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Glossary

Interface An interface separates domains where
different stationary states or different patterns
prevail. In the latter case, it is also called a
domain wall. The interface typically has a
finite thickness comparable to a characteristic
intrinsic scale of the system but small com-
pared to the overall system size.

Stationary pattern A stationary pattern is
formed as a result of an instability to perturba-
tions with a finite wavenumber. It may have
any of various spatial structures (striped,
square, hexagonal, or quasicrystalline in 2D,
lamellar, crystalline or quasicrystalline in 3D)
and may slowly evolve in time.

Wave pattern A wave pattern is formed by a
combination of waves propagating in one or
different directions.

Definition of the Subject

A pattern is an inhomogeneous state of a physical
system that arises spontaneously under spatially
homogeneous conditions. Spontaneous pattern for-
mation has been first observed by Faraday (1831) in
vibrated liquid layers and Bénard (1900) in fluids
heated from below. Turing (1952) envisaged pattern
formation as the mechanism of morphogenesis in
living Nature. Some patterns can be described as a
collection of patches or domains where one of alter-
native homogeneous states prevails, separated by
relatively narrow interfaces. In their turn, moving
interfaces may develop corrugation patterns. Pat-
terns can be stationary or wavelike; they can be
regular, interlaced by defects, or chaotic
(turbulent). In the latter part of twentieth century,
numerous pattern formation phenomena have been
observed in chemistry, biology, fluid mechanics,
granular media, nonlinear optics, and other applica-
tions, and common models describing these phe-
nomena in physically dissimilar settings have been
formulated and studied. Understanding pattern for-
mation is important both for describing natural self-
organization phenomena and for developing
manufacturing processes based on self-organization.

Introduction

A typical setup of a non-equilibrium system that
may undergo a symmetry-breaking transition is
shown in Fig. 1. A non-equilibrium stationary state
homogeneous in the “horizontal” plane is sustained
by fluxes in the normal (“vertical”) direction, along
which an inhomogeneous “vertical structure” may
be formed. This setup may be realized as a layer of
fluid or granular matter; a chemically reacting sys-
tem, such as an active layer or a catalytic surface; an
area where different populations spread out and
compete; a propagating interphase boundary, e.g. a
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melting or crystallizing solid; a slice of nonlinear
optical medium, etc. Under certain conditions, most
commonly, under increased driving, this homoge-
neous state may be destabilized, giving way to a
stationary or moving pattern with a characteristic
wavelength dependent on physical properties of
the system as well as on external fluxes. In chemi-
cally reacting systems, three-dimensional patterns
can be also formed when a sufficient amount of
reactants is stored; such patterns may exist, of
course, for a limited time until the original cache is
depleted. Mathematically, a pattern typically
emerges as an inhomogeneous solution of a
(system of) partial differential equation(s) with
space-independent coefficients in the absence of
lateral fluxes.

Alternative states, corresponding to different
phases, may exist also in equilibrium systems.
Following a fast quench past a critical point, dif-
ferent states, separated by domain boundaries,
would be approached at spatially removed loca-
tions. Typically, these domains would conse-
quently slowly coarsen to minimize the extent of
an interphase boundary and related energetic
costs. A stationary pattern with a finite wave-
length may exist, however, also at equilibrium,
provided it minimizes the free energy of the sys-
tem. Such patterns are realized as “mesoscopic
crystals” in block-copolymers consisting of two
kinds of mutually repelling units (Hamley 2003).

In fluid mechanics, inhomogeneous states, most
often disordered but still retaining a measure of
regularity, are commonplace, as anybody observing
wavy sea and cloud patterns could have realized
long before classical nineteenth century experiments
of Faraday and Bénard. Wave patterns generated by

oscillatory chemical reactions (which long consid-
ered to be impossible due to thermodynamic mis-
conceptions) were demonstrated in 1960s (Burger
and Field 1985), while controlled experiments dem-
onstrating persistent stationary chemical patterns in
reaction-diffusion systems had to wait till early
1990s (Ouyang and Swinney 1991). Shell growth
patterns (Gierer and Meinhard 1972), striped and
dotted animal skins (Murray 1981), and desert veg-
etation patterns (Gilad et al. 2007) have been always
here for anybody to observe, before finding rational
explanation in terms of the same nonlinear models.
Corrugated interfaces were observed and described
both as flame fronts in combustion theory
(Zeldovich 1985) and as dendrite forms of growing
crystals (Langer 1980). More recently, much atten-
tion has been drawn by nonlinear optical patterns –
spontaneous images emerging in optical circuits and
lasers (Arecchi 1999).

Stationary Patterns

Symmetry-Breaking Transitions
The most direct way to formation of stationary
patterns is a symmetry-breaking bifurcation. It
can be demonstrated in a straightforward way
taking as an example a two-component reaction-
diffusion system (RDS)

@tu ¼ D1∇2uþ g�1
1 f u, vð Þ, (1)

@tv ¼ D2∇2vþ g�1
2 g u, vð Þ, (2)

where f(u, v), g(u, v) are source functions
depending on the variables u and v, D1, D2 are

Patterns and Interfaces
in Dissipative Dynamics,
Fig. 1 An open system
isotropic in two dimensions.
A truly two-dimensional
system (above) and a cut
through a system with
vertical structure (below,
shown symbolically by
varied shading). Arrows
indicate the direction of
external fluxes
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diffusivities, and ∇2 is the Laplace operator. We
suppose that the system has a homogeneous sta-
tionary state (HSS) u = us, v = vs satisfying f(us, -
vs) = g(us, vs) = 0; the factors g1,g2 are introduced
to scale the derivatives fu, gv computed at this HSS
to unity. Stability analysis of the chosen HSS to
infinitesimal perturbations ~u, ~v / exp ik � xð Þ with
a wave vector k shows that the most dangerous
perturbations have the wavenumber

kj j2 � k2 ¼ 1

2

f u
g1D1

þ gv
g2D2

� �
: (3)

This value should be positive, which is possi-
ble only in the presence of positive feedback, or,
in chemical terms, when at least one of the species
is “autocatalytic”, say, fu > 0 Breaking of spatial
symmetry preempts Hopf bifurcation, which
occurs at g�1

1 f u þ g�1
2 gv ¼ 0 and leads to homo-

geneous oscillations, provided only one of the
species is autocatalytic, so that gv < 0, and the
autocatalytic species is less diffusive. Thus, for
spatial symmetry breaking in a two-component sys-
tem, one needs a combination of a slowly diffusing
“activator” and a rapidly diffusing “inhibitor”.

The development of a pattern can be understood
qualitatively in the following way. A local upsurge
of the activator concentration increases also the
concentration of the inhibitor, which spreads out
suppressing the activator at neighboring locations.
This, in turn, suppresses the inhibitor locally and,
through inhibitor diffusion, enhances the activator
further along the line, so that the inhomogeneous
state spreads out. This scheme works with the roles
of an activator and an inhibitor played, respec-
tively, by prey and predator in population dynam-
ics, by growing plants and seeping moisture in
ecology, or, rather less directly, by buoyancy and
heat conduction in natural convection.

