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Glossary

Linear Here, linear with respect to a probability
density.

Nonlinear Here, nonlinear with respect to a
probability density.

Markov process Process for which it is suffi-
cient to have information about the presence
in order to make best predictions about the
future. Additional information about the past
will not improve the predictions.

Martingale process Ẑ Process forwhich the future
mean value hZ(t + Dt)i of a set of realizations Z(i)
that is passing at presence t through a certain
common state z is the state z: z : hZ(t + Dt)iZ(t) = z

= z. Additional information about states z0

visited at times t0 prior to t is irrelevant.

Definition of the Subject

Let X̂ denote a stochastic process defined on the
space O and the time interval [t0, 1], where t0

denotes the initial time of the process. We assume
that the process X̂ can be described in terms of a
random variable X � O. More precisely, let X(t)
denote the time-dependent evolution of the ran-
dom variable X for t � t0. Then, we assume that
the process X̂ can be described in terms of the
infinitely large set of realizations X(i)(t) of X(t)
with i = 1, 2, . . .. The realizations i = 1, 2, . . .
constitute a statistical ensemble. At every time
t the probability density P of the process X̂ can
be computed from the realizations X(i)(t), that is,
from the ensemble by means of

P x, tð Þ ¼ d x ¼ X tð Þð Þh i, (1)

where h�i denotes ensemble averaging and d(�)
is the delta function. We assume that at time t0 the
process is distributed like u. That is, the function
u(x) describes the initial probability density of the
random variable X and we have P(x,t0) = u(x). In
general, the evolution of P depends on how the
process is distributed at initial time t0. In order to
emphasize this point, we will use in what follows
the notation P(x,t;u). That is, we interpret Eq. (1)
as a conditional probability density with the con-
straint given by the initial distribution u:

P x, t; uð Þ ¼ d x ¼ X tð Þð Þh i d x�X t0ð Þð Þh i¼u xð Þ: (2)

We may also say that we study a family of
stochastic processes (Frank 2005b). Each family
member has a label or name which is given by u.
For example, consider three experiments in which
the evolution of dust particles in the air is
observed for Gaussian, Lévy, and Cauchy initial
distributions, respectively. It is known that dust
particles perform a so-called Brownian random
walk. So we would distinguish the three members

X̂1, X̂2, X̂3 of our family of Brownian walk pro-
cesses by the names of their initial distributions:
Gauss, Lévy, and Cauchy.

Let us consider a stochastic process X̂ whose
evolution of its probability density P is defined by
a partial differential equation of the form
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@

@t
P x, t; uð Þ ¼ � @

@x
D1 x, tð Þ þ @2

@x2
D2ðx, t

�� �
P x, t; uð Þ,

(3)
where D1 and D2 are functions of state x and time
t. The functions D1 and D2 are referred to as drift
and diffusion coefficients and constitute the
Fokker-Planck operator

L0 x, tð Þ ¼ � @

@x
D1 x, tð Þ þ @2

@x2
D2 x, tð Þ: (4)

The evolution equation (3) is linear with
respect to P. In this sense, Eq. (3) is a linear partial
differential equation. Irrespective of this feature,
the coefficients D1 andD2 may depend in a highly
nonlinear fashion on the state x. For example, we
may have D1 = � x + x3.

For appropriately chosen coefficients D1 and D2,
Eq. (3) describes the probability density P of a
Markov process. In this case, Eq. (3) is referred to
as a Fokker-Planck equation. More precisely, if X̂
is a Markov diffusion process whose probability
density P is defined by Eq. (3), then Eq. (3) is
called a Fokker-Planck equation. Note that
roughly speaking, a Markov diffusion process is
a Markov process characterized by a partial dif-
ferential operator that can be truncated after the
second-order partial derivative (see section
“Kramers-Moyal Expansion”). In order to distin-
guish between linear and nonlinear Fokker-
Planck equations, we will use the phrase “linear
Fokker-Planck equation” instead of “Fokker-
Planck equation.”

Let us generalize Eq. (3) by assuming that the
drift and diffusion coefficients depend on the
probability density P. In this case, Eq. (3) becomes

@

@t
P x, t; uð Þ ¼ � @

@x
D1ðx, t,P x, t; uð Þ��

þ @2

@x2
D2ðx, t,Pðx, t; u

���P x, t; uð Þ: (5)

Likewise, the operator (4) is generalized to

L x, t,P x, t; uð Þð Þ ¼ � @

@x
D1 x, t,P x, t; uð Þð Þ

þ @2

@x2
D2 x, t,P x, t; uð Þð Þ:

(6)

Equation (5) is nonlinear with respect to
P(x, t; u). Since the structure of the differential

operator in the bracket of Eq. (5) is equivalent to
the structure of the differential operator (4), evo-
lution equations of the form (5) are frequently
called nonlinear Fokker-Planck equations. In this
context, it is important to realize that the phrase
“nonlinear Fokker-Planck equation” does not
necessarily imply that we are dealing with a Mar-
kov process. The phrase “nonlinear Fokker-
Planck equation” simply means that we are
dealing with a nonlinear partial differential equa-
tion involving a partial differential operator
that exhibits the structure of a Fokker-Planck
operator.

Note again that if an evolution equation of the
form (3) is referred to as a Fokker-Planck equa-
tion, then it is tacitly assumed that there exists a
stochastic process defined by that equation and
that this process is a Markov process. Table 1
summarizes how to define linear and nonlinear
Fokker-Planck equations by means of structure,
existence of solutions, and Markov property.

Linear Fokker-Planck equations are an indis-
pensable tool to describe stochastic processes in a
variety of disciplines; see Fig. 1. The theoretical
concept of Markov diffusion processes related to
linear Fokker-Planck equations is well
established. Researchers, applied scientist, techni-
cians, research and development engineers in
general, and financial engineers in particular are -
usually aware that the particular linear Fokker-
Planck model they are using belongs to the
class of Markov models. That is, the world of
linear Fokker-Planck equations is closed and
connected.

Nonlinear Fokker-Planck equations are used in
a variety of fields that are as diverse as the

Linear and Nonlinear Fokker-Planck Equations,
Table 1 Definition of linear and nonlinear Fokker-Planck
equations based on structure, existence of solutions, and
Markov property

Fokker-Planck equations Linear Nonlinear

Structure Eqs. (3)–(4) Eqs. (5)–(6)

Solutions Exist Do not
necessarily
exist

Corresponding processes
are Markov processes?

Yes Maybe
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application fields of linear Fokker-Planck equa-
tions. Unfortunately, so far, there is no well-
established theory connecting all kinds of nonlinear
Fokker-Planck equations. There is not even an
academic consent about how to define them at all.
This is why in Table 1 we used a very general and
less constraining definition for nonlinear Fokker-
Planck equations. Concepts of nonlinear Fokker-
Planck equations are often developed for particular
purposes and are not put into other contexts. That
is, theoretical results and other achievements are
often tailored to serve special needs and are not
discussed in a larger framework. Even worse, so
far, a well-established link between linear and non-
linear Fokker-Planck equations that applies to the
variety of nonlinearities found in the literature does
not exist. In sum, the world of nonlinear Fokker-
Planck equations is disconnected. Different types
of nonlinear Fokker-Planck equations and different
application fields of nonlinear Fokker-Planck equa-
tions are often not related to each other and non-
linear Fokker-Planck equations are only loosely
connected with their linear “relatives”; see Fig. 1.

Therefore, there is a need for developing a
unifying approach to nonlinear Fokker-Planck
equations that involves the concept of linear
Fokker-Planck equations and applies to all

types of nonlinearities and in doing so applies
to all kinds of scientific disciplines. Some first
efforts in this regard have been made previously
(Acebron et al. 2005; Chavanis 2003, 2004;
Frank 2001b, 2002a, b, 2005b; Frank and
Daffertshofer 1999, 2001a, b; Kaniadakis 2001a; b;
Shiino 2002b, 2003). In the following sections, we
will review these efforts, present them in a consis-
tent way, and in doing so make a further effort into
this direction.

Introduction

Linear and nonlinear Fokker-Planck equations are
widely used to describe stochastic phenomenon;
see Fig. 1.

Linear Fokker-Planck equations (Gardiner
1997; Haken 2004; Risken 1989) have been intro-
duced by Fokker (1914) and Planck (1917). In
physics, linear Fokker-Planck equations have
been used, for example, to describe Brownian
motion, that is, the diffusion of dust particles in
air or fluid layers (Reif 1965). Linear Fokker-
Planck equations have been applied in engineer-
ing sciences, for example, to describe fluctuations
in electronic circuits (Gardiner 1997). Linear

Math
Astro- and plasmaphysics

Neuroscience Soil Sciences

Accelerator

Liquid crystals

Non-extensive

Finance

Applications of linear Fokker-Planck equations

Theory of Markov diffusion processes

Physics

Ecology Psychology Neuroscience

Math Finance

Biology

Engineering

Applications of nonlinear Fokker-Planck equations
Biology

statistics

Engineering

Quantum
mechanics

Linear and Nonlinear Fokker-Planck Equations, Fig. 1 Connected and disconnected applications of linear and
nonlinear Fokker-Planck equations
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Fokker-Planck equations have been frequently used
in chemistry tomodel stochastic aspects of chemical
reactions (Hänggi et al. 1990; vanKampen 1981). In
finance, one of the most important applications of
the Fokker-Planck theory is option pricing bymeans
of the so-called Black-Scholes model (Paul and
Baschnagel 1999). Linear Fokker-Planck equations
of biology systems (Goel and Dyn 1974) have been
concerned, for example, with so-called Brownian
motors (Hänggi et al. 2005; Reimann 2002). Popu-
lation diffusion (Okubo and Levin 2001) and group
behavior (Ebeling and Sokolov 2004; Mikhailov
and Zanette 1999; Schweitzer 2003) in ecological
systems and stochastic neuronal processing (Holden
1976) are further examples of application fields of
linear Fokker-Planck equations. In psychology, lin-
ear Fokker-Planck models have been proposed for
decision making (Bogacz et al. 2006; Ratcliff et al.
2004) and group behavior (Schwämmle et al.
2007b).

Many applications of nonlinear Fokker-Planck
equation are related to several benchmark models:
the Desai-Zwanzig model (Desai and Zwanzig
1978), the liquid crystal model (Doi and Edwards
1988; Hess 1976), the Kuramoto-Shinomoto-
Sakaguchi model (Acebron et al. 2005; Kuramoto
1984; Strogatz 2000), the Vlasov model, and the
nonlinear diffusion equation (Aronson 1986;
Peletier 1981). Let us highlight some of these
benchmark models.

Desai-Zwanzig Model
The Desai-Zwanzig model

d

dt
P x, t; uð Þ ¼ � @

@x
h xð Þ � k½

x�
ð
xP x, t; uð Þdx

� �
þ Q

@

@x

�
P x, t; uð Þ

(7)

for k , Q > 0 has been proposed by Desai and
Zwanzig (1978) and Kometani and Shimizu
(1975) to study collective phenomena in self-
organizing systems.

• A Lyapunov functional approach to the Desai-
Zwanzig model has been introduced by Shiino
(1985, 1987) and since then has found several
generalizations (Chavanis 2003, 2004;

Dawson and Gärtner 1989; Frank 2001a,
2005b; Frank and Daffertshofer 2001b; Frank
et al. 2001; Kaniadakis 2001a, b; Kharchenko
and Kharchenko 2005; Schwämmle et al.
2007a; Shiino 2001, 2002a, b; 2003). With
such a Lyapunov functional at hand, the stabil-
ity of stationary probability densities, collec-
tive phenomena, and bifurcations can be
studied by means of Lyapunov’s direct
method.

• The original Desai-Zwanzig model and various
modifications of it have been discussed
(Dawson 1983; Li et al. 1998; Lo 2005).

• The additive noise term in Eq. (7) has been
replaced by a multiplicative noise term
(Horsthemke and Lefever 1984) in order to
study the interplay between the nonlinearity
and the multiplicative noise (Birner et al.
2002; Müller et al. 1997; Zaikin et al. 2002).

• Fluctuation-dissipation theorems for stochastic
processes described by the Desai-Zwanzig
model have been derived (Drozdov and Morillo
1996; Frank 2004c; Morillo et al. 1995).

• The Desai-Zwanzig model has frequently
been used as a mean field approximation of
spatially distributed systems with diffusive
coupling. By means of such a mean field
approximation, analytical result has been
derived and compared with numerical simula-
tions (Garcia-Ojalvo et al. 1996; Garcia-
Ojalvo and Sancho 1999; van den Broeck
et al. 1994a, b, 1997).

Liquid Crystal Model
The nonlinear Fokker-Planck equation proposed
by Hess (Hess 1976) and Doi and Edwards (1988)
reads

@

@t
P x, t; uð Þ ¼ DrL � Lþ 1

kT
Le x,Pð Þ½ �

� �
P x, t; uð Þ

(8)

with Dr , k , T > 0 and L = x � @/@x. The
function e(x, P) describes the self-consistent
potential of the Maier-Saupe mean field force.
For processes X̂ that exhibit cylindrical symmetry
e(x, P) reads
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e y,Pð Þ ¼ �U0kT
3cos 2y� 1

2

3cos 2y� 1

2

	 

,

(9)

where y is related to the unit vector x by x = (siny
cos ’, siny sin ’, cosy). Equation (8) and gener-
alization of it have been extensively studied in the
literature (Felderhof 2003; Fialkowiski and Hess
2000; Hütter et al. 2003; Ilg et al. 1999, 2005;
Larson and Öttinger 1991) (see also Öttinger
(1996) in general and Sect. 6.3.2 in Öttinger
(1996) in particular). We will return to this model
in section “Liquid Crystal Model.”

Winfree and Kuramoto Model
Winfree’s seminal studies on synchronization
among animal populations (Winfree 1967, 2001)
supported the interest in the nonlinear Fokker-
Planck equation

@

@t
P x, t; uð Þ ¼ � @

@x
h xð Þ � k�½

�
ð
sin x� yð ÞPðy, t; u�dy�þ Q

@2

@x2

�
P x, t; uð Þ,

(10)

that has been proposed by Kuramoto and
co-workers (Kuramoto 1984). In Eq. (10), h(x) is
a 2p-periodic function and k , Q > 0.

• While the Kuramoto-Shinomoto-Sakaguchi
model involves an interaction term

Ð
a(x, y)P-

(y, t) dy, the model originally proposed by
Winfree exhibits a coupling term of the formÐ
a(y)P(y, t) dy. Models of this latter kind have

also been addressed in Ariaratnam and
Strogatz (2001), Li and Hänggi (2001), and
Quinn et al. (2007).

