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Foreword

Almost all processes in our universe and even the whole can be regarded as
complex systems. Because there are manifold crucial problems with such
systems, this century is often called the century of complex systems science.
It is important to emphasize that this discipline has already a rich history. It
started in 1665 when Christiaan Huygens discovered synchronization of two
pendulum clocks, what he called sympathy. Huygens understood that the key
ingredient of this phenomenon is that both clocks are (weakly) coupled.

One of the most influential steps in the following evolution of this science
has been the concept of Synergetics introduced about 50 years ago by Hermann
Haken and substantially further developed by him and his school and later by
many followers. He originally integrated various fields and created a new very
successful perspective to study processes of self-organization. Important the-
oretical as well as applied advances of this new discipline were published in
the Springer Series Synergetics founded and edited by Hermann Haken.

The time is now ripe to present an overview of recent advances as well as
perspectives of Synergetics. Hermann Haken and Axel Hutt brought together
20 contributions covering basic aspects of theoretical studies by including
basic principles and stochastic descriptions and different fields of applications,
such as quantum optics, fluid dynamics, neuroscience, as well as socio-
economics. They clearly demonstrate that this discipline is strongly evolving
and is a fundamental part of complex systems science.

It is my hope that this book will provide valuable information and will
induce various inspirations for further creative work in this discipline and
various applications. I strongly recommend it to readers from physics and
mathematics as well as from all scientific disciplines where complex systems
are studied.

Berlin and Potsdam Jürgen Kurths
June 2020
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Series Preface

The Encyclopedia of Complexity and System Science Series is a multivolume
authoritative source for understanding and applying the basic tenets of com-
plexity and systems theory as well as the tools and measures for analyzing
complex systems in science, engineering, and many areas of social, financial,
and business interactions. It is written for an audience of advanced university
undergraduate and graduate students, professors, and professionals in a wide
range of fields who must manage complexity on scales ranging from the
atomic and molecular to the societal and global.

Complex systems are systems that comprise many interacting parts with the
ability to generate a new quality of collective behavior through selforganization,
e.g., the spontaneous formation of temporal, spatial, or functional structures.
They are therefore adaptive as they evolve and may contain self-driving feed-
back loops. Thus, complex systems are much more than a sum of their parts.
Complex systems are often characterized as having extreme sensitivity to initial
conditions as well as emergent behavior that are not readily predictable or even
completely deterministic. The conclusion is that a reductionist (bottom-up)
approach is often an incomplete description of a phenomenon.

This recognition that the collective behavior of the whole system cannot be
simply inferred from the understanding of the behavior of the individual compo-
nents has led to many new concepts and sophisticated mathematical and model-
ing tools for application to many scientific, engineering, and societal issues that
can be adequately described only in terms of complexity and complex systems.

Examples of Grand Scientific Challenges which can be approached through
complexity and systems science include: the structure, history, and future of the
universe; the biological basis of consciousness; the true complexity of the
genetic makeup andmolecular functioning of humans (genetics and epigenetics)
and other life forms; human longevity limits; unification of the laws of physics;
the dynamics and extent of climate change and the effects of climate change;
extending the boundaries of and understanding the theoretical limits of comput-
ing; sustainability of life on the earth; workings of the interior of the earth;
predictability, dynamics, and extent of earthquakes, tsunamis, and other natural
disasters; dynamics of turbulent flows and the motion of granular materials; the
structure of atoms as expressed in the StandardModel and the formulation of the
StandardModel and gravity into aUnified Theory; the structure ofwater; control
of global infectious diseases; and also evolution and quantification of (ulti-
mately) human cooperative behavior in politics, economics, business systems,
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and social interactions. In fact, most of these issues have identified nonlinearities
and are beginning to be addressed with nonlinear techniques, e.g., human
longevity limits, the Standard Model, climate change, earthquake prediction,
workings of the earth’s interior, natural disaster prediction, etc.

The individual complex systems mathematical and modeling tools and
scientific and engineering applications that comprised the Encyclopedia of
Complexity and Systems Science are being completely updated and the major-
ity will be published as individual books edited by experts in each field who are
eminent university faculty members.

The topics are as follows:

Agent Based Modeling and Simulation
Applications of Physics and Mathematics to Social Science
Cellular Automata, Mathematical Basis of
Chaos and Complexity in Astrophysics
Climate Modeling, Global Warming, and Weather Prediction
Complex Networks and Graph Theory
Complexity and Nonlinearity in Autonomous Robotics
Complexity in Computational Chemistry
Complexity in Earthquakes, Tsunamis, and Volcanoes, and Forecasting and

Early Warning of Their Hazards
Computational and Theoretical Nanoscience
Control and Dynamical Systems
Data Mining and Knowledge Discovery
Ecological Complexity
Ergodic Theory
Finance and Econometrics
Fractals and Multifractals
Game Theory
Granular Computing
Intelligent Systems
Nonlinear Ordinary Differential Equations and Dynamical Systems
Nonlinear Partial Differential Equations
Percolation
Perturbation Theory
Probability and Statistics in Complex Systems
Quantum Information Science
Social Network Analysis
Soft Computing
Solitons
Statistical and Nonlinear Physics
Synergetics
System Dynamics
Systems Biology

Each entry in each of the Series books was selected and peer reviews
organized by one of our university-based book Editors with advice and
consultation provided by our eminent BoardMembers and the Editor-in-Chief.
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This level of coordination assures that the reader can have a level of
confidence in the relevance and accuracy of the information far exceeding
than that generally found on the World Wide Web. Accessibility is also a
priority and for this reason each entry includes a glossary of important terms
and a concise definition of the subject. In addition, we are pleased that the
mathematical portions of our Encyclopedia have been selected by Math
Reviews for indexing in MathSciNet. Also, ACM, the world’s largest educa-
tional and scientific computing society, recognized our Computational Com-
plexity: Theory, Techniques, and Applications book, which contains content
taken exclusively from the Encyclopedia of Complexity and Systems Science,
with an award as one of the notable Computer Science publications. Clearly,
we have achieved prominence at a level beyond our expectations, but consis-
tent with the high quality of the content!

Palm Desert, CA, USA Robert A. Meyers
June 2020 Editor-in-Chief
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Volume Preface

The laws of physics are fundamental to natural sciences and describe the
system dynamics on multiple scales. In spite of their validity, descriptions of
complex systems are difficult based just on the fundamental laws and different
concepts of description are mandatory. Such concepts provide more abstract
descriptions of natural phenomena and these concepts in fact reject fundamen-
tal mechanisms. For instance, quantum field theory description of the laser
(Haken 1984) provides deep insights into dynamical features observed exper-
imentally and also demonstrates that the laser exhibits self-organized behavior
similar to fluid or biological systems (Haken 1983). This self-organization is a
descriptive concept that rejects the system’s underlying order mechanism. The
similarity of the laser dynamics to weather chaos (Haken 1975) further dem-
onstrates the common underlying mechanism of chaos in apparently different
complex systems. Synergetics is the discipline that allows us to describe these
underlying mechanisms in diverse natural systems.

Phase transitions are another macroscopic feature in nature and diverse
natural systems may exhibit identical dynamics close to their stability
threshold.

Examples are second-order phase transitions in lasers, fluids, animal
populations, or the brain, whose dynamics obey the Ginzburg-Landau equa-
tions known from solid state physics. A more microscopic look at such phase
transitions reveals a hierarchy of modes, e.g., on fast and slow time scales.
Mathematical techniques describe such mode hierarchies in an abstract or even
impenetrable way, whereas from a physics point of view some modes enslave
other modes, i.e., force them to follow their own dynamics (slaving principle).
This physical interpretation reformulates elegantly a purely mathematical
description into a common sense notion. This reduction of descriptive com-
plexity to an intuitive notion of slaving is a very powerful element in Syner-
getics, since it permits to translate underlying mechanisms in one system and
research domain to a broad range of other scientific domains. The Introduction
and Basic Concept chapters illustrate well the key ideas and their vast range of
applications.

The idea of the book came up many years ago and was originally intended
to collect scientific contributions of Hermann Haken’s long-standing collabo-
ration partners in the field of Synergetics. Then Axel Hutt came on board and
proposed to combine these chapters with new, more recent work demonstrat-
ing that Synergetics is still practiced although it is not called like this. This
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collaboration of H. Haken and A. Hutt has led to the current chapter collection
providing a broad overview over applications of Synergetics. It is a solid
collection of topics valuable for graduate students and researchers in complex
systems theory and applied mathematics. The first chapters consider chaotic
and turbulent spatio-temporal dynamics in physical systems, followed bymore
theoretical studies on quantum chaos and stochastic dynamics. Today, Syner-
getics has evolved primarily towards the description of non-physical systems,
such as the brain, medical human diseases, and human behavior as shown in
subsequent chapters. Finally, the last chapters focus on human cities, financial
markets, and global industrial dynamics.

Strasbourg, France Axel Hutt
Stuttgart, Germany Hermann Haken
June 2020 Editors
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Synergetics: An Introduction

Axel Hutt
Deutscher Wetterdienst, Offenbach am Main,
Germany

How do complex systems organize? What are the
underlying mechanisms in such systems that let
emerge new phenomena that cannot be explained
by isolated subsystems? Synergetics (after the
Greek expression synergeon: science of cooperation)
is an interdisciplinary research field that provides
answers to these essential questions. The discipline
Synergetics was founded by H. Haken about
50 years ago. Today, it covers a huge range of
research fields ranging from natural sciences through
medical sciences to economy and social sciences.

Complex systems are heterogenous and hierar-
chical in the sense that they are built up of
interacting subsystems that are built up of sub-
systems themselves and so on. The various sub-
systems may be of different nature, e.g., may
evolve on different spatial or temporal scales or
may represent physical or more abstract entities.
The interaction of subsystems may lead to emer-
gent self-organization phenomena that cannot be
explained by separated subsystems. An obvious
example for a complex system is the brain that is
built up of interacting brain areas, such as visual or
motor areas, which in turn are built up of nerve cells
and connecting fibers, which in turn exhibit com-
plex substructures of interacting molecules. Syner-
getics asks about the general principles of self-
organization of such complex systems, irrespective
of the nature of the individual entities, cf. chapter
▶ “Synergetics: Basic Concepts.”

To approach this goal, it is advantageous to focus
on such situations where the macroscopic system
state changes qualitatively. Indeed, it is an outstand-
ing fact that few fundamental concepts allow us to
cover a great variety of self-organization phenom-
ena from a unifying point of view. Examples for
such concepts are stability, instability, control

parameters, order parameters, the slaving principle,
and the circular causality.

Today Synergetics is a meeting place between
bifurcation theory, the theory of stochastic pro-
cesses, phase transition theory, and synchronization.
In physics, it has become possible to start from first
principles. For instance, in quantum optics, the
coherence properties of laser light were derived in
every detail based on Heisenberg equations of
motion for operators. In the present book,
K. Lüdge and B. Lingnau show their recent exper-
imental and theoretical results on quantum dot and
quantum well lasers in the presence of delayed
feedback in the chapter ▶ “Laser Dynamics and
Delayed Feedback.” The authors reveal the bifurca-
tion criteria for emerging chaotic dynamics. Another
example is fluid dynamics where an energetically
excited fluid may run through a hierarchy of spatio-
temporal patterns with increasing degree of excita-
tion. At comparatively low excitation levels, well-
defined patterns evolve. While regular patterns
stand in the foreground of the chapter ▶ “Fluid
Dynamics, Pattern Formation” by M. Bestehorn,
the chapter by L. Pismen▶ “Patterns and Interfaces
in Dissipative Dynamics” emphasizes defects and
interfaces. At higher excitation levels, turbulence
comes into play, cf. the chapter▶ “Fluid Dynamics:
Turbulence” of R. Friedrich and J. Peinke. The
authors provide a broad overview of the
corresponding research field while discussing both
the deterministic chaotic and stochastic dynamics of
turbulent systems.

In general, chaotic and stochastic processes are
two descriptions to formulate mathematically seem-
ingly rather irregular system behavior. Their relation
and even coexistence is demonstrated nicely in chap-
ter ▶ “Recent Advances in Quantum Chaos of
Generic Systems” byM.Robnik. The author reviews
the fundamental concepts of quantum chaos in Ham-
iltonian systems. In general, Synergetics applies clas-
sical mathematical tools to describe stochastic
processes such as generalized Langevin equations,
the FokkerPlanck equation and the density matrix
equation. In the chapter ▶ “Linear and Nonlinear
Fokker-Planck Equations,” the author T. Frank

© Springer Science+Business Media, LLC, part of Springer Nature 2020
A. Hutt, H. Haken (eds.), Synergetics,
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follows up themethod of the Fokker-Planck equation
and provides a deep insight into self-organizing sto-
chastic systems whose probability density obeys
nonlinear Fokker-Planck equations. Stochastic pro-
cesses may also induce phase transitions as demon-
strated by A. Hutt and J. Lefebvre in chapter
▶ “Additive Noise Tunes the Self-Organization in
Complex Systems.” Here, the authors apply both a
path-wise stochastic analysis and the probability-
based Fokker-Planck analysis.

Although, historically, Synergetics had started
by studies motivated by phenomena observed in
physical systems, its concepts have been applied
to diverse phenomena in other research fields.
Bifurcation theory represents a valuable concept
to describe chaotic dynamics in natural systems.
For instance, neural information processing is
based on brain cells and their network interac-
tions. Each cell exhibits diverse dynamic opera-
tion modes, such as regular spiking, bursting, or
chaotic behavior. In chapter ▶ “Chaotic Dynam-
ics in Neural Systems,” A. Pusuluri, H. Ju, and
A. Shilnikov show detailed bifurcation analysis of
various high-dimensional phase space models of
brain cells. Brain networks may inherit the single
cells behavior or show new emergent self-
organized dynamic patterns that in turn again
may exhibit chaotic dynamics. Macroscopic bio-
logical brain networks can be observed by several
experimental techniques, such as electroencepha-
lography (EEG). The authors C. Uhl and
B. Seifert demonstrate in chapter ▶ “Shilnikov
Chaos in Epilepsy” that experimental EEG may
obey the dynamics of a chaotic attractor.

The concept of order parameter is a major feature
in Synergetics. It represents the quantity that allows
us to describe the essential dynamics of a system.
This order parameter may be an amplitude variable
or a synchronization measure. It is well established
that the brain encodes and decodes information by
synchronization and A. Daffertshofer and B. Pietras
consider a phase synchronization measure as order
parameter in brain models in chapter▶ “Phase Syn-
chronization in Neural Systems”. They describe
how such a measure provides deeper insight into
the underlying brain mechanisms. Since synchroni-
zation represents a primary mechanism of neural
information coding, P. Tass, G. Hauptmann, and

C. Popovych consider external stimulation protocols
in clinical patients to tune the synchronization
between brain cells. Their chapter ▶ “Brain Pace-
maker” explains that highly synchronized brain
states may reflect a pathological state in certain
brain areas and the authors demonstrate how exter-
nal electrical stimulation may de-synchronize the
brain state and thus alleviate the health situation of
patients.

Going beyond the description of specific meso-
scopic complex biological systems, such as brain
cells or the brain signal EEG in the examples given
above, Synergetics concepts have been applied to
more macrosopic systems. As a first step, one may
relate mesoscopic dynamics to macroscopic obser-
vations. For instance, self-organization in the brain
may be observed as mental states, cognitive abili-
ties, or behavior. Clinical psychology knows the
concept of Gestalt that represents a certain pattern
in perception, behavior, or social interactions. The
chapter ▶ “Self-Organization in Clinical Psychol-
ogy” by G. Schiepek and V. Perlitz bring together
Gestalt theory and the Synergetics concepts of self-
organized patterns. The chapter shows nicely how
methods of mathematical analysis enter more and
more the field of psychiatry and how this allows
doctors to monitor the mental and behavioral state
of patients.

Another macroscopic self-organized pattern
observed in humans and animals is▶ “Movement
Coordination” as pointed out by A. Fuchs and
S. Kelso. They can show how a large class of
transitions in movement coordination can be
described by the Synergetics concept of order
parameter equations although humans and ani-
mals are highly complex systems.

More general, human and animal behavior
consists of sequences of actions that are the results
of free choices as to what kind of behavior the
subject would like to perform next. These
sequences are the result of internal, e.g., neurobi-
ological, conditions and external circumstances.
Since these conditions and circumstances in turn
are the consequences of prior actions, behavior,
and experiences, behavior is determined by laws.
The chapter ▶ “Determinisms of Behavior and
Synergetics” by T. Frank presents Synergetics as
a mathematical and conceptual framework that
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allows us to describe switches between actions
and behavior in mathematical terms.

The latter studies consider quantifiable obser-
vations that can be modeled explicitly, such as
index variables of behavior in clinical psychology,
movement frequency, amplitude, and phase in
movement coordination or determined behavioral
motor actions. The situation is even more com-
plex in cognition, where thought and behavioral
patterns or intentions are hardly quantifiable. Nev-
ertheless, W. Tschacher has been undertaking this
challenge and shows in chapter ▶ “Intentionality:
Steps Towards Naturalization on the Basis of
Complex Dynamical Systems” how mental pro-
cesses can be linked to material processes. Here,
the author tackles the long-standing problem of
intentionality and relates it to circular causality
and self-organizing pattern formation which can
be formalized by concepts of Synergetics.

Extending the view from the self-organization
in single individuals to self-organization of a pop-
ulation of individuals, it is obvious that the same
Synergetics concepts can be applied due to the
hierarchical structure of complex systems. From
this point of view, J. Portugali takes a closer look
at cities. In the chapter ▶ “Self-Organization and
the City,” he discusses the interrelation between

human individuals and their ability to form social
groups as a process of self-organization. Another
complex system built up of several different
human populations is the financial market,
cf. the chapter ▶ “Financial Market Dynamics:
A Synergetic Perspective” by L. Borland. This
system is highly complex due to the heterogeneity
of human populations, their underlying market
psychology, and their diverse financial interests.
The traders represent the interacting subsystems,
their actions, feed back into the financial market,
and macroeconomic phenomena may contribute
to the dynamics as well. The order parameters in
such systems are traded quantities, such as the
price of shares. The author relates the market
dynamics to dynamics well-known from other
Synergetic systems. At last, the even more global
view of the world’s ▶ “Industrial Society’s Natu-
ral Future” presented by H.G. Danielmayer and
T. Martinetz considers the subsystems industry,
economy, human nature and finance, and their
interactions. The authors follow the concept of
Synergetics and provide a unified description of
these four, until now, separated academic disci-
plines. They undergird the work’s prediction by
large datasets and hence, once again, demonstrate
the power of Synergetics as discipline.
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Glossary

Attractor Region in the state vector space (“q-
space”) to which all neighboring states are
attracted in the course of time.

Control parameter One or a set of (mostly
externally) fixed parameters in the evolution
equations.

Dynamical System System whose state vector
changes in the course of time deterministically.

Evolution equations Determine the temporal
evolution of the state vector. May be determin-
istic, stochastic or both.

Fixed point, stable Point in q space to which all
neighboring trajectories converge in course of time.

Fluctuating forces Stochastic (random) forces
appearing in evolution equations.

Fokker Planck equation Evolution equation for
probability density function, based on drift and
diffusion.

Generalized Langevin equation General evolu-
tion equations that contain both a deterministic
and a stochastic part (“fluctuating forces”).

Group Set of elements with specific multiplica-
tion rules (axioms).

Hamilton operator Classical Hamilton function, in
which variables, e. g. position x andmomentump,
are replaced by quantum mechanical operators.

Heisenberg picture in quantum mechanics The
state vector is time-independent, while the oper-
ators are time-dependent and determined by
Heisenberg equations of motion.

Instability Loss of stability.
Langevin equation Originally: evolution equa-

tion for velocity of a Brownian particle subject
to damping and fluctuating force.

Limit cycle, stable A closed trajectory to which
all neighboring trajectories converge.

Normal form Especially simple polynomial
expression that still captures the essential fea-
tures, e. g. of the right hand side of determin-
istic evolution equations.

Order parameters Collective variables that
determine themacroscopic behavior of systems.

Pattern A pattern is essentially an arrangement.
It is characterized by the order of the elements
of which it is made rather than by the intrinsic
nature of these elements (Norbert Wiener).

Probability distribution function Function that
determines the probability of a random vari-
able r to have fixed value r ¼ r0.

Quantum classical correspondence Establishes
relation between quantum mechanical density
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matrix and classical quasi-probability distribution.
Schrödinger picture of quantum mechanics In

it operators are time-independent, while the
wave-function (“state vector”) is time-
dependent and determined by the Schrödinger
equation.

Self-organization Formation of spatio-temporal
patterns (structures) and/or performance of
functions without an “ordering hand”.

Slaving principle A general theorem that allows
the reduction of the variables of a system to
order parameters (close to instability).

Spatial coordinate (vector x) In one, two or
three dimensions.
DLaplace operator in 1, 2 or 3 dimensionsð Þ:

∇Vector d
dx1

,
d
dx2

,
d
dx3

� �
in 1, 2 or 3 dimensions:

Spectrum Set of eigenvalues belonging to linear
stability equations with boundary conditions.

Stability of a system System returns after a
(small) perturbation of its state vector into
original state.

State vector Set of time- or time-independent
variables that characterize the state of a system.

Symmetry Invariance of a system against spe-
cific transformations (e. g. mirror symmetry).

Synergetics Science of cooperation.
Trajectory Smooth curve q(t) of solution of evo-

lution equation in q-space.

The Role of Synergetics in Science

In science, we may essentially distinguish
between two trends:

1. The accumulation of knowledge
2. Information reduction in the sense of finding

general principles, common features.

In physics, such unifying approaches are well
known: the unification of magnetism, electricity
and, later on, weak and other interactions leading
eventually to a unified field theory. General rela-
tivity unifies concepts of space, time and gravita-
tion. While these unifications take place at a
fundamental level, one may ask whether it is
worthwhile to look also for unifications at say

more macroscopic or phenomenological levels.
One example is thermodynamics, another the the-
ory of phase transitions of systems in thermal
equilibrium by means of the renormalization
group approach, or the concept of fractals, etc.

The main goal of Synergetics is the search for
unifying principles for systems that are composed
of many individual parts or components, and that
may show the phenomenon of self-organization,
i.e. the spontaneous formation of spatial, tempo-
ral, spatial-temporal or functional structures. The
systems under discussion are, in the widest sense
of the word, open physical systems whose states
are maintained by an in- and outflux of energy,
matter and /or information. A typical and well
known example is that of a fluid in a pan that is
uniformly heated from below. When the tempera-
ture difference between the lower and upper sur-
face exceeds a critical value, the formerly
homogeneous fluid develops roll or hexagonal
patterns in which the fluid moves in a specific
manner (Fig. 1).

As it turned out, the general principles origi-
nally elaborated in physics, can also be applied to
many other systems, such as in biology, economy,
ecology, sociology, management theory, psychol-
ogy etc. In spite of the great variety of the

Synergetics: Basic Concepts, Fig. 1 Hexagonal pattern
of a fluid (liquid helium) uniformly heated from below
(Bodenschatz et al. 2000)
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individual systems with their components quite
different in nature, such principles apply to large
classes of phenomena. This is achieved by
restricting the study to situations where the sys-
tems undergo qualitative changes at macroscopic
scales. Here macroscopic means “with time and
length scales large compared to those of the indi-
vidual components”.

This leads to the definition of Synergetics as
given in the preamble of the Springer Series in
Synergetics: “An ever increasing number of sci-
entific disciplines deal with complex systems.
These are systems that are composed of many
parts which interact with one another in a more
or less complicated manner. One of the most strik-
ing features of many such systems is their ability
to spontaneously form spatial or temporal struc-
tures. A great variety of these structures are found,
in both the inanimate and the living world. In the
inanimate world of physics and chemistry, exam-
ples include the growth of crystals, coherent oscil-
lations of laser light, and the spiral structures
formed in fluids and chemical reactions. In biol-
ogy we encounter the growth of plants and ani-
mals (morphogenesis) and the evolution of
species. In medicine we observe, for instance,
the electromagnetic activity of the brain with its
pronounced spatio-temporal structures. Psychol-
ogy deals with characteristic features of human
behavior ranging from simple pattern recognition
tasks to complex patterns of social behavior.
Examples from sociology include the formation
of public opinion and cooperation or competition
between social groups.”

In recent decades, it has become increasingly
evident that all these seemingly quite different
kinds of structure formation have a number of
important features in common. The task of study-
ing analogies as well as differences between
structure formation in these different fields has
proved to be an ambitious but highly rewarding
endeavor. The Springer Series in Synergetics
provides a forum for interdisciplinary research
and discussions on this fascinating new scientific
challenge. It deals with both experimental
and theoretical aspects. The scientific commu-
nity and the interested layman are becoming
ever more conscious of concepts such as

self-organization, instabilities, deterministic
chaos, nonlinearity, dynamical systems, stochas-
tic processes, and complexity. All of these con-
cepts are facets of a field that tackles complex
systems, namely Synergetics.

The Laser Paradigm

This example elucidates central concepts used in
Synergetics in a qualitative fashion. An example
for the laser device (an acronym for light amplifi-
cation by stimulated emission of radiation, origi-
nally called optical maser (Schawlow and Townes
1958)) is the gas laser in which gas atoms are
enclosed in a tube at the end-faces of which mir-
rors are mounted. Themirrors serve the purpose of
reflecting light running in axial direction suffi-
ciently often so that the corresponding light
wave stays for an extended period in this device
and can interact intensely with the atoms. The
atoms are excited from the outside, e. g. by a
pump light source. After having been excited,
each atom can spontaneously emit a light wave
track. In the usual case of a lamp, these wave
tracks are emitted independently of each other
and the amplitudes are Gaussian distributed.
When the pump intensity is increased beyond a
critical value, the present state gives way to a
single wave with stable amplitude on which
small amplitude fluctuations and phase diffusion
are superimposed (Haken 1964). The pump inten-
sity serves as control parameter. At its critical
value, the old state becomes unstable. The emerg-
ing coherent wave acts as order parameter that via
stimulated emission forces the electrons of the gas
molecules to emit light waves in a coherent fash-
ion. This action of the order parameter on the
individual parts of the system is called slaving
principle. If the pump power is increased further,
more instabilities can appear, and a variety of
temporal but also spatio-temporal patterns of
light waves may appear, such as laser light chaos
(Haken 1975a) or ultrashort laser pulses. The first
laser threshold shows the typical features of a
phase transition of a system in thermal equilib-
rium, namely critical slowing down, critical fluc-
tuations and symmetry breaking (DeGiorgio and

Synergetics: Basic Concepts 7



Scully 1970; Graham and Haken 1968; Haken
1964, 1985; Sargent et al. 1974), as well as the
emergence of a c-number amplitude of the quan-
tized light field (Fig. 2).

The Hierarchical Structure of Synergetics

Before I discuss the mathematical approach in detail
and to provide the ground for farther reaching appli-
cations, I hint at the three levels of Synergetics:

1. The microscopic theory, based either on micro-
scopic equations, such as in the laser example,
those of quantum mechanics and quantum field
theory, or in biology on mathematical models on
the behavior of individual parts of a system. At
this level, concepts, such as order parameters and

enslavement (cf. section “The Laser Paradigm”),
can be mathematically derived.

2. Phenomenological Synergetics directly starts
from concepts, such as order parameters and
enslavement, which thenmay be cast into math-
ematical relations.

3. Semantic Synergetics deals with cases where a
mathematical formulation is (at present or in
principle) not possible, but still formulations
using concepts and relationships unearthed in
Synergetics are applicable.

A general goal of Synergetics consists in elab-
orating relationships between levels 1, 2, 3.

In the present article I will mainly focus my
attention on the mathematical formulation dealing
with 1 and 2.

Basic Equations

The basic equations are classical or quantum
mechanical evolution equations, in which the tempo-
ral evolution of the microscopic quantities under
consideration is described by ordinary or partial dif-
ferential equations. Since the systems are open, the
inputs and outputs of energy, matter and/or informa-
tionmust be taken care of,which, quite often, appears
in the form of coupling to heat baths in the sense of
thermodynamics. In open systems, these heat baths
must be kept at different temperatures, in order to
maintain the non-equilibrium state of the system. The
heat bath variables can be eliminatedwhich gives rise
to differential equations which contain “pumping”
and “damping” terms as well as fluctuating
(stochastic) forces. In the case of quantum mechani-
cal equations the stochastic forces are operators.With
the inclusion of stochastic forces, the classical or
quantum mechanical equations acquire the character
of stochastic differential equations which may be
called “generalized Langevin equations”.

Depending on the definition of the random
forces, we may distinguish between the I to, the
Statonovich and the Klimontovich approach
(Haken 2004b; Îto 1969; Stratonovich 1963). As is
well known in statistical physics, Langevin equa-
tions can be converted into equations for distribution
functions, such as e. g. the Fokker–Planck equation.

Synergetics: Basic Concepts, Fig. 2 The stationary dis-
tribution function of the laser light intensity as a function of
the normalized intensity bn. The individual curves refer to
different normalized pump power values a, where a < 0
below threshold, a¼ 0 at threshold, a> 0 above threshold.
(After Risken 1965)
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A further approach, mainly used in quantum
mechanics, but also in models on sociodynamics,
is the master equation.

In order not to overload this article, I will focus
my attention on the treatment of evolution
equations.

This approach seems to be particularly suited
for the treatment of phase transition- like phenom-
ena, i.e. the transitions between qualitatively dif-
ferent states of a system. If noise is neglected and
transients are not treated, these transitions are
called bifurcations (Arnold et al. 1999; Chow
and Hale 1982; Guckenheimer and Holmes
1983; Iooss and Joseph 1980; Kielhöfer 2004;
Kuznetsov 1995; Ma and Wang 2005).

At the microscopic level the systems are
described by a state vector q with components
q1,. . ., qn which may also be space dependent,
qj ¼ qj (x, t), where x is a one, two or three
dimensional vector. The time dependence is
described by evolution equations of the form of
a vector equation.

_q ¼ N q,∇, að Þ þ F q,∇, að Þ: ð1Þ

The dot˙ means time-derivative. N is a vector
valued function that depends on q in a nonlinear
fashion. ∇ indicates spatial derivatives (of any
order) or non-local integrations e. g. of the form

Z
K x, x0ð Þq x0ð Þdx0 ð2Þ

where K is a matrix.
a represents a set of fixed control parameters. If

not otherwise stated, we explicitly treat only one
control parameter. Equation (1) must be
supplemented by appropriate boundary and initial
conditions. F is a vector valued stochastic func-
tion of time with vanishing mean.

Method of Solution

We assume that for a certain control parameter
value a0 the state vector as solution of Eq. (1) is
known, q ¼ q0. The following cases have been
considered, see e. g. (Haken 2004b):

(a) q0 is a stable fixed point (section “Instability
of a Fixed Point”)

(b) q0 is a stable limit cycle (section “Instability
of a Limit Cycle, q0(t) (Haken 2004b)”)

(c) q0 is a stable n-dimensional torus. (section
“Instability of Tori (Haken 2004b)”)

Now the control parameter value is changed
and the stability of the system is checked by
means of linear stability analysis (Hahn 1967).

Instability of a Fixed Point
We first elucidate our general procedure by means
of the instability of an originally stable fixed
point. This procedure differs from the classical
approach of bifurcation theory (Lyapunov 1906;
Schmidt 1908) in two important aspects:

1. The role of the fluctuating forces is fully
taken into account in order to be able to make
contact with the theory of phase transitions in
the Landau sense (Landau and Lifshitz 1959).

2. The approach covers the surrounding of the
fixed point in order to deal with relaxation pro-
cesses towards the newly evolving stable states.

The hypothesis

q tð Þ ¼ q0 þW tð Þ ð3Þ

is inserted into (1) and the Eq. (1) with F � 0
linearized with respect toW(t),

_W ¼ LW ð4Þ

where L may be a linear differential (or integral)
linear operator.

The solutions are of the form

W x, tð Þ ¼ elkt
XD
d¼0

tdvk,d xð Þ ð5Þ

where D > 0 may happen if the corresponding
eigenvalue lk is degenerate. In the following we
consider D ¼ 0 and vk,d ¼ vk. The unstable modes
vk � vu are connected with

Re lk � 0, ð6Þ

the stable modes vk � vs with
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Re lk < 0: ð7Þ

It is assumed that Re lk< A< 0, A fixed, if the
eigenvalues are discrete.

We decompose the wanted solution to the orig-
inal non-linear and stochastic equations into a
super position of modes determined by the insta-
bility analysis whereby we distinguish between the
unstable and stable modes. The amplitudes of the
unstable modes are the order parameters. Inserting

q tð Þ ¼ q0 þ
X
u

xu tð Þvu xð Þ þ
X
s

xs tð Þvs xð Þ ð8Þ

into the Eqs. (1) and projecting both sides of the
resulting equation on the stable and unstable
modes, we obtain equations of the form

_xu ¼ luxu þ bNu xuf g, xsf gð Þ
þ bFu xuf g, xsf gð Þ ð9Þ

_xu ¼ lsxs þ bNs xuf g, xsf gð Þ
þ bFs xuf g, xsf gð Þ: ð10Þ

lu, ls are the eigenvalues (6), (7), which are
assumed to be discrete. By a suitable, in general
nonlinear, transformation to new variables, Ñ
({xu}) can be cast into a particularly simple form
(“normal form” theory (Murdock 2002; Nayfeh
1993), initiated by Poincaré (1960)).

If the eigenvalues lu, 0 > Re ls > – |B| are a
continuous function of an index, e. g. a wave
number k, wave packets of xu(t) are used as new
order parameter variables X and lu(k) is replaced
by an operator Lu �i d

dx

� �
in one space-dimension

or, more generally, Lu ¼ (�i∇) (Haken 2004b).
For a related approach in fluid dynamics
cf. (Newell and Whitehead 1969).

The central idea of further procedure consists
in eliminating the amplitudes of the stable modes.
This is achieved by the slaving principle (Haken
1975b, 2004b; Haken and Wunderlin 1982;
Wunderlin and Haken 1981) which allows us to
express the amplitudes of the stable modes in
terms of the unstable modes

xs tð Þ ¼ f s xu tð Þf g, tð Þ, ð11Þ
where xs, xu, are taken at the same time t. The
explicit time-dependence of fs stems exclusively

from that of the fluctuating forces. fs can be explic-
itly calculated in terms of a series expansion in
powers of the order parameters. For practical pur-
poses, in general only a few terms are needed. For
a general discussion of the convergence of this
series see (Haken 2004b). When noise is
neglected, contact can be made with center man-
ifold theory (Kelley 1967; Pliss 1964), which
originally was a mere existence theory and was
not constructive. For more recent developments,
see books on bifurcation theory. A related
approach is based on time-scale separation: The
slowly damped or undamped modes serve as
order parameters, which enslave the rapidly
damped modes. A special case is adiabatic
elimination.
Resulting Langevin Equations The enslaved mode
amplitudes can be expressed by the order param-
eters and inserted in (9), so that closed equations
for the order parameters alone result.

_xu ¼ luxu þ ~Nu xuf gð Þ þ ~Fu xuf g, tð Þ ð12Þ

where Ñ is a polynominal of x(x, t) starting with at
least second order. F̃ is a stochastic force.
A simple, yet prototypical example is (with a
single order parameter x ¼ xu)

_x ¼ lxþ ax2 � bx2 þ F tð Þ, b > 0 ð13Þ

_x ¼ � @V xð Þ
@x

þ F tð Þ, ð14Þ

with the potential

V ¼ � l
2
x2 � a

3
x3 þ b

4
x4: ð15Þ

If lu, ls (6, 7) represent a continuous spectrum,
(generalized) Ginzburg–Landau equations result
(Haken 2004b). For example, the complex
Ginzburg–Landau equation with fluctuating
force reads (Aronson and Kramer 2002).

x x, tð Þ � xu, complex order parameterð Þ
_x ¼ lxþ aDx� c xj j2xþ F tð Þ: ð16Þ

A further example is given by the Swift–
Hohenberg equation (Swift and Hohenberg
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1977), see also (Cross and Hohenberg 1993)
(which was derived differently, however)

_x x, tð Þ ¼ a� bDð Þ2x x, tð Þ þ cx x, tð Þ
� dx x, tð Þ3: ð17Þ

The Eqs. (12, 13, 16, 17) allow for a great
variety of solutions. In the case of real l and a
single order parameter, a nonequilibrium phase
transition occurs (see below). In case of l complex,
and (at least) one complex order parameter,
Landau-Hopf bifurcation (Hopf 1942, 1948),
i.e. formation of a limit cycle may happen. In
case of (at least) three order parameters and no
noise, deterministic chaos may occur (Lorenz
1963; Ruelle and Takens 1971; Sparrow 1982)
(in the presence of noise, mixed effects may occur).

Fokker–Planck Equation Below and above the
instability point in control parameters space, in a
first step the fluctuations can be neglected and
then, in the next step, taken care of by means of
lowest order perturbation theory. In order to cover
the transition region, under well defined condi-
tions a Fokker–Planck equation for the probability
density function f ({xu}) of the order parameters
can be derived. For details see (Haken 2004b;
Haken and Graham 1971) and the article by
T. Frank, this volume.

The Fokker–Planck equation is of the general
form

_f xuf gð Þ ¼ �
X
u

@
@xu

~Nuf
� �

þ 1

2

X
uv

@2

@xu@xv
Quvfð Þ: ð18Þ

It is assumed that Fũ in (12) is d correlated in time,

~Fu tð Þ ~Fv t0ð Þ� � ¼ Quv d t� t0ð Þ: ð19Þ
If F̃u depends on xu, the Î to, Stratonovich or
Klimontovich procedure must be applied.

In the case of a single order parameter, where
the Langevin equation (Langevin 1908), origi-
nally with Ñ¼ – ax) is given by

_x ¼ ~N xð Þ þ F tð Þ, F tð ÞF t0ð Þh i ¼ Qd t� t0ð Þ:
ð20Þ

The steady state distribution function of (18) is
given by (Haken 2004b; Risken 1965)

f xð Þ ¼ N exp �2

Zx
~N x0ð Þ=Qdx0� � � N exp �2V xð Þ=Qð

0
@

1
A

ð21Þ

provided the boundary conditions are

f xð Þ ! 0 for xj j ! 1: ð22Þ

In the second Eq. (21),Q¼ const. is assumed.N is
a normalization constant. A generalization of (18)
to continuous variables, xu(x, t), gives rise to a
functional Fokker–Planck equation. An explicit
solution of the Fokker–Planck equation in the
case of several discrete or continuous order
parameters can be found if the drift and diffusion
coefficients obey the rules of detailed balance
(Graham 1981; Graham and Haken 1971).

Nonequilibrium Phase Transition. Connection
with Landau Theory The explicit form of the
solution of the Fokker–Planck Eq. (21) allows us
to make contact with the theory of phase transi-
tions in the sense of the Landau theory (Landau
and Lifshitz 1959) where

f xð Þ ¼ N exp �F x,Tð Þ= kTð Þð Þ,
F x,Tð Þ ¼ F 0,Tð Þ þ a T � Tcð Þx2 þ b

4
x4:

ð23Þ

In (21), V corresponds to the free energy F and the
noise strength Q corresponds to absolute temper-
ature T. Tc is the critical temperature, and (23)
refers to a second order phase transition. In case
of a first order phase transition, an additional term
gx3 appears in (23).

An important difference between phase transi-
tions at thermal equilibrium and in the present
case of non-equilibrium should be mentioned,
however. The decisive constants in the case of
non-equilibrium (Haken 2004b) phase transitions
are rate constants in contrast to thermodynamic
quantities in (23). While non-equilibrium phase
transitions described by (21) were experimentally
very well verified for instance in the case of lasers
(Risken 1965) (Fig. 1), in the case of thermal
equilibrium the Landau theory can not be consid-
ered as a good approximation and had been
replaced by the concept of critical exponents
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etc. as dealt with by renormalization group theory
(Kadanoff et al. 1967; Wilson and Kogut 1974).
For a treatment of the time dependent Fokker–
Planck equations see Risken (1989).

In a number of cases the drift- and diffusion
coefficients of the Fokker–Planck equation are by
themselves expectation values, defined on the
probability density function so that the Fokker–
Planck equation becomes non-linear. For more
details see the article by T.D. Frank in this volume.

Instability of a Limit Cycle, q0(t) (Haken 2004b)
The instability is checked by linear stability anal-
ysis by means of the hypothesis

q tð Þ ¼ q0 tð Þ þW tð Þ, ð24Þ

where q0(t) is a time-periodic solution to (1) with
a ¼ a0, W(t) a small deviation.

Inserting (24) into (1) with F � 0 and lineari-
zation leads to an equation of the form (4), where
L because of q0(t) has become also a time-periodic
function with the same period as q0(t). According
to Floquet theory (Floquet 1883), the solutions to
(4) with periodic L(t) are given by

W tð Þ ¼ el f tv j tð Þ ð25Þ

(in the case of nondegeneracy), where vj(t) has the
same period as q0, i.e. L.

Depending on Re lj � 0 or < 0 we distinguish
between unstable and stable modes (6, 7), respec-
tively. One eigenvalue is ¼ 0 and corresponds to
an indeterminate phase shift, which in nonlinear
analysis is taken care of by a phasef(t) that acts as
additional order parameter. In order to solve the
fully nonlinear and stochastic equations, the
hypothesis

q tð Þ ¼ q0 tþ f tð Þð Þ
þ
X
u

xu tð Þvu tþ f tð Þð Þ

þ
X
s

xs tð Þvs tþ f tð Þð Þ ð26Þ

is inserted in the Eqs. (1). The subsequent proce-
dure follows the lines outlined above and leads to
order parameter equations of the form

_xu ¼ luxu þ bNu xuf g,fð Þ þ bFu xuf g,fð Þ ð27Þ

_f ¼ M xuf g,fð Þ þ G xuf g,fð Þ ð28Þ

where bN , bF, M, G are polynominals in {xu} and
periodic functions of f.

The novelty as compared to the case of an
unstable fixed point consists in the introduction
of a phase as order parameter.

When noise is neglected, the newly evolving,
i.e. bifurcating solutions are either two (or several)
limit cycles or tori. Also basically, depending on
the system, also a “back bifurcation” to a stable
focus can happen.

Instability of Tori (Haken 2004b)
The corresponding theory is rather complex so
that a few words must suffice here. The basic
idea (Haken 2004b) is based on an extension of
(24, 26) where q0 is chosen as a quasi periodic
function

q0 ¼ q0 o1t,o2t, . . . ,oMtð Þ ð29Þ

where the o0smust be sufficiently irrational in the
sense of the KAM (Kolmogorov (1954), Arnold
(1963), Moser (1967)) theorem. Besides ampli-
tudes as order parameters, also phases
f1(t),. . .,fM(T) are introduced. For details
cf. (Haken 2004b), and for alternative approaches
(Chenciner and Iooss 1979; Sell 1979).

A Remark on the Method of Solution of
Evolution Eq. (1)

In this article the central role of order parameters
is stressed because this allows us to establish
profound analogies between quite different sys-
tems. In practical applications it may be prefera-
ble, however, to apply other methods of solution,
analytical, numerical or mixed, in order to derive
the spatial, temporal or spatio-temporal patterns.
In this way, the Springer Series in Synergetics
have developed a “tool box” of models
(Mikhailov 1993).
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Quantum Theoretical Formulation

In a quantum theoretical treatment one deals with
quantum mechanical Langevin equations which
are Heisenberg equations of motion for operators
to which pumping and damping terms as well as
random noise sources are added. Here, according
to quantum theory, the system’s observables are
represented by time-dependent quantum mechan-
ical operators, Oj. For instance, by the position
operator bx and the momentum operator bp of a
particle, or, in quantum field theory, by creation
and annihilation operators bb þ

, bb , respectively.
The quantum mechanical Langevin equations
read (see, for instance (Haken 1970, 1985)):

_O j ¼ i
ℏ

H,O j

� 	þ dampingþ F j tð Þ, ð30Þ

where H is the Hamilton operator, and Fj(t) are
stochastic operators which usually are assumed to
be d-correlated in time. The quantum mechanical
properties can be determined by the postulate of
quantummechanical consistency ofOj, (cf. (Haken
1970), appendix).

If the non-commutativity of operators is taken
care of, the procedure to derive order parameter
equations is formally the same as in the case of
classical Langevin equations as indicated above.
The Fokker–Planck equation, however, must be
replaced by a density matrix equation, originally
introduced as master equation (Pauli 1928). For
nonequilibrium systems, such as the laser, see
(Scully and Lamb 1967; Weidlich and Haake
1965), also (Haken 1970; Sargent et al. 1974).
Using methods of quantum classical correspon-
dence, this density matrix equation can be
converted into a Fokker–Planck equation under
specific conditions. The basic idea is this:

Quantum-Classical Correspondence

There are several ways to define quantum classi-
cal correspondence. In the case of position opera-
tor bx and momentum operator bp with the
commutator bp, bx½ � ¼ ℏ

i and the density matrix r,
the Wigner distribution function W(x, p) (Wigner
1932) is defined by

W x, pð Þ ¼ 1

2pð Þ2 �
ð ð1
�1

e�i k x�i l p

� tr ei kbxþi lbpr
 �
dkd l ð31Þ

where “tr” means trace.
Thus a relation is established between the

quantum mechanical density matrix and a classi-
cal quasi-density W(x, p). Based on (31) or equa-
tion (34, 35, 36), a density matrix equation can be
converted into a generalized Fokker–Planck equa-
tion (Haken 1964).

By the transformation of bx , bp to creation and
annihilation operators b+, b by means of

bb þ ¼ 1ffiffiffiffiffiffi
2ℏ

p bxþ ibpð Þ ð32Þ

bb ¼ 1ffiffiffiffiffiffi
2ℏ

p bx� ibpð Þ ð33Þ

an alternative form to (32) is given by

P b, b�ð Þ ¼ 1

p2

Z Z 1

�1
e�i b k�i b�l

� tr ei k
bb þ

þi lbbr� �
d kd l: ð34Þ

Because bb þ
, bb are noncommuting operators,

½ bb þ
, bb � ¼ 1, different “quasiprobability” distri-

butions P result, if

ei k
bbþþi lbb

is replaced by

ei k
bbþei lbb ð35Þ

or

ei k
bb ei lbbþ : ð36Þ

(35) gives rise to the Glauber–Sudarshan repre-
sentation. For details and references see (Haken
1970).
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Regular Spatial and Spatio-Temporal
Patterns

One of the most striking features of non-
equilibrium systems in physics, chemistry and
biology is their capability of forming (more or
less) regular spatial pattern (for explicit examples
see below). (There is a rich literature on pattern
formation in physics, especially fluids
(Chandrasekhar 1961; Cross and Hohenberg
1993; Manneville 1990; Swinney and Gollub
1981), but also semiconductors (Schöll 2001)
and nonlinear optics (Staliunas et al. 2003), chem-
istry (Epstein and Pojman 1998; Fife 1979;
Kuramoto 1984) and biology (Babloyantz 1986;
Meinhardt 1982, 1990; Murray 1989) and general
(Horsthemke and Lefever 1983; Hoyle 2006;
Mikhailov 1993; Nekorkin and Velarde 2002;
Pismen 1999, 2006; Rabinovich et al. 2000;
Vavilin et al. 1967). Furthermore, the patterns
exhibit striking similarities in spite of the fact
that the individual parts are quite different. The
methodology of Synergetics (e. g. (Haken 2004b))
provides us with a basic insight into the causes of
such analogies.

Pattern formation is determined by at least
three causes:

1. internal mechanism, such as e. g. the interplay
between reactions and diffusion in large scale
chemical processes,

2. the influence of boundaries,
3. initial conditions.

Concerning (1) and (2) between two (limiting)
cases can be distinguished.

1. dimensions of the internally evolving patterns
are of the same or larger order as those of the
boundaries. Here a strong influence of the
boundaries must be expected.

2. dimensions of evolving patterns are small com-
pared to those of the boundaries (boundaries!
1).

To bring out the essential features we consider that
originally for a control parameter value a0 the
system is homogeneous and quiescent. The

approach can, however, be extended to a space
dependent reference state (which, e. g. resulted
from a first bifurcation leading to q0 ¼ q0(x))
and the cases of a limit cycle or torus. The space
may be 1, 2 or three dimensional Euclidian or,
e. g., a 2 or 3 sphere.

Infinite Boundaries

We start with 2 infinite boundaries, the medium is
homogeneous and isotropic. We assume a contin-
uous transition from the homogeneous to the
“bifurcating” state. The evolving patterns are
determined by the leading terms in (8) that we
call the “mode skeleton”

q x, tð Þ ¼ q0 þ
X

xu tð Þvu xð Þ ð37Þ

and the order parameter Eq. (12). The functions
vu(x) are the space-dependent part of the solutions
to (4) where L is a differential (or integral) oper-
ator which is invariant against translation and
rotation. Thus, e. g., L commutes with the dis-
placement operator

Oa : x ! xþ a, a constant vector:

Thus vu(x) can be chosen as eigenfunction to Oa,

Oavu xð Þ ¼ Lvu xð Þ ð38Þ

with

vu ¼ ei k x ð39Þ

L ¼ ei k a ð40Þ

i.e. plane waves. Which waves must be consid-
ered in (37) is determined by lu in (6) as well as by
the order parameter Eq. (12).

The condition Re lu(k)¼ 0 defines k¼ kcrit. As
was shown by means of many examples k �
kcrit 6¼ 0. If the boundaries are finite, such a dis-
crete k must be chosen which comes closest to
kcrit. If the boundaries tend to infinity, a continu-
ous set k is taken care of by (generalized)
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Ginzburg–Landau equation (see above). If the
boundaries are “narrow” in 1 or 2 dimensions,
but large in the remaining dimensions, the wave
vector k must be split into kII and k⊥ where kII is
practically continuous and k⊥ discrete. Quite
often only one k⊥ (the most critical) needs to be
considered. This leads to practically 2 (or 1)
dimensional patterns connected with kII. In the
2-dimensional case, the modes with |kII| ¼ kcrit.
are degenerate. This degeneracy can be lifted by a
weak influence of boundaries (leading to roll pat-
terns), by specific initial condition which
(by chance) prefers a specific roll pattern, or by
terms in the order parameter-equations that lead to
specific combinations, e. g.

k1 þ k2 þ k3 ¼ 0, ð41Þ
where kj, j ¼ 1, 2, 3 belong to kII.

This gives rise to the formation of hexagons.
This is the case if the leading term of ~N contains

ð
vk1vk2vk3 d

2x 6¼ 0: ð42Þ

In three dimensions this mechanism may lead to
plane wave fronts stabilizing each other which
gives rise to icosaeders, as observed in diatomea.

An important class of spatio-temporal patterns
(in 2 dimensions) results when the system utilizes
rotation symmetry. This can best be explained by
the following example:

In many cases of practical interest, N in (1) and
thus L in (4) contain the Laplace operatorD.When
written in planar polar coordinates r, #, solutions
to (4) are of the general form

v / ei m#�k r�o tð Þ ð43Þ
(times a rotation symmetric function g(r)) which
represents spirals. m ¼ 0 represents concentric
rings, while an integer m > 0 represents the num-
ber of spiral arms. o ¼ 0 represents standing
spirals, o 6¼ 0 rotating spirals.

The mode skeleton (37) is composed of func-
tions of the form (43). Which of the functions (43)
appear in (37) depends on the competition
Eqs. (12) for order parameters, which may also
allow for a super position of counter rotating

spirals (such as in the sunflower head). As group
theory shows (see below), solutions (43) with
different m’s belong to different irreducible repre-
sentations, and do not coexist in (37). This does
not exclude the coexistence of differently rotating
spirals in different regions of space, however.

The above results can be cast into the iso-
morphy principle:

While the “true” q is represented by (we omit
the homogeneous q0)

q ¼
X
u

xuvu xð Þ

þ enslaved modes, with same symmetry:

ð44Þ
and vu “true modes”, its symmetry features can be
replaced by a “representative” q0:

q0 ¼
X
k

xkRk xð Þ, ð45Þ

where Rk represent the “elementary” functions
showing the symmetry under consideration.
While the material significance and explicit form
of q according to (44) may be quite different for
different material substrates, q0 (45) shows the
same patterns for different systems.

These results can be deepened by invoking
group theory, in which also the effect of the
boundaries is taken into account.

Theory, Representation Theory, Finite
Boundaries

Consider a set of transformations Gj of space vari-
ables x ! x0 so that

G jq ! q0 ð46Þ

Example 1 Gj induces the translation

x ! xþ a so that G jq xð Þ ¼ q xþ að Þ: ð47Þ

The transformations must be so that they are com-
patible with the internal properties of the system
(1) and the boundary conditions. Example: when
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dealing with a problem on a 2-dimensional
sphere, the transformed coordinates x must not
leave the sphere.

Because of the symmetry of the problem, the
transformations Gj form a group defined by

1. existence of unity E such

G jE ¼ G j for all j ð48Þ
2. the product of two group elements is again an

element of the group,

G jGk ¼ Gl for all j, k ð49Þ

3. existence of an inverse G�1
j for all j so that

G�1
j G j ¼ E, ð50Þ

4. associative law

GkGlð ÞG j ¼ Gk GlG j

� � ð51Þ
for all group elements.
In the following we first ignore random forces,
i.e. we consider (1) with F � 0.

_q x, tð Þ ¼ N q,D, að Þ: ð52Þ

Jointly with the boundary conditions, (52) defines
a function space S in which all functions to be
considered must lie (i.e. can be represented by
linear combinations of a complete set of (vector
valued) basic functions of S; example: S is a
Hilbert space)

Definition 1 The system is invariant against Gj if
for all f 2 S

G j N G�1
j f


 �
¼ N fð Þ: ð53Þ

Example 2

G j : x ! xþ a, ð54Þ

N fð Þ ¼ Df þ V xð Þf þ f 2: ð55Þ

Then

G j � N G�1
j f


 �
¼ DG�1

j f xþ að Þ
þ V xþ að ÞG�1

j f xþ að Þ

þ G�1
j f xþ að Þ


 �2

ð56Þ

¼ Df xð Þ þ V xþ að Þf xð Þ þ f xð Þ2 ð57Þ

6¼ N fð Þ ¼ Df xð Þ þ V xð Þf xð Þ þ f xð Þ2 ð58Þ

unless V(x + a)¼ V(x). If a in (54) is arbitrary,N is
not invariant against (54).
Application of Gj to q in (52) leads to

d
dt

G j q
� � ¼ N G j q

� � ð59Þ

or because of (53), (with f ¼ Gj q), to

d
dt

G j q
� � ¼ G j N qð Þ: ð60Þ

In the spirit of representation theory of groups the
action of Gj on f can be understood as an abstract
operation, but also as a matrix acting on the vector
f in S- space.

By appropriate transformation of basis of q,
and using the representation theory of symmetry
groups, all matrices Uj belonging to all group
elements j can simultaneously be decomposed
into “irreducible” representations so that (in the
example of 3 irreducible representations)

U j ¼
□ ○ ○

○ □ ○

○ ○ □

0
B@

1
CA ð61Þ

Each box□ is a matrixU kð Þ
j with dimensionDk, so

that

D1 þ D2 þ � � � þ Dk ¼ dimension U j:

Example 3 Rotation group applied to 2-sphere
(e. g. earth surface). Basis functions are spherical
harmonics Yl

m with “quantum numbers” l, m.
Subspace l fixed, m ¼ 0,. . ., l – 1. As a conse-
quence, the mode skeleton reduces to (q0
dropped)
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ql ¼
X
m

xm tð ÞYl
m: ð62Þ

There is no coupling between different ls, which
implies a low dimensional dynamics of xm.

Generally, the original function space S is
decomposed into subspaces forming the basis of
each irreducible representation. This implies a
symmetry reduction beyond bifurcation point,
compared to the situation below bifurcation
point, where

G j q ¼ q for all j, ð63Þ

i.e. q fully symmetric under G.
In our example beyond the bifurcation point q is

given by ql where Yl
m transforms according to the

subgroupGl,which leaves the space spanned by Yl
m

invariant. If, however, group elements not belonging
to Gl are applied to ql, this space is left. In other
words, ql is connected with a lower symmetry than
q (63). By bifurcations, the symmetry of q is lowered
and one speaks of “symmetry breaking instability”.
If fluctuating forces in (1), i.e. in (52) are taken into
account, the full symmetry can be restored (under
specific conditions on the fluctuating forces).

While group theory has found important and
widespread applications to quantum theory, it is
less frequently used in problems of Synergetics,
though there it may lead to deep insights as
pointed out above. (For an in-depth approach see
(Golubitsky and Schaeffer 1988; Golubitsky et al.
1988; Sattinger 1980).)

On top of, or jointly with, regular patterns, a
variety of defects as well as boundaries between
different patterns may occur (cf. contribution by
Pismen, this volume and (Pismen 1999, 2006)).

A Further Mathematical Tool: Shannon
Information and the Maximum
(Information) Entropy Principle

While evolution equations are the backbone of
Synergetics, also other tools are invoked to deal
with complex systems. Such a tool is Shannon
information (Shannon and Weaver 1949) which
is defined by

i ¼ �
X
j

p j log 2 p j ð64Þ

where pj is the relative frequency of the event j or,
in a different interpretation, the probability of
finding the realization j in an experiment. The
maximum (information) entropy principle as for-
mulated by Jaynes (1957, 1967), for an earlier
proposal see (Elsasser 1937)), allows one to
make unbiased guesses on systems on which
only incomplete data are known by maximizing
the informations, i.e. (64)¼max! or¼ extremum!
under given constraints.

A simple example is provided by a gas com-
posed ofN particles, where the total kinetic energy
Etot
kin is fixed. Denoting the kinetic energy of a

particle with mass m and velocity vi by f i ¼
m=2ð Þv2i , the mean kinetic energy per particle is

X
i

pi f i ¼ Etot
kin=N ð65Þ

To fix pi, (64) must be maximized under the
normalization condition

X
i

pi ¼ 1 ð66Þ

and the constraint (65).
Using Lagrange multipliers, l, l1, the result

reads

pi ¼ exp �l� l1mv2i =2
� � ð67Þ

i.e. the Maxwell–Boltzmann distribution func-
tion. Also relations between the Lagrange multi-
pliers l, l1 can be established which, evidently,
have fundamental thermodynamic significance.

This approach has been extended to the treat-
ment of nonequilibrium phase transitions,
i.e. determination of order parameters, enslaved
modes and emerging patterns (Haken 2000). The
crucial idea consists in the proper choice of con-
straints, as which the moments of the variables qi
are chosen:

< . . . > means average over the joint distribu-
tion function f(q1, q2,. . ., qn) which replaces pj and
the vector (q1,. . .,qN) replaces j. The variables qj
may be discrete or continuous.
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f i ¼< qi > , i ¼ 1, 2, . . . ,N: ð68Þ

f i j ¼< qi q j >: ð69Þ

f i j k l ¼< qi q j qk ql >, i, j, k, l ¼ 1, 2, . . . ,N:

ð70Þ

The resulting distribution function is given by

q ¼ expV l, qð Þ ð71Þ
with

V l, qð Þ ¼ lþ
X
i

li qi þ � � �

þ
X
i j k l

li j k lqi q j qk ql: ð72Þ

(71) is a starting point to make contact with the
Landau or Ginzburg–Landau theory of phase tran-
sitions (Landau and Lifshitz 1959), and to
guessing Fokker–Planck equations. The approach
allows one to calculate the efficiency of self-
organizing systems close to their instability
points.

The method has been extended to the “unbi-
ased modeling” of stochastic processes: how to
guess path integrals, Fokker–Planck equations
and Langevin-Îto equations (Haken 1996). The
central quantity to be searched for is the probabil-
ity density Pn of paths.

Let q(t) be the state vector q ¼ (q1,. . ., qn) at
time t, then

Pn tn, tn�1, . . . , t0ð Þ
¼ Pn q tnð Þ, tn; q tn�1ð Þ, tn�1; . . . ; q t0ð Þ, t0ð Þ,
tn > tn�1 > . . . > t0:

ð73Þ
This task is simplified if the Markov hypothesis
on the process holds, i.e.

Pn tn, tn�1, . . . , t0ð Þ ¼ bP q tnð Þ, tnjq tn�1ð Þ tn�1ð Þ � Pn�1 ð74Þ

where bP is the transition probability so that only
transition probabilities between subsequent states
(with Dt ! 0) must be guessed in addition to P0.

In the frame of the present approach, this task is
fulfilled by use of the maximum information prin-
ciple. The constraints to be used are essentially
conditional first order moments and two-time cor-
relation functions of the state vectors q(t), q(t0).

Phenomenological Synergetics

In many fields of science, including medicine, the
microscopic variables and their dynamics are not
well-known or not known at all. Nevertheless, in
quite a number of cases, namely where dramatic
macroscopic changes of the system’s behavior
take place, general insights, gained by Syner-
getics, can be invoked. A paradigm for this pro-
cedure is the modeling of Kelso’s finger
experiments (Kelso 1981, 1995) (Fig. 3). He
instructed subjects to move their index fingers in
parallel which was accordingly performed. How-
ever, when the speed of the fingers was increased,
the parallel movement was replaced by a symmet-
ric movement quite involuntarily and spontane-
ously. In other words, a transition from a parallel
to an anti-parallel phase takes place. In terms of
Synergetics, the interpretation is simple: the con-
trol parameter consists in the prescribed frequency
o of the finger movement, whereas the macro-
scopic quantity, i.e. the order parameter that
changes dramatically is provided by the relative
phase of the two index fingers. According to the
experience made in Synergetics, the order

Synergetics: Basic Concepts, Fig. 3 Transition
between finger movements from parallel to symmetric in
Kelso’s experiment (Haken et al. 1985)
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parameter, here called f obeys a typical order
parameter equations of the form (Haken et al.
1985)

_f ¼ � @V
@f

þ F tð Þ, ð75Þ

where V(f, o))is a potential function and F a
fluctuating force. When the control parameter o
is changed, the potential runs through a series of
forms as depicted in Fig. 4. As was shown in
detail, at a critical value of o, the transition from
one potential minimum to another one occurs, as
related to the change of the kind of finger move-
ment. The mathematical analysis shows hystere-
sis, critical slowing down and critical fluctuations
(Haken 1996) which reject the idea that the brain
acts like a computer via a motor program but
rather via self-organization.

Another application is made by the Synergetic
computer (Haken 2004a) (Figs. 5 and 6), where to
each pattern to be recognized a specific order
parameter is attached. Pattern recognition is then
achieved via a competition between order param-
eters. The competition equations are given by

_xk ¼ @V
@xk

V x1, . . . , xMð Þ

¼ � 1

2

X
k

lkx
2
k þ b

X
k, k0

x2kx
2
k0 � C

X
k

x4k : ð76Þ

This approach may serve also for modeling of
brain functions: both recognition as well as move-
ments are governed by the establishing of order
parameters which may wander from one quasi
attractor to another one. Quasi attractors are
defined as attractors that vanish after the task has
been accomplished, e. g. after a pattern has been
recognized or movement performed.

Based on the concept of order parameters, a
learning procedure for Synergetic computers has
been developed (Haken 2004a). Here the number
of patterns to be recognized is prescribed and then
a special functional must be minimized. In the
case of the Synergetic computer, it is possible to
make contact between the microscopic and the
mesoscopic description, i.e. the microscopic vari-
ables are pixel values qj, j pixel index, whereas the
mesoscopic (or macroscopic) quantities are the
order parameters xk.

The relation between xk, qj is given by

Synergetics: Basic
Concepts,
Fig. 4 Sequence of
potential curves of the
Haken–Kelso–Bunz model
of Kelso’s experiment
(Haken et al. 1985)
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xk ¼
X
j

vkþj q j, ð77Þ

where vkþj are adjoint prototype patterns, with

k pattern index, j pixel index.
The relation between prototype patterns vkj and

their adjoints is given by

X
j

vkþj vk
0
j ¼ dkk0 ð78Þ

At the phenomenological level the order parame-
ter concept allows us to interpret and model com-
plex movement patterns, e. g. learning to ride on a
pedalo (Haken 1996). In the experiments, LED’s
are fixed at the joints of the subject and their
positions measured which gives rise to a series
of time-dependent tracks. Then, in a first step, a
principle component analysis is performed, in the

next step, by means of a variational principle, the
best fit is searched in terms of order parameters
and their equations of motion, in order to mimic
the actual tracks. While in the learning phase
several order parameters are needed, at the end
the whole movement is governed by a rather sim-
ple equation for a complex order parameter.

During the development of Synergetics it
turned out that there are strong relations to gestalt
theory (Köhler 1920) as well as to psycho physics.
A typical example is provided by ambivalent fig-
ures where (Fig. 7) (Fisher 1967) shows an exam-
ple. An observer may either perceive a young
woman or an old woman, but not both simulta-
neously, rather the perception switches between
these two percepts. In the mathematical modeling
to each percept an order parameter is attached
(Haken 2004a), which obeys the typical equations
of Synergetics. The control parameter invoked

Synergetics: Basic Concepts, Fig. 5 Recognition of faces by the synergetic computer: stored or learned prototype
patterns (Haken 2004a)

Synergetics: Basic Concepts, Fig. 6 Pattern recognition by the synergetic computer: recognition of a specific face of
which initially only a subset of pixels is presented (Haken 2004a)
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here is attention. According to an early suggestion
by Wolfgang Köhler (1920), when a pattern is
recognized, the corresponding attention fades
away. This has been modeled mathematically
based on a competition dynamics between two
order parameters, when the control parameter
(attention) of one pattern fades away, the other
pattern gets the possibility of being perceived.
Then in the next step the corresponding attention
parameter fades away and the first pattern may
re-appear (Fig. 8) (Haken 2004a). This model
describes details of the observed phenomena,
such as the dependence of the duration of the
perception of one face as compared to that of the
other face, dependent on the bias which face is
recognized first. Also, one may distinguish

between slow, medium and fast observers,
depending on the individual parameters.

Quite generally, order parameters may have
properties of gestalt in the sense that they are
invariant against size, orientation and perception
of objects in space.

In medicine, a syndrome has the characteristic
features of an order parameter. On the one hand it
is generated by the co-operation, or at least by the
simultaneous presence of specific features, on the
other hand once the syndrome (order parameter) is
established, it acts on the individual parts of the
system, where the slaving principle induces spe-
cific phenomena at the level of individual parts.
Clearly, the concept of circular causality plays an
important role here. It shows that the syndrome, at
least in general, can not be cured by curing an
individual symptom, but rather by curing a deci-
sive majority of individual causes.

Semantic Synergetics

In soft sciences, but also in medicine and other
fields, a mathematical modeling, even at the level
of order parameters may not be possible. Never-
theless, Synergetics may provide us with qualita-
tive insights into basic mechanisms. In
psychology and psychiatry (Schiepek 1999),
quite often specific mental states can be ascribed
to a patient. For instance in bipolar patients a
depressive phase or a manic phase may appear
or in depressive patients a normal phase and a
depressive phase. Another example is provided
by patients with a compulsory action. In the spirit
of Synergetics, as a theory of indirect control, one
may ask, whether there are appropriate control
parameters by means of which the behavior of a
person can be changed. Let the two states be

Synergetics: Basic
Concepts, Fig. 8 Order
parameter oscillations
belonging to the recognition
young woman/old woman
with bias towards the young
woman (Haken 1996)

Synergetics: Basic Concepts, Fig. 7 Example of an
ambivalent figure: young/or old woman? (Fisher 1967)
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represented by the positions of a ball in a land-
scape with two valleys. In this situation, direct
control means to push the ball from the unwanted
position to the wanted. Indirect control means to
lower the potential hill between the two valleys so
that the wanted transition may occur via self-
organization. This may happen through interven-
tions used in cognitive psychology, a change of
environmental conditions, or/and by specific med-
ication. The central issue here is that the patient is
not directly influenced, e. g. by saying you must
do this or that, but rather by a soft changing of
his/her point of view. A number of successes have
been reported about this method which is, to some
extent, well known in psychiatry, but finds here a
scientific theoretical basis. For more details see
the article by G. Schiepek and V. Perlitz, this
section, and in a somewhat related form (Hansch
2002).

Some Selected Examples

The study of nonlinear, self-sustained oscillations
(Abraham and Marsden 1978; Andronov et al.
1966; Bogoliubov and Mitropolsky 1961) be it
in radio-engineering, mechanics or other fields,
has a long tradition. In the context of bifurcation
theory, their origin was unearthed by Hopf (1942,
1948).

Nonlinear optics (Mills 1991) and, when
quantum effects are important, quantum optics
(Haken 1979; Meystre and Sargent 1990;
Schleich 2001; Walls and Milburn 1994) provide
us with a wealth of phenomena, in particular of
the formation of coherent oscillations. A device,
closely related to the laser, is the parametric
oscillator (Graham 1970), in which, within a
nonlinear crystal, incoming pumplight is split
into a signal and an idler. Then, similar to the
laser light, the signal light becomes amplified,
and its generation can be described as that of a
nonlinear quantum-mechanical oscillator. Fluid
dynamics is rich of pattern formations (including
chaos) (Bodenschatz et al. 2000; Busse 1972;
Bénard 1900a, b; Fenstermacher et al. 1979;
Gollup and Benson 1979; Lorenz 1963;
Manneville 1990; Newell and Whitehead 1969;

Rabinovich et al. 2000; Ruelle and Takens 1971;
Segel 1969; Swift and Hohenberg 1977;
Swinney and Gollub 1981), to mention just a
few. In a fluid heated uniformly from below,
with increasing temperature difference, several
instabilities may occur for instance giving rise
to stationary patterns, such as rolls, hexagons
(Fig. 9) or squares. In the next step the rolls
may start to show oscillations, and still more
complex patterns may occur (Fig. 3). In the case
of the Taylor instability (Taylor 1923), a liquid is
placed in between two coaxial cylinders, where
the outer one is rotating. With increasing rotation
speed, a hierarchy of instabilities is reached, first
the formation of roles, then oscillating rolls at
one frequency, then oscillation of rolls at two
frequencies, and finally weak turbulence,
i.e. chaos occurs (Fig. 10) (Fenstermacher et al.
1979; Marx 1987). Important phenomena are the
establishing of boundaries and of defects as
described in the article by Pismen (1999, 2006)
and other articles of this Encyclopedia. A rich
variety of pattern formation may occur in semi-
conductors (Schöll 2001), where electrons and
holes as well as currents form specific spatio-
temporal patterns. In meteorology, atmospheric
convection patterns and other instabilities are
treated (Giaiotti et al. 2007). In chemistry, oscil-
lations and large scale patterns arise by means of
the interplay of chemical reactions and diffusions
(Belousov 1959; Bray 1921; Epstein and Pojman
1998; Field et al. 1972; Fife 1979; Zaikin and
Zhabotinsky 1970), e.g. concentric ring patterns,
each starting from a center, which then annihilate
each other when colliding. An important class is
provided by spiral patterns which may have one
to several arms (Fig. 11). In biology, specific
models on morphogenesis were treated, such as
the formation of stripe or spot patterns on animal
furs or skins of fish (Fig. 12) or still more com-
plicated patterns on sea shells (Gierer and
Meinhard 1972; Haken 2004b; Meinhardt 1982;
Meinhardt 1990; Murray 1989). The basic idea
which can be traced back to Turing (Turing 1952)
is this: originally unspecialized cells produce
activator and inhibitor molecules which by reac-
tion and diffusion form a prepattern, a morpho-
genetic field (Wolpert 1969). At positions of high
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activator concentration, genes are switched on
which then leads to cell differention producing
e. g. pigments. In aggregating slime mold, spiral
or concentric ring patterns are observed (Bonner
et al. 1972; Gerisch and Hess 1974). Mathemat-
ical models on prebiotic evolution (Eigen and
Schuster 1977) study the competition between
species of biomolecules and the “survival” of
the fittest, where pronounced analogies with the
dynamics of laser photons can be unearthed, fully
in line with Synergetics (Haken 2004b). In the
understanding of brain function, for instance,

steering of movements, pattern recognition or
decision making, the reduction of degrees of
freedom of the numerous neurons to few order
parameters is central (Haken 1996).

The concepts and principles of Synergetics
shed new light on important relationships in econ-
omy, such as cooperation and competition
between companies, the important role of indirect
steering by means of control parameters, such as
taxes, interest rates. It can be shown, that a fusion
of companies does not necessarily lead to so
called synergy effects, but rather critically

Synergetics: Basic
Concepts, Fig. 9 Model
calculation of the motion of
a fluid in a circular pan
uniformly heated from
below. (After Fantz et al.
1993). Upper left corner:
above a critical temperature
difference between lower
and upper surface of the
fluid layer, a hexagonal
pattern appears. If the
boundary is also heated
uniformly, a transition to the
spiral pattern with one or
several arms can be found
(lower right corner)
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depends on initial conditions and details of the
cooperation between the previously separated
firms. Important insights are also gained into fun-
damental processes of climatology, as well as in

ecology such as the by now well-known and pub-
licly discussed effects that even small concentra-
tions of chemicals in the atmosphere can change
the climate dramatically. The same is true for
lakes, in which beyond a critical pollution, fish
population dies out entirely.

In this way, the numerous examples collected
in the field of Synergetics, provide not only sci-
entists but also the public with impressive exam-
ples of dramatic changes (instabilities) provoked
by even a slight change of control parameters.
Clearly, an important research subject of

Synergetics: Basic Concepts, Fig. 10 Pattern hierarchy
in the Taylor–Couette instability. A fluid in between two
vertical coaxial cylinders of which the outer one rotates,
shows no macroscopic movement pattern, if the movement
of the outer cylinder is slow. When the rotation speed is
increased, first a role pattern appears in which the fluid
moves outwards at one height, and then inwards at another
height. This movement pattern is periodic with respect to

height (Taylor 1923). At a further critical rotation speed,
the pattern shows oscillations which at a further speed
transform into a motion with two frequencies until eventu-
ally chaotic motion appears. The experiments were done
by (Fenstermacher et al. 1979), the modeling was done for
the first transition (homogeneous to roles) and especially
the second transition (roles to oscillating roles) by (Marx
1987)

Synergetics: Basic Concepts, Fig. 11 Belousov–
Shabotinsky reaction: the occurrence of spirals. (Courtesy
A.T. Winfree). They may show one to several arms. The
centers of the spirals may occur at different positions.
Spirals hitting each other, annihilate each other

Synergetics: Basic Concepts, Fig. 12 Stripe pattern on
a tropical fish
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Synergetics is a detailed study of which control
parameters are critical and to which control
parameters a system is rather insensitive. Sociol-
ogy is an important field for the application of
stochastic models (Bartholomew 1967). In partic-
ular, basic concepts of Synergetics have proven
useful in the developing field of sociodynamics,
where e. g. phase transition-like phenomena may
occur (Weidlich 2000).

History and Relations to Other Fields

The term Synergetics was coined by H. Haken
in 1969 in a lecture at University of Stuttgart.
A first description of the goals of this field was
given by H. Haken and R. Graham in 1971
(Haken and Graham 1971) where the unifying
role of the concept of order parameters is
outlined. A relationship exists to the general
system theory due to von Bertalanffi (1950),
which also aims at the exploration of analogies
between different systems, but on the level of
the individual elements rather than on the level
of order parameters. Von Bertalanffi coined the
term flux equilibrium (Fließgleichgewicht) in
order to characterize homeostasis in active sys-
tems (von Bertalanffi 1953). A general mathe-
matical frame for Synergetics is provided by
dynamic systems theory (see, for instance,
(Guckenheimer and Holmes 1983)) which,
however, in the traditional approach ignores
stochastic processes (mainly chance events)
which are also of great relevance for Syner-
getics. Here the theory of Markov processes
with their typical equations, such as Langevin
equations, Fokker–Planck equations, Chap-
man–Kolmogorov equations, the Kramers–
Moyal expansion etc. is important (see for
instance (Stratonovich 1963) and Linear and
Non-linear Fokker–Planck Equations by
T. Frank).

A basic feature of Synergetics consists in deal-
ing with nonlinearities in complex systems and
studying, mainly quantitatively, qualitative
changes at macroscopic scales. Qualitative
changes of systems at macroscopic levels are

studied also by catastrophe theory (Arnold et al.
1999; Thom 1975), which may be interpreted as a
study of the surfaces of equilibrium points of few
order parameters, where different cases are classi-
fied according to the (low) number of control and
order parameters. Chaos theory studies the mostly
irregular dynamics of deterministic low dimen-
sional continuous (Lorenz 1963; Newhouse et al.
1978; Ruelle and Takens 1971; Sparrow 1982) or
discrete dynamic systems (Collet and Eckmann
1980; Feigenbaum 1978; Grossmann and Thomae
1977; May 1976; Smale 1967), where the behav-
ior is mainly characterized by so called
Lyapounov exponents, various kinds of fractal
dimensions and chaotic attractors. The slaving
principle of Synergetics provides a basis for an
application of chaos theory to multi-component
systems in that Synergetics shows the possibility
of reducing the degrees of freedom. Synergetics
shares some of its topics with singularity theory
(Arnold 1993; Golubitsky and Schaeffer 1988;
Golubitsky et al. 1988), which applies to bifurca-
tion points and their surrounding. Another point
of contact is bifurcation theory (see the quotations
in previous chapters), in which the branching of
solutions of the dynamic system close to instabil-
ity points is studied. The term dissipative structure
was coined by Prigogine (Glansdorff and
Prigogine 1971) to characterize evolving struc-
tures in systems away from thermal equilibrium
where as in all such non-equilibrium systems dis-
sipation occurs. A typical example is that of the
convection instability. Prigogine tried to base his
approach on thermodynamics, introducing con-
cepts of entropy production and excess entropy
production. As we now know, these concepts are,
however, insufficient to deal with structure forma-
tion in such systems (Landauer 1975). Based on a
fundamental idea of A. Turing (1952), Prigogine
and Nicolis (1967), see also (Nicolis and
Prigogine 1977), treated macroscopic pattern for-
mation in a specific chemical reaction model. For
more recent work see (Nicolis 1995).

Because of the fundamental importance of
thermodynamics, we elucidate its relationship to
Synergetics more closely.

Thermodynamics (see for instance (Callen
1960)) deals with systems in and out of thermal
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equilibrium. A central concept is entropy. In a
closed system, it tends to its maximum value.
Thermal equilibrium is characterized by the
equipartition theorem: each degree of freedom
has an average energy of 1/2 kT, k ¼ Boltzmann
constant, T absolute temperature. This may refer
e. g. to gas atoms as well as to collective excitations
in crystals. These systems are in thermal equilib-
riumwith their surrounding (heatbaths, reservoirs).

Irreversible thermodynamics (Haase 1969)
treats systems which are not in thermal equilib-
rium but close to it. It mainly deals with transport
and relaxation processes. A central concept is
entropy production.

In the domains of physics, chemistry, biology,
Synergetics deals with systems far from
(thermal) equilibrium. This state is caused and
maintained by an in- and outflow of matter,
energy and/or information. This is achieved by
a coupling of the “proper system” to heat baths
(reservoirs) at different temperatures. The former
concepts of thermodynamics, in particular the
first and second law, are still valid for the total
system (“proper” plus reservoirs), but no more
sufficient to deal with the kinetics of the proper
system. Now the central concept is growth and
decay rates. In systems far from thermal equilib-
rium, collective modes are formed. One or

Synergetics: Basic
Concepts,
Scheme 1 Quantum
optics, example laser. (After
Haken 1970)
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several of them compete best for the external
supply of matter, energy, information and grow
at the expense of all other degrees of freedom
(or modes). Thus the equipartion theorem is no
more valid. In general, the behavior of the system
is governed by few degrees of freedom (order
parameters). Incidentally, this “growth and com-
petition” principle applies to a great variety of
fields out of physics, chemistry and biology,
where “modes” may not only be special physical
structures, but may mean behavioral patterns,
special functions etc. Quite often, a “mode” is
initiated by a chance event (fluctuation). Clearly,
a generalized Darwinian principle can be seen:
The interplay between mutations (microscopic
chance events) and selection (competition
between mascropic modes) leads to macroscopic
patterns (structures) in the widest sense of the
word (Scheme 1).

In present days research, a new name is
spreading, namely complexity or complexity
theory. There seems to be no precise definition
of this field available in the scientific commu-
nity. Of what is known so far, we may conclude
that this field has strong ties to the original field
of Synergetics in that it searches also for general
principles but, in addition, it allows the collec-
tion or accumulation of knowledge on all kinds
of complex systems, as is witnessed in the
excellent Complexity Digest, weekly edited by
Gottfried Mayer. What “complexity” eventually
might mean is reflected by the present
encyclopedia.

Future Directions

Synergetics is surely not a closed scientific dis-
cipline but quite open to further research. On the
one hand we may think of further applications of
the principles of Synergetics that have been hith-
erto elaborated on, such as order parameters
etc. Here a wide field of application is provided
by robotics, construction of prostheses, auto-
matic steering of cars etc. On the other hand,
new ideas to endow systems with self-organizing
properties are needed, e. g. groups of mobile

agents for the execution of specific tasks. First
steps have been done for instance by Kornienko
(Kernbach 2008).
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Glossary

Laser dynamics Time evolution of the laser
light within the cavity as well as the time
evolution of the charge-carriers that participate
in the radiative emission process.

Constant wave emission (cw) Laser emission
with a constant intensity.

Relaxation oscillations (RO) If a laser is
perturbed from its steady state (constant wave
emission), it will relax back performing a pure
exponential decay (Class-A laser) or by
performing damped oscillations (Class-B
laser); damping rate and oscillation frequency
are used to quantify the dynamics.

Class-C laser A laser, for which the timescale of
the induced material polarization inside the
gain material is on the same order of magnitude
as the electron and the photon lifetime. These
lasers have to be modeled with Maxwell-Bloch
equations in contrast to Class A and Class B

lasers where laser rate-equations are sufficient
for the modeling.

Bifurcation qualitative change in the system’s
behavior under parameter changes.

1Dbifurcationdiagram Unique extrema detected
within a time series of the laser intensity, plotted
as a function of one system parameter
(bifurcation parameter) to detect bifurcations;
e.g., suddenly occurring harmonic oscillations
(Hopf bifurcation) or a sudden birth of new
solutions (saddle node bifurcation).

2D bifurcation diagram Classification of the
system dynamics in a 2D parameter space; bifur-
cations form the boundaries between parameter
regions of qualitative different dynamics (e.g.,
chaotic pulsing and periodic oscillations).

External cavitymode (ECM) Optical mode that
can exist in an optical resonator that is formed
by a laser and an external cavity (laser with
optical self-feedback); with increasing feed-
back strength the number of ECMs increases
and their stability changes.

Definition of the Subject

The subject of investigating the laser dynamics
under optical feedback is to characterize the changes
in the light emission dynamics, i.e., unravel the
bifurcation structure, when a laser is perturbed by
its own back-reflections. Since optical feedback can
happen due to unwanted reflections in every optical
setup, it is important to note, at first, the tolerance of
a stable laser to perturbations by optical feedback.
Secondly, also complex pulsations and chaotic
emission can be useful for applications and thus
there is a need to understand the conditions for an
emergence of complex laser dynamics. Mathemati-
cally the subject is interesting because the dynamics
is modeled by delay differential equations, where
the delay is given by the time the light needs to
re-enter the cavity. In this entry, we will compare
different semiconductor laser systems which are
quantum dot (QD) and a quantum well
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(QW) lasers with one more wavelength emission as
well as nanolaser systems with very short photon
lifetimes (Class – C laser). We will learn the impor-
tance of internal timescales of the gain medium and
give some general rules about how the internal
degrees of freedom simplify the emerging light
emission under optical feedback.

Introduction

The effect of delay has been investigated in various
systems and recent progress in this field is
documented for instance in focus issues on delay
systems (Erneux et al. 2017; Otto et al. 2019). In this
chapter, the focus lies on the laser dynamics when a
control signal from the laser is fed back into it after a
time delay. This includes setups such as external
optical feedback, which can be realized, for exam-
ple, by a simple mirror in some distance of the laser
which feeds back the emitted light into the laser
cavity. Another implementation is by an external
electronic circuit which feeds back a delayed electric
signal to the laser device depending on the output of
the laser. In this context, the interaction between the
laser and the feedback signal becomes increasingly
complex when the feedback time is similar to the
internal laser timescale. Since in real-world applica-
tions parasitic reflections off surfaces and optical
interfaces can never be suppressed completely,
time-delayed feedback arises naturally in nearly
every laser setup. Immense effort has been put into
improving the resistance of semiconductor lasers
towards optical instabilities caused by feedback
(Lenstra et al. 2019) in applications where a steady
laser output is required. At the same time, the guided
exploitation of feedback leads to novel applications
harnessing the dynamical complexity of the system.
In both cases, a thorough understanding of the
underlying physical and dynamical processes is
required.

The dynamical complexity of lasers with feed-
back is an extremely broad topic which has
attracted much interest in the past and today.
A lot has been done in order to understand the
bifurcation structure of lasers with optical feed-
back and this entry does not aim to give a com-
plete overview. The interested reader is referred to

the pioneering works that can be found in Mørk
et al. (1992), Sano (1994), Simmendinger and
Hess (1996), Ye and Ohtsubo (1998), Ohtsubo
(1999); Erneux et al. (2000), Pieroux et al.
(2000, 2001), Wolfrum and Turaev (2002),
Yanchuk and Wolfrum (2004), Radziunas et al.
(2006), Rottschäfer and Krauskopf (2007). Avari-
ety of experimental data exists, see for example
(Mørk et al. 1990a; Li et al. 1993; Heil et al. 2003;
Wünsche et al. 2008; Kim et al. 2014; Locquet
et al. 2017) or results on integrated devices (Kane
et al. 2015; Karsaklian Dal et al. 2017) which
support and still inspire theoretical analysis. See,
e.g., (van Tartwijk and Agrawal 1998; Soriano
et al. 2013; Ohtsubo 2013) for an overview. Gen-
eral properties of delay systems, like the recur-
rence of solutions (Yanchuk and Perlikowski
2009), play a crucial role to understand the
response of a laser to delayed feedback.

In delayed feedback systems, the interplay with
noise sources as they usually appear due to spon-
taneous photon emission can lead to a variety of
dynamical effects and unforeseen behavior. This
issue will only shortly be touched in the course of
this entry and the interested reader is referred to the
literature: The effect of noise was studied in Mørk
et al. (1988a, 1990b) to explain mode hopping in
multimode lasers with feedback, in Otto et al.
(2014) to find coherence resonance, or in Oliver
et al. (2015), Jüngling et al. (2018), Porte et al.
(2014) to quantify the consistency properties of the
laser output via the evaluation of the time delay
signature (Rontani et al. 2007, 2009). Related to
that the linewidth reduction with optical feedback
has attracted recent interest as well (Agrawal 1984;
Flunkert and Schöll 2007; Jaurigue et al. 2016;
Brunner et al. 2017). The complex feedback
induced dynamics that is the focus of this entry is
usually detrimental to the linewidth (Li et al. 1993;
Lenstra et al. 1985), but the bifurcation analysis
that we present below can predict the regions
where the feedback leads to a stabilization.

An important step towards improving the resis-
tance of semiconductor lasers to optical feedback
and other perturbations was the fabrication and
subsequent employment of self-assembled semi-
conductor quantum dots (QDs) as the active
medium in lasers (Bimberg et al. 1999; Bimberg
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and Pohl 2011). In addition to their reduced thresh-
old current and temperature stability, QD lasers are
more robust against such perturbations (Otto et al.
2010, 2012a; Globisch et al. 2012; Lingnau et al.
2013; Duan et al. 2019; O’Brien et al. 2004; Huyet
et al. 2004). As we will see later on, this robustness
is facilitated by a change of the internal dynamical
timescales due to the presence of the QDs.

In recent years there has been a steady push
towards exploitation of complex dynamics
induced by delayed feedback in laser systems.
Right now those laser systems with delay find
great attention in applications for information pro-
cessing, i.e., all-optical reservoir computing
(Argyris et al. 2018; Bueno et al. 2017; Kuriki
et al. 2018; Nguimdo et al. 2017), as random
number generators (Verschaffelt et al. 2017;
Reidler et al. 2009; Oliver et al. 2011), in chaotic
LIDAR systems (Lin and Liu 2004; Cheng et al.
2018), or in nanometric sensing (Choi et al. 2019).

This review article will discuss the interrelation
between dynamic degrees of freedom within the
laser gain medium and the stability of the laser if
subjected to optical self-feedback. We will show
that the response becomes less complex and more
controllable with every additional timescale that is
added to the system dynamics.

In the following, we will first introduce a rate
equation model for nanostructured laser gain media
in section “Dynamic Timescales and Relaxation
Oscillations” and discuss the role of the charge
carrier relaxation timescales that directly or indi-
rectly participate in the laser process and, for their
part, control the laser response to perturbations.
Second, different semiconductor laser with complex
gain media and their response to optical feedback
will be compared in section “Optical Feedback
(Class-B Lasers)” and the nonnegligible dynamic
effect of a model reduction will be discussed. The
effect of feedback on devices with nanoscale dimen-
sions, where the photon lifetime starts to be on the
same order of magnitude as the timescale of the
microscopic polarization, will be discussed in sec-
tion “Optical Feedback of Class-C Lasers” before
we come to quantum dot lasers with simultaneous
two-color emission and their response to feedback
in section “Optical Feedback of Two-State QD
Lasers.”

Dynamic Timescales and Relaxation
Oscillations

The response of dynamical systems towards per-
turbations depends sensitively on the internal
dynamical timescales of the system itself.
A universal example of this is a driven damped
oscillator, showing resonance effects when driven
close to its natural frequency, with the resonance
overshoot depending on its damping. Most semi-
conductor lasers possess an intrinsic resonance
frequency and associated damping due to the pres-
ence of relaxation oscillations (ROs) – oscillations
in the energy exchange between the intracavity
photons and the available gain. In the laser classi-
fication scheme due to Arecchi et al. (1984), such
lasers are labeled Class-B. These intrinsic time-
scales can be readily observed in the laser response
to delayed feedback. Most dynamical features
occur at frequencies related to the RO frequency,
and complex dynamics can be observed if the delay
time is in the order of the RO frequency. The
minimum feedback strength required to induce
complex dynamics is closely related to the
damping of the ROs, with stronger damping usu-
ally leading to a more robust system (Helms and
Petermann 1990). It is therefore natural to assume
that the introduction of additional timescales into a
dynamical system that is subjected to delayed feed-
back changes its response. We want to illuminate
this effect for two examples: At first, a QD laser
that has more than one carrier type and thus an
additional relaxation channel with an associated
dynamic timescale. Secondly, a Class-C laser
where the timescale of the induced material polar-
ization plays a crucial role for the dynamics.

Quantum-dot lasers differ from conventional
semiconductor lasers in the dimensionality of the
active medium. Whereas in quantum-well lasers
the active medium is quasi-two-dimensional, QDs
are effectively zero-dimensional systems, embed-
ded in a two-dimensional charge-carrier reservoir.
The active optical transition is thus formed by
deeper lying atom-like energy states which have
to be gradually filled by surrounding charge-
carriers, see Fig. 1a. This additional scattering
pathway introduces an extra timescale in the
dynamic laser system (Table 1).
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The minimal model to describe a QD laser is
thus at least three-dimensional, as we need to
consider the dynamics of the charge-carrier num-
ber in the reservoir,N(t), the occupation of the QD
states, r(t), and the amplitude of the cavity electric
field, E(t) (the intracavity photon number is pro-
portional to |E(t)|2):

_N ¼ J � N
T1

� R rth þ d N � Nth
� �� r

� �
, ð1aÞ

_r ¼ R rth þ d N � Nth
� �� r

� �� r
Tsp

� g r� rth
� �þ 1

Tph

� �
Ej j2, ð1bÞ

_E ¼ g
2

1� iað Þ r� rth
� �

E

þ K
Tph

e�iCE t� tð Þ ð1cÞ

The parameters entering the equations are
explained in Table 1. In thermodynamic equilib-
rium, the in- and out-scattering processes between
charge carrier states at different energies obey a
detailed-balance relation, i.e., their ratio is given
by a Boltzmann factor that determines the equi-
librium occupation of the charge-carrier states.
For the quasi-equilibrium within a pumped laser,
this also applies and in the presented minimal QD
laser model it enters via the coefficient d. The
coefficient d ¼ @

@N r
eq
��
th

describes the change of

the quasi-equilibrium QD occupation with respect
to the normalized reservoir density close to the
threshold. With increasing charge-carrier number
in the reservoir, this balance is shifted towards

higher occupation, which is included in the min-
imal QD laser model in a linearized fashion. An
important feature of QD lasers is the imperfect
clamping of charge-carriers above threshold
(Lüdge and Schöll 2009; Röhm et al. 2015), i.e.,
the quantum dots can never be filled completely.

The delayed optical feedback enters the equa-
tions via the delayed optical field, E(t – t) in
Eq. (1c). This modeling approach was first pro-
posed independently by Rosanov (1975), and
Lang and Kobayashi (1980). Within this approach,
only a single round-trip in the external cavity
formed between the laser facet and the external
mirror is taken into account. For strong external
reflectivities, multiple round-trips become impor-
tant and the treatment of the feedback field must be

GS
ES

GS

ES

(a) (b)

Laser Dynamics and Delayed Feedback, Fig. 1 (a)
Sketch of the energy levels in the simplest quantum-dot
(QD) laser. The QD occupation probability r increases due
to inscattering of charge carriers from the reservoir states,
N, with the scattering rate R. The QD transitions are the

active optical transitions. (b)More realistic depiction of the
quantum dot structure. Quantum dots with different sizes
have different energy levels. In addition to the ground state
(GS), one or more excited states (ES) can exist

Laser Dynamics and Delayed Feedback,
Table 1 Parameters used in this chapter and their
meaning

Symbol Meaning

J Normalized pump current

T1 Charge-carrier lifetime

T2 Induced polarization lifetime

Tph Cavity photon lifetime

Tsp QD lifetime

R QD scattering rate

Nth Threshold reservoir density

rth Threshold QD occupation probability

d Detailed balance coefficient

g Normalized gain coefficient

a Amplitude-phase coupling parameter

K Optical feedback strength

C Feedback phase

t Feedback delay time
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extended (Schelte et al. 2019). The optical feed-
back is characterized by the feedback strength K,
the time delay t, and the feedback phase C. The
effect of the feedback and the effect of a will be
discussed in the next section. For nowwe setK= 0
which completely decouples the dynamics of the
phase of the electric field and leaves the intensity |
E(t)|2 as the only important dynamic quantity for
the field inside the cavity.

Depending on size and composition of the QDs,
the effective charge-carrier scattering rate R can
vary significantly. We therefore treat it as a free
parameter and discuss its impact on the dynamic
response of the QD laser in Fig. 2. This allows us to
identify different dynamic regimes and the impor-
tant dynamic timescales of a QD laser system,
Eq. (1a–1c), as a function of R. The internal time-
scales and frequencies can be extracted from the
Lyapunov exponents, which are the eigenvalues of
the Jacobian of the right hand side of the differen-
tial equation system. Real and imaginary part of the
dominating eigenvalue l determine the respective
intrinsic relaxation oscillation frequencies and
damping rates, i.e., Im l = oRO and Re l = GRO.
Figure 2 shows their dependence on the scattering
timescale R. As can be seen, the presence of the
additional scattering process strongly influences
the RO timescales. The most striking feature is
the maximum of the RO damping and the
vanishing RO frequency at values of
R � 1011 s�1. For these moderate scattering rates,

the ROs are overdamped and the eigenvalues
become purely real. For higher values, both
charge-carrier types are closely coupled and the
dynamics has only one effective degree of freedom
in the charge-carrier dynamics. For much smaller
values of R, the carrier reservoir N is only weakly
influenced by the dynamics of r and remains
nearly constant. Thus, it acts as a constant reservoir
for the active charge-carriers and again the charge-
carrier dynamics is effectively one-dimensional. In
the intermediate range of R, where we cannot
neglect the dynamics of either charge-carrier spe-
cies, the internal gain dynamics is more complex
but leads to a very simple dynamic response, i.e.,
without visible relaxation oscillations. At the same
time, the RO damping is largest close to this
parameter range, which explains the resilience of
QD lasers towards external perturbations. This is
usually known for Class-A lasers, which however
do not have any independent degree of freedom of
the carrier dynamics. While we have explicitly
discussed the case of a QD laser, we note that in
most cases an additional slow dynamic scattering
or charge-carrier transport process will lead to
dynamic equations similar to Eq. (1a–1c). The
presence of such a slow dynamic charge-carrier
process will thus lead to similar dynamic behavior.

As we will see, the laser response to delayed
optical feedback is not as complex in QD lasers as
in quantum-well (QW) lasers. QW lasers can be
thought of to operate in the limit of R ! 1, with
only one type of charge-carriers present and a
near-instant equilibration. In this limit, the mini-
mal QD laser model reduces to the QW laser
equations:

_N ¼ J � N
T1

� g N � Nth
� �þ 1

Tph

� �
Ej j2 ð2aÞ

_E ¼ g
2

1� iað Þ N � Nth
� �

E

þ K
Tph

e�iCE t� tð Þ ð2bÞ

These equations are of Rosanov-Lang-
Kobayashi-type, and they constitute the funda-
mental model for the description of Class-B lasers
with weak time-delayed optical feedback.

Laser Dynamics and Delayed Feedback,
Fig. 2 Relaxation oscillation damping GRO (blue) and
frequency oRO (blue) determined from the minimal QD
laser model given in Eq. (1a–1c). (Reproduced from
Lingnau (2015) with permission from Springer)
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Optical Feedback (Class-B Lasers)

As already mentioned in the last section, the most
important timescale when it comes to the response
of a laser gain medium to optical perturbations is the
relaxation oscillation frequency and damping, as
they describe how the laser relaxes to its steady
state. While a Class-A laser just reacts with an
exponential decay of its intensity, the so-called
Class-B laser performs damped oscillations towards
the steady state. We now illuminate three examples
of semiconductor lasers: A conventional quantum
well (QW) laser (Class-B) with one carrier type as
given in Eq. (2a–2b); a quantum dot (QD) laser that
hasmore than one carrier type and thus an additional
dynamic degrees of freedom and is described by the
minimal model in Eq. (1a–1c) and a QD laser that is
described on a different more complex level of the
laser modeling hierarchy.

The time-delayed feedback term introduced
already in the last section will now be discussed
in detail. A sketch of the setup is shown in Fig. 3.
For coherent optical feedback, the response will
depend on the phase of the electric field. The
feedback phase C gives the optical phase shift
accumulated over one feedback round-trip time
and determines whether the light fed back into the
laser interferes destructively or constructively with
the cavity field. The dynamics under time delayed
optical feedback has been shown to sensitively
depend on the feedback phase, especially in the
regime of short delays (Heil et al. 2003) which we
assume in this entry. Short delay, in this context
means that the roundtrip time in the external cavity
t is not larger than the RO period T= 2p/oRO. The
most general formulation of the dynamic equation

of the electric field then reads (van Tartwijk and
Agrawal 1998; Lingnau et al. 2012, 2013):

_E tð Þ ¼ G o, tð Þ � iDo0 � 1

2Tph

� �
E tð Þ

þ K
Tph

e�iCE t� tð Þ, ð3Þ

whereK � [0, 1] is the feedback strength, denoting
the ratio of the light lost through the cavity mirrors
that is coupled back into the cavity. The electric
field is expressed in a rotating frame with fre-
quency Do0, such that its phase velocity vanishes
in the steady-state. The external cavity feedback
time t and the feedback phase C are in principle
both determined from the optical path length of the
feedback section, but since the feedback phase is
much more sensitive to changes in t, it is treated as
an independent parameter (Heil et al. 2003). The
gain G(v, t) is in general a complex valued func-
tion determined by the microscopic polarization of
the gain medium. Its real part, Re[G(v, t)],
describes the amplitude gain of the electric field,
and Im[G(v, t)] is the change of the instantaneous
electric field frequency due to carrier-induced
refractive index changes. The modeling of G(v, t)
can be performed on different levels of complex-
ity. Very common is the introduction of an
amplitude-phase coupling or Henry parameter, a,
which describes the instantaneous coupling of the
electric field frequency to the optical gain. The
amplitude phase coupling factor a is defined as

a ¼ � @Im G vð Þ½ �=@N
@ Re G vð Þ½ �=@N ð4Þ

and significantly simplifies the dependence of the
complex gain G = Re G + iIm G on the carrier
density N. The simplified dynamic equation for the
electric field then reads (van Tartwijk and Agrawal
1998; Ohtsubo 2013; Lingnau et al. 2013):

_E tð Þ ¼ Re G oð Þ � 1

2Tph

� �
1� iað ÞE tð Þ

þ K
Tph

e�iCE t� tð Þ: ð5Þ

The amplitude phase coupling is an important
parameter when discussing the sensitivity of the
laser to optical feedback and for determining the

Laser Dynamics and Delayed Feedback,
Fig. 3 Sketch of a semiconductor laser that is subjected
to optical self-feedback with a delay length of t
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structure of the dynamical solutions. High values
of a generally lead to highly complex dynamics.
The general solution structure of the laser with
delayed optical feedback is largely formed by the
so-called external-cavity modes (ECMs). These
modes denote the solutions of the combined sys-
tem of the laser and the external cavity with con-
stant intensity. The resonant frequencies of the
isolated laser cavity and the external cavity are
in general different. The presence of the feedback
thus introduces a frequency shift of the laser out-
put away from the free-running lasing frequency.
The ECM solutions of the form E(t) = E0e

–Ot are
located on an ellipse in the phase space spanned
by the optical gain ReG and the ECM frequency,
O, as we will discuss further in section “Optical
Feedback of Class-C Lasers.” If the gain is
assumed to be linear, i.e., Re G = g(N – Nth),
which is a common and very good assumption
for laser operation (van Tartwijk and Agrawal
1998; Ohtsubo 2013; Mørk et al. 1988a; Chow
and Koch 1999), the charge-carrier number N and
O can be used for the phase space projection of the
ellipse.

The dynamics of the complex gain G in a QW
laser with a gain medium consisting of only one
carrier type (same dynamics as observed from the
minimal QD laser model Eq. (1a–1c) for large R)
can be closely described by a constant a. The
induced frequency shift then proportionally and
instantly follows the dynamics of the optical gain.
In a QD laser with finite R, both resonant and
nonresonant carriers within different states must
be considered, and thus the gain dynamics are
more complex due to the additional dynamic
degrees of freedom. The minimal QD laser
model takes the dynamics of the nonresonant car-
riers into account but still assumes an a-factor for
the refractive index changes. Figure 4 compares
the reaction to feedback for both laser types.
There, the bifurcation diagram, i.e., the unique
extrema found in a time series of the laser inten-
sity for a given feedback strength K, is displayed
as a function of K. Additionally, two timeseries
are plotted as insets in Fig. 4b which illustrate the
increase in complexity with K. Comparing both
bifurcation diagrams of the QWand the QD laser,
it can be seen that the differences in the charge-
carrier dynamics directly influence the dynamics.

The most significant difference is the value of the
feedback strength K at which the laser starts to
show intensity oscillations. This bifurcation point
is the critical feedback strength. It is labeled KH in
Fig. 4. It is much larger for the QD laser, which
means this laser can withstand a higher amount of
feedback before it starts to show intensity oscilla-
tions. Instead, the point where the two lasers
switch back to stable emission on the next ECM
solution via a homoclinic bifurcation at Khom only
marginally depends on the gain model (vertical
dash-dotted line in Fig. 4). The reason lies in the
solution structure formed by the ECMs of the
electric field equation which are also plotted as
blue lines in Fig. 4 (center). At a K value of 0.45
two new ECM solutions appear: one stable (solid
line) and one unstable (dashed). This bifurcation
point is called saddle node bifurcation and

Laser Dynamics and Delayed Feedback, Fig. 4 1D-
Bifurcation diagram of two different lasers if subjected to
optical self-feedback. It shows the impact of different RO
damping exemplarily for a QW laser (a) and a QD laser (b).
Insets in (b) show time series of the QD laser for two
K values. Vertical dash-dotted lines indicate the critical
feedback strength KH and the homoclinic bifurcation
Khom. SN indicates the saddle-node bifurcation where
new ECM solutions (one stable and one unstable) are
born. C = p, t = 160 ps. (Reproduced from Otto et al.
(2010) with permission from Wiley)

Laser Dynamics and Delayed Feedback 37



indicated with SN in Fig. 4 (center). The ECM
solutions themselves are the same for both lasers,
as long as they have the same a-factor, while the
instability of the first solution (the Hopf bifurcation
at KH) strongly depends on the relaxation oscilla-
tion timescales and thus on the internal carrier
dynamics. It can be analytically shown (Otto
et al. 2012a, b; Globisch et al. 2012) that the critical
feedback strength KH, i.e., the Hopf bifurcation
point at which the stable ECM with frequency O
is destabilized, can be approximated via:

KH ¼ 2GROTphffiffiffiffiffiffiffiffiffiffiffiffi
1þa2

p
1� cos oROtð Þð Þcos p�C�Otþ arctan að Þð Þ

ð6Þ

Here, oRO is the frequency of the relaxation
oscillations and GRO their damping rate. Similar
equations for the critical feedback level have
already been derived in Helms and Petermann
(1990), Mørk et al. (1988b), Binder and Cormack
(1989), however, without treating the dependence
on the feedback phase. For long feedback delay,
the phase is hard to control. It is therefore useful to
estimate the smallest value of KH (C) which is
reached for C = �Ot + p + arctan a � p + arctan
a (see for example Fig. 5 for the evolution of the
stability border, i.e., transition from blue to white,
as a function ofC). Thus, the laser is guaranteed to
be stable for

KH < KH
m ¼ GROTphffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2
p : ð7Þ

This stability condition was derived for a
quantum-well laser by Mørk et al. (1992) and
previously suggested by Helms and Petermann
(1990) as a simple analytical criterion for toler-
ance with respect to optical feedback. If the laser
operates at the minimum linewidth mode (Levine
et al. 1995), a slightly different minimal critical
feedback strength is derived from Eq. (6) and is
given by KH

m ¼ GROTph

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p
= a2 � 1ð Þ.

From Eqs. (6) and (7), it becomes clear that the
less complex QW laser with its small RO damping
is more susceptible to back reflections while a QD
laser, engineered such that it shows very strong
RO damping, has a very high feedback tolerance.

For the latter, all involved carriers relax on similar
timescale and the number of dynamic degrees of
freedom is higher.

The numerical and analytical results on the QD
laser presented so far have been obtained for the
minimal model shown in Eq. (1a–1c) with two
carrier types, N and r. If a more sophisticated
modeling approach is chosen, the equations can
be extended to a more microscopic model with a
higher number of degrees of freedom of the car-
riers. The details are discussed in Lingnau et al.
(2013) and we just mention some important ingre-
dients. Besides the pure existence of more con-
fined carrier levels and thus more dynamic
equations, this model also considers dynamic
changes in the imaginary part of the material
gain Im G, i.e., the refractive index can show
dynamics on its own timescale. Surprisingly, the
QD laser that is described by the much more
complex model shows less complex response to
optical feedback. This is visualized in Fig. 5a, b
where the laser dynamics numerically obtained
from the microscopic model and the minimal
model with constant a-factor are compared. The
dashed lines in Fig. 5 represent the saddle-node
(SN) bifurcation along which a new ECM solution
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Fig. 5 Comparison of the feedback induced dynamics
for a full microscopic QD laser model (Lingnau et al.
2013) with many degrees of freedom of the charge carriers
(a) and the corresponding QD laser model that uses an
effective a-factor description (b). The blue color encodes
the intensity of the stable laser emission while other colors
indicate the number of unique maxima observed in the
pulsating time series. Dashed lines represent the saddle-
node (SN) bifurcation along which a new ECM solution is
born. t = 100 ps
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is born. The critical feedback strength where the
first ECM loses stability can be seen along the
transition from blue (cw operation) to white areas
(regular pulsations with one maximum). It can be
seen that taking into account the contribution of
the refractive index dynamics in (a) leads to a
stabilization of the dynamics and consequently
less regions with complex dynamics (orange and
grey colors) occur. If the charge-carrier induced
frequency shift is approximated by an a-factor as
done in (b) (compare also Eqs. (3) and (5)), the
separate time evolution of the imaginary part of
the gain is neglected, and the gain dynamics
becomes less complex. As a result, however, the
dynamic response to optical feedback becomes
more complex (Fig. 5b) and we instead observe
a simplification of the dynamic response for the
higher internal complexity (Fig. 5a). The effect of
increasing the susceptibility to optical perturba-
tions by a model reduction occurs to be rather
general and has to be kept in mind.

At the borders between stable emission and
regions with complex dynamics (between blue
and grey in Fig. 5), bifurcations occur and the
laser switches to emission at the next ECM, i.e.,
emission at a different wavelength. For the pump
current chosen here this is a homoclinic bifurca-
tion. This transition was already mentioned in

Fig. 4 and marked with Khom. It defines the point
in parameter space where the laser re-stabilizes.
Around this transition point where the laser just
started to emit at the new frequency, the cw solu-
tion is only weakly stable and thus very suscepti-
ble to noise. To get an impression of the dynamics
in phase space, Fig. 6a, b visualizes the trajectory
after a noise perturbation in the vicinity of the
homoclinic bifurcation. These noise-induced pul-
sations are no stable solutions of the delay differ-
ential equation but they follow parts of an attractor
that has been stable before. As such the interspike
interval between pulses, indicated by TISI in
Fig. 6a, changes stochastically. Interestingly an
optimal noise strength can be found, where the
noise-induced pulsations occur most regularly,
i.e., the distribution of interspike intervals TISI
becomes relatively sharp. This effect – called
coherence resonance – occurs due to the non-
linearity of the light-matter interaction and is a
universal effect in excitable nonlinear systems in
the presence of noise (Lindner et al. 2004). Exper-
imentally, these kind of pulses have been
observed, e.g., in Heil et al. (2003, 2001). Note
that for higher laser pump currents, the bifurcation
that causes the laser to start stable emission at the
newly born ECM changes from a homoclinic
bifurcation to a boundary crisis (Otto et al.

Laser Dynamics and
Delayed Feedback,
Fig. 6 Trajectories of a QD
laser with optical feedback
after noise excitation
plotted as a function of time
(a, c) and as a phase space
projection (b, d). (a, b):
close to the homoclinic
bifurcation that was
discussed in Fig. 4;(c, d):
close to the boundary crisis
that exists for higher pump
currents. C= p, t= 160 ps.
(Reprinted with permission
from Otto et al. (2014)
©The Optical Society)
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2014). Nevertheless, coherence resonance can
also be found here (Otto et al. 2014). Figure 6c
shows the chaotic pulse packages induced by a
superthreshold perturbation right after the bound-
ary crisis of the chaotic attractor. The green circle
in Fig. 6d indicates the stable ECM solution that is
perturbed by the noise. The path of the trajectory
along the former chaotic attractor can be seen in
the phase space projection in Fig. 6d.

Optical Feedback of Class-C Lasers

So far the discussion was limited to Class-B lasers
that were solely described by the carrier and photon
dynamics. However, the light matter interaction is
driven via the microscopic polarization within the
medium. For the Class-B laser, the optical gain is
assumed to instantaneously follow the available
charge-carriers in the optically active transitions.
The stimulated emission rate is assumed to adiabat-
ically follow the charge-carrier and electric field
dynamics and thus does not need to be explicitly
considered as a dynamical variable. With the recent
success and progress of semiconductor epitaxy and
wafer processing, the realization of very small
devices has become possible, down to lasers with
cavity dimensions in the order of the wavelength of
the laser light. Due to the small size of their cavity,
those nanolasers have a strong spontaneous emis-
sion and relatively short photon lifetimes. While the
stronger photon losses are compensated by an
increase of the optical gain, the photon lifetime
now is comparable to the lifetime of the induced
material polarization. The active laser medium can
thus no longer be treated as a simple source of
instantaneous optical gain. Rather, the field emitted
by stimulated emission of light becomes a dynami-
cal variable itself. When all three timescales
(electrons, polarization, photons) end up to be of a
similar order of magnitude, the fundamental physics
of the laser system change. These nanolasers,
so-called Class-C lasers, exhibit special behavior
like the second laser threshold (Haken 1986), after
which self-pulsing of the laser emission occurs, but
also react differently to optical feedback (Lingnau
et al. 2019).

Class-C lasers can be described by the Maxwell-
Bloch equations (MBEs), which explicitly include

the dynamics of the induced material polarization
(Chow and Koch 1999; Haken 1986). The delayed
optical feedback extends theMBEs by an additional
driving term in the electric field to include the effects
of time-delayed optical feedback. Since we now
want to focus on the effect of the polarization, a
QW laser with just one carrier type N is modeled.

The normalized MBEs with delayed optical
feedback are given by:

_N ¼ 1

T1
J � N � 2cRe PE�½ �ð Þ, ð8Þ

_P ¼ 1

T2
EN � 1� iað ÞP½ � � io0P, ð9Þ

_E ¼ 1

Tph
cP � 1

2
E

h i
� io0E

þ K
Tph

e�iCE t� tð Þ: ð10Þ

Here, the additional timescale T2 of the
induced polarization enters the equations. The
stimulated emission is now given by cP, with a
normalization constant c= 1 + (2a/(2 + T2/Tph))

2.
The parameter a in Eq. (9) measures the frequency
difference between the gain maximum and the
cavity mode. For the case of very small T2, when
the MBE model reduces to the Class – B laser
model, it takes the role of the a-factor that we
introduced in the last section.

The lifetime T2 of the polarization plays a cru-
cial physical role as it determines the gain band-
width of the laser transition, with long lifetimes
producing a sharp, narrow gain peak. Conse-
quently, with increasing T2 the gain bandwidth
becomes narrower and the possible deviation of
the lasing frequency from the transition frequency
is limited. This reduces the number of possible
ECMs in Class-C lasers with a single optical tran-
sition. It is depicted in Fig. 7 for four different
values of the dephasing time T2, which is the life-
time of the polarization. The rotating wave solu-
tions of the above equation, i.e., the external cavity
modes (ECMs), are shown as open circles in the
plane of charge-carrier number, N, and ECM fre-
quency, O. It underlines the impact of the addi-
tional dynamic equation and it can be seen that for
T2 = 0 we recover the case of a Class-B laser and
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observe the rotated ellipse in phase space on which
the ECM solutions can exist. For larger values of
T2, the number of solutions (open circles) is
decreased while they all move closer together. Fur-
thermore, the effect of the amplitude-phase cou-
pling a, which usually leads to a high aspect ratio of
the ellipse for the Class – B laser, is reduced as can
be seen by comparing the circles in Fig. 7. The
possible ECM solutions appear in a more symmet-
ric shape around O = 0 for larger T2 times.

The numerically obtained response of the
Class-C laser to optical feedback is plotted in
Fig. 8 for the four different dephasing times T2.
The number of unique maxima is encoded in the
color and thus dark colors indicate complex
dynamics and chaos. While a Class-C laser is
usually known for its second laser threshold after
which it emits chaotic light without any perturba-
tions, it appears to be much more stable than a

Class-B laser if it is subjected to optical feedback
(compare Fig. 8a, d).

In the limit of T2 ! 0 (Fig. 8a), the MBEs
reduce to the conventional Lang-Kobayashi equa-
tions, which show well-known bifurcation cas-
cades and eventually can produce optical chaos.
For this case we also plotted the two bifurcations
that organize the parameter space in Fig. 8a; the
Hopf bifurcation at which the first ECM destabi-
lizes, called critical feedback strength in section
“Optical Feedback (Class-B Lasers),” is plotted in
blue. The saddle node (SN) bifurcation where the
next ECM is born (compare Fig. 4 (center) where
the SN bifurcation is marked) is plotted in red. For
higher values of T2, the dynamical regions in the
feedback parameter undergo a transformation.

Quite counter-intuitively, the addition of
another dynamic dimension to the system can
have a stabilizing effect on its dynamics. This
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Laser Dynamics and Delayed Feedback,
Fig. 7 External cavity solutions (ECMs) of a laser with
optical self-feedback plotted as a function of ECM fre-
quency O and carrier number N. (a) Class-B laser with
dephasing times T2 = 0, (b–d): Class-C laser T2 = Tph,
T2 = 2Tph, and T2 = 5 Tph. Solid closed lines denote all
possible solutions in the (O, N)-plane while open circles
denote solutions obtained for a specific feedback phase

C = p. Crosses mark saddle node (SN) bifurcations
where new solutions are born. The connection between
the crosses separates the ellipse into regions where the
solutions are born unstable (upper part) and stable (lower
part). Other parameters: K = 0.2, t = 20Tph, a = 3.
(Reprinted from Lingnau et al. (2019) with permission
from Royal Soc)
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can be seen for increasing values of T2, for which
the dynamics becomes strikingly less complex,
and only small regions of chaos remain (see
Fig. 8c, d). Following the arguments of the last
sections, the explanation again lies in the
increased dynamic degrees of freedom. Having
the possibility for a dynamic response with inde-
pendent polarization dynamics, a chaotic response
becomes unlikely (Fig. 8d). Driving a dynamic
system into chaos with external perturbations
can thus be seen to become harder with higher
phase space dimension which vary on a dynamic
timescale similar to the rest of the system. This
conclusion is found to be quite robust with respect
to parameter changes.

To get some insights into the impact of the delay
time t, we visualize the dynamics of the Class – C
laser in another parameter plane spanned by T2 and
the delay time t in Fig. 9a. Again the dark colors

represent a high number of different maxima
observed in the timeseries and thus more complex
dynamics. As expected, small values of T2 repro-
duce the dynamics of a Class-B laser and we find
complex dynamics. Between 0.5 Tph < T2 < 2Tph
only continuous wave or periodic emission is
found, while dynamics with a higher number of
unique maxima appears again for larger values of
T2. A high number of unique extrema is not suffi-
cient to classify the dynamics into (quasi-)periodic
or chaotic behavior. We therefore calculate the
largest nontrivial Lyapunov exponent which gives
us a value for the speed at which two adjacent
trajectories diverge in time. A Lyapunov exponent
with a positive value (plotted in red in Fig. 9b)
indicates chaos (sensitive dependence on initial
conditions), while negative values indicate stable
dynamics. A value of zero is an indication for a
periodic solution. We can thus conclude from

Laser Dynamics and Delayed Feedback,
Fig. 8 Dynamics observed numerically in the laser emis-
sion for a small feedback delay time t= 10Tph in the plane
of feedback strength K and feedback phase C. (a): Class-B
laser with T2 = 0, (b–d): Class-C laser with T2 = Tph,
T2= 2Tph, and T2= 6Tph. Shown are the number of unique
intensity extrema (color-coded), where zero extrema

correspond to CW operation, and nonzero values to peri-
odic or complex dynamics. In panel (a), we show saddle-
node (SN, red line) and Hopf (blue line) bifurcation curves
of the first ECM, obtained by numerical path continuation.
Other parameters: J = 5, a = 3. (Adapted from Lingnau
et al. (2019) with permission from Royal Soc)
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Fig. 9 that optical chaos only occurs for theClass-B
laser case, mainly for high feedback delay times t,
while Class-C laser remain stable or, for large
dephasing times, show quasi-periodic dynamics.

Optical Feedback of Two-State QD
Lasers

Semiconductor lasers which are emitting on two
distinct laser modes are a highly attractive appli-
cation of laser dynamics due to the interaction of
those modes. Prime examples of such laser sys-
tems include vertical-cavity surface emitting
lasers (VCSELs), which due to their circular cav-
ity symmetry support two orthogonally polarized
modes (Olejniczak et al. 2009; Virte et al. 2012),
or carefully designed laser cavity emitting on
more than one wavelength (Osborne et al. 2009,
2012). Such two-mode lasers show a variety of
complex dynamics related to the switching
between the two laser modes in various setups
including when subjected to time-delayed feed-
back (Osborne et al. 2012; Sciamanna et al. 2003).
Their dynamics is governed by the energy
exchange and gain competition between the two
modes, which can be influenced by the external
perturbation. Different realizations of two
(or multi) mode emission will therefore show

very similar properties, regardless of the exact
system. We want to focus on two-mode emission
with delayed optical feedback in this last section.

Quantum-dot lasers have shown two-state
emission even without specially designed laser
cavities. Due to the nonequlibrium carrier distri-
bution among the different confined levels,
simultaneous emission on two wavelengths is
possible, namely, on the ground state (GS) and
the first (or higher) excited state (ES) (Markus
et al. 2003; Gioannini 2012; Röhm 2015). See
Fig. 1 for a sketch of the energy band structure. In
view of the discussion of the previous sections,
the possibility for the QD laser to switch to an
other optical transition also increases the dynam-
ical degrees of freedom. Compared to single-
color lasers, the presence of the second emission
wavelength again stabilizes the laser output
under delayed feedback. This can be seen in
Fig. 10 where we show the dynamic response
of the two-state QD laser to optical feedback.
There the numerically obtained results for a
two-state laser (panel (a)) and an otherwise iden-
tical single-color laser (panel (b)) are shown. The
regions with pulsations are shown in blue
and green, while the intensity of stable cw oper-
ation is encoded in orange. In the parameter
plane of feedback strength K and feedback
phase C, the optical feedback induces complex
responses within larger parameter regions for the
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Fig. 9 Dynamics of a Class-C laser in dependence of the
feedback delay time t and the polarization dephasing time
T2. (a) Color code represents the number of unique
extrema, thin grey lines show resonances of the relaxation
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largest Lyapunov exponent L. Other parameters: J = 10,
a= 3,K= 0.1,C= p. (Adapted from Lingnau et al. (2019)
with permission from Royal Soc)
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single-color QD laser in Fig. 10b. In these
parameter regions of complex emission, the
two-color laser instead can turn to steady state
emission on the excited state (Fig. 10a) and thus
can partly suppress the pulsations. The green
regions of complex dynamics that occur in the
two-color laser are quasi-periodic pulsations that
are born in a torus bifurcation. The time evolu-
tion of the intensities of the two states is shown in
Fig. 10c. Those two-color bursting oscillations
are found in regions where the single state QD
laser emits chaotic pulse packages as discussed
in Fig. 6 in the vicinity of the homoclinic bifur-
cation. From a dynamic system point of view, the
behavior is very interesting as the existence of
two-color emission allows for an additional
bridge between subsequent ECM, connecting
their solutions in parameter space.

Future Directions

The presence of time-delayed feedback in lasers
offers a possibility to employ the rich dynamics of
delay systems in technological applications. As we
have seen, semiconductor lasers with delayed feed-
back offer a large variety of modes of operation by

choice of proper external parameters. Depending on
the desired laser behavior, the choice of active
medium and cavity design allows control over the
susceptibility towards delayed feedback. Only
recently the periodic or chaotic dynamics induced
by external perturbations such as optical feedback
has been seen as an opportunity for novel applica-
tions, and not as a nuisance detrimental to the laser
operation. A thorough understanding of the material
and charge-carrier dynamics in the laser device is
crucial for modeling and understanding the complex
dynamics that can occur in these laser systems.With
quantum-dot lasers and nanolasers, we have illumi-
nated possible material systems for current and
future technology where laser dynamics can be
employed as an integral part providing the key
functionality. Dynamical wavelength switching in
QD lasers or the controlled dynamics of nanolasers
will possibly allow novel applications in optical
computing and data processing. Time-delayed feed-
back will provide a simple yet effective way of
providing the necessary dynamics.
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Glossary

Order parameter(s) (Field) variable(s) charac-
terizing the spatio-temporal state of a system.
Other state variables such as velocity, temper-
ature, density, etc. can be computed if the order
parameter(s) are known.

Control parameter(s) Parameters which are
fixed and can be tuned from outside of the
system under consideration.

Critical point, threshold, onset The points in
control parameter space where new and quali-
tatively different solutions bifurcate from
(usually simpler) ones.

Slaving principle Stated by H. Haken in 1975,
the slaving principle allows for a huge reduc-
tion of degrees of freedom close to a critical
point. It states that a very large number of
linearly damped modes are slaved to and there-
fore completely determined by the few modes
that grow in the vicinity of the critical point.

The amplitudes of the growing modes are also
called order parameters.

Natural patterns Spatial patterns showing a cer-
tain periodic (near) order, but also defects,
grain boundaries etc.

Turing patterns Natural patterns that have a cer-
tain typical length scale and that show relaxa-
tion to a stationary state in the long term.
Typical ingredients of Turing patterns are
stripes, hexagons and squares.

Swift–Hohenberg equation Derived by Swift
and Hohenberg in 1977 and nowadays
established as the standard form for a scalar,
real-valued order parameter equation showing
Turing patterns at onset.

Coarsening The monotonic increase of the typ-
ical length scale of a structure in time. Often
connected to spinodal decomposition, for
example, of a binary mixture of non-mixing
components such as water and oil. Small oil
droplets in the beginning merge and finally
form a large oil drop on the water surface.
Coarsening slows down if the length scale
increases.

Definition of the Subject

The state of a fluid is described by its velocity,
density, pressure, and temperature. All these
variables depend in general on space and time.
Pattern formation refers to the situation where one
or more of these variables are organized within a
certain spatial and/or temporal order. This order
has macroscopic length and time scales, that is,
characteristic lengths and times are much larger
than those of the atoms or molecules which con-
stitute the fluid. Therefore a continuous descrip-
tion is appropriate.

Macroscopic fluid patterns may be encoun-
tered in nature as well as in technological appli-
cations for a large variety of different systems. Far
from being complete, wemention some examples:
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• Water waves caused by wind or by sea quakes
and land slides (Tsunamis).

• Localized excitations of the surface of a fluid
(solitons), such as that seen on shallow water
channels.

• Shear instabilities in clouds or in multi-layer
systems such as the Kelvin–Helmholtz insta-
bility or the Rayleigh–Taylor-instability.

• Surface deflections in the form of holes or
drops of thin fluid films in coating or wetting
processes.

• Convection instabilities in laboratory experi-
ments, but also in the atmosphere, in the earth’s
interior or in stars.

• Creation and controlled growth of ordered
structures in (nano-) technological
applications.

• Biological applications: Behavior of liquid
films on leaves or of the tear film on the cornea
of the eye. Dynamics of thin blood layers,
blood clotting.

• Films on the walls of combustion cells.
• Lubrication films in mechanical machines.

Fluid patterns may occur due to several mecha-
nisms. One can distinguish between two main
cases: Patterns excited and organized by some
external forces or disturbances (such as Tsunamis)
and those formed by instabilities. The latter may
show the aspects of self-organization and will be
the focus of the present contribution.

Introduction

Since the first observations of Michael Faraday
almost 180 years ago (Faraday 1831) (Fig. 1),
pattern formation in liquids or gases (fluids) has
been subject to innumerable experimental
(Bodenschatz et al. 2000; Schatz and Neitzel
2001; Van Dyke 1982), theoretical
(Chandrasekhar 1961; Colinet et al. 2001; Getling
1998) and, later on, numerical work (Bestehorn
1993; Busse 1989; Pesch 1996). After the famous
experiments by Henri Bénard around 1901
(Bénard 1901), convection in a single or later in
multi-component fluids came into the focus of
interest. The first theoretical studies were made
by Lord Rayleigh (Lord 1915). Theoretical com-
putations up to the early 1960s were restricted on
the linearized basic equations and could explain
the existence of critical points in parameter space
as well as the observed length scales of the struc-
tures found experimentally (Block 1956; Palm
1960). In the meantime, Alan Turing (Turing
1952) showed in his famous paper of 1952 that
similar patterns could emerge out of equilibrium
in reaction-diffusion systems. It took almost
40 years for an experimental confirmation using
the so-called CIMA reaction (Castets et al. 1990;
Ouyang and Swinney 1991).

With the appearance and rapid development of
computers, the field gained further momentum
from the new discipline of nonlinear dynamics

FluidDynamics, Pattern Formation, Fig. 1 Michael Far-
aday observed surface patterns on a liquid horizontal layer if
the whole layer vibrated vertically with a certain amplitude

and frequency. Very often, regular squares are found, as
shown in the time series as a numerical result of the shallow
water equations (see Section “Surface Waves”)
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and nonlinear system theory (Argyris et al. 1994;
Guckenheimer and Holmes 2002; Haken 1975,
2004). Early computations in 1963 by Edward
Lorenz of a system of three coupled ordinary
differential equations derived by a crudely trun-
cated mode expansion of the Navier–Stokes equa-
tions revealed the first chaotic attractor of a
dissipative system (Lorenz 1963). Though the
chaotic behavior seen in the Lorenz equations
does not originate from hydrodynamic equations
and has nothing to do with irregular fluid behav-
ior, the Lorenz model now stands on its own as a
paradigm for a relatively simple system showing
low dimensional chaos (Sparrow 1982).

Patterns that emerge from an instability
roughly pass through two phases. As long as
amplitudes (or order parameters) are small, the
behavior is often determined by the linear parts
of the system and exponential growth of a certain
part of the mode spectrum is found. In the second
phase, nonlinearities come into play and may lead
to saturation and selection of certain mode con-
figurations, seen then as regular structures in con-
figuration space (Fig. 2). The full mathematical
description of hydrodynamic systems has been
well known for a long time. Fluid motion is
described by the Euler or Navier–Stokes equa-
tions, temperature fields by the heat equation and
chemical concentrations by some nonlinear
reaction-diffusion equations. The location and
spatio-temporal evolution of surfaces or interfaces
can be computed by the kinematic boundary

conditions if the velocity of the fluid near the
interface is known. All these equations can be
coupled and provided with suitable boundary
and initial conditions, resulting in rather compli-
cated systems of nonlinear partial differential
equations. Even today in the age of supercom-
puters, their further treatment, especially in three
spatial dimensions, remains a challenge.

On the other hand, directly solving the basic
equations, can be considered merely as another
experiment. For these reasons and to get a deeper
insight into the physics behind pattern formation,
other methods have been devised. Very often one
of the three spatial dimension is distinguished,
either for physical reasons or simply due to the
geometry of the system. A good example is sur-
face waves on a water layer. Here, the behavior of
the solutions in the vertical direction (z) is very
different from those in the horizontal ones. For
shallow water waves (wave length long compared
to the layer depth) the velocities are more or less
independent on z, where in the other limit of deep
water waves, fluid motion takes only place along a
small layer under the surface and decreases expo-
nentially with depth. In both cases one may reduce
the dimension of the basic problem by an expan-
sion with respect to simple functions for the ver-
tical dependence of the variables (Cohen and
Kundu 2004). An analoguemethod can be applied
describing thin film surface patterns (Oron et al.
1997). Also for convection cells, the vertical
dimension plays a special role and the solution

Fluid Dynamics, Pattern Formation, Fig. 2 The com-
position of plane waves with the same wave number but
different orientation in 2D space results in regular patterns.

For two modes (N ¼ 2) one sees squares, for N ¼ 3 hexa-
gons and for N > 3 quasi periodic structures in space or
Penrose tilings (Penrose 1974) are found
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can be projected onto a fewmodes near the critical
point (Busse 1967; Pesch 1996).

Another concept that reduces the number of
dependent variables and equations is that of order
parameters. The notion of the “order parameter”
goes back to Landau (Landau and Lifshitz 1996)
and refers originally to a variable that measures the
order of a certain system. Rather a variable than a
parameter, the order parameter normally depends
on time and, in theories describing the formation of
natural patterns, also on space (Newell and
Whitehead 1969). Thus, the order parameter equa-
tion (abbreviated: OPE) is a partial differential
equation with certain nonlinear terms that become
important for pattern selection and saturation.

Theoretical methods developed by the Haken
school (Haken 1983, 1975, 2004) starting in the
1970s allow for a systematic derivation of the
OPEs (sometimes also called “generalized
Ginzburg–Landau equations”) for a great variety
of nonequilibrium and open systems from phys-
ics, chemistry and biology. The key idea is to find
a reduced description in terms of relevant or active
modes close to a certain bifurcation point. The
amplitudes of these active modes, the order
parameters, now generalized to a nonequilibrium,
pattern forming system, obey unified and simpli-
fied equations, namely the OPEs. It turns out that
the structure of these equations depends not so
much on the particular system under consider-
ation as on the type of bifurcation. To each type
of bifurcation a special “normal form” of OPE is
related (Cross 1988). In deriving the OPEs, the
slaving principle (Haken 2004) allows us to elim-
inate a huge number of slaved variables and
express them by the active ones.

This contribution is concerned mainly with
structures in fluids that originate from self-
organized processes. It tries to bring together
direct numerical solutions of hydrodynamic equa-
tions with the modern concepts of pattern forma-
tion. After introducing the basic equations
(Section “The Basic Equations of Fluid Dynam-
ics”) of fluid dynamics, it presents a short section
on waves and descriptions reduced by geometrical
reasons. Several types of instabilities are
discussed in Section “Instabilities”, together with
computer solutions for the different cases.