Pattern formation may also result from non-
local interactions. For example, a nonlocal exten-
sion of the nonlinear Schrödinger equation (NLS)
for a complex field u,

�i@tu ¼ ∇2u� u xð Þ
ð
U x� jð Þ u jð Þj j2dx, (4)

generates a patterned state known as “supersolid”,
as compared and contrasted to superfluid

solutions of the local NLS (Josserand et al.
2007). It might be possible to derive nonlocal
equations from a local RDS. Thus, if in Eq. 2
g2 << g1, so that the inhibitor is fast as well as
diffusive, the time derivative can be neglected;
then, if the function g(u, v) is linear in v, Eq. 2
can be resolved with the help of an appropriate
Green’s function, and substituting it in Eq. 1
yields a nonlocal activator equation.

Selection of Stationary Patterns
Symmetry breaking transitions in more than one
dimension are degenerate due to spatial symme-
tries. In an isotropic system, an arbitrary number
of differently directed modes with k = |k| = idem
can be excited beyond the bifurcation point.
A combination of these modes can give a variety
of distinct planforms. Competition among the
modes that determines the pattern selection is
described by amplitude equations describing evo-
lution of complex amplitudes aj, which have a
general form

daj
dt

¼ � @V

@aj
,

V ¼ �m
P

aj
�� ��2 þP

vijkaiajak
þP

vijklaiajakal þ c:c:

(5)

Here the coefficient m is proportional to the
deviation from the bifurcation point; real coeffi-
cients vijk, vijkl characterize nonlinear interactions
among the modes; the summation is carried out
over all closed polygons formed by the wave
vectors of extant modes. The product of the ampli-
tudes aj , ak , etc. (where the overline denotes the
complex conjugate) may appear in the equation
for the amplitude a j if the respective wave vectors
add up to zero, ki + kj + kk + � � � = 0. This
condition ensures that the modes in question are
in resonance. Otherwise, the product of these
modes rapidly oscillates and is averaged out
when the amplitude equation is derived using
a multiscale expansion procedure. Stationary
solutions, i.e. potential minima of Eq. 5 with
one, two, three, or more non-vanishing modes
with a symmetric star of wave vectors correspond,
respectively, to a striped, square, hexagonal, or
quasicrystalline pattern.
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The cubic term in the potential (5) generates
the lowest-order, hence, strongest nonlinear inter-
actions. This term vanishes in the presence of
inversion symmetry a ! �a, which exists, in
particular, in the thoroughly studied case of
buoyancy-driven convection in the Boussinesq
approximation. Otherwise, it is dominant near
the bifurcation point, causing (in 2D) a subcritical
transition to a hexagonal pattern comprising
modes forming a regular triangle. These three
modes are in resonance, which means that their
phases are not independent but bound by a linear
relationship. The sum of phases always adjusts in
such a way that interactions are destabilizing. The
remaining two phase degrees of freedom corre-
spond to translational symmetry in the plane.

In 3D, the preferred patterns, or crystalline
structures, comprise wave vectors forming a reg-
ular polyhedron with triangular faces – tetrahe-
dron, octahedron or dodecahedron (Alexander
and McTague 1978). The former two correspond
to a body- centered cubic (bcc), and the last one, to
a quasicrystalline structure with fivefold symme-
try. These lowest-order interactions cannot, how-
ever, stabilize the pattern at a finite amplitude, and
next-order interactions generated by the quartic
term in Eq. 5 are necessary to saturate the pattern.
Depending on respective interaction coefficients,
various structures can be chosen.

A greater variety of patterns may arise if plan-
forms with different wavenumbers k are excited
simultaneously. This can be achieved in a most
natural way in two-layer systems where the wave-
length of the excited pattern depends on the thick-
ness of each layer, as in convection (Proctor and
Jones 1988), or different diffusivities, as in a
pattern-forming chemical system (Yang et al.
2002).More possibilities arise in nonlinear optics
where spatial symmetry breaking may occur on
different wavelengths at rather close values of a
control parameter (Pampaloni et al. 1997). The
resulting coupled amplitude equations can gener-
ate a variety of composite planforms, which may
have a form of superstructures or quasicrystals.
Lowest-order interactions can generate various
resonances; no rigid fitting of wavenumbers is
required for this, since resonant modes can form an
isosceles triangle. Dynamics of mode interactions

may be complicated (Pismen and Rubinstein 1999),
since the gradient structure of Eq. 5 is, generally,
lost.

Regular patterns may suffer various instabil-
ities, which limit the range of admissible wave-
lengths or lead to a change of the planform
through excitation of a non-collinear mode or
decay of an extant mode. Wavelength changing
instabilities, as a rule, do not saturate and lead to
formation of defects.

Modulated and Distorted Patterns
Natural patterns seen both in experiment and sim-
ulations are never perfect: their amplitudes may be
modulated at distances large compared to the
basic wavelength, and they may have various
defects: dislocations, disclinations, and domain
walls. An example of an imperfect striped pattern
is shown in Fig. 2. Variation of local wavelengths
is possible because instability spreads out to a
finite range of wavenumbers, scaled as the square
root of the parametric deviation from the bifurca-
tion point. Other imperfections are a consequence
of the rotational symmetry of the system.

Patterns and Interfaces in Dissipative Dynamics,
Fig. 2 Various forms of pattern defects. 1 – dislocation,
2 – concave disclination, 3 – convex disclination, 4 – ampli-
tude domain wall, 5 – phase domain wall (Bowman and
Newell 1998, reproduced with permission. Copyright by
the American Physical Society)
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Different orientations of stripes may be chosen at
different locations, either randomly or under influ-
ence of boundary conditions or local inhomoge-
neities. The discrepancies of local orientations are
reconciled through formation of disclinations and
domain walls, while dislocations reconcile dis-
crepancies of local wavelengths.

Weak distortions, which do not contain
defects, can be described by means of either
space-dependent amplitude equations applicable
to small-amplitude patterns near the bifurcation
point, or phase dynamics applicable also to finite-
amplitude patterns but restricted to long-scale
distortions.

The amplitude equation must have an aniso-
tropic form in an isotropic system, the source of
anisotropy being the direction of the wave vector
itself. Modulations of this amplitude along and
across the direction of the wave vector k should
be scaled differently, since adding a small longitu-
dinal component, say, ϵqx changes k = |k| by O(ϵ),
while adding a transverse component of the same
magnitude ϵqy changes k by O(ϵ2) only; thus the
stripes are bent far more easily than they
are compressed or extended. This leads to the
Newell-Whitehead-Segel (NWS) amplitude equa-
tion (Newell and Whitehead 1969; Segel 1969),
which can be written in a rescaled universal form

@tu ¼ @x � i

2k
@2
y

� �
uþ u� uj j2u: (6)

The mixed-order differential operator entering
this equation precisely accounts for the equivalence
of all structures with identical wavenumbers, inde-
pendently of the direction of the wave vector.

