apply other methods of solution,
analytical, numerical or mixed, in order to derive
the spatial, temporal or spatio-temporal patterns.
In this way, the Springer Series in Synergetics
have developed a “tool box” of models
(Mikhailov 1993).

12 Synergetics: Basic Concepts



Quantum Theoretical Formulation

In a quantum theoretical treatment one deals with
quantum mechanical Langevin equations which
are Heisenberg equations of motion for operators
to which pumping and damping terms as well as
random noise sources are added. Here, according
to quantum theory, the system’s observables are
represented by time-dependent quantum mechan-
ical operators, Oj. For instance, by the position
operator bx and the momentum operator bp of a
particle, or, in quantum field theory, by creation
and annihilation operators bb þ

, bb , respectively.
The quantum mechanical Langevin equations
read (see, for instance (Haken 1970, 1985)):

_O j ¼ i
ℏ

H,O j

� 	þ dampingþ F j tð Þ, ð30Þ

where H is the Hamilton operator, and Fj(t) are
stochastic operators which usually are assumed to
be d-correlated in time. The quantum mechanical
properties can be determined by the postulate of
quantummechanical consistency ofOj, (cf. (Haken
1970), appendix).

If the non-commutativity of operators is taken
care of, the procedure to derive order parameter
equations is formally the same as in the case of
classical Langevin equations as indicated above.
The Fokker–Planck equation, however, must be
replaced by a density matrix equation, originally
introduced as master equation (Pauli 1928). For
nonequilibrium systems, such as the laser, see
(Scully and Lamb 1967; Weidlich and Haake
1965), also (Haken 1970; Sargent et al. 1974).
Using methods of quantum classical correspon-
dence, this density matrix equation can be
converted into a Fokker–Planck equation under
specific conditions. The basic idea is this:

Quantum-Classical Correspondence

There are several ways to define quantum classi-
cal correspondence. In the case of position opera-
tor bx and momentum operator bp with the
commutator bp, bx½ � ¼ ℏ

i and the density matrix r,
the Wigner distribution function W(x, p) (Wigner
1932) is defined by

W x, pð Þ ¼ 1

2pð Þ2 �
ð ð1
�1

e�i k x�i l p

� tr ei kbxþi lbpr
 �
dkd l ð31Þ

where “tr” means trace.
Thus a relation is established between the

quantum mechanical density matrix and a classi-
cal quasi-density W(x, p). Based on (31) or equa-
tion (34, 35, 36), a density matrix equation can be
converted into a generalized Fokker–Planck equa-
tion (Haken 1964).

By the transformation of bx , bp to creation and
annihilation operators b+, b by means of

bb þ ¼ 1ffiffiffiffiffiffi
2ℏ

p bxþ ibpð Þ ð32Þ

bb ¼ 1ffiffiffiffiffiffi
2ℏ

p bx� ibpð Þ ð33Þ

an alternative form to (32) is given by

P b, b�ð Þ ¼ 1

p2

Z Z 1

�1
e�i b k�i b�l

� tr ei k
bb þ

þi lbbr� �
d kd l: ð34Þ

Because bb þ
, bb are noncommuting operators,

½ bb þ
, bb � ¼ 1, different “quasiprobability” distri-

butions P result, if

ei k
bbþþi lbb

is replaced by

ei k
bbþei lbb ð35Þ

or

ei k
bb ei lbbþ : ð36Þ

(35) gives rise to the Glauber–Sudarshan repre-
sentation. For details and references see (Haken
1970).
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Regular Spatial and Spatio-Temporal
Patterns

One of the most striking features of non-
equilibrium systems in physics, chemistry and
biology is their capability of forming (more or
less) regular spatial pattern (for explicit examples
see below). (There is a rich literature on pattern
formation in physics, especially fluids
(Chandrasekhar 1961; Cross and Hohenberg
1993; Manneville 1990; Swinney and Gollub
1981), but also semiconductors (Schöll 2001)
and nonlinear optics (Staliunas et al. 2003), chem-
istry (Epstein and Pojman 1998; Fife 1979;
Kuramoto 1984) and biology (Babloyantz 1986;
Meinhardt 1982, 1990; Murray 1989) and general
(Horsthemke and Lefever 1983; Hoyle 2006;
Mikhailov 1993; Nekorkin and Velarde 2002;
Pismen 1999, 2006; Rabinovich et al. 2000;
Vavilin et al. 1967). Furthermore, the patterns
exhibit striking similarities in spite of the fact
that the individual parts are quite different. The
methodology of Synergetics (e. g. (Haken 2004b))
provides us with a basic insight into the causes of
such analogies.

Pattern formation is determined by at least
three causes:

1. internal mechanism, such as e. g. the interplay
between reactions and diffusion in large scale
chemical processes,

2. the influence of boundaries,
3. initial conditions.

Concerning (1) and (2) between two (limiting)
cases can be distinguished.

1. dimensions of the internally evolving patterns
are of the same or larger order as those of the
boundaries. Here a strong influence of the
boundaries must be expected.