Section “Order Parameter Equations” presents
different types of two-dimensional order parame-
ter equations. Finally, Section “Conserved Order
Parameter Fields” is devoted to the special case of
conserved order parameters.

The Basic Equations of Fluid Dynamics

Let the state of a fluid be described by its velocity,
its density, its pressure, and its temperature field

v
!

r
!
, t

� �
, r r

!
, t

� �
, p r

!
, t

� �
, T r

!
, t

� �
: ð1Þ

In this section we wish to specify the basic
hydrodynamic equations that rule the spatio-
temporal behavior of these seven variables. They
have to be completed by suitable boundary con-
ditions (abbreviated: b.c.) which we shall present
later with the particular systems under
consideration.

Continuity Equation
The conservation of mass yields the continuity
equation

@trþ div rv!
� �

¼ @trþ v
! � ∇

� �
rþ r div v

! ¼ 0:

ð2Þ

In most cases, liquids are difficult to compress.
One can usually assume that a volume element
does not change its density while it moves with
the fluid (Lagrangian description)

@trþ v
! � ∇

� �
r ¼ 0:

From (2) one finds the condition of
incompressibility

div v
!

r
!
, t

� �
¼ 0, ð3Þ

or, in other words, the velocity field is free of
sources and sinks. Equation (3) can be satisfied
by the ansatz
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v
!

r
!
, t

� �
¼ curlA

!
r
!
, t

� �
ð4Þ

where A
!
plays the role of a vector potential. In (4)

one can use the particular decomposition
(Bestehorn 1993; Chandrasekhar 1961)

v
!

r
!
, t

� �
¼ curl Fbezð Þ þ curl curl Cbezð Þ

¼
@yFþ @z@xC

�@xFþ @z@xC

�D2C

0BBB@
1CCCA

ð5Þ

with the two independent scalar functions

F r
!
, t

� �
and C r

!
, t

� �
and D2 ¼ @2

xx þ @2
yy as the

2D-Laplacian.
If the velocity field is irrotational, that is with-

out vortices curl v
! ¼ 0

� �
, it can be derived from

a scalar potential

v
! ¼ gradf: ð6Þ

For incompressible and irrotational flows,
hydrodynamics is reduced to a boundary value
problem, since the potential must fulfill the
Laplace equation

div v
! ¼ Df ¼ 0 ð7Þ

and the velocity field is solely determined by its
boundary conditions.

Euler Equations
For a perfect fluid, a fluid with no viscosity, one
derives the Euler equations from the law of con-
servation of momentum (Lai et al. 1993). They
read

r r
!
, t

� �
@t v

!
r
!
, t

� �
þ ðv!ð r!, tÞ � ∇Þ v!ð r!, tÞ

h i
¼

�grad p r
!
, t

� �
þ f

!
r
!
, t

� �
,

ð8Þ

where f
!
denotes external volume forces. Together

with a state equation of the form

p ¼ p r,Tð Þ, ð9Þ

the continuity Eq. (2) and the temperature equa-
tions (to be shown below) (Subsection “Transport
Equations”) constitute the basic set for the seven
state variables (1).

Incompressible Fluids For an incompressible
fluid, a state equation of the form (9) makes no
sense since pressure will not change with density.
So p can be eliminated by forming the curl of (8)

@tO
! ¼ curl v

! � O
!� �

þ 1

r
curl f

! ð10Þ
Where

O
! ¼ curl v

! ð11Þ
denotes the vorticity. If pmust be known, it can be
computed from the divergence of (8) which yields

∇2p ¼ r �Tr ∇∘v!
� �

∇∘v!
� �h i

þ div f
!n o

,

ð12Þ
where ∘ is the dyadic product and Tr[. . .] the trace.

Incompressible Irrotational Fluids If, in addi-
tion, the flow is free of vortices, one may integrate
the Euler equations and find the theorem of
Bernoulli

@tf ¼ � 1

r
pþ Uð Þ � 1

2
∇fð Þ2 ð13Þ

where U is the potential to f
!

( f
!

must be irrota-
tional, too). For stationary solutions, the velocity
potential f is found from (7) and (13) can be used
to determine the pressure.

Navier–Stokes Equations
Compressible Fluids In real fluids, shear stresses
are a result of friction. They must be added to the
balance of momentum and yield the Navier–
Stokes equations. For a compressible Newtonian
fluid they read

r @t v
! þ v

! � ∇
� �

v
!h i

¼ �grad pþ f
! þ �D v

! þ zþ �
3

� �
graddiv v

!

ð14Þ
where � denotes the first and ζ the second viscos-
ity (Landau and Lifshitz 2004).
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Incompressible Fluids The Navier–Stokes
equations for incompressible fluids are simpler:

r @t v
! þ v

! � ∇
� �

v
!h i

¼ �∇pþ f
!

þ �D v
!
: ð15Þ

Again, pressure can be eliminated by forming the
curl. Taking the ansatz (5), the z-components of the
curl and of the curl of the curl of (15), we have

vD� @tf gD2F r
!
, t

� �
¼ curl v

! � ∇
� �

v
!� �h i

z
þ 1

r
@x f y � @y f x

� �
ð16aÞ

vD� @tf gDD2C r
!
, t

� �
¼ curl curl v

! � ∇
� �

v
!� �h i

z

þ 1

r
D2 f z � @x@z f x � @y@z f y

� �
:

ð16bÞ
Here we have introduced the kinematic viscosity
v ¼ �/r. We note that this decomposition is of
particular interest if fx ¼ fy ¼ 0 as is the case in
convection problems of a plane layer.

Incompressible Fluids with a Small Reynolds
Number
For some applications it is convenient to use the
Navier–Stokes equations in dimensionless form.
With scaling with respect to a characteristic length
L and velocity V0:

r
! ¼ L � r!0

, t ¼ L=V0ð Þ � t0, v! ¼ V0 � v!0
, p0

¼ L
�V0

� p,

(15) turns into

Re @t v
!0 þ v

!0 � ∇0
� �

v
!0h i

¼ �∇0p0 þ D0 v!
0
: ð17Þ

(We assumed a potential for f
!

which can be
confined into p.) The dimensionless quantity

Re ¼ LV 0

v
ð18Þ

is the Reynolds number. IfRe � 1, the left hand
side of (17) can be neglected and the Navier–
Stokes equations become linear (primes omitted):

D v
! ¼ ∇p: ð19Þ

This is the Stokes equation, in which no time
derivative of v

!
occurs. Thus, as known from

over-damped motion, the velocity field directly
follows the pressure gradients.

Transport Equations
Scalar fields such as temperature or concentration
of a mixture that may diffuse into and be trans-
ported with the fluid are ruled by the transport

equation. Let S r
!
, t

� �
be the scalar field, then the

transport equation reads

@tSþ v
! � ∇

� �
S ¼ DsDS, ð20Þ

where Ds is the appropriate diffusion coefficient.

Surface Waves

The only elastic forces in fluids are those coming
from volume changes and may exist, therefore,
only in compressible fluids. They give rise to
longitudinal compression waves which usually
have small amplitudes and behave linearly in a
good approximation. A linear wave equation can
be derived with a (space dependent) sound speed
(Lai et al. 1993).

A transversal wave which is also possible in
incompressible fluids can be formed along a
deformable interface. Gravity and, for small
wavelengths, surface tension provide the stabiliz-
ing mechanism of a flat surface, around which
oscillations (gravity waves) may occur. If their
amplitudes are big enough, nonlinearities may
play an essential role for surface waves, as is
clearly seen by solitons (Drazin et al. 1989;
Nekorkin and Velarde 2002) and wave breaking
(Dean and Dalrymple 2000). For this reason we
shall discuss only surface waves in this section.

Gravity Waves
If one assumes an irrotational flow of a perfect and
incompressible fluid on a flat substrate and with a
free, deformable surface (Fig. 3), then the velocity
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is determined by the Laplace Eq. (7) which must
be accomplished by boundary conditions at z ¼ 0

vz z¼0 ¼ @zfj jz¼0 ¼ 0 ð21Þ
and at z ¼ h(x, y, t)

@tf z¼h ¼ �gh� p hð Þ=r� 1

r
∇fð Þ2

���� ð22Þ

where g denotes the gravitational acceleration.
Equation (22) is nothing other than the Bernoulli
Eq. (13) evaluated at the surface. The surface itself
is determined by the so-called kinematic bound-
ary condition that reads (see Fig. 3, right frame).

@th ¼ vz z¼h � vx z¼h@xh� vy z¼h@yh
������

¼ @zf z¼h � @xhð Þ @xfð Þz¼h � @yh
� �

@yf
� �

z¼h
:

��
ð23Þ

Shallow Water Equations
For shallow water waves, one can introduce the
small parameter

d ¼ d=l ð24Þ
which is the ratio of the water depth d and a typical
horizontal scale (such as a wavelength) l. Then (7)
can be solved iteratively; the result is a power
series in d2 (Cohen and Kundu 2004; Dean and
Dalrymple 2000):

f r
!
, t

� �
¼ F x, y, tð Þ

þd2 � z2

2
D2F x, y, tð Þ þ ’ 1ð Þðx, y, tÞ

� �
þ O d4

� �
ð25Þ

with an arbitrary function ’1. Inserting (25)
into (23) and (22) yields up to the lowest order
in d the shallow water equations

@th ¼ �hD2F� @xhð Þ @xFð Þ
� @yh
� �

@yF
� � ð26aÞ

@tF ¼ �gh� p hð Þ=r� 1

2
@xFð Þ2

� 1

2
@yF
� �2

: ð26bÞ

This is the first example of how to derive a two-
dimensional system starting from three-
dimensional fluid motion. Eq. (26) constitute a
closed system of partial differential equations for
the evolution of the two functions h(x, y, t) and
F(x, y, t). Using (25), one immediately finds from
the latter the velocity field (up to the order d2).

Numerical Solutions
Figure 4 shows numerical solutions of the shallow
water equations (left frame in one dimension,
right frame in two dimensions). In one dimension,
one sees clearly traveling surface waves which
may run around due to the periodic boundary
conditions in x. On the other hand, one can recog-
nize a second wave with a smaller amplitude
going to the left hand side. Both waves seem to
penetrate each other without further interaction.
The reason seems to be the smallness of the ampli-
tude which results in a more or less linear behav-
ior. In the two-dimensional frame, a snapshot of
the temporal evolution of the surface is presented.
The initial condition was chosen randomly. For
numerical stability reasons, an additional
damping of the form evD2F was added to the
right hand side of (26b) which filters out the
short wave lengths. This could be justified phe-
nomenologically by friction and leads in the long
term to a fluid at rest, if only gravity acts.

Fluid Dynamics, Pattern Formation, Fig. 3 Left: an
(incompressible) fluid with a free and deformable surface
located at z ¼ h(x, y, t), on which a constant external

pressure p0 is applied. Right: The location of a certain
point of the surface changes if the fluid is in motion
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Instabilities

Laplace Pressure and Disjoining Pressure To
discuss Eq. (26) further, we must elaborate a little
on the dependence of the surface pressure on the
depth h(x, y, t) and on its curvature –Dh.

The length scale of the surface structures is
proportional to the depth of the fluid layer. If the
films are very thin, we expect to have scales in the

range or even well below the capillary length a ¼ffiffiffiffiffiffiffiffiffiffiffi
G=gr

p
whereG denotes the surface tension. Then

one has to take into account the additional pressure
which originates from the curvature of the surface,
the so-called Laplace pressure (Landau and
Lifshitz 2004) –GD2h. Thus we substitute in (26b)

p hð Þ ¼ p1 hð Þ � GD2 h, ð27Þ
with a function p1 (the disjoining pressure) that
will be specified later (de Gennes 1985; Van Oss
et al. 1988).

Linear Stability Analysis of the Flat
Surface To see if the flat film h ¼ h0 is stable
against small perturbations, one may perform a
linear stability analysis. Inserting

h� h0,Fð Þ ¼ a, bð Þ exp ltþ ikxð Þ
into (26) yields, after linearization with respect to
a, b, a linear eigenvalue problem with the solv-
ability condition

l12 kð Þ ¼ � evk2
2

�i jk j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h0 gþ p01 þ Gk2
� �

=r� ev2k2=4q
,

ð28Þ

where

p01 ¼
dp1
dh

����
h¼h0

:

We assume that the artificial viscosity is
small,ev2 � G=r: An instability occurs first at
k ¼ 0 if the expression under the integral can be
negative, that is, for p01 þ rg < 0 . This corre-
sponds to the region of initial thickness h0 where
the generalized pressure

p1 hð Þ þ rgh ð29Þ

has a negative slope. For that case, the real part of
l1 starts at k ¼ 0 at zero with positive slope, has a
maximum at k ¼ kc and decreases again to the
value –vk2/2. We shall revisit this instability in the
next section and call it there, in a more systematic
classification, a type II instability. How can (29)
have a negative slope for a certain range of h0? It is
obvious that one has to assume that the pressure p1
depends in some nonlinear nonmonotonic fashion
on the value of h (Fig. 5). As we shall see later, this
can be the case for very thin films where van der
Waals forces between the solid support and the

Fluid Dynamics, Pattern Formation, Fig. 4 Numerical
solutions of the shallowwater equations, left frame shows a
temporal evolution in one dimension, right frame a

snapshot in two dimensions. Dashed contour lines mark
troughs, solid ones correspond to peaks of the sea
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free surface come into play (de Gennes 1985;
Israelachvili 1992; Van Oss et al. 1988). But
also, in thicker films, this should be possible in
non-isothermal situations, where the surface tem-
perature, and therefore the surface tension,
changes with the vertical coordinate (Marangoni
effect, see Section “Instabilities”, Fig. 8). If we
take (for instance) as a model the polynomial

p1 ¼ c � h � h� h1ð Þ � h� h2ð Þ, c > 0, ð30Þ
then the flat surface is unstable for h between the
two spinodals

h� < h < hþ

with h� being the roots of

3h2 � 2h h1 þ h2ð Þ þ h1h2 þ rg=c ¼ 0:

Figure 6 shows a numerically determined time series
of a random dot initial condition. The mean thick-
ness h0 was chosen in the unstable region. The
formation shows traveling waves in the linear
phase, followed by coarsening to a large scale struc-
ture, in this case one big region of depression, or a
hole. This hole becomes more and more symmetric
while the velocity decays due to the friction term.
Finally, a steady state of a big circular hole remains.

Parametric Excitation of a Thin Bistable Fluid
Layer
One way to replace the energy lost by damping
(to “open” the system) is to accelerate the whole
layer periodically in the vertical direction. This was

done first in an experiment by Michael Faraday in
1831 (Faraday 1831). He obtained regular surface
patterns normally in the form of squares, see Fig. 1.

Faraday patterns can be seen as a solution of
the shallow water equations if the gravity constant
g is modulated harmonically (Bestehorn 2006)

g tð Þ ¼ g0 þ g1 coso t: ð31Þ

A linear stability analysis leads to a Mathieu
Eq. (1). The flat film is unstable if frequency and
amplitude fall into certain domains, the so-called
Arnold tongues. There, one usually finds squares
for not-too-supercritical values.

We conclude this section by showing a numer-
ical solution of (26) with parameters as in Fig. 6,
but now with an additional periodic excitation
(Fig. 7). Coarsening is still present, but now oscil-
lating drops emerge in the form of stars. No time
stable structure is found in the long time limit.

Instabilities

Mechanisms of Instability in Fluids
We start with the specific case of a plane layer of a
viscous fluid with a vertically applied, constant
temperature gradient b (Fig. 11), where

b ¼ T1 � T0ð Þ=d ð32Þ

and T0, T1 are the temperatures at the lower, upper
side of the layer. We assume that a motionless
stationary state exists as a (stable or unstable)
solution of (15) and of an equation such as (20)
for the temperature. The temperature and pressure
distribution of that state can then be computed
from (15, 20) by putting v

!
and all time derivatives

to zero:

∇p0 ¼ f
! ð33aÞ

DT0 ¼ 0: ð33bÞ

If an external force is provided by buoyancy, we
may align the z-axis of the coordinate system

along f
!
which yields

Fluid Dynamics, Pattern Formation, Fig. 5 If the pres-
sure depends on h and has a certain region with a negative
slope, the flat film is unstable in this region and pattern
formation sets in
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Fluid Dynamics, Pattern Formation, Fig. 6 Time series
from a numerical solution of (26) with artificial damping
and bistable pressure according to (30). Coarsening dom-
inates the nonlinear evolution and eventually a stationary

circular region of surface depression (a hole) remains.
Periodic boundary conditions in both horizontal directions
have been used
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f
! ¼ �gr r

!� � bez,
where g is the gravitational acceleration.
Equation (33a) can be solved only if r does not
depend on x and y. If one assumes that the density
depends on temperature

r ¼ r T0
� � ð34Þ

then T0 can also depend only on z. Thus one finds
from (33b)

T0 zð Þ ¼ aþ bz: ð35Þ

Taking a linear relation for (34)

r Tð Þ ¼ r0 1� a T � T0ð Þ½ � ð36Þ

with the heat expansion coefficient a �
�r�1

0 dr=dT and r0 as the density at the reference

temperature T0, one may integrate (33a) and find
for the pressure of the motionless state
(hydrostatic pressure)

p0 zð Þ ¼ �g

Z
rdz ¼ �gr0 z� 1

2
abz2

� �
ð37Þ

where we put a ¼ T0 and b ¼ b, in agreement with
(32).

A linear stability analysis (Chandrasekhar
1961) shows that the motionless, nonequilibrium
state (35) can become unstable if the temperature
gradient b exceeds a certain critical value,
depending on the fluid properties and the geome-
try of the layer. There are two different mecha-
nisms, if the fluid layer is heated from below:

(1) Buoyancy: Hot fluid particles (volume ele-
ments) near the bottom are lighter than colder
ones and want to rise. Colder particles near the
top want to sink. If the stabilizing forces of

Fluid Dynamics, Pattern Formation, Fig. 7 Continuation of the series of Fig. 6, but with additional parametric
excitation according to (30) switched on at t ¼ 72. Instead of stationary patterns pulsating stars are found
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thermal conduction and friction in the fluid are
exceeded by the externally applied temperature
gradient, patterned fluid motion sets in.

(2) Surface tension: If the upper surface of the
fluid is free, that is, in contact with the ambi-
ent air, tangential surface tension normally
increases with decreasing surface temperature
(Fig. 8a–c). If a fluid particle near the surface
moves by fluctuations, say, to the right, then
warmer fluid is pulled up from the bottom,
increasing the surface temperature locally.
Due to laterally increasing surface tension
with respect to the neighbored points, even
more hot fluid is pumped up from the bottom
and the fluid starts to move. This is called the
Marangoni effect and works even without
gravity, that is, in space experiments.

In both cases, the typical length of the struc-
tures which bifurcate from the motionless state is
of the order of the layer depth. These instabilities
are sometimes called small scale instabilities.

In the situation described above, the surface
can be assumed to be flat and undeformable. Of
course this is only an approximation, but valid for
not-too-thin fluid layers and parameters not too far
from threshold. If, on the other hand, the thickness
of the fluid layer is less than a certain value which
is on the order of 10�4 m for common silicone
oils, another mechanism comes to the foreground.
This mechanism is based on

Surface Deformation. If the surface is locally
depressed by an arbitrary fluctuation, the
depressed part is heated up due to the vertical
temperature gradient. A lateral surface tension

gradient is formed which pulls the liquid outside
the depressed region (Fig. 8d). Since the continu-
ity equation must hold, the surface becomes even
more depressed and an instability occurs. The
same mechanism leads to the growth of elevated
parts of the surface, under which fluid is pumped
in from adjacent regions (Golovin et al. 1997;
Nepomnyashchy et al. 2002; Oron et al. 1997).
The deformation mode belongs to the so-called
large-scale instability. This means that the fastest
growing modes have a wavelength that is very
large compared to the layer depth. It is the depth
of the layer which distinguishes which instability
occurs first if the temperature gradient is increased
from the sub-critical region (Fig. 9).

In ultra-thin films (depth of few 100 nm or
less), other mechanisms are possible. Van der
Waals forces between the free surface and the
solid substrate then become important. They
have a potential and can be expressed in the pres-
sure by an extra term, disjoining pressure, as
already shown in Section “Surface Waves”. If
that pressure increases with decreasing layer
depth, fluid is pressed out of depressed regions
and pumped into elevated regions and an instabil-
ity occurs, even for isothermal cases (Fig. 10).

Pattern Formation – Examples
What happens if the critical value for the temper-
ature gradient is exceeded? Since the famous
experiments of Henri Bénard (Bénard 1901) in
the beginning of the twentieth century, one
knows that the fluid starts to move in form of
hexagons if the surface is free and the layer is
“thick” (Fig. 11). These kinds of experiments

a b c d

Fluid Dynamics, Pattern Formation, Fig. 8 a-c The
Marangoni effect may destabilize a fluid layer at rest and
may generate a (regular) fluid motion. The surface remains
flat (to a good approximation). If the surface is deformable
d, a large scale instability may occur as a consequence of

the Marangoni effect and mass conservation. For both
instabilities, it is sufficient to assume the surface tension
as a linear function of temperature. (+/-/0) denote relative
temperatures
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were repeated many times under excellent condi-
tions, for free and closed surfaces, with different
fluids, even under micro gravity conditions
(Koschmieder 1993; Schwabe 2006).

Surprisingly, a secondary instability takes
place for a larger external temperature gradient,
which was not known before 1995, almost
100 years after Bénard. This instability shows
the occurrence of rather regular squares and was
discovered by Eckert and Thess in Dresden, Ger-
many (Bestehorn 1996; Eckert et al. 1998;
Nitschke-Eckert and Thess 1995) and, in the
meantime but independently, by Schatz and
Swinney in Austin, Texas (Schatz and Neitzel
2001; Schatz et al. 1999) (Fig. 12).

If the fluid is covered by a good thermal con-
ductor (a sapphire plate, for instance), hexagons are
not the typically found structure at onset, but rather
stripes or rolls are encountered (Van Dyke 1982).
This can be understood in the frame of reduced
order parameter equations by simple symmetry
arguments. We shall discuss this in more detail in
Section “Order Parameter Equations”. For small
Prandtl numbers (the ratio between viscosity and
thermal diffusivity of the fluid) more complicated

and time dependent patterns are found in the form
of spirals (Fig. 13) (Bestehorn et al. 1994; Morris
et al. 1993; Pesch 1996).

The initial growth of patterns, with a certain
horizontal length scale of the order of the depth of
the fluid layer, is typical for pattern formation in
thick films. In the long term, these structures can
be stationary or time dependent, depending on
several control and fluid parameters (temperature
gradient, material properties, etc.). On the other

Fluid Dynamics, Pattern
Formation, Fig. 9 The
two cases “thick films” and
“thin films” are defined by
the instability that comes
first when the temperature
gradient is increased. The
two instabilities differ in the
wavelength L (wave
number k ¼ 2p/L) of the
growing structures

Fluid Dynamics, Pattern Formation, Fig. 10 In ultra-
thin films (Reiter et al. 1999; Sharma and Khanna 1999;
Vrij 1966), van der Waals forces between free surface and

solid substrate may destabilize a plane fluid layer even
without an external temperature gradient (+/� denote rel-
ative values of the disjoining pressure)

Fluid Dynamics, Pattern Formation, Fig. 11 Hexagonal
motion of a fluid heated from below, found by computer
solution. Shown are contour lines of the temperature field
(after Bestehorn 1993)
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hand, the spatio-temporal behavior is completely
different for thin and ultra-thin films. Here one
finds, after a rather short initial phase, the forma-
tion of larger and larger structures, known as
coarsening. Eventually, the dynamics converge

to a stationary state that consists of a single ele-
vation (drop) or suppression (hole) on the surface
(Fig. 14 left panel). This development can be
interrupted by rupture of the film. Rupture is
obtained if the surface touches the substrate and

Fluid Dynamics, Pattern
Formation,
Fig. 12 Regular squares as
a secondary instability of
hexagons. Numerical
solution of the basic Eq. (6)

Fluid Dynamics, Pattern Formation, Fig. 13 Left: Rolls for high Prandtl number (Pr) fluids; Right: spirals for low Pr
are found if the surface is covered by a good thermal conductor
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the thickness reaches zero in certain domains.
Rupture can be avoided by introducing a repelling
disjoining pressure acting for a very small depth.
In this situation, a completely dry region cannot
exist but the substrate is, rather, covered by a
so-called (ultra thin) precursor film (de Gennes
1985; Oron et al. 1997), already proposed by
Hardy in 1919 (Hardy 1919).

If, in addition, horizontal forces are applied,
that is, by inclining the fluid layer, interesting
studies of falling films and front instabilities can
be made in the frame of the thin film equation
(Bestehorn and Neuffer 2001; Scheid et al. 2002).
A typical example is shown in Fig. 14, right panel.

Types of Instabilities
Different types of instabilities can be classified
according to their linear behavior at onset. Con-
sider a mode having the complex eigenvalue

l k2
� � ¼ io k2

� �þ s k2
� � ð38Þ

with real valued frequency o and real valued
growth rate s. Due to rotation symmetry with
respect to the horizontal coordinates, all values

depend only on the modulus of the wave vector
of the unstable mode (assumed as a plane wave in
horizontal direction).

According to (Cross and Hohenberg 1993), we
use the following notions:

Type IIIs “s” denotes stationary or monotonic and
refers to the temporal behavior of the unstable mode
close to onset. The type number specifies the spatial
behavior of the modes. Type III means slowly vary-
ing or even constant in space (k 	 0). The spatial
structure beyond instability is then mainly domi-
nated by the geometry and boundary conditions of
the system under consideration. For (38) this means

o ¼ 0 and
ds
dk

����
k¼0

¼ 0,

See Fig. 15. A typical example for a type IIIs
instability is the real Ginzbur–Landau eq. A com-
puter solution clearly showing the spatially (and
temporally) slowly varying behavior can be seen in
Fig. 16.

Type IIIo “o” stands for oscillatory and denotes a
non-vanishing imaginary part of (38) at threshold.
This type includes Hopf-instabilities which have the
same slow spatial behavior as IIIs. In (38) we have

Fluid Dynamics, Pattern Formation, Fig. 14 Numerical
solution of the thin film equation (see Section “Conserved
Order Parameter Fields”), red: elevation, yellow: suppres-
sion. Left: Coarsening is the typical spatial behavior for a

thin film. Finally, a stationary solution consisting of one
single hole would survive. Right: If the layer is inclined,
the motion of fronts and the development of front instabil-
ities can be examined. From (Bestehorn et al. 2003)
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o 6¼ 0 and
ds
dk

����
k¼0

¼ 0:

For this kind of instability one needs at least
two coupled diffusion equations. It is often

encountered in reaction diffusion systems, as for
instance the “Brusselator” (Prigogine and Levever
1968; Prigogine and Nicolis 1967).

Type Is The short scale pattern forming instabil-
ities shown in Figs. 11, 12 and 13 with periodicity

Fluid Dynamics, Pattern Formation, Fig. 15 Schematic drawing of the real part of the eigenvalue (38) as function of
the wave vector for the three types of instabilities

Fluid Dynamics, Pattern Formation, Fig. 16 Numerical
solution (time series) of the real Ginzbur–Landau Eq. (39)
which shows a IIIs instability. The Ginzbur–Landau equa-
tion can be considered as a simple model for the

magnetization of a ferro magnet. Then the two rows show
the spatio-temporal evolution of the magnetization, Top:
without external field, Bottom: with external field
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in space, kc 6¼ 0 are of this type, see Fig. 15 middle
frame. Again one needs at least two coupled dif-
fusion equations to obtain such an instability. For
the eigenvalue,

o ¼ 0 and
ds
dk

����
k¼kc

¼ 0 with kc 6¼ 0

holds. Sometimes these kinds of patterns are
called Turing structures or Turing instabilities,
after the seminal work of Alan Turing, who pre-
dicted this patterns in skin, scales, or hair coating
of certain animals (Turing 1952) (Fig. 17). For
more details and pattern formation in biology see
(Murray 1993).

Type Io Denotes oscillating Turing structures,
sometimes also called wave instabilities.The
eigenvalue l then has the form

o 6¼ 0 and
ds
dk

����
k¼kc

¼ 0 with kc 6¼ 0:

For this instability, the system must be described
by at least three coupled diffusion equations. In
fluid mechanics, this kind of instability can be
encountered in binary mixtures and give rise to a
very complicated, in general chaotic, spatio-
temporal behavior just at onset (Bestehorn and
Colinet 2000).

Type IIs This type is realized in the surface pat-
terns of thin films, Fig. 14. Here, l depends on k as
shown in the right frame of Fig. 15. One has

o ¼ 0 and
ds
dk

����
k¼kc

¼ 0 with kc 6¼ 0

and in addition

s k ¼ 0ð Þ ¼ 0:

From the last condition one sees that modes with
k ¼ 0, that is, those which are homogeneous in
space, are marginally stable, meaning neither sta-
ble nor un stable. One may then add a constant to
the order parameter (the mode amplitude)

x0 ¼ xþ const,

where x0 is still a solution of the linear part of the
order parameter equation. This property usually
has its origin in a symmetry of the basic problem.
We shall discuss this instability type in
Section “Conserved Order Parameter Fields” on
thin films. There, the symmetry corresponds to a
global shift of the surface in vertical direction.

Type II0 The same as IIs but with an additional
imaginary part o 6¼ 0. We mention this type only
for the sake of completeness; there will be no
further examples in this contribution.

Fluid Dynamics, Pattern Formation, Fig. 17 After a
theory by A. Turing the painting on skin, scales, or coats
of animals is organized by a nonequilibrium chemical
reaction during the embryonal phase. Left: regular spots

arranged in a hexagonal manner on the panther fish, Right:
stripes with defects on the lion fish (pictures taken by the
author in the Berlin Zoo)
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Order Parameter Equations

Order Parameters
In this section, we wish to describe pattern forma-
tion in the weakly nonlinear regime. We shall
mainly restrict ourselves to the case of monotonic
(non-oscillatory) instabilities. For further references
see (Bestehorn and Friedrich 1999; Bestehorn and
Haken 1990; Cross and Hohenberg 1993; Haken
1983, 2004). Close to a bifurcation point to a new
state, it is natural to expand nonlinearities with
respect to small deviations from the old, unstable
state. These deviations can be written as a composi-
tion of certain Galerkin functions or modes; the
amplitudes of these modes are called order param-
eters. If the order parameters are functions only of
time, the dynamics given by the order parameter
equations (ordinary differential equations, abbrevi-
ated: ODE) are perfect patterns, for instance parallel
stripes, squares (two order parameters) or hexagons
(three order parameters). Natural patterns having
defects and grain boundaries, as for instance the
structures shown in Figs. 11, 12 and 13 can also be
described in this frame. One then has to make the
additional assumption that the order parameters also
vary (slowly) in space and are ruled by partial dif-
ferential equations (abbreviated: PDE).

The Ginzbur–Landau Eq.
A prominent (and historically the first) example of
such a PDE order parameter equation is the
Ginzbur–Landau equation (Aranson and Kramer
2002; Landau and Lifshitz 1996). In one spatial
dimension it has the normal form

@tx x, tð Þ ¼ ex x, tð Þ þ q20 @
2
xx x x, tð Þ

� c3 xðx, tÞj j2x x, tð Þ ð39Þ

and describes the spatio-temporal evolution of the
complex order parameter field x. If x is the mode
amplitude of a roll structure with a certain wave
number, for example, the critical one, then stripes
with defects are obtained if x varies (slowly) in
space. If c3 and q0 are real valued, (39) is called the
real Ginzbur–Landau equation. For complex
values of the coefficients, an incomparably richer
and much more complicated spatio-temporal

behavior of the order parameter is encountered,
for details we refer to (Aranson and Kramer 2002).

In the theory of nonequilibrium pattern forma-
tion, writing down an equation such as (39) is far
from being purely phenomenological. It can be
derived rather systematically from the basic
hydrodynamic equations (Haken 1975; Newell
and Whitehead 1969).

To give an idea of that, we do it briefly for the
(two-dimensional) case of convection (the reader
who is not interested in technical details can skip
the rest of this section).

Starting point are the Eqs. (16) and (20) where
in the latter, S stands for temperature T.

Scaling of independent r
!
, t

� �
and dependent

v
!
,T

� �
variables allows the reduction of the num-

bers of parameters:

r
! ¼ er!� d, t ¼ et � d2=k

� �
, v
!

¼ ev!� k=dð Þ,T ¼ eT � b � d, ð40Þ
with the constant depth d and the externally applied
temperature gradient (32). Note that if the liquid is
heated from below, b < 0. Introducing the devia-
tionY from the thermally conducting state

T r
!
, t

� �
¼ T0 zð Þ þY r

!
, t

� �
¼ T0 þ bzþY r

!
, t

� �
ð41Þ

transforms (20) into

D� @tf gY r
!
, t

� �
¼ �D2C r

!
, t

� �
þ v

! � ∇
� �

Y r
!
, t

� �
ð42Þ

and (16) into

D� 1

Pr
@t

n o
D2F r

!
, t

� �
¼ � 1

Pr
curl v

! � ∇
� �

v
!� �h i

z

ð43aÞ

D� 1

Pr
@t

n o
DD2C r

!
, t

� �
¼ �RD2Y r

!
, t

� �
� 1

Pr
curl curl v

! � ∇
� �

v
!� �h i

z
:

ð43bÞ

Two dimensionless numbers occurred. One is the
material dependent Prandtl number
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Pr ¼ n
k
, ð44Þ

which measures the ratio of the diffusion times of
heat and momentum. The other one is called the
Rayleigh number and turns out to be

R ¼ � bgad4

nk
ð45Þ

with a defined in (36). The system (42) and
(43) constitutes the basic equations for the three
scalar fields, F,C, andY which describe convec-
tive motion and temperature of a plane fluid layer
with a flat and undeformable surface onto a plane
substrate. This can be further simplified by taking
the large Prandtl number limes 1/Pr¼ 0 (good for
fluids with high viscosity, oils, etc.). Then F van-
ishes everywhere and only two equations are left:

D2C r
!
, t

� �
¼ �RY r

!
, t

� �
ð46aÞ

D� @tf gY r
!
, t

� �
¼ �D2C r

!
, t

� �
þ v

! � ∇
� �

Y r
!
, t

� �
: ð46bÞ

A general nonlinear (2D) solution of
Eqs. (46) may be expressed by

C x, z, tð Þ
Y x, z, tð Þ

" #

¼
X
l

Z 1

�1
dkxl k, tð Þ

f l k
2, z

� �
gl k

2, z
� �

" #
e�ikx

ð47Þ

and

xl k, tð Þ ¼ x
l �k, tð Þ

where f and g are eigenfunctions of the ODE
eigenvalue problem

d2z � k2
� �

f l þ Rgl ¼ 0

d2z � k2 � ll k2
� �� �

gl � k2 f l ¼ 0:
ð48Þ

Here, l labels the different eigenfunctions.
Equation (48) is obtained by inserting (47) with

xl ~ exp.(lt) into (46) and keeping only linear
terms. The functions fl and gl can be calculated
numerically by a finite difference method in ver-
tical direction where suitable boundary conditions
must be implemented.

Inserting (47) into (46) yields, after multiplica-
tion with the adjoint function gþl exp. (ikx) and
integration over the spatial coordinates, the
system:

@txl k, tð Þ ¼ ll k2
� �

xl k, tð Þ
�
X
l0l00

Z 1

�1
dk0dk00cl l0l00 kk

0k00ð Þxl0 k0, tð Þxl00 k00, tð Þ

d k � k0 � k00ð Þ,
ð49Þ

where the coefficients c are matrix elements that
can be computed directly from the basic equations
for any given set of control parameters:

cl l0l00 kk
0k00ð Þ

� k02
Z 1

0

dzgþl k2, z
� �

f l0 k02, z
� �

@zgl00 k002, z
� �

�k0k00
Z 1

0

dzgþl k2, z
� �

gl0 k02, z
� �

@z f l00 k002, z
� �

:

ð50Þ

Here we are still at the same level of complexity;
the infinitely many degrees of freedom intrinsic in
the basic partial differential equations are
expressed by an infinite number of mode ampli-
tudes xl(k, t). To eliminate the fast damped modes
by the linearly growing ones, we divide the eigen-
modes into two groups:

ll !

lu k2
� � 	 0 ) xu k, tð Þ

j k j	 kc, u ¼ l ¼ 1

ls k2
� � � 0 ) xs k, tð Þ

s ¼ l > 1or s ¼ l ¼ 1but jkj6¼ kc:

8>>><>>>:
ð51Þ

In the following we may therefore substitute the
index l by u (unstable) or s (stable), depending on
the values of l and |k|. Now we express the ampli-
tudes of the enslaved modes invoking an adiabatic
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elimination (kc denotes the wave vector that max-
imizes lu). In this case, the dynamics of the
enslaved modes are neglected, they follow instan-
taneously to the order parameters. This is a special
case of the slaving principle of synergetics, which
can be used in many other disciplines beyond
hydrodynamics (Haken 1983).

The remaining equations for the order param-
eters xu, the amplitude equations, read (here and in
the following we suppress the index u at x and l):

@tx k, tð Þ ¼ l k2
� �

x k, tð Þ
þ
Z
dk0dk00dk

000
B k, k0, k00, k

000
� �

x k0, tð Þx k00, tð Þ

x k
000
, t

� �
d k � k0 � k00 � k

000
� �

ð52Þ

where jkj, jk0j, jk00j, jk000 j 	 j kcj. Note that there are
no quadratic expressions in x. This is because
k � k0 � k00 cannot vanish if all wave numbers
have the same (nonzero) absolute value. In three
spatial dimensions this is different. Three
k-vectors can then form a resonant triangle,
which is the reason why stable hexagons may
occur.

The Landau coefficient B is directly related to
the matrix elements (50):

B k, k0, k00, k
000

� �
¼

X
s

1

ls k00 þ k
000� �2� �

csuu k00 þ k
000
, k0, k00

� �
cuus k, k0, k00 þ k

000
� �h

þcusu k, k00 þ k
000
, k0

� �i
where the indices u and s are defined in (51).

To arrive at the Ginzbur–Landau equation, one
must transform back to real space. If we express
the d-function in (52) as

d k � k0 � k00 � k
000

� �
¼ 1

2p

Z
dxei k�k0�k00�k

000ð Þx

and assume, that the coefficient B does not depend
much on k (it can be evaluated at k ¼ � kc), the
cubic part of (52) takes the form

B
2p

Z
dxeikx

Z
dk0x k0, tð Þe�ik0x

Z
dk00x k00, tð Þ

e�ik00x
Z
dk

000
x k

000
, t

� �
e�ik

000
x

¼ B
2p

Z
dx eikxC3 x, tð Þ

ð53Þ

where we have introduced the Fourier transform

C x, tð Þ ¼
Z
dkx k, tð Þe�ikx: ð54Þ

Inserting (53) into (52), multiplying with e�ikex
and integrating over k yields the order parameter
equation in real space

@tC ex, tð Þ ¼
Z
dkl kð Þx k, tð Þe�ikex

þ BC3 ex, tð Þ: ð55Þ

If we replace the k2 -dependence of l under the
integral by�@2exex, we may pull A out of the integral

and write (55) in the form

@tC x, tð Þ ¼ l �@2
xx

� �
C x, tð Þ þ BC3 x, tð Þ: ð56Þ

The function C(x, t) can also be called an
“order parameter”, though it is not slowly varying
in space compared to the small scale structure of
the rolls, an idea which we shall work out in the
following section. One big advantage can already
be seen: the reduction of the number of space
dimensions by one. We started with the hydrody-
namic equations in two dimensions and get an
order parameter equation in only one spatial
dimension.

To find the form of the Ginzbur–Landau equa-
tion, we must introduce a slowly varying order
parameter. This is done by recalling that the Fou-
rier transform of W is mainly excited around
k ¼ �kc. Then it is natural to make a “rotating
wave approximation”with respect to x of the form

C x, tð Þ ¼ x x, tð Þeikcx þ x
 x, tð Þe�ikcx: ð57Þ

Inserting this into (56), multiplying by e�ikcx

and integrating with respect to x over one period
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2p/kc yields with the assumption of constant
(slowly varying) x in this period

@tx x, tð Þ ¼ l � @x þ ikcð Þ2
� �

x x, tð Þ

þ 3B xðx, tÞj j2x x, tð Þ:
The last approximation is concerned with the

evaluation of the eigenvalue in form of a differen-
tial operator. Close to kc, it has the form of a
parabola, see Fig. 15 middle frame. Thus we may
approximate

l k2
� � ¼ e� q2 k2 � k2c

� �2 ð58Þ
and also

l � @x þ ikcð Þ2
� �

¼ e� q2 @x þ ikcð Þ2 þ k2c

� �2

¼ e� q2 @2
xx þ 2ikc@x

� �2
	 eþ 4q2k2c@

2
xx:

ð59Þ
For the last conversion, we neglect higher

derivatives, which is justified due to the slowly
varying spatial dependence of x. After scaling of x
and the additional assumption B < 0 we finally
have derived the Ginzbur–Landau Eq. (39).

The Swift-Hohenberg Equation
In two spatial dimensions, the drawback of the
Ginzburg-Landau equation is its lack of rotational
symmetry. Therefore, it is better to pass on the rotat-
ing wave approximation (57) and to consider instead
the fully space-dependent function C as an order
parameter, but now in two spatial dimensions. The
resulting evolution equation in its lowest nonlinear
approximation is the Swift-Hohenberg Eq. (88)

_C x
!
, t

� �
¼ e� 1þ D2ð Þ2

h i
C x

!
, t

� �
�C3 x

!
, t

� �
,

ð60Þ
which we shall derive now.

Non-local Order Parameter Equations To this
end we go back to (52) and write it down in two
dimensions, now including the quadratic terms

k
! ¼ kx, ky

� �� �
:

@tx k
!
, t

� �
¼ l k2

� �
x k

!
, t

� �
þ
Z

d2 k
!0
d2 k

!00
A k

!
, k
!0
, k
!00
 �

�x k
!0
, t


 �
x k

!00
, t


 �
d k

! � k
!0

� k
!00
 �

þ
Z

d2 k
!0
d2 k

!00
d2 k

!000

�B k
!
, k
!0
, k
!00

, k
!000
 �

x k
!0
, t


 �
x k

!00
, t


 �
x k

!000

, t


 �
�d k

! � k
!0

� k
!00

� k
!000
 �

:

ð61Þ

Introducing the (2D) Fourier transform

x
! ¼ x, yð Þ

� �
,

C x
!
, t

� �
¼

Z
d2 k

!
x k

!
, t

� �
e�i k

!
x
!
: ð62Þ

and transforming (61) to real space yields the
integro-differential equation

@tC x
!
, t

� �
¼ l Dð ÞC x

!
, t

� �
þ
Z Z

d2 x
!0

d2 x
!00

G 2ð Þ x
! � x

!0
, x
! � x

!00� �
C x

!0
, t

� �
C x

!00
, t

� �
þ
Z Z Z

d2 x
!0

d2 x
!00

d2 x
!000

G 3ð Þ x
! � x

!0
, x
! � x

!00
, x
! � x

!000� �
C x

!0
, t

� �
C x

!00
, t

� �
C x

!000
, t

� �
ð63Þ

where the kernels are computed by the Fourier
transforms:

G 2ð Þ x
!
, x
!0� �

¼ 1

16p4

Z
d2 k

!
d2 k

!0
A k

! þ k
!0
, k
!
, k
!0
 �

e�i k
!
x
!
e�i k

!0
x
!0
,

G 3ð Þ x
!
, x
!0
, x
!000� �

¼ 1

64p6

Z
d2 k

!
d2 k

!0
d2 k

!00
B k

! þ k
!0

þ k
!00

, k
!
, k
!0
, k
!00
 �

�e�i k
!
x
!
e�i k

!0
x
!0
e�i k

!00
x
!00
:

ð64Þ
Gradient Expansion Although Eq. (63) has a
rather general form, its further numerical treat-
ment is not practicable, at least not in two dimen-
sions. Each integral must be approximated
somehow as a sum over mesh points. The cubic
coefficients would result in a 6-fold sum with, if
N is the number of mesh points, N6 summands,
which is, if N is around the size of 100, rather
hopeless.
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On the other hand, the excitation of x mainly
close to kc, in two dimensions on a (narrow) ring
in Fourier space with radius kc, makes it natural to

expand C under the integrals around x
!
. This

works well if the kernels (64) have a finite
(small) range with significant contribution only
for j x! � x

!0 j< L with L ¼ 2p/kc.
To save space we demonstrate the method only

for the quadratic term of (63) and in one spatial
dimension. ATaylor expansion of C leads toZ Z

dx0dx00G 2ð Þ x� x0, x� x00ð Þ
X1
m, n¼0

1

m!n!
@mC
@xm

@nC
@xn

x� x0ð Þm x� x00ð Þn,

where the derivatives must be evaluated at x. They
can be written in front of the integrals, yielding

X1
m,n¼0

g 2ð Þ
m n

@mC
@xm

@nC
@xn

ð65Þ

with the moments

g 2ð Þ
mn ¼

1

m!n!

Z Z
dx1 dx2G

2ð Þ x1, x2ð Þxm1 xn2Þ:

A similar expression can be found for the cubic
coefficient. A series of the form (65) is called
gradient expansion. In this way, a local order
parameter equation results, but which now has
infinitely many nonlinear terms. It reads

@tC ¼ l Dð ÞCþ
X1
m, n¼0

g 2ð Þ
mn

@mC
@xm

@nC
@xn

þ
X1

l,m, n¼0

g
3ð Þ
l m n

@lC
@xl

@mC
@xm

@nC
@xn

ð66Þ

with

g
3ð Þ
lmn

¼ 1

l!m!n!

Z Z Z
dx1 dx2 dx3 G

3ð Þ x1, x2, x3ð Þxl1xm2 xn3:

For more details see (Bestehorn and Friedrich
1999).

Swift-Hohenberg-Haken Equation The
series in (66) will converge rapidly if the kernels
have a short range. Here we consider only the
extreme case of d-shaped kernels, now in two
dimensions:

G 2ð Þ x
!
1, x

!
2

� �
¼ A � d x

!
1

� �
d x

!
2

� �
,

G 3ð Þ x
!
1, x

!
2, x

!
3

� �
¼ B � d x

!
1

� �
d x

!
2

� �
d x

!
3

� �
:

All coefficients vanish, except g 2ð Þ
00 and g

3ð Þ
000 .

Then (66) simplifies to

@tC x
!
, t

� �
¼ l Dð ÞC x

!
, t

� �
þ AC2 x

!
, t

� �
þ BC3 x

!
, t:

� �
: ð67Þ

For the linear part we again use the expansion (58)
and replace k2 by – D. After rescaling of length,
time and V, (67) turns into the canonical form

_C x
!
, t

� �
¼ e� 1þ D2ð Þ2

h i
C x

!
, t

� �
þ aC2 x

!
, t

� �
�C3 x

!
, t

� �
ð68Þ

With

a ¼ Affiffiffiffiffiffiffi�B
p :

Equation (68) is the Swift–Hohenberg–Haken
equation derived first using the theoretical
methods of synergetics by Haken (Bestehorn and
Haken 1983; Haken 1983).

Numerical solutions of (68) with a ¼ 0 are
shown in Fig. 18. Stripes as known from convec-
tion, but also from Turing instabilities, can be
clearly seen. If |a| exceeds a certain value which
depends on

ffiffi
e

p
, hexagonal structures are found

which agree qualitatively with those obtained in
Bénard–Marangoni convection (Fig. 19). It can be
shown that the symmetry break z ! � z caused
by the different vertical boundary conditions on
top and bottom of the fluid gives rise to a
(positive) quadratic coefficient. In the Swift–
Hohenberg equation, this violates the symmetry
C! �C and may stabilize two different sorts of
hexagons, namely the already mentioned l - and
g - hexagons. The first ones are found for large
enough positive a, the latter for negative a.
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The Swift–Hohenberg equation can be consid-
ered as normal form of type Is instabilities. The
bifurcation scenario is general (Fig. 20): hexagons
are the generic form at onset if symmetry breaking

(quadratic) terms occur, which is normal. Even
very small symmetry breaking effects lead to
hexagons, although their stability region will
decrease and finally shrink to the critical point

Fluid Dynamics, Pattern Formation, Fig. 18 Computer solutions of the Swift–Hohenberg Eq. (60) for several
e ¼ 0.01,0.1, 1.0,2.0 (top to bottom). The evolution time scales with 1/e, the number of defects increases with e
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e ¼ 0 if a ! 0. Well above threshold, stripes are
expected – or squares.

Squares A linear stability analysis of the
Swift–Hohenberg Eq. (68) shows that squares
are always unstable in favor of rolls
(or hexagons). Therefore there exists no stable
square pattern as a solution. This can be changed
including higher order terms in the gradient
expansion (66), for details see (Bestehorn and
Pérez-García 1992). In this spirit, the equation

@tC ¼ eC� Dþ 1ð Þ2C� b C3

� c CD2 C2
� � ð69Þ

has a stable square solution for –32c/9< b< 0. In
Fig. 21 we present numerical solutions of (69) for
two different values of the parameter b.

Fluid Dynamics, Pattern Formation, Fig. 19 Evolution
of a random dot initial condition from (68) with e ¼ 0.1,
a ¼ 0.26 (top) and a ¼ 1.3 (bottom). For a in the bistable
region, top row, stripes and hexagons coexist for a long

time until hexagons win. Bottom: for rather large
a hexagons are formed soon showing many defects and
grain boundaries. The defects survive for quite a long time

Fluid Dynamics, Pattern Formation, Fig. 20 Stability
regions in the parameter plane of Eq. (68). Hexagons
bifurcate subcritically from the trivial solution C ¼ 0. As
a secondary instability, stripes emerge. The transition
hexagons-stripes as well as trivial sol-hexagons both
show hysteresis
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Regular squares are found in convection experi-
ments with two poorly conducting top and bottom
plates (Busse and Riahi 1980) or in binary mixtures
with a certain mean concentration (Moses and
Steinberg 1986). If the fluid viscosity is strongly
temperature dependent (non-boussinesq effects),
squares are also preferred, as shown in (Busse and
Frick 1985). For all these cases, an equation of the
form (69) can be approximately derived close to
onset.

Conserved Order Parameter Fields

In the previous section, the OPE had the general
form

@tx r
!
, t

� �
¼ F x,∇x,Dxð Þ ð70Þ

with no further restrictions (except of boundary
conditions) for the order parameter field x. How-
ever, there are many cases where the physical

meaning of the order parameter is that of a density
belonging to a conserved quantity such as total
mass, volume or charge. Let x be such a density;
then the mean value

M ¼ Fh i � 1

V

Z
V

d3 r
!
F x,∇x,Dxð Þ ð71Þ

should vanish, if hxi is a conserved quantity in the
constant volume V. Then F can be written as

F x,∇x,Dxð Þ ¼ �div j
!

r
!
, t

� �
ð72Þ

if the total flow of the current density j
!

through
the surface A of V vanishesI

A Vð Þ
d2 f

! � j! r
!
, t

� �
¼ 0: ð73Þ

With (72), Eq. (70) takes the form of a conti-
nuity equation. In this section we wish to consider
OPEs that fulfill (72) and (73).

Fluid Dynamics, Pattern Formation, Fig. 21 Numerical
solutions of (69) for e ¼ 0.1, c ¼ 1/16 and b ¼ 0 (top),
b ¼ �0.1 (bottom). For b ¼ 0 both squares and stripes are
stable. After a longer time squares win the competition.

Bottom: clearly in the square region of parameter space.
Squares are formed soon having many defects and grain
boundaries. Finally, a rather regular square pattern evolves
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Thin Films
Consider a fluid with a free and deformable sur-
face located at z ¼ h(x, y, t) as already shown in
Fig. 3. If the fluid is incompressible and there is no
flow through the sidewalls, the total volume of the
fluid layer

A � hh i ¼
Z
A

dx dy h x, y, tð Þ ð74Þ
is a conserved quantity, where A is the base area of
the layer. As a consequence, the evolution equa-
tion for h must have the form

@th ¼ �div j
! ¼ �@x jx � @y jy: ð75Þ

Comparing (75) with the kinematic boundary
conditions (23) and taking vz|z ¼ h from the inte-
gral of the incompressibility condition (3)

vz z¼hj ¼ �
Z h

0

dz @xvx þ @yvy
� �þ vz z¼0j

one finds with vz|z ¼ 0 ¼ 0

j
! ¼

Z h

0

dz v
!
H, ð76Þ

where v
!
H denotes the two horizontal velocity

components.

The Lubrication Approximation To close the

Eqs. (75), (76), it is necessary to compute v
!
H as a

function of h. For thin films, the Reynolds number
is small and the Stokes Eq. (19) determines the
fluid velocity to a good approximation. Using
scaling (Oron et al. 1997)

x ¼ ~x � l, y ¼ ~y � l, z ¼ ~z � d, t ¼ ~t � t, h ¼ ~h � d,
ð77Þ

(19) turns into

d2 @2
~x~x þ @2

~y~y

� �
þ @2

~z~z

� �
~v
!

H ¼ ~∇2
~P ð78aÞ

d2 d2 @2
~x~x þ @2

~y~y

� �
þ @2

~z~z

� �
~vz ¼ @~z

~P: ð78bÞ

with the 2D-gradient ∇2 ¼ (@x, @y). In (78) we
have introduced the dimensionless velocity and
pressure

v
!

H ¼ ~v
!

H � l
t
, vz ¼ ~vz � dt ,P ¼ ~P � �

d2t

and d¼ d/l as a small parameter already defined in
(24). In the limit d ! 0 it follows from (78b)

@~z
~P ¼ 0 or ~P ¼ ~P ~x, ~yð Þ:

Thus one can integrate (78a) twice over h and

finds with the no-slip condition ~v
!

H 0ð Þ ¼ 0

~v
!

H ~x, ~y, ~zð Þ ¼ f
!

~x, ~yð Þ � ~zþ 1

2
~∇2

~P ~x, ~yð Þ� � � ~z2
ð79Þ

with a function f
! ex, eyð Þ which can be determined

by the boundary conditions. To this end we con-
sider an inhomogeneous surface tension (caused,
for example, by a temperature gradient) at the free
surface, which yields the condition

� @z v
!
H z¼h ¼ ∇2G z¼hjj :

Inserting (79) there one finds

f
! ¼ e∇2

eG� e∇2
eP� �

� eh
with the non-dimensional surface tension

eG ¼ G
td
�l2

:

Inserting everything into (76) and integrating
by ez finally yields (all tildes omitted)

@th ¼ �∇2 � h3

3
∇2Pþ h2

2
∇2G

� �
: ð80Þ

This is the basic equation for the evolution of
the surface of a thin film in the so-called lubrica-
tion approximation (Ockendon and Ockendon
1995). Eq. (80) is sometimes denoted as the thin
film equation (Oron et al. 1997; Vrij 1966).

The Disjoining Pressure for Ultra-thin
Films Gravitation and surface tension can be
included into the pressure P as already outlined in
Section “Surface Waves”. They both stabilize the
flat film. On the other hand, an instability mecha-
nism is encountered in very thin (ultra-thin) films
where the thickness is some 100 nm or even less
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(Israelachvili 1992; Reiter et al. 1999; Sharma and
Khanna 1998). Then, van der Waals forces between
free surface and solid substrate can no longer be
neglected (Israelachvili 1992). For an attractive
force between surface and substrate one has

dhP < 0:

But there can also exist a repelling van der
Waals force with dhP > 0 which stabilizes the
flat surface. Attractive and repelling forces have
different ranges. Usually, the repelling force is
short range, the attractive one long range. Then,
the initially “thick” film can be unstable due to
attraction but rupture is avoided by repulsion. In
this way completely dry regions cannot exist but
the substrate always remains covered by an
extremely thin film (some nm), called precursor
film, Fig. 22 (Hardy 1919).

The complete expression for such an attractive/
repulsive disjoining pressure including gravity
and surface tension would be (Fig. 23)

P hð Þ ¼ A3

h3
� A9

h9
þ Gh� q D2 h ð81Þ

where A3 and A9 are material parameters, the
Hamaker constants, and

G ¼ d3gt
l2v

, q ¼ G
td3

l4�

denote the dimensionless gravitation number and
the surface tension, respectively.

Spinodal Dewetting – Numerical Results If a
thin liquid film is exposed to a non-or partially
wetting substrate, a small perturbance is sufficient
to destabilize the flat surface. The fluid then bub-
bles and many small drops are formed. This

Fluid Dynamics, Pattern Formation, Fig. 22 Left: Thin
flat films are unstable due to an attractive, long range van der
Waals force between the free surface and the solid substrate of

the fluid. Right: If the film is extremely thin (some nm), a
repelling short range force acts as a stabilizer and the precur-
sor film remains intact instead of rupturing

Fluid Dynamics, Pattern Formation, Fig. 23 Left: The
disjoining pressure for a film with uniform thickness
h including gravitation, A3 ¼ 3, A9 ¼ 1, G ¼ 0.1. The
region of unstable films is bounded by ha and hb. The
critical pressure (depth) Pc (hM) where drops turn into
holes is determined by a Maxwell construction. Right:

Growth rates of periodic disturbances of the plane surface
with wave number k. The solid line corresponds to a film
with a mean thickness in the unstable regime. Waves
having a wave number 0 < k < k0 grow exponentially,
the mode with k ¼ kc has the largest growth rate (most
dangerous mode). The instability is of type II
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phenomenon can be seen for instance if rain falls
on a waxed cloth or on a well polished car roof.
Such a process is called spinodal dewetting and
refers to the unstable region of Fig. 23, (Bestehorn
and Neuffer 2001; Seemann et al. 2001). As
already explained in Section “Instabilities”, an
instability of the flat film occurs in the region
where P has a negative slope. This instability is
of type II, as is shown in Fig. 23, right frame, and
has the growth rate (dispersion relation)

l ¼ 1

3
h30 �D h0ð Þk2 � k4
� � ð82Þ

with the “diffusion coefficient”

D hð Þ ¼ dhP:

(Here we restrict our further study to fluids with a
uniform surface tension. For non-isothermal films
with ∇2G 6¼ 0 we refer to (Bestehorn et al. 2003;
Oron 2000)). Next we wish to present numerical
solutions of the fully nonlinear Eq. (80) with (81).
To this end we used the parameters of Fig. 23 and
several initial depths h0. As initial condition a
random distribution around the average depth h0
was chosen.

In the early stage of the evolution (top line of
Fig. 24), structures having a length scale of the
critical wave length L ¼ 2p/kc, occur, were kc is
the wave number of the fastest growing mode

kc ¼
ffiffiffiffiffiffiffiffi
�D

2

r
:

This can be called “linear phase” since the ampli-
tudes are still small and nonlinearities play no
important role. The structure grows on the typical
time scale

t ¼ l�1 kcð Þ ¼ 12

h30D
2
¼ 12

h30
P0 h0ð Þð Þ�2,

which is inverse to the square of the slope of the
disjoining pressure. This is the reason why pattern
formation in thicker films takes much longer
(right column in Fig. 24). As a consequence, the

small scale (linear phase) structures are overlayed
by holes created by certain seeds. After the linear
phase, the position of h0 with respect to the Max-
well point hM (Fig. 23, left frame) is decisive.
If h0 > hM, holes are formed, for h0 < hM, one
finds drops. If h0 	 hM, maze-like patterns are
obtained in form of bent, rather irregular stripes
(Fig. 24, middle column). In a last, strongly non-
linear phase, coarsening is observed. The final
stationary structure (long term) is often a single
entity in the form of one big drop or hole. The
whole spatio-temporal evolution is transient and
can be formulated as a gradient dynamics. The
potential plays the role of a generalized free
energy reaching its minimum in the steady end
state (Bestehorn et al. 2003).

The flat film is unstable with respect to infini-
tesimal disturbances if h0 is in the region between
ha and hb. On the other hand, two meta-stable
domains exist, where the flat film is stable,
although the free energy could be lowered by
pattern formation. Then, a finite disturbance is
necessary, which can be caused by seeds coming,
for instance, from impurities. Such a process is
called nucleation and can be seen in the right
column of Fig. 24. There, the seeds were provided
by the random dot initial conditions and two holes
are formed. Both processes (nucleation and wet-
ting) converge in this region and it is a question of
time scales which one emerges first. In experi-
ments, the formation of holes by nucleation is
seen quite often. The reason is that for a
Lennard–Jones like disjoining pressure as (81),
the meta-stable hole region is much larger com-
pared to that of drops (Fig. 23, left frame).

Phase Field Models
In solidification processes, phase fields are intro-
duced as additional variables to describe the state,
here liquid or solid, of the system (Langer 1980).
Phase fields depend on space and time and
governing equations for the phase field variables
must be stated or derived. If the phase field obeys
an equation of the form of (70), it is called
Model A, according to a classification given by
Hohenberg and Halperin (Hohenberg and
Halperin 1977).
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FluidDynamics, Pattern Formation, Fig. 24 Time series found by numerical integration of (80) for h0¼ 1.2 (left column),
1.862 (middle), and 2.8 (right). Light areas correspond to elevated regions of the surface (from Bestehorn 2007)
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Model B Here, we are more interested in phase
field equations belonging to Model B. The phase
field (we call it F) is conserved and a continuity
equation

@tF ¼ �div j
! ð83Þ

must hold. As in nonequilibrium thermodynamics
(Callen 1985) one assumes that the current density

j
!
is proportional to a generalized force f

!

j
! ¼ Q Fð Þ � f! ð84Þ

where Q stands for a non-negative mobility,
which is normally a function of the phase field
itself, but may also explicitly depend on space
coordinates. If the force can be derived from a
potential P (pressure)

f
! ¼ �∇P Fð Þ ð85Þ

which in turn can be written as functional deriva-
tive of another (thermodynamic) potential (free
energy) F

P ¼ dF
dF

, ð86Þ

we finally obtain a closed equation for (83) of the
form

@tF ¼ div Q Fð Þ∇ dF
dF

� �
: ð87Þ

With (87) it is easy to show that dtF � 0.

The Cahn-Hilliard Equation As known from
the Ginzbur–Landau equation, one may expand
the free energy with respect to powers of the
phase field. The surface term (∇F)2 penalizes
phase field variations with respect to space by an
increase of F:

F F½ � ¼
Z
V

d3 r
! D

2
∇Fð Þ2 þ a0Fþ a1

3
F2

h
þ a2

3
F3 þ a3

4
F4 þ . . .

i
:

ð88Þ

Substituting this into (87) yields

@tF ¼ div Q Fð Þ∇ �DDFþ a0 þ a1Fð Þ½
þa2F2 þ a3F3

�
:

ð89Þ

We further assume a2 ¼ 0 (this can be always
obtained by a simple shift of F) and
a1 < 0, a3 > 0. If we restrict us to the case of a
constant mobility, we arrive from (89) after a
suitable scaling at the Cahn-Hilliard Eq. [29]

@tF ¼ �DF� D2Fþ D F3
� �

: ð90Þ

Equation (90) can be considered as a simple
model for a conserved order parameter. A family
of stationary solutions of (90) is given by
F ¼ F0 ¼ constant. A linear stability analysis
shows that these solutions are type II unstable if
F2

0 <
1
3
holds. Since (90) belongs to Model B, an

infinitesimal disturbance can grow only in a way
that keeps the mean value of F ¼ F0 constant.
Therefore, spatially structured solutions are
expected (Fig. 25).

Fluid Dynamics, Pattern Formation, Fig. 25 Stationary solutions of the ID Cahn-Hilliard equation for several mean
values F0
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The density of the free energy of a homoge-
neous solution reads

f Fð Þ ¼ �F2

2
þ F4

4
ð91Þ

and has its minima at Fm ¼ �1. From Fig. 25 it
becomes clear that the stationary pattern forming
solutions are located between these two minima
independently from the mean F0. If the mean
value is increased, the regions with F 	 1 grow
at the cost of the regions with F 	 �1 and vice
versa. Taking (90) as a simple model for the phase
transition from liquid to gas, the phase field
defines the state of aggregation. The density can
then be found from the linear relation

r r
!
, t

� �
¼ 1

2
r f � rg

� �
F r

!
, t

� �
þ 1

2
r f þ rg

� �
ð92Þ

with rg (rf) as the density of the gaseous (liquid)
state. Regions where F 	 �1 are gaseous, those
with F 	 +1 liquid.

Equation (90) has no free parameters. On the
other hand, the mean F0 ¼ hFi is a conserved
quantity which influences the dynamics of pattern
formation qualitatively and which can be consid-
ered as a control parameter. Integrating (92) over
the volume, it turns out that F0 is linked to the
total mass M of the gas/liquid system

M ¼ 1

2
r f � rg

� �
F0 � V þ 1

2
r f þ rg

� �
� V:

The stable homogeneous solutions F2
0 > 1=3

correspond to a pure gas phase (F0< 0, small total
mass), or to a pure liquid phase (F0> 0, large total
mass). In the unstable regime F2

0 < 1=3 the
(homogeneous) system has a medium density;
this corresponds either to an oversaturated vapor
atmosphere (F0 < 0) or to a liquid with a temper-
ature above its boiling point. In both cases, an
infinitesimally small disturbance is sufficient to
trigger pattern formation in the form of phase
separation. In the first case, one observes drops
in the gas atmosphere, in the latter, bubbles in the
liquid. Figure 26 shows a numerical simulation of
(90) in three dimensions.

The Fluid Density as Phase Field
Writing down an equation such as (87) and an
expansion such as (88) seems to be rather ad
hoc. However, for pure fluids it is evident to use
the density itself as the phase field, if one is inter-
ested in the liquid/gas phase transition. Then, the
continuity Eq. (2) may serve as a phase field equa-
tion in lieu of (87). Consequently, the fluid can no
longer be considered incompressible.

The Model The Navier–Stokes equations for a
compressible fluid (14) must be extended by a
force term coming from spatial variations of the
phase field (density). They read (Borcia and
Bestehorn 2007; Jasnow and Vinals 1996)

r @t v
! þ v

! � ∇
� �

v
!h i

¼ �gradpþ f
! þ �Dv

!

þ zþ �
3

� �
graddiv v

! þ K rgradDr:

ð93Þ
The extra term at the end of (93) was first used by

Korteweg in 1901 and is sometimes called
Korteweg stress (Korteweg 1901). For (93) we
assumed constant material parameters �, ζ and K .
Using the methods of thermodynamics, the pressure
is related to the free energy density f (Anderson and
Mc Fadden 1997; Davis and Scriven 1982)

p rð Þ ¼ r
@f rð Þ
@r

� f rð Þ ð94Þ
and the free energy as a functional of r reads

F r½ � ¼
Z
V

d3 r
! K

2
∇rð Þ2 þ f rð Þ

h i
, ð95Þ

according to (88). Equations (93) with (94) and
(2) form a closed system for the variables v

!
and r.

Wetting properties and contact angles at the walls
depend on the boundary conditions r ¼ rw along
the wall (Pismen and Pomeau 2000). The choice
rw ¼ rf corresponds to a completely wetting
(hydrophilic) material, rw ¼ rg to a non-wetting
(hydrophobic) boundary. The boundary condition
for v

!
can either be no-slip (along a wall), no flux,

or periodic. It is straightforward to include evap-
oration and condensation effects into the model,
which is studied in (Borcia and Bestehorn 2005).

Note that now the free energy (95) is not
needed for determining the evolution of the
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phase field by (ad-hoc) gradient dynamics. How-
ever, it can be shown that the free energy
decreases monotonically in time.

Results Again, we wish to consider the forma-
tion of one state of aggregation on the background
of the other. To account for the two stable states,
liquid and gaseous, we take (for sake of simplicity
we assume rg 	 0)

f rð Þ ¼ gr2 r� r f

� �2

: ð96Þ

where y is a positive material constant. In Fig. 27
we show results of the breakup of a flat liquid film
aligned along a rigid bottom plate. The layer is
inclined by an angle ’ and under vertical gravita-
tion. Thus, an external force density of the form

f
! ¼ rg

sin’

� cos’


 �

occurs in (93). The bottom material is assumed to
be partially wetting (rw¼ 0.5rf) and the initial film
is unstable under these conditions. Periodic distur-
bances grow along the fluid’s surface. After rupture,
bubbles separate and travel from left to right due to
downhill force. Figure 28 shows final states of a
sliding drop for two boundary values rw. Clearly,
the contact angles are different (Borcia et al. 2008a).

The phase field description goes far beyond the
one based on the thin film equation of
Section “Thin Films”, since there the treatment
was restricted to small contact angles and rupture
was excluded from the beginning.

Future Directions

There is a huge number of applications in science,
industry, and technology where the methods and
models outlined in the present article can be used
and developed further. In the field of patterns not

Fluid Dynamics, Pattern Formation, Fig. 26 Numerical
solution of the Cahn-Hilliard Eq. (90) in three room dimen-
sions. The time series (top left to bottom right) shows how
liquid drops are formed in an oversaturated gas

atmosphere. Finally they merge to one big drop by coars-
ening, a typical dynamic for a type II instability (from
(Bestehorn 2006))
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formed by self-organized processes, but rather by
external events such as tidal waves, storm surges or
Tsunamis, a reduced and simplified description as
discussed in Sections “Surface Waves” and “Order
Parameter Equations” should allow for a better
understanding of the underlying mechanisms and
their effects. Highly involved problems, as for
instance the flow, temperature, and concentration
fields inside a combustion cell, could be tackled by
such models, extended in a suitable way.

Self-organized fluid patterns (Section “Instabil-
ities”) are the focus of attention in many actual fields
of quite different disciplines and scales. The

conditions that lead to the creation and stabilization
of hurricanes are not yet completely known. The
rather high probability of the occurrence of freak
waves in the open sea still waits for an explanation.
On a planetary scale, convection problems are
encountered in the interior of planets and stars and
may give rise to the spontaneous formation of a
magnetic field. Another problem of great interest
for the geophysicist is that of a fluid (such as oil) in
a porous medium. The equations for that case differ
only a little from that discussed in Section “The
Basic Equations of Fluid Dynamics” and could
therefore be treated in the same spirit.

Fluid Dynamics, Pattern Formation, Fig. 27 Transition
from a flat unstable liquid layer to a drop running down on
an inclined substrate (arrows) under gravity effects.

Numerical simulation (Borcia et al. 2008a) of (93) with
(96) and the material parameters for water/vapor from
(Burelbach et al. 1988) and rw ¼ 0.5rf

Fluid Dynamics, Pattern Formation, Fig. 28 Two final
states showing a drop sliding down the inclined substrate
with rw ¼ 0.1rf (left, almost hydrophobic) and rw ¼ 0.8rf

(right, almost hydrophilic). The flow in the gas and in the
liquid is indicated by small arrows (Borcia et al. 2008b)
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Understanding the mechanisms responsible for
pattern formation can also help to control systems
to avoid the occurrence of spatial patterns. In this
way, the quality of products obtained from indus-
trial processes, such as coating or solidification
(crystal growth), might be improved.

On the micro-scale, fluid problems in general
ruled by the Stokes equations discussed in
Section “Conserved Order Parameter Fields”
form a major issue, founding the new discipline
of micro-fluidics. But even on the nanoscale, there
are new applications in view. The self-organized
growth of structures could be a promising tool in
the conception and construction of nano-circuits.

An extension of the treatment to complex
fluids such as mixtures and emulsions, or to non-
Newtonian fluids using the phase field approach
(Section “Conserved Order Parameter Fields”), is
desirable. These fluids are important for biologi-
cal applications.
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Glossary

Interface An interface separates domains where
different stationary states or different patterns
prevail. In the latter case, it is also called a
domain wall. The interface typically has a
finite thickness comparable to a characteristic
intrinsic scale of the system but small com-
pared to the overall system size.

Stationary pattern A stationary pattern is
formed as a result of an instability to perturba-
tions with a finite wavenumber. It may have
any of various spatial structures (striped,
square, hexagonal, or quasicrystalline in 2D,
lamellar, crystalline or quasicrystalline in 3D)
and may slowly evolve in time.

Wave pattern A wave pattern is formed by a
combination of waves propagating in one or
different directions.

Definition of the Subject

A pattern is an inhomogeneous state of a physical
system that arises spontaneously under spatially
homogeneous conditions. Spontaneous pattern for-
mation has been first observed by Faraday (1831) in
vibrated liquid layers and Bénard (1900) in fluids
heated from below. Turing (1952) envisaged pattern
formation as the mechanism of morphogenesis in
living Nature. Some patterns can be described as a
collection of patches or domains where one of alter-
native homogeneous states prevails, separated by
relatively narrow interfaces. In their turn, moving
interfaces may develop corrugation patterns. Pat-
terns can be stationary or wavelike; they can be
regular, interlaced by defects, or chaotic
(turbulent). In the latter part of twentieth century,
numerous pattern formation phenomena have been
observed in chemistry, biology, fluid mechanics,
granular media, nonlinear optics, and other applica-
tions, and common models describing these phe-
nomena in physically dissimilar settings have been
formulated and studied. Understanding pattern for-
mation is important both for describing natural self-
organization phenomena and for developing
manufacturing processes based on self-organization.

Introduction

A typical setup of a non-equilibrium system that
may undergo a symmetry-breaking transition is
shown in Fig. 1. A non-equilibrium stationary state
homogeneous in the “horizontal” plane is sustained
by fluxes in the normal (“vertical”) direction, along
which an inhomogeneous “vertical structure” may
be formed. This setup may be realized as a layer of
fluid or granular matter; a chemically reacting sys-
tem, such as an active layer or a catalytic surface; an
area where different populations spread out and
compete; a propagating interphase boundary, e.g. a
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melting or crystallizing solid; a slice of nonlinear
optical medium, etc. Under certain conditions, most
commonly, under increased driving, this homoge-
neous state may be destabilized, giving way to a
stationary or moving pattern with a characteristic
wavelength dependent on physical properties of
the system as well as on external fluxes. In chemi-
cally reacting systems, three-dimensional patterns
can be also formed when a sufficient amount of
reactants is stored; such patterns may exist, of
course, for a limited time until the original cache is
depleted. Mathematically, a pattern typically
emerges as an inhomogeneous solution of a
(system of) partial differential equation(s) with
space-independent coefficients in the absence of
lateral fluxes.

Alternative states, corresponding to different
phases, may exist also in equilibrium systems.
Following a fast quench past a critical point, dif-
ferent states, separated by domain boundaries,
would be approached at spatially removed loca-
tions. Typically, these domains would conse-
quently slowly coarsen to minimize the extent of
an interphase boundary and related energetic
costs. A stationary pattern with a finite wave-
length may exist, however, also at equilibrium,
provided it minimizes the free energy of the sys-
tem. Such patterns are realized as “mesoscopic
crystals” in block-copolymers consisting of two
kinds of mutually repelling units (Hamley 2003).

In fluid mechanics, inhomogeneous states, most
often disordered but still retaining a measure of
regularity, are commonplace, as anybody observing
wavy sea and cloud patterns could have realized
long before classical nineteenth century experiments
of Faraday and Bénard. Wave patterns generated by

oscillatory chemical reactions (which long consid-
ered to be impossible due to thermodynamic mis-
conceptions) were demonstrated in 1960s (Burger
and Field 1985), while controlled experiments dem-
onstrating persistent stationary chemical patterns in
reaction-diffusion systems had to wait till early
1990s (Ouyang and Swinney 1991). Shell growth
patterns (Gierer and Meinhard 1972), striped and
dotted animal skins (Murray 1981), and desert veg-
etation patterns (Gilad et al. 2007) have been always
here for anybody to observe, before finding rational
explanation in terms of the same nonlinear models.
Corrugated interfaces were observed and described
both as flame fronts in combustion theory
(Zeldovich 1985) and as dendrite forms of growing
crystals (Langer 1980). More recently, much atten-
tion has been drawn by nonlinear optical patterns –
spontaneous images emerging in optical circuits and
lasers (Arecchi 1999).

Stationary Patterns

Symmetry-Breaking Transitions
The most direct way to formation of stationary
patterns is a symmetry-breaking bifurcation. It
can be demonstrated in a straightforward way
taking as an example a two-component reaction-
diffusion system (RDS)

@tu ¼ D1∇2uþ g�1
1 f u, vð Þ, (1)

@tv ¼ D2∇2vþ g�1
2 g u, vð Þ, (2)

where f(u, v), g(u, v) are source functions
depending on the variables u and v, D1, D2 are

Patterns and Interfaces
in Dissipative Dynamics,
Fig. 1 An open system
isotropic in two dimensions.
A truly two-dimensional
system (above) and a cut
through a system with
vertical structure (below,
shown symbolically by
varied shading). Arrows
indicate the direction of
external fluxes

86 Patterns and Interfaces in Dissipative Dynamics



diffusivities, and ∇2 is the Laplace operator. We
suppose that the system has a homogeneous sta-
tionary state (HSS) u = us, v = vs satisfying f(us, -
vs) = g(us, vs) = 0; the factors g1,g2 are introduced
to scale the derivatives fu, gv computed at this HSS
to unity. Stability analysis of the chosen HSS to
infinitesimal perturbations ~u, ~v / exp ik � xð Þ with
a wave vector k shows that the most dangerous
perturbations have the wavenumber

kj j2 � k2 ¼ 1

2

f u
g1D1

þ gv
g2D2

� �
: (3)

This value should be positive, which is possi-
ble only in the presence of positive feedback, or,
in chemical terms, when at least one of the species
is “autocatalytic”, say, fu > 0 Breaking of spatial
symmetry preempts Hopf bifurcation, which
occurs at g�1

1 f u þ g�1
2 gv ¼ 0 and leads to homo-

geneous oscillations, provided only one of the
species is autocatalytic, so that gv < 0, and the
autocatalytic species is less diffusive. Thus, for
spatial symmetry breaking in a two-component sys-
tem, one needs a combination of a slowly diffusing
“activator” and a rapidly diffusing “inhibitor”.

The development of a pattern can be understood
qualitatively in the following way. A local upsurge
of the activator concentration increases also the
concentration of the inhibitor, which spreads out
suppressing the activator at neighboring locations.
This, in turn, suppresses the inhibitor locally and,
through inhibitor diffusion, enhances the activator
further along the line, so that the inhomogeneous
state spreads out. This scheme works with the roles
of an activator and an inhibitor played, respec-
tively, by prey and predator in population dynam-
ics, by growing plants and seeping moisture in
ecology, or, rather less directly, by buoyancy and
heat conduction in natural convection.

Pattern formation may also result from non-
local interactions. For example, a nonlocal exten-
sion of the nonlinear Schrödinger equation (NLS)
for a complex field u,

�i@tu ¼ ∇2u� u xð Þ
ð
U x� jð Þ u jð Þj j2dx, (4)

generates a patterned state known as “supersolid”,
as compared and contrasted to superfluid

solutions of the local NLS (Josserand et al.
2007). It might be possible to derive nonlocal
equations from a local RDS. Thus, if in Eq. 2
g2 << g1, so that the inhibitor is fast as well as
diffusive, the time derivative can be neglected;
then, if the function g(u, v) is linear in v, Eq. 2
can be resolved with the help of an appropriate
Green’s function, and substituting it in Eq. 1
yields a nonlocal activator equation.

Selection of Stationary Patterns
Symmetry breaking transitions in more than one
dimension are degenerate due to spatial symme-
tries. In an isotropic system, an arbitrary number
of differently directed modes with k = |k| = idem
can be excited beyond the bifurcation point.
A combination of these modes can give a variety
of distinct planforms. Competition among the
modes that determines the pattern selection is
described by amplitude equations describing evo-
lution of complex amplitudes aj, which have a
general form

daj
dt

¼ � @V

@aj
,

V ¼ �m
P

aj
�� ��2 þP

vijkaiajak
þP

vijklaiajakal þ c:c:

(5)

Here the coefficient m is proportional to the
deviation from the bifurcation point; real coeffi-
cients vijk, vijkl characterize nonlinear interactions
among the modes; the summation is carried out
over all closed polygons formed by the wave
vectors of extant modes. The product of the ampli-
tudes aj , ak , etc. (where the overline denotes the
complex conjugate) may appear in the equation
for the amplitude a j if the respective wave vectors
add up to zero, ki + kj + kk + � � � = 0. This
condition ensures that the modes in question are
in resonance. Otherwise, the product of these
modes rapidly oscillates and is averaged out
when the amplitude equation is derived using
a multiscale expansion procedure. Stationary
solutions, i.e. potential minima of Eq. 5 with
one, two, three, or more non-vanishing modes
with a symmetric star of wave vectors correspond,
respectively, to a striped, square, hexagonal, or
quasicrystalline pattern.

Patterns and Interfaces in Dissipative Dynamics 87



The cubic term in the potential (5) generates
the lowest-order, hence, strongest nonlinear inter-
actions. This term vanishes in the presence of
inversion symmetry a ! �a, which exists, in
particular, in the thoroughly studied case of
buoyancy-driven convection in the Boussinesq
approximation. Otherwise, it is dominant near
the bifurcation point, causing (in 2D) a subcritical
transition to a hexagonal pattern comprising
modes forming a regular triangle. These three
modes are in resonance, which means that their
phases are not independent but bound by a linear
relationship. The sum of phases always adjusts in
such a way that interactions are destabilizing. The
remaining two phase degrees of freedom corre-
spond to translational symmetry in the plane.

In 3D, the preferred patterns, or crystalline
structures, comprise wave vectors forming a reg-
ular polyhedron with triangular faces – tetrahe-
dron, octahedron or dodecahedron (Alexander
and McTague 1978). The former two correspond
to a body- centered cubic (bcc), and the last one, to
a quasicrystalline structure with fivefold symme-
try. These lowest-order interactions cannot, how-
ever, stabilize the pattern at a finite amplitude, and
next-order interactions generated by the quartic
term in Eq. 5 are necessary to saturate the pattern.
Depending on respective interaction coefficients,
various structures can be chosen.

A greater variety of patterns may arise if plan-
forms with different wavenumbers k are excited
simultaneously. This can be achieved in a most
natural way in two-layer systems where the wave-
length of the excited pattern depends on the thick-
ness of each layer, as in convection (Proctor and
Jones 1988), or different diffusivities, as in a
pattern-forming chemical system (Yang et al.
2002).More possibilities arise in nonlinear optics
where spatial symmetry breaking may occur on
different wavelengths at rather close values of a
control parameter (Pampaloni et al. 1997). The
resulting coupled amplitude equations can gener-
ate a variety of composite planforms, which may
have a form of superstructures or quasicrystals.
Lowest-order interactions can generate various
resonances; no rigid fitting of wavenumbers is
required for this, since resonant modes can form an
isosceles triangle. Dynamics of mode interactions

may be complicated (Pismen and Rubinstein 1999),
since the gradient structure of Eq. 5 is, generally,
lost.

Regular patterns may suffer various instabil-
ities, which limit the range of admissible wave-
lengths or lead to a change of the planform
through excitation of a non-collinear mode or
decay of an extant mode. Wavelength changing
instabilities, as a rule, do not saturate and lead to
formation of defects.

Modulated and Distorted Patterns
Natural patterns seen both in experiment and sim-
ulations are never perfect: their amplitudes may be
modulated at distances large compared to the
basic wavelength, and they may have various
defects: dislocations, disclinations, and domain
walls. An example of an imperfect striped pattern
is shown in Fig. 2. Variation of local wavelengths
is possible because instability spreads out to a
finite range of wavenumbers, scaled as the square
root of the parametric deviation from the bifurca-
tion point. Other imperfections are a consequence
of the rotational symmetry of the system.

Patterns and Interfaces in Dissipative Dynamics,
Fig. 2 Various forms of pattern defects. 1 – dislocation,
2 – concave disclination, 3 – convex disclination, 4 – ampli-
tude domain wall, 5 – phase domain wall (Bowman and
Newell 1998, reproduced with permission. Copyright by
the American Physical Society)
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Different orientations of stripes may be chosen at
different locations, either randomly or under influ-
ence of boundary conditions or local inhomoge-
neities. The discrepancies of local orientations are
reconciled through formation of disclinations and
domain walls, while dislocations reconcile dis-
crepancies of local wavelengths.

Weak distortions, which do not contain
defects, can be described by means of either
space-dependent amplitude equations applicable
to small-amplitude patterns near the bifurcation
point, or phase dynamics applicable also to finite-
amplitude patterns but restricted to long-scale
distortions.

The amplitude equation must have an aniso-
tropic form in an isotropic system, the source of
anisotropy being the direction of the wave vector
itself. Modulations of this amplitude along and
across the direction of the wave vector k should
be scaled differently, since adding a small longitu-
dinal component, say, ϵqx changes k = |k| by O(ϵ),
while adding a transverse component of the same
magnitude ϵqy changes k by O(ϵ2) only; thus the
stripes are bent far more easily than they
are compressed or extended. This leads to the
Newell-Whitehead-Segel (NWS) amplitude equa-
tion (Newell and Whitehead 1969; Segel 1969),
which can be written in a rescaled universal form

@tu ¼ @x � i

2k
@2
y

� �
uþ u� uj j2u: (6)

The mixed-order differential operator entering
this equation precisely accounts for the equivalence
of all structures with identical wavenumbers, inde-
pendently of the direction of the wave vector.

The NWS equation is ill-suited for computa-
tions, since the orientation of the coordinate axes
depends on the local phase gradient, so that the
differential operator is in fact strongly nonlinear.
Most model computations of striped patterns are
based on the Swift-Hohenberg (SH) equation

@tu ¼ � 1þ ∇2
� �

uþ u m� u2
� �

: (7)

In an anisotropic system where a certain direc-
tion of stripes is preferred, the situation is easier,
and the amplitude equation can be reduced by

rescaling to an isotropic real Ginzburg-Landau
(RGL) equation

@tu ¼ ∇2uþ u� uj j2u: (8)

Phase Dynamics
The idea of phase dynamics (Pomeau and
Manneville 1979) is to characterize a striped pat-
tern by means of a single variable – phase y,
which changes by 2p over the period of the pattern
or, more conveniently, by a rescaled phase
Y = ϵy. The derivatives of the phase are the
wave vector k = ∇y and frequency o = �yt,
which vary on an extended scale exceeding the
wavelength of the underlying structure by a factor
ϵ�1>> 1. The general form of the phase equation
in an isotropic system is determined by scaling
and symmetry considerations alone:

@TY ¼ D1 n � ∇̂
� �2

Yþ D2∇̂2Y, (9)

where @T , ∇̂ are derivatives with respect to slow
time and extended spatial variables, n is the unit
vector along k, and D1, D2 are phase diffusivities
that depend on a particular underlying problem
and are, generally, functions of k. This equation
can be also presented in an elegant gradient form
(Cross and Newell 1984).

The phase equation (9) is, in fact, strongly non-
linear due to the dependence of both the diffusiv-
ities and the direction of the unit vector n on the
local phase gradient. It can be linearized, yielding
an anisotropic diffusion equation, only when devi-
ations from a prevailing wave vector k = k0 are
arbitrary small. If the X- and Y-axes are drawn,
respectively, along and across k0, (9) reduces to

YT ¼ Djj k0ð ÞYXX þ D⊥ k0ð ÞYYY, (10)

where Djj = D1 + D2 and D⊥ = D2 are, respec-
tively, the longitudinal and transverse phase diffu-
sivities. The pattern with the wavenumber k 0 is
stable to long-scale perturbations when both phase
diffusivities are positive. VanishingD|| corresponds
to the Eckhaus instability and vanishing D⊥ to the
zigzag instability. Eckhaus instability defines the
upper limit of stable wavenumbers. It never
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saturates, and usually leads to formation of defects
effectively increasing the wavelength. Zigzag
instability defines the upper limit of stable
wavenumbers; it causes bending of stripes effec-
tively decreasing the wavelength.

Dynamics of Defects
Dynamics of strongly distorted patterns is mostly
governed by motion and interaction of defects.
Defects are topological objects (Mermin 1979): a
dislocation is characterized by circulation of the
phase around any enclosing contour equal to an
integer multiple of 2p, and a disclination, by cir-
culation of the direction of the wave vector equal
to an integer multiple of p. A single dislocation
climbing across the direction of the wave vector
of a striped pattern effects a change of the
wavenumber over an extended region. The force
driving the dislocation is due to the deviation from
the optimal wavenumber. Eckhaus instability of a
striped pattern leads to the formation of a disloca-
tion pair. It is notable that, although the far field of
dislocations can be described by phase equations,
their interaction is determined by the dislocation
core where these equations are inapplicable
(Bodenschatz et al. 1988; Pismen and Rodriguez
1990).

Motion of dislocations in striped patterns is
well understood and supported by experimental
evidence (Braun and Steinberg 1991) for aniso-
tropic patterns governed by Eq. 8. The structure of
dislocations in isotropic systems described by
Eq. 6 is more complicated, being strongly aniso-
tropic (Nepomnyashchy and Pismen 1991).

Disclinations pose more difficulties for the analy-
sis, even on the topological level (Mermin 1979),
see (Newell et al. 1996).

Paradoxically, defects enhance relaxation of the
pattern to a state of minimum energy corresponding
to an “optimal” wavelength. If a deviation of the
control parameter from the symmetry breaking
bifurcation point is of O(ϵ2), the width of the band
of excited modes is of O(ϵ), but the band width
actually observed in a natural patterns containing
defects is ofO(ϵ2) (Bowman and Newell 1998). The
band shrinks due to motion of point defects and
adjustments influenced by domain walls.

The structure and interaction of dislocations in
a hexagonal pattern is strongly affected by the
resonant character of interactions among the con-
stituent modes. Dislocations in any two modes of
the triplet forming a hexagonal pattern, created
originally at arbitrary locations, are always
attracted to each other (Bodenschatz et al. 2000;
Rabinovich and Tsimring 1994), eventually
forming an immobile bound pair corresponding
to a penta-hepta defect (see Fig. 3).

Equations 6 and 8 are derivable from an energy
functional that decreases monotonically in time
until a stationary state of minimal energy is
reached; this state may still contain defects neces-
sary to satisfy boundary conditions in a confined
region. In some cases, however, an additional
field, besides the amplitude, is necessary to ade-
quately describe a physical system even close to
the symmetry-breaking bifurcation point. A well
known example is Bénard convection in low
Prandtl number fluids where the additional factor
is mean flow generated by pattern distortions and

Patterns and Interfaces in Dissipative Dynamics,
Fig. 3 Hexagonal pattern containing a penta-hepta defect
(left) and its three constituent modes obtained by Fourier

filtering of the initial image (Abou et al. 2000, reproduced
with permission)
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advecting the entire pattern. In this case, the pat-
terns remains weakly turbulent indefinitely long,
displaying labyrinthine structures, coexisting
striped and hexagonal domains (Assenheimer
and Steinberg 1993) or spiral defect chaos
(Bodenschatz et al. 2000) (see Fig. 4). Chaotic
non-stationary patterns also typically appear at
higher amplitudes. In reaction-diffusion systems
non-stationary and chaotic patterns become more
likely when the inhibitor response is slowed down.

Moving Interfaces

Stationary and Propagating Fronts
Many physical systems, either at equilibrium or in
a non-equilibrium steady state sustained by exter-
nal fluxes, may exist in two or more alternative
states. If different states are attained at different

spatial locations, they are separated by an inter-
face, carrying excess energy. The simplest model
is a single “reaction-diffusion” equation

@tu ¼ D∇2uþ f uð Þ, (11)

where D is diffusivity and the function f(u)=�V0

(u) (see Fig. 5) has three zeroes that correspond to
two stable (with f0(u) < 0) and one unstable (with
f0(u)> 0) HSS. This equation was first used in the
context of phase equilibria (van der Waals 1894)
as a model of gas-liquid interface, with u denoting
density. It was later extended to the solidification
problem, with u denoting a fictitious “phase field”
assuming its two stable valuesu ¼ u�s in the liquid
and solid phases (Cahn and Hilliard 1958). The
coefficientD is interpreted in this context as rigid-
ity. The “reaction-diffusion” interpretation applies
to non-equilibrium systems, such as a catalytic

Patterns and Interfaces in Dissipative Dynamics, Fig. 4 (a) Coexisting domains; (b) Spiral defect chaos
(Bodenschatz et al. 2000, reproduced with permission)

f (u) V (u)

u u

a bPatterns and Interfaces
in Dissipative Dynamics,
Fig. 5 A function f(u) with
three zeros (a) and the
respective double-well
potential (b)
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surface or an ecological domain, with u denoting
concentration and f(u), the net production rate.
A straight-line or planar interface is stationary
when the potentials V u�s

� �
are equal. It carries

then the interfacial energy

s ¼ D

ð1
�1

u0 xð Þ2dx

¼
ðuþs
us

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DV uð Þ

p
du, (12)

which is identified with surface tension.
If the potentials are unequal, the front moves in

the direction decreasing the total energy of the
system. Assuming that the motion is stationary
and directed along the x axis, (11) can be rewritten
in the comoving frame propagating with the front

velocity c. The steadily propagating solution
depends on a single coordinate x = x � ct, and
(11) reduces to an ordinary differential equation

cu0 xð Þ þ Du00 xð Þ þ f uð Þ ¼ 0, (13)

subject to the boundary conditions u ¼ u�s at
x ! � 1.When both equilibria are stable, they
are saddles when viewed as equilibria of (13). The
front solution corresponds to a heteroclinic trajec-
tory connecting the equilibria u ¼ u�s . The hetero-
clinic connection exists only at unique value of
c (see Fig. 6); thus, the propagation speed is deter-
mined uniquely by solving a nonlinear eigenvalue
problem. Its value is proportional to the difference
of potentials of the two HSS:

a b

Patterns and Interfaces in Dissipative Dynamics, Fig. 6 Generic trajectories in the phase plane u, p= u0(x) (a) and a
nongeneric set of trajectories containing a heteroclinic orbit (b)

a b

Patterns and Interfaces in Dissipative Dynamics, Fig. 7 Trajectories in the phase plane connecting a stable and an
unstable equilibrium
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c ¼ D

s
DV, DV ¼ V u�s

� �� V uþs
� �

: (14)

The situation is different when the retreating
state u ¼ u0s is unstable. This often happens in
population dynamics: a state where a competi-
tively advantageous specie is absent is formally
unstable to infinitesimal perturbations but will be
nevertheless preserved at any location until this
specie is introduced there. An unstable state,
viewed as an equilibrium point of (13), is a stable
node at propagation speeds exceeding a certain
threshold cmin, Thus, a trajectory starting from the
advancing stable HSS connects generically tou0s at
any c > cmin (see Fig. 7). Actual propagation
speed is selected dynamically at the leading edge
(Kolmogorov et al. 1937; van Saarloos 2003), and
turns out to be equal to the minimum speed cmin,
which corresponds to the steepest front profile.
Under certain conditions (when overshoots are
allowed) a faster speed corresponding to a still
steeper profile is selected nonlinearly (van
Saarloos 2003). In the former case, the front is
“pulled” by perturbations growing at the leading
edge and described by linearized equations, while
in the latter case, it is “pushed” by nonlinear
interactions favoring the advancing state.

Interfacial Instabilities
The front solution is neutrally stable to transla-
tions along the x-axis. This neutral (Goldstone)
mode is weakly perturbed when the translation is
weakly nonuniform, so that the front becomes
curvilinear but the curvature radius still far
exceeds the characteristic front thickness.

Propagation of a weakly curved front is best
understood in a coordinate frame aligned with its
deformed shape. The nominal front position is
defined by replacing a diffuse transitional region
by a planar curve C drawn along some intermedi-
ate level of the variable u. The coordinate lines
x= const are obtained by shifting the curve along
the normal by a constant increment, as shown in
Fig. 8. This shift causes the length to increase on
convex, and to decrease on concave side of the
curve. Eventually, a singularity develops in the
latter direction, but, when the curvature radius is

much larger than the characteristic front thickness,
this will happen far away within the region where
one of the HSS is approached.

When (13) is rewritten in the aligned frame an
expanded viewing the curvature as a small param-
eter, the local normal propagation speed of a
curved front is expressed by the eikonal equation

c ¼ c0 � Dk ¼ D

s
DV � skð Þ, (15)

where c0 is the speed of a planar front and k is the
Gaussian curvature.

Since convex front segments propagate slower
and concave segments faster, the front tends to
flatten, provided c0 is uniform everywhere. Insta-
bilities may arise, however, when c0 increases
ahead of the front. This may happen in the pres-
ence of an externally imposed gradient, as in
directional solidification (Langer 1980), but most
commonly is caused by an additional “control”
field. The control field responsible for the
Mullins-Sekerka instability of solidification fronts
(Langer 1980; Mullins and Sekerka 1963) is the
concentration of a contaminant, which is rejected
by the solid and slows down solidification by
lowering the melting temperature. Since the con-
taminant diffuses away more easily from convex
segments, they tend to propagate faster, which
causes instability when the driving is strong
enough to overcome surface tension.

Another example is instability of a combustion
front, which separates hot burnt-out and cold fuel-
rich domains (Zeldovich 1985). A thin front

Patterns and Interfaces in Dissipative Dynamics,
Fig. 8 Construction of the aligned coordinate frame. The
coordinate lines are shown in gray. Arrows show the local
directions of the normal n and the x-axis. Observe a singu-
larity developing on the concave side
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structure arises in this case because combustion
requires both fuel and sufficient temperature for
its initiation, and both fuel concentration and tem-
perature play the role of control variables. When
heat transfer is the limiting factor, convex segments
cool down and propagate slower, and the front is
stable. When, on the opposite, propagation is lim-
ited by fuel supply, convex segments accelerate
and instability sets on, leading to corrugated fronts.

Dynamics of weak deviations ζ(y) from a sta-
ble planar front spanned by a 2-vector y is
described by expanding the normal propagation
speed, front curvature and the control field in
powers of a small parameter scaling both the
deviation ζ and its transverse derivative ∇y, as
well as time. For stable fronts, the appropriate
scaling is ζ = O(1) , ∇y = O(� ) , @t = O(� 2),
leading to the Burgers equation

@tz ¼ D∇2
yz�

1

2
c0 ∇yz
�� ��2: (16)

The particular coefficients here correspond to
(15), but also in other cases the same universal
form can be obtained after the coefficients are
removed by rescaling, provided the effective diffu-
sivityD is positive. If the latter is negative but small,
|D| = O(ϵ2), the appropriate scaling is ζ = O(� ),
∇y = O(� ) , @t = O(� 4), and expanding to a
higher order yields, after scaling away the coeffi-
cients, the Kuramoto-Sivashinsky equation
(Sivashinsky 1977)

@tzþ ∇2
yzþ ∇2

y

� �2

zþ 1

2
∇yz
�� ��2 ¼ 0: (17)

This equation, appearing also in phase dynam-
ics (Kuramoto and Tsuzuki 1976), is a paradigm
of weak turbulence.

Front Interactions and Coarsening
Fronts of opposite polarity in a one-dimensional
system attract and eventually coalesce, thereby
coarsening the distribution of domains, which
may have been created initially in the process of
phase separation or relaxation to alternative HSS.
The interaction is, however, very weak, falling off
exponentiallywith separation. In higher dimensions,

the principal cause of coarsening, or Ostwald ripen-
ing, is the curvature dependence of the propagation
speed, whereby small droplets with high curvature
tend to shrink and eventually disappear. This is a
manifestation of the Gibbs-Thomson effect relating
the equilibrium conditions with the radius of a
droplet.

Coarsening most often occurs under conditions
when evolution is constrained by a conservation
law, so that the integral

Ð
u(x)dx expressing the

total amount of material in the system remains
constant. Under these conditions, fronts cannot
move independently from each other. The conserva-
tion law is accounted for when (11) is replaced by
the Cahn-Hilliard equation (Cahn andHilliard 1958)

@tu ¼ ∇2m, m ¼ � D∇2uþ f uð Þ
 �
: (18)

The eikonal equation governing the front
motion retains the form (15), but the value c0
depends on chemical potential m. The latter shifts
in the course of coarsening in such a way that the
value of the critical radius R = k�1 of a droplet
that neither grows or shrinks, keeps growing as
smaller droplets disappear. Analytical theory
(Lifshitz and Slyozov 1958) predicts universal
asymptotic droplet size distribution at late stages
of coarsening.

Structures Built up of Fronts
Coarsening can be precluded when changes in an
additional control field arrest growth of large and
shrinking of small domains. This leads to forma-
tion of a variety of patterns and solitary structures.
The paradigmal system for exploring these phe-
nomena is the FitzHugh-Nagumo system, which
has the form (1), (2) with the function f(u, v) cubic
in u and linear in v and a linear function g(u, v).
The rescaled form suitable for the analysis of
stationary structures is

� 2@tu ¼ � 2∇2uþ u� u3 � � v, (19)

t�1@tv ¼ ∇2v� v� vþ mu, (20)

Here � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g1D1=g2D2

p
<< 1 is the ratio of

the characteristic lengths associated with the
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activator and the inhibitor, t = D2/D1; the small
coupling parameter e in (19) ensures a balance
between the effect of small interfacial curvature
and weak symmetry breaking between the alterna-
tive HSSu�s ¼ �1þ O �ð Þ; the remaining param-
eters m and v regulate the coupling stress and bias.

Structures generated by the system (19), (20)
are built up by assigning a region where the acti-
vator approaches one of the alternative HSS, com-
puting the respective inhibitor distribution, and
finding stationarity conditions for the fronts
forming the boundaries of this region (Ohta et al.
1989). Possible stationary structures in two
dimensions are a solitary band, a solitary disk, a
striped pattern, or a hexagonal grid consisting of
almost circular spots. The size of spots or stripes is
determined by the parameters of the system, but
there is a considerable leeway in choosing the
general configuration. Under certain conditions,
it even might be possible to store information by
creating or extinguishing spots at chosen locations
(Coullet et al. 2004). In other cases, splitting of a
solitary spot initiates a multiplication cascade
(Reynolds et al. 1994), leading eventually to a
hexagonal pattern filling the plane.

Instabilities of stationary structures are studied
with the help of the linearized eikonal equation
(15) combined with the inhibitor equation (20)
where the last term is expressed through a
shift of the front position. Both solitary bands
and disks can suffer zigzag (leading eventually
to splitting), oscillatory and traveling instabilities.

The latter two become prevalent as the parameter
t decreases, so that the inhibitor response to front
displacements slows down. For example, a soli-
tary band is destabilized in the zigzag mode at
t> 1, while the traveling instability comes first at
smaller t (see Fig. 9). Oscillatory instability is
always preceded by traveling one in this case,
but may become relevant for a solitary disk.

Traveling instability indicates transition to var-
ious propagating structures and wave patterns.
A solitary spot tends to either dissolve or spread
out sidewise after being immobilized; in the latter
case, a spiral structure starts to develop as the ends
lag behind. A traveling spot can be, however,
stabilized if a second inhibitor, both fast and
long-range, is added (Or-Guil et al. 1998).

Various patterns of propagating fronts can be
generated beyond this limit by the same
FitzHugh-Nagumo system, which, however,
should be scaled differently for this purpose.
Unlike stationary or slowly evolving patterns
where the characteristic length scale is set by the
diffusional range of the long-scale inhibitor,
the wavelength of a propagating pattern is tied to
the propagation speed and remains finite even
when the inhibitor is nondiffusive.

The long scale should be redefined therefore on
the basis of the characteristic propagation speed of
the activator front c� ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

D1=g1
p

and the charac-
teristic relaxation time of the inhibitor g2. Using
this “advective” length unit, L� ¼ g2

ffiffiffiffiffiffiffiffiffiffiffiffi
D1=g1

p
brings (1), (2) to the dimensionless form

3
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Patterns and Interfaces
in Dissipative Dynamics,
Fig. 9 Existence boundary
(C) and loci of zigzag (Z)
and traveling instability for
a solitary band. The loci of
traveling instability are
marked by respective values
of t. A stable band exists
between the line C and an
applicable instability locus
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g@tu ¼ g2∇2uþ f u, vð Þ, (21)

@tv ¼ d2∇2vþ g u, vð Þ, (22)

where g ¼ g1=g2, d ¼ g=� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gD2=D1

p
.The

“inner” scale of the transitional layer, where the
system switches between the two alternative acti-
vator states, u ¼ u�s , is now set exclusively by the
capacitance ratio g, independently of diffusivities,
and, provided g� 1, remains small even when the
inhibitor is less diffusive than the activator. The
parameters can be chosen in such a way that
d� 1, so that the inhibitor diffusion is negligible,
provided g � D1/D2. Under these conditions, the
inhibitor diffusion can be neglected, reducing (22)
to @tv = g(u, v). Although this equation contains
no mechanism for healing discontinuities in v, the
inhibitor field should remain smooth in the course
of evolution, barring freaky initial conditions or
strongly localized perturbations. This opens the
easiest way of constructing various wave patterns,
including such exotic objects as chaotic wave
trains (Elphick et al. 1988).

Interfaces of Patterns
Interfaces between different patterns or different
pattern orientations (domain walls) can be
described in the simplest way on the level of
amplitude equations. This may give qualitatively
correct results in static problems, even though
changes across a domain wall in patterns gener-
ated in simulations and experiments are usually
effected on a length comparable with the pre-
vailing wavelength of the pattern. One can expect
that a stationary solution exists only when the
wavelengths are equal on both sides of the wall;
otherwise, the wall would propagate in the direc-
tion decreasing the overall energy of the pattern. It
turns out that an even stronger restriction is true,
and both wavelengths should be optimal
(Malomed et al. 1990). In this way, domain
walls, alongside dislocations, enhance relaxation
of the pattern to the optimal wavelength.

Dynamic problems are strongly influenced by
detailed structure of the pattern, which is lost on
the level of amplitude equations. When a pattern
advances into an unstable uniform state, the

wavelength selected at the leading edge is not
identical to the wavelength of the full-grown pat-
tern formed behind the front, and neither one coin-
cides with the optimal wavelength (Ben-Jacob
et al. 1985).

In the case when a stable homogeneous solu-
tion coexists with a stable periodic pattern, stable
stationary fronts between the two states exist
within a finite parametric interval (Pomeau
1986), rather than at a single point where the
energies of both states are equal, as amplitude
equations would predict. The motion of this
front is affected by the discrete structure of the
pattern, which causes self-induced pinning hin-
dering the retreat of a metastable state. There are
two depinning transitions, corresponding to “crys-
tallization” or “melting” of the pattern, shown
schematically by thick lines in Fig. 10. Between
the two limits, various metastable stationary struc-
tures exist: a single cell (“soliton”), a finite pat-
terned inclusion, sandwiched between semi-
infinite domains occupied by a uniform state, or
a semi-infinite pattern, coexisting with a uniform
state. To the right of the crystallization
threshold C, the pattern advances by a periodic
nucleation process which creates new elementary
cells at the interface (Aranson et al. 2000), while
to the left of the melting limit M, the pattern
recedes as elementary cells at the interface are
destroyed. A different, far more efficient
depinning mechanism works in two dimensions
(Hagberg et al. 2006). It is initiated by a zigzag
instability of the pattern followed by nucleation of
disclinations, which further move toward the uni-
form state, as seen in Fig. 11. This generates
stripes extending in the normal direction, turning
eventually the original boundary into a domain
wall separating striped patterns rotated by p/2.

M

1-M 1-C

C

Patterns and Interfaces in Dissipative Dynamics,
Fig. 10 A scheme of depinning transitions showing crys-
tallization (C) and melting (M) thresholds for an infinite
cluster, as well as the corresponding limits for clusters of
different sizes, terminating in single-cell limits 1-C, 1-M
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Wave Patterns

Plane Waves
A simplest propagating wave pattern is a periodic
solution depending on a moving coordinate
x = x � ct, where c = o/k is phase velocity, o is
frequency and k is wavenumber. A waveform ~
exp. [i(kx � ot)] may emerge directly by symme-
try breaking bifurcation, but this is not the most
common mechanism. It is impossible, in particu-
lar, in a two-component RDS (1), (2), where other
scenarios lead to wave patterns. One of them,
mentioned in the preceding section, is traveling
instability of stationary structures. Another road
to wave patterns, most amenable to analytical
tools, starts in the vicinity of a Hopf bifurcation,
where small-amplitude oscillations weakly mod-
ulated in space are described by the complex
Ginzburg-Landau (CGL) equation. Its standard
rescaled form is

@tu ¼ 1þ i�ð Þ∇2uþ u� 1þ ivð Þ uj j2u: (23)

A plane wave solution of (23) with the wave
vector k is

u ¼ r0exp i k � x� otð Þ½ �,
r0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2
p

, o ¼ vþ � � vð Þk2:
(24)

The waves are dispersive, and the group veloc-
ity is v = 2 k(� � v).

Instabilities of plane waves are studied most
efficiently with the help of the phase dynamics
approach, since the most dangerous perturbation
modes can be viewed as long-scale distortions of

neutrally stable translational modes. The longitu-
dinal and transverse phase diffusivities are

Djj ¼ 1þ v� � k2 3þ v� þ 2v2ð Þ
1� k2

, D⊥ ¼ 1þ v�:

(25)

Vanishing Djj marks the threshold of Eckhaus
instability, which limits the range of stable
wavenumbers. Vanishing D⊥ signals Benjamin-
Feir (self-focusing) instability, independently of
the wavelength. Both instabilities arising at the
respective thresholds are convective, which
means that growing perturbations are washed
away with the prevailing group velocity. The abso-
lute instability condition stipulating growth of per-
turbation at a particular location is less restrictive
(see Fig. 12). Numerical simulations (Aranson and
Kramer 2002) show that transition to turbulence
occurs only when the absolute stability condition
is violated, but the system is very sensitive to noise
in the convectively unstable region.

Besides uniform wave trains, there is a variety
of non-uniform one-dimensional solutions of the
CGL equation with a constant frequency and spa-
tially varying modulus and wavenumber, which
are stationary in a frame propagating with a cer-
tain speed c and depend on the comoving coordi-
nate x = x � ct only. The solutions approaching
asymptotically at x ! � 1 either plane waves
or the trivial state can be also viewed as defects
separating domains where different uniform states
prevail. Such solutions include pulses,
approaching the trivial state at both extremes;
nonlinear fronts, separating the trivial state from
an invading wave train, and domain boundaries
separating plane waves directed in the opposite

Patterns and Interfaces in Dissipative Dynamics, Fig. 11 Depinning of striped pattern initiated by a zigzag
instability (Hagberg et al. 2006)
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sense and, possibly, having different wavelength
(Aranson and Kramer 2002; van Saarloos and
Hohenberg 1992). Interactions among various
defects dominate chaotic dynamics beyond the
self-focusing instability limit (Brusch et al. 2001).

Amplitude equations for wave patterns emerg-
ing directly from an HSS through a symmetry
breaking bifurcation with o 6¼ 0, k 6¼ 0 should
account for competition between waves with
amplitudes u � propagating in the opposite direc-
tions, which may either suppress one another or
combine to a standing wave. The normalized form
of coupled equations for u � is

@tu
� � cu�x ¼ 1þ i�ð Þu�xx þ u�

� 1þ ivþð Þ u��� ��2u�
� g 1þ iv�ð Þ u	j j2u�, (26)

where g is a coupling parameter. The orders of
magnitude of all terms of these equations can be
balanced only when the phase velocity c = o/k is
of the sameO(ϵ) as u �. Genetically, c=O(1), and
the advective term cu�x is dominant. For a single
wave, it can be removed by transforming to the
comoving frame. When both waves are present,
each wave, viewed in its own frame x� = x 	 ct
samples the average amplitude of its counterpart

propagating in this frame with a fast speed. The
appropriate amplitude equations have then the
form (Knobloch and de Luca 1990)

@tu
� ¼ 1þ i�ð Þu�x�x� þ u�

� 1� ivþð Þ u��� ��2u�
� g 1þ iv�ð Þ u	j j2u�: (27)

These equations retain only global coupling
carried by the spatial averages 〈|u	|2〉.

In two dimensions, the amplitude equations
also involve resonant interactions of pairs of
waves propagating in the opposite directions.
This makes possible complex dynamics even
when the amplitudes are uniform and obey
space-independent equations (Pismen 1986)

@tu
þ
1

¼ uþ1 m� vþ uþ1
�� ��2 � v� u�1

�� ��2 � b uþ2
�� ��2 þ u�2

�� ��2� �h i
þgu�2 u

þ
2 u

�
2 :

(28)
Spiral and Scroll Waves
A ubiquitous and extensively studied waveform is a
rotating spiral wave. Its specific feature is the pres-
ence of a phase singularity. An n-armed spiral wave
can be constructed as a circularly symmetric vortex
solution of (23) with the topological charge n,
i.e. phase circulation 2pn. Unlike a symmetric
defect in (8), the phase must also depend on the
radial coordinate, so that the vortex radiates a wave
with a certain uniquely selected asymptotic
wavenumber k1. This solution is obtained (Hagan
1982) in polar cooordinates r, f by assuming an
ansatz

u ¼ r rð Þeiy, y ¼ nfþ c rð Þ � ot: (29)

Using this ansatz brings (23) to the form

r00 rð Þ þ r�1r0 rð Þ
þ 1� k2 � n2=r2 � r2
� �

r
¼ 0, (30)

1

rr2
d

dr
rkr2
� � ¼ q r21 � r2

� �
, (31)

where k = c0(r) is the radial wavenumber. Stabil-
ity analysis of plane waves applies also to far
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Patterns and Interfaces in Dissipative Dynamics,
Fig. 12 Limits of convective and absolute instabilities in
the plane (v, k) for � = �3/2. The dot marks the limit of
convectively unstable waves (Aranson and Kramer 2002,
reproduced with permission. Copyright by the American
Physical Society)
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regions of spiral waves; one could expect there-
fore a transition to a turbulent state to occur under
conditions when the selected asymptotic
wavenumber k1 falls into the range where the
corresponding plane wave solution of (23) is
unstable. The respective stability limits in the
parametric plane (�, v) are presented in Fig. 13.

Another approach to constructing rotating spi-
ral waves exploits kinematics of fronts of opposite
polarity described by RDS (21), (22) (Tyson and
Keener 1988). The inhibitor diffusion can be
neglected almost everywhere, except in the cru-
cial tip region where the two fronts meet. Behav-
ior of the spiral tip and its meandering instability
has been elucidated analytically using a multiscale
technique matching different approximations in
overlapping regions (Hakim and Karma 1999).
Complex dynamics of a meandering tip, which
exhibit quasiperiodic and chaotic motion in
some parametric domains, can be well described
with the help of a simpler phenomenological
model (Barkley 1994). A similar instability of

spiral waves described by the CGL equation is
the core acceleration instability (Aranson and
Kramer 2002), which may serve as a trigger of
transition to spatio-temporal chaos alternative to
instability of radiated waves.

A special kind of spiral wave patterns arises
when the underlying dynamical system undergoes
a period doubling transition. The period doubling
causes the appearance of synchronization defect
(SD) lines, which serve to reconcile the doubling
of the oscillation period with the period of rotation
of the spiral wave (see Fig. 14a). These lines are
defined as the loci of those points in the medium
where the two loops of the period two orbit
exchange their positions in local phase space.
The period two oscillations on the opposite sides
of a SD are shifted relative to each other by 2p
(i.e., a half of the full period), so that the dynamics
projected on the rotation direction is effectively of
period one, while it is of period two locally at any
point in the medium (Fig. 14b).

A three-dimensional extension of a rotating
spiral is a rotating scroll wave. The core filament
of a scroll wave is a line vortex. A scroll wave
with a straight-line core directed along the z-axis
has identical spiral waves in each cross-section.
Even then, the structure can be nontrivial if the
spiral phases are given a phase twist, i.e. are
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Fig. 13 Stability limits of a spiral wave solution in the
parametric plane (�, v). The curve EI shows the limit of
convective instability and AI, of absolute instability for the
waves emitted by the spiral; OR is the boundary of the
oscillatory spatial decay for the emitted waves, q = 0.845
(bound states exist to the right of this line). BF indicates the
Benjamin-Feir limit v� = �1, L is the limit of phase
turbulence, and T corresponds to the transition to defect
turbulence for random initial conditions (Aranson and
Kramer 2002, based on Chaté and Manneville 1996;
reproduced with permission. Copyright by the American
Physical Society)

Patterns and Interfaces in Dissipative Dynamics,
Fig. 14 (a) A pair of period two spiral waves with the
fundamental period t and the average wavelength l. The
white solid lines are the synchronization defects.
(b) A period two time series measured at the point marked
by the white filled square (Park and Lee 2002, reproduced
with permission. Copyright by the American Physical
Society)
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shifted along the z-axis. A curved core filament
may also close up into a ring or even form knots.
A stable scroll structure evolves to decrease the
filament curvature (Keener 1988). This kind of
dynamics is similar to curvature-driven motion
of interfaces, but may be reversed when the fila-
ment is unstable. The most dangerous perturba-
tion modes are long-scale modes associated with
meandering or translational core deformations
(Henry and Hakim 2002). Meandering instability
usually saturates as a distorted scroll wave with a
twisted rotating core (Fig. 15). Instability in the
translation mode, which causes spontaneous
bending of the scroll axis, does not saturate, but
gives rise to a scroll wave with a continuously
extending core (Fig. 16a). This leads to a turbulent
state visualized as a tangle of breaking wave
fronts (Fig. 16b).

Spiral Patterns and Turbulence
Interaction of spiral waves is dominated by
shocks – domain boundaries where waves ema-
nating from different centers collide. The shocks
effectively screen different spiral domains from

radiation emitted by other spiral cores. A typical
example of a spiral domain pattern in a stable
parametric range obtained in a CGL simulation
run starting from random initial conditions (Chaté
and Manneville 1996) is shown in Fig. 17. At the
initial stage, the system tends to relax locally to
the stable state with unity real amplitude, but, as
the phases are random, the relaxation is frustrated,

Patterns and Interfaces in Dissipative Dynamics,
Fig. 15 (a) A restabilized helical vortex; (b) A doubly
periodic “superhelix” Isosurfaces of the modulus r = 0.6
shaded by phase field are shown (CGL simulations
(Rousseau et al. 1998), reproduced with permission. Copy-
right by the American Physical Society)

Patterns and Interfaces in Dissipative Dynamics,
Fig. 16 Transition to turbulence due to core filament exten-
sion and breakup of scroll waves. (a) Snapshots of the core
filament, starting from a closed loop. (b) Respective

snapshots of wave patterns showing semitransparent visual-
ization of the activator fronts (Alonso et al. 2004,
reproduced with permission. Copyright by the American
Physical Society)
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and a large number of defects – vortices of unit
charge – are formed. At the following coarsening
stage, oppositely charged vortices annihilate, so
that the density of defects decreases. The coarsen-
ing process, however, stops halfway, leaving a
certain number of single-charged spiral vortices
with either sense of rotation. Vortices that failed to
conquer a sufficiently large domain are reduced to
“naked cores”, left to satisfy the topological con-
dition of conservation of circulation. The resulting
stable spiral domain pattern is called vortex glass.
The waves always propagate outwards from the
vortex cores, so that the entire domain structure is
generated when local order spreads out from cen-
ters to the periphery. Perturbations, also traveling
outwards with the prevailing group velocity, are
absorbed at shocks, and therefore the pattern may
survive beyond the convective instability thresh-
old. The turbulent state takes over only when the
emanated waves become absolutely unstable, i.e.,
when some perturbations grow locally in the lab-
oratory frame.

The overall structure of the pattern changes in
the range of oscillatory spatial decay of waves
emanated by the spiral cores (below the line OR
in Fig. 13). Under these conditions, formation of
stable bound spiral pairs becomes possible (see
Fig. 18). Unlike the monotonic range, spiral

domains may have in oscillatory range a wide
size distribution, since shocks can be immobilized
at different separations.

“Frozen” glassy patterns actually evolve on a
very long time scale, as revealed in very long
simulation runs (Brito et al. 2003). In the mono-
tonic range, spiral cores perform very slow diffu-
sive motion; the apparent diffusivity increases
with vortex density. In contrast, in the oscillatory
range, spiral population spontaneously segregates
after a very long transient into two distinct phases:
large and almost immobile spirals and clusters of
trapped small vortices. When the “liquid fraction”
is small, the resulting pattern exhibits slow inter-
mittent dynamics: bursts of activity separated by
long quiescent intervals. The system keeps evolv-
ing on an extremely slow scale, which is consis-
tent with exponentially weak repulsion between
well separated spiral cores.

Another possibility, realized in a different para-
metric region, is a dynamic chaotic state that
shows no persistent features. This state is attained
under conditions when either spiral waves or vor-
tex cores, or both, are unstable. One can distin-
guish between mild phase turbulence when no
phase singularities occur, and defect chaos char-
acterized by persistent creation and annihilation of
vortex pairs. Phase turbulence may persist in the

Patterns and Interfaces in Dissipative Dynamics,
Fig. 17 Spiral domains. Left: levels of constant phase.
Right: grayscale amplitude map showing enhanced

amplitudes at the shocks (CGL simulations (Chaté and
Manneville 1996), reproduced with permission from
Elsevier Science)
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parametric region between the Benjamin-Feir line
and the line L in Fig. 13 (Chaté and Manneville
1996). Beyond the line L, defects are created
spontaneously, leading to defect chaos. Transition
from vortex glass to defect turbulence in simula-
tions starting from random initial conditions
occurs at the numerically determined line T in
Fig. 13 (Chaté and Manneville 1996). The transi-
tion occurs somewhat prior to the absolute insta-
bility limit determined by the linear stability
analysis of plane waves emitted by spirals. This
limit can be approached, however, by starting from
carefully prepared initial conditions in the form of
large spirals. Prior to the transition, one can observe
transient defect turbulence which is unstable to
spontaneous nucleation of spirals from the “turbu-
lent sea”, leading eventually to a vortex glass state.

Forced Systems
External forcing, including spatially as well as
temporally variable inputs, can be used in a
straightforward way to enhance or suppress spon-
taneously emerging patterns (Nepomnyashchy

et al. 2004). Alternatively, it may enhance com-
plexity by introducing additional spatial and tem-
poral resonances, which may lead to formation of
quasicrystalline structures (Pismen 1987). Reso-
nant forcing of oscillatory systems may drastically
change the structure of wave patterns through
phase locking. This happens when the CGL equa-
tion is forced on a frequency oc commensurate
with the basic frequency o0 at the Hopf bifurca-
tion. For an integer ratio oc/o0 = n, the amplitude
equation amending (23) can be written by adding
the forcing term possessing the required symmetry:

@tu ¼ 1þ i�ð Þ∇2uþ mþ ioð Þu
� 1� ivð Þ uj j2uþ gu�n�1 , (32)

where g is the forcing amplitude and ϵ2o is weak
effective detuning, due to both parametric devia-
tions from the Hopf bifurcation point and weak
mismatch between oc/n and o0. The forcing term
breaks the symmetry of the CGL equation to
phase rotations, reducing it to discrete symmetry
u ! eipmu , m = 1 , . . . , n � 1. This changes

Patterns and Interfaces
in Dissipative Dynamics,
Fig. 18 Bound states of
oppositely (left) and likely
(right) charged spirals
(CGL simulations, � = 0,
v = 1.5). The images show
the modulus r(x, y) (top)
and Re(u) (bottom)
(Aranson and Kramer 2002,
reproduced with
permission. Copyright by
the American Physical
Society)
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the character of defects: instead of vortices, one
can observed fronts separating alternative phase
states.

Various patterns at different forcing frequen-
cies, which can be modeled by (32), were
observed both in experiments and simulations
(Petrov et al. 1997; Lin et al. 2004). Some typical
patterns are shown in Fig. 19. For the case of
strong resonance (n = 1), this system provides a
convenient tool for studying transitions between
stationary and propagating fronts (Coullet and
Emilsson 1992), labyrinthine patterns (Yochelis
et al. 2004), and solitary structures (Gomila et al.
2007). These structures are not unlike those
observed in the FitzHugh-Nagumo system,
although they represent standing waves with the
alternative phases interchanging within each
domain. Higher resonances create still more com-
plex dynamics involving interactions of different
kinds of fronts (Gallego et al. 2001).

Future Directions

The study of pattern formation is now a mature
discipline based on well-established general

theory and wealth of experimental evidence. The
center of attention is turning to specific applica-
tions; among them, nonlinear optics and studies of
granular media come to the forefront. Forcing and
control of patterns, either enhancing or
suppressing the complexity of behavior, are stud-
ied in detail. As a humble laptop turns into a
supercomputer, more fascinating patterns, envy
of abstract expressionists, are generated by
model equations of increased complexity. Patterns
showing dazzling mix of order and chaos are seen
as well in various experimental setups.

The ultimate aim of controlled creation of self-
organized structures still remains elusive, and new
ideas are awaited as the new century comes of age.
The study of pattern formation, dealing with ubiq-
uitous problems of order and chaos, is bound to
find its way into basic curricula and wealth of
practical applications.
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Glossary

Basic equation of fluid dynamics Fluid motion
is mathematically treated on the basis of a
continuum theory. The fundamental evolution
equations are the Euler equation for ideal fluids
and the Navier-Stokes equation for Newtonian
fluids.

Vortex motions Numerical calculations of tur-
bulent flow fields show that the flows are dom-
inated by coherent structures in the form of
vortex sheets or tubelike vortices. The ques-
tion, why vorticity tends to be condensed in
localized objects, is one of the central issues of

fluid dynamics. Regarding two-dimensional
flows, there are attempts to approximate fluid
motion by a collection of point vortices. This
allows one to investigate properties of flows on
the basis of a finite dimensional (Hamiltonian)
dynamical system.

Turbulence modeling and large eddy
simulations The evolution equation for the
average velocity field of turbulent flows con-
tains the Reynolds stresses, whose origin is the
turbulent pulsations. Turbulence modeling
consists of relating the Reynolds stresses to
averaged quantities of the fluid motion. This
allows one to perform numerical computations
of large-scale flows without resolving the tur-
bulent fine structure.

Phenomenological theories of the fine structure
of turbulence Phenomenological theories
play an important role in physics and are
quite often formulated before a microscopic
understanding of the physical problem has
been achieved. Phenomenological theories
have been developed for the fine structure of
turbulence. Of great importance is the theory of
Kolmogorov, which he formulated in the year
1941 and refined in 1962. The so-called K41
and K62 theories focus on the self-similar
behavior of statistical properties of velocity
increments, i.e., the velocity difference
between two points with a spatial distance
r. Recently, phenomenological theories have
been developed that consider the joint proba-
bilities of velocity increments at different
scales. It is expected that multiple-scale analy-
sis of turbulence will provide new insights into
the spatiotemporal complexity of turbulence.

Turbulent cascades Fluid motions are dissipa-
tive systems. Stationary flows can only be
maintained by a constant energy input in the
form of shear flows or body forces. Usually, the
length and time scales related to the energy
input are widely separated from the ones on
which energy is dissipated. A consequence is
the establishment of an energy transport across
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scales. It is believed that this energy transport is
local in scale leading to the so-called energy
cascades. These cascades are related to the emer-
gence of scaling behavior. There is a direct energy
cascade in three dimensions from large to small
scales and an inverse cascade of energy from
small scales to large scales in two-dimensional
flows.

Analytical theories of turbulence Analytical
theories of turbulence try to assess the experi-
mental results on turbulent flows directly from
a statistical treatment of the basic fluid dynam-
ical equations. Analytical theories rely on
renormalized perturbation expansions and use
methods from quantum field theory and
renormalization group methods. However, no
generally accepted theory has emerged so far.

Definition of the Subject

Fluid flows are open systems far from equilib-
rium. Fluid motion is sustained by energy
injected at a certain scale, the so-called integral
scale, and is dissipated by viscosity mainly in
small-scale structures. If the integral scale and
the dissipative scale are widely separated and the
motions on the integral scale are sufficiently
strong, the fluid develops a range of spatiotem-
poral structures. In three-dimensional flows,
these structures steadily decay into smaller struc-
tures and are generated by the instability of larger
structures. This leads to a cascading process
which transports energy across scales. Turbu-
lence appears if the fluid motion is driven far
away from equilibrium. It develops through
sequences of instabilities and processes of self-
organization. From this respect, turbulence is a
highly ordered phenomenon, whose spatiotem-
poral complexity, however, has still to be
explored.

Introduction

Turbulence is one of the outstanding problems in
the field of nonlinear dynamics and complex sys-
tems. Although the basic equations of ideal fluid

dynamics were formulated by L. Euler 250 years
ago and the equations for viscous flows, the
so-called Navier-Stokes equation, were established
about 150 years ago (Darrigol 2005), only a few
analytical solutions have been found so far,
because of the inherent nonlinear character of
fluid flows. Furthermore, fluid motions are systems
far from equilibrium. Their maintenance requires a
constant input of energy, which is transformed by
the viscous flow into heat. A measure for the dis-
tance from equilibrium, which corresponds to
vanishing fluid velocity, is the Reynolds number

Re ¼ UL

n
(1)

where U is a characteristic velocity, L is a charac-
teristic length scale, and n is the kinematic viscos-
ity. Flows with Reynolds numbers larger than
Re = 1,000 usually are turbulent. A turbulent
field generated in a free jet experiment is exhibited
in Fig. 1. By increasing the Reynolds number, one
observes the occurrence of various types of insta-
bilities resulting in time-dependent and chaotic
patterns making these systems paradigms of self-
organization. Whereas the flows generated by the
first few instabilities can be treated satisfactorily,
the transitions and properties of flows at higher
Reynolds numbers are by far less understood.
This lack of understanding hinders the scientific
development in various fields, ranging from astro-
physics and engineering to the life sciences.

Basic research on turbulence has always stimu-
lated and contributed to the formulation of new
scientific concepts like self-organization and pat-
tern formation, chaos, and the theory of fractals. As
a classical nonlinear field theory, the description of
fluid motion has advanced the mathematical under-
standing of infinite dimensional nonlinear dynam-
ical systems and the development of efficient

Fluid Dynamics: Turbulence, Fig. 1 Development of
turbulent structures in a free jet experiment
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computational tools. It is expected that combined
experimental and theoretical efforts will lead to a
satisfactory understanding of high Reynolds num-
ber flows in the near future.

The Basic Hydrodynamic Equations

Fluid motions are described in terms of a contin-
uum theory. The basic ingredients of continuum
theories are balance equations for a density h(x, t)
of a physical quantity like mass or momentum
defined at location x and time t:

@

@t
hþ ∇ � uhþ jh½ � ¼ q: (2)

Here, u denotes the fluid velocity, j h denotes
the current corresponding to the density h, and
q denotes a source term (Chorin and Marsden
2000; Landau and Lifshitz 1981).

The balance equation for the mass density r
reads

@

@t
rþ ∇ � ru ¼ 0: (3)

Since mass is conserved, the source term van-
ishes identically, q = 0.

Incompressible fluid motions are characterized
by the condition

∇ � u ¼ 0: (4)

In the present review, we shall mainly focus on
incompressible fluids.

The balance equation for the density of
momentum, ru(x, t), takes the form

@

@t
rui þ

X
j

@

@xj
ujrui

¼ � @

@xi
pþ

X
j

@

@xj
sij þ f i, (5)

where the momentum current j h is expressed by
pressure p and the viscous stress tensor s ij. Exter-
nal forces are summarized in f i. A complete
description requires the formulation of boundary
conditions for the velocity field.

It is straightforward to derive the balance equa-
tion for the density of the kinetic energy, ru2 (x, t)/2,
from the conservation law of momentum (5) for
incompressible flows:

@

@t

r
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u2

þ
X
j

@

@xj
uj

r
2
u2 þ p

h i
�
X
i

sjiui

( )

¼ �
X
ij

sij
@ui
@xj

þ
X
j

ujf j: (6)

This equation shows that energy is conserved
provided the viscous stresses s ij vanish.

Ideal Fluids: Euler’s Equation
For ideal fluid motions, the kinetic energy is con-
served provided external forces are absent. The
balance Eq. (6) shows that in this case the viscous
stresses s ij have to vanish leading to the Euler
equation for incompressible fluid motions:

@

@t
þ u:∇

� �
u ¼ � 1

r
∇pþ 1

r
f: (7)

The dynamics of ideal fluid motion is restricted
by Kelvin’s theorem. The circulation

Þ
u(x, t)dr

along closed curves going with the flow remains
constant (Chorin and Marsden 2000; Landau and
Lifshitz 1981).

Newtonian Fluids: Navier-Stokes Equation
Newtonian fluids are characterized by the pres-
ence of viscous stresses. They are assumed to be
proportional to the strain matrix S ij

sij ¼ nrSij ¼ nr
1

2

@ui
@xj

þ @uj
@xi

� �
: (8)

Assuming isotropic material properties of the
fluid as well as incompressibility, one obtains the
Navier-Stokes equation:

@

@t
þ u � ∇

� �
u ¼ nDu� ∇pþ f: (9)

The kinematic viscosity n characterizes differ-
ent fluids. The local energy dissipation rate,
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denoted by ϵ, is obtained from the balance equa-
tion of the density of kinetic energy (6):

ϵ ¼ v

2

X
ij

@ui
@xj

þ @ui
@xj

� �2

: (10)

This quantity plays a crucial role for the under-
standing of turbulent fluid motions.