• The Kuramoto-Shinomoto-Sakaguchi model
describes an ensemble of phase oscillators. The
eigenfrequencies of the phase oscillators do not
occur in Eq. (10) because Eq. (10) describes an
ensemble of phase oscillators exhibiting the
same eigenfrequency o. In this case, the com-
mon eigenfrequencyo can then be eliminated by
means of a variable transformation into a rotating
frame (Frank 2005b). However, in general, we
may think of ensembles of coupled phase oscil-
lators with different eigenfrequencies. In this

context, the question arises as to what extent
oscillators with different eigenfrequencies syn-
chronize their behavior (Acebron et al. 1998;
Arenas and Perez Vincente 1994; Bonilla et al.
1993; Crawford 1995; Kostur et al. 2002;
Pikovsky et al. 2001; Sakaguchi 1988; Strogatz
and Mirollo 1991).

• Coupled phase oscillator models of the form
(10) have been used to describe associative
memories (Yamana et al. 1999; Yoshioka and
Shiino 2000).

• Just as for the Desai-Zwanzig model, the inter-
play between multiplicative noise and the non-
linearity of the Kuramoto-Shinomoto-
Sakaguchi model has been investigated in sev-
eral studies (Kim et al. 1997; Park and Kim
1996; Reimann et al. 1999a, b).

• The sine-coupling term in Eq. (10) has been
replaced by higher-order coupling functions
sin(2z), sin(3z), . . . (Aonishi and Okada 2002;
Daido 1996a, b; Hansel et al. 1993b; Kuramoto
1984). In this context, Daido proposed the
so-called order function (Daido 1996a, b) that
generalizes the notion of cluster phases and
cluster amplitudes (Kuramoto 1984). This
order function has also been related to experi-
mental data (Zhai et al. 2005).

• The Kuramoto-Shinomoto-Sakaguchi has
found clinical applications in the context of
Parkinsonian disease (Tass 2001, 2003; 2006;
see also Tass 1999).

Vlasov-Fokker-Planck Model
Vlasov-Fokker-Planck models frequently describe
particle systems with electromagnetic interactions
between charged particles. A typical example of a
Vlasov-Fokker-Planck equation is shown here
(Balescu 1975; Klimontovich 1986):

@

@t
P v, t; uð Þ ¼ �

X3
i¼1

@

@vi
Di v,Pð ÞPþ

X3
i, k¼1

� @2

@vi@vk
Dik v,Pð ÞP:

(11)

Equation (11) involves the drift and diffusion
coefficients
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Di v,Pð Þ ¼ a
@

@vi

ð
O

P v0, t; uð Þ
jv� v0

jd3v0,

Dik v,Pð Þ ¼ b
@2

@vivk

ð
O
jv� v0jP v0, t; uð Þd3v0:

(12)

Time-dependent solutions (Allen and Victory
1994; MacDonald et al. 1957; Nicholson 1983;
Rosenbluth et al. 1957; Takai et al. 1981) for
Eq. (12) and generalization of Eq. (12) that
account for additional drift forces (Bychenkov
et al. 1995; Epperlein et al. 1988) have been
studied. In particular, numerical methods using
short-time propagators (see section “Short-Time
Propagator”) have been developed for Vlasov-
Fokker-Planck equations of the form (12)
(Donoso and Salgado 2006; Donoso et al. 2005;
Soler et al. 1992). Such nonlinear Vlasov-Fokker-
Planck equations play important roles in plasma
physics (Balescu 1975; Klimontovich 1986;
Nicholson 1983) and astrophysics (Binney and
Tremaine 1987; Lancellotti and Kiessling 2001).
In general, astrophysical problems often require a
stochastic description in terms of nonlinear
Fokker-Planck equations (Chavanis et al. 2002;
Shiino 2003; Sopik et al. 2006). Finally, note that
Vlasov-Fokker-Planck models have been used in
accelerator physics and accelerator engineering to
examine instabilities in particle beams (Frank
2003a, 2006; Heifets 2001, 2003; Shobuda and
Hirata 2001; Stupakov et al. 1997; Venturini and
Warnock 2002).

Nonlinear Diffusion Equation, Nonextensive
Thermostatistics, and Semiclassical
Descriptions of Quantum Systems
The nonlinear diffusion equation (Aronson 1986;
Peletier 1981) reads

@

@t
P x, t; uð Þ ¼ � @

@x
h xð ÞP x, t; uð Þ

þ @2

@x2
D P x, t; uð Þð Þ, (13)

where D(P) is a diffusion coefficient that depends
on the probability density P(x,t) of X(t). In the
original version of the nonlinear diffusion

equation, the drift coefficient h(x) vanishes, and
the diffusion coefficient is proportional to a power
of P. In general, there might be a more compli-
cated dependence of D on P (Crank 1975; Daly
and Porporato 2004).

• Since fluid flow through porous materials is an
important application of the nonlinear diffu-
sion equation, nonlinear diffusion plays a cru-
cial role in soil sciences (Barenblatt et al.
1990). In biology, nonlinear diffusion equa-
tions of the form (13) seem to capture particu-
lar aspects of population diffusion (Gurtin and
MacCamy 1977; Okubo and Levin 2001).

• The nonlinear diffusion Eq. (13) provides a
link to stochastic processes subjected to non-
extensive thermostatistics introduced by
Tsallis (Abe and Okamoto 2001; Tsallis 1988,
1997, 2004). For D(P)/ Pq, Eq. (13) becomes

@

@t
P x, t; uð Þ ¼ � @

@x
h xð ÞP x, t; uð Þ

þ Q
@2

@x2
Pq x, t; uð Þ: (14)

Plastino and Plastino showed that stationary dis-
tributions of Eq. (14) correspond to canonical dis-
tribution that can be derived in a nonextensive
framework (Plastino and Plastino 1995).
Equation (14) has turned out to be a testbed for
various analytical and numerical studies (Borland
1998; Chavanis 2003, 2004; Compte and Jou 1996;
Drazer et al. 2000; Shiino 2003; Tsallis and
Bukman 1996). Alternative nonlinear Fokker-
Planck equations related to the Tsallis statistics
have been derived frommaster equations in Curado
and Nobre 2003 and Nobre et al. 2004. In addition,
Eq. (14) has more recently discussed in finance in
the context of a generalized Black-Scholes model
for option pricing (Borland 2002, 2008; Borland
and Bouchaud 2004; Vellekoop and Nieuwenhuis
2007) and fat tail distributions (Cortines and Riera
2007; Michael and Johnson 2003).

• The nonlinear diffusion Eq. (13) is also related to
semiclassical descriptions of quantum
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mechanical systems. For an appropriate choice
of D, nonlinear Fokker-Planck equations for
Fermi-Bose and Einstein-Dirac systems have
been derived from Eq. (13) (Frank 2005b;
Frank and Daffertshofer 1999). Alternative
forms of nonlinear Fokker-Planck equations
have been derived from quantum mechanical
Boltzmann equations (Kaniadakis 2001a;
Kaniadakis and Quarati 1993, 1994), on the
basis of energy balance equations (Tsekov
1995, 2001), and by means of other techniques
(Frank 2004b, 2005a; Kadanoff 2000; Sopik
et al. 2006). We will return to semiclassical
quantum mechanical descriptions in section
“Semiclassical Description of Quantum
Systems.”

In addition, nonlinear Fokker-Planck equa-
tions have been turned out to be useful models to
describe stochastic aspects of Josephson arrays
(Hadley et al. 1988; Wiesenfeld et al. 1996), Lan-
dau damping (Strogatz et al. 1992), arrays of
semiconductor lasers (Kozyreff et al. 2000),
charge density waves (Bonilla 1987), and neurons
coupled by Hodgkin-Huxley equations (Han et al.
1995; Hansel et al. 1993a).

Stochastic systems composed of different kinds
of interacting subsystems or species have been
modeled in terms of multivariate nonlinear Fokker-
Planck equations (Dano et al. 2001; Gang et al.
1996; Ichiki et al. 2007). For example, the collective
behavior of coupled relaxation oscillators has been
studied (Yamaguchi and Shimizu 1984). Networks
of neural oscillators as defined by the Wilson-
Cowan model, (Schuster and Wagner 1990), the
two-dimensional Morris-Lecar system (Han et al.
1995), the FitzHugh-Nagumo equations
(Hasegawa 2003; Kanamaru et al. 2001; Park et al.
2004), and the Hindmarsh-Rose equations
(Rosenblum and Pikovsky 2004) have been studied.

The dynamics of mean field coupled phase
oscillators under the impact of inertia effects
(Acebron and Spigler 1998) and related models
have attracted considerable attention. Bridge vibra-
tions induced by pedestrian walking have been
discussed in this context recently (Eckhardt et al.
2007; Strogatz et al. 2005). Models for circadian
rhythms have been examined (Daido 2001).

Solutions of the Kadar-Parisi-Zhang equation
have been examined by means of nonlinear
Fokker-Planck equations (Giada and Marsili
2000; Marsili and Bray 1996). In doing so, the
growth of surfaces and roughening phenomena
have been studied.

Wetting processes (de los Santos et al. 2003),
interacting Brownian motors (Becker and Engel
2007; Savel’ev et al. 2003), and spatially distrib-
uted phase oscillators (Kawamura 2007;
Kawamura et al. 2007) have been analyzed by
means of the nonlinear Fokker-Planck perspective.

In the mathematical literature, a seminal study
on nonlinear Fokker-Planck equations of the Bur-
gers equation typewas due toMcKean Jr. (1969). In
particular, the convergence of stochastic processes
described by multivariate linear Fokker-Planck
equations to processes described by nonlinear
Fokker-Planck equations (Cepa and Lepingle
1997; Dawson 1983, 1993; Ding 1994; Djehiche
and Kaj 1995; Fontbona 2003; Gärtner 1988;
Greven 2005; Jourdain 2000; McKean 1969;
Meleard 1996; Meleard and Coppoletta 1987;
Oelschläger 1989; Overbeck 1996; Pilipenko
2005; Rogers and Shi 1993) and martingales of
stochastic processes defined by nonlinear Fokker-
Planck equations have been addressed (Djehiche
and Kaj 1995; Fontbona 2003; Gärtner 1988;
Graham 1990; Greven 2005; Jourdain 2000;
Meleard 1996; Meleard and Coppoletta 1987;
Overbeck 1996). Moreover, the propagation of
molecular chaos has been studied (Bonilla 1987;
Meleard 1996; Meleard and Coppoletta 1987). The
convergence of transient solutions of nonlinear
Fokker-Planck equations to stationary ones has
been examined by means of functionals that are
similar to the Lyapunov functionals introduced by
Shiino (see above) (Arnold et al. 1996, 2000, 2001;
Carillo et al. 2001, 2008). In addition, from a purely
mathematical perspective, nonlinear Fokker-Planck
equations should be considered as nonlinear para-
bolic partial differential equations that have been
discussed in several textbooks (Friedman 1969).

In what follows, we will show that there is a
common theoretical framework that unifiesmost of
the aforementioned studies on nonlinear Fokker-
Planck equations and includes the theory of linear
Fokker-Planck equations as a special case. This
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common theoretical framework is rooted in the
notion of Markov processes and martingales.

Time-Dependent Solutions and First-
Order Statistics

Linear Case
Equation (3) defines the evolution of P given an
initial distribution u(x). The norm of the probabil-
ity density P equals unity for all times provided
that the norm of u(x) equals unity. That is, ifÐ
Ou(x) dx = 1 holds, we have

Ð
OP(x, t; u)

dx = 1 for t � t0. We can see this by integrating
Eq. (3) with respect to x. For appropriate boundary
conditions, it can be shown by partial integration
that the right-hand side vanishes which implies
that d[

Ð
OP(x, t; u) dx]/dt = 0 holds. The formal

solution of Eq. (3) reads

P x, t; uð Þ ¼ exp

ðt
t0

dzL0 x, zð Þ
� �

u xð Þ, (15)

where L0 is defined in Eq. (4). Equation (15) can be
used to solve Eq. (3) numerically (see Vol. 1, Sect.
6.5 in Haken 2004). Let tn denote a discrete time
point tn = t0 + nDt with n= 0, 1, 2, . . ., where Dt is
the interval of a single time step and should be small.
Let us define Pn(x; u) = P(x, tn; u). Then, we have

Pnþ1 x; uð Þ ¼ 1þ DtL0 x, tnð Þ� �
Pn x; uð Þ (16)

with P0 = u(x). If X̂ corresponds to an autono-
mous processes, then the coefficientD1 andD2 do
not depend on t. In this case, Pn can be expressed
in terms of u as

Pn x; uð Þ ¼ 1þ DtL0 xð Þ
 �n
u xð Þ: (17)

Numerical solutions converge to exact solu-
tions in the limit Dt ! 0.

Nonlinear Case
For appropriately chosen drift and diffusion coef-
ficients, Eq. (5) exhibits time-dependent solutions
P. By analogy with the linear case, these solutions
are normalized to unity provided that appropriate

boundary conditions hold and that the initial prob-
ability density is normalized to unity. Solutions of
Eq. (5) are formally defined by

P x, t; uð Þ ¼ exp

ðt
t0

dzLðx, z,P x, z; uð Þ�� �
u xð Þ:

(18)

The time-dependent solutions P can be com-
puted numerically by analogy to the linear case
discussed above. That is, the probability densities
Pn(x; u) = P(x, tn; u) on the discrete time grid
t0 , t0 + Dt , t0 + 2Dt , . . . can be computed from

Pnþ1 x; uð Þ ¼ 1þ DtL x, tn,Pn x; uð Þð Þf gPn x; uð Þ
(19)

with P0 = u(x) and n = 0 , 1 , 2 , . . .. If drift
and diffusion coefficients do not explicitly depend
on t, we find that the operator L still depends
implicitly on t because it depends on the time-
dependent solution P that in turn depends on t.
Consequently, it is not trivial to generalize
Eq. (17) to the nonlinear case. If the drift- and
diffusion coefficients do not depend explicitly on
time t and the process converges to a stationary
one, then the nonlinear Fokker-Planck operator
L does not depend on time. This implies that the
stationary probability density Pst satisfies

Pst ¼ 1þ DtL x,Pstð Þf gPst þ O Dt2
� �

: (20)

Finally, note that we do not necessarily need to
define the formal solution with respect to the
initial probability density u as in Eq. (18). We
can solve the nonlinear Fokker-Planck equation
on the time interval [t0, t] by splitting the solution
in two intervals [t0, t

0] and [t0, t]. Then, we obtain

P x, t; uð Þ ¼ exp

ðt
t0
dzLðx, z,P x, z; uð Þ�� �

P x, t0; uð Þ:
(21)

Equation (21) can be solved iteratively bymeans
of Eq. (19) yielding a mapping TDt : P x, t; uð Þ ¼
Tt�t0 P x, t0; uð Þ½ � with Dt = t � t0.
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Markov Property: Second-Order and
Higher-Order Statistics

Conditional Probability Densities
Let p(x) define the probability density of the time-
dependent random variable X at time t given that
X assumed at earlier times t0, t00, t000,. . . with
t � t0 > t00 > t000 > . . . particular values x0, x00,
x
000
,. . . Then p is defined by

p ¼ dðx� X tð Þh iX t0ð Þ¼x0,X t00ð Þ¼x00,X t000ð Þ¼x000 , ...:

(22)

In order to point out the information that we
need to compute p, we write

p ¼ p x, tj x0, t0; x00, t00; x000
, t

000
, . . .