2. dimensions of evolving patterns are small com-
pared to those of the boundaries (boundaries!
1).

To bring out the essential features we consider that
originally for a control parameter value a0 the
system is homogeneous and quiescent. The

approach can, however, be extended to a space
dependent reference state (which, e. g. resulted
from a first bifurcation leading to q0 ¼ q0(x))
and the cases of a limit cycle or torus. The space
may be 1, 2 or three dimensional Euclidian or,
e. g., a 2 or 3 sphere.

Infinite Boundaries

We start with 2 infinite boundaries, the medium is
homogeneous and isotropic. We assume a contin-
uous transition from the homogeneous to the
“bifurcating” state. The evolving patterns are
determined by the leading terms in (8) that we
call the “mode skeleton”

q x, tð Þ ¼ q0 þ
X

xu tð Þvu xð Þ ð37Þ

and the order parameter Eq. (12). The functions
vu(x) are the space-dependent part of the solutions
to (4) where L is a differential (or integral) oper-
ator which is invariant against translation and
rotation. Thus, e. g., L commutes with the dis-
placement operator

Oa : x ! xþ a, a constant vector:

Thus vu(x) can be chosen as eigenfunction to Oa,

Oavu xð Þ ¼ Lvu xð Þ ð38Þ

with

vu ¼ ei k x ð39Þ

L ¼ ei k a ð40Þ

i.e. plane waves. Which waves must be consid-
ered in (37) is determined by lu in (6) as well as by
the order parameter Eq. (12).

The condition Re lu(k)¼ 0 defines k¼ kcrit. As
was shown by means of many examples k �
kcrit 6¼ 0. If the boundaries are finite, such a dis-
crete k must be chosen which comes closest to
kcrit. If the boundaries tend to infinity, a continu-
ous set k is taken care of by (generalized)
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Ginzburg–Landau equation (see above). If the
boundaries are “narrow” in 1 or 2 dimensions,
but large in the remaining dimensions, the wave
vector k must be split into kII and k⊥ where kII is
practically continuous and k⊥ discrete. Quite
often only one k⊥ (the most critical) needs to be
considered. This leads to practically 2 (or 1)
dimensional patterns connected with kII. In the
2-dimensional case, the modes with |kII| ¼ kcrit.
are degenerate. This degeneracy can be lifted by a
weak influence of boundaries (leading to roll pat-
terns), by specific initial condition which
(by chance) prefers a specific roll pattern, or by
terms in the order parameter-equations that lead to
specific combinations, e. g.

k1 þ k2 þ k3 ¼ 0, ð41Þ
where kj, j ¼ 1, 2, 3 belong to kII.

This gives rise to the formation of hexagons.
This is the case if the leading term of ~N contains

ð
vk1vk2vk3 d

2x 6¼ 0: ð42Þ

In three dimensions this mechanism may lead to
plane wave fronts stabilizing each other which
gives rise to icosaeders, as observed in diatomea.

An important class of spatio-temporal patterns
(in 2 dimensions) results when the system utilizes
rotation symmetry. This can best be explained by
the following example:

In many cases of practical interest, N in (1) and
thus L in (4) contain the Laplace operatorD.When
written in planar polar coordinates r, #, solutions
to (4) are of the general form

v / ei m#�k r�o tð Þ ð43Þ
(times a rotation symmetric function g(r)) which
represents spirals. m ¼ 0 represents concentric
rings, while an integer m > 0 represents the num-
ber of spiral arms. o ¼ 0 represents standing
spirals, o 6¼ 0 rotating spirals.

The mode skeleton (37) is composed of func-
tions of the form (43). Which of the functions (43)
appear in (37) depends on the competition
Eqs. (12) for order parameters, which may also
allow for a super position of counter rotating

spirals (such as in the sunflower head). As group
theory shows (see below), solutions (43) with
different m’s belong to different irreducible repre-
sentations, and do not coexist in (37). This does
not exclude the coexistence of differently rotating
spirals in different regions of space, however.

The above results can be cast into the iso-
morphy principle:

While the “true” q is represented by (we omit
the homogeneous q0)

q ¼
X
u

xuvu xð Þ

þ enslaved modes, with same symmetry:

ð44Þ
and vu “true modes”, its symmetry features can be
replaced by a “representative” q0:

q0 ¼
X
k

xkRk xð Þ, ð45Þ

where Rk represent the “elementary” functions
showing the symmetry under consideration.
While the material significance and explicit form
of q according to (44) may be quite different for
different material substrates, q0 (45) shows the
same patterns for different systems.

These results can be deepened by invoking
group theory, in which also the effect of the
boundaries is taken into account.

Theory, Representation Theory, Finite
Boundaries

Consider a set of transformations Gj of space vari-
ables x ! x0 so that

G jq ! q0 ð46Þ

Example 1 Gj induces the translation

x ! xþ a so that G jq xð Þ ¼ q xþ að Þ: ð47Þ

The transformations must be so that they are com-
patible with the internal properties of the system
(1) and the boundary conditions. Example: when
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dealing with a problem on a 2-dimensional
sphere, the transformed coordinates x must not
leave the sphere.