At first glance, the Navier-Stokes equation
seems to be underdetermined due to the appear-
ance of the gradient pressure term. However, as a
result of incompressibility, the pressure is
uniquely defined by the Poisson equation in con-
nection with suitable boundary conditions:

Dp ¼ �
X
ij

@ui
@xj

@uj
@xi

: (11)

The pressure can be determined with the help
of Green’s function G of the Laplacian,

DG x� x0ð Þ ¼ �d x� x0ð Þ, (12)

and yields the pressure as a functional of the
velocity field:

p ¼
ð
dx0G x� x0ð Þ

X
ij

@ui
@x0j

@uj
@x0i

: (13)

This clearly demonstrates that incompressible
fluid motions are governed by nonlinear, nonlocal
interactions. The gradient pressure term can be
regarded as a Lagrange parameter which guaran-
ties the incompressibility of fluid motion.

Vorticity Formulation of Incompressible Fluid
Dynamics
It is possible to formulate the basic fluid dynamic
equations using the vorticity,v(x, t)= ∇� u(x, t).
Provided the vorticity is known, one can obtain
the velocity field by the analogue of Maxwell’s
equation of magnetostatics:

∇� u ¼ v, ∇ � u ¼ 0: (14)

The velocity field is determined by the analogy
to Biot-Savart’s law

u x, tð Þ ¼
ð
dx0v x0, tð Þ �K x� x0ð Þ

þ ∇F, (15)

where K is related to Green’s function G(x) of the
Laplacian K(x) = ∇G(x). The potential F has to
fulfill DF = 0.

It is straightforward to derive an evolution
equation for the vorticity:

@

@t
vþ u � ∇v ¼ v � ∇uþ nDvþ fo: (16)

Here, an important difference between two-
and three-dimensional fluid motions becomes evi-
dent. For two-dimensional flows, the vorticity
only has a component perpendicular to the
motion, and the so-called vortex stretching term
v � ∇u vanishes identically.

Lagrangian Formulation of Incompressible Fluid
Dynamics
Up to now, we have treated fluid dynamics from the
Eulerian point of view by considering fields defined
at a fixed spatial location. There is an alternative
approach to the description of fluid motion. This
so-called Lagrangian treatment is based on the intro-
duction of the Lagrangian velocity U(y, t) and the
Lagrangian path X(y, t) of a point moving with the
flow starting at time t = 0 at the location y. For
obvious reasons the quantity X(y, t) is also denoted
as Lagrangian map. The inverse map is denoted as
y(x, t). The basic fluid dynamical equations can also
be formulated in this Lagrangian picture.

As an example we formulate the evolution equa-
tion for the Lagrangian vorticity for two-dimensional
incompressible flows. To this end we introduce the
Lagrangian vorticityV(y, t)=v(X(y, t), t). The first
equation defines the Lagrangian path and the second
the evolution of the Lagrangian vorticity.

@

@t
X y, tð Þ ¼

ð
dy0O y0, tð Þ

� ez �K X y, tð Þ � X y0, tð Þ½ �f g,
@

@t
O y, tð Þ ¼ n

X
ijkl

@Yl

@xi

@Yk

@xi

@2

@yl@yk
þ
X
li

@2Yl

@xi@xi

@

@yl

" #

�O y, tð Þ:
(17)

For two-dimensional flows, the gradient of
Green’s function of the Laplacian takes the form
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K xð Þ ¼ x
2p xj j2. It is immediately obvious that in the

ideal fluid case, the two-dimensional vorticity is
conserved along Lagrangian trajectories.
A similar formulation exists for three-dimensional
flows, where, however, the evolution equation for
vorticity contains the vortex stretching term.

Recently, the Lagrangian formulation of fluid
dynamics has become important due to the possi-
bility to measure the path of passive tracer parti-
cles (La Porta et al. 2000; Mordant et al. 2001; Ott
and Mann 2000). Its importance for the descrip-
tion of turbulence has already been emphasized by
Taylor (1921) and Richardson (1926).

Existence and Smoothness Results
Although the Euler and the Navier-Stokes equa-
tions are of fundamental interest for various fields
ranging from astrophysics to applied mechanics
and engineering, their mathematical properties
still remain puzzling. Especially for three-
dimensional flows, results on the existence
(or nonexistence) and smoothness of solutions
could not yet be obtained. This topic is one of
the millennium problems formulated by the Clay
Mathematics Institute. As an introduction to the
subject, we refer the reader to the webpage of the
Clay institute with an outline of the mathematical
problem due to Fefferman (http://www.claymath.
org/millenium/), as well as the two monographs
(Doering and Gibbon 1995; Foias et al. 2001).

Vortex Solutions of the Navier-Stokes
Equation

Figure 2 shows a volume rendering of the absolute
value of vorticity above a certain threshold
obtained from a direct numerical solution of the
vorticity equation. The field is characterized by
the presence of elongated vortex structures
(Jimenez et al. 1993). Whereas fully developed
turbulent flows tend to be dominated by vortex-
like objects, it seems that modest turbulent flows
are characterized by the presence of sheetlike
structures. There are several exact solutions of
the Navier-Stokes equation, which seem to be
related with the vortex structures observed in

fully developed turbulence. They can be investi-
gated using symmetry arguments and methods
from group theory (Grassi et al. 2000).

Axisymmetric Vortices: Lamb-Oseen Vortex
An axisymmetric vorticity distribution v = V(r)
ez generates a purely azimuthal velocity field. This
fact has the consequence that in the vorticity
equation, both, the convective term u � ∇v and
the vortex stretching term v � ∇u, identically
vanish, leading to an equation which is the radi-
ally symmetric heat equation:

@

@t
O ¼ n

1

r

@

@r
r
@

@r
O: (18)

A solution is the so-called Lamb-Oseen vortex:

O ¼ G
pr2B

e�r2=r2B , r2B ¼ 4nt: (19)

The corresponding velocity field is azimuthal
and has the form

v’ rð Þ ¼ G
2pr

1� e�r2=r2B

h i
: (20)

It decays like G/2pr for large distances.
Because of viscosity the velocity field at the origin
vanishes identically.

Fluid Dynamics: Turbulence, Fig. 2 Direct numerical
calculation of the vorticity field of a turbulent fluid motion:
Absolute value of vorticity above a given threshold. After
(Wilczek)
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The Lundgren Spiral
Another vortex solution in the form of a spiral
vorticity distribution has been considered by
Lundgren (1982). It is generated by a localized
central, strong vorticity distribution whose velocity
field drags surrounding, weaker vorticity distribu-
tions into spiral arms. In this way it is also possible
to generate multiple-armed spirals. This process is
depicted in Fig. 3. Recently the Lundgren spiral
has been generated experimentally by the group of
Petitjeans (Cuypers et al. 2003).

Stretched Vortices
A highly interesting class of solutions has been
found by Lundgren. He considered the velocity field

u x, tð Þ ¼ a tð Þ
2

�x, � y, 2z½ �
þ w1 x, y, tð Þ,w2 x, y, tð Þ, 0½ � (21)

and showed that the two-dimensional velocity field
w(x, y, t) can be obtained from the velocity field
W(x1, x2, t) by the Lundgren transformation

w x, y, tð Þ ¼ A tð ÞW A tð Þx,A tð Þy, t tð Þ½ �
A tð Þ ¼ e

Ð t

0
dt0a t0ð Þ

, t tð Þ ¼ Ð t
0
dt0A t0ð Þ2:

(22)
Thereby, the field W(x1, x2, t) obeys the

two-dimensional Navier-Stokes equation.

In the case of a time constant a, the decaying
Lamb-Oseen vortex, Eq. (19) is changed into the
Burgers vortex rB, where it becomes constant, r2B
¼ 4n

a .
The corresponding two-dimensional velocity

field is an azimuthal field, which for large values
of r decays like 1

r. In the limit n ! 0, the vorticity
field approaches a delta-distribution.

Vorticity Alignment
Figure 2 exhibits the vorticity field obtained from
a numerical simulation of the Navier-Stokes equa-
tion. Exhibited is a volume rendering of the abso-
lute value of vorticity above a given value, and it
is quite evident that Burgers-like vortices play a
major role in the spatiotemporal organization of
turbulence. Consequently, the Burgers vortices
have been denoted as the sinews of turbulence
(Moffat et al. 1994). Although the emergence of
vortex-like objects as organization centers of tur-
bulence has not yet been fully clarified, it is clear
that it is related to the phenomenon of vorticity
alignment (Galanti et al. 1997). It has been
emphasized that locally the vorticity vector is
predominantly aligned to the eigenvector of the
intermediate eigenvalue l2 of the strain matrix S,
Eq. (8). This matrix is symmetric and has three
real eigenvalues l1 � l2 � l3. Vorticity align-
ment is still investigated intensively (Hamlington
et al. 2008).

Vorticity alignment has also played a major
role in the discussion of the possibility of finite-
time singularities in Euler flows (Grafke et al.
2008; Grauer et al. 1998), a question which is
fundamentally related to the question of the exis-
tence of solutions of the Euler and Navier-Stokes
equations (Doering and Gibbon 1995; Foias et al.
2001).

Modeling Turbulent Fields by Random Vortex
Distributions
There have been several attempts to model the fine
structure of turbulent fields by statistically distrib-
uted vortex solutions of the Navier-Stokes equa-
tions. Townsend (1951) used a random
arrangement of Burgers vortices. As already men-
tioned Lundgren (1982, 1993) considered the
abovementioned spiral structures in a strain field.

Fluid Dynamics: Turbulence, Fig. 3 Vorticity field of a
two-armed Lundgren spiral
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He showed that suitable space-time average over a
decaying Lundgren spiral leads to an energy spec-
trum predicted by Kolmogorov’s phenomenolog-
ical theory of turbulence. A cascade interpretation
of Lundgren’s model has been given by Gilbert
(1993). Kambe (Hatakeyama and Kambe 1997)
discussed randomly arranged Burgers vortices in
a strain field and was able to model intermittency
effects of Eulerian velocity increments.

Patterns, Chaos, and Turbulence

Pattern Formation and Routes to Chaos in
Fluid Dynamics
Experiments on fluid dynamics in confined geom-
etries like the Rayleigh-Bénard system or the
Taylor-Couette experiment exhibit a variety of
instabilities leading from stationary patterns to
time-periodic structures and to chaotic motions.
For an overview with further references on fluid
instabilities, we refer the reader to the monograph
of Manneville (2004). These flows are character-
ized by temporal complexity; however, the flow
structures remain spatially coherent. The scale of
energy injection and the scale of energy dissipa-
tion usually are not widely separated in these
systems. This has the consequence that only few
degrees of freedom are excited. Such types of
flows can be successfully treated on the basis of
the slaving principle of synergetics (Haken 1983,
1987). In mathematical terms, these types of flows
are related to the existence of center or inertial
manifolds (Temam 2007) in phase space. This
allows explanation of the various routes to chaos
or routes to turbulence observed in fluid motions,
especially in confined geometries, on the basis of
the theory of low-dimensional dynamical
systems.

Point Vortex Motion
The Lagrangian mapX(y, t) of a two-dimensional
ideal fluid motion is determined by the solution of
the integrodifferential Eq. (17), where the
Lagrangian vorticity V(y, t) is temporally con-
stant. This integrodifferential equation can be
reduced to a finite set of ordinary differential
equations by considering fields with strongly
localized vorticity

V y, tð Þ ¼
X
j

Gjd y� yj

� �
: (23)

Introducing the notation X(yj, t) = xj(t), we
obtain the set of differential equations for the
positions xj (t) of the point vortices:

_xi ¼
X
j 6¼i

Gj

2p
ez � xi � xj

xi � xj
�� ��2 : (24)

This set of equations for the vortex positions
was already known by Kirchhoff (1883). Since
then, there have been many studies of this prob-
lem (Aref 1983, 2007; Marchioro and Pulvirenti
1984; Newton 2001). We mention that the
N-vortex problem of two-dimensional fluid
motion shares many properties with the N-body
problem of classical mechanics.

The Lagrangian motion of an arbitrary point
X(y, t) can be determined by the solution of the
nonautonomous differential equation

_X y, tð Þ ¼
XN
i¼1

Gi

2p
ez � X y, tð Þ � xi tð Þ

X y, tð Þ � xi tð Þj j2 , (25)

where the point vortex positions xi(t) are given by
the evolution equations (24). The point vortex
approximation, thus, allows one to study mixing
in two-dimensional flows on the basis of sets of
ordinary differential equations (Aref 1983; Ottino
1989; Sturman et al. 2006).

Since the point vortex system is obtained from
the two-dimensional Euler equation, it is evident
that the kinetic energy is conserved. In fact, intro-
ducing the Hamilton function

H ¼ � 1

4p

X
i 6¼j

Giln xi � xj
�� ��Gj

¼ 1

2

X
i6¼j

GiG xi, xj
	 


Gj

, (26)

we can rewrite the evolution equations in Hamil-
tonian form
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Gi _xi ¼ ez � ∇H: (27)

There are further conserved quantities due to
symmetry. The center of vorticity,

R ¼
X
i

Gixi, (28)

as well as the quantity

I ¼
X
i

Gix
2
i (29)

are time constants.
The advantage of considering the motion of

point vortices in two-dimensional ideal flows is
the applicability of methods and notions from the
theory of finite Hamiltonian systems. Explicitly,
one can investigate the integrability of point vortex
motions, i.e., the formation of time-periodic as well
as quasiperiodic vortexmotions and the emergence
of chaotic motions. Because of the existence of the
integrals of motions (26), (28), and (29), the

motion of two vortices as well as three-point vor-
tices is integrable leading to quasiperiodic motions
in time. Furthermore, it has been shown that in the
four vortex problem, in addition to quasiperiodic
motions, chaotic motion is possible. We refer the
reader to the review articles of Aref (1983, 2007)
and the monograph of Newton (2001). Also the
investigations of mixing by point vortex motion
have revealed interesting insights into the geome-
try and the complexity of the mixing process. An
example of the missing process by four point vor-
tices is exhibited in Fig. 4. Similar concepts are
expected to be applicable for general two- and
three-dimensional turbulent flows.

Onsager’s Statistical Theory of
Two-Dimensional Turbulence
Onsager (1949) recognized the importance of
two-dimensional vortex models for turbulent
flows. Since the dynamics is Hamiltonian, one
can perform a statistical treatment along the lines

Fluid Dynamics: Turbulence, Fig. 4 Mixing induced by the motion of four point vortices
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of equilibrium statistical mechanics. One can
determine the corresponding probability distribu-
tions. If we focus onto the canonical ensemble,
i.e., a point vortex system in connection with a
heat bath, the probability distribution reads

f xið Þ ¼ Z�1 bð Þe�b 1
2

P
ij
GiG xi, xjð ÞGj

h i
¼ Z�1 bð Þe�bH: (30)

Onsager recognized that this probability distri-
bution is normalizable both for negative and for
positive values of b, which in statistical mechan-
ics is related to temperature. A consequence of the
existence of these negative temperature states is
the tendency of the vortices to form large-scale
flow structures. This property can be seen quite
easily by recognizing that the probability distribu-
tion is the stationary probability distribution of the
set of Langevin equations

d

dt
xi ¼ �b∇xiH þ �j: (31)

Here, Z j represents Gaussian white noise. For
negative temperatures, the force between two
point vortices is attractive for GiGj > 0 and repul-
sive in the other case. This leads to the formation
of large-scale flows. We refer the reader to the
recent review (Eyink and Sreenivasan 2006).

Extension to Three Dimensions
The extension of the philosophy of point vortex
motion to three dimensions leads one to consider
vortex filaments. The location of a single vortex
filament is given by the local induction equation
for the positionX(s, t) of the filament as a function
of arclength s and time t. This equation is again
obtained from Biot-Savart’s law assuming a fila-
mentary vorticity distribution:

@

@t
X s, tð Þ ¼ @

@s
X s, tð Þ � @2

@s2
X s, tð Þ (32)

It has been shown that the single filament
equation is integrable. For a discussion we refer
the reader to (Newton 2001).

Turbulence: Determinism and
Stochasticity

It is evident that an understanding of the charac-
teristics of turbulent fluid motions has to be based
on the deterministic dynamics generated by the
basic fluid dynamical equations in combination
with methods of statistical physics. This has led
to the field of statistical hydrodynamics, a topic
which has been treated extensively by the Russian
school founded by Kolmogorov (Monin and
Yaglom 1971, 1975). A good overview can be
found in (Frisch 1995; Lesieur et al. 2000).

Statistical Averages
In statistical hydrodynamics the Eulerian velocity
field and related fields are treated as random fields in
a probabilistic sense. To this end one has to define
suitable averages, where usually ensemble averages
are chosen. They are defined by specifying the
statistics of the initial flow field by probability dis-
tributions, f(u1, x1, t = 0) , f(u1, x1, t = 0; ... ;
uN, xN, t = 0) of the velocities ui at positions xi at
initial time t = 0. The transition to a continuum of
points requires one to consider a probability density
functional F[u(x), t = 0].

In practice, instead of ensemble averages, time
averages are taken, provided the flow is stationary
in a statistical sense.

The corresponding probability distributions at
time t, which specify the temporal evolution of the
considered statistical ensemble are given by

f u, x, tð Þ ¼ d u� u x, t; u0ð Þð Þh i: (33)

Here, u(x, t; u0) is the solution of the fluid
dynamic equation with the initial value of the
velocity field at point x : u(x, t = 0;u0) = u0.
The brackets denote an ensemble average. Joint
probability distributions and the probability func-
tional F(u(x, t)) are defined accordingly. Fre-
quently, the characteristic functions, defined as
the Fourier transform of the probability distribu-
tions, are used. The characteristic functional

Z að Þ ¼ e
i
Ð
dt
Ð
d3xa x, tð Þ�u x, tð Þ

D E
(34)

is the functional Fourier transform of the proba-
bility functional. The ultimate goal of statistical
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hydrodynamics is the determination of this func-
tional, since it contains all information on the
various correlation functions of the Eulerian
velocity fields of the statistical ensemble.

Similar probability distributions can be defined
for the Lagrangian description of fluid dynamics.

Hierarchy of Moment Equations
The temporal evolution of moments of the velocity
field is determined by the basic fluid dynamical
equations. For instance, an equation for the moment
hui(x, t)uj(x0, t)i can be obtained in a straightfor-
ward manner from the Navier-Stokes equation
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� �
þ
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k
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� � ¼
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@xi
p x, tð Þuj?ðx0, t


� �
� @

@x0j
p x0, tð Þui?ðx, t


� �
þ n Dx þ Dx0½ � ui x, tð Þuj?ðx0, t


� �
:

(35)

Similar equations can be formulated for the
higher-order moments hui(x1, t1)uj(x2, t2) . . .
uj(xN, tN)i using the Navier-Stokes equation. The
equation for the average flow field hu(x, t)i has
been considered by O. Reynolds (1883) (see the
discussion below). The chain of evolution equa-
tions for the higher-order correlation functions are
the so-called Friedmann-Keller equations.

The moment equations are not closed. The evo-
lution equation containing the Nth order moment
contains the (N + 1)-th order moment. This is the
famous closure problem of turbulence. It is an
immediate consequence of the nonlinearity of the
Navier-Stokes equation. A mathematical discussion
of the closure problem is given in (Fursikov 1999).

Evolution Equations for Probability
Distributions
It is straightforward to derive evolution equations for
the probability distributions from the Navier-Stokes

equation. This has been emphasized by Lundgren
(1969) and Ulinich and Lyubimov (1969). The evo-
lution equation for f(u, x, t) reads

@

@t
þ u � ∇x

� �
f u, x, tð Þ

¼ �∇u �
ð
du0dx0K x� x0ð Þ

� u0 � ∇x0ð Þ2f u0, x0, t; u, x, tð Þ � ∇u

�
ð
du0dx0d x� x0ð Þ∇x0u

0f u0, x0, t; u, x, tð Þ:
(36)

(Here, K(x) is the gradient of Green’s function
G(x) of the Laplacian.) The dynamics of the single-
point probability distribution f(u, x, t) is coupled to
the two-point probability distribution f(u0, x0, t; u,
x, t) by the nonlocal pressure term and the dissipa-
tive term. Similar equations can be obtained for
higher-order probability distributions. Again, the
hierarchy shows clearly the closure problem of
turbulence theory. The hierarchy is of considerable
interest for the so-called Lagrangian pdf
(probability density function) model approach
advocated by S.B. Pope (1985, 2000). In this
approach, the terms involving the two-point pdfs
are modeled leading to a description of the turbu-
lent velocity in terms of a stochastic process.

For the case of Burgers equation, which is the
Navier-Stokes equation without the pressure term,
it has been possible to solve the corresponding
Lundgren hierarchy without approximation for a
certain external forcing (Eule and Friedrich 2005).

Functional Equations
The Lundgren hierarchy of evolution equations
arises due to the fact that the N-point probability
distributions contain incomplete information on
the evolution of the fluid continuum. A closed
evolution equation is obtained for the characteris-
tic functional (34). This equation is the famous
Hopf functional equation (Hopf 1957), which
forms a concise formulation of the statistical treat-
ment of fluid motions. For a more detailed treat-
ment, we refer the reader to the monograph of
Monin and Yaglom (1975).
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Path Integral Formulation
As has been emphasized by Martin et al. (1973),
each classical field theory can be represented in
terms of the path integral formalism. This is essen-
tially true for a fluid motion driven by a fluctuat-
ing force, which is Gaussian and d-correlated in
time. The generating (MSR) functional has the
following path integral representation

Z a,âð Þ
¼ Ð DuDûeS u,û½ �þi

Ð
dx
Ð
dta x, tð Þ�u x, tð Þþâ x, tð Þ�û x, tð Þ:

(37)

The functional Z a, â ¼ 0ð Þ is just the Hopf
characteristic functional (34). The MSR action is
defined according to

S¼i

ð
dx

ð
dtû x, tð Þ

� _u x, tð Þþu
	
x, t

 �∇u	x, t
� nDu

	
x, t



þ∇p
	
x, t

��1

2

ð
dt

ð
dx0
ð
dxû x, tð ÞQ x�x0ð Þû x0, tð Þ:

(38)

The MSR formalism is a convenient starting
point for an analytical determination of correla-
tion functions of the velocity field. A naive per-
turbation expansion of this functional yields the
diagrammatic representation of the series byWyld
(1961). A renormalized perturbation expansion
leads to the so-called direct interaction approxi-
mation (DIA) of Kraichnan and related analytical
approximations. For an overview we refer the
reader to the monographs of Lesieur (1997) and
McComb (1990). Also the recent work by
V. L’vov and I. Procaccia (L’vov and Procaccia)
is based on this approach.

Reynolds Equation and Turbulence
Modeling

O. Reynolds (1883) suggested to decompose a
turbulent flow field u(x, t) into a mean flow u
and turbulent pulsations w(x, t):

u x, tð Þ ¼ K u x, tð Þh i þ w x, tð Þ: (39)

By averaging the Navier-Stokes equation, one
ends up with the famous Reynolds’s equation,

which is the first equation of the hierarchy of
moment equations (35):

@

@t
þ uh i � ∇

� �
uh i

¼ �∇p�
X
ij

@2

@xi@xj
wiwj

� �þ nD uh i þ fh i:

(40)

This equation contains the so-called Reynolds
stress tensor wi wj, which cannot be neglected
since the turbulent pulsations w can be larger
than the averaged velocity u. The turbulent pulsa-
tions w are closely linked to the fine structures of
turbulence.

If the Reynolds stress tensor is known as a
functional of the mean velocity field, the Reyn-
olds equation is a closed evolution equation deter-
mining average flow properties. This makes
numerical computations of the average flow quan-
tities rather efficient since the fine structures or the
small-scale flow has not to be resolved by numer-
ical schemes.

The Reynolds stress tensor has been the subject
of various investigations. Since a general theory
determining the Reynolds stress tensor is lacking,
engineers have developed the area of turbulence
modeling in order to overcome the closure prob-
lem. Famous turbulence models are eddy viscos-
ity models, which replace the Reynolds stress
tensor by an effective damping term modeling
the energy flux from the averaged flow into the
turbulent pulsations, or the so-called K � ϵ
models, which are based on the evolution equa-
tion for the local energy dissipation rate ϵ of the
turbulent pulsations.

Turbulence modeling has to fulfill the require-
ment of physical realizability and should, for
example, not lead to the development of negative
kinetic energies. Furthermore, symmetry argu-
ments should be taken into account (Oberlack
2000).

Turbulence modeling has led to the develop-
ment of the field of large eddy simulations (LES),
which has provided a variety of numerical, also
commercially available, schemes for calculating
the large-scale flows of applied fluid dynamical
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problems. The LES approach, however, is limited
by the fact that the properties of the Reynolds
stresses cannot yet be derived from a physical
treatment of the small-scale turbulent pulsations
of flows, and the obtained numerical results have
to be met with caution. For details we refer the
reader to Piquet (1999), Jovanovic (2004), and the
reviews ofMétais and Leschziner in (Lesieur et al.
2000). Of considerable interest are the two articles
of Johansson and Oberlack in (Oberlack and
Busse 2002).

The Fine Structure of Turbulence
The fine structure of turbulence essentially influ-
ences the large-scale flows via the Reynolds
stresses. Therefore, the investigation of the fine
structure of turbulent flows is a central theme in
turbulence research. It is commonly believed that
the statistical characteristics of the turbulent fine
structures are universal. A point emphasized by
U. Frisch (1995) is that in the fine structures
symmetries of the Euler equation of fluid dynam-
ics are restored in a statistical sense. The symme-
tries of the Euler equations are translational
symmetry, isotropy, and rescaling symmetry of
space, time, and velocity. Although each of these
symmetries is broken by the turbulent flows, the
symmetries are restored for averaged quantities. If
this hypothesis is true, then the turbulent fine
structure is related with a universal state, which
is called fully developed stationary, homoge-
neous, and isotropic turbulence.

Increments
The fine-scale structure of turbulence is evaluated
by the introduction of the so-called velocity incre-
ment vx(r, t)

vx r, tð Þ ¼ u xþ r, tð Þ � u x, tð Þ: (41)

Velocity increments are defined with respect to
a reference point x. A mean flow is eliminated by
the definition of increments. Furthermore, one
may consider velocity increments with respect to
a moving reference point x = X(y, t). In the
following we shall consider such moving
increments.

The corresponding evolution equation for the
incompressible velocity increment can easily be
established using the definition (41) and the
Navier-Stokes equation:

@

@t
þ v r, tð Þ � ∇r

� �
v r, tð Þ ¼

�∇rp r, tð Þ þ nDrv r, tð Þ
� �∇rp r, tð Þ þ nDrv

	
r, t

� �

r¼0
,∇ � vx r, tð Þ ¼ 0:

(42)

Length and Time Scales in Turbulent Flows

The Integral Scale
The integral scales are measures for a spatial dis-
tance L or a time interval T, across which the
turbulent fluctuations become uncorrelated. The
integral length scale is based on the velocity-
velocity correlation function

u xþ r, tð Þu x, tð Þh i ¼ u x, tð Þu x, tð Þh iF r

L

� �
,

(43)

which decays to zero as a function of the dis-
tance r. The integral length scale L is defined by
the integral

L ¼
ð1
0

drF
r

L

� �
: (44)

Similarly, one can define temporal integral
scales based on the decay of temporal correlations
u x, tþ tð Þu x, tð Þh i ¼ u x, tð Þu x, tð Þh iF t

T

	 

leading

to the definition of the integral time scale T. An
integral velocity scale can be formed quite natu-
rally by the ratio

Uint ¼ L=T: (45)

The velocity field u(x,t) describes the turbulent
pulsations. A mean flow has already been sub-
tracted. The correlation functions (43) actually
are tensors. For flows which are nonisotropic in
the statistical sense, it might be necessary to intro-
duce different integral length scales.
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The Kolmogorov Scales
The Navier-Stokes equation involves the kine-
matic viscosity n as well as a measure of the
excitation of turbulence, the mean local energy
dissipation ϵ. It is convenient to form length and
time scales from these two quantities and obtain
the so-called Kolmogorov scales

� ¼ n3
ϵ

� �1=4
, t� ¼ n

ϵ

	 
1=2
, u� ¼ �

t�
¼ ϵnð Þ1=4:

(46)

On the basis of these quantities, one can define
a Reynolds number which turns out to be unity,
Re ¼ �u�

n ¼ 1. Therefore, the Kolmogorov scales
have to be related with small-scale motions,
which, due to dissipation, can be considered to
be laminar on these scales.

Relation Between the Integral and the
Kolmogorov Length Scale
One may find a relation between the integral
length scale L and the Kolmogorov length scale
Z. This relation is based on the observation that
the local energy dissipation rate ϵ can be dimen-
sionally expressed in terms of the velocity at the
integral scale,Uint, Eq. (45) via

ϵ � U3
int

L
: (47)

This relation allows one to determine the ratio
of the intergal scale L and the Kolmogorov scaleZ
leading to a Reynolds number dependence

L

�
� Re3=4 ¼ UintL

n

� �3=4

: (48)

The ratio increases with the Reynolds number.
Typical length scales estimated from experimental
data of a gridflow are shown in Fig. 5. It is seen that
the estimate (48) can be confirmed experimentally.

From a dynamical point of view, the quantity

L
�

� �3
� Re9=4 is a measure of the number of active

degrees of freedom of the fluid motion.

The Taylor Length and the Taylor-Based Reynolds
Number
A third length scale has been used to characterize
a turbulent flow field. This is the so-called Taylor

length, which frequently is denoted also as Taylor
microscale, l.

It can be derived from the velocity u (here
u denotes again the fluctuating part of a measured
velocity signal) and the derivative as @u/@x

l2 ¼ lim
u2
� �

@u=@xð Þ2
D E : (49)

Aronson and Löfdahl (1993) suggested to esti-
mate the Taylor length using the velocity incre-
ment v(r) = u(x + r) � u(x):

l2 ¼ lim
r!0

u xð Þ2
D E

r2

n rð Þ2
D E : (50)

For the Taylor length, it is expected that L
l �

Re1=2 holds, which is also found experimentally;
see Fig. 6a.
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Fluid Dynamics: Turbulence, Fig. 5 Reynolds number
dependence of the Kolmogorov scale (a) and the integral
length scale (b) estimated from data of a grid experiment,
(Lück et al. 2006)
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On the basis of this Taylor length, it is also
possible to define a new Reynolds number by the
ratio of velocity times length scale and kinematic
viscosity. The Taylor length-based Reynolds
number Rl should scale with the square of the
usual Reynolds number; see Fig. 6b.

Statistics of Increments: Structure Functions
A great amount of work in turbulence research has
been devoted to the so-called structure functions.
In general, structure functions are equal the time
moments of the velocity increments:

vi r, tð Þvj r, tð Þ� �
, vi r, tð Þvj r, tð Þvk r, tð Þ� �

:

(51)

For stationary, homogeneous, and isotropic
turbulence, the tensorial quantities can be consid-
erably reduced by symmetry arguments. For
homogeneous and isotropic turbulence, the

second- and third-order moments can be related
to the so-called longitudinal structure functions,
i.e., the moments of the component of the velocity
increment in the direction of r, er � v(r, t). They are
defined according to

SN rð Þ ¼ r

r
� v r, tð Þ

� �N� �
: (52)

For small values of r, the structure functions have
to behave like SN� rN, since for small r the velocity
increment can be expanded in a Taylor series.

The structure functions of different orders are
related through the Navier-Stokes dynamics. The
evaluation of the structure functions from the
resulting hierarchy of evolution equations is one
of the major theoretical challenges in turbulence
research. However, it seems that so far only the
lowest-order equations relating second- and third-
order structure (the so-called Kolmogorov’s 4/5
law) functions have been exploited rigorously.

Kolmogorov’s 4/5 Law
Kolmogorov (c.f. (Frisch 1995; Monin and Yaglom
1975)) showed that the mean kinetic energy in an
eddy of scale r, vx(r,t)

2, in a homogeneous, isotropic
turbulent field is given by the equation

@

@t

vx r, tð Þ2
2

* +
þ ∇r � vx r, tð Þ vx r, tð Þ2

2

* +

¼ nD vx r, tð Þ2
D E

� ϵh i,
(53)

where ϵ denotes the mean local energy dissipation
rate

ϵh i ¼ n
2

X
ij

@ui
@xj

þ @uj
@xi

� �2
* +

: (54)

We formally consider the turbulent limit n! 0.
In this limit the mean local energy dissipation rate
ϵ has to be constant. Thus, one can estimate that
the gradients have to behave like

@ui
@xj

� 1ffiffiffi
n

p : (55)

The relation (53) can be obtained as a balance
equation for the density of the mean kinetic
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Fluid Dynamics: Turbulence, Fig. 6 Reynolds number
dependence of the Taylor scale (a) and the Taylor length-
based Reynolds number from data of a grid experiment
(Lück et al. 2006)
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energy from the evolution equation for the veloc-
ity increment (42) by scalar multiplication with
v and subsequent averaging. The correlations
involving the pressure term drop out due to
homogeneity.

The resulting equation reads

S3 rð Þ � 6n
d

dr
S2 rð Þ ¼ � 4

5
ϵh ir: (56)

This equation relates the second- and third-
order structure functions and, at first glance,
seems to be underdetermined. However, for
small values of r, we can neglect the third-order
structure function, since S3(r) � r3. The second-
order structure function is then given by

S2 rð Þ ¼ ϵh i
15n

r2: (57)

The range of validity of this law is denoted as
the dissipative range and is close to the Kolmo-
gorov length and smaller. It is dominated by vis-
cous structures.

In the second regime, whose existence is
inferred by the 4/5th law, the third-order structure
function dominates, leading to

S3 rð Þ ¼ 4

5
ϵh ir: (58)

This defines the so-called inertial range and is
located between the Taylor length and the integral
length. For data from a free jet experiment with
high Reynolds numbers, we show in Fig. 7 the
third-order structure function in different presen-
tations, which clearly demonstrate the existence
of the inertial range.

Phenomenological Theories of
Turbulence

Kolmogorov’s Theory K41: Self-Similarity in
the Inertial Range
The inertial range is characterized by the decay of
eddies, which can be assumed to be self-similar. As
a consequence, the probability distribution of the
longitudinal velocity increment v at scale r, f(v, r),
should have the form

f v, rð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v rð Þ2
D Er F

vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v rð Þ2
D Er

0
BB@

1
CCA, (59)

where F(x) is a universal function in the range of
scales l < r < L. As a consequence, the nth order
moments should have the form

vn rð Þh i ¼ Ð dvvn 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v rð Þ2
D Er F

vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v rð Þ2
D Er

0
BB@

1
CCA

¼ v rð Þ2
D En=2 Ð

dwwnF wð Þ
¼ v rð Þ2
D En=2

Vn:

(60)

Since the r-dependence of the third-order
moment is known in the limit of high Reynolds
number,

v3 rð Þ� � ¼ V3 ϵh ir ¼ v rð Þ2
D E3=2

V3, (61)

we obtain

v rð Þ2
D E

¼ K ϵh irð Þ2=3: (62)

The K41 assumption of self-similarity of the
velocity increment statistics in the inertial range
leads to the following fractal scaling behavior of
the nth order moments

j v rð Þnh i ¼ Kn ϵh irð Þn=3: (63)

The corresponding probability distribution is
entirely determined by the constants Kn. The scal-
ing exponents zn = N/3 are linear functions of n.

Failure of K41: Intermittency
Kolmogorov’s hypothesis on the self-similarity of
the statistics in the inertial range has been tested
experimentally as well as numerically. Figure 8
exhibits the probability distribution of the scaled
variable ~v
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~v ¼ v

s rð Þwiths rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v rð Þ2
D Er

: (64)

Because of K41 theory, all probability distri-
butions should collapse for values of r taken from
the inertial range. Both experimental and numer-
ical results show clear deviations from this
behavior. Although the scaling exponents of the

second-order structure function are close to the
K41 value 2/3, a characteristic change of shape of
the probability distribution can be detected. The
change of the pdf with scale r in the inertial range
is a signature of the phenomenon called intermit-
tency. Consequently, the structure functions do
not scale as suggested by the theory of Kolmo-
gorov. This has been experimentally documented

a

b

c

Fluid Dynamics:
Turbulence, Fig. 7 Third-
order structure function
S3(r) (a) of cryogenic free
jet measurements with
Re = 210.000 and the
compensated structure
functions S3 (r)/r in a
semilogarithmic plot (b)
and in a linear plot (c),
showing in more detail the
quality of the present
scaling behavior (Note here
we used the absolute values
for S3(r); thus the values are
all positive) (Chabaud)
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by (Anselmet et al. 1984) and has been discussed
by several groups.

Kolmogorov’s Theory K62
In a famous note in the volume on hydrodynamics
in his Course on Theoretical Physics, Landau
(Landau and Lifshitz 1981) remarked that the
formula of the K41 theory contains the mean
value of the local energy dissipation rate, ϵ. How-
ever, this quantity is a strongly fluctuating quan-
tity in space, due to the strong spatial variations of
the velocity gradient, as can be seen from Fig. 9.
According to Landau these fluctuations should
show up in the structure functions.

Instead of the K41 result (63), he suggested the
use of the following representation

j v rð Þnh i ¼ ~Kn ϵn=3r

D E
rn=3 (65)

where the quantity ϵ r denotes the local energy
dissipation rate averaged over a sphere of radius r.
This reasoning leads to an extension of the K41
formula for the probability distribution in the form

f v, rð Þ ¼
ð
dϵrp ϵr,

r

L

� � 1

ϵrð Þ2=3
F

v

ϵrrð Þ2=3
 !

:

(66)

In 1962 Kolmogorov (1962) suggested the use
of a lognormal distribution for the local energy

dissipation rate ϵr, whose variance is m ln(L/r). As
a result, the structure functions scale like

j v rð Þnh i ¼ ~Knr
n=3 L=rð Þmn n�3ð Þ: (67)

The experimental value for m can be obtained
from a fit of the K62 formula to experimental data.
However, we note that the formula can only be
valid for small values of n, since the scaling expo-
nents zn have to be a monotonously increasing
function of the order n of the structure function.

The Multifractal Model
The multifractal model was introduced by
U. Frisch and G. Parisi. For a detailed description,
we refer the reader to Frisch (1995). The basic
idea is to view a turbulent field to be composed of
regions where the velocity increment field is
assumed to be characterized by a scaling index h:

v r, tð Þ ¼ b
r

L

� �h
: (68)

The structure functions are then given by

SN rð Þ ¼ bN

ð
dhP h, rð Þ r

L

� �Nh
, (69)

where P(r, h)dh is the probability to find incre-
ments for a certain scale rwith scaling exponent h.
Assuming self-similarity, P(h, r) should have the
form

P h, rð Þ ¼ r

L

� �3�D hð Þ
: (70)

Consequently, we have

SN rð Þ ¼ bN

ð
dh

r

L

� �Nhþ3�D hð Þ
� rzN , (71)

where the evaluation of the integral with the
method of steepest descend yields

Fluid Dynamics: Turbulence, Fig. 8 Probability density
functions (pdf) for velocity increments on three different
length scales r = L, L/5, L/30 � l. The pdfs are shifted
along the ordinate for a better representation. On the largest
scale L, a Gaussian distribution is fitted for comparison.
Toward smaller scales, the deviations from the Gaussian
form become obvious (Rl = 180). For further details, see
(Siefert and Peinke 2006)

Fluid Dynamics: Turbulence, Fig. 9 Spatial distribu-
tion of the local energy dissipation rate. The quantity
strongly fluctuates in space. Data is obtained from the
experiment (Siefert and Peinke 2006)
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zN ¼ Min Nhþ 3� D hð Þ½ �: (72)

The scaling indices z N are related to the dimen-
sion D(h) via a Legendre transform. Recently, an
extension of the multifractal model has been pre-
sented by Chevillard et al. (2006). This approach is
essentially based on the representation of the prob-
ability distribution due to (Castaing et al. 1990).
They succeeded to obtain a model for the symmet-
ric part of the probability function of the longitudi-
nal velocity increment, which is valid both in the
integral and the dissipative scale. This gives a
reasonable approximation to the experimentally
determined probability distribution f(v, r).

As we have seen, the statistics of the longitudinal
velocity increment for a single scale r can be
modeled in various ways in order to describe the
deviations from the fractal scaling behavior predicted
by the phenomenological theory of Kolmogorov
formulated in 1941. The major shortcoming of
these approaches, however, is the fact that they con-
tain no information on the joint statistics of the
velocityfields at different scales and times.However,
due to the presumed energy cascade, the velocity
increments on different scales have to be correlated.

Multiscale Analysis of Turbulent Fields

The spatial correlation of the velocity of turbulent
fields has been examined in two ways. From a field
theoretic point of view, pursued by V. L’vov and
I. Procaccia, the existence of so-called fusion rules
has been hypothesized. For this approach we refer
the reader to the survey (L’vov and Procaccia) and
the work cited therein. A phenomenological
approach has been performed by Friedrich and
Peinke (1997a, 1997b). In this approach notions
from the theory of stochastic processes have been
used in order to characterize multiscale statistics of
velocity increments. Relations to the fusion rule
approach have been discussed in (Davoudi and
Tabar 1999). In the following we shall discuss the
phenomenological approach to multiscale statistics
of turbulence.

Statistics Across Scales
In order to address the spatial signatures of the
cascading process underlying stationary,

homogeneous, and isotropic turbulence, it is nec-
essary to consider the probability distributions for
velocity increments at different scales:

f N v1, r1; v2, r2; . . . ; vN, rNð Þ: (73)

Thereby, the quantities vi are velocity incre-
ments with respect to a common point of refer-
ence, vi(ri, t)= u(x + ri, t)� u(x, t), and different
distances ri.

In the following we shall consider the longitu-
dinal velocity increments and locations ri posi-
tioned along a straight line. These quantities are
easily accessible from experimental data.

In case that the longitudinal velocity incre-
ments vi of different scales ri are statistically inde-
pendent, the N-point probability distribution
simply factorizes

f N v1, r1; v2, r2; . . . ; vN , rNð Þ
¼ f 1 v1, r1ð Þf 1 v2, r2ð Þ . . . f 1 vN , rNð Þ: (74)

Because of the cascading process, which
involves the dynamics of velocity increments at
different scales, this relationship cannot hold true.
However, provided the cascade is generated
locally by the nonlinear interaction of velocity
increments at neighboring scales, one may expect
that the two scale probability distributions or the
conditional probability distribution

p v1, r1j v2, r2ð Þ ¼ f 2 v1, r1; v2, r2ð Þ
f 1 v2, r2ð Þ (75)

contains the most important information on the
N-scale probability distribution (73).

Markovian Properties
One may wonder whether the knowledge of the
conditional probability distribution suffices to
reconstruct the N-scale probability distribution
(73) in the form

f N v1, r1; . . . ; vN , rNð Þ ¼ p v1, r1j v2, r2ð Þ
� . . . p vN�1, rN�1j vN , rNð Þ � f vN, rNð Þ: (76)

In this case, the probability distribution fN

defines a Markov chain.
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The question, whether Markovian properties in
scale exist for fully developed turbulence, has
been pursued in several ways. First of all, a nec-
essary condition for the existence of Markovian
properties is the validity of the Chapman-
Kolmogorov equation:

p v1, r1j v3, r3ð Þ ¼ Ð
dv2p v1, r1j v2, r2ð Þ

�p v2, r2j v3, r3ð Þ: (77)

This approach has been pursued in (Friedrich
et al. 1998). Second, one can validate the Mar-
kovian properties by a direct inspection of the
conditional probability distribution (75). Defining
the conditional probability distribution

p v1, r1j v2, r2; v3, r3ð Þ

¼ f 3 v1, r1; v2, r2; v3, r3ð Þ
f 2 v2, r2; v3, r3ð Þ , (78)

the Markovian property can be assessed by
comparing the conditional probability
distributions

p v1, r1j v2, r2; v3, r3ð Þ ¼ p v1, r1j v2, r2ð Þ: (79)

Summarizing the outcomes of the experimen-
tal investigations, one can state that the Markov-
ian property can be empirically validated
provided the differences of the scales, r1 � r2,
r2 � r3, are not too small. This statement can be
made even more precise. As has been shown in
(Lück et al. 2006), the Markovian property breaks
down provided the scale differences are smaller
than the Taylor microscale [see Eq. (49)]. This
finding attributes a statistical definition to the Tay-
lor length scale. Because of the memory effect, we
have now called this length Markov-Einstein
coherence length Lmar (Lück et al. 2006).

Estimation of the Conditional Probability
Distribution
Markov processes are defined through their condi-
tional probability distributions. If one considers the
statistics on scales larger compared to the Markov-
Einstein length, one may perform the limit Lmar!
0 and consider the process to be continuous in scale

r; the conditional probability distribution obeys a
Fokker-Planck equation of the form

� @

@r
p v, rj v0r0ð Þ

¼ � @

@v
D1 v, rð Þ þ @2

@v2
D2ðv, r
� �

p v, rj u0r0ð Þ,
(80)

where the statistics are determined by the drift
functionD1 (v, r) and the diffusion functionD2 (v, r).
We remind the reader that in the definition of p(v,
r|v0, r0), we have used r0 > r, which leads to the
minus sign in the Fokker-Planck equation.

The drift function and the diffusion function
have been determined empirically using methods
of data analysis of stochastic processes; for further
details see (Renner et al. 2001). We also refer the
reader to (Marcq and Naert 2001).

Path Integral Representation of the N-Scale
Probability Distribution
Since the joint N-point probability distribution
can be constructed by the conditional probability
function due to the Markovian property, one can
write down a path integral formula for the turbu-
lent cascade in the form

F v rð Þ½ �

¼ Z�1exp � Ð dr0 � dv r0ð Þ
dr0 � D1

	
v r0ð Þ, r0
h i2

D2 v r0ð Þ, r0ð Þ

2
64

3
75:

(81)

This probability distribution is the analog to
the Gibbs distribution describing the statistics of
systems in thermodynamic equilibrium.

Statistics of Longitudinal and Transversal
Components
Recently, an analysis of the joint statistics of the
longitudinal and transversal components of the
velocity increments has been performed (Siefert
and Peinke 2004, 2006). The result is a Fokker-
Planck equation of the form
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�r
@

@r
p u, tj u0, r0ð Þ

¼ � @

@ui
D

1ð Þ
i u, rð Þ þ @2

@ui@uj
D

2ð Þ
ij ðu, t
� �

�p u, rj u0, r0ð Þ:

(82)

Here,u= (u1, u2) denotes the increment vector of
the longitudinal and transversal components, respec-
tively. As mentioned above and worked out in more
detail in another contribution to thisEncyclopedia of
Complexity and System Science (Friedrich et al.
2008), both drift and diffusion terms D(1), D(2) can
be estimated directly from given data.

Typical results are shown in Figs. 10 and 11.
The drift terms turn out to be linear,

D
1ð Þ
i u, rð Þ ¼ di rð Þui: (83)

Furthermore, the diffusion matrix can be
approximated by low-order polynomials

D
2ð Þ
ij u, rð Þ ¼ dij rð Þ þ

X
k

dij;kuk

þ
X
kl

dij;kl rð Þukul: (84)

Knowing the drift and diffusion coefficient, it is
possible to solve the Fokker-Planck equation
numerically, which can be taken as a self-consistent
verification of the estimation procedure. In Fig. 12

Fluid Dynamics:
Turbulence, Fig. 10 The
u1 and u2 dependence of the
drift vector for the scale r =
L/4. (a) The drift coefficient

D
1ð Þ
1 and (b) the drift

coefficient D 2ð Þ
2 . Note that

the vertical axis is rotated
for better comparison
between (a) and (b). Both
coefficients are linear
functions in u (Siefert and
Peinke 2006)

Fluid Dynamics: Turbulence, Fig. 11 The u1 and u2
dependence of the diffusionmatrix for the scale r= L/4. (a)
The coefficient D 2ð Þ

11 and (b) the coefficient D 2ð Þ
22 . It can be

seen that the diagonal coefficients are not constant but have
a parabolic form, which is more pronounced for the D

2ð Þ
22

coefficient (multiplicative noise). Both coefficients are
symmetric under reflection with respect to u2 ! � u2,
but not for u1 !� u1. (c) The saddle-formed off-diagonal
coefficient D 2ð Þ

12 (Siefert and Peinke 2006)
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it is shown that the numerical solution of the
Fokker-Planck equation reproduces the probability
distribution directly obtained from the data quite
well.

It is quite interesting to notice that the resulting
moment equations reproduce Karman’s equation,
which is a relation between the longitudinal and
transversal velocity increments

u2 rð Þ2
D E

¼ 1

2r

d

dr
r2 u1 rð Þ2
D E

: (85)

Karman’s equation is a direct consequence of
the incompressibility of the fluid motion. It can be
interpreted as a low-order Taylor expansion of

u2 rð Þ2
D E

¼ u1
3
2
r

	 
2D E
which leads to the propo-

sition that the complex structures of longitudinal

and transversal velocity increments mainly differ
in a different scale parametrization of the cascade,
r ! 3

2
r.

Using these findings the different scaling expo-
nents found for longitudinal and transversal incre-
ments can be explained. In Fig. 13 the
longitudinal and transversal structure function
are shown as a function of the third-order structure
function, which should reveal the scaling behav-
ior, too, as the third-order structure function is
expected to depend linearly on r. (This presenta-
tion is called ESS – extended self-similarity
(Benzi et al. 1993).) Most interestingly, the differ-
ence in the scaling exponents vanishes if the 3/2
rescaling is applied; see Fig. 13b. The result indi-
cates that proper scaling behavior is not detected
and can only be valid approximately.

a b

Fluid Dynamics: Turbulence, Fig. 12 Solution of the
Fokker-Planck equation. (a) Contour plot of the initial
condition in logarithmic scale. The simulation starts at
the integral length r= L with a Gaussian distribution fitted
to the data. (b) The contour plots in logarithm scale of the
simulated probability distribution on the scale r = 2l. The

distance between the contour lines is chosen in logarithmic
scale and corresponds to a factor 10. Dashed lines indicate
the probability distribution calculated directly from data;
the full lines are the simulation ones. The simulation repro-
duces well the properties of the data (Siefert and Peinke
2006)

a b

Fluid Dynamics: Turbulence, Fig. 13 The sixth-order longitudinal (black squares) and transversal (white squares)
structure function in (a) ESS representation and (b) ESST representation (Siefert and Peinke 2006)
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The Markov analysis of turbulent velocity
fields yields a closed phenomenological descrip-
tion of the spatial complexity of turbulence. We
note that a similar multiscale analysis has been
performed for a turbulent passive scalar field
(Tutkun and Mydlarski 2004).

Lagrangian Fluid Dynamics

Because of experimental progress in the detection
of the Lagrangian path of passive tracer particles
(La Porta et al. 2000; Mordant et al. 2001), interest
in the formulation of stochastic processes describ-
ing Lagrangian motion in turbulent fluids has been
renewed. One of the first descriptions of such a
process is due to Obukhov (1959), who suggested
to model the Lagrangian acceleration as a white
noise process. He formulated the corresponding
evolution equation for the probability distribution
f(x, u, t) specifying the Lagrangian path in a form
of a Fokker-Planck equation. The results, which
can be derived from the Fokker-Planck equation,
indicate scaling behavior for the Lagrangian veloc-
ity increments and the distance traveled by the
particle during time t:

u tð Þ � u 0ð Þð Þ2
D E

¼ c ϵh it,
x tð Þ � x 0ð Þð Þ2

D E
¼ d ϵh itð Þ3:

(86)

This scaling behavior is inferred fromdimensional
considerations along the theory of Kolmogorov
(K41). Therefore, it is not a surprise that the experi-
mentally observed probability distributions deviate
from the Gaussian shape required by the Obukhov
model (Mordant et al. 2001). A modification of
Obukhov’s model has been suggested in (Friedrich
2003). Recently, Lagrangian particle statistics has
been modeled on the basis of a simple vortex model
(Wilczek et al. 2008), reproducing qualitatively the
intermittent characteristics of Lagrangian velocity
increments (Mordant et al. 2001).

The investigations of the Lagrangian statistics
of turbulent flows have benefited a lot from the
investigation of passive tracers in disordered

flows. Especially the treatment of the Kraichnan
model has led to considerable insights into the
statistics of particles in flows. We refer the reader
to the review article (Falkovich et al. 2001).

Future Directions

Although a fundamental understanding is still
lacking, turbulence research has always led to new
concepts and scientific ideas, which substantially
have influenced the development of modern sci-
ence. This will especially hold true for the future,
where one may expect a major breakthrough due to
combined efforts of experimental, numerical, and
analytical work. The following points for future
direction of research are only a rather subjective
listing of the authors.

Fine Structure of Turbulence: A question
which should be investigated experimentally in
more detail is whether and how the fine structure
is influenced by the mechanism of the generation
of turbulence. This will also involve turbulent
flows close to walls or in pipes. From the experi-
mental side, high precision measurements are
required.

Geometrical and Topological Aspects of Turbu-
lence: There is a variational formulation of ideal
hydrodynamics, emphasized by V.I. Arnold
(Arnold and Khesin 1999).We expect that research
based on topological and geometrical reasoning
will yield further important insights into the spa-
tiotemporal organization of fluid flow.

Statistical Properties of the Lagrangian Map:
Topological and geometrical aspects are inti-
mately related with the properties of the Lagrang-
ian map. A further analysis of the trajectories of
several Lagrangian particles is currently under
consideration. A highly interesting question is
whether the stochastic processes of the particle
motion in the inertial range can be assessed.

Further Reading

For further reading we suggest the monographs
and proceedings (Arnold and Khesin 1999;
Darrigol 2005; Davidson 2004; Frisch 1995; Gyr
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et al. 1999; Monin and Yaglom 1971, 1975; Pope
2000; Sreenivasan and Antonia 1997).
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Introduction

This entry is based on the recent review paper by
the author (Robnik 2016), and other recent papers
with coworkers (Batistić and Robnik 2010,
2013a, b; Batistić et al. 2018). The first part is an
introduction to quantum chaos from the stationary
point of view, where we shall describe the purely
regular eigenstates versus purely chaotic eigen-
states. In the second part, we shall address the

problem of the mixed-type phase space of generic
systems, where regular and chaotic eigenstates
coexist. They are reflecting the complex mixed-
type structure of the corresponding classical phase
space, where regular classical motion on invariant
tori exists for certain initial conditions, while the
motion is chaotic for the complementary initial
conditions. The books by Stöckmann (1999) and
Haake (2010) offer an excellent introduction to
quantum chaos. Stöckmann’s book contains also
many experimental applications of quantum
chaos, most notably on microwave experiments
he has been performing since 1990 up to date,
addressing and realizing practically all important
questions of quantum chaos. Most of the subjects
of this entry can be found in the reviews (Robnik
1998, 2015, 2016).

Quantum chaos is the study of phenomena in
the quantum domain which correspond to the
classical chaotic behavior. Thus, we study the
solutions of the Schrödinger equation of a point
particle in the potential V(q),

iħ @c
@t

¼ bHc ¼ � ħ2

2m
Dcþ V qð Þc, ð1Þ

where h = 2pħ is the Planck constant, c(q, t) the
wave function depending on the N-dimensional
space coordinate vector q and on time t, m the
mass of the point particle moving under the influ-
ence of the potential V(q), and D = @2/@q2 the
N-dimensional Laplace operator. For example, in
the case N = 2, we have

D ¼ @2

@x2
þ @2

@y2
: ð2Þ

In fact, in the following, when dealing with
specific model systems, we shall restrict ourselves
mainly to N = 2.

We investigate the solutions of the Schrödinger
equation and try to relate them to the
corresponding classical dynamics, for which
obviously the limiting behavior ħ ! 0 is of
prime interest. The methods and approximations
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used to find approximate solutions for small ħ are
known under the name semiclassical mechanics,
which offers an important bridge between the
classical and quantum mechanics, and is pre-
sented in detail in Stöckmann (1999) and Haake
(2010). We also might think of this approximation
as short wavelength approximation, which is in
general applicable to all wave systems and their
solutions.

In this entry, we shall restrict ourselves to the
purely binding potential V(q), such that the classical
motion of the particle is bounded (finite) for all
initial conditions, and also quantally the particle
cannot escape to infinity (no ionization threshold).
The energy spectrum of the Hamilton operator bH (1)
is purely discrete and countable infinite. An example
of such Hamiltonian system is a classical billiard
system, where a point particle is moving freely
inside a potential box with hard walls, experiencing
an elastic collision when hitting the boundary.

Classically, in Hamiltonian systems, we can
have regular, stable, quasiperiodic motion on
invariant tori, or irregular, unstable, chaotic
motion. The latter one is characterized by the
property of the sensitive dependence on initial
conditions, which is quantified by the existence
of the positive Lyapunov exponents. In this case,
two nearby orbits in the classical phase space
diverge exponentially with time / exp (lt), and
the relevant exponent l is called the largest posi-
tive Lyapunov exponent. In the example of bil-
liard systems, the shape of the boundary
determines what kind of dynamics the system
exhibits. In quantum mechanics, the concept of
an orbit and trajectory does not exist due to the
Heisenberg uncertainty principle, according to
which the product of uncertainties of position x,
Dx, and the corresponding momentum px, Dpx,
satisfy the rigorous inequality DxDpx � ħ/2. This
implies that also the divergence of nearby trajec-
tories cannot be defined. Indeed, any attempt to
define some kind of meaningful quantum ana-
logue of the asymptotic Lyapunov exponent l
fails in the sense that it is always zero. Therefore,
in quantum mechanics, the sensitive dependence
on initial conditions does not exist, and the time
evolution of the wave function c(t) as the solution
of the time-dependent Schrödinger equation (1) is

stable, almost periodic, and reversible: integration
of the classical chaotic motion for times much
larger than Lyapunov time t = 1/l is fundamen-
tally irreversible once the accuracy of integration
is exhausted, while the corresponding quantum
evolution of the wave function is still reversible.
For details see Haake (2010). Therefore, quantum
chaos in the sense of positive Lyapunov expo-
nents does not exist. In this sense, in the time
evolution, the correspondence of the classical
and quantum chaos does not exist.

However, there is another, stationary, aspect of
classical dynamics in Hamiltonian systems,
namely the structure of the phase space, the
so-called phase portrait, where the phase space is
decomposed into the invariant components
(regions), each one containing a dense orbit. In
the case of classical integrability, to be defined in
detail in the next section, all orbits wind quasi-
periodically on N-dimensional invariant tori (N is
the number of the degrees of freedom, that is the
dimension of the configuration space), and the
entire phase space is foliated into the family of
invariant tori. The torus is uniquely labeled by the
value of N classical canonical actions I, and
the position on the torus is uniquely specified by
the N canonically conjugate angles y. Integrable
systems are very special and rare, but important,
as we can entirely describe them analytically, and
also understand what happens (to the phase por-
trait) if we slightly perturb them, by using a vari-
ety of perturbation methods. The opposite
extreme is complete chaos, ergodicity, where
almost each orbit is chaotic, the set of exceptions
having measure zero, and the orbits visit arbi-
trarily small neighborhoods of any other point in
phase space infinitely many times, as time goes to
infinity. Therefore, the phase average of functions
and the time average are equal. The entire phase
space is just one chaotic invariant component. In
between there are the mixed-type systems with
extremely complex structure of the phase portrait,
where regular islands of stability on the invariant
tori coexist with chaotic sea surrounding them and
which exhibit an infinite hierarchy of statistically
selfsimilar structures. It is the fundamental KAM
theorem which describes the slightly perturbed
Hamiltonian systems. It states that most of the
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invariant tori survive a perturbation, namely they
do still exist after the perturbation with the same
N frequencies of the quasiperiodic motion but are
typically slightly distorted. However, the rational
tori are destroyed, and in place of them, we get an
even number of periodic orbits, half of them stable
and half of them unstable, surrounded by chaotic
region (Poincaré-Birkhoff theorem).

The analogue of the structure of the classical
phase portrait in the quantum mechanics is the
structure of the eigenfunctions, of their
corresponding Wigner functions in the quantum
phase space to be defined below, and of the prop-
erties of the corresponding energy spectra. As we
shall see, in this stationary picture there is a very
well-defined and rich correspondence between the
classical and quantum chaos: The quantum signa-
tures of classical chaos, as the title of Haake’s
book (Haake 2010) goes, are very well defined.

To start with, quantally, we have to solve the
Schrödinger equation (1) for the eigenstates with
sharply defined eigenenergies En, where c(q, t)
/ cn(q) exp (�iEnt/ħ) and the corresponding
eigenfunctions cn are satisfying the boundary
conditions, always requiring the normalizability
of cn, namely

Ð
|cn(q)|

2dNq < 1. In billiards, we
usually require the Dirichlet boundary conditions,
c = 0 on the boundary, but other possibilities,
e.g., the Neumann boundary conditions of
vanishing normal derivative of cn, might be inter-
esting, depending on the circumstances.

The eigenstates are defined as the normalizable
eigenfunctions of the Hamilton operator bH, namelybHcn ¼ Encn. Thus, we have to solve the station-
ary (time-independent) Schrödinger equation,

ħ2

2m
Dcn þ En � V qð Þð Þcn ¼ 0: ð3Þ

In the following sections, we shall deal with
this task, to characterize different types of solu-
tions cn and the associated energy spectra En.

In closing the introduction, let us make it clear
that the time-dependent and time-independent
Schrödinger equations, (1) and (3), are just special
cases of some wave equations. From the mathe-
matical point of view, they can be equivalent or
similar to some other wave equations of

mathematical physics, such as the wave equations
describing electromagnetic, acoustic, elastic, seis-
mic waves, water surface waves, etc., where pre-
cisely the same questions can be addressed, and
the same conclusions can be reached. For details,
see the books by Stöckmann (1999) and Haake
(2010). Therefore, the terminology quantum
chaos is much too narrow, and instead, we should
speak of wave chaos. Nevertheless, the name
quantum chaos is generally well established, but
we should be aware of the wide spectrum of wave
phenomena that can occur in almost all wave
systems. Of course, understanding the wave
chaos is also closely related to the opposite effects
of the spontaneous formation of ordered structure
in certain wave systems such as reaction-diffusion
systems. It is necessary to understand under what
conditions order or chaos can emerge, which is the
central question of Haken’s fundamental work on
synergetics (Haken 2004).

Quantum Properties of Classically
Integrable Systems

Integrable Hamiltonian systems are extremely
rare but important, as explained above. The total
energy is conserved if their Hamilton function
does not depend on time (autonomous system).
They are characterized by the existence of invari-
ant N-dimensional tori everywhere in the classical
phase space. Examples are centrally symmetric
potentials where the angular momentum is con-
served. In the domain of two-dimensional billiard
systems, we have only the rectangle and the ellip-
tic billiard. In the former case, the absolute value
of the momenta px and py are conserved, while in
the elliptic billiard (Berry 1981), the product of
the angular momenta with respect to the two foci
is the conserved quantity. In the special case of the
circle (zero excentricity), the angular momentum
is conserved.

What can we say about such systems? Do their
eigenfunctions have some special structure, along
with their energy spectra? Let us for a moment
concentrate on the two-dimensional billiard sys-
tems. The general Schrödinger equation, when
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using appropriate units, reduces to the simple two-
dimensional Helmholtz equation

@2c
@x2

þ @2c
@y2

þ Ec ¼ 0, ð4Þ
where we have suppressed the index (quantum
number(s)) n, and let us assume the Dirichlet
boundary conditions c = 0 on the boundary.
The answer to the above question is yes. In both
billiards, the eigenfunctions have an ordered
structure, and in both cases, the solutions can be
easily found, thanks to the separability of the
systems. For the rectangle with horizontal width
a and the vertical width b, it is easy to find the
solution given by cm,n x, yð Þ ¼ C sin pmx

a sin pny
b ,

where the constant C is determined by the nor-
malization. Here, m and n are the two quantum
numbers (positive integers), associated with and
labeling the given eigenfunction. Indeed, the
nodal lines defined by the vanishing of c(q) = 0
are the horizontal straight lines y = jb/n = const.,
where j = 0, 1, . . ., n, and the vertical lines x =
ja/m = const., with j = 0, 1, . . ., m.

In the circle billiard, the nodal lines are defined
by the zeros of the radial Bessel functions, which
are circles, and by the zeros of the angular trigo-
nometric function, which are polar rays, straight
lines, emanating from the center of the circle. If
we perturb the two billiards, and solve the Helm-
holtz equation (4), this structure becomes imme-
diately destroyed by a generic perturbation
breaking the separability and integrability of the
system. In fully chaotic systems, the nodal struc-
ture becomes entirely random.

How about the energy spectra E of the integrable
billiards, determined by solving (4)? They are char-
acterized by two quantum numbers. In the rectangle
billiard with horizontal width a and the vertical
width b, we find using the above eigenfunctions

Em,n ¼ p2
m2

a2
þ n2

b2

� �
, ð5Þ

wherem, n are the two quantum numbers (positive
integers). Although this energy spectrum is simple
and explicit, its statistical properties are not so
simple. As we shall see, the statistical properties
of energy spectra are deeply related to the

dynamical nature of the underlying Hamiltonian
system. If the system is integrable, the statistics is
the Poissonian and characteristic of entirely
uncorrelated energy levels, while in the case of
fully chaotic (ergodic) systems, the statistics of the
random matrix theory applies. This is to be
explained in details in the next section.

Before the statistical analysis is performed, we
must prepare the grounds for comparison of quite
different systems. In order to achieve that, we
must unfold the spectrum, which by definition
means transformation of the actual energy spectrum
En to the unfolded energy spectrum en, such that the
mean spacing De = h(en + 1 � en)i of en is equal to
unity everywhere (for all e). This can be done if we
know the mean energy level spacing DE = 1/r(E),
or the energy level density r(E). Then, the
unfolding is simply en = En/DE = Enr(En). The
density of states is known by the Thomas-Fermi
rule of filling the classical phase space inside the
energy surface E = H(q, p) = const. with the
Planck cells of volume (2pħ)N. Namely, the cumu-
lative number of the energy eigenvalues below
the energy E is given by

ð6Þ

Therefore,

ð7Þ

where d(x) is the Dirac delta function. For two-
dimensional billiards with units defined by (4), we
can get more than that, namely

ð8Þ

where and are the area and the circumference
of the billiard, while c. c. are some small constants
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(curvature and corner corrections) which for large
E are unimportant. The first term in (8) results
directly from (6), while the second one is the
so-called perimeter correction. Asymptotically
when E ! 1, the leading term is important and
dominant, and is known also as the Weyl formula,
as Weyl was the first to derive it.

With the energy spectrum being unfolded, we
start the statistical analysis. Rather than defining
all the correlation functions, we shall consider
only two statistical measures. The first one is the
gap probability E(S), which is the probability that
on an interval of length S there is no level (of the
unfolded spectrum). The second one is the level
spacing distribution P(S): The probability to have
a level spacing within the interval (S, S + dS) is
equal to P(S)dS. It turns out that they are related
through P(S) = d2E(S)/dS2 (see Haake 2010).

For the irrational rectangular billiard (a and
b are not rationally connected), we find the
Poissonian statistics, namely

E Sð Þ ¼ exp �Sð Þ, P Sð Þ ¼ exp �Sð Þ: ð9Þ

There is no parameter involved in this formula,
which is a hint that something similar should be
observed in other integrable systems, like the
elliptic billiard, of which the circle billiard is a
special case. Indeed, this is the case, and we speak
of the universality class of the Poissonian spectral
statistics of integrable systems. There are some
subleties around this problem, regarding the
asymptotic behavior with increasing energy E,
which were studied in Robnik and Veble (1998),
but the major conclusion about the validity of the
Poissonian statistics is confirmed. Intuitively, it is
easy to understand: If a quantum energy spectrum
is characterized by two or more quantum num-
bers, we will have generically a statistically inde-
pendent superposition of infinitely many discrete
number sequences. Independent of the properties
of the individual number sequence, such a super-
position always results in a Poissonian sequence.

In the general case of an N-dimensional classi-
cally integrable system defined by the Hamilton
functionH(q, p), we can perform the construction
of suchN quantum numbers in terms of the action-
angle variables (I, y). In the semiclassical limit of

small ħ, the so-called EBK quantization (torus
quantization) is based on the quantization of the
classical actions I. It is called after Einstein,
Brillouin, and Keller. The phase space has 2N
dimensions, the energy surface E =
H(q, p) = const. has 2N � 1 dimensions, and by
definition we have N integrals of motion Aj, j= 1,
. . ., N, of which A1 is by convention the Hamilton
function, the energy E = H. Then, the
N-dimensional invariant surfaces labeled by
A have the topology of N-dimensional tori. The
actions – the generalized momenta – are defined by
the N circuit integrals on a torus labeled by A or I,

I j ¼ 1

2p

þ
C j

p � dq ð10Þ

The canonically conjugate angle variables yj are
defined by using the action integral as a generating
function of the underlying canonical transforma-
tion. For details, see, e.g., the references (Arnold
1980; Ott 1993). The Hamilton function H(q, p)
becomes only a function of Aj values, and of I,
namely after inverting Aj = Aj(Ik), it is a function
of the actions alone, A1(q, p) = H(q, p) = H(I).
We say that the angles yj are cyclic variables.

For sufficiently small ħ, we obtain the so-called
semiclassical torus quantization, or EBK quanti-
zation, because we quantize the actions of the tori,

Im ¼ mþ a
4

� �
ħ, ð11Þ

where m is an N-dimensional vector of nonnega-
tive integers, and a = a1, a2, . . ., aN are Maslov
indices. The indices aj, j = 1, 2, . . ., N count the
number of caustics (singularities of the wave func-
tion in configuration space) encountered in the
configuration space while traversing round the
fundamental circuit Cj. Thus, aj depends on how
the invariant torus lies in the phase space and on
the structure of its projection singularities in the
configuration space. The energy eigenvalues are
then equal to the value of the Hamilton function at
the quantized actions (11),

Em ¼ H Imð Þ ¼ H mþ a
4

� �
ħ

� �
: ð12Þ

The formula (12) with (11) is basically the
higher dimensional generalization of the one-
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dimensional semiclassical quantization, taking
into account also the Maslov corrections, which
Einstein, Brillouin, and Keller were not aware
of. It is an approximate solution at small ħ of the
Schrödinger eigenvalue problem (3). For further
details, see Stöckmann (1999).

Now we can explain the origin of the
Poissonian statistics for the quantal energy spec-
tra of classically integrable systems: Having
N quantum numbers m = (m1, m2, . . ., mN)
means generically (in almost all cases, such
where no pathological rationalities occur) statis-
tical independent superposition of infinitely
many level sequences, and this must result in a
Poissonian sequence, unless there are some spe-
cial and nongeneric rational relationships or cor-
relations between the individual level sequences.
For some discussions, see Robnik and Veble
(1998), especially regarding the role of rational
relationships in rectangle billiard.

Quantum Chaos of Classically Fully
Chaotic (Ergodic) Systems

We now turn to the other extreme case of fully
chaotic, ergodic systems. An example of fully
chaotic ergodic motion with a positive
Lyapunov exponent is the motion of a point
particle in the well-known stadium billiard,
defined as a rectangle with two semicircles on
the two opposite sides, as introduced by
Bunimovich (1974). Let us assume that the
radius of the two semicircles is unity, while the
width of the rectangle between them is e. The
billiard system is ergodic and chaotic at any
nonzero value of e, but the typical time for a
chaotic trajectory to fill the entire phase space
depends strongly on e. The details of the
diffusion-like motion have been recently stud-
ied by Lozej and Robnik (2018) and its conse-
quences for quantum chaos in reference
(Batistić et al. 2018). If e = 1 this time, called
diffusion time, or transport time tT, is of order
unity, while for very small e it becomes very
large. Thus, an initial small blob of initial con-
ditions spreads diffusively very quickly in the
classical phase space when e = 1, while for

small e, tT can become very large. As we shall
see, this important time scale has to be com-
pared with the important quantum time scale
called Heisenberg time (or break time), defined
by tH = 2pħ/DE, where DE is the mean energy
level spacing of the corresponding quantum sys-
tem DE = 1/r(E) determined by the Thomas-
Fermi rule (7). Namely, empirically it is very
well observed that the quantum diffusion fol-
lows the classical diffusion only up to the Hei-
senberg time (also called break time), and stops
then due to the localization, which is a conse-
quence of the destructive interference effects,
and is called dynamical localization or quantum
localization, first observed by Chirikov, Casati,
Izrailev, and Ford in 1979 (Casati et al. 1979) in
the context of time-periodic (Floquet) systems
(quantum kicked rotator). If the semiclassical
condition is satisfied that the Heisenberg time
is larger than all important classical diffusion
times in the given system, then we find the
universal statistical behavior of the wave func-
tions and of the energy spectra. Let us recall that
according to Eq. (7) DE / (2pħ)N, and therefore
as ħ ! 0, for N � 2, tH will eventually become
larger than any tT, the latter one being
ħ-independent. Thus, at some sufficiently
small ħ, in the ultimate semiclassical limit, the
quantum localization effects disappear and we
can expect the universality to be described in the
following.

In contrast to the integrable billiard systems
exemplified by the rectangle and the circle, the
nodal lines of the stadium billiard with e = 1 are
entirely irregular, as found already by McDonald
and Kaufman (1979). In fact, it has been proposed
by Berry (1977) that the wave functions of classi-
cally fully chaotic billiards is a Gaussian random
function, that is the probability amplitude cn(x, y)
has a Gaussian distribution, and this has been
widely confirmed (see Li and Robnik 1994).
This indicates that we can expect again some
kind of universal behavior. Regarding the
unfolded energy spectrum of this billiard system,
it has been shown by Bohigas, Giannoni, and
Schmit in 1984 (Bohigas et al. 1984) that the
level spacing distribution P(S) is quite different
from the Poissonian, and is approximately but
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well described by the Wigner distribution (also
called Wigner surmise) given by

PW Sð Þ ¼ pS
2

exp � pS2

4

� �
, ð13Þ

while the corresponding gap probability is

EW Sð Þ ¼ 1� erf
ffiffiffi
p

p
S

2

� �
¼ erfc

ffiffiffi
p

p
S

2

� �
ð14Þ

The important feature is the linear behavior of
P(S) at small S, starting from zero, meaning that
the levels tend to be away from a degeneracy, and
we speak of level repulsion phenomenon, in this
case the linear level repulsion. This must be seen
in the contradistinction to the Poissonian
P(S) = e�S, where the level repulsion is absent
and the degeneracies are quite likely. Bohigas,
Giannoni and Schmit went on, after numerical
exploration of other fully chaotic ergodic billiards
with short tT, e.g., the Sinai billiard, by proposing
what is now known as Bohigas-Giannoni-Schmit
(BGS) Conjecture, namely that the statistical
properties of the energy spectra of classically
fully chaotic and ergodic systems are described
by the random matrix theory (RMT), which is one
of the fundamental cornerstones of quantum
chaos. Some preliminary ideas were published
already by Percival (1973), and in particular by
Casati, Valz-Gris, and Guarneri (1980).

It has beenwidely numerically confirmed that the
conjecture is correct, and the theoretical foundation
has been laid down in the seminal paper by Berry in
1985 (Berry 1985). He has shown, using the semi-
classical methods developed by Gutzwiller in a
series of papers in late 1960s and early 1970s
(Gutzwiller 1967), that the spectral autocorrelation
function and its Fourier transform, the so-called
spectral form factor, for small times indeed agree
with the RMT. The subject is very difficult, and there
was practically no theoretical progress until 2001,
when Sieber and Richter (2001) extended Berry’s
work to the next order in power expansion for short
times of the form factor. This line of research finally
culminated in a series of papers starting in 2006 by
Haake and his group (Haake 2010; Müller et al.
2009), who succeeded to show that the semiclassical

form factor agrees with the RMT to all orders at least
up to the Heisenberg time tH, and beyond (very
recently). Therefore, BGS Conjecture is proven
and it is no longer a conjecture but a theorem. The
mentioned method of Gutzwiller rests upon the
semiclassical calculation of the quantum energy
spectral density expressed in terms of a series expan-
sion consisting of contributions stemming from clas-
sical periodic orbits. The so-called Gutzwiller trace
formula is the stationary phase approximation of the
relevant Feynman path integral, used to calculate the
Green function. For an excellent introduction, see
the book by Stöckmann (1999).

The RMT has been introduced and developed
mainly by Wigner, Dyson, Mehta (Haake 2010;
Mehta 1991), and others to describe statistical
properties of the energy spectra of heavy complex
nuclei. The main question is what are the statisti-
cal properties of the eigenvalues of appropriate
ensembles of random matrices, that is matrices
with random matrix elements each having a cer-
tain probability distribution. It was expected that a
large complexity of the physical system results in
some randomness. Therefore, it was a surprise
that it applies also to low-dimensional dynamical
systems, such as only two-degrees-of-freedom
billiards, provided that they are fully chaotic
(ergodic) and that the semiclassical condition
tH > tT is satisfied. The idea is that if we do not
know the details of a complex system, and look at
the representation of its Hamilton operator in
some basis of the Hilbert space, the matrix ele-
ments will appear as random variables.

Due to the lack of space, we cannot go into the
details of the RMT, and therefore touch only upon
themain idea. RMTstarts by assuming theGaussian
random distribution of the matrix elements, which
are statistically independent of each other, and the
distribution is invariant against the transformations
that preserve the symmetry of the Hamiltonmatrices
of the ensemble. In the case of real symmetric
Hamilton matrices, the transformations are orthog-
onal transformations, and the ensemble of such ran-
dom matrices is called Gaussian Orthogonal
Ensemble (GOE). If H are complex Hermitian
matrices, the group of symmetry preserving trans-
formations are the unitary transformations, and the
ensemble is called Gaussian Unitary Ensemble
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(GUE). The central question, among others, is what
are the statistical properties of the eigenvalues of
such random matrix ensembles.

Rather than going into the full generality, we
consider the case of just two-dimensional Gauss-
ian randommatrix ensembles, and derive the level
spacing distribution for them.

Quite generally, for a Hermitian matrix

x yþ iz

y� iz �x

� �
,

with x, y, z real, and i2= � 1, the two eigenvalues
are l ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
and the level spacing is

S ¼ l1 � l2 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
. Let us now

assume that x, y, z have so far general distributions
gx(x), gy(y), gz(z), correspondingly. The level
spacing distribution is then

P Sð Þ ¼ð
R3

dx dy dz gx xð Þgy yð Þgz zð Þd S�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þ y2þ z2

p� �
:

ð15Þ
The 2D GUE is obtained if we assume

gx uð Þ ¼ gy uð Þ ¼ gz uð Þ ¼ 1
s
ffiffi
p

p exp � u2

s2

� �
, where

weperform thenecessarynormalization<S> =1,
which fixes the s. Using the spherical coordinates
r¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þ y2þ z2

p
and ’, y, we can perform the

integration, followed by the normalization
<S > = 1, yielding 2D GUE formula

P Sð Þ ¼ 32S2

p2
exp � 4S2

p

� �
, ð16Þ

with quadratic level repulsion.
On the other hand, if we restrict the ensemble

to the real symmetric class, where we must take
gz(u) = d(u) while gx and gy remain unchanged
Gaussian, and using the polar coordinates r ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

and ’, we obtain the 2D GOE formula

P Sð Þ ¼ pS
2
exp � pS2

4

� �
, with the linear level

repulsion, and indeed the result is identical to
PW(S) from eq. (13).

One should be aware of the fact that there is a
clear cut criterion for the GOE orGUE case: If in the
system there exists an antiunitary symmetry exem-
plified by – but not limited to – the time reversal
symmetry, then there exists a large and nontrivial
basis in theHilbert spacewhere the representation of

the Hamilton operator (matrix) is real symmetric,
and GOE statistics applies. If there is no antiunitary
symmetry, the system is a general complex
Hermitian and the statistics is GUE (Mehta 1991;
Robnik and Berry 1986; Robnik 1986).

Note that in both cases of the RMT, like in the
Poissonian case of classical integrability, there is
no free parameter: Universality. Thus, we speak
of universality classes of spectral statistics.
Hackenbroich and Weidenmüller (1995) have
shown that the result applies also to a very large
class of other random matrix ensembles, provided
the limiting distribution of the eigenvalues is
smooth and confined to a finite interval, which
are quite mild conditions, thus showing that the
universality classes are very robust. This has been
numerically verified for a number of various non-
Gaussian ensembles (Robnik et al. 2010). One
elementary indication for the robustness of the
linear level repulsion is demonstrated
(Grossmann and Robnik 2007; Robnik et al.
2010) by using (15), assuming gz(u) = d(u), and
for general gx, gy, using the polar coordinates for
the integration over the (x, y) plane, we find:

P Sð Þ¼ S
4

ð2p
0

gx
S
2
cos’

� �
gy

S
2
sin’

� �
d’, ð17Þ

and consequently for small S we obtain

P Sð Þ ¼ pS
2
gx 0ð Þgy 0ð Þ, ð18Þ

showing, that if gx, gy at x= 0 and y= 0 are finite
and nonzero, the level repulsion will be always
linear, independent of the details of gx(x), gy(y).
Indeed, for the Gaussian case, where the normal-
ization <S > = 1 yields s ¼ 1=

ffiffiffi
p

p
, we have

gx(0) = gy(0) = 1 and see at once P(S) = pS/2
for small S, in agreement with (13). The result is
easily generalized for the GUE case by using the
general gz(z), deriving the quadratic level repul-
sion, and reproducing (16) for small S in the
special case of Gaussian gx, gy, gz.

Quantum Chaos of Classically Generic
(Mixed-Type) Systems

Classically integrable and fully chaotic (ergodic)
systems are exceptional. Typical – generic – clas-
sical Hamiltonian systems are of the mixed type,
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with divided phase space. Typically they have
extremely complex structure, with rare exceptions
such as the mushroom billiards introduced by
Bunimovich, where we have exactly one rigor-
ously integrable (regular) component, and exactly
one ergodic chaotic component.

In the general generic case, the regular regions
consisting of N-dimensional invariant tori coexist
in the phase space with chaotic regions. Typically
there is an infinite hierarchy of statistically
selfsimilar structure consisting of islands of stabil-
ity surrounded by the chaotic sea, which by itself
might comprise several disconnected invariant
chaotic components. The phase portrait has a very
rich structure and is difficult to describe in detail.
The quantum mechanics of such systems is also
difficult. In the semiclassical limit ħ ! 0, the
quantum mechanics of the stationary Schrödinger
equation must somehow tend to the classical
mechanics. It was the idea of Percival in 1973
(Percival 1973) who was the first to suggest, qual-
itatively, that one should distinguish between the
regular eigenstates and the chaotic eigenstates
(he called them irregular). However, the question
is:How? It is rather obvious that wemust introduce
some kind of the quantum phase space, where the
quantum structures can be compared with the clas-
sical ones. This can be achieved by introducing the
Wigner functions of the quantum eigenstates.

Quantum Phase Space: The Wigner Functions
The Wigner functions of eigenstates, based on the
stationary orthonormal wave functions cn(q) in
configuration space, are defined in the quantum
phase space (q, p) as follows:

Wn q,pð Þ ¼ 1

2pħð ÞNð
dNX exp � i

ħ p:X
� �

cn q� X
2

� �
c�
n qþ X

2

� �
:

ð19Þ
As one can easily see, they are real valued but

not positive definite, and possess the following
properties:

(P1)
Ð

Wn(q, p)d
Np = |cn(q)|

2 (= probability
density in configuration space)

(P2)
Ð

Wn(q, p)d
Nq = |fn(p)|

2 (= probability
density in momentum space)

(P3)
Ð
Wn(q, p)d

Nq dNp = 1 (normalization)

(P4) (2pħ)N
Ð
dNq dNpWn(q, p)Wm(q, p) = dnm

(orthogonality)
P5ð Þ j Wn q,pð Þ j� 1

pħð ÞN (no singularities;

Cauchy-Schwartz inequality)
P6¼P4ð Þ Ð

W2
n q,pð ÞdNq dNp¼ 1

2pħð ÞN (divergence

in the limit ħ! 0)
P7ð Þ ħ! 0 : Wn q,pð Þ! 2pħð ÞNW2

n q,pð Þ> 0 (posi-
tivity in the limit ħ ! 0)

From this, one can conclude that in the semi-
classical limit ħ! 0 theWigner function becomes
predominantly positive definite, that it is
supported in a volume cell of size (2pħ)N, and
thus condenses in such a cell, and since the Wig-
ner functions are orthogonal, they must “live” in
disjoint supports and therefore become statisti-
cally independent of each other. The question is,
what is the geometry/structure of such a cell.

Principle of Uniform Semiclassical
Condensation (PUSC) of Wigner Functions of
Eigenstates
The Principle of Uniform Semiclassical Conden-
sation (PUSC) of Wigner functions of eigenstates,
based on the papers by Percival (1973), Berry
(1977), Shnirelman (1974), Voros (1979), Robnik
(1998), and Veble, Robnik, and Liu (1999), states
that the Wigner functionWn(q, p) condenses uni-
formly on a classical invariant component in the
classical phase space, when ħ ! 0 and if tH > tT.
This can be an N-dimensional invariant torus, a
chaotic component, or the entire energy surface in
the case of classical ergodicity:

(C1) Invariant N-torus (integrable or KAM):

Wn q, pð Þ ¼ 1

2pð ÞN d I q, pð Þ � Inð Þ: ð20Þ

(C2) Uniform on topologically transitive (inde-
composable invariant) chaotic region:

Wn q, pð Þ ¼ d En � H q, pð Þð Þ wo q,pð ÞÐ
dNq dNp d En � H q, pð Þð Þ wo q,pð Þ

ð21Þ
where wo(q, p) is the characteristic function on

the chaotic component indexed by o
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(C3) Ergodicity (microcanonical Wigner
function):

Wn q, pð Þ ¼ d En � H q,pð Þð ÞÐ
dNq dNp dðEn � H q,pð Þ ð22Þ

Here we also introduce the notation m for the
relative Liouville measure of the relevant classical
invariant component indexed by o:

m oð Þ ¼
Ð
dNq dNp d En � H q, pð Þð Þ wo q,pð ÞÐ

dNq dNp d En � H q,pð Þð Þ
ð23Þ

This principle turns out to have a great predic-
tive power, as demonstrated and used, e.g., in
Veble et al. (1999). However, it must be kept in
mind that the condition for the uniformity of this
semiclassical limit of chaotic states is the fulfill-
ment of the semiclassical condition about the time
scales: The Heisenberg time tHmust be larger than
all relevant classical transport time scales tT.

Spectral Statistics in the Mixed-Type Phase
Space
From the PUSC it follows that in the semiclassical
limit, the eigenstates can be clearly classified as
regular and chaotic, just according to the criterion
whether they overlap with an invariant
N-dimensional torus or with a chaotic region.
Using this criterion, one can separate the regular
and chaotic eigenstates and perform the statistical
analysis separately for each of them. Due to the
nonoverlapping supports of the Wigner functions,
they become statistically independent of each other.
Therefore, also the corresponding energy level
sequences become classified as regular and chaotic,
where the regular ones obey the Poissonian statistics
and the chaotic ones obey the RMT statistics, pro-
vided the semiclassical condition (of time scales) is
satisfied. Then, the total spectrum can be
represented as a statistically independent superposi-
tion of regular and chaotic level sequences. The
regular ones can be lumped together in a single
Poissonian sequence, simply because a statistically
random superposition of Poissonian level sequences
is a Poisson sequence again, while the chaotic
sequences must be treated one by one, each of
them associated with its relevant supporting classi-
cal chaotic region. In such a case, it becomes obvi-
ous that the gap probability E(S) factorizes: The

probability of having no level on interval of length
S is the product of probability of having no level of
the regular type, times probability of having no level
of the chaotic types. In the special case of just one
chaotic sequence with the approximate gap proba-

bility EW Sð Þ ¼ erfc
ffiffi
p

p
S

2

� �
and one Poissonian

sequencewith the gap probability EP(S)= exp (�S),
we obtain

E Sð Þ ¼ EP m1Sð Þ EW m2Sð Þ

¼ exp �m1Sð Þ erfc
ffiffiffi
p

p
m2S
2

� �
: ð24Þ

Here m1 is the relative fraction of the phase
space volume of the classical regular regions in
the classical phase space, while m2= 1� m1 is the
complementary relative Liouville measure of the
chaotic component. Also, m1 is the mean relative
density of the regular energy levels, while m2 is the
mean relative density of the chaotic levels. Since
the general relationship P(S) = d2E(S)/dS2
applies, we derive at once the so-called Berry-
Robnik level spacing distribution (Berry and
Robnik 1984)

PBR Sð Þ ¼ e�m1Se�
pm2

2
S2

4 2m1m2 þ
pm32S
2

� �

þ e�m1Sm21erfc
ffiffiffi
p

p
m2S
2

� �
: ð25Þ

Of course, this probability distribution is nor-
malized <1 > = 1, and has the normalized first
moment <S > = 1. It has been tested in many
various billiard systems, and in order to see it,
since the semiclassical condition (of the time
scales) must be satisfied, it is very often necessary
to reach the high-lying levels. Most notable con-
firmation has been achieved by Prosen and
Robnik (1994, 1999), 10–15 years after its deri-
vation. The generalization to many chaotic com-
ponents is quite straightforward (Robnik 1998;
Berry and Robnik 1984).

Dynamical Localization of the Chaotic
Eigenstates
If the semiclassical condition of time scales tH> tT is
not satisfied, the Wigner functions of chaotic eigen-
states do not spread out uniformly over the relevant

142 Recent Advances in Quantum Chaos of Generic Systems



classical chaotic component, but are localized,
which means that their effective support is smaller
than the classically available chaotic region. For
example, this is observed in the stadium billiard if e
is sufficiently small. It has been shown empirically
quite recently (Batistić and Robnik 2010, 2013a, b;
Batistić et al. 2013, 2018) that the aspects of dynam-
ical localization in time-independent systems are
quite analogous to the dynamical localization phe-
nomena in time-dependent Floquet systems, specif-
ically in quantum kicked rotator (Manos and Robnik
2013). Below we shall show examples of localized
chaotic states.

If we neglect the tunneling effects (which cou-
ple regular and chaotic levels, breaking the statis-
tical independence assumption), which we can do
at high energies (small effective ħ, because tunnel-
ing effects decrease exponentially with effective
1/ħ), but treat the dynamical localization effects,
we observe empirically (Batistić and Robnik
2010, 2013a, b; Batistić et al. 2018; Prosen and
Robnik 1994) that the level spacing distribution of
the localized chaotic eigenstates is very well cap-
tured by the Brody distribution

PB Sð Þ ¼ C1S
b exp �C2S

bþ1
� �

, ð26Þ

where the two parameters C1 and C2 are deter-
mined by the two normalizations <1 > =
< S > = 1, and the corresponding gap
probability is

EB Sð Þ ¼ 1

a bþ 1ð ÞQ
1

bþ 1
, aSð Þbþ1

� �
ð27Þ

where a ¼ G bþ2
bþ1

� �
and Q(a, x) is the incomplete

Gamma function

Q a, xð Þ ¼
ð1
x

ta�1e�tdt: ð28Þ

Here the only parameter is b, the level repulsion
exponent in (26), which measures the degree of
localization of the chaotic eigenstates: if the locali-
zation is maximally strong, the eigenstates practi-
cally do not overlap in the phase space (of the
Wigner functions) andwe find b= 0 and Poissonian
distribution, while in the case of maximal extended-
ness (no localization), we have b= 1, and the RMT

statistics of levels applies. Thus, by replacing EW(S)
with EB(S), we get the BRB (Berry-Robnik-Brody)
distribution, which generalizes the Berry-Robnik
distribution such that the localization effects are
included (Batistić and Robnik 2010).

The Billiard Systems and
Poincaré-Husimi Functions

Having established the formalism of Wigner
functions as a kind of the quantum phase space,
we now wish to actually look at the Wigner
functions in mixed-type quantum systems, in
order to separate the regular and the chaotic
ones, by simply looking at whether the given
eigenstateWn(q, p) overlaps with a classical reg-
ular or classical chaotic region. Furthermore, the
question arises whether the chaotic Wigner func-
tion is localized or extended on the classical
chaotic component. The method and approach
is general, but technically difficult to implement
in general. Therefore, we have to choose some
representative model system. The billiard sys-
tems are most suitable for such studies.

For a 2D billiard, the most natural coordinates
in the phase space (s, p) are the arclength s round
the billiard boundary, s � [0, ℒ], where ℒ is the
circumference, and the sine of the reflection angle,
which is the component of the unit velocity vector
tangent to the boundary at the collision point,
equal to p, which is the canonically conjugate
momentum to s. These are the Poincaré-Birkhoff
coordinates. The bounce map (s1, p1)! (s2, p2) is
area preserving (Berry 1981), and the phase por-
trait does not depend on the speed (or energy) of
the particle. Quantum mechanically we have to
solve the stationary Schrödinger equation, which
in a billiard is just the Helmholtz equation
Dc + k2c = 0 with the Dirichlet boundary condi-
tions c|@ℬ = 0. The energy is E = k2. The impor-
tant quantity is the boundary function

u sð Þ ¼ n � ∇rc r sð Þð Þ, ð29Þ

which is the normal derivative of the
wavefunction c at the point s (n is the outward
unit normal vector). It satisfies the integral
equation
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u sð Þ ¼ �2

þ
dt u tð Þ n � ∇rG r, r tð Þð Þ, ð30Þ

where G r, r0ð Þ ¼ � i
4
H

1ð Þ
0 kjr� r0jð Þ is the Green

function in terms of the Hankel function H0(x). It
is important to realize that boundary function u(s)
contains complete information about the
wavefunction at any point q inside the billiard
by the equation

c j rð Þ ¼ �
þ
dt u j tð Þ G r, r tð Þð Þ: ð31Þ

Nowwe go over to the quantum phase space.We
can calculate the Wigner functions based on cn(r)
and perform the procedure developed in the previ-
ous section. However, in billiards, it is advantageous
to calculate the Poincaré-Husimi functions. The
Husimi functions are generally just Gaussian
smoothed Wigner functions. Such smoothing
makes them positive definite, so that we can treat
them somehow as quasi-probability densities in the
quantum phase space, and at the same time we
eliminate the small oscillations of the Wigner func-
tions around the zero level, which do not carry any
significant physical contents, but just obscure the
picture. Thus, following Tualle and Voros (1995)
and Bäcker et al. (2004), we introduce (Batistić and
Robnik 2013a) the properly ℒ-periodized coherent
states centered at (q, p), as follows

c q,pð Þ,k sð Þ ¼
X
m�Z

exp ikp s� qþ mLð Þf g

exp � k
2

s� qþ mLð Þ2
� �

:

ð32Þ

The Poincaré-Husimi function is then defined
as the absolute square of the projection of the

boundary function u(s) onto the coherent state,
namely

H j q, pð Þ ¼
ð
@ℬ

c q,pð Þ,k j
sð Þ u j sð Þ ds

				
				2: ð33Þ

In Fig. 1, we show examples of a regular and of
a chaotic eigenstate for the billiard introduced in
(Robnik 1983, 1984) with l = 0.15.

Now the classification of eigenstates can be
performed by their projection onto the classical
surface of section. As we are very deep in the
semiclassical regime, we do expect with probabil-
ity one that either an eigenstate is regular or cha-
otic, with exceptions having measure zero,
ideally. To automate this task, we have ascribed
to each point on the grid a number Ai, j whose
value is either +1 if the grid point lies within the
classical chaotic region or �1 if it belongs to a
classical regular region. Technically, this has been
done as follows. We have taken an initial condi-
tion in the chaotic region, and iterated it up to
about 1010 collisions, enough for the convergence
(within certain very small distance). Each visited
cell (i, j) on the grid has then been assigned value
Ai, j = + 1, the remaining ones were assigned the
value �1.

The Poincaré-Husimi function H(q, p) (33)
(normalized) was calculated on the grid points
and the overlap index M was calculated
according to the definition M = �i, j Hi, j Ai, j.
In practice, M is not exactly +1 or �1, but can
have a value in between. There are two reasons:
the finite discretization of the phase space (the
finite size grid), and the finite wavelength (not
sufficiently small effective Planck constant, for
which we can take just 1/kj). If so, the question is,

Recent Advances in Quantum Chaos of Generic Sys-
tems, Fig. 1 Examples of a chaotic (left) and a regular
(right) state in the Poincaré-Husimi representation. kj (M)
are: chaotic: kj (M) = 2000.0181794 (0.981); regular: kj
(M) = 2000.0777155 (�0.821). The gray background is

the classically chaotic invariant component. We show only
one quarter of the surface of section (s, p) � [0, ℒ/2]
� [0, 1], because due to the reflection symmetry and
time-reversal symmetry, the four quadrants are equivalent
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where to cut the distribution of the M-values, at
the threshold value Mt, such that all states with
M < Mt are declared regular and those with
M > Mt chaotic.

There are two natural criteria: (i) The classical
criterion: the threshold value Mt is chosen such
that we have exactly m1 fraction of regular levels
and m2 = 1 � m1 of chaotic levels. (ii) The quan-
tum criterion: we choose Mt such that we get the
best possible agreement of the chaotic level spac-
ing distribution with the Brody distribution (26),
which is expected to capture the dynamical local-
ization effects of the chaotic levels.

Let us now separate the regular and chaotic
eigenstates and the corresponding eigenvalues,
after unfolding, according to our method, using
the classical criterion (i). The corresponding
threshold value of the index M is found to be
Mt = 0.431. The level spacing distributions are
shown in Fig. 2. As we see, we have perfect Brody
distribution with b = 0.444 for the chaotic levels
and almost pure Poisson for the regular levels.

The Localization Measures

After the success in separating the regular and
chaotic eigenstates, we want to quantify the
degree of localization of the chaotic eigenstates
(Batistić and Robnik 2013b). We express the

localization measures in terms of the discretized
Husimi function. For the entropy localization
measure denoted by A, we write A = e<I>/Nc,
where I = � Ð

dq dp H(q, p) ln ((2pħ) fH(q, p))
is the information entropy and Nc is a number of
cells on the classical chaotic domain. The mean
<I> is obtained by averaging I over a sufficiently
large number of consecutive chaotic eigenstates.
In the case of uniform distribution Hij = 1/NC the
localization measure is A= 1, while in the case of
the strongest localization I= 0, and A= 1/NC	 0.

For the correlation localization measure
denoted by C, we first calculate the overlap
(correlation matrix) Cnm ¼ 1

Qn Qm

P
ijH

n
ijH

m
ij ,

where Qn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ij Hn
ij

� �2
r

is the normalizing fac-

tor. Then C= hCnmi, and the averaging is over all
n, m and a large number of consecutive chaotic
eigenstates.

Again we use the billiard like in section “The
Billiard Systems and Poincaré-Husimi Functions”
with l = 0.15. For a good approximation of the
localization measures A and C, it was sufficient to
separate and extract about 1.500 consecutive cha-
otic eigenstates. The two localization measures
are linearly equivalent as shown in Fig. 3. To get
a good estimate of b, we need much more levels,
and the separation of eigenstates is then techni-
cally too demanding. We have instead calculated
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Recent Advances in Quantum Chaos of Generic Sys-
tems, Fig. 2 Separation of levels using the classical cri-
terion Mt = 0.431. Left: The level spacing distribution for
the chaotic subspectrum, after unfolding, in perfect

agreement with the Brody distribution b = 0.444. Right:
The level spacing distribution for the regular part of the
spectrum, after unfolding, in excellent agreement with
Poisson
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spectra on small intervals around k 	 2000 and
k 	 4000, about 100.000 consecutive levels (no
separation), and obtained b by fitting the P(S) by
the BRB distribution derived in section “Dynam-
ical Localization of the Chaotic Eigenstates”
using the classical m1. The dependence of b on
A is shown in Fig. 3. For aesthetic reasons, we
have rescaled the measure A! A/Amax such that it
goes from 0 to 1. The maximal value of A,
Amax = 0.68, was estimated as Amax ¼ eImax=Nc,
where Imax is the maximum entropy of 1500 con-
secutive states of the almost fully chaotic l= 0.25
billiard. Thus for fully chaotic systems, the pro-
cedure always yields A = 1. Namely, in real cha-
otic eigenstates, we never reach a perfectly
uniform distribution H(q, p), since they always
have some oscillatory structure.

We clearly see that there is a functional rela-
tionship between A and b. By increasing k from
2000 to 4000, we increase the dimensionless
Heisenberg time by factor 2; therefore, A must
increase, but precisely in such a way, that the
empirical points stay on the scaling curve, as it
is observed and indicated by the arrows. We do
not have yet a semiempirical functional descrip-
tion of the relationship b(A) we found in Fig. 3. In
the quantum kicked rotator, it is just almost linear
(Batistić et al. 2013; Manos and Robnik 2013;
Izrailev 1990). Similarly, it is found to be almost

linear in the stadium of Bunimovich, as recently
published in reference (Batistić et al. 2018) and
shown in Fig. 4. Also, b is found to be a unique
function of a = tH/tT, well described empirically
by the rational function

b ¼ b1
sa

1þ sa
, ð34Þ

as seen in Fig. 5. For details, see reference
(Batistić et al. 2018). Nevertheless, one should
observe some scattering of points around the
mean value, noted already by Izrailev (1990)
in the case of the quantum kicked rotator,
which probably is due to the fact that the local-
ization measure has a certain distribution rather
than a sharp value, as has been observed
recently in the kicked rotator by Manos and
Robnik (2015).

Finally, there is a great lack in theoretical
understanding of the physical origin of the rela-
tionship b(A), even in the case of (the long-
standing research on) the quantum kicked rotator,
except for the intuitive idea, that energy spectral
properties should be only a function of the degree
of localization, because the localization gradually
decouples the energy eigenstates and levels,
switching the linear level repulsion b = 1
(extendedness) to a power law level repulsion
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Recent Advances in Quantum Chaos of Generic Sys-
tems, Fig. 3 Left: Linear relation between the two
entirely different localization measures, namely the
entropy measure A and the correlation measure C,

calculated for several different billiards at k 	 2000 and
k 	 4000. Right: We show the functional relation between
b and the localization measure A. Arrows connect points
corresponding to the same l at two different k
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with exponent b< 1 (localization). The full phys-
ical explanation is open for the future.

Discussion and Conclusions

Quantum chaos, or wave chaos, is a study of the
signatures of classical chaos of the underlying
classical dynamical system, or more generally, of
the ray dynamics of the limiting short-wavelength
asymptotics. The time evolution of the bound
quantum systems (with purely discrete spectrum)

is always almost periodic, stable, and reversible in
the sense of the absence of the sensitive depen-
dence on intitial conditions, and thus it is quite
diferent from the classically chaotic behavior
exhibiting sensitive dependence on initial condi-
tions, due to the positive Lyapunov exponents. In
this sense, there is no quantum chaos. However, in
the time-independent domain, when we look at
the eigenstates of the stationary Schrödinger equa-
tion, we uncover a complexity of the solutions,
fully revealed in the quantum phase space of the
Wigner functions, which exactly correspond to
the structure of the classical phase space. In the
semiclassical limit of sufficiently small effective
Planck constant, the Heisenberg time is larger
than all classical transport (diffusion) time scales,
and the chaotic eigenstates (their Wigner func-
tions) are uniformly extended over the entire
available chaotic region. Then the regular eigen-
states “live” on invariant tori, while the chaotic
ones are associated with the chaotic components.
The energy spectra belong to the universality
classes as for their statistical properties: the regu-
lar spectra obey Poissonian statistics, while the
chaotic ones obey the statistics of the Gaussian
random matrix theory. If the semiclassical condi-
tion on the time scales is not satisfied, the chaotic
Wigner functions are localized due to the quantum
(or dynamical) localization. The degree of locali-
zation (localization measures) can be defined in
various ways, but different localization measures
are found to be equivalent (linearly related). The
degree of localization uniquely determines the
Brody spectral parameter which enters in the
level spacing distribution of localized chaotic
eigenstates. Using the overlap criterion for the
Wigner functions (or Husimi functions), one can
separate the regular and chaotic states, and per-
form the statistical analysis separately. It is con-
firmed, in the sense of Percival (1973) and Berry
and Robnik (1984), as generalized by Batistić and
Robnik (2010–2013), that the regular levels are
Poissonian, while the localized chaotic ones are
Brody-like, where the Brody parameter is a
unique function of the localization measure.
When we go from the semiclassical limit to larger
values of the effective Planck constant (in billiards
it means to lower energies), we reveal the
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Recent Advances in Quantum Chaos of Generic Sys-
tems, Fig. 4 The level repulsion exponent b as a function
of the entropy localization measure A for variety of stadia
of different shapes e and energies E = k2
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Recent Advances in Quantum Chaos of Generic Sys-
tems, Fig. 5 The level repulsion exponent b as a function
of a fitted by the function (34), based on tT from the
exponential diffusion law, for variety of stadia of different
shapes e and energies E= k2, as in Fig. 4. Here, b1= 0.98
and s = 0.20
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tunneling (correlation) effects, where the regular
and chaotic eigenstates start to overlap consider-
ably, and thus no longer can be classified clearly
as regular or chaotic. The picture becomes quite
complex, and is subject of current research
(Batistić and Robnik 2010; Gehler et al. 2015).

While the fully chaotic and regular eigenstates
are generally very well understood, the descrip-
tion of the localized chaotic states, and of the
mixed-type systems, is still open for further inves-
tigation. In particular, we need to derive a theory
of dynamical localization of stationary chaotic
eigenstates, including the derivation of the phe-
nomenological Brody level spacing distribution
of such localized chaotic eigenstates. Thus, quite
a few fundamental questions of quantum chaos
are open for the future.
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Glossary

Linear Here, linear with respect to a probability
density.

Nonlinear Here, nonlinear with respect to a
probability density.

Markov process Process for which it is suffi-
cient to have information about the presence
in order to make best predictions about the
future. Additional information about the past
will not improve the predictions.

Martingale process Ẑ Process forwhich the future
mean value hZ(t + Dt)i of a set of realizations Z(i)
that is passing at presence t through a certain
common state z is the state z: z : hZ(t + Dt)iZ(t) = z

= z. Additional information about states z0

visited at times t0 prior to t is irrelevant.

Definition of the Subject

Let X̂ denote a stochastic process defined on the
space O and the time interval [t0, 1], where t0

denotes the initial time of the process. We assume
that the process X̂ can be described in terms of a
random variable X � O. More precisely, let X(t)
denote the time-dependent evolution of the ran-
dom variable X for t � t0. Then, we assume that
the process X̂ can be described in terms of the
infinitely large set of realizations X(i)(t) of X(t)
with i = 1, 2, . . .. The realizations i = 1, 2, . . .
constitute a statistical ensemble. At every time
t the probability density P of the process X̂ can
be computed from the realizations X(i)(t), that is,
from the ensemble by means of

P x, tð Þ ¼ d x ¼ X tð Þð Þh i, (1)

where h�i denotes ensemble averaging and d(�)
is the delta function. We assume that at time t0 the
process is distributed like u. That is, the function
u(x) describes the initial probability density of the
random variable X and we have P(x,t0) = u(x). In
general, the evolution of P depends on how the
process is distributed at initial time t0. In order to
emphasize this point, we will use in what follows
the notation P(x,t;u). That is, we interpret Eq. (1)
as a conditional probability density with the con-
straint given by the initial distribution u:

P x, t; uð Þ ¼ d x ¼ X tð Þð Þh i d x�X t0ð Þð Þh i¼u xð Þ: (2)

We may also say that we study a family of
stochastic processes (Frank 2005b). Each family
member has a label or name which is given by u.
For example, consider three experiments in which
the evolution of dust particles in the air is
observed for Gaussian, Lévy, and Cauchy initial
distributions, respectively. It is known that dust
particles perform a so-called Brownian random
walk. So we would distinguish the three members

X̂1, X̂2, X̂3 of our family of Brownian walk pro-
cesses by the names of their initial distributions:
Gauss, Lévy, and Cauchy.

Let us consider a stochastic process X̂ whose
evolution of its probability density P is defined by
a partial differential equation of the form
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@

@t
P x, t; uð Þ ¼ � @

@x
D1 x, tð Þ þ @2

@x2
D2ðx, t

�� �
P x, t; uð Þ,

(3)
where D1 and D2 are functions of state x and time
t. The functions D1 and D2 are referred to as drift
and diffusion coefficients and constitute the
Fokker-Planck operator

L0 x, tð Þ ¼ � @

@x
D1 x, tð Þ þ @2

@x2
D2 x, tð Þ: (4)

The evolution equation (3) is linear with
respect to P. In this sense, Eq. (3) is a linear partial
differential equation. Irrespective of this feature,
the coefficients D1 andD2 may depend in a highly
nonlinear fashion on the state x. For example, we
may have D1 = � x + x3.

For appropriately chosen coefficients D1 and D2,
Eq. (3) describes the probability density P of a
Markov process. In this case, Eq. (3) is referred to
as a Fokker-Planck equation. More precisely, if X̂
is a Markov diffusion process whose probability
density P is defined by Eq. (3), then Eq. (3) is
called a Fokker-Planck equation. Note that
roughly speaking, a Markov diffusion process is
a Markov process characterized by a partial dif-
ferential operator that can be truncated after the
second-order partial derivative (see section
“Kramers-Moyal Expansion”). In order to distin-
guish between linear and nonlinear Fokker-
Planck equations, we will use the phrase “linear
Fokker-Planck equation” instead of “Fokker-
Planck equation.”

Let us generalize Eq. (3) by assuming that the
drift and diffusion coefficients depend on the
probability density P. In this case, Eq. (3) becomes

@

@t
P x, t; uð Þ ¼ � @

@x
D1ðx, t,P x, t; uð Þ��

þ @2

@x2
D2ðx, t,Pðx, t; u

���P x, t; uð Þ: (5)

Likewise, the operator (4) is generalized to

L x, t,P x, t; uð Þð Þ ¼ � @

@x
D1 x, t,P x, t; uð Þð Þ

þ @2

@x2
D2 x, t,P x, t; uð Þð Þ:

(6)

Equation (5) is nonlinear with respect to
P(x, t; u). Since the structure of the differential

operator in the bracket of Eq. (5) is equivalent to
the structure of the differential operator (4), evo-
lution equations of the form (5) are frequently
called nonlinear Fokker-Planck equations. In this
context, it is important to realize that the phrase
“nonlinear Fokker-Planck equation” does not
necessarily imply that we are dealing with a Mar-
kov process. The phrase “nonlinear Fokker-
Planck equation” simply means that we are
dealing with a nonlinear partial differential equa-
tion involving a partial differential operator
that exhibits the structure of a Fokker-Planck
operator.

Note again that if an evolution equation of the
form (3) is referred to as a Fokker-Planck equa-
tion, then it is tacitly assumed that there exists a
stochastic process defined by that equation and
that this process is a Markov process. Table 1
summarizes how to define linear and nonlinear
Fokker-Planck equations by means of structure,
existence of solutions, and Markov property.

Linear Fokker-Planck equations are an indis-
pensable tool to describe stochastic processes in a
variety of disciplines; see Fig. 1. The theoretical
concept of Markov diffusion processes related to
linear Fokker-Planck equations is well
established. Researchers, applied scientist, techni-
cians, research and development engineers in
general, and financial engineers in particular are -
usually aware that the particular linear Fokker-
Planck model they are using belongs to the
class of Markov models. That is, the world of
linear Fokker-Planck equations is closed and
connected.

Nonlinear Fokker-Planck equations are used in
a variety of fields that are as diverse as the

Linear and Nonlinear Fokker-Planck Equations,
Table 1 Definition of linear and nonlinear Fokker-Planck
equations based on structure, existence of solutions, and
Markov property

Fokker-Planck equations Linear Nonlinear

Structure Eqs. (3)–(4) Eqs. (5)–(6)

Solutions Exist Do not
necessarily
exist

Corresponding processes
are Markov processes?

Yes Maybe
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application fields of linear Fokker-Planck equa-
tions. Unfortunately, so far, there is no well-
established theory connecting all kinds of nonlinear
Fokker-Planck equations. There is not even an
academic consent about how to define them at all.
This is why in Table 1 we used a very general and
less constraining definition for nonlinear Fokker-
Planck equations. Concepts of nonlinear Fokker-
Planck equations are often developed for particular
purposes and are not put into other contexts. That
is, theoretical results and other achievements are
often tailored to serve special needs and are not
discussed in a larger framework. Even worse, so
far, a well-established link between linear and non-
linear Fokker-Planck equations that applies to the
variety of nonlinearities found in the literature does
not exist. In sum, the world of nonlinear Fokker-
Planck equations is disconnected. Different types
of nonlinear Fokker-Planck equations and different
application fields of nonlinear Fokker-Planck equa-
tions are often not related to each other and non-
linear Fokker-Planck equations are only loosely
connected with their linear “relatives”; see Fig. 1.

Therefore, there is a need for developing a
unifying approach to nonlinear Fokker-Planck
equations that involves the concept of linear
Fokker-Planck equations and applies to all

types of nonlinearities and in doing so applies
to all kinds of scientific disciplines. Some first
efforts in this regard have been made previously
(Acebron et al. 2005; Chavanis 2003, 2004;
Frank 2001b, 2002a, b, 2005b; Frank and
Daffertshofer 1999, 2001a, b; Kaniadakis 2001a; b;
Shiino 2002b, 2003). In the following sections, we
will review these efforts, present them in a consis-
tent way, and in doing so make a further effort into
this direction.

Introduction

Linear and nonlinear Fokker-Planck equations are
widely used to describe stochastic phenomenon;
see Fig. 1.

Linear Fokker-Planck equations (Gardiner
1997; Haken 2004; Risken 1989) have been intro-
duced by Fokker (1914) and Planck (1917). In
physics, linear Fokker-Planck equations have
been used, for example, to describe Brownian
motion, that is, the diffusion of dust particles in
air or fluid layers (Reif 1965). Linear Fokker-
Planck equations have been applied in engineer-
ing sciences, for example, to describe fluctuations
in electronic circuits (Gardiner 1997). Linear

Math
Astro- and plasmaphysics

Neuroscience Soil Sciences

Accelerator

Liquid crystals

Non-extensive

Finance

Applications of linear Fokker-Planck equations

Theory of Markov diffusion processes

Physics

Ecology Psychology Neuroscience

Math Finance

Biology

Engineering

Applications of nonlinear Fokker-Planck equations
Biology

statistics

Engineering

Quantum
mechanics

Linear and Nonlinear Fokker-Planck Equations, Fig. 1 Connected and disconnected applications of linear and
nonlinear Fokker-Planck equations
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Fokker-Planck equations have been frequently used
in chemistry tomodel stochastic aspects of chemical
reactions (Hänggi et al. 1990; vanKampen 1981). In
finance, one of the most important applications of
the Fokker-Planck theory is option pricing bymeans
of the so-called Black-Scholes model (Paul and
Baschnagel 1999). Linear Fokker-Planck equations
of biology systems (Goel and Dyn 1974) have been
concerned, for example, with so-called Brownian
motors (Hänggi et al. 2005; Reimann 2002). Popu-
lation diffusion (Okubo and Levin 2001) and group
behavior (Ebeling and Sokolov 2004; Mikhailov
and Zanette 1999; Schweitzer 2003) in ecological
systems and stochastic neuronal processing (Holden
1976) are further examples of application fields of
linear Fokker-Planck equations. In psychology, lin-
ear Fokker-Planck models have been proposed for
decision making (Bogacz et al. 2006; Ratcliff et al.
2004) and group behavior (Schwämmle et al.
2007b).

Many applications of nonlinear Fokker-Planck
equation are related to several benchmark models:
the Desai-Zwanzig model (Desai and Zwanzig
1978), the liquid crystal model (Doi and Edwards
1988; Hess 1976), the Kuramoto-Shinomoto-
Sakaguchi model (Acebron et al. 2005; Kuramoto
1984; Strogatz 2000), the Vlasov model, and the
nonlinear diffusion equation (Aronson 1986;
Peletier 1981). Let us highlight some of these
benchmark models.

Desai-Zwanzig Model
The Desai-Zwanzig model

d

dt
P x, t; uð Þ ¼ � @

@x
h xð Þ � k½

x�
ð
xP x, t; uð Þdx

� �
þ Q

@

@x

�
P x, t; uð Þ

(7)

for k , Q > 0 has been proposed by Desai and
Zwanzig (1978) and Kometani and Shimizu
(1975) to study collective phenomena in self-
organizing systems.

• A Lyapunov functional approach to the Desai-
Zwanzig model has been introduced by Shiino
(1985, 1987) and since then has found several
generalizations (Chavanis 2003, 2004;

Dawson and Gärtner 1989; Frank 2001a,
2005b; Frank and Daffertshofer 2001b; Frank
et al. 2001; Kaniadakis 2001a, b; Kharchenko
and Kharchenko 2005; Schwämmle et al.
2007a; Shiino 2001, 2002a, b; 2003). With
such a Lyapunov functional at hand, the stabil-
ity of stationary probability densities, collec-
tive phenomena, and bifurcations can be
studied by means of Lyapunov’s direct
method.

• The original Desai-Zwanzig model and various
modifications of it have been discussed
(Dawson 1983; Li et al. 1998; Lo 2005).

• The additive noise term in Eq. (7) has been
replaced by a multiplicative noise term
(Horsthemke and Lefever 1984) in order to
study the interplay between the nonlinearity
and the multiplicative noise (Birner et al.
2002; Müller et al. 1997; Zaikin et al. 2002).

• Fluctuation-dissipation theorems for stochastic
processes described by the Desai-Zwanzig
model have been derived (Drozdov and Morillo
1996; Frank 2004c; Morillo et al. 1995).

• The Desai-Zwanzig model has frequently
been used as a mean field approximation of
spatially distributed systems with diffusive
coupling. By means of such a mean field
approximation, analytical result has been
derived and compared with numerical simula-
tions (Garcia-Ojalvo et al. 1996; Garcia-
Ojalvo and Sancho 1999; van den Broeck
et al. 1994a, b, 1997).

Liquid Crystal Model
The nonlinear Fokker-Planck equation proposed
by Hess (Hess 1976) and Doi and Edwards (1988)
reads

@

@t
P x, t; uð Þ ¼ DrL � Lþ 1

kT
Le x,Pð Þ½ �

� �
P x, t; uð Þ

(8)

with Dr , k , T > 0 and L = x � @/@x. The
function e(x, P) describes the self-consistent
potential of the Maier-Saupe mean field force.
For processes X̂ that exhibit cylindrical symmetry
e(x, P) reads
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e y,Pð Þ ¼ �U0kT
3cos 2y� 1

2

3cos 2y� 1

2

	 

,

(9)

where y is related to the unit vector x by x = (siny
cos ’, siny sin ’, cosy). Equation (8) and gener-
alization of it have been extensively studied in the
literature (Felderhof 2003; Fialkowiski and Hess
2000; Hütter et al. 2003; Ilg et al. 1999, 2005;
Larson and Öttinger 1991) (see also Öttinger
(1996) in general and Sect. 6.3.2 in Öttinger
(1996) in particular). We will return to this model
in section “Liquid Crystal Model.”

Winfree and Kuramoto Model
Winfree’s seminal studies on synchronization
among animal populations (Winfree 1967, 2001)
supported the interest in the nonlinear Fokker-
Planck equation

@

@t
P x, t; uð Þ ¼ � @

@x
h xð Þ � k�½

�
ð
sin x� yð ÞPðy, t; u�dy�þ Q

@2

@x2

�
P x, t; uð Þ,

(10)

that has been proposed by Kuramoto and
co-workers (Kuramoto 1984). In Eq. (10), h(x) is
a 2p-periodic function and k , Q > 0.

• While the Kuramoto-Shinomoto-Sakaguchi
model involves an interaction term

Ð
a(x, y)P-

(y, t) dy, the model originally proposed by
Winfree exhibits a coupling term of the formÐ
a(y)P(y, t) dy. Models of this latter kind have

also been addressed in Ariaratnam and
Strogatz (2001), Li and Hänggi (2001), and
Quinn et al. (2007).

• The Kuramoto-Shinomoto-Sakaguchi model
describes an ensemble of phase oscillators. The
eigenfrequencies of the phase oscillators do not
occur in Eq. (10) because Eq. (10) describes an
ensemble of phase oscillators exhibiting the
same eigenfrequency o. In this case, the com-
mon eigenfrequencyo can then be eliminated by
means of a variable transformation into a rotating
frame (Frank 2005b). However, in general, we
may think of ensembles of coupled phase oscil-
lators with different eigenfrequencies. In this

context, the question arises as to what extent
oscillators with different eigenfrequencies syn-
chronize their behavior (Acebron et al. 1998;
Arenas and Perez Vincente 1994; Bonilla et al.
1993; Crawford 1995; Kostur et al. 2002;
Pikovsky et al. 2001; Sakaguchi 1988; Strogatz
and Mirollo 1991).

• Coupled phase oscillator models of the form
(10) have been used to describe associative
memories (Yamana et al. 1999; Yoshioka and
Shiino 2000).

• Just as for the Desai-Zwanzig model, the inter-
play between multiplicative noise and the non-
linearity of the Kuramoto-Shinomoto-
Sakaguchi model has been investigated in sev-
eral studies (Kim et al. 1997; Park and Kim
1996; Reimann et al. 1999a, b).

• The sine-coupling term in Eq. (10) has been
replaced by higher-order coupling functions
sin(2z), sin(3z), . . . (Aonishi and Okada 2002;
Daido 1996a, b; Hansel et al. 1993b; Kuramoto
1984). In this context, Daido proposed the
so-called order function (Daido 1996a, b) that
generalizes the notion of cluster phases and
cluster amplitudes (Kuramoto 1984). This
order function has also been related to experi-
mental data (Zhai et al. 2005).

• The Kuramoto-Shinomoto-Sakaguchi has
found clinical applications in the context of
Parkinsonian disease (Tass 2001, 2003; 2006;
see also Tass 1999).

Vlasov-Fokker-Planck Model
Vlasov-Fokker-Planck models frequently describe
particle systems with electromagnetic interactions
between charged particles. A typical example of a
Vlasov-Fokker-Planck equation is shown here
(Balescu 1975; Klimontovich 1986):

@

@t
P v, t; uð Þ ¼ �

X3
i¼1

@

@vi
Di v,Pð ÞPþ

X3
i, k¼1

� @2

@vi@vk
Dik v,Pð ÞP:

(11)

Equation (11) involves the drift and diffusion
coefficients
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Di v,Pð Þ ¼ a
@

@vi

ð
O

P v0, t; uð Þ
jv� v0

jd3v0,

Dik v,Pð Þ ¼ b
@2

@vivk

ð
O
jv� v0jP v0, t; uð Þd3v0:

(12)

Time-dependent solutions (Allen and Victory
1994; MacDonald et al. 1957; Nicholson 1983;
Rosenbluth et al. 1957; Takai et al. 1981) for
Eq. (12) and generalization of Eq. (12) that
account for additional drift forces (Bychenkov
et al. 1995; Epperlein et al. 1988) have been
studied. In particular, numerical methods using
short-time propagators (see section “Short-Time
Propagator”) have been developed for Vlasov-
Fokker-Planck equations of the form (12)
(Donoso and Salgado 2006; Donoso et al. 2005;
Soler et al. 1992). Such nonlinear Vlasov-Fokker-
Planck equations play important roles in plasma
physics (Balescu 1975; Klimontovich 1986;
Nicholson 1983) and astrophysics (Binney and
Tremaine 1987; Lancellotti and Kiessling 2001).
In general, astrophysical problems often require a
stochastic description in terms of nonlinear
Fokker-Planck equations (Chavanis et al. 2002;
Shiino 2003; Sopik et al. 2006). Finally, note that
Vlasov-Fokker-Planck models have been used in
accelerator physics and accelerator engineering to
examine instabilities in particle beams (Frank
2003a, 2006; Heifets 2001, 2003; Shobuda and
Hirata 2001; Stupakov et al. 1997; Venturini and
Warnock 2002).

Nonlinear Diffusion Equation, Nonextensive
Thermostatistics, and Semiclassical
Descriptions of Quantum Systems
The nonlinear diffusion equation (Aronson 1986;
Peletier 1981) reads

@

@t
P x, t; uð Þ ¼ � @

@x
h xð ÞP x, t; uð Þ

þ @2

@x2
D P x, t; uð Þð Þ, (13)

where D(P) is a diffusion coefficient that depends
on the probability density P(x,t) of X(t). In the
original version of the nonlinear diffusion

equation, the drift coefficient h(x) vanishes, and
the diffusion coefficient is proportional to a power
of P. In general, there might be a more compli-
cated dependence of D on P (Crank 1975; Daly
and Porporato 2004).

• Since fluid flow through porous materials is an
important application of the nonlinear diffu-
sion equation, nonlinear diffusion plays a cru-
cial role in soil sciences (Barenblatt et al.
1990). In biology, nonlinear diffusion equa-
tions of the form (13) seem to capture particu-
lar aspects of population diffusion (Gurtin and
MacCamy 1977; Okubo and Levin 2001).

• The nonlinear diffusion Eq. (13) provides a
link to stochastic processes subjected to non-
extensive thermostatistics introduced by
Tsallis (Abe and Okamoto 2001; Tsallis 1988,
1997, 2004). For D(P)/ Pq, Eq. (13) becomes

@

@t
P x, t; uð Þ ¼ � @

@x
h xð ÞP x, t; uð Þ

þ Q
@2

@x2
Pq x, t; uð Þ: (14)

Plastino and Plastino showed that stationary dis-
tributions of Eq. (14) correspond to canonical dis-
tribution that can be derived in a nonextensive
framework (Plastino and Plastino 1995).
Equation (14) has turned out to be a testbed for
various analytical and numerical studies (Borland
1998; Chavanis 2003, 2004; Compte and Jou 1996;
Drazer et al. 2000; Shiino 2003; Tsallis and
Bukman 1996). Alternative nonlinear Fokker-
Planck equations related to the Tsallis statistics
have been derived frommaster equations in Curado
and Nobre 2003 and Nobre et al. 2004. In addition,
Eq. (14) has more recently discussed in finance in
the context of a generalized Black-Scholes model
for option pricing (Borland 2002, 2008; Borland
and Bouchaud 2004; Vellekoop and Nieuwenhuis
2007) and fat tail distributions (Cortines and Riera
2007; Michael and Johnson 2003).

• The nonlinear diffusion Eq. (13) is also related to
semiclassical descriptions of quantum
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mechanical systems. For an appropriate choice
of D, nonlinear Fokker-Planck equations for
Fermi-Bose and Einstein-Dirac systems have
been derived from Eq. (13) (Frank 2005b;
Frank and Daffertshofer 1999). Alternative
forms of nonlinear Fokker-Planck equations
have been derived from quantum mechanical
Boltzmann equations (Kaniadakis 2001a;
Kaniadakis and Quarati 1993, 1994), on the
basis of energy balance equations (Tsekov
1995, 2001), and by means of other techniques
(Frank 2004b, 2005a; Kadanoff 2000; Sopik
et al. 2006). We will return to semiclassical
quantum mechanical descriptions in section
“Semiclassical Description of Quantum
Systems.”

In addition, nonlinear Fokker-Planck equa-
tions have been turned out to be useful models to
describe stochastic aspects of Josephson arrays
(Hadley et al. 1988; Wiesenfeld et al. 1996), Lan-
dau damping (Strogatz et al. 1992), arrays of
semiconductor lasers (Kozyreff et al. 2000),
charge density waves (Bonilla 1987), and neurons
coupled by Hodgkin-Huxley equations (Han et al.
1995; Hansel et al. 1993a).

Stochastic systems composed of different kinds
of interacting subsystems or species have been
modeled in terms of multivariate nonlinear Fokker-
Planck equations (Dano et al. 2001; Gang et al.
1996; Ichiki et al. 2007). For example, the collective
behavior of coupled relaxation oscillators has been
studied (Yamaguchi and Shimizu 1984). Networks
of neural oscillators as defined by the Wilson-
Cowan model, (Schuster and Wagner 1990), the
two-dimensional Morris-Lecar system (Han et al.
1995), the FitzHugh-Nagumo equations
(Hasegawa 2003; Kanamaru et al. 2001; Park et al.
2004), and the Hindmarsh-Rose equations
(Rosenblum and Pikovsky 2004) have been studied.

The dynamics of mean field coupled phase
oscillators under the impact of inertia effects
(Acebron and Spigler 1998) and related models
have attracted considerable attention. Bridge vibra-
tions induced by pedestrian walking have been
discussed in this context recently (Eckhardt et al.
2007; Strogatz et al. 2005). Models for circadian
rhythms have been examined (Daido 2001).

Solutions of the Kadar-Parisi-Zhang equation
have been examined by means of nonlinear
Fokker-Planck equations (Giada and Marsili
2000; Marsili and Bray 1996). In doing so, the
growth of surfaces and roughening phenomena
have been studied.

Wetting processes (de los Santos et al. 2003),
interacting Brownian motors (Becker and Engel
2007; Savel’ev et al. 2003), and spatially distrib-
uted phase oscillators (Kawamura 2007;
Kawamura et al. 2007) have been analyzed by
means of the nonlinear Fokker-Planck perspective.

In the mathematical literature, a seminal study
on nonlinear Fokker-Planck equations of the Bur-
gers equation typewas due toMcKean Jr. (1969). In
particular, the convergence of stochastic processes
described by multivariate linear Fokker-Planck
equations to processes described by nonlinear
Fokker-Planck equations (Cepa and Lepingle
1997; Dawson 1983, 1993; Ding 1994; Djehiche
and Kaj 1995; Fontbona 2003; Gärtner 1988;
Greven 2005; Jourdain 2000; McKean 1969;
Meleard 1996; Meleard and Coppoletta 1987;
Oelschläger 1989; Overbeck 1996; Pilipenko
2005; Rogers and Shi 1993) and martingales of
stochastic processes defined by nonlinear Fokker-
Planck equations have been addressed (Djehiche
and Kaj 1995; Fontbona 2003; Gärtner 1988;
Graham 1990; Greven 2005; Jourdain 2000;
Meleard 1996; Meleard and Coppoletta 1987;
Overbeck 1996). Moreover, the propagation of
molecular chaos has been studied (Bonilla 1987;
Meleard 1996; Meleard and Coppoletta 1987). The
convergence of transient solutions of nonlinear
Fokker-Planck equations to stationary ones has
been examined by means of functionals that are
similar to the Lyapunov functionals introduced by
Shiino (see above) (Arnold et al. 1996, 2000, 2001;
Carillo et al. 2001, 2008). In addition, from a purely
mathematical perspective, nonlinear Fokker-Planck
equations should be considered as nonlinear para-
bolic partial differential equations that have been
discussed in several textbooks (Friedman 1969).

In what follows, we will show that there is a
common theoretical framework that unifiesmost of
the aforementioned studies on nonlinear Fokker-
Planck equations and includes the theory of linear
Fokker-Planck equations as a special case. This
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common theoretical framework is rooted in the
notion of Markov processes and martingales.

Time-Dependent Solutions and First-
Order Statistics

Linear Case
Equation (3) defines the evolution of P given an
initial distribution u(x). The norm of the probabil-
ity density P equals unity for all times provided
that the norm of u(x) equals unity. That is, ifÐ
Ou(x) dx = 1 holds, we have

Ð
OP(x, t; u)

dx = 1 for t � t0. We can see this by integrating
Eq. (3) with respect to x. For appropriate boundary
conditions, it can be shown by partial integration
that the right-hand side vanishes which implies
that d[

Ð
OP(x, t; u) dx]/dt = 0 holds. The formal

solution of Eq. (3) reads

P x, t; uð Þ ¼ exp

ðt
t0

dzL0 x, zð Þ
� �

u xð Þ, (15)

where L0 is defined in Eq. (4). Equation (15) can be
used to solve Eq. (3) numerically (see Vol. 1, Sect.
6.5 in Haken 2004). Let tn denote a discrete time
point tn = t0 + nDt with n= 0, 1, 2, . . ., where Dt is
the interval of a single time step and should be small.
Let us define Pn(x; u) = P(x, tn; u). Then, we have

Pnþ1 x; uð Þ ¼ 1þ DtL0 x, tnð Þ� �
Pn x; uð Þ (16)

with P0 = u(x). If X̂ corresponds to an autono-
mous processes, then the coefficientD1 andD2 do
not depend on t. In this case, Pn can be expressed
in terms of u as

Pn x; uð Þ ¼ 1þ DtL0 xð Þ �n
u xð Þ: (17)

Numerical solutions converge to exact solu-
tions in the limit Dt ! 0.