The NWS equation is ill-suited for computa-
tions, since the orientation of the coordinate axes
depends on the local phase gradient, so that the
differential operator is in fact strongly nonlinear.
Most model computations of striped patterns are
based on the Swift-Hohenberg (SH) equation

@tu ¼ � 1þ ∇2
� �

uþ u m� u2
� �

: (7)

In an anisotropic system where a certain direc-
tion of stripes is preferred, the situation is easier,
and the amplitude equation can be reduced by

rescaling to an isotropic real Ginzburg-Landau
(RGL) equation

@tu ¼ ∇2uþ u� uj j2u: (8)

Phase Dynamics
The idea of phase dynamics (Pomeau and
Manneville 1979) is to characterize a striped pat-
tern by means of a single variable – phase y,
which changes by 2p over the period of the pattern
or, more conveniently, by a rescaled phase
Y = ϵy. The derivatives of the phase are the
wave vector k = ∇y and frequency o = �yt,
which vary on an extended scale exceeding the
wavelength of the underlying structure by a factor
ϵ�1>> 1. The general form of the phase equation
in an isotropic system is determined by scaling
and symmetry considerations alone:

@TY ¼ D1 n � ∇̂
� �2

Yþ D2∇̂2Y, (9)

where @T , ∇̂ are derivatives with respect to slow
time and extended spatial variables, n is the unit
vector along k, and D1, D2 are phase diffusivities
that depend on a particular underlying problem
and are, generally, functions of k. This equation
can be also presented in an elegant gradient form
(Cross and Newell 1984).

The phase equation (9) is, in fact, strongly non-
linear due to the dependence of both the diffusiv-
ities and the direction of the unit vector n on the
local phase gradient. It can be linearized, yielding
an anisotropic diffusion equation, only when devi-
ations from a prevailing wave vector k = k0 are
arbitrary small. If the X- and Y-axes are drawn,
respectively, along and across k0, (9) reduces to

YT ¼ Djj k0ð ÞYXX þ D⊥ k0ð ÞYYY, (10)

where Djj = D1 + D2 and D⊥ = D2 are, respec-
tively, the longitudinal and transverse phase diffu-
sivities. The pattern with the wavenumber k 0 is
stable to long-scale perturbations when both phase
diffusivities are positive. VanishingD|| corresponds
to the Eckhaus instability and vanishing D⊥ to the
zigzag instability. Eckhaus instability defines the
upper limit of stable wavenumbers. It never
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saturates, and usually leads to formation of defects
effectively increasing the wavelength. Zigzag
instability defines the upper limit of stable
wavenumbers; it causes bending of stripes effec-
tively decreasing the wavelength.

Dynamics of Defects
Dynamics of strongly distorted patterns is mostly
governed by motion and interaction of defects.
Defects are topological objects (Mermin 1979): a
dislocation is characterized by circulation of the
phase around any enclosing contour equal to an
integer multiple of 2p, and a disclination, by cir-
culation of the direction of the wave vector equal
to an integer multiple of p. A single dislocation
climbing across the direction of the wave vector
of a striped pattern effects a change of the
wavenumber over an extended region. The force
driving the dislocation is due to the deviation from
the optimal wavenumber. Eckhaus instability of a
striped pattern leads to the formation of a disloca-
tion pair. It is notable that, although the far field of
dislocations can be described by phase equations,
their interaction is determined by the dislocation
core where these equations are inapplicable
(Bodenschatz et al. 1988; Pismen and Rodriguez
1990).

Motion of dislocations in striped patterns is
well understood and supported by experimental
evidence (Braun and Steinberg 1991) for aniso-
tropic patterns governed by Eq. 8. The structure of
dislocations in isotropic systems described by
Eq. 6 is more complicated, being strongly aniso-
tropic (Nepomnyashchy and Pismen 1991).

Disclinations pose more difficulties for the analy-
sis, even on the topological level (Mermin 1979),
see (Newell et al. 1996).

Paradoxically, defects enhance relaxation of the
pattern to a state of minimum energy corresponding
to an “optimal” wavelength. If a deviation of the
control parameter from the symmetry breaking
bifurcation point is of O(ϵ2), the width of the band
of excited modes is of O(ϵ), but the band width
actually observed in a natural patterns containing
defects is ofO(ϵ2) (Bowman and Newell 1998). The
band shrinks due to motion of point defects and
adjustments influenced by domain walls.

The structure and interaction of dislocations in
a hexagonal pattern is strongly affected by the
resonant character of interactions among the con-
stituent modes. Dislocations in any two modes of
the triplet forming a hexagonal pattern, created
originally at arbitrary locations, are always
attracted to each other (Bodenschatz et al. 2000;
Rabinovich and Tsimring 1994), eventually
forming an immobile bound pair corresponding
to a penta-hepta defect (see Fig. 3).

Equations 6 and 8 are derivable from an energy
functional that decreases monotonically in time
until a stationary state of minimal energy is
reached; this state may still contain defects neces-
sary to satisfy boundary conditions in a confined
region. In some cases, however, an additional
field, besides the amplitude, is necessary to ade-
quately describe a physical system even close to
the symmetry-breaking bifurcation point. A well
known example is Bénard convection in low
Prandtl number fluids where the additional factor
is mean flow generated by pattern distortions and

Patterns and Interfaces in Dissipative Dynamics,
Fig. 3 Hexagonal pattern containing a penta-hepta defect
(left) and its three constituent modes obtained by Fourier

filtering of the initial image (Abou et al. 2000, reproduced
with permission)
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advecting the entire pattern. In this case, the pat-
terns remains weakly turbulent indefinitely long,
displaying labyrinthine structures, coexisting
striped and hexagonal domains (Assenheimer
and Steinberg 1993) or spiral defect chaos
(Bodenschatz et al. 2000) (see Fig. 4). Chaotic
non-stationary patterns also typically appear at
higher amplitudes. In reaction-diffusion systems
non-stationary and chaotic patterns become more
likely when the inhibitor response is slowed down.