Because of the symmetry of the problem, the
transformations Gj form a group defined by

1. existence of unity E such

G jE ¼ G j for all j ð48Þ
2. the product of two group elements is again an

element of the group,

G jGk ¼ Gl for all j, k ð49Þ

3. existence of an inverse G�1
j for all j so that

G�1
j G j ¼ E, ð50Þ

4. associative law

GkGlð ÞG j ¼ Gk GlG j

� � ð51Þ
for all group elements.
In the following we first ignore random forces,
i.e. we consider (1) with F � 0.

_q x, tð Þ ¼ N q,D, að Þ: ð52Þ

Jointly with the boundary conditions, (52) defines
a function space S in which all functions to be
considered must lie (i.e. can be represented by
linear combinations of a complete set of (vector
valued) basic functions of S; example: S is a
Hilbert space)

Definition 1 The system is invariant against Gj if
for all f 2 S

G j N G�1
j f


 �
¼ N fð Þ: ð53Þ

Example 2

G j : x ! xþ a, ð54Þ

N fð Þ ¼ Df þ V xð Þf þ f 2: ð55Þ

Then

G j � N G�1
j f


 �
¼ DG�1

j f xþ að Þ
þ V xþ að ÞG�1

j f xþ að Þ

þ G�1
j f xþ að Þ


 �2

ð56Þ

¼ Df xð Þ þ V xþ að Þf xð Þ þ f xð Þ2 ð57Þ

6¼ N fð Þ ¼ Df xð Þ þ V xð Þf xð Þ þ f xð Þ2 ð58Þ

unless V(x + a)¼ V(x). If a in (54) is arbitrary,N is
not invariant against (54).
Application of Gj to q in (52) leads to

d
dt

G j q
� � ¼ N G j q

� � ð59Þ

or because of (53), (with f ¼ Gj q), to

d
dt

G j q
� � ¼ G j N qð Þ: ð60Þ

In the spirit of representation theory of groups the
action of Gj on f can be understood as an abstract
operation, but also as a matrix acting on the vector
f in S- space.

By appropriate transformation of basis of q,
and using the representation theory of symmetry
groups, all matrices Uj belonging to all group
elements j can simultaneously be decomposed
into “irreducible” representations so that (in the
example of 3 irreducible representations)

U j ¼
□ ○ ○

○ □ ○

○ ○ □

0
B@

1
CA ð61Þ

Each box□ is a matrixU kð Þ
j with dimensionDk, so

that

D1 þ D2 þ � � � þ Dk ¼ dimension U j:

Example 3 Rotation group applied to 2-sphere
(e. g. earth surface). Basis functions are spherical
harmonics Yl

m with “quantum numbers” l, m.
Subspace l fixed, m ¼ 0,. . ., l – 1. As a conse-
quence, the mode skeleton reduces to (q0
dropped)

16 Synergetics: Basic Concepts



ql ¼
X
m

xm tð ÞYl
m: ð62Þ

There is no coupling between different ls, which
implies a low dimensional dynamics of xm.

Generally, the original function space S is
decomposed into subspaces forming the basis of
each irreducible representation. This implies a
symmetry reduction beyond bifurcation point,
compared to the situation below bifurcation
point, where

G j q ¼ q for all j, ð63Þ

i.e. q fully symmetric under G.
In our example beyond the bifurcation point q is

given by ql where Yl
m transforms according to the

subgroupGl,which leaves the space spanned by Yl
m

invariant. If, however, group elements not belonging
to Gl are applied to ql, this space is left. In other
words, ql is connected with a lower symmetry than
q (63). By bifurcations, the symmetry of q is lowered
and one speaks of “symmetry breaking instability”.
If fluctuating forces in (1), i.e. in (52) are taken into
account, the full symmetry can be restored (under
specific conditions on the fluctuating forces).

While group theory has found important and
widespread applications to quantum theory, it is
less frequently used in problems of Synergetics,
though there it may lead to deep insights as
pointed out above. (For an in-depth approach see
(Golubitsky and Schaeffer 1988; Golubitsky et al.
1988; Sattinger 1980).)

On top of, or jointly with, regular patterns, a
variety of defects as well as boundaries between
different patterns may occur (cf. contribution by
Pismen, this volume and (Pismen 1999, 2006)).

A Further Mathematical Tool: Shannon
Information and the Maximum
(Information) Entropy Principle

While evolution equations are the backbone of
Synergetics, also other tools are invoked to deal
with complex systems. Such a tool is Shannon
information (Shannon and Weaver 1949) which
is defined by

i ¼ �
X
j

p j log 2 p j ð64Þ

where pj is the relative frequency of the event j or,
in a different interpretation, the probability of
finding the realization j in an experiment. The
maximum (information) entropy principle as for-
mulated by Jaynes (1957, 1967), for an earlier
proposal see (Elsasser 1937)), allows one to
make unbiased guesses on systems on which
only incomplete data are known by maximizing
the informations, i.e. (64)¼max! or¼ extremum!
under given constraints.