� �
: (23)

A conditional probability density is a relation
that gives us estimates about future events and tells
us what we need to know in order to be able to
calculate these estimates. In our example given by
Eq. (23), we see that we need the information of
random values X at times t0 > t00> t

000
> . . . in order

to make a prediction about the statistics or proba-
bility density of X at time t. Alternatively, we may
say that the conditional probability density depends
on a list of variables. In the context of Markov
processes, this alternative viewpoint however
gives rise to a problem that will be discussed below.

If X̂ is a Markov process, then the information
about the stochastic process available at one par-
ticular time t0 is sufficient to make predictions
about the future t � t0. Adding more information
about how the process evolved in the past before t0

does not improve these predictions. That is, the
information about the events at time t0 is sufficient
to make statistical estimates about events at time
t � t0. An alternative definition of a Markov pro-
cess is that a Markov process exhibits a condi-
tional probability density p (x, t |�) that depends
only on one time point prior to t. That is,
according to the first definition, we look from
time t0 into the future, whereas according to the
second definition, we look in the opposite direc-
tion: we look from time t into the past.

For example, in order to describe the probability
density p(T) of the temperature T in Boston (USA)
on December 1st, 2007, given that on November

1st, 2007, the temperature was 2 �C and onOctober
1st, 2007, the temperature was 3 �C, we would
define the conditional probability density p(T,
Dec 1st 2007| T = 2, Nov 1st 2007; T = 3, Oct 1st
2007). If the temperature T as a function of time
t is a Markov process, it is sufficient to know the
temperature at November 1st in order to compute
the probability density p(T) at December 1st. For
example, we would obtain the same function p(T)
for the conditions (i) and (ii) with (i) T = 2 �C on
Nov 1st and T= 3 �C on Oct 1st and (ii) T= 2 �C
on Nov 1st and T = 5 �C on Oct 1st. That is, we
would have

pðT, Dec1st2007 j T ¼ 2, Nov1st2007;

T ¼ 3, Oct1st2007
�

¼ pðT, Dec1st2007 jT ¼ 2, Nov1st2007;

T ¼ 5, Oct1st2007
�

¼ pðT, Dec1st2007jT ¼ 2, Nov1st2007: (24)

The information about the October temperature
is irrelevant. In this sense, the conditional probability
densitywould depend on theNovember temperature
but would not depend on the October temperature.

A problem that arises in the context of the
definition of Markov process is as follows. Sup-
pose that there is a purely deterministic dynamical
aspect involved in a stochastic process. In our
example about Boston temperatures, we may
think of the annual periodic changes of the temper-
ature that are related to the annual changes in
distance and declination angle between the earth
and sun. Let us assume that distance and declina-
tion angle change periodically in a purely deter-
ministic fashion such that the distance and
declination angle at November 1st can be com-
puted from the distance and declination angle at
January 1st by a simple one-to-one mapping. Then
the question arises: does the temperature in Boston
on December 1st depend on the distance and dec-
lination angle of November 1st as suggested by
p(T, Dec 1st 2007 j T= 25, Nov 1st 2007) or does it
depend on the distance and declination angle of
January 1st In the former case, we have a Markov
conditional probability density. In the latter case,
we would need to write p like
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pðT, Dec1st2007jT ¼ 25, Nov1st2007;
distanceandangle, Jan1st2007

�
indicated that we are dealing with a non-Markovian
process. The situation becomes even worse if we
take into consideration that the earth-sun distance
and the declination angle at January 1, 2008, can be
computed from the information known at November
1 using our simple one-to-one mapping. Therefore,
we may say that the temperature estimate for
December 1st, 2007, depends on a future event,
namely, the earth-sun distance and declination
angle given at January 1st, 2008. The conditional
probability density would assume the form

pðT, Dec1st2007jT ¼ 25, Nov1st2007;�
distanceandangle, Jan1st2008

�
whichwould suggest again that we are dealingwith a
non-Markovian and – to a certain extent – noncausal
process. We can solve this problem by realizing that
purely deterministic relationships in time that repre-
sent external driving forces are irrelevant for the
distinction between Markov and non-Markov pro-
cesses. We can completely determine such an exter-
nal driving force by a parameter set {t0, A1, A2, . . .}
that describes the initial state of the driving forces.
Although this initial state is related to the initial time
t0 of the Markov process, the conditional probabil-
ity density does not actually depend (i.e., it does not
explicitly depend) on t0. Likewise the conditional
probability density does not actually depend on the
parameters {A1, A2, . . .}. The information that we
have at time t0 includes the information about the
driving force at time t0 and therefore the informa-
tion about the driving force at all times t � [t0 ,
1 ). Consequently, the information at time t0 is

sufficient to predict how the driving force will
evolve in the future at times t � t0. There is no
need to assess information about events prior to t0

or information about events that will happen in the
future at times larger than in order to determine the
evolution of the deterministic driving force.

Let us summarize. A stochastic process X̂ is
called a Markov process if information about the
process at time t0 is sufficient to make predictions
about future events. This implies that the condi-
tional probability density p defined in Eq. (23) can
be simplified like

p x, tj x0, t00x00, t00; x000
, t

000
, . . .

� �
¼ p x, tj x0, t0ð Þ: (25)

Note that we may say that p depends only on
the state x0 related to the time t0 in the sense that the
information at time t0 is sufficient to predict how
Xwill be distributed at time t� t0. We may say it is
sufficient to best predict future events where best
refers to the fact that adding additional informa-
tion about the past does not improve our predic-
tions. Let us illustrate this issue by another
example. Let p(x, t j X= y) denote the probability
density of X at time t given that X equals the
function y in the interval [t0, t0] with t0 � t. If
X describes a Markov process, we have

p x, tjX ¼ yð Þ ¼ p x, tj y t0ð Þ, t0ð Þ
¼ p x, tj x0, t0ð Þ (26)

with x0 = y(t0).

Linear Fokker-Planck Equations
As mentioned in section “Definition of the Sub-
ject,” linear Fokker-Planck equations describe
Markov processes (Gardiner 1997; Risken 1989).
Markov processes related to linear Fokker-Planck
equations of the form (4) have conditional proba-
bility densities defined by

@

@t
p x, tj x0, t0ð Þ ¼ L0 x, tð Þp x, tj x0, t0ð Þ (27)

with limt!t0p x, tj x0, t0ð Þ ¼ d x� x0ð Þ . The condi-
tional probability density p is also called the fun-
damental solution or Green’s function of the
Fokker-Planck equation (3). In general, a stochas-
tic process X̂ is completely defined in terms of the
joint probability density

P xn, tn; xn�1, tn�1; . . . ; x0, t0ð Þ ¼ d xn � X tnð Þð Þh
� d xn�1 � X tn�1ð Þð Þ� � �d x0 � X t0ð Þð Þi,

(28)

where n can assume arbitrarily large integer num-
bers. In particular, if X̂ is a Markov process, then
this joint probability density can be computed
from p and u like

P �ð Þ ¼ p xn, tnj xn�1, tn�1ð Þ � p xn�1, tn�1j xn�2, tn�2ð Þ
� � �p x1, t1j x0, t0ð Þu x0ð Þ:

(29)

Consequently, the linear Fokker-Planck equa-
tion (3) defines completely a Markov process via
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the associated evolution equation (27) and the
initial distribution u. In particular, the time-
dependent probability densities P(x, t; u) and
P(x, t0; u) with t � t0 are related to each other by
means of a linear functional

P x, t; uð Þ ¼
ð
O
p x, tj x0, t0ð ÞP x0, t; uð Þdx0: (30)

That is, the Green’s function p induces a func-
tional that is linear with respect to P(x0, t0; u).

Langevin Equations of Linear Fokker-Planck
Equations
The stochastic trajectories X(t) of the Markov
process X̂ defined by Eq. (3) can be computed
from the Ito-Langevin equation (Coffey et al.
2004; Gardiner 1997; Risken 1989)

d

dt
X tð Þ ¼ D1 X tð Þ, tð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 X tð Þ, tð Þ

p
G tð Þ, (31)

where G(t) denotes a Langevin force normalized
to the delta function like hG(t)G(t0)i = 2d(t � t0)
From the Langevin equation (31), it follows again
that we are dealing with a Markov process. Infor-
mation about one reference time t0 is sufficient to
compute the future behavior of the trajectory X(t)
with t � t0. On a discrete time grid the stochastic
trajectories or realizations of X̂ can be computed
iteratively like (Kloeden and Platen 1992; Risken
1989)

Xnþ1 ¼ Xn þ DtD1 Xn, tnð Þ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DtD2 Xn, tnð Þ

p
ϵn (32)

with X(tn) = Xn , tn = t0 + nDt and n = 0, 1, 2,
. . . Here, ϵn are independent Gaussian distributed
random numbers with vanishing mean and vari-
ance 2. That is, we have hϵni = 0 and hϵnϵmi = 2
dnm, where dnm is the Kronecker symbol. Finally,
the probability density W of ϵn at every step n is
given by

W ϵnð Þ ¼ 1ffiffiffiffiffiffi
4p

p exp � ϵ2n
4

� �
: (33)

Note that we do not necessarily need to start the
iteration iterative map at t0. The Scheme (32) can
be started at any time step n. Moreover, in order to

compute the subsequent time steps, it is sufficient
to have information about the random variable
X at time tn. Consequently, the sequence Xn,
Xn+1, Xn+2, . . . computed from Eq. (32) describes
a trajectory of a Markov process.

Strongly Nonlinear Fokker-Planck Equations
In section “Definition of the Subject,” we pointed
out that there is some kind of inconsistency in the
definition of linear and nonlinear Fokker-Planck
equations. While a linear Fokker-Planck equation
defines a stochastic process, a nonlinear Fokker-
Planck equation defines at best the evolution of a
probability density P(x,t). That is, if solutions of
Eq. (5) exist for u � U, then Eq. (5) defines the
evolution of first-order statistical properties of a
stochastic process X̂ such as the time-dependent
probability density, the mean, and the variance of
the process X̂ . In any case, Eq. (5) does not define
second- and higher-order statistical quantities such
as correlation functions and conditional probability
densities (Frank 2004d). In particular, the time-
dependent solutions P of Eq. (5) in general cannot
be used to construct Green’s functions of Markov
processes because they do not necessarily corre-
spond to Green’s functions of Markov processes
(Frank 2003b). Note that this is not a peculiarity of
stochastic processes defined by nonlinear Fokker-
Planck equations. In fact, time-dependent solutions
P of linear Fokker-Planck equations Eq. (3) involv-
ing explicitly time-dependent coefficientsD1 andD2

do not necessarily correspond to Green’s functions.
Mathematically speaking, let P(x, t; u = d(x – x0))
denote the probability density of a process X̂ defined
by a nonautonomous linear Fokker-Planck equation
or by a nonlinear Fokker-Planck equation and let
p(x, t| x0, t0) denote the conditional probability den-
sity of that process X̂, then we have (Frank 2003b)

P x, t; u ¼ d x� x0ð Þð Þt0¼t0

isnotnecessarilyequivalent top x, tj x0, t0ð Þ,
(34)

where P x, t; u ¼ d x� x0ð Þð Þt0¼t0 means that we
take the time-dependent solution P(x, t;
u = d(x – x0)) and replace in this expression x0
by x0 and t0 by t0.

Let us return to the issue how to define a stochas-
tic process X̂ on the basis of a nonlinear Fokker-
Planck equation (5). In order to do so, we need to
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define appropriate constraints such that out of all
possible stochastic processes that exhibit a time-
dependent probability density P defined by Eq. (5),
one particular process is selected. In what follows,
we will discuss one particular set of constraints
(Frank 2004d). As we will see, the stochastic pro-
cesses thus defined exhibit the Markov property.

Let U denote a set of initial probability densi-
ties u. That is, U is a set of functions or a space of
functions. Let P(x, t; u) denote the solution of the
nonlinear Fokker-Planck equation

@

@t
P x, t, uð Þ ¼ L x, t,P x, t; uð Þð ÞP x, t; uð Þ (35)

with

L x, t,P x, t; uð Þð Þ ¼ � @

@x
D1 x, t,P x, t; uð Þð Þ

þ @2

@x2
D2 x, t,P x, t; uð Þð Þ

(36)
for an initial distribution u � U. Let us introduce
the associated drift and diffusion coefficients ~D1

and ~D2 by

~D1 x, t; uð Þ ¼ D1 x, t;P x, t; uð Þð Þ,
~D2 x, t; uð Þ ¼ D2 x, t;P x, t; uð Þð Þ: (37)

That is, for any u ∊ U, Eq. (35) is solved
analytically or by numerical iteration (19). The
solution is substituted into the drift and diffusion
coefficients D1 and D2. The coefficients thus
obtained are the functions ~D1 and ~D2 associated
to D1 and D2. Let us assume that for all u ∊ U, the
evolution equation

@

@t
p x, tj x0, t0ð Þ ¼ � @

@x
~D1 x, t; uð Þ þ � @2

@x2
~D2ðx, t; u

�� �
�p x, tj x0, t0ð Þ

(38)

has a fundamental solution or Green’s function.
Then, this solution p and its corresponding initial
distribution u define a Markov process. In (Frank
2004d) nonlinear Fokker-Planck equations that
induce evolution equations (38) with fundamental
solutions were called strongly nonlinear Fokker-
Planck equations. Note that nonlinear Fokker-
Planck equations (5) do not necessarily exhibit
the property of being strongly nonlinear. Note

also that in some applications, it might be worth
to define carefully the set U of initial probability
densities u such that a nonlinear Fokker-Planck
equation under consideration becomes strongly
nonlinear.