Moving Interfaces

Stationary and Propagating Fronts
Many physical systems, either at equilibrium or in
a non-equilibrium steady state sustained by exter-
nal fluxes, may exist in two or more alternative
states. If different states are attained at different

spatial locations, they are separated by an inter-
face, carrying excess energy. The simplest model
is a single “reaction-diffusion” equation

@tu ¼ D∇2uþ f uð Þ, (11)

where D is diffusivity and the function f(u)=�V0

(u) (see Fig. 5) has three zeroes that correspond to
two stable (with f0(u) < 0) and one unstable (with
f0(u)> 0) HSS. This equation was first used in the
context of phase equilibria (van der Waals 1894)
as a model of gas-liquid interface, with u denoting
density. It was later extended to the solidification
problem, with u denoting a fictitious “phase field”
assuming its two stable valuesu ¼ u�s in the liquid
and solid phases (Cahn and Hilliard 1958). The
coefficientD is interpreted in this context as rigid-
ity. The “reaction-diffusion” interpretation applies
to non-equilibrium systems, such as a catalytic

Patterns and Interfaces in Dissipative Dynamics, Fig. 4 (a) Coexisting domains; (b) Spiral defect chaos
(Bodenschatz et al. 2000, reproduced with permission)

f (u) V (u)

u u

a bPatterns and Interfaces
in Dissipative Dynamics,
Fig. 5 A function f(u) with
three zeros (a) and the
respective double-well
potential (b)
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surface or an ecological domain, with u denoting
concentration and f(u), the net production rate.
A straight-line or planar interface is stationary
when the potentials V u�s

� �
are equal. It carries

then the interfacial energy

s ¼ D

ð1
�1

u0 xð Þ2dx

¼
ðuþs
us

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DV uð Þ

p
du, (12)

which is identified with surface tension.
If the potentials are unequal, the front moves in

the direction decreasing the total energy of the
system. Assuming that the motion is stationary
and directed along the x axis, (11) can be rewritten
in the comoving frame propagating with the front

velocity c. The steadily propagating solution
depends on a single coordinate x = x � ct, and
(11) reduces to an ordinary differential equation

cu0 xð Þ þ Du00 xð Þ þ f uð Þ ¼ 0, (13)

subject to the boundary conditions u ¼ u�s at
x ! � 1.When both equilibria are stable, they
are saddles when viewed as equilibria of (13). The
front solution corresponds to a heteroclinic trajec-
tory connecting the equilibria u ¼ u�s . The hetero-
clinic connection exists only at unique value of
c (see Fig. 6); thus, the propagation speed is deter-
mined uniquely by solving a nonlinear eigenvalue
problem. Its value is proportional to the difference
of potentials of the two HSS:

a b

Patterns and Interfaces in Dissipative Dynamics, Fig. 6 Generic trajectories in the phase plane u, p= u0(x) (a) and a
nongeneric set of trajectories containing a heteroclinic orbit (b)

a b

Patterns and Interfaces in Dissipative Dynamics, Fig. 7 Trajectories in the phase plane connecting a stable and an
unstable equilibrium
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c ¼ D

s
DV, DV ¼ V u�s

� �� V uþs
� �

: (14)

The situation is different when the retreating
state u ¼ u0s is unstable. This often happens in
population dynamics: a state where a competi-
tively advantageous specie is absent is formally
unstable to infinitesimal perturbations but will be
nevertheless preserved at any location until this
specie is introduced there. An unstable state,
viewed as an equilibrium point of (13), is a stable
node at propagation speeds exceeding a certain
threshold cmin, Thus, a trajectory starting from the
advancing stable HSS connects generically tou0s at
any c > cmin (see Fig. 7). Actual propagation
speed is selected dynamically at the leading edge
(Kolmogorov et al. 1937; van Saarloos 2003), and
turns out to be equal to the minimum speed cmin,
which corresponds to the steepest front profile.
Under certain conditions (when overshoots are
allowed) a faster speed corresponding to a still
steeper profile is selected nonlinearly (van
Saarloos 2003). In the former case, the front is
“pulled” by perturbations growing at the leading
edge and described by linearized equations, while
in the latter case, it is “pushed” by nonlinear
interactions favoring the advancing state.

Interfacial Instabilities
The front solution is neutrally stable to transla-
tions along the x-axis. This neutral (Goldstone)
mode is weakly perturbed when the translation is
weakly nonuniform, so that the front becomes
curvilinear but the curvature radius still far
exceeds the characteristic front thickness.

Propagation of a weakly curved front is best
understood in a coordinate frame aligned with its
deformed shape. The nominal front position is
defined by replacing a diffuse transitional region
by a planar curve C drawn along some intermedi-
ate level of the variable u. The coordinate lines
x= const are obtained by shifting the curve along
the normal by a constant increment, as shown in
Fig. 8. This shift causes the length to increase on
convex, and to decrease on concave side of the
curve. Eventually, a singularity develops in the
latter direction, but, when the curvature radius is

much larger than the characteristic front thickness,
this will happen far away within the region where
one of the HSS is approached.

When (13) is rewritten in the aligned frame an
expanded viewing the curvature as a small param-
eter, the local normal propagation speed of a
curved front is expressed by the eikonal equation

c ¼ c0 � Dk ¼ D

s
DV � skð Þ, (15)

where c0 is the speed of a planar front and k is the
Gaussian curvature.

Since convex front segments propagate slower
and concave segments faster, the front tends to
flatten, provided c0 is uniform everywhere. Insta-
bilities may arise, however, when c0 increases
ahead of the front. This may happen in the pres-
ence of an externally imposed gradient, as in
directional solidification (Langer 1980), but most
commonly is caused by an additional “control”
field. The control field responsible for the
Mullins-Sekerka instability of solidification fronts
(Langer 1980; Mullins and Sekerka 1963) is the
concentration of a contaminant, which is rejected
by the solid and slows down solidification by
lowering the melting temperature. Since the con-
taminant diffuses away more easily from convex
segments, they tend to propagate faster, which
causes instability when the driving is strong
enough to overcome surface tension.

Another example is instability of a combustion
front, which separates hot burnt-out and cold fuel-
rich domains (Zeldovich 1985). A thin front

Patterns and Interfaces in Dissipative Dynamics,
Fig. 8 Construction of the aligned coordinate frame. The
coordinate lines are shown in gray. Arrows show the local
directions of the normal n and the x-axis. Observe a singu-
larity developing on the concave side
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structure arises in this case because combustion
requires both fuel and sufficient temperature for
its initiation, and both fuel concentration and tem-
perature play the role of control variables. When
heat transfer is the limiting factor, convex segments
cool down and propagate slower, and the front is
stable. When, on the opposite, propagation is lim-
ited by fuel supply, convex segments accelerate
and instability sets on, leading to corrugated fronts.

Dynamics of weak deviations ζ(y) from a sta-
ble planar front spanned by a 2-vector y is
described by expanding the normal propagation
speed, front curvature and the control field in
powers of a small parameter scaling both the
deviation ζ and its transverse derivative ∇y, as
well as time. For stable fronts, the appropriate
scaling is ζ = O(1) , ∇y = O(� ) , @t = O(� 2),
leading to the Burgers equation

@tz ¼ D∇2
yz�

1

2
c0 ∇yz
�� ��2: (16)

The particular coefficients here correspond to
(15), but also in other cases the same universal
form can be obtained after the coefficients are
removed by rescaling, provided the effective diffu-
sivityD is positive. If the latter is negative but small,
|D| = O(ϵ2), the appropriate scaling is ζ = O(� ),
∇y = O(� ) , @t = O(� 4), and expanding to a
higher order yields, after scaling away the coeffi-
cients, the Kuramoto-Sivashinsky equation
(Sivashinsky 1977)

@tzþ ∇2
yzþ ∇2

y

� �2

zþ 1

2
∇yz
�� ��2 ¼ 0: (17)

This equation, appearing also in phase dynam-
ics (Kuramoto and Tsuzuki 1976), is a paradigm
of weak turbulence.