Nonlinear Case
For appropriately chosen drift and diffusion coef-
ficients, Eq. (5) exhibits time-dependent solutions
P. By analogy with the linear case, these solutions
are normalized to unity provided that appropriate

boundary conditions hold and that the initial prob-
ability density is normalized to unity. Solutions of
Eq. (5) are formally defined by

P x, t; uð Þ ¼ exp

ðt
t0

dzLðx, z,P x, z; uð Þ�� �
u xð Þ:

(18)

The time-dependent solutions P can be com-
puted numerically by analogy to the linear case
discussed above. That is, the probability densities
Pn(x; u) = P(x, tn; u) on the discrete time grid
t0 , t0 + Dt , t0 + 2Dt , . . . can be computed from

Pnþ1 x; uð Þ ¼ 1þ DtL x, tn,Pn x; uð Þð Þf gPn x; uð Þ
(19)

with P0 = u(x) and n = 0 , 1 , 2 , . . .. If drift
and diffusion coefficients do not explicitly depend
on t, we find that the operator L still depends
implicitly on t because it depends on the time-
dependent solution P that in turn depends on t.
Consequently, it is not trivial to generalize
Eq. (17) to the nonlinear case. If the drift- and
diffusion coefficients do not depend explicitly on
time t and the process converges to a stationary
one, then the nonlinear Fokker-Planck operator
L does not depend on time. This implies that the
stationary probability density Pst satisfies

Pst ¼ 1þ DtL x,Pstð Þf gPst þ O Dt2
� �

: (20)

Finally, note that we do not necessarily need to
define the formal solution with respect to the
initial probability density u as in Eq. (18). We
can solve the nonlinear Fokker-Planck equation
on the time interval [t0, t] by splitting the solution
in two intervals [t0, t

0] and [t0, t]. Then, we obtain

P x, t; uð Þ ¼ exp

ðt
t0
dzLðx, z,P x, z; uð Þ�� �

P x, t0; uð Þ:
(21)

Equation (21) can be solved iteratively bymeans
of Eq. (19) yielding a mapping TDt : P x, t; uð Þ ¼
Tt�t0 P x, t0; uð Þ½ � with Dt = t � t0.
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Markov Property: Second-Order and
Higher-Order Statistics

Conditional Probability Densities
Let p(x) define the probability density of the time-
dependent random variable X at time t given that
X assumed at earlier times t0, t00, t000,. . . with
t � t0 > t00 > t000 > . . . particular values x0, x00,
x
000
,. . . Then p is defined by

p ¼ dðx� X tð Þh iX t0ð Þ¼x0,X t00ð Þ¼x00,X t000ð Þ¼x000 , ...:

(22)

In order to point out the information that we
need to compute p, we write

p ¼ p x, tj x0, t0; x00, t00; x000
, t

000
, . . .

� �
: (23)

A conditional probability density is a relation
that gives us estimates about future events and tells
us what we need to know in order to be able to
calculate these estimates. In our example given by
Eq. (23), we see that we need the information of
random values X at times t0 > t00> t

000
> . . . in order

to make a prediction about the statistics or proba-
bility density of X at time t. Alternatively, we may
say that the conditional probability density depends
on a list of variables. In the context of Markov
processes, this alternative viewpoint however
gives rise to a problem that will be discussed below.

If X̂ is a Markov process, then the information
about the stochastic process available at one par-
ticular time t0 is sufficient to make predictions
about the future t � t0. Adding more information
about how the process evolved in the past before t0

does not improve these predictions. That is, the
information about the events at time t0 is sufficient
to make statistical estimates about events at time
t � t0. An alternative definition of a Markov pro-
cess is that a Markov process exhibits a condi-
tional probability density p (x, t |�) that depends
only on one time point prior to t. That is,
according to the first definition, we look from
time t0 into the future, whereas according to the
second definition, we look in the opposite direc-
tion: we look from time t into the past.

For example, in order to describe the probability
density p(T) of the temperature T in Boston (USA)
on December 1st, 2007, given that on November

1st, 2007, the temperature was 2 �C and onOctober
1st, 2007, the temperature was 3 �C, we would
define the conditional probability density p(T,
Dec 1st 2007| T = 2, Nov 1st 2007; T = 3, Oct 1st
2007). If the temperature T as a function of time
t is a Markov process, it is sufficient to know the
temperature at November 1st in order to compute
the probability density p(T) at December 1st. For
example, we would obtain the same function p(T)
for the conditions (i) and (ii) with (i) T = 2 �C on
Nov 1st and T= 3 �C on Oct 1st and (ii) T= 2 �C
on Nov 1st and T = 5 �C on Oct 1st. That is, we
would have

pðT, Dec1st2007 j T ¼ 2, Nov1st2007;

T ¼ 3, Oct1st2007
�

¼ pðT, Dec1st2007 jT ¼ 2, Nov1st2007;

T ¼ 5, Oct1st2007
�

¼ pðT, Dec1st2007jT ¼ 2, Nov1st2007: (24)

The information about the October temperature
is irrelevant. In this sense, the conditional probability
densitywould depend on theNovember temperature
but would not depend on the October temperature.

A problem that arises in the context of the
definition of Markov process is as follows. Sup-
pose that there is a purely deterministic dynamical
aspect involved in a stochastic process. In our
example about Boston temperatures, we may
think of the annual periodic changes of the temper-
ature that are related to the annual changes in
distance and declination angle between the earth
and sun. Let us assume that distance and declina-
tion angle change periodically in a purely deter-
ministic fashion such that the distance and
declination angle at November 1st can be com-
puted from the distance and declination angle at
January 1st by a simple one-to-one mapping. Then
the question arises: does the temperature in Boston
on December 1st depend on the distance and dec-
lination angle of November 1st as suggested by
p(T, Dec 1st 2007 j T= 25, Nov 1st 2007) or does it
depend on the distance and declination angle of
January 1st In the former case, we have a Markov
conditional probability density. In the latter case,
we would need to write p like
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pðT, Dec1st2007jT ¼ 25, Nov1st2007;
distanceandangle, Jan1st2007

�
indicated that we are dealing with a non-Markovian
process. The situation becomes even worse if we
take into consideration that the earth-sun distance
and the declination angle at January 1, 2008, can be
computed from the information known at November
1 using our simple one-to-one mapping. Therefore,
we may say that the temperature estimate for
December 1st, 2007, depends on a future event,
namely, the earth-sun distance and declination
angle given at January 1st, 2008. The conditional
probability density would assume the form

pðT, Dec1st2007jT ¼ 25, Nov1st2007;�
distanceandangle, Jan1st2008

�
whichwould suggest again that we are dealingwith a
non-Markovian and – to a certain extent – noncausal
process. We can solve this problem by realizing that
purely deterministic relationships in time that repre-
sent external driving forces are irrelevant for the
distinction between Markov and non-Markov pro-
cesses. We can completely determine such an exter-
nal driving force by a parameter set {t0, A1, A2, . . .}
that describes the initial state of the driving forces.
Although this initial state is related to the initial time
t0 of the Markov process, the conditional probabil-
ity density does not actually depend (i.e., it does not
explicitly depend) on t0. Likewise the conditional
probability density does not actually depend on the
parameters {A1, A2, . . .}. The information that we
have at time t0 includes the information about the
driving force at time t0 and therefore the informa-
tion about the driving force at all times t � [t0 ,
1 ). Consequently, the information at time t0 is

sufficient to predict how the driving force will
evolve in the future at times t � t0. There is no
need to assess information about events prior to t0

or information about events that will happen in the
future at times larger than in order to determine the
evolution of the deterministic driving force.

Let us summarize. A stochastic process X̂ is
called a Markov process if information about the
process at time t0 is sufficient to make predictions
about future events. This implies that the condi-
tional probability density p defined in Eq. (23) can
be simplified like

p x, tj x0, t00x00, t00; x000
, t

000
, . . .

� �
¼ p x, tj x0, t0ð Þ: (25)

Note that we may say that p depends only on
the state x0 related to the time t0 in the sense that the
information at time t0 is sufficient to predict how
Xwill be distributed at time t� t0. We may say it is
sufficient to best predict future events where best
refers to the fact that adding additional informa-
tion about the past does not improve our predic-
tions. Let us illustrate this issue by another
example. Let p(x, t j X= y) denote the probability
density of X at time t given that X equals the
function y in the interval [t0, t0] with t0 � t. If
X describes a Markov process, we have

p x, tjX ¼ yð Þ ¼ p x, tj y t0ð Þ, t0ð Þ
¼ p x, tj x0, t0ð Þ (26)

with x0 = y(t0).

Linear Fokker-Planck Equations
As mentioned in section “Definition of the Sub-
ject,” linear Fokker-Planck equations describe
Markov processes (Gardiner 1997; Risken 1989).
Markov processes related to linear Fokker-Planck
equations of the form (4) have conditional proba-
bility densities defined by

@

@t
p x, tj x0, t0ð Þ ¼ L0 x, tð Þp x, tj x0, t0ð Þ (27)

with limt!t0p x, tj x0, t0ð Þ ¼ d x� x0ð Þ . The condi-
tional probability density p is also called the fun-
damental solution or Green’s function of the
Fokker-Planck equation (3). In general, a stochas-
tic process X̂ is completely defined in terms of the
joint probability density

P xn, tn; xn�1, tn�1; . . . ; x0, t0ð Þ ¼ d xn � X tnð Þð Þh
� d xn�1 � X tn�1ð Þð Þ� � �d x0 � X t0ð Þð Þi,

(28)

where n can assume arbitrarily large integer num-
bers. In particular, if X̂ is a Markov process, then
this joint probability density can be computed
from p and u like

P �ð Þ ¼ p xn, tnj xn�1, tn�1ð Þ � p xn�1, tn�1j xn�2, tn�2ð Þ
� � �p x1, t1j x0, t0ð Þu x0ð Þ:

(29)

Consequently, the linear Fokker-Planck equa-
tion (3) defines completely a Markov process via
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the associated evolution equation (27) and the
initial distribution u. In particular, the time-
dependent probability densities P(x, t; u) and
P(x, t0; u) with t � t0 are related to each other by
means of a linear functional

P x, t; uð Þ ¼
ð
O
p x, tj x0, t0ð ÞP x0, t; uð Þdx0: (30)

That is, the Green’s function p induces a func-
tional that is linear with respect to P(x0, t0; u).

Langevin Equations of Linear Fokker-Planck
Equations
The stochastic trajectories X(t) of the Markov
process X̂ defined by Eq. (3) can be computed
from the Ito-Langevin equation (Coffey et al.
2004; Gardiner 1997; Risken 1989)

d

dt
X tð Þ ¼ D1 X tð Þ, tð Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 X tð Þ, tð Þ

p
G tð Þ, (31)

where G(t) denotes a Langevin force normalized
to the delta function like hG(t)G(t0)i = 2d(t � t0)
From the Langevin equation (31), it follows again
that we are dealing with a Markov process. Infor-
mation about one reference time t0 is sufficient to
compute the future behavior of the trajectory X(t)
with t � t0. On a discrete time grid the stochastic
trajectories or realizations of X̂ can be computed
iteratively like (Kloeden and Platen 1992; Risken
1989)

Xnþ1 ¼ Xn þ DtD1 Xn, tnð Þ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DtD2 Xn, tnð Þ

p
ϵn (32)

with X(tn) = Xn , tn = t0 + nDt and n = 0, 1, 2,
. . . Here, ϵn are independent Gaussian distributed
random numbers with vanishing mean and vari-
ance 2. That is, we have hϵni = 0 and hϵnϵmi = 2
dnm, where dnm is the Kronecker symbol. Finally,
the probability density W of ϵn at every step n is
given by

W ϵnð Þ ¼ 1ffiffiffiffiffiffi
4p

p exp � ϵ2n
4

� �
: (33)

Note that we do not necessarily need to start the
iteration iterative map at t0. The Scheme (32) can
be started at any time step n. Moreover, in order to

compute the subsequent time steps, it is sufficient
to have information about the random variable
X at time tn. Consequently, the sequence Xn,
Xn+1, Xn+2, . . . computed from Eq. (32) describes
a trajectory of a Markov process.

Strongly Nonlinear Fokker-Planck Equations
In section “Definition of the Subject,” we pointed
out that there is some kind of inconsistency in the
definition of linear and nonlinear Fokker-Planck
equations. While a linear Fokker-Planck equation
defines a stochastic process, a nonlinear Fokker-
Planck equation defines at best the evolution of a
probability density P(x,t). That is, if solutions of
Eq. (5) exist for u � U, then Eq. (5) defines the
evolution of first-order statistical properties of a
stochastic process X̂ such as the time-dependent
probability density, the mean, and the variance of
the process X̂ . In any case, Eq. (5) does not define
second- and higher-order statistical quantities such
as correlation functions and conditional probability
densities (Frank 2004d). In particular, the time-
dependent solutions P of Eq. (5) in general cannot
be used to construct Green’s functions of Markov
processes because they do not necessarily corre-
spond to Green’s functions of Markov processes
(Frank 2003b). Note that this is not a peculiarity of
stochastic processes defined by nonlinear Fokker-
Planck equations. In fact, time-dependent solutions
P of linear Fokker-Planck equations Eq. (3) involv-
ing explicitly time-dependent coefficientsD1 andD2

do not necessarily correspond to Green’s functions.
Mathematically speaking, let P(x, t; u = d(x – x0))
denote the probability density of a process X̂ defined
by a nonautonomous linear Fokker-Planck equation
or by a nonlinear Fokker-Planck equation and let
p(x, t| x0, t0) denote the conditional probability den-
sity of that process X̂, then we have (Frank 2003b)

P x, t; u ¼ d x� x0ð Þð Þt0¼t0

isnotnecessarilyequivalent top x, tj x0, t0ð Þ,
(34)

where P x, t; u ¼ d x� x0ð Þð Þt0¼t0 means that we
take the time-dependent solution P(x, t;
u = d(x – x0)) and replace in this expression x0
by x0 and t0 by t0.

Let us return to the issue how to define a stochas-
tic process X̂ on the basis of a nonlinear Fokker-
Planck equation (5). In order to do so, we need to
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define appropriate constraints such that out of all
possible stochastic processes that exhibit a time-
dependent probability density P defined by Eq. (5),
one particular process is selected. In what follows,
we will discuss one particular set of constraints
(Frank 2004d). As we will see, the stochastic pro-
cesses thus defined exhibit the Markov property.

Let U denote a set of initial probability densi-
ties u. That is, U is a set of functions or a space of
functions. Let P(x, t; u) denote the solution of the
nonlinear Fokker-Planck equation

@

@t
P x, t, uð Þ ¼ L x, t,P x, t; uð Þð ÞP x, t; uð Þ (35)

with

L x, t,P x, t; uð Þð Þ ¼ � @

@x
D1 x, t,P x, t; uð Þð Þ

þ @2

@x2
D2 x, t,P x, t; uð Þð Þ

(36)
for an initial distribution u � U. Let us introduce
the associated drift and diffusion coefficients ~D1

and ~D2 by

~D1 x, t; uð Þ ¼ D1 x, t;P x, t; uð Þð Þ,
~D2 x, t; uð Þ ¼ D2 x, t;P x, t; uð Þð Þ: (37)

That is, for any u ∊ U, Eq. (35) is solved
analytically or by numerical iteration (19). The
solution is substituted into the drift and diffusion
coefficients D1 and D2. The coefficients thus
obtained are the functions ~D1 and ~D2 associated
to D1 and D2. Let us assume that for all u ∊ U, the
evolution equation

@

@t
p x, tj x0, t0ð Þ ¼ � @

@x
~D1 x, t; uð Þ þ � @2

@x2
~D2ðx, t; u

�� �
�p x, tj x0, t0ð Þ

(38)

has a fundamental solution or Green’s function.
Then, this solution p and its corresponding initial
distribution u define a Markov process. In (Frank
2004d) nonlinear Fokker-Planck equations that
induce evolution equations (38) with fundamental
solutions were called strongly nonlinear Fokker-
Planck equations. Note that nonlinear Fokker-
Planck equations (5) do not necessarily exhibit
the property of being strongly nonlinear. Note

also that in some applications, it might be worth
to define carefully the set U of initial probability
densities u such that a nonlinear Fokker-Planck
equation under consideration becomes strongly
nonlinear.

As indicated above, the time-dependent prob-
ability density P of a nonlinear Fokker-Planck
equation depends on the initial distribution u.
Likewise, the associated coefficients ~D1 and ~D2

depend on u. As a result, the conditional proba-
bility density p(x, t| x0,t0 ) depends on u as well. For
this reason, the notation p(x, t| x0,t0; u) has been
suggested. Unfortunately, this notation is likely to
cause confusion because one might think that
p depends not only on the time t0 but also on the
initial time t0 which seems to be incompatible
with the notion of a Markov conditional probabil-
ity density (Frank 2007; McCauley et al. 2006). In
fact, this confusion results from the second alter-
native way to define Markov processes that has
been discussed above. The evolution of the func-
tion P(x, t; u) is a purely deterministic one. That is,
P(x, t; u) represents a deterministic driving force
for the purpose of computing the conditional
probability density. The distribution u is just a
parameter which determines the initial value of
this driving force. In this context, note again that
the conditional probability density of a Markov
process in general depends on parameters and in
particular can depend on the initial time t0 and
other parameters {A1, A2, . . .} that define the
initial state of a driving force. Consequently, the
notation p(x, t| x0,t0; u) does not imply a contradic-
tion with the notion of a Markov process. For
example, the nonautonomous Langevin equation

@

@t
X tð Þ ¼ �gX tð Þ � A cos o t� t0ð Þð Þ

þ
ffiffiffiffi
Q

p
G tð Þ (39)

with g, A, o, Q > 0 defines a Markov process that
is driven by a harmonic force �A cos(o(t – t0)).
That is, the harmonic force has amplitude A at the
beginning of the process. The conditional proba-
bility density of that process depends on the param-
eter g, o, Q but also on the parameters t0 and
A which correspond to the initial amplitude and
time. We have (see Sect. 3.7.3 in Frank 2005b)
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p ¼ p x, tj x0, t0, g,o,Q,A, t0ð Þ: (40)

Nevertheless, in what follows, we will develop
a slightly different notation for conditional prob-
ability densities p of strongly nonlinear Fokker-
Planck equations that is in line with the first def-
inition of Markov processes discussed above and
will be helpful to elucidate that the functions
p reflect indeed Markov processes.

Let us exploit first the fact that if Eq. (35) is a
strongly nonlinear Fokker-Planck equations,
then time-dependent solutions P(x, t; u) of
Eq. (35) exist for u � U and are related to their
initial probability densities u by a one-to-one
mapping Tt. That is, for every t we have P(x, t;
u) = Tt [u(x)]. For an explicit construction of the
map Tt, see, for example, Eq. (18). Likewise, we
have P(x, t0; u)= Tt0[u(x)]. Using the inverse of T,
we can map u to P like u xð Þ ¼ T�1

t0 P x, t; uð Þ½ � .
Substituting these expressions into p(x, t| x0,t0; u),
we obtain pðx, tjx0, t0; T�1

t0 P x, t0; uð Þ½ �: This result
demonstrates that the information about the sto-
chastic process X̂ at time t0 is sufficient to predict
the future at t > t0. We can regard the conditional
probability density p as a function that does not
depend explicitly on u, but it depends explicitly
on the state of the driving force P at time t0. In
line with this remark, we introduce conditional
probability densities of the form p (x, t | x0, t0,
P(x0, t0;u)).

Let us dwell on the interpretation of a condi-
tional probability density p (x, t | x0, t0, P(x0, t0; u)).
To this end, we need to discuss briefly the notion of
a particular conditional averaging that is important
in this context and will become important later on
as well. Let us assume that we make observations
of realizations of a stochastic process X̂ for which
the following two conditions hold: (i) X (t0) = x0

and (ii) the ensemble of all realization is distributed
like P at time t0. Next, we average across all obser-
vations that we make under these conditions. In
doing so, we average under the constraints

X t0ð Þ ¼ x0 and d x0 � X t0ð Þð Þh i
¼ P x0, t0; uð Þ: (41)

In order to indicate that such a structured con-
straint should hold, we will use the notation

�h iX t0ð Þ¼x0; d x0�X t0ð Þð Þh i¼P x0, t0; uð Þ: (42)

In words, Eq. (42) is the instruction to take out
of an ensemble with probability density P at time
t0 only those realizations that assume the value x0

at time t0. On the one hand, this constraint induces
a trivial situation. We know for sure that X(t0)= x0

and consequently can replace the random variable
X(t0) by x0. On the other hand, the averaging pro-
cedure may involve the random variable X(t) at a
time point t different from t0. Although X(t0) is
fixed at x0, the random variable X(t) can assume
different values at t for different realizations of the
process X̂ . The conditional probability density
p (x, t | x0, t0, P(x0, t0; u)) is a special case in
which the delta function is averaged under the
constraint (41). We have

p x, tj x0, t0,P x0, t0; uð Þð Þ
¼ d x� X tð Þð Þh iX t0ð Þ¼x0; d x0�X t0ð Þð Þh i¼P x0, t0; uð Þ:

(43)

Summarizing the results we have derived so
far, we see that strongly nonlinear Fokker-Planck
equations define Markov processes whose

• Time-dependent probability densities P(x, t; u)
are defined by Eq. (35)

• Conditional probability densities p (x, t|x0, t0,
P(x0, t0; u)) are defined by

@

@t
p x, tjx0, t0,P0ð Þ ¼ L x, t,Pð Þp x, tjx0, t0,P0ð Þ (44)

with L given by Eq. (36), P = P(x, t; u), and
P0 = P(x0, t0; u). Note that by multiplying
Eq. (44) with P(x0, t0; u) and integrating with
respect to x0, we get Eq. (35) which in turn defines
the evolution of P(x, t; u). Consequently, Eq. (44)
defines both the evolution of P(x, t; u) and p-
(x, t| x0, t0, P0). Note also that the solution of
Eq. (44) formally reads
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p x, tj x0, t0,P x0, t0; uð Þð Þ

¼ exp

ðt
t0
dzLðx, z,P x, z; uð Þ�� �

d x� x0ð Þ
(45)

and depends on the evolution of P(x, z; u) for
z � [t0, t]. In fact, as indicated above, p depends
only on P(x0, t0, u). To see this recall that the
formal solution (21) can be obtained by means
of the iterative method (19) such that we can
write P(x, z; u) = Tz�t0 [P(x, t0; u)]. Substituting
this solution into Eq. (45), we get

p x, tj x0, t0,P x0, t0; uð Þð Þ

¼ exp

ðt
t0
dzLðx, z,Tz�t0 P x, t0; uð Þ� �

d x� x0ð Þ:
�

(46)

In addition, we find that the solution (45) does
not explicitly depend on u.

We arrive at the following conclusion: condi-
tional probability densities p(x, t|�) of Markov
processes described by strongly nonlinear
Fokker-Planck equations depend only on the
value of individual realizations at one prior time
point t0 � t and on the probability density
P defined by all realizations at the very same
prior time point t0.

Equation (45) can be simplified for stationary
Markov processes with operators L that do not
depend explicitly on time t. Then the conditional
probability density in the stationary case can be
computed from

p x, tj x0, t0,Pst x
0ð Þð Þ ¼ exp t� t0ð ÞL x,Pst xð Þð Þf g

d x� x0ð Þ:
(47)

where Pst(x) denotes a stationary probability den-
sity out of a set of stationary probability densities
defined by LPst = 0. Note that in this context, Pst

plays the role of an initial distribution u.
Just as in the linear case, the conditional prob-

ability density p in combination with the initial
distribution u completely defines the stochastic
process X̂ . In particular, the joint probability

density P(xn, tn; xn�1, tn�1; . . . x0, t0 ) can be
computed from p and u like

P �ð Þ ¼ p xn, tnj xn�1, tn�1,Pn�1ð Þ
�p xn�1, tn�1j xn�2, tn�2,Pn�2ð Þ� � �

� � �p x1, t1j x0, t0, uð Þu x0ð Þ,
(48)

with Pn�1= P(xn�1, tn�1; u), Pn�2= P(xn�2, tn�2;
u) and so on.

In particular, the time-dependent probability
densities P(x, t; u) and P(x, t0; u) with t � t0 are
related to each other by means of a nonlinear
functional

P x, t;uð Þ ¼
ð
O
p x, tjx0, t0,P x0, t0;uð Þð ÞP x0, t0;uð Þdx0,

(49)

where p is defined by Eq. (46). That is, the Green’s
function p induces a functional that is nonlinear
with respect to P(x0, t0; u).

Langevin Equations of Strongly Nonlinear
Fokker-Planck Equations
The stochastic trajectories X(t) of the Markov
process X̂ defined by Eq. (44) can be computed
from two-layered Langevin equations (see Sect.
3.4 in Frank 2005b) or alternatively from the self-
consistent Ito-Langevin equation

d

dt
X tð Þ ¼ D1 X tð Þ, t,P X tð Þ, t; uð Þð Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 X tð Þ, t,P X tð Þ, t; uð Þð Þ

p
G tð Þ,

(50)

where G(t) denotes the Langevin force introduced
earlier. Note that the expression P(X(t), t; u) means
that the function P(x, t; u) is evaluated at the state
x that is given by the random variable X at time t.
That is, wemaywriteP(X(t), t; u)= P(x, t; u)|x=X(t).
From the Langevin equation (50), we can read off
that we are dealing with a Markov process. Infor-
mation about one reference time t0 in terms of the
state X(t0) of a realization and the distribution of the
ensemble as given by the probability density P(x,
t0; u) is sufficient to compute the future behavior of
the trajectory X(t) with t � t0.

The Langevin equation (50) may be
implemented on a computer using the iterativemap
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Xnþ1 ¼ Xn þ DtD1 Xn, tn,P Xn, tn; uð Þð Þ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DtD2 Xn, tn,P Xn, tn; uð Þð Þ

p
ϵn (51)

with X(tn)= Xn, tn= t0 + nDt, n= 0, 1, 2, . . . and ϵn
given as statistically independent Gaussian distrib-
uted random numbers with vanishing mean and
variance 2 (see above). The expression P(Xn, t; u)
can be computed from the realizations generated by
the iteration map (51). Let X ið Þ

n denote the ith
realization at time step n. Then, the stochastic tra-
jectories X(t) can numerically be computed by sim-
ulating an ensemble of realizations i= 1, . . ., N like

X
ið Þ
nþ1 ¼ X ið Þ

n þ DtD1 X ið Þ
n , tn,Pn X ið Þ

n

� �� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DtD2 X ið Þ

n , tn,Pn X ið Þ
n

� �� �q
ϵ ið Þ
n , (52)

where ϵ ið Þ
n are statistically independent Gaussian

random numbers with respect to both indices
n and i and Pn is computed from the set

X 1ð Þ
n , . . . ,X Nð Þ

n

� �
of realizations using standard

kernel estimators. For example, we may use

Pn xð Þ ¼ 1

Ns
ffiffiffiffiffiffi
2p

p

�
XN
i¼1

exp � x� X ið Þ
n

� �2
2s2

( )
, (53)

with s = N�1/5se(tn) where se(tn) is the standard
deviation of the empirical ensemble

X 1ð Þ
n , . . . ,X Nð Þ

n

� �
(Frank 2005b, 2008; Silverman

1986). Just as in the case of Langevin equations of
linear Fokker-Planck equations, the map (52) can
be started at any time step n provided that we have
information about Pn and Xn. In particular, if we
start at a step n > 0, we see that the information

about the initial distribution is irrelevant. Conse-
quently, the sequence Xn, Xn+1, Xn+2, . . . computed
from the time-discrete Langevin equation (52)
related to the nonlinear Fokker-Planck equation
(44) describes a trajectory of a Markov process.

Finally, note that self-consistent Langevin
equations can be evaluated analytically in order
to determine second-order statistical properties of
a stochastic process defined by a strongly non-
linear Fokker-Planck equation (Borland 1998;
Kharchenko and Kharchenko 2005).

Short-Time Propagator
The Green’s function for short time intervals is
frequently called the short-time propagator and
can be derived from the time-discrete
Ito-Langevin (51). Equation (51) relates the ran-
dom variable ϵn that is distributed like W(ϵn) (see
Eq. (33)) to the random variable Xn+1. In general,
if Xn+1 is a function of ϵn then the probability
density W0(xn+1) of Xn+1 is given by

W0 xnþ1ð Þ ¼ W ϵnð Þ dϵn
dxnþ1

: (54)

In particular, if Xn+1 is computed from ϵn for a
particular value xn and probability densityP, thenwe
obtain the short-time conditional probability density

ps xnþ1j xn,P xn, tn; uð Þð Þ ¼ W ϵnð Þ dϵn
dxnþ1

: (55)

Equation (51) can be transformed into

ϵn ¼ Xnþ1 � Xn þ DtD1 Xn, tn,P Xn, tn; uð Þð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DtD2 Xn, tn,P Xn, tn; uð Þð Þp :

(56)

Substituting Eq. (56) into Eq. (55), we obtain

ps xnþ1j xn,P xn, tn; uð Þð Þ ¼
exp � xnþ1 � xn þ DtD1 xn, tn,P xn, tn; uð Þð Þ½ �2

4DtD2 xn, tn,P xn, tn; uð Þð Þ

( )
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pDtD2 xn, tn,P xn, tn; uð Þð Þp :

(57)
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Using the time-continuous framework and the
replacements n! t

0
, x

n

! x
0
, n + 1! t= t

0
+Dt x

n

+1

! x and likewise P(x

n

, t

n

; u)! P(x0,t0; u)= P0,
we obtain the short-time propagator (see Sect.
2.8.1 in Frank 2005b)

ps x, tj x0, t0,P0ð Þ ¼
exp � x� x0 þ DtD1 x0, t0,P0ð Þ½ �2

4DtD2 x0, t0,P0ð Þ

( )
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pDtD2 x0, t0,P0ð Þp :

(58)

The short-time propagator has originally been
proposed byWehner andWolfer (1987) and can be
used to solve nonlinear Fokker-Planck equations
numerically (Donoso and Salgado 2006; Donoso
et al. 2005; Soler et al. 1992). To this end, the short-
time propagator is substituted into Eq. (48), and
subsequently Eq. (48) is integrated over all vari-
ables xn�1, . . ., x0. Thus we obtain P(x, tn; u) for
tn = nDt. In the context of stochastic processes
described by linear Fokker-Planck equations, the
construction of solutions by means of short-time
propagators is referred to as path integral approach
(Gardiner 1997; Haken 2004; Risken 1989). We
will return to a similar path integral approach in
section “Semiclassical Description of Quantum
Systems.” Expectation values of functions f can
be computed from (58) like

f X tð Þð Þh iX t0ð Þ¼x0; d x0�X t0ð Þð Þh i¼P x0, t0; uð Þ

¼
ð
o
f xð Þps x, tj x0, t0,P0ð Þdx, (59)

which holds for small intervals Dt = t � t0. The
short-time propagator illustrates again theMarkov
property of solutions of the strongly nonlinear
Fokker-Planck equation (44). The information
about x0 and P0 at time t0 is sufficient to make
predications in terms of expectation values that
the stochastic process will assume at time
t = t0 + Dt.

Chapman-Kolmogorov Equation, Kramers-
Moyal Expansion, and Drift-Diffusion
Estimates
Linear Fokker-Planck equation can be derived
using the Kramers-Moyal expansion of the

Chapman-Kolmogorov equation (Gardiner 1997;
Risken 1989). The definition of the expansion
coefficients in turn can be used to estimate the
Kramers-Moyal coefficients in general and the
drift and diffusion coefficients of linear Fokker-
Planck equations in particular from experimental
data (Friedrich and Peinke 1997; Friedrich et al.
2000). We will show in this section that if a sto-
chastic process defined by a nonlinear Fokker-
Planck equation can be embedded into a Markov
process using the concept of strongly nonlinear
Fokker-Planck equations, then we can proceed as
in the linear case. Taking a slightly different per-
spective, we may say that there are Markov pro-
cesses that involve conditional probability
densities of the form p (x, t | x0, t0, P(x0, t0; u)) and
can be characterized in terms of generalized
Kramers-Moyal expansion coefficients.

Chapman-Kolmogorov Equation
Let X̂ denote a stochastic Markov process with
conditional probability density p (x, t | x0, t0, P(-
x0, t0; u)). Then as discussed in the previous sec-
tion, the joint probability P(x, t; x0, t0; x00, t00; u))
can be expressed by

P x, t; x0, t0; x00, t00; uð Þ ¼ p x, tj x0, t0,P x0, t0; uð Þð Þ
�p x0, t0j x00, t00,P x00, t00; uð Þð ÞP x00, t00; uð Þ: (60)

Integrating with respect to x0 and dividing by
P(x00, t00; u) yields the generalized Chapman-
Kolmogorov equation

p x, tj x00, t00,P x00, t00; uð Þð Þ

¼
ð
O
p x, tj x0, t0,P x0, t0; uð Þð Þ

� p x0, t0j x00, t00,P x00, t00; uð Þð Þdx0: (61)

Note that in what follows, we will use the
notation

P ¼ P x, t; uð Þ,
P0 ¼ P x0, t0; uð Þ,
P00 ¼ P x00, t00; uð Þ:

(62)

If we need to express probability densities
P different from those listed in Eq. (62), we will
write down if necessary their arguments explicitly.
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For example, we will write P(x, t0; u) to express
the probability density 〈d(x � X(t0))〉 for a sto-
chastic process X̂ with initial distribution u.

Using the notation of Eq. (62), we can write the
joint probability density (60) like

P x, t; x0, t0; x00, t00; uð Þ ¼ p x, tj x0, t0,P0ð Þ
p x0, t0j x00, t00,P00ð ÞP00 (63)

and the generalized Chapman-Kolmogorov
Eq. (61) becomes

p x, tjx00, t00,P00ð Þ ¼
ð
O
p x, tjx0, t0,P0ð Þp x0, t0jx00, t00,P00ð Þdx0:

(64)

Kramers-Moyal Expansion
In this section, the Kramers-Moyal expansion for
linear Fokker-Planck equations as discussed in
Risken (1989) will be generalized to the nonlinear
case. Consider the conditional probability density
p(x, t|x0, t0, P0) for t = t0 + Dt. Then, we have

p x, t0 þ Dtj x0, t0,P0ð Þ ¼
ð
O
d y� xð Þp y, t0 þ Dtj x0, t0,P0ð Þdy:

(65)

The variables x and x0 denote arbitrary states in
O. However, let us consider next states y that are
close to x0 such that is ϵ = y � x0 small. Using
y � x = ϵ + x0 � x, we obtain

p x, t0 þ Dtj x0, t0,P0ð Þ ¼
ð
O
d x0 � xþ ϵð Þ

�p x0 þ ϵ, t0 þ Dtj x0, t0,P0ð Þdϵ:
(66)

Use

d x0 � xþ ϵð Þ ¼ d x0 � xð Þ þ
X1
1

� ϵn

n!

@

@x0

� �n

d x0 � xð Þ: (67)

Then, Eq. (66) becomes

p x, t0 þ Dtj x0, t0,P0ð Þ ¼ d x0 � xð Þ þ
X1
1

ð
O
dϵ

ϵn

n!

�p x0 þ ϵ, t0 þ Dtj x0, t0,Pð Þ @

@x0

� �n

d x0 � xð Þ:
(68)

Multiplying Eq. (68) with p(x0, t0 | x00, t00, P00)
and integrating with respect to x0 yields on the left-
hand side

LHS ¼ ÐOp x, t0 þ Dtj x0, t0,P0ð Þp x0, t0j x00, t00,P00ð Þ
dx0 ¼ p x, t0 þ Dtj x00, t00,P00ð Þ

(69)
and on the right-hand side

RHS¼p x, t0jx},t00,P00ð Þ
þ
X1
1

ð
O
dx0
ð
O
dϵ

ϵn

n!
p x0 þϵ, t0 þDtjx0,t0,P0ð Þ

�p x0, t0jx00, t00,P00ð Þ@
nd x0 �xð Þ
@x0n

RHS¼p x, t0jx00, t00,P00ð Þ
þ
X1
1

ð
O
dx0d x0 �xð Þ @n

@x0n
�1ð Þn

�ÐOdϵ ϵnn!p x0 þϵ, t0 þDtjx0,t0,P0ð Þp x0,t0jx00, t00,P00ð Þ
RHS¼p x, t0jx00, t00,P00ð Þ
þ
X1
1

� @

@x

� �nð
O
dϵ

ϵn

n!
p xþϵ, t0 þDtjx,t0,P x, t0;uð Þð Þ

�p x, t0jx00, t00,P00ð Þ:
(70)

Note that we used the Chapman-Kolmogorov
Eq. (61) in order to evaluate the left-hand side (69)
and we used Eq. (61) as well as partial integration
in order to evaluate the right-hand side (70). Let us
define the moments Mn(x, t, Dt, P(x, t; u)) by

Mn x, t,Dt,Pð Þ ¼
ð
O
dϵ

ϵn

n!
p xþ ϵ, tþ Dtj x, t,Pð Þ

(71)

or using ϵ + x = z by

Mn x, t,Dt,Pð Þ ¼
ð
O
dz

z� xð Þn
n!

p z, tþ Dtj x, t,Pð Þ:
(72)

Combining the left- and right-hand sides given
by Eqs. (69) and (70), respectively, we obtain

p x, t0 þ Dtj x00, t00,P00ð Þ

¼ p x, t0j x00, t00,P00ð Þ þ
X1
1

� @

@x

� �n

�Mn x, t0,Dt,P x, t0; uð Þð Þp x, t0j x00, t},P00ð Þ:
(73)

To improve readability, let us replace t0 by t and
subsequently t00 by t0. Thus, we obtain
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p x,tþDtjx0, t0,P0ð Þ¼pðx, tjx0, t0,P0

þ
X1
1

� @

@x

� �n

�Mn x, t,Dt,Pð Þp x, tjx0, t0,P0ð Þ:
(74)

This is the time-discrete version of the Kramers-
Moyal expansion of the generalized Chapman-
Kolmogorov Eq. (64). Note that Mn depends on
P(x, t; u), whereas p depends on P(x0, t0; u). Next,
we define the Kramers-Moyal coefficients

Dn x, t,Pð Þ ¼ lim
Dt!0

Mn

Dt
lim
Dt!0

� 1

Dt

ð
O
dx

z� xð Þn
n!

� p z, tþ Dtj x, t,Pð Þ: (75)

Dividing Eq. (74) by Dt and taking the limiting
case Dt ! 0, Eq. (74) becomes the time-
continuous generalized Kramers-Moyal expansion

@

@t
p x, tj x0, t0,Pð Þ ¼

X1
1

� @

@x

� �n

Dn x, t,Pð Þ

p x, tj x0, t0,P0ð Þ:
(76)

Note that by generalizing the Kramers-Moyal
expansion to the nonlinear case, we found immedi-
ately that the coefficients Dn depend on P(x, t; u),
whereas the conditional probability density
p depends on P(x0, t0; u). Note also that in the
special case Dn = 0 for n � 3, the Kramers-
Moyal expansion (76) yields the nonlinear
Fokker-Planck equation (44). Finally note that
since we have Mn(Dt = 0) = 0 for all n, Kramers-
Moyal coefficients can also be defined by

Dn x, t,Pð Þ ¼ @Mn

@Dt

����
Dt¼0

¼
ð
O
dx

z� xð Þn
n!

@

@u
p z, uj x, t,Pð Þ

����
u¼t

:

(77)

Drift-Diffusion Estimates
The definition of the Kramers-Moyal coefficients
can be exploited to extract the drift and diffusion
coefficients of nonlinear Fokker-Planck equations

from time series data. Accordingly, the drift coef-
ficient D1 and the diffusion coefficient D2 are
defined by

D1 x, t,Pð Þ¼ lim
Dt!0

1

Dt

ð
O
dx z�xð Þp z, tþDtjx, t,Pð Þ,

D2 x, t,Pð Þ¼ lim
Dt!0

1

2Dt

ð
O
dx

z�xð Þ2
2

p z, tþDtjx, t,Pð Þ:

(78)
The limiting case Dt may be approximated by

the smallest time step that is available in the data set:

D1 x, t,Pð Þ 	 1

Dt

ð
O
dx z� xð Þp z, tþ Dtj x, t,Pð Þ,

D2 x, t,Pð Þ 	 1

2Dt

ð
O
dx

z� xð Þ2
2

p z, tþ Dtj x, t,Pð Þ,
(79)

where Dt denotes now the sampling interval
between two data points. Note that on the basis of
the alternative definition (77), higher-order approx-
imations can also be defined (Patanarapeelert et al.
2006). The conditional averages can be approxi-
mated by empirical conditional averages computed
from a finite set of realizations X(1)(t), X(2)(t), . . .,
X(N)(t). Thus, we obtain

D1 x, t,Pð Þ	 1

Dt
1P

i� I t,xð Þ1
�
X

i�I t,xð Þ
X ið Þ tþDtð Þ�X ið Þ tð Þ
h i

,

D2 x, t,Pð Þ	 1

2Dt
1P

i� I t,xð Þ1
�
X

i�I t,xð Þ
X ið Þ tþDtð Þ�X ið Þ tð Þ
h i2

,

(80)
where I(t,x) is the set of indices i for which X(i)(-
t) 	 x. In the case of Markov processes described
by linear Fokker-Planck equations, the argument
P in the coefficients can be dropped and the above
drift-diffusion estimates reduce to the estimates
proposed in Friedrich and Peinke (1997) and Frie-
drich et al. (2000) that have recently found many
applications (Bödeker et al. 2003; Jafari et al.
2002; Sura and Barsugli 2002; Waechter et al.
2004). For Markov processes described by non-
linear Fokker-Planck equations, we need to com-
pute the conditional averages for different
probability densities P. To this end, we may vary
the initial distribution u of a stochastic process.
For a stochastic process with a particular distribu-
tion of X at time t, we will obtain the coefficients
D1 and D2 only for that particular distribution.
Using the kernel estimate method mentioned
above, we obtain
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D1 x,t,P	 1

Ns
ffiffiffiffiffiffi
2p

p
XN
i¼1

exp � x�X ið Þ tð Þ� �2
2s2

( ) !

	 1

Dt
1P

i�I t,xð Þ1

�
X

i�I t,xð Þ
X ið Þ tþDtð Þ�X ið Þ tð Þ
h i

(81)
and

D2 x,t,P	 1

Ns
ffiffiffiffiffiffi
2p

p
XN
i¼1

exp � x�X ið Þ tð Þ� �2
2s2

( ) !

	 1

2Dt
1P

i�I t,xð Þ1

�
X

i�I t,xð Þ
X ið Þ tþDtð Þ�X ið Þ tð Þ
h i2

(82)

with s = N�1/5se(tn), where se(tn) is the standard
deviation of the empirical ensemble {X(1)(t), . . .,
X(N)(t)}. Note that in general the Kramers-Moyal
coefficients of Markov processes induced by con-
ditional probability densities of the form p(x, t|x0,
t0, P0) can be estimated using

Dn x,t,P	 1

Ns
ffiffiffiffiffiffi
2p

p
XN
i¼1

exp � x�X ið Þ tð Þ� �2
2s2

( ) !

	 1

n!Dt
1P

i�I t,xð Þ1

�
X

i�I t,xð Þ
X ið Þ tþDtð Þ�X ið Þ tð Þ
h in

:

(83)

Alternatively, parametric estimate methods
may be used. For example, we may be interested
in estimating the exponent q of a Markov process
defined by the Plastino-Plastino model (see sec-
tion “Nonextensive Systems” below)

@

@t
p x, tj x0, t0,P0ð Þ ¼ @

@x
gxþ Q

@2

@x2
P x, t; uð Þq�1

� �
p x, tj x0, t0,P0ð Þ

(84)

with g, Q, q > 0. Then, the diffusion coefficient
D2(P) = QPq�1 involves the parameter Q and q.
Using Eq. (82) and taking the logarithm, we get

lnQþ q� 1ð Þln 1

Ns
ffiffiffiffiffiffi
2p

p
XN
i¼1

exp � x� X ið Þ tð Þ� �2
2s2

( )( )

	 ln
1

2Dt
1P

i� I t, xð Þ1

(

X
i� I t, xð Þ

X ið Þ tþ Dtð Þ � X ið Þ tð Þ
h i29=

;:

(85)

For example, at a particular time t, Eq. (85) can
be evaluated for different states xi. In that case,
Eq. (85) assumes the form ln Q + (q � 1)
A1(xi) = A2(xi). Then, the expressions ln Q and
q – 1 (and in doing so the parametersQ and q) can
be estimated from a linear regression (Frank and
Friedrich 2005).

Martingales

Let Z(t) denote a functional of a stochastic process

X̂ defined for t � t0. In what follows, we will put
t0 = 0. Then, Z is a martingale of X̂ if

Z tð Þh iX¼y ¼ Z t0ð Þ (86)

holds for t � t0, where y is a realization of
the random variable X on the interval [0,t0] (see
Sect. 1.3 in Karlin and Taylor 1975). That is, the
constraint X = y means X(s) = y(s) holds for
s � [0,t0]. That is, in the interval [0,t0] the trajec-
tory X is fixed. Roughly speaking, a martingale is
a random variable for which the best predictor of
its future mean value is the present value. With
regard to Eq. (86), the prediction of the future
mean value is 〈Z(t)〉, whereas the present value
of Z is Z(t0). Alternatively, we may say that the
information at one time t0 about the value of the
martingale Z is sufficient to predict the mean value
of the martingale Z for future times t � t0. Note
that this alternative point of view is closely related
with the first definition of Markov processes
discussed in the previous section.

For linear Fokker-Planck equations, there is a
close link between martingales and the Markov
property. Accordingly, a stochastic process is a
Markov process defined by a linear Fokker-Planck
equation with drift and diffusion coefficients D1
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and D2 if and only if a particular random variable
Z that involves the Fokker-Planck operator is a
martingale (see Sect. 15.1 in Karlin and Taylor
1981). In the mathematical literature, this link has
also been studied in the context of nonlinear
Fokker-Planck equations (Djehiche and Kaj 1995;
Fontbona 2003; Gärtner 1988; Graham 1990;
Greven 2005; Jourdain 2000; Meleard 1996;
Meleard and Coppoletta 1987; Overbeck 1996).

Our aim in this section is to make the martin-
gale approach more accessible to scientists work-
ing in physics, applied mathematicians, and
related disciplines. To this end, we will in what
follows illustrate this link between martingales
and Markov processes defined by strongly non-
linear Fokker-Planck equation by means of stan-
dard techniques frequently used in physics.

Theorem 1 Let X̂ be a stochastic process with
initial probability density u(x) and conditional
probability density

p x, tj x0, t0;P0ð Þ
¼ d x� X tð Þð Þh iX t0ð Þ¼x0; d x0�X t0ð Þð Þh i¼p x0, t0; uð Þ: (87)

Then, X̂ is a Markov process defined by the
nonlinear Fokker-Planck equation

@

@t
p x, tj x0, t0;P0ð Þ ¼ L x, t,Pð Þp x, tj x0, t0;P0ð Þ

(88)
with

L x, t,Pð Þ ¼ � @

@x
D1 x, t,Pð Þ

þ @2

@x2
D2 x, t,Pð Þ (89)

if and only if Z(t) defined by

Z tð Þ ¼ f X tð Þð Þ �
ðt
0

LBf X zð Þ, z,P½ �dz (90)

with

LB x, t,Pð Þ ¼ D1 x, t,Pð Þ @

@x

þ D2 x, t,Pð Þ @2

@x2
(91)

is a martingale of X for smooth functions f. In the
context of linear Fokker-Planck equations, the

operator LB is the Fokker-Planck backwards oper-
ator (Gardiner 1997; Risken 1989). Note that in
our context, we refer to f as a smooth function if it
has continuous second-order derivatives. Note
also that above and in what follows, we will
frequently use the notation (54). Note finally that
in the above theorem the notion LB f[X(z), z, P]
should be interpreted like

LBf X zð Þ, z,P½ � ¼ LB X zð Þ, z,Pð Þf X zð Þð Þ
¼ LB x, t,Pð Þf xð Þf gx¼X zð Þ, t¼z:

(92)

That is, first we carry out the differentiations
defined by the operator LB. Subsequently, we replace
in the result the state variable x by the value of the
random variable X at time z. Moreover we replace
t by z. Let us prove the theorem in two parts.

From Strongly Nonlinear Fokker-Planck
Equations to Martingales
Let us prove in this section that a Markov process
defined by a strongly nonlinear Fokker-Planck
equation exhibits the martingale Z. To this end,
we first compute the conditional mean of the ran-
dom variable Z defined in Eq. (90). Thus, we obtain

Z tð Þh iX¼y
¼ f X tð Þð Þh iX¼y �

Ð t
0
dz LBf X zð Þ, z,P½ �h iX¼y

¼ f X tð Þð Þh iX¼y �
Ð t
t0 dz LBf X zð Þ, z,P½ �h iX¼y

� Ð t0
0
dsLBf y sð Þ, s½ �:

(93)

The Markov property implies that the con-
straints can be relaxed. That is, for every func-
tional g(t) of X(t) with t � t0, we have
〈g(t)〉X=y = 〈g(t)〉X(t0)=x0; P0 where x0 is given by
x0 = y(t0). We have indicated here that the average
may depend on how the process is distributed at
time t0. Consequently, Eq. (93) becomes

Z tð Þh iX¼y ¼ f X tð Þð Þh iX t0ð Þ¼x0; d x0�X t0ð Þð Þh i¼P0

� Ð tt0 dz LBf X zð Þ, z,P½ �h iX t0ð Þ¼x0, d x0�X t0ð Þð Þh i¼P0

� Ð t0
0
dsLBf y sð Þ, s,P½ �:

(94)

Multiplying the Fokker-Planck equation (88)
with f(x) and integrating with respect to x, we
obtain
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@

@t

ð
O
f xð Þp x, tj x0, t0;P0ð Þdx

¼
ð
O
f xð ÞL x, t,Pð Þp x, tj x0, t0;P0ð Þdx: (95)

By means of partial integration, we find thatÐ
Of(x)L(x, t, P)p(x, t| x

0, t0; P0) dx =
Ð
Op(x, t| x

0,
t0; P0)LB(x, t, P)f(x) dx. As a result, Eq. (95) can
be transformed into

@

@t

ð
O
f xð Þp x, tj x0, t0,P0ð Þdx

¼ ÐOp x, tj x0, t0,P0ð ÞLB x, t,Pð Þf xð Þdx
¼ LB x, t,Pð Þf xð Þh iX t0ð Þ¼x0;P0 :

(96)

Using Eq. (96), we obtain

LBf X zð Þ, z½ �h iX t0ð Þ¼x0; d x�X t0ð Þð Þh i¼P0

¼ @

@z

ð
O
f xð Þp x, tj x0, t0,P0ð Þdx: (97)

Consequently, the following integral transfor-
mation holds

I ¼ Ð tt0 dz LBf X zð Þ, z,P½ �h iX t0ð Þ¼x0;P0

¼ Ð tt0 dz @@z
ð
O
dx f xð Þp x, zj x0, t0,P0ð Þ

¼ f ðX tð Þh iX t0ð Þ¼x0;P0 � f x0ð Þ:
(98)

Substituting Eq. (98) into Eq. (94), we get

Z tð Þh iX¼y ¼ f x0ð Þ �
ðt0
0

dsLBf y sð Þ, s,P½ �: (99)

By definition, the function Z(t0) for X(s) = y(s)
given in s � [0, t0] reads

Z t0ð Þ ¼ f x0ð Þ �
ðt0
0

dsLBf y sð Þ, s,P½ �: (100)

Consequently, we have our final result

Z tð Þh iX¼y ¼ Z t0ð Þ (101)

and the proof is completed.

From Martingales to Strongly Nonlinear
Fokker-Planck Equations
Let us prove next that the martingale (90) defines a
Markov process of a strongly nonlinear Fokker-
Planck equation. Evaluating Eq. (90) by analogy
to Eq. (93) gives us

Z tð Þh iX¼y ¼ f X tð Þð Þh iX¼y

�
ðt
t0
dz LBf X zð Þ, z,P½ �h iX¼y

�
ðt0
0

dsLBf y sð Þ, s,P½ �: (102)

Substituting this result into Eq. (86) and
substituting Eq. (100) into Eq. (86), we see that
Eq. (86) becomes

f X tð Þð ÞiX¼y ¼ f x0ð Þ

þ
ðt
t0
dz LBf X zð Þ, z½ �h iX¼y: (103)

Equation (103) can equivalently be written asð
O
f xð Þp x, tjX ¼ yð Þdx

¼ f x0ð Þþ
ðt
t0
dz

ð
O
dxp x, zjX ¼ yð ÞLBf x, t,P½ �

(104)

with p(x, z|X= y)= d(x� X(z))X=y. Using partial
integration, we can show that the operator LB and
the differential operator L are related to each other
likeð

O
dxp x, zjX ¼ yð ÞLBf x, t,P½ �

¼
ð
O
dx f xð ÞL x, z,Pð Þp x, zjX ¼ yð Þ: (105)

Substituting this result into Eq. (104) yields

0¼
ð
O
dxf xð Þ p x, tjX¼ yð Þ�d x� x0ð Þ�fðt

t0
dzLðx,z,P�pðx,zjX¼ y

�g: (106)

This holds for arbitrary smooth functions f.
Since f is arbitrary, the expression in the brackets
{�} of Eq. (106) must vanish, and we obtain
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p x, tjX ¼ yð Þ ¼ d x� x0ð Þ

þ
ðt
t0
dzL x, z,Pð Þp x, zjX ¼ yð Þ:

(107)

Differentiating Eq. 107 with respect to t gives us

@

@t
p x, tjX¼ yð Þ¼ L x, t,Pð Þp x, tjX¼ yð Þ: (108)

Multiplying with the probability density
P(X = y) and performing a functional integration
with respect to the path y, we obtain

@

@t
P x, tð Þ ¼ L x, t,Pð ÞP x, tð Þ: (109)

The formal solutions of Eqs. (108) and (109)
read

p x, tjX ¼ yð Þ ¼ exp

ðt
t0
dzL x, z,Pð Þ

� �
d x� x0ð Þ

(110)
and

P x, tð Þ ¼ exp

ðt
t0
dzL x, z,Pð Þ

� �
P x, t0ð Þ: (111)

We see that a solution of Eq. (108) under the
initial condition p(x, t|X = y) = d(x – x0) for t! t0

with x0 = y(t0) only depends on y(t0) but does not
depend on y(s) for s < t0. Consequently, X is a
Markov process. However, L depends on P. From
Eq. (110), it is clear that the conditional probability
density p depends on the time-dependent probabil-
ity density P for z � [t0, t]. Since the probability
density P(x,t;u) for t � t0 can be computed from
P(x,t0;u) as shown in Eq. (111), we conclude that
p depends only on P(x,t0;u) and does not depend on
the evolution of P on the whole interval [t, t0].
Therefore, we have p(x, t| X = y) = p(-
x, t| x0, t0, P0). Substituting this result into
Eq. (108), we see that Eq. (108) becomes a strongly
nonlinear Fokker-Planck equation

@

@t
p x, tj x0, t0;P0ð Þ ¼ L x, t,Pð Þp x, tj x0, t0;P0ð Þ:

(112)

Examples

Shimizu-Yamada Model
The Shimizu-Yamada model (Shimizu 1974; Shi-
mizu and Yamada 1972) corresponds to the Desai-

Zwanzig model (7) for a linear single-particle
force h(x)=�gx. The evolution of the conditional
probability density p is defined by

@

@t
p x, tj x0, t0,P0ð Þ ¼ @

@x
gxþ k x�

ð
O
xP x, t; uð Þdx

� ��

þQ
@2

@x2

�
� p x, tj x0, t0,P0ð Þ (113)

withO =ℝ and g, k, Q> 0. Multiplying Eq. (113)
with P(x0, t0; u) and integrating with respect to x0

yields the evolution equation for P(x, t; u):

@

@t
P x, t; uð Þ ¼ @

@x
gxþ k x�

ð
O
xP x, t; uð Þdx

� ��

þQ
@2

@x2
� � P x, t; uð Þ: (114)

See also Frank (2004d) and Sect. 3.10 in Frank
(2005b). From Eq. (114), it follows that the mean
value m(t) =

Ð
O xP(x, t; u) dx decays exponentially

like

m tð Þ ¼ m t0ð Þexp �g t� t0ð Þf g (115)

with m(t0) =
Ð
O xu(x) dx. Substituting Eq. (115)

into Eqs. (113) and (114), we realize that a solu-
tion P(x, t; u) and a Green’s function p exists for
any initial probability density u(x). Therefore, the
Shimizu-Yamada model is a strongly nonlinear
Fokker-Planck equation and describes a Markov
process.

It can be shown that the conditional probability
density p(x, t j x0, t0; u) reads (see Frank (2004d)
and Sect. 3.10 in Frank (2005b))

p x, tj x0, t0; uð Þ ¼
exp � x� g t, t0, t0, uð Þ � x0m t, t0ð Þ½ �2

2K t, t0ð Þ

( )
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pK t, t0ð Þp

(116)

with

m t, t0ð Þ ¼ exp � gþ kð Þ t� t0ð Þf g, (117)

K t, t0ð Þ ¼ Q

gþ k
1þ exp �2 gþ kð Þ t� t0ð Þf g½ �,

(118)

and
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g ¼ exp �g t� t0ð Þf g � exp � gþ kð Þtf½
þgt0 þ kt0

�g� � ð
O
xu xð Þdx: (119)

The mean value m(t) acts as a self-organized
driving force of the stochastic process. Since there
is a one-to-one mapping ofm(t) tom(t0) with t0 < t,
we can eliminate the parameter u in p(x, t|x0, t0; u)
as argued in section “Strongly Nonlinear Fokker-
Planck Equations.” Substituting Eq. (115) into
Eq. (119), we obtain

g t, t0,P x, t0; uð Þð Þ ¼ exp �g t� t0ð Þf g�
1� exp �k t� t0ð Þf g½ �

ð
O
xP x, t0; uð Þ dx (120)

or

g t, t0, X t0ð Þh ið Þexp �g t� t0ð Þf g:
1� exp �k t� t0ð Þf g½ � X t0ð Þh i: (121)

Consequently, the conditional probability den-
sity p(x, t|x0, t0, P0) reads

p x, tjx0, t0;P0ð Þ ¼
exp � x� g t, t0, X t0ð Þh ið Þ� x0m t, t0ð Þ½ �2

2K t, t0ð Þ

( )
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pK t, t0ð Þp :

(122)

Dynamic Takatsuji Model
The dynamic Takatsuji model for the conditional
probability density p is defined by

@

@t
p x, tj x0, t0;P0ð Þ ¼ @

@x
gþ cð Þx� ffiffiffi

c
p

tanh

�
ffiffiffi
c

p ð
O
xP x, t; uð Þdx

� �
þ Q

@2

@x2

�
� p x, tj x0, t0;P0ð Þ

(123)

with x � O = ℝ and c, Q > 0 g � ℝ. Likewise,
the probability density P(x, t; u) satisfies

@

@t
P x, t; uð Þ ¼ @

@x
gþ cð Þx� ffiffiffi

c
p

tanh

�
ffiffiffi
c

p ð
O
xP x, t; uð Þdx

� �
þ Q

@2

@x2

�
� P x, t; uð Þ:

(124)

For details, see Frank (2004e) and Takatsuji
(1975). From Eq. (124), it follows that the first
moment M1(t) = X can be computed from

d

dt
M1 tð Þ ¼ � gþ cð ÞM1

þ ffiffiffi
c

p
tanh

ffiffiffi
c

p
M1 tð Þ �

: (125)

For arbitrary initial distribution u, solutions of
M1(t) exist and are smooth functions of t. Substitut-
ing these solutions into Eqs. (123) and (124), we
see that solutions of Eqs. (123) and (124) in terms
of Green’s functions p and probability densities
P exist as well. Consequently, the dynamic
Takatsuji model belongs to the class of strongly
nonlinear Fokker-Planck equations and describes a
Markov process.

Since p(x, t|x0, t0, P0) depends on P0, the
expected mean value of X(t) of realizations that
assume the value x0 at time t0 depends on the
distribution of the ensemble at time t0. Let us
illustrate this issue. The conditional mean value
under consideration reads

X tð Þh iX t0ð Þ¼x0,P0 ¼
ð
xp x, tj x0, t0,P0ð Þdx: (126)

Multiplying Eq. (123) with x and integrating
with respect to x, we obtain

d

dt
X tð Þh iX t0ð Þ¼x0,P0 ¼ � gþ cð Þ X tð Þh iX t0ð Þ¼x0,P0

þ ffiffiffi
c

p
tanh

ffiffiffi
c

p
M1 tð Þ �

:

(127)

The solution reads

X tð Þh iX t0ð Þ¼x0,P0 ¼ x0exp � gþ cð Þ t� t0ð Þf g

þ ffiffiffi
c

p ðt
t0
tanh

ffiffiffi
c

p
M1 zð Þ �

dz,

(128)

where M1(z) is the solution of Eq. (125) for the
initial valueM1(t0)=

Ð
O xP(x, t0; u) dx. Let I denote

the integral I ¼ ffiffiffi
c

p Ð t
t0 tanh

ffiffiffi
c

p
M1 zð Þ½ �dz . Then,

I depends on M1(t0), c, g, t0 and t:I = I(t, t0,
M1(t0), c, g). Consequently, Eq. (128) can be cast
into the form

X tð Þh iX t0ð Þ¼x0,P0 ¼ x0exp � gþ cð Þ t� t0ð Þf g

þI t, t0,
ð
x0P x0, t0; uð Þdx0, c, g

� �
(129)

or
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X tð Þh iX t0ð Þ¼x0,P0 ¼ x0exp � gþ cð Þ t� t0ð Þf g
þ I t, t0, X t0ð Þh i,c,gð Þ: (130)

Equation (130) illustrates that in order to pre-
dict future conditional mean values of a Takatsuji
process X̂ at times t, it is sufficient to have at one
time t0 � t information about the state value x0 of a
realization of X̂ and the mean value X(t0) of all
realizations of X̂.

Note that the trajectories Z(t) of martingale
processes Ẑ induced by the Takatsuji process X̂
are given by

Z tð Þ ¼ f Xð Þ �
ðt
0

ds � gþ cð ÞX sð Þ½f

þ ffiffiffi
c

p
tanh

ffiffiffi
c

p
X sð Þh i� �� @f

@X sð Þ þ Q
@2f

@X2 sð Þ
�
(131)

for arbitrary smooth functions f. We can exploit
these martingale processes in order to compute
conditional expectations. For example, for
f(y) = y from the martingale property (86), it
follows that

X tð Þh iX t0ð Þ¼x0,P0 ¼ x0

�
ðt
t0
ds gþ cð Þ X sð Þh i

� ffiffiffi
c

p
tanh

ffiffiffi
c

p
X sð Þh i �

: (132)

Differentiating this relation with respect to t,
we obtain Eq. (127) again and so we can compute
the conditional expectation (130).

Liquid Crystal Model
Liquid crystals exhibit nematic-isotropic phase
transitions (Chandrasekhar 1977; de Gennes and
Prost 1993; de Jeu 1980). At high temperatures,
the liquid crystal macromolecules exhibit an ori-
entational disorder. The liquid crystal is said to be
in the isotropic phase. Below a critical tempera-
ture, the macromolecules show some degree of
orientational order. The degree of orientational
order is often measured by the Maier-Saupe
order parameter S (Maier and Saupe 1958).

A nonlinear Fokker-Planck equation that
describes the stochastic behavior of the liquid
crystal in the isotropic and nematic phases and
to a certain extent also describes the order-
disorder phase transition was proposed by Doi
and Edwards (Doi and Edwards 1988) and Hess
(Hess 1976) and is shown above in Eq. (8).
Equation (8) describes the random walk of the
orientation of liquid crystal molecules, where
the orientation is given by a vector x that points
to the surface of a unit sphere. If we are dealing
with rod-like molecules, then the orientation
corresponds to the primary axis of the molecules
along the rod. In particular, for liquid crystals
with an axial symmetry, the liquid crystal model
can be simplified. The simplified model
describes the random walk of the molecule
alignment with the symmetry axis. The random
variable is defined on X � O = [0, 1]. For sake
of simplicity, we will extend the range of defi-
nition to the interval O = [�1, 1] and require
that distributions are symmetric. For X = 0, the
molecule has an orientation perpendicular to the
symmetry axis. If X= 1 or X=�1, the molecule
points exactly in the direction of the symmetry
axis. In this symmetric case, the probability
density P of X satisfies (Felderhof 2003)

@

@t
P x, t; uð Þ ¼ @

@x
1� x2
� � � � 9

2
kx

�
ð
x2P x, t; uð Þdx� 1

3

� �

þDr
@

@x

�
P x, t; uð Þ

(133)

with k, Dr. > 0. Equation (133) as well as the
original Eq. (8) are regarded as descriptions for
an ensemble of macromolecules that perform
rotational Brownian motion (Doi and Edwards
1988). Since Brownian motion is a Markov pro-
cess, it is reasonable to construct on the basis of
Eq. (133) a model for a many-body system that
exhibits a Markov process. In line with our dis-
cussion in section “Markov Property: Second-
Order and Higher-Order Statistics,” we assume
that the conditional probability density
p satisfies (Frank 2005c)
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@

@t
p x, tj x0, t0,P0ð Þ ¼ @

@x
1� x2
� �

� � 9

2
kx

ð
x2P x, t; uð Þdx� 1

3

� �
þ Dr

@

@x

� �

� p x, t, j x0, t0,P0ð Þ:
(134)

Note that the expression in the bracket (�) is
related to the Maier-Saupe order parameter which
reads in the symmetric case

S tð Þ ¼ 1

2
3

ð
x2P x, t; uð Þdx� 1

� �
: (135)

Due to the boundary conditions X � [�1, 1],
the order parameter S and consequently the bracket
(�) is bounded. This implies that solutions P and
p of Eqs. (133) and (134) exist and that the liquid
crystal model (133)–(134) describes aMarkov pro-
cess. The self-consistent Ito-Langevin equation of
this Markov process reads (Frank 2005c)

d

dt
X tð Þ ¼ 9k

2
1� X tð Þ2
� �

X tð Þ X tð Þ2
D E

� 1

3

� �

� 2DrX tð Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dr 1� X tð Þ2
� �r

G tð Þ:
(136)

Trajectories Z(t) of martingale processes Ẑ of
the liquid crystal model are defined by (Frank
2007)

Z tð Þ ¼ f X tð Þð Þ �
ðt
0

ds �½ �f X sð Þð Þ (137)

with

�½ � ¼ 9k
2

1� X sð Þ2
� �

X sð Þ X sð Þ½ �2
D E

� 1

3

� ���

� 2DrX sð ÞÞ @

@X sð Þ þ Dr
@2

@X2 sð Þ�:
(138)

In the stationary case, the short-time autocor-
relation function C(Dt) = X(t)X(t + Dt)st reads
(Frank 2005c)

C Dtð Þ ¼ 2Sþ 1

3
� 2Dr 1� Sð Þ

3
Dt

þ O Dt2
� �

, (139)

where S denotes the order parameter (see above) in
the stationary case. That is, we have S =
(3 X2

st � 1)/2. Consequently, C depends on S.
This has important implications for the hysteresis
loop of the nematic-isotropic phase transition. Let
us assume that if we decrease the temperature of a
liquid crystal, we find the transition from the iso-
tropic to the nematic phase with S = 0! S > 0 at
the critical temperature Tc,low. In contrast, if we
increase the temperature of a liquid crystal, we
find the transition from the nematic to the isotropic
phase with S > 0 ! S = 0 at the slightly higher
critical temperature Tc,high. Then, in the temperature
interval [Tc,low, Tc,high], the liquid crystal exhibits
two autocorrelation functions

Cisotrope Dtð Þ ¼ 1

3
� 2Dr

3
Dt, (140)

Cnem Dtð Þ ¼ 2S Tð Þ þ 1

3

� 2Dr 1� S Tð Þð Þ
3

Dt (141)

which hold up to terms of order Dt2.
Equations (140)–(141) illustrate that we are deal-
ing with a system that exhibits two kinds of Mar-
kov processes that we may label “isotropic” and
“nematic,” respectively. The modeling approach
by means of strongly nonlinear Fokker-Planck
equations indicates that these Markov processes
are just different members of a family of Markov
processes that naturally emerge in the self-
organized liquid crystal. That is, the two Markov
processes are not related to two different systems
but they represent two different “states” of the
same self-organizing many-body system.

Let us compute the conditional mean value of
molecules that are perpendicular to the symmetry
axis. To this end, we consider the random walk of
the orientation angle f defined by X(t)= sin f(t).
Using the Stratonovich-Langevin equation of
Eq. (134) (see Frank 2005c), we obtain a self-
consistent Langevin equation for f:
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d

dt
f¼ 9

4
ksin 2f tð Þð Þ sin2 f tð Þð Þ� ��1

3

� �

�Dr tanf tð ÞþDrG tð Þ: (142)

For short time intervals Dt = t � t0 and appro-
priate small noise amplitudes Dr, we assume that
f(t) 	 0 if f(t0) 	 0. Linearizing Eq. (142) at
f = 0 yields

d

dt
f tð Þ ¼ 9

4
k sin 2 f tð Þð Þ� �� 1

3

� �
� Dr

� �
f tð Þ

þ DrG tð Þ:
(143)

The conditional expectation value
Ð
fp(f, t|f0,

t0, P)df for short time intervals Dt can then be
computed from Eq. (143) by averaging both side
of Eq. (143) under the constraint f(t0) = f0 and
f(t0) distributed like P0. Thus, we obtain

f tð Þh if t0ð Þ¼f0,P0 ¼ f0 1þ Dt
9

4
k

��

sin 2 f t0ð Þð Þ� �� 1

3

� �
� Dr

�� (144)

or

f tð Þh if t0ð Þ¼f0,P0 ¼ f0 1þ Dt
3

2
kS t0ð Þ � Dr

� �� �
:

(145)

These estimates hold for small intervals Dt,
sufficiently small noise amplitudes Dr, and orien-
tation angles f0 	 0. Again, in line with our
general discussion in the preceding sections, we
see that the conditional expectation f(t)f(t0) = f0,P0

can be computed provided that for t0 < t the
distribution of f(t0) or at least the order parameter
S(t0) is known and the angle f0 is selected.

Semiclassical Description of Quantum
Systems
A stochastic treatment of semiclassical quantum
systems by means of nonlinear Fokker-Planck
equations that can be cast into the form of
Eqs. (5) and (6) has been proposed and analyzed
in several studies (Carrillo et al. 2008; Chavanis
2003; Frank and Daffertshofer 1999; Kadanoff

2000; Kaniadakis 2001a; Kaniadakis and Quarati
1993, 1994). Accordingly, a Fermi or Bose parti-
cle with mass 1 that moves in a one-dimensional
space with velocity v exhibits in the stationary
case a Fermi-Dirac or Bose-Einstein distribution
of the kinetical energy Ekin = v2/2. The free dif-
fusion of the particle can be described by the
nonlinear Fokker-Planck equations (Frank and
Daffertshofer 1999)

@

@t
P v, t; uð Þ ¼ @

@v
gv 1
 P v, t, uð Þ½ �P v, t; uð Þ

þ Q
@2

@v2
P v, t; uð Þ,

(146)

where the upper sign holds for Fermi particles, the
lower for Bose particles. The parameters g and
Q represent damping and fluctuation strength and
are related to the temperature T by the fluctuation
dissipation theoremQ/g= 1/(kBT), where kB is the
Boltzmann constant. The stationary probability
density Pst(v) of Eq. (146) reads

Pst vð Þ ¼ 1

exp Ekin � mð Þ= kBTð Þf g � 1
, (147)

where m is a normalization constant that can be
interpreted as chemical potential. The transient
solution P(v, t; u) can be obtained by solving the
integral equation (Frank 2007; Meleard and
Coppoletta 1987)

P v, t; uð Þ ¼
ð
O
dv0GB t, t0, v, v0ð Þu v0, t0ð Þþ

ðt
t0

ds

�
ð
O
dv0GB t, s, v, v0ð Þg @

@v0

� 1
 P v0, s; uð Þ½ �P v0, s; uð Þ
(148)

with

GB t,t0,v,v0ð Þ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pQ t� t0ð Þp exp � v�v0ð Þ2

2Q t� t0ð Þ

( )
,

(149)

where GB is the Gaussian propagator of Brownian
motion. In the limit t ! 1, the transient solution
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P(v, t; u) approaches Pst(v) (Frank and
Daffertshofer 2001b; Kaniadakis 2001a).
Equation (148) is a useful description for numer-
ical approaches. Using partial integration,
Eq. (148) can be written in the form

P v, t; uð Þ ¼ ÐOdv0GB t, t0, v, v0ð Þu v0, t0ð Þ

þ
ðt
t0

ds

ð
O
dv0GB t, s, v, v0ð Þg v� v0

Q t� sð Þ
� 1
 P v0, s; uð Þ½ �P v0, s; uð Þ: (150)

This integral relation can be solved iteratively. In
contrast to the iterative procedure discussed in sec-
tion “Time-Dependent Solutions and First Order
Statistics,” there is no need to compute derivatives.
That is, we are dealing with some kind of path
integral approach here that is similar to the numer-
ical path integral approach involving short-time
propagators; see section “Short-Time Propagator.”

In order to describe quantum particles that
exhibits a Markov process, we may exploit the
approach outlined in section “Markov Property:
Second-Order and Higher-Order Statistics.”
Accordingly, the Markov conditional probability
density of the quantum particle satisfies

@

@t
p v,tjv0,t0,P0ð Þ¼ @

@v
gv 1
P v,t;uð Þ½ �þQ

@2

@v2

� �
�p v,tjv0,t0,P0ð Þ,

(151)

and the self-consistent Langevin equation reads

d

dt
v tð Þ ¼ �gv tð Þ 1
 P v tð Þ, t; uð Þð Þ

þ
ffiffiffiffi
Q

p
G tð Þ: (152)

From a martingale perspective, we see that
stochastic trajectories v(t) induce for arbitrary
smooth functions f the martingale Ẑ with
trajectories

Z tð Þ ¼ f v tð Þð Þ�
ðt
0

ds � �gv sð Þ 1
 Pðv sð Þ, s; u� �
@

@v2
þ Q

@2

@v2
�f vð Þjv¼v sð Þ: (153)

Moreover, as far as the Markov short-time
propagator is concerned, for small time intervals
t = t0 + Dt, the propagator reads

p v, tj v0, t0,P0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2pQDt

s
exp � v� v0 þ Dtgv0 1
 P0½ �½ �2

2QDt

( )
,

(154)

and can be computed from the information about
the distribution P0 of v(t0) and the state v that was
observed for particular realizations of the process
v̂. In the stationary case, the propagator p reads for
small time intervals Dt = t � t0

p v, tj v0, t0,Pst v
0ð Þð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2pQDt

s

exp � v� v0 þ Dtgv0 1
 Pst v
0ð Þ½ �½ �2

2QDt

( ) (155)

with Pst defined by Eq. (147).

Nonextensive Systems
Nonextensive thermostatistical systems have been
related to the Tsallis entropy (Abe and Okamoto
2001; Tsallis 1988)

Sq ¼ 1

q� 1

ð
O
P vð Þq � P vð Þ½ �dv, (156)

where q measures the degree of nonextensivity.
Diffusion processes in nonextensive thermo-
statistical systems can be regarded as generalized
Ornstein-Uhlenbeck processes that satisfy the
nonlinear Fokker-Planck equation (Plastino and
Plastino 1995) (see also Borland 1998; Chavanis
2003, 2004; Compte and Jou 1996; Drazer et al.
2000; Frank and Daffertshofer 1999, 2000; Shiino
2003; Tsallis and Bukman 1996)

@

@t
P v, t; uð Þ ¼ @

@v
gvP x, t; uð Þ

þ Q
@2

@v2
P v, t; uð Þq, (157)

where v is the velocity of a particle with mass
1 that moves in one spatial dimension. In the
asymptotic domain P(v, t; u) approaches, a sta-
tionary Tsallis distribution

Pst vð Þ ¼ Dst

1þ g 1� qð Þv2= 2qQDq�1
st

h ih i1= 1�qð Þ

(158)

for q � (1/3, 1) with Dst ¼ g= 2qQð Þz2q
h i1= 1þqð Þ

and zq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p= 1� qð Þp

G 1þ qð Þ= 2 1� qð Þ½ �½ �=
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G 1= 1� qð Þ½ � (Frank and Daffertshofer 2000). The
process described by Eq. (157) is said to evolve in a
nonextensive thermodynamic framework because
its stationary probability density (158) maximizing
the entropy measure (156). As discussed in section
“Markov Property: Second-Order and Higher-
Order Statistics,” the Markov conditional probabil-
ity density p satisfies

@

@t
p v, tj v0, t0,P0ð Þ ¼ @

@x
gvp v, tj v0, t0,P0ð Þ

þQ
@2

@v2
P v, t; uð Þq�1p v, tj v0, t0,P0ð Þ:

(159)

The self-consistent Langevin equation of the
Markov diffusion process reads (see also Borland
1998)

d

dt
v tð Þ ¼ �gv tð Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
QP v tð Þ, t; uð Þq�1

q
G tð Þ: (160)

Any stochastic path v(t) computed from
Eq. (160) yields for arbitrary smooth functions
f the martingale

Z tð Þ ¼ f v tð Þð Þ�
ðt
0

ds �gv sð Þ @

@v sð Þ
�

þQPðv sð Þ, s; u�q�1 @2

@v sð Þ2
#
f v sð Þð Þ:

(161)

The autocorrelation C = v(t)v(t0) in the tran-
sient domain for u(v0) = d(v � v0) reads (Frank
2004a)

C t, t0, v0, t0ð Þ ¼ M2 t0, t0, v0ð Þexp �g t� t0ð Þf g
(162)

with

M2 t0, t0, v0ð Þ ¼ K t0, t0ð Þ þM2
1 t0, t0, v0ð Þ,

K t0, t0ð Þ ¼ 1

3q� 1

2qQ zq
 � 1�qð Þ

g
� 1� exp � 1þ qð Þg t� t0ð Þf gð Þ

" #2= 1þqð Þ

,

M1 t0, t0, v0ð Þ ¼ v0exp �g t0 � t0ð Þf g:

(163)

The autocorrelation function C depends on t0.
This is not in contradiction with the Markov prop-
erty of the underlying process as discussed in sec-
tion “Markov Property: Second-Order and Higher-
Order Statistics.” In particular, we may eliminating
the initial condition. Then, Eq. (162) reads

C t, t0ð Þ ¼ u2 t0ð Þ� �
exp �g t� t0ð Þf g: (164)

and holds for arbitrary initial probability
densities u.

Linear Nonequilibrium Thermodynamics
Linear and nonlinear Fokker-Planck equations
alike can be approached from the principles of
linear nonequilibrium thermodynamics (de Groot

and Mazur 1962; Glansdorff and Prigogine 1971;
Kondepudi and Prigogine 1998). For stochastic
processes to which linear nonequilibrium thermo-
dynamics applies the probability density P(x, t; u)
of a process evolves such that the free energy
functional F[P] decreases as a function of time t.
More precisely, following a study by Compte and
Jou (Compte and Jou 1996), it has been proposed
that P satisfies the nonlinear Fokker-Planck equa-
tions of the form (Chavanis 2004; Frank 2002a,
2005b; Scarfone and Wada 2007)

@

@t
P ¼ @

@x
P ~M

@

@x

dF
dP

, (165)

where ~M is an appropriately defined mobility
coefficient and dF/dP denotes the variational
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derivative of F. Note that this thermodynamic
approach is closely related to the GENERIC
approach developed in Espanol et al. (1999),
Jelic et al. (2006), Öttinger (2005, 2007), and
Öttinger and Grmela (1997).

For example, the Desai-Zwanzig model (8) can
be expressed in terms of Eq. (165) for ~M ¼ 1 and
(Frank 2005b; Shiino 1987)

F ¼ Vh i þ UMF � QSBGS: (166)

Here, V is the potential of the force h (i.e., we
have V(x) = � R

h(x) dx, UMF is the mean field
energy given by UMF = �ks2/2 (where s2 is the
variance of the process), and SBGS is the
Boltzmann-Gibbs-Shannon entropy

SBGS ¼ �
ð
O
P x, t; uð ÞlnP x, t; uð Þdx, (167)

where we have put the Boltzmann constant equal
to unity. The liquid crystal model (8) can be writ-
ten as Eq. (165) with (Frank 2005c)

F ¼ � k
2
S2 � DrSBGS, (168)

where S is theMaier-Saupe order parameter (135).
We have ~M ¼ 1� x2 . Moreover, the expression
�kS2/2 is theMaier-Saupe mean field energy. The
Kuramoto-Shinomoto-Sakaguchi model (10) can
equivalently be expressed in terms of Eq. (165)
with ~M ¼ 1 (see Sect. 5.4 in Frank 2005b) using

F ¼ Vh i � k
2
r2 � QSBGS, (169)

where r is the cluster phase defined by r = |exp.
{�iX(t)}|. Here, the expression�kr2/2 is a measure
for the mean field energy among the phase oscilla-
tors described by the model. The Takatsuji model
(124) involves a constant mobility coefficient ~M

¼ 1 and the free energy functional (Frank 2005b)

F ¼ gþ c

2
X2
� �� lncosh

ffiffiffi
c

p
Xh i� �

� QSBGS: (170)

The Plastino-Plastino model (14) related to the
nonextensive Tsallis entropy (156) is given by
Eq. (165) and ~M ¼ 1 with (Frank 2005b)

F ¼ Vh i � QSq, (171)

where V is the potential of the gradient force h. For
an appropriate choice of ~M, the quantum mechan-
ical nonlinear Fokker-Planck equations (146) can
be cast into the form Eq. (165) with

F ¼ Vh i � QSFD,BE, (172)

where SFD,BE is the quantum mechanical entropy
of the Fermi-Dirac or Bose-Einstein statistics and
V is the potential of the function h(x) again. For
details, see Frank (2005b) and Frank and
Daffertshofer (1999). From the perspective of lin-
ear nonequilibrium thermodynamics, linear and
nonlinear Fokker-Planck equations can be distin-
guished by means of the thermodynamic flux
(Compte and Jou 1996; Frank 2002a, 2005b,
2007)

J ¼ � ~MP
@

@x

dF
dP

: (173)

Note that in this approach, the thermodynamic
flux is equivalent to the probability current (Frank
2005b). As can be seen from Eq. (173), on the one
hand, the flux is associated to the free energy F.
On the other hand, from the evolution equation
(165), it follows that

@

@t
P ¼ � @

@x
J: (174)

If J is linear with respect to P, then the
corresponding Fokker-Planck equation is linear
with respect to P as well. If J is nonlinear with
respect to P, then we are dealing with a nonlinear
Fokker-Planck equation. The question whether
J is linear or not is answered by nature herself
(Frank 2007). For the Brownian particle motion,
we have ~M ¼ g and

F ¼ 1

2
v2
� �� QSBGS, (175)

which yields

J ¼ �gvP� Q
@

@x
P: (176)

J is linear and the corresponding Fokker-
Planck equation is linear as well. For a self-
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organizing system, frequently it is found that J is
nonlinear because F involves a mean field energy
term that is nonlinear with respect to P. For
examples, see Eqs. (166), (168), (169), and
(170). Likewise, for quantum and nonextensive
systems, we find that J is nonlinear because
F involves quantum and nonextensive entropies
such as SFD,BE and Sq. For examples, see
Eqs. (171) and (172).

Summary and Future Directions

From the previous discussion in section “Linear
Nonequilibrium Thermodynamics,” it is clear that
modeling approaches based on nonlinear Fokker-
Planck equations are rooted in the theory of col-
lective phenomena and self-organization, on the
one hand, and in the theory of quantum mechan-
ical and nonextensive systems, on the other. In
contrast, linear Fokker-Planck equations are tai-
lored to address the stochastic properties of sys-
tems composed of noninteracting subsystems
when equating the material subsystem ensemble
with the ensemble of statistical realizations. Note
that – of course – linear Fokker-Planck equations
can also be applied to discuss stochastic properties
of self-organizing systems. However, in such
cases, either the stochastic behavior of order
parameters by means of low-dimensional linear
Fokker-Planck equations is discussed (Haken
2004) or linear high-dimensional or even func-
tional Fokker-Planck equations are involved
(Gardiner 1997).

We showed in section “Markov Property:
Second-Order and Higher-Order Statistics” that
both linear and nonlinear Fokker-Planck equa-
tions exhibit Green’s functions and Langevin
equations. The fact that a nonlinear evolution
equation can give rise to a Green’s function
may be counterintuitive because Green’s func-
tions are associated with linearity. In fact, the
evolution equation of the Green’s function p is
linear with respect to p. The nonlinearity is in the
evolution equation for the time-dependent prob-
ability density P but not in the evolution equation
of the Green’s function p. In this context, we
would like to reiterate what we pointed out in

section “Strongly Nonlinear Fokker-Planck
Equations”: time-dependent solutions P do not
necessarily correspond to Green’s function
p (Frank 2003b).

In the mathematical literature, the theory of
Markov processes that involve conditional prob-
ability densities of the form p(x, t|x0, t0, P0) has
been discussed for several decades (see refer-
ences in section “Definition of the Subject”). In
line with these studies, we suggest to refer to
Markov processes with conditional probability
densities of the form p(x, t|x0, t0, P0) as nonlinear
Markov processes or nonlinear families of Mar-
kov processes (Frank 2004d). Likewise, we sug-
gest to refer to Markov processes whose
conditional probability densities do not depend
on P0 as linear Markov processes or linear fam-
ilies of Markov processes. Using this terminol-
ogy, we would say that strongly nonlinear
Fokker-Planck equations describe nonlinear
Markov diffusion processes, and vice versa non-
linear Markov diffusion processes can be
expressed in terms of strongly nonlinear
Fokker-Planck equations.

In physics and related disciplines, the rele-
vance of nonlinear Markov processes has to be
explored in the future. That is, except for
research primarily reported in the mathematical
literature, the theory of Markov processes
constructed from conditional probability mea-
sures of the form p(x, t|x0, t0, P0) is still in its
infancy. The Chapman-Kolmogorov equation
and the Kramers-Moyal expansion presented
in section “Markov Property: Second-Order
and Higher-Order Statistics” provide promising
departure points for future studies in this
regard.

In the present study, we pointed out that there
are a few overarching concepts that apply to
linear and nonlinear Fokker-Planck equations
alike: the concepts of Markov diffusion pro-
cesses, martingales, and linear nonequilibrium
thermodynamics. Therefore, future studies may
change the state of the art illustrated in Fig. 1
into a scenario as shown in Fig. 2. In doing so, a
closely connected world of linear and nonlinear
Fokker-Planck equations that is governed by a
small set of powerful principles could emerge.
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Glossary

Additive noise Random fluctuations that add to
the phase space flow of model systems.

Center manifold theorem Mathematical theo-
rem describing the slaving principle in com-
plex systems.

Slaving principle Units in a complex system
that interact nonlinearly with other units evolve
on different time scales. Close to instability
points, fast units obey the dynamics of slow
units and are enslaved by them. Such units may
be spatial modes in spatially extended systems
or neural ensembles in neural populations.

Introduction

The dynamics of natural systems is complex, e.g.,
due to various processes and their interactions on
different temporal and spatial scales. Several of
such processes appear to be of random nature, i.e.,

they cannot be predicted by known laws. In this
context, it is not necessary to know whether these
processes are random in reality or whether we just
do not know their deterministic law and they
appear to be random. The insight that unknown
laws of processes may be replaced or modelled by
laws for random processes is helpful in modelling
complex systems. Examples for such a replace-
ment are manifold, and we mention model param-
etrization in meteorology (Noilhan and Planton
1989) and stimulus parametrization in biology
(Doiron et al. 2004).

Considering random processes (or noise) in
dynamical models, it is important how they are
included. If the randomness is taken into account
in multiplicative factors, e.g., parametrizing the
unknown underlying dynamics of the factor, we
call this multiplicative noise. Its effect has been
studied extensively for the last decades in physics
and mathematics, e.g., see the books of
Horsthemke and Lefever (1984) and Garcia-
Ojalvo and Sancho (1999). Conversely, additive
noise is included in a model when the randomness
is just added to the phase space flow. For instant,
considering a model of differential equations in
time additive noise is just added to the temporal
deviation over time. For a long time, it has been
known that multiplicative noise easily shifts the
stability of systems, i.e., may shift bifurcations,
whereas additive noise does not. This paradigm
has been challenged recently in the studies of
spatially extended systems (Hutt et al. 2007,
2008; Hutt 2008) and delayed systems (Lefebvre
et al. 2012; Lefebvre and Hutt 2013; Hutt et al.
2012; Hutt and Lefebvre 2016). These studies
show that additive noise may induce bifurcation
shifts close to bifurcation points. This recent find-
ing is illustrated and explained in a later section.
Moreover, additive noise may not only affect the
stability of systems close to instability points, but
may also tune intrinsic time scales. We show in a
later section that this effect occurs close and far
from the bifurcation point.

Taking a close look at the complex systems
subjected to additive noise, one learns that
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additive noise affects the coupling of the systems
elements. Such elements may be spatial modes in
spatially extended systems ormicroscopic elements,
such as single neurons, whose interactions generate
novel macroscopic order parameter modes, such as
the macroscopic population dynamics. To illustrate
such an interaction before we apply the concept to
complex problems, we present briefly the major
elements of the slaving principle in synergetics
(Haken 1996, 2004) in the subsequent section and
put it into relation to its mathematical equivalent, the
center manifold theorem.

Slaving Principle and Center Manifold
Theorem

We start with the illustration of the major concept
of the center manifold theorem and finally put the
concept into a physical context to explain the
slaving principle.

For illustration, let us consider the dynamical
system

x ¼ axþ ax3 þ xy� xy2

_y ¼ �yþ bx2 þ x2y
(1)

with x, y, a, a, b � R. The stationary state is the
fixed point x= y= 0. Linearizing about this fixed
point shows that there are two eigenvalues l1= a,
l2 = �1. Hence the node is asymptotically stable
if a < 0 and a saddle node for a > 0.

At the Stability Threshold
For the moment, we assume a = 0. Then close to
the fixed point y evolves in the stable subspace
spanned by the eigenvector (0, 1)t of the linearized
system with corresponding eigenvalue l2< 0 and
x evolves in the center subspace. We observe that
x = 0 is an invariant manifold which is a stable
manifold of the origin since dx/dt = 0 and
dy/dt < 0. Hence for initial points (0, y0)

t the
system evolves on the stable manifold.

Now the question arises how one can find the
invariant manifold for which the origin is neu-
trally stable corresponding to the eigenvalue
l1 = 0, i.e., we want to find the center manifold.
The center manifold theorem (Carr 1981) applies

stating that y= h(x) close to the origin, where h(�)
is a nonlinear function with h(0) = 0, dh(x)/
dx = 0 at x = 0. This stipulates

_y ¼ @h

@x
_x

� yþ bx2 þ x2y ¼ @h

@x
axþ ax3 þ xy� xy2
� �

� h xð Þþbx2 þ x2h xð Þ ¼ @h

@x
axþ ax3 þ xh xð Þ � xh2 xð Þ� �

Inserting the polynomial ansatz

h xð Þ ¼ h2x
2 þ h3x

3 þ � � � (2)

and sorting by orders of x we gain h2 = b, h3 = 0,
h4 = �b(2a � 1) and thus y = bx2 + b(2a � 1)x4

up to fourth order. Thus, for a = 0, the system on
the center manifold obeys

_x ¼ aþ bð Þx3 � 2ab� 1þ b2
� �

x5 þ O x6
� �

:

For a + b < 0, the origin is attractive, and the
manifold is called a slow manifold close to the
fixed point.

In physical terms, the variable x evolves on a
much larger time scale than y since the time scales
are inversely proportional to the corresponding
eigenvalues of the linearized system. Moreover,
the variable y obeys the slow variable x on the
center manifold. In other words, the slow variable
x enslaves the fast variable y and determines the
dynamics of the full system. This prominent role
of x is the reason why it is called an order param-
eter. Hence at bifurcation points, the slow vari-
ables enslave the fast variables. This slaving
concept applies at all bifurcations that fulfil the
rather general conditions of the center manifold
and allows to describe most bifurcations observed
in nature (Haken 1983), be oscillatory instabilities
in the laser (Haken 1985) or human motor-
coordination phase transitions in the brain
(Fuchs et al. 1992; Jirsa et al. 1995). By virtue of
the generality of this concept, it is called slaving
principle. It is often formulated equivalently by an
adiabatic approach in which the fast slaved vari-
able decays rapidly and follows the slow order
parameter dynamics (Haken 1996; Schanz and
Pelster 2003; Schoener and Haken 1986).
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About the Stability Threshold
Now we consider the case a 6¼ 0, i.e., the system
does not evolve necessarily at the bifurcation
point. This is the more general case. To be still
able to apply the center manifold theorem, we
augment the phase space by the variable a and
reformulate the model (1) as

_a ¼ 0

_x ¼ axþ ax3 þ xy�xy2

_y ¼ �yþ bx2 þ x2y:

The linearized problem about the fixed point
(0, 0, 0)t has the eigenvalues l1,2 = 0 and
l3 = �1, since now the term ax is treated as a
nonlinear term. Now the variables a, x evolve in
the center subspace while y is still enslaved by
y= h(a, x). The center manifold is defined to obey
h(0, 0)= 0, @h/@a= @h/@x= 0 at (a, x)t= (0, 0)t.
With the ansatz

h a, xð Þ ¼ h2, 1a2 þ h2, 2axþ h2, 3x
2

we obtain y= bx2 up to second order and the order
parameter obeys

_x ¼ axþ aþ bð Þx3 þ O x4
� �

:

This solution extends naturally the case a = 0.
The latter discussion assumes deterministic

dynamics, while stochastic dynamics on center
manifolds close to bifurcation points can be studied
as well. This is shown in the subsequent section.

Additive Noise in Low-Dimensional
Models: Stochastic Center Manifold
Theory

The effects of additive noise emerge in multi-
dimensional systems, e.g., in low-dimensional
nondelayed systems or in infinite-dimensional
delayed systems. The subsequent sections con-
sider both cases.

Nondelayed Systems
Additive noise in systems close to the bifurcation
point has been shown previously to trigger sto-
chastic bifurcations (Boxler 1989; Arnold 1998;
Schoener and Haken 1986). To see this, we

consider here a reduced system of amplitude
equations describing spatial modes of a stochastic
Turing bifurcation (Hutt et al. 2007, 2008):

duc ¼ acuc þ 2bcu0uc þ 2gcu
3
c

� �
dt

du0 ¼ a0u0 þ 4b0u
2
c

� �
dtþ �dW tð Þ

with the slow order parameter uc, the slaved fast
mode u0, constants ac, a0, bc, b0, gc, and noise level
�. The control parameter ac, the fast mode u0, and
the order parameter uc are scaled as a � O(e) and
u0� O(e) and uc� O(e1/2). The noise processW(t)
is a zero-mean Wiener process with hdW(t)dW
(t)i= 2d(t� t). Here, amplitudes and noise levels
are taken into account up to an order O(ϵ3/2).
Applying the stochastic center manifold analysis
(Boxler 1989; Xu and Roberts 1996; Hutt et al.
2007, 2008; Bloemker et al. 2005; Bloemker 2003)
and an adiabatic Fokker-Planck approximation
(Drolet and Vinals 1998, 2001; Hutt et al. 2007,
2008), we obtain for large times and scaled order
parameter ūc and time T the Fokker–Planck equa-
tion (Hutt et al. 2008)

@P uc, tð Þ
@T

¼ � @

@uc
auc þ au3c
� �

P uc, Tð Þ:

with new constants a, a. We observe that the
additive noise dW(t) in the slaved fast mode u0
has no effect on the order parameter ūc.

For larger orders of amplitude and noiseO(e5/2)
in the same stochastic Turing bifurcation problem,
amplitudes obey

duc ¼ acuc þ bu0uc þ 2gcu
3
c þ 3gcucu

2
0

� �
dt

du0 ¼ a0u0 þ 4b0u
2
c þ b0u

2
0 þ 2g0u0u

2
c

� �
dtþ �dW tð Þ:

After an adiabatic Fokker–Planck approxima-
tion, we obtain the Fokker–Planck equation for
the order parameter (Hutt et al. 2008)

@P uc, tð Þ
@T

¼ � @

@uc
a� ath �ð Þð Þuc þ Cu3c þ Du5cÞP uc, Tð Þ:�

(3)

with the control parameter shift ath(�) � �2.
Figure 1 shows this shift of the bifurcation by
additive noise.
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Equation (3) and Fig. 1 reveal that the bifurca-
tion point of the order parameter uc is shifted by
additive noise in the slaved mode u0. The under-
lying mechanism is known from multiplicative
noise and can be understood as follows: the fast
mode u0 is stochastic and nonlinear coupling ucun0
with even order n yields an effective noise shift
since un0

� � 6¼ 0, whereas nonlinear coupling at odd
order does not yield a shift since un0

� � ¼ 0. In sum,
additive noise in a mode that is nonlinearly
coupled at even order to the order parameter
dynamics acts like multiplicative noise and
hence tunes the bifurcation.

Delayed Systems
The nonlinear coupling of stochastic modes
occurs in systems, where multiple elements cou-
ple nonlinearly. This occurs in high-dimensional
systems, such as spatially extended systems (Hutt
et al. 2008; Bloemker 2003) or delayed systems.
To illustrate the corresponding stochastic effect in
delayed systems, let us consider the stochastic
delay differential equation (Hutt et al. 2012)

dx tð Þ ¼ �x tð Þ þ bx t� tð Þ � gx3 t� tð Þ� �
dt

þ kdW tð Þ (4)

with constants b, g > 0, the noise level k and the
Wiener noise process W(t). A stochastic center
manifold analysis for delayed systems (Hutt and
Lefebvre 2016; Lefebvre et al. 2012; Lefebvre and
Hutt 2013; Hutt et al. 2012) permits to derive a
delay-free stochastic order parameter equation on
the center manifold. Applying an adiabatic
approximation, the Fokker–Planck equation for
the order parameter u reads up to a certain noise
and magnitude order (Hutt et al. 2012)

@P u, tð Þ
@t

¼ � @

@u
A1 þ A1, shift
� �

uþ A3 þ A3, shift
� �

u3
�

þA5u
5 þ A7u

7 þ A9u
9Þ � P u, tð Þ þD

@2

@u2
P u, tð Þ

(5)

with A1,shift, A3,shift, D � k2 and constants A1, A3,
A5, A7, A9. We observe that additive noise in
delayed systems induces a stochastic bifurcation
and shifts the bifurcation point (Hutt and Lefebvre
2016; Lefebvre et al. 2012; Lefebvre and Hutt
2013; Hutt et al. 2012). Figure 2 shows the sta-
tionary probability functions of the original sys-
tem (4) and the Fokker–Planck equation of the
order parameter (5) for two different delay values.
We observe that the stationary probability func-
tion of the order parameter Ps(u) is in good accor-
dance to the original probability density function
Ps(x) for small delays (a), while differences are
visible for larger delays (b). In addition, increas-
ing the noise level k moves the magnitude of
maxima to smaller values and hence shifts the
bifurcation. This effect of additive noise is new
and known for multiplicative noise only.

Additive Noise in Discrete Network
Models

To extend the gained results of additive noise to
large and more realistic systems, now we consider
network models evolving far from bifurcation
points.

Neural Mass Network
We consider a random network of N elements,
whose elements with activity un(t), n = 1,. . .,
N evolve in time according to (Hutt et al. 2016)

Additive Noise Tunes the
Self-Organization in
Complex Systems,
Fig. 1 Additive noise
shifts the bifurcation point.
The stationary state ustat is
the state at the maximum of
the stationary probability
density of P (ūc, t) from
Eq. (3). (a) � = 0. (b)
�= 0.02 (Modified Fig. 9 in
Hutt et al. 2008)
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1

a
dun
dt

¼ �un þ 1

N

XN
m¼1

wnmf um t� tð Þ½ �

þ In tð Þ: (6)

The network elements are delayed to each
other by delay t > 0, 1/a is the characteristic
time scale of each element, wnm is the random
connection weight between elements n andmwith

wnm ¼ gþ s�nm (7)

and constants g, s > 0 and the statistically
uncorrelated variables �nm with

XN
n¼1

�nm ¼ 0 8m ¼ 1, . . . ,N (8)

XN
m¼1

�nm ¼ 0 8n ¼ 1, . . . ,N (9)

1

N

XN
n¼1

�nm�ln ¼
1

N

XN
n¼1

�nm

" #
1

N

XN
n¼1

�ln

" #
8l,

m ¼ 1, . . . ,N:

(10)

The last equation expresses the assumption
that all columns and rows are statistically inde-
pendent from each other.

The variable In= I0 + xn(t) denotes the external
noise driving each element withXN

n¼1

xn tð Þ ¼ 0, xnxmh i ¼ 2Ddn,m, (11)

where h�i denotes the ensemble average, D is the
noise intensity, and I0 is a spatially constant
stimulus bias.

In neural systems, the model (6) describes the
spatially coarse-grained potential of N spatial
patches subjected to afferent activity from other
neural populations (Hutt et al. 2016). The function
f [�] represents the activation or output function of
each element, typically it is of sigmoidal shape.
Figure 3 presents the topology of the network.

Analysis of the Global Synchronization
In the following, we study the degree of global
synchronization in the network considering the
network mean

u tð Þ ¼ un tð Þ � vn tð Þ (12)

with deviations vn(t) from the mean

u tð Þ ¼ 1

N

XN
n¼1

un tð Þ,
XN
n¼1

vn tð Þ ¼ 0: (13)

Then inserting (12) into (6) leads to

1

a
d

dt
u tð Þþvn tð Þð Þ¼�u tð Þ�vn tð Þ

þ 1

N

XN
m¼1

wnmf u t�tð Þþvm t�tð Þ½ �
þI0þxn tð Þ:

(14)

Global Mode
After averaging Eq. (14) over all elements N one
obtains the evolution equation of the spatial mean

Additive Noise Tunes the Self-Organization in Com-
plex Systems, Fig. 2 Stationary probability density
functions of the original system Ps(x) and the order param-
eter Ps(u) as a solution of Eq. (5). The functions Ps(u)

(dotted line) and Ps(x) (solid line) are computed for
t = 0.5 (a) and t = 1.0 for noise level k = 0.005 (green),
k = 0.01 (red), and k = 0.015 (black) (Taken from Hutt
et al. 2012 by permission)
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1

a
d

dt
u tð Þ¼ �u tð Þ

þ 1

N2

XN
n,m¼1

wnmf u t�tð Þþvm t� tð Þ½ �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼S0

þI0:

(15)

At first we note that with (8)

1

N

XN
n¼1

wnm ¼ gþ s
1

N

XN
n¼1

�nm ¼ g

8m ¼ 1, . . . ,N:

(16)

Hence

S0 ¼ g
1

N

XN
m¼1

f u t� tð Þ þ vm t� tð Þ½ � (17)

If we denote Vm = f [ū(t) + vm(t)], we can write

S0 ¼ gE V½ � ¼ Ð1
�1 vp vð Þdv

¼ Ð1
�1 f u tð Þ þ v tð Þ½ �p v, tð Þdv

(18)

where p(v, t) is the probability density function of
the fluctuations {vn} at time instant t. Then

1

a
d

dt
u tð Þ ¼ �u tð Þ þ Ð1

�1 f u t� tð Þ þ v t� tð Þ½ �
�p v, t� tð Þdvþ I0:

(19)

Fluctuation Modes
Inserting Eq. (15) back into (14) yields

1

a
d

dt
vn tð Þ¼�vn tð Þþxn tð Þ

þ 1

N

XN
m¼1

wnmf m t�tð Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
¼S1

�1

N

XN
n,m¼1

wnmf m t�tð Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼S2

2
66664

3
77775
(20)

with fm(t)= f [ū(t) + vm(t)]. With the definition (7)
and property (8), it is

XN
n¼1

wnm ¼ Ng8m ¼ 1, . . . ,N (21)

and hence

S2 ¼
XN
m¼1

gf m t� tð Þ: (22)

To calculate S1, we note thatXN
m¼1

wnmf m t� tð Þ ¼
XN
m¼1

gf m t� tð Þ

þ s
XN
m¼1

�nmf m t� tð Þ: (23)

If Xm = fm and Ym = �nm 8n are statistically
independent from each other, then

1

N

XN
m¼1

XmYm ¼ 1

N

XN
k¼1

Xk
1

N

XN
m¼1

Ym: (24)

This assumption holds true in most cases, since
�nm are static and chosen independently from any
dynamics and fm evolves over time. Consequently,

Additive Noise Tunes the Self-Organization in Complex Systems, Fig. 3 Simple spatial network topology
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XN
m¼1

�nmf m t� tð Þ ¼ 1

N

�
XN
k¼1

�nk
XN
m¼1

f m t� tð Þ:

(25)
and with condition (9)XN

m¼1

�nmf m t� tð Þ ¼ 0 (26)

and hence

S1 ¼
XN
m¼1

gf m t� tð Þ: (27)

Since S1 = S2, we obtain from Eq. (20)

1

a
d

dt
vn tð Þ ¼ �vn tð Þ þ xn tð Þ (28)

and the fluctuations vn(t) are independent from the
spatial mean, but the spatial mean depends on the
vn(t), cf. Eq. (15).

If the external stimulus is random, uncorrelated
and normal distributed with variance s2 about the
mean I0, then vn(t) is random as well and obeys an
Ornstein–Uhlenbeck process. For large times,
vn(t) approach a stationary state with the station-
ary probability density function

ps vnð Þ ¼ 1ffiffiffiffiffiffiffiffi
2pa

p
s
e�v2n=2as

2

: (29)

Merging Global and Fluctuation Dynamics
The global mode evolution (19) depends on the
probability density function of the fluctuations
p(v, t). For large times, the fluctuations approach
their stationary state much faster than the global
mode evolves, i.e., p(v, t) ! ps(v) given in
Eq. (29). Hence the global mode (19) evolves on
a relative large time scale according to

1

a
d

dt
u tð Þ ¼ �u tð Þ þ 1ffiffiffiffiffiffiffiffiffiffiffi

2pas
p

�
ð1
�1

f u t� tð Þ þ v½ �e�v2=2as2dv

þ I0:

(30)

For illustration reasons, let us consider the
special case of McCulloch–Pitts neurons, whose

transfer function is a step function, i.e., f [u] =
Y(u� uth) with threshold uth. Then the integral in
Eq. (30) has a rather simple form and we gain
(Hutt et al. 2016)

1

a
d

dt
u tð Þ ¼ �u tð Þ

þg

2
1þ erf

u t� tð Þ � uthffiffiffiffiffi
2a

p
s


 �� 
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼F u t�tð Þ½ �

þI0

(31)

with the error function erf(�). The transfer function
F[ū] has a sigmoidal shape and noise variance s2

determines its shape: weak noise, i.e., small s,
reflects a rather steep sigmoidal, whereas strong
noise renders the sigmoidal function more flat.

From (30), we learn that F has always a sig-
moidal shape if the single element transfer func-
tion f(u) is a monotonically increasing function
of u (Hutt and Buhry 2014). In the following,
we assume the standard logistic sigmoidal
function F u½ � ¼ F0= 1þ e� u�uthð Þ=c� �

. Here weak
noise with low steepness parameter c reflects a
steep step-like function whereas enhancing noise
with increasing values of c flattens the sigmoid
function. This is illustrated in Fig. 4.

Equation (30) describes the mean-field evolu-
tion of the global mode and permits to illustrate
coherent structures. If ū = 0, then network ele-
ments are not coherent, whereas ū 6¼ 0 reflects
coherent activity. In the following examples, we
will see that coherence emerges in certain fre-
quency bands dependent of the external noise
level s.

To gain some insights how coupling strength
and noise strength modify the system dynamics, at
first let us consider stationary solutions with dun/
dt = 0, i.e., dū(t)/dt = 0. This yields

u0 � I ¼ F u0½ � (32)

Figure 4 shows both sides of this equation and
illustrates that increasing the coupling strength
(increasing F0) changes the stationary state u0
and, even more important, the nonlinear gain dF/
dū computed at ū = u0. Linearizing about that
stationary state yields for deviations x
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1

a
dx tð Þ
dt

¼ �x tð Þ þ gx t� tð Þ, g ¼ @F

@u
u¼u0j :

(33)

Hence the stability and timescale of solutions
about the stationary state depends on the nonlinear
gain. If the level of external noise increases
(decreases), the transfer function becomes more
flat (steep) and g at upper and lower stationary
state in Fig. 4 g increases (decreases). In case of an
oscillatory stable stationary state, the noise level
determines the frequency of solutions (Hutt
et al. 2016).

Coupling Induces Self-Organization in the
Presence of Noise and Noise Affects System
Frequency
To illustrate the network dynamic evolution sub-
jected to noise, we simulate the full network of
N = 100 elements that obeys (6) and increase the
coupling strength between elements g = g/N con-
tinuously, cf. Fig. 5, lower panel. Synchronously,
the noise level s = am, a > 0 is constant. This
holds up to a certain time T.

We compute the time-dependent spectral
power distribution and the phase-locking value
(PLV) (Lachaux et al. 1999) in the course of time.
The spectral power is computed by a windowed
Fourier Transform with a 4s-window width, the
PLV is computed as the circular variance of
phases of 30 randomly chosen elements for

each time-frequency pair. The phases result
from a Morlet wavelet transform. The maximum
value PLV= 1 reflects complete synchronization
in the network, whereas the minimum value
PLV = 0 reflects vanishing synchrony in the
network. Figure 5 shows that the network ele-
ments do not synchronize at low coupling
strengths since power and PLVare low. However,
synchronization emerges with larger coupling
expressed by large power and large PLV at
n= 45 Hz. It is well-known that complex systems
self-organize if the interaction between subunits
are large enough. This is seen in our simple
example. Analytically, the stationary state u0 is
a stable focus when power and PLV are low.
When synchronization sets in at stronger cou-
pling strength, the stable focus becomes unsta-
ble, the system oscillates along a limit cycle, and
power is much stronger.

Until now, the noise level has been kept con-
stant. Now removing the noise while retaining
the coupling strength, cf. Fig. 5, lower panel for
t > T = 20s, the PLV jumps to very high values
while the maximum power jumps to lower
values. Interestingly, the oscillation frequency
with maximum power drops to n = 40 Hz that
represents the systems endogenous oscillatory
rhythm in the absence of noise. This drop
clearly demonstrates that systems’ frequency
observed may depend heavily on the intrinsic
noise level.

Additive Noise Tunes the Self-Organization in Complex Systems, Fig. 4 Illustration of the transfer function and
the resulting stationary constant state. The dashed line denotes the left hand side of Eq. (32) and uth = 3
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We learn that noise diminishes the synchroniza-
tion between network elements and moves the
system frequency. This is confirmed by Fig. 6 pre-
senting epochs of single time series at low (left)

and large coupling strength (center) at high noise
levels and in the absence of any noise (right).

Analytically, this behavior can be understood
by Eqs. (30) and (32) and Fig. 4: additive noise

Additive Noise Tunes the Self-Organization in Com-
plex Systems, Fig. 5 Spectral distribution and phase-
locking value (PLV) in a simple spatial neural mass

network subjected to varying noise and coupling strength.
It is m ¼ ffiffiffiffiffi

60
p

s and T = 20s, see text body
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tunes the effective transfer function, thus deter-
mines the stationary state and its stability and
consequently the amplitude and frequency of the
systems dynamics.

Noise Can Destruct Self-Organization While It
Changes the System Frequency
The previous section shows that denoising
enhances oscillatory power and shifts frequency
of power peaks. Similarly, increasing the noise
level may tune the systems’ rhythmic activity
and even destroy it at large enough noise levels.
Figure 7 demonstrates that increasing noise level
shifts the frequency of the system and, finally,
destroys the oscillatory state. At large noise levels,
the transfer function F is flat and a single station-
ary state exists. Hence increasing the noise level
either makes the system jump from large values u0
to low values of u0 and/or its corresponding non-
linear gain renders the stationary state stable.

Synchronization in a Spiking Neural Network
To illustrate that the noise-induced change of syn-
chronization also may occur in biologically more
realistic networks, we study a spiking neural

network of Poisson neurons (Lefebvre et al.
2017), cf. Fig. 8.

Figure 9 shows the average electric potential of
cortical neurons (EEG) and their firing activity in
a raster plot for two different noise levels D. We
observe that denoising induces synchronization
between neurons and enhances EEG power.
A corresponding mean-field description of the
spiking neural network, e.g., along the lines of
the derivation shown in (Hutt and Buhry 2014),
permits to describe the noise effect. Essentially,
the mechanism is the same as the one shown in an
above section and in previous studies (Hutt and
Buhry 2014; Hutt et al. 2016; Lefebvre et al. 2015;
Herrmann et al. 2016): increasing additive noise
of network elements smoothens the effective
transfer function, consequently shifts the station-
ary state and tunes its stability and may induce a
transition to a new state.

Future Directions

Additive noise may have a strong impact on com-
plex systems. The previous sections have shown

Additive Noise Tunes the Self-Organization in Com-
plex Systems, Fig. 6 Activity at two spatial locations in
simple spatial network. (Left panel) Weak coupling, with

noise. (Center panel) Strong coupling, with noise. (Right
panel) Strong coupling, no noise
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corresponding conditions and mathematical tech-
niques. Additive noise may shift instability
thresholds and tunes frequency and amplitude of
rhythmic activity. We showed that additive noise

in lower levels, e.g., in neurons or neural ensem-
ble patches, may destroy synchronization in an
upper level, e.g., in neural populations or
populations of ensemble patches.

Additive Noise Tunes the Self-Organization in Complex Systems, Fig. 7 Time-frequency spectral power and
global phase locking of simulations of the simple spatial neural mass network with increasing noise level
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The insight, that additive noise affects endog-
enous brain activity, indicates impact of electric
brain stimulation on the behavior of subjects.
Corresponding experiments have been performed
in the last decades, both for rhythmic stimulation
(Herrmann et al. 2013) and noise stimulation
(Terney et al. 2008). Perceptual learning under
noise stimulation has been shown (Fertonani
et al. 2011) to improve considering high-
frequency noise (>100 Hz). Understanding how
noise stimulation affects neural activity and how it
enhances the perceptual learning is one of the
great challenges in future years.

Additive Noise Tunes the Self-Organization in Com-
plex Systems, Fig. 8 Network modeling the thalamo-
cortical feedback circuit present in vertebrates. All neurons
in the network receive spectral-white Gaussian noise with
zero mean and finite variance

Additive Noise Tunes the Self-Organization in Com-
plex Systems, Fig. 9 Noise reduction induces synchro-
nization of spiking neurons. (Top panel) EEG(t) is the

average electric potential of cortical neurons. (Bottom
panel) Firing activity of neurons in the network
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Introduction

Several basic mechanisms of chaotic dynamics in
phenomenological and biologically plausible
models of individual neurons are discussed. We
show that chaos occurs at the transition bound-
aries between generic activity types in neurons
such as tonic spiking, bursting, and quiescence,
where the system can also become bi-stable. The
bifurcations underlying these transitions give rise
to period-doubling cascades, various homoclinic
and saddle phenomena, torus breakdown, and
chaotic mixed-mode oscillations in such neuronal
systems.

Neurons exhibit various activity regimes and
state transitions that reflect their intrinsic ionic
channel behaviors and modulatory states. The
fundamental types of neuronal activity can be
broadly defined as quiescence, subthreshold, and
tonic spiking oscillations, as well as bursting com-
posed of alternating periods of spiking activity
and quiescence. A single neuron can endoge-
nously demonstrate various bursting patterns,

varying in response to the external influence of
synapses, or to the intrinsic factors such as chan-
nel noise. The co-existence of bursting and tonic
spiking, as well as several different bursting
modes, have been observed in modeling
(Cymbalyuk et al. 2002; Bertram 1993; Canavier
et al. 1993; Butera 1998; Frohlich and Bazhenov
2006) and experimental (Hounsgaard and Kiehn
1989; Lechner et al. 1996; Turrigiano et al. 1996)
studies. This complexity enhances the flexibility
of the nervous and locomotive systems
(Rabinovich et al. 2006).

The functional role of chaotic behaviors, and
the dynamical and bifurcational mechanisms
underlying their onset at transitions between neu-
ral activity types like spiking, bursting, and qui-
escence, has been the focus of various theoretical
and experimental studies. Bursting is a manifesta-
tion of multiple timescale dynamics, composed of
repetitive fast tonic spiking and a slow quiescent
phase. It has been observed in various fields of
science as diverse as food chain ecosystems
(Rinaldi and Muratori 1992), nonlinear optics
(DeShazer et al. 2003), medical studies of the
human immune system (Shochat and Rom-
Kedar 2008), and neuroscience (Steriade et al.
1990). Various bursting patterns, whether regular
or chaotic, endogenous, or as emergent network
phenomena, are the natural rhythms generated by
central pattern generators (CPG) (Briggman and
Kristan 2008; Kopell 1988; Marder and Calabrese
1996; Katz 2008; Shilnikov et al. 2008). CPGs are
neural networks made up of a small number of
constituent neurons that often control various vital
repetitive locomotive functions (Marder and
Calabrese 1996) such as walking and respiration
of humans, or the swimming and crawling of
leeches (Kristan et al. 2005; Kristan and Katz
2006; Briggman and Kristan 2006). Polyrhythmic
bursting dynamics have also been observed in
multifunctional CPG circuits that produce several
coexisting stable oscillatory patterns or bursting
rhythms, each of which is associated with a par-
ticular type of locomotor activity of the animal

© Springer Science+Business Media, LLC, part of Springer Nature 2020
A. Hutt, H. Haken (eds.), Synergetics,
https://doi.org/10.1007/978-1-0716-0421-2_738

Originally published in
R. A. Meyers (ed.), Encyclopedia of Complexity and Systems Science, © Springer Science+Business Media LLC 2020
https://doi.org/10.1007/978-3-642-27737-5_738-1

197

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-0421-2_738&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-0421-2_738&domain=pdf
https://doi.org/10.1007/978-3-642-27737-5_738-1


(Jalil et al. 2013; Alacam and Shilnikov 2015;
Wojcik et al. 2014). Bursting has also been fre-
quently observed in pathological brain states
(Steriade et al. 1993; Rubin and Terman 2004),
in particular, during epileptic seizures (Bazhenov
et al. 2000; Timofeev et al. 2002). Neurons in
bursting modes differ in their ability to transmit
information and respond to stimulation from those
in tonic spiking mode and therefore play an
important role in information transfer and pro-
cessing in normal states of the nervous system.

Understanding and modeling the generic
mechanisms regulating the neuronal connectivity
and the transitions between different patterns of
neural activity, including global bifurcations
occurring in neuron models and networks, pose
fundamental challenges for mathematical neuro-
science, with a number of open problems
(Guckenheimer 1996). The range of bifurcation
and dynamical phenomena underlying bursting
transcends the existing state of the theory
(Belykh et al. 2000; Shilnikov and Cymbaluyk
2004; Doiron et al. 2002; Laing et al. 2003;
Rowat and Elson 2004; Shilnikov and Cymbalyuk
2005; Shilnikov et al. 2005a; Channell et al.
2007a; Cymbalyuk and Shilnikov 2005;
Shilnikov and Kolomiets 2008; Kramer et al.
2008): This includes the blue sky catastrophe
(Shilnikov et al. 2005b, 2014), torus-canard for-
mation and breakdown, and homoclinic
inclination/orbit-flip bifurcations, all of which
can occur on the transition route to bursting in
most square-wave and elliptic bursters. Studies of
bursting require nonlocal homoclinic bifurcation
analysis, which is often based on the Poincaré
return mappings (Shilnikov et al. 1998/2001).
Return mappings have been employed for com-
putational neuroscience in Shilnikov and Rulkov
(2003, 2004), Chay (1985), and Medvedev
(2005). A drawback of mappings constructed
from time series is sparseness, as they reflect
only the dominating attractors of a system. In
some cases, feasible reductions to one or two
dimensional mappings can be achieved through
slow-fast scale decomposition of the phase vari-
ables for the system (Griffiths and Pernarowski
1917–1948). A new, computer assisted method
for constructing a complete family of onto

mappings for membrane potentials, for a better
understanding of simple and complex dynamics
in neuronal models, both phenomenological and
of the Hodgkin–Huxley type (Hodgkin and
Huxley 1952), was proposed in Channell et al.
(2007b). With this approach, one can study, for
example, the spike-adding transitions in the leech
heart interneuron model, and how chaotic dynam-
ics in between is associated with homoclinic tan-
gle bifurcations of some threshold saddle periodic
orbits (Channell et al. 2009). Qualitative changes
in a system’s activity at transitions often reveal the
quantitative information about changes of certain
biophysical characteristics associated with the
transition. This approach has proven to be exem-
plary in neuroscience for understanding the tran-
sitions between silence and tonic-spiking
activities (Rinzel and Ermentrout 1989).Moreover,
knowledge about the bifurcation (transition) pre-
dicts cooperative behavior of interconnected neu-
rons of the identified types (Ermentrout 1993).

In this entry, we discuss nonlocal bifurcations in
generic, representative models of neurodynamics,
described by high order differential equations
derived through the Hodgkin-Huxley formalism.
We consider a number of neuroscience-related
applications to reveal a multiplicity of causes and
their bifurcation mechanisms leading to the onset
of complex dynamics and chaos in these models.

Neuronal Activities and Transition
Mechanisms

This entry deals with neuronal models, both bio-
logically plausible and phenomenological, that
can produce complex and distinct dynamics such
as tonic spiking, bursting, quiescence, chaos, and
mixed-mode oscillations (MMOs) representing
fast spike trains alternating with subthreshold
oscillations. MMOs are typical for many excitable
systems describing various (electro)chemical reac-
tions, including the famous Belousov-Zhabotinky
reaction, and models of elliptic bursters (Wojcik
and Shilnikov 2011). Geometrical configurations
of slow-fast neuron models for bursting were
pioneered in Wang and Rinzel (1995), Rinzel
(1985), Rinzel and Ermentrout (1989) and further
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developed in Bertram et al. (1995), Izhikevich
(2000, 2007). Dynamics of such singularly
perturbed systems are determined by and centered
around the attracting pieces of the slow motion
manifolds. These are composed of equilibria and
limit cycles of the fast subsystem (Tikhonov 1948;
Pontryagin and Rodygin 1960; Fenichel 1979;
Mischenko and Rozov 1980; Andronov et al.
1966; Mischenko et al. 1994; Jones and Kopell
1994; Arnold et al. 1994) that in turn constitute
the backbones of bursting patterns in a neuronal
model. Using the geometric methods based on the
slow-fast dissection, where the slowest variable
becomes a control parameter, one can detect and
follow the branches of equilibria and limit cycles in
the fast subsystem. The slow-fast decomposition
allows for drastic simplification, letting one clearly
describe the dynamics of a singularly perturbed
system. A typical Hodgkin-Huxley model pos-
sesses a pair of such manifolds (Rinzel 1985;
Jones and Kopell 1994): quiescent and tonic spik-
ing, respectively. The slow-fast dissection has been
proven effective in low-order mathematical models
of bursting neurons far from the bifurcation points.
However, this approach does not account for the
reciprocal, often complex interactions between the
slow and fast dynamics, leading to the emergence
of novel dynamical phenomena and bifurcations
that can only occur in the whole system. Near
such activity transitions, the bursting behavior
becomes drastically complex and can exhibit deter-
ministic chaos (Shilnikov and Cymbaluyk 2004;
Shilnikov et al. 2005a; Cymbalyuk and Shilnikov
2005; Terman 1992; Holden and Fan 1992; Wang
1993; Feudel et al. 2000; Deng and Hines 2002;
Elson et al. 2002).

Slow-Fast Decomposition
Many Hodgkin-Huxley type models can be
treated as a generic slow-fast system

x0 ¼ F x, zð Þ z0 ¼ mG x, z, að Þ, ð1Þ

where 0< m� 1,x � Rn, n� 2 and z is a scalar or
can be a vector in R2 (as in the extended Plant
model with two slow variables below); a is a
control parameter shifting the slow nullcline,
given by G(x, a) = 0, in the phase space. In the

singular limit m = 0, the z-variable becomes a
parameter of the fast subsystem to detect and
continue the equilibrium state (ES), given by
F(x, z) = 0, and the limit cycles (LC) of the fast
subsystem. As long as they (ES/LC) remain expo-
nentially stable, by varying z one can trace down
the smooth invariant manifolds in the phase space
of (1) such asMeq with the distinct Z-shape typical
for many Hodgkin-Huxley type models (see
Fig. 1), while the limit cycles form a cylinder-
shaped surface Mlc. Locally, either is a center
manifold for (1) persisting in a closed system, in
virtue of (Tikhonov 1948; Pontryagin and
Rodygin 1960; Fenichel 1979). The stable upper
and lower branches of Meq correspond to the de-
and hyperpolarized steady states of the neuron,
respectively. Folds on Meq correspond to the
saddle-node equilibrium states of the fast sub-
system. The unstable de-polarized branch of Meq

can be enclosed by the tonic-spiking manifold Mlc

typically emerging through an Andronov-Hopf
bifurcation and terminating through a homoclinic
bifurcation, which are the key features of the fast-
subsystem of the square-wave bursters (Shilnikov
2012), like the Hindmarsh-Rose model (Barrio
et al. 2014) and the Chay model (Chay 1985)
(discussed below).

Poincaré Mappings
To elaborate on the nature of complex oscillations
like bursting and their evolutions, one needs to
examine nonlocal bifurcations that often require
the use of Poincaré return maps (Shilnikov and
Rulkov 2003, 2004; Chay 1985; Holden and Fan
1992; Deng 1999; Hutt and Beim Graben 2017;
Beim Graben et al. 2016; Beim Graben and Hutt
2013, 2015). An obvious drawback of maps
constructed from voltage time series is in their
sparseness, as they can typically reveal some
point-wise attractors of the system that trajectories
fast converge to, unless there is a noise or small
perturbations are added to get a more complete
picture of the underlying structure. In some cases,
a feasible reduction to low-dimensional mapping
can be achieved through slow–fast scale decom-
position of slow phase variables (Shilnikov et al.
1998/2001, 2005b; Griffiths and Pernarowski
1917–1948). We proposed and developed a new
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computer assisted algorithm for constructing a
dense family of onto mappings for membrane
potentials in a Hodgkin–Huxley type neuronal
model (Channell et al. 2007a). Such maps let us
find and examine both the stable and unstable
solutions in detail; moreover, unstable points are
often the primary organizing centers globally
governing the dynamics of the model in question.
The construction of such a map begins with the
localization of the tonic spiking manifold Mlc in

the model, using the parameter continuation tech-
nique or the slow-fast dissection, see Fig. 1. Then,
a curve on Mlc is defined, which corresponds to
minimal (maximal) voltage values, denoted, say,
by V0. By construction, the 1DmapM takes all V0

(outgoing solutions integrated numerically) on
this curve back onto itself, after a single turn
around Mlc, i.e., M: V0 ! V1 for a selected
value of the parameter. Two such maps are
depicted in Figs. 1 and 2. One can see that these

Chaotic Dynamics in
Neural Systems,
Fig. 2 (A) Chaotic
bursting in the phase space
of the leech heart
interneuron model (3) and
the corresponding map (B)
at a transition between two
and three spikes per burst in
the voltage trace (C) due to
proximity of the primary
homoclinic orbit of the
repelling fixed point (red)
corresponding to a single
minimum of the saddle
periodic orbit (red) in (A)

Chaotic Dynamics in Neural Systems, Fig. 1 (A1)
Bistability of the coexisting tonic-spiking and bursting in
the 3D phase space of the leech heart interneuron model
(3). Inset (A2) depicts the shape of the corresponding 1D
Poincaré map with stable fixed point corresponding to the
tonic spiking periodic orbit (purple) with a single voltage

minima, and period-7 bursting orbit, and 2 unstable fixed
points (red): the right one separates attraction basins of
tonic-spiking (A4) and bursting (A3) activities, whereas
the left one causes chaotic dynamics at spike adding tran-
sitions, see Fig. 2
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are noninvertible (Mira 1987; Mira and Shilnikov
2005), unimodal maps with a single critical point
(Devaney 1992; Sharkovsky et al. 1997), which
happens to be a universal feature of many other
square-wave bursters in neuroscience applica-
tions. With such maps, one can fully study the
attractors, the repellers, and their bifurcations,
including saddle-nodes, homoclinic orbits, spike-
adding, and period-doubling. We note that detec-
tion of homoclinics of a saddle periodic orbit in
the phase space of a model is in general state-of-
the art and the Poincaré map technique allows us
to locate them with ease.

Classifications of Bursting
The existing classifications (Wang and Rinzel
1995; Rinzel 1985; Rinzel and Ermentrout 1989;
Bertram et al. 1995; Izhikevich 2000, 2007) of
bursting are based on the bifurcation mechanisms
of dynamical systems in a plane, which initiate or
terminate fast trajectory transitions between the
slow motion manifolds in the phase space of the
slow-fast neuronal model. These classifications
allow us to single out the classes of bursting by
subdividing mathematical and realistic models
into the following subclasses: elliptic or Hopf-
fold subclass (FitzHugh-Rinzel (Wojcik and
Shilnikov 2011) and Morris-Lecar models),
square-wave bursters or fold-homoclinic subclass
(Hindmarsh-Rosemodel (Shilnikov andKolomiets
2008; Barrio and Shilnikov 2011), models of pan-
creatic b-cells, cells in the pre-Botzinger complex,
as well as intrinsically bursting and chattering
neurons in neocortex); parabolic or circle-circle
subclass (model of R15 cells in the abdominal
ganglion of the mollusk Aplysia (Butera 1998;
Alacam and Shilnikov 2015), the reduced leech
interneuron model at certain parameter values);
and fold-fold subclass, or top hat models (Best
et al. 2005), including the reduced heart interneu-
ron model (3) discussed below.

Transition Routes
The current description of the transition routes
between tonic spiking and bursting activities is
incomplete and remains a fundamental problem
for both neuroscience and the theory of dynamical
systems. The first theoretical mechanism revealed
in Terman (1992) explained chaos in the so-called

square wave bursters (Rinzel 1985) emerging
between tonic-spiking and bursting. Later, two
global bifurcations that occur at the loss of stabil-
ity of a tonic spiking periodic orbit through quite
novel homoclinic saddle-node bifurcations were
discovered and explained. The first transition,
reversible and continuous, found in the reduced
model of the leech heart interneuron (Shilnikov
and Cymbaluyk 2004, 2005) and in a modified
Hindmarsh-Rose model of a square-wave burster
(Shilnikov and Kolomiets 2008; Shilnikov et al.
1998/2001), is based on the blue sky catastrophe
(Shilnikov et al. 1998/2001; Turaev and Shilnikov
1995; Shilnikov and Turaev 1997, 2000; Gavrilov
and Shilnikov 2000). This was proven in
Shilnikov et al. (2005b) to be a typical bifurcation
for slow-fast systems. This striking term
(Abraham 1985), the blue sky catastrophe, stands
for a novel bifurcation of a saddle-node periodic
orbit with a 2D unstable manifold returning to the
orbit making infinitely many revolutions. After
the bifurcation, this homoclinic connection trans-
forms into a long bursting periodic orbit with
infinitely many spikes. The burst duration of the
orbit near the transition is evaluated by 1=

ffiffiffi
a

p
,

where 0 < a � 1 is a bifurcation parameter. The
second transition mechanism is due to a saddle-
node periodic orbit with noncentral homoclinics
(Lukyanov and Shilnikov 1978). An important
feature of this transition is the bi-stability of
co-existing tonic spiking and bursting activities
in the neuron model, see Fig. 1. In this case, the
burst duration towards the transition increases as
fast as | ln(a) |. Another feature of this bifurcation
is the transient chaos where the neuron generates
an unpredictable number of burst trains before it
starts spiking tonically. This phenomenon is a
direct consequence of the Smale horseshoe finite
shift dynamics in the system (Gavrilov and
Shilnikov 1972), which is a rather atypical phe-
nomenon for such slow-fast systems.