As indicated above, the time-dependent prob-
ability density P of a nonlinear Fokker-Planck
equation depends on the initial distribution u.
Likewise, the associated coefficients ~D1 and ~D2

depend on u. As a result, the conditional proba-
bility density p(x, t| x0,t0 ) depends on u as well. For
this reason, the notation p(x, t| x0,t0; u) has been
suggested. Unfortunately, this notation is likely to
cause confusion because one might think that
p depends not only on the time t0 but also on the
initial time t0 which seems to be incompatible
with the notion of a Markov conditional probabil-
ity density (Frank 2007; McCauley et al. 2006). In
fact, this confusion results from the second alter-
native way to define Markov processes that has
been discussed above. The evolution of the func-
tion P(x, t; u) is a purely deterministic one. That is,
P(x, t; u) represents a deterministic driving force
for the purpose of computing the conditional
probability density. The distribution u is just a
parameter which determines the initial value of
this driving force. In this context, note again that
the conditional probability density of a Markov
process in general depends on parameters and in
particular can depend on the initial time t0 and
other parameters {A1, A2, . . .} that define the
initial state of a driving force. Consequently, the
notation p(x, t| x0,t0; u) does not imply a contradic-
tion with the notion of a Markov process. For
example, the nonautonomous Langevin equation

@

@t
X tð Þ ¼ �gX tð Þ � A cos o t� t0ð Þð Þ

þ
ffiffiffiffi
Q

p
G tð Þ (39)

with g, A, o, Q > 0 defines a Markov process that
is driven by a harmonic force �A cos(o(t – t0)).
That is, the harmonic force has amplitude A at the
beginning of the process. The conditional proba-
bility density of that process depends on the param-
eter g, o, Q but also on the parameters t0 and
A which correspond to the initial amplitude and
time. We have (see Sect. 3.7.3 in Frank 2005b)
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p ¼ p x, tj x0, t0, g,o,Q,A, t0ð Þ: (40)

Nevertheless, in what follows, we will develop
a slightly different notation for conditional prob-
ability densities p of strongly nonlinear Fokker-
Planck equations that is in line with the first def-
inition of Markov processes discussed above and
will be helpful to elucidate that the functions
p reflect indeed Markov processes.

Let us exploit first the fact that if Eq. (35) is a
strongly nonlinear Fokker-Planck equations,
then time-dependent solutions P(x, t; u) of
Eq. (35) exist for u � U and are related to their
initial probability densities u by a one-to-one
mapping Tt. That is, for every t we have P(x, t;
u) = Tt [u(x)]. For an explicit construction of the
map Tt, see, for example, Eq. (18). Likewise, we
have P(x, t0; u)= Tt0[u(x)]. Using the inverse of T,
we can map u to P like u xð Þ ¼ T�1

t0 P x, t; uð Þ½ � .
Substituting these expressions into p(x, t| x0,t0; u),
we obtain pðx, tjx0, t0; T�1

t0 P x, t0; uð Þ½ �: This result
demonstrates that the information about the sto-
chastic process X̂ at time t0 is sufficient to predict
the future at t > t0. We can regard the conditional
probability density p as a function that does not
depend explicitly on u, but it depends explicitly
on the state of the driving force P at time t0. In
line with this remark, we introduce conditional
probability densities of the form p (x, t | x0, t0,
P(x0, t0;u)).

Let us dwell on the interpretation of a condi-
tional probability density p (x, t | x0, t0, P(x0, t0; u)).
To this end, we need to discuss briefly the notion of
a particular conditional averaging that is important
in this context and will become important later on
as well. Let us assume that we make observations
of realizations of a stochastic process X̂ for which
the following two conditions hold: (i) X (t0) = x0

and (ii) the ensemble of all realization is distributed
like P at time t0. Next, we average across all obser-
vations that we make under these conditions. In
doing so, we average under the constraints

X t0ð Þ ¼ x0 and d x0 � X t0ð Þð Þh i
¼ P x0, t0; uð Þ: (41)

In order to indicate that such a structured con-
straint should hold, we will use the notation

�h iX t0ð Þ¼x0; d x0�X t0ð Þð Þh i¼P x0, t0; uð Þ: (42)

In words, Eq. (42) is the instruction to take out
of an ensemble with probability density P at time
t0 only those realizations that assume the value x0

at time t0. On the one hand, this constraint induces
a trivial situation. We know for sure that X(t0)= x0

and consequently can replace the random variable
X(t0) by x0. On the other hand, the averaging pro-
cedure may involve the random variable X(t) at a
time point t different from t0. Although X(t0) is
fixed at x0, the random variable X(t) can assume
different values at t for different realizations of the
process X̂ . The conditional probability density
p (x, t | x0, t0, P(x0, t0; u)) is a special case in
which the delta function is averaged under the
constraint (41). We have

p x, tj x0, t0,P x0, t0; uð Þð Þ
¼ d x� X tð Þð Þh iX t0ð Þ¼x0; d x0�X t0ð Þð Þh i¼P x0, t0; uð Þ:

(43)

Summarizing the results we have derived so
far, we see that strongly nonlinear Fokker-Planck
equations define Markov processes whose

• Time-dependent probability densities P(x, t; u)
are defined by Eq. (35)

• Conditional probability densities p (x, t|x0, t0,
P(x0, t0; u)) are defined by

@

@t
p x, tjx0, t0,P0ð Þ ¼ L x, t,Pð Þp x, tjx0, t0,P0ð Þ (44)

with L given by Eq. (36), P = P(x, t; u), and
P0 = P(x0, t0; u). Note that by multiplying
Eq. (44) with P(x0, t0; u) and integrating with
respect to x0, we get Eq. (35) which in turn defines
the evolution of P(x, t; u). Consequently, Eq. (44)
defines both the evolution of P(x, t; u) and p-
(x, t| x0, t0, P0). Note also that the solution of
Eq. (44) formally reads
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p x, tj x0, t0,P x0, t0; uð Þð Þ

¼ exp

ðt
t0
dzLðx, z,P x, z; uð Þ�� �

d x� x0ð Þ
(45)

and depends on the evolution of P(x, z; u) for
z � [t0, t]. In fact, as indicated above, p depends
only on P(x0, t0, u). To see this recall that the
formal solution (21) can be obtained by means
of the iterative method (19) such that we can
write P(x, z; u) = Tz�t0 [P(x, t0; u)]. Substituting
this solution into Eq. (45), we get

p x, tj x0, t0,P x0, t0; uð Þð Þ

¼ exp

ðt
t0
dzLðx, z,Tz�t0 P x, t0; uð Þ�
 �

d x� x0ð Þ:
�

(46)

In addition, we find that the solution (45) does
not explicitly depend on u.

We arrive at the following conclusion: condi-
tional probability densities p(x, t|�) of Markov
processes described by strongly nonlinear
Fokker-Planck equations depend only on the
value of individual realizations at one prior time
point t0 � t and on the probability density
P defined by all realizations at the very same
prior time point t0.

Equation (45) can be simplified for stationary
Markov processes with operators L that do not
depend explicitly on time t. Then the conditional
probability density in the stationary case can be
computed from

p x, tj x0, t0,Pst x
0ð Þð Þ ¼ exp t� t0ð ÞL x,Pst xð Þð Þf g

d x� x0ð Þ:
(47)

where Pst(x) denotes a stationary probability den-
sity out of a set of stationary probability densities
defined by LPst = 0. Note that in this context, Pst

plays the role of an initial distribution u.
Just as in the linear case, the conditional prob-

ability density p in combination with the initial
distribution u completely defines the stochastic
process X̂ . In particular, the joint probability

density P(xn, tn; xn�1, tn�1; . . . x0, t0 ) can be
computed from p and u like

P �ð Þ ¼ p xn, tnj xn�1, tn�1,Pn�1ð Þ
�p xn�1, tn�1j xn�2, tn�2,Pn�2ð Þ� � �

� � �p x1, t1j x0, t0, uð Þu x0ð Þ,
(48)

with Pn�1= P(xn�1, tn�1; u), Pn�2= P(xn�2, tn�2;
u) and so on.

In particular, the time-dependent probability
densities P(x, t; u) and P(x, t0; u) with t � t0 are
related to each other by means of a nonlinear
functional

P x, t;uð Þ ¼
ð
O
p x, tjx0, t0,P x0, t0;uð Þð ÞP x0, t0;uð Þdx0,

(49)

where p is defined by Eq. (46). That is, the Green’s
function p induces a functional that is nonlinear
with respect to P(x0, t0; u).

Langevin Equations of Strongly Nonlinear
Fokker-Planck Equations
The stochastic trajectories X(t) of the Markov
process X̂ defined by Eq. (44) can be computed
from two-layered Langevin equations (see Sect.
3.4 in Frank 2005b) or alternatively from the self-
consistent Ito-Langevin equation

d

dt
X tð Þ ¼ D1 X tð Þ, t,P X tð Þ, t; uð Þð Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 X tð Þ, t,P X tð Þ, t; uð Þð Þ

p
G tð Þ,

(50)

where G(t) denotes the Langevin force introduced
earlier. Note that the expression P(X(t), t; u) means
that the function P(x, t; u) is evaluated at the state
x that is given by the random variable X at time t.
That is, wemaywriteP(X(t), t; u)= P(x, t; u)|x=X(t).
From the Langevin equation (50), we can read off
that we are dealing with a Markov process. Infor-
mation about one reference time t0 in terms of the
state X(t0) of a realization and the distribution of the
ensemble as given by the probability density P(x,
t0; u) is sufficient to compute the future behavior of
the trajectory X(t) with t � t0.

The Langevin equation (50) may be
implemented on a computer using the iterativemap
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Xnþ1 ¼ Xn þ DtD1 Xn, tn,P Xn, tn; uð Þð Þ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DtD2 Xn, tn,P Xn, tn; uð Þð Þ

p
ϵn (51)

with X(tn)= Xn, tn= t0 + nDt, n= 0, 1, 2, . . . and ϵn
given as statistically independent Gaussian distrib-
uted random numbers with vanishing mean and
variance 2 (see above). The expression P(Xn, t; u)
can be computed from the realizations generated by
the iteration map (51). Let X ið Þ

n denote the ith
realization at time step n. Then, the stochastic tra-
jectories X(t) can numerically be computed by sim-
ulating an ensemble of realizations i= 1, . . ., N like

X
ið Þ
nþ1 ¼ X ið Þ

n þ DtD1 X ið Þ
n , tn,Pn X ið Þ

n

� �� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DtD2 X ið Þ

n , tn,Pn X ið Þ
n

� �� �q
ϵ ið Þ
n , (52)

where ϵ ið Þ
n are statistically independent Gaussian

random numbers with respect to both indices
n and i and Pn is computed from the set

X 1ð Þ
n , . . . ,X Nð Þ

n

� �
of realizations using standard

kernel estimators. For example, we may use

Pn xð Þ ¼ 1

Ns
ffiffiffiffiffiffi
2p

p

�
XN
i¼1

exp � x� X ið Þ
n

� �2
2s2

( )
, (53)

with s = N�1/5se(tn) where se(tn) is the standard
deviation of the empirical ensemble

X 1ð Þ
n , . . . ,X Nð Þ

n

� �
(Frank 2005b, 2008; Silverman

1986). Just as in the case of Langevin equations of
linear Fokker-Planck equations, the map (52) can
be started at any time step n provided that we have
information about Pn and Xn. In particular, if we
start at a step n > 0, we see that the information

about the initial distribution is irrelevant. Conse-
quently, the sequence Xn, Xn+1, Xn+2, . . . computed
from the time-discrete Langevin equation (52)
related to the nonlinear Fokker-Planck equation
(44) describes a trajectory of a Markov process.

Finally, note that self-consistent Langevin
equations can be evaluated analytically in order
to determine second-order statistical properties of
a stochastic process defined by a strongly non-
linear Fokker-Planck equation (Borland 1998;
Kharchenko and Kharchenko 2005).

Short-Time Propagator
The Green’s function for short time intervals is
frequently called the short-time propagator and
can be derived from the time-discrete
Ito-Langevin (51). Equation (51) relates the ran-
dom variable ϵn that is distributed like W(ϵn) (see
Eq. (33)) to the random variable Xn+1. In general,
if Xn+1 is a function of ϵn then the probability
density W0(xn+1) of Xn+1 is given by

W0 xnþ1ð Þ ¼ W ϵnð Þ dϵn
dxnþ1

: (54)

In particular, if Xn+1 is computed from ϵn for a
particular value xn and probability densityP, thenwe
obtain the short-time conditional probability density

ps xnþ1j xn,P xn, tn; uð Þð Þ ¼ W ϵnð Þ dϵn
dxnþ1

: (55)

Equation (51) can be transformed into

ϵn ¼ Xnþ1 � Xn þ DtD1 Xn, tn,P Xn, tn; uð Þð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DtD2 Xn, tn,P Xn, tn; uð Þð Þp :

(56)

Substituting Eq. (56) into Eq. (55), we obtain

ps xnþ1j xn,P xn, tn; uð Þð Þ ¼
exp � xnþ1 � xn þ DtD1 xn, tn,P xn, tn; uð Þð Þ½ �2

4DtD2 xn, tn,P xn, tn; uð Þð Þ

( )
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pDtD2 xn, tn,P xn, tn; uð Þð Þp :

(57)
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Using the time-continuous framework and the
replacements n! t

0
, x

n

! x
0
, n + 1! t= t

0
+Dt x

n

+1

! x and likewise P(x

n

, t

n

; u)! P(x0,t0; u)= P0,
we obtain the short-time propagator (see Sect.
2.8.1 in Frank 2005b)

ps x, tj x0, t0,P0ð Þ ¼
exp � x� x0 þ DtD1 x0, t0,P0ð Þ½ �2

4DtD2 x0, t0,P0ð Þ

( )
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pDtD2 x0, t0,P0ð Þp :

(58)

The short-time propagator has originally been
proposed byWehner andWolfer (1987) and can be
used to solve nonlinear Fokker-Planck equations
numerically (Donoso and Salgado 2006; Donoso
et al. 2005; Soler et al. 1992). To this end, the short-
time propagator is substituted into Eq. (48), and
subsequently Eq. (48) is integrated over all vari-
ables xn�1, . . ., x0. Thus we obtain P(x, tn; u) for
tn = nDt. In the context of stochastic processes
described by linear Fokker-Planck equations, the
construction of solutions by means of short-time
propagators is referred to as path integral approach
(Gardiner 1997; Haken 2004; Risken 1989). We
will return to a similar path integral approach in
section “Semiclassical Description of Quantum
Systems.” Expectation values of functions f can
be computed from (58) like

f X tð Þð Þh iX t0ð Þ¼x0; d x0�X t0ð Þð Þh i¼P x0, t0; uð Þ

¼
ð
o
f xð Þps x, tj x0, t0,P0ð Þdx, (59)

which holds for small intervals Dt = t � t0. The
short-time propagator illustrates again theMarkov
property of solutions of the strongly nonlinear
Fokker-Planck equation (44). The information
about x0 and P0 at time t0 is sufficient to make
predications in terms of expectation values that
the stochastic process will assume at time
t = t0 + Dt.