Front Interactions and Coarsening
Fronts of opposite polarity in a one-dimensional
system attract and eventually coalesce, thereby
coarsening the distribution of domains, which
may have been created initially in the process of
phase separation or relaxation to alternative HSS.
The interaction is, however, very weak, falling off
exponentiallywith separation. In higher dimensions,

the principal cause of coarsening, or Ostwald ripen-
ing, is the curvature dependence of the propagation
speed, whereby small droplets with high curvature
tend to shrink and eventually disappear. This is a
manifestation of the Gibbs-Thomson effect relating
the equilibrium conditions with the radius of a
droplet.

Coarsening most often occurs under conditions
when evolution is constrained by a conservation
law, so that the integral

Ð
u(x)dx expressing the

total amount of material in the system remains
constant. Under these conditions, fronts cannot
move independently from each other. The conserva-
tion law is accounted for when (11) is replaced by
the Cahn-Hilliard equation (Cahn andHilliard 1958)

@tu ¼ ∇2m, m ¼ � D∇2uþ f uð Þ
 �
: (18)

The eikonal equation governing the front
motion retains the form (15), but the value c0
depends on chemical potential m. The latter shifts
in the course of coarsening in such a way that the
value of the critical radius R = k�1 of a droplet
that neither grows or shrinks, keeps growing as
smaller droplets disappear. Analytical theory
(Lifshitz and Slyozov 1958) predicts universal
asymptotic droplet size distribution at late stages
of coarsening.

Structures Built up of Fronts
Coarsening can be precluded when changes in an
additional control field arrest growth of large and
shrinking of small domains. This leads to forma-
tion of a variety of patterns and solitary structures.
The paradigmal system for exploring these phe-
nomena is the FitzHugh-Nagumo system, which
has the form (1), (2) with the function f(u, v) cubic
in u and linear in v and a linear function g(u, v).
The rescaled form suitable for the analysis of
stationary structures is

� 2@tu ¼ � 2∇2uþ u� u3 � � v, (19)

t�1@tv ¼ ∇2v� v� vþ mu, (20)

Here � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g1D1=g2D2

p
<< 1 is the ratio of

the characteristic lengths associated with the
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activator and the inhibitor, t = D2/D1; the small
coupling parameter e in (19) ensures a balance
between the effect of small interfacial curvature
and weak symmetry breaking between the alterna-
tive HSSu�s ¼ �1þ O �ð Þ; the remaining param-
eters m and v regulate the coupling stress and bias.

Structures generated by the system (19), (20)
are built up by assigning a region where the acti-
vator approaches one of the alternative HSS, com-
puting the respective inhibitor distribution, and
finding stationarity conditions for the fronts
forming the boundaries of this region (Ohta et al.
1989). Possible stationary structures in two
dimensions are a solitary band, a solitary disk, a
striped pattern, or a hexagonal grid consisting of
almost circular spots. The size of spots or stripes is
determined by the parameters of the system, but
there is a considerable leeway in choosing the
general configuration. Under certain conditions,
it even might be possible to store information by
creating or extinguishing spots at chosen locations
(Coullet et al. 2004). In other cases, splitting of a
solitary spot initiates a multiplication cascade
(Reynolds et al. 1994), leading eventually to a
hexagonal pattern filling the plane.

Instabilities of stationary structures are studied
with the help of the linearized eikonal equation
(15) combined with the inhibitor equation (20)
where the last term is expressed through a
shift of the front position. Both solitary bands
and disks can suffer zigzag (leading eventually
to splitting), oscillatory and traveling instabilities.

The latter two become prevalent as the parameter
t decreases, so that the inhibitor response to front
displacements slows down. For example, a soli-
tary band is destabilized in the zigzag mode at
t> 1, while the traveling instability comes first at
smaller t (see Fig. 9). Oscillatory instability is
always preceded by traveling one in this case,
but may become relevant for a solitary disk.

Traveling instability indicates transition to var-
ious propagating structures and wave patterns.
A solitary spot tends to either dissolve or spread
out sidewise after being immobilized; in the latter
case, a spiral structure starts to develop as the ends
lag behind. A traveling spot can be, however,
stabilized if a second inhibitor, both fast and
long-range, is added (Or-Guil et al. 1998).

Various patterns of propagating fronts can be
generated beyond this limit by the same
FitzHugh-Nagumo system, which, however,
should be scaled differently for this purpose.
Unlike stationary or slowly evolving patterns
where the characteristic length scale is set by the
diffusional range of the long-scale inhibitor,
the wavelength of a propagating pattern is tied to
the propagation speed and remains finite even
when the inhibitor is nondiffusive.

The long scale should be redefined therefore on
the basis of the characteristic propagation speed of
the activator front c� ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

D1=g1
p

and the charac-
teristic relaxation time of the inhibitor g2. Using
this “advective” length unit, L� ¼ g2

ffiffiffiffiffiffiffiffiffiffiffiffi
D1=g1

p
brings (1), (2) to the dimensionless form

3
C 1 /4 1 /2
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ν
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Patterns and Interfaces
in Dissipative Dynamics,
Fig. 9 Existence boundary
(C) and loci of zigzag (Z)
and traveling instability for
a solitary band. The loci of
traveling instability are
marked by respective values
of t. A stable band exists
between the line C and an
applicable instability locus
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g@tu ¼ g2∇2uþ f u, vð Þ, (21)

@tv ¼ d2∇2vþ g u, vð Þ, (22)

where g ¼ g1=g2, d ¼ g=� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gD2=D1

p
.The

“inner” scale of the transitional layer, where the
system switches between the two alternative acti-
vator states, u ¼ u�s , is now set exclusively by the
capacitance ratio g, independently of diffusivities,
and, provided g� 1, remains small even when the
inhibitor is less diffusive than the activator. The
parameters can be chosen in such a way that
d� 1, so that the inhibitor diffusion is negligible,
provided g � D1/D2. Under these conditions, the
inhibitor diffusion can be neglected, reducing (22)
to @tv = g(u, v). Although this equation contains
no mechanism for healing discontinuities in v, the
inhibitor field should remain smooth in the course
of evolution, barring freaky initial conditions or
strongly localized perturbations. This opens the
easiest way of constructing various wave patterns,
including such exotic objects as chaotic wave
trains (Elphick et al. 1988).