Chaos in Neuron Models

In this section, we present the basic mechanisms
and routes to chaos in a variety of biophysically
realistic neuronal models exhibiting rich and com-
plex dynamics including tonic spiking, bursting,
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and quiescence. A bifurcation describing a transi-
tion between neuronal activities typically occurs
near saddle (unstable) orbits and results from
reciprocal interactions involving the slow and
fast dynamics of the model. Such interactions
lead to the emergence of new dynamical phenom-
ena and bifurcations that can occur only in the full
model, but not in either of the slow or the fast
subsystem. Chaotic dynamics can be character-
ized by unpredictable variations in the number of
spikes during the active phases of bursting and/or
the subthreshold oscillations. This phenomenon
of chaotic dynamics is generally atypical in
slow–fast systems as it occurs within narrow
parameter windows only near the transition
boundaries. Indeed, robust and regular dynamics
of slow–fast neuron models contrast those of real
bursting neurons exhibiting a phenomenal time
dependent variability of oscillatory patterns.

Leech Heart Interneuron Model: Period
Doubling Cascades and the Blue Sky
Catastrophe
We first illustrate and discuss the onset of chaotic
dynamics in the reduced (3D) model of the leech
heart interneuron (see Eq. (3) of Appendix). This
is a typical slow-fast Hodgkin-Huxley type
(HH) model describing the dynamical interplay
of a single slow variable – persistent potassium
current, IK2, and two fast variable – the sodium
current, INa and the membrane voltage V that can
be recast in this generic form (Shilnikov and
Cymbalyuk 2005; Shilnikov et al. 2005a;
Shilnikov 2012; Neiman et al. 2011):

CV0
i ¼�

X

j

Ij�
X

i

Isyni , thh0 ¼ f1 Vð Þ�h, ð2Þ

where C is a membrane capacitance, V is a trans-
membrane voltage, Ij stands for various
in/outward currents including synaptic ones,
0 � h � 1 stands for a gating (probability) vari-
able, f1 is a sigmoidal function, and th is a time-
scale, fast or slow, specific for specific currents.

This model shows a rich set of dynamics and
can produce various types of complex chaotic and
bistable behaviors, including the period-doubling
cascade en a route from tonic spiking through

bursting (Shilnikov and Cymbaluyk 2004;
Cymbalyuk and Shilnikov 2005), as well as vari-
ous types of homoclinic chaos. Following the
period-doubling cascade, the model demonstrates
a terminal phase of chaotic tonic spiking that
coexists alongside another periodic tonic spiking
activity. For a different set of parameter values
compared to the period doubling cascade, the
model can also exhibit the blue sky catastrophe
as a continuous and reversible mechanism of the
transition between bursting and tonic spiking.
Figure 1 explains the nature of bi-stability in this
model as it exhibits the co-existing tonic-spiking
and bursting oscillations corresponding to the sta-
ble fixed point (FP) (purple) and the period-7 orbit
in the 1D map, whose basins are separated by an
unstable FP representing a saddle periodic orbit
(red) on the 2D manifold Mlc in the 3D phase
space. The role of the other unstable (red) FP is
revealed by Fig. 2. It is shown that the spike-
adding in bursting is accompanied with an onset
of chaotic dynamics orchestrated by the homo-
clinic orbits and bifurcations involving the other
saddle orbit, see more details in Shilnikov et al.
(2014), Channell et al. (2009), Wojcik and
Shilnikov (2011), Shilnikov (2012), Barrio et al.
(2014), Barrio and Shilnikov (2011), and Neiman
et al. (2011). Figure 3 shows the bifurcation dia-
gram of the system constructed as a parametric
sweep using our previously developed symbolic
toolkit called the Deterministic Chaos Prospector
(Pusuluri et al. 2017; Pusuluri and Shilnikov
2018, 2019) to process symbolic sequences extra-
cted from wave-form traces and analyze activity
types and underlying bifurcations. This bifurca-
tion diagram identifies the regions of quiescence,
tonic spiking, as well as bursting with spike
adding cascades. The noisy regions near the
boundaries of spike addition reveal the occurrence
of chaos. In addition, the blue sky catastrophe
takes place at the noisy region near the boundary
between bursting and tonic spiking.

Period-Doubling in the Chay Model
The Chay model is a simple, realistic biophysical
model for excitable cells, producing endogenous
chaotic behavior (see its Eq. (5) of Appendix).
The model transitions from tonic spiking to
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bursting via period-doubling bifurcations,
whereby chaotic dynamics can also arise. Figure 4
shows the 2D (V, Ca)-phase space projection of
the Chaymodel with a period-4 orbit and a chaotic
bursting orbit, along with the corresponding
Poincaré return map. The model goes through a
period-doubling cascade and then immediate cha-
otic bursting, before regular bursting as the bifur-
cation parameter gK,c increases.

Torus Breakdown in the Bull Frog Hair Cell
Model
Next, we consider the hair cell model based on
experimental studies of basolateral ionic currents
in saccular hair cells in bullfrog (Hudspeth and
Lewis 1988; Catacuzzeno et al. 2003, 2004; Ruth-
erford and Roberts 2009). This is a further exten-
sion of the model of the Hodgkin-Huxley type
developed in Catacuzzeno et al. (2004) that

includes 12 coupled nonlinear ordinary differen-
tial equations, see Neiman et al. (2011) for its
detailed description. In this model, the transition
from bursting to tonic spiking is due to a torus
bifurcation (TB) that leads to onset of quasi-
periodic dynamics (Ju et al. 2018). Closer to this
bifurcation the torus breaks down causing the
onset of chaotic bursting in the system. In case
of a supercritical TB, through which a stable torus
emerges at the fold of the tonic spiking manifold
MLC (like one in Fig. 1), its development, growth
and breakdown can be well studied using the
Poincaré return maps. For example, Fig. 5a
depicts that, right after the supercritical TB in the
hair cell model, a stable torus (invariant circle)
emerges from a stable tonic-spiking periodic
orbit and grows from smooth and ergodic to non-
smooth to resonant as the bifurcation parameter
gK1 increases. Later, when the torus breaks down
(starting at gK1 = 29.213 nS), bursting becomes
chaotic as shown in the Poincaré map (Fig. 5b).
Figure 5c illustrates the route from tonic spiking
to bursting with chaotic dynamics at the torus
breakdown.

Chaotic Mixed-Mode Oscillations in the
Extended Plant Model
The conductance-based Plant model of endoge-
nous parabolic bursters was originally developed
to model the R15 neuron in the abdominal gan-
glion of the slug Aplysia Californica (Butera
1998). This was later extended and adapted to
model the swim CPG of the sea slug Melibe
Leonina, see Alacam and Shilnikov (2015) for
details of the model and the equations. This
model can produce chaotic bursting activity, as
shown in Fig. 6a near the boundary between
tonic spiking and bursting activity. In addition,
the model exhibits complex chaotic mixed mode
oscillations (MMOs) near the transition between
bursting and the co-existing hyper-polarized qui-
escence state. Figure 6b illustrates the model gen-
erating spike-varying bursts and small amplitude
subthreshold oscillations. Such chaotic MMOs
coexist with a hyperpolarized quiescent state
resulting in bistability due to a subcritical
Andronov-Hopf bifurcation that gives rise to a
saddle periodic orbit whose stable manifold

Chaotic Dynamics in Neural Systems, Fig. 3 Bi-
parametric sweep of the leech heart interneuron model (3)
using the symbolic toolkitDeterministic Chaos Prospector
(Pusuluri et al. 2017; Pusuluri and Shilnikov 2018;
Pusuluri and Shilnikov 2019) to process wave-form traces
and to reveal regions of quiescent behavior, tonic spiking,
as well as bursting activity with spike adding cascades:
from 2 spikes (orange zone) to 3 spikes (yellowish zone),
next to 4 spikes (light green zone) and so forth. The noisy
regions near the boundaries of spike addition reveal the
occurrence of chaos, while the noisy boundary between
tonic spiking and bursting portrays the blue sky catastrophe
(Shilnikov and Cymbaluyk 2004) corresponding to infi-
nitely long bursting
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Chaotic Dynamics in
Neural Systems,
Fig. 4 (A) The (V, Ca)
phase space projection
overlaying a period-4 orbit
(green, gK,C = 11.12) and a
chaotic bursting trajectory
(grey, gK,C = 11.5)
generated by the Chay
model. Here Vmin –minimal
values, labeled with green
and black dots in the voltage
traces (C), are used to
generate 1D Poincaré return

maps: V nð Þ
min ! V

nþ1ð Þ
min in

Inset (B)

Chaotic Dynamics in Neural Systems, Fig. 5 Poincare

return map, V
nð Þ
min ! V

nþ1ð Þ
min , for the consecutive Vmin-

values in voltage traces generated by the hair cell model.
(A) Evolution of stable invariant circles (IC) from ergodic
to resonant with further nonsmooth torus breakdown as the
gK1 parameter is increased from 29.185 through
29.2073 nS. (B) Chaotic bursting after the torus breakdown

at gK1= 29.213 nS. The flat, stabilizing section of the map
corresponds to hyperpolarized quiescence, while multiple
sharp folds reveal a ghost of the nonsmooth IC in the
depolarized range. (C) En route from tonic spiking to
regular bursting, the voltage trace undergoes quasi-
periodicity and chaotic bursting. (This figure is adapted
from Ju et al. (2018))
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separates the chaotic bursting activity (green)
from the stable (spiraling) hyperpolarized quies-
cent state (red) as shown in Fig. 6c. As the param-
eters are varied, gradually the system transitions
from this bistable state to the monostable hyper-
polarized quiescence, or vice versa, to a dominant
bursting activity.
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Appendix

Leech Heart Interneuron Model
The reduced leech heart model is derived using
the Hodgkin-Huxley formalism:

CV 0 ¼ �INa � IK2 � I leak þ I app,

tNah0Na ¼ h1Na Vð Þ � h,

tK2m0
K2 ¼ m1

K2 Vð Þ � mK2,

(3)

with

I leak ¼ 8 V þ 0:046ð Þ,
IK2 ¼ 30m2

k2 V þ 0:07ð Þ,
INa ¼ 200 m1

Na Vð Þ� �3
hNa V � 0:045ð Þ,

and where V is the membrane potential, C = 0.5;
hNa is a fast (tNa = 0.0405 sec) activation of INa,
and mK2; IL describes the slow (tK2 = 0.25 sec)
activation of IK2, Iapp is an applied current. The
steady states h1Na Vð Þ, m1

Na Vð Þ, m1
K2 Vð Þ, of the of

the gating variables are given by the Boltzmann
equations given by

h1Na Vð Þ ¼ 1þ exp 500 0:0333ð ÞþVð Þ½ Þ��1,

m1
Na Vð Þ ¼ 1þ exp �150 0:0305ð ÞþVð Þ½ Þ��1,

m1
K2 Vð Þ ¼ 1þ exp �83 0:018ð ÞþVshift

K2 þV
� �� ���1:

ð4Þ

The bifurcation parameter Vshift
K2 of the model is

a deviation from the experimentally determined
voltage V1/2 = 0.018 V corresponding to the
half-activated potassium channel, i.e., to
m1

k2 0:018ð Þ ¼ 1=2. In its range, Vshift
K2 is [�0.025;

0.0018]V the upper boundary corresponds to the
hyperpolarized quiescent state of the neuron,
whereas the model produces spiking oscillations
at the lower end Vshift

K2 values and bursts in
between.

Chaotic Dynamics in Neural Systems, Fig. 6 The
extended Plant model can exhibit chaotic bursting near
the boundaries of tonic spiking and bursting with spike-
adding (A) as well as bistability with chaotic mixed mode
oscillations (green) and hyperpolarized quiescence (red)
near the transitions between bursting with spike-adding

and hyperpolarized quiescence (B). The corresponding
phase space projection of the bistable states of (B) is
shown in (C). Following a subcritical Andronov-Hopf
bifurcation, a saddle periodic orbit (not seen) separates
the chaotic mixed mode bursts (green) from the hyper-
polarized quiescent state with spiral convergence (red)

Chaotic Dynamics in Neural Systems 205



Chay Model
The 3D Hodgkin-Huxley type Chay model reads
as follows:

V 0 ¼ �gIm
3
1h1 V � V Ið Þ � gK,Vn

4
1 V � VKð Þ

�gK,C
C

1þ C
V � VKð Þ � gL V � VLð Þ,

n0 ¼ n1 V½ � � nð Þ=tn V½ �,
C0 ¼ r m3

1h1 VC � Vð Þ � kCC
� �

,

(5)

where n represents the gating variable of the
voltage-sensitive K+ channel and C represents
the intracellular free calcium concentration. See
(Chay 1985) for the detailed description.
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Introduction

Epilepsy is a widespread neurological disorder.
Approximately 5% of the population suffer from
at least one epileptic seizure. Recurring epileptic
seizures are observed in about 0.5–1% of the
population. An important tool to diagnose epi-
lepsy is electroencephalographic recordings
(EEG), a technique introduced nearly a century
ago (Berger 1929) but still an important tool due
to the high temporal resolution of this
measurement.

Epileptic seizures can be viewed as emerging
patterns of a complex system (the brain) with a
huge amount of microscopic elements (the neu-
rons). Since synergetics (Haken 2012; 1983) deals
with self-organizing complex systems, first con-
cepts have been developed in the 1980s to link
synergetics with brain science (Başar et al. 1983)
which has generated a wide range of studies and
theories in that context (see, e.g., Kelso 1997; Uhl
1999; Tass 1999; Fuchs and Jirsa 2008; Hutt
2011). An alternative approach to the typical

bottom-up approach of synergetics, starting with
microscopic interactions leading to macroscopic
patterns in the vicinity of instabilities, is in general
given by dynamical systems theory. Like Lorenz
(1963) introduced a set of differential equations
aiming at describing atmospheric convections,
brain scientists have tried to model EEG signals
by dynamical systems theory (e.g., Da Silva et al.,
2003). In this context we will present a method
(DSBM – dynamical systems based modeling) to
obtain a low-dimensional model of the high-
dimensional multielectrode EEG signals. In the
case of a special type of epileptic seizures,
so-called absence seizures, the dynamics of the
signal can be described by a set of differential
equations leading to a type of trajectories which
resemble Shilnikov attractors. This was first
observed in Friedrich and Uhl (1996),
underpinned by theoretical work (van Veen and
Liley 2006; Sohanian Haghighi and Markazi
2017) and recently investigated with a larger set
of EEG data (Seifert et al. 2018a).

We will present the bottom-up approach of
synergetics in section “Synergetics: Bottom-up
Approach of Dimensionality Reduction” and
dynamical systems based modeling (DSBM) in
section “DSBM: Data-Driven Method for Dimen-
sionality Reduction.” The background of
Shilnikov chaos is briefly discussed in section
“Epileptic Seizures and Shilnikov Chaos,”
followed by the results of our investigations
(section “Shilnikov Chaos in Case of Epileptic
Seizures?”) and concluded with summary and
outlook in section “Summary and Outlook.”

Synergetics: Bottom-up Approach of
Dimensionality Reduction

Low-dimensional spatiotemporal patterns can
emerge from high-dimensional open systems
close to instabilities. This general observation
was first rigorously described in the context of
laser theory. The underlying concept leads to the
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interdisciplinary research field of synergetics
(Haken 2012, 1983) and could be applied to a
wide range of different scientific fields, reflected,
e.g., by a whole series of books (Haken 1977).

The typical approach of synergetics is bottom-
up, based on a state variable q depending, e.g., on
time t and location r, q= q(r, t). By introducing
a state vector q(t) � ℝN, the spatial dependence
can be represented by its vector components:

q r, tð Þ ) q tð Þ�ℝN

If the dynamics of the underlying microscopic
or mesoscopic level is known,

_q tð Þ ¼ f e, q tð Þð Þ ð1Þ

with e representing a control parameter of the
system, the state vector can be decomposed in
the vicinity of an instability e ’ ec in n unstable

and N � n stable “modes” (vectors) v uð Þ
i and v sð Þ

i

and corresponding amplitudes x
uð Þ
i tð Þ and x

sð Þ
i tð Þ

with n � N:

q tð Þ ¼
Xn
i¼1

x
uð Þ
i tð Þ � v uð Þ

i þ
XN�n

i¼1

x
sð Þ
i tð Þ � v sð Þ

i ð2Þ

Since the modes vi do not need to be orthogo-
nal v⊤i v j 6¼ dij

� �
, a set of biorthogonal modes pi

with p⊤i v j ¼ dij can be introduced by inverting the
matrix V= (v1, v2, . . ., vn). These biorthogonal
modes can be utilized to obtain the amplitudes
xi(t) by projecting q(t) onto these vectors:

xi tð Þ ¼ p⊤i q tð Þ ð3Þ

The so-called slaving principle leads to a relax-
ation of the stable amplitudes onto the center
manifold representing a reduction of dimension-
ality. The dynamics of the amplitudes is governed
by the dynamics of the unstable amplitudes:

x
sð Þ
i tð Þ ¼ x

sð Þ
i x

uð Þ
i tð Þ

h i
ð4Þ

The set of differential equations describing the
amplitudes of the unstable modes and therefore –
due to the slaving principle – describing the

dynamics of the whole system are the order
parameter equations:

_x uð Þ
i tð Þ ¼ gi x uð Þ

1 , x uð Þ
2 , . . . , x uð Þ

n

� �
(5)

It can be shown that the order of magnitude of
the contribution of the stable modes to the state
vector is significantly smaller than the contribu-
tion of the unstable modes. As a first approxima-
tion the contribution of the stable modes can be
disregarded, and we can summarize the dimension
reduction in terms of the bottom-up approach of
synergetics (neglecting (u) in the notation):

• Low-dimensional signal representation

q tð Þ ’
Xn
i¼1

xi tð Þ � vi, with q tð Þ �ℝN and n �N ,

(6)

• With dynamics governed by a set of differen-
tial equations

_xi tð Þ ¼ gi x1, x2, . . . , xnð Þ (7)

• And the amplitudes obtained by projection

xi tð Þ ¼ p⊤i q tð Þ ð8Þ

In the case of temporal discretization
(t = t1, t2, . . .tT), Eqs. (6) and (8) can be written
in matrix notation:

Q ’ VX ¼ VP⊤Q ð9Þ

with

Q�ℝN�T , V �ℝN�n, X�ℝn�T and P�ℝN�n

ð10Þ

In the following section, we will discuss how
this description can be modeled by DSBM, and
the results of its application will be presented in
section “Shilnikov Chaos in Case of Epileptic
Seizures?”
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DSBM: Data-Driven Method for
Dimensionality Reduction

Dynamical systems based modeling (DSBM) is
an approach to approximate a multivariate time-
dependent signal q(t) � ℝN by a low-dimensional
signal representation (6) with corresponding
amplitudes (8) being governed by a set of differ-
ential equations (7). First concepts of this
approach are presented in Uhl et al. (1993, 1995)
and have been applied to epilepsy data (Friedrich
and Uhl 1996) and data of event-related potentials
(Uhl et al. 1998, 2001; Hutt and Riedel 2003).

The number n of interacting modes is assumed
to be known as well as the model of the set of
differential equations gi(x1, x2, . . ., xn). We
represent the functions gi by parameter vectors ai
and assumed basis functions ji depending on the
amplitudes x1, x2, . . ., xn:

gi ¼ ai
⊤ji x1, . . . , xnð Þ ð11Þ

To obtain an approximation of Eqs. (6), (7),
and (8), we minimize a least-square cost function

D P, að Þ ¼
Xn
i¼1

pTi _q� ai⊤ji
� �2D E

t

p⊤i _q
� �2D E

t

, ð12Þ

over projections P = (p1, p2, � � �, pn) � ℝN � n

and parameters a = (a1, a2, . . ., an) with h. . .it
denoting the time average. Introducing the auto-
correlation matrix

Qi ¼ ji � jih it ð13Þ

and the vector of correlation between the pro-
jected data and the basis functions

bi ¼ p⊤i _q
� �

ji
� �

t
, ð14Þ

one can show that the coefficients describing the
dynamics are given by

ai ¼ Q�1
i bi: ð15Þ

Hence the cost function D depends on the
projection P, only.

D ¼ D Pð Þ ð16Þ

In the case of polynomial functions ji, the cost
function is invariant with respect to linear trans-
formations of P and therefore only dependent on
the subspace spanned by the projectionP. Thus one
has to consider a global optimization problem on
the compact Grassmannian manifold Gr(n, N).
This can be utilized in the search of the global
minimum of the cost function D: The calculation
of Q�1

i in (15) is numerically critical due to Qi

possibly containing entries outside of machine pre-
cision. To diminish this difficulty, the projection
matrix P is replaced in each iteration by a different
representative of the equivalence class of the
Grassmannian manifold.

The matrix V = (v1, . . ., vn) of Eqs. (6) and
(10) can be approximated by calculating a pseudo-
inverse of the projection P. This pseudoinverse
can be obtained by minimizing the quadratic
error with respect to the signal representation

V ¼ argmin
V �ℝN�n

k q� VP⊤q k� �
t
: ð17Þ

Varying this optimization problem with respect
to the pseudoinverse V, an analytic description of
V is obtained as follows. Denote the autocorrela-
tion matrix of the projected signal by

M ¼ P⊤q� P⊤q
� �

t
ð18Þ

and the correlation of the projected with the orig-
inal signal by

B ¼ P⊤q� q
� �

t
: ð19Þ

The pseudoinverse V can then be calculated by

V ¼ M�1B: ð20Þ

Epileptic Seizures and Shilnikov Chaos

An Ansatz to Model EEG Signals of Absence
Seizures
Generalized spike-wave patterns are characteristic
for absences, one special kind of epileptic
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seizures, as shown in Fig. 1. The ictal signal
(signal of the seizure) is between 8 and 33 s show-
ing the spike-wave pattern generalized over all
electrodes with a typical frequency of 3Hz.

Former studies of EEG signals of epileptic
seizures showed chaotic behavior with a drop of
the correlation dimension of the ictal signal
(Babloyantz and Destexhe 1986; Lehnertz and
Elger 1995). Friedrich and Uhl (1996) suggested
that this pattern can be modeled by a dynamical
system leading to a linear spiral component (spike
behavior) and nonlinear components allowing a
recurrence (wave) of the trajectory in phase space.
This can be achieved by a set of ordinary differ-
ential equation of the form

_x1 ¼ x2

_x2 ¼ x3

_x3 ¼ f x1, x2, x3ð Þ:
(21)

with a polynomial function f(x1, x2, x3). This
set of differential equation can yield so-called
Shilnikov chaos which will be discussed in the
following subsection.

Our top-down approach to model the ictal sig-
nal with the ansatz (21) showing Shilnikov type of
behavior is underpinned by a mesoscopic
(bottom-up) model of the human cortex intro-
duced by Van Veen and Liley (2006). Analyzing
the bifurcation diagram, the authors showed that

Shilnikov chaos can occur for some parameter
combinations.

Shilnikov Chaos
One route to deterministic chaos is given by the
Shilnikov bifurcation, where the homoclinic orbit
of a saddle-focus breaks leading to a chaotic
behavior of the system (Shilnikov 1965). We
will briefly discuss the concept of stationary
points and its linear stability analysis and thereby
illustrate the characteristics of a saddle-focus.

To describe the behavior of a dynamical system

_x ¼ F xð Þ ð22Þ
in the neighborhood of equilibrium points, one
uses linear stability analysis. An equilibrium
point x� is called hyperbolic if all eigenvalues of
the Jacobi matrix J Fð Þ x�ð Þ at that point have non-
vanishing real part. If an equilibrium point is
hyperbolic, one can use the Hartman-Grobman
theorem (1960) to investigate the behavior of
F in the neighborhood of x�. The theorem states
that for any hyperbolic equilibrium point, there
exists a neighborhood U(x�), in which the solu-
tions of _x ¼ F xð Þ can be mapped homeomor-
phically to solutions of the linear system

_y ¼ J Fð Þ x�ð Þy: ð23Þ

For three-dimensional systems, the behavior at
a hyperbolic equilibrium point depends on the
signs of the eigenvalues only. The possible
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Shilnikov Chaos in Epilepsy, Fig. 1 Typical spike-wave pattern in the EEG signal of an absence seizure. The
electrodes are positioned and labeled by the 10–20 system (Jasper 1958)
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behaviors are summarized in Table 1. If there
exists a saddle-focus with the eigenvalues l1 = g
and l2/3 = r � io, both either with a one-
dimensional unstable (g > 0) or a two-
dimensional unstable (r > 0) eigenmanifold,
Shilnikov chaos can occur. In Fig. 2 the two
variants of saddle-foci are illustrated: on the left-
hand side, the trajectory spirals out of the station-
ary point, and on the right-hand side, the trajectory
spirals in.

The Shilnikov theorem (Shilnikov 1965) states
two conditions to be fulfilled leading to a chaotic
attractor:

(I) jg j > j rj
(II) There has to be homoclinic orbit based at the

equilibrium point.

Under these conditions the dynamical system
can be mapped onto the topological Smale horse-
shoe (1967), proofing the existence of dynamical
chaos.

Shilnikov Chaos in Case of Epileptic
Seizures?

In a recent study (Seifert et al. 2018a), we inves-
tigated if EEG signals of absence seizures can be
modeled by (21) and if Shilnikov chaos can be
observed. In this section we largely present results
of this investigation.

Data
We investigated ten EEG data sets from two dif-
ferent sources: (A) eight records provided by the
Epilepsy Centre at the Department of Neurology
Erlangen and (B) two records from the Temple
University Hospital EEG Data Corpus (Obeid and
Picone 2016). All data were sampled by 25 elec-
trodes using the 10–20 system (Jasper 1958) with
sampling rates 256 Hz (A) and 250 Hz (B),
respectively. The data sets were filtered by a
zero-phase bandpass with cutoff frequencies at
0.5 and 30 Hz. Windowing the ten data sets with
windows of 2 seconds length, we ended up with

Shilnikov Chaos in Epilepsy, Table 1 Behavior of 3D systems near hyperbolic equilibrium points with Jacobi matrix
having either three real eigenvalues li or two complex eigenvalues l2/3 = r � io and a real eigenvalue l1 = g

l1 l2 l3 Type g r Type

� � � Stable node � � Stable focus node

+ + + Unstable node + + Unstable focus node

+ � � Saddle � � Saddle-focus

Shilnikov Chaos in Epilepsy, Fig. 2 Two types of saddle-foci: on the left the two-dimensional eigenmanifold is
unstable, and the one-dimensional eigenmanifold is stable, while on the right, it is vice versa
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139 windowed EEG data sets (epochs) with
65 ictal and 74 pre- and postictal signals.

Dynamics Representation
The application of DSBM on the windowed sig-
nals leads to a minimal value of the cost function
(16) and an optimal projection for each window.
The value of the cost function is plotted in Fig. 3
for the epochs of one data set to illustrate the
results. In the background of the figure, the
recording of one electrode (F4) is shown to
allow a comparison of the values of the cost func-
tion with the original signal: A distinct drop of the
value is observed during the ictal phases of the
signal. The low value of the cost function (the
least-square error) indicates that the ansatz (21)

works well to describe the dynamics of the signal
of absence seizures.

By defining a threshold, ictal phases can be
separated from non-ictal phases. We calculated
an optimal threshold on a training set and calcu-
lated the detection rate on the remaining evalua-
tion set. The procedure is reiterated for all
combinations of changing training set and evalu-
ation set. This so-called leave-one-out cross-
validation leads to following characteristic values
with respect to seizure detection.

1. Specificity (true negative rate): 84%
2. Sensitivity (true positive rate): 75%

That is, 84% of all non-ictal phases and 75% of
all ictal phases were correctly detected.

The optimal projection P = (p1, p2, p3)
representing the global minimum of the cost func-
tion (12) leads by (8) to amplitudes (x1(t),
x2(t), x3(t)). Figure 4 shows on the right-hand
side the trajectory of these amplitudes in phase
space. A quite stationary signal is observed with a
distinct geometry. This becomes even more evi-
dent if we compare the DSBM results with con-
ventional techniques of dimensionality reduction
like principal component analysis (PCA) (Pearson
1901) and independent component analysis (ICA)
(Hyvaerinen et al. 2001). Figure 4 shows on the
left-hand side the amplitudes of the first three
principal components as a trajectory in phase
space. The central phase portrait shows the trajec-
tory of the three “best” (in terms of the obtained
geometry) independent components. The benefit
of using DSBM instead of PCA and ICA is

time in second
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Shilnikov Chaos in Epilepsy, Fig. 3 Drop of cost func-
tion in ictal signal, background: signal of F4 electrode.
(Reproduced by permission from Seifert et al. 2018a)

PCA ICA DSBM

Shilnikov Chaos in Epilepsy, Fig. 4 Trajectories of projected signals in three-dimensional phase space. Projections
obtained by (a) PCA, (b) ICA, (c) DSBM. (Reproduced by permission from Seifert et al. 2018a)
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obvious, and the obtained structure of DSBM
shows a spiral behavior in connection with a
recurrence of the trajectory. Since this resembles
a Shilnikov type of behavior, we investigate in the
following if the dynamics obtained by DSBM
fulfill Shilnikov theorem.

Shilnikov Condition
We consider only the epochs where the ansatz (21)
well fitted the data. This is achieved by taking
only EEG epochs into account with dynamics
representation of above 90%, i.e., D(P) < 0.3
since D(P = 0) = 3 is the maximal value of the
cost function. The dynamics of the windowed
signals is estimated by (15). Stationary points
and the eigenvalues of the Jacobi matrix can be
calculated characterizing the linear behavior in the
vicinity of the fixed point. 69% of all investigated
epochsfulfill thefirstShilnikovcondition( jgj> jrj
(compare section “An Ansatz to Model EEG Sig-
nals of Absence Seizures”).

The second condition (II) is harder to investi-
gate since a homoclinic trajectory is difficult to
verify. Therefore we visually investigated the
phase portraits of the projected signals. Figure 5
exemplarily shows obtained trajectories. The
phase portrait of the epoch shown on the left-
hand side is considered to be connected with an
homoclinic orbits, whereas the example on the
right-hand side does not show the expected homo-
clinic behavior and is therefore considered not to
fulfill Shilnikov condition (II). In 79% of all
investigated epochs, a homoclinic was visually
detected. The fourfold cases fulfilling condition
(I) and (II) are presented in Table 2.

Summary and Outlook

We showed that the ansatz (21) is a good choice to
model – in accordance with the concept of
synergetics – the low-dimensional behavior of

Shilnikov Chaos in Epilepsy, Fig. 5 Trajectories (a) confirming by visual inspection the second Shilnikov condition
(homoclinic orbit), (b) not confirming the condition. (Reproduced by permission from Seifert et al. 2018a)

Shilnikov Chaos in Epilepsy, Table 2 Fourfold table evaluating Shilnikov conditions (I) and (II) in investigated data
epochs

Shilnikov condition (I)

SumFulfilled Not fulfilled

Shilnikov condition (II) Observed 53% 26% 79%

Homoclinic orbit Not observed 16% 5% 21%

Sum 69% 31% 100%
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the high-dimensional EEG signal of absence sei-
zures. Based on this ansatz, the DSBM method
leads to stationary trajectories with distinct geom-
etries. The theoretical concept of Shilnikov chaos
was fulfilled in 53% of the investigated epochs.
This number of 53% sounds weak for physicists
and mathematicians but is impressive in the con-
text of such complex biological systems like the
brain.

We do not want to conceal that the global
search of the optimum of the cost function, the
central part of DSBM, is numerically challenging.
The obtained parameters describing the dynamics
might be unsecure in some cases especially com-
bined with a linear stability analysis of calculated
stationary points.

To circumvent the numerical challenges of
DSBM, we developed a new algorithm called
dynamical component analysis (DyCA) (Seifert
et al. 2018b). Thereby projections are calculated
solving a generalized eigenvalue problem of cor-
relation matrices of the signal and its derivative
based on certain constraints to the underlying
dynamics. First results are promising, and we
hope that this approach might also yield deeper
insights in the future analyses of EEG signals of
the human brain and on the long run might help to
treat patients with brain diseases such as epilepsy.
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Glossary

Neural spikes Discrete events as proxy for action
potentials in single neurons.

Firing rate Population activity measured at each
instant in time as the fraction of neurons that
fire a spike within a certain time window.

Membrane potential Common state variable of
a single neuron that induces a spike/an action
potential once it has crossed a certain threshold.

Stable limit cycle A periodic orbit along which
rhythmic activity emerges and that attracts all
neighboring trajectories in its vicinity.

Neural oscillator A single neuron, a population
of similar neurons, or a pair of excitatory and
inhibitory neural populations that exhibit rhyth-
mic activity.

Phase oscillator Reduced description of an oscil-
lator with sole focus on the evolution of its phase.

Phase reduction Technique to identify the state of
a (high-dimensional) oscillator through its phase
on or in the immediate vicinity of the stable limit
cycle.

Order parameters Common variables describ-
ing the (dis)order of a large system of many
components.

Neural mass model Description of a neural pop-
ulation by means of its density, often parame-
trized by the mean and/or variance.

Definition of the Subject

Oscillatory neural activity is abound on all tem-
poral and spatial scales. One can observe this on
the microscopic level of neuronal circuits as well
as on mesoscopic and macroscopic levels of neu-
ral populations. The latter give rise to brain
rhythms that, dependent on their spectral proper-
ties, adhere to different function. A disruption of
the interplay of this oscillatory activity is often
deemed a signature of pathology (Schnitzler and
Gross 2005; Uhlhaas and Singer 2006; Hutt and
Buhry 2014). All the more it is important to
understand the underlying mechanisms how
these neural oscillations emerge and evolve and
how oscillations of different populations interact
and influence each other. Synchronous firing of
individual neurons can give rise to large-scale
oscillatory activity of a population, and the
phase synchronization between populations is
key for communication between them.

Introduction

The functioning of the brain dwells on coordi-
nated and coherent coactivity of a multitude of
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neurons. Perceptual, cognitive, and motor func-
tions are believed to require an orchestration of
distributed neuronal processes. If spike dis-
charges of a large number of neurons exhibit
correlated behavior in different areas of the
brain, their (large-scale) integration allows for
sensory integration, the generation of motor
commands, and cognitive processing.
Unraveling these integration processes poses a
challenge in itself and is often referred to as the
binding problem (Singer 2007). Binding by con-
vergence results in the grouping of specialized
neurons that encode a particular fixed constella-
tion of contextual features. Dynamic binding, by
contrast, assembles individual neurons dynami-
cally to generate and represent particular patterns
at particular points in time (Nunez 2000).
A neuron can participate in the representation
of one pattern in one moment, but an instant
later, it is involved in encoding another one.
Synchronization of neuronal discharges at milli-
second scale can yield sequences of subse-
quently active assemblies, which can effectively
encode complex information to be exchanged
among neuronal networks. And, this temporal
organization of neuronal activity capitalizes on
self-organized information retention and local-
global integration. The ability to preserve and
store information is equally important as inte-
grating distributed local processes into globally
ordered states and controlling local computations
through global brain activity. Both are likely
maintained by a hierarchy of brain rhythms
(Buzsaki 2006). The temporal coordination of
distributed brain activity, hence, strongly – if
not solely – relies on the synchronization of
neural oscillations (Gray 1994; MacKay 1997).

On macroscopic scales, brain rhythms and
oscillatory population activity are the dominant
observables. There are numerous approaches to
unravel the orchestration of intertwined neural pro-
cesses, both experimental and theoretical. Bridging
the gap between experiments and theory, however,
has only been achieved in very restrictive cases and
mainly on very small spatial and temporal scales.
An overall and generic picture linking these two
sides of the same coin is still being sought for.
Neuroimaging techniques such as magneto- and

electroencephalography (M/EEG) reflect voltage
fluctuations resulting from ionic currents in the
neurons. Given the noninvasive nature of these
techniques, the recorded data display synchronous
activity of several thousands of interacting neurons
rather than the dynamics of a single neuron. The
population dynamics, or mean field behavior, has
often very little in common with what happens on
the microscopic scale.

An urgent challenge in theoretical neurosci-
ence is to deduce macroscopic dynamics from
activity on these much smaller scales (Haken
2006; Deco et al. 2008; Coombes 2010; Siettos
and Starke 2016; Breakspear 2017). Yet, the plen-
itude of findings provide valuable guidelines for
our understanding of neural synchronization pro-
cesses on both micro- and macroscopic scales; see
Fig. 1 for an example.

Micro- and Macroscopic Views

When characterized as rhythmic changes in, e.g.,
local field potentials, neural oscillations set a
recurrent temporal reference frame. The ups and
downs in fluctuating local field potentials reflect
high and low degrees of synchronization of neu-
ronal currents within a certain brain area. That is
why synchronization and neural oscillations are
often used interchangeably to express coherent
activity of a population of neurons. However,
there is a subtle difference between the two phe-
nomena (Singer 1993). Oscillatory activity can be
induced on a population level through single
oscillatory neurons, so-called pacemaker cells. It
may also manifest as an emergent property of the
underlying network architecture when a particular
dynamic circuit motif is activated. Such a motif
comprises the physical circuit structure, its elec-
trophysiological signature, and the corresponding
computational function (Womelsdorf et al. 2014).
Synchronization, on the other hand, can also
occur in the absence of oscillations. Two cells
may always discharge simultaneously but at irreg-
ular intervals when driven by common noise. Or, a
presented stimulus induces simultaneous bursting
of neural populations. This is a typical signature
of response synchronization. Synchronization
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may lead to oscillations, and oscillations may
facilitate synchronization, but, in general, they
are “just” indicative for synchrony.

While oscillatory population activity can be
related to synchronous interactions of individual
cells – we provide an example below – one must
be careful when relating single cell responses to
synchronous network activity. There is a micro-
macro dichotomy with respect to the transition
from individual neuronal dynamics to the

collective behavior of a neural population. It
may happen that individual discharges of a neuron
are perfectly time-locked with the oscillating field
potential while, e.g., the lagged autocorrelation of
the discharges does not show any sign of oscilla-
tory activity. The seminal work by Brunel and
Hakim offered a theoretical account of a collec-
tion of experimental studies hinting at sparse syn-
chronization of neuronal networks (Brunel and
Hakim 1999). By contrast, regular spiking activity
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Phase Synchronization in Neural Systems,
Fig. 1 Beta-range oscillatory activity measured via EEG
over (here left) motor cortex and beta synchrony between
cortex and spinal cord are up- or downregulated in antici-
pation of movement initiation. The temporal changes in
local synchronization in motor cortex (top right panel:
spectral power around 15–30 Hz) reflect a precision grip
being produced with the right hand that ought to be

changed after receiving a go-signal (lower right panel:
force level). The corticospinal synchronization (middle
right panel: phase synchronization between EEG-
electromyographic signals of finger and thumb flexors)
also follows that pattern although pre-cueing (cue-signal)
2 s ahead of movement initiation is seemingly not propa-
gated along the corticospinal tract; see Van Wijk et al.
(2008) for more details.
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of single neurons does not necessarily result in
(regular) oscillations on the population level but
may yield collective chaos (Pazó and Montbrió
2016). Likewise, asynchronous network states
may emerge despite a considerable amount of
shared input (Renart et al. 2010).

Correlated Behavior and Phase
Synchronization

Discernible neural population activity depends on
correlated activity of a large number of neurons
(Wang 2010). When considering time series of
experimental or synthetic data, synchronization
can be identified through a variety of measures.
They range from correlation coefficients to coher-
ence, from phase coherence to Granger causality,
from phase locking values to Kullback-Leibler
information divergence, and from state space-
based measures to stochastic event synchrony
(Dauwels et al. 2010). Some of these measures
show a strong correlation among one another,
whereas others do not, but all of them have in
common that they seek to quantify the degree to
which firing rates of neurons are related (Golomb
2007).

When it comes to neural oscillations, focus is
on the oscillations’ amplitudes and frequencies.
For a given frequency, one can define the period as
the duration of time of one cycle of oscillation. In
between a cycle, one can further define the phase
of oscillation, which continuously increases
between 0 and 2p. Phase and amplitude thus
become the main (time-resolved) determinants of
the state of oscillation. Phase synchronization
measures aim at quantifying the closeness of the
phases when mapped on the unit circle (Jean-
Philippe et al. 1999). Phase synchronization mea-
sures are particularly suited for cases in which
oscillatory units are weakly coupled because in
that case dynamically changing amplitudes can be
largely ignored. In the following, we concentrate
on such cases. As we will show, phase synchroni-
zation is paramount for functional connectivity of
the brain and communication between neural
populations in general (Varela et al. 2001;
Sauseng and Klimesch 2008; Thut et al. 2012).

From Single Cell Dynamics to Neural
Masses: Synchronization in a Neural
Population

A plethora of modeling approaches exists to link
single cell dynamics to the dynamics of neural
populations. Modeling boomed in the 1970s. It
was Walter Freeman who introduced the notion of
neural mass models, which are in essence descrip-
tions of the dynamics of neural population densi-
ties (Deco et al. 2008; Freeman 1975). Many of
these models are arguably heuristic in nature
(Lopes da Silva et al. 1974; Amari 1977; Jansen
and Rit 1995) and/or involve debatable approxi-
mations. Here we illustrate a proper deduction of
population or neural mass dynamics starting at a
well-defined single cell level.

We follow a recent study by Montbrió et al.
(2015) and consider a large population of identical
quadratic integrate-and-fire (QIF) neurons with
the ultimate goal to derive the dynamics of the
population’s mean membrane potential V. The
neurons are coupled with each other electrically
via gap junctions of strength G and/or through
chemical synapses of strength J with activation
function S, as detailed below. We denote the indi-
vidual membrane potentials by vj with j = 1,. . .,
N � 1 and assume that they follow the dynamics

t _vj ¼ v2j þ nj þ G V � vj
� �þ JtS, ð1aÞ

where t represents the membranes’ time constant
and �j is an external input current flowing into
neuron j. To model action potentials, or spikes, as
sketched in Fig. 2 (upper panel), the continuous
dynamics (1a) is accompanied by the following
discrete fire and reset rule:

if vj reaches þ1 then neuron j emits a spike

and its membrane potential vj resets to�1:

ð1bÞ

In the absence of any coupling between neu-
rons, i.e., if J=G= 0 holds, the neurons are either
quiescent or oscillate dependent on their individ-
ual, external input �j < 0 or �j > 0, respectively.
More realistic, however, is the case in which the
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neurons are coupled to one another (Pietras et al.
2019). For coupling through chemical synapses,
we adopt an obvious synaptic activation function

S tð Þ ¼ 1

N

XN
j¼1

1

tS

ðt
t�ts

X
k

d t0 � tkj

� �
dt0 ð1cÞ

i.e., a summation of incoming spikes; tkj denotes

the time of the k-th Dirac delta-spike of the j-th
neuron and tS is a synaptic time constant. The

synaptic strength J can be positive or negative
implying the chemical synapses are excitatory or
inhibitory, respectively. For electric coupling, we
assume that it is diffusively modulated by the
population’s mean membrane voltage

V ¼ 1

N

XN
j¼1

vj: ð1dÞ

As it will turn out, electrical coupling tends to
balance the membrane potentials vj and may,

Phase Synchronization in Neural Systems,
Fig. 2 Simulated spike trains of a population of 100 neu-
rons (upper panel). At the beginning, spikes are emitted
randomly causing the resulting mean-field potential (~local
field potential) to weakly fluctuate around the resting
potential of about �70 mV (lower panel). At around
100 ms, the neurons spontaneously synchronize their
phases yielding a mean membrane potential that oscillates
at about 100 Hz. The frequencies in local field potentials
are usually higher than those observed in encephalographic
recordings – cf. Fig. 1. To generate the figure, we used a
stochastic extension of the Kuramoto model (7) and

defined spike events via Poincaré sections of the phase
oscillators’ trajectories (Deschle et al. 2019). At around
t � 90 ms, the coupling strengths k was increased beyond
the critical value kc, and, after a brief transient period, the
population fires in synchrony at a rate given by the mean of
the oscillators natural frequencies. Note that the mean
membrane potential simply resembles the population den-
sity of spikes as a function of time, here adjusted to mimic
standard values of action and reversal potentials (Kandel
et al. 2013). The figure was inspired by Masquelier
et al. (2009).
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hence, facilitate synchronization between neurons.
Yet, if a sufficiently large portion of neurons in the
population is inactive, gap junctions can suppress
oscillations and desynchronize neuronal activities
(Connors 2017; Alcamí and Pereda 2019).

FollowingMontbrió et al. (2015) and Luke et al.
(2013), we consider the thermodynamic limit
N ! 1 and define a density function r such that
r(v|�, t) dv denotes the fraction of neurons with
membrane potentials between v and v + dv at time
t and external current �. For the sake of simplicity,
we consider the external currents to be distributed

according to a Lorentzian D
p = � � �ð Þ2 þ D2

h i
cen-

tered around � with half-width D.
We further assume a clear separation of time

scales in that the time scale of synaptic processing
is much smaller than that of the membrane poten-
tials. In fact, in the limit tS ! 0, the synaptic
interaction (1c) reduces to S(t) = R(t) with R(t)
being the population’s mean firing rate. At first
glance, assuming instantaneous synaptic responses
appears a limitation to our model since synaptic
time scales are often considered to be longer than
those of the cell membrane. However, synaptic
time constants can be as small as 1.7 ms (Häusser
and Roth 1997), much in the range of typical time
scales of the membrane dynamics, which renders
our approximation acceptable. Introducing finite
time scales, e.g., via exponential or a synapse,
can be realized by using the corresponding Green’s
functions (Haken 2006; Byrne et al. 2017). Effec-
tively, this will cause a synaptic delay enriching the
dynamical spectrum by far; see Devalle et al.
(2018) for details. Here, however, we seek to high-
light the effects of electric couplings as in our
model they turn out to be the major ingredient for
the emergence of neural oscillations.

All things considered, we find that themean-field
dynamics of the population of electrically and chem-
ically coupled QIF neurons evolves according to

t _R ¼ D
tp

þ 2RV � GR,

t _V ¼ V2 þ � � ptRð Þ2 þ JtR:
ð2Þ

The common variables R and V are the already
introduced mean firing rate and mean membrane
potential of the population, respectively. Together

they determine the total time-dependent voltage
density of the population Eq. (1), which turns out
to be a Lorentzian tr(t)/{[v � V(t)]2 + [ptR(t)]2}
centered at V(t) with half-width ptR(t). Electrical
coupling leads to a narrowing of the voltage distri-
bution r by decreasing the firing rate R as in (2).
That is, it balances the neurons’ membrane poten-
tials and may promote synchrony, leading to their
synchronized firing activity as anticipated before,
and oscillations of the population firing rate can
emerge. By contrast, chemical coupling merely
shiftsr through the voltage dynamics in (2). Figure 3
briefly summarizes the corresponding bifurcation
scheme, but we refer to Montbrió et al. (2015) and
Pietras et al. (2019) for the in-depth analysis.

Writing about neural mass modeling must not
let the neural mass model by Wilson and Cowan
(1972, 1973) be unnoticed. Like the neural mass
model (2), it provides a comprehensive link
toward a macroscopic description of the afore-
mentioned cell assemblies (Kilpatrick 2015).
The Wilson-Cowan neural mass model represents
the interdependent collective neuronal dynamics
in terms of the mean firing rates of the excitatory
and inhibitory parts of the population, i.e.,
R ! (E, I). It exhibits rich dynamic behavior as
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Fig. 3 Bifurcation diagram of the dynamics (2) for elec-
trical coupling only (J= 0) is characterized by the presence
of codimension-2 points (TB Takens-Bogdanov; SNSL
saddle-node separatrix loop, Cusp) at � � 0 . The region
of synchronization, i.e., oscillatory population activity, is
limited by supercritical Hopf (red), SNIC (black), and
homoclinic (green) bifurcations. Inset: Enlargement of the
region near the three codimension-2 points. SN – saddle-
node bifurcation; see Pietras et al. (2019) for details
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well as different transitions to oscillatory dynam-
ics (Hoppensteadt and Izhikevich 1997; Borisyuk
and Kirillov 1992). This makes it also exemplary
for a neural oscillator model.Wewill exploit some
of these features when addressing coupled neural
masses in the parts to come.

We consider Ne excitatory and Ni inhibitory
neurons and denote by en and in the firing rate of
a single excitatory and inhibitory neuron, respec-
tively. The respective mean firing rates can be
given by the averages E ¼ 1

Ne

PNe

n¼1en and I ¼
1
Ni

PNi

n¼1in . Every neuron receives inputs from all

other neurons within the population and every
excitatory neuron receives an external input �j,
whose average is given by � ¼ 1

Ne

PNe

n¼1�n. Once
the sum of all inputs exceeds a certain threshold
yn, a neuron elicits a spike. For a particular distri-
bution of threshold values across the population,
one can assign a sigmoidal activation function
S x½ � ¼ 1= 1þ e�xð Þ with population-specific
threshold values by YE and YI for the excitatory

and inhibitory part, respectively. Then, the popu-
lation dynamics follows

tE _E ¼ �E tð Þ þ 1� rEE½ ��
�S aE cEEE� cIEI �YE þ �ð Þ½ �

tI _I ¼ �I tð Þ þ 1� rII½ ��
�S aI cEIE tð Þ � cII I �YIð Þ½ �,

ð3Þ

with ckj with k, j � {E, I} indicating the strength
of interaction between the different parts within
the population, and aE, aI define the slopes of the
transfer function. The expressions [1 – rEE] and
[1 – rII] represent the refractory dynamics of the
excitatory and inhibitory subpopulations, respec-
tively, that we here ignore by setting rE = rI = 0
(Pinto et al. 1996). Like model (2) also the dynam-
ics (3) can exhibit self-sustained oscillations and
multi-stability (Wilson and Cowan 1972;
Hoppensteadt and Izhikevich 1997; Borisyuk
and Kirillov 1992); the bifurcation diagram is
depicted in Fig. 4.

h–

Phase Synchronization in Neural Systems,
Fig. 4 Bifurcation diagram of the uncoupled Wilson-
Cowan model (4). By increasing �, one can identify four
different dynamical regimes (see insets) that are separated
by bifurcation boundaries; filled/empty dots, stable/unsta-
ble fixed points; red, stable limit cycle. In the lower right

inset, the limit cycle is the unique attractor of the dynamics.
SN saddle-node bifurcation, HB Hopf bifurcation, HC
homoclinic bifurcation, BT Bogdanov-Takens point, CP
cusp point, SNL saddle-node loop bifurcation, SNIC saddle
node on invariant cycle bifurcation; see Pietras and
Daffertshofer (2019) for more details
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Synchronization Between Neural
Populations: Coupled Neural Masses

The Wilson-Cowan model may be considered a
generic description of a densely connected neural
population as in a particular cortical region
(Breakspear 2017; Daffertshofer and van Wijk
2011). Hence we use it to build a cortical network
model. For this, we connect N different
populations of excitatory and inhibitory neurons
in a region (Ej, Ij) via their excitatory parts
(Daffertshofer and van Wijk 2011; Schuster and
Wagner 1990; Daffertshofer et al. 2018) – this
creates a network of j = 1,. . ., N nodes; see
Fig. 5 for illustration.

In line with (3), we assume the locally aver-
aged fire rates at every node to obey the dynamics

tE _Ej ¼ Ej þ S aE½ cEEEj � cIEIj �YE

� þ �jþ

þ k
N

XN
k¼1

Cjk Ek � E0
k

� �!#

tI _Ij ¼ �Ij þ S aI cEIEj � cII Ij �YI

� �� �
,

ð4Þ

where E0
k is the unstable fixed point solution of

neural mass (Ek, Ik) in the absence of coupling.
Importantly, 0 � k 	 1 denotes the overall cou-
pling strength, C = {Cjk} is an adjacency matrix
resembling structural connectivity between

cortical regions (j, k) = 1,. . ., N, and the popula-
tion specific average input fjjmay differ across the
different cortical regions.

Limit-cycle oscillations emerge in general
through a bifurcation, which – and also whose
type – can be revealed by looking at the eigen-
spectrum of the linearized dynamics. In the case of
a Hopf bifurcation, oscillatory dynamics evolve on
a stable limit cycle around an unstable fixed point.
We therefore expect that for an uncoupled (Ej, Ij)
node, the Jacobian of the Wilson-Cowan dynamics
(4) evaluated at the unstable fixed point (E0

j , I
0
j ) has

a pair of complex conjugate eigenvalues with neg-
ative real part, which corresponds to the distance
m≔�j � �H to the Hopf bifurcation point. One

typically expresses the dynamics in terms of the
deviations xj ¼ Ej � E0

j mð Þ, Ij � I0j mð Þ
� �

around
the unstable fixed points. Approximating the sig-
moidal activation function S up to third order and
applying some laborious algebraic transforms
(Pietras and Daffertshofer 2019), one can derive a
fairly generic form of the dynamics (4) that reads

_xj ¼ Lxj þ T�1f Txj; m
� �þ

þkT�1
XN
k¼1

g Txj,Txk
� �

:
ð5Þ

Here L is the Jordan real form of the dynamics’
Jacobian J, T the matrix containing the
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Fig. 5 Network of coupled Wilson-Cowan neural masses.
Each neural population k contains excitatory and inhibitory
units (Ej and Ij), which are internally coupled with
strengths cnm, n, m � {E, I}. The populations receive

external inputs �j . Interaction between two neural masses
j, k occurs via their respective excitatory parts only, where
Cjk denotes the connectivity whether node j receives input
from node k.
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eigenvectors of J. The function f includes all com-
ponents within node j that contribute to its dynam-
ical change, and g covers all the between-node
interaction, i.e., the last term of the right-hand side
of the _Ej dynamics in (4) now given as coupling
between the nodes xj and xk. The dynamics (5)
exhibits qualitatively the same behavior as (4), but
due to the Jordan real form, a circular symmetry of
the limit cycle is imposed on the full dynamics.

In the immediate vicinity of the Hopf bifurca-
tion point, one can exploit the separation of time
scales of phase and amplitude dynamics and read-
ily transform (5) into xj = (xj, yj) = (Rj cos(yj), Rj

sin(yj)), where Rj and yj = Ot + fj are amplitude
and phase (deviations) of the oscillations at node j,
which are slowly varying with respect to the
(mean) frequency O (Haken 2004), here defined
over the eigenvalues at the Hopf point, O = o(0).
Near the onset of oscillations through a supercriti-
cal Hopf bifurcation, Rj	 1 is small and, thus, the
right-hand side of (5) is at least of order O Rj

� �
.

Given the slower time scales of Rj andfj= yj –Ot,
one can average over one cycle T = 2p/O. In line
with Daffertshofer et al. (2018), this direct averag-
ing of the dynamics (5) yields the phase model

_yj ¼ oj þ
XN
k¼1

Djk sin yk � yj þ Djk

� � ð6Þ

with coupling Djk ¼ k
2N aES

0
ELjCjk Rk=Rj

� �
and

finite phase lag Djk = arctan(rj) – Otjk. Here we
abbreviated L2

j ¼ 1þ r2j with rj ¼ k
oj

�
aEcEES

0
E þ aIcIIS

0
I

� �
as well as oj ¼

aEaIcIEcEIS
0
ES

0
I � 1

4
aEcEES

0
E þ aIcIIS

0
I

� �2
; and,

S0E=I denotes the first derivative of sigmoid S

evaluated at the fixed points E0
j =I

0
j of (4). We

would like to note that we included some time
delays tjk between nodes xj and xk in the coupling
function g(xj, xk) ! g(xj(t), xk(t – tkj)); see Pietras
and Daffertshofer (2019) and Daffertshofer et al.
(2018) for more details. The dynamics (6) resembles
the Kuramoto-Sakaguchi model with phase lag
Djk

�� �� � p
2
.

Importantly, a transition to full synchronization
occurs if the coupling strength k exceeds a critical
value kc as illustrated in Fig. 6. There we used the
case in which the dynamics can be rewritten as

_yj ¼ oj þ k
N

XN
k¼1

sin yk � yj
� � ð7Þ

which, in fact, is the seminal Kuramoto model
(Kuramoto 1984); see also below.

Using more general phase reduction techniques
may generate phase oscillator models that contain
higher harmonics (Pietras and Daffertshofer 2019).
The absence of higher harmonics hampers, e.g.,
clustering effects. In any case, however, the net-
work dynamics of (weakly) coupled Wilson-
Cowan neural masses can be expressed in terms
of a corresponding phase model

_yj ¼ oj þ k
N

XN
k¼1

CjkH yj � yk
� �

, ð8Þ

r1 ¼ r t ! 1ð Þ

¼ 0 for k < 2D,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2D

k

r
otherwise

( )
:

where the phase interaction function H(c) admits
a “simple” representation as a Fourier series

Phase Synchronization in Neural Systems,
Fig. 6 Phase oscillators and phase synchronization. The
distribution of phases yj of the neural oscillators is plotted
as points eiyj on the complex unit circle for increasing
coupling strength k. Their average over the population is
the Kuramoto order parameter z, shown within the unit
circle (top panels from left to right). The phase divergence
r = |z| describes the degree of synchronization and
undergoes a pitchfork bifurcation from asynchrony,
r1= 0, to partial synchrony, r1> 0, at a critical coupling
strength kc = 2D, with D being the half-width of the
(Lorentzian) density of the oscillators’ natural frequencies;
see also Kuramoto (1984). Lower panel shows the asymp-
totic solution of (12)
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H cð Þ ¼
X
n�0

an cos ncð Þ þ bn sin ncð Þ: ð9Þ

With such an expression at hand, one can seek
to estimate the Fourier amplitudes an, bn that
readily provide crucial information about global
synchronization of the full neural network or
whether clustering of only a subset of network
nodes occurs; see Pietras and Daffertshofer
(2019) for more details.

Predicting Effects of Phase
Synchronization

Mathematical theory and computational model-
ing go hand in hand with experimental neuro-
scientific research. Modeling helps to unravel
the mechanisms underlying complex behavior.
Not only can it provide proper and robust quan-
titative descriptions, but it also helps to formu-
late hypotheses and predict future outcome of
experimental research. Many physiologically
motivated neuronal models have been put for-
ward to investigate synchronization properties
in neural systems. Given their inherent com-
plexity, a thorough analysis can be challenging
even despite ever-increasing computational
capacities. In some cases, the dynamics of neu-
ral systems can be simplified to coupled phase
oscillators models, which often takes on a mod-
ified form of a network of seminal Kuramoto
oscillators (7) (Daffertshofer and van Wijk
2011; Schuster and Wagner 1990; Rodrigues
et al. 2016; Breakspear et al. 2010; Ton et al.
2014; Cabral et al. 2014; Tasseff et al. 2014;
Sadilek and Thurner 2015; Schmidt et al.
2015). For the Kuramoto model, there exists a
rigorous theory to describe the state of the net-
work with very few macroscopic variables. Fol-
lowing either the Watanabe-Strogatz (Watanabe
and Strogatz 1994) or the Ott-Antonsen theory
(Ott and Antonsen 2008), the time evolution of
these macroscopic variables can be derived
exactly under some quite generic conditions. It
thus becomes possible to study low-
dimensional behavior of the collective dynam-
ics in a straightforward way.

We use the Kuramoto model to illustrate this.
In brief, given the model (7) of a population of
phase oscillators yj with j = 1,. . ., N, one intro-
duces the Kuramoto order parameter (Kuramoto
1984)

z ¼ 1

N

XN
j¼1

eiyj ð10Þ

to describe the population’s common dynamics.
This order parameter can be expressed via the
population density p(y, t;o). The density contains
both frequencies and phases p(y, t; o)= q(o) f(y,
t; o), where the phase density, in general, has the
Fourier series f y, t;oð Þ ¼ 1

2p

P1
n¼�1f n t;oð Þeiny .

Substituting this into (7) motivates the ansatz
fn= a|n| with a= f1= z
.Considering a Lorentzian
frequency density q oð Þ ¼ D

p = o� o0ð Þ2 þ D2
h i

,
the exact solution of (7) for N ! 1 yields the
order parameter dynamics

_z ¼ io0 � Dþ k
2

� �
z� k

2
zj j2z: ð11Þ

Accordingly, the phase divergence r = |z|
follows the well-established equation of motion

_r ¼ � D� k
2

� �
r� k

2
r3 ð12Þ

while the mean phase c= ∢ (z) follows _c ¼ o0.
The explicit solution of (12) can be given by

r tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D� k
2

D� k
2
1� r20
� �� �

e 2D�kð Þt � k
2
r20

r0

s

ð13Þ

quantifying (one minus) the width of the density
of phases

f y, t;oð Þ ¼ 1� r2

1� 2r cos yþ r2
: ð14Þ

Hence, for some initial condition r0, the
dynamics’ relaxation time becomes
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t ¼ 1

2D� k
ln

2Dþ k r2t � 1
� �

2Dþ k r20 � 1
� � � r20

r2t

" #
ð15Þ

with r(t) = rt. The value rt can be determined
using the asymptotic solution as we set rt= r0 – g
(r0 – r1) with, e.g., g = 99.9%.

Many studies speculated about the relevance of
the (finite) time it takes for a population of neural
oscillators to approach synchrony or to
desynchronize, often in the context of the binding
problem outlined in the introductory paragraph.
Already by looking at Fig. 2, it becomes apparent
that the local field potential of a group of neurons
can only be of significant value if their phase density
is sufficiently narrow. At larger scale, classic exper-
imental paradigms for investigating relaxation times
of phase synchronization involve event- or moton-
related responses as sketched in Fig. 7.

Final Notes

Phase oscillator models help to explain how
changes in the local dynamics affect functional
connectivity, how neural synchronization can be
achieved, and how functional clusters or modules
are generated through remote synchronization.
These models have also been used to investigate
the interplay between structure (anatomy) and
function, including effects of cortical lesions on
the overall brain dynamics (Honey and Sporns
2008; Vása et al. 2015). Given their mathematical
ease, they are particularly suited to explore the
emergence of (de-)synchronized states per se and
the corresponding relationship between them, but
also to tackle even more generic characteristics
such as self-organized criticality.

The use of phase oscillator models, however, is
not without a risk: the reduction of a (network)
dynamics to a phase oscillator model requires great
care (Pietras and Daffertshofer 2019). Any
(heuristic) approximation of an oscillatory neural
network via a network of phase oscillators has to
withstand comparison with the “original” dynamics
and starting-off with “just” the phase oscillator net-
work may lose contact with biophysical or physio-
logical reality.

Summary

Rhythmic behavior of a neural population implies
an oscillatory dynamics of one or more macro-
scopic variables. The corresponding phase space
exhibits a limit cycle that, if stable, attracts the
population dynamics. If this attraction is suffi-
ciently fast, the dynamics away from the limit
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Fig. 7 Rhythmic motor performance is accompanied by
a rhythmic modulation of beta-range oscillatory activity in
primary motor cortices; cf. Fig. 1. The middle panel dis-
plays the time-dependent changes of the spectral power of
a movement cycle as assessed via MEG (Houweling et al.
2010). The beta activity displays event-related synchroni-
zation and de-synchronization (ERS and ERD, i.e., red and
blue patches, respectively). If the movement cycle is too
short, ERS and ERD cannot develop due to the finite
relaxation time of the underlying phase dynamics, and
motor performance can no longer be timed.
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cycle can be approximated by the dynamics on the
limit cycle. We illustrated this for the case of a
single population. In such a case, the high-
dimensional dynamics of neuronal oscillators can
be uniquely identified by a one-dimensional phase
variable. The phase reduction becomes especially
useful when studying a network of interacting neu-
ral oscillators as we showed for the case of coupled
Wilson-Cowan neural mass models. The resulting
phase models can, in general, be analyzed along
well-established techniques for networks of
coupled phase oscillators. The resulting findings
on synchronization properties can mimic oscilla-
tory activity in neural masses as observed in exper-
iments. They also help understanding effects of
changes in synchronization for the macroscopic
functioning of the nervous system.
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Glossary

Coordinated reset stimulation Coordinated
reset (CR) stimulation is an effectively
desynchronizing control technique, where a pop-
ulation of synchronized oscillators is stimulated
via several stimulation sites in such a way that
spatially and timely coordinated phase reset is
achieved in subpopulations assigned to each of
the stimulation sites. This method is suggested
for the counteraction of abnormal neuronal syn-
chronization characteristic for several neurologi-
cal diseases and amelioration of their symptoms.
It has successively been verified in a number of
experimental and clinical studies.

Deep brain stimulation Electrical deep brain
stimulation (DBS) is the standard therapy for
medically refractory movements disorders,
e.g., Parkinson’s disease and essential tremor.
It requires a surgical treatment, where depth
electrodes are chronically implanted in target
areas like the thalamic ventralis intermedius
nucleus or the subthalamic nucleus. For stan-
dard DBS electrical high-frequency
(>100 Hz) stimulation is permanently deliv-
ered via depth electrodes. More sophisticated
deep brain stimulation techniques are in the
process of being established for clinical use.

Delayed feedback Delayed feedback is a
method for the creation of a closed-loop forc-
ing, where a portion of the measured output
signal of a system is time delayed, linearly or
non-linearly processed, and fed back into the
system. This approach is often used to control
the dynamic behavior of complex systems. In
this article delayed feedback is used to control
synchronization in ensembles of coupled oscil-
lators, e.g., neurons.

Order parameter The order parameter is a
quantity characterizing a phase transition or
phase change in the transformation of a com-
plex system from one phase (state) to another.
The order parameter is convenient for charac-
terizing the onset and extent of synchroniza-
tion in larger ensembles: Perfect phase
synchronization corresponds to a large value
of the order parameter, whereas an incoherent
(desynchronized) state is associated with a
small value of the order parameter. In syner-
getics it has been shown that the dynamics of
complex systems may be governed by only a
few order parameters.

Synchronization Synchronization (from Greek
syn = the same, common and chronos = time)
means the adjustment of rhythms of self-
sustained oscillators due to their weak interac-
tion. The interacting oscillators can be regular
(periodic) or chaotic. There are several differ-
ent forms of synchronization including phase,

© Springer Science+Business Media, LLC, part of Springer Nature 2020
A. Hutt, H. Haken (eds.), Synergetics,
https://doi.org/10.1007/978-1-0716-0421-2_42

Originally published in
R. A. Meyers (ed.), Encyclopedia of Complexity and Systems Science, © Springer Science+Business Media LLC 2018
https://doi.org/10.1007/978-3-642-27737-5_42-2

235

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-0421-2_42&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-0421-2_42&domain=pdf
https://doi.org/10.1007/978-3-642-27737-5_42-2


complete, generalized, and lag synchroniza-
tion, etc. In this article we focus on phase
synchronization. In the simplest form, the
oscillators, rotating with the same frequency,
become phase synchronized (phase locked) to
each other, if they tend to oscillate with the
same repeating sequence of relative phase
angles. Put otherwise, the oscillators adjust
their rhythms, while their amplitude dynamics
need not be correlated.

Definition of the Subject

A brain pacemaker is a medical device that is
implanted into the brain with the purpose to
stimulate nervous tissue with electrical signals.
Brain pacemakers are used for the therapy of
patients suffering, for example, from Parkinson’s
disease, epilepsy or mental disorders. Brain stim-
ulation is either called deep brain stimulation
(DBS) if structures deeply inside the brain are
targeted or cortical stimulation (intracortical or
epicortical), if the electrical contacts of the stim-
ulator are positioned within the cortex or on its
surface. Apart from direct brain stimulation,
other targets may also be used, such as spinal
cord (e.g., for the treatment of pain) or the
vagus nerve (for the treatment of epilepsy). The
electrical stimulation of the nervous system has a
long history which goes back to the nineteenth
century where first tests with cortical stimulation
were documented (Gildenberg 2005). The first
intraoperative deep brain stimulation was
performed by Spiegel et al. in 1947 in a patient
suffering from Huntington’s chorea, and in the
eighties DBS was introduced as a treatment for
motor disorders (Brice and McLellan 1980;
Benabid et al. 1987). DBS was approved by the
Food and Drug Administration (FDA) as a treat-
ment for essential tremor in 1997, for Parkinson’s
disease in 2002, and dystonia in 2003. The treat-
ment of severe neurological and psychiatric dis-
eases with brain pacemakers is a rapidly growing
and promising field. Novel, model-based
approaches, which use methods from syner-
getics, nonlinear dynamics, and statistical phys-
ics, to specifically restore brain function and

connectivity, demonstrate how insights into the
dynamics of complex systems contribute to the
development of novel therapies.

Introduction

Self-organization processes are abundant in
numerous fields of the natural sciences (Haken
1977, 1983). For instance, the nervous system
elegantly utilizes self-organization principles for
motor control purposes (Haken et al. 1985;
Schöner et al. 1986; Haken 1996; Kelso 1995).
A classical example of a self-organization process
is synchronization of populations of interacting
oscillators, which is widely observed in physics
(Haken 1970, 1983; Pikovsky et al. 2001;
Strogatz 2003), chemistry (Kuramoto 1984), biol-
ogy (Winfree 1980), neuroscience (Steriade et al.
1990; Haken 2002), and medicine (Elble and
Koller 1990; Milton and Jung 2003; Tass 1999).
In the nervous system synchronization processes
are important, e.g., in the context of information
processing (Singer 1989) and motor control
(Andres and Gerloff 1999). However, pathologi-
cal, excessive synchronization strongly impairs
brain function (Elble and Koller 1990; Milton
and Jung 2003). In fact, pathological synchroniza-
tion processes are the hallmark of several neurolog-
ical diseases like Parkinson’s disease (PD) or
essential tremor (Alberts et al. 1969; Nini et al.
1995). For example, Parkinsonian resting tremor
appears to be caused by a pacemaker-like popula-
tion of neurons which fires in a synchronized and
periodical manner (Alberts et al. 1969; Smirnov
et al. 2008). In contrast, under healthy conditions
these neurons fire in an uncorrelated,
i.e. desynchronized manner (Nini et al. 1995).

Permanent deep brain stimulation (DBS) at
high frequencies (>100 Hz) is the standard ther-
apy for medically refractory patients suffering
from Parkinson’s disease and essential tremor
(Benabid et al. 1991, 2002; Blond et al. 1992),
see Fig. 1. High-frequency (HF) DBS has been
developed empirically, mainly based on experi-
mental results and clinical observations. The
mechanism of HF DBS is still a matter of debate
(Benabid et al. 2005). Clinical studies showed that
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HF DBS essentially has similar effects as
observed after tissue lesioning. Compared to
lesioning, DBS is reversible and has a lower rate
of side effects (Tasker 1998; Schuurman et al.
2000). However, in spite of many beneficial
effects, in some patients DBS may not help, or
may cause side effects, or the therapeutic effects
may disappear over time (Tasker 1998; Volkmann
2004; Rodriguez-Oroz et al. 2005; Deuschl et al.
2006). With the objective of finding better toler-
ated and more effective DBS techniques, a model-
based development of novel stimulation methods
has been initiated (Tass 1999, 2002a, c, 2003b;
Hauptmann et al. 2005a, b, c, 2007b; Tass et al.
2006; Popovych et al. 2005, 2006a, b), see Fig. 2.
In these studies, relevant neuronal target
populations were modeled mathematically and
stimulation techniques have been developed uti-
lizing principles from nonlinear dynamics and
statistical physics (Tass 1999).

One goal of this approach is to control the
pathological neural dynamics appropriately in
order to achieve a mild and efficient relief of
symptoms (Tass 1999). The second, more ambi-
tious goal is to stimulate in a way that the formerly
affected neuronal populations unlearn their path-
ological connectivity and, hence, their tendency to
produce pathological synchronization (Tass and
Majtanik 2006). Put otherwise, the very goal of

this approach is to induce long-lasting therapeutic
effects which outlast the cessation of stimulation
(Tass and Majtanik 2006; Tass and Hauptmann
2007; Hauptmann and Tass 2007). To this end,
stimulation algorithms have been developed and
optimized to exploit dynamic self-organization
principles and plasticity rules (Tass and Majtanik
2006; Tass and Hauptmann 2006, 2007; Haupt-
mann and Tass 2007; Hauptmann et al. 2007b).

Several novel stimulation techniques have
computationally been developed in the past. In
this article four of these control methods will be
presented in detail: coordinated reset
(CR) stimulation (Tass 1999, 2002a, c, 2003b),
multisite linear delayed feedback (MLDF) stimu-
lation (Hauptmann et al. 2005a, b, c), nonlinear
delayed feedback (NDF) stimulation (Popovych
et al. 2005, 2006a, b; Popovych and Tass 2010),
and proportional–integro–differential feedback
(PIDF) stimulation (Pyragas et al. 2007). These
techniques have the common objective of reduc-
ing the synchronized activity of the target popu-
lation by reestablishing a normal desynchronized
physiological activity in a highly synchronized
population of neurons. For other stimulation
methods we refer to Rosenblum and Pikovsky
(2004a), Tukhlina et al. (2007), Kiss et al.
(2007), Luo et al. (2009), Danzl et al. (2009),
and Nabi and Moehlis (2011).

Brain Pacemaker, Fig. 1 Standard DBS setup. A depth
electrode is implanted into the target structure (e.g., the
subthalamic nucleus). The electrode is subcutaneously
connected with the generator of the high-frequency

stimulation signal (not shown in this image). The stimula-
tion signal is delivered through one or more of the four
stimulation contacts labeled from 0 to 3
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CR stimulation, in its original realization, uses
short electrical pulse trains to subsequently reset
sub-populations of the neuronal network, which
induces a desynchronized state (Tass 1999, 2002a,
c, 2003b). The stimulation is applied through a
small number of stimulation sites which are
equally spaced within the neuronal population.
CR stimulation induced desynchronization is
achieved by utilizing self-organization principles,
in particular, the slaving principle induced by the
pathological neuronal interactions (i.e., interac-
tions which have the potential to induce a patho-
logical synchronization) (Tass 2002a, c, 2003b).
MLDF (Hauptmann et al. 2005a, b, c) and NDF
(Popovych et al. 2005, 2006a, b; Popovych and
Tass 2010) stimulation use delayed feedback for
stabilizing a desynchronized state which is
intended to be as close to the physiological mode
of action as possible. Here, the local field potential
(LFP) of the target population is measured, ampli-
fied, delayed, and fed back into the ensemble. The
PIDF feedback (Pyragas et al. 2007) utilizes an
instantaneous LFP and is designed for a particu-
larly difficult situation characterized by a separate
registration and stimulation setup.

It has been shown experimentally, that synaptic
plasticity enhances pathological synchronization

(Nowotny et al. 2003). From the kindling phe-
nomenon in the context of epilepsy it is well
known that neural networks may learn patholog-
ical strong interactions (Speckmann and Elger
1991; Morimoto et al. 2004). The novel
desynchronizing stimulation protocols are
designed to invert this pathological process, so
that the affected neuronal populations unlearn
their pathological connectivity, and physiological
neuronal activity is re-established on a long-term
basis. In a nutshell, the novel stimulation tech-
niques aim at a well-directed employment of fun-
damental principles of dynamic brain action to
induce long-lasting therapeutic effects.

Standard High-Frequency Stimulation

High-frequency (HF) deep brain stimulation
(DBS) is the standard therapy for patients suffer-
ing from medically refractory PD or essential
tremor (Benabid et al. 1991, 2002). To this end,
depth electrodes are chronically implanted in the
thalamic ventralis intermedius nucleus or the sub-
thalamic nucleus (Benabid et al. 1991, 2002) and
a permanent HF (>100 Hz) periodic pulse train
stimulation is applied (Fig. 1). HF DBS has been

Novel deep brain
stimulation techniques

animal experiments &
clinical evaluation

oscillator networks &
neural networks

Mathematical models
of target areas

dynamic self-organization &
plasticity rules

Nonlinear dynamics,
Statistical physics &

Synergetics

Brain Pacemaker, Fig. 2 Model-based development of
novel deep brain stimulation techniques: Along the lines of
a top-down approach target areas for deep brain stimula-
tion are modeled by means of oscillator networks and
physiology- and anatomy-based neural networks. Methods
from nonlinear dynamics, statistical physics, and syner-
getics are employed to develop stimulation techniques

which specifically utilize dynamic self-organization prin-
ciples and plasticity rules. Experimental feedback from
both animal experiments and clinical evaluation serves to
validate, falsify or modify theoretical assumptions and
predictions. This iterative approach aims at steadily
improving the mathematically designed stimulation tech-
niques and, hence, at establishing superior therapies
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developed empirically, mainly based on
intraoperative observations. HF DBS strongly
alters the neuronal firing and mimics the effect
of tissue lesioning, e.g., by suppressing neuronal
firing, which, in turn, suppresses the peripheral
tremor (Benabid et al. 2002; Filali et al. 2004;
McIntyre et al. 2004b; Volkmann 2004). How-
ever, as yet, the mechanism of HF DBS is not
sufficiently understood (McIntyre et al. 2004b).

During stimulation HF DBS seems to induce a
regular bursting mode (Beurrier et al. 2002). After
a reduction of stimulation artifacts, robust burst-
ing activity in subthalamic nucleus (STN) neurons
was observed in slices from naive or resperine-
treated rats. After offset of stimulation, blockade
of activity, i.e., a non-specific suppression of the
neuronal activity in the target structures through a
depolarization blockade which did not require
synaptic transmission was observed (Beurrier
et al. 2001).

Other hypotheses are that HF DBS applied to a
PD patient mimics the effect of tissue lesioning
and appears to block neuronal activity in relevant
target areas during stimulation (Benabid et al.
2002). In single-compartment conductance-
based biophysical models of isolated STN neu-
rons the HF stimulation may cause a suppression
of neuronal activity on an elementary membrane
level, where a neuron’s resting state or low-
amplitude subthreshold oscillations can get stabi-
lized (Pyragas et al. 2013). The obtained theoret-
ical results resemble the clinically observed
relations between stimulation amplitude and stim-
ulation frequency required to suppress Parkinso-
nian tremor (Benabid et al. 1991). The most
probable hypothesis was offered by Benabid
et al. (2005), in which a mixture of different
mechanisms was discussed. The contributing
mechanisms resulting in the observed effects of
HFDBSmight bemembrane inhibition, jamming,
excitation of excitatory and inhibitory afferents,
excitation of efferents and plasticity (Benabid
et al. 2005). In particular, HF stimulation of affer-
ent axons projecting to STN can account for a
therapeutic effect of HF DBS within STN
(Gradinaru et al. 2009).

To precisely evaluate the contribution of
these different mechanisms, spatially extended

multicompartment neuron models were used to
demonstrate the effects of extracellular stimula-
tion on the different structures of the stimulated
neuronal population (Grill and McIntyre 2001).
Depending on the stimulation amplitude and the
shape of the stimulation pulses, either the cells
were activated directly or fibers mediating excit-
atory or strong inhibitory action were activated
(Grill and McIntyre 2001). Modeling studies indi-
cate that already at the level of single neurons, the
activation of a larger number of structures can take
place with different and possibly conflicting
impacts on the single neuron dynamics (Grill and
McIntyre 2001). The collective dynamics of neu-
ronal populations further adds aspects which are
important for the creation of synchronized activ-
ity: cells responding differently to external inputs
like somatosensory stimulation or stimulation due
to activemovements are present in the target tissue
together with so called no-response cells (Lenz
et al. 1994). HF stimulation has a complex impact
on these structures (Benabid et al. 2002; Shen
et al. 2003).

Experimental and modeling studies also indi-
cate that the globus pallidum interior (GPi) – one
structure of the basal ganglia – might be strongly
involved in the mechanisms of DBS (Hashimoto
et al. 2003; Garcia et al. 2005; McIntyre et al.
2004a; Rubin and Terman 2004; Miocinovic
et al. 2006). The results of modeling studies indi-
cate that under parkinsonian conditions the rhyth-
mic inhibition from GPi to the thalamus
compromises the ability of thalamocortical relay
cells to respond to depolarizing inputs, such as
sensorimotor signals. HF stimulation of STN reg-
ularizes GPi firing, and this restores the respon-
siveness of the thalamus (Rubin and Terman
2004). In such a way, one may distinguish
between local and non-local effects of HF DBS.
Locally, in the vicinity of the stimulation elec-
trode, the axons rather than cell bodies (somas)
get activated (McIntyre et al. 2004a), while the
latter can even be effectively inhibited by the HF
stimulation (Beurrier et al. 2001; Benabid et al.
2002; Welter et al. 2004; Meissner et al. 2005).
The stimulation-induced axonal activity propa-
gates antidromically and ortodromically
(Hammond et al. 2008) and can change the firing
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in the output structures downstream to the neuro-
nal target population. The pathological discharge
patterns there can be replaced by a HF spiking or
suppressed depending on whether the efferent
fibers of the stimulated nucleus are excitatory or
inhibitory, respectively (Hashimoto et al. 2003;
Anderson et al. 2003; McIntyre et al. 2004b). In
other words, local and non-local effects of HF
DBS may differ considerably.

HF DBS is reversible and has a much lower
rate of side effects than lesioning with thermo-
coagulation (Schuurman et al. 2000). Although
HF DBS is the golden standard for the therapy
of medically refractory movement disorders, there
are still limitations of HF DBS: On the one hand
HF DBS may cause adverse effects like dysar-
thria, dysesthesia, cerebellar ataxia, and memory
decline (Volkmann 2004; Rodriguez-Oroz et al.
2005; Freund 2005). On the other hand HF DBS
may be ineffective or its therapeutic effect may
wear off over time (Kumar et al. 2003; Rodriguez-
Oroz et al. 2005). For instance, 11–15% of PD
patients have unsatisfactory outcomes although
their depth electrodes are properly placed
(Limousin et al. 1999).

Coordinated Reset Stimulation

To study the impact of pulsatile stimuli on single
oscillators and, in particular, populations of oscil-
lators in a biologically more realistic setting, it
was necessary to take into account random forces
(Tass 1996a, b, 1999). To this end, a stochastic
concept of phase resetting has been developed for
populations of non-interacting (Tass 1996a, b) as
well as interacting (Tass 1999) oscillators in the
presence of noise. In this approach limit cycle
oscillators were approximated by phase oscilla-
tors (Hansel et al. 1993b), so that the pulsatile
stimulation only affects the oscillators’ phases. If
a single pulse of the right intensity and duration is
delivered to the population in the stable synchro-
nized state, it causes an at least temporary
desynchronization provided it hits the population
at a vulnerable phase. Theoretically, single pulse
stimulation has also been studied in more complex
networks, for instance, networks of coupled phase

oscillators with inertia, modeling dendritic
dynamics (Dolan et al. 2005; Majtanik et al.
2006). Based on the stochastic phase resetting
theory and utilizing a phase oscillator as a model
for a single neuron (Hansel et al. 1993b), demand-
controlled single pulse deep brain stimulation has
been suggested for the therapy of movement dis-
orders like Parkinson’s disease or essential tremor
(Tass 1999, 2000).

However, there are drawbacks to single-pulse
stimulation which decisively limit its applicability
(Tass 2001b; Zhai et al. 2005): First, if the mutual
coupling is not weak, the vulnerable phase range
we have to hit in order to cause an effective
desynchronization is only a small fraction (e.g.,
5%) of a period of the collective oscillation. Sec-
ond, the critical stimulation parameters required to
achieve a good desynchronization depend on the
initial dynamical state of the population. Thus,
different stimulation parameters have to be used
if the cluster is not in its stable synchronized state.

To overcome the limitations of single pulse
stimulation, double pulse (Tass 2001a, b) stimu-
lation has been proposed: Two qualitatively dif-
ferent stimuli are successively delivered. The first,
stronger pulse resets (restarts) the collective oscil-
lation irrespective of the initial state of the popu-
lation. The second, weaker pulse is applied after a
fixed time delay, where it hits the cluster in its
vulnerable state and, hence, causes a
desynchronization. There are different variants
of double pulse stimulation, depending on the
type of stimuli used to achieve a reset or a
desynchronization (Tass 2001c, 2002a, b, c). For
instance, the first resetting pulse can be replaced
by a brief high-frequency pulse train (Tass 2001c)
or by a softly resetting low-frequency pulse train
(Tass 2002a, b).

Although double pulse stimulation causes a
desynchronization irrespective of the initial
dynamical state at which this stimulus is deliv-
ered, there are still limitations which may hinder
an application to a biological system (Tass 2003a,
b): On the one hand, double pulse stimulation
requires a calibration. On the other hand, double
pulse stimulation is only effective if the system
parameters are reasonably stable. The required
quasi-stationarity of the system parameters
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combined with the possibly time consuming cal-
ibration may cause problems when applied to a
real biological system, where fluctuations of
model parameters are inevitable.

To provide a stimulation technique which is
robust with respect to system parameters and
which does not require calibration, coordinated
reset (CR) stimulation has been developed (Tass
2003a, b). The idea behind this approach is to
abstain from achieving a perfect desynchronization
by a well-calibrated stimulus. Rather, by means of a
robust and comparably mild stimulus the stimulated
population is shifted into a dynamical state which is
not the desired desynchronized state, but sufficiently
close to it. Close in the sense that due to the patho-
logically strong coupling the population automati-
cally relaxes into the desired desynchronized state.
This approach essentially exploits the pathological
tendency of the neuronal population to establish a
synchronized state. Accordingly, CR stimulation is
in a way comparable to Asian martial arts, where
ideally a minimal amount of energy (i.e., CR stim-
ulation) is invested to control the adversary by uti-
lizing the adversary’s own energy (i.e., the neurons’
pathological strong coupling).

The scheme of the stimulation setup is pre-
sented in Fig. 3a. Several stimulation sites are
placed within the target network and weak reset-
ting stimulation signals are administered via these
stimulation sites. In this way the oscillatory pop-
ulation is divided into several sub-populations,
where each of them is assigned to the
corresponding stimulation site and receiving the
stimulation signal mostly from that stimulation
site. CR stimulation means that a synchronized
population of neurons is stimulated with a
sequence of brief resetting stimuli (typically
brief HF stimulus trains) via the different sites.
The delay between the subsequent resetting stim-
uli can be chosen as t= T/n with respect to that at
the preceding site, where n is the number of stim-
ulation sites, and T approximates the mean period
of the collective dynamics of synchronized oscil-
lators (Tass 2003a, b).

The subsequent reset of the different sub-
populations induces a so-called cluster state, i.e.,
the whole population is divided into n sub-
populations which differ with respect to their

mean phase. This effect is illustrated in Fig. 3b
where a snapshot of the distribution of the phases
cj of stimulated oscillators is shown in the (cos
(cj),sin(cj))-plane after CR stimulation. The
phases of the population of oscillators stimulated
via, e.g., four sites form four phase clusters dis-
tributed equidistantly (or close to that) over the
unit circle. To estimate the extent and type of
synchronization of the whole population of
N oscillators, the cluster variables

Zm tð Þ ¼ Rm tð ÞeiCm tð Þ ¼ 1

N

XN
j¼1

eimcj tð Þ, (1)

can be used. Rm(t) and Cm(t) are the
corresponding real amplitude and real mean
phase, where 0 � Rm(t) � 1 for all time t (Daido
1992; Tass 1999). Cluster variables are conve-
nient for characterizing synchronized states of

Brain Pacemaker, Fig. 3 Stimulation setup of CR stim-
ulation method. (a) Brief and mild resetting stimuli are
administered at different sites at subsequent times and
effectively divide the stimulated population into several
sub-populations such that (b) their phases cj form phase
clusters equidistantly (or close to that) distributed over the
unit circle. (c) Nearly uniform distribution of the oscillator
phases during the post-stimulation transient
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different types: Perfect in-phase synchronization
corresponds to R1 = 1, whereas an incoherent
state, with uniformly distributed phases, is asso-
ciated with Rm = 0, m = 1, 2, 3, . . . Small
values of R1 combined with large values of Rm

are indicative of anm-cluster state consisting of m
distinct and equally spaced clusters, where all
oscillators within the same cluster have similar
phases. In Fig. 3b, for instance, R1 � 0.02,
whereas R4 � 0.87, indicating a four-cluster state
induced by CR stimulation administered via four
stimulation sites as in Fig. 3a.

From the cluster state the neurons typically
relax to a uniformly desynchronized state
(Fig. 3c) before they revert back to the in-phase
synchronized state, if left unperturbed. To under-
stand how a stimulus-induced clustering leads to
an effective desynchronization, the dynamics of the
leading modes Z1, Z2, . . ., can be considered.
When the coupling among oscillators becomes suf-
ficiently large, e.g., it exceeds a certain critical
value, Z1 from (Eq. 1) becomes an order parameter

(Kuramoto 1984), which according to the slaving
principle (Haken 1983) governs the dynamics of
the other stable modes Zm (m = 2, 3, . . .) on the
center manifold (Pliss 1964): The order parameter
Z1 acts on a slow time scale, whereas the stable
modes Zm act on a fast time scale and relax to
values given by the order parameter Z1
(Wunderlin and Haken 1975; Haken 1983). In a
system with a large number of oscillators this rela-
tionship reads (Tass 1999):

Rm / Rn
1 with n � 2, m

¼ 2, 3, 4, . . . (2)

Hence, to maintain a desynchronized neuronal
firing, CR stimuli have to be administered
repetitively.

CR stimulation exploits transient responses
which are due to the oscillators’ (pathologically
strong) interactions. The general stimulation pro-
tocol of the intermittent CR stimulation is illus-
trated in Fig. 4. Here, the collective dynamics is

Brain Pacemaker, Fig. 4 A general scheme of the intermittent CR stimulation. Desynchronized firing of neurons is
maintained by repetitive administration of CR stimuli intermingled with epochs of no stimulation
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visualized by considering the collective firing of
the neurons. A single firing/bursting model neu-
ron fires/bursts whenever its phase is close to zero
(modulo 2p) (Kuramoto 1984; Ermentrout and
Kopell 1991; Grannan et al. 1993; Hansel et al.
1993a; Tass 1999). The collective firing can be
illustrated with the relative number of neurons
producing an action potential or burst at time
t given by

nfire tð Þ ¼ number of neurons with coscj > 0:99

N
:

(3)

0 � nfire(t) � 1 for all t. nfire(t) = 0 means that
no neuron fires/bursts, while all neurons fire/burst
at time t if nfire(t) = 1. Varying the threshold
parameter 0.99 in a reasonable range does not
change the results. As shown in Fig. 4, stimulation
starts when the neurons are synchronized and the
collective firing demonstrates high-amplitude
rhythmic oscillations (upper-right insert in
Fig. 4). After a few periods of stimulation the
oscillatory population is set to a cluster state
(bottom-right insert in Fig. 4). Then the stimula-
tion is switched off and the ensemble returns to a
synchronized state, on this way running through a
uniformly desynchronized state (bottom-left
insert in Fig. 4). And the procedure is repeated
such that the ensemble is kept in a transient
desynchronized state. The relaxation to a clus-
tered state is due to the system being attracted by
the center manifold as characterized by Eq. 2. By
imposing a cluster state, the stimulation does only
half of the desynchronizing work. The rest,
namely approaching a uniformly desynchronized
state, is done by the system itself. In this way the
coupling, which causes the synchronization, is
used for improving the desynchronizing effect.
In the course of the post-stimulus transient R1

and according to Eq. 2 also R2, R3, . . . recover
again. The system finally reaches its stable
in-phase synchronized state again. In summary,
by shifting the system into an unstable cluster
state, the system reacts by automatically running
through a desynchronized state. Finally, the sys-
tem reverts back to the synchronized state, if left
unperturbed.

The effectively desynchronizing intermittent
CR stimulation can be used to block the
resynchronization. For this, the repetitive stimulus
administration can be organized either regardless
of the state of the stimulated ensemble (open-loop
control) or in a demand-controlled way (closed-
loop control), where the following three different
control strategies can be utilized:

(i) Periodic administration of CR stimuli: The
most simple, open-loop type of stimulation is
a periodic administration of CR stimuli. Here
the time intervals of fixed length of CR stim-
ulation (ON cycles) alternate with time inter-
vals of fixed length where the stimulation is
switched off (OFF cycles).

(ii) Demand-controlled timing of the adminis-
tration of identical stimuli: Whenever the
population tends to resynchronize, the same
stimulus is administered (Fig. 5). The stron-
ger synchronization among the neurons is,
the more often a stimulus has to be adminis-
tered to maintain an uncorrelated firing. In
addition, for an ideal performance in an
experimental application one has to observe
the synchronized oscillation during a suffi-
ciently long period of time in order to per-
form a frequency analysis which yields the
period T of the population in the absence of
stimulation and, thus, the critical stimulation
parameter t (the time delay between the two
successive HF pulse trains administered via
different stimulation sites, see Fig. 3). More-
over, instead of performing such a calibra-
tion of, pre-set values of can be used by
adapting the latter to the typical frequency
range of the pathological oscillation (see,
e.g., Tass et al. 2012b).

(iii) Periodically administered HF pulse trains of
demand-controlled length: The stimuli are
periodically administered with offset times
tk = knT, where k = 0, 1, 2, 3, . . . is the

index labeling the different stimuli, T ¼ ~T þ
e is a time interval in the range of the period ~T

of the population without stimulation, and n is
a small integer such as 2 or 3. This means that
a 1:n entrainment of the four sub-populations
is performed, where the spontaneous
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frequency of the neurons is approximately n
times larger compared to the frequency of
stimulus administration. The smaller |e|, the
smaller is the stimulation strength necessary
to achieve an entrainment.

The closed-loop variants (ii) and (iii) require
that the ensemble’s activity or at least a quantity
representing the extent of synchronization can be
measured appropriately. Here, either the start
times of identical CR stimuli or the length of
periodically administered stimuli are calculated
from the values of R1. For example, in the case
(ii) the stimulation is started if R1 becomes larger
than a certain threshold (Fig. 5, upper two plots),
whereas in the case (iii) the stimulation period is
longer for larger values of R1 measured at the
onset of the stimulation (Fig. 5, bottom two
plots). In the latter case the length of the HF
pulse trains increases linearly between a minimal
value Mmin and a maximal value Mmax of single-
pulses (except for rounding), where the latter is

initially used for desynchronizing the fully syn-
chronized population. R1 is measured at (or, in
practice, close to) times t0k ¼ tk � tmax where tmax

the maximal duration of a HF pulse train
(containing Mmax single-pulses). R1 t0k

� �
deter-

mines the number of pulses of the HF pulse trains
administered via each of the stimulation sites of
the kth stimulus according to

Mk ¼ min
R1 t0k

� �
Mmax �Mminð Þ
R1 t0ð Þ

� �
ℤ
þMmin,Mmax

� �
,

(4)

where k = 0, 1, 2, 3, . . ., [x]ℤ stands for
rounding x to the nearest integer, and min
{x1, x2} stands for the minimum of {x1, x2}. The
kth stimulus ends precisely at time tk = knT,
whereas it starts somewhere between t0k (forMk =
Mmax) and tk (forMk = Mmin = 0), depending on
its duration. If the suppression of R1 is not suffi-
cient one may (i) choose a larger intensity of

Brain Pacemaker, Fig. 5 Desynchronizing effect of the
demand-controlled intermittent CR stimulation. Time
course of R1 from Eq. 1 (a and c) and of nfire from Eq. 3
(b and d) during different types of stimulation. Demand-
controlled timing of stimulus administration (a and b): As
soon as the amplitude R1 of the recovering order parameter

reaches the value of 0.5, the stimulus is administered again.
Periodical stimulation with demand-controlled length of
HF pulse train (c and d): The stimulus is administered
periodically, where the length of the HF pulse trains is
adapted to R1 according to Eq. 4 with Mmax = 15 and
Mmin = 0. First published in Tass (2003b)
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stimulation, (ii) increaseMmin, (iii) administer the
stimuli at a higher rate, i.e. decrease n, so that the
inter-stimulus interval tk + 1 � tk = nT gets
smaller, (iv) increase the duration of each single
pulse of the pulse trains and/or increase the intra-
burst frequency of the pulse trains (i.e., bursts).
The feedback value of R1 can also be evaluated
before time t0k , especially in case of a slow order
parameter dynamics (i.e., when the synchroniza-
tion is weak with respect to the noise). One could
also use the mean of R1 in a period of evaluation.

Applying the standard, permanent HF stimula-
tion (Benabid et al. 1991; Blond et al. 1992) (in a
first approximation) corresponds to stimulating
each neuron with the same HF pulse train. During
a permanent HF stimulation a high-frequency
entrainment of the order parameter Z1 captures
Z1 in a small portion of the complex plane (Tass
2001c), so that the individual neurons’ firing is
stopped, but no desynchronization occurs. In con-
trast, during stimulation R1 can be even larger
compared to its pre-stimulus level, and after stim-
ulation the synchronous firing continues immedi-
ately. To suppress the firing with such a simple
pulse train persistently, it has to be administered
permanently. The number of single pulses used to
suppress the firing in the case of the standard
permanent HF pulse train stimulation is about
five to eight times larger than that used for
blocking the resynchronization in Fig. 5a–d,
respectively. This illustrates the effectiveness of
the demand-controlled CR stimulation. The latter
can effectively desynchronize stimulated oscilla-
tors with a significantly smaller amount of stimu-
lation current compared to the standard permanent
HF pulse-train stimulation.

The efficacy of CR stimulation can further be
improved by an optimal choice of stimulation
parameters. Several computational studies on
neuronal models of different complexity
have addressed this problem and showed that the
intermittent m: n ON–OFF CR stimulation,
where m cycles with stimulation ON are recur-
rently followed by n cycles with stimulation
OFF, is most effective for a weak stimulation
intensity and short ON intervals (Lysyansky
et al. 2011a). The stimulation-induced cluster
state leads to the longest desynchronizing post-

stimulation transient which can further be pro-
longed for non-uniform timing of the stimuli
onsets (Luecken et al. 2013). The number of stim-
ulation sites is another important stimulation
parameter, and its optimal choice essentially
depends on the properties of the neuronal tissue
(Lysyansky et al. 2013). For a weak (strong) spa-
tial decay rate of the stimulation current with
distance to the stimulation site, CR stimulation
can optimally be delivered via small (large) num-
ber of stimulation sites.

The theoretical findings on the properties of
CR stimulation have been verified experimentally.
The resetting impact and the induced transient
desynchronization of an electrical short-pulse
stimulation, on which the CR technique is based,
have been reported in vivo for coupled neuronal
bursters in paddle fish (Neiman et al. 2007). Tak-
ing into account the spike timing-dependent syn-
aptic plasticity (see section “Plasticity”), the long-
lasting desynchronizing effects of CR stimulation
have been investigated in detail in theoretical
studies (Tass and Majtanik 2006; Tass and
Hauptmann 2006, 2007; Hauptmann and Tass
2007), and the results have been confirmed exper-
imentally in vitro in rat hippocampal slice (Tass
et al. 2009). The beneficial therapeutic long-
lasting aftereffects of weak CR stimulation have
been observed in the 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP)-treated macaque
monkeys in contrast to a stronger CR stimulation
and to the standard HF DBS (Tass et al. 2012b).

Modeling shows that CR stimulation can be
effective for a number of stimulation setups and
demonstrate a great applicability. Based on a com-
putational study, CR stimulation has been
suggested for counteraction of cerebral hypo-
activity, in particular, to activate hypo-active or
inactive neuronal populations found in a number
of diseases without promoting pathological syn-
chronization by a multi-frequency and phase-
shifted activation of the stimulated neuronal net-
works (Lysyansky et al. 2011b). Other computa-
tional studies showed that CR stimulation can be
effective in inducing desynchronization for direct
somatic stimulation and as well as for excitatory
or inhibitory synaptically meditated stimulation
(Popovych and Tass 2012). The latter stimulation
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setup might correspond to stimulation of afferent
or efferent fibers or sensory stimulation where the
stimulation signals arrive at the neural target pop-
ulation as post-synaptic potentials. Sensory CR
stimulation has been suggested for suppression
of the neural synchrony underlying tinnitus (Tass
and Popovych 2012) and successively verified in
a clinical proof of concept study in tinnitus
patients treated with non-invasive acoustic CR
stimulation (Tass et al. 2012a; Silchenko et al.
2013; Adamchic et al. 2013).

Multisite Linear Delayed Feedback

Similarly as in the case of CR stimulation, multi-
site linear delayed feedback (MLDF) (Hauptmann
et al. 2005a, b, c, 2007a) is administered via
several stimulation sites, e.g., via four sites as
illustrated in Fig. 3a. The individual stimulation
signals Sm(t) of each of the stimulation sites are
however derived from the delayed mean field Z(t)
of the stimulated ensemble using different time
delays for different stimulation signals. The
mean field characterizes the collective macro-
scopic dynamics of the oscillators and can be
viewed as the ensemble average of the signals
zj(t), j = 1, . . ., N, of individual oscillators,

Z tð Þ ¼ N�1
XN
j¼1

zj tð Þ .

For n stimulation sites, the stimulation signals
are calculated as Sm(t) = KZ(t � tm),
m = 1, . . ., n, where K is the amplification
parameter, and the values of delay tm, for exam-
ple, for n = 4 are calculated from the following
relation:

tm ¼ 11� 2 m� 1ð Þ
8

t, m ¼ 1, 2, 3, 4: (5)

The delays tm are symmetrically distributed
with respect to the main delay t, where the
smallest time delay between neighboring stimula-
tion sites is chosen as t/4. In the case t = T (mean
period of the ensemble), the delays tm are uni-
formly distributed over the mean period T. In
another realization, instead of four delays tm,
m = 1, . . ., 4 one can use only two of them,

e.g., t1 and t2. One can put t3 = t1
and t4 = t2, where the polarity of the
stimulation signals S3(t) and S4(t) is reversed:
S3(t) = � S1(t) and S4(t) = � S2(t). Assum-
ing that the mean field of the ensemble uni-
formly oscillates with period T = t, the
alternating polarity of the signal corresponds
to a shift in time by half a period. Therefore,
under this condition the stimulation signal S3-
(t) = � S1(t) = � KZ(t � t1) approximates
the stimulation signal S1(t + t/2) which is
shifted in time by half of the period, which, in
turn, is equal to KZ(t � t3), where t3 is calcu-
lated according to Eq. 5. Analogous arguments
are applicable to the stimulation signal
S4(t) = � S2(t) = � KZ(t � t2).

If the phaseC(t) of themean field Z(t) (see also Z1
from Eq. 1) uniformly rotates with a constant fre-
quencyO = 2p/t, the phasesFm(t) = C(t � tm) of
the stimulation signals Sm(t) are distributed uniformly
over the unit circle as illustrated in Fig. 6a. Then the
phases cj(t) of the stimulated neuronal sub-
population assigned to the stimulation site m are
attracted to the phaseC(t � tm) of the corresponding
stimulation signal. Hence, the phases of all oscillators
stimulated with MLDF become symmetrically
redistributed on the circle (0, 2p) in a cluster state.
The order parameter R1(t) thus gets minimized.
Depending on the value of delay t, the stimulation
can induce different clustered states in the stimulated
ensemble, where the corresponding order parameter
Rm attains large values.

As shown in Fig. 6b, c, the in-phase synchro-
nization in the stimulated ensemble is effectively
suppressed (for time t > 200, where both cou-
pling and stimulation are switched on), where
the order parameter R1 = j Z1(t)j from Eq. 1
attains small values (Fig. 6b, c, red curve). This
indicates a symmetrical redistribution of the oscil-
lator phases cj(t) over the unit circle. For the
parameter t close to the mean period T of the
stimulation-free ensemble a four cluster state is
induced by the stimulation, where the order
parameters R1 and R2 are small, whereas R4 is
relatively large (Fig. 6b). In the subplot, where
four trajectories from each of the stimulated sub-
populations are depicted, the emerging four-
cluster state induced by MLDF is illustrated. For
t closer to, for example, 2T the stimulation
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induces a two-cluster state, where R1 is small,
whereas R2 and R4 are large (Fig. 6c). The oscil-
lators thus split into two clusters, which is also
illustrated in the subplot in Fig. 6c.

MLDF robustly suppresses the in-phase syn-
chronization as shown in Fig. 7a, where the time-
averaged order parameter 〈R1〉 attains small
values for a broad range of parameters t and K.
On the other hand, depending on system and
stimulation parameters, MLDF can induce either
a two-cluster state, where the second order param-
eter R2 attains relatively large values (e.g., for
t � 2T, see Fig. 7b), or a four-cluster state,
where R2 becomes small and the fourth order
parameter R4 increases (e.g., for t � T, see
Fig. 7c). Therefore, the whole stimulated popula-
tion is divided into two or four distinct
sub-populations. Within the phase clusters the
individual oscillators have phases close to each

other, while the different phase clusters are equi-
distantly distributed within the cycle. Hence,
depending on the values of the parameters t and
K, MLDF with four stimulation sites may cause
either a two-cluster state, where R1 is close to zero
and R2 is large, or a four-cluster state, where both
R1 and R2 are small, but R4 is large. The cluster
states become less pronounced and the phases
redistribute on the circle even more uniformly if
a local coupling as well as spatially decaying
profile of the current spread is taken into account
(Hauptmann et al. 2005a).

In Fig. 7d a similar two-parameter diagram for
the averaged order parameter R1(t) is presented for
a single-site linear delayed feedback (SLDF)
suggested for synchronization control in refer-
ences (Rosenblum and Pikovsky 2004a, b). The
stimulation is performed via one stimulation elec-
trode in such a way that all oscillators of the

Brain Pacemaker,
Fig. 6 Control of
synchronization by
multisite linear delayed
feedback (MLDF)
stimulation. (a) Distribution
of the phases Fm(t) of the
stimulation signals Sm(t)
administered via four
stimulation sites (as in
Fig. 3a), which are the
delayed mean phase,
Fm(t) = C(t � tm), with
delays tm from Eq. 5 for
t = T. (b and c) Time
courses of the amplitudes of
the cluster variables (Eq. 1),
the order parameters R1, R2

and R4. In the subplots four
trajectories from each of
four stimulated sub-
populations assigned to
each of four different
stimulation sites are shown
for t � (320,340).
Parameter t = T in (b) and
t = 2T in (c)
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ensemble (in the first approximation) receive the
same stimulation signal S(t). In this case
the stimulation signal S(t) attains the form
S(t) = KZ(t � t). For the stimulation with SLDF,
in the corresponding two-parameter diagram
(Fig. 7d) islands of perfect desynchronization are
complemented by areas of stimulation-enhanced
synchronization. In the limit N!1 the order
parameter R1 = 0 in the desynchronization
regions, where the phases are uniformly distrib-
uted on the circle (0, 2p) (Rosenblum and
Pikovsky 2004a, b). This is the state of complete
desynchronization, where the stimulated oscilla-
tors rotate with different frequencies indicating an
absence of any clustered state whatsoever. The
island-like structure of desynchronization regions
in parameter space of SLDF (Fig. 7d) was also
experimentally confirmed for arrays of coupled
electrochemical oscillators (Zhai et al. 2008).

The important property of the stimulation with
the multi- and single-site linear delayed feedback
is the inherit demand-controlled character of the

methods. As soon as the desired desynchronized
state is achieved, the values of the order parameter
R1(t), i.e., the amplitude of the mean field become
small. Along with the order parameter, in the
desynchronized state the amplitude of the stimu-
lation signal S(t) vanishes as well. The stimulation
with multi- and single-site linear delayed feed-
back thus represents noninvasive control methods
for desynchronization of coupled oscillators. The
stimulated ensemble is then subjected to a highly
effective control at a minimal amount of stimula-
tion force.

Nonlinear Delayed Feedback

As for the case of the single-site linear delayed
feedback, for the stimulation with nonlinear
delayed feedback (NDF) only one registering
and one stimulating site is required, see Fig. 8a.
All stimulated oscillators receive the same stimu-
lation signal S(t) which is constructed from the

Brain Pacemaker, Fig. 7 Impact of the MLDF stimula-
tion versus parameters t and stimulus amplification K. The
time-averaged order parameters 〈R1〉, 〈R2〉, and 〈R4〉 are
depicted in plots (a–c), respectively, and encoded in color
ranging from 0 (blue) to 1 (red). In plot (d) the impact of

the single-site linear delayed feedback (SLDF) on the
oscillatory population is illustrated, where the values of
the order parameter 〈R1〉 are depicted in color versus
parameters t and K (First published in Popovych et al.
(2006a))
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measured mean field of the ensemble. It is
assumed that the measured mean field Z(t) of the
ensemble has the form of a complex analytic
signal Z(t) = X(t) + iY(t), where X(t) and Y(t)
are the real and imaginary parts of Z(t), respec-
tively. If only a real part X(t) of the mean field is
measured, the imaginary part can be calculated,
e.g., with the help of the Hilbert transform
(Pikovsky et al. 2001). The stimulation signal is
then constructed by a nonlinear combination of a
delayed complex conjugate mean field with the
instantaneous mean field (Popovych et al. 2005,
2006a, b; Tass et al. 2006),

S tð Þ ¼ KZ2 tð ÞZ t� tð Þ, (6)

where K is a stimulus amplification parameter, t is
a time delay, and the asterisk denotes complex
conjugacy.

The desynchronizing effect of the stimulation
with NDF is illustrated in Fig. 8b, c. The onset of
stimulation at t = 550 results in desynchronization
of the stimulated oscillators and the order parame-
ter R1(t) reaches the values of approximately the
same order of magnitude as in the uncoupled
regime (t < 400). This indicates a high level of
desynchronization. The stimulation does not
destroy the normal oscillatory activity of the indi-
vidual oscillators. In the insets in Fig. 8b, c indi-
vidual trajectories of two selected oscillators of
stimulated ensemble are plotted. The stimulated
oscillators rotate with different individual frequen-
cies just as in the coupling- and stimulation-free
regime.

As soon as a desynchronized state is achieved,
the stimulation force declines and the stimulated
system is subjected to a highly effective control
with a minimal amount of stimulation force. Also,

Brain Pacemaker,
Fig. 8 Control of
synchronization by
nonlinear delayed feedback
(NDF) stimulation. (a) The
macroscopic activity (mean
field) of the controlled
population is measured,
delayed, nonlinearly
combined with the
instantaneous mean field,
amplified, and fed back via
a single stimulation site.
(b and c)
Desynchronization of
strongly synchronized
oscillators by NDF. Time
courses of the order
parameter R1(t) (red curves)
and the amplitude of the
stimulation signal jS(t)j
(blue curves) are plotted for
delay (b) t = T/2 and (c)
t = T, where T is the mean
period of the stimulation-
free ensemble. In the
subplots trajectories of two
selected oscillators are
depicted in the stimulated
regime (First published in
Popovych et al. (2008))
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as soon as a resynchronization occurs, the mean
field starts to exhibit large-amplitude oscillations
and the stimulation signal increases its amplitude
and brings the ensemble back to a desynchronized
state. This demand-controlled character of the
nonlinear delayed feedback is illustrated in
Fig. 8c where the onsets of resynchronization
(increase of R1(t), red curve) at times around
t � 850, 1,050, and 1,200 lead to an increase of
the amplitude of the stimulation signal jS(t)j (blue
curve), which in turn results in a suppression of
the resynchronization.

The impact of the nonlinear delayed feedback on
the stimulated oscillators is twofold. On one hand,
the stimulation can effectively desynchronize even
strongly interacting oscillators for a large range of
the stimulus amplificationK, see Fig. 9a. This effect
is very robust with respect to the variation of the
delay t and, as a result, with respect to the variation
of the mean frequency O of the stimulated ensem-
ble. On the other hand, in a weakly coupled ensem-
ble the stimulation can induce synchronization in
island-like regions of small values of the stimulus
amplification K complemented by domains of
desynchronization, see Fig. 9b.

An increase of the stimulus amplification
parameter K results in a gradual decay of the
order parameter R1 for both strongly and weakly
coupled oscillators, which indicates an onset of
desynchronization in the stimulated ensemble.
Simultaneously, the amplitude of the stimulation
signal jS(t)j decays as well, indicating the

demand-controlled character of the nonlinear
delayed feedback stimulation. For a fixed delay
t> 0 the order parameter and the amplitude of the
stimulation signal decay as jKj increases
according to the following power law (Fig. 10a):

R1 � Kj j�1=2
, j S j� Kj j�1=2: (7)

The desynchronization transition for increasing
K also manifests itself in a sequence of frequency-
splitting bifurcations, where the observed individual

frequenciesoj ¼ _cj

D E
of the stimulated oscillators

split, one after another from the mean frequency O
as K increases (Fig. 10b) and approach the natural
frequencies of the unperturbed oscillators (Fig. 10b,
blue diamonds). For large values of K all stimulated
oscillators rotate with different frequencies close to
the natural frequencies oj. The oscillators thus
exhibit a uniform desynchronous dynamics without
any kind of cluster states. In addition, depending on
the values of the delay t, the nonlinear delayed
feedback can significantly change the mean fre-
quency O, i.e., the frequency of the mean field Z(t)
of the stimulated ensemble (Popovych et al. 2005,
2006a). The macroscopic dynamics can thus be
either accelerated or slowed down, whereas the
individual dynamics remains close to the original
one. This opens an approach for the frequency con-
trol of the oscillatory population stimulated with the
nonlinear delayed feedback.

Brain Pacemaker, Fig. 9 Robustness of the NDF effects.
(a) Stimulation-induced desynchronization and (b)
stimulation-induced synchronization in ensembles of (a)
strongly coupled and (b) weakly coupled oscillators. The

time-averaged values of the order parameter R1 are
encoded in color ranging from red (synchronization) to
blue (desynchronization) versus delay t and stimulus
amplification K
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Mixed Nonlinear Delayed Feedback
The NDF method can also be applied for
desynchronization and decoupling of two
(or more) interacting oscillator populations. For
this, the mixed NDF can be used (Popovych and
Tass 2010), see Fig. 11a. For a drive-response
coupling scheme, the coupling within population
2 is assumed to be weak, so that, being isolated
from population 1, no synchronization emerges in
population 2. In contrast, the coupling in popula-
tion 1 is strong enough to cause synchronization
within population 1. It then drives the second pop-
ulation, which synchronizes because of the driving
and sends a response signal back to population
1. The second ensemble is stimulated with signal
S(t), which is constructed from the mixed mean
field Ze according to the rule of NDF from Eq. 6.
The mixed mean field Ze = eW1 + (1 � e)W2 is a
linear combination of the mean fieldsW1 andW2 of
populations 1 and 2, respectively.

The level ofmixing of themeanfieldsW1 andW2

within the stimulation signal is given by the param-
eter e. Depending on it the mixed NDF can have
different desynchronizing effects on populations
1 and 2.

• Small e: mostly population 2 contributes to the
stimulation signal. The mixed NDF
desynchronizes the driven and stimulated

population 2 (Fig. 11b), but the driving ensemble
1 remains unaffected and exhibits strongly syn-
chronized dynamics (Fig. 11c). The populations
get effectively decoupled from each other.

• Intermediate e: both populations equally con-
tribute to the stimulation signal. Both ensem-
bles remain synchronized (Fig. 11b, c).

• Large e: mostly population 1 contributes to the
stimulation signal. Both ensembles are effec-
tively desynchronized by the mixed NDF
(Fig. 11b, c).

In the latter case the desynchronization
induced by the mixed NDF in the driven and
stimulated population 2 propagates to the drive
population 1 which is not directly stimulated. This
is indicative of an indirect control of synchroni-
zation by the mixed NDF.

Proportional–Integro–Differential
Feedback

For a particularly difficult situation, where the mea-
surement and stimulation are not possible at the
same time and at the same place, there is another
control method which is based on a pro-
portional–integro–differential feedback (PIDF).
The scheme of this stimulation protocol is sketched
in Fig. 12a, see also Fig. 11a for e = 1 except for the

Brain Pacemaker,
Fig. 10 Impact of NDF as
the stimulus amplification
K increases. (a) Log–log
plot of the time-averaged
order parameter R1 and
amplitude of the stimulation
signal |S(t)| versus K. The
dashed line has the slope
�0.5 and is given for
comparison. (b) The
observed individual
frequencies oj of the
stimulated oscillators
versus K. Blue diamonds at
the right vertical axis depict
values of the natural
frequencies of the
oscillators (First published
in Popovych et al. (2006a))
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measured signal being processed by a PIDF algo-
rithm. The controlled ensemble of N coupled oscil-
lators is divided into two separate sub-populations
of N1 and N2 = N � N1 oscillators, one being
exclusively measured and the other being exclu-
sively stimulated. In this way a separate
stimulation-registration setup is realized, where the
recording and stimulating sites are spatially sepa-
rated and the measured signal is not corrupted by
stimulation artifacts. The observed signal is consid-
ered to be the mean field W1 of the measured sub-
population. Below the main attention will be paid to
the proportional-differential (PD) feedback only (for
more details, see Pyragas et al. (2007)). Then, the
stimulation signal S(t) administered to the second,
stimulated sub-population is constructed as

S tð Þ ¼ PW1 tð Þ þ D _W1 tð Þ, (8)

where the parameters P and D define the strength of
the proportional and differential feedback,

respectively. The effect of the stimulation with PD
feedback is illustrated in Fig. 12b. As the strength of
the feedback (parameters P and D) increases the
stimulation results in a complete desynchronization
of the whole ensemble. The threshold of the onset of
desynchronization depends on the relative splitting
N1 : N2 of the oscillators between sub-populations
and on themean frequencyO: The threshold is larger
for smaller number of oscillatorsN2 in the stimulated
populations or for larger frequency O. The later
dependence can be eliminated if an integral
component is included in the stimulation signal, see
Pyragas et al. (2007).Moreover, if the coupling in the
ensemble is rather weak, the desynchronization can
be achieved by applying the proportional feedback
only. In contrast, in the case of strong coupling the
stimulation signal additionally requires the differen-
tial feedback for robust desynchronization. As illus-
trated in the two-parameter diagrams in Fig. 12c, d,
there exists a certain threshold in parameters P and
D values, where the stimulation with PIDF

Brain Pacemaker, Fig. 11 Desynchronization and
decoupling of interacting populations by the mixed NDF.
(a) Stimulation setup: The measured mean fields of
populations 1 and 2 is linearly combined into a mixed
mean field, processed by the NDF algorithm (Eq. 6), and
fed back to the target population 2. (b and c) Time-

averaged order parameter R1 of (b) intrinsically synchro-
nized, drive population 1 and (c) stimulated population
2 driven to synchronization by population 1 versus time
delay t and mixing parameter e. The color coding as in
Fig. 9 (First published in Popovych and Tass (2010).
Copyright (2010) by the American Physical Society)
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desynchronizes both sub-populations in the target
ensemble: stimulated sub-population (Fig. 12c) and
also measured, non-stimulated sub-population
(Fig. 12d). In this sense the PIDF stimulationmethod
appears to be very effective even for a complicated
stimulation protocol with a separate stimulation-
registration setup.

Plasticity

Plasticity is a fundamental property of the nervous
system: In order to learn and to adapt to sensory

inputs, neurons continuously adapt the strength of
their synaptic connections in relation to the
mutual timing properties of their firing or bursting
(Hebb 1949; Gerstner et al. 1996; Markram et al.
1997; Debanne et al. 1998; Kilgard and
Merzenich 1998; Abbott and Nelson 2000;
Feldman 2000; Song et al. 2000; van Hemmen
2001; Zhou et al. 2003). However, plasticity may
not only lead to desired learning and optimization
processes. Rather neuronal populations can learn
pathologically strong interactions which may
lead, e.g., to the emergence of epilepsies

Brain Pacemaker, Fig. 12 PIDF control: (a) The mean
field is measured in one part of the controlled ensemble and,
after processing according to proportional–integro–differential
feedback (PIDF) algorithm, is administered to the other part of
the ensemble. (b) The time-averaged order parameterR1 of the
whole ensemble versus the strength of the PD feedback (with
P = D) for different splitting N1 : N2 and different mean

frequencies O. (c and d) The time-averaged order parameters
R1 (encoded in color) of (c) the measured sub-population and
(d) stimulated sub-population versus stimulation parameters
P and D. The white curve is the parameter threshold for the
onset of desynchronization in the sub-populations (First
published in Pyragas et al. (2007). Used with permission
from EPL)
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(Morimoto et al. 2004; Speckmann and Elger
1991). This is well-known from the so-called kin-
dling phenomenon (Goddar 1967), where prepa-
ratory stimulation induces the spontaneous
production of epileptic seizures without gross
morphological changes (Morimoto et al. 2004).

The impact of plasticity on synaptic weights
and collective neuronal dynamics has been
accounted for by several theoretical studies on
desynchronizing stimulation methods (Tass and
Majtanik 2006; Hauptmann and Tass 2007; Tass
and Hauptmann 2007; Maistrenko et al. 2007).
They have initiated an approach which aims at
unlearning pathologically strong synaptic interac-
tions by desynchronizing brain stimulation and
which has further been developed in latter papers
(Hauptmann and Tass 2009, 2010; Tass and
Popovych 2012; Popovych and Tass 2012). This
approach exploits plasticity in two different ways:
On the one hand, due to plasticity
desynchronizing stimulation may decrease the

strength of the neurons’ synapses by decreasing
the rate of coincidences. On the other hand, neu-
ronal networks with synaptic plasticity may
exhibit bi- or multistability (Seliger et al. 2002;
Tass and Majtanik 2006; Hauptmann and Tass
2007; Tass and Hauptmann 2007; Maistrenko
et al. 2007). Accordingly, by decreasing the
mean synaptic weight, desynchronizing stimula-
tion may shift a neuronal population from a stable
synchronized (pathological) state to a stable
desynchronized (healthy) state, where the neuro-
nal population remains thereafter, if left
unperturbed. In Fig. 13 an exemplary simulation
of a model neural network is displayed, for further
details concerning the mathematical model we
refer to references (Hauptmann and Tass 2007;
Tass and Hauptmann 2007). Induced by appropri-
ate stimulation protocols a switching between the
different stable states is realizable. Starting from a
desynchronized state, associated with a physio-
logical model dynamics, low-frequency

Brain Pacemaker, Fig. 13 Effects of kindling and anti-
kindling stimulation on a population of model neurons.
Low frequency stimulation is applied between 50 and
200 s, and CR stimulation (see section “Coordinated
Reset Stimulation”) is applied between 300 and 550 s.
The local field potential, the level of synchronization

within the network and the mean connectivity is plotted
(from top to bottom). Five patterns representing the cou-
pling topology of the network at different times are plotted
below. Blue (red) colors represent low (high) values of the
interneuronal connectivity
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stimulation can induce a kindling of the synaptic
connectivity and causes a stabilization of the syn-
chronized state. After stimulation offset, the system
remains in the pathological state (Fig. 13). In con-
trast, desynchronizing CR stimulation (see section
“Coordinated Reset Stimulation”) results in an
anti-kindling of the pathological connectivity and,
finally, the physiological weakly coupled and
desynchronized state is reestablished (Fig. 13).

From a mathematical point of view, in a first
approximation this situation may be illustrated by
considering a double well potential, where each
minimum corresponds to a stable attractor,
surrounded by a basin of attraction (Fig. 14).
The strongly synchronized state (Pathol. in
Fig. 14) serves as a model for a disease state,
whereas the uncorrelated or weakly synchronized
state (Healthy in Fig. 14) is used as a model for a
healthy state. As soon as the system, i.e., the
neuronal population (illustrated by the ball in
Fig. 14), enters a particular basin of attraction, it
gets attracted by the corresponding attractor, so
that it relaxes towards the corresponding mini-
mum of the potential.

Appropriate stimulation protocols may shift
the neuronal population from one state to another.
Kindling stimulation of appropriate duration shifts
the neuronal population from a desynchronized
state close to a strongly synchronized state or at

least into the basin of attraction of such a state
(Fig. 14a, red trajectory from Healthy to Pathol.).
Conversely, anti-kindling can be achieved by
means of a desynchronizing stimulation which
shifts the neuronal population close to the
desynchronized state (Tass and Majtanik 2006;
Hauptmann and Tass 2007, 2009, 2010; Tass
and Hauptmann 2007; Tass and Popovych 2012;
Popovych and Tass 2012) (Fig. 14b, red trajectory
from Pathol. to Healthy). However, with respect
to the long-term anti-kindling outcome, it is even
sufficient to move the neuronal population from
the synchronized state just into the basin of attrac-
tion of the desynchronized state (Fig. 14c, red
trajectory from Pathol. to the intermediate state).
After stimulus offset there may still be pro-
nounced synchrony, but being captured within
the basin of attraction of the desynchronized
state, without further intervention the neuronal
population spontaneously relaxes to the
desynchronized state (Fig. 14c, blue trajectory
from the intermediate state to Healthy). Note the
short as well as the long desynchronizing stimu-
lation in this schematic illustration have the same
long-term anti-kindling outcome.

In PD neuronal populations of the basal
ganglia are strongly synchronized (Beurrier et al.
2002; Schnitzler et al. 2006; Timmermann et al.
2007) and synaptic plasticity results in a further

Brain Pacemaker, Fig. 14 Kindling and anti-kindling
stimulation can move the neuronal population from one
attractor to another: Schematic plot of the attractors sym-
bolizing pathological (Pathol.) or healthy (Healthy)
dynamical model states. (a) Periodic, kindling stimulation
(red trajectory) shifts the population from a healthy,
desynchronized state (Healthy) to a pathological, synchro-
nized state (Pathol.). (b) Conversely, desynchronizing
stimulation shifts the population from a pathological state
(Pathol.) to the healthy uncorrelated state (Healthy). This
anti-kindling is achieved by a desynchronizing stimulation

of sufficient duration, so that after stimulus offset the
population is close to the healthy state (red trajectory).
(c) Alternatively, the same long-term anti-kindling effect
can be achieved with a brief desynchronizing stimulation,
which shifts the population to an intermediate state (red
trajectory), which may still be connected with pronounced
synchrony. However, since the intermediate state (blue
ball) lies within the basin of attraction of a healthy state
(Healthy) the population spontaneously relaxes to the
healthy state without any further intervention (blue
trajectory)
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amplification of the synchronized activity by a
strengthening of the synaptic connections
(Nowotny et al. 2003). Properly designed electri-
cal stimulation may be used to break this vicious
circle and to induce an anti-kindling (Tass and
Majtanik 2006; Hauptmann and Tass 2007,
2009, 2010; Tass and Hauptmann 2007; Tass
and Popovych 2012; Popovych and Tass 2012),
which finally might reestablish the normal level of
connectivity, associated with a mostly
uncorrelated neuronal activity. In this way a
sustained long-lasting desynchronization can be
achieved, and therapeutic after-effects can be
expected after the cessation of desynchronizing
stimulation as predicted computationally (see ref-
erences above). In parkinsonian MPTP monkeys
it was shown that unilateral CR stimulation deliv-
ered to the subthalamic nucleus (STN) for only 2 h
per day during 5 days leads to significant and
sustained therapeutic aftereffects for at least
30 days, while standard 130 Hz DBS has no
aftereffects (Tass et al. 2012b).

Closed-Loop DBS

The standard setup of HF DBS assumes an open-
loop stimulation protocol, where, after the
corresponding parameter calibration, a permanent
HF electrical pulse train is administered to the
target nucleus without relation to the ongoing neu-
ronal activity (Benabid et al. 1991; Volkmann
2004). Both, clinical studies and modeling studies
systematically investigated the influence of stimu-
lation parameters and focused on the optimization
of the standard HF DBS via an appropriate param-
eter calibration (Rizzone et al. 2001; Moro et al.
2002; Rubin and Terman 2004) including a closed-
loop optimization setup (Feng et al. 2007a, b).

In monkeys rendered parkinsonian with the
neurotoxin MPTP a closed-loop DBS has been
tested under acute conditions (Rosin et al. 2011).
To this end, a short train (comprising seven pulses
at 130 Hz) was delivered through a pair of elec-
trodes located in the GPi at a predetermined, fixed
latency (80 ms) following each action potential
recorded through an electrode placed in the pri-
mary motor cortex (M1). This type of stimulation

caused a strong decrease of the firing rate of the
pallidal neurons together with a pronounced
decrease of the oscillatory neuronal activity at
tremor frequency (4–7 Hz) and at double tremor
frequency (9–15 Hz) along with an amelioration
of the MPTP-induced akinesia. After cessation of
this type of closed-loop DBS the initial firing
pattern reverted back, i.e., pallidal firing rate and
pallidal oscillatory activity attained pre-stimulus
levels (Rosin et al. 2011). In contrast, standard
continuous 130 Hz DBS caused a less pronounced
decrease of the pallidal firing rate, the oscillatory
neuronal activity and the amelioration of the
akinesia (Rosin et al. 2011).

Another study (Little et al. 2013) confirmed the
efficacy of the closed-loop adaptive DBS (aDBS)
in PD patients, where the onsets and offsets of HF
stimulation were triggered by a threshold crossing
by LFP in beta band measured via the same stim-
ulation electrode implanted in STN. The stimula-
tion trigger threshold for the LFP amplitude was
heuristically determined in such a way that a
reduction of the stimulation time of approximately
50% was achieved while maintaining clinical
effect. The onset of HF stimulation was delayed
by 30–40 ms after the crossing of the threshold by
LFP, and the stimulation was sustained until beta
amplitude fell below the threshold again (Little
et al. 2013). For the same stimulation intensity and
stimulation frequency (130 Hz), the aDBS can be
about 30% more effective than standard continu-
ous HF DBS, while less than 50% of the total
electrical energy is delivered in the aDBS mode
as compared to continuous HF DBS. Moreover,
despite of the used fixed beta threshold, the trig-
gered stimulation duration (per 10-s block) pro-
gressively drops over time during stimulation in
the aDBS mode, which suggests that aDBS may
lead to positive adaptive effects in pathological
Parkinsonian networks (Little et al. 2013).

Summary

High-frequency deep brain stimulation is the
golden standard for the treatment of medically
refractory movement disorders (Benabid et al.
1991; Volkmann 2004).
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Apart from the empirically developed standard
DBS protocols (Benabid et al. 1991; Volkmann
2004), new stimulation approaches were success-
fully tested in pre-clinical and early clinical settings.
For instance, a closed-loop neurostimulation con-
trolled by beta-band activity showed a better per-
formance than classical DBS in reducing motor
signs as well as pallidal firing rate and oscillatory
activity in parkinsonian nonhuman primates and
PD patients (Rosin et al. 2011; Little et al. 2013).

Another approach, i.e., the model-based devel-
opment of novel deep brain stimulation tech-
niques, especially targets the pathological
neuronal synchrony associated with Parkinson’s
disease (Tass 1999). This approach bases on
dynamic neuronal self-organization principles
and fundamental plasticity rules of the nervous
system (Fig. 15) (Tass and Majtanik 2006; Tass
and Hauptmann 2006, 2007; Hauptmann and Tass
2007, 2009, 2010; Tass and Popovych 2012;
Popovych and Tass 2012).

The control methods discussed in this article
differ to each other with respect to the stimulation
setup and stimulation effects as well as other prop-
erties such as robustness and applicability. For
example, CR stimulation in an open-loop protocol
uses standard stimulation pulses (as used for HF
stimulation) applied in a dedicated pattern and its
technical realization was proven to be feasible
(Hauptmann et al. 2009; Tass et al. 2012b). CR
does not require sophisticated calibration and effec-
tively causes transient desynchronization of the
stimulated oscillators via a stimulation-induced
cluster state. Asmentioned in section “Coordinated
Reset Stimulation,” a number of computational,
experimental and pre-clinical studies confirmed
the applicability and efficacy of CR stimulation
under different stimulation modalities.

Other smart feedback methods are more difficult
to realize conceptually and technically and await
experimental proof of concept, see sections “Multi-
site Linear Delayed Feedback,” “Nonlinear Delayed

Desynchronizing
stimulation

Self-organization
principles

Synaptic
plasticity

Multistability of
the network

due to synaptic
plasticity

Reduction of the
rate of coincidences Control of dynamics

Control of structure

Decrease of
synaptic weights

Therapeutic
rewiring

Brain Pacemaker, Fig. 15 Schematic illustration of
unlearning of pathological connectivity by
desynchronizing stimulation. The latter reduces the overall
rate of coincidences in the neuronal population. This is
effectively achieved by using dynamic self-organization
principles. The reduction of the rate of coincidences, in
turn, reduces the synaptic weights and shifts the stimulated
network in a weakly coupled state. Because of the multi-
stability, not only strongly coupled and synchronized
states, but also weakly coupled and weakly synchronized

states are stable. Accordingly, the neuronal population
stably remains in a desynchronized or weakly synchro-
nized state, after having been shifted into the basin of
attraction of that state by means of desynchronizing stim-
ulation. Hence, a suitable control of the dynamics of the
network can lead to long-lasting changes of its connectivity
and dynamics (First published in Tass and Hauptmann
(2007). Used with permission from the International Jour-
nal of Psychophysiology)
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Feedback,” and “Proportional–Integro–Differential
Feedback.” In modeling studies they effectively
result in a sustained desynchronized regime. The
feedback methods can be applied under a variety
of conditions, and possess an intrinsic demand-
controlled character, where the stimulation signal
is significantly reduced or even vanishes as soon
as desynchronization is achieved. The experimental
and clinical realization of these methods is a chal-
lenging task, first of all, from the technical side,
since stimulation signals have to fulfill all safety
aspects like charge density limits. These limits
strongly affect the applicability of the slow feedback
signals, i.e., slow compared to the timescales of HF
and CR pulses. In this way, the application condi-
tions of the methods have to be handled with care,
and stimulation setups and effects have to clearly be
distinguished for different feedback methods. Oth-
erwise, one can come up with misleading conclu-
sions and erroneous interpretations of the efficacy of
feedback methods, see the computational study
(Dovzhenok et al. 2013) where nonlinear and linear
techniques were not properly distinguished. To this
end, only an experimental proof of concept can
finally assess the applicability and performance of
the control methods.