Chapman-Kolmogorov Equation, Kramers-
Moyal Expansion, and Drift-Diffusion
Estimates
Linear Fokker-Planck equation can be derived
using the Kramers-Moyal expansion of the

Chapman-Kolmogorov equation (Gardiner 1997;
Risken 1989). The definition of the expansion
coefficients in turn can be used to estimate the
Kramers-Moyal coefficients in general and the
drift and diffusion coefficients of linear Fokker-
Planck equations in particular from experimental
data (Friedrich and Peinke 1997; Friedrich et al.
2000). We will show in this section that if a sto-
chastic process defined by a nonlinear Fokker-
Planck equation can be embedded into a Markov
process using the concept of strongly nonlinear
Fokker-Planck equations, then we can proceed as
in the linear case. Taking a slightly different per-
spective, we may say that there are Markov pro-
cesses that involve conditional probability
densities of the form p (x, t | x0, t0, P(x0, t0; u)) and
can be characterized in terms of generalized
Kramers-Moyal expansion coefficients.

Chapman-Kolmogorov Equation
Let X̂ denote a stochastic Markov process with
conditional probability density p (x, t | x0, t0, P(-
x0, t0; u)). Then as discussed in the previous sec-
tion, the joint probability P(x, t; x0, t0; x00, t00; u))
can be expressed by

P x, t; x0, t0; x00, t00; uð Þ ¼ p x, tj x0, t0,P x0, t0; uð Þð Þ
�p x0, t0j x00, t00,P x00, t00; uð Þð ÞP x00, t00; uð Þ: (60)

Integrating with respect to x0 and dividing by
P(x00, t00; u) yields the generalized Chapman-
Kolmogorov equation

p x, tj x00, t00,P x00, t00; uð Þð Þ

¼
ð
O
p x, tj x0, t0,P x0, t0; uð Þð Þ

� p x0, t0j x00, t00,P x00, t00; uð Þð Þdx0: (61)

Note that in what follows, we will use the
notation

P ¼ P x, t; uð Þ,
P0 ¼ P x0, t0; uð Þ,
P00 ¼ P x00, t00; uð Þ:

(62)

If we need to express probability densities
P different from those listed in Eq. (62), we will
write down if necessary their arguments explicitly.
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For example, we will write P(x, t0; u) to express
the probability density 〈d(x � X(t0))〉 for a sto-
chastic process X̂ with initial distribution u.

Using the notation of Eq. (62), we can write the
joint probability density (60) like

P x, t; x0, t0; x00, t00; uð Þ ¼ p x, tj x0, t0,P0ð Þ
p x0, t0j x00, t00,P00ð ÞP00 (63)

and the generalized Chapman-Kolmogorov
Eq. (61) becomes

p x, tjx00, t00,P00ð Þ ¼
ð
O
p x, tjx0, t0,P0ð Þp x0, t0jx00, t00,P00ð Þdx0:

(64)

Kramers-Moyal Expansion
In this section, the Kramers-Moyal expansion for
linear Fokker-Planck equations as discussed in
Risken (1989) will be generalized to the nonlinear
case. Consider the conditional probability density
p(x, t|x0, t0, P0) for t = t0 + Dt. Then, we have

p x, t0 þ Dtj x0, t0,P0ð Þ ¼
ð
O
d y� xð Þp y, t0 þ Dtj x0, t0,P0ð Þdy:

(65)

The variables x and x0 denote arbitrary states in
O. However, let us consider next states y that are
close to x0 such that is ϵ = y � x0 small. Using
y � x = ϵ + x0 � x, we obtain

p x, t0 þ Dtj x0, t0,P0ð Þ ¼
ð
O
d x0 � xþ ϵð Þ

�p x0 þ ϵ, t0 þ Dtj x0, t0,P0ð Þdϵ:
(66)

Use

d x0 � xþ ϵð Þ ¼ d x0 � xð Þ þ
X1
1

� ϵn

n!

@

@x0

� �n

d x0 � xð Þ: (67)

Then, Eq. (66) becomes

p x, t0 þ Dtj x0, t0,P0ð Þ ¼ d x0 � xð Þ þ
X1
1

ð
O
dϵ

ϵn

n!

�p x0 þ ϵ, t0 þ Dtj x0, t0,Pð Þ @

@x0

� �n

d x0 � xð Þ:
(68)

Multiplying Eq. (68) with p(x0, t0 | x00, t00, P00)
and integrating with respect to x0 yields on the left-
hand side

LHS ¼ ÐOp x, t0 þ Dtj x0, t0,P0ð Þp x0, t0j x00, t00,P00ð Þ
dx0 ¼ p x, t0 þ Dtj x00, t00,P00ð Þ

(69)
and on the right-hand side

RHS¼p x, t0jx},t00,P00ð Þ
þ
X1
1

ð
O
dx0
ð
O
dϵ

ϵn

n!
p x0 þϵ, t0 þDtjx0,t0,P0ð Þ

�p x0, t0jx00, t00,P00ð Þ@
nd x0 �xð Þ
@x0n

RHS¼p x, t0jx00, t00,P00ð Þ
þ
X1
1

ð
O
dx0d x0 �xð Þ @n

@x0n
�1ð Þn

�ÐOdϵ ϵnn!p x0 þϵ, t0 þDtjx0,t0,P0ð Þp x0,t0jx00, t00,P00ð Þ
RHS¼p x, t0jx00, t00,P00ð Þ
þ
X1
1

� @

@x

� �nð
O
dϵ

ϵn

n!
p xþϵ, t0 þDtjx,t0,P x, t0;uð Þð Þ

�p x, t0jx00, t00,P00ð Þ:
(70)

Note that we used the Chapman-Kolmogorov
Eq. (61) in order to evaluate the left-hand side (69)
and we used Eq. (61) as well as partial integration
in order to evaluate the right-hand side (70). Let us
define the moments Mn(x, t, Dt, P(x, t; u)) by

Mn x, t,Dt,Pð Þ ¼
ð
O
dϵ

ϵn

n!
p xþ ϵ, tþ Dtj x, t,Pð Þ

(71)

or using ϵ + x = z by

Mn x, t,Dt,Pð Þ ¼
ð
O
dz

z� xð Þn
n!

p z, tþ Dtj x, t,Pð Þ:
(72)

Combining the left- and right-hand sides given
by Eqs. (69) and (70), respectively, we obtain

p x, t0 þ Dtj x00, t00,P00ð Þ

¼ p x, t0j x00, t00,P00ð Þ þ
X1
1

� @

@x

� �n

�Mn x, t0,Dt,P x, t0; uð Þð Þp x, t0j x00, t},P00ð Þ:
(73)

To improve readability, let us replace t0 by t and
subsequently t00 by t0. Thus, we obtain
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p x,tþDtjx0, t0,P0ð Þ¼pðx, tjx0, t0,P0

þ
X1
1

� @

@x

� �n

�Mn x, t,Dt,Pð Þp x, tjx0, t0,P0ð Þ:
(74)

This is the time-discrete version of the Kramers-
Moyal expansion of the generalized Chapman-
Kolmogorov Eq. (64). Note that Mn depends on
P(x, t; u), whereas p depends on P(x0, t0; u). Next,
we define the Kramers-Moyal coefficients

Dn x, t,Pð Þ ¼ lim
Dt!0

Mn

Dt
lim
Dt!0

� 1

Dt

ð
O
dx

z� xð Þn
n!

� p z, tþ Dtj x, t,Pð Þ: (75)

Dividing Eq. (74) by Dt and taking the limiting
case Dt ! 0, Eq. (74) becomes the time-
continuous generalized Kramers-Moyal expansion

@

@t
p x, tj x0, t0,Pð Þ ¼

X1
1

� @

@x

� �n

Dn x, t,Pð Þ

p x, tj x0, t0,P0ð Þ:
(76)

Note that by generalizing the Kramers-Moyal
expansion to the nonlinear case, we found immedi-
ately that the coefficients Dn depend on P(x, t; u),
whereas the conditional probability density
p depends on P(x0, t0; u). Note also that in the
special case Dn = 0 for n � 3, the Kramers-
Moyal expansion (76) yields the nonlinear
Fokker-Planck equation (44). Finally note that
since we have Mn(Dt = 0) = 0 for all n, Kramers-
Moyal coefficients can also be defined by

Dn x, t,Pð Þ ¼ @Mn

@Dt

����
Dt¼0

¼
ð
O
dx

z� xð Þn
n!

@

@u
p z, uj x, t,Pð Þ

����
u¼t

:

(77)

Drift-Diffusion Estimates
The definition of the Kramers-Moyal coefficients
can be exploited to extract the drift and diffusion
coefficients of nonlinear Fokker-Planck equations

from time series data. Accordingly, the drift coef-
ficient D1 and the diffusion coefficient D2 are
defined by

D1 x, t,Pð Þ¼ lim
Dt!0

1

Dt

ð
O
dx z�xð Þp z, tþDtjx, t,Pð Þ,

D2 x, t,Pð Þ¼ lim
Dt!0

1

2Dt

ð
O
dx

z�xð Þ2
2

p z, tþDtjx, t,Pð Þ:

(78)
The limiting case Dt may be approximated by

the smallest time step that is available in the data set:

D1 x, t,Pð Þ 	 1

Dt

ð
O
dx z� xð Þp z, tþ Dtj x, t,Pð Þ,

D2 x, t,Pð Þ 	 1

2Dt

ð
O
dx

z� xð Þ2
2

p z, tþ Dtj x, t,Pð Þ,
(79)

where Dt denotes now the sampling interval
between two data points. Note that on the basis of
the alternative definition (77), higher-order approx-
imations can also be defined (Patanarapeelert et al.
2006). The conditional averages can be approxi-
mated by empirical conditional averages computed
from a finite set of realizations X(1)(t), X(2)(t), . . .,
X(N)(t). Thus, we obtain

D1 x, t,Pð Þ	 1

Dt
1P

i� I t,xð Þ1
�
X

i�I t,xð Þ
X ið Þ tþDtð Þ�X ið Þ tð Þ
h i

,

D2 x, t,Pð Þ	 1

2Dt
1P

i� I t,xð Þ1
�
X

i�I t,xð Þ
X ið Þ tþDtð Þ�X ið Þ tð Þ
h i2

,

(80)
where I(t,x) is the set of indices i for which X(i)(-
t) 	 x. In the case of Markov processes described
by linear Fokker-Planck equations, the argument
P in the coefficients can be dropped and the above
drift-diffusion estimates reduce to the estimates
proposed in Friedrich and Peinke (1997) and Frie-
drich et al. (2000) that have recently found many
applications (Bödeker et al. 2003; Jafari et al.
2002; Sura and Barsugli 2002; Waechter et al.
2004). For Markov processes described by non-
linear Fokker-Planck equations, we need to com-
pute the conditional averages for different
probability densities P. To this end, we may vary
the initial distribution u of a stochastic process.
For a stochastic process with a particular distribu-
tion of X at time t, we will obtain the coefficients
D1 and D2 only for that particular distribution.
Using the kernel estimate method mentioned
above, we obtain
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D1 x,t,P	 1

Ns
ffiffiffiffiffiffi
2p

p
XN
i¼1

exp � x�X ið Þ tð Þ� �2
2s2

( ) !

	 1

Dt
1P

i�I t,xð Þ1

�
X

i�I t,xð Þ
X ið Þ tþDtð Þ�X ið Þ tð Þ
h i

(81)
and

D2 x,t,P	 1

Ns
ffiffiffiffiffiffi
2p

p
XN
i¼1

exp � x�X ið Þ tð Þ� �2
2s2

( ) !

	 1

2Dt
1P

i�I t,xð Þ1

�
X

i�I t,xð Þ
X ið Þ tþDtð Þ�X ið Þ tð Þ
h i2

(82)

with s = N�1/5se(tn), where se(tn) is the standard
deviation of the empirical ensemble {X(1)(t), . . .,
X(N)(t)}. Note that in general the Kramers-Moyal
coefficients of Markov processes induced by con-
ditional probability densities of the form p(x, t|x0,
t0, P0) can be estimated using

Dn x,t,P	 1

Ns
ffiffiffiffiffiffi
2p

p
XN
i¼1

exp � x�X ið Þ tð Þ� �2
2s2

( ) !

	 1

n!Dt
1P

i�I t,xð Þ1

�
X

i�I t,xð Þ
X ið Þ tþDtð Þ�X ið Þ tð Þ
h in

:

(83)

Alternatively, parametric estimate methods
may be used. For example, we may be interested
in estimating the exponent q of a Markov process
defined by the Plastino-Plastino model (see sec-
tion “Nonextensive Systems” below)

@

@t
p x, tj x0, t0,P0ð Þ ¼ @

@x
gxþ Q

@2

@x2
P x, t; uð Þq�1

� �
p x, tj x0, t0,P0ð Þ

(84)

with g, Q, q > 0. Then, the diffusion coefficient
D2(P) = QPq�1 involves the parameter Q and q.
Using Eq. (82) and taking the logarithm, we get

lnQþ q� 1ð Þln 1

Ns
ffiffiffiffiffiffi
2p

p
XN
i¼1

exp � x� X ið Þ tð Þ� �2
2s2

( )( )

	 ln
1

2Dt
1P

i� I t, xð Þ1

(

X
i� I t, xð Þ

X ið Þ tþ Dtð Þ � X ið Þ tð Þ
h i29=

;:

(85)

For example, at a particular time t, Eq. (85) can
be evaluated for different states xi. In that case,
Eq. (85) assumes the form ln Q + (q � 1)
A1(xi) = A2(xi). Then, the expressions ln Q and
q – 1 (and in doing so the parametersQ and q) can
be estimated from a linear regression (Frank and
Friedrich 2005).