A simple example is provided by a gas com-
posed ofN particles, where the total kinetic energy
Etot
kin is fixed. Denoting the kinetic energy of a

particle with mass m and velocity vi by f i ¼
m=2ð Þv2i , the mean kinetic energy per particle is

X
i

pi f i ¼ Etot
kin=N ð65Þ

To fix pi, (64) must be maximized under the
normalization condition

X
i

pi ¼ 1 ð66Þ

and the constraint (65).
Using Lagrange multipliers, l, l1, the result

reads

pi ¼ exp �l� l1mv2i =2
� � ð67Þ

i.e. the Maxwell–Boltzmann distribution func-
tion. Also relations between the Lagrange multi-
pliers l, l1 can be established which, evidently,
have fundamental thermodynamic significance.

This approach has been extended to the treat-
ment of nonequilibrium phase transitions,
i.e. determination of order parameters, enslaved
modes and emerging patterns (Haken 2000). The
crucial idea consists in the proper choice of con-
straints, as which the moments of the variables qi
are chosen:

< . . . > means average over the joint distribu-
tion function f(q1, q2,. . ., qn) which replaces pj and
the vector (q1,. . .,qN) replaces j. The variables qj
may be discrete or continuous.
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f i ¼< qi > , i ¼ 1, 2, . . . ,N: ð68Þ

f i j ¼< qi q j >: ð69Þ

f i j k l ¼< qi q j qk ql >, i, j, k, l ¼ 1, 2, . . . ,N:

ð70Þ

The resulting distribution function is given by

q ¼ expV l, qð Þ ð71Þ
with

V l, qð Þ ¼ lþ
X
i

li qi þ � � �

þ
X
i j k l

li j k lqi q j qk ql: ð72Þ

(71) is a starting point to make contact with the
Landau or Ginzburg–Landau theory of phase tran-
sitions (Landau and Lifshitz 1959), and to
guessing Fokker–Planck equations. The approach
allows one to calculate the efficiency of self-
organizing systems close to their instability
points.

The method has been extended to the “unbi-
ased modeling” of stochastic processes: how to
guess path integrals, Fokker–Planck equations
and Langevin-Îto equations (Haken 1996). The
central quantity to be searched for is the probabil-
ity density Pn of paths.

Let q(t) be the state vector q ¼ (q1,. . ., qn) at
time t, then

Pn tn, tn�1, . . . , t0ð Þ
¼ Pn q tnð Þ, tn; q tn�1ð Þ, tn�1; . . . ; q t0ð Þ, t0ð Þ,
tn > tn�1 > . . . > t0:

ð73Þ
This task is simplified if the Markov hypothesis
on the process holds, i.e.

Pn tn, tn�1, . . . , t0ð Þ ¼ bP q tnð Þ, tnjq tn�1ð Þ tn�1ð Þ � Pn�1 ð74Þ

where bP is the transition probability so that only
transition probabilities between subsequent states
(with Dt ! 0) must be guessed in addition to P0.

In the frame of the present approach, this task is
fulfilled by use of the maximum information prin-
ciple. The constraints to be used are essentially
conditional first order moments and two-time cor-
relation functions of the state vectors q(t), q(t0).

Phenomenological Synergetics

In many fields of science, including medicine, the
microscopic variables and their dynamics are not
well-known or not known at all. Nevertheless, in
quite a number of cases, namely where dramatic
macroscopic changes of the system’s behavior
take place, general insights, gained by Syner-
getics, can be invoked. A paradigm for this pro-
cedure is the modeling of Kelso’s finger
experiments (Kelso 1981, 1995) (Fig. 3). He
instructed subjects to move their index fingers in
parallel which was accordingly performed. How-
ever, when the speed of the fingers was increased,
the parallel movement was replaced by a symmet-
ric movement quite involuntarily and spontane-
ously. In other words, a transition from a parallel
to an anti-parallel phase takes place. In terms of
Synergetics, the interpretation is simple: the con-
trol parameter consists in the prescribed frequency
o of the finger movement, whereas the macro-
scopic quantity, i.e. the order parameter that
changes dramatically is provided by the relative
phase of the two index fingers. According to the
experience made in Synergetics, the order

Synergetics: Basic Concepts, Fig. 3 Transition
between finger movements from parallel to symmetric in
Kelso’s experiment (Haken et al. 1985)
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parameter, here called f obeys a typical order
parameter equations of the form (Haken et al.
1985)

_f ¼ � @V
@f

þ F tð Þ, ð75Þ

where V(f, o))is a potential function and F a
fluctuating force. When the control parameter o
is changed, the potential runs through a series of
forms as depicted in Fig. 4. As was shown in
detail, at a critical value of o, the transition from
one potential minimum to another one occurs, as
related to the change of the kind of finger move-
ment. The mathematical analysis shows hystere-
sis, critical slowing down and critical fluctuations
(Haken 1996) which reject the idea that the brain
acts like a computer via a motor program but
rather via self-organization.