In forthcoming studies the mathematical
modeling needs to be refined to incorporate fur-
ther anatomical and physiological details, for
instance, the contributions of glial cells
(Silchenko and Tass 2008). By the same token,
control techniques have to be optimized and fur-
ther developed. As currently done for CR stimu-
lation (Tass et al. 2012b), clinical studies are
necessary to evaluate the therapeutic effects of
the novel stimulation techniques under real con-
ditions. This interdisciplinary endeavor might
finally provide superior therapies for patients
with neurological or psychiatric diseases.
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Definition of the Subject

Clinical psychology is a sub-discipline of psy-
chology engaged in the description, classification,
explanation, and treatment of mental disorders.
The primary focus is on psychological methods,
models, and topics such as behavior, cognition,
emotion, and social interaction with substantial
overlap with related areas in psychiatry, psycho-
somatics, or behavioral medicine. Yet, the main
stream in clinical psychology views the etiology
of mental disorders, their time courses and sus-
ceptibility to psychological treatment still through
the magnification glass of linear input-output

philosophy of human functions. Owing to this
paradigm, linear combinations of variables
(as inner conflicts, irrational cognitions, or
stressors) trigger the development of psychiatric
diseases or disorders in genetically predisposed
individuals. Therefore, linear multivariate regres-
sion models are assumed be able to predict the
probability of falling ill or suffering from disor-
ders. As an important field in clinical psychology,
psychotherapy research defines randomized con-
trolled trials as the golden standard of outcome
research. Here, patients randomly assigned to dif-
ferent treatment modalities are being compared
with respect to the outcome of different tests. In
this regard, the input (treatment) is thought to
determine the outcome (treatment effects).

Contrary, or rather, supplementing this line of
research is the scientific paradigm of self-
organization, i. e. the functioning of complex
nonlinear systems with circular causality at its
center. Gestalt psychology, traditionally
concerned with patterns (“Gestalts”) in percep-
tion, human behavior and interaction (e. g., those
prevalent in group dynamics, Lewin Koch et al.
2002) focuses on such self-organization pro-
cesses. Gestalt psychologists like Wolfgang Köh-
ler (e. g. Köhler 1947), Wolfgang Metzger, Max
Wertheimer, Kurt Lewin and others can be seen as
direct predecessors of modern complexity
researchers in psychology (Stadler and Kruse
1990). Another root of this development is Jean
Piaget’s equilibration theory of action-cognition
patterns (schemata) describing assimilation-
accommodation-cycles of these schemata (Piaget
1976). During these processes, input from the
inner and outer environment assumes the role of
disturbing stimulation of individual system
dynamics. A third important line of thinking in
circular causality comes from anthropological
medicine. The “Gestaltkreis” integrates feedback
loops between sensorial and actional systems on
the one side, and individual and environmental
systems on the other side (ecosystemic approach)
(von Uexküll and Wesiack 1996).
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Introduction

During the past decades in clinical psychology,
it was particularly the transdisciplinary
approach of synergetics (Haken 1990a) which
inspired a specific nonlinear and complexity
research on cognition (Haken 1990b; Tschacher
and Dauwalder 1999), social interaction
(Nowak and Vallacher 1998; Tschacher 1997),
etiology and dynamics of mental diseases (e. g.,
Schiepek et al. 1992; Tschacher and Kupper
2002), and psychotherapy (for an overview see
Haken and Schiepek 2006). Synergetics
describes, measures, and explains the autono-
mous processes of pattern formation and pattern
transitions in complex nonlinear systems.
Founded on Haken’s fundamental discovery
that these processes do not depend of the matter
of the systems they occur in, synergetics
became one of the most important inspirations
to many scientific fields and topics. Especially,
Haken early transferred synergetics to brain
research (e. g., Basar et al. 1983), since the
brain is an outstanding example of a complex,
self-organizing system. Today, it is widely
accepted that the brain and a serial computer
not only differ profoundly, but there is almost
nothing they share: No wonder in light of the
more than 1011 nonlinear interconnected neu-
rons forming a dynamic mega-network of neu-
ral networks with essential features like arrays
of emerging and submerging synchronizations,
its flexibility and ever changing pattern forma-
tion, working at the edge of chaos, or realizing
combined (activating and inhibiting) feedback
mechanisms following the principles set forth
by synergetics which describes the laws of self-
organizing systems (Haken 1996, 2002).

Taking a closer look at most of the phenom-
ena clinical psychology is concerned with it
becomes obvious that they appear to be of
dynamic nature. Human development pro-
cesses, human change and learning processes,
the dynamics and prognosis of mental disorders,
problems mani-festing in social systems like
couples, families, teams, or the question of
how psychotherapy works: Self-organization is
a ubiquitous entity.

Dynamic Diseases

Mental disorders are characterized by specific
dynamic patterns, mirroring “endogenous” and
common features of a disorder (like the repetitive
phases of unipolar major depression or the bipolar
phases of bipolar disorders, oscillating between
mania and depression), as well as the effects of an
individual life-style including individual coping
and treatment efforts. Mental disorders can be
conceived as highly structured and coherent states
which enslave and thus impair the individual’s
mental and social functioning. Following the
“enslaving principle”, emerging order parameters
reduce the degrees of freedom in the behavior of
the single parts of a system. There is phenomenal
evidence that this is the case in many mental
disorders. Obsessive-compulsive disorder
patients coerced to repeat unwished thoughts or
rituals are just but one most impressive example.
On the brain level, such pathological states corre-
spond with abnormal synchronization in specific
neural networks impairing brain functions. In
obsessive-compulsive disorders, cortico-striato-
thalamo-cortical feedback-loops are thought to
be at the center of the dysfunctional network
(Saxena and Rauch 2000; Schiepek et al. 2007),
while abnormal synchronization in highly similar
neural populations is the source of Parkinsonian
resting tremor (Lenz et al. 1994; Pare et al. 1990).

At times, transitions between different patho-
logical states or between states of health and dis-
ease are linear and balanced, at other times they
are discontinuous and abrupt, such as in nonlinear
phase transitions accompanied by critical fluctua-
tions described by synergetics to occur in physical
systems. Such transitions have been reported for
unipolar or bipolar cyclic depression (e. g.,
Heiden 1992), and also for schizophrenia
(Strauss 1989). The usefulness of the concept of
attractors in psychopathology is best reflected by
the final common pathway of different disorders
with similar phenomenology and syndromal pat-
terns. Different initial conditions and different
qualities and degrees of stressors and vulnerability
factors may result in similar pathological end-
states on the one hand. But on the other hand,
small fluctuations within the intrapsychic or
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environmental conditions or small differences of
some boundary or threshold conditions may result
quite different disorders or may decide between
health and disease (for a dynamical simulation of
major depression see Schaub and Schiepek 1992).
The encouraging message synergetics delivers is
that while the structure of a generic system may
stay unchanged, small changes in control param-
eters, threshold conditions, and internal or exter-
nal fluctuations are able to trigger dramatic
changes in the behavior of the system. As a con-
sequence, therapy exerting changes of these
parameters is thus able to trigger return of the
system to a healthy state.

For illustrative purposes we present results of a
computer simulation of different chronic courses
of schizophrenia (Schiepek et al. 1992).
A qualitative network model of five macroscopic
variables was transformed into a set of nonlinear
difference equations, with each equation describ-
ing and determining the change rate of each var-
iable from t to t + 1. The empirical references of
the simulation model were empirical studies of the
chronic course of schizophrenic patterns, mostly
mixed psychotic episodes, healthy functioning,
and chronic states. For example, (Ciompi and
Müller 1976) report on eight different patterns in
the long-term evolution of schizophrenia, most of
them reproduced by our model. These patterns
result from various combinations of slow
vs. acute onset, acute episodes vs. progressive
deterioration, and remission vs. chronic end-state.

Variables taken into account were chosen from
reviews in psychiatric and psychological schizo-
phrenia research (e. g., Böker and Brenner 1996,
1989; Ciompi 1989). Selected were (1) degree of
cognitive disorders, (2) emotional and interper-
sonal stress, (3) withdrawal and social isolation,
(4) degree of expressed (negative) emotions in the
social environment of the patient, and (5) positive
symptoms like delusions and hallucinations. The
parameters mediating the nonlinear interplay of
these macroscopic variables or order parameters
were (a) diffuseness of affective-cognitive sche-
mata as a central long-term vulnerability of mental
functioning, (b) dopamine and serotonin metabo-
lism, (c) social deficits and lack of competencies,
(d) genetic risk for schizophrenia, and (e) some

parameters mediating mixed feedback processes,
especially the negative feedback responsible for
antipsychotic damping effects of the pathology.
Results of the simulation runs are indicated in
Fig. 1. The simulation reproduces most precisely
(a) episodic patterns with prodromal symptoms
and acute onset, (b) acute onset, but continuous
evolution with chronic end-state, and (c) slow and
smooth onset with chronic long-term course (see
also Tretter and Scherer 2006).

Other simulation models are effective on the
microscopic level of neural networks. Kruse et al.
(Kruse et al. 1997) introduced a model focusing on
the coupling dynamics between neurons pro-
cessing brain correlates of social experiences. If
unable to learn from cues delivered by the relevant
environment, this systemwill fail to establish adap-
tive and coherent structures. When inducing fluc-
tuations which promote re-learning and self-
healing processes, the neural network causes inco-
herent and chaotic behavior. Most current models
of schizophrenia take into account the neural cir-
cuits of relevant brain regions (cortical areas, basal
ganglia like striatum and pallidum, thalamic areas,
brain stem centers) and particularly the equilibria
between different neurotransmitters and
neuromodulators (e. g. Carlsson 2006). The com-
plicated local balances and their (non-) equilibria
states are in the focus of the strongly evolving field
of computational or systems neuroscience (Friston
et al. 2003; Penny et al. 2004).

Not only central neuroscience has benefitted
from concepts introduced by synergetics, how-
ever, but also physiology studying the effects of
the autonomic nervous system (ANS) activities on
peripheral systems, such as the cardiovascular, the
respiratory, or the microcirculation system. Such
activities are most prominent as the ANS engages
in the mediation of emotions.

Self-Organized Synchronization
Patterns in Peripheral Physiological
Systems

For decades, the study of the ANS involvement in
emotional arousal and its impact on the cardiovas-
cular system has attracted clinical and scientific
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attention in psychology and psychophysiology
(e. g. Sinha et al. 1992). Ever since the seminal
findings of W. B. Cannon (1915) and H. Selye
(1936) on the general adaptation syndrome, col-
loquially condensed as stress, the clinical rele-
vance of emotional responses became ultimately
clear. This obvious clinical relevance is thwarted
by the fact that direct observations of ANS activ-
ity in humans are restricted not only because of
ethical constraints but also because of the fear to
provoke what they strive to detect. Therefore, the
study of the ANS in humans had to rely for a long
time preferably on indirect measures, such as the
power spectral density (PSD), a linear computa-
tion method. Based on the fast Fourier transform
(FFT) which extracts periodic components in the

frequency domain, the PSD was favored by many
researchers due to its computational ease to ana-
lyze frequencies inherent in the two branches of
the ANS, the parasympathetic (PNS) and the sym-
pathetic nervous system (SNS). This allowed to
divide the effects of the PNS and SNS activity on
variations of the heart rate, the so-called heart rate
variability (HRV), into three major variance com-
ponents, the very low frequency (VLF) band
below 0.04 Hz, the low frequency (LF) band
between 0.04–0.15 Hz, and the high frequency
(HF) band between 0.15–0.45 Hz. While the ori-
gin of both VLF and the HF bands is not debated,
controversy reigns whether the origin of the LF
band is attributable to SNS activity or whether it
represents a mixture of SNS and PNS activity.

Self-Organization in Clinical Psychology,
Fig. 1 Different patterns of the long-term evolution of
schizophrenia (empirical data from a study by Ciompi and

Müller 1976) (left) were reproduced by simulations based on
a set of five coupled nonlinear difference equations with
different parameter values (Schiepek et al. 1992) (right)

266 Self-Organization in Clinical Psychology



Subsequently, some authors propose calculating
the LF to HF ratio assumed to reflect the
sympatho-vagal balance (for an overview see
Task Force of the European Society of Cardiology
and the North American Society of Pacing and
Electrophysiology 1996). There has been growing
discontent and criticism as to the validity of such
drawer style classifications based on the consider-
ation that the PSD, or FFT resp., as a linear routine
is only able to detect linear properties, that are to
some extent included in most physiological signals
(Kettunen and Keltikangas-Järvinen 2001; Yuru
et al. 2006). That, however, should restrict and
limit its use since an increasing body of scientific
evidence is demonstrating the obvious: In times of
adaptation and rapid changes – a hallmark of life
and its living systems – healthy ANS activity
exhibits nonlinear dynamics necessary to mediate
responses appropriate to those change processes.
This is particularly the case for emoting as one of
the most volatile change patterns.

However, this is not only true for discrete emo-
tion transitions but also for a process crucial for
the maintenance of health, namely psychophysi-
cal relaxation. Contrary to the rigid scheme
depicted above, Perlitz and coworkers have intro-
duced a relaxation model which takes into account
adaptive, self-organizing characteristics of the
central and peripheral subsystems involved in
the psychophysical relaxation process. They scru-
tinized the physiological conditions and interac-
tions observed with the emergence of a frequency
at ca. 0.15 Hz, which in terms of the classical
scheme is attributed to the transition between
parasympathetic and sympathetic nervous activ-
ity. This frequency prevailed at different ampli-
tudes in HRV, blood pressure and respiration, but
foremost in the microcirculation of the forehead
skin. Using several nonlinear methods, such as
wavelet time frequency distributions (TFD) or
post-event-scan (PES) analysis, this 0.15 Hz fre-
quency band (range 0.12–0.18 Hz) emerged or
erupted with amplified oscillations and periods
of 6–7 s in all time series of subsystems under
study. The emergence clearly depended on psy-
chomotor drive reduction which can be either
reduced by taking naive relaxation maneuvers
(such as closing the eyes), or be enhanced using

auto-suggestive means, such as autogenic train-
ing. Their zest to elaborate the origin of this fre-
quency was supported by invasive observations
with anesthetized dogs made by Lambertz and
colleagues who had presented their findings ear-
lier. They found a rhythm at a similar frequency
which originated in reticular brainstem neurons of
freely breathing dogs when administering nar-
cotics to reduce drive. Followed by the emergence
in those unspecific reticular neurons, this fre-
quency also emerged in arterial blood pressure,
HRV, and respiration (Lambertz et al. 2000;
Perlitz et al. 2004b, c). This reticular rhythm,
termed retR, was unaffected by changes in the
frequency of respiration or arterial blood pressure
which could both be presumed to exert distinct
influences owing to linear models. Rather, in these
experiments respiration and HRV were entrained
to the 0.15 Hz band at 1:1, 2:1 and 1:2 integer
number ratios which are, according to Bethe
(Bethe 1940), an outflow of central-peripheral
order–to–order transitions. With regard to paral-
lels in frequency and dynamics observed in man
and dog, Perlitz and coworkers suggested that also
in humans the 0.15 Hz band most likely originates
from reticular neurons of the lower brainstem
network (Perlitz et al. 2004a, b, c).

In summary, the findings presented in Fig. 2
underpin the theory of synergetics, since there is
reason to regard the ca. 0.15 Hz frequency as an
order parameter and the level of mental drive as
control parameter. The ca. 0.15 Hz frequency is a
prominent example of biological pattern forma-
tion lacking external or macroscopic control.

Nonlinear Dynamics in the
Communication of Patient and Therapist

As mentioned above, psychotherapy is usually
conceptualized as the application of psychologi-
cal treatments to patients in order to change their
problem states and diseases. However, as different
research programs revealed during the last
decades, psychological change processes show
all important features of nonlinear systems – like
deterministic chaos, nonstationary phase transi-
tions, and nonlinear coupling between patient
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and therapist. Physiological synchronization
appears to be realized at an interpersonal level
(between therapist and patient) as well as between
different phenomenological levels of the interper-
sonal system (speech qualities and psycho-
physiological variables). In a study of Villmann
et al. (2008) heart rate, respiratory frequency,
muscular tension, and skin conductivity were
measured from both, therapist and patient, during
37 therapy sessions. Speech production was ana-
lyzed by the Mergenthaler model focusing on
emotional feeling and cognitive referential activ-
ity/abstraction (Mergenthaler 1998). Physiologi-
cal data were analyzed by an artificial neural
network approach (growing self-organizing
map), which uses a kernel smoothing for
improved data density estimation. It was possible
to generate an entropy model of psycho-
physiological variability detecting emotionally
instable phases during the therapy process. The

entropy reflecting psycho-physiological and emo-
tional variability was related to the dramatic value
of speech analysis according to the cycle model of
Mergenthaler.

Empirical evidence exists also for synchro-
nized chaoto-chaotic phase transitions in the
brains of therapist and patient during a therapeutic
interview, measured by local largest Lyapunov
exponents in the EEGs of both interaction partners
(Rockstroh et al. 1997).

Taking into account the importance of the ther-
apeutic relationship for the treatment outcome the
attention of a study realized by Schiepek and
co-workers focused on the interactional process
between therapist and patient (Kowalik et al.
1997; Schiepek et al. 1997). The authors used
the method of sequential plan analysis, which is
a development of the hierarchical plan analysis
proposed by Grawe and Caspar (e. g. 1996).
Plans in this sense are verbally or non-verbally

Self-Organization in Clinical Psychology,
Fig. 2 Wavelet time frequency distributions (TFD) of
peripheral noninvasively obtained recordings of a female
expert in autogenic training (AT, 56 yrs., healthy, non-
smoker, 15 yrs practice AT). Top left: TFD of glabella
skin microcirculation photoplethysmography; top right:
TFD of chest respiration related movements; bottom left:
TFD of peripheral systemic arterial blood pressure; bottom
right: So-called “joined TFD” of PPG-, respiration-and
blood pressure-TFD, a novel method by Besting and col-
leagues (2005) (multiplying TFDs yielding only frequen-
cies prominent at identical times and identical frequencies,
used to compute the intersection of TFD time series.White
arrows mark the start of AT, black arrows mark the end of

AT. In the TFD of PPG, the main frequency is at
ca. 0.21 Hz prior to the onset of ATand is clearly stabilized
at ca. 0.18 Hz with the start of AT, with signs of dissocia-
tion when terminating AT. The TFD of respiration supplies
ample evidence of an order-order transition triggered by
the practice of AT: The main frequency plummets from
ca. 0.25 to 0.15 and 0.07 Hz to be maintained at
ca. 0.12 Hz. With termination of AT, the main frequency
skips back to frequencies shown beforehand. The TFD of
systemic arterial blood pressure exhibits an intersection of
approx. 90% during the AT section, but also few minor
intersections before and after AT (data not shown); the
joined TFD intersection shows merely few frequency
“spots” at ca. 0.12 Hz during AT
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communicated intentions of self-presentation in a
social situation. Patient’s and therapist’s interac-
tional behavior was analyzed on the basis of video
recordings. Two complete therapies (13 and 9 ther-
apy sessions, resp.) were encoded with a sampling
rate of 10 s (Fig. 3). The construction of an inclu-
sive hierarchical plan-analysis leads to an ideo-
graphic categorical system for the observation of
the client–therapist interaction (Table 1).

The first hints of order in the dynamics came
from the distribution of simultaneous configura-
tions (on-off-patterns) of plans in the scores. This
distribution follows a power law (1/fa) demon-
strating a distinct structure order within the data
(Fig. 4). Following Bak et al. (1989), power law-
distributions as demonstrated in Fig. 4 emerge
from self-organized criticality within dynamic
systems.

Self-Organization in Clinical Psychology,
Fig. 3 Nominal sequences of interactional plans of the
therapist (top) and the patient (bottom) during a psycho-
therapy session. The sampling rate is 10 s. Different plans
can be realized simultaneously. The pattern looks like a

music score with the plans representing the different instru-
ments of an orchestra. A sonification of the score of plans
coded from a 13-session psychotherapy is recorded on a
DVD added to the textbook of Hakenand Schiepek 2006

Self-Organization in Clinical Psychology,
Table 1 Second-order plans and categories of self-
presentations as identified by the hierarchical plan analysis
of a complete 13-session psychotherapy. Encoding of

therapist and patient. Plans and categories are used as
ideographic observation categories for the sequential plan
analysis

Second-order plans Categories of self-presentation

Therapist 1 show competence
2 encourage a trusting relationship
3 show understanding
4 motivate her

I encourage trust/create a secure atmosphere

5 encourage her to reflect on her patterns of thinking
6 confront her with her avoidance and problem behavior

II confrontation/exposing to insecurity

7 activate her
8 show her that she is responsible

III encourage self-responsibility of the patient

9 guide her focus of attention
10 give her structure

IV activate structuring work

Patient 1 demonstrate strength and competence
2 make it clear that things are or have been difficult
3 be a good patient/create a good relationship to the therapist

I search for sympathy/appreciation/good
relationship

4 show that your suffering is strongly influenced by
external causes
5 ask for help from the therapist

II externalization/demonstration of
helplessness

6 show interest and willingness in solving your problems
7 protect yourself from threatening changes

III problem-oriented work (self-relatedness
vs. avoidance)
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Further data analysis was based on the time
series of the highest-level categories, the
so-called categories of self-presentation (see
Table 1). Since in the hierarchical system of the
plan analysis the operators at the lowest obser-
vation level were quantified by intensity ratings,
the plans and the self-presentation categories at
the top level integrating the lower level catego-
ries were also quantified. The time series were
analyzed by methods which are sensitive to the
nonlinearity as well as the nonstationarity of the
time series (Haken and Schiepek 2006; Kowalik
et al. 1997; Schiepek et al. 1997; Strunk and
Schiepek 2006). Nonlinearity was proofed by
surrogate data tests (Rapp et al. 1994) using
random surrogates and FFT-based phase-
randomized surrogates (Strunk 2004). Whereas
fractal dimensionalities of the empirical time
series (based on the correlation dimension D2
as well as mean Pointwise D2 (Skinner et al.
1994)) saturated at finite values (convergence
to a fractal dimensionality of about 6), random

and FFT-surrogates did not. The methods of PD2
(Skinner et al. 1994) and of the local largest
Lyapunov exponents (algorithm from
Rosenstein et al. 1993) were used to identify
phase-transition like discontinuities. Following
the evolution of PD2 dimensionalities, both ther-
apies realized nonstationarities, and both thera-
pies showed periods of strongly synchronized
(with correlations from 0.80 to 1.00) and anti-
synchronized PD2-processes (with correlations
from –0.80 to –1.00) between patient and thera-
pist. Quite similar and even more pronounced
dynamical jumps were to be seen in the devel-
opment of the local largest Lyapunov exponents
(Fig. 6), representing changes in the chaoticity of
a time signal (Kowalik et al. 1997). An important
part of the discontinuities of the LLLE were
exactly synchronized between patient and thera-
pist. Obviously both persons create a dynamic
self-organizing communication system, which
allows for the individual change processes of
the patient.

Self-Organization in Clinical Psychology,
Fig. 4 Empirical frequencies of constellations of interac-
tional plans realized by therapists (10 plans) and patients
(7 plans) within two psychotherapies (therapy I: 13 ses-
sions, therapy II: 9 sessions). X-axis: Number of all

possible configurations of plans (therapist: 210 ¼ 1024,
patient: 27 ¼ 128) ordered by the frequency of their real-
ization. Y-axis: Frequencies of plan configurations. The
distributions follow a power-law (1/fa) distribution
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These results get support from nonlinear cou-
pling measures between the time series of the
interaction partners. Pointwise transinformation
as well as pointwise coupling conditional diver-
gence (Lambertz et al. 2003; Vandenhouten 1998)
were applied to the data, and both indicate chang-
ing and time-dependent coupling strengths
between the time series of the interaction partners.
There is no priority to the therapist’s influence on
the patient, which contradicts the classical idea
that input from the therapist should determine
the client’s output. The other way round is also
true and both constitute the circular causality of
psychotherapeutic self-organization.

In other studies, sequential plan analysis was
applied to the microdynamics of group interac-
tion (Haken and Schiepek 2006). In a group of
five persons a creativity and problem solving task
was to be solved within 2,5 h (creation of ideas,
rules, and physical handicraft realization of a
prototype board game from different materials).
Similar to the psychotherapy study the sampling
rate was 10 s. The superordinate plans which
could be identified for all five persons were
(1) spontaneity and emotional engagement vs
shyness, restricted behavior, and orientation to
social norms, (2) engagement in the group inter-
action and in positive social climate, (3) task
orientation. Length of time series was about
810 coding points (¼ intervals). D2 as well as
mean PD2 estimates saturated at a fractal dimen-
sionality of about 5 for all categories. The
embedding of the time series was realized by
two ways: (1) The phase space was constituted
by the three dimensions of superordinated plans
with five trajectories representing the five group
members, or (2) the phase space was constituted
by the five persons with three trajectories
representing the time course of the three plans
(additional embedding dimensions result from
time delay coordinates). In both cases PD2
results show an evolving pattern of quasi-
attractors with changing complexity and LLLEs
(algorithm from Rosenstein et al. 1993) portray
chaoto-chaotic phase transitions with clear-cut
and interpersonally synchronized jumps – simi-
lar to the dyadic interaction of the psychotherapy
study.

Self-Organization in Human Change
Processes

A quite different approach to human change pro-
cesses focuses on inpatient treatments at a hospital
of psychosomatics. In a study by Schiepek and
coworkers (results in Haken and Schiepek 2006)
94 change processes were investigated, realized by
91 inpatients with different diagnoses (depression,
anxiety disorders, posttraumatic stress disorders,
eating disorders, somatoform disorders, and others).
The time series data was produced by patients’ self-
ratings which were completed once a day in the
evening. For this purpose a 53-item rating sheet
was developed (Therapy Process Questionnaire
[TPQ], Haken and Schiepek 2006) whose factor
analysis resulted in a solution of seven factors defin-
ing the subscales of the questionnaire (Table 2). The
ratings combined seven-step Likert scales and visual
analogue scales especially for ratings of emotions.
TPQ measurements reflect important aspects of the
patient’s experience of progress and goal attainment,
emotional involvement, self-efficacy, therapeutic
relationship, social relations with other inpatients,
and the ward atmosphere.

The inclusive outcome criterion integrated the
following measures: Inventory of Interpersonal
Problems (IIP), Gießener Beschwerdebogen
(GBB), Hospital Anxiety and Depression Scale
(HADS), Questionnaire for Social Support
(F-SOZU), a life-quality questionnaire
(Münchener Lebensqualitäts-Dimensionenliste), a
self-efficacy questionnaire (Fragebogen zur
Generalisierten Kompetenzerwartung), the Sense-
of-Coherence Questionnaire, and an interview-
based assessment of personal resources. Addition-
ally, therapists and patients scored the overall treat-
ment effectiveness and treatment quality.

Results confirmed synergetic conceptualiza-
tions of how psychotherapy works and corrobo-
rated hypotheses drawn from this model. Here
therapy is supposed to provide support for the
patient’s own self-organization processes, which
should be characterized by cascades of order-to-
order transitions accompanied by critical instabil-
ities of the process. Pathological and restrictive
order should be transformed into more flexible
and adaptive patterns of behavior, and the
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synchronization of the different aspects of the
patient’s experience should undergo some trans-
formations. Exactly this could be observed.

Significant correlations exist between the local
maxima of critical fluctuations and the outcome of
psychotherapy. The local maxima were defined by
the difference between the mean dynamic com-
plexity of the whole psychotherapy process and
the maximum of the complexity which was
observed during the process. Correlations were
–0.455 (second-order factor I: “Change involve-
ment” of the TPQ, p ¼ 0.002), –0.431 (second-
order factor 2: “Relationship/social climate”,
p ¼ 0.003), and –0.572 (second-order factor 3:
“Emotionality”, p ¼ 0.000) (compare Table 2).
Negative correlations result from the fact that

increased local maxima of dynamic complexity
correspond to reduced problems, symptoms, and
impairment.

The dynamic complexity combines a fluctua-
tion index with a distribution index. The fluctua-
tion index measures the frequency and amplitude
of the change rates of a time series between the
reversals of the development within a scanning
window gliding over the whole time series. For
analysis purpose a window width of seven mea-
surement points (¼ days) was introduced. The
distribution index measures the scattering of real-
ized values within a given scanning window. The
more scores are restricted to only narrow intervals
of the available scale range, the smaller the distri-
bution index becomes. The score of this index

a

b

Self-Organization in Clinical Psychology, Fig. 5 Synchronized jumps in the dynamics of local largest Lyapunov
exponents (black arrows). Grey arrows indicate not clearly synchronized changes. (a) Therapist, (b) Patient
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Self-Organization in Clinical Psychology,
Fig. 6 Complexity resonance diagram of a psychotherapy
process. Such diagrams portray the threshold exceeding
dynamic complexities of a process encoded by the 53 items
of the Therapy Process Questionnaire (TPQ). Gray dots:
5% threshold of significance; black dots: 1% threshold of

significance. X-axis: Days of hospital stay, Y-axis: Items of
the TPQ arranged by the order of the factors as reported in
Table 2. Window width for the calculation of dynamic
complexities is 7. Column-like structures indicate phases
of critical instabilities during the process

Self-Organization in Clinical Psychology,
Table 2 Factors (principal component analysis) of the
Therapy Process Questionnaire (TPQ). Factor analysis
was based on 94 therapy processes (mean stay ¼ 66 days,

daily ratings). Seven first-order factors (right) are related to
three second-order factors (left). Numbers behind the first-
order factors indicate factor loadings on second-order fac-
tors (for details see Haken and Schiepek 2006)

I(2) Change involvement I Therapeutic progress/confidence in treatment effects/self-efficacy (.571)
VI Intensity of therapeutic work/motivation to change (.596)
V Opening of perspectives/personal innovations (.649)

II(2) Relationship/Social
climate

III Quality of the therapeutic relationship/openness/confidence in the therapist
(.705)
II Ward atmosphere, social relationship to other inpatients (.692)

III(2) Emotionality IV Dysphoric emotions/self-relatedness (.732)
VII Impairment by symptoms and problems
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increases as the interval filled by the realized
values grows. The algorithm solves the problem
of value distribution independently of the scale
resolution, the width of the scanning window, and
of any combination of these parameters.

In order to answer the question if the observed
intensities of dynamic complexity reach critical
values, intraitem calibration procedures were used
in order to define adequate thresholds fitting to the
actual dynamics. The time series of dynamic com-
plexity were standardized by z-transformations,
providing significance thresholds of 5% or 1%.
Applying this threshold method to all items of the
TPQ reduces the quantitative complexity signals
of each time series to a three-step signal (not
significant, complexity exceeds a 5% threshold,
complexity exceeds a 1% threshold). A synopsis
of these qualitative signals referring to all items of
the TPQ gives an impression of the localization of
critical fluctuations during the whole process.
Dynamic complexities seem to be synchronized
over many items and factors of the TPQ, resulting
in the structure of columns of grey (< 5%) or
black (< 1%) dots. In a large part of the investi-
gated therapies such column-like structures could
be identified. In an item-by-time synopsis they
indicate phases of intensified as well as synchro-
nized fluctuations and entropies of quite different
aspects of the process. Consequently, these item-
by-time synopses are called complexity resonance
diagrams (Fig. 6).

In order to confirm the structures found within
the complexity-resonance-diagrams, surrogate
tests were realized based on random as well as on
FFT-based surrogates of the time series. The empir-
ical patterns are impressively different from the
surrogate-based patterns (all realized comparisons
with p ¼ 0.000). Further support for phase-
transition like phenomena in the change processes
came from recurrence plots representing similari-
ties and dissimilarities of dynamic segments of a
whole time series (Eckmann et al. 1987;
Vandenhouten 1998; Webber and Zbilut 1994).
This method is based on the embedding of time
series into a phase space constructed by timedelay
coordinates, a method which is also crucial in the
algorithms for the estimation of dimensional com-
plexity or chaoticity (e. g., Kolmogorov–Sinai-
Entropy, Lyapunov Exponents). Neighbors in the

time-delay phase space represent similar dynamic
segments and are plotted by a dot in the recurrence
plot. Dissimilarities are represented by empty col-
umns in the recurrence plots, which in many cases
exactly correspond to the columns of dots in the
complexity-resonance diagrams. The overall cor-
relation is –0.45, if small shifts (lags of + or –3
measurement points at maximum) will be allowed.
This means that periods of critical instability cor-
respond to transient dynamics outside of the quasi-
attractors established by the self-organizing system
under consideration. These different ways to iden-
tify critical phase transitions are further validated
by the time frequency distribution (TFD) of the
time series. The TFD method uses wavelet spectra
in order to scan the evolution of the frequency
distributions within a signal (Lambertz et al.
2003; Vandenhouten 1998). It is a dynamic coun-
terpart to the static fast Fourier transformation and
allows for the identification of pronounced fre-
quency amplitudes or changes in the frequency
distributions. In the data set of the referred study
these often appear exactly during the phase transi-
tions which can be identified by other methods (see
the synoptical representations of different time
series analysis methods on the DVD in the text-
book of Haken and Schiepek 2006).

An overall result of the study is shown in
Fig. 7. It portrays the evidence that in order to
bring forth change processes within self-
organizing systems at least two conditions should
be realized. The first condition: The degree of the
control parameter energizing the system and push-
ing it away from its actual equilibrium state
should exceed a certain intensity level. With
respect to psychotherapies this control parameter
could be the patient’s motivation to change
including his engagement into the therapeutic
work. Second condition: The degree of instability
the system attains during its change process. This
instability during emerging symmetries and sym-
metry breaking transitions is given by the local
maximum of dynamic complexity during the hos-
pital stay. The interaction of both conditions
results in treatment effectiveness. A third impor-
tant condition is not represented in Fig. 7: It is the
experienced stability of the outer environment
(context at the ward or therapeutic bond) or
of the inner environment (as self-esteem,
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self-confidence, or activated resources). This con-
text of stability is a prerequisite for a system to
undergo critical instabilities.

The Concept of Self-Organization
Promotes New Information
Technologies in Clinical Psychology –
The Synergetic Navigation System

Since self-organization and nonlinear dynamics
seem to be ubiquitous in human change processes,
it should be helpful to go beyond the diagnostics of
steady states to an assessment of dynamics. Practi-
tioners should get information on the therapy and
its features during the ongoing process in order to
use this information for an adequate placement of
interventions and a control of the dynamics. “Con-
trolling” self-organization processes in psychother-
apies means the generation and co-creation
(together with the patient) of adequate boundary
conditions, the decision to do or to retain certain

interventions, and to support the dynamics which
the system is creating by itself. The patient takes an
active and cooperative role in this understanding of
data-based and co-creative change processes.
Another important motivation for the development
of real-time assessment comes from the evidence
that most of the empirically identified specific and
non-specific factors driving therapeutic change
processes are connected with specific persons (the
concrete therapist whomeets a concrete patient in a
concrete setting) and evolve by its nonlinear inter-
actions in specific systems. These factors are
(i) personal features of the patient like his motiva-
tion to change, his premorbid adaptation and
degree of social functioning, personality integra-
tion, ego-strength, or comorbidities, (ii) personal
and professional features of the therapist like his
own personality integration, social and profes-
sional competencies, allegiance to his approach of
doing therapy, stress-resistance, and so on, and (iii)
factors of the professional and social context (see
the so-called generic model of psychotherapy

Self-Organization in Clinical Psychology, Fig. 7 The
effect size (ES) (mean ES of all outcome measures intro-
duced in the study, see text) of inpatient psychotherapy is
produced by an interaction between the local maximum of
critical fluctuations and the intensity of the control param-
eter realized during the change process. The local maxima
of fluctuations were defined by the difference between the

mean dynamic complexity of the whole therapy process
and the maximum of the complexity observed during the
process. The diagram is based on the mean of the local
maxima of all items. The control parameter was defined by
the overall mean of the TPQ factor VI: Intensity of thera-
peutic work/motivation to change
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Lambert and Ogles 2004; Orlinsky et al. 2004). In
consequence, evidence-based treatments should be
based on the evidence of concrete data mirroring
the ongoing change process and on the profes-
sional decisions reflecting this insight.

Real-time monitoring actually uses internet-
based presentations (including PDA or cell
phone technology) of outcome and process ques-
tionnaires. Data are sent to a server, where they are
stored and analyzed. Professionals and patients
can inspect the results whenever they want. Expe-
riences with real-time feedback to therapists
(based on an outcome questionnaire the patient
fills out during the therapy sessions in an ambula-
tory or outpatient context) are encouraging. Lam-
bert and co-workers (e. g., Lambert et al. 2002)
were able to identify processes on the way of
getting difficult or unsuccessful (“not on track”
therapies, compared to more promising “on track”
therapies), and helped therapists to correct these
not-on-track dynamics by specific interventions.
By this, threatening drop-outs could be avoided,
bad results could be corrected, and on-track pro-
cesses could be optimized and even shortened.

More sophisticated than the distinction
between “on-track” and “not-on-track” courses is
the feedback on self-organization features realized
by a system based on synergetics (Haken and
Schiepek 2006). The Synergetic Navigation Sys-
tem uses the therapy process questionnaire for
daily ratings and applies methods from nonlinear
time series analysis in order to identify important
qualities of the change process. This are:

• Stability or instability of the dynamics as
represented by the subscales (factors) of the
TPQ (see Table 2), which is measured by the
dynamic complexity

• Recurrence plots indicating transitions or
repeating patterns

• Intensity of synchronization and time-
dependent synchronization patterns between
the items and the factors of the TPQ (realized
by the cross-correlations of all items of the
TPQ, calculated within a running window).

Figure 8 shows a synopsis of these analysis
methods applied to a specific change process.
Preceding the inspection of all analysis results

the raw data series of the items and the time
courses of the factors (z-transformed values) are
available. Additionally patients can write an elec-
tronic diary after filling out the questionnaire. The
diary entries can be presented within a gliding tip-
tool running over the time series. By this,
corresponding qualitative and quantitative infor-
mation completes the picture.

The Self-Organizing Brain

The human brain is one of the most outstanding
examples of a complex nonlinear system produc-
ing self-organized patterns of functioning. Since
function corresponds to structure and vice versa,
structural changes (changes of intersynaptic cou-
pling strengths and network configurations, (re-)
wiring patterns following the synchronized
coactivity of neurons) can be explained by func-
tional self-organization of neural populations.
Perception, action and transition of action pat-
terns, decision making, and cognitive, behavioral,
as well as emotional learning are psychological
functions following the principles of self-
organization (Haken and Schiepek 2006). At a
neural level they correspond to and are based on
nonlinear brain dynamics. The emergence of
order parameters and the occurrence of phase
transitions can be described and measured on a
psychological as well as on a neural level.

One of the phenomena modeled by synergetics
is Gestalt perception – the construction of per-
cepts and the switching of ambiguous visual pat-
terns (e. g., Necker cube or stroboscopic
alternative motion). These processes of Gestalt
perception constitute the link between Gestalt
psychology and actual mathematical modeling in
synergetics (Haken 1990b). The binding of differ-
ent perceptual features or components to coherent
structures or “qualia” seems to be due to synchro-
nization processes of extended brain regions and
converging integrative areas (Singer and Gray
1995). Pattern perception corresponds to pattern
formation – as H. Haken puts it into pointed
words. Tallon-Baudry et al. (Tallon-Baudry and
Bertrand 1999; Tallon-Baudry et al. 1997) mea-
sured enhanced gamma-band activity (30–50 Hz)
in the EEG of the primary and secondary visual
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Self-Organization in Clinical Psychology,
Fig. 8 Synopsis of a psychotherapy process as monitored

by the Synergetic Navigation System. The time course of
the inpatient treatment of a patient with eating disorders
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cortex while subjects identified a triangle within
the offered stimulus material. This could be a
fingerprint of corresponding neural synchroniza-
tion processes. This activity occurred when sub-
jects saw a real object (triangle) as well as a figural
illusion of the object (Kanizsa triangle), but not if
geometrical components could not be composed
to a true Gestalt. The research group of Basar–
Eroglu and Stadler (Basar-Eroglu et al. 1996)
measured significant gamma-band activity in
EEG during states of perceptual switching trig-
gered by stroboscopic alternative motions. In
summary: Perception of multistability is one of
the multifold cognitive processes giving rise to
40 Hz enhancement in the cortex, and coherent
oscillations reflect an important mechanism of
feature linking in the visual cortex which corre-
sponds to the emergence of a neural order param-
eter. Changing order parameter dynamics during
different cognitive activities was shown by
Schupp et al. (Schupp et al. 1994). Mental imag-
ery of an object could be differentiated from its
concrete perception. The dimensional complexity
of prefrontal EEG was increased during sensory
imagery compared to the real perception of the
same object (compare Lutzenberger et al. 1992).

The well-known movement coordination para-
digm modeled by Haken et al. (Haken et al. 1985)
was used to demonstrate neural correlates of insta-
bility and symmetry breaking processes in the
motor brain. The order parameter in this finger
movement experiment is the relative phase of
the index fingers of both hands. Metronome-
pacing – with movement frequency as the control
parameter – triggers the system from parallel
(out-of-phase) to mirror (inphase) movement.
Meyer-Lindenberg et al. (2002) showed that the

emergence of patterns in open, nonequilibrium
systems like the brain is governed by their stabil-
ity in response to small disturbances. Transitions
could be elicited by interference at the neural
level. Functional neuroimaging (PET) identified
premotor (PMA) and supplementary motor
(SMA) cortices as having neural activity linked
to the degree of behavioral instability, induced by
increasing frequency of the finger movement.
These regions then were transiently disturbed
with graded transcranial magnetic stimulation
(TMS), which caused sustained and macroscopic
behavioral transitions from the less stable out-of-
phase to the stable in-phase movement, whereas
the stable pattern could not be affected. Moreover,
the strength of the disturbance needed (a measure
of neural stability) was linked to the degree of the
control parameter (movement frequency) and
thereby to the behavioral stability of the system.

Synergetic research in clinical psychology is
now reaching the brain level. The aim of an actual
fMRI-study (Schiepek et al. 2008) is the investiga-
tion of phase transitions of brain activity and related
subjective experiences of patients during their psy-
chotherapy process. Repeated fMRI scans are
related to the degree of stability or instability of the
ongoing dynamics (measured by the dynamic com-
plexity of daily TPQ-ratings) as well as to the ther-
apy outcome. Realtime monitoring by the
Synergetic Navigation System allows for the identi-
fication of stable or unstable periods and by this for a
decision on the appropriatemoments of fMRI acqui-
sitions. Three or four scans are realized during each
of the psychotherapy processes of 15 patients. The
study includes only patients with obsessive-
compulsive disorder (OCD) of the washing/contam-
ination fear subtype (DSM IV: 300.3), without any

��

Self-Organization in Clinical Psychology, Fig. 8 (con-
tinued) portrays a clear cut phase-transition associated with
critical instabilities. Top: Recurrence plot of the item
“Today I was successful to do steps towards my personal
goals”. Dots represent recurrent segments of the time
series, empty spaces represent transitions. Middle: Com-
plexity resonance diagram of all items of the TPQ. Differ-
ent from Fig. 6, the intensities of the dynamic complexity
of each item is transformed into colors. Items are arranged

by the order of the first-and second-order factors of TPQ.
Bottom: Mean of all interitem correlations irrespective of
the sign (absolute values). This is a measure of the overall
synchronisation of the patient’s experiences as represented
by the items of the TPQ. The correlation structure is shown
at four measurement points (days) of the psychotherapy
process (t ¼ 4, t ¼ 19, t ¼ 33, t ¼ 46). Intensity of green
represents positive correlations, intensities of red repre-
sents negative correlations
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medication or comorbid psychiatric or somatic diag-
noses. Patients are matched to healthy controls.
(This research is amulti-center study of the Ludwig-
Maximilians-University Munich, Institute of Psy-
chology (Prof. Dr. Günter Schiepek, head of the
project), and Clinic of Psychiatry (PD Dr. Oliver
Pogarell, Dipl. Psych. SusanneKarch, Dr. Christoph
Mulert), Hospital of Psychosomatic Medicine
Windach/Ammersee and Day Treatment Centre
Munich/Westend (Dr. Igor Tominschek, cand.
Psych. Stephan Heinzel, Prof. Dr. Michael Zaudig),
University Hospital Vienna/Astria, Clinic of Psychi-
atry (Prof. Dr. Martin Aigner, Prof. Dr. Gerhard
Lenz, cand. med. Markus Dold, Dr. Annemarie
Unger), MR Centre of Excellence, Medical Univer-
sity Vienna/Austria (Prof. Dr. Ewald Moser,
Dr. Christian Windischberger).

OCD seems to be an appropriate model system
for synergetic studies in clinical psychology, since
the pathological order parameter is phenomenolog-
ically quite evident, the disease has an obvious and
quite stable time course, and therapeutic phase
transitions – if they do occur at all – are easy to
be observed. OCD-specific functional neuroanat-
omy is partially known: Friedlander and Desrocher
(Friedlander and Desrocher 2006) report on an
executive dysfunction model corresponding to the
cortico-striato-thalamo-cortical feedback-loops
involved in perseverations and compulsions, and
on a modulatory control model involved in the
pathological mechanisms of anxiety and distress
provoking obsessions.

The visual stimulation paradigm of the study
uses symptom provoking, disgust provoking, and
neutral pictures. The disgust and the neutral pic-
tures are taken from the International Affective
Picture System, whereas the OCD-related pictures
are photographed in the home setting of the
patients, showing specific and individualized
symptom provoking stimuli.

For illustrative purposes we report on the
results of a single case. It is a female patient,
whose fMRI scans were taken three times during
the 59 days of their hospital stay at days 9, 30, and
57. The healthy control was also scanned three
times at identical time intervals as the patient. The
second acquisition was done after an intensive
period of critical instability of the TPQ-based

time series, but just before the flooding was
started. (Flooding or response prevention is an
essential therapy technique in the treatment of
OCD, where patients are confronted with symp-
tom provoking stimuli but abstain from
performing compulsive rituals.) The instability
of the patient’s process was the precursor of an
important personal decision to divorce from her
husband. (It should be noted that the development
of her OCD symptoms was in the context of a
long-lasting marital conflict.) This decision was
the essential phase transition of the therapy.

Indeed, the most pronounced changes in brain
activity occurred from the first to the second fMRI
scan, whereas BOLD response differences from
the second to the third session were only slight.
They perhaps represent the neural correlates of an
important personal phase transition related to the
resolution of a severe personal conflict. Because
these changes occurred before the flooding proce-
dure was started, this can be seen as indicator of an
early rapid response in the therapy (Lambert and
Ogles 2004). Additionally, marked alternations in
brain activity were to be observed before or during
symptom reduction took place (measured by the
Y-BOCS), not afterwards.

Alternations in brain activity involved wide-
spread areas, e. g. the medial frontal brain regions
including anterior cingulate cortex, superior and
middle frontal gyrus, inferior frontal and precentral
gyrus, superior temporal gyrus, superior parietal
lobe, cuneus, thalamus and caudate nucleus in
both hemispheres, as well as the right fusiform
gyrus (see Fig. 9 for a OCD to disgust contrast).
Thalamic and basal ganglia activation is part of the
dorsolateral-caudate-striatum-thalamus circuitry of
OCD. Especially the caudate nucleus takes a role
within the executive dysfunctionmodel of compul-
sions, and its activity has been found to be reduced
after treatment (Nakao et al. 2005).

The function of the anterior cingulate cortex is
interesting with regard to synergetics. The cingu-
late cortex comprises various functions like
somatosensoric integration, mediation of affective
and cognitive processes, control of attention, and
processing of painful stimuli. Additionally, it plays
an important role as conflict monitoring system: It
is sensitive to ambiguous or conflicting
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information (van Veen and Carter 2002a, b), is
involved in decision making (King-Casas et al.
2005; Sanfey et al. 2003), and its activation is
predictive to treatment outcome in depression
(e. g. Mayberg et al. 1997). This is true especially
for the dorsal (cognitive) structures of the ACC. It
could be an indicator of symmetry states of brain
functioning, which is characterized by two or more

dynamic patterns or attractors in competition. In
the present case, the ACC activation at the begin-
ning of the therapy could be either part of the
pathology or could be indicative for the critical
instability of the cognitive-affective system of the
patient, preparing her important decision. The sec-
ond fMRI measure was conducted during a local
minimum of critical fluctuations. If the impressive

Self-Organization in Clinical Psychology,
Fig. 9 Brain activation patterns of a patient with OCD
during psychotherapy. BOLD signals from a 1.5 Tesla
fMRI scanner. Top: First scan (9th day of hospital stay;
x¼ 0, y¼ –55, z¼ –2; p(uncor)< 0.001).Middle: Second
scan (30th day of hospital stay; x ¼ 8, y ¼ –54, z ¼ 5; p

(uncor) < 0.001). Bottom: The third scan (57th day of
hospital stay; x ¼ 0, y ¼ –85, z ¼ 26; p(uncor) < 0.001).
Activations during the presentation of OCD-related pic-
tures compared to activations during the presentation of
neutral pictures (OCD > disgust)
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change in cingulate activation could be attributed
to a changed critical symmetry state of the neural
self-organization before vs. after the phase-
transition or to changes in symptom severity can-
not be decidedwithin a single case study, but seems
to be an interesting question to further research.
Perhaps the fact that during the second fMRI mea-
sure the Y-BOCS score was nearly on the same
level as during the first measure – only 14% reduc-
tion, compared to 50% reduction in dynamic com-
plexity – could be a first argument in favor of the
instability hypothesis.

The paradigm of self-organization is a very
promising approach to clinical as well as other
fields of psychology. Its interdisciplinary is due
to the fact that the laws and principles of self-
organization are true for neural, mental, and
behavioral processes (and the corresponding
data qualities). Interdisciplinary cooperation is
underpinned by the unifying terminology as
well as by the unifying formalism and modeling
tools of synergetics. This opens new perspec-
tives for basic and applied research, but also for
the treatment of mental disorders. New devel-
opments in the real-time monitoring of human
change processes based on synergetics and non-
linear science have been mentioned. Another
field of encouraging developments is deep
brain stimulation (DBS), which apply to neuro-
logical diseases as Parkinsonian or essential
tremor, but also to psychiatric disorders as
OCD or mayor depression (Tass et al. 2003).
The difference between new technologies
(applying the mathematical instruments and
concepts of synergetics as well as methods
from stochastic phase resetting) and classical
electrical deep brain stimulation is that normal
DBS at high frequencies has a blocking effect
on the stimulated target and mimics the effect of
tissue lesioning. New technologies are demand-
controlled, working with low stimulation
frequencies, and avoid the suppression of
neurons’ firing. Its effect is a desynchronization
of pathologically synchronized populations of
neurons, using multi-site coordinated reset
stimulation (Tass and Hauptmann 2007) or non-
linear delayed feedback stimulation (Popovych
et al. 2006). Both methods counteract abnormal

interactions and detune the macroscopic fre-
quency of the collective oscillators – that is the
abnormally established order parameters of neu-
ral synchronization. Thereby they restore the
natural frequencies of the individual oscillatory
units. Neurons get in the range of physiological
functioning and can engage in changing and
varying synchronization patterns. If altered syn-
chronization patterns also change the coupling
strength connecting synapses, a rewiring of neu-
ral nets could be reached. Changed function
triggers the emergence of healthy attractors
and by this changes the structure of neural net-
works. Perhaps in the future technologies of
DBS or even non-invasive brain stimulation
could be combined with psychotherapy and psy-
chological navigation instruments developed to
optimize self-organizing change processes.

Future Directions

The future developments of self-organization and
complexity research in clinical psychology and
psychotherapy will be interconnected to its accep-
tance in practice and training. Perhaps this sounds
paradoxically, since in most other scientific fields
the future depends on the investigations to basic
research and to new technologies. Of course this
holds also for synergetics and its applications to
clinical psychology. However, it should be noted
that complexity research and nonlinear dynamics
are done since more than two decades in European
academic psychology with poor impact to main-
stream science. So, the future will depend on a
greater number of new arriving and highly quali-
fied students in this topic who do not avoid the
touch with mathematics. Self-organization and
complexity research including its mathematical
backgrounds should become part of the training
curricula in psychology and psychotherapy. Since
the Synergetic Navigation System waits for its
broad application in clinical and psychotherapeu-
tic practice, a new decade of practice-based
research can be started. But these developments
depend on its acceptance by practitioners because
of the competencies required for the widespread
use of sophisticated methods. This integration of
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science with practice will open huge sources and
new dimensions of data gathering on dynamic
systems. An important database for outcome and
time series data (including biomarkers) of human
change processes is actually prepared.

Another stream of development is concerning
the integration of psychological and biological/
physiological data. Since human self-organization
takes place on synchronized mental, social, and
biological system levels, all of them should be
taken into account in further research. One
research paradigm was suggested in this chapter:
The investigation of individual and social pro-
cesses by the Synergetic Navigation System, and
in parallel repeated brain scans using fMRI tech-
nology or other methods to get insight into brain
dynamics (EEG, gene expression markers Koch
et al. 2002, immune or endocrine markers Schu-
bert and Schiepek 2003, or others). Two final
remarks: First, future developments of
synergetic-based minimal invasive DBS could
be combined with psychotherapy and psycholog-
ical interventions – as pharmacological and psy-
chological treatments are combined nowadays.
Second, the nonlinear networks underlying psy-
chological as well as neural self-organization will
not be understood without applying appropriate
mathematical tools, giving raise to a new systemic
psychology and neuroscience.
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Glossary

Control parameter A parameter of internal or
external origin that when manipulated controls the
system in a nonspecific fashion and is capable of
inducing changes in the system’s behavior. These
changes may be a smooth function of the control
parameter or abrupt at certain critical values. The
latter, also referred to as phase transitions, are of
main interest here as they only occur in nonlinear
systems and are accompanied by phenomena like
critical slowing down and fluctuation enhancement
that can be probed for experimentally.

Haken-Kelso-Bunz (HKB) model First
published in 1985, the HKB model is the best-

known and probably most extensively tested
quantitative model in human movement behav-
ior. In its original form, it describes the dynam-
ics of the relative phase between two oscillating
fingers or limbs under frequency scaling. The
HKB model can be derived from coupled non-
linear oscillators and has been successfully
extended in various ways, for instance, to situ-
ations where different limbs like an arm and a
leg, a single limb and a metronome, or even two
different people are involved.

Order parameter Order parameters are quantities
that allow for a usually low-dimensional descrip-
tion of the dynamical behavior of a high-
dimensional system on a macroscopic level.
These quantities change their values abruptly
when a system undergoes a phase transition. For
example, density is an order parameter in the ice
to water or water to vapor transitions. In move-
ment coordination, themost-studied order param-
eter is relative phase, i.e., the difference in the
phases between two or more oscillating entities.

Phase transition The best-known phase transi-
tions are the changes from a solid to a fluid
phase like ice to water or from fluid to gas like
water to vapor. These transitions are called first-
order phase transitions as they involve latent heat,
which means that a certain amount of energy has
to be put into the system at the transition point
that does not cause an increase in temperature.
For the second-order phase transitions, there is no
latent heat involved. An example from physics is
heating a magnet above its Curie temperature at
which point it switches from a magnetic to a
nonmagnetic state. The qualitative changes that
are observed in many nonlinear dynamical sys-
tems when a parameter exceeds a certain thresh-
old are also such second-order phase transitions.

Definition of the Subject

Movement coordination is present all the time in
daily life but tends to be taken for granted when it
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works. One might say it is quite an arcane subject
also for science. This changes drastically when
some pieces of the locomotor system are not func-
tioning properly because of injury, disease, or age.
In most cases, it is only then that people become
aware of the complex mechanisms that must be in
place to control and coordinate the hundreds of
muscles and joints in the body of humans or ani-
mals to allow formaintaining balancewhilemaneu-
vering through rough terrains, for example. No
robot performance comes even close in such a task.

Although these issues have been around for a
long time, it was only during the last quarter
century that scientists developed quantitative
models for movement coordination based on the
theory of nonlinear dynamical systems. Coordi-
nation dynamics, as the field is now called, has
become arguably the most developed and best
tested quantitative theory in the life sciences.

More importantly, even though this theory was
originally developed for modeling of bimanual
finger movements, it has turned out to be universal
in the sense that it is also valid to describe the
coordination patterns observed between different
limbs, like an arm and a leg, different joints within
a single limb, like the wrist and elbow, and even
between different people that perform movements
while watching each other.

Introduction

According to a dictionary definition, coordination
is the act of coordinating, making different people
or things work together for a goal or effect.

When we think about movement coordination,
the “things” we make work together can be quite
different like our legs for walking; fingers for
playing the piano; mouth, tongue, and lips for
articulating speech; body expressions; and the
interplay between bodies in dancing and ballet,
tactics, and timing between players in team sports
and so on, not to forget other advanced skill activ-
ities like skiing or golfing.

All these actions have one thing in common: they
look extremely easy if performed by people who
have learned and practiced these skills, and they are
incredibly difficult for novices and beginners. Slight

differencesmight exist regarding how these difficul-
ties are perceived, for instance, when asked whether
they can play golf, some people may say: “I don’t
know, let me try,” and they expect to outdrive Tiger
Woods right away; there are very few individuals
with a similar attitude toward playing the piano.

The physics of golf as far as the ball and the
club are concerned is almost trivial: hit the ball
with the highest possible velocity with the club
face square at impact, and it will go straight and
far. The more tricky question is how to achieve
this goal with a body that consists of hundreds of
different muscles, tendons, and joints, and, impor-
tantly, their sensory support in joint, skin, and
muscle receptors (proprioception), in short, hun-
dreds of degrees of freedom. How do these indi-
vidual elements work together, and how are they
coordinated? Notice that the question is not how
do we coordinate them? None of the skills men-
tioned above can be performed by consciously
controlling all the body parts involved. Conscious
thinking sometimes seems to do more harm than
good. So how do they/we do it? For some time,
many scientists sought the answer to this question
in what is called motor programs or, more
recently, internal models. The basic idea is
straightforward: when a skill is learned, it is some-
how stored in the brain like a program in a com-
puter and simply can be called and executed when
needed. Additional learning or training leads to
skill improvement, interpreted as refinements in
the program. As intuitive as this sounds and even
if one simply ignores all the unresolved issues like
how such programs gain the necessary flexibility
or in what form they might be stored in the first
place, there are even deeper reasons and argu-
ments suggesting that humans (or animals for
that matter) do not work like that. One of the
most striking of these arguments is known as
motor equivalence: everybody who has learned
to write with one of their hands can immediately
write with the foot as well. This writing may not
look too neat, but it will certainly be readable and
represents the transfer of a quite complex and
difficult movement from one end effector (the
hand) to another (the foot) that is controlled by a
completely different set of muscles and joints.
Different degrees of freedom and redundancy in
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the joints can still produce the same output (the
letters) immediately, i.e., without any practice.

For the study of movement coordination, a
most important entry point is to look at situations
where the movement or coordination pattern
changes abruptly. An example might be the well-
known gait switches from walk to trot to gallop
that horses perform. It turns out, however, that
switching among patterns of coordination is a
ubiquitous phenomenon in human limb move-
ments. As will be described in detail, such
switching has been used to probe human move-
ment coordination in quantitative experiments.

It is the aim of this article to describe an
approach to a quantitative modeling of human
movements, called coordination dynamics, that
deals with quantities that are accessible from
experiments and makes predictions that can and
have been tested. The intent is to show that coor-
dination dynamics represents a theory allowing
for quantitative predictions of phenomena in a
way that is unprecedented in the life sciences. In
parallel with the rapid development of noninva-
sive brain imaging techniques, coordination
dynamics has even pointed to new ways for the
study of brain functioning.

The Basic Law of Coordination: Relative
Phase

The basic experiment, introduced by one of us
(Kelso 1981, 1984), that gave birth to coordina-
tion dynamics, the theory underlying the coordi-
nation of movements, is easily demonstrated and
has become a classroom exercise for generations
of students: if a subject is moving the two index
fingers in a so-called anti-phase, i.e., one finger is
flexing while the other is extending, and then the
movement rate is increased, there is a critical rate
where the subject switches spontaneously from
the anti-phase movement to in-phase , i.e., both
fingers are now flexing and extending at the same
time. On the other hand, if the subject starts at a
high or low rate with an in-phase movement and
the rate is slowed down or sped up, no such
transition occurs.

These experimental findings can be translated
or mapped into the language of dynamical sys-
tems theory as follows (Haken et al. 1985):

• At low movement rates, the system has two
stable attractors, one representing anti-phase
and one for in-phase – in short, the system is
bistable.

• When the movement rate reaches a critical
value, the anti-phase attractor disappears, and
the only possible stable movement pattern
remaining is in-phase.

• There is strong hysteresis: when the system is
performing in-phase and the movement rate is
decreased from a high value, the anti-phase
attractor may reappear, but the system does
not switch to it.

In order to make use of dynamical systems
theory for a quantitative description of the transi-
tions in coordinated movements, one needs to
establish a measure that allows for a formulation
of a dynamical system that captures these experi-
mental observations and can serve as a phenome-
nological model. Essentially, the fingermovements
represent oscillations (as will be discussed in more
detail in subsection. “Oscillators for Limb Move-
ments”) each ofwhich is described by an amplitude
r and a phase ’(t). For the easiest case of harmonic
oscillations, the amplitude r does not depend on
time, and the phase increases linearly with time at a
constant rateo, called the angular velocity, leading
to ’(t) = ot. Two oscillators are said to be in the
in-phase mode if the two phases are the same, or
’1(t) � ’2(t) = 0, and in anti-phase if the differ-
ence between their two phases is 180

�
or p radians.

Therefore, the quantity that is most commonly
used to model the experimental findings in move-
ment coordination is the phase difference or rela-
tive phase:

f tð Þ ¼ ’1 tð Þ � ’2 tð Þ

¼ f tð Þ ¼ 0 for in - phase

f tð Þ ¼ p for anti - phase:

�
(1)

The minimal dynamical system for the relative
phase that is consistent with observations is
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known as the Haken-Kelso-Bunz (or HKB) model
and was first published in a seminal paper in 1985
(Haken et al. 1985):

_f ¼ �a sinf� 2b sin 2f with a, b � 0: (2)

As is the case for all one-dimensional first-
order differential equations, Eq. 2 can be derived
from a potential function:

_f ¼ � dV fð Þ
df

with

V fð Þ ¼ �a cosf� b cos 2f:
(3)

One of the two parameters a and b that appear
in Eqs. 2 and 3 can be eliminated by introducing a
new time scale t = at, a procedure known as
scaling and commonly used within the theory of
nonlinear differential equations, leading to

_f tð Þ ¼ df tð Þ
dt

!
df

t
a

� �
d
t
a

¼ �a sinf
t
a

� �
�2b sin 2f

t
a

� �

a
def
dt

¼ �a sin ef tð Þ � 2b sin 2ef tð Þ (4)

where ef has the same shape as f; it is just
changing on a slower or faster time scale
depending on whether a is bigger or smaller than
one. After dividing by a and letting the so far
undetermined a = a Eq. 4 becomes

def
dt

¼ � a

a|{z}
¼1

sin ef � 2
b

a|{z}
¼k

sin 2ef: (5)

Finally, by dropping the tilde ~, Eqs. 2 and 3
can be written with only one parameter k ¼ b

a in
the form

_f ¼ � sinf� 2k sin 2f ¼ � dV fð Þ
df

with V fð Þ ¼ � cosf� k cos 2f:
(6)

The dynamical properties of the HKB model’s
collective or coordinative level of description

are visualized in Fig. 1 with plots of the phase
space ( _f as a function of f) in the top row, the
potential landscapes V(f) in the second row, and
the bifurcation diagram at the bottom. The control
parameter k, as shown, is the ratio between b and
a, k ¼ b

a, which is inversely related to the move-
ment rate: a large value of k corresponds to a slow
rate, whereas k close to zero indicates that the
movement rate is high.

In the phase space plots (Fig. 1 top row) for
k = 0.75 and k = 0.5, there exist two stable fixed
points at f = 0 and f = p where the function
crosses the horizontal axis with a negative slope,
marked by solid circles (the fixed point at �p is
the same as the point at p as the function is
2p–periodic). These attractors are separated by
repellers, zero crossings with a positive slope
and marked by open circles. For the movement
rates corresponding to these two values of k, the
model suggests that both anti-phase and in-phase
movements are stable. When the rate is increased,
corresponding to a decrease in the control param-
eter k down to the critical point at kc = 0.25, the
former stable fixed point atf= p collides with the
unstable fixed point and becomes neutrally stable
indicated by a half-filled circle. Beyond kc, i.e., for
faster rates and smaller values of k, the anti-phase
movement is unstable and the only remaining
stable coordination pattern is in-phase.

The potential functions, shown in the second
row in Fig. 1, contain the same information as the
phase space portraits as they are just a different
representation of the dynamics. However, the strong
hysteresis ismore intuitive in the potential landscape
than in phase space and can best be seen through an
experiment that starts out with slow movements in
anti-phase (indicated by the gray ball in the mini-
mum of the potential at f = p) and increasing rate.
After passing the critical value kc = 0.25, the
slightest perturbation will put the ball on the down-
hill slope and initiate a switch to in-phase. If the
movement is now slowed down again, going from
right to left in the plots, even though theminimumat
f = p reappears, the ball cannot jump up and
occupy it but will stay in the deep minimum at
f = 0, a phenomenon known as hysteresis.

Finally, a bifurcation diagram is shown at the
bottom of Fig. 1, where the locations of stable
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fixed points for the relative phase f are plotted as
solid lines with solid circles and unstable fixed
points as dashed lines with open circles. Around
kc = 0.25, the system undergoes a subcritical
pitchfork bifurcation. Note that the control param-
eter k in this plot increases from right to left.

Evidently, the dynamical system represented
by Eq. 2 is capable of reproducing the basic
experimental findings listed above. From the
viewpoint of theory, this is simply one of the
preliminaries for a model that have to be fulfilled.
In general, any model that only reproduces what is
built into it is not of much value. More important
are crucial experimental tests of the consequences
and additional phenomena that are predicted when
the model is worked through. Several such

consequences and predictions will be described
in detail in the following sections. It is only after
such theoretical and experimental scrutiny that the
HKB model has come to qualify as an elementary
law of movement coordination.

Stability: Perturbations and Fluctuations

Random fluctuations, or noise for short, exist in all
systems that dissipate energy. In fact, there exists a
famous theorem that goes back to Einstein, known
as the dissipation-fluctuation theorem, which states
that the amount of random fluctuations in a system
is proportional to its dissipation of energy. There
are effects from random noise on the dynamics of

Movement Coordination, Fig. 1 Dynamics of the HKB
model at the coordinative, relative phase (f) level as a
function of the control parameter k ¼ b

a. Top row: Phase
space plots _f as a function of f.Middle: Landscapes of the
potential function V(f). Bottom: Bifurcation diagram,

where solid lines with filled circles correspond to stable
fixed points (attractors) and dashed lines with open circles
denote repellers. Note that k increases from right (k= 0) to
left (k = 0.75)
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relative phase that can be predicted from theory
both qualitatively and quantitatively, allowing for
the HKB model’s coordination level to be tested
experimentally. Later the individual component
level will be discussed.

An essential difference between the dynamical
systems approach to movement coordination and
the motor program or internal model hypotheses is
most distinct in regions where the coordination pat-
tern undergoes a spontaneous qualitative change as
in the switch from anti-phase to in-phase in Kelso’s
experiment. From the latter point of view, these
switches simply happen, very much like in the auto-
matic transmission of a car: whenever certain criteria
are fulfilled, the transmission switches from one
gear to another. It is easy to imagine a similar
mechanism to be at work and in control of the
transitions in movements: as soon as a certain rate
is exceeded, the anti-phase program is somehow
replaced by the in-phase module, which is about
all we can say regarding the mechanism of
switching. On the other hand, by taking dynamic
systems theory seriously, one can predict and test
phenomena accompanying second-order phase tran-
sitions. Three of these phenomena, namely, critical
slowing down, enhancement of fluctuations, and
critical fluctuations, will be discussed here in detail.

For a quantitative treatment, it is advantageous
to expand _f and V(f) in Eq. 6 into Taylor series

around the fixed point f = p and truncate them
after the linear and quadratic terms, respectively:

_f ¼ � sinf� 2k sin 2f

¼ � � f� pð Þ þ . . .f g � 2k 2 f� pð Þ þ . . .f g
� 1� 4kð Þ f� pð Þ

V fð Þ ¼ � cosf� k cos 2f

¼ � �1þ f� pð Þ2 þ . . .
n o

� k 1� 4 f� pð Þ2 þ . . .
n o

� 1� k � 1� 4kð Þ f� pð Þ2:
(7)

A typical situation that occurs when a system
approaches and passes through a transition point is
shown in Fig. 2. In the top row, the potential func-
tion forf � 0 is plotted (dashed line) together with
its expansion around the fixed point f = p (solid).
The bottom row consists of plots of time series
showing how the fixed point is or is not approached
when the system is initially at f = p + D. The
phenomena accompanying second-order phase
transitions in a system that contains random fluctu-
ations can be best described by Fig. 2.

Critical slowing down corresponds to the time it
takes the system to recover from a small perturbation
D. In the vicinity of the fixed point, the dynamics
can be described by the linearization of the nonlinear

Movement Coordination, Fig. 2 Hallmarks of a system
that approaches a transition point: enhancement of fluctu-
ations, indicated by the increasing size of the shaded area;
critical slowing down shown by the time it takes for the

system to recover from a perturbation (bottom); critical
fluctuations occur where the top of the shaded area is
higher than the closest maximum in the potential, initiating
a switch even though the system is still stable
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equation around the fixed point Eq. 7. Such a linear
equation can be readily solved leading to

f tð Þ ¼ pþ De 1�4kð Þt:

As long as k is larger than its critical value
kc = 0.25, the exponent is negative and a perturba-
tion will decay exponentially in time. However, as
the system approaches the transition point, this
decay will take longer and longer as shown in the
bottom row in Fig. 2. At the critical parameter
k = 0.25, the system will no longer return to the
former stable fixed point, and beyond that value, it
will even move away from it. In the latter parameter
region, the linear approximation is no longer valid.
Critical slowing down can be and has been tested
experimentally by perturbing a coordination state
and measuring the relaxation constant as a function
of movement rate prior to the transition. The exper-
imental findings (Kelso et al. 1987; Scholz and
Kelso 1989; Scholz et al. 1987) are in remarkable
agreement with the theoretical predictions of coor-
dination dynamics (Schöner et al. 1986).

Enhancement of fluctuations is to some extent
the stochastic analog to critical slowing down. The
random fluctuations that exist in all dissipative sys-
tems are a stochastic force that kicks the system
away from the minimum and (on average) up to a
certain elevation in the potential landscape, indi-
cated by the shaded areas in Fig. 2. For large values
of k, the horizontal extent of this area is small but
becomes larger and larger when the transition point
is approached. Assuming that the strength of the
random force does not change with the control
parameter, the standard deviation of the relative
phase is a direct measure of this enhancement of
fluctuations and will be increasing when the control
parameter is moving toward its critical value. Again
experimental tests are in detailed agreement with the
stochastic version of the HKB model (Kelso et al.
1986; Schöner et al. 1986; Scholz and Kelso 1989).

Critical fluctuations can induce transitions
even when the critical value of the control param-
eter has not been reached. As before, random
forces will kick the system around the potential
minimum and up to (on average) a certain eleva-
tion. If this height is larger than the hump it has to
cross, as in the case illustrated in Fig. 2 for k= 0.5,
a transition will occur, even though the fixed point

is still classified as stable. In excellent agreement
with theory, such critical fluctuations were
observed in the original experiments by Kelso
and colleagues (1986) and have been found in a
number of related experimental systems (Kelso
et al. 1987; Schöner and Kelso 1988).

All these hallmarks point to the conclusion that
transitions inmovement coordination are not simply
a switching of gears but take place in a well-defined
way via the instability of a former stable coordina-
tion state. Such phenomena are also observed in
systems in physics and other disciplines where in
situations far from thermal equilibriummacroscopic
patterns emerge or change, a process termed self-
organization. A general theory of self-organizing
systems, called synergetics (Haken 1983; Haken
et al. 1985), was formulated by Hermann Haken in
the early 1970s.

The Oscillator Level

The foregoing description and analysis of bimanual
movement coordination takes place on the coordi-
native or collective level of relative phase. Looking
at an actual experiment, there are two fingers mov-
ing back and forth, and one may ask whether it is
possible to find a model on the level of the oscilla-
tory components from which the dynamics of the
relative phase can then be derived. The challenge
for such an endeavor is at least twofold: first, one
needs a dynamical system that accurately describes
the movements of the individual oscillatory com-
ponents (the fingers). Second, one must find a
coupling function for these components that leads
to the correct relation for the relative phase Eq. 2.

Oscillators for Limb Movements
In terms of oscillators, there is quite a variety to
choose from as most second-order systems of the
form

€xþ g _xþ o2xþ N x, _xð Þ ¼ 0 (8)

are potential candidates. Here o is the angular fre-
quency, g is the linear damping constant, and N

x, _xð Þ is a function containing nonlinear terms in
x and _x.

Best known and most widely used are the har-
monic oscillators, where N x, _xð Þ ¼ 0, in particular
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for the case without damping g= 0. In the search for
a model to describe human limb movements, how-
ever, harmonic oscillators are not well suited,
because they do not have stable limit cycles. The
phase space portrait of a harmonic oscillator is a
circle (or ellipse), but only if it is not perturbed. If
such a system is slightly kicked off the trajectory, it
is moving on, and it will not return to its original
circle but continue to move on a different orbit. In
contrast, it is well known that if a rhythmic human
limb movement is perturbed, this perturbation
decreases exponentially in time, and the movement
returns to its original trajectory, a stable limit cycle,
which is an object that exists only for nonlinear
oscillators (Kay et al. 1987, 1991).

Obviously, the amount of possible nonlinear
terms to choose from is infinite, and at first sight,
the task to find the appropriate ones is like looking
for a needle in a haystack. However, there are pow-
erful arguments that can be made from both theo-
retical reasoning and experimental findings that
restrict the nonlinearities, as we shall see, to only
two. First, we assume that the functionN x, _xð Þ takes
the form of a polynomial in x and _x and that this
polynomial is of the lowest possible order. So the
first choicewould be to assume thatN is quadratic in
x and _x leading to an oscillator of the form

€xþ g _xþ o2xþ ax2 þ b _x2 þ cx _x ¼ 0: (9)

How do we decide whether Eq. 9 is a good
model for rhythmic finger movements? If a finger
is moved back and forth, that is, performs an
alternation between flexion and extension, then
this process is to a good approximation symmet-
ric: flexion is the mirror image of extension. In the
equations, a mirror operation is carried out by
substituting x by �x, and, in doing so, the equa-
tion of motion must not change for symmetry to
be preserved. Applied to Eq. 9 this leads to

� €xþ g � _xð Þ þ o2 �xð Þ þ a �xð Þ2 þ b � _xð Þ2
þ c �xð Þ � _xð Þ ¼ 0

� €x� g _x� o2xþ ax2 þ b _x2 þ cx _x ¼ 0

€xþ g _xþ o2x� ax2 � b _x2 � cx _x ¼ 0

(10)

where the last equation in Eq. 10 is obtained by
multiplying the second equation by �1. It is

evident that this equation is not the same as
Eq. 9. In fact, it is only the same if a= b= c= 0,
which means that there must not be any quadratic
terms in the oscillator equation if one wants to
preserve the symmetry between flexion and exten-
sion phases of movement. The argument goes
even further: N x, _xð Þ must not contain any terms
of even order in x and _x as all of them, like the
quadratic ones, would break the required symme-
try. It is easy to convince oneself that as far as the
flexion-extension symmetry is concerned, all odd
terms in x and _x are fine. There are four possible
cubic terms, namely, _x3, _xx2, x _x2, and x3 leading to
a general oscillator equation of the form

€xþ g _xþ o2xþ d _x3 þ e _xx2 þ ax3 þ bx _x2 ¼ 0:

(11)

The effects that these nonlinear terms exert on
the oscillator dynamics can be best seen by rewrit-
ing Eq. 11 as

€xþ _x gþ ex2 þ d _x2
� �
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

damping

þ x o2 þ ax2 þ b _x2
� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

frequency

¼ 0

(12)

which shows that the terms _x3 and _xx2 are position-
and velocity-dependent changes to the damping
constant g, whereas the nonlinearities x3 and x ̇ x2

mainly influence the frequency. As the nonlinear
terms were introduced to obtain stable limit cycles
and the main interest is in amplitude and not
frequency, we will let a = b = 0, which reduces
the candidate oscillators to

€xþ _x gþ ex2 þ d _x2g þ o2x ¼ 0:
�

(13)

Nonlinear oscillators with either d= 0 or e= 0
have been studied for a long time and have been
termed in the literature as van-der-Pol and Ray-
leigh oscillators, respectively.

Systems of the form Eq. 13 only show
sustained oscillations on a stable limit cycle
within certain ranges of the parameters, as can
be seen easily for the van-der-Pol oscillator,
given by Eq. 13 with d = 0:
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€xþ _x gþ ϵx2
� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}eg

þ o2x ¼ 0: (14)

The underbraced term in Eq. 14 represents the
effective damping constant, eg, now depending on
the square of the displacement, x2, a quantity
which is nonnegative. For the parameters g and
ϵ, one can distinguish the following four cases:

g > 0, ϵ > 0 The effective damping eg is always
positive. The trajectories are evolving toward
the origin, which is a stable fixed point.

g < 0, ϵ < 0 The effective damping is eg always
negative. The system is unstable and the tra-
jectories are evolving toward infinity.

g > 0, ϵ < 0 For small values of the amplitude x2,
the effective damping eg is positive leading to
even smaller amplitudes. For large values of x2,
the effective dampingeg is negative leading to a
further increase in amplitude. The system
evolves either toward the fixed point or toward
infinity depending on the initial conditions.

g < 0 , ϵ > 0, For small values of the amplitude
x2, the effective damping eg is negative leading
to an increase in amplitude. For large values of
x2, the effective damping is positive and
decreases the amplitude. The system evolves
toward a stable limit cycle.

Themain features for the van-der-Pol oscillator
are shown in Fig. 3 with the time series (left), the
phase space portrait (middle), and the power spec-
trum (right). The time series is not a sine function
but has a fast rising increasing flank and a more
shallow slope on the decreasing side. Such time
series are called relaxation oscillations. The

trajectory in phase space is closer to a rectangle
than to a circle, and the power spectrum shows
pronounced peaks at the fundamental frequencyo
and its odd higher harmonics (3o , 5o , . . .).

In contrast to the van-der-Pol case, the
damping constant eg for the Rayleigh oscillator,
the case ϵ = 0 in Eq. 13, depends on the square of
the velocity _x2. Arguments similar to those above
lead to the conclusion that the Rayleigh oscillator
shows sustained oscillations for parameters g < 0
and d >0 .

As shown in Fig. 4, the time series and trajec-
tories of the Rayleigh oscillator also exhibit relax-
ation behavior but in this case with a slow rise and
fast drop. As for the van-der-Pol, the phase space
portrait is almost rectangular, but the long and
short axes are switched. Again the power spec-
trum has peaks at the fundamental frequency and
contains odd higher harmonics.

Evidently, taken by themselves, neither the
van-der-Pol nor Rayleigh oscillators are good
models for human limb movement for at least two
reasons, even though they fulfill one requirement for
a model: they have stable limit cycles. First, human
limb movements are almost sinusoidal, and their
trajectories have a circular or elliptical shape. Sec-
ond, it has also been found in experiments with
human subjects performing rhythmic limb move-
ments that when the movement rate is increased the
amplitude of the movement decreases linearly with
frequency (Kay et al. 1987). It can be shown that for
the van-der-Pol oscillator, the amplitude is indepen-
dent of frequency, and for the Rayleigh it decreases
proportional to o�2, both in disagreement with the
experimental findings.

It turns out that a combination of the van-der-
Pol and Rayleigh oscillator, termed the hybrid
oscillator of the form Eq. 13, fulfills all the

Movement Coordination, Fig. 3 The van-der-Pol oscillator: time series (left), phase space trajectory (middle), and
power spectrum (right)
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above requirements if the parameters are chosen
as g < 0 and ϵ � d > 0.

As shown in Fig. 5, the time series for the
hybrid oscillator is almost sinusoidal and the tra-
jectory is elliptical. The power spectrum has a
single peak at the fundamental frequency. More-
over, the relation between the amplitude and fre-
quency is a linear decrease in amplitude when the
rate is increased as shown schematically in Fig. 6.
Taken together, the hybrid oscillator is a good
approximation for the trajectories observed exper-
imentally in human limb movements.

The Coupling
As pointed out already, in a second step, one has to
find a coupling function between two hybrid
oscillators that leads to the correct dynamics for
the relative phase Eq. 2. The most common real-
ization of a coupling between two oscillators is a
spring between two pendulums, leading to a force
proportional to the difference in locations f12 = k
[x1(t) � x2(t)]. It can easily be shown that such a
coupling does not lead to the required dynamics
on the relative phase level. In fact, several cou-
pling terms have been suggested that do the trick,
but none of them is very intuitive. The arguably

easiest form, which is one of the possible cou-
plings presented in the original HKB model
(Haken et al. 1985), is given by

f 12 ¼ _x1 � _x2ð Þ aþ b x1 � x2ð Þ2
n o

: (15)

Combined with two of the hybrid oscillators,
the dynamical system that describes the transition
from anti-phase to in-phase in bimanual finger
movements takes the form

Movement Coordination, Fig. 4 The Rayleigh oscillator: time series (left), phase space trajectory (middle), and power
spectrum (right)

Movement Coordination, Fig. 5 The hybrid oscillator: time series (left), phase space trajectory (middle), and power
spectrum (right)

Movement Coordination, Fig. 6 Amplitude-frequency
relation for the van-der-Pol (dotted), Rayleigh (~o�2,
dashed), and hybrid (~�o, solid) oscillator
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€x1 þ _x1 gþ ex21 þ d _x21
� 	þ o2x1

¼ ð _x1 � _x2Þ aþ b x1 � x2ð Þ2
n o

€x2 þ _x2 gþ ex22 þ d _x22
� 	þ o2x2

¼ ð _x2 � _x1Þ aþ b x2 � x1ð Þ2
n o

: (16)

A numerical simulation of Eq. 16 is shown in
Fig. 7. In the top row, the amplitudes x1 and x2 are
plotted as a function of time. The movement starts
out in anti-phase at o = 1.4, and the frequency is
continuously increased to a final value ofo= 1.8.
At a critical rate oc, the anti-phase pattern
becomes unstable and a transition to in-phase
takes place. At the bottom a continuous estimate
of the relative phase f(t) is shown calculated as

f tð Þ ¼ ’1 tð Þ � ’2 tð Þ

¼ arctan
_x1
x1

� arctan
_x2
x2

: (17)

The relative phase changes from a value of p
during the anti-phase movement to f = 0 when
the in-phase pattern has been established.

To derive the phase relation Eq. 2 from Eq. 16
is a little lengthy but straightforward by using the
ansatz (hypothesis)

xk tð Þ ¼ Ak tð Þeiot þ A�
k tð Þe�iot (18)

then calculating the derivatives and inserting them
into Eq. 16. Next a slowly varying amplitude
approximation ( _A tð Þ � o ) and rotating wave
approximation (neglect all frequencies o) are
applied. Finally, introducing the relative phase
f = ’1 � ’2 after writing Ak(t) in the form

Ak tð Þ ¼ rei’k tð Þ (19)

leads to a relation for the relative phasef of the form
Eq. 2 from which the parameters a and b can be
readily found in terms of the parameters that
describe the oscillators and their coupling in Eq. 16:

a ¼ �a� 2br2, b ¼ 1

2
br2

with r2 ¼ �gþ a 1� cosfð Þ
ϵ þ 3do2 � 2b 1� cosfð Þ2 :

(20)

Breaking and Restoring Symmetries

Symmetry Breaking Through the Components
For simplicity, the original HKBmodel assumes on
both the oscillator and the relative phase level that
the two coordinating components are identical, like

Movement Coordination, Fig. 7 Simulation of Eq. 16
where the frequency o is continuously increased from
o = 1.4 on the left to o = 1.8 on the right. Top: Time
series of the amplitudes x1 and x2 undergoing a transition
from anti-phase to in-phase when o exceeds a critical

value. Bottom: Continuous estimate of the relative phase
f changing from an initial value of p during anti-phase to
zero when the in-phase movement is established. Parame-
ters: g = � 0.7, ϵ = d = 1, a = � 0.2, b = 0.2, and
o = 1.4 to 1.8
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two index fingers. As a consequence, the coupled
system Eq. 16 has a symmetry: it stays invariant if
we replace x1 by x2 and x2 by x1. For the coordina-
tion between two limbs that are not the same like an
arm and a leg, this symmetry no longer exists – it is
said to be broken. In terms of the model, the main
difference between an arm and a leg is that they
have different eigenfrequencies, so the oscillator
frequencies o in Eq. 16 are no longer the same
but become o1 and o2. This does not necessarily
mean that during the coordination the components
oscillate at different frequencies; they are still
coupled, and this coupling leads to a common
frequency O, at least as long as the eigenfrequency
difference is not too big. But still, a whole variety
of new phenomena originates from such a breaking
of the symmetry between the components (Carson
et al. 2000; Jeka et al. 1993a, b; Kelso and Jeka
1992; Park and Turvey 2008).

Asmentioned in subsection. “TheCoupling,” the
dynamics for the relative phase can be derived
from the level of coupled oscillators Eq. 16 for
the case of the same eigenfrequencies. Performing
the same calculations for two oscillators with

frequencies o1 and o2 leads to an additional
term in Eq. 2, which turns out to be a constant,
commonly called do. With this extension, the
equation for the relative phase reads

_f ¼ do� a sinf� 2b sin 2f

with do ¼ o2
1 � o2

2

O
� o1 � o2:

(21)

The exact form for the term do turns out to be the
difference of the squares of the eigenfrequencies
divided by the rate O the oscillating frequency of
the coupled system, which simplifies to o1�o2 if
the frequency difference is small. As before Eq. 21
can be scaled, which eliminates one of the parame-
ters, and _f can be derived from a potential function:

_f ¼ do� sinf� 2k sin 2f ¼ � dV fð Þ
df

with V fð Þ ¼ �dof� cosf� k cos 2f:

(22)

Plots of the phase space and the potential land-
scape for different values of k and do are shown in
Figs. 8 and 9, respectively. From these figures, it is

Movement Coordination, Fig. 8 Phase space plots for
different values of the control parameters k and do. With
increasing asymmetry (top to bottom), the functions are
shifted more and more upward leading to an elimination of

the fixed points near f = �p and f = 0 via saddle node
bifurcations at k = 0.5 for small do and k = 0.25 for do
large, respectively
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obvious that the symmetry breaking leads to a
vertical shift of the curves in phase space and a
tilt in the potential functions, which has several
important consequences for the dynamics. First,
for a nonvanishing do, the stable fixed points for
the relative phase are no longer located at f = 0
and f = � p but are now shifted (see Fig. 8).
The amount of this shift can be calculated for
small values of do, and new locations for the
stable fixed points are given by

f 0ð Þ ¼ do
1þ 4k

and f pð Þ ¼ p� do
1� 4k

:

(23)

Second, for large enough values of do, not only
the fixed point close to f = p becomes unstable,
but also the in-phase pattern loses stability under-
going a saddle node bifurcation as can be seen in
the bottom row in Fig. 8. Beyond this point, there
are no stable fixed points left, and the relative
phase will not settle down at a fixed value anymore
but exhibits phase wrapping. However, this

wrapping does not occur with a constant angular
velocity, which can best be seen in the plot on the
bottom right in Fig. 9. As the change in relative
phase _f is the negative derivative of the potential
function, it is given by the slope. This slope is large
and almost constant for negative values of f, but
for small positive values, where the in-phase fixed
point was formerly located, the slope becomes less
steep indicating thatf changes more slowly in this
region before the dynamics picks up speed again
when approaching p. So even as the fixed point has
disappeared, the dynamics still shows reminis-
cence of its former existence.

The dynamics of relative phase for the case of
different eigenfrequencies from a simulation of
Eq. 22 in shown in Fig. 10. Starting out at a slow
movement rate on the left, the system settles into
the fixed point close to f = p. When the move-
ment rate is continuously increased, the fixed
point drifts upward. At a first critical point, a
transition to in-phase takes place, followed by
another drift, this time for the fixed point
representing the in-phase movement. Finally, this
state also loses stability and the relative phase goes

Movement Coordination, Fig. 9 Potential landscape
for different values of the control parameters k and do.
With increasing asymmetry (top to bottom), the functions
get more and more tilted, destabilizing the system up to a

point where there are no fixed points left on the bottom
right. However, remnants of the fixed point can still be
seen as changes in the curvature of the potential
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into wrapping. Reminiscence in the phase regions
of the former fixed point is still visible by a flat-
tening of the slope around f � > 0. With a
further increase of the movement rate, the function
approaches a straight line.

The third consequence of this symmetry
breaking is best described using the potential
function for small values of do compared to the
symmetric case do = 0. For the latter, when the
system is initially in anti-phase f = p and k is
decreased through its critical value a switch to
in-phase takes place as was shown in Fig. 1
(middle row). However, the ball there does not
necessarily have to roll to the left toward f = 0
but with the same probability could roll to the
right ending up in the minimum that exists at
f = 2p and also represents an in-phase move-
ment. Whereas the eventual outcome is the same
because due to the periodicity f = 0 and f = 2p
are identical, the two paths can very well be
distinguished. The curve in Fig. 7 (bottom),
showing the continuous estimate of the relative
phase during a transition, goes from f= p down
to f = 0, but could, in fact with the same prob-
ability, go up toward f = 2p. In contrast, if the
eigenfrequencies are different, also the points�p
and p, and 0 and 2p are no longer the same. If the
system is in anti-phase at f = p and k is
decreased, it is evident from the middle row in
Fig. 9 that a switch will not take place toward the
left to f � 0, as the dynamics would have to
climb over a potential hill to do so. As there are
random forces acting on the dynamics, a switch
to f� 0 will still happen from time to time, but it

is not equally probable to a transition to f � 2p,
and it becomes even more unlikely with increas-
ing do.

These consequences, theoretically predicted to
occur when the symmetry between the oscillating
components is broken, can and have been tested
and have been found to be in agreement with the
experimental results (Jeka and Kelso 1995; Kelso
and Jeka 1992) (see also Kelso et al. 1990;
Schmidt et al. 1991).

Asymmetry in the Mode of Coordination
Even though Eq. 16 is symmetric in the coordi-
nating components, it can only describe a transi-
tion from anti-phase to in-phase but not the other
way around. Equation 16 is highly asymmetric
with respect to coordination mode. This can be
seen explicitly when we introduce variables that
directly reflect modes of coordination:

cþ ¼ x1 þ x2 and c� ¼ x1 � x2 : (24)

For an in-phase movement, we have x1 = x2
and c� vanishes, whereas for anti-phase x1=�x2
and therefore c+ = 0. We can now derive the
dynamics in the variables c+ and c� by
expressing the original displacements as

x1 ¼ 1

2
cþ þ c�
� 	

and x2 ¼ 1

2
cþ � c�
� 	

(25)

and inserting them into Eq. 16, which leads to

Movement Coordination, Fig. 10 Relative phase f as
a function of time. Shown is a 4-p plot of a simulation of
Eq. 22 for do = 1.7 where the control parameter k is
continuously decreased from k = 2 on the left to k = 0 on
the right. The system settles close to anti-phase, and the

fixed point drifts as k is decreased (corresponding to a
faster period of oscillation). At a first critical value, a
transition to in-phase takes place followed by another
fixed point drift. Finally, the in-phase fixed point disap-
pears and the phase starts wrapping
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€cþ þ ϵ _cþ þ o2cþ þ g
12

d

dt
c3
þ þ 3cþc

2
�

� 	
þ d
4

_c
3

þ þ 3 _cþ _c
2

�
� �

¼ 0

€c� þ ϵ _c� þ o2c� þ g
12

d

dt
c3
� þ 3c�c

2
þ

� 	
þ d
4

_c
3

� þ 3 _c� _c
2

þ
� �

¼ 2 _c� aþ bc2
�

� 	
:

(26)

The asymmetry between in-phase and anti-
phase is evident from Eq. 26, as the right-hand
side of the first equation vanishes and the equation
is even independent of the coupling parameters a
and b. This is the reason that the original HKB
model only shows transitions from anti-phase to
in-phase and not vice versa.

Transitions to Anti-phase
In 2000 Carson and colleagues (Carson et al.
2000) published results from an experiment in
which subjects performed bimanual pronation-
supination movements paced by a metronome of
increasing rate (see also Buchanan and Kelso
1993). In this context, an anti-phase movement
corresponds to the case where one arm performs
a pronation while the other arm is supinating.

Correspondingly, pronation and supination with
both arms at the same time represent in-phase. In
their experiment, Carson et al. used a
manipulandum that allowed for changing the
axis of rotation individually for both arms as
shown in Fig. 11a. With increasing movement
rate, spontaneous transitions from anti-phase to
in-phase, but not vice versa, were found when
the subjects performed pronation-supination
movements around the same axes for both
arms. In trials where one arm was rotating
around the axis above the hand and the other
around the one below, anti-phase was found to
be stable and the in-phase movement underwent
a transition to anti-phase as shown for represen-
tative trials in Figs. 12 and 13.

It is evident that the HKB model in neither its
original form Eq. 2 nor the mode formulation
Eq. 26 is a valid model for these findings. How-
ever, Fuchs and Jirsa (2000) showed that by
starting from the mode description Eq. 26 it is
straightforward to extend HKB such that,
depending on an additional parameter s, either
the in-phase or the anti-phase mode is a stable
movement pattern at high rates. The additional
parameter corresponds to the relative locations

Axis of Rotation

middle

below

above

left

L

L

I1

I2

right

a b

Movement Coordination, Fig. 11 Manipulandum used
by Carson and colleagues (Carson et al. 2000). (a) The
original apparatus that allowed for variation in axis of
rotation above, below, and in the middle of the hand. (b)

The axis of rotation can be changed continuously, allowing
us to introduce a parameter s as a quantitative measure for
the relative locations of the axes
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of the axes of rotation in the Carson et al. exper-
iment which can be defined in its easiest form as

s ¼ l1 � l2j j
L

(27)

where l1, l2, and L are as shown in Fig. 11b. In
fact, any monotonic function f with f(0)=0 and
f(1)=1 is compatible with theory, and its actual
shape has to be determined experimentally.

By looking at the mode Eq. 26, it is clear that a
substitution c+ ! c� and c� ! c+ to the left-
hand side of the first equation leads to the left-
hand side of the second equation and vice versa.
For the terms on the right-hand side representing
the coupling, this is obviously not the case.
Therefore, we now introduce a parameter s and
additional terms into Eq. 26 such that for s = 0
these equations remain unchanged, whereas for
s= 1we obtain Eq. 26with all + and� subscripts
reversed:

Movement Coordination, Fig. 12 Relative phase over
time for two representative trials from the Carson et al.
experiment. Left: the axis of rotation is below the hand for
both arms and a switch from anti-phase to in-phase occurs

as the movement speeds up. Right: with one axis above
and the other below the hand, the in-phase movement
becomes unstable at higher rates leading to a transition
to anti-phase

Movement Coordination, Fig. 13 Simulation of Eq. 28
for s= 0 (top) and s= 1 (bottom) where the frequencyo is
continuously increased fromo= 1.4 on the left too= 1.8
on the right. Time series of the mode amplitudes c+ (black)

and c� (gray) undergoing transitions from anti-phase to
in-phase (top) and from in-phase to anti-phase (bottom)
when o exceeds a critical value. Parameters: g = �0.7,
ϵ=d = 1, a = �0.2, b = 0.2, and o=1.4 to 1.8
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€cþ þ ϵ _cþ þ o2cþ þ g
12

d

dt
c3
þ þ 3cþc

2
�

� 	
þ d
4

_c
3

þ þ 3 _cþ _c
2

�
� �

¼ 2s _cþ aþ bc2
þ

� 	
€c� þ ϵ _c� þ o2c� þ g

12

d

dt
c3
� þ 3c�c

2
þ

� 	
þ d
4

_c
3

� þ 3 _c� _c
2

þ
� �

¼ 2 1� sð Þ _c� aþ bc2
�

� 	
:

(28)

From Eq. 28 it is straightforward to go back to
the representation of the limb oscillators:

€x1 þ . . . ¼ 1

2
€cþ þ €c�

� �
þ . . .

¼ _c� aþ bc2
�

� 	þ s _cþ aþ bc2
þ

� 	� _c� aþ bc2
�

� 	n o
€x2 þ . . . ¼ 1

2
€cþ � €c�

� �
þ . . .

¼ � _c� aþ bc2
�

� 	þ s _cþ aþ bc2
þ

� 	þ _c� aþ bc2
�

� 	n o
(29)

where the left-hand side which represents the
oscillators has been written only symbolically as
all we are dealing with is the coupling on the right.
Replacing the mode amplitudes c+ and c� in
Eq. 29 using Eq. 24, one finds the generalized
coupling as a function of x1 and x2:

€x1 þ . . . ¼ _x1 � _x2Þ aþ b x1 � x2ð Þ2
n o�

þ2s a _x2 þ b _x2 x21 þ x22
� 	þ 2 _x1x1x2	


 ��
€x2 þ . . . ¼ _x2 � _x1Þ aþ b x2 � x1ð Þ2

n o�
þ2s a _x1 þ b _x1 x21 þ x22

� 	þ 2 _x2x1x2	

 �

:
�

(30)

Like the original oscillator Eqs. 16 and 30 is
invariant under the exchange of x1 and x2 but in
addition allows for transitions from in-phase to
anti-phase coordination if the parameter s is cho-
sen appropriately (s = 1, for instance), as shown
in Fig. 14.

As the final step, an equation for the dynamics
of relative phase can be obtained from Eq. 30 by
performing the same steps as before, which leads
to a modified form of the HKB Eq. 2

_f ¼ � 1� 2sð Þa sinf� 2b sin 2f (31)

and the corresponding potential function

_f ¼ � dV fð Þ
df

with V fð Þ ¼ � 1� 2sð Þa cosf� b cos 2f:
(32)

Both equations can be scaled again leading to

_f ¼ � 1� 2sð Þ sinf� 2k sin 2f

¼ � dV fð Þ
df

with

V fð Þ ¼ � 1� 2sð Þ cosf� k cos 2f:

(33)

The landscapes of the potential for different
values of the control parameters k and s are
shown in Fig. 15. The left column exhibits the
original HKB case which is obtained for s = 0.
The functions in the most right column,

Movement Coordination, Fig. 14 Simulation of Eq. 30
where the frequency o is continuously increased from
o = 1.4 on the left to o = 1.8 on the right. Top: Time
series of the amplitudes x1 and x2 undergoing a transition
from in-phase to anti-phase when o exceeds a critical

value. Bottom: Continuous estimate of the relative phase
f changing from an initial value of zero during the
in-phase to pwhen the anti-phase movement is established.
Parameters: g = �0.7, ϵ=d = 1, a= �0.2, b = 0.2, s = 1
and o = 1.4 to 1.8
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representing the situation for s= 1, are identical in
shape to the s= 0 case, simply shifted horizontally
by a value ofp. These two extreme cases are almost
trivial and were the ones originally investigated in
the Carson et al. experiment with the axes of rota-
tion either on the same side or on opposite sides
with respect to the hand. As the corresponding
potential functions are shifted by p with respect
to each other, one could assume that for an inter-
mediate value of s between zero and one the func-
tions are also shifted, just by a smaller amount.
Such horizontal translations lead to fixed point
drifts, as has been seen before for oscillation com-
ponents with different eigenfrequencies. The the-
ory, however, predicts that this is not the case. In
fact, for s = 0.5, theory predicts that the two
coordination modes in-phase and anti-phase are
equally stable for all movement rates. The deep
minima for slow rates indicate high stability for
both movement patterns and as the rate increases,
both minima become more and more shallow, i.e.,

both movement patterns become less stable. Even-
tually, for high rates at k = 0, the potential is
entirely flat, which means that there are no attrac-
tive states whatsoever. Pushed only by the stochas-
tic forces in the system, the relative phase will now
undergo a random walk. Note that this is very
different from the phase wrapping encountered
before where the phase was constantly increasing
due to the lack of an attractive state. Here the
relative phase will move back and forth in a purely
random fashion, known in the theory of stochastic
systems as Brownian motion. Again experimental
evidence exists from the Carson group that chang-
ing the distance between the axes of rotation grad-
ually leads to the phenomena predicted by theory.

Conclusions

The theoretical framework outlined above repre-
sents the core of the dynamical systems approach

Movement Coordination, Fig. 15 Potential landscape for different values of the control parameters k and s
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to movement coordination. Rather than going
through the large variety of phenomena that coordi-
nation dynamics and the HKB model have been
applied to, emphasis has been put on a detailed
description of the close connection between theoret-
ical models and experimental results. Modeling the
coordination of movement as dynamical systems on
both the mesoscopic level of the component oscil-
lators and the macroscopic level of relative phase
allowed for quantitative predictions and experimen-
tal tests with an accuracy that is virtually unprece-
dented in the life sciences, a field where most
models are qualitative and descriptive.

Extensions of the HKB Model

Beyond the phenomena described above, the HKB
model has been extended in various ways. Some of
these extensions (by nomean exhaustive) are listed
below with very brief descriptions; the interested
reader is referred to the literature for details:

• The quantitative description of the influence of
noise on the dynamics given in section “Stabil-
ity: Perturbations and Fluctuations” can be done
in a quantitative fashion by adding a stochastic
term to Eq. 2 (Post et al. 2000; Schöner et al.
1986) or its generalizations Eqs. 21 and 31
(Fuchs and Jirsa 2000) and treating them as
Langevin equations within the theory of sto-
chastic systems (see, e.g., Gardiner (1985) for
stochastic systems). In this case, the system is
no longer described by a single time series for
the relative phase but by a probability distribu-
tion function. How such distributions evolve in
time is then given by the corresponding Fokker-
Planck equation and allows for a quantitative
description of the stochastic phenomena such as
enhancement of fluctuations and critical fluctu-
ations. An important quantity that can be
derived in this context and is also related to
the critical fluctuations is the mean-first-passage
time, which is the time it takes (on average) to
move over a hump in the potential function.

• When subjects flex a single finger between the
beats of a metronome, i.e., syncopate with the
stimulus, and the metronome rate is increased,

they switch spontaneously to a coordination
pattern where they flex their finger on the
beat, i.e., synchronize with the stimulus. This
so-called syncopation-synchronization para-
digm introduced by Kelso and colleagues
(Kelso et al. 1990) has been frequently used
in brain-imaging experiments.

• A periodic patterning in the time series of the
relative phase was found experimentally in the
case of broken symmetry by Schmidt et al.
(Schmidt 1991) and successfully derived from
the oscillator level of the HKB model (Fuchs
and Kelso 1994; Fuchs et al. 1996).

• The metronome pacing can be explicitly
included into (2) and its generalizations (Jirsa
et al. 2000). This so-called parametric driving
allows us to explain effects in the movement
trajectory known as anchoring, i.e., the variabil-
ity of the movement is smaller around the met-
ronome beat compared to other regions in phase
space (Fink et al. 2000). With parametric driv-
ing, the HKB model also makes correct pre-
dictions for the stability of multifrequency
coordination, where the metronome cycle is
half of the movement cycle, i.e., there is a beat
at the points of maximum flexion andmaximum
extension (Assisi et al. 2005). There are also
effects from more complicated polyrhythms
that have been studied (Peper and Beek 1998;
Peper et al. 1995; Sternad et al. 1999; Kelso and
DeGuzman 1988; DeGuzman and Kelso 1991).

• The effect of symmetry breaking has been
studied intensively in experiments where sub-
jects were swinging pendulums with different
eigenfrequencies (Collins et al. 1996; Park and
Turvey 2008; Sternad et al. 1995).

• Transitions are also found in trajectory forma-
tion, for instance, when subjects move their
index finger such that they draw an “8” and this
movement is sped up the pattern switches to a
“0” (Buchanan et al. 1996, 1997; DeGuzman
et al. 1997).

Future Directions

One of the most exciting applications of move-
ment coordination and its spontaneous transitions
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in particular is that they open a new window for
probing the human brain, made possible by the
rapid development of brain-imaging technologies
that allow for the recording of brain activity
in a noninvasive way. Electroencephalography
(EEG), magnetoencephalography (MEG), and
functional magnetic resonance imaging (fMRI)
have been used in coordination experiments
since the 1990s to study the changes in brain
activations accompanying (or triggering?) the
switches in movement behavior (Fuchs et al.
1992; Kelso et al. 1992, 1998). Results from
MEG experiments reveal a strong frequency
dependence of the dominating pattern with the
contribution of the auditory system being stron-
gest at low metronome/movement rates, whereas
at high rates the signals from sensorimotor cortex
dominate (Fuchs et al. 2000;Mayville et al. 2001).
The crossover point is found at rates around 2 Hz,
right where the transitions typically take place.

In two other studies, the rate dependence of the
auditory and sensorimotor system was investi-
gated separately. In an MEG experiment, Carver
et al. (2002) found a resonance-like enhancement
of a brain response that occurs about 50 ms after a
tone is delivered, again at a rate of about 2 Hz. In
the sensorimotor system, a nonlinear effect of rate
was shown as well. Using a continuation para-
digm, where subjects moved an index finger
paced by a metronome which was turned off at a
certain time while the subjects were to continue
moving at the same rate, Mayville et al. (2005)
showed that a certain pattern of brain activation
drops out when the movement rate exceeds about
1.5 Hz. Even though their contribution to behav-
ioral transitions is far from being completely
understood, it is clear that such nonlinear effects
of rate exist in both the auditory and the sensori-
motor system in parameter regions where behav-
ioral transitions are observed.

Using fMRI, brain areas have been identified
that show a dependence of their activation level as
a function of rate only, independent of coordina-
tion mode, whereas activation in other areas
strongly depends on whether subjects are synco-
pating or synchronizing regardless of how fast
they are moving (Jantzen and Kelso 2007).

Taken together, these applications of coordina-
tion dynamics to brain research have hardly
scratched the surface so far, but the results are
already very exciting as they demonstrate that
the experimental paradigms frommovement coor-
dination may be used to prepare the brain into a
certain state where its responses can be studied.
With further improvement of the imaging technol-
ogies and analysis procedures, many more results
can be expected to contribute significantly to our
understanding of how the human brain works.

Acknowledgment Work reported herein was supported
by NINDS Grant 48299, NIMH Grants 42900 and 80838,
and the Pierre de Fermat Chair to J.A.S.K.

Bibliography

Primary Literature
Assisi CG, Jirsa VK, Kelso JAS (2005) Dynamics of

multifrequency coordination using parametric driving:
theory and Experiment. Biol Cybern 93:6–21

Buchanan JJ, Kelso JAS (1993) Posturally induced transi-
tions in rhythmic multijoint limb movements. Exp
Brain Res 94:131–142

Buchanan JJ, Kelso JAS, Fuchs A (1996) Coordination
dynamics of trajectory formation. Biol Cybern
74:41–54

Buchanan JJ, Kelso JAS, DeGuzman GC (1997) The self-
organization of trajectory formation: I. Experimental
evidence. Biol Cybern 76:257–273

Carson RG, Goodman D, Kelso JAS, Elliott D (1995)
Phase transitions and critical fluctuations in rhythmic
coordination of ipsilateral hand and foot. J Mot Behav
27:211–224

Carson RG, Rick S, Smethrust CJ, Lison JF, Biblow WD
(2000) Neuromuscular-skeletal constraints upon the
dynamics of unimanual and bimanual coordination.
Exp Brain Res 131:196–214

Carver FW, Fuchs A, Jantzen KJ, Kelso JAS (2002) Spa-
tiotemporal analysis of neuromagnetic activity associ-
ated with rhythmic auditory stimulation. Clin
Neurophysiol 113:1909–1920

Collins DR, Sternad D, Turvey MT (1996) An experimen-
tal note on defining frequency competition in
intersegmental coordination dynamics. J Mot Behav
28:299–303

DeGuzman GC, Kelso JAS (1991) Multifrequency behav-
ioral patterns and the phase attractive circle map. Biol
Cybern 64:485–495

DeGuzman GC, Kelso JAS, Buchanan JJ (1997) The self-
organization of trajectory formation: II. Theoretical
model. Biol Cybern 76:275–284

306 Movement Coordination



Fink P, Kelso JAS, Jirsa VK, Foo P (2000) Local and
global stabilization of coordination by sensory infor-
mation. Exp Brain Res 134:9–20

Fuchs A, Jirsa VK (2000) The HKB model revisited: how
varying the degree of symmetry controls dynamics.
Hum Mov Sci 19:425–449

Fuchs A, Kelso JAS (1994) A theoretical note onmodels of
Interlimb coordination. J Exp Psychol Hum Percept
Perform 20:1088–1097

Fuchs A, Kelso JAS, Haken H (1992) Phase transitions in
the human brain: spatial mode dynamics. Int J Bifurc
Chaos 2:917–939

Fuchs A, Jirsa VK, Haken H, Kelso JAS (1996) Extending
the HKB-Model of coordinated movement to oscillators
with different eigenfrequencies. Biol Cybern 74:21–30

Fuchs A, Mayville JM, Cheyne D, Weinberg H, Deecke L,
Kelso JAS (2000) Spatiotemporal analysis of
neuromagnetic events underlying the emergence of
coordinative instabilities. NeuroImage 12:71–84

Gardiner CW (1985) Handbook of stochastic systems.
Springer, Heidelberg

Haken H (1977) Synergetics, an introduction. Springer,
Heidelberg

Haken H (1983) Advanced synergetics. Springer,
Heidelberg

Haken H, Kelso JAS, Bunz H (1985) A theoretical model
of phase transition in human hand movements. Biol
Cybern 51:347–356

Jantzen KJ, Kelso JAS (2007) Neural coordination dynam-
ics of human sensorimotor behavior: a review. In: Jirsa
VK, McIntosh AR (eds) Handbook of brain connectiv-
ity. Springer, Heidelberg

Jeka JJ, Kelso JAS (1995) Manipulating symmetry in
human two-limb coordination dynamics. J Exp Psychol
Hum Percept Perform 21:360–374

Jeka JJ, Kelso JAS, Kiemel T (1993a) Pattern switching in
human multilimb coordination dynamics. Bull Math
Biol 55:829–845

Jeka JJ, Kelso JAS, Kiemel T (1993b) Spontaneous tran-
sitions and symmetry: pattern dynamics in human four
limb coordination. Hum Mov Sci 12:627–651

Jirsa VK, Fink P, Foo P, Kelso JAS (2000) Parametric
stabilization of biological coordination: a theoretical
model. J Biol Phys 26:85–112

Kay BA, Kelso JAS, Saltzman EL, Schöner G (1987)
Space-time behavior of single and bimanual rhythmic
movements: Data and limit cycle model. J Exp Psychol
Hum Percept Perform 13:178–192

Kay BA, Saltzman EL, Kelso JAS (1991) Steady state and
perturbed rhythmical movements: dynamical modeling
using a variety of analytic tools. J Exp Psychol Hum
Percept Perform 17:183–197

Kelso JAS (1981) On the oscillatory basis of movement.
Bull Psychon Soc 18:63

Kelso JAS (1984) Phase transitions and critical behavior in
human bimanual coordination. Am J Physiol Regul
Integr Comp 15:R1000–R1004

Kelso JAS, DeGuzman GC (1988) Order in time: how the
cooperation between the hands informs the design of

the brain. In: Haken H (ed) Neural and synergetic
computers. Springer, Berlin

Kelso JAS, Jeka JJ (1992) Symmetry breaking dynamics of
human multilimb coordination. J Exp Psychol Hum
Percept Perform 18:645–668

Kelso JAS, Scholz JP, Schöner G (1986) Nonequilibrium
phase transitions in coordinated biological motion: crit-
ical fluctuations. Phys Lett A 118:279–284

Kelso JAS, Schöner G, Scholz JP, Haken H (1987) Phase
locked modes, phase transitions and component oscil-
lators in coordinated biological motion. Phys Scr
35:79–87

Kelso JAS, DelColle J, Schöner G (1990) Action-
perception as a pattern forming process. In: Jannerod
M (ed) Attention and performance XIII. Erlbaum,
Hillsdale, pp 139–169

Kelso JAS, Bressler SL, Buchanan S, DeGuzman GC,
Ding M, Fuchs A, Holroyd T (1992) A phase transition
in human brain and behavior. Phys Lett A 169:134–144

Kelso JAS, Fuchs A, Holroyd T, Lancaster R, Cheyne D,
Weinberg H (1998) Dynamic cortical activity in the
human brain reveals motor equivalence. Nature
392:814–818

Mayville JM, Fuchs A, DingM, Cheyne D, Deecke L, Kelso
JAS (2001) Event-related changes in neuromagnetic
activity associated with syncopation and synchronization
timing tasks. Hum Brain Mapp 14:65–80

Mayville JM, Fuchs A, Kelso JAS (2005) Neuromagnetic
motor fields accompanying self-paced rhythmic finger
movements of different rates. Exp Brain Res
166:190–199

Park H, Turvey MT (2008) Imperfect symmetry and the
elementary coordination law. In: Fuchs A, Jirsa VK
(eds) Coordination: neural, behavioral and social
dynamics. Springer, Heidelberg, pp 3–25

Peper CE, Beek PJ (1998) Distinguishing between the
effects of frequency and amplitude on interlimb cou-
pling in tapping a 2:3 polyrhythm. Exp Brain Res
118:78–92

Peper CE, Beek PJ, van Wieringen PC (1995) Frequency-
induced phase transitions in bimanual tapping. Biol
Cybern 73:303–309

Post AA, Peeper CE, Daffertshofer A, Beek PJ (2000) Rel-
ative phase dynamics in perturbed interlimb coordina-
tion: stability and stochasticity. Biol Cybern 83:443–459

Schmidt RC, Beek PJ, Treffner PJ, Turvey MT
(1991) Dynamical substructure of coordinated rhyth-
mic movements. J Exp Psychol Hum Percept Perform
17:635–651

Scholz JP, Kelso JAS (1989) A quantitative approach to
understanding the formation and change of coordinated
movement patterns. J Mot Behav 21:122–144

Scholz JP, Kelso JAS, Schöner G (1987) Nonequilibrium
phase transitions in coordinated biological motion: crit-
ical slowing down and switching time. Phys Lett
A 8:90–394

Schöner G, Kelso JAS (1988) Dynamic pattern generation
in behavioral and neural systems. Science
239:1513–1520

Movement Coordination 307



Schöner G, Haken H, Kelso JAS (1986) A stochastic the-
ory of phase transitions in human hand movements.
Biol Cybern 53:442–453

Sternad D, Collins D, Turvey MT (1995) The detuning
factor in the dynamics of interlimb rhythmic coordina-
tion. Biol Cybern 73:27–35

Sternad D, Turvey MT, Saltzman EL (1999) Dynamics of
1:2 coordination: generalizing relative phase to n:m
rhythms. J Mot Behav 31:207–233

Books and Reviews
Fuchs A, Jirsa VK (eds) (2007) Coordination: neural,

behavioral and social dynamics. Springer, Heidelberg

Haken H (1996) Principles of brain functioning. Springer,
Heidelberg

Jirsa VK, Kelso JAS (eds) (2004) Coordination dynamics:
issues and trends. Springer, Heidelberg

Kelso JAS (1995) Dynamics pattern: the self-organization
of brain and behavior. MIT Press, Cambridge

Tschacher W, Dauwalder JP (eds) (2003) The dynamical
systems approach to cognition: concepts and empirical
paradigms based on self-organization, embodiment and
coordination dynamics. World Scientific, Singapore

308 Movement Coordination



Determinisms of Behavior and
Synergetics

Till D. Frank
Department of Psychology and Department of
Physics, University of Connecticut, Storrs, CT,
USA

Article Outline

Glossary
Definition of Subject
Introduction
Skinner and Determinism
Synergetics, Amplitude Equations, and Behavior
Application 1: Grasping of Objects with Different

Sizes
Application 2: Walk-Run Transitions
Application 3: Action Chains and Child Play
General Aspects of the Modeling Framework
Conclusions
Future Directions
Bibliography

Glossary

Amplitude equations of BAB patterns Equa-
tions that define how amplitudes of BAB pat-
terns evolve (in time). If an amplitude of a
particular BAB pattern becomes finite while
all other amplitudes approach values close to
zero, then the corresponding BAB pattern has
emerged and the human being under consider-
ation performs the corresponding behavior.

Brain activity and body (BAB) patterns Patterns
associated with human behaviors that can feature
various components such as spatiotemporal pat-
terns of brain activity, neural activity in
descending pathways to muscles, neural activity
in ascending pathways from peripheral sensors,
muscle activity, and limbmovements. In fact, the
patterns may include aspects of the environment
of a human being under consideration.

Determinism Behavioral activities are deter-
mined by laws. The laws correspond to
if-then relationships. If a human actor is in a
particular state (characterized by internal vari-
ables describing the human and external vari-
ables describing the environment including
stimuli in experimental research), then the
human actor will perform a certain behavior.
Each state can be mapped to a behavior or
behavioral response.

Free will The notion that a human can be the
cause of his or her decisions and behaviors. In
other words, a human is under control of his or
her behavior. Decisions can be made
irrespective of the past behaviors and experi-
ences of the human.

Synergetics A theory of self-organization that
puts emphasis on the emergence of patterns
due to self-organization and describes the
emergence and disappearance of patterns as
well as transitions between patterns by means
of dynamical systems such as amplitude
equations.

Definition of Subject

Human and animal behavior consists of sequences
of actions. For example, a student may study a
textbook for a while. Subsequently, the student
will do something else. It seems that the human
individual or an animal under consideration has a
choice as to what kind of behavior he/she or it
would like to perform next. However, the concept
of determinism states that actions and behaviors
performed by humans and animals are the result of
the internal (e.g., neurobiological) conditions and
external circumstances characterizing the individ-
ual or animal under consideration. These condi-
tions and circumstances in turn are the
consequences of prior actions, behaviors, and
experiences. As a result of this kind of causal
chain, all behaviors are determined by laws.
Therefore, determinism negates the concept of
free will. A theoretical, mathematical framework
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that supports these claims of determinism is the
theory of self-organization, in general, and syner-
getics, in particular. Synergetics is a theory of self-
organization and pattern formation that puts
emphasis on amplitude equations. With the help
of amplitude equations, synergetics allows to
describe the aforementioned switches between
actions and behaviors in mathematical terms and
consequently provides a framework for scientists
to formulate mathematical laws for human and
animal behavior.

Introduction

Human behavior is a complex and interdisciplin-
ary research field. An aspect of human behavior
that is not only of interest for researchers and
applied scientists but is also of interest for the
general public is the question whether human
behavior is determined by laws or is the product
of free will or at least involves an element of free
choice.

Based on behavioral experiments with animals
that showed that rats and pigeons can be trained to
show various types of behaviors in response to
various types of stimuli, Skinner concluded that
behavior is the result of learned associations and
free will is an illusion (Skinner 1953). Although
attempts have been made to mathematize the laws
underlying such associations, what is missing is a
framework that is rooted in a mechanistic and
microscopic perspective of human and animal
behavior and at the same time is sufficiently
broad such that it can qualitatively and quantita-
tively address a range of findings from research on
human and animal behavior.

Taking a scientific perspective and introducing
the framework of a science-based determinism for
human behavior, it will be shown below that syn-
ergetics can describe human behavior in a deter-
ministic, law-based manner without the need to
introduce an element of free will. Moreover, it will
be argued that synergetics is located between
mechanistic, microscopic approaches, on the one
hand, and widely applicable top-down
approaches, on the other hand. As far as the latter
issue is concerned, various types of human

behavior have indeed been studied by taking
advantage of top-down approaches based on syn-
ergetics. That is, synergetics has a broad scope of
applications that will be reviewed briefly below.
In detail, the application of synergetics to human
behavior in the context of the debate about free
will and determinism will be demonstrated for
human grasping movements, gait transitions
between walking and running, and transitions
between playful activities of children during
child play.

Skinner and Determinism

In what follows a small set of definitions will be
given and conclusions will be drawn. The termi-
nology used in what follows is open for debate. In
fact, the author believes that any terminology
would do more or less the same job. Therefore,
the phrases used in the following definitions are
not considered to be crucial for the statements to
be made. Let us illustrate this point with an exam-
ple from mathematics. We may define the num-
bers “one,” “two,” and “three” in the usual way. In
addition, we may define the meaning of the addi-
tion operation “plus” and the meaning of the com-
parison “is equal to” in the usual way. If so, with
these definitions at hand, we can arrive at the
conclusion “One plus two is equal to three.”How-
ever, we may use a completely different terminol-
ogy involving different phrases. For example, in
German the numbers “one,” “two,” and “three”
are called “eins,” “zwei,” and “drei.” The addition
operation is written as “plus” again but pro-
nounced differently from the English phrase
“plus.” The “is equal to” comparison is called
“ist gleich.” In summary, we may define the num-
bers “eins,” “zwei,” “drei” rather than “one,”
“two,” “three,” the operation “plus” using Ger-
man pronunciation rather than “plus” as pro-
nounced in English, and the operation “ist
gleich” rather than “is equal to.” If so, we arrive
at the conclusion “Eins plus zwei ist gleich drei.”
The two conclusions “One plus two is equal to
three” and “Eins plus zwei ist gleich drei” for-
mally use different phrases and a different kind of
terminology but in fact they have the same
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meaning. In this sense, the author believes that
terminology does not play a primary role in the
arguments that will be made below. The reader
may use his or her own terminology rather than
the one suggested by the author.

The author distinguishes between the scientific
perspective of the universe and various non-
scientific perspectives of the universe. In this con-
text, no value is attached to any of those
perspectives. For example, the scientific perspec-
tive is not regarded superior to any of the non-
scientific perspectives. No statement is made that
the scientific perspective is the true or correct
perspective. For the author the distinction
between different perspectives is not about find-
ing the truth. It is about defining a starting point
that can be used to draw conclusions. The scien-
tific perspective of the universe is all-
encompassing and consequently includes human
behavior as a special case. Having said that, the
application of the scientific perspective is limited
in the sense anticipated above when talking about
the truth. The scientific perspective only makes
statements within the framework of the scientific
perspective. Although this seems to be a triviality,
in fact, it is important to be clear about this issue.
For example, the scientific perspective does not
make any statements about the existence or non-
existence of supernatural entities like God, Allah,
etc. It does not speak in favor or against the
existence of a human soul. As we will see in a
moment, the scientific perspective can do without
the notion of godlike entities, a human soul, free
will, responsibility, and the past. To reiterate, this
does not mean that it negates any of these because
the scientific perspective does not make a state-
ment about alternative, nonscientific perspectives
that may claim that all of the above (godlike
entities, the human soul, free will, responsibility
and the past) do exist.

Let us define the scientific perspective of the
universe as the perspective that states that every-
thing that happens in the universe is determined
by the first principles of physics. Accordingly, the
universe is completely described by the
Schrödinger equation and the four fundamental
forces (i.e., the gravitational force, the electro-
magnetic force, and the strong and weak forces).

The Schrödinger equation is taken from quantum
mechanics and can be used to define the evolution
of a probability function that describes the state of
the particles (which are assumed to be countable)
of the universe. First of all, the state of the uni-
verse at any given time point (including the cur-
rent time point under which a particular human
behavior is observed) can serve as initial condi-
tion for the evolution equation. Therefore,
whether there exists a past or not is irrelevant for
the scientific perspective. If a past exist, the past
itself would be irrelevant for the evolution of the
probability function describing the universe. Sec-
ond, the evolution equation for the probability
function is deterministic. There is no arbitrariness
about the solution of the equation.

The definition of the scientific perspective of
the universe allows us to define some related
concepts: science-based lawfulness, science-
based determinism, and psychology as a science.
Let us define psychology as a science as the dis-
cipline in which all phenomena studied in psy-
chology including human behavior are
approached from the above-defined scientific per-
spective. These has implications for researchers in
the field of psychology and anybody else who
wants to apply the scientific perspective to
human behavior. As already mentioned above,
the scientific perspective takes the Schrödinger
equation as a departure point. In this equation
there are no expressions that could be regarded
as reflecting a human soul or free will. Therefore,
psychology as a science must do without the
notion of a human soul and free will. This in
turn implies that the notion that a human being is
able to control his or her life should be disregarded
in psychology (when conducting psychology as a
science). Likewise, the concept of responsibility
should not be used.

Let us return to the notion of free will.
A precise definition is difficult to achieve. If so,
how can we state that the scientific perspective,
and, in particular, the Schrödinger equation, does
not take free will into consideration? The reason
for this is that any common-sense description of
free will can be found to be in contradiction with
the scientific perspective defined above. For
example, Chisholm (1964, p. 32) states that if
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we have free will “we cause certain events to
happen, and nothing – or no one – causes us to
cause these events to happen.” This is in contra-
diction with the scientific perspective according to
which the condition of the universe at an arbitrary
reference point can be regarded as an initial con-
dition and determines the future states of the uni-
verse. What happens in the future is caused by the
conditions of the reference state (and the four
fundamental forces and the quantum mechanical
law captured by the Schrödinger equation). Like-
wise (when using the notion of a past for a
moment), the behavior of a human observed at a
particular point in time is a consequence of the
state of affairs given at an arbitrarily selected,
earlier point in time.

Let us define science-based lawfulness as the
application of the scientific perspective in its gen-
eral form to human behavior. Accordingly, there
are laws that can be formulated at least in terms of
evolution equations for probabilities that describe
human behavior. In particular, the current state of
affairs of a human being and the surrounding
environment (which might be the whole universe)
determines the probabilities of all possible future
behaviors of that human being. We may compare
the situation with the forecast of a tornado. Scien-
tists may calculate for an emerging tornado the
most likely path that it will take and, in addition,
alternative, less-likely paths that the tornado may
take. Importantly, the fact that the path of the
tornado is described in a probabilistic sense does
not mean that the tornado has free will. Likewise,
when we arrive at the conclusion that the defini-
tion of science-based lawfulness implies there are
laws of human behavior that are probabilistic in
nature, then this does not mean that those by-
chance-elements reflect any form of free will
(when free will is defined in one of the ways it is
usually done). Of course, an advocate, say
Mr. Smith, may define free will in the sense that
human behavior involves a by-chance element
(put aside that this is not the common understand-
ing of free will). If so, from the scientific perspec-
tive introduced above and from the
aforementioned discussion it follows that this
by-chance element is of quantum mechanical
nature. However, any electron spinning around

an atom exhibits this kind of quantum mechanical
by-chance element. Consequently, if advocate
Smith defines free will in terms of the presence
of a by-chance element, then within the scientific
perspective we would conclude that any electron
possess the same kind of free will power. In fact,
according to quantum mechanics, everything is
determined by the quantum mechanical, probabi-
listic laws and consequently, everything would
exhibit free will as defined by Mr. Smith. The
scientific perspective is inconsistent with the
notion that the free will defined by Mr. Smith is
reserved to humans only – which is a claim that
free will advocates like Mr. Smith typically want
to make.

The Schrödinger equation is a quantum
mechanical concept and comes with a fundamen-
tal physical constant: the Planck constant.
Roughly speaking, the constant determines a
spatial scale of observation or a time scale of
observation on which quantum mechanical,
probabilistic effects are relevant. The Planck
constant is very small. Consequently, for many
applications quantum effects are irrelevant. For
example, in order to describe a hand-sized ball
rolling down a slope, quantum effects typically
can be neglected. When quantum effects are neg-
ligible, the Schrödinger equation can be used to
derive various kinds of deterministic equations
that adequately describe the evolution of subsys-
tems of the universe. Let us define science-based
determinism as the scientific perspective applied
to human behavior assuming that quantum
effects can be neglected. Consequently, science-
based determinism is a special case of science-
based lawfulness. Science-based determinism
states that all human behaviors in principle can
be described by deterministic evolution equa-
tions. According to those deterministic evolution
equations, current states of affairs cause future
states of affairs in a deterministic sense without
any arbitrariness. If we place a hand-sized ball at
the top of slope (e.g., a ramp with a particular
incline), it will roll down the slope due to grav-
itational forces pulling the ball downwards. The
dynamics of the ball is determined by certain
evolution equations (e.g., Newton’s equation of
classical mechanics). At every point in time, we
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may consider the current state of the ball on the
slope as an initial condition of the ball that deter-
mines the future states. According to science-
based determinism, human behavior is deter-
mined in just the same way as the ball dynamics.
Of course, the equations that determine human
behavior are in general different from those
determining the dynamics of a ball on a slope.
As we will discuss below, the mathematical
equations provided by synergetics, a theory of
self-organization, are promising candidate equa-
tions to describe human behavior.

Let us illustrate the consequence of science-
based determinism with an example. Let us con-
sider a person who is leaving for work and has to
decide which pair of shoes he or she should put
on. For sake of simplicity, we assume that there
are only two pairs of shoes available that are
labeled with A and B. Panel A of Fig. 1 illustrates
this situation from a nonscientific perspective that
assumes the existence of free will. At issue is to
make a choice between A and B. The person
under consideration is at a choice point. He or
she makes a decision reflecting free will and
chooses either pair A or pair B. Panel B of Fig. 1
illustrates the situation from the perspective of
science-based determinism. The deterministic
equations that can be derived from the
Schrödinger equation do not involve any choice
points. Therefore, according to science-based
determinism, the notion that there is a unique
situation that can either lead to the choice of pair
A or the choice of pair B is a misconception.
Rather, events that enfold in time are character-
ized by if-then relationships as illustrated in Panel
B of Fig. 1. According to Panel B, a closer look at
the person confronted with the question, what pair

of shoes to wear, will reveal that in fact there are
two different situations or cases. First, there is the
case A in which the person asks himself or herself
what shoes he or she should put on and in which
the initial conditions are such that he or she will
choose pair A. Second, there is the case B in
which the person asks himself or herself what
shoes he or she should put on – like in case A –
and in which the initial conditions are different
from case A, namely, such that he or she will
choose pair B. We will return to this example
below and will present there a deterministic math-
ematical description of the shoe-choosing prob-
lem based on synergetics.

Skinner has supported in various publications
an overall deterministic point of view of human
behavior (e.g., Skinner 1953). This point of view
was motivated by research on animal behavior
conducted by Skinner and his coworkers. Rats
were trained to press a lever in order to obtain a
food reward. Likewise, pigeons were trained to
pick against a sensor to obtain food. Importantly,
the animals were trained to show the food-
rewarding behavior in response to various stimuli
such as a light that was switched on. For example,
when the light was switched on and the animal
performed the lever-pressing or sensor-picking
behavior then a food reward was given. When
the lever was pressed or the sensor was picked
while the light was off no reward was given.
Using this experimental procedure, the animals
learned to recognize the stimulus. Rats pressed
the lever and pigeons picked the sensor when the
light was switched on. Skinner generalized the
insights obtained from those animal experiments
to human behavior. According to Skinner, when
we grow up we learn to behave in certain ways in

Determinisms of Behavior and Synergetics, Fig. 1 Decision making according to the free will perspective (PanelA)
and the scientific perspective (Panel B). Illustration for the shoe-choosing problem
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response to certain stimuli. All human behavior is
understood as situation-specific learned response
mechanisms. In other words, any observed behav-
ior is the effect of a cause that can be found in
the past.

In the context of the shoe-choosing example
illustrated in Fig. 1, from Skinner’s perspective,
the person of interest has learned to put on the pair
A when he or she is in the situation of choice-
making described by case A. Whereas the person
has learned to put on pair B when he or she is in
the situation of choice-making described by case
B. Skinner’s point of view agrees by-and-large
with the concept of science-based determinism
introduced above. In particular, Skinner high-
lights that the concept of free will is an illusion.
However, while Skinner focused on the impact of
the environment to establish learned behavior,
science-based determinism takes a neutral posi-
tion in this regard. Both the conditions external to
a human being and the state of the human being
may be relevant to explain observed behavior. In
particular, the framework of synergetics has its
own take on the debate whether internal or exter-
nal circumstances and likewise whether nature-
related factors (e.g., genes) or nurture-related fac-
tors (e.g., education) are of relevance for the
behavior to be discussed. We will return to this
issue below.