Interfaces of Patterns
Interfaces between different patterns or different
pattern orientations (domain walls) can be
described in the simplest way on the level of
amplitude equations. This may give qualitatively
correct results in static problems, even though
changes across a domain wall in patterns gener-
ated in simulations and experiments are usually
effected on a length comparable with the pre-
vailing wavelength of the pattern. One can expect
that a stationary solution exists only when the
wavelengths are equal on both sides of the wall;
otherwise, the wall would propagate in the direc-
tion decreasing the overall energy of the pattern. It
turns out that an even stronger restriction is true,
and both wavelengths should be optimal
(Malomed et al. 1990). In this way, domain
walls, alongside dislocations, enhance relaxation
of the pattern to the optimal wavelength.

Dynamic problems are strongly influenced by
detailed structure of the pattern, which is lost on
the level of amplitude equations. When a pattern
advances into an unstable uniform state, the

wavelength selected at the leading edge is not
identical to the wavelength of the full-grown pat-
tern formed behind the front, and neither one coin-
cides with the optimal wavelength (Ben-Jacob
et al. 1985).

In the case when a stable homogeneous solu-
tion coexists with a stable periodic pattern, stable
stationary fronts between the two states exist
within a finite parametric interval (Pomeau
1986), rather than at a single point where the
energies of both states are equal, as amplitude
equations would predict. The motion of this
front is affected by the discrete structure of the
pattern, which causes self-induced pinning hin-
dering the retreat of a metastable state. There are
two depinning transitions, corresponding to “crys-
tallization” or “melting” of the pattern, shown
schematically by thick lines in Fig. 10. Between
the two limits, various metastable stationary struc-
tures exist: a single cell (“soliton”), a finite pat-
terned inclusion, sandwiched between semi-
infinite domains occupied by a uniform state, or
a semi-infinite pattern, coexisting with a uniform
state. To the right of the crystallization
threshold C, the pattern advances by a periodic
nucleation process which creates new elementary
cells at the interface (Aranson et al. 2000), while
to the left of the melting limit M, the pattern
recedes as elementary cells at the interface are
destroyed. A different, far more efficient
depinning mechanism works in two dimensions
(Hagberg et al. 2006). It is initiated by a zigzag
instability of the pattern followed by nucleation of
disclinations, which further move toward the uni-
form state, as seen in Fig. 11. This generates
stripes extending in the normal direction, turning
eventually the original boundary into a domain
wall separating striped patterns rotated by p/2.

M

1-M 1-C

C

Patterns and Interfaces in Dissipative Dynamics,
Fig. 10 A scheme of depinning transitions showing crys-
tallization (C) and melting (M) thresholds for an infinite
cluster, as well as the corresponding limits for clusters of
different sizes, terminating in single-cell limits 1-C, 1-M
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Wave Patterns

Plane Waves
A simplest propagating wave pattern is a periodic
solution depending on a moving coordinate
x = x � ct, where c = o/k is phase velocity, o is
frequency and k is wavenumber. A waveform ~
exp. [i(kx � ot)] may emerge directly by symme-
try breaking bifurcation, but this is not the most
common mechanism. It is impossible, in particu-
lar, in a two-component RDS (1), (2), where other
scenarios lead to wave patterns. One of them,
mentioned in the preceding section, is traveling
instability of stationary structures. Another road
to wave patterns, most amenable to analytical
tools, starts in the vicinity of a Hopf bifurcation,
where small-amplitude oscillations weakly mod-
ulated in space are described by the complex
Ginzburg-Landau (CGL) equation. Its standard
rescaled form is

@tu ¼ 1þ i�ð Þ∇2uþ u� 1þ ivð Þ uj j2u: (23)

A plane wave solution of (23) with the wave
vector k is

u ¼ r0exp i k � x� otð Þ½ �,
r0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2
p

, o ¼ vþ � � vð Þk2:
(24)

The waves are dispersive, and the group veloc-
ity is v = 2 k(� � v).

Instabilities of plane waves are studied most
efficiently with the help of the phase dynamics
approach, since the most dangerous perturbation
modes can be viewed as long-scale distortions of

neutrally stable translational modes. The longitu-
dinal and transverse phase diffusivities are

Djj ¼ 1þ v� � k2 3þ v� þ 2v2ð Þ
1� k2

, D⊥ ¼ 1þ v�:

(25)

Vanishing Djj marks the threshold of Eckhaus
instability, which limits the range of stable
wavenumbers. Vanishing D⊥ signals Benjamin-
Feir (self-focusing) instability, independently of
the wavelength. Both instabilities arising at the
respective thresholds are convective, which
means that growing perturbations are washed
away with the prevailing group velocity. The abso-
lute instability condition stipulating growth of per-
turbation at a particular location is less restrictive
(see Fig. 12). Numerical simulations (Aranson and
Kramer 2002) show that transition to turbulence
occurs only when the absolute stability condition
is violated, but the system is very sensitive to noise
in the convectively unstable region.

Besides uniform wave trains, there is a variety
of non-uniform one-dimensional solutions of the
CGL equation with a constant frequency and spa-
tially varying modulus and wavenumber, which
are stationary in a frame propagating with a cer-
tain speed c and depend on the comoving coordi-
nate x = x � ct only. The solutions approaching
asymptotically at x ! � 1 either plane waves
or the trivial state can be also viewed as defects
separating domains where different uniform states
prevail. Such solutions include pulses,
approaching the trivial state at both extremes;
nonlinear fronts, separating the trivial state from
an invading wave train, and domain boundaries
separating plane waves directed in the opposite

Patterns and Interfaces in Dissipative Dynamics, Fig. 11 Depinning of striped pattern initiated by a zigzag
instability (Hagberg et al. 2006)
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sense and, possibly, having different wavelength
(Aranson and Kramer 2002; van Saarloos and
Hohenberg 1992). Interactions among various
defects dominate chaotic dynamics beyond the
self-focusing instability limit (Brusch et al. 2001).

Amplitude equations for wave patterns emerg-
ing directly from an HSS through a symmetry
breaking bifurcation with o 6¼ 0, k 6¼ 0 should
account for competition between waves with
amplitudes u � propagating in the opposite direc-
tions, which may either suppress one another or
combine to a standing wave. The normalized form
of coupled equations for u � is

@tu
� � cu�x ¼ 1þ i�ð Þu�xx þ u�

� 1þ ivþð Þ u��� ��2u�
� g 1þ iv�ð Þ u	j j2u�, (26)

where g is a coupling parameter. The orders of
magnitude of all terms of these equations can be
balanced only when the phase velocity c = o/k is
of the sameO(ϵ) as u �. Genetically, c=O(1), and
the advective term cu�x is dominant. For a single
wave, it can be removed by transforming to the
comoving frame. When both waves are present,
each wave, viewed in its own frame x� = x 	 ct
samples the average amplitude of its counterpart

propagating in this frame with a fast speed. The
appropriate amplitude equations have then the
form (Knobloch and de Luca 1990)

@tu
� ¼ 1þ i�ð Þu�x�x� þ u�

� 1� ivþð Þ u��� ��2u�
� g 1þ iv�ð Þ u	j j2u�: (27)

These equations retain only global coupling
carried by the spatial averages 〈|u	|2〉.