Another application is made by the Synergetic
computer (Haken 2004a) (Figs. 5 and 6), where to
each pattern to be recognized a specific order
parameter is attached. Pattern recognition is then
achieved via a competition between order param-
eters. The competition equations are given by

_xk ¼ @V
@xk

V x1, . . . , xMð Þ

¼ � 1

2

X
k

lkx
2
k þ b

X
k, k0

x2kx
2
k0 � C

X
k

x4k : ð76Þ

This approach may serve also for modeling of
brain functions: both recognition as well as move-
ments are governed by the establishing of order
parameters which may wander from one quasi
attractor to another one. Quasi attractors are
defined as attractors that vanish after the task has
been accomplished, e. g. after a pattern has been
recognized or movement performed.

Based on the concept of order parameters, a
learning procedure for Synergetic computers has
been developed (Haken 2004a). Here the number
of patterns to be recognized is prescribed and then
a special functional must be minimized. In the
case of the Synergetic computer, it is possible to
make contact between the microscopic and the
mesoscopic description, i.e. the microscopic vari-
ables are pixel values qj, j pixel index, whereas the
mesoscopic (or macroscopic) quantities are the
order parameters xk.

The relation between xk, qj is given by

Synergetics: Basic
Concepts,
Fig. 4 Sequence of
potential curves of the
Haken–Kelso–Bunz model
of Kelso’s experiment
(Haken et al. 1985)
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xk ¼
X
j

vkþj q j, ð77Þ

where vkþj are adjoint prototype patterns, with

k pattern index, j pixel index.
The relation between prototype patterns vkj and

their adjoints is given by

X
j

vkþj vk
0
j ¼ dkk0 ð78Þ

At the phenomenological level the order parame-
ter concept allows us to interpret and model com-
plex movement patterns, e. g. learning to ride on a
pedalo (Haken 1996). In the experiments, LED’s
are fixed at the joints of the subject and their
positions measured which gives rise to a series
of time-dependent tracks. Then, in a first step, a
principle component analysis is performed, in the

next step, by means of a variational principle, the
best fit is searched in terms of order parameters
and their equations of motion, in order to mimic
the actual tracks. While in the learning phase
several order parameters are needed, at the end
the whole movement is governed by a rather sim-
ple equation for a complex order parameter.

During the development of Synergetics it
turned out that there are strong relations to gestalt
theory (Köhler 1920) as well as to psycho physics.
A typical example is provided by ambivalent fig-
ures where (Fig. 7) (Fisher 1967) shows an exam-
ple. An observer may either perceive a young
woman or an old woman, but not both simulta-
neously, rather the perception switches between
these two percepts. In the mathematical modeling
to each percept an order parameter is attached
(Haken 2004a), which obeys the typical equations
of Synergetics. The control parameter invoked

Synergetics: Basic Concepts, Fig. 5 Recognition of faces by the synergetic computer: stored or learned prototype
patterns (Haken 2004a)

Synergetics: Basic Concepts, Fig. 6 Pattern recognition by the synergetic computer: recognition of a specific face of
which initially only a subset of pixels is presented (Haken 2004a)
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here is attention. According to an early suggestion
by Wolfgang Köhler (1920), when a pattern is
recognized, the corresponding attention fades
away. This has been modeled mathematically
based on a competition dynamics between two
order parameters, when the control parameter
(attention) of one pattern fades away, the other
pattern gets the possibility of being perceived.
Then in the next step the corresponding attention
parameter fades away and the first pattern may
re-appear (Fig. 8) (Haken 2004a). This model
describes details of the observed phenomena,
such as the dependence of the duration of the
perception of one face as compared to that of the
other face, dependent on the bias which face is
recognized first. Also, one may distinguish

between slow, medium and fast observers,
depending on the individual parameters.

Quite generally, order parameters may have
properties of gestalt in the sense that they are
invariant against size, orientation and perception
of objects in space.

In medicine, a syndrome has the characteristic
features of an order parameter. On the one hand it
is generated by the co-operation, or at least by the
simultaneous presence of specific features, on the
other hand once the syndrome (order parameter) is
established, it acts on the individual parts of the
system, where the slaving principle induces spe-
cific phenomena at the level of individual parts.
Clearly, the concept of circular causality plays an
important role here. It shows that the syndrome, at
least in general, can not be cured by curing an
individual symptom, but rather by curing a deci-
sive majority of individual causes.