Martingales

Let Z(t) denote a functional of a stochastic process

X̂ defined for t � t0. In what follows, we will put
t0 = 0. Then, Z is a martingale of X̂ if

Z tð Þh iX¼y ¼ Z t0ð Þ (86)

holds for t � t0, where y is a realization of
the random variable X on the interval [0,t0] (see
Sect. 1.3 in Karlin and Taylor 1975). That is, the
constraint X = y means X(s) = y(s) holds for
s � [0,t0]. That is, in the interval [0,t0] the trajec-
tory X is fixed. Roughly speaking, a martingale is
a random variable for which the best predictor of
its future mean value is the present value. With
regard to Eq. (86), the prediction of the future
mean value is 〈Z(t)〉, whereas the present value
of Z is Z(t0). Alternatively, we may say that the
information at one time t0 about the value of the
martingale Z is sufficient to predict the mean value
of the martingale Z for future times t � t0. Note
that this alternative point of view is closely related
with the first definition of Markov processes
discussed in the previous section.

For linear Fokker-Planck equations, there is a
close link between martingales and the Markov
property. Accordingly, a stochastic process is a
Markov process defined by a linear Fokker-Planck
equation with drift and diffusion coefficients D1
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and D2 if and only if a particular random variable
Z that involves the Fokker-Planck operator is a
martingale (see Sect. 15.1 in Karlin and Taylor
1981). In the mathematical literature, this link has
also been studied in the context of nonlinear
Fokker-Planck equations (Djehiche and Kaj 1995;
Fontbona 2003; Gärtner 1988; Graham 1990;
Greven 2005; Jourdain 2000; Meleard 1996;
Meleard and Coppoletta 1987; Overbeck 1996).

Our aim in this section is to make the martin-
gale approach more accessible to scientists work-
ing in physics, applied mathematicians, and
related disciplines. To this end, we will in what
follows illustrate this link between martingales
and Markov processes defined by strongly non-
linear Fokker-Planck equation by means of stan-
dard techniques frequently used in physics.

Theorem 1 Let X̂ be a stochastic process with
initial probability density u(x) and conditional
probability density

p x, tj x0, t0;P0ð Þ
¼ d x� X tð Þð Þh iX t0ð Þ¼x0; d x0�X t0ð Þð Þh i¼p x0, t0; uð Þ: (87)

Then, X̂ is a Markov process defined by the
nonlinear Fokker-Planck equation

@

@t
p x, tj x0, t0;P0ð Þ ¼ L x, t,Pð Þp x, tj x0, t0;P0ð Þ

(88)
with

L x, t,Pð Þ ¼ � @

@x
D1 x, t,Pð Þ

þ @2

@x2
D2 x, t,Pð Þ (89)

if and only if Z(t) defined by

Z tð Þ ¼ f X tð Þð Þ �
ðt
0

LBf X zð Þ, z,P½ �dz (90)

with

LB x, t,Pð Þ ¼ D1 x, t,Pð Þ @

@x

þ D2 x, t,Pð Þ @2

@x2
(91)

is a martingale of X for smooth functions f. In the
context of linear Fokker-Planck equations, the

operator LB is the Fokker-Planck backwards oper-
ator (Gardiner 1997; Risken 1989). Note that in
our context, we refer to f as a smooth function if it
has continuous second-order derivatives. Note
also that above and in what follows, we will
frequently use the notation (54). Note finally that
in the above theorem the notion LB f[X(z), z, P]
should be interpreted like

LBf X zð Þ, z,P½ � ¼ LB X zð Þ, z,Pð Þf X zð Þð Þ
¼ LB x, t,Pð Þf xð Þf gx¼X zð Þ, t¼z:

(92)

That is, first we carry out the differentiations
defined by the operator LB. Subsequently, we replace
in the result the state variable x by the value of the
random variable X at time z. Moreover we replace
t by z. Let us prove the theorem in two parts.

From Strongly Nonlinear Fokker-Planck
Equations to Martingales
Let us prove in this section that a Markov process
defined by a strongly nonlinear Fokker-Planck
equation exhibits the martingale Z. To this end,
we first compute the conditional mean of the ran-
dom variable Z defined in Eq. (90). Thus, we obtain

Z tð Þh iX¼y
¼ f X tð Þð Þh iX¼y �

Ð t
0
dz LBf X zð Þ, z,P½ �h iX¼y

¼ f X tð Þð Þh iX¼y �
Ð t
t0 dz LBf X zð Þ, z,P½ �h iX¼y

� Ð t0
0
dsLBf y sð Þ, s½ �:

(93)

The Markov property implies that the con-
straints can be relaxed. That is, for every func-
tional g(t) of X(t) with t � t0, we have
〈g(t)〉X=y = 〈g(t)〉X(t0)=x0; P0 where x0 is given by
x0 = y(t0). We have indicated here that the average
may depend on how the process is distributed at
time t0. Consequently, Eq. (93) becomes

Z tð Þh iX¼y ¼ f X tð Þð Þh iX t0ð Þ¼x0; d x0�X t0ð Þð Þh i¼P0

� Ð tt0 dz LBf X zð Þ, z,P½ �h iX t0ð Þ¼x0, d x0�X t0ð Þð Þh i¼P0

� Ð t0
0
dsLBf y sð Þ, s,P½ �:

(94)

Multiplying the Fokker-Planck equation (88)
with f(x) and integrating with respect to x, we
obtain
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@

@t

ð
O
f xð Þp x, tj x0, t0;P0ð Þdx

¼
ð
O
f xð ÞL x, t,Pð Þp x, tj x0, t0;P0ð Þdx: (95)

By means of partial integration, we find thatÐ
Of(x)L(x, t, P)p(x, t| x

0, t0; P0) dx =
Ð
Op(x, t| x

0,
t0; P0)LB(x, t, P)f(x) dx. As a result, Eq. (95) can
be transformed into

@

@t

ð
O
f xð Þp x, tj x0, t0,P0ð Þdx

¼ ÐOp x, tj x0, t0,P0ð ÞLB x, t,Pð Þf xð Þdx
¼ LB x, t,Pð Þf xð Þh iX t0ð Þ¼x0;P0 :

(96)

Using Eq. (96), we obtain

LBf X zð Þ, z½ �h iX t0ð Þ¼x0; d x�X t0ð Þð Þh i¼P0

¼ @

@z

ð
O
f xð Þp x, tj x0, t0,P0ð Þdx: (97)

Consequently, the following integral transfor-
mation holds

I ¼ Ð tt0 dz LBf X zð Þ, z,P½ �h iX t0ð Þ¼x0;P0

¼ Ð tt0 dz @@z
ð
O
dx f xð Þp x, zj x0, t0,P0ð Þ

¼ f ðX tð Þh iX t0ð Þ¼x0;P0 � f x0ð Þ:
(98)

Substituting Eq. (98) into Eq. (94), we get

Z tð Þh iX¼y ¼ f x0ð Þ �
ðt0
0

dsLBf y sð Þ, s,P½ �: (99)

By definition, the function Z(t0) for X(s) = y(s)
given in s � [0, t0] reads

Z t0ð Þ ¼ f x0ð Þ �
ðt0
0

dsLBf y sð Þ, s,P½ �: (100)

Consequently, we have our final result

Z tð Þh iX¼y ¼ Z t0ð Þ (101)

and the proof is completed.

From Martingales to Strongly Nonlinear
Fokker-Planck Equations
Let us prove next that the martingale (90) defines a
Markov process of a strongly nonlinear Fokker-
Planck equation. Evaluating Eq. (90) by analogy
to Eq. (93) gives us

Z tð Þh iX¼y ¼ f X tð Þð Þh iX¼y

�
ðt
t0
dz LBf X zð Þ, z,P½ �h iX¼y

�
ðt0
0

dsLBf y sð Þ, s,P½ �: (102)

Substituting this result into Eq. (86) and
substituting Eq. (100) into Eq. (86), we see that
Eq. (86) becomes

f X tð Þð ÞiX¼y ¼ f x0ð Þ

þ
ðt
t0
dz LBf X zð Þ, z½ �h iX¼y: (103)

Equation (103) can equivalently be written asð
O
f xð Þp x, tjX ¼ yð Þdx

¼ f x0ð Þþ
ðt
t0
dz

ð
O
dxp x, zjX ¼ yð ÞLBf x, t,P½ �

(104)

with p(x, z|X= y)= d(x� X(z))X=y. Using partial
integration, we can show that the operator LB and
the differential operator L are related to each other
likeð

O
dxp x, zjX ¼ yð ÞLBf x, t,P½ �

¼
ð
O
dx f xð ÞL x, z,Pð Þp x, zjX ¼ yð Þ: (105)

Substituting this result into Eq. (104) yields

0¼
ð
O
dxf xð Þ p x, tjX¼ yð Þ�d x� x0ð Þ�fðt

t0
dzLðx,z,P�pðx,zjX¼ y

�g: (106)

This holds for arbitrary smooth functions f.
Since f is arbitrary, the expression in the brackets
{�} of Eq. (106) must vanish, and we obtain
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p x, tjX ¼ yð Þ ¼ d x� x0ð Þ

þ
ðt
t0
dzL x, z,Pð Þp x, zjX ¼ yð Þ:

(107)

Differentiating Eq. 107 with respect to t gives us

@

@t
p x, tjX¼ yð Þ¼ L x, t,Pð Þp x, tjX¼ yð Þ: (108)

Multiplying with the probability density
P(X = y) and performing a functional integration
with respect to the path y, we obtain

@

@t
P x, tð Þ ¼ L x, t,Pð ÞP x, tð Þ: (109)

The formal solutions of Eqs. (108) and (109)
read

p x, tjX ¼ yð Þ ¼ exp

ðt
t0
dzL x, z,Pð Þ

� �
d x� x0ð Þ

(110)
and

P x, tð Þ ¼ exp

ðt
t0
dzL x, z,Pð Þ

� �
P x, t0ð Þ: (111)

We see that a solution of Eq. (108) under the
initial condition p(x, t|X = y) = d(x – x0) for t! t0

with x0 = y(t0) only depends on y(t0) but does not
depend on y(s) for s < t0. Consequently, X is a
Markov process. However, L depends on P. From
Eq. (110), it is clear that the conditional probability
density p depends on the time-dependent probabil-
ity density P for z � [t0, t]. Since the probability
density P(x,t;u) for t � t0 can be computed from
P(x,t0;u) as shown in Eq. (111), we conclude that
p depends only on P(x,t0;u) and does not depend on
the evolution of P on the whole interval [t, t0].
Therefore, we have p(x, t| X = y) = p(-
x, t| x0, t0, P0). Substituting this result into
Eq. (108), we see that Eq. (108) becomes a strongly
nonlinear Fokker-Planck equation

@

@t
p x, tj x0, t0;P0ð Þ ¼ L x, t,Pð Þp x, tj x0, t0;P0ð Þ:

(112)

Examples

Shimizu-Yamada Model
The Shimizu-Yamada model (Shimizu 1974; Shi-
mizu and Yamada 1972) corresponds to the Desai-

Zwanzig model (7) for a linear single-particle
force h(x)=�gx. The evolution of the conditional
probability density p is defined by

@

@t
p x, tj x0, t0,P0ð Þ ¼ @

@x
gxþ k x�

ð
O
xP x, t; uð Þdx

� ��

þQ
@2

@x2

�
� p x, tj x0, t0,P0ð Þ (113)

withO =ℝ and g, k, Q> 0. Multiplying Eq. (113)
with P(x0, t0; u) and integrating with respect to x0

yields the evolution equation for P(x, t; u):

@

@t
P x, t; uð Þ ¼ @

@x
gxþ k x�

ð
O
xP x, t; uð Þdx

� ��

þQ
@2

@x2
� � P x, t; uð Þ: (114)

See also Frank (2004d) and Sect. 3.10 in Frank
(2005b). From Eq. (114), it follows that the mean
value m(t) =

Ð
O xP(x, t; u) dx decays exponentially

like

m tð Þ ¼ m t0ð Þexp �g t� t0ð Þf g (115)

with m(t0) =
Ð
O xu(x) dx. Substituting Eq. (115)

into Eqs. (113) and (114), we realize that a solu-
tion P(x, t; u) and a Green’s function p exists for
any initial probability density u(x). Therefore, the
Shimizu-Yamada model is a strongly nonlinear
Fokker-Planck equation and describes a Markov
process.

It can be shown that the conditional probability
density p(x, t j x0, t0; u) reads (see Frank (2004d)
and Sect. 3.10 in Frank (2005b))

p x, tj x0, t0; uð Þ ¼
exp � x� g t, t0, t0, uð Þ � x0m t, t0ð Þ½ �2

2K t, t0ð Þ

( )
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pK t, t0ð Þp

(116)

with

m t, t0ð Þ ¼ exp � gþ kð Þ t� t0ð Þf g, (117)

K t, t0ð Þ ¼ Q

gþ k
1þ exp �2 gþ kð Þ t� t0ð Þf g½ �,

(118)

and
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g ¼ exp �g t� t0ð Þf g � exp � gþ kð Þtf½
þgt0 þ kt0

�g� � ð
O
xu xð Þdx: (119)

The mean value m(t) acts as a self-organized
driving force of the stochastic process. Since there
is a one-to-one mapping ofm(t) tom(t0) with t0 < t,
we can eliminate the parameter u in p(x, t|x0, t0; u)
as argued in section “Strongly Nonlinear Fokker-
Planck Equations.” Substituting Eq. (115) into
Eq. (119), we obtain

g t, t0,P x, t0; uð Þð Þ ¼ exp �g t� t0ð Þf g�
1� exp �k t� t0ð Þf g½ �

ð
O
xP x, t0; uð Þ dx (120)

or

g t, t0, X t0ð Þh ið Þexp �g t� t0ð Þf g:
1� exp �k t� t0ð Þf g½ � X t0ð Þh i: (121)

Consequently, the conditional probability den-
sity p(x, t|x0, t0, P0) reads

p x, tjx0, t0;P0ð Þ ¼
exp � x� g t, t0, X t0ð Þh ið Þ� x0m t, t0ð Þ½ �2

2K t, t0ð Þ

( )
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pK t, t0ð Þp :

(122)

Dynamic Takatsuji Model
The dynamic Takatsuji model for the conditional
probability density p is defined by

@

@t
p x, tj x0, t0;P0ð Þ ¼ @

@x
gþ cð Þx� ffiffiffi

c
p

tanh

�
ffiffiffi
c

p ð
O
xP x, t; uð Þdx

� �
þ Q

@2

@x2

�
� p x, tj x0, t0;P0ð Þ

(123)

with x � O = ℝ and c, Q > 0 g � ℝ. Likewise,
the probability density P(x, t; u) satisfies

@

@t
P x, t; uð Þ ¼ @

@x
gþ cð Þx� ffiffiffi

c
p

tanh

�
ffiffiffi
c

p ð
O
xP x, t; uð Þdx

� �
þ Q

@2

@x2

�
� P x, t; uð Þ:

(124)

For details, see Frank (2004e) and Takatsuji
(1975). From Eq. (124), it follows that the first
moment M1(t) = X can be computed from

d

dt
M1 tð Þ ¼ � gþ cð ÞM1

þ ffiffiffi
c

p
tanh

ffiffiffi
c

p
M1 tð Þ
 �

: (125)

For arbitrary initial distribution u, solutions of
M1(t) exist and are smooth functions of t. Substitut-
ing these solutions into Eqs. (123) and (124), we
see that solutions of Eqs. (123) and (124) in terms
of Green’s functions p and probability densities
P exist as well. Consequently, the dynamic
Takatsuji model belongs to the class of strongly
nonlinear Fokker-Planck equations and describes a
Markov process.