In closing these considerations, we would like
to reiterate that the scientific perspective intro-
duced above and science-based determinism as
derived from the scientific perspective do not
make statements about the universe as such or
the truth. While Skinner negates the existence of
a free will, the scientific perspective states that
there is no free will within the framework of the
scientific perspective. No statement is made about
different, nonscientific perspectives of the uni-
verse that may suggest that free will exists.

In the philosophical literature Skinner’s point
of view as well as science-based determinismmay
be seen as two examples of hard determinism.
Hard determinism makes basically two state-
ments. First, human behavior is determined by
deterministic laws. Second, from the lawfulness
of the human behavior it follows that there is no
free will.

Synergetics, Amplitude Equations, and
Behavior

According to the synergetics’ perspective of
human and animal behavior, behavior is a pattern
formation process (Haken 1991, 1996). The pat-
tern might be a rhythmic walking or running
pattern of a human, a reaching and grasping
action, or a complex activity such as being
engaged in a small-talk conversation with some-
body else or playing a game of chess. While in
experimental studies typically only certain
aspects of a pattern are observed (e.g., the limb
movements during running), the boundaries of a
pattern are not obvious (Frank submitted). For
example, the relevant pattern describing a human
on a run might include the limb movements, the
associated brain activity, the descending neural
signals to the muscles, and the ascending neural
signals from the peripheral system providing
feedback. However, even the rhythmic changes
in the running shoes might contribute to the pat-
tern. Moreover, if the runner is jogging with a
friend, the limb movements of the friend (or the
visual information about those movements)
might belong to the pattern since it is known
that humans have the tendency to couple their
own rhythmic movements with those of others
(Frank and Richardson 2010; Schmidt et al.
1990). For the sake of simplicity, the pattern
will be referred to as a brain activity and body
(BAB) pattern (Frank submitted). We may say
that the pattern formation processes takes place
“in” a human being.

A more rigorous point of view of the syner-
getics’ perspective is that a human being repre-
sents processes that are about the formation of
BAB patterns. That is, a human being performing
a particular behavior “is” a pattern that emerged or
is emerging from a pattern formation process –
just like a hexagonal cloud pattern is a pattern that
shapes itself due to a self-organization process. In
cases in which the BAB extends the commonly
defined physical boundaries of a human under
consideration (e.g., when the person of interest
goes for a walk together with somebody else),
the human may be considered as part of a pattern
formation process.
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BAB patterns can be temporal, spatial, or spa-
tiotemporal. For example, participants who swing
a pendulum with one hand produce a temporal
pattern describing the oscillatory dynamics of
the swinging hand (Beek et al. 1995; Dotov and
Frank 2011; Dotov et al. 2015; Kay et al. 1987;
Kim et al. 2015). Likewise, rhythmic finger move-
ments may be considered on the level of the finger
movements as temporal patterns. However, when
focusing on the associated brain activity that
oscillates with the frequency of the finger move-
ments, then spatial patterns of brain activity
related to rhythmic finger movements can be iden-
tified by means of electroencephalography (EEG)
measurements (Kelso 1995) and magnetoenceph-
alography (MEG) measurements (Frank et al.
2000; Frank 2002, 2005; Kelso 1995).

Temporal patterns that describe an oscillatory
(i.e., rhythmic) activity can conveniently be char-
acterized by a measure that is either time-
independent or varies slowly relative to the oscil-
latory changes: the amplitude of the oscillation.
Taking half of the difference between the maxi-
mum and minimum value of the observed activity
defines the amplitude of the oscillation. The
amplitude may be defined for every individual
oscillation period. If the oscillatory activity as a
whole varies little over an extended period of
time, then the amplitude varies only little from
period to period. In contrast, if, for example, a
participant initially performs pendulum swinging
movements by varying the hand angle relative to
an arbitrary reference angle only to a small
amount and subsequently increases the amount
to which the hand angle is varied during a swing-
ing cycle, then the amplitude is initially small and
subsequently increases over time. In this manner,
the amplitude may change over time by 10%,
100%, or more of its initial value. Nevertheless,
it is possible that the increase takes place on a slow
time scale relative to the oscillatory activity. In
what follows, it is assumed that this is the case. In
fact, only if the amplitude changes relatively slow,
then the amplitude can be introduced and defined
as above. In other cases, more sophisticated
approaches are required to define properly an
oscillation amplitude. Given the notion of a
well-defined amplitude of a temporal pattern, the

emergence of the temporary pattern can be ade-
quately described in terms of the increase of the
amplitude from a small value towards a saturation
value (which is also referred to as stationary
value).

The concept of an amplitude also holds for
spatial patterns and the emergence of spatial pat-
terns as a result of a self-organization process.
Panel A of Fig. 2 shows a hypothetical pattern of
brain activity measured by an array of nine EEG
sensors. The pattern can mathematically be
described in terms of a vector with nine compo-
nents that describes the strength of the brain activ-
ity in each sensor on a relative scale. The relative
scale is chosen such that any pattern of brain
activity measured by these nine sensors can be
represented by a set of nine vectors expressed in
the relative scale. These nine vectors are referred
to as normalized vectors, eigenvectors (Haken
1991), normalized patterns, prototype patterns,
or elementary patterns (Frank et al. 2015; Frank
2015a). In order to relate the relative scale to the
actual measured brain activity, a pattern is multi-
plied with a proportionality factor. This factor is
referred to as amplitude (Frank et al. 2015; Frank
2015a; Haken 1996; Hutt and Riedel 2003; Jirsa
et al. 1995). For example, let us assume panel A of
Fig. 2 displays an elementary pattern. If the ampli-
tude is larger than one, then all activity scores are
amplified and the observed pattern would look
qualitatively as shown in Panel B. In contrast, if
the pattern amplitude is equal to zero, then all
components of the normalized vector (the elemen-
tary pattern) are multiplied by zero and the result
is a pattern that shows no activity at all, as illus-
trated in panel C of Fig. 2. The emergence of a
particular pattern of brain activity may be
described in terms of an appropriately defined
elementary pattern and its amplitude. The ampli-
tude is initially close to zero and subsequently
increases to a relative large value given by the
saturation value (or stationary value).

In summary, the concept of an amplitude
applies not only to temporal patterns but also to
spatial patterns (Frank 2015a; Haken 2004). The
emergence of temporal and spatial patterns can be
described in terms of the dynamics of appropri-
ately defined amplitudes. As we will argue below,
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not only the emergence of patterns, also the dis-
appearance of patterns and transitions between
BAB patterns associated with different human
behaviors can be described with the help of the
time-evolution of amplitudes. Finally, note that
the concept of amplitudes even applies to patterns
that vary in time and extent in space, that is, to
spatiotemporal patterns (Frank et al. 2015; Frank
2012a, 2015a; Haken 2004). In general, the
dynamics of amplitudes is determined by a partic-
ular kind of mathematical equations: the ampli-
tude equations. They are frequently given in terms
of coupled, nonlinear, first-order differential equa-
tions. Note that synergetics distinguishes between
two types of amplitudes: the order parameter
amplitudes and amplitudes of a different kind. In
order to keep this presentation short, in what fol-
lows, we will not make advantage of this distinc-
tion. For details on the order parameter concept,
the reader is referred to Haken (2004).

Using so-called bottom-up approaches, ampli-
tude equations can be derived from miscoscopic
descriptions of self-organizing system (Haken
2004). In physics this has been demonstrated for
roll patterns and other types of patterns emerging
in hydrodynamic and gas systems by heating the
systems from below (Bestehorn et al. 1989;
Bestehorn and Haken 1991; Cross and Hohenberg
1993; Segal 1962, 1965; Newell and Whitehead
1969). Amplitude equations have been derived
from reaction-diffusion equations for chemical
and biochemical systems in which spatial patterns
emerge as a result of pattern formation (Haken

2004; Wollkind and Stephenson 2000). In this
context, amplitude equations describing pattern
formation at so-called Turing instabilities have
been determined for various model systems
(Dufiet and Boissonade 1996; Dutt 2010; Pena
and Perez-Garcia 2000). Reaction-diffusion
models for the spread of epidemic diseases have
been suggested in order to describe the emergence
of spatial patterns of disease occurrences and the
corresponding amplitude equations have been
derived (Wang et al. 2011). Likewise, reaction-
diffusion models for the emergence of patterns
that describe the propagation of signals in cells
have been suggested and the corresponding
amplitude equations have been determined
(Rattanakul et al. 2009; Stephenson and Wollkind
1995). In the field of human perception and
behavior amplitude equations have been derived
from Wilson-Cowan-like models of brain activity
in order to explain the emergence of drug-induced
hallucination patterns (Bressloff et al. 2001, 2002)
and to provide a framework to discuss the perfor-
mance of multiple consecutively performed tasks
(Frank 2016a).

Although the methodology to derive amplitude
equations from microscopic descriptions is well-
developed (e.g., Haken 2004), for a given self-
organizing system or a human actor performing a
particular task an appropriate microscopic
description might not be available or the deriva-
tion might be mathematically involved. In this
case, it has been suggested to use a top-down
approach that involves a general type of amplitude

Determinisms of Behavior and Synergetics,
Fig. 2 Schematic illustration of the distinction between a
pattern and its amplitude for spatially distributed brain
activity measured by means of electroencephalography
using an array of nine sensors. All three panels A, B,
C show top views of the head of a test person, the nine
recording sites of sensors, and the activities in the

recording sites. Color code: brain activity measured in
arbitrary units increases with darkness (white: zero activ-
ity; black: high activity). Panel A shows brain activity as
described by an elementary pattern. Panels B and C show
brain activity patterns that would be observed when the
elementary pattern has a finite amplitude larger than one
(Panel B) and equal to zero (Panel C)
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equation (Lopresti-Goodman et al. 2011). While
in bottom-up approaches the parameters occurring
in amplitude equations are expressed in terms of
the parameters of the corresponding microscopic
models, in top-down approaches the model
parameters are unknown. They might be fitted to
experimental data (Frank 2014a, 2015b, 2016b, c;
Kim and Frank 2016; Lopresti-Goodman et al.
2011, 2013).

In the field of human perception, there is a
substantial literature on top-down approaches uti-
lizing amplitude equations. Face and pattern rec-
ognition (Daffertshofer and Haken 1994; Frank
2011, 2012a; Frischholz et al. 1994; Haken
1991; Shimizu and Yamaguchi 1987; Yudashkin
1996) in particular in the context of associative
memory have been studied by means of amplitude
equations introduced in a top-down fashion.
Selective attention (Fuchs and Haken 1988) and
negative impacts of attention on object function
perception within the functional fixedness para-
digm (Frank 2015a) have been discussed. A series
of studies has been devoted to study the oscilla-
tory perception of ambiguous figures and ambig-
uous dynamic visual stimuli (Ditzinger and Haken
1989; Frank 2014a; Shao et al. 2008) and multi-
stable (time-varying) perception of multistable
acoustic stimuli (Ditzinger et al. 1997) by means
of amplitude equations. Further studies on percep-
tion using the amplitude equation approach of
synergetics have addressed how judgments for
grasping opportunities (Frank 2016b; Kim and
Frank 2016; Lopresti-Goodman et al. 2013) and
opportunities for upright standing on tilted sur-
faces (Frank et al. 2015) are guided by visual
information. Moreover, recently topics such as
figure-ground perception (Kim and Frank in
press) and perception under schizophrenia
(Frank 2014a; Frank submitted) have been
addressed.

In the field of human behavior, a few topics
have been addressed that will be reviewed in
detail below, namely, grasping (Frank et al.
2009, 2010; Lopresti-Goodman et al. 2011), gait
transitions (Frank 2015b, 2016b), and action
chains in rituals (Frank 2014b, c) and child play
(Frank 2014b, d). Note however that the distinc-
tion between human behavior (here understood as

a human performing an action) and perception is
not that clear in any case. For example, when an
experimenter presents a particular (e.g., relatively
small) object to a participant and asks the partic-
ipant whether he or she would grasp it with one or
two hands, then the goal is to test how the partic-
ipant perceives the object and in particular the
opportunity to grasp the object without allowing
the participant to perform the action. The task
might be considered as a perceptual task. How-
ever, such experiments frequently require the par-
ticipant to provide a response to the experimenter
(e.g., the participant verbally responses with a
“one” or “two” to indicate he or she would grasp
the object with one or two hands, respectively).
This response involves an action. To make a dis-
tinction between behavioral versus purely percep-
tual self-organizing processes more clearly
participants may not be asked to provide a
response. Rather, one might record task-related
brain activity. In fact, studies aiming in this direc-
tion have been conducted (e.g., Kleinschmidt
et al. 2002).

Application 1: Grasping of Objects with
Different Sizes

Humans tend to grasp small objects, like a pen,
with one hand. Bigger objects, like a chair, are
typically grasped with two hands. Medium sized
objects, like a book, may be grasped with one
hand or two hands. Such objects of medium size
are a particular challenge to theoretical modeling
and to the claim that human behavior is deter-
mined by laws and is not based on free will. If
medium sized objects are sometimes grasped with
one hand and at other times the very same objects
are grasped with two hands, then how can we
identify a law that determines human grasping
behavior? Interestingly, sophisticated experimen-
tal investigations of that matter discovered that in
the domain of medium sized objects a phenome-
non occurs that is well known in physics and
allows to construct simple deterministic behav-
ioral rules: the phenomenon of hysteresis. Let us
first review an experimental study that has inves-
tigated grasping behavior and hysteresis in this
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context. Subsequently, let us show how the afore-
mentioned top-down amplitude equation
approach of synergetics can contribute to a mech-
anistic understanding of grasping and allows us to
simulate, reproduce, and – in this sense – predict
human grasping behavior.

Various experiments on the different ways to
grasp objects of different sizes have been reported
in the literature (Cesari and Newell 1999, 2000;
Lopresti-Goodman et al. 2009; Newell et al. 1989,
1993; Richardson et al. 2007; van der Kamp et al.
1998). In what follows, we consider the experi-
mental study conducted by Lopresti-Goodman
et al. (2011) and we focus on the control condition
of Experiment 2 reported therein. Participants
were shown wooden planks of different sizes. In
total there were 41 rectangular-shaped planks that
ranged in length from 4.5 to 24.5 cm and differed
in length by 0.5 cm from plank to plank. Partici-
pants were asked to grasp the planks at the end
sides either with one hand or with two hands.
Planks were presented one at a time. There were
two conditions. In the ascending condition, the
shortest plank of the set of planks was presented
first and subsequently longer planks were pre-
sented. In the descending condition, the longest
plank was presented first and subsequently shorter
planks were presented. Panel A in Fig. 3 illustrates
the two experimental conditions. In line with our
comment made at the beginning of this section,
participants typically grasped the relatively short

planks with one hand and the relatively long
planks with two hands. In this context, it should
also be noted that the mean hand span of the
participants was 21.32 cm. Therefore, a great por-
tion of the participants was physically not able to
grasp the longest plank (i.e., the plank with
24.5 cm in size) at the two end sides with a single
hand because the length of the longest plank
exceeded their hand span. They had to grasp the
longest plank with two hands. Consequently, it
does not come as a surprise that in both experi-
mental conditions participants typically switched
from one grasping type to another while planks
were presented (i.e., participants typically showed
grasping transitions). Panel B in Fig. 3 illustrates
the grasping behavior of a representative partici-
pant. In the ascending condition, planks of size
4.5 cm up to 15 cm were grasped with one hand.
Planks longer than 15 cm up to the longest plank
with 24.5 cm were grasped with two hands. There
was a grasping transition (i.e., a transition
between two different grasping types) at a plank
length of 15 cm. Note that to make the transition
point more clearly visible, in Panel B solid, con-
tinuous lines are used to represent the participant’s
behavior. In fact, responses were made only at the
discrete values of planks sizes shown in Panel
A. In this regard, the continuous character of the
response line is somewhat misleading. In addition
to the ascending condition, Panel B of Fig. 3 pre-
sents the responses of the representative

Determinisms of Behavior and Synergetics,
Fig. 3 Experimental design and results reported by
Lopresti-Goodman et al. (2011). Panel A shows the
sequences of planks used in the experiment in the ascend-
ing (top subpanel) and descending (bottom subpanel)

conditions. Panel B shows for a representative participant
(see text for details) the grasping behavior in the ascending
(top subpanel) and descending (bottom subpanel) condi-
tions. For the descending condition, the horizontal axis
should be read from right to left

318 Determinisms of Behavior and Synergetics



participant in the descending condition. For the
longest plank down to the plank with a size of
14 cm, planks were grasped with two hands.
Planks shorter than 14 cm down to the shortest
plank of 4.5 cm were grasped with one hand.
Panel B reveals that the short and the long planks
were grasped in a unique way, the medium sized
planks in the range between 14 and 15 cm were
grasped both with one hand and with two hands.
While this might be at first sight suggest that there
is some arbitrariness in the grasping behavior, a
closer look makes clear that the grasping type was
dependent on the experimental condition. Planks
in the medium range of 14–15 cm were grasped
with one hand in the ascending condition, while
the very same planks were grasped with two
hands in the descending condition. This also
implies that the switching values at which the
representative participant changed the grasping
behavior from one- to two-handed grasping or,
vice versa, from two-handed to one-handed grasp-
ing were not identical. The switching value in the
ascending condition was larger than the switching
value in the descending condition. Such a history
dependency of switching values is known in phys-
ics as hysteresis (Haken 1996). For example, cer-
tain lasers that exhibit two different states of laser
activity show hysteretic switching between these
states when the pumping current is gradually
increased and decreased (Barbay et al. 2000;
Nagler et al. 2003). Finally, note that the repre-
sentative participant that was introduced above
and will be discussed below is a hypothetical
participant that represents the sample mean values
reported by Lopresti-Goodman et al. (2011) for
the control condition of their Experiment 2.

The hysteresis observed in the control condi-
tion of Experiment 2 of the study by Lopresti-
Goodman et al. (2011) was not statistically signif-
icant. However, in the study by Lopresti-
Goodman et al. (2011) three alternative conditions
were used in which participants were put in amore
stressful scenario (by asking them to count back
numbers in steps of 1, 3, and 7, respectively).
Taken all four conditions together, hysteresis
was observed as described above. Hypothesis
testing showed that when taking all four condi-
tions together the hysteresis (i.e., the difference

between the switching values) was statistically
significant, F(2,56)= 36.37, p< 0.001. Likewise,
in Experiment 2 reported by Lopresti-Goodman
et al. (2009) that involved both a counting back
condition and performance speed manipulations
during plank grasping, hysteresis was found and
hypothesis testing revealed that the hysteresis
when averaged across all experimental manipula-
tions was statistically significant, F
(1,40) = 44.94, p < 0.01. Moreover, in Experi-
ment 2 reported by Richardson et al. (2007),
which also involved plank grasping by one hand
or two hands, a significant hysteresis was found, F
(1,11) = 11.07, p < 0.05. In summary, there is
experimental support that switching between
grasping types in plank grasping experiments is
subjected to hysteresis. But there are some condi-
tions (like the control condition in Experiment
2 of Lopresti-Goodman et al. 2011) for which
the amount of hysteresis seems to be relatively
small such that hypothesis testing methods do not
have the power to identify the hysteresis as statis-
tically significant.

An amplitude equation model for describing
the hysteretic transitions between one-handed
and two-handed grasping has been proposed by
Frank et al. (2009) and has been fitted to data in
the study by Lopresti-Goodman et al. (2011). The
amplitude equation model is a simplified version
of the so-called synergetic computer introduced
by Haken (1991). Let us refer to the amplitude
equation model proposed by Frank et al. (2009) as
grasping transition (GT) model. According to the
GT model, there are two competing BAB patterns
describing the one-handed grasping and two-
handed graspingmovements. Each pattern is char-
acterized by a pattern amplitude (see above). If the
amplitude of the pattern associated with one-
handed grasping reaches its saturation value,
while the amplitude of the other pattern (i.e., the
pattern of two-handed grasping) approaches zero,
then the pattern of one-handed grasping has
emerged and the participant under consideration
performs a one hand grasp. By analogy, two-
handed grasping can be modeled.

A natural departure point to understand the GT
model is to consider the symmetric case that
occurs in the domain of medium sized planks. In
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the symmetric case, there is no bias towards one of
the two grasping types. The question arises how
can we determine quantitatively the circum-
stances under which the symmetric case occurs?

In the experiment described above plank size
was manipulated. Accordingly, a naïve approach
would be to hypothesize that for each individual
participant there was a particular plank length in
the domain of medium sized planks for which the
self-organizing system was completely unbiased.
In fact, to some extent this is the correct point of
view. However, in this context, the question arises
if plank size is the most suitable variable to char-
acterize a participant confronted with a particular
plank. More precisely, from a dynamical systems
perspective, we are looking for an appropriate
control parameter (Haken 2004). Heuristically, a
control parameter is a variable that varies with the
experimental manipulation under consideration,
on the one hand, and can be assumed to induce a
transition from one behavior to another behavior,
on the other hand. From a modeling perspective,
transitions (or bifurcations) are induced by
changes in the so-called eigenvalues
(or Lyapunov exponents) that in what follows
will be referred to as growth parameters (Frank
2009, 2015a; Frank et al. 2015). Any model
parameter that can be manipulated by the experi-
ment and that affects the growth parameters
(eigenvalues) such that a transition is induced
can be regarded as control parameter. Not only
individual model parameters, but functions com-
posed of several model parameters (in particular
ratios of model parameters) are useful control
parameters. For example, in fluid and gas dynam-
ical systems that are heated from below roll pat-
terns can emerge under appropriate
circumstances. It has been shown that for pattern
formation systems of this kind a useful control
parameter is the so-called Rayleigh number,
which is proportional to the temperature differ-
ence between the bottom and top layers of the
systems divided by the diffusion constant of the
systems. Consequently, for this kind of systems,
the control parameter is a ratio. Studies on human
motor behavior and perception have identified
similar ratios to describe on what kind of variable
human behavior depends upon. For example, if

participants are shown a fleet of stairs and are
asked to decide whether they can climb up the
stairs, then it has been shown that participants do
not base their decisions primarily on the stair step
height. Rather, participants make their decisions
based on the ratio of the stair step height over their
leg length (Warren 1984). Likewise, for grasping
behavior the relevant variable that determines
human behavior is not the size of the objects to
be grasped but the size of the objects relative to the
hand size of the person that is grasping the objects
(see e.g., Kim and Frank 2016). Therefore, in
what follows, we will define relative plank size
as the size of a plank divided by the hand span of a
participant under consideration. With this defini-
tion at hand, we will use relative plank size rather
than absolute plank size as control parameter.

Let us return to the issue of the symmetric case.
From the GT model proposed by Frank et al.
(2009) and the experimental data reported in
Lopresti-Goodman et al. (2011) it follows that
under the control conditions of Experiment 2 of
Lopresti-Goodman et al. (2011) the symmetric
case occurs at a relative plank size of 0.6850.
For example, a participant with a hand span of
20 cm would act like a symmetric pattern forma-
tion system for a plank that is 13.70 cm long,
while a participant with a hand span of 18 cm
would perform like a symmetric pattern formation
system for a plank that is 12.33 cm long. In the
symmetric case, a participant regarded as a pattern
formation system behaves similar to a square-
shaped two-dimensional chemical system in
which stripe patterns can emerge. As shown in
Fig. 4 (panels A and B), at the transition point
when a stripe pattern emerges there are two dif-
ferent stripe patterns that can emerge, which fol-
lows from the symmetric geometric of the square.
If the conditions are such that a stripe pattern in
one direction (e.g., the horizontal direction shown
in panel A) can emerge, then the conditions are
also such that a stripe pattern in the other direction
(i.e., the vertical direction shown in panel B) can
emerge. There is no bias towards one of the two
possible stripe patterns. Let us return to the grasp-
ing experiment. As mentioned already, in the sym-
metric case, more explicitly, for planks with a
relative plank size of 0.6850, participants behaved
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like a symmetric pattern formation system. This
implies that the grasping patterns illustrated in
panels C and D of Fig. 4 of one-handed and two-
handed grasping can both emerge and there is no
bias towards one of them.

Although in the symmetric case, there is no
bias towards one of the two grasping types, this
does not imply that there is arbitrariness about the
human behavior. That is, we do not need to intro-
duce the notion of a free will. In the symmetric
case, the initial conditions determine which pat-
tern emerges. More precisely, the pattern emerges
that exhibits initially (that is at the time point of
the presentation of the plank to the participant) a

higher amplitude. This can be illustrated by sim-
ulations of the GT model. Figure 5 shows two
simulations for the symmetric case. In panel A,
the case is shown when the amplitude of the one
hand grasping pattern is initially larger than the
amplitude of the two hands grasping pattern. Over
the course of time, the amplitude of the one hand
grasping pattern converges to its finite saturation
value, while the other amplitude vanishes. Vice
versa, panel B shows the case when the two hands
grasping pattern initially dominates over the one
hand grasping pattern and, consequently, the two
hands grasping pattern emerges while the one
hand grasping pattern “dies out.”

The symmetric case can be considered as a
reference point to discuss the asymmetric case.
Relatively long and relatively short planks are
grasped in a unique way, either one-handed or
two-handed. In order to account for this bias, it
has been suggested to assume that the growth
parameters of the two BAB patterns assume dif-
ferent values in the case of relatively long or short
planks (Frank et al. 2009). More precisely, the GT
model assumes that the growth parameters depend
in a linear fashion on the control parameter, that is,
relative plank size. The growth parameter of the
amplitude of the one hand grasping pattern decays
linearly with relative plank size, whereas the
growth parameter of the amplitude of the two
hands grasping pattern increases linearly with

Determinisms of Behavior and Synergetics,
Fig. 5 Simulation results of the GT model obtained
for the symmetric condition. Panels A and B show the
evolution of the amplitudes of the one-handed (top
subpanels) and two-handed (bottom subpanels) grasp-
ing behavior for two different initial conditions. Panel

A: The one-handed grasping amplitude dominates ini-
tially. Panel B: The two-handed grasping amplitude
dominates initially. Parameters: both growth parame-
ters were equal to 2 units, coupling parameter was
equal to 2 units. For mathematical details see Frank
et al. (2009)

Determinisms of Behavior and Synergetics,
Fig. 4 Impact of symmetry on pattern formation systems.
An analogy between chemical systems exhibiting stripe
patterns and human grasping is drawn. Panels A and
B show two stripe patterns emerging in a chemical system
with a squared boundary exhibiting symmetry with respect
to the horizontal and vertical axes. If one of the patterns can
emerge, then the other can emerge as well. Panels C and
D show two grasping patterns (one-handed and two-
handed grasping) for a human actor tested under symmetric
conditions. If one grasping behavior can emerge, then the
other behavior can emerge as well
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relative plank size. Figure 6 illustrates the growth
parameters as functions of relative plank size for
the model parameters of the aforementioned rep-
resentative participant. The vertical dotted line
indicates the symmetric case (occurring at a rela-
tive plank size of 0.685). For planks shorter than
0.685 (as measured in relative length) the growth
parameter for one-handed grasping is larger than
the growth parameter for two-handed grasping.
Likewise, for planks longer than 0.685 the growth
parameter for two-handed grasping is larger than
the growth parameter for one-handed grasping.
Note that in the literature, the symmetric case is
also referred to as the case of a homogeneous
spectrum of growth parameters, whereas the
asymmetric case is referred to as the case of an
inhomogeneous spectrum of growth parameters
(Frank 2009). We will address the V-shaped dot-
ted line shown in Fig. 6 somewhat later.

The symmetric case does not allow us to dis-
cuss transitions between different grasping types
because as illustrated in Fig. 4 in the symmetric
case, there is no bias towards a pattern. In contrast,
the asymmetric case (or inhomogeneous case) can
be used to understand grasping transitions.

A detailed mathematical analysis (Frank 2009;
Frank et al. 2010) shows that there exists a stabil-
ity band for the growth parameters of the GT
model. If a growth parameter belongs to the sta-
bility band, then the corresponding pattern
emerges provided the initial conditions are appro-
priate. From a dynamical systems perspective, the
reason for this is that within the framework of the
GT model a grasping pattern exhibits an asymp-
totically stable fixed point if and only if the
corresponding growth parameter belongs to the
stability band. This implies that if a growth param-
eter does not belong to the stability band, then the
corresponding grasping pattern cannot emerge
(because the fixed point of the corresponding pat-
tern amplitude is not asymptotically stable; it does
not exist or is unstable). The stability band can be
constructed as follows. The upper bound of the
band is given by the largest growth parameter. The
lower bound is given by the largest growth param-
eter divided by the coupling constant of the GT
model. The coupling constant in turn describes the
strength of the inhibitory interactions between the
patterns. Figure 7 shows two exemplary cases of a
growth parameter spectrum (composed of only
two growth parameters) and the corresponding
stability band. In panel A, we consider a plank
with relative plank size of 0.685 (i.e., the symmet-
ric case). From Fig. 6, we can read off the two
growth parameters and plot them as a bar graph.
The growth parameters are both 0.315 units large.
Accordingly, the upper boundary of the stability
band is 0.315 (top horizontal solid line in panel
A). For the representative participant of Experi-
ment 2 reported by Lopresti-Goodman et al.
(2011) the coupling constant is 1.13. Therefore,
the lower bound of the stability band is 0.315 units
divided by 1.13 which equals 0.28 units (shown as
bottom horizontal solid line in panel A). We see
that the growth parameters of the one hand and
two hands grasping patterns both belong to the
stability band. Accordingly, the representative
participant can grasp planks of relative size
0.685 with one hand or two hands. Just as in the
symmetric case, the initial conditions determine
what kind of grasping type actually will be
performed. Panel B illustrates the case for a
plank with relative size 0.7042. From Fig. 6, it

Determinisms of Behavior and Synergetics,
Fig. 6 Growth parameters as functions of the relative
plank size. Solid decaying line: One-handed grasping
growth parameter. Dashed increasing line: Two-handed
grasping growth parameter. Vertical dotted line indicates
the symmetric condition. V-shaped dotted line is the lower
bound of the stability band. Parameters are those of the
representative participant of the study by Lopresti-
Goodman et al. (2011) introduced in the text. For mathe-
matical details see Frank et al. (2009) and Lopresti-
Goodman et al. (2011). Accordingly, the growth parameter
of the two-handed grasping amplitude has an offset value at
zero plank size of �0.37 units. Coupling parameter equals
1.13 units
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follows that the growth parameters are
0.2958 units (one hand grasping pattern) and
0.3342 units (one hand grasping pattern). The
upper boundary is at 0.3342 (top horizontal solid
line in panel B). The lower boundary of the sta-
bility band is 0.3342 units divided by 1.13, which
equals 0.2958 units (bottom horizontal solid line
in panel B). That is, this is the critical case at
which the lower boundary corresponds to the
smaller growth parameter. Accordingly, the
growth parameter of the one hand grasping pattern
drops out of the stability band and, consequently,
the pattern can no longer emerge. The participant
can no longer grasp the plank with one hand. If we
take panels A and B together, we see how the GT
model explains the transition from a one-handed
grasping to two-handed grasping. Let us assume
the representative participant is tested under the
ascending condition and grasps a plank with rela-
tive plank size of 0.6850 with one hand. Subse-
quently, plank size is increased from 0.6850 to
0.7042 (measured in relative units). The growth
parameter spectrum and the stability band change
from panel A to panel B. The growth parameter of
the one hand grasping pattern drops out of the
stability band. The representative participant can-
not grasp the plank with 0.7042 relative length
with one hand even if the amplitude of the one
hand grasp is relatively large (because this was the
previous action performed by the participant).
Consequently, the participant grasps the plank

with two hands. The experimenter observes a
switching from one hand grasping to two hands
grasping.

We are now in the position to understand the
hysteresis phenomenon in terms of the amplitude
equation model. To this end, let us return to Fig. 6.
The V-shaped dotted line in Fig. 6 represents the
lower bound of the stability band as a function of
relative plank size. That is, it represents the value
of the larger of the two growth parameters divided
by the coupling parameter (which is 1.13 units as
mentioned above for the representative participant
under consideration). In the ascending case, we
follow the horizontal axis (the axis of relative
plank size) from the left to the right. The growth
parameter of the two hands grasping pattern
(dashed line) increases, whereas the growth
parameter of the one hand grasping pattern
decreases (solid line). As discussed above in the
context of Fig. 7 and as can be seen also from
Fig. 6, at a value slightly above 0.685, namely, at
0.7042 the growth parameter of the one hand
grasping pattern “hits” the lower boundary (the
V-shaped line) and drops out of the stability band.
According to the GT model, the participant
switches from one-handed grasping to two-
handed grasping. In the descending case, we fol-
low the horizontal axis from the right to the left.
The growth parameter of the two hands grasping
pattern (dashed line) decreases, whereas the
growth parameter of the one hand grasping pattern

Determinisms of Behavior and Synergetics,
Fig. 7 Growth parameter spectrum in the case of the two
growth parameters of the GT model. Panels A and B show
the growth parameters of the one-handed (left) and two-
handed (right) grasping behaviors for the symmetric case

(PanelA) and the critical asymmetric case of the ascending
condition (Panel B). The two horizontal lines in Panels
A andB indicate the stability band. In the critical ascending
condition the growth parameter of the one-handed grasping
amplitude drops out of the stability band
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increases (solid line). At a value slightly below
0.685, namely, at 0.6658 the growth parameter of
the one hand grasping pattern “hits” the lower
boundary (the V-shaped line) and drops out of
the stability band. At this point, the participant
switches from two-handed grasping to one-
handed grasping. We see that the two switching
values differ: 0.7042 in the ascending case versus
0.6658 in the descending case. The model predicts
hysteresis.

Having discussed aspects of the GT model, let
us show by a numerical simulation that the GT
model – as a special case of an amplitude equation
model proposed within the framework of
synergetics – can reproduce and – in this sense –
predict human behavior and in particular the hys-
teresis phenomenon observed in grasping transi-
tion experiments. To this end, we solved the
amplitude equations of the GT model numerically
for the model parameters of the representative
participant. The model equations can be found in
Frank et al. (2009) and Lopresti-Goodman et al.
(2011). The result of the simulation is shown in
Fig. 8. Panel A shows simulation results for the
ascending case. The top panel shows the relative
plank size of the planks presented to the partici-
pant and the order of presentation. The relative
plank size increased from presentation to presen-
tation. Note again that the use of continuous lines
in Fig. 8 is somewhat misleading. According to
the stimulation, the participant was tested in
41 discrete events. However, using continuous

rather than dotted lines improves the visual clarity
of the graphs. The second top panel shows the
growth parameters of the one hand grasping pat-
tern (solid line) and the two hands grasping pat-
tern (dashed line) as functions of relative plank
size. This second top panel is identical to Fig. 6
(except for the starting point of the horizontal axis
which is 0 in Fig. 6, whereas it equals 4.5 cm
divided by the hand span of the representative
participant in Fig. 8). The third panel from the
top shows the saturation values (or stationary
values) of the amplitudes of the one hand grasping
pattern (solid line) and two hands grasping pattern
(dashed line). For example, in Fig. 5 the saturation
values are those values observed at the end of the
simulation period. From Fig. 8, we see that the
amplitude of the one hand grasping pattern
assumed a finite value in the range from the
shortest plank up to planks of relative size 0.68,
whereas the amplitude of the two hands grasping
pattern vanished. This indicates that according to
the GT model in this range of planks, the repre-
sentative participant behaved like a pattern forma-
tion system in which a BAB pattern associated
with one-handed grasping emerges. The ampli-
tude dynamics exhibited a switch between 0.68
and 0.70 consistent with the discussion around
Figs. 7 and 8. For planks with relative size 0.70
up to the longest plank the amplitude of the two
hands grasping pattern was finite, whereas the
amplitude of the one hand grasping pattern was
equal to zero. That is, the GT model predicted the

Determinisms of Behavior and Synergetics, Fig. 8 Simulation results for the representative participant of the study
by Lopresti-Goodman et al. (2011) obtained from the GT model. See text for details. Parameters as in Fig. 6
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emergence of a BAB pattern associated with two
hands grasping at a value of 0.70. The bottom
panel illustrates the behavioral response as func-
tion of the relative plank size. For planks that
induced in the ascending condition the emergence
of a BAB pattern associated with a one hand
grasping pattern, the simulated participant
grasped the planks with one hand. By analogy,
the computer-simulated participant performed
two-handed grasping when a two hand BAB pat-
tern was present. The bottom panel is identical
with the top panel of Fig. 3B expect for the scale
on the horizontal axis. While in the top panel of
Fig. 3B the behavioral response as function of
absolute plank size is shown, in Fig. 8 relative
plank size is used.

Panel B of Fig. 8 shows the simulation results
for the descending case. The top panel shows
again the relative plank size of the planks pre-
sented to the participant and the order of presen-
tation. The relative plank size decreased from
presentation to presentation. The second top
panel shows the growth parameters of the one
hand grasping pattern (solid line) and the two
hands grasping pattern (dashed line) as functions
of relative plank size. The panel is identical with
the second top panel on the left. However, we
need to read the horizontal axis from the right to
the left. In the descending case, long planks with
large values of relative size were presented first
and subsequently shorter planks were presented.
The third panel from the top shows the saturation
values of the amplitudes of the one hand grasping

pattern (solid line) and two hands grasping pattern
(dashed line). Again the figure should be read
from the right to the left. The amplitude of the
two hands grasping pattern assumed a finite value
in the range from the longest plank down to planks
of relative size 0.68, whereas the amplitude of the
one hand grasping pattern vanished. For planks
with relative size 1.2 down to 0.68 the represen-
tative participant behaved like a pattern formation
system in which a BAB pattern of two-handed
grasping emerged. The amplitude dynamics
exhibited a switch between 0.68 and 0.66 consis-
tent with our discussion above of Fig. 6. For
planks with relative size 0.66 down to the shortest
plank, the amplitude of the one hand grasping
pattern was finite, whereas the amplitude of the
two hands grasping pattern was zero. In this range,
the BAB pattern of one hand grasping emerged.
The bottom panel is identical with the bottom
panel of Fig. 3B expect for the scale on the hori-
zontal axis. Comparing the switching points in
panels A and B, we see that the simulation pre-
dicted that the switches occurred at different
values. Note that they do not exactly correspond
to the theoretical values of 0.7042 and 0.6658.
This is due to the fact that in the simulation rela-
tive planks size was increased and decreased not
in a continuous way but in discrete steps. Overall,
the numerical simulation of the GT model is able
to reproduce and predict the experimentally
observed hysteresis phenomenon.

The GT model reviewed above involves some
key components that are summarized in Fig. 9.

Determinisms of
Behavior and
Synergetics,
Fig. 9 Components of the
amplitude equations models
of human behavior as
discussed within the
framework of synergetics
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Since the GT model is a special case of an ampli-
tude equation model, in general, amplitude equa-
tion models as discussed with the framework of
synergetics feature elements identical or similar to
those shown in Fig. 9. First of all, the GT model
applies to grasping transition experiments in
which the experimental manipulation is given by
the systematic variation of the size of the to-be-
grasped planks. As far as the experimental design
of grasping transition experiments is concerned,
plank size is regarded as the primary independent
variable. The primary independent variable gives
rise to a control parameter that depends on the
independent variable but is also affected by other
model parameters. In the case of the GT model,
the control parameter is the plank size divided by
hand span. The control parameter in turn affects
the growth parameters (which correspond to the
eigenvalues or Lyapunov exponents in the theory
of dynamical systems) of the two BAB grasping
patterns: the one hand and two hands grasping
patterns. Bottom-up approaches would allow to
derive explicitly the functional relationships
between the growth parameters and the control
parameter. We followed the top-down approach
suggested by Frank et al. (2009) and Lopresti-
Goodman et al. (2011) in which it was assumed
for the sake of parsimony that the two growth
parameters depend in a linear fashion on the con-
trol parameter. From dynamical systems theory it
is well-known that the growth parameter (alias
eigenvalues) determine the stability of the fixed
points of a dynamical system. Likewise, the
growth parameters of the GT model determine
the stability of fixed points of the amplitudes.
These fixed points describe the saturation values
(or stationary values) of the amplitudes. The sta-
bility properties of the fixed points in combination
with the initial conditions of the self-organizing
system under consideration determine which pat-
tern is selected. In the context of a sequence of
grasping actions, the initial conditions are deter-
mined by the history given in terms of the behav-
ior that was previously performed. In fact, such
previously performed actions would determine
the initial conditions of the amplitudes. The pat-
tern selection process in general involves the
emergence of a pattern. It might also involve the

disappearance of another pattern and/or a transi-
tion between two patterns. Finally, the emergent
BAB pattern exhibits a component that reflects the
behavior or the actual performance of the
participant.

Application 2: Walk-Run Transitions

Humans have various ways of locomotion such as
crawling, hopping (or jumping), walking and run-
ning. We may refer to these different ways of
locomotion as gaits. The aim of a gait is to allow
him or her to move from one position to another.
As far as walking and running are concerned, the
key difference between these gaits is that during
walking at any time there is at least one foot in
contact with the ground, while during running
there is a flight (or aerial) period. Contact with
the ground is lost during the flight period. Typi-
cally, at low speeds of locomotion humans tend to
walk, whereas at high locomotion speeds running
is the preferred gait (see below). Walk-run and
run-walk transitions are gait transitions in which
humans switch from one gait to the other.

The transition from walk to run and vice versa
from run to walk can be studied conveniently by
asking participants to move on a treadmill and
manipulating the treadmill speed. For example,
Diedrich and Warren (1995) changed treadmill
speed continuously from about 1 m/s to about
4 m/s and back to 1 m/s and observed walk-to-
run and run-to-walk gait transitions at a treadmill
speed of 2.07 m/s (when averaging walk-to-run
and run-to-walk transition speeds). In a related
study, Diedrich and Warren (1998) found transi-
tions speeds of 2.19 m/s (for the control condi-
tions in Experiments 1 and 2). Similarly, Hreljac
(1995) reports a transition speed of 2.05 m/s for a
sample of 28 participants. After data cleaning by
removing two outliers, a reanalysis of the data by
Hreljac (1995) yields a slightly higher value at
2.06 m/s for the corrected sample of 26 partici-
pants. Finally, Li (2000) determined walk-to-run
and run-to-walk transitions using various tread-
mill acceleration conditions. Overall the transition
speeds were found to fall into the range of
2.2–2.4 m/s (see Fig. 3 of Li 2000).
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Just as for grasping transition experiments, in
the context of gait transition experiments the
questions arises whether speed as such is an
appropriate control parameter. Based on theoreti-
cal considerations, it has been suggested that tran-
sition speed should increase with leg length.
Accordingly, a rescaled parameter, the so-called
Froude number, which is a dimensionless variable
and defined by the speed squared divided by leg
length, and the earth gravitational constant
(Alexander 1992) should yield transition values
that are independent of the leg length of partici-
pants. Therefore, the Froude number is generally
considered to be a more appropriate control
parameter. Let us illustrate this issue by means
of the data reported for male participants in the
study by Hreljac (1995). Panel A of Fig. 10 shows
the scatter plot for the transition speeds and leg
length scores of the male participants (excluding
the two aforementioned outliers). Here speed is
measured in meter per seconds and thigh length is
used as a proxy for leg length. The data are taken
from Table 1 of Hreljac (1995). The scatter plot
reveals a positive correlation. The correlation
coefficient equals 0.58 and is statistically signifi-
cant, r(9) = 0.58, p = 0.03 (one-tailed). The
regression line is shown in panel A as well. Let
us express next the transition scores as Froude
numbers rather than speed scores. Using again
thigh length rather than leg length, we computed
pseudo Froude numbers for all male participants.

Panel B of Fig. 10 shows the scatter plot for the
pseudo Froude numbers and leg length scores
(again given in terms of thigh length measures).
Comparing the scatter plots of panels A and B,
visual inspection reveals that while for transition
speed scores a linear relationship with leg length
scores can be identified, for transition Froude
numbers (which produced a correlation coeffi-
cient of�0.09) such a relationship is not obvious.
Rather panel B suggests that participants change
their gaits at more or less the same Froude number
irrespective of their leg length. In fact, hypothesis
testing (two-tailed) showed that the correlation
coefficient was not statistically significant. There-
fore, the experimental data taken from Hreljac
(1995) support the aforementioned theoretical
claim that the Froude number is a more appropri-
ate control parameter than locomotion speed.

Diedrich and Warren (1995) found that gait
transitions (averaged over walk-to-run and run-to-
walk) occurred at a Froude number of 0.49. In their
Experiments 1 and 2 reported in Diedrich and
Warren (1998) they report slightly higher values,
namely, transition Froude numbers of 0.54 and
0.55 for the respective control conditions. Frank
(2016b) reports from a treadmill experiment with a
control condition in which participants showed a
transition Froude number of 0.43 both for walk-to-
run and run-to-walk transitions.

So far the focus was on studies that reproduced
walk-run transitions known from everyday life in

Determinisms of Behavior and Synergetics,
Fig. 10 Scatter plots for transition scores observed
in walk-run and run-walk gait transitions versus leg
length of the participants. The scatter plots are shown
in two different scales. Panel A shows transitions
speeds in m/s on the vertical axis. Panel B shows

Froude numbers (which are dimensionless scores) on
the vertical axis. Transition speeds show a positive
correlation with leg length as indicated by the regres-
sion line in Panel A. Such a correlation does not exist
for the Froude numbers (Panel B) (Data taken from
Hreljac (1995), see text)
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a laboratory setting and characterized quantita-
tively the transition points either by means of a
transition speed values or transition Froude num-
bers. In view of the hysteresis phenomenon
reported for grasping transitions, it is worthwhile
to examine whether the direction of change (walk-
to-run versus run-to-walk) has an impact on the
transition point. In fact, there are a few studies that
report from gait transitions that showed hystere-
sis. Diedrich and Warren (1995) found for walk-
to-run transitions a transition speed of 2.09 m/s
and a corresponding transition Froude number of
0.5. In contrast, for run-to-walk transitions the
scores were lower: the transition speed was
2.05 m/s and the corresponding transition Froude
number was 0.48. The difference was statistically
significant, F(1,74) = 10.02, p < 0.01. In Exper-
iment 2 of Diedrich andWarren (1998), the impact
of the slope of the walking belt on transition
scores was examined (using two slope conditions:
zero slope and nonzero slope). When averaged
across the two slope conditions, Diedrich and
Warren (1998) found that transition scores
showed hysteresis with a walk-to-run transition
speed of 2.12 m/s versus a run-to-walk transition
speed of 2.07 m/s. The difference was statistically
significant when taking participants into account
as a factor, F(1,83) = 18.04, p < 0.001. Note that
this observation has to be interpreted with caution
because when ignoring the participant factor (i.e.,
when not taking participants into account as a
factor) then the hysteresis turned out not to be
statistically significant. Hreljac et al. (2007) stud-
ied gait transitions under three different slope
conditions (zero slope, medium slope, and large
slope). The transition speed values for walk-to-
run and run-to-walk transitions ranged from 1.6 to
2.0 m/s (see Fig. 2 of Hreljac et al. 2007). Impor-
tantly, for all conditions the walk-to-run transition
speeds were higher by about 0.07 m/s than the
run-to-walk transition speeds. These differences
were statistically significant. Finally, Li (2000)
found for relatively high acceleration and
de-acceleration values of treadmill speed that the
walk-to-run transition speeds were larger than the
run-to-walk transition speeds (see Fig. 3 of Li
2000). At relative low acceleration and
de-acceleration values, the transition scores were

the same or the effect was even reversed. This
observation is reminiscent of the observation
(reviewed above) made in the study by Lopresti-
Goodman et al. (2011) on grasping transitions,
namely, that the degree of hysteresis was rela-
tively large when participants were put in a stress-
ful situation, whereas under the control condition
the degree of hysteresis was relatively small.

The GT model has been modified to account
for walk-run transitions (Frank 2015b, 2016b, c).
Let us refer to the modified model as walk-run-
transition (WRT) model. The model describes two
BAB patterns, walking and running, in terms of
the respective amplitudes. Just like the GT model,
the WRT model is composed of the elements
shown in Fig. 9. In the context of walk-run tran-
sitions, the experimental manipulation is the var-
iation of the treadmill speed. The control
parameter is the Froude number introduced
above. That is the Froude number replaces relative
plank size. The WRT model features two growth
parameters and two pattern amplitudes, which are
the growth parameters and amplitudes of the
walking and running patterns. Finally, if the
amplitude of the walking pattern is finite, whereas
the amplitude of the running pattern is close to
zero, the BAB pattern associated with walking has
emerged and the participant settles down in a
walk. In contrast, if the amplitude of the running
pattern is finite, whereas the amplitude of the
walking pattern is close to zero, the BAB pattern
of running has emerged and the participant is
running.

In order to show that the WRT model can
capture the experimentally observed hysteresis
phenomenon, we solved the amplitude equations
of the WRT model numerically. The model equa-
tions can be found in Frank (2015b, 2016c). The
result of the simulation is shown in Fig. 11. Fig-
ure 11 is organized just like Fig. 8. The simulation
results describe the representative participant
number 2 of the study by Diedrich and Warren
(1995). This participant has also been discussed in
detail in Frank (2016c). Panel A of Fig. 11 shows
simulation results when treadmill speed is
increased. The top panel shows the Froude num-
bers of the simulation and the order in which the
Froude number were used in the simulation. The
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Froude numbers were increased in 11 steps from
0.l to 1.1. The second top panel shows the growth
parameters of the walking pattern (solid line) and
the running pattern (dashed line) as functions of
the Froude number. The third panel from the top
shows the saturation values (or stationary values)
of the amplitudes of the walking (solid line) and
running (dashed line) patterns. The amplitude of
the walking pattern assumed a finite value for
Froude numbers from 0.1 to 0.6. In this range,
the amplitude of the running pattern vanished for
the increasing speed condition. Consequently, in
this range of Froude numbers (relative treadmill
speed values) the computer-simulated participant
behaved like a pattern formation system in which
a BAB pattern of walking emerged. The ampli-
tude dynamics exhibits a switch between 0.6 and
0.7. In fact, Diedrich andWarren (1995) report for
participant 2 a transition Froude of 0.66. For
Froude numbers from 0.7 to 1.1 the amplitude of
the running pattern was finite, whereas the ampli-
tude of the walking pattern was equal to zero. The
WRT model predicted the emergence of a BAB
pattern of running. The bottom panel illustrates
the behavioral response as function of the Froude
number. For Froude numbers that induced in the
increasing speed condition the emergence of a
BAB pattern of walking, the computer-simulated
participant was walking on the treadmill. When
the BAB pattern of running emerged, then the
participant was running on the treadmill.

Panel B of Fig. 11 shows the simulation results
for decreasing treadmill speed. The top panel
shows again the Froude numbers used in the sim-
ulation and the order in which they were used in
the simulation. The Froude number decreased
from presentation to presentation. The second
top panel shows the growth parameters of the
walking (solid line) and running (dashed line)
patterns and is identical with the second top
panel on the left. However, again, the horizontal
axis should be read from the right to the left. In the
case of the simulated treadmill speed
de-acceleration, the treadmill speed was initially
high and subsequently was reduced step by step.
The third panel from the top shows the saturation
values of the amplitudes of the walking (solid
line) and running (dashed line) patterns. Again
the figure should be read from the right to the
left. The amplitude of the running pattern assumed
a finite value in the range of Froude numbers from
1.1 down to 0.6. At a Froude number of 0.6 a
switch happened. The amplitude of the running
pattern jumped to zero, whereas the amplitude of
the walking pattern increased and assumed a finite
saturation value. In particular, for Froude numbers
from 0.5 down to 0.1 the amplitude of the walking
pattern was finite. The transition between Froude
numbers of 0.6 and 0.5 mimics the experimentally
observed transition reported in Diedrich and War-
ren (1995) for participant 2, which happened at
0.55 in the treadmill speed decreasing condition.

Determinisms of Behavior and Synergetics, Fig. 11 Simulation results for participant 2 of the study by Diedrich and
Warren (1995) obtained from the WRT model. See text for details
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The bottom panel of Fig. 11B presents the perfor-
mance of the simulated participant in the condi-
tion of decreasing treadmill speed. Comparing the
switching points shown in the bottom panels of
Fig. 11A, B, we see that the switches occurred at
different values. The WRT model reproduced or
predicted the experimentally observed hysteresis
phenomenon.

Application 3: Action Chains and
Child Play

So far we have discussed a circular causality mech-
anism leading to hysteresis, see Fig. 9: a performed
action sets the initial conditions for the upcoming
action. In the context of Fig. 9, we argued that
action selection depends not only on the stability
of the BAB patterns of a human being under con-
sideration but also on the initial conditions of the
pattern formation process taking place “in” that
human being. The eventually performed behavior
in turn sets the initial conditions for the subse-
quently performed behavior. Therefore, in the
ascending condition of grasping transition experi-
ments under which participants begin trials by
grasping small planks with one hand, participants
continue to grasp planks with one hand for a larger
range of plank sizes as compared to trials of the
descending condition. Likewise in the descending

condition when participants begin trials by grasp-
ing large planks with two hands, participants con-
tinue to grasp planks with two hands for a larger
range of planks sizes as compared to trials of the
ascending condition. The same kind of argument
holds for the hysteresis of walk-run transitions.

However, behavior performed at a certain
moment in time may not only determine the initial
conditions of pattern formation processes related
to subsequently performed actions. Rather, it has
been hypothesized that behavior can affect the
control and growth parameters, as shown in
Fig. 12. This working hypothesis (Frank et al.
2015; Frank 2015a) and similar hypotheses that
have been made in the literature (Ditzinger and
Haken 1989; Haken 1996; Tschacher and
Dauwalder 1999) state that in general self-
organization processes can act back on the cir-
cumstances under which they emerged in the
first place. Let us point out the conceptually
novel aspect of hypotheses of this kind. The syn-
ergetic approach discussed above allows us to
understand the emergence of BAB patterns in
terms of the dynamics of pattern amplitudes
defined by amplitude equations. Importantly,
BAB patterns emerge as part of pattern formation
processes when externally controlled parameters
(e.g., control parameters manipulated by an exper-
imenter) exceed certain critical values. The syner-
getic approach does not take the possibility into

Determinisms of Behavior and Synergetics,
Fig. 12 Components of models of human behavior (and
perception) as formulated in the framework of extended
synergetics and quasi-attractor theory. These models take

into account the possibility that parameters are self-
regulated by the performed behavior. Accordingly, in
Fig. 12 the scheme shown in Fig. 9 is extended by an
additional feedback loop

330 Determinisms of Behavior and Synergetics



account that the pattern formation processes may
affect parameters of the system that then act as
control parameters and trigger secondary pattern
formation processes. In doing so, action chains or
the flow of actions can be explained.

This possibility of a self-regulation (Frank
et al. 2015; Frank 2015a) of system parameters
by self-organizing processes has been addressed
in the context of the quasi-attractor theory by
Haken and coworkers in order to explain selective
attention (Fuchs and Haken 1988) and to study
oscillatory perceptual processes induced by
ambivalent figures and ambivalent acoustic stim-
uli (Ditzinger and Haken 1989; Ditzinger et al.
1997; Frank 2014a; Haken 1996). Recently, this
notion has been discussed within the framework
of extended synergetics to address negative
impacts of attention on object function perception
(Frank 2015a) and perceptual processes showing
hysteresis of a different kind as discussed above
(Frank et al. 2015; Frank 2016b; Kim and Frank
2016; Lopresti-Goodman et al. 2013). Priming
(Frank 2009, 2012b), retrieval-induced forgetting
(Frank 2012b), and the relapse of bipolar disorder
due to medication nonadherence (Frank 2014e)
have been studied in this context as well. More-
over, sequences of actions as observed during
rituals (Frank 2014b, c) and child play (Frank
2014b, d) have been discussed. Let us review the
studies on child play in more detail.

We consider a child who has a number of pre-
ferred leisure activities. For sake of simplicity, we
restrict ourselves to consider three activities. How-
ever, the model can be generalized to account for
any number of activities. Following Frank (2014b,
d) the three activities are coloring, reading, and TV
watching. Each activity is associated with a BAB
pattern. The emergence of each pattern is deter-
mined by the corresponding pattern amplitude. If
one of the three pattern amplitudes is at its finite
saturation value, while the other two amplitudes
are close to zero, then the BAB pattern exhibiting
the finite amplitude has emerged and the child is
engaged in the corresponding leisure activity.
Importantly, it is assumed that performing a certain
activity acts back in an inhibitory way on the
pattern formation process that supported the emer-
gence of that activity. We may think of an effect of

an activity on external circumstances that are rele-
vant for maintaining the activity. For example,
when a child is coloring a picture, after a certain
amount of time the picture may be completely
colored. The motivation to color a second picture
may be lower than the motivation that the child had
in the first place. If so, wemay interpret this drop in
motivation to say that after discrete episodes in
time of coloring (where each episode reflects that
the child has completed a picture) the tendency
becomes weaker and weaker that the pattern for-
mation process leading to coloring is maintained.
This is similar to the decay in the tendency to grasp
planks with one hand when plank size is increased.
In the context of grasping transition, the decay in
the tendency to perform one-handed grasping has
been modeled by a growth parameter for one-
handed grasping that decayswith increasing planks
size, see Fig. 6 (solid line). Therefore, in the con-
text of child play it has been assumed (Frank
2014b, d) that – roughly speaking – the growth
parameter of coloring decays over time. More pre-
cisely, it is not time as such that makes the growth
parameter to become smaller and smaller. Rather,
what matters is the coloring activity of the child.
That is, the decay of the growth parameter is a
function of the duration of the coloring activity.
The same argument can be made for reading and
TV watching. Reading a short picture book natu-
rally will make that the child finishes the book in a
particular amount of time. Watching a TV show
implies that there will be an end of the show. In
doing so, reading and TV watching affect external
circumstances. We consider here the case where
such changes have inhibitory effects on the cur-
rently performed activity.

Having argued that the performance of an
activity may change external circumstances rele-
vant for the performance of that activity, in gen-
eral, it has been hypothesized that performed
activity can also affect internal parameters such
that the performed activity is inhibited (Frank
2014b, d). This hypothesis is motivated by theo-
retical work on the oscillatory perception of
ambivalent figures (Ditzinger and Haken 1989;
Frank 2014a; Haken 1996; Shao et al. 2008) that
explains the emergence of oscillations as an
effect of negative feedback from higher cognitive
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levels to lower levels of the visual perceptual
system. In this case, only internal parameters of
the perceptual self-organizing process are
concerned. The external circumstances of the
stimulus and its presentation are not altered in
any way. In summary, as illustrated in Fig. 12, it
is assumed that when a child performs a particu-
lar activity, then the activity itself affects external
or internal circumstances that in turn result in a
reduction of the growth parameter of the
performed activity.

In the context of the postulated self-inhibition
mechanism, we would like to remind the reader
about the stability band for the pattern formation
system under consideration (see above and Fig. 7
in particular). When the growth parameter of a
given performed activity falls below the lower
boundary of the stability band, then – from a
dynamical systems perspective – the activity
becomes unstable. Applied to the modeling of
child play, this implies that the child will stop
performing the current activity and will switch to
another activity that has a stable fixed point (i.e.,
exhibits a growth parameter which belongs to the
stability band). In our case, there might be two
alternative activities available that exhibit stable
fixed points. If so, the initial conditions given in
terms of the amplitude values at the time point
when the current activity becomes unstable deter-
mine which of the two alternative BAB patterns
will emerge and, consequently, which alternative
activity will be performed by the child.

Let us illustrate these issues by means of a
computer simulation. The mathematical details
can be found in Frank (2014b, d). The simulation
parameters are given in Frank (2014d). In what
follows, we consider the case A of Frank (2014d)
but neglect the modeling of internal and external
noise on the dynamics of the growth parameters
(i.e., we put the corresponding noise parameter
equal to zero). Moreover, unlike the simulation
conducted in Frank (2014d), we assume that at the
initial time point of the simulation the amplitude
of the reading activity assumes the largest value of
all three amplitudes.

The result of the simulation (that took the two
aforementioned modifications into account) is
shown in Fig. 13. Panel A shows the amplitudes as

functions of time. Panel B provides the growth
parameter dynamics. Panel C indicates which activ-
ity is performed over the course of time. All growth
parameters were initially at the baseline level, see
Panel B. In contrast, as mentioned above, initially
the amplitude of the reading activity was larger than
the amplitudes of the two other activities.

As a consequence of the initial amplitude bias,
the amplitude of the reading activity was the
“winner” in the competition process between the
three amplitudes (reflecting the competition pro-
cess between the three corresponding BAB pat-
terns). The amplitude equation model converged
to a fixed point given by a finite saturation value
for the amplitude of the reading activity and zero
saturation values for the amplitudes of the two
alternative activities, see Panel A. Subsequently,
the growth parameter of the reading activity
decayed as a result of the postulated self-
inhibitory impact of the reading activity, see
Panel B. In contrast, the growth parameters of
the two other activities stayed at constant levels.
At about 20 time units the growth parameter of the
reading activity dropped out of the stability band
and the reading activity – roughly speaking –
became unstable.

There was a competition process between the
coloring and the TV watching activity. This com-
petition processes can be seen in Panel A as the
temporary increase of both amplitudes (see top
and bottom subpanels) at about 20 time units.
Due to the initial conditions at that point of
20 time units the coloring activity was the winner
of the competition. The amplitude equation model
converged to the fixed point given by a finite
saturation value for the amplitude of the coloring
activity and zero saturation values for the ampli-
tudes of the two alternative activities, see Panel
A. A self-inhibitory feedback process started
again – that time with respect to the coloring
activity. That is, the growth parameter of the col-
oring activity decayed (roughly speaking) as a
function of time, see Panel B. In contrast, the
growth parameter of the reading activity relaxed
back to its baseline level, see Panel B again. At
about 46 time units the growth parameter of the
coloring activity dropped out of the stability band
and the coloring activity became unstable.
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There was a competition between reading and
TV watching. As can be seen from Panel B, the
growth parameter of the reading activity did not
yet reach the same baseline value as the growth
parameter of the TV watching activity. As such,
initial conditions in addition to the growth param-
eter values determine which activity wins a com-
petition process. For the simulation shown in
Fig. 13 these two factors were such that the TV
watching amplitude won the competition process.
Once the TV watching activity was established
(i.e., the amplitude dynamics converged to a fixed
point given by a finite saturation value for the
amplitude of the TV watching activity and zero
saturation values for the amplitudes of the two
alternative activities, see Panel A), the self-
inhibitory process for the TV watching activity
took place and the growth parameter of the TV
watching BAB pattern decayed as a function of
time –more precisely as a function of the duration
of the performed TV watching activity, see Panel

B. The growth parameter of the coloring activity
relaxed back to the baseline value. At about
67 time units the growth parameter of the TV
watching activity dropped out of the stability
band and TV watching – when regarded as a
BAB pattern – became unstable.

The pattern formation system switched to the
BAB pattern associated with reading and the
three-activities cycle that we have just discussed
started again.

Panel C is derived from Panel A. An activity
was performed when the corresponding amplitude
was at a finite saturation value, while the ampli-
tudes of the alternative activity patterns were close
to zero. Note that the finite saturation values of the
amplitudes changed on a slow time scale due to
the fact that the growth parameters decayed on an
assumed slow time scale (for more details about
that issue see Frank 2014d). According to the
model suggested by Frank (2014d), the absolute
value of the amplitude is not the primary criterion

Determinisms of Behavior and Synergetics,
Fig. 13 Simulation results of the amplitude equation
model for child play. The model does not only describe
the evolution of amplitudes (Panel A) of behavioral pat-
terns but also describes the evolution of the growth

parameters related to the behavioral patterns (Panel B).
Panel C shows the performed activities as functions of
time (C: coloring, R: reading, TV: TV watching, N: the
child is undecided and in this sense is doing “nothing”)
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that determines whether or not an activity is
performed. Rather, the question arises whether
or not an amplitude is close to its finite saturation
value. During the slowly changing periods shown
in Panel A, the amplitudes were close to their
respective saturation value. In contrast, at the
instability points (i.e., at 20, 46, and 67 time
units) the respective amplitudes dropped rela-
tively quickly to zero (see Panel A). During
these short periods the amplitudes were not close
to their respective finite saturation values. This
also implies that there were short periods between
two performed activities in which the child was
undecided what to do. These periods are indicated
with the label “N” for “nothing” in Panel C.

As already pointed out by Frank (2014d), the
suggested amplitude equations model for child
play eventually settles down in a periodic tempo-
ral pattern characterized by a three-activities
cycle. In the example shown in Fig. 13, the
three-activities cycle is given by the sequence:
reading, coloring, TV watching. The observation
of this three-activities cycle helps our understand-
ing of the amplitude equations model for child
play. However, in the real world a child is likely
to perform only a single three-activities cycle.
After having performed all three activities, the
child will probably not repeat them again. Rather,
the child will do something else (e.g., play with a
friend or sibling, play with the family cat – if there
is one, eat something, etc.). Consequently, only
the first cycle might be of interest when modeling
real data. In this context, we would like to reiterate
that the model can be generalized for an arbitrary
number of activities. Accordingly, the first cycle
can be composed of as many activities as we
would like to consider and can describe the
whole day of a school child from getting up in
the morning to getting to bed and falling asleep at
the end of the day.

General Aspects of the Modeling
Framework

We have reviewed a theory of human behavior
based on synergetics. We focused on the issue
how humans switch between different behaviors.

According to the synergetics’ perspective, behav-
iors correspond to brain activity and body (BAB)
patterns. Each pattern comes with its own ampli-
tude. Although in this chapter the focus was on
behavior, for states of perception a similar
assumption has been frequently made: each pat-
tern of perception comes with its own amplitude
(Haken 1991). For exceptions to this assumption
in the field of vision see, for example, Bressloff
et al. (2001). The emergence, the disappearance
and the transitions between BAB patterns is deter-
mined by amplitude equations that describe the
evolution of the pattern amplitudes over time.

First, we considered a human actor for whom it
seems from the outside as if he or she would
choose in a single event between two possible
behaviors. We focused on the symmetric case in
which both behaviors and likewise both BAB
patterns associated with the behaviors have the
same tendency to emerge. Interestingly, as we
showed above, it is possible to determine by
experimental research the circumstances under
which the symmetric case holds. This can be
done on an individual basis, that is, for each test
person separately. At first sight, the symmetric
case seems to open the possibility that behavior
is selected due to free will. That is, it seems as if
the participant tested under the symmetric case
makes a decision towards a behavior based on
his or her free will. However, taking a second
look, we showed that the initial conditions deter-
mine uniquely the behavior that emerges.

In this context, let us return to the shoe-
choosing example illustrated in Fig. 1. Let us
assume that there is no bias towards the “choice”
of one of the two pairs of shoes. That is, we
consider the symmetric case from the scientific
perspective illustrated in Panel B of Fig. 1.
“Choosing” pair A is considered as a BAB pat-
tern. Likewise, “choosing” pair B is considered as
an alternative BAB pattern. Both patterns com-
pete with each other for emergence. The dynamics
of the self-organization process in which the pat-
terns emerge is described in terms of the compe-
tition between the corresponding pattern
amplitudes as defined by the GT model, when
reinterpreting the components of the GT model
in the context of the “shoe-choosing” scenario.
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Figure 14 shows simulation results obtained from
the GT model applied to the “shoe-choosing”
problem. Panels A and B correspond to Panels
A and B of Fig. 5 interpreted in the context of
the “shoe-choosing” scenario. Panel A shows the
case A in which a person is confronted with the
problem to “choose” between two pairs of shoes
and in which the initial conditions are such that he
or she “chooses” pair A. While the top and middle
subpanel of Panel A display the amplitudes of the
two BAB patterns as functions of time, the bottom
subpanel shows the behavior. During a transient
period, the person under consideration is
“undecided,” which is indicated by the behavioral
state “N” (where “N” stands again for “nothing”).
At a certain point in time, the amplitude of the
pattern for “choosing” pair A is sufficiently close
to its finite saturation value and consequently the
BAB pattern of “choosing”: pair A has emerged.

The behavior switches from “being undecided” to
“choosing” pair A, see bottom subpanel. Panel
B of Fig. 14 illustrates the same issues for the
case B in which the participant is again confronted
with the question about wearing shoes A or B. In
contrast to case A, in case B the initial conditions
are such that the person under consideration
“chooses” the pair B of shoes. Note that panels
A and B present the result of a mechanistic model
for the two if-then relationships sketched in Fig. 1
of the science-based determinism perspective.

Panel C of Fig. 14 shows the flow field of the
dynamics in the space of the two amplitudes
related to the two BAB patterns. In order to draw
Fig. 14, the amplitude equation model (i.e., the
GT model) was simulated for different initial con-
ditions and the amplitudes of “choosing” pair
A and “choosing” pair B were plotted against
each other for all simulated time points. Time is

Determinisms of Behavior and Synergetics,
Fig. 14 Simulation of the scientific perspective of the
shoe-choosing problem sketched in Fig. 1B obtained by
an appropriate reinterpretation of the GT model. The sym-
metric condition is considered. Panel A shows the case in
which the amplitude of choosing pair A dominates. Panel
B shows the corresponding situation for pair B. In Panels

A and B the top and middle subpanels show the evolution
of the amplitudes of the BAB patterns associated with
choosing pair A (top) or pair B (middle). The bottom sub-
panels show the decision or performed behavior. Panel
C illustrates the flow field obtained from the GT model.
Circles indicated end points (i.e., fixed points) of the model
dynamics. Parameters as in Fig. 5
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not shown explicitly in Panel C. Rather, the reader
has to follow one of the graphs from an arbitrary
point to one of the three end points marked by the
circles. In order to see how the amplitudes evolve
in time, we would need to follow a graph and vary
the speed. At some points the dynamics would be
fast, at other points it would be slow. The speed
information is not given in the plot shown in
Fig. 14C and is irrelevant for the purposes of
such a plot. Rather, the point that one wants to
make is that we can image that for any initial point
in the space spanned by the two amplitudes there
is a graph that will go in a unique way to one of the
three end points. When the dynamics reaches the
end point with the finite BAB amplitude for
“choosing” pair A (at a value of about 1.4 on the
horizontal axis) and a zero BAB amplitude of
“choosing” pair B, then the BAB pattern associ-
ated with the choice of pair A or the action of
putting on pair A has emerged and the person
under consideration chooses or puts on pair
A. Likewise, when the dynamics has converged
to the end point with a finite amplitude for “choos-
ing” pair B (at a value of about 1.4 again on the
vertical axis) and a zero amplitude for “choosing”
pair A, then the BAB pattern for “choosing” B has
emerged and the person puts on the pair B. These
two end points correspond to the fixed points of
the amplitude equations model to which solutions
can converge over time in the symmetric case. The
third end point on the diagonal can only be
reached for unlikely initial conditions. These are
initial conditions for which both amplitudes ini-
tially exhibit exactly the same value. These initial
conditions are considered as unlikely because
they rarely happen. Importantly, if the two ampli-
tudes deviate from each other only slightly at a
given (initial) point in time, then the amplitudes
will not converge to the end point on the diagonal.
Rather, they will end up at an end point located on
one of the two axes. Most importantly, the flow
field shown in Fig. 14 illustrates that there are no
choice points. For this reason – from the perspec-
tive of science-based determinism – the verb
“choosing” represents a misleading concept and
has been put between quotation marks in this
paragraph. There are only if-then relationships.
In fact, there are infinitely many if-then

relationships. We can prepare the two amplitudes
values such that they fall onto an arbitrary point in
the plane of Panel C, then from that initial point
there is a unique graph that goes to one of the two
fixed points located on the two axes. The diagonal
separates the two regions of attraction (which are
also called basins of attraction). All of these infinitely
many if-then relationships are described by the
amplitude equations of the GT model (whose math-
ematical details may be found in Frank et al. 2009
or Lopresti-Goodman et al. 2011) here applied to
the “shoe-choosing” problem.

We have argued that the symmetric case can be
used as a departure point to consider various
asymmetric cases. For example, small objects
are typically grasped with one hand, while large
objects are typically grasped with two hands. At
low speeds humans tend to walk; at high speeds
we tend to run. We can account for asymmetries
that capture a preference towards a behavior by
introducing growth parameters for BAB patterns
(or pattern amplitudes) that differ in magnitude. In
particular, when one growth parameter dominates
all other growth parameters such that they fall out
of the stability band, then only the behavior
corresponding to the dominant growth parameter
can be performed. Let us return in this context to
the “shoe-choosing” example. Let us assume there
is a pair of black shoes and a pair of white shoes
available. Let us consider a person born and
grown up in a western country and culture. The
person has to decide which shoes he or she should
put on for attending a funeral, on the one hand,
and a summer garden party, on the other hand.
Panel A of Fig. 15 illustrates this scenario from a
nonscientific perspective involving the notion of
free will. The person may take a short while to
think about pros and cons to put on black or white
shoes for a funeral or a summer garden party.
Eventually, he or she will then decide to wear
the black shoes for a funeral and the white shoes
for a summer garden party. This decision may
reflect his or her free will. Panel B of Fig. 15
describes the situation within the framework of
science-based determinism using the amplitude
equations of synergetics (here: the GT model).
The questions are considered as two separate
questions that are related to two different
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situations labeled B1 and B2. When asking the
question about the funeral (B1) the growth param-
eter of the amplitude that describes the selection of
the black shoes dominates the alternative growth
parameter. Accordingly, the flow field of the
model exhibit only one end point (i.e., fixed
point) in the plane spanned by the two amplitudes,
see panel B3. Irrespective of the initial conditions,
the amplitude dynamics converges to this unique
fixed point. For this unique fixed point the ampli-
tude of the BAB pattern related to the selection of
the black shoes is finite (and assumes a value of
about 1.4 units on the horizontal axis), whereas
the alternative amplitude equals zero. Conse-
quently, the person under consideration “chooses”
the black shoes for a funeral. Likewise, the ques-
tion what shoes to take for the summer garden
party (B2) creates a situation that is characterized
by a dominant growth parameter of the BAB
pattern for putting on the white shoes. Conse-
quently, the flow field of the amplitude equations
model looks as shown in Panel B4. All graphs
converge to a unique end point (located at about
1.4 units on the vertical axis) with a finite

amplitude for the BAB pattern reflecting the deci-
sion to put on the white shoes.

Importantly, taking Skinner’s point of view, it
is plausible to assume that the growth parameters
in these two situations assume large values
because of the way the person grew up in the
western culture. That is, we assume that initially
(at a time point in the maturation of the person
where it makes sense to talk about dressing for a
funeral or a summer garden party) the growth
parameters for putting on black and white shoes
assumed the same value. Due to the various inter-
actions of the person with the environment (here:
parents, siblings, friends, media, etc.) the growth
parameters became context-dependent such that
for the adult person in the context of funerals the
black-shoes growth parameter became large,
whereas in the context of summer garden parties
the white-shoes growth parameter became large.

We may compare the situation with the exper-
iment by Skinner and coworkers in which pigeons
were trained to distinguish between two signs on
which different words were written. For the first
sign, the pigeons were trained to turn around
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Fig. 15 Illustration of a nonscientific perspective involv-
ing free will (Panel A) and the scientific perspective
(Panels B1, B2, B3, B4) of the problem what kind of
shoes to choose for a funeral and a summer garden party.
Panels B3 and B4 show the flow fields obtained from the
GTmodel applied to the shoe-choosing problem in the case
of asymmetric growth parameters. Circles indicate end
points. Parameters for B3: growth parameter for choosing
black equals 2 units; growth parameter for choosing white
equals 0.5 units; coupling parameter equal to

2. Consequently, the growth parameter for choosing
white is out of the stability band and for any initial condi-
tion the dynamics converges to the end point related to the
decision to choose the black shoes. Parameters for B4:
growth parameter for choosing black equals 0.5 units;
growth parameter for choosing white equals 2 units; cou-
pling parameter equal to 2. Consequently, the growth
parameter for choosing black is out of the stability band,
which, in turn, implies that irrespective of the initial con-
ditions the dynamics converges to the end point associated
with the decision to choose the white shoes
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themselves. For the second sign, the pigeons were
trained to peck somewhere (the specific location
did not matter). Although the words as such did
not matter (what matters was just the fact that they
were different), Skinner and coworkers used the
phrases “turn” and “peck” in their experiment.
This “peck and turn” experiment can be explained
in complete analogy to the aforementioned “shoe-
choosing” problem. The two behaviors in the
Skinner experiment are turning around and
pecking. The two contexts are the two different
signs. For the “turn” sign the pigeons (when
regarded as pattern formation systems) exhibited
a growth parameter of the turning around BAB
pattern that dominated all other growth parame-
ters and, consequently, the turning around BAB
pattern emerged and the pigeons turned around.
For the “peck” sign the growth parameter of the
pecking BAB pattern dominated all other growth
parameters and, consequently, the pecking BAB
pattern emerged and the pigeons were pecking
against something. Our suggestion that the “peck
and turn” experiment can be explained just like
the hypothetical funeral and summer-garden-
party “shoe-choosing” problem supports the sug-
gestion that growth parameters of BAB patterns in
human and animals vary due to learning and var-
ious forms of interactions with the environment.
Since these interactions often involve behavior
(e.g., in Skinner’s experiments the animals had
to do something), we are back again at Fig. 12
that suggest that there is a feedback loop from
behavior to internal hidden parameters.

Conclusions

Having discussed single events in which a person
(or animal) performs a behavior out of a repertoire
of possible behaviors, we discussed sequences of
likewise actions. We discussed experiments in
which participants were asked to grasp objects
repeatedly for slightly different sizes and in
which participants were asked to move on a tread-
mill and in doing so moved their legs in a repet-
itive fashion while the treadmill speed was varied.
In this context, we explained the phenomenon of
hysteresis using the amplitude equation model.

A key issue for understanding hysteresis is that
in the symmetric case and in asymmetric cases
that only exhibit a small degree of asymmetry we
have two fixed points (end points) to which the
amplitude dynamics can converge. That is, the
flow field qualitatively looks as shown in Panel
C of Fig. 14.Which fixed point and, consequently,
which behavior is selected depends again on the
initial conditions. For these sequences of actions,
however, performing an action sets the initial con-
ditions for the subsequent action. Therefore, in the
context of sequences of behaviors it becomes
obvious that human behavior can be understood
as a chain of cause-and-effect relationships or
if-then relationships, where the “then” part of an
action determines the “if” part for the subsequent
action.

Finally, we generalized our considerations for
sequences of different types of actions. As an
illustrative example we considered child play.
From a theoretical point of view, the novel aspect
was to consider the possibility that actions do not
only determine initial conditions for subsequent
action but may affect neurophysiological param-
eter that are captured in the amplitude equations
model in terms of growth parameters, see Fig. 12.
Recall that in the context of the funeral versus
summer-garden-party example we assumed that
the growth parameters become context-dependent
on a relatively slow time scale of social learning
and exposure to cultural norms and conventions.
In contrast, we entertained in the context of the
child play example the idea that on relatively short
time scales the growth parameter of a behavior is
down-regulated.

The flow of action, in principle, can be under-
stood in terms of flow fields similar to those
shown in Panel C of Fig. 14 and in Panels B3
and B4 of Fig. 15. However, the space of interest
is not limited to the amplitudes. In order to ade-
quately describe the flow field, we need to con-
sider a higher dimensional space spanned by
amplitudes and growth parameters. For example,
if we consider three leisure activities of a child
(as we did above), then we need a six dimensional
space to capture the graphs that illustrate the child
behavior. For example, the graphs in the three
subpanels in Fig. 13A in combination with the
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graphs in the three subpanels in Fig. 13B consti-
tute a single graph in a six-dimensional space. Let
us imagine we generate by computer simulations a
variety of such graphs for different initial condi-
tions and plot them all together in the six-
dimensional space, then we would obtain the
flow field of the child play model.

Due to this extension of the amplitude space,
the theoretical framework that takes the growth
parameter dynamics into account has been
referred to as extended synergetics (Frank
2014c, d; Kim and Frank 2016). Likewise, when
we imagine how the flow fields would look like in
these higher dimensional spaces, we can see that
in the subspace that is only spanned by the ampli-
tudes we have pseudo end points like the end
points shown in Panel C of Fig. 14 and Panels
B3 and B4 of Fig. 15. The end points – which are
also called fixed point or in more general terms
attractors – are actually slowly drifting in time due
to their dependency on the slowly evolving
growth parameter dynamics (see Panel A of
Fig. 13). Therefore, they have been referred to as
quasi-attractors and the theoretical framework
taking the growth parameter dynamics into
account has also been referred to as quasi-attractor
theory (Haken 1996). Extended synergetics and
quasi-attractor theory include the original theoret-
ical framework of synergetics as a special case.
Therefore, extended synergetics and quasi-
attractor theory provide a comprehensive tool to
formulate laws of behavior that describe
sequences of likewise behaviors and sequences
of different behaviors from a scientific perspective
and within the framework of science-based
determinism.

Future Directions

Grasping, walking, and child play are only a few
applications of a variety of possible applications
of the theoretical framework outlined above.
While the author is writing this chapter, the gen-
eral public has become aware of seemingly
unjustified violent actions of US police officers
towards unarmed suspects. To perform violent
and even fatal actions as a police officer against

a suspect is an issue that should be addressed from
the scientific perspective introduced above. In
fact, research on violence using quantitative
modeling and laboratory studies has been
conducted in the past. As far as the amplitude
equations approach is concerned, only a prelimi-
nary study has been conducted to understand the
decision making process of law enforcement
offices to use violence with likely fatal conse-
quences (Frank 2016d). More detailed work in
this regard is needed. In particular, in view of the
fact that parameters of amplitude equations
models can be estimated for individuals (see
above), the top-down amplitude equations model-
ing approach seems to be a promising tool to
characterize individuals. For example, the ques-
tion arises whether or not model parameters are
correlated to the degree to which police officers
hold prejudices against certain ethnic groups.
Moreover, while the simulations demonstrated
above for grasping and walking transitions pri-
marily are used to reproduce observed behavior
and only in this sense predictions have been made,
when applying modeling on an individual level
simulations may be used to predict the probability
of individuals to perform violent unjustified
actions in the future. Such simulations of future
behaviors could serve as a basis for interventions
that aim to prevent unjustified violence from
happening.
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Glossary

Cognition A general concept of psychology
referring to all processes and structures of the
mind. These comprise the processing of stim-
ulus “input” (i.e., perception) and the internal
processing of represented information (e.g.,
memory functions, thinking, problem solving);
the latter processes presuppose intentional fea-
tures of the mind. Cognitive structures are
knowledge, categories, memory, attitudes,
schemata, etc., again intentional concepts.

Dynamical systems theory A system is any set
of things (components, elements) that stand in
relation to one another. If a rule or description
exists that defines how the system changes
over time (such as a differential equation or a
mapping algorithm), the system is a dynamical
system.

Intentionality A characterizing property of the
mind. In contrast to physical systems, mental
states have content, i.e., they “are about some-
thing” in the sense that they contain a reference
to an object, or the representation of an object.
In addition to such aboutness, intentionality
demands a functional reference to the inten-
tional object.

Mind-body problem The philosophical ques-
tion if and how mind and brain/body are
linked. Analogously, the question whether
mental processes and physical processes are
ontologically different or not.

Naturalization Explaining mental phenomena
using concepts and models derived from the
natural sciences. Naturalization efforts may be
viewed as tools bywhich (computer) simulation
models of mental processes can be developed.

Structural science Several sciences do not fit
into the two established groups of scientific
disciplines, the natural sciences and the human-
ities. Such structural sciences, e.g., mathemat-
ics, dynamical systems theory, cybernetics, or
synergetics, are abstract in the sense that they
are not restricted by ontology, and thus may be
applied to material and nonmaterial issues.

Definition of the Subject

In the philosophical and psychological tradition,
intentionality is viewed as a characterizing prop-
erty of mental (cognitive) acts. Mental acts have
content, i.e., they “are about something.” This
something is called the intentional object. Inten-
tionality may take the form of a desired state (as in,
“I wish it were Friday”) or a goal (e.g., my plan for
a weekend trip to the mountains). When viewing
the constituents of the mind (the cognitive system)
in this intentionalist manner, we stand in stark
contrast to scientific descriptions of physical sys-
tems. These latter systems are material things,
which are sufficiently described without reference
to objects they would “be about,” or to states they
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might desire to realize. Therefore, are mental and
physical systems qualitatively different with
respect to intentionality? If yes, we are confronted
with a dualist or dual-aspect view of themind-body
problem. If no, a solution is demanded that can
elucidate how mental phenomena may be
explained avoiding intentional language or, con-
versely, how physical systems may show or mimic
the features of intentionality. The former project is
the conceptualization of intentionality, the latter
project may be named the naturalization of
intentionality.

Clarifying the problem of intentionality is
important in several respects. First, psychology
and other cognitive sciences are conceptually
divided into two approaches: the phenomenolog-
ical (first-person) approach and the behavioral
and/or biological (third-person) approach. The
frequent conflation of first-person and third-
person concepts is a serious impediment to theo-
rizing in psychology and cognitive neuroscience.
Second, modern societies have a growing demand
for machines and software that can function in
“intelligent” ways. Therefore, engineers of artifi-
cial knowledge-based systems need to know how
intentionality may be implemented in physical
information-processing machines. Third, the
problem of intentionality is one of the founda-
tional problems of philosophy of mind and of
consciousness research. Any, even if partial, solu-
tion to this problem that may be derived is there-
fore welcomed.

The phenomenology of intentional acts is well
known; phenomenology yields the features of
intentionality, which can indicate how closely a
formal-mathematical or physical model of inten-
tionality approximates an understanding of the
problem. These features are

• Aboutness, the intentional system’s state must
be about something in the system’s environ-
ment (even about something fictitious)

• Functionality, intentional states should be
functional or instrumental with respect to
what they are about

• Mental-likeness, in the sense that apart from
being intentional these model systems should
have properties that resemble the properties of

mental states. Especially, an interpreter
(homunculus) who may account for missing
links in the explanation of intentional mental
states must not be allowed.

Introduction

If mind and matter are qualitatively different
things, what is the nature of their difference?
This is an elementary question of philosophy
and of scientific disciplines addressing the mind.
This question and the potential answers to it,
referred to as the mind-body problem, have a
long history. What is the relationship between
mind and body? If there is no essential difference
between the two, or only a superficial difference,
one may reach a monistic understanding of the
problem. Monism may be idealistic, positing that
mind creates its world. The contrary monism
would be materialism i.e., the assumption that
the mind can be reduced to matter (e.g.,
Churchland 1986). If, on the other hand, a real
difference between mind and body exists, we
enter dualistic notions (e.g., Popper and Eccles
1977). Dualism is confronted with intricate ques-
tions of how we may conceive of the interaction
between mind and body. In the interest of the
specific discussion of intentionality in this entry,
we will refrain from giving an account of the
many philosophical theories of how mind and
body may be associated in general.

Apart from presenting a core problem to the
philosophy of mind, the mind-body problem is of
interest to a wide range of contemporary scientific
disciplines, especially psychology, neuroscience,
and computer science (artificial intelligence). In
recent decades, a novel approach to cognitive
science has appeared combining dynamical sys-
tems theory with cognitive science. This “dynam-
ical approach to cognition” addresses mind-body
topics more or less explicitly. We will sketch this
approach here because it provides the background
for our ensuing structural treatment of
intentionality.

The dynamical approach to cognition is
founded on a number of studies and empirical
paradigms. In various perceptual and behavioral
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tasks, researchers have observed a set of signa-
tures of cognitive and motor systems. These sig-
natures were typically related to temporal patterns
observed in the systems, especially asymptotic
stability, and in many paradigmatic cases, multi-
stability. Asymptotic stability means that a sys-
tem’s pattern of behavior is stable – in the face of
an external disturbance, the system returns
asymptotically to this same pattern. Multistability
means that several such patterns may coexist in
the behavioral space of a single system.

Movement coordination has been at the center
of several applications. Haken et al. (1985) pro-
vided a model of the coordination of two limbs
(e.g., the hands, or the forefingers, of a person)
using equations from dynamical systems theory.
The rhythmic movement of the limbs generally
becomes synchronized after a short time; these
synchronous movement patterns are stable with
respect to external inputs, i.e., they usually return
to synchrony after externally induced disruptions
of movement. Furthermore, they have been shown
to undergo phase transitions depending on the
values of the control parameter (in the Haken-
Kelso-Bunz system, a control parameter is the
velocity of movements prescribed by a metro-
nome). Characteristic phenomena were observed
in the context of phase transitions, such as hyster-
esis and critical fluctuations. Analogous findings
were reported in animal locomotion. Here, espe-
cially multistability has attracted the attention of
researchers because in certain regions of control
parameter space two qualitatively different limb
coordination patterns may occur. For instance, a
horse may either gallop or trot at a given velocity.

In the seemingly unrelated field of visual per-
ception, very similar signatures of dynamical sys-
tems were found in ambiguous stimuli (Haken
1996; Leopold and Logothetis 1999). This
research on perceptual organization may be
viewed as a continuation of the tradition of Gestalt
psychology (Köhler 1920; Tschacher 1997). For
example, apparent motion (i.e., perception of
motion in the absence of real motion of the stim-
uli) can be induced by presenting stimuli, e.g.,
black disks, alternately at different positions of
the visual field. Certain spatial configurations of
the disks induce perception of qualitatively

different kinds of apparent motion, although iden-
tical stimuli are presented. Hence, this and related
paradigms create cognitive multistability. Again,
the signatures of self-organizing dynamical sys-
tems can be found in the phase transitions between
the different apparent motion perceptions.

The dynamical hypothesis in cognitive science
(van Gelder 1998; Tschacher and Dauwalder
2003) therefore proposes that cognitive agents
may be modeled as dynamical systems (instead
of, as physical symbol systems, Newell 1980).
A common denominator in these dynamical
approaches is to start from elementary
perception-action cycles, an idea that was intro-
duced by the concept of embodied cognition
(Varela et al. 1991). Clark (1997) elaborated
three bridging assumptions by which the numer-
ous empirical findings can be integrated in the
theory of dynamical systems. First, the assump-
tion of continuity refers to cognition as continuous
with its developmental foundations (Thelen and
Smith 1994). Second, “off-line” reasoning and
thinking is viewed as continuous with on-line
motor control strategies. Therefore, abstract cog-
nition may be decoupled from the actual environ-
ment but may still be working on the same
dynamical principles; thinking is accordingly
understood as “enacted” by emulated sensorimo-
tor loops of perception-action cycles. Third, due
to the dynamical hypothesis, pattern is provided
not by programs but is “soft-assembled” by a
continuing process of self-organization. This lat-
ter assumption was initially formulated in the
interdisciplinary framework of theories of com-
plex systems (especially Haken’s synergetics:
Haken 1977; and the theory of dissipative sys-
tems: Nicolis and Prigogine 1977). The self-
organization approach was successively intro-
duced to cognitive science (Haken and Stadler
1990; Kelso 1995). Historically, Gestalt psychol-
ogy has developed a theoretical framework of
cognition and action that was very much akin to
the current dynamical systems approach
(especially Köhler 1920 and Lewin 1936).

Cognitive science, especially its computational
mainstream after behaviorist psychology had
turned cognitive in the 1960s, has had a tendency
to start with “higher” cognitive functions such as
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goals, beliefs, and, in the context of goal-directed
behavior, plans. The dynamical approach has
avoided the problem of symbol grounding
(Harnad 1990) that arises in a computational
framework, and has therefore proceeded in a
bottom-up fashion instead. Higher cognition is
assumed to emerge from a basis of elementary
sensorimotor loops. Rather than focusing on sym-
bol grounding, the dynamical view addresses
symbol emergence that occurs depending on con-
trol parameters. These control parameters com-
prise the ecological embedding of cognition, i.e.,
the context and environment of the cognitive
agent. Therefore, the dynamical approach views
cognition predominantly with reference to its
embedding, and in this perspective, cognition is
seen as embodied (Tschacher and Bergomi 2011),
extended (Clark and Chalmers 1998), and situated
(Greeno and Moore 1993).

Intentionality and Representation

The dynamical view in cognitive science thus
naturally leads to the concepts of embodied,
extended, and situated cognition. Consequently,
intentionality of mental acts can be discussed
anew under these premises. Rather than
searching, in a top-down fashion, for a fundament
of experienced intentionality of the mind, the
dynamical systems heuristic can be formulated
differently: If the mind is conceptualized as aris-
ing from self-organization processes, is there a
way by which emergent mental acts can be con-
ceptualized as being about something?

Intentionality was introduced as a characteriz-
ing property of mental acts by Franz von
Brentano, a philosopher and early psychologist.
In the late nineteenth century, Brentano was pro-
fessor at the University of Vienna, where Edmund
Husserl, Sigmund Freud, Carl Stumpf, and other
later protagonists of philosophy and psychology
counted among his students. According to
Brentano (1874), mental phenomena are always
directed towards an object (the intentional object).
In other words, mental states contain within them-
selves something else (“intentionale Inexistenz,”
i.e., intentional existence within). No physical

phenomenon has such intentional content, there-
fore according to Brentano intentionality consti-
tutes the distinctive feature of the mind. Many
concepts of contemporary cognitive psychology
are in this sense intentional. The basic concepts
goal, wish, plan, and intention of volitional psy-
chology (Gollwitzer and Bargh 1996; Kuhl and
Beckmann 1994) obviously have intentional con-
tent. The same applies to achievement, valence,
and need within motivation psychology
(McClelland et al. 1953). Affects and emotions
are also commonly about something and are thus
intrinsically intentional concepts.

It should be noted, however, that intentional-
ity may not provide a sufficient and necessary
condition for a state or process to be mental. Not
all mental states are intentional; some emotional
states (e.g., moods such as a pervasive feeling of
melancholy or of serenity) do not necessarily
possess intentional content because they are not
about something; yet they are undoubtedly expe-
rienced mental states. Furthermore, intentional-
ity is likely not the only property that
distinguishes mental from physical systems.
Many current philosophers of mind suggest that
in addition to intentional content, the phenome-
nal content of mental states must be considered
(Nagel 2012). This immediately leads to the topic
of consciousness, which however cannot be
addressed here.

A concept closely related to intentionality is
representation. Representation plays a central role
in cognitive psychology (as schema: Neisser
1976), in the philosophy of mind (as language of
thought: Fodor 1975) and in artificial intelligence
(as physical symbol system: Newell 1980). In all
of these fields, representation of knowledge is a
foundational concept, yet at the same time consti-
tutes a core problem. If a cognitive agent is to have
representational knowledge of its environment,
the obvious idea is that there must be some kind
of mental map or mental model of the environ-
ment “inside” the agent. On the basis of informa-
tion thus represented, the agent would then
perform cognitive actions such as memory func-
tions, manipulations for problem solving, and the
like. One may note the close analogy of represen-
tation with Brentano’s intentional object.
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The naive, folk-psychological intuition of an
inner map or depiction of the environment, on
which cognitive functions can then be performed,
is however unsatisfactory (Bickhard and Terveen
1995; Clancey 1993). The map concept per se is
not explanatory. The reason for this is simply put:
if the problem of some information-processing
agent is to make sense of its physical environ-
ment, the solution to this problem will not be
alleviated at all by representation alone; the
agent’s task of making sense of the represented
environment is just as demanding. The theory of
direct perception (Gibson 1979) has therefore pro-
posed that information pick-up must occur right at
the moment of perception, without any represen-
tational interlude. For analog reasons, the “store-
house metaphor” of memory has been rejected by
researchers of cognitive science (Glenberg 1997).
Memory is likely not a passive store out of which
represented items, some hypothetical memory
engrams, can be retrieved at a later time, but a
more active, constructive process (neural reuse:
Anderson 2014). Psychological eyewitness
research (e.g., the “false memory syndrome”:
Loftus 2003) has emphasized how modifiable
and adaptive the represented contents of memory
actually are. Representation-as-mapping has
therefore been criticized as merely providing a
pseudo solution to a deeper problem, which is
likely the very conceptualization of intentionality.

Synergetics

We have proposed that cognitive phenomena have
attributes of dynamical systems and that higher
functions and more complicated mental processes
are constructed bottom-up from simpler compo-
nents by a process of self-organization. Both
dynamical systems theory and self-organization
theory are structural sciences that have been elab-
orated for interdisciplinary applications in diverse
fields of science. It is the goal of our line of
argument to show that intentionality can be con-
ceptualized using a structural framework. The
final step prior to our formulation of intentionality
in terms of structural science is to introduce self-
organization theory.

Here we will rely largely on the interdisciplin-
ary modeling approach of synergetics. Syner-
getics deals with complex systems, i.e., systems
composed of multiple components (Haken 1977,
1996, 2000). By way of their interactions, these
components can produce new qualitative features
on macroscopic scales. Synergetics focuses on the
emergence of these new qualities and proposes
that general principles govern the behavior of
complex systems whenever such qualitative
changes occur. This has been shown for a large
class of systems – they are accessible to unifying
mathematical and conceptual approaches, which
characterizes a structural science approach.
A paradigmatic physical system is the Bénard
system (e.g., Bianciardi and Ulgiati 1998),
which is comprised of a layer of fluid heated
with temperature T2 from below. The temperature
at the upper surface of the fluid is T1. Beyond a
critical value of DT = T2 – T1 extended coordi-
nated motion of the components of the fluid sys-
tem emerge. Compared to the erratic Brownian
motion of the single components, these patterns
are an example of the emergence of the new
qualities.

Synergetics puts the focus on context – the
behavior of complex systems is strongly deter-
mined by their environmental context. Context
may be given by constant material constraints
(e.g., the shape of solid walls that confine fluid
systems such as the Bénard system) and by further
environmental conditions that energize the sys-
tems (e.g., the heat source that drives the Bénard
system). In the mathematical approach, these lat-
ter driving forces are expressed by control param-
eters. In many cases, control parameters take the
form of externally applied gradients, which are
imposed upon the system from outside, such as
the difference in temperature DT of the Bénard
system. The general strategy in synergetics sets
out from a state of a system that is already known
under a certain control parameter value. When the
control parameter is changed, this system can
become unstable and show a tendency to modify
its state to develop a new type of behavior. The
system in question is described by the states of its
individual components, by means of a state vector
q. The individual components in the Bénard
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system, for example, are the motions of single
fluid molecules; components may also be, with
respect to applications in psychology, the attri-
butes of members within a social group, or the
activity of neurons in the brain (Atmanspacher
and beim Graben 2007).

Synergetics shows that the behavior of the
system close to instability points is described
and determined by few quantities, namely the
order parameters. In the case of a single order
parameter n of a complex system, a typical equa-
tion reads

dn=dt ¼ cn (1)

where c is the “effective” control parameter.
For c > 0, n increases exponentially,
c < 0, n decreases exponentially,
c = 0, n remains constant.
As was mentioned, c denotes the control

parameter, a relevant parameter imposed on the
system from outside, i.e., from the environment of
the system. The generally few order parameters
enslave, i.e. entrain, the behavior of the many
individual components. This implies an enormous
information compression, because the description
of the order parameters alone, rather than that of
each component, suffices. In the case of the
Bénard system, description of the coordinated
motion yields a much more parsimonious descrip-
tion of system behavior than the description of all
molecular movements in the Brownian motion
state of the fluid. This information compression
is the hallmark of self-organization.

While they are being determined by the order
parameters, it is the individual components that
react on the order parameters and, by so doing,
even generate the latter. The relationship between
order parameters and components is, therefore,
founded on circular causality, which can explain
the generally avalanche-like onset of, and transi-
tion between, macroscopic states. In other words,
synergetic theory favors neither top-down nor
bottom-up modeling but claims that both pro-
cesses are entangled. Order parameters, after
they have been generated in this fashion, quite
often exhibit very simple behavior, for instance,
asymptotic stability.

Obviously, the system depicted in Fig. 1 is an
open system. Self-organizing systems are invari-
ably open systems in that they depend on control
parameters. In terms of thermodynamics, they are
nonequilibrium systems.

Let us however first focus on closed systems,
in other words, systems in thermal equilibrium.
Classical thermodynamics deals with closed sys-
tems throughout. The probability of all configura-
tions of components within the (closed) system
can be estimated. When dealing with a complex
system consisting of a multitude of components,
many possible realizations of the state vector
q exist, namely the number of all combinations
W of the states of components. Only a small frac-
tion of these realizations will manifest as regular,
well-organized patterns. The vast majority of real-
izations, however, will represent a state of mix-
ture. Should ordered patterns exist as an initial
condition, it is far more probable that the tempo-
rally consecutive system states will be character-
ized by less order, owing to the statistical fact that
the majority of possible consecutive states will be
states with less order rather than states with the
same, or even a higher degree, of order. Within a
thermodynamics context, this touches on the con-
cept of entropy S (disorder) in accordance with
Boltzmann’s statistical approach, in which S is
directly related to the number of combinations
W. The second law of thermodynamics states
that any real closed system can only proceed in
the direction of increasing entropy, thus following

Intentionality: Steps Towards Naturalization on the
Basis of Complex Dynamical Systems, Fig. 1 Sch-
ematic illustration of circular causality as viewed by
synergetics
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a maximum entropy principle. Hence, the sponta-
neous generation of order is highly improbable as
indeed a spontaneous generation of disorder is to
be expected. In other words, the emergence of
pattern from a state of mixture requires explana-
tion; the explanation is that the phenomenon of
self-organization is driven by an external source,
so that the premises of closed systems do not
apply. Since the concept of entropy is defined
only for equilibrium or close-to-equilibrium sys-
tems, one may base the discussion of self-
organizing systems on the concept of information
(Haken 2000; Tschacher and Haken 2007).

Some authors have applied the laws of thermo-
dynamics in order to allow the study of self-
organizing systems. The “restated second law” of
thermodynamics (Schneider and Kay 1994;
Schneider and Sagan 2005) addresses non-
equilibrium systems, i.e., systems that are forced
away from equilibrium by the application of gra-
dients. The degree to which a system is moved
away from equilibrium is measured by the gradi-
ents imposed on the system. As soon as such
gradients dwell in the system’s environment, the
system will, as a consequence of the restated sec-
ond law, “(...) utilize all avenues available to coun-
ter the applied gradients. As the applied gradients
increase, so does the system’s ability to oppose
further movement from equilibrium” (Schneider
and Kay 1994). Schneider and Kay’s restatement
of the second law avoids some of the problems of
defining entropy and entropy production by focus-
ing on the destruction of gradients instead.

It should be kept in mind that this “destruction
of gradients” is only virtual (in analogy to the
principle of virtual work in mechanics), because
in open systems gradients are generally
maintained by the environment. If, however, the
self-organizing system and its finite environment
act as a closed system, the gradient reduction
becomes real. In other words, the effective control
parameter c depends on the order parameter n,

c ¼ c0 � an (2)

where c0 is the control parameter prescribed from
the outside and a a constant. The effective control
parameter (2) obeys the differential equation

dc=dn ¼ �dV=dc (3)

where

V ¼ ac (4)

is a potential and thus the right-hand side of Eq. 3
a gradient.

Discussing the time-evolution of n and
c according to Eqs. 1 and 2, we assume that,
initially, n = n(0) is close to zero and c � c0 > 0.

Thus, according to Eq. 1, n increases expo-
nentially. As a consequence, according to Eq. 2,
c decreases, and the exponential increase of
n slows down. This process goes on until c = 0
and n reaches a time-independent, i.e. steady,
state. In practice, the transition to the new state
is completed while the gradient has been
reduced. In the Bénard example, the coordinated
motion patterns have consumed the applied tem-
perature difference and have reduced DT to
0. Then the motion patterns subside and steady
state remains. This relationship between emer-
gent pattern and control parameter is thus in
line with the notion of gradient destruction. The
reduction of c by n establishes a second kind of
circular causality, which is schematically illus-
trated in Fig. 2.

Intentionality: Steps Towards Naturalization on the
Basis of Complex Dynamical Systems,
Fig. 2 Schematic illustration of the relationship between
control parameter and order parameter (“second circular
causality”)
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Discussion: A Structural Science Concept
of Intentionality

The steps above have put us in a position where a
novel conceptualization of intentionality comes
within reach. We propose that this can be achieved
on the basis of the properties of self-organizing
complex systems (Tschacher and Haken 2007;
Haken and Tschacher 2010). In this section, we
will therefore discuss to what extent the features
of intentionality (listed in section “Definition of
the Subject”) can be approximated by such
systems – the structural science of synergetics is
used for the conceptualization of intentionality.

Aboutness
Intentionality implies that a system state is about
something else, namely the intentional object. In
terms of cognitive psychology, this process is
called representation, by which a “cognitive
map” of the object is generated, particularly dur-
ing perceptual or memory processes.

For being capable of intentionality and repre-
sentation, a minimum requirement is that the
intentional system must be an open system.
Many open systems can provide representations
in the sense of mappings of environmental
impacts. The silver particles of a light-sensitive
surface of a photographic film can “represent” the
objects in front of the lens, however in a trivial,
weak sense. As has been shown in the previous
section, a self-organizing system can likewise
“represent” and thus generate the feature of
being about something. In the latter system, the
order parameter is a component in the loop labeled
“second circular causality” (Fig. 2). Within this
loop the complex system “represents” an external
object by the generation of an order parameter.
The intentional object in this case is the external
control parameter c. The environmental context
described by control parameters is what self-
organized patterns are about.

The mechanisms of representation are clearly
divergent in these two systems, as is the nature of
the intentional objects. In the photographic sys-
tem, the mapping of the environmental objects
onto the representing system is unidirectional,
whereas in the self-organizing system there is

continuous interaction between environmental
objects and system. This circularity is illustrated
in Fig. 2 and provides an important and desirable
aspect of the kind of aboutness realized by self-
organizing systems – circularity guarantees that
an intentional system is capable of exerting a
retrograde effect back on what has been
represented. This effect is generally a reduction
of the gradient that was quantified by the control
parameter.

Functionality
Intentionality must be functional in order to make
representation explanatory, i.e., make representa-
tion more than just a mapping of environmental
states onto the system’s state. The functionality of
open systems has previously been approached
from the angle of thermodynamics. Schneider
and Sagan (2005) pointed out that self-organizing
systems maintain and increase their levels of orga-
nization by dissipating nonequilibrium gradients.
If the gradient is to be kept constant, the demand
on free energy (so-called exergy) that must be
provided by an external source increases as the
system becomes more organized. Alternatively,
the efficiency of the system can be defined as the
ratio of the change of work and the change of the
gradient driving the system. This can be shown by
findings in simple physical systems that generate
patterns; e.g., mentioned Bénard cells reduce the
temperature gradient more efficiently as soon as
they have generated ordered convection struc-
tures. Efficiency has thus increased in the self-
organized convection regime in comparison to
the linear conduction regime of the fluid. Analo-
gous relationships are found in further self-
organizing systems such as the laser when output
power is plotted against input power (Haken
1977). In other words, pattern formation in these
open systems is in the service of gradient reduc-
tion. The association of pattern formation with
gradient reduction makes pattern formation
“functional.”

In situations of multistability, several patterns
are possible, so that each of these can be func-
tional in reducing the gradients imposed on the
system. These alternative patterns can be associ-
ated with different efficiencies. It is theoretically
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suggestive that the two circular loops pointed out
in Figs. 1, and 2 interact and thereby create a
Darwinistic scenario in which a competition
between microscopic modes q arises; the environ-
mental forces c exert a selective impact on this
competition of modes. From a mathematical
modeling point of view, it is not however clear
whether the optimal pattern is necessarily
selected, nor under which circumstances the opti-
mal pattern will be chosen. In some systems, such
as quadruped movement coordination, it was
empirically found that the specific pattern provid-
ing the most efficient behavior (measured by the
metabolic cost of transport of the animal) will be
realized by the system (Hoyt and Taylor 1981).
The generalizability of such findings of optimality
is not yet established.

Mental-Likeness
In this discussion, we have so far found that the
aboutness of intentionality and representation can
be modeled by open systems. A subclass of open
systems additionally provides functional
representations – especially self-organizing non-
equilibrium systems appear to show both the fea-
tures of aboutness and of functionality.

It is obviously useful to reserve the predicate
“intentional” for mental systems alone. Thus,
even though some physical self-organizing sys-
tems may show circular causality loops and thus
stand the tests of aboutness and functionality, we
would still not categorize systems such as lasers,
Bénard cells as mental. We may say that such self-
organizing physical systems behave “as if they
were intentional,” i.e., they are proto-intentional
systems. Let us finally investigate under which
conditions self-organizing nonequilibrium sys-
tems may also show mental features and, with
this, we address the possible naturalization of
intentionality. This final step is basically a discus-
sion of the validity of the statement that physical
self-organizing systems can show intentionality.

• Complexity reduction is a core hallmark of
mental processes. The ability of a system to
simplify, group, and coordinate environmental
information is a necessary premise for any
system to be mental. This property of

information compression is addressed in the
circular causality concept of synergetics illus-
trated in Fig. 1. With respect to complexity
reduction, physical self-organizing systems
are mental-like.

• Stability together with related signatures of
stability (e.g., hysteresis, critical fluctuations)
is a further mental property, which is empiri-
cally well founded especially in the psychol-
ogy of perception. Again, the emergent order
parameters of physical self-organizing systems
generally show this property.

• Autonomy is required of intentional mental
systems, i.e., mental systems must be able to
function in the absence of external agents. This
ability addresses the “homunculus-problem”
that has already been introduced together with
the feature of functionality. We may say that
generally self-organizing systems do not
require external supervision for producing
order parameters (therefore, self-organizing).
This does not rule out that several autonomous
systems may be nested inside one another
(cf. Minsky’s (1985) society of mind, or the
notion of subsumption architecture of Brooks’
(1991) robotic agents). Thus, physical self-
organizing systems are also autonomous.

• Is the nature of the intentional content mental-
like, and which aspect of the environment is
being represented by self-organizing systems?
Order parameters are intentional with respect
to those environmental parameters that drive
the system. In other words, the intentional con-
tent is generally connected to what energizes
the system. This is a satisfactory model in all
those instances where mental intentionality is
of a motivational character, resembling a psy-
chological “drive” (Freud 1923). In the intro-
duction, we named wishes, desires, affects,
intentions, goals, and the like as intentional.
Such intentional states can be directly modeled
by self-organizing systems that act to reduce
the driving parameters (in Freudian terms,
drive reduction). The self-organization model,
however, is less applicable whenever inten-
tionality is of a language-like, propositional
type (Fodor 1975). It would be not straightfor-
ward to model, for instance, the intentionality
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inherent in the belief that “there is a unicorn
grazing in the garden,” using simple physical
self-organizing systems. Therefore, the discus-
sion of mental-likeness of self-organizing sys-
tems remains restricted to nonlinguistic
intentionality.

• The only mental systems known to date,
despite the efforts of several decades of artifi-
cial intelligence research, are linked with neu-
ronal networks hosted by biological
organisms. Therefore, can the argumentation
above be applied to brain dynamics and to
pattern formation in neural networks? One
may then associate the gradient of cwith inten-
tionality in a neurocognitive sense. Haken
(2002) has discussed synchronization, i.e.,
self-organization, of neural nets using various
mathematical frameworks. Friston (2012) has
applied a free-energy principle to brain dynam-
ics. Haken and Tschacher (2010) have specifi-
cally addressed the reduction of the effective
control parameter on the basis of the Wilson-
Cowan equations describing cortical dynamics
(Wilson and Cowan 1972). They suggested
that the general findings on circular causality
in the relationship between order parameter
and control parameter can be readily applied
to neural networks.

• Contrary to von Brentano’s supposition, men-
tal phenomena are intentional as well as
phenomenal-experiential. Conscious mental
states are characterized, from a first-person
perspective, by a specific quality, by “what it
is like” to experience this state (Nagel 1974).
The qualia and “what-it-is-likeness” of phe-
nomenal consciousness is not modeled by our
present conceptualization. This comes as no
surprise, as it relates to the “hard problem”
(Chalmers 1996) of consciousness. Thus a con-
stitutive ingredient of many mental processes,
the phenomenal-experiential qualities, are not
generated by physical self-organizing systems.

In conclusion, we have argued that a formula-
tion of intentionality is feasible on the basis of the
theory of complex dynamical systems.When such
systems are removed from thermodynamical equi-
librium, they acquire the capability of producing

self-organized patterns. Pattern formation conse-
quently puts the systems in a specific relationship
to environmental parameters, the contexts of these
systems. Owing to the accompanying circular
loops, these systems show aboutness, the defining
property of intentionality, as well as functionality,
which is essential for making the aboutness of
intentional states explanatory. We find, however,
that this structural conceptualization of intention-
ality is not entirely mental-like because the phe-
nomenal and experiential aspects of conscious
cognition cannot be addressed by it.

Future Directions

We may conclude that nonexperiential intention-
ality can be conceptualized to a considerable
extent using nonequilibrium complex systems.
The limitations that have turned up during the
above discussion may provide points of departure
for future research.

First, it is as yet unclear whether the resulting
self-organized patterns obey an optimization prin-
ciple. In some empirically described systems
showing multistability, it could be shown that
the more optimal pattern wins the competition
among order parameters, but the generality of
such findings is yet to be corroborated. Corre-
spondingly, Haken and Tschacher (2010) have
discussed “second circular causality” in the case
of only one order parameter. A mathematical
model comprising m > 1 order parameters
would be a desirable next step.

Second, we found that conceptualization, and
even naturalization, of intentional states is achiev-
able when these states comprise motivation,
goals, intentions, or drives; these may be viewed
as basic intentional states related to behavioral
strivings. At the moment, however, the intention-
ality problem appears intractable when intentional
states are of a symbolic and propositional nature.
The difficulties of modeling Fodor’s language of
thought do indeed complicate the modeling of
intentionality beyond its basic form
(cf. Churchland 2002, p. 304). At the present
time, wemay consider nonlinguistic intentionality
as one of two problems of a conceptualization of
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intentionality, which in fact seems accessible. The
more fundamental problem is however the sec-
ond, the intentionality of an experiencing, con-
scious, linguistic agent. Structural
conceptualization from a complex systems point
of view addresses solely the basic aspect of inten-
tionality, yet not the phenomenal nature of inten-
tionality. This limitation points to a failure of the
naturalization of conscious intentionality alto-
gether. In a strict sense, naturalization is the expla-
nation of mental phenomena by physical
phenomena, and we have encountered serious
obstacles of this approach. Eliminative physical-
ism, i.e., the totality of all possible naturalizations,
is likely not a tenable program. As a future direc-
tion, one may have to further develop the struc-
tural science solution and, in philosophical
approaches, contemplate dual-aspect theories
(Atmanspacher 2017).

Third, the topic of intentionality has numerous
implications beyond the philosophy of mind and
theoretical psychology. In psychiatry and psycho-
therapy research, intentionality is a topic of con-
siderable significance because intentional mental
acts and states are often characteristically altered
or disturbed during a mental disorder. Many such
psychopathological conditions are found espe-
cially among the symptoms of schizophrenia,
such as disorders of formal thought as well as of
thought content, disorders of perception, and ego
disorders. The symptoms are heterogeneous and
manifold. A majority of these symptomatic alter-
ations, however, involve changes in the cognitive
coordination of the patients (Tschacher et al.
2017). Recent schizophrenia research has shown
that a considerable portion of variance of psy-
chotic symptoms can be explained by cognitive
coordination measures (e.g., Tschacher et al.
2008). While no generally accepted
encompassing theory of schizophrenia exists, a
theory of intentionality may have the potential to
contribute to progress in psychopathology. It may
help to link the phenomenology and neurobiology
of schizophrenia and other psychiatric disorders
by introducing a dynamical systems perspective.

Fourth, artificial intelligence is a completely
different field but is also confronted with intention-
ality as a core problem. During recent decades, the

computational approach to machine intelligence
has failed to a large extent; especially, no mental-
like intelligence could be generated. Consequently,
the field has turned to the more basic tasks of
designing autonomous agents and robots with rudi-
mentary adaptivity in the real world (Braitenberg
1986; Pfeifer and Bongard 2006). In this frame-
work, intelligence is expected to be closely associ-
ated with embodiment (hence, embodied
intelligence, mind-body coevolution), rather than
with symbol manipulation and the programming of
symbol systems. The latter constituted the classical
approach to artificial intelligence. One of the novel
directions of development is using emergence prin-
ciples for the design of intelligent agents or multi-
agent systems; this is closely related to the
structural view on intentionality proposed here.
The engineering approach of embodied agent
design and the dynamical systems proposal of
intentionality have the potential of subserving
each other in artificial intelligence research.
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Glossary

Self-organization A property of open and com-
plex systems that achieve their order spontane-
ously, that is, by means of “self-organization.”

City A form of settlement that first emerged in
the Near East (the core being Mesopotamia)
some 5,500 years ago. Since its first appear-
ance in Mesopotamia, it has diffused in space
and time. With colonialism, the
Western-European form of city has diffused
to the entire world, suppressing on the way
other forms of cities (e.g., in South America,
East Asia, etc.). In the last few decades, the city
has become the most dominant form of settle-
ment: for the first time in human history, more
than half of world population lives in cities.

Urbanism The term refers to the totality of life in
cities: the interrelations between the social
structure, culture, economy, politics,

architecture, physical morphology,
etc. associated with life in cities. The first
appearance of cities is thus termed the urban
revolution. Most students of urbanism would
agree that twenty-first-century society is under-
going a major urban transformation; some
describe it as a new urban revolution.

Planning Planning is, on the one hand, a basic
cognitive capability of humans while, on the
other, a profession and research domain termed
interchangeably city planning, urban and
regional planning, or environmental planning.
City planners work and act in the context of
planning law and administration, the aim of
which is to regulate and control life in cities.

SIRN (synergetic inter-representation net-
work) An approach to cognitive mapping
and urban dynamics suggesting that cities
emerge, maintain their order, and change
again as a consequence of an ongoing interac-
tion between cognitive maps that are
constructed in the mind/brain of humans as
internal representations and the city as a col-
lective external representation. This ongoing
interaction gives rise to a network; some of
whose elements are in the mind/brain while
others in the world.

Informationdeflation, inflationandadaptation A
view suggesting that Shannon’s notion of infor-
mation is a property of closed systems and that in
complex, self-organizing systems, one has to take
into consideration the role of semantic informa-
tion. Due to semantic information, the process of
self-organization often entails information defla-
tion; in some cases, it entails information inflation.
The suggestion is that information deflation and
inflation are two facets of the process of informa-
tion adaptation.

Definition of the Subject

Self-organization is a central property of open and
complex systems. While the concept had already
appeared in the 1940s, its modern use was
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pioneered in the 1960s by people such as Haken
(1983, 1987) with his theory of synergetics,
Prigogine with his notion of dissipative structures
(Nicolis and Prigogine 1977; Prigogine 1980;
Prigogine and Stengers 1984), and others (see
review in Chap. 3.1 Portugali (2000)). Such sys-
tems are typically in “a far from equilibrium con-
dition” and exhibit phenomena of chaos, fractal
structure, and the like. For a long time, the term
“self-organization” was used also as an umbrella
name for these theories; nowadays, it is common
to refer to these theories as complexity theories.

The notions of self-organization and complex-
ity originated in the sciences, specifically in phys-
ics, as a property of natural systems. However, as
we shall see below, from the start, they were
associated with the city – at the beginning, the
city was used as a metaphor to convey the notion
of “self-organization” (Nicolis and Prigogine
1977), while at a later stage, it was studied as a
genuine self-organization system in its own sake
(Allen 1981).

Most theories and methodologies of complex-
ity developed in the last three decades have been
applied also to the study of cities with the result
that we now have a new domain of research that
has already been termed (Portugali 2011,
Portugali et al. 2012) complexity theories of cities
(CTC). CTC now include a rich body of research
on fractal cities (Batty and Xie 1999), self-orga-
nization and the city (Portugali 2000), cities and
complexity (Batty 2005), cellular automata and
agent base urban simulation models (Benenson
and Torrens 2004), studies on cities from the
perspective of Bak’s self-organized criticality
(Batty and Xie 1999), studies on cities as net-
works (Batty 2005), and much more. This grow-
ing body while enriching our understanding of
cities and providing sophisticated tools to city
planning also exposes problems that will become
the challenges for the next generation of studies
on complexity, self-organization, and the city.

Introduction

The title “Self-Organization and the City” enfolds
two notions – “self-organization” and “city,” a

thesis suggesting that cities are complex self-
organizing systems and an inconsistency, the
view of cities as complex systems that achieve
their order spontaneously contradicts the tradi-
tional view of cities as symbols of organized
order and planning. From the title thus follow
four questions: what is self-organization? What
is a city? In what sense are cities self-organizing
systems? What is the meaning of planning and
design in a self-organizing system? In an Ency-
clopedia of Complexity and System Sciences such
as this, there is no need to introduce the term self-
organization beyond what has been said about it
above; we are thus left with three introductory
tasks, namely, to clarify the notion “city,” elabo-
rate the thesis that cities are self-organizing sys-
tems, and solve the contradiction between self-
organization and planning or design in the realm
of cities.

What Is a City?
There are two ways to answer this question: first,
by looking at explicit attempts to define a city and,
second, by exposing the way the different theories
of cities explicitly describe, or implicitly perceive,
a city.

Explicit Attempts to Define a City
The history of the many attempts to define “a city”
is rather confusing: Whenever a definition was
proposed, it was always possible to falsify it
(in Popper’s 1959 sense) by putting forward cities
that do not comply with the definition. The main
reason for the failure to define cities is that the
various attempts to do so were always made with
reference to what in cognitive science (Rosch
1999) is called classical categories, that is, groups
composed of entities sharing some necessary and
sufficient conditions that define them as a cate-
gory and distinguish them from other categories.
Students of urbanism have implicitly treated cities
as classical categories, and yet, cities are not clas-
sical categories – they form a category due to what
Wittgenstein (Wittgenstein 1953) has termed fam-
ily resemblance. As a consequence, attempts to
define them in terms of a classical category ended
up with a failure (Portugali 2000).
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A family resemblance category becomes a cat-
egory not when its elements share some common
denominators, but when they form a network of
partial links and similarities. Further research and
experiments have found that many family resem-
blance categories have a core-periphery structure,
in the sense that some instances of the category are
more prototypical of the category than others and
they thus form its center, while the rest of the
instances form the category’s periphery (Johnson
1987; Lakoff 1987; Rosch 1999).

The city is a good example of a family resem-
blance category with a core-periphery structure.
On the one hand, there are no common elements
between the “first” cities of some 5,500 years ago
and the cities of today except for the name. On the
other hand, the first cities had space-time links and
similarities with subsequent cities, which in turn
had common elements with subsequent cities, and
so on until the global cities of today. The result of
this process is that cities form a huge space-time
family resemblance network extending in time and
space from the ancient cities of some 5,500 years
ago to the cities of today. In this network, one can

identify space-time moments during which certain
cities becamemore characteristic or prototypical of
the category than others. Such cities have tempo-
rarily captured the center of the category city,
pushing to the periphery the rest of the instances,
only to be replaced in subsequent space-time
moments by other prototypical cities, other centers,
and other peripheries. How does this huge network
evolve in time and space? The answer is: “by
means of self-organization” (Portugali 2000).

Images of Cities
This section discusses images of cities that are
implicit or explicit in several of the urban theories.
Only theories that facilitate subsequent discussion
will be discussed.

The Economic City The city is portrayed as a
center-periphery structure with several rings that
come into being by an economic competition
between land uses that differ in their spatial
demand function (Fig. 1). The land uses with the
highest and steepest spatial demand curves or rent
bid curves (Alonso 1965; Isard 1956) capture the

Agriculture

Industrial

Residential

Business

Industrial

Non-Urban
Area

Non-Urban
AreaUrban-Area

Residential

CBD

Self-Organization and the City, Fig. 1 Thünen’s type
of land use system as transformed into an urban land use
system by location theory. Businesses are prepared to pay
high rent at the center of the city, but are reluctant to “live”
far from it. Their spatial demand curves (or rbc – rent bid
curves) are thus the highest and steepest. Industrialists, in
this exposition, are exactly the opposite, and residents are

in between: they cannot afford to pay the high prices at the
center, but are prepared to live far from it, and so on. Each
land use thus occupies a ring were it can pay (bid for) the
highest rent. Note that the principle of marginal utility
which is implicit in Thünen’s landscape here appears
explicitly as the central economic principle
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central ring – the most accessible area of the
city – thus forming the central business district
(CBD); the rest of the land uses occupy the
peripheral rings. The origin of this city image is
von Thünen’s (von Thünen 1826) isolated state
(Fig. 2): Originally formulated as a theory of
agricultural land uses, it became the founding
theory of all location theories including urban
land use theories.

The City as a Central Place The city is per-
ceived as a central place that mediates between
the city’s complementary region and other cities
that form a hierarchical network of central places
(Fig. 3). The origin of this view is Christaller’s
(Christaller 1933) central place theory that per-
ceived the city as a central place for tertiary activ-
ities (a market place, transportation node, and
administrative center). Lösch’s (Lösch 1954) cen-
tral place theory was more ambitious and compli-
cated and portrayed the city as a central place for
all production, consumption, transportation, and
political activities (Fig. 4).

The City as a Node in a System of Cities The
city here “looses” its autonomy in the sense that
it is perceived as a node in a system of cities – no
attention is paid to the city’s role or function; the
focus of interest is on the system as a whole.
This view is due to Auerbach (Auerbach 1913)
who already at the turn of the twentieth century
showed that the rank-size distribution of cities
obeys the power law. In a famous work from
1949, Zipf showed that this rank-size distribu-
tion typifies not only cities (Fig. 5) but a whole
range of phenomena (Zipf 1949). Zipf’s work
provided a source of inspiration to a long list of
subsequent studies on systems of cities (Pumain
2005).

The Ecological City As in the economic city,
here too, the city is portrayed as a center-periphery
ring structure. However, here, the city’s structure
emerges out of a competition between cultural and
socioeconomic groups in a way similar to the
competition between species in natural ecology.
The various studies in this domain are termed
urban ecology; their source of inspiration is the

40
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Self-Organization and the City, Fig. 2 The diagrams
of Thünen’s isolated state: left, upper part of the diagram
“This shows the Isolated State in the shape it must take
from the assumptions made in Section One. . ..” Left, lower
part “Here we see the Isolated State crossed by a navigable
river. Here the ring of crop alternation become very much

larger, stretching along the river . . . The effect of
constructing a highway is similar, . . .” (Par. 385). Right
“The diagram illustrates the effect of the Town grain price
on the extension of the cultivated plain” (Par. 386) (Source:
von Thünen 1826)
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Self-Organization and the City, Fig. 3 Christaller’s sys-
tems of central places according to the three locational prin-
ciples. (a) The marketing regions in a system of central
places. (b) A system of central places developed according

to the traffic principle. (c) A system of central places devel-
oped according to the separation principle (Source: Figs. 2,
4, 6 in (Christaller 1933))
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Chicago school of social ecology. Several urban
landscapes were suggested; the most dominant
one is Burgess’ (1925, 1926, 1927) ring structure
(Fig. 6).

The City as a Representation of Society The
city is here perceived as a spatial representation
of society as a whole. This image of the city
emerged in the early 1970s as a consequence of

Self-Organization and the City, Fig. 4 (a) The deriva-
tion of Lösch’s system of central places. Top the derivation
of a spatial demand conewith its market area (right) out of
an “ordinary” demand curve (left). Bottom development of
market areas from the large circle to the final small hexa-
gon (Source: Figs. 20–23 in Lösch 1954). (b) Lösch’s

derived system of central places with their market areas,
divided into “city-poor,” “city-rich” sectors (Source:
Fig. 28 in Lösch 1954). (c) A Lösch system of central
places modified by Isard (1956) so as to be consistent
with the resulting population distribution
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a paradigm shift the study of cities
underwent – from liberal social and economic
theories to more radical ones with Marxism
being the most dominant view. Two Marxist
interpretations of the city can give the flavor of
this approach. The first is Castells’ (1977) view
according to which the city is a spatial represen-
tation of the structure of society as perceived by
structuralist-Marxist theory (Fig. 7). The second
is Harvey’s view according to which the city’s
landscape emerges, as a logical consequence,
out of internal contradictions inherent in the
capitalist mode of production that, according to
this view, dominates world society of the

twentieth and twenty-first centuries, namely,
between forces of spatial agglomeration and
processes of spatial dispersion. As illustrated
in Fig. 8, this tension can be resolved only by
the urbanization of capital (Gregory 1994; Har-
vey 1985).

The City as a Sociocultural Force The city is
here perceived as a force that is shaping the life of
the people living in it. In urban societies, it implies
that the city is in fact shaping society. This view is
due to the study of Wirth’s (1938) Urbanism as a
Way of Life and also of Park’s study The City
(1925). In 1970 Lefebvre has published a

Jordan USA

16

15

14

13

12

11

10
0 1 2 3 4 5 6

13

14 Y= –1.1X + 13.4

R2=0.97

Y= 0.74X + 15.6

R2=0.99

Y= 0.82X + 15.0

R2=0.99

Y= 0.94X + 15.3

R2=0.99

12

11

10

15 16

15

14

13

12

11

10
0 1 2 3 54

14

12

13

11

10
0 1 2 3 4 5 6

9
–0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Ln Rank

Ln Rank Ln Rank

Ln
 A

re
a

Ln
 A

re
a

Ln
 A

re
a

Ln Rank

Indonesia Iran
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monograph La Révolution Urbaine suggesting
from a Marxist point of view that society is
reaching a stage of being completely urban so
that urbanism is replacing industrialism as the
major force of society (Lefebvre 1970).

The Postmodern City The city of the twenty-first
century is described as the postmodern city
(Portugali 2000): untamed, shrew, capricious, and
ever-changing; actually it is not a city but a text
written by millions of unknown writers, unaware
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Self-Organization and
the City, Fig. 6 (a)
Burgess concentric zone
model. (1) Central business
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(4) residential zone, and
(5) commuters’ zone. (b)
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that they are writers, read by millions of readers,
each reading his or her own personal and subjective
story in this ever-changing chaotic text, thus chang-
ing and recreating and further complicating
it. Today’s urbanism is a big “theater” at the center
of whose stage we see a kaleidoscope of shapes,
forms, high-tech science-fiction structures, cultures
and subcultures, Italians, Chinese, Japanese, Jews,
Indians, Gays, Lesbians. Yapese; nothing is stable;
nothing is true nor matters for more than a second,
not the Marxist urban categories, nor any other

grand theory or truth; all must go, must move, and
clear the way to the new next whatever it is.

The Self-Organizing City Strangely enough, an
image of the city similar to the postmodern one is
emerging out of complexity studies of cities. This
is a seemingly similarity; however, a closer look
reveals, first, that theories of complexity made a
direct and explicit link to the views of cities as
central places, to the studies on systems of cities,
and to the ecological views on the city. Second is
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Self-Organization and the City, Fig. 7 The Marxist city as a spatial representation of social structure (Castells 1977)
(Source: Gregory 1994)
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that the notion of self-organizing city has several
important resemblances with modern social
theory-oriented urban studies that perceive the
city as the representation of society.

In What Sense Are Cities Self-Organized
Systems?
Self-organization is a property of systems that are
open and complex. No one plans such systems, no
one fully controls them and yet they have order,
rules, and organization, and all these emerge sponta-
neously by means of self-organization. A nice exam-
ple of self-organization is provided by human
languages (Chinese, Hebrew, English, etc.). Each
such language is an open system; each is a complex
system; each is a system that emerged out of syner-
getic interaction between a huge number of people
(the “parts” of such systems); no one has ever fully
controlled languages; no one has fully planned a
language; and yet each of the human languages has
order, rules, and organization, and all these emerged
spontaneously by means of self-organization.

Similarly to human languages, each city is an
artifact; each is an open system; each is a complex
system; each city is a system that emerged out of
interaction between a huge number of people; no
one fully controls it; and yet it has order, rules,
organization, and all these spontaneously by means
of self-organization.

But cities are not languages. For one thing, their
products are stand-alone objects such as buildings,
roads, bridges, etc. that exist and survive

independently of their producers. The products of
languages are humans’ voices and gestures that have
no existence independent of their producers. Cities,
in this respect, are akin to writing and texts – the
external, stand-alone, representations of languages.
The appearance of cities, some 5,500 years ago, hand
in hand with writing, is, to my mind, not accidental.

A second difference concerns planning and
design: There are no language planners, and the
attempt to “plan” the international language of Espe-
ranto ended in failure. But there are many city plan-
ners and designers –much more than appreciated in
conventional planning theory. This is so because as
recently suggested (Portugali 2011), planning is a
basic cognitive capability of humans with the impli-
cation that each agent operating in the city (person,
family, company) is a planner on a certain scale. In
certain cases, because of the nonlinearities that typify
the complexity of cities, the planned or designed
action of a single individual might influence the
city more than that of the official planners and their
plans. Urban dynamics can thus be seen as an ongo-
ing interaction between planners and their plans
when none of them can fully determine the final
form and structure of the city. They are all partici-
pants in a big city planning game (see Part III in
Portugali 2000, 2011).