Semantic Synergetics

In soft sciences, but also in medicine and other
fields, a mathematical modeling, even at the level
of order parameters may not be possible. Never-
theless, Synergetics may provide us with qualita-
tive insights into basic mechanisms. In
psychology and psychiatry (Schiepek 1999),
quite often specific mental states can be ascribed
to a patient. For instance in bipolar patients a
depressive phase or a manic phase may appear
or in depressive patients a normal phase and a
depressive phase. Another example is provided
by patients with a compulsory action. In the spirit
of Synergetics, as a theory of indirect control, one
may ask, whether there are appropriate control
parameters by means of which the behavior of a
person can be changed. Let the two states be

Synergetics: Basic
Concepts, Fig. 8 Order
parameter oscillations
belonging to the recognition
young woman/old woman
with bias towards the young
woman (Haken 1996)

Synergetics: Basic Concepts, Fig. 7 Example of an
ambivalent figure: young/or old woman? (Fisher 1967)
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represented by the positions of a ball in a land-
scape with two valleys. In this situation, direct
control means to push the ball from the unwanted
position to the wanted. Indirect control means to
lower the potential hill between the two valleys so
that the wanted transition may occur via self-
organization. This may happen through interven-
tions used in cognitive psychology, a change of
environmental conditions, or/and by specific med-
ication. The central issue here is that the patient is
not directly influenced, e. g. by saying you must
do this or that, but rather by a soft changing of
his/her point of view. A number of successes have
been reported about this method which is, to some
extent, well known in psychiatry, but finds here a
scientific theoretical basis. For more details see
the article by G. Schiepek and V. Perlitz, this
section, and in a somewhat related form (Hansch
2002).

Some Selected Examples

The study of nonlinear, self-sustained oscillations
(Abraham and Marsden 1978; Andronov et al.
1966; Bogoliubov and Mitropolsky 1961) be it
in radio-engineering, mechanics or other fields,
has a long tradition. In the context of bifurcation
theory, their origin was unearthed by Hopf (1942,
1948).

Nonlinear optics (Mills 1991) and, when
quantum effects are important, quantum optics
(Haken 1979; Meystre and Sargent 1990;
Schleich 2001; Walls and Milburn 1994) provide
us with a wealth of phenomena, in particular of
the formation of coherent oscillations. A device,
closely related to the laser, is the parametric
oscillator (Graham 1970), in which, within a
nonlinear crystal, incoming pumplight is split
into a signal and an idler. Then, similar to the
laser light, the signal light becomes amplified,
and its generation can be described as that of a
nonlinear quantum-mechanical oscillator. Fluid
dynamics is rich of pattern formations (including
chaos) (Bodenschatz et al. 2000; Busse 1972;
Bénard 1900a, b; Fenstermacher et al. 1979;
Gollup and Benson 1979; Lorenz 1963;
Manneville 1990; Newell and Whitehead 1969;

Rabinovich et al. 2000; Ruelle and Takens 1971;
Segel 1969; Swift and Hohenberg 1977;
Swinney and Gollub 1981), to mention just a
few. In a fluid heated uniformly from below,
with increasing temperature difference, several
instabilities may occur for instance giving rise
to stationary patterns, such as rolls, hexagons
(Fig. 9) or squares. In the next step the rolls
may start to show oscillations, and still more
complex patterns may occur (Fig. 3). In the case
of the Taylor instability (Taylor 1923), a liquid is
placed in between two coaxial cylinders, where
the outer one is rotating. With increasing rotation
speed, a hierarchy of instabilities is reached, first
the formation of roles, then oscillating rolls at
one frequency, then oscillation of rolls at two
frequencies, and finally weak turbulence,
i.e. chaos occurs (Fig. 10) (Fenstermacher et al.
1979; Marx 1987). Important phenomena are the
establishing of boundaries and of defects as
described in the article by Pismen (1999, 2006)
and other articles of this Encyclopedia. A rich
variety of pattern formation may occur in semi-
conductors (Schöll 2001), where electrons and
holes as well as currents form specific spatio-
temporal patterns. In meteorology, atmospheric
convection patterns and other instabilities are
treated (Giaiotti et al. 2007). In chemistry, oscil-
lations and large scale patterns arise by means of
the interplay of chemical reactions and diffusions
(Belousov 1959; Bray 1921; Epstein and Pojman
1998; Field et al. 1972; Fife 1979; Zaikin and
Zhabotinsky 1970), e.g. concentric ring patterns,
each starting from a center, which then annihilate
each other when colliding. An important class is
provided by spiral patterns which may have one
to several arms (Fig. 11). In biology, specific
models on morphogenesis were treated, such as
the formation of stripe or spot patterns on animal
furs or skins of fish (Fig. 12) or still more com-
plicated patterns on sea shells (Gierer and
Meinhard 1972; Haken 2004b; Meinhardt 1982;
Meinhardt 1990; Murray 1989). The basic idea
which can be traced back to Turing (Turing 1952)
is this: originally unspecialized cells produce
activator and inhibitor molecules which by reac-
tion and diffusion form a prepattern, a morpho-
genetic field (Wolpert 1969). At positions of high
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activator concentration, genes are switched on
which then leads to cell differention producing
e. g. pigments. In aggregating slime mold, spiral
or concentric ring patterns are observed (Bonner
et al. 1972; Gerisch and Hess 1974). Mathemat-
ical models on prebiotic evolution (Eigen and
Schuster 1977) study the competition between
species of biomolecules and the “survival” of
the fittest, where pronounced analogies with the
dynamics of laser photons can be unearthed, fully
in line with Synergetics (Haken 2004b). In the
understanding of brain function, for instance,

steering of movements, pattern recognition or
decision making, the reduction of degrees of
freedom of the numerous neurons to few order
parameters is central (Haken 1996).