In two dimensions, the amplitude equations
also involve resonant interactions of pairs of
waves propagating in the opposite directions.
This makes possible complex dynamics even
when the amplitudes are uniform and obey
space-independent equations (Pismen 1986)

@tu
þ
1

¼ uþ1 m� vþ uþ1
�� ��2 � v� u�1

�� ��2 � b uþ2
�� ��2 þ u�2

�� ��2� �h i
þgu�2 u

þ
2 u

�
2 :

(28)
Spiral and Scroll Waves
A ubiquitous and extensively studied waveform is a
rotating spiral wave. Its specific feature is the pres-
ence of a phase singularity. An n-armed spiral wave
can be constructed as a circularly symmetric vortex
solution of (23) with the topological charge n,
i.e. phase circulation 2pn. Unlike a symmetric
defect in (8), the phase must also depend on the
radial coordinate, so that the vortex radiates a wave
with a certain uniquely selected asymptotic
wavenumber k1. This solution is obtained (Hagan
1982) in polar cooordinates r, f by assuming an
ansatz

u ¼ r rð Þeiy, y ¼ nfþ c rð Þ � ot: (29)

Using this ansatz brings (23) to the form

r00 rð Þ þ r�1r0 rð Þ
þ 1� k2 � n2=r2 � r2
� �

r
¼ 0, (30)

1

rr2
d

dr
rkr2
� � ¼ q r21 � r2

� �
, (31)

where k = c0(r) is the radial wavenumber. Stabil-
ity analysis of plane waves applies also to far
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Patterns and Interfaces in Dissipative Dynamics,
Fig. 12 Limits of convective and absolute instabilities in
the plane (v, k) for � = �3/2. The dot marks the limit of
convectively unstable waves (Aranson and Kramer 2002,
reproduced with permission. Copyright by the American
Physical Society)
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regions of spiral waves; one could expect there-
fore a transition to a turbulent state to occur under
conditions when the selected asymptotic
wavenumber k1 falls into the range where the
corresponding plane wave solution of (23) is
unstable. The respective stability limits in the
parametric plane (�, v) are presented in Fig. 13.

Another approach to constructing rotating spi-
ral waves exploits kinematics of fronts of opposite
polarity described by RDS (21), (22) (Tyson and
Keener 1988). The inhibitor diffusion can be
neglected almost everywhere, except in the cru-
cial tip region where the two fronts meet. Behav-
ior of the spiral tip and its meandering instability
has been elucidated analytically using a multiscale
technique matching different approximations in
overlapping regions (Hakim and Karma 1999).
Complex dynamics of a meandering tip, which
exhibit quasiperiodic and chaotic motion in
some parametric domains, can be well described
with the help of a simpler phenomenological
model (Barkley 1994). A similar instability of

spiral waves described by the CGL equation is
the core acceleration instability (Aranson and
Kramer 2002), which may serve as a trigger of
transition to spatio-temporal chaos alternative to
instability of radiated waves.

A special kind of spiral wave patterns arises
when the underlying dynamical system undergoes
a period doubling transition. The period doubling
causes the appearance of synchronization defect
(SD) lines, which serve to reconcile the doubling
of the oscillation period with the period of rotation
of the spiral wave (see Fig. 14a). These lines are
defined as the loci of those points in the medium
where the two loops of the period two orbit
exchange their positions in local phase space.
The period two oscillations on the opposite sides
of a SD are shifted relative to each other by 2p
(i.e., a half of the full period), so that the dynamics
projected on the rotation direction is effectively of
period one, while it is of period two locally at any
point in the medium (Fig. 14b).

A three-dimensional extension of a rotating
spiral is a rotating scroll wave. The core filament
of a scroll wave is a line vortex. A scroll wave
with a straight-line core directed along the z-axis
has identical spiral waves in each cross-section.
Even then, the structure can be nontrivial if the
spiral phases are given a phase twist, i.e. are
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Patterns and Interfaces in Dissipative Dynamics,
Fig. 13 Stability limits of a spiral wave solution in the
parametric plane (�, v). The curve EI shows the limit of
convective instability and AI, of absolute instability for the
waves emitted by the spiral; OR is the boundary of the
oscillatory spatial decay for the emitted waves, q = 0.845
(bound states exist to the right of this line). BF indicates the
Benjamin-Feir limit v� = �1, L is the limit of phase
turbulence, and T corresponds to the transition to defect
turbulence for random initial conditions (Aranson and
Kramer 2002, based on Chaté and Manneville 1996;
reproduced with permission. Copyright by the American
Physical Society)

Patterns and Interfaces in Dissipative Dynamics,
Fig. 14 (a) A pair of period two spiral waves with the
fundamental period t and the average wavelength l. The
white solid lines are the synchronization defects.
(b) A period two time series measured at the point marked
by the white filled square (Park and Lee 2002, reproduced
with permission. Copyright by the American Physical
Society)

Patterns and Interfaces in Dissipative Dynamics 99



shifted along the z-axis. A curved core filament
may also close up into a ring or even form knots.
A stable scroll structure evolves to decrease the
filament curvature (Keener 1988). This kind of
dynamics is similar to curvature-driven motion
of interfaces, but may be reversed when the fila-
ment is unstable. The most dangerous perturba-
tion modes are long-scale modes associated with
meandering or translational core deformations
(Henry and Hakim 2002). Meandering instability
usually saturates as a distorted scroll wave with a
twisted rotating core (Fig. 15). Instability in the
translation mode, which causes spontaneous
bending of the scroll axis, does not saturate, but
gives rise to a scroll wave with a continuously
extending core (Fig. 16a). This leads to a turbulent
state visualized as a tangle of breaking wave
fronts (Fig. 16b).