Since p(x, t|x0, t0, P0) depends on P0, the
expected mean value of X(t) of realizations that
assume the value x0 at time t0 depends on the
distribution of the ensemble at time t0. Let us
illustrate this issue. The conditional mean value
under consideration reads

X tð Þh iX t0ð Þ¼x0,P0 ¼
ð
xp x, tj x0, t0,P0ð Þdx: (126)

Multiplying Eq. (123) with x and integrating
with respect to x, we obtain

d

dt
X tð Þh iX t0ð Þ¼x0,P0 ¼ � gþ cð Þ X tð Þh iX t0ð Þ¼x0,P0

þ ffiffiffi
c

p
tanh

ffiffiffi
c

p
M1 tð Þ
 �

:

(127)

The solution reads

X tð Þh iX t0ð Þ¼x0,P0 ¼ x0exp � gþ cð Þ t� t0ð Þf g

þ ffiffiffi
c

p ðt
t0
tanh

ffiffiffi
c

p
M1 zð Þ
 �

dz,

(128)

where M1(z) is the solution of Eq. (125) for the
initial valueM1(t0)=

Ð
O xP(x, t0; u) dx. Let I denote

the integral I ¼ ffiffiffi
c

p Ð t
t0 tanh

ffiffiffi
c

p
M1 zð Þ½ �dz . Then,

I depends on M1(t0), c, g, t0 and t:I = I(t, t0,
M1(t0), c, g). Consequently, Eq. (128) can be cast
into the form

X tð Þh iX t0ð Þ¼x0,P0 ¼ x0exp � gþ cð Þ t� t0ð Þf g

þI t, t0,
ð
x0P x0, t0; uð Þdx0, c, g

� �
(129)

or
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X tð Þh iX t0ð Þ¼x0,P0 ¼ x0exp � gþ cð Þ t� t0ð Þf g
þ I t, t0, X t0ð Þh i,c,gð Þ: (130)

Equation (130) illustrates that in order to pre-
dict future conditional mean values of a Takatsuji
process X̂ at times t, it is sufficient to have at one
time t0 � t information about the state value x0 of a
realization of X̂ and the mean value X(t0) of all
realizations of X̂.

Note that the trajectories Z(t) of martingale
processes Ẑ induced by the Takatsuji process X̂
are given by

Z tð Þ ¼ f Xð Þ �
ðt
0

ds � gþ cð ÞX sð Þ½f

þ ffiffiffi
c

p
tanh

ffiffiffi
c

p
X sð Þh i� �� @f

@X sð Þ þ Q
@2f

@X2 sð Þ
�
(131)

for arbitrary smooth functions f. We can exploit
these martingale processes in order to compute
conditional expectations. For example, for
f(y) = y from the martingale property (86), it
follows that

X tð Þh iX t0ð Þ¼x0,P0 ¼ x0

�
ðt
t0
ds gþ cð Þ X sð Þh i

� ffiffiffi
c

p
tanh

ffiffiffi
c

p
X sð Þh i
 �

: (132)

Differentiating this relation with respect to t,
we obtain Eq. (127) again and so we can compute
the conditional expectation (130).

Liquid Crystal Model
Liquid crystals exhibit nematic-isotropic phase
transitions (Chandrasekhar 1977; de Gennes and
Prost 1993; de Jeu 1980). At high temperatures,
the liquid crystal macromolecules exhibit an ori-
entational disorder. The liquid crystal is said to be
in the isotropic phase. Below a critical tempera-
ture, the macromolecules show some degree of
orientational order. The degree of orientational
order is often measured by the Maier-Saupe
order parameter S (Maier and Saupe 1958).

A nonlinear Fokker-Planck equation that
describes the stochastic behavior of the liquid
crystal in the isotropic and nematic phases and
to a certain extent also describes the order-
disorder phase transition was proposed by Doi
and Edwards (Doi and Edwards 1988) and Hess
(Hess 1976) and is shown above in Eq. (8).
Equation (8) describes the random walk of the
orientation of liquid crystal molecules, where
the orientation is given by a vector x that points
to the surface of a unit sphere. If we are dealing
with rod-like molecules, then the orientation
corresponds to the primary axis of the molecules
along the rod. In particular, for liquid crystals
with an axial symmetry, the liquid crystal model
can be simplified. The simplified model
describes the random walk of the molecule
alignment with the symmetry axis. The random
variable is defined on X � O = [0, 1]. For sake
of simplicity, we will extend the range of defi-
nition to the interval O = [�1, 1] and require
that distributions are symmetric. For X = 0, the
molecule has an orientation perpendicular to the
symmetry axis. If X= 1 or X=�1, the molecule
points exactly in the direction of the symmetry
axis. In this symmetric case, the probability
density P of X satisfies (Felderhof 2003)

@

@t
P x, t; uð Þ ¼ @

@x
1� x2
� � � � 9

2
kx

�
ð
x2P x, t; uð Þdx� 1

3

� �

þDr
@

@x

�
P x, t; uð Þ

(133)

with k, Dr. > 0. Equation (133) as well as the
original Eq. (8) are regarded as descriptions for
an ensemble of macromolecules that perform
rotational Brownian motion (Doi and Edwards
1988). Since Brownian motion is a Markov pro-
cess, it is reasonable to construct on the basis of
Eq. (133) a model for a many-body system that
exhibits a Markov process. In line with our dis-
cussion in section “Markov Property: Second-
Order and Higher-Order Statistics,” we assume
that the conditional probability density
p satisfies (Frank 2005c)
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@

@t
p x, tj x0, t0,P0ð Þ ¼ @

@x
1� x2
� �

� � 9

2
kx

ð
x2P x, t; uð Þdx� 1

3

� �
þ Dr

@

@x

� �

� p x, t, j x0, t0,P0ð Þ:
(134)

Note that the expression in the bracket (�) is
related to the Maier-Saupe order parameter which
reads in the symmetric case

S tð Þ ¼ 1

2
3

ð
x2P x, t; uð Þdx� 1

� �
: (135)

Due to the boundary conditions X � [�1, 1],
the order parameter S and consequently the bracket
(�) is bounded. This implies that solutions P and
p of Eqs. (133) and (134) exist and that the liquid
crystal model (133)–(134) describes aMarkov pro-
cess. The self-consistent Ito-Langevin equation of
this Markov process reads (Frank 2005c)

d

dt
X tð Þ ¼ 9k

2
1� X tð Þ2
� �

X tð Þ X tð Þ2
D E

� 1

3

� �

� 2DrX tð Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dr 1� X tð Þ2
� �r

G tð Þ:
(136)

Trajectories Z(t) of martingale processes Ẑ of
the liquid crystal model are defined by (Frank
2007)

Z tð Þ ¼ f X tð Þð Þ �
ðt
0

ds �½ �f X sð Þð Þ (137)

with

�½ � ¼ 9k
2

1� X sð Þ2
� �

X sð Þ X sð Þ½ �2
D E

� 1

3

� ���

� 2DrX sð ÞÞ @

@X sð Þ þ Dr
@2

@X2 sð Þ�:
(138)

In the stationary case, the short-time autocor-
relation function C(Dt) = X(t)X(t + Dt)st reads
(Frank 2005c)

C Dtð Þ ¼ 2Sþ 1

3
� 2Dr 1� Sð Þ

3
Dt

þ O Dt2
� �

, (139)

where S denotes the order parameter (see above) in
the stationary case. That is, we have S =
(3 X2

st � 1)/2. Consequently, C depends on S.
This has important implications for the hysteresis
loop of the nematic-isotropic phase transition. Let
us assume that if we decrease the temperature of a
liquid crystal, we find the transition from the iso-
tropic to the nematic phase with S = 0! S > 0 at
the critical temperature Tc,low. In contrast, if we
increase the temperature of a liquid crystal, we
find the transition from the nematic to the isotropic
phase with S > 0 ! S = 0 at the slightly higher
critical temperature Tc,high. Then, in the temperature
interval [Tc,low, Tc,high], the liquid crystal exhibits
two autocorrelation functions

Cisotrope Dtð Þ ¼ 1

3
� 2Dr

3
Dt, (140)

Cnem Dtð Þ ¼ 2S Tð Þ þ 1

3

� 2Dr 1� S Tð Þð Þ
3

Dt (141)

which hold up to terms of order Dt2.
Equations (140)–(141) illustrate that we are deal-
ing with a system that exhibits two kinds of Mar-
kov processes that we may label “isotropic” and
“nematic,” respectively. The modeling approach
by means of strongly nonlinear Fokker-Planck
equations indicates that these Markov processes
are just different members of a family of Markov
processes that naturally emerge in the self-
organized liquid crystal. That is, the two Markov
processes are not related to two different systems
but they represent two different “states” of the
same self-organizing many-body system.

Let us compute the conditional mean value of
molecules that are perpendicular to the symmetry
axis. To this end, we consider the random walk of
the orientation angle f defined by X(t)= sin f(t).
Using the Stratonovich-Langevin equation of
Eq. (134) (see Frank 2005c), we obtain a self-
consistent Langevin equation for f:
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d

dt
f¼ 9

4
ksin 2f tð Þð Þ sin2 f tð Þð Þ� ��1

3

� �

�Dr tanf tð ÞþDrG tð Þ: (142)

For short time intervals Dt = t � t0 and appro-
priate small noise amplitudes Dr, we assume that
f(t) 	 0 if f(t0) 	 0. Linearizing Eq. (142) at
f = 0 yields

d

dt
f tð Þ ¼ 9

4
k sin 2 f tð Þð Þ� �� 1

3

� �
� Dr

� �
f tð Þ

þ DrG tð Þ:
(143)

The conditional expectation value
Ð
fp(f, t|f0,

t0, P)df for short time intervals Dt can then be
computed from Eq. (143) by averaging both side
of Eq. (143) under the constraint f(t0) = f0 and
f(t0) distributed like P0. Thus, we obtain

f tð Þh if t0ð Þ¼f0,P0 ¼ f0 1þ Dt
9

4
k

��

sin 2 f t0ð Þð Þ� �� 1

3

� �
� Dr

�� (144)

or

f tð Þh if t0ð Þ¼f0,P0 ¼ f0 1þ Dt
3

2
kS t0ð Þ � Dr

� �� �
:

(145)

These estimates hold for small intervals Dt,
sufficiently small noise amplitudes Dr, and orien-
tation angles f0 	 0. Again, in line with our
general discussion in the preceding sections, we
see that the conditional expectation f(t)f(t0) = f0,P0

can be computed provided that for t0 < t the
distribution of f(t0) or at least the order parameter
S(t0) is known and the angle f0 is selected.

Semiclassical Description of Quantum
Systems
A stochastic treatment of semiclassical quantum
systems by means of nonlinear Fokker-Planck
equations that can be cast into the form of
Eqs. (5) and (6) has been proposed and analyzed
in several studies (Carrillo et al. 2008; Chavanis
2003; Frank and Daffertshofer 1999; Kadanoff

2000; Kaniadakis 2001a; Kaniadakis and Quarati
1993, 1994). Accordingly, a Fermi or Bose parti-
cle with mass 1 that moves in a one-dimensional
space with velocity v exhibits in the stationary
case a Fermi-Dirac or Bose-Einstein distribution
of the kinetical energy Ekin = v2/2. The free dif-
fusion of the particle can be described by the
nonlinear Fokker-Planck equations (Frank and
Daffertshofer 1999)

@

@t
P v, t; uð Þ ¼ @

@v
gv 1
 P v, t, uð Þ½ �P v, t; uð Þ

þ Q
@2

@v2
P v, t; uð Þ,

(146)

where the upper sign holds for Fermi particles, the
lower for Bose particles. The parameters g and
Q represent damping and fluctuation strength and
are related to the temperature T by the fluctuation
dissipation theoremQ/g= 1/(kBT), where kB is the
Boltzmann constant. The stationary probability
density Pst(v) of Eq. (146) reads

Pst vð Þ ¼ 1

exp Ekin � mð Þ= kBTð Þf g � 1
, (147)

where m is a normalization constant that can be
interpreted as chemical potential. The transient
solution P(v, t; u) can be obtained by solving the
integral equation (Frank 2007; Meleard and
Coppoletta 1987)

P v, t; uð Þ ¼
ð
O
dv0GB t, t0, v, v0ð Þu v0, t0ð Þþ

ðt
t0

ds

�
ð
O
dv0GB t, s, v, v0ð Þg @

@v0

� 1
 P v0, s; uð Þ½ �P v0, s; uð Þ
(148)

with

GB t,t0,v,v0ð Þ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pQ t� t0ð Þp exp � v�v0ð Þ2

2Q t� t0ð Þ

( )
,

(149)

where GB is the Gaussian propagator of Brownian
motion. In the limit t ! 1, the transient solution
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P(v, t; u) approaches Pst(v) (Frank and
Daffertshofer 2001b; Kaniadakis 2001a).
Equation (148) is a useful description for numer-
ical approaches. Using partial integration,
Eq. (148) can be written in the form

P v, t; uð Þ ¼ ÐOdv0GB t, t0, v, v0ð Þu v0, t0ð Þ

þ
ðt
t0

ds

ð
O
dv0GB t, s, v, v0ð Þg v� v0

Q t� sð Þ
� 1
 P v0, s; uð Þ½ �P v0, s; uð Þ: (150)

This integral relation can be solved iteratively. In
contrast to the iterative procedure discussed in sec-
tion “Time-Dependent Solutions and First Order
Statistics,” there is no need to compute derivatives.
That is, we are dealing with some kind of path
integral approach here that is similar to the numer-
ical path integral approach involving short-time
propagators; see section “Short-Time Propagator.”