The concepts and principles of Synergetics
shed new light on important relationships in econ-
omy, such as cooperation and competition
between companies, the important role of indirect
steering by means of control parameters, such as
taxes, interest rates. It can be shown, that a fusion
of companies does not necessarily lead to so
called synergy effects, but rather critically

Synergetics: Basic
Concepts, Fig. 9 Model
calculation of the motion of
a fluid in a circular pan
uniformly heated from
below. (After Fantz et al.
1993). Upper left corner:
above a critical temperature
difference between lower
and upper surface of the
fluid layer, a hexagonal
pattern appears. If the
boundary is also heated
uniformly, a transition to the
spiral pattern with one or
several arms can be found
(lower right corner)
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depends on initial conditions and details of the
cooperation between the previously separated
firms. Important insights are also gained into fun-
damental processes of climatology, as well as in

ecology such as the by now well-known and pub-
licly discussed effects that even small concentra-
tions of chemicals in the atmosphere can change
the climate dramatically. The same is true for
lakes, in which beyond a critical pollution, fish
population dies out entirely.

In this way, the numerous examples collected
in the field of Synergetics, provide not only sci-
entists but also the public with impressive exam-
ples of dramatic changes (instabilities) provoked
by even a slight change of control parameters.
Clearly, an important research subject of

Synergetics: Basic Concepts, Fig. 10 Pattern hierarchy
in the Taylor–Couette instability. A fluid in between two
vertical coaxial cylinders of which the outer one rotates,
shows no macroscopic movement pattern, if the movement
of the outer cylinder is slow. When the rotation speed is
increased, first a role pattern appears in which the fluid
moves outwards at one height, and then inwards at another
height. This movement pattern is periodic with respect to

height (Taylor 1923). At a further critical rotation speed,
the pattern shows oscillations which at a further speed
transform into a motion with two frequencies until eventu-
ally chaotic motion appears. The experiments were done
by (Fenstermacher et al. 1979), the modeling was done for
the first transition (homogeneous to roles) and especially
the second transition (roles to oscillating roles) by (Marx
1987)

Synergetics: Basic Concepts, Fig. 11 Belousov–
Shabotinsky reaction: the occurrence of spirals. (Courtesy
A.T. Winfree). They may show one to several arms. The
centers of the spirals may occur at different positions.
Spirals hitting each other, annihilate each other

Synergetics: Basic Concepts, Fig. 12 Stripe pattern on
a tropical fish
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Synergetics is a detailed study of which control
parameters are critical and to which control
parameters a system is rather insensitive. Sociol-
ogy is an important field for the application of
stochastic models (Bartholomew 1967). In partic-
ular, basic concepts of Synergetics have proven
useful in the developing field of sociodynamics,
where e. g. phase transition-like phenomena may
occur (Weidlich 2000).

History and Relations to Other Fields

The term Synergetics was coined by H. Haken
in 1969 in a lecture at University of Stuttgart.
A first description of the goals of this field was
given by H. Haken and R. Graham in 1971
(Haken and Graham 1971) where the unifying
role of the concept of order parameters is
outlined. A relationship exists to the general
system theory due to von Bertalanffi (1950),
which also aims at the exploration of analogies
between different systems, but on the level of
the individual elements rather than on the level
of order parameters. Von Bertalanffi coined the
term flux equilibrium (Fließgleichgewicht) in
order to characterize homeostasis in active sys-
tems (von Bertalanffi 1953). A general mathe-
matical frame for Synergetics is provided by
dynamic systems theory (see, for instance,
(Guckenheimer and Holmes 1983)) which,
however, in the traditional approach ignores
stochastic processes (mainly chance events)
which are also of great relevance for Syner-
getics. Here the theory of Markov processes
with their typical equations, such as Langevin
equations, Fokker–Planck equations, Chap-
man–Kolmogorov equations, the Kramers–
Moyal expansion etc. is important (see for
instance (Stratonovich 1963) and Linear and
Non-linear Fokker–Planck Equations by
T. Frank).