Spiral Patterns and Turbulence
Interaction of spiral waves is dominated by
shocks – domain boundaries where waves ema-
nating from different centers collide. The shocks
effectively screen different spiral domains from

radiation emitted by other spiral cores. A typical
example of a spiral domain pattern in a stable
parametric range obtained in a CGL simulation
run starting from random initial conditions (Chaté
and Manneville 1996) is shown in Fig. 17. At the
initial stage, the system tends to relax locally to
the stable state with unity real amplitude, but, as
the phases are random, the relaxation is frustrated,

Patterns and Interfaces in Dissipative Dynamics,
Fig. 15 (a) A restabilized helical vortex; (b) A doubly
periodic “superhelix” Isosurfaces of the modulus r = 0.6
shaded by phase field are shown (CGL simulations
(Rousseau et al. 1998), reproduced with permission. Copy-
right by the American Physical Society)

Patterns and Interfaces in Dissipative Dynamics,
Fig. 16 Transition to turbulence due to core filament exten-
sion and breakup of scroll waves. (a) Snapshots of the core
filament, starting from a closed loop. (b) Respective

snapshots of wave patterns showing semitransparent visual-
ization of the activator fronts (Alonso et al. 2004,
reproduced with permission. Copyright by the American
Physical Society)
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and a large number of defects – vortices of unit
charge – are formed. At the following coarsening
stage, oppositely charged vortices annihilate, so
that the density of defects decreases. The coarsen-
ing process, however, stops halfway, leaving a
certain number of single-charged spiral vortices
with either sense of rotation. Vortices that failed to
conquer a sufficiently large domain are reduced to
“naked cores”, left to satisfy the topological con-
dition of conservation of circulation. The resulting
stable spiral domain pattern is called vortex glass.
The waves always propagate outwards from the
vortex cores, so that the entire domain structure is
generated when local order spreads out from cen-
ters to the periphery. Perturbations, also traveling
outwards with the prevailing group velocity, are
absorbed at shocks, and therefore the pattern may
survive beyond the convective instability thresh-
old. The turbulent state takes over only when the
emanated waves become absolutely unstable, i.e.,
when some perturbations grow locally in the lab-
oratory frame.

The overall structure of the pattern changes in
the range of oscillatory spatial decay of waves
emanated by the spiral cores (below the line OR
in Fig. 13). Under these conditions, formation of
stable bound spiral pairs becomes possible (see
Fig. 18). Unlike the monotonic range, spiral

domains may have in oscillatory range a wide
size distribution, since shocks can be immobilized
at different separations.

“Frozen” glassy patterns actually evolve on a
very long time scale, as revealed in very long
simulation runs (Brito et al. 2003). In the mono-
tonic range, spiral cores perform very slow diffu-
sive motion; the apparent diffusivity increases
with vortex density. In contrast, in the oscillatory
range, spiral population spontaneously segregates
after a very long transient into two distinct phases:
large and almost immobile spirals and clusters of
trapped small vortices. When the “liquid fraction”
is small, the resulting pattern exhibits slow inter-
mittent dynamics: bursts of activity separated by
long quiescent intervals. The system keeps evolv-
ing on an extremely slow scale, which is consis-
tent with exponentially weak repulsion between
well separated spiral cores.

Another possibility, realized in a different para-
metric region, is a dynamic chaotic state that
shows no persistent features. This state is attained
under conditions when either spiral waves or vor-
tex cores, or both, are unstable. One can distin-
guish between mild phase turbulence when no
phase singularities occur, and defect chaos char-
acterized by persistent creation and annihilation of
vortex pairs. Phase turbulence may persist in the

Patterns and Interfaces in Dissipative Dynamics,
Fig. 17 Spiral domains. Left: levels of constant phase.
Right: grayscale amplitude map showing enhanced

amplitudes at the shocks (CGL simulations (Chaté and
Manneville 1996), reproduced with permission from
Elsevier Science)
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parametric region between the Benjamin-Feir line
and the line L in Fig. 13 (Chaté and Manneville
1996). Beyond the line L, defects are created
spontaneously, leading to defect chaos. Transition
from vortex glass to defect turbulence in simula-
tions starting from random initial conditions
occurs at the numerically determined line T in
Fig. 13 (Chaté and Manneville 1996). The transi-
tion occurs somewhat prior to the absolute insta-
bility limit determined by the linear stability
analysis of plane waves emitted by spirals. This
limit can be approached, however, by starting from
carefully prepared initial conditions in the form of
large spirals. Prior to the transition, one can observe
transient defect turbulence which is unstable to
spontaneous nucleation of spirals from the “turbu-
lent sea”, leading eventually to a vortex glass state.

Forced Systems
External forcing, including spatially as well as
temporally variable inputs, can be used in a
straightforward way to enhance or suppress spon-
taneously emerging patterns (Nepomnyashchy

et al. 2004). Alternatively, it may enhance com-
plexity by introducing additional spatial and tem-
poral resonances, which may lead to formation of
quasicrystalline structures (Pismen 1987). Reso-
nant forcing of oscillatory systems may drastically
change the structure of wave patterns through
phase locking. This happens when the CGL equa-
tion is forced on a frequency oc commensurate
with the basic frequency o0 at the Hopf bifurca-
tion. For an integer ratio oc/o0 = n, the amplitude
equation amending (23) can be written by adding
the forcing term possessing the required symmetry:

@tu ¼ 1þ i�ð Þ∇2uþ mþ ioð Þu
� 1� ivð Þ uj j2uþ gu�n�1 , (32)

where g is the forcing amplitude and ϵ2o is weak
effective detuning, due to both parametric devia-
tions from the Hopf bifurcation point and weak
mismatch between oc/n and o0. The forcing term
breaks the symmetry of the CGL equation to
phase rotations, reducing it to discrete symmetry
u ! eipmu , m = 1 , . . . , n � 1. This changes

Patterns and Interfaces
in Dissipative Dynamics,
Fig. 18 Bound states of
oppositely (left) and likely
(right) charged spirals
(CGL simulations, � = 0,
v = 1.5). The images show
the modulus r(x, y) (top)
and Re(u) (bottom)
(Aranson and Kramer 2002,
reproduced with
permission. Copyright by
the American Physical
Society)
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the character of defects: instead of vortices, one
can observed fronts separating alternative phase
states.

Various patterns at different forcing frequen-
cies, which can be modeled by (32), were
observed both in experiments and simulations
(Petrov et al. 1997; Lin et al. 2004). Some typical
patterns are shown in Fig. 19. For the case of
strong resonance (n = 1), this system provides a
convenient tool for studying transitions between
stationary and propagating fronts (Coullet and
Emilsson 1992), labyrinthine patterns (Yochelis
et al. 2004), and solitary structures (Gomila et al.
2007). These structures are not unlike those
observed in the FitzHugh-Nagumo system,
although they represent standing waves with the
alternative phases interchanging within each
domain. Higher resonances create still more com-
plex dynamics involving interactions of different
kinds of fronts (Gallego et al. 2001).

Future Directions

The study of pattern formation is now a mature
discipline based on well-established general

theory and wealth of experimental evidence. The
center of attention is turning to specific applica-
tions; among them, nonlinear optics and studies of
granular media come to the forefront. Forcing and
control of patterns, either enhancing or
suppressing the complexity of behavior, are stud-
ied in detail. As a humble laptop turns into a
supercomputer, more fascinating patterns, envy
of abstract expressionists, are generated by
model equations of increased complexity. Patterns
showing dazzling mix of order and chaos are seen
as well in various experimental setups.

The ultimate aim of controlled creation of self-
organized structures still remains elusive, and new
ideas are awaited as the new century comes of age.
The study of pattern formation, dealing with ubiq-
uitous problems of order and chaos, is bound to
find its way into basic curricula and wealth of
practical applications.
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