In order to describe quantum particles that
exhibits a Markov process, we may exploit the
approach outlined in section “Markov Property:
Second-Order and Higher-Order Statistics.”
Accordingly, the Markov conditional probability
density of the quantum particle satisfies

@

@t
p v,tjv0,t0,P0ð Þ¼ @

@v
gv 1
P v,t;uð Þ½ �þQ

@2

@v2

� �
�p v,tjv0,t0,P0ð Þ,

(151)

and the self-consistent Langevin equation reads

d

dt
v tð Þ ¼ �gv tð Þ 1
 P v tð Þ, t; uð Þð Þ

þ
ffiffiffiffi
Q

p
G tð Þ: (152)

From a martingale perspective, we see that
stochastic trajectories v(t) induce for arbitrary
smooth functions f the martingale Ẑ with
trajectories

Z tð Þ ¼ f v tð Þð Þ�
ðt
0

ds � �gv sð Þ 1
 Pðv sð Þ, s; u�
 �

@

@v2
þ Q

@2

@v2
�f vð Þjv¼v sð Þ: (153)

Moreover, as far as the Markov short-time
propagator is concerned, for small time intervals
t = t0 + Dt, the propagator reads

p v, tj v0, t0,P0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2pQDt

s
exp � v� v0 þ Dtgv0 1
 P0½ �½ �2

2QDt

( )
,

(154)

and can be computed from the information about
the distribution P0 of v(t0) and the state v that was
observed for particular realizations of the process
v̂. In the stationary case, the propagator p reads for
small time intervals Dt = t � t0

p v, tj v0, t0,Pst v
0ð Þð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2pQDt

s

exp � v� v0 þ Dtgv0 1
 Pst v
0ð Þ½ �½ �2

2QDt

( ) (155)

with Pst defined by Eq. (147).

Nonextensive Systems
Nonextensive thermostatistical systems have been
related to the Tsallis entropy (Abe and Okamoto
2001; Tsallis 1988)

Sq ¼ 1

q� 1

ð
O
P vð Þq � P vð Þ½ �dv, (156)

where q measures the degree of nonextensivity.
Diffusion processes in nonextensive thermo-
statistical systems can be regarded as generalized
Ornstein-Uhlenbeck processes that satisfy the
nonlinear Fokker-Planck equation (Plastino and
Plastino 1995) (see also Borland 1998; Chavanis
2003, 2004; Compte and Jou 1996; Drazer et al.
2000; Frank and Daffertshofer 1999, 2000; Shiino
2003; Tsallis and Bukman 1996)

@

@t
P v, t; uð Þ ¼ @

@v
gvP x, t; uð Þ

þ Q
@2

@v2
P v, t; uð Þq, (157)

where v is the velocity of a particle with mass
1 that moves in one spatial dimension. In the
asymptotic domain P(v, t; u) approaches, a sta-
tionary Tsallis distribution

Pst vð Þ ¼ Dst

1þ g 1� qð Þv2= 2qQDq�1
st

h ih i1= 1�qð Þ

(158)

for q � (1/3, 1) with Dst ¼ g= 2qQð Þz2q
h i1= 1þqð Þ

and zq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p= 1� qð Þp

G 1þ qð Þ= 2 1� qð Þ½ �½ �=
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G 1= 1� qð Þ½ � (Frank and Daffertshofer 2000). The
process described by Eq. (157) is said to evolve in a
nonextensive thermodynamic framework because
its stationary probability density (158) maximizing
the entropy measure (156). As discussed in section
“Markov Property: Second-Order and Higher-
Order Statistics,” the Markov conditional probabil-
ity density p satisfies

@

@t
p v, tj v0, t0,P0ð Þ ¼ @

@x
gvp v, tj v0, t0,P0ð Þ

þQ
@2

@v2
P v, t; uð Þq�1p v, tj v0, t0,P0ð Þ:

(159)

The self-consistent Langevin equation of the
Markov diffusion process reads (see also Borland
1998)

d

dt
v tð Þ ¼ �gv tð Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QP v tð Þ, t; uð Þq�1

q
G tð Þ: (160)

Any stochastic path v(t) computed from
Eq. (160) yields for arbitrary smooth functions
f the martingale

Z tð Þ ¼ f v tð Þð Þ�
ðt
0

ds �gv sð Þ @

@v sð Þ
�

þQPðv sð Þ, s; u�q�1 @2

@v sð Þ2
#
f v sð Þð Þ:

(161)

The autocorrelation C = v(t)v(t0) in the tran-
sient domain for u(v0) = d(v � v0) reads (Frank
2004a)

C t, t0, v0, t0ð Þ ¼ M2 t0, t0, v0ð Þexp �g t� t0ð Þf g
(162)

with

M2 t0, t0, v0ð Þ ¼ K t0, t0ð Þ þM2
1 t0, t0, v0ð Þ,

K t0, t0ð Þ ¼ 1

3q� 1

2qQ zq

 � 1�qð Þ

g
� 1� exp � 1þ qð Þg t� t0ð Þf gð Þ

" #2= 1þqð Þ

,

M1 t0, t0, v0ð Þ ¼ v0exp �g t0 � t0ð Þf g:

(163)

The autocorrelation function C depends on t0.
This is not in contradiction with the Markov prop-
erty of the underlying process as discussed in sec-
tion “Markov Property: Second-Order and Higher-
Order Statistics.” In particular, we may eliminating
the initial condition. Then, Eq. (162) reads

C t, t0ð Þ ¼ u2 t0ð Þ� �
exp �g t� t0ð Þf g: (164)

and holds for arbitrary initial probability
densities u.

Linear Nonequilibrium Thermodynamics
Linear and nonlinear Fokker-Planck equations
alike can be approached from the principles of
linear nonequilibrium thermodynamics (de Groot

and Mazur 1962; Glansdorff and Prigogine 1971;
Kondepudi and Prigogine 1998). For stochastic
processes to which linear nonequilibrium thermo-
dynamics applies the probability density P(x, t; u)
of a process evolves such that the free energy
functional F[P] decreases as a function of time t.
More precisely, following a study by Compte and
Jou (Compte and Jou 1996), it has been proposed
that P satisfies the nonlinear Fokker-Planck equa-
tions of the form (Chavanis 2004; Frank 2002a,
2005b; Scarfone and Wada 2007)

@

@t
P ¼ @

@x
P ~M

@

@x

dF
dP

, (165)

where ~M is an appropriately defined mobility
coefficient and dF/dP denotes the variational
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derivative of F. Note that this thermodynamic
approach is closely related to the GENERIC
approach developed in Espanol et al. (1999),
Jelic et al. (2006), Öttinger (2005, 2007), and
Öttinger and Grmela (1997).

For example, the Desai-Zwanzig model (8) can
be expressed in terms of Eq. (165) for ~M ¼ 1 and
(Frank 2005b; Shiino 1987)

F ¼ Vh i þ UMF � QSBGS: (166)

Here, V is the potential of the force h (i.e., we
have V(x) = � R

h(x) dx, UMF is the mean field
energy given by UMF = �ks2/2 (where s2 is the
variance of the process), and SBGS is the
Boltzmann-Gibbs-Shannon entropy

SBGS ¼ �
ð
O
P x, t; uð ÞlnP x, t; uð Þdx, (167)

where we have put the Boltzmann constant equal
to unity. The liquid crystal model (8) can be writ-
ten as Eq. (165) with (Frank 2005c)

F ¼ � k
2
S2 � DrSBGS, (168)

where S is theMaier-Saupe order parameter (135).
We have ~M ¼ 1� x2 . Moreover, the expression
�kS2/2 is theMaier-Saupe mean field energy. The
Kuramoto-Shinomoto-Sakaguchi model (10) can
equivalently be expressed in terms of Eq. (165)
with ~M ¼ 1 (see Sect. 5.4 in Frank 2005b) using

F ¼ Vh i � k
2
r2 � QSBGS, (169)

where r is the cluster phase defined by r = |exp.
{�iX(t)}|. Here, the expression�kr2/2 is a measure
for the mean field energy among the phase oscilla-
tors described by the model. The Takatsuji model
(124) involves a constant mobility coefficient ~M

¼ 1 and the free energy functional (Frank 2005b)

F ¼ gþ c

2
X2
� �� lncosh

ffiffiffi
c

p
Xh i� �

� QSBGS: (170)

The Plastino-Plastino model (14) related to the
nonextensive Tsallis entropy (156) is given by
Eq. (165) and ~M ¼ 1 with (Frank 2005b)

F ¼ Vh i � QSq, (171)

where V is the potential of the gradient force h. For
an appropriate choice of ~M, the quantum mechan-
ical nonlinear Fokker-Planck equations (146) can
be cast into the form Eq. (165) with

F ¼ Vh i � QSFD,BE, (172)

where SFD,BE is the quantum mechanical entropy
of the Fermi-Dirac or Bose-Einstein statistics and
V is the potential of the function h(x) again. For
details, see Frank (2005b) and Frank and
Daffertshofer (1999). From the perspective of lin-
ear nonequilibrium thermodynamics, linear and
nonlinear Fokker-Planck equations can be distin-
guished by means of the thermodynamic flux
(Compte and Jou 1996; Frank 2002a, 2005b,
2007)

J ¼ � ~MP
@

@x

dF
dP

: (173)

Note that in this approach, the thermodynamic
flux is equivalent to the probability current (Frank
2005b). As can be seen from Eq. (173), on the one
hand, the flux is associated to the free energy F.
On the other hand, from the evolution equation
(165), it follows that

@

@t
P ¼ � @

@x
J: (174)

If J is linear with respect to P, then the
corresponding Fokker-Planck equation is linear
with respect to P as well. If J is nonlinear with
respect to P, then we are dealing with a nonlinear
Fokker-Planck equation. The question whether
J is linear or not is answered by nature herself
(Frank 2007). For the Brownian particle motion,
we have ~M ¼ g and

F ¼ 1

2
v2
� �� QSBGS, (175)

which yields

J ¼ �gvP� Q
@

@x
P: (176)

J is linear and the corresponding Fokker-
Planck equation is linear as well. For a self-
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organizing system, frequently it is found that J is
nonlinear because F involves a mean field energy
term that is nonlinear with respect to P. For
examples, see Eqs. (166), (168), (169), and
(170). Likewise, for quantum and nonextensive
systems, we find that J is nonlinear because
F involves quantum and nonextensive entropies
such as SFD,BE and Sq. For examples, see
Eqs. (171) and (172).

Summary and Future Directions

From the previous discussion in section “Linear
Nonequilibrium Thermodynamics,” it is clear that
modeling approaches based on nonlinear Fokker-
Planck equations are rooted in the theory of col-
lective phenomena and self-organization, on the
one hand, and in the theory of quantum mechan-
ical and nonextensive systems, on the other. In
contrast, linear Fokker-Planck equations are tai-
lored to address the stochastic properties of sys-
tems composed of noninteracting subsystems
when equating the material subsystem ensemble
with the ensemble of statistical realizations. Note
that – of course – linear Fokker-Planck equations
can also be applied to discuss stochastic properties
of self-organizing systems. However, in such
cases, either the stochastic behavior of order
parameters by means of low-dimensional linear
Fokker-Planck equations is discussed (Haken
2004) or linear high-dimensional or even func-
tional Fokker-Planck equations are involved
(Gardiner 1997).

We showed in section “Markov Property:
Second-Order and Higher-Order Statistics” that
both linear and nonlinear Fokker-Planck equa-
tions exhibit Green’s functions and Langevin
equations. The fact that a nonlinear evolution
equation can give rise to a Green’s function
may be counterintuitive because Green’s func-
tions are associated with linearity. In fact, the
evolution equation of the Green’s function p is
linear with respect to p. The nonlinearity is in the
evolution equation for the time-dependent prob-
ability density P but not in the evolution equation
of the Green’s function p. In this context, we
would like to reiterate what we pointed out in

section “Strongly Nonlinear Fokker-Planck
Equations”: time-dependent solutions P do not
necessarily correspond to Green’s function
p (Frank 2003b).

In the mathematical literature, the theory of
Markov processes that involve conditional prob-
ability densities of the form p(x, t|x0, t0, P0) has
been discussed for several decades (see refer-
ences in section “Definition of the Subject”). In
line with these studies, we suggest to refer to
Markov processes with conditional probability
densities of the form p(x, t|x0, t0, P0) as nonlinear
Markov processes or nonlinear families of Mar-
kov processes (Frank 2004d). Likewise, we sug-
gest to refer to Markov processes whose
conditional probability densities do not depend
on P0 as linear Markov processes or linear fam-
ilies of Markov processes. Using this terminol-
ogy, we would say that strongly nonlinear
Fokker-Planck equations describe nonlinear
Markov diffusion processes, and vice versa non-
linear Markov diffusion processes can be
expressed in terms of strongly nonlinear
Fokker-Planck equations.

In physics and related disciplines, the rele-
vance of nonlinear Markov processes has to be
explored in the future. That is, except for
research primarily reported in the mathematical
literature, the theory of Markov processes
constructed from conditional probability mea-
sures of the form p(x, t|x0, t0, P0) is still in its
infancy. The Chapman-Kolmogorov equation
and the Kramers-Moyal expansion presented
in section “Markov Property: Second-Order
and Higher-Order Statistics” provide promising
departure points for future studies in this
regard.

In the present study, we pointed out that there
are a few overarching concepts that apply to
linear and nonlinear Fokker-Planck equations
alike: the concepts of Markov diffusion pro-
cesses, martingales, and linear nonequilibrium
thermodynamics. Therefore, future studies may
change the state of the art illustrated in Fig. 1
into a scenario as shown in Fig. 2. In doing so, a
closely connected world of linear and nonlinear
Fokker-Planck equations that is governed by a
small set of powerful principles could emerge.
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