A basic feature of Synergetics consists in deal-
ing with nonlinearities in complex systems and
studying, mainly quantitatively, qualitative
changes at macroscopic scales. Qualitative
changes of systems at macroscopic levels are

studied also by catastrophe theory (Arnold et al.
1999; Thom 1975), which may be interpreted as a
study of the surfaces of equilibrium points of few
order parameters, where different cases are classi-
fied according to the (low) number of control and
order parameters. Chaos theory studies the mostly
irregular dynamics of deterministic low dimen-
sional continuous (Lorenz 1963; Newhouse et al.
1978; Ruelle and Takens 1971; Sparrow 1982) or
discrete dynamic systems (Collet and Eckmann
1980; Feigenbaum 1978; Grossmann and Thomae
1977; May 1976; Smale 1967), where the behav-
ior is mainly characterized by so called
Lyapounov exponents, various kinds of fractal
dimensions and chaotic attractors. The slaving
principle of Synergetics provides a basis for an
application of chaos theory to multi-component
systems in that Synergetics shows the possibility
of reducing the degrees of freedom. Synergetics
shares some of its topics with singularity theory
(Arnold 1993; Golubitsky and Schaeffer 1988;
Golubitsky et al. 1988), which applies to bifurca-
tion points and their surrounding. Another point
of contact is bifurcation theory (see the quotations
in previous chapters), in which the branching of
solutions of the dynamic system close to instabil-
ity points is studied. The term dissipative structure
was coined by Prigogine (Glansdorff and
Prigogine 1971) to characterize evolving struc-
tures in systems away from thermal equilibrium
where as in all such non-equilibrium systems dis-
sipation occurs. A typical example is that of the
convection instability. Prigogine tried to base his
approach on thermodynamics, introducing con-
cepts of entropy production and excess entropy
production. As we now know, these concepts are,
however, insufficient to deal with structure forma-
tion in such systems (Landauer 1975). Based on a
fundamental idea of A. Turing (1952), Prigogine
and Nicolis (1967), see also (Nicolis and
Prigogine 1977), treated macroscopic pattern for-
mation in a specific chemical reaction model. For
more recent work see (Nicolis 1995).

Because of the fundamental importance of
thermodynamics, we elucidate its relationship to
Synergetics more closely.

Thermodynamics (see for instance (Callen
1960)) deals with systems in and out of thermal
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equilibrium. A central concept is entropy. In a
closed system, it tends to its maximum value.
Thermal equilibrium is characterized by the
equipartition theorem: each degree of freedom
has an average energy of 1/2 kT, k ¼ Boltzmann
constant, T absolute temperature. This may refer
e. g. to gas atoms as well as to collective excitations
in crystals. These systems are in thermal equilib-
riumwith their surrounding (heatbaths, reservoirs).

Irreversible thermodynamics (Haase 1969)
treats systems which are not in thermal equilib-
rium but close to it. It mainly deals with transport
and relaxation processes. A central concept is
entropy production.

In the domains of physics, chemistry, biology,
Synergetics deals with systems far from
(thermal) equilibrium. This state is caused and
maintained by an in- and outflow of matter,
energy and/or information. This is achieved by
a coupling of the “proper system” to heat baths
(reservoirs) at different temperatures. The former
concepts of thermodynamics, in particular the
first and second law, are still valid for the total
system (“proper” plus reservoirs), but no more
sufficient to deal with the kinetics of the proper
system. Now the central concept is growth and
decay rates. In systems far from thermal equilib-
rium, collective modes are formed. One or

Synergetics: Basic
Concepts,
Scheme 1 Quantum
optics, example laser. (After
Haken 1970)
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several of them compete best for the external
supply of matter, energy, information and grow
at the expense of all other degrees of freedom
(or modes). Thus the equipartion theorem is no
more valid. In general, the behavior of the system
is governed by few degrees of freedom (order
parameters). Incidentally, this “growth and com-
petition” principle applies to a great variety of
fields out of physics, chemistry and biology,
where “modes” may not only be special physical
structures, but may mean behavioral patterns,
special functions etc. Quite often, a “mode” is
initiated by a chance event (fluctuation). Clearly,
a generalized Darwinian principle can be seen:
The interplay between mutations (microscopic
chance events) and selection (competition
between mascropic modes) leads to macroscopic
patterns (structures) in the widest sense of the
word (Scheme 1).

In present days research, a new name is
spreading, namely complexity or complexity
theory. There seems to be no precise definition
of this field available in the scientific commu-
nity. Of what is known so far, we may conclude
that this field has strong ties to the original field
of Synergetics in that it searches also for general
principles but, in addition, it allows the collec-
tion or accumulation of knowledge on all kinds
of complex systems, as is witnessed in the
excellent Complexity Digest, weekly edited by
Gottfried Mayer. What “complexity” eventually
might mean is reflected by the present
encyclopedia.

Future Directions

Synergetics is surely not a closed scientific dis-
cipline but quite open to further research. On the
one hand we may think of further applications of
the principles of Synergetics that have been hith-
erto elaborated on, such as order parameters
etc. Here a wide field of application is provided
by robotics, construction of prostheses, auto-
matic steering of cars etc. On the other hand,
new ideas to endow systems with self-organizing
properties are needed, e. g. groups of mobile

agents for the execution of specific tasks. First
steps have been done for instance by Kornienko
(Kernbach 2008).
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