The Inconsistency Between Self-Organization
and Planning
All theories of cities were associated with city
planning. The basic idea is that the city is an
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(Harvey 1985) (Source:
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artifact and as such a product of humans’ inten-
tions and needs. Planning is needed in order to
implement human needs and intentions in a ratio-
nal way. The notion of complexity suggests that
the city is a product of spontaneous self-
organization; if this is so, who needs city plan-
ning? The answer to this inconsistency has
already been given above: the plans produced by
city planners, like those produced by “ordinary”
urban agents, are participants in a big city
planning game.

Complexity Theories of Cities: An
Overview

The discussion in this section proceeds under the
titles of eight “cities” that are related to general
theories or specific methodologies. It starts with
“dissipative cities” to indicate that Prigogine’s
was the first complexity theory applied to the
study of cities.

Dissipative Cities
In their introduction to Self-Organization in Non-
equilibrium Systems, Nicolis and Prigogine
(1977) use the example of a city as a metaphor
to convey to their fellow physicists what they
mean by “self-organization.”

“An appropriate illustration would be a town that
can only survive as long as it is a center for inflow of
food, fuel . . . and sends out products and wastes.”

Peter Allen (1981) – Prigogine’s
student – showed that towns and cities are not just
metaphors, but genuine self-organizing systems. He
did so by reformulating central place theory (above
section “Images of Cities”) in terms of Prigogine’s
theory (Note the resemblance between the hexago-
nal landscapes of central place theory and the hex-
agonal Bénard cells – one of the canonical
experiments of the paradigm of self-organization).

Allen and co-workers’ have developed a
sequence of several models which elaborated their
theoretical treatment of hierarchical landscapes of
central places, first, with respect to systems of cities
in a given region and later at the intra-urban scale in
connection with a single city. At a later stage, they
have also applied their models to real case studies of

Brussels and the Belgian provinces (Sanglier and
Allen 1989), see also (Prigogine 1980).

A typical model of Allan’s starts with an infra-
structure of localities in a region, each with its
residents and jobs. The actors are individuals
who migrate in order to get employment and
employers who offer or take away jobs depending
on the market’s situation. The migration/interac-
tion between localities and the introduction and
extraction of economic activities (i.e., employ-
ment opportunities) create for each locality a
kind of local “carrying capacity” and for the sys-
tem as a whole nonlinearities and feedback loops
which link population growth and manufacturing
activities. An example for a simulated scenario
produced by the model is Fig. 9. It starts
(Fig. 9a) with a hypothetical region characterized
by a rectangular lattice of homogeneous localities.
Then, the mere play of chance factors, such as the
place and time where different enterprises and
migrations start, produces symmetry breakings
which entail an uneven distribution of population,
employment, and so on (Fig. 9b–d). The result is
an evolutionary process by which new urban cen-
ters emerge, grow, and form the whole of the
regional system of central places; as the system
evolves, some old localities grow and others
decline or even disappear, thus constructing the
specific history of this region.

Allen and co-workers’ approach exposes the
similarity and difference between the “old” static
approaches of Christaller and Lösch and the new
treatment by means of self-organization. In both,
economic activities and interactions give rise to
cities as central places. However, while in the old
formulations, the landscape reflects an equilibrium
state which is the optimized sum of the properties
of the various economic forces, the new landscape
reflects a far-from-equilibrium situation in which
the spatial hierarchical order among the central
places is obtained, maintained, and then trans-
formed, by means of interplay between interaction,
fluctuations, and dissipation.

Synergetic Cities
Two main approaches of synergetics have been
applied to the study of cities. The first is the
master-equation approach that is a characteristic
of Weidlich and co-workers studies in sociology,
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economics, and urban dynamics (Weidlich and
Haag 1983; Weidlich 1987, 1994, 1999). For
many years, this was the main synergetic
approach to cities, and most applications thus far
have been within this conceptual frame (Haag
et al. 1992; Pumain et al. 1987; Sanders 1992).
The second, the pattern recognition approach,
typifies the synergetics’ treatment of pattern for-
mation, cognition, pattern recognition, and brain
activities, as developed in the last three decades by
Haken and co-workers (1996). Since the 1990s,
this approach has been applied to the study of
cities as self-organizing systems (Haken and
Portugali 1995; Portugali 2000, 2011).

Slow Cities and Fast Regions
One way to look at Haken’s synergetics and its
slaving principle is in terms of interplay between
slow and fast processes:

If in a system of nonlinear equations of motion for
many variables these variables can be separated into
slow ones and fast ones, a few of the slow variables
. . . are predestined to become “order parameters”
dominating the dynamics of the whole system on
the macro-scale. (Weidlich 1999)

This perspective stands at the basis of
Weidlich’s and co-workers studies on socio-
dynamics and cities (Weidlich and Haag 1983;
Weidlich 1987, 1994, 1999). According to this
perspective, fast and slow processes are easily
identifiable in processes of settlement and
urbanism. The fast ones typify the local micro-
level of building sites, streets, subways, etc.,
whereas the slow processes typify the macro-
level of whole regions which are often described
as systems of cities. The relations between the
slow and the fast processes are described by the
slaving principle: on the one hand, the regional
system

Self-Organization and
the City, Fig. 9 Allen and
Sanglier’s simulated
evolution of a dissipative
system of cities (a) at time
(t), t= 4, (b) at t= 12, (c) at
t = 20, (d) at t = 34
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serves as the environment and the boundary condi-
tion under which each local urban microstructure
evolves. On the other hand, the . . . regional macro-
structure is . . . the global resultant of many local
structures. (Weidlich 1999)

This circular causality between the local and the
global allows one to study global regional systems
by assuming that local processes adapt to the slow
regional ones and to study local urban processes by
treating the regional context as given and of course
to study the complex interplay between the local
and the global. In all three cases, Weidlich has
prescribed a four stages approach: stage 1 concerns
the configuration space of the variables; stage
2 measures the utility of each configuration; stage
3 defines transition rates between configurations
which are in fact utility differences; stage 4 derives
stochastic or quasi-deterministic evolution equa-
tions for the system under consideration. The cen-
tral evolution equation is the master equation
which defines the probability that the configuration
under examination is realized at a certain time.

The above theoretical procedure has been used
to study the role of population pressure in “fast and
slow processes in the evolution of urban and
regional settlement structures.” Figure 10 brings
some results from these studies, in which the city
capacity for building and development is related to
population pressure. Figure 10a shows the evolv-
ing city capacity when the urban plain is uniform
and Fig. 10b, when it is disturbed in one of its sites.

Pattern Formation and Pattern Recognition in
the City
The paradigm of pattern recognition was derived
by an analogy to the material process of pattern
formation (Haken 1991). Haken and Portugali
suggested that the synergetic pattern recognition
paradigm is specifically attractive for the study of
cities (Haken and Portugali 1995). The latter can
be perceived as self-organizing systems which are
both physical and cognitive: individuals’ cognitive
maps determine their location and actions in the
city, and thus the physical structure of the city and
the latter simultaneously affect individuals’ cogni-
tive maps of the city. In their preliminary mathe-
matical model, Haken and Portugali construct the
city as a hilly landscape which is evolving,

changing, and moving as a consequence of the
movement and actions of individuals (persons,
families, households, firms, etc.). The latter give
rise to the order parameters which compete and
enslave the individual parts of the system and thus
determine the structure of the city. The new feature
of this exposition is that the order parameters
enslave and thus determine two patterns
(Fig. 11): one is the material pattern of the city,
and the other is the cognitive pattern of the city – its
cognitive map(s).

Chaotic Cities
Self-organization is often regarded as a theory
about Order Out of Chaos (Prigogine and
Stengers 1984), and yet, with a few exceptions
(Dendrinos and Sonis 1990; Portugali 2000), cha-
otic behavior is rarely studied in cities. Most com-
plexity studies of cities perceive cities as ordered
structures which the theory of complexity
explains just how their order state was created.
According to Batty (see p. 29 in Batty (2005)),
this is “because the required growth rates [for
chaotic behavior to appear in cities] are far too
large.” My view is that this is due, firstly, to the
tendency of most students of complexity to focus
on the short-term dynamics of Western cities from
which perspective cities are indeed structurally
stable. However, when the focus of interest turns
to the long-term rural-urbanmigration process in a
country such as China or to the archeological
record of the rise and fall of urban cultures
(Portugali 2000; Portugali and Alfasi 2008),
chaos suddenly appears. Looking at this longue
durée (Braudel 1993) of cities, their evolution
exhibits a very distinct and routinized path: a
long period of “steady state,” followed by a
short period of strong fluctuations or chaos, from
which the system reemerges to a new level of
steady state and structural stability and so on
(Fig. 12). As can be seen, the urban system
moves from one structurally stable state to
another, via bifurcations, when every evolution-
ary move is a transition from a microscopic cha-
otic state to an ordered, macro, steady state.

Secondly, this is due to the fact that phenom-
ena of chaos and their role in cities during their
short-term structurally stable periods have not as
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Self-Organization and the City, Fig. 10 Building and development under population pressure (Weidlich 1999). (a):
on a uniform urban plain. (b): on an urban plain with disturbances
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yet been fully studied. In a preliminary attempt to
do so, it has been found that often, when the city
as a whole evolves stably, a few local unstable
chaotic areas are found captive within the other-
wise stable city. This phenomenon has been
termed the captivity principle with the sugges-
tion that it might play a supplementary role to
Haken’s slaving principle (see Chap. 5.8 in
Haken and Portugali 2015; Portugali 2000),
namely, that these local islands of instability are
needed in order to maintain the overall global
stability of the city. Figure 15 below provides a
hypothetical example simulated by means of cel-
lular automata.

The play between chaos and order might show
up also in the daily routines of cities. The move-
ment of cars on the roads, or of pedestrians on
pavements, is characterized by shifts between
instable and stable motions and might thus be
candidates for this kind of interpretation.

Fractal Cities
Mandelbrot’s theory of fractals is based on the
notions of self-similarity and the fractal dimen-
sion and on the idea that a rather simple iterative
process might produce highly complex geometri-
cal shapes. Using these principles, several
scholars have demonstrated, first, that the com-
plex geometries of urban form, growth, and evo-
lution, on intra-urban and interurban regional
scales, can be generated by means of a simple
iterative process with a few and simple rules.
Second, that many urban structures are self-
similar and have fractal structure. The most com-
prehensive study in this domain is Batty and
Longley’s (1994) Fractal Cities, to which one
can add studies on urban structure, on the fractal
structure of transportation networks (Benguigui
1995), on the question “when and where is a city
fractal?” (Benguigui et al. 2000) and more (for
updated survey of studies, see Batty (2005)).

Pattern formation:
Material subsystems and actions

Material

CITY: Order Parameters &

Cognitive patterns

Pattern recognition:
Cognitive features and cognitive maps

Cognitive map of the city

Attention Parameters

Patterns Material structure of the city

Self-Organization and
the City, Fig. 11 The city
as self-organizing systems
which is at the same time
both physical and cognitive.
Its emerging order and
attention parameters
enslave the city’s cognitive
and material patterns
(Source: Portugali 2000)
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Figure 13 illustrates the evolving fractal structure
of the Tel Aviv metropolitan area from 1935
onward.

Another important insight implied by fractal
cities studies is that a city, or a system of cities,
in a steady state does not mean equilibrium and
stability, as is the case of Christaller’s and Lösch’s
central place theories, for example, but rather a
rich and complex evolution and change according
to a given ordering principle.

Cellular Automata Cities
The attraction of cellular automata (CA) models to
the study of cities is almost self-evident. Real cities
are built of discrete spatial units such as houses,

lots, city blocks, and the like. CA models are also
built of discrete spatial units – the cells. In real
cities, the properties of local spatial units (e.g., land
value) are determined, to a large extent, in relation
to their immediate neighbors; so are the properties
of the cells in CA models. These resemblances,
together with the mathematical simplicity of CA
models, make them natural tools to simulate urban
processes. In the last few years, CA urban simula-
tion models are among the most popular approach
to simulate the dynamic of cities (Batty 2005;
Benenson and Torrens 2004; Portugali 2000).

One can divide the various models of CA cities
into implicit and explicit self-organized CA cities.
The first group refers to studies, the aim of which
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Self-Organization and the City, Fig. 12 The evolution
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Age period to the Iron Age (Source: Portugali 2006a). Top:
A description in terms of chaos and order. Middle:
A description of the process as a rhythm between

agriculture and urbanism, interrupted by global collapses
of the urban system. Bottom: Calculated population
changes in the Early Bronze and Middle Bronze periods
(Source: Portugali 1994, 2000)
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is to use the simulation capabilities of the CA city
in order to best-fit a certain simulated pattern to an
existing one (Batty 2005). Figure 14 is an exam-
ple. The general motivation here is to explain an
existing or historical pattern, or alternatively to
predict a future one for the purpose of planning.
The fact that the model has properties of self-
organization just adds more realism and sophisti-
cation to the simulation.

The second group concerns explicit self-
organized CA cities. Here the central motivation
is to use the model as means to investigate the self-
organization properties inherent in cities and
urbanism. For example, how micro decisions
and behavior of individuals and firms, taken at
the local scale, are related to the global behavior

and structure of the city. Such models are essen-
tially heuristic, and they regard the simulated CA
city as essentially a learning device (Fig. 15).

Because of their iterative structure, CA models
can be used as convenient tools to generate fractal
structures (Batty 1997, 2005), and the insight they
add to our understanding of cities is similar: an
iterative process guided by a few simple rules can
generate complex structures such as cities (Batty
2005).

AB and FACS Cities
CA is an efficient tool to model the relations
between infrastructure objects of the city.
Unlike infrastructure object, urban agents have
aims and plans, can learn and move in the city,
and see and know beyond their nearest neigh-
bors. Agent base (AB) models that are built to
imitate such cognitive entities were applied to
the city dynamic too. An important source of
inspiration here was Schelling’s model that
demonstrated how local and simple behavior of
urban agents can give rise to complex residential
segregation in cities – even when their tendency
for segregation is minimal (Schelling 1974).

Self-Organization and the City, Fig. 13 The evolving
fractal structure of the Tel Aviv metropolitan area from
1935 onward: the central parts 1 and 2 were fractal during
the entire period, while their fractal dimension increased
with time. The entire metropolitan area became fractal only
after 1985. In 1991 the fractal dimension of the Tel Aviv
metropolitan area was found to be 1.667 with error of 0.037
(Source: Benguigui 1995)

Self-Organization and the City, Fig. 14 Cellular
automata simulation of the Buffalo-Niagara frontier
(Source: Batty 1997)
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Subsequent agent base studies have supported
Schelling’s finding (Batty 2005) and added that
a small minority of agents with a tendency for
segregation is sufficient to turn the whole city
into a segregative structure (Portugali 2000).

Free agents on a cellular space (FACS) models
combine CA and AB models (Portugali 2000,
2011). A typical such model is built as a superposi-
tion of a CA layer simulating the relationship
between the city’s infrastructure objects (buildings,

Self-Organization and the City, Fig. 15 Time evolu-
tion of consecutive stages of stability-instability surface
(SIS) in the development of a city with 33% neutral Greens

when the rest of the Greens and all the Blues are segrega-
tives (Source: Portugali 2000)
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roads, etc.) andAB layer that simulates the activities
of the urban agents (Fig. 16). At each model itera-
tion, new agent(s) come to the city with a certain
intention inmind – say to find a house to live in. The
agent then examines the available empty cells/build-
ings, ranks them according to its set of preferences,
and picks the best one. Once the agent located itself
in a certain cell, the CA dynamics starts: The prop-
erties of each cell are determined by reference to the
properties of its neighbors and if the cell is occupied
by a certain agent, by some mix between the prop-
erties of the agent and its neighbors. Figure 17 pre-
sents typical results.

Sandpile Cities
The sandpile, the canonical example of self-orga-
nized criticality (Bak et al. 1989; Bak and Chen
1991; Batty 2005; Batty and Xie 1999), has two
incongruous features: the system is unstable in
many of its local locations; nevertheless, its
global state is absolutely robust: The local con-
figurations of the sand change all the time
because of the avalanches, while the statistical
properties, such as the size distribution of the
avalanches, remain essentially the same. Simi-
larly to the sandpiles, cities appear volatile and

fast moving at their local scales, while at their
global scale, they appear absolutely robust (Batty
2005; Batty and Xie 1999). For example, the size
distribution of many cities and systems of cities
remains essentially the same under circumstances
such as ongoing population growth (above sec-
tion “Image of Cities”).

Compared to the “grand” synergetic and dissi-
pative cities, the sandpile city is a kind of a
zooming in to the internal dynamics of self-
organized cities in their steady state
periods – when they are controlled by what in
synergetics is called order parameters. Sandpile
cities show how complex and rich is the internal
dynamics of a city in steady state (Fig. 18).

Small World Cities
The notion network is implicit in all theories of
complexity. Recently, Watts and Strogatz
(1998) showed that complex networks have
“small world” characteristics (Milgram 1967),
and Barabasi and Alberst (Barabási and Réka
1999) demonstrated that complex networks are
scale-free, thus following the power law that
according to Barabási (2002) is a mark of self-
organization.
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Self-Organization and the City, Fig. 16 A typical
FACS model is constructed of two layers: a population
layer of human agents describing the migratory and

interaction activities of individuals (right), superimposed
on a CA infrastructure describing the urban landscape (left)
(Source: Portugali 2000)
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The link to cities as complex systems was just
natural: The view of systems of cities as networks
characterized by the power law was indicated

above. Single cities too were described as net-
works. Thus, Alexander’s classic “a city is not a
tree” (Alexander 1965) demonstrated that cities

Self-Organization and the City, Fig. 17 Several snapshots from an evolving FACS city (Source: Portugali 2000)
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Self-Organization and the City, Fig. 18 Self-organized criticality: “Simulation of a hypothetical urban growth pattern
in its critical level” (Source: Batty 2005)
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are typified not by a simple tree network, but by a
complex semi-lattice network (Fig. 19). Alexan-
der’s view was recently reformulated in terms of
the new science of networks (Salingaros 2005,
2006). Another example is Hillier’s space syntax
that analyzes the morphology of urban spaces in
terms of networks (Hillier 1999; Hillier and Han-
son 1984). Space syntax exposes the way society
determines the urban morphology and the way the
latter feeds back and reshapes society. The link
between space syntax and network analysis has
already produced several useful results (Dalton
et al. 2003; Figueiredo and Amorim 2005; Hillier
and Iida 2005; Porta et al. 2005; Ratti 2004).

In the domain of transportation, one can men-
tion studies that characterize roads’ traffic dynam-
ics in terms of scale-free networks (Fig. 20)
(Hu et al. 2006; Jiang 2007); the same was
found for the transit system in Beijing (Wu et al.
2004), for pedestrian movement (Jian 2006), and
for the canal networks of Venice (Blanchard and
Volchenkov 2007). Andersson et al. (2003)
showed that the market dynamics generates land
values that can be represented as a growing scale-
free network. Finally, Batty (2005) has suggested
viewing cities and their dynamics from the com-
bined perspectives of networks, fractals, self-
organized criticality, and AB.

Self-Organization and the City

Self-Organization and the City is an ongoing
project that explores the city as a complex system
from two interrelated perspectives: Haken’s
(1983) synergetic theory of complex systems, in
particular from the perspective of the pattern
recognition paradigm (Haken 1983, 1987,
1993) and IRN – inter-representation nets
(Portugali 1996a). The link between the two is
termed SIRN – synergetic inter-representation
nets. For details and bibliography, see
Portugali (2011).

SIRN: Synergetic Inter-representation
Networks
IRN commences with a distinction between cog-
nitively simple tasks that can be performed by
working memory (e.g., 2 � 3 = 6) and compli-
cated tasks (e.g., 257� 389= 99,973) that are the
result of the “magic number seven” that con-
straints our ability to process information in work-
ing memory (Miller 1956). One way to overcome
this limitation is by means of IRN: We first exter-
nalize the task (write it down on a paper); then we
solve part of it internally (9� 7= 63); externalize
it again and so on in a sequence until the task is
completed.
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Self-Organization and
the City, Fig. 19 A tree
network (right) versus a
semi-lattice network (left)
(Source: Alexander 1965)

378 Self-Organization and the City



Self-Organization and the City, Fig. 20 A small street
network (a) and its connectivity graph (b). Every node in
b is labeled by the corresponding street name, and the size

of nodes shows the degree of connectivity of individual
streets (Source: Jian 2006)
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Complex tasks refer to creative cognitive
tasks, when a person writes, paints, designs,
etc. Such a task often starts with a vague idea
in mind that the person then externalizes by
writing it down, painting it on a canvas,
sketching it on a paper, etc. Here too, the pro-
cess proceeds by interplay between internal and
external representations, but with one important
addition – it involves emerging properties. It is
here were synergetics gets in and the process
becomes SIRN. More specifically, the process
might start with a preliminary internal idea
(or external cue that entails internal idea) that
the person then externalizes and so on. After a
few internal-external iterations, an order param-
eter (in the sense of synergetics) emerges and
enslaves subsequent iterations.

The development of the notion of SIRN was
inspired by Bartlett’s serial reproduction scenarios
in his study Remembering (Bartlett 1932).
A typical such scenario starts when a test person
is shown a text or a figure and is asked to repro-
duce it out of memory (Fig. 21). The result is
offered to a second person that is asked to do the
same and so on. As shown by Bartlett, at the
beginning, the reproductions change from person
to person; however, at certain stage, they stabilize
and become a scheme. Stadler and co-workers
(Stadler and Kruse 1990) demonstrated that the
scenarios proceed as synergetic self-organized
process. The focus of interest in the above studies
was on the way schemata are created. Haken and
Portugali have used the Bartlett scenarios as illus-
tration of the play between internal and external
representations (Haken and Portugali 1996;
Portugali 1996a).

It is important to emphasize, first, that external
representations are media that enable communi-
cation between persons and the emergence of
collective SIRNs – e. g., a brainstorm. Second,
that internal and external representations are
generative – once produced, they generate new
ideas and properties not seen before in previous
representations.

The Basic SIRN Model
Haken and Portugali (1996; Portugali 2011,
Chap. 7) have cast the SIRN process into the

formalism of synergetics. They started with
Haken’s (Haken 1991) “synergetic computer”
(Fig. 22, top), composed as it is of an input layer
with model neurons representing the initially
given input activity, a middle layer representing
the order parameters, and an output layer with
neurons representing the final activity of each
neuron. The first step is to look at this network
from the side, as indicated by the arrow. The result
is shown in Fig. 22, bottom, left. Adding to the
latter external inputs and outputs, we arrive at our
basic SIRNmodel (Fig. 22, bottom, right) that has
two kinds of inputs, internal and external, and two
kinds of outputs, again internal and external. The
middle node symbolizes the order parameters that
emerge out of the interaction between internal and
external representations.

The basic SIRN model can be seen as symbol-
izing a self-organizing active agent that is subject
to two flows of information: internal and external
(Fig. 23). The first is coming from the mind/brain,
in the form of ideas, fantasies, dreams, thoughts,
and the like, while the second from the
“world” – via the senses, the agent’s body,
and/or artifacts. The interaction between these
two flows gives rise to an order parameter that
governs the agent’s action and behavior, as well as
the feedback information flow to the agent’s mind.
“Action or behavior” may refer to a single indi-
vidual executing exploratory behavior,
reproducing texts or drawing, as well as to several
individuals collectively reproducing a large-scale
artifact such as a city. In an analogous fashion, the
“feedback information flow” refers to the forma-
tion of internal representations, such as images or
learned patterns. The order parameters are deter-
mined by a competition in line with the syner-
getics’ pattern recognition paradigm noted above.
Note that all the above steps (and below) can and
have been performed by a computer so that the
approach is entirely operational.

In order to apply the basic SIRN model to
specific case studies, Haken and Portugali
(1996) reformulated it in terms of three prototype
submodels: the intrapersonal, the interpersonal
collective, and the interpersonal with a common
reservoir submodels (Fig. 24). The first refers to
a solitary agent, the second to a sequential
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dynamics of several agents, and whereas the third
to a simultaneous interaction. The third sub-
model is, in fact, a theory of urban
dynamic. The intrapersonal is typical to the way
of an artist, for instance, develops her/his work

(Fig. 25), whereas the interpersonal to the Bart-
lett scenario that provided a source of inspiration
to IRN (above, Fig. 21).

In the first two submodels, the process depends
fully on the biological memories of individuals. In

Self-Organization and
the City, Fig. 21 A
Bartlett’s scenario of serial
reproduction: an Egyptian
“Mulak” (owl) transformed
into a cat (see pp. 180–181
of Bartlett (1932))
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Self-Organization and
the City, Fig. 22 The
derivation of the SIRN
model. See text
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Self-Organization and
the City, Fig. 23 The
SIRN model symbolizes a
self-organizing agent that is
subject to two forms of
information, internal and
external, and is actively
constructing two forms of
information, again internal
and external. Graphically,
Fig. 23 corresponds to
Fig. 22 (bottom, right)
turned 180� on its
NW-SE axis
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the third submodel, the process depends partly on
biological memories, as before, but partly also on
externalized non-biological memory that we term
a common reservoir. This common reservoir of
external, artificial, and non-biological memory
might take the form of texts, the Internet, build-
ings, or whole cities.

Figures 24 (bottom) and 26 illustrate graphi-
cally this public-collective SIRN submodel. Each
individual agent is subject to internal input
constructed by the mind/brain and external input
which is the legible information coming from the
common reservoir, that is, the city. The interaction
between these two forms of input gives rise to a
competition between alternative decision rules
that ends up when one or a few decision rules
“wins.” The winning rule(s) is/are the order
parameter(s) that enslave(s) the system. The
emerging order parameter governs an external
output, which in the case of a city is the agent’s
behavior and action in the city, and an internal
output, which is an information feedback loop
back to the agent’s mind/brain.

Both the previous submodel and the present one
involve a two-scale self-organization process: an
individual local scale referring to each individual
agent as a self-organizing system and a collective
global scale, referring to the whole city as a self-
organizing system. The individual agents by their
action and behavior determine the city, which by
means of its emerging order parameter(s) enslaves
the minds of the individual agents. In the language
of synergetics, this process is termed circular cau-
sality. In terms of social theory, it is close to notions
of socio-spatial reproduction and structuration.
Recent applications show that the common reservoir
might be a non-biological externalized memory
such as a city (Portugali 2000, 2002, 2003, 2004,
2011), a planning textual report or an urban planning
policy emerging out of a discourse among the mem-
bers of a planning team (Portugali and Alfasi 2008).
Note that as in the previous model, here too, due to
circular causality, as the process evolves, the subjec-
tive cognitive maps of the individual agents are
becoming more similar to each other, and an inter-
subjective, collective cognitive map emerges. Both
private-subjective cognitive maps and public-
collective ones are thus constructions.

The City Game
A simple and effective way to illustrate the SIRN
view on the dynamics of cities is by means of a set
of experiments termed city games (Portugali 1996a,
2011). A city game can be described as a group
dynamics that involves some 40 to 70 participants.
Their aim is to build a city on a floor, representing
the site for a new city. Each player is given a 1:100
mock-up of a building and in his/her turn is asked to
locate it in the virtual city on the floor, in what s/he
considers as the best location for that building. In a
typical game (Fig. 27a, b ), the players observe the
city as it develops and in the process also learn the
spontaneously emerging order on the ground. It is
typical in such games that, after a few initial itera-
tions, an observable urban order emerges. The par-
ticipants internalize this emerging order and tend to
locate their buildings in line with it. As can be seen,
the main features of such a game are the main
ingredients of SIRN, namely, a sequential interplay
between internal and external representations, the
emergence of a collective complex city as an arti-
fact, and a typical synergetic process of self-
organization. Needless to say that the city game is
not a 1:1 description of reality, but an illustration of
the dynamics of cities as dual self-organizing
systems.

Cognition and the City
SIRN is at once a theory of cognition, cognitive
mapping, and urban dynamics. This emphasis on
cognition is a direct consequence of complexity
theory; a major achievement of complexity the-
ory was to show how local behavior and interac-
tion between urban agents give rise to the global
structure of the city. The agent is thus the main
and most important actor. Given this, one would
assume that practitioners of complexity theory
and urban simulation models will have an elabo-
rated theory of agents’ perception, behavior,
decision-making, and action, especially so in
light of the fact that a whole body of research
on agents’ behavior was readily available. I’m
referring to studies on spatial cognition, spatial
behavior, and cognitive mapping that were
developed on the interface between cognitive
science and urban studies (Golledge and
Timmermans 1988; Kitchin and Freundschuh
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Self-Organization and the City, Fig. 24 Top: The
intrapersonal SIRN submodel of a single person. Middle:
The interpersonal submodel, serial reproduction of several
persons. Bottom: The interpersonal with a common reser-
voir submodel. Note that in the intrapersonal submodel,
information is transmitted via external and internal outputs,

in the interpersonal via external output only (action and
behavior), while in the third, submodel information and
interaction between the agents are mediated by the com-
mon reservoir (e.g., a text, a city, the Internet, etc.) (Source:
Portugali 2002)
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2000; Portugali 1990, 1996b, 2004, 2005). And
yet, with few exceptions such as SIRN, this body
of theoretical and empirical studies is largely
overlooked by students of complexity theory of
cities. Researchers in this field tend to follow
economists by assuming that individuals behave
in space as simple “economic persons.” The
result is that the rather simple behavior of agents

in the models contradicts the complex behavior
revealed by studies on cognitive mapping and
spatial behavior.

In The Sciences of the Artificial, Simon (1979)
suggested that the observed complex behavior of
human agents, guided as it is by aims, plans,
intentions, needs, policies and so on, misleads us
as it is only an external appearance of innately

Self-Organization and
the City, Fig. 25 “The
Kiss” by Brancusi: from a
figurative kiss in 1907 to the
geometrical “Gate of the
Kiss” in 1937, an
intrapersonal SIRN process
in sculpturing
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simple behaving entities: Similarly to simple ani-
mals, we humans as

behaving systems, are quite simple. The apparent
complexity of our behavior over time is largely a
reflection of the complexity of the environment in
which we find ourselves. (ibid. 53)

Most AB/CA urban simulation models are built
in line with Simon’s logic. They typically start with
local interactions between agents having a few
simple aim(s) “in mind.” This interaction gives
rise to an urban system, which from iteration to
iteration becomes increasingly complex.
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Self-Organization and the City, Fig. 26 Another con-
ceptualization of the public-collective SIRN submodel. Each
individual agent is subject to internal input – a cognitive map
constructed by the mind/brain and external input – the legible
information coming from the common reservoir, that is, the
city of a planning team. The interaction between these two
forms of input gives rise to a competition between alternative

decision rules that ends up when one or a few decision rules
“wins.” The winning rule(s) is/are the order parameter(s) that
enslave(s) the system. The emerging order parameter governs
an external output, which in the case of a city is the agent’s
behavior and action in the city, and an internal output, which
is an information feedback loop back to the agent’s mind/
brain
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Complexity is thus understood as a property of the
whole global system, but not of its individual parts.

The efficiency of the simple cause ! complex
effect model is apparent. But there is a catch here:

Several empirical studies, of animals’ and
humans’ exploratory behavior, for example, fal-
sify Simon’s view (Portugali 2002, 2003, 2004).
Furthermore, the property of the city as a dual

Self-Organization and
the City, Fig. 27 (a) Four
snapshots from a typical
city game (at iterations
1, 15, 35, 57). (b)
A conceptualization of the
city game
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self-organizing system implies that the initial con-
ditions of such complex systems are relatively
large numbers of interacting parts, each of which
is itself a complex system exhibiting complex
behavior. Can there then be a science of cities
that is not based on Simon’s model? The answer
is yes! To see how we shall look at the relations
between self-organization and information.

Information Compression, Inflation, and
Adaptation
Complexity is a property of systems that exchange
matter and information with their environment
and that their huge number of parts forms net-
works characterized by complex feedback and
feedforward loops that allow intensive flow of
information inside the system.

The notion information is associated with
Shannon’s theory of information (Shannon and
Weaver 1959) that has played a seminal role in
the development of system thinking. In Shannon’s
theory the notion of information is a pure quantity
(usually measured by bits) devoid of any meaning.
Such a concept of information makes sense only in
closed systems where the number of possible states
the system can take is finite and a priori known,
hence the link between information and the notion
of entropy, which is a property of closed systems.
For example, the information conveyed by throw-
ing a die is 2.5 bits, that is, the logarithm to the base
of 2 of the six possible states the system can take.
But the complex systems we are dealing with are
by definition open. So what is the meaning of
information in complex systems?

In Information and Self-Organization, Haken
(1988) suggested that complex systems “self-
organize,” that is, “interpret,” the information that
comes from the environment. In other words, the
meaning assigned to the message depends on the
receiver (the receiving system) and not just on the
message itself as in Shannon’s theory. Haken (see
p. 15 in 1990) has consequently suggested two
forms of information: semantic information
which is information with meaning versus
Shannonian information which is “information
with meaning exorcized.” Haken further empha-
sizes that the process of self-organization implies

“an enormous compression of information” (see
pp. 25, 35, 151 in Haken (1988)).

Haken and Portugali (2003; Portugali 2011,
Chaps. 8, 9) have studied information in the con-
text of the city. They show that different elements
of the city transmit different quantities of
Shannonian information that can be practically
measured by means of information bits, for exam-
ple (Fig. 28). They further show that cognitive
processes such as pattern recognition and catego-
rization entail an enormous information compres-
sion, thus affecting the quantity of the Shannonian
information conveyed by the city (ibid.) and that
information compression is just one facet of the
process – the other facet is information inflation
(Haken and Portugali 2015): In certain urban sit-
uations, categorization might entail information
compression while in others information inflation
(Fig. 29). Information inflation and compression
are thus two aspects of the process of information
adaptation by which individuals and collectivities
shape the city in a way that is adapted to the
inhabitants’ cognitive capabilities.

The notion information adaptation has
far-reaching implications to the above discussion
about the scientific method and the science of cities:
Self-organization as information compression
implies a complex ! simple model and thus an
alternative Simon’s simple ! complex model. The
process of information inflation, on the other hand, is
in line with Simons’ model. These two models are
thus two facets of a single process of information
adaptation that in some cases requires inflationswhile
in others compression. Complexity theory shows that
whatever are the opening conditions (complex or
simple), a scientific approach is possible.

CogCity
A central property of complex systems is the
process of circular causality that typifies also the
dynamics of cities: Thus, in the SIRN model, the
interaction between the local/micro-urban agents
gives rise to the global structure of the city, which
then feeds back and prescribes the behavior, inter-
action and action of the agents, and so on. Guided
by Simon’s simple ! complex model, standard
urban simulation models have become excellent
tools to simulate the first part of this loop – the
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way local interactions give rise to a global
structure – but they fail to describe the second,
feedback part of the loop. CogCity (cognitive
city) is a model that attempts to simulate the
dynamic of cities as a process of circular causality
(Portugali 2004, 2011, Chap. 18).

CogCity is essentially a FACS model (above
section “AB and FACS Cities”) with several

additions that make it an explicit SIRN, cogni-
tive, urban simulation model. It differs from
standard AB/CA urban simulation models in
that the latter are essentially bottom-up in their
structure (Fig. 30, left). CogCity, per contra, is
characterized by an ongoing interaction
between top-down and bottom-up. Figure 30,
right, describes a typical scenario: It starts

Fig. 28 (continued)
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top-down when an agent arrives to the city with
a global cognitive map in mind, compares it to
the global structure of the city, and selects a
local subarea. Now starts the bottom-up pro-
cess: the agent selects the empty cells in that
local area, evaluates the appropriateness of the
cells and their nearest neighbors in light of its
needs, and then takes a decision and action. In
parallel, the properties of every cell are deter-
mined according to its relations to its nearest
neighbors and so on.

In a regular AB/CA simulation, the process
ends here: the global outcome is recorded and
mapped as the output of this specific iteration
and the model is ready for a new iteration. In a

SIRN-CogCity model, the process continues
and feeds back to the global structure of the
city that allows the top-down process in the
next iteration: Firstly, the state of the various
central places is determined. Secondly, periph-
eries are determined around central places.
Thirdly, areas are defined or redefined. Fourthly,
subareas are redefined. Fifthly, given areas and
subareas, the global state of the city as a whole
and its rank-size structure, are defined. The lat-
ter changes redefine the local membership state
of each cell in the various infrastructure objects
and become the externally represented input for
a new agent in the next iteration and so on in
circular causality (Figs. 31, 32).

Self-Organization and the City, Fig. 28 Different con-
figurations and categorizations of buildings convey differ-
ent quantities of Shannonian information. When all
buildings are similar, information (i) is low. When they
are different, i is high but difficult to memorize. When

landmarks are added i is high, provided that they are
located apart from each other; otherwise, i is low (Source:
Haken and Portugali 2003). (a) An example of a good
landmark. (b) An example of a not very effective landmark

CITY

UPTOWN

MIDTOWN

DOWNTOWN

Self-Organization and
the City, Fig. 29 If all
buildings in the city are
different from each other,
categorization entails
information compression, if
they are
similar – information
inflation
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Planning and Design

Planning
The link between self-organization and cities is
contradictory. Firstly, since cities were always
regarded as symbols of planned action, walls,
roads, castles, and fortresses indicated a central
authority that is capable of planning. Secondly,
since planning as means to achieve a controlled
order diametrically opposes self-organization as
the spontaneous emergence of order. This is a
seemingly contradiction, however, since cities
are dual self-organizing systems with the implica-
tion that every urban agent is a planner at a certain
scale. This view is supported by psychology and
cognitive science that consider planning as one of
the basic cognitive capabilities of humans (Morris
and Ward 2005).

Cognitive planning, that is, the ability to
think, decide, and act ahead, must be based on
information about the future which by definition
is partial and insufficient – a situation that

according to Haken typifies also the process of
pattern recognition as conceptualized by syner-
getics. Based on this analogy, Haken (1998)
described decision situation in the context of
planning as in Fig. 33.

This decision situation raises the question of
“How do people complement the unknown
data?” According to Haken and Portugali, as in
pattern recognition tasks here too, the unknown
data is being supplied by means of associative
memory (Haken 1998; Portugali 2000), concep-
tual cognitive maps (Portugali 2004, 2005), and
decision heuristics (Portugali 2000; Tversky
and Kahneman 1974, 1981). Table 1 specified
several decision heuristics and their interpreta-
tion in the context of cities.

Haken and Portugali (2000) have further
suggested that complex processes of decision-
making in the context of city planning evolve
according to their SIRN model. This suggestion
was further elaborated by Portugali and Alfasi
(Portugali and Alfasi 2008) who demonstrated
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Self-Organization and
the City, Fig. 30 A
cognitive (right) vs
non-cognitive (left) AB/CA
urban simulation model
(Source: Portugali 2004)

Self-Organization and the City 391



empirically how the SIRN process practically
takes place in the reality of planning discourse
as it evolved among members of a planning team
engaged in formulating urban policies concerning
the development of the city of Beer Sheva, Israel
(Fig. 34).

As a basic cognitive capability, planning is
intimately associated with the fact that humans
are social creatures – people tend to plan together
(e.g., families, friends, firms, etc.). Some planning
decisions are thus made solitarily while others
collectively. Planning is also a profession that is
closely linked to the central authorities of society
(municipal, regional, national governments, etc.).
We thus have three forms of planning – solitary,
collective, and professional.

The notion that cities are complex self-
organizing systems thus implies a novel view on

planning the essence of which is, first, that all
three forms of planning (solitary, collective, and
professional) participate in the dynamic of cities.
Second, that due to nonlinearities that typify cit-
ies as complex systems, the act of a single solitary
planner might affect the evolution of a city more
than the planning act of a professional planning
team. (For an example, see Portugali (2006b)).
Does that mean that due to self-organization,
there is no need for city planning? Not at
all! – It means that we have to adopt a new
perception of plans as participants in the overall
urban dynamics. It also means that we have to
adopt a new perception of urban dynamics as a
complex interaction between many plans at dif-
ferent scales, or more specifically, between soli-
tary, collective, and professional planning agents,
each with its specific plan.

Self-Organization and the City, Fig. 31 Preliminary
results from an evolving scenario simulated by CogCity:
The central screen in each of the four snapshots shows the
evolving spatial distribution of various kinds of agents, the

top left screen the evolution of centers and subcenters,
while the bottom left, the evolving cognitive maps of
agents (Source: Portugali 2004)
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Design
As recently indicated by Stolk and Portugali (2016),
the distinction between planning and design is far
from being clear. Thus, for Rittel (a leading theore-
tician of planning and design), the two are synony-
mous (Protzen and Harris 2010, 2); for others, the
two are different: Planning is more about urban
policies, while design is more associated with the

architectural form of cities. Still others point that
planning is associated with procedures needed to
reach a goal, while design with creativity and inno-
vation. In the above-noted study, Stolk and
Portugali, approaching the issue from Trope and
Liberman (2010) construal level theory, suggest
that while planning tends to start from the here and
now and becomes more and more abstract as it
proceeds to the future, design tends to start with a
mental leap to an abstract future from which it then
proceeds backward in order to arrive to the concrete
here and now.

How do planners move from the here and now
to the future and how designers, following the
mental leap, move backward from the abstract
future to the concrete here and now? The answer:
by means of SIRN planning and design processes.
The process with respect to planning was
suggested and demonstrated above in connection

Self-Organization and the City, Fig. 32 Preliminary results from an evolving scenario simulated by CogCity – the
graphs (Source: Portugali 2004)

data

decision
(actions)

known

unknown

Self-Organization and the City, Fig. 33 Decisions in
the city are characterized by insufficient data. In such a
reality, the known data may be complemented in a variety
of ways. Each of these ways might entail a different deci-
sion and action (Source: Haken 1998; Portugali 2000)
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with planning discourse as illustrated above in Fig.
26 and below in Fig. 34 ; here we focus on design.

In several previous studies, we’ve developed a
SIRN design process (Stolk and Portugali 2012;
Tan and Portugali 2012; Portugali and Stolk
2014). Similarly to the general SIRN model, it
starts from a general SIRN design model that
symbolizes a self-organizing designer that is sub-
ject to two flows of information: internal and
external. The interaction between these two
flows gives rise to an order parameter that gov-
erns the designer’s action and behavior that
determine the resultant externally represented
design and so on until the design process is
completed. In line with the three SIRN sub-
models, we’ve developed three design

submodels: The first, the intrapersonal design
submodel, refers to a solitary designer; the sec-
ond, the interpersonal design submodel, refers to
a sequential dynamics of several designers, while
the third, the collective design submodel, refers
to a simultaneous interaction between many
designers. An example of the first is design by
means of sketching; an example of the second is
the diffusion in space-time of design solutions
while of the third is the design city game devel-
oped by Tan and Portugali (2012) and presented
in Figs. 35 and 36.

In addition to the above three submodels,
Portugali and Stolk (2014) suggest a fourth
SIRN submodel – a hybrid intrapersonal design
model. Here, in the SIRN interaction between

Self-Organization and the City, Table 1 Seven heuristics and their interpretation in the context of cities (for sources,
see Portugali (2000))

Heuristic Description Urban interpretation

Similarity The similarity of two items is expressed as a
function of their common and distinctive
features

The recognition of fundamental rules of urban
composition, such as a grid layout, built form,
or urban fabric, is performed through
similarity

Representativeness The probability that an object or event belongs
to a particular class is judged by the degree to
which the description is representative of a
stereotype

Urban categories are identified on the basis of
architectural stereotypes, such as church,
skyscraper, boulevard, tower, park, arch, etc.

Availability The probability of an event, or frequency of a
class, is assessed by the ease with which
instances or occurrences can be brought to
mind or recalled

Availability would make universal symbols
(such as Macdonald’s signs, stop signs, etc.)
more easily identified and recalled

Decision frame The frame that a decision-maker formulates
the problem (gain versus loss, etc.) is
influenced by norms, habits, and personal
characteristics of the decision-maker

Urban frames for decisions (congested versus
free, public versus private, etc.) depend on the
cultural code of each agent (e.g., a tourist, a
taxi driver, a policeman, etc.)

Anchoring The tendency of people to make estimates by
starting from an initial base value that is
adjusted to yield the final answer

City’s internal representations can contain
certain categories such as style, urban
violence, town size, etc., which can be “fired
on” early in the process of cognition; once
switched on, it stays on and is only eventually
reprocessed

Synergetic I:
collective effects

When facing complex decision situations,
people tend to rely on what other people are
doing or saying

Drivers, pedestrians, and intra- and interurban
immigrants tend to “follow the stream,” that is,
to take decisions in line with what others are
doing

Synergetic II:
attention parameter
effect

When facing complex decision situations,
people often employ several heuristics in a
sequence. First, the attention parameter calls
into using a heuristic. Then, when exhausted,
another attention parameter heuristic emerges
and so on

Intra- and interurban immigrants, for example,
often start with a given location decision
heuristic (say synergetic I); if it doesn’t work,
they switch to an alternative heuristic and so
on
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Self-Organization and the City, Fig. 34 Bifurcation
diagram of the planning discourse. Each alternative is
represented with a continuous line along the time axis
(the x-axis). A horizontal line represents an order state
during which the alternative scenario maintains a certain

image and possesses certain attributes. Bifurcation points
indicate a shift from one order state to another. The broken
lines represent optional order states that were not actual-
ized (Source: Portugali and Alfasi 2008)

Self-Organization and the City, Fig. 35 Several snapshots from the design city game as it developed in the area of
Sportpark de Wierden, Almere Haven, and the Netherlands (Tan and Portugali 2012)
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internal and external representations, the designer
responds to external representations in the form of
urban simulation models that inform the designer
about the way his internally represented ideas
affect the city as a whole.

A Self-Planned/Self-Designed City
Urban planning and design have two facets: on the
one hand, they are related to the process of plan-
ning and design – the way city planners and
designers are or should plan, while, on the other,
to the structure of the planning/design system, the
administrative framework within which they plan.
The first refers to the planners or designers as
individuals or groups, while the second to plan-
ning as a component in the form of governance
that dominates a city or a country. The two are
interrelated, however, since the discourse on how
planning is or should be conducted affects the
planning law and the latter, once it enforced,
determines how planners practically plan.

Can there be a planning and design system that is
built in line with the city as a self-organized com-
plex system? The answer suggested here is positive:
In a sequence of studies, Portugali and Alfasi have
portrayed the principles of such self-planned city
(Portugali 2000) and the way it can be applied to the
reality of city planning law and structure of Israel
(Alfasi and Portugali 2007; Portugali 2011,
Chap. 16). The suggestion here is that this system
can accommodate also the process of design. Sim-
ilarly to current planning and design systems, it is a
three-layer system: the legislative, the judiciary, and
the executive. It differs from current systems in the
following: First, its planning and design laws refer
to the qualitative relations between the various city
objects (Fig. 37) and not to land use plans that
assume to determine top-down the urban landscape.
This property makes it specifically appropriate to
design. Second, it suggests a novel planning/design
judicature composed of spatially distributed “plan-
ning/design courts” conducted by professionals

Self-Organization and the City, Fig. 36 The resultant outcome from the above design city game (Tan and Portugali
2012)
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who have specialized in law, planning and design.
Their aim is to evaluate, accept or reject the plans or
designs proposed by all planning and design
agents – solitary, collective or professional. Third,
it suggests a separation of authorities that doesn’t
exist today in standard planning and design admin-
istrations. Finally, it suggests a process of herme-
neutic planning and design that enables phase
transition and adaptation to new situations.
Figure 38 describes the structure and operation of
this self- organized planning-design system.

Prediction, Planning, Self-Organization and Cities
The first principle of the above planning-design
system is that its planning-design laws refer to
qualitative relations between the various city
objects and not to land use plans. The reason is
that land use plans are commonly based on pre-
dictions. This is problematic since prediction in
the context of complex systems such as cities is
associated with four fundamental properties. First,
the nonlinearities that typify cities imply that one
cannot establish predictive cause-effect relation-
ships between some of the variables. Second,
many of the triggers for change in complex sys-
tems have the nature of unpredictable mutations

(Allen 1997), not because of the lack of data but
because of their very nature. Third, unlike closed
systems, in complex systems, the observer, with
his/her predictions, is part of the system – a point
made by Jantsch (Jantsch 1981) more than two
decades ago and largely ignored since then. In
such a situation, predictions are essentially
feedforward loops, affecting the system and its
future evolution with implications that include
self-fulfilling and self-falsifying or self-defeating
predictions (Portugali 2006b,2011, Chap. 4).

From the above follows a dilemma: complex
systems are in essence unpredictable, and, yet,
the current practices of planning as well as plan-
ning administration and law are based on the
ability to predict. In a recent paper (ibid.), it
was shown that this situation leads to planning
paradoxes that are the result of phenomena of
self-fulfilling and self-falsifying predictions. It
was further shown that these phenomena are the
result of the feedforward and feedback loops that
are typical of complex systems in general and of
cities and regions in particular. The existence of
such loops is one of the properties that make
systems complex. Such loops are responsible to
the situation by which a prediction, a plan, or a

Spatial element

Linear element

Singular element

Elements of
the built

environment
Singular element Linear element Spatial element

New (planned)
elements

Self-Organization and the City, Fig. 37 Proposition
for a new planning structure for a self-planned city: the
interrelations between urban elements provide the basis for

planning law. A singular urban element might be a build-
ing, a linear one might be a road, while an example for a
spatial urban element is a park
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design, once produced, becomes a participant in
the system’s dynamic.

Another way to look at this issue is from the
point of view of the distinction between
Shannonian and semantic information (above,
section “Information Compression, Inflation, and
Adaptation”): Predictions and plans are essen-
tially kinds of information transmission. One can
thus speak of Shannonian prediction and semantic
prediction. In the first, the outcome of the predic-
tion is independent of the receiver(s), while in the
second, it depends on the meaning attached to it
by a receiver or receivers. A weather forecast is a
good example for both: it has no effect on the
climatic system, but it might affect the urban
system – following the prediction people might
behave in different ways that might entail phe-
nomena of self-falsifying and self-fulfilling pre-
dictions as described above.

Planning and design theories have not as yet
internalized the implications of complexity theory
to city planning and design. For example, in the
planning and decision support systems (PSS,
DSS) that are currently discussed and built by
proponents of the complexity paradigm, urban
simulation models are assumed to function as
sophisticated prediction devises (Brail 2006;
Brail and Klosterman 2001; Geertman and

Stillwell 2003). The result is a discrepancy that
to my mind characterizes the domain of urban and
regional planning as well as design: On the one
hand, planning and design theories, as well as the
structure of planning law, practice, and adminis-
tration, are all based on the (usually implicit)
assumption that cities are essentially predictable
entities and that given sufficient data, information,
and models, their future behavior is in essence
predictable. On the other hand, current urban the-
ory suggests that cities are complex, self-
organizing, and nonlinear systems and that as a
consequence their future behavior is in essence
not predictable even if sufficient information and
data are collected and available (Portugali 2000).

Urbanism
In section “Explicit Attempts to Define a City,”
we’ve defined the category “city” in terms of a
family resemblance according to which a settle-
ment becomes a “city” not by having some nec-
essary and sufficient properties, but by being a
member in a network of cities that has center,
periphery, etc. This view is in line with cognitive
science’s approach to concepts and categories. In
the latter, it is common also to distinguish between
basic level categories and superordinate catego-
ries (Rosch et al. 1976). A “chair,” for instance, is

Planning Legislature

Regular decision
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Dwelling

The world (the city)

Roads

Public

precedent

Planning Judiciary

Planners

Planning applications

Steady state
Bifurcation

Changing

Public
learning

decision

Phase-transition

Stabilizing

Private
learning

decision

Qualitative planning laws

Self-Organization and the City, Fig. 38 Proposition
for a new planning structure for a self-planned city: the
system is built of private planners (the inhabitants of the
city) and professional planners. Each of themmight submit

a plan to the planning judiciary. In the latter the “planning
judge” takes decisions according to the planning law as
determined by the planning legislature. Unlike the current
structure, there is a clear separation of authorities
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a basic level category whereas “furniture” a super-
ordinate. The suggestion here is that a city is a
basic level category, whereas urbanism is a super-
ordinate one, referring to the totality of cities
ranging from their physical structure, architecture,
economics, politics, social and cultural composi-
tion, and so on. The term “urban revolution”
(coined by Childe (1950)) thus implies a major
transformation in society with the basic level cat-
egory “city” at its center.

Most complexity studies of cities have tradi-
tionally focused on specific aspects of cities – land
use, morphology, transportation, social segrega-
tion, etc. – but not on the totality of city life which
is what urbanism is all about. Why? Because they
evolved mainly out of regional sciences’ attempt
to develop a scientific approach to cities and the
consequent tendency to choose research issues
that can be analyzed by reference to “real-world”
data. The study of urbanism was thus left to the
“soft” social theory approaches to cities (Castells
1977, 1996; Harvey 1985, 1996).

This is rather unfortunate because twenty-first
century world society is undergoing a major trans-
formation with urbanism at its center: Massive
rural-urban migration and demographic processes
entailed a situation by which cities such asMexico
City, Bombay (Mumbai), and Sao Paolo grew
from 8.8 million, 6.2 million, and 8.3 million,
respectively, in 1970 to over 20 million, over
16 million, and again over 18 million today; for
the first time in human history, the number of
people living in cities is crossing 50% of the
world’s population, and the process is still on. In
the last few decades, we’ve witnessed the emer-
gence of world cities, or global cities, that form
the centers for the globalization process.

These quantitative processes are associated
with several qualitative processes: a process of
privatization leads to the decline of the welfare
nation-state; the emergence of a civil society takes
over many of the past duties and functions of the
nationalist welfare state; the crucial problems of
many (post)modern counties are no longer classi-
cal national problems (e.g., national self-
determination, national boundaries, etc.), but
rather the problems of cities. The events of
September 11 and the ensuing wars in

Afghanistan and the Middle East are tragic indi-
cations to the urbanization of war. Finally, the
process of globalization is making some world
cities more dominant than the states within
which they exist, thus repressing the nation states.

All of the above indicates the more fundamen-
tal change: According to Lefebvre (1970), its
essence is that urbanism is replacing industriali-
zation as the dominant force in society.My view is
that the essence of this change is that urbanism is
challenging nationalism as the order parameter of
modern society (Portugali 2006b).

Complexity and Urbanism
Complexity studies of cities, with their focus on
the short-term dynamics of cities and of national
systems of cities, are indeed highly advanced in
terms of mathematical formalism and data analy-
sis but rather anachronistic in terms of the issues
studied; as such, they have so far said very little on
the dramatic urban phenomena of the twenty-first
century. Can they say more about the issue of
urbanism? The answer is yes! And for several
reasons, to my mind, the “deeper messages” of
complexity theories is that they have discovered
properties in matter hitherto assigned to life, art,
and society (Portugali 1985). It is not surprising
therefore that complexity theories, particularly
synergetics, bear many similarities to social the-
ory and philosophy, and, as a consequence, sev-
eral of the notions that originated in the study of
complex systems can be related to similar notions
that originated in the domain of social theory
(Portugali 2006a):

• Both are essentially systemic and even holistic.
• Both tend to conceptualize “development” and

“evolution” in terms of abrupt changes rather
than a smooth progression. In social theory, the
common terms for an abrupt change are
(social/political/cultural) “revolution” while
in the language of complexity “bifurcations”
and “phase transitions” (that reminds one of
Gould’s and Eldredge’s, (1980) punctuated
equilibrium).

• Synergetics’ notion of “order parameter” is
similar to social theory’s notion of “mode of

Self-Organization and the City 399



production.” Synergetics’ notions of “enslave-
ment” and “circular causality” are close to
social theory’s notions of “social reproduction”
and “socio-spatial reproduction” (Giddens
1984; Lefebvre 1974).

• Complexity’s view of systems in “a far from
equilibrium condition” comes close to post-
modernism’s recent emphasis on viewing real-
ity as ever-changing and transforming, hence
the general popularity of notions such as
“chaos” and “butterfly effect.”

Several writers have already responded to these
similarities from the perspective of the sciences,
philosophy, media/cultural critics, and modern and
postmodern social theory (Cilliers 1998; Johnson
2001; Kellert 1993; Portugali 2006a; Rasch and
Wolfe 2000). A preliminary attempt has also been
made to employ synergetics as a complexity theory
of urbanism (Portugali 2000, 2006b), that is, to
interpret the current changes in cities and urbanism
in terms of synergetics along the following scenario:
the combined force of rapid population growth,
urban expansion, and technological change through-
out the twentieth century acted as a control param-
eter. Toward the end of the twentieth century and at
the beginning of the twenty-first century, we are
witnessing a bifurcation and phase transition
followed by a competition between the newly
emerging urban order parameter and the old nation-
alist one. My personal view is that what we see
emerging today out of this competition is not the
replacement of nationalism as an order parameter by
urbanism but the urbanization of nationalism.

Future Directions

Looking in retrospect at more than three decades
of complexity theory studies of cities, one can
now appreciate some of its major achievements:
First, the link between cities and complexity the-
ory gave urban studies a strong theoretical basis it
never had before. The fact that complexity theory
was applied to a large number of domains gave
urban studies a wide context and many sources of
inspiration. The fact that complexity theory comes
with a rich and strong mathematical formalism

gave urban studies a sound methodological back-
ground. The attempt to transform the study of
cities into a science of cities is today closer than
ever. Batty’s (2013) The New Science of Cities is
probably the first explicit comprehensive attempt
toward such a science. How should the new sci-
ence of cities develop is still an open question,
however.

Complexity theory has given us a new insight
to our understanding of the dynamics of cities.
According to Batty (2005), the most important
contribution is that complexity studies of cities
have verified the intuitive views of Jane Jacobs
(1961) and Alexander (1965), namely, that the
complex entity “city,” with its variety of different
land uses, socio-spatially and culturally segre-
gated communities, transportation networks, and
all the rest, is an outcome of “bottom-up” pro-
cesses: The local interaction between agents at
local scale, conducted by very few and simple
rules, gives rise to the complexity we term
“city.” My own view is that CTC have given us
“a single and sound theoretical basis to a variety
urban phenomena and properties that so far were
perceived as independent of each other and thus
interpreted by reference to different theoretical
bases . . .” (Portugali 2011, 96).

At the same time, however, it must be admitted
that the potential contribution of complexity theories
to urbanism, planning, and urban design has yet to
be realized. The complexity approach has indeed
given the bottom-up views on the nature of cities a
strong mathematical formalism that can be quanti-
fied by real data. But this focus on the local, the
bottom-up, and the quantifiable was not without
price: Cities and urbanism of the twenty-first cen-
tury are in the midst of a dramatic transformation,
new forms of cities are emerging – world cities,
global cities, and megacities, and yet the vast major-
ity of complexity studies still focus on the old tradi-
tional quantitative urban questions, leaving the
qualitative grand urban issues to the “nonscientific”
social theory oriented urban studies. Can complex-
ity theories of cities contribute? The answer
suggested above is yes! SIRN is one approach in
this direction and the field is ripe for others.

The same applies to planning. In the literature
on planning theory, it is common to make a dis-
tinction between planning theory versus theory in
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planning (Faludi 1973), that is, between theories
about how to plan and theories about urban and
regional dynamics that planners can use during
the planning process. Examining complexity the-
ories of cities from this perspective, we see that
they are very innovative with respect to theory in
planning, but very conservative when it comes to
theory of planning: The vast majority of studies
simply ignore the implications of complexity to
urban, regional, and environmental planning.

Why do we need a complexity theory of plan-
ning? The answer is twofold: First, standard plan-
ning theory was developed in the 1950s and 1960s
hand in hand with what we consider today as
anachronistic urban theory. Both are based on
the (usually implicit) assumption that cities are
in essence simple, mechanistic systems that
given sufficient data and advanced technologies,
their future behavior is predictable and hence con-
trollable. As we’ve seen above, complexity theo-
ries tell us a different story: Cities are complex
self-organized systems that are in essence
unpredictable and controllable even if sufficient
data and the most advanced technologies are at
hand. From here follow a whole set of new and
interesting questions: what is the role of planning
in a complex system? Are all parts and compo-
nents of the system unpredictable? In the above,
we’ve suggested some preliminary answers – but
new ones must still come.

Finally, it is important to mention the issue of
extreme events in cities. The rapid processes of
urbanization cities underwent in the last few
decades and the “urbanization of war”made cities
rather vulnerable areas in cases of extreme events.
The question of how cities and their inhabitants
behave and respond to extreme events is a press-
ing social issue that already started to capture the
attention of students of complexity theory of cities
and urbanism.
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Glossary

Econophysics An interdisciplinary research
field where theories and methods originally
developed by physicists are used to model
financial markets and economic systems.

Market panic A state in which correlations
among stock returns are very high together
with highly elevated levels of the VIX Index.

Market volatility Market volatility is the uncer-
tainty of price moves of a given market (rather
than a single stock), such as the US stock
market, which is well represented by the S&P
500 Index.

Stock returns The relative change in value of the
price of a stock over a particular time horizon
(e.g., 1 day or 1 year).

Stylized facts Statistical characteristics of finan-
cial time series that appear to be somewhat
universal across asset classes and geographies.
These include volatility clustering, long-range
memory in absolute price returns, and the fat-
tailed distribution of price returns that persist
over horizons ranging from intraday to weeks.

The VIX Index Also known as the “fear” index,
this represents a forward view of volatility or
uncertainty in the market. It is computed from
stock index option prices.

Volatility The risk or uncertainty of the magni-
tude of a stock’s returns. Realized volatility can
be calculated from the historical time series of
stock returns over some past window, most
commonly as the standard deviation of returns,
but other proxies can be used such as the mean
absolute value of returns.

Introduction

Over the past decades, the field of econophysics
has become established as a subject area that con-
nects concepts, ideas, and models stemming from
physics to explain the underlying dynamics driving
financial markets. In particular physicists have
made advances in applying the fields of statistical
physics and nonlinear dynamics to create models
that explain some of the statistical and dynamic
properties of financial markets. Underlying to
many of these models are notions common to
synergetics (Haken 1977), ranging from interacting
agents and nonlinear feedback to predator-prey
dynamics and spontaneous self-organization.

In reality, market researchers have access to
historical price and volume time series for a col-
lection of stocks. They analyze this data and try to
understand the relationships and dynamics of this
joint stochastic system either for the purpose of
predicting future price changes or analyzing
and predicting future risks. Traders and portfolio
managers will use their inferences to construct
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desirable portfolios which they must construct by
executing buys and sells in the market. But this in
turn affects the market itself which feeds back into
the historical data that they continue to analyze over
time. Furthermore, at any instant, there is not just
one trader interacting with the market but many,
many thousands, across the globe and with their
own unique objective. Their actions also feed back
into the price formation process affecting the data
that they then continue to analyze. In addition, news,
external events, fundamental properties, and macro-
economic phenomena also get incorporated into the
price. These interactions are sketched in Fig. 1, and
it is clear to see that there are multiple feedback
loops at play.

In this entry we’ll provide an overview of
financial market dynamics and some of the
models that have been developed to describe
them and conclude by going in depth for one
example that stems directly from synergetics.

Price Dynamics

In my view the price of a stock is the macroscopic
observable that emerges as a result of the micro-
scopic interactions of many agents in an extremely
complex system. At any given time, there is no
such thing as a well-defined price of a stock. It is

not as simple as when you go to the grocery store,
and prices are clearly marked so a transaction can
be planned and executed exactly. Instead, in finan-
cial markets, all across the globe at any moment in
time, traders are submitting orders to buy and sell a
certain amount of a stock; furthermore, their orders
are not all sent to the same place but rather to one of
several exchanges.

In addition each trader acts with their own view
and utility on a spectrum of timescales; they base
their buy or sell decisions on their individual infor-
mation set for their own individual intent. Traders’
views may depend on fundamental properties of the
company whose stock is being traded, as well as
general trends in the particular industry in question.
Stock-specific events, such as mergers and acquisi-
tions, have a big impact, as do world events, such as
wars, terrorist attacks, and natural disasters. It is
ultimately the collection and interaction of this sup-
ply and demand that drive themicroscopic dynamics
of price formation in conjunction of course with the
rules of individual exchanges and regulations,which
have evolved over the years and continue to do
so. For example, in the United States in the mid-
1990s, the NYSE and the Nasdaq were the only two
exchanges where transactions could occur. Typical
market participants were large institutions, and typ-
ical order sizeswere in the thousands of shares. How
quickly you got your order into the market was not
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Financial Market Dynamics: A Synergetic Perspective, Fig. 1 The big picture: observed asset prices affect traders’
decisions, which feed back into observed asset prices
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an important factor. Today just some 20 years later,
the market structure is quite different. The market is
fragmented, consisting of several “dark pools”
(where traders cannot see the orders of others) and
12 “lit” exchanges where traders can place their
orders to buy or sell a given quantity of a stock at a
given price. The orders on lit exchanges can be seen
by market participants (hence the name). Typical
order sizes are hundreds of shares, and institutional
investors constitute a much smaller percentage since
electronic trading has become accessible to anyone.

Trades can be organized into a so-called limit
order book according to the price-time priority. An
order has a time, price, size, and action (e.g., buy,
sell, cancel, among others) associated with it. If two
orders to buy come in with the same price, the one
that came in first gets placed ahead in the order book
queue. However if an order comes in to buy at a
higher price, it goes ahead of the other orders regard-
less of when it entered the book. Orders to sell are
handled in the same fashion. Size doesn’t affect
priority, and the different amounts available to be
bought or sold at different prices constitute the full
order book. At any given moment, at the top of the
book, there is a best price to buy a certain amount
and a best price to sell a certain amount. The differ-
ence between them is called the spread. If an order
comes in that crosses the spread, a transaction will
occur. As long as there is enough volume at the top
of the book, then that is the price that the transaction
will occur at; otherwise some of the orders will be
filled at worse prices as the liquidity at deeper levels
of the book gets consumed.

This illuminates the fact that there is no well-
defined price. Is it the price to sell or the price to
buy? Is it the mid of those? Is it some kind of
volume-weighted mid, depending on how many
orders to buy or sell at a given price? In practice,
the last recorded transaction price is what is used
here, but it is easy to see how this could be prob-
lematic if a stock doesn’t trade very frequently.

Data

Over the past 20 years, the amount of financial data
that is recorded has literally exploded. This is
largely due to the explosion of electronic trading

and its easy access to the community. Apart from
the increased volume of algorithmic and electronic
trading and the increased number of mainly elec-
tronic exchanges, other factors such as increased
regulations for risk management and audit trails,
decreased latencies, and higher time resolution also
contribute to the exponential boom in data. There
are also more traded instruments, new types of
ETFs (exchange-traded funds which are essentially
investable funds that themselves trade like stocks)
and new derivative instruments. As an example of
increased time stamp granularity, the TAQ (Trade
and Quote) database which has been one of the
main sources of transaction data for the NYSE,
AMEX, and Nasdaq exchanges started out record-
ing trades and quotes with times stamps marked at
the second precision from 1993 to 2003. After that
the data was collected at millisecond precision until
2015 and is currently marked at nanoseconds after
a brief microsecond era. This is just one example
showing the evolution of the importance of speed
and the actual timescales that are now relevant.
While in the past, only the price and volume at
the top of the limit order book was available, the
entire depth of the book can be constructed because
every order on each of the many electronic
exchanges are collected and consolidated.

Stylized Facts of Markets

The huge amounts of data started attracting the
attention of physicists around the mid-1990s, and
many of the early seminal papers dealt with
uncovering and understanding properties of the
empirical distribution of returns (or relative price
changes). Returns of stocks can be calculated over
different timescales t, and when the distributions
of these are plotted out, it is clear that they are far
from Gaussian, but rather are well fit with power-
law tails in such a way that the power-law behav-
ior persists from timescales ranging from intraday
to the order of a few weeks. On daily timescales,
the exponent of the power law is about 3, often
referred to as the cubic law of finance
(Gopikrishnan et al. 1999; Gabaix et al. 2003).
The kurtosis of these distributions decays in a
regular fashion, roughly as t�0.2 where t is the
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timescale over which returns are calculated
(Bouchaud and Potters 2004). These distributions
bear many similarities to those of turbulent sys-
tems (see Fig. 2).

Volatility (defined either as the standard devia-
tion of returns over some past window or simply by
a proxy such as the absolute value of returns)
exhibits clustering behavior such that there appears
to be regimes of higher or lower volatility, on all
timescales (see Fig. 3). Furthermore, there is mem-
ory in volatility in the sense that the autocorrelation
of absolute returns is very strong, decaying slowly
as a power law. More subtle statistical features are
inherent, such as a behavior analogous to the Omori
law for earthquakes in that a large volatility shock
will be followed by aftershocks at a certain rate.
Furthermore, large negative returns are indicative
of higher volatility, an effect known as the leverage
effect (Bouchaud et al. 2001). Figure 3 beautifully
illustrates some of these effects. It shows intraday
prices for a few days surrounding May 6, 2010, the
day of the so-called Flash Crash. After a large
negative return, volatility increases and decays
only slowly. Another interesting property of stock
return time series is the presence of time-reversal
asymmetry in the sense that future volatility condi-
tioned on past observations is not symmetric (Lynch
and Zumbach 2003). Finally, financial time series
exhibits multi-fractal scaling of moments (see, e.g.,

Borland and Bouchaud 2012). All of these so-called
stylized facts are not only observed for stock returns
but also for other financial instruments such as
commodities and currencies, and they are observed
across geographies. Realistic market models should
ideally capture the basics of these features for stock
returns and volatility across time.

Financial Market Modeling

Modeling the intricate dynamics and microstruc-
ture of the limit order book is a field of study
which has gotten some traction over the past
decades. One of the most insightful and detailed
studies attempting to understand the dynamics of
price formation on this level, as well as the market
impact of trading, has been done within the phys-
ics community, for example, by Bouchaud,
Farmer, and Lillo (Bouchaud et al. 2004, 2009;
Lillo et al. 2003). They reveal that the processing
of supply and demand in markets has long-range
memory and is also related to the origin of market
fluctuations among many other interesting find-
ings. Another interesting and rather intuitive
model of the order book was developed by Cont
et al. (2010) who formulated a stochastic equation
for the mid-price based on the order book dynam-
ics. More recently, some authors model the order
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flow dynamics of bids and ask via self-exciting
Hawkes processes (Bacry and Muzy 2014;
Alfonsi and Blanc 2015), leading to a nice frame-
work where questions such as optimal trade exe-
cution, for example, can be studied. In spirit and in
analogy to physics, these models eluded to above
can be seen as microscopic models, based on
underlying empirical observations of the actual
order placement and execution process (viz., the
order book). Ultimately though, the price once
formed evolves as a stochastic process, and it is
often more tractable to use a mesoscopic descrip-
tion which aims at describing the price process as
a stochastic Langevin equation where the key
feature is how to capture the volatility, or noise,
that drives the process. This is the most important
effect since stock price changes (or returns) from
moment to moment are essentially unpredictable,
so the deterministic part of the equation is less
interesting. (Though of course, if you can predict
it ever so slightly, you are in luck!)

For many years and in a large body of the
financial literature, the random nature of price
time series was modeled by most as a simple
Brownian motion. The first to propose such a
model was Bachelier in his thesis in 1900, which
lays largely undiscovered until much later when

Black and Scholes wrote their famous paper in
1973 based on a very similar model. They made
important contributions in particular to the pricing
of options, for which they received the Nobel
Prize (Black and Scholes 1973) in 1997. Options
are traded instruments that give the right, not the
obligation, to buy a stock at a later date at a certain
price, called the strike price. In Black and
Scholes’ work, the log price is assumed to follow
a Gaussian distribution, and even today many
trading assumptions and risk control notions are
based off of that prior.

However, as we have seen, the Gaussian model
of Black and Scholes is insufficient to describe the
statistical properties of real financial time series
data. Several alternative models have been pro-
posed, and here we review some that fit well into
the spirit of synergetics.

Predator-Prey, Many Interacting Agents,
and Spin Models

The Lotka-Volterra equation is used to describe
the positive and negative feedback loops between
interacting species, where one preys on the other.
It is also one of the first successful models for

Financial Market Dynamics: A Synergetic Perspective, Fig. 3 A time series of market returns around the Flash
Crash of May 6, 2010
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describing the fact that wealth among members of
the society follows a Pareto power-law distribu-
tion (and hence also that fluctuations in financial
markets follow a power law) (Levy et al. 2000;
Levy and Solomon 1997; Solomon 1998). That
model also recovers realistic features of financial
markets such as bubbles and crashes as well as
volatility clustering.

The basic ingredients of the model are to intro-
duce feedback between individual and collective
wealth fluctuations of a collective set of traders.
The central feedback loop consists in computing
the market price of the stock as the sum of the
individual wealths wi invested in the stock by the
traders and then determining fluctuations of a
given trader’s wealth as their previous wealth
multiplied by the stock return. The basic idea of
the model is that wealth at time t + 1 is propor-
tional to wealth at time tmultiplied by the random
factor which corresponds to relative gains or
losses over the last period. There is also a coupling
of the individual’s wealth to the global wealth of
the society (e.g., things like social services). In
addition, there is also competition between each
individual and the other members of society,
which plays the part of limiting growth of the
average wealth to values that are sustainable for
the current conditions and resources. The
Solomon-Levy model leads to a power law for
the distribution of individual wealth, namely:

P wð Þ / w�1�� (1)

where � is typically between �1 and �2. In Sol-
omon (1998) the very interesting conclusion is
drawn that any quantity which is a sum of random
increments proportional to the wealths wi will
have fluctuations described by a Levy distribution
of index b equal to the exponent � of the wealth
power distribution. Since the individual invest-
ments are stochastically proportional to the inves-
tors’ wealth, the stock market fluctuations will be
described by a truncated-Levy distribution of
index equal to the measured exponent � = 1.4
(which results in a tail index close to 3 as eluded
to above when we talked about the cubic law of
finance). This is an amazing and nontrivial result:
based on simple notions of competition, local and

global feedback of the wealth of members of
society, a mechanism for describing the distribu-
tion of stock market fluctuations is designed.

Solomon and Levy’s wealth equation is a
mesoscopic description of the stock market
which was written down by the authors as a
description of the outcome of many simulation
runs of their microscopic model (Levy et al.
2000). The microscopic model looks at individual
investors with various ways of deciding how
much stock to buy or sell at a given time. Simu-
lations of that collective group of investors then
gave rise to the dynamics of wealth fluctuations as
described by their Lotka-Volterra equation.

Another approach of interacting agents was pro-
posed by Lux andMarchesi (2000). Individual trad-
ing agents are simulated, including an explicit price
formation process. Agents are modeled as different
types of traders interacting in a speculative market:
“noise traders” and “fundamentalists.” Fundamen-
talists base their action on fundamental valuation of
the stock. The noise traders base their trading deci-
sions on price data andflows,which leads to herding
behavior. They react to the recent past of the market
and can have either positive or negative expecta-
tions of the future based on that past. The dynamic
of the model is that traders compare profits gained
by the noise traders and fundamentalists and then
switch their own strategy to that which was more
profitable in the recent past. Depending on whether
traders want to buy or sell, supply or demandwill be
infused into the market, and the price will be
adjusted according to the excess demand. In addi-
tion, the dynamics of the fundamental value of the
stock follows a standard lognormal Brownian
motion with uncorrelated Gaussian noise.

Lux and Marchesi formulate the state-dependent
transition probabilities that describe, for each group
of traders, the probability of switching to the other
group. For noise traders there is also the internal
switching between a pessimistic and optimistic view
of the market. The price gets adjusted up or down
based on supply and demand according to excess
demand being either on the buy or sell side.

Based on these simple yet realistic dynamics, a
theoretical analysis and simulations show that the
most important features of real financial markets
emerge as a consequence. They find that the
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market is on average efficient in the sense that the
price on average reflects a fundamental equilib-
rium. The amount of pessimistic and optimistic
traders is roughly even, and in equilibrium both
the noise traders and the fundamentalists do
equally well. Though the system always tends
toward a stable equilibrium, it exhibits auto-
correlated fluctuations around that fundamental
equilibrium and simulations of the model show
on-off intermittency of fluctuations. This is very
similar to the properties of real market fluctuations,
where volatility shows memory and clustering.

Other classes of models are spin-based models
in which analogies are made between the interac-
tions and dynamics of spin systems and financial
markets. Some interesting spin models have been
proposed, for example, Cont and Bouchaud
(2000), Chowdhury and Stauffer (1999), and
Bornholdt (2001). These models can reproduce
(under certain parameter settings) features such
as the volatility clustering of financial markets.

Statistical Feedback Models

The abovemodels are useful as frameworks to think
about the dynamics of market participants and the
emergence of the stylized facts one observes. For
certain applications (e.g., risk management or the
pricing of options), a slightly higher level view of
price formation can be useful, namely, in terms of
modeling the price itself as a stochastic process.

As mentioned above most of traditional math-
ematical finance is based on the Black-Scholes
model which assumes a Brownian equation of
motion for stock prices:

dS tð Þ ¼ mSdtþ Ssdo (2)

whereo is drawn from a Gaussian distribution with
zero mean and variance one. This type of model is
very useful because it allows for the analytic calcu-
lation of many important quantities related to risk
management and derivative instruments such as
options. However, that model is too simple to cap-
ture all of the anomalous statistics observed in real
financial time series. In an attempt to rectify that,
several modifications to the standard Black-Scholes

model of price returns have been proposed in the
literature, and they all have in common that they
somehow extend either the assumption of a constant
volatility term s in Eq. 2 or the source of the noise
term o. For example, there is the stochastic volatil-
ity model of Heston (1993) where s itself is
modeled as a mean reverting stochastic process
and the Levy models where the noise o is assumed
to be drawn form a fat-tailed Levy distribution.
Those models are a little more realistic than the
standard model, but both have the shortcoming
that they convolve too quickly to a Gaussian distri-
bution, meaning that they do not capture the persis-
tence of fat tails of return distributions over the
timescales observed in reality, where returns over
timescales ranging from seconds up to about
2 weeks or longer all still exhibit tails. One model
which does really well in this sense (and also earned
a Nobel Prize for Engle (Bollerslev et al. 1994)) is
the GARCH model, which incorporates memory
into s. In fact, the memory of volatility is a key
feature that reproduces many known stylized facts
of financial price series.

Motivated among other things by this, we pro-
posed a model (Borland 2002a, b; Borland and
Bouchaud 2004) within the framework of non-
extensive statistical physics (Tsallis 1988) in
which the volatility term follows a statistical feed-
back process in the sense that it depends on the
probability of past observations, explicitly:

dS ¼ mSdtþ sSdO (3)

where

dO ¼ P Oð Þ 1� q

2
do: (4)

In this equation, P corresponds to the proba-
bility distribution of O, which simultaneously
evolves according to the corresponding nonlinear
Fokker-Planck equation (Tsallis and Bukman
1996; Borland 1998):

@P

@t
¼ @P2�q

@O2
: (5)

It can be solved exactly yielding:
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P ¼ 1

Z tð Þ 1� 1� qð Þb tð ÞO tð Þð Þ 1
1�q (6)

The exact form of the coefficients Z and b are
given in Borland (2002a, b). Equation 6 recovers a
Gaussian in the limit q ! 1 while exhibiting
power law tails for q > 1. In that case, our model
is exactly equivalent to the Black-Scholes model.

The statistical feedback term P can be seen as
capturing the market sentiment. Intuitively, this
means that if the market players observe unusu-
ally high deviations of O(t) (which is essentially
equal to the detrended and normalized log stock
price) from the reference value O(0), then the
effective volatility will be high because in such
cases P(O) is small, and the exponent 1 � q is a
negative number. Conversely, traders will react
more moderately if O is close to its more typical
or less extreme values. As a result, the model
exhibits intermittent behavior consistent with
that observed in the effective volatility of markets.
In practice, q can be obtained empirically from a
fit to the data. Remarkably, q = 1.4–1.5 fits very
well to return distributions of very many financial
instruments, corresponding to a tail index of about 3.

This non-Gaussian statistical feedback model
allowed us to derive closed-form option pricing
formulae (Borland 2002a, b; Borland and
Bouchaud 2004) that fit very well to real market
prices over many time horizons, and we used the
model in real-life trading situations. For further
reading about this topic, summarized successes,
applications, and shortcomings of the model, we
refer to Borland (2008).

Multi-timescale Models

In spite of the success at pricing options and other
derivatives such as credit default swaps, as a
model of real returns, the statistical feedback for-
mulation has the drawback that returns relative to
a particular initial time constituting the memory in
the volatility; instead we took inspiration from
that model and proposed that the volatility
depends on returns over multiple timescales
(Borland and Bouchaud 2012). The intuition is

that different traders pay attention to different
timescales. For example, some only care about
returns on an intraday or daily level; others are
more focused on monthly or whatever the
rebalancing frequency is of their trades. Explic-
itly, this multi-timescale model can be written as:

Dy ¼ st Do (7)

st ¼ s0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

XT
t¼0

g

s20ta
yt � yt�t

� �2
vuut (8)

where y denotes the logarithm of the stock price;
hence Dy represents the change in log stock price
and corresponds to stock returns. The parameters
g and a can be calibrated to fit empirical data
(g = 0.85 and a = 1.15) (Borland and Bouchaud
2012), ands0 corresponds to the baseline volatility.
o represents uncorrelated standardGaussian noise.
This model is motivated by the statistical feedback
model that we presented in Borland (2002a, b) and
Borland and Bouchaud (2004) and is very similar
to the FIGARCH models (Lynch and Zumbach
2003; Bollerslev et al. 1994). In fact, without the
summation and setting t� t= 0, this equation can
be shown to be of the same form as our statistical
feedback model. That model has the advantage of
analytic tractability for options pricing, whereas
Eq. 7 doesn’t allow for that. However, it can be
simulated and shown to fit real data remarkably
well, reproducing a slew of known stylized facts
(Borland and Bouchaud 2012), including volatility
clustering, the fat-tailed distributions of returns
persistent over increasing timescales, time-reversal
asymmetry of volatility, and multi-fractal scaling
properties.

Cross-Sectional Dynamics

The models we discussed up to now have focused
on capturing the time series properties of stock
returns. In order to fully understand the joint sto-
chastic process, the cross-sectional dynamics of
stock returns, i.e., the dynamics of the correlation
structure of markets, is also important. Under-
standing how the distribution of returns as well as
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their correlations behaves during such times as the
financial crisis in 2008 can be extremely important
for managing financial risks. Several authors have
studied these cross-sectional dynamics, such as
Borland (2012), Preis et al. (2012), Kaizoji
(2006), Lillo and Mantegna (2000), Munnix et al.
(2012), Ferreira et al. (2015), Raffaelli and Marsili
(2006), and Sornette (2002), but we shall delve
into one model that fits right into the paradigm of
synergetics (Borland 2012).

To set the stage, one should understand that
financial markets go through different types of
regimes (often referred to as “risk on” or “risk
off”) or, as in this paper, “panic” times or “normal”
times. The VIX Index captures forward-looking
expected volatility. In “panic” times, the VIX is
very high, whereas in “normal” times, it is more
moderate. Based on the VIX, one can for US
markets categorize the periods 2008–2009 (the
financial crisis), 2010 (the foreclosure crisis), and
2011 (the debt ceiling crisis) as periods of high
uncertainty or panic. As discussed in Borland
(2012) we showed that, during panic times, the
dispersion (standard deviation) of stock returns
cross sectionally increases, as does the time series
volatility. However, the kurtosis (corresponding to
the tails of the cross-sectional distribution) tends to
decrease. In addition, correlations approach 1.

To further explore the correlation structure, or
co-movement of stocks at a given time, we define
the variable s:

s ¼ sup � sdown
sup þ sdown

(9)

where sup is the number of stocks that has positive
returns over a given interval and sdown is the
number of stocks that has negative moves on
that same interval (e.g., a day). If s = 0 then
roughly the same number of stocks moved up as
down, and the assumption is that the stocks had
little co-movement and so were uncorrelated. If all
stocks move together either up or down, the value
of s will be +1 or�1, and the stocks will have high
correlation. So, the following picture emerges: if
s = 0 there is no correlation, and we are in a
disordered state. However if s 6¼ 0 then there is
correlation, and we are in an ordered state; in other

words, in the spirit of synergetics, s is the order
parameter of the system. This behavior of s under
different market conditions can be seen in histo-
grams calculated for data during periods of panic
versus more normal periods. In normal times, s is
unimodal, and in panic times we obtain a bimodal
distribution (see Fig. 4).

We refer to these phenomena as statistical signa-
tures of market panic: high time series volatility,
high cross-sectional dispersion, low cross-sectional
kurtosis, and a bimodal distribution of s. In order to
create a model that replicates these signatures, we
proposed in Borland (2012) a synergetic model
where the variable s plays the same role as the
magnetic moment in a ferromagnetic spin system.
In the sameway that themagnetic systemwill either
be in an ordered or disordered state depending on
the value of the temperature, the financial system
will be in a correlated or uncorrelated state
depending on the value of volatility.

Explicitly, the stock returns for each instrument
across time is modeled by Eq. 7 (inserting Doi

¼ oi
t

ffiffiffiffiffi
Dt

p
according to the assumptions of

Brownian noise):

Dyi ¼ sito
i
t

ffiffiffiffiffi
Dt

p
(10)

with

sit ¼ si0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

XT
t¼0

g

si0
� �2ta

yit � yit�t

� �2
vuut (11)

where yi is the log stock price of the i-th stock and
oi

t is a zero mean Gaussian noise with unit vari-
ance so that oi

to
i
t0

� � ¼ dtt0 . For an ensemble of
N stocks, we assume that the oi

t, i = 1, � � � , N are
correlated proportional to |s| across stocks, so

oi
to

j
t

D E
¼ sj j for i 6¼ j and 1 for i = j.

We hypothesize that s can be described by the
Langevin equation

ds

dt
¼ �as� bs3 þ Ft (12)

with a= g(sc� sM), b a scaling parameter, and sc
a critical volatility level, and sM is the market
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volatility. In this model, s can be thought of as
jiggling around in a potential well. The control
parameter of the system is sM. When sM < sc,
that well only has one minimum at 0, so |s| fluctu-
ates around that point. If sM > sc the potential well
attains two new minima at � ffiffiffiffiffiffiffiffiffiffi

a=2b
p

. |s| becomes
non-zero, and correlations are high: stocks tend to
move up or down together in accordance, which is
manifested in a bimodal distribution of s. We say
that there is a phase transition as sM crosses above

the critical value, since the collective behavior of
the stocks is qualitatively very different. This
type of phase transition model is based on the
dynamics and theories of synergetic self-
organizing systems. In particular, s can be seen
analogous to the magnetic moment m in ferro-
magnetic systems, There, the system goes from
the disordered to the ordered state as the temper-
ature T (which is the control parameter) drops
beneath a critical temperature Tc.
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“Panic” times are defined as periods of high uncertainty
among investors, such as 2008–2009 (the financial crisis),
2010 (the foreclosure crisis), and 2011 (the debt-ceiling
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Hence, the parameter sM in the financial system
plays a role similar to temperature in the magnetic
system.

We model sit as in Eq. 11. Conditions for
stability and values which calibrate to real returns
are discussed extensively in Borland and
Bouchaud (2012). The feedback in the model is
controlled by g, and the power law memory in
time is related to a.

The market volatility sM can increase to values
larger than sc due to either (i) exogenous jumps
(news, external fear) affecting all stocks so that
s0 becomes s0 + sshock or (ii) endogenous, idio-
syncratic jumps which are more stock specific. In
this paper we consider only exogenous jumps
describing market-wide situations such as the
Lehman Brothers collapse, although endogenous
ones akin to the dynamics of the Flash Crash have
been discussed in Borland and Hassid (2010).

Simulations

To simulate the joint cross-sectional dynamics of
the market, the individual dynamics of N = 500
stocks are generated using Eqs. 10 and 11. The
“market” is then defined as the equal weighted
average of those stocks’ returns. This is akin to
how the S&P 500, which represents the US mar-
ket, is composed of 500 stock returns (albeit
weighted by market capitalization). Furthermore,
market-wide exogenous shocks which correspond
to external fear factors or general sentiment are
applied to the base volatility s0. In previous
papers we have injected artificial shocks, but for
this contribution, we let the actual jumps in the
VIX drive the external exogenous volatility
shocks in the model such that if the VIX corre-
sponds to a volatility greater than 0.25, it will
induce a shock sshock to the system such that
s0 becomes s0 + sshock.

The dynamics of each individual stock were
generated using Eqs. 10 and 11. The parameters
used were those determined in Borland and
Bouchaud (2012), namely, the feedback

parameter g = 0.85 and a = 1.15. The base
volatility was chosen at s0 = 0.20 which is the
typical annualized volatility of a stock, and we
allow sit0 ¼ s0 1þ e � � tð Þð Þ where � is a zero
mean white noise, and e = 0.2 was chosen. We
included T = 300 terms in the volatility feed-
back term. The time step for the simulations was
chosen to D t = 1/252, corresponding to 1 trad-
ing day (there are 252 trading days in a year).
The noise sit driving each stock is drawn from a
normal Gaussian distribution uncorrelated in
time with 0 mean and unit standard deviation
yet with a correlation across stocks driven by
Eq. 12.

More explicitly, the correlations across stocks
at a given time point were modeled according to
the phenomenological equation (12) using
b = 0.01 and Ft = 0.1n where n is a standard
Brownian noise. Given a value of s from this
equation, the noise across stocks was then drawn
from a correlated set of noises, with correlation
equal to tanh |s|. The mechanism for attaining that
noise utilized the Cholesky decomposition tech-
nique. The critical volatility sc was chosen to be
sc = 0.4 which is roughly twice the annualized
standard deviation of market returns. At each time
point in the simulation, individual stock paths are
generated, and their mean is taken to represent the
value of the market as a whole at that time point.
The control parameter sM= s0 + sshock feeds back
into Eq. 12 thus affecting the correlation dynamics
that defines the cross-sectional behavior of the
500 stocks in the simulation.

Figure 5 shows actual market returns in the time
period 2003–2017, together with the VIX. Figure 6
shows simulatedmarket returns, together with a plot
of market volatility defined as the recent standard
deviation of market returns. It is clear that the fea-
tures follow the general profile of actual returns
quite closely, and the simulated market volatility
reflects the main features of the VIX (although
remember these will not match exactly since the
VIX is an index calculated from the implied volatil-
ity of options on the S&P 500). The simulation does
have volatility spikes in 2008–2009, 2010, and
2011, as does the VIX. We also show a time series
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of 2 of the 500 simulated stock returns that consti-
tute themarket in aggregate. Individual stocks’ price
paths were generated by Eq. 11 and exhibit idiosyn-
cratic periods of volatility clustering not apparent in
the market, due to the multi timescale feedback
aspect of the dynamics which is stock specific. In
addition, cross-sectional dispersion of the simulated
stock market increases in times of panic, while the
kurtosis appears to dip in those periods. Finally,
histograms of s are bimodal during the times of
panic, and unimodal in normal times, just as in the
real data. These cross-sectional properties are shown

in Fig. 7. It is apparent that the model captures a
similar behavior of cross-sectional features as in the
real market data.

Final Comments

The multi-timescale collective feedback model we
described for the joint stochastic process of a set of
stocks over time agrees qualitatively with actual
features seen in real markets, both across time and
across stocks. Elements of synergetics enter the
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model in various aspects. The correlation between
stocks acts as the order parameter of the system,
with the volatility, which is related to the collected
external perception of panic or fear acting as the
control parameter. Furthermore, the dynamics of
each individual stock follows a feedback process
that aims to capture the collective behavior of
individual agents acting on different timescales.
In addition, we have reviewed other more agent-
based models that have been proposed within the
physics and econophysics community that all have
similar notions embedded, namely, that it is the
interaction of individual market participants and
the feedback with the overall macroscopic level
of the financial system (be it via price, wealth, or
volatility) that appear to lead to systems that repro-
duce many of the interesting anomalous statistics
observed in real financial markets.

Future Directions

Financial markets are constantly evolving, pro-
ducing ever-increasing sets of data, so the task of
modeling the complexities driving their behavior
will certainly remain a fruitful area of research for
some time to come. Additionally, in spite of the
success of the models we have discussed here
when it comes to reproducing realistic market
features and stylized facts, many financial practi-
tioners still use the simpler notions consistent with
a Black-Scholes-type Gaussian model of financial
time series. One reason for this could be that many
of the models have been developed within the
field of econophysics, using concepts from phys-
ics, and are not yet incorporated in more tradi-
tional mathematical finance programs. An
important area of further work would therefore
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be to try and integrate some of the new insights
that these models lend us into practical applica-
tions which can be used where real money is
managed, in order to have better and more proac-
tive tools both for price modeling and risk
management.
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Major Terms

Unisex life expectancy life insurer’s disaster-
corrected national averages after birth.

Industrial evolution long-term envelope above
all disasters of the leading nation’s gross
domestic products (GDPs), the real (inflation-
corrected) value of goods and services pro-
duced per capita p.a.

National recoveries optimal paths with asymp-
totic convergence into the industrial evolution.

Human capacity individual combination of
inherited and educated capacities; its average
per capita value follows from equilibrium
between all main variables.

Annual working time the official paid working
time as part of the natural flow of time; a
similar part is used for unpaid homework
including reproduction; both yield with
Sundays and 8 h of sleep per day the inevitable
annual part of spare time required for enjoying
affluence far above biologic needs.

Systems engineering optimizes annual working
time for the GDP in line with technical progress.

Physical capital real per capita value of techni-
cal infrastructure; different for production and
housing.

Synergetics understanding complex systems by
deriving constructive relations between their
subsystems; this chapter unites four academic
disciplines with a unique family of six analytic
solutions.

Introduction

The Cold War secured the world’s longest time of
relative peace and, on average, the best existential
conditions. Yet the richest nations developed a
precarious combination of new problems: popu-
lation relevant increase of the life expectancy and
decreasing endemic birth rates, diverging national
and international distributions of incomes and
wealth, coexistence of the largest private assets
and public debts, loss of stable employment, sat-
uration of economic growth, unemployed youth,
and decreasing financial and political stability.

A civilization capable of visiting its moon
should be able to understand and shape its plane-
tary future. But the industrial society’s four
dynamic subsystems industry, economy, human
nature, and finance seem to be too complex for
understanding any one of them with quantitative
forecasting quality.

On the other hand, macro-systems can acquire
long-term stability by combining constructive
properties of their subsystems. Fauna and flora
exemplify this since primeval times. Self-
organizing systems were generally treated by
Hermann Haken. He coined the term synergetics
for constructively interacting subsystems (Haken
1983). According to this theory, the macroscopic
dynamics of a complex system can be captured by
few characteristic variables obeying simple equa-
tions even when it operates close to instability.
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The homonymous Springer Series published
extensions and applications quantifying order-
disorder transitions from lasers in physics to net-
works in city planning. So far, most examples
quantified a macro-system with two subsystems
connected by the same academic discipline. In this
chapter, we complete the natural theory of man-
kind’s largest possible macro-system by unifying
four subsystems that were separated by four aca-
demic disciplines. This explains why understand-
ing the industrial society’s nature with forecasting
quality comes now so late compared with the
natural sciences.

When four subsystems determine the dynamic
success of their macro-system, there must exist at
least four constructive relations between them.
They must follow from the existing data. In 1987,
we began collecting long-term data series without
academic bounds from the eighteenth-century UK
to the current G7 level nations. In 1991, we formed
a small group of chief technical officers in the new
PICMET community (Portland International Cen-
ter for Management of Engineering and Technol-
ogy) and organized an international research
project for future business policy with Hitachi,
Siemens, and other companies. It was jointly
supported including staff participation by the
European Commission and MITI (Japan’s former
Ministry of International Trade and Industry).

At first, we derived the dynamics of national
recoveries from World War II and their conver-
gence into a collective industrial evolution. This
chapter includes all relevant data on the industrial
society and completes its theoretical basis. Our
analytic solutions for recovery from national
disasters were new and relevant for national and
business planning since no globally active com-
pany could neglect the world’s largest and fastest
growing national market. In particular, we pre-
dicted China’s current change from fast exponen-
tial to slow linear growth and the currently
observed saturation of G7 level growth to an
asymptotically approached final state
(Danielmeyer and Airaghi 1999).

For discussion and wider understanding, we
supported a working group (Kümmel et al. 2000)
that developed into the German Physical Society’s
current division “Physics of Socio-Economic

Systems” (SOE). In its tenth year, we discovered
the industrial society’s intrinsic order with the
identical time-dependence of the G7 level life-
style’s unisex life expectancy and the industrial
evolution. The latter appeared for the first time as
upper envelope of the best gross domestic prod-
ucts (GDPs), the national annual outputs of goods
and services above all disasters since the
eighteenth-century UK (Danielmeyer and
Martinetz 2010). This bio-economic time-
dependence was the final proof of our natural
theory. It resolved immediately three mysteries
of three disciplines: the current linearity of G7
level economic growth, the life insurer’s current
success with linear extrapolation of G7 level life
expectancies, and the partial heritability of human
longevity (Herskind et al. 1996).

In 2014, we adopted the so far newest results
on national annual working times (Hubermann
and Minns 2007). Their smooth decrease since
1800 from 96 to 39 h per week showed that
systems engineering generates not only the tech-
nical infrastructure but implicitly also the annual
spare time required for enjoying life far above
biologic needs. Without it G7 level affluence
would neither be demanded nor produced. As
shown with the section on human nature, this
spare time completed the theoretically required
minimum number of six long-term variables for
quantifying the industrial society’s peaceful evo-
lution. The latter’s existence defines also every
optimal recovery from unpredictable disasters.
All variables and their corresponding data are
plotted in the following sections.

We derived six simple constructive relations in
and between the four subsystems. They have one
unique family of six irreversible analytic solutions.
Since individuals are biologically limited systems,
the family saturates inevitably per capita. This
excludes unlimited exponential growth per capita.
The appendix offers an extension for small popula-
tion growth or decline. As shown with all following
plots, the solutions reproduce the industrial society’s
data from its start in the eighteenth-centuryUK to its
current state without any fitting parameter.

This agreement will continue into the industrial
society’s asymptotic final state because all time
constants are inherited as directly measured

422 Industrial Society’s Natural Future



constants of the human species. Such solutions are
even without genetic stabilization very rare in
nature and new to economy and finance. Their
derivatives and analytic integrals are also valid
solutions for the macro-system. This allows
many cross-checks that lead to additional discov-
eries and explain details that were clearly
observed but not understood to date. Not knowing
the collective dynamics while managing the sub-
systems separately caused some of the new prob-
lems identified in this introduction’s first
paragraph. The other problems will turn out to
be natural and inevitable.

All data shown are 5 to 10 year’s averages of
the annual data published by the national statisti-
cal offices or by specifically cited sources. Short-
term fluctuations are hereby reduced to the plotted
size of the data because we showed earlier that
instabilities associated with the northern hemi-
sphere’s theoretical phenomenon of business
cycles have a base period of 2Pi years but are
damped down to half a cycle (Danielmeyer and
Martinetz 2009). Thus, the following agreement
with theory may give the impression that the data
show simulations of the theory. This is definitely
not the case. Finding and processing an order of
magnitude higher volume of original data and
converting inflation and exchange rates to US$
of 1991 or 2010 through two centuries with dif-
ferent national reference times took about half of
this chapter’s development time.

The entire database will be published in due
time together with the Mathematica programs for
all plots. The analytic solutions are plotted into
their data. Only one data point per nation is
required for locating every successful national
recovery completely with respect to the industrial
evolution. The appendix lists the natural and all
national constants used for the plots.

The main text follows the subsystem’s contri-
bution to the natural theory. Industrial engineers
do exactly what the theory describes. The econ-
omy is physically caught between human demand
and industrial supply. Since these three subsys-
tems are controlled by the laws of nature, the
financial subsystem must follow them, not vice
versa. The conclusion proposes a pragmatic solu-
tion for the problems associated with the financial

subsystem’s saturating or even negative interest
rates because time runs out especially for Europe
with half a billion individuals lacking a cohesive
constitution.

The outlook offers a timely example for using
all figures as benchmarks for long-term national
planning. The latter is now possible in spite of
unpredictable disasters because the industrial evo-
lution is immune to them as long as innovation
continues challenging human adaptability as the
slowest and, therefore, dynamically decisive
process.

Industry

Industrial engineers are renowned for the devel-
opment, quality, efficiency, and reliability of the
industrial society’s technical infrastructure termed
physical capital by economists. Less known but
equally important is the fact that systems engi-
neers design the annual working time required for
producing the GDP with technical progress opti-
mally and irreversibly into every production line.
Machines are not just input factors. They organize
and amplify annual working time with respect to
human power, speed, and/or precision for produc-
ing the GDP.

That optimizing annual working time gener-
ates simultaneously the annual spare time was so
far neglected because the latter has no direct eco-
nomic value. But without this spare time, the G7
level affluence far above biologic needs could
neither be enjoyed nor demanded and produced.
The maximum sum of weekly working time w
(t) and weekly spare time s(t) equals the agricul-
tural 16 h 6 days per week without vacation. We
use this maximum available active time of 96 h
per week now as unit and dimension of ϵ = 1 p. a.
for measuring annual working and spare time.
Then systems engineers split the flow of active
time according to

wþ s ¼ ϵ � 1 p:a: (1)

Using this natural unit makes sense because the
GDP contains the same unit and all real values are
in the end created by human work, including

Industrial Society’s Natural Future 423



natural resources and physical capital. Figure 1
shows this inevitable tradeoff for the maximum
available active time of 96 h per week:

We selected the data of the USA and Germany-
West Germany-Germany from the comprehensive
work of Hubermann andMinns as examples of the
most stable and unstable industrial nation
concerning political and territorial integrity.
Strawe reported nearly the same data but contrib-
uted also the earliest official working time of
1823. It is still close to the agricultural and phys-
ical maximum of 96 h per week. The lowest
annual working time is due to the Great Depres-
sion. Its decennium of declining employment
ended for the USA with a nearly vertical step in
1941 due to its entry into World War II. In order to
resolve this, we dropped our 5- to 10-year aver-
aging for 1930 and the transition 1941/42. But
even such a disruption left no long-term trace.
This means technical progress is quite immune
to disasters. Since there is no superior force pro-
viding such regularity over two centuries, there
must exist some “invisible hand” as proposed
already by the moral philosopher and customs
officer Adam Smith in 1776 for his early vision
of a self-stabilizing free market. The following
sections show that this hand is generally provided

with every individual’s inherited and educated
capacities.

Business administration measures labor with
its cost or employment on the microeconomic
level. But on the macroeconomic level, the cost
of labor is a bad variable because as income it
must essentially buy the GDP, and employment is
no variable at all since nations try to keep it high.
The section on details links this problem to mac-
roeconomics’ neoclassical paradigm.

Fortunately, systems engineers design the
annual working time w(t) optimally into the tech-
nical infrastructure kw(t) of every production line.
A priori there is no reason for assuming any non-
linearity beyond their product. Then an industrial
nation’s GDP per capita is generated with the
simplest possible relation

y ¼ wkw: (2)

The other part ks is designed for housing and
reproduction with a trade-off corresponding to
Eq. 1 between generally unpaid homework and
spare time. Their sum k(t) is the entire real
(inflation corrected) per capita value of the
national technical infrastructure. National statis-
tics list all three parts as physical capital:

USA
GER–WGER–GER

w(a→i)

s(a→i)

hours/week

1800 1850 1900 1950 2000 2050 2100
0
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40
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Industrial Society’s Natural Future, Fig. 1 Systems
engineers divide the flow of time into weekly working
time (plot with data) and the spare time required for
enjoying G7 level affluence. Sunday and sleeping time
are neglected. (a ! i) indicates that the observed working

time is actually a superposition of the agricultural and
industrial working times as quantified with Eq. 4. Original
data source: Strawe (1994) and Hubermann and Minns
(2007)

424 Industrial Society’s Natural Future



kw ¼ l k tð Þ ¼ k � ks: (3)

The appendix’ Table 2 shows l = 0.45 � 0.02
for Germany’s recovery from World War II.

Initially, industry left agriculture in its poor
state yo = ϵko with the maximum working time
from Eq. 1 and, including crafts enterprise, up to
1.000 US$ in their present value for Germany’s
preindustrial GDP per capita. For the first time,
their linear superposition

wa!i tð Þ ¼ yo þ yð Þ= ko þ kwð Þ (4)

is quantified for the entire transition from the
agricultural to the industrial society as shown in
Fig. 1. Considering today’s G7 level contribution
to the GDP of industrial food generation, pro-
cessing, and distribution, the industrial society
just absorbed agriculture as expressed with
Eq. 4. The following section on the economy
derives the analytic solutions for the industrial
GDP and the physical capital needed for Eq. 4.
Thus, the agreement seen in Fig. 1 without any
fitting parameter between the data and Eqs. 2, 3,
and 4 confirms using the simple product in Eq. 2
and the sum ϵ � 1 p.a. as natural unit for measur-
ing working and spare time.

That systems engineers created not only tech-
nical progress but implicitly also the spare time
required for enjoying and demanding affluence,
and education far beyond biologic needs is deci-
sive since these extensions allow mankind for the
first time to reach its genetic limits. Asking sys-
tems engineers to be less successful with achiev-
ing technical progress, generating four of the
industrial society’s six main quantities, and opti-
mizing the trade-off between working and spare
time would jeopardize their professional ethics
and the industrial society’s physical sustainability.

Annual working time and physical capital gen-
erate the GDP with Eq. 2. The fourth quantity,
annual spare time, could connect the GDP’s supply
with its demandwhen a real counterpart of kwwould
exist for life at home that could amplify spare time
for generating demand like kw amplifies working
time for supply. The next sections show that biology
found a genetically safe and orders of magnitude
cheaper solution for generating demand.

Economy

Production data are measured at the microeco-
nomic level with the detailed costs of taxable
added value tasks. Business administration inte-
grates them to the company level. National statis-
tical offices integrate them to the macroeconomic
level, correct them for inflation to get the real
(inflation-corrected) values, and reduce them to
internationally comparable data for the real per
capita values of the national GDP, physical capi-
tal, and labor. Then the data can be corrected for
foreign trade imbalance and converted to the lead
currencies US dollar and Euro. The new theory
agrees with all data through two centuries for all
successful recoveries, and the collective industrial
evolution is the first quality proof of economic
data collection and processing. Systematic mis-
takes of one per cent p.a. would have added up to
unacceptable discrepancies between data and a
new theory that has no fitting parameters.

Full agreement between theory and data
requires also quantifying the economic equilib-
rium between national supply and demand, both
to be independently determined. But for G7 level
affluence, there are no added value parts for mea-
suring and integrating demands. Individual
demands overlap in time, with different and
changing satisfaction, and without money’s prop-
erty of additivity. As already suspected by Jean-
Baptiste Say in 1803, national demand and its
theoretical equilibrium with supply cannot be
quantified within the discipline of economics.
The next section recalls how nature resolved this
bio-economic problem.

This section must yield the industrial produc-
tion variables for Eq. 4 with kw = lk from Eq. 3.
So far, macroeconomics used the fiscal deprecia-
tion rate gk for the physical decay rate. Then the
annual maintenance cost is given by gkk = mk y.
This depreciation is tax deductible and immedi-
ately useable for new investment. In Japan, equip-
ment bought for research and development could
be completely written off in its year of purchase.
When bought at year’s end, this equipment was
a tax- and maintenance-free Christmas bonus.
Depreciation is generally used by national tax
authorities for stimulating investment, employment,
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and economic growth. Then the effective physical
lifetimeG of physical capital against technical obso-
lescence and aging through wear and tear is much
larger than thefiscal lifetime 1/gk. Evenmore impor-
tant is the fact that G provides a memory for
the level of technical progress at the year the annual
addition _k to k(t) is produced. Then the annual
cost of maintaining its original purchase value is
given by

k=G ¼ m y: (5)

It identifies the required part m(t) of the GDP y(t).
We named it capital function. G will be directly
measured with Fig. 3. It yields for the USA, Ger-
many, and Japan the same constant result G = 25
years. Due to its proximity to the generation gap,we
named it generation constant.

Solving a problem with three unknowns
requires three independent equations. Equation 5
excludes exponential growth because economies
can only grow with an increasing capital coeffi-
cient k/y= mG, i.e., with _m > 0. This follows from
the fact that technical progress can only be
designed into the annual addition
_k ¼ mG _yþ _mGy of new physical capital, not into
the GDP of finished products nor into the already
accumulated physical capital. Since the latter
must be maintained simultaneously, economic
growth requires the annual flow

_k þ k=G ¼ m yþ mG _yþ _mGy � myþ _mGy (6)

from the GDP. The fastest recovery from loss of
k(t) results when the maximum affordable value m
of m(t) is used throughout as “saving constant” for
k(t). Then the identity has with one equation

m 1þ G _y=yÞ ¼ mð (6a)

for two variables m(t) and y(t) still no general
solution. But the initial and final states ko= moGyo
and k ¼ mGy are now defined with the measurable
and reported initial growth rate

b ¼ m=mo � 1ð Þ=G: (7)

For the nations used as examples, all three
parameters are listed in Table 1 of the appendix.
Successful recovery and the initial growth rate
depend on the level of technical progress given
by mo at the time of the decision to recover with m.
Obtaining the latter from national statistics is
explained in the appendix. Generally, it follows
from b and 0.08 � mo � 0.11.

Equation 6a quantifies the continuous decrease
of the growth rate with increasing capital coeffi-
cient moG � k=y � mG: The industrial society’s
growth saturates inevitably because of the limited
trade-off between saving for growth of physical
capital and maintaining its accumulated level.
When the capital function’s increase _m > 0 is
neglected, Eq. 7 is a solution of Eq. 6a, but expo-
nential growth is just one of the ideal pure cases
that are physically impossible.

The GDPs in Fig. 2 help now in discovering
the natural solution for Eqs. 6 and 6a. The GDPs
show two overlapping dynamics: one quantifies
recovery from disasters, the other the ideal peace-
ful industrial evolution. Two interrupted recovery
paths are dashed. The first shows how the USA
caught up with the UK due to the Monroe Doc-
trine’s separation of American and European
global ambitions.

European global ambitions. The second shows
that the first World War prevented Germany and
Japan from catchingupwith theUSA. This changed
dramatically with their cooperation afterWorldWar
II during the Cold War’s peace on G7 soil.

Industrial Society’s Natural Future, Table 1 National constants for recovery from national disasters

Nation
range

GER
<1938

GER and JAP
>1949

KOR
>1970

USA
>1940

PR CHN
>1980

m 0.15 0.25 0.26 0.18 0.38

mo 0.08 0.08 0.08 0.08 0.11

b p. a. 0.035 0.09 0.09 0.05 0.10

Halftime t 2005 1971 2010 1965 2045

426 Industrial Society’s Natural Future



All successful recoveries of the general GDP
y(t) converge into the collective industrial evolu-
tion a(t) defined as envelope of the best per capita
GDPs above all disasters. Although a(t) repre-
sents the peaceful existential conditions, the
suspected parallelism of a(t) and L(t) after their
normalization to the same industrial increase sug-
gests, and the next section confirms, that a(t) is
already dominated by demand because the mean
life expectancy measures progress toward man-
kind’s all-inclusive demand for longevity.

Since there exists no superior authority control-
ling five recoveries on three continents for five
generations, the convergencemust proceedwithout
a parameter specifying the division of annual work-
ing time between recovery and evolution. Figure 2
shows a smooth transition from recovery into the
evolution without overshoot. The only process that
achieves this is the growth rate’s linear division in
proportion to the future gapsa� y and a� a to be
closed for recovery and evolution:

_y=y ¼ b 1� y=að Þ þ _a=aÞ y=að Þ:ð (8)

Then linearity must apply also to approaching
asymptotically the final GDP y � a ¼ 75:000

US$ of 1991 (or, due to inflation, 110.000 US$
of 2010) p.a. per capita. This means for the indus-
trial evolution’s growth rate

_a=a ¼ 1� a=að Þ=E: (9)

Its solution

a ¼ a= 1þ e T�tð Þ=E
� �

(9a)

is known as logistic function. It is plotted in
Fig. 2 as envelope of the best national GDPs
above all disasters from the eighteenth-century
UK to the G7 nations. We named a(t) industrial
evolution and its growth parameter E = 62 years
evolution constant (Danielmeyer and Martinetz
2009). Its inflection point is at halftime in
T = 2040 where a ¼ a=2. The fit is exact to one
calendar year because of UK’s early exponential
path and the much later nearly constant slope at
G7 level convergence. E follows according to
Eq. 9 from the directly measured initial growth
rate 1/E = 0.016 p.a. Other properties of the
logistic function will be discussed in the next
section.

L(t), years
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Industrial Society’s Natural Future, Fig. 2 Average
life expectancies after birth (upper left) and recoveries
(lower right) of the USA (points), West Germany/Germany
(squares), and Japan (circles). Successful recoveries con-
verged into the industrial evolution a(t) established initially
by the UK as only world power before its stagnation after
1880; South Korea’s convergence is beyond halftime;
China enters its long nearly linear path after its Cultural

Revolution. Their scale in US$ 1000 of 1991 is adjusted to
show both theoretical inflection points at the horizontal
bar’s ends from L(t) to a(t). Its constant length and their
identical shape relative to their industrial change yield the
industrial society’s mean maximum life expectancy L(t).
The dashed paths are explained in the text. Updated from
Danielmeyer andMartinetz (2009). The early GDP data are
from Mitchell’s international tables (Mitchell 1988)
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Equation 8 has with Eqs. 9 and 9a the simple
solution 1=y ¼ 1=aþ 1=að Þeb t�tð Þ so that

y ¼ a= 1þ e T�tð Þ=E þ eb t�tð Þ
� �

: (10)

A fast check is possible by inserting Eqs. 9a and
10 into this simple solution where both exponential
terms of the same kind cancel separately. t is the
halftime of national recovery listed in the appen-
dix’ Table 1. y(t) converges into a(t) for t> t + 1/b.

The GDP grows when the exponential terms in
the denominator decrease. There is no alternative
since every nominator of Eq. 10 consists of a
component of the asymptotic final state. According
to Eq. 7, the recovery term removes technical limits
and obstacles. The next section shows that the
slower evolutionary term removes human limits
and obstacles. It follows that Adam Smith’s accu-
mulation of wealth introduced in 1776 is not the
industrial society’s goal. Its real goal is reaching the
given human limits with technical and human
cooperation by removing both kinds of obstacles
as they appear after earlier obstacles are removed.

“As they appear” is for more than one kind of
obstacle only possible with the unique structure of
Eq. 10 where the exponential terms compete in the
denominator. Financial wealth grows exponen-
tially with the nominator. There the faster process
would always win, and human maturation will be
missed. Not knowing this fundamental difference
caused the Great Depression after 1930 and the
financial disaster after 2007. The next section
shows why industrial engineering and human
nature dominate the economy and finance.

Inserting the solution Eq. 10 and its time deriv-
ative into Eq. 6a yields with some patience and the
identity cegt� eg(t + Dt) forDt= g�1 ln c the solution

m ¼ myk=y (11)

for the capital functions plotted in Fig. 4. They
agree automatically with their data because the
original data shown for y(t) and k(t) agree with
their data in Figs. 2 and 3. Discrepancies between
the measured values of m from Eqs. 7 and 11 and
the officially published values (see the appendix)
disclose central planning and/or irregular
reporting practices. They destroy also the

parallelism expected theoretically between mGy
and k(t) in Fig. 3 for recovery and evolution.

The auxiliary function yk(t) is the direct result
of the above patience. Its only difference to the
GDP y(t) is that its exponential terms are delayed
by

Dtk ¼ b�1ln 1þ bGð Þ (12)

and

DTk ¼ E ln 1þ G=Eð Þ ¼ 21 years: (13)

Inserting Eqs. 11, 12, and 13 into Eq. 5 yields
finally

k ¼ mGyk

¼ mGa= 1þ e TþDTk�tð Þ=E þ eb tþDtk�tð Þ
� �

:

(14)

Both time-shifts are measured with the length
of the four bars in Fig. 3. The normalizing factor
for comparing y(t) with k(t) is mG . Well below
halftime of recovery, the time-shifts for Eq. 12 are
different (13 years with b = 0.09 p.a. for Ger-
many, 16 years with b = 0.05 p.a. for the USA)
but yield the same effective physical lifetime

k in 1991 US$ 1000 p. capita
y normalized to k G&J

USA

1900 1920 1940 1960 1980 2000
0
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100
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Industrial Society’s Natural Future, Fig. 3 Time-shifts
between GDP (dashed, taken from Fig. 2, normalized with
the factor mG) and physical capital (plots in data) for the
USA and Germany and Japan disclose the generation and
evolution constants G and E
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G = 25 years for k(t). This was the first measure-
ment of this important time constant (compare its
introduction with Eq. 5). Its proximity with the
generation gap means that the industrial society
respects implicitly the fairest intergenerational
contract for maintaining the value of the inherited
physical capital: Every generation renews it on
average once during its time of responsibility.

The time-shifts observed here between the
charging flow and the stored result k(t) are the
analogue for irreversible processes of the phase
shifts known from periodic processes. This essen-
tial information on the industrial society’s reaction
times was always hidden in the data. It was just
not detectable with the exponential approximation
because of the exponential function’s physically
impossible property of unlimited exchangeability
between value and time.

The slight bends seen for Germany and Japan
after 1980 are due to the convergence of y(t) into
a(t) in Fig. 2. Beyond convergence the time-shifts
are constant for 21 years (upper lines) and yield
with G from Eq. 13, again the evolution constant
E = 62 years known from UK’s eighteenth-
century growth rate.

Measuring the constancy of E through two
centuries required patience beyond 2010 until
the length of the upper lines in Fig. 3 was clear.
The decisive role of systems engineers for creat-
ing and maintaining the industrial society’s tech-
nical infrastructure could not have been confirmed
earlier than 240 years after Boulton and Watt’s
first steam engine with acceptable efficiency for
production lines.

Our first analytic solutions for the macroeco-
nomic production variables show that real growth
per capita requires removing two kinds of obsta-
cles as they appear in recovering from disasters
and the industrial evolution. Both reaction times
are directly measured with the time delay of phys-
ical capital with respect to the GDP. Industrial
engineering determines the supply of goods and
services completely. The only parameter that can
and must be nationally fixed is the saving constant
m for physical capital. It determines time and
speed of recovery and the technical infrastruc-
ture’s final level. “As they appear” specifies one
unique family of analytic solutions where the

removal of both kinds of obstacles competes in
the denominator. This structure favors the early
innovators like the UK because the gap to be
closed for catching up with industrial evolution
was in the eighteenth century much smaller
than China’s and India’s gap in the twenty-first
century.

Human Nature

The preceding section described the first measure-
ments of the industrial society’s physical lifetimes
and/or reaction times. They are measured in situ
and are here to stay as effective time constants for
every human civilization. This section shows that
they are heritable, i.e., stabilized by the human
genome, and that the industrial society’s long-
term future is predictable in spite of unpredictable
disasters, as long as innovation challenges human
adaptability as the slowest and dynamically deci-
sive process. Then optimal medium-term recover-
ies from unpredictable disasters are also
predictable because of the “optimality condition”
of Eq. 8.

For long-term equilibrium, the supplied GDP
must equal the demanded GDP. Annual spare time
is the compatible and exactly known counterpart
of annual working time. Then symmetry with the
supply of Eq. 2 would require just a counterpart
on the side of demand for physical capital on the
side of supply.

In search of a permanently measurable quantity
with the shape of a(t), we found in 2009 the mean
G7 life expectancies L(t) at birth shown in Fig. 2.
The lowest circles are caused by higher infant
mortality due to Japan’s later industrialization.
The plot is the visually best fit through all other
data assuming the simplest possible logistic
dynamics with the industrial evolution’s growth
parameter E:

L� Lo ¼ L� Lo
� �

= 1þ e TL�tð Þ=E
� �

: (15)

Its parameters are Lo= 30 years, the life expec-
tancy known as the medieval minimum for stable
populations with average harvests, and the
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asymptotically approached maximum mean life
expectancy L ¼ 118 years. Since antiquity it was
expected near 120 years. After two orders of mag-
nitude growth of the GDP per capita, the G7
passed the inflection and halftime point of the
mean life expectancy in TL= 1981. Rainer
Ansorge found a robust numerical convergence
to these parameters (Ansorge 2010).

Only a factor of 2.4 in the GDP is required for
reaching on average the maximum mean life
expectancy for the G7 level lifestyle. The life
expectancy measures progress toward longevity,
the all-inclusive top demand. Longevity is to a
relevant extent heritable (Herskind et al. 1996).
Life insurers eliminate all deaths due to identifi-
able national disasters, extrapolate the resulting
mortalities and existential conditions, and obtain
the insurable life expectancies L(t) currently up to
115 years. With a(t) from Eq. 9a, the disaster-
corrected existential conditions were for the first
time quantitatively known. This allows replacing
the life insurer’s very complicated numerical
approach with the simple analytic integral named
bio-economic relation:

L ¼ Lo þ L� Lo
� �

=La
� � ðtþL

t

a tð Þdt

ffi Lo þ L� Lo
� �

= 1þ e T�L=2�tð Þ=E� �
: (16)

Since L < 2E, the approximation of the exact
logarithmic integral with the logistic function is as
good as observed in Fig. 2. The shift between both
inflection points shown with the bar in Fig. 2 is
theoretically given by the identity and measured
as the bar’s length with the result

T � TL � L=2 ¼ 59 years: (17)

Its extrapolated value L ¼ 118 years is now
directly measured with its time-shift. This first
measurement of the maximum unisex life expec-
tancy will be reached in the twenty-second
century.

The bio-economic relation Eq. 16 resolved
three mysteries of three disciplines (Danielmeyer
and Martinetz 2010): the current linearity of G7
level growth, the life insurer’s success with linear

extrapolation of the disaster-corrected mortality,
and the fractional heritability of the life expec-
tancy, because only the part adapted to within
the generation gap can be heritable.

The lower dashed path for L(t) in Fig. 2 would
theoretically result when integration and averag-
ing would proceed over the life insurer’s predicted
mean life expectancy L(t). But predictions cannot
be embodied. Naturally embodied is the inherited
maturation program from birth to the genetic limit
L with the proportionality of Eq. 9 between the
current growth rate and the future gap to be
closed. Equation 9 includes what Eq. 16 quan-
tifies: the human capacity to monitor, integrate,
and average over the existential conditions, adapt
to themwith the partially inherited gains of the life
expectancy, and report the final result with death.
This master plan protects the genome from exter-
nal manipulation because it allows maturation
without external monitoring and control. The
logistic function represents life’s condition sine
qua non.

Since only the part of longevity acquired
within the generation gap can be passed on to
the offspring, the industrial evolution extends
over 16 generations instead of the one to four
generations experienced individually during the
industrial evolution. Now the industrial society
can be quantitatively understood as the largest
possible extension of the human maturation
program for reaching mankind’s given limits
through social and technical cooperation. This
natural goal explains why the industrial society
can be developed at all, defended against unnatu-
ral goals, and quantified with the rigor of the
natural sciences.

The mean life expectancy is already the inte-
grated result of satisfying the relevant demands.
A counterpart of physical capital, which amplifies
spare time for generating demand like kw amplifies
working time for generating supply, is obviously
not required for long-term equilibrium between
demand and supply. In fact, biologic processes
are subconsciously regulated on the molecular
level with enzymes, hormones, and proteins. Con-
scious actions are controlled with only100 bits per
second and electric signals that are synthesized
with the brain’s inherited and educated capacities.
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This architecture for generating demand requires
less than 100 Watts and comes by heritage for
free. It is orders of magnitude more effective
than the 6 kilowatts per capita required for gener-
ating and maintaining the G7 level lifestyle with
the industrial society’s technical infrastructure
worth 105 US$ per capita.

On the other hand, the natural theory’s data for
spare time and the evolution constant E open a
classical way for quantifying equilibrium between
demand and supply. Figure 4 collects the operat-
ing costs as parts of the GDP of per capita leading
nations during their so far best time:

The law and order costs (upper data) exclude
all transfers but include all costs from the legisla-
tive to defense. They are proportional to the
national population but beyond this not just pro-
portional to the GDP but to the accumulated phys-
ical capital. The next section explains this result
with the increasing social stress due to the nation-
ally and internationally diverging distributions of
incomes and wealth.

The educational data in Fig. 4 contain all
national costs from kindergarten to university.
Their doubling within 15 years was capitalism’s
answer to the “Sputnik Shock” caused in 1956
when socialism orbited the first satellites. The
next section continues this track with the social
consequences. Here we assume there exists an
indestructible but appreciating combination h(t)
named human capacity of educated and inherited
capacities. We assume they organize and amplify

annual spare time for enjoying and demanding G7
level affluence like kw(t) amplifies annual working
time for supplying that affluence. With human
capacity for demand, we avoid confusion with
Gary Becker’s human capital used in 1964 for
quantifying the economic value of the work
force. The human capacities’ educated component
can now be estimated with

he=E ¼ na: (18)

This defines in analogy to Eq. 5 a national
parameter n(t) named capacity function for
maintaining the educational level. Accepting n ¼
0:07 from Fig. 4 as final level yields he ¼ nEa
¼ 4:3a=ϵ: This is a minimum because it does not
include the parent’s priceless education. The evo-
lution constant E is the effective reaction time of
the actually needed human capacity hs that com-
bines he and the inherited capacity.

Both capacities are per capita indestructible
and, like knowledge, nonadditive since their con-
tents can compete for making decisions. For long-
term equilibrium between the evolutionary
demand and supply, the formal value of hs follows
with the generation of a(t) according to Eq. 2 from

shs ¼ a ¼ wkw: (19)

Eliminating both times with Eq. 1 yields a form
with all exponential terms in the nominator:

USA

G&Jannual cost/GDP
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plots: m(t)
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Industrial Society’s
Natural Future,
Fig. 4 The costs of
keeping Germany, Japan,
and the USA just
operational exceed one third
of their GDPs. The plots are
the capital functions of
Eq. 11
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ϵ=a ¼ 1=hs þ 1=kw: (20)

This relation has again the property that the
obstacles can and must be removed as they appear
because the value a/ϵ of the annual national output
cannot be larger than the smaller of both storable
quantities. For long-term equilibrium, kw/hs= s/w.
Inserting kw = lmGa from Eqs. 2 and 5 yields
finally for the evolutionary level

hs ¼ a= ϵ � 1=lmGð Þ: (21)

With l= 0.47 from the appendix andm ¼ 0:26,
Germany and Japan require hs ¼ 1:7a=ϵ for final
equilibrium. The USA need a little more due to
smaller saving and larger consumption. But even
that is well below the final educational level he
¼ 4:3a=ϵ from Eq. 18.

This first comparison between educated and
required human capacity shows that G7 level
nations installed implicitly a sufficient safety
buffer against a limiting role of education for the
industrial society’s evolution except for Germany,
as Fig. 4 and the Pisa Tests showed. It follows that
human capacity’s inherited part dominates and
limits the industrial evolution. This agrees with
the role of the bio-economic relation L(a) of
Eq. 16.

Equation 20 allows deriving the maximum part
of the GDP left for education and consumption. a(t)
saturates with increasing kw, whereas the sum
b(t) = 2k/G ffi 4kw/G of maintaining physical cap-
ital and law and order increases continuously as
shown in Fig. 4. Differentiating a(t) � b(t)
with respect to kw yields the maximum difference
for k̂w ¼ 3=2ð Þhs: The integers result from the
square root 2/5 of 4/G. Eliminating s(t) in Eq. 19
with its trade-off Eq. 1 yieldsw ¼ ϵ= 1þ bkw=hs� �
¼ 0.4ϵ. Thereafter w(t) saturates as shown in Fig. 1
because the evolution’s optimal industrialization
must implicitly wait for the adaptation of hs.
Explicitly this means waiting for human demand,
a situation that was experienced already in China
when a nationwide housing project benefittedmore
speculators than tenants in 2010.

Since hs is indestructible and w(t) fixed by tech-
nical progress, destruction of the technical infra-
structure down to kw � hs destroys long-term

equilibrium and reduces the GDP of Eq. 19 to the
recovery GDP y = wkw of Eq. 3. Annual pay
necessarily follows the national GDPs, but recov-
ery can be much faster than starting from agricul-
ture because hs maintains its evolutionary level
when n keeps its relative level. This explains the
fast recoveries of West Germany, Japan, and South
Korea in Fig. 2. China invited foreign experts and
required joint ventures.

Human nature and industry dominate the econ-
omy with the division of time of Eq. 1, the bio-
economic relation of Eq. 16, the optimality con-
dition of Eq. 8, and the genetic constantsG, E, and
L . The per capita saturation of G7 level growth
observed with all four figures is theoretically con-
firmed against any defense. The theoretically
prominent complications caused since 1923 with
the neoclassical paradigm’s fractional exponents
are discussed in the section on details.

Finance

During the Cold War’s best time of peaceful
growth on G7 soil, the financial sector acquired
a dominating influence over business, human life,
and politics. The mission of the European and all
national central banks is stabilizing the currency
and, as supporting goal, stabilizing the growth and
inflation rates near 2% each. This banking para-
digm means stabilizing exponential growth for-
ever. It is based on an empirical relation between
inflation and employment called Phillips curve.
Believing in it as a natural growth law (which it
is not), central banks and national governments
injected since 1980 trillions of US dollars into
their economies for stopping saturation and recov-
ering exponential growth per capita.

General banks take care of the people’s sav-
ings, investments, and loans. For the banking
paradigm’s exponential growth, an interest rate
of 4% p.a. would maintain saving competitive
with investing into business. But since 2010 the
interest on G7 level saving accounts is practically
zero. This rate cannot be due to the generally
quoted subprime mortgage disaster of 2007
because the following section on the outlook for
Europe shows with Fig. 6 that this disaster left
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hardly a trace in the medium-term growth of
European nations.

Quoted are now external and internal risks
from terrorism, refugees, tax havens, and pro-
tecting the Euro to rescuing banks, high bank
leverages, interbank confidence, compliance, and
consolidation pressure. But zero interest must
have a deeper cause than management problems
of a subsystem that depends on non-zero interest.
After all, the business policy of the most powerful
financial institution is fundamentally challenged
by the total failure of the largest experiment car-
ried out under this policy for nearly 40 years.

This failure followswith the rigor of the natural
sciences from the constructive relations between
the natural subsystems. The real cause of zero
interest is that all main variables saturate per
capita because individuals are limited systems
per unit of time flow ϵ (Eq. 1), per annual supply
due tom (Eqs. 6 and 6a) and law and order, and per
annual demand due to L . Saturation would also
follow for education from pursuing the analogy to
m for n introduced after Eq. 18. For peace on their
soil, the average real per capita growth rates of G7
level GDPs will fall from now 0.9% p.a. to 0.4%
in 2100. For the lower half of families with most
of the children, the effective growth rate is already
negative.

Since money is not subject to the laws of
nature, it can theoretically grow exponentially
with the principal in the nominator. This is per-
fectly fine for regular credits, but not for long-term
policy. Not knowing this fundamental difference
caused the financial problems listed in the intro-
duction: financial instability, diverging distribu-
tions of incomes and wealth, coexistence of the
largest public debts and private fortunes in history,
and also zero interest. A recollection of the finan-
cial decisions made during the industrial society’s
best time for accumulating wealth helps under-
standing how the inequality problems came
about and how they can be resolved.

Capitalism’s answer to the Sputnik Shock
shown in Fig. 4 consisted essentially of improv-
ing top education and research in the natural and
engineering sciences. Together with the indus-
trial reaction, the 15-year effort created the
industrial society’s largest technology push to

date. This was a unique time of commitment,
confidence, and optimism mainly in the USA,
Japan, and Western Europe. Many high technol-
ogy parks were built in the 1960s for direct coop-
eration between academia and industry. Some
industrial labs followed AT&T Bell Labs’ Area
1 policy of selecting worldwide postdocs for
individual research hoping for discoveries that
open new markets. Information theory and cod-
ing, solid-state electronics, optical communica-
tion, and software systems were invented there
and developed in a cooperative spirit. In the end
socialism lost its competitive power due to this
technology push.

The courage of giving fresh postdocs 3 years of
individual free research (no teams) with industrial
effectiveness and without any other obligation
requires a locus genii that takes time to develop
with a steady flow of international top-level post-
docs, on-the-job language and writing courses,
free links to government and university labs,
good library and laboratory services, direct rela-
tion to one permanently assigned patent attorney
who applied within 2 weeks before conferences,
tenure only for primus inter pares management
having their own labs, an individual scientific
career path to the associate executive director
level, and ideally also a safe monopoly market of
the parent company like national telecommunica-
tions for AT&T called “Ma Bell” by the people.
30,000 of a million AT&T employees worked at
Bell Labs. ABB, Alcatel, GE, GM, Hitachi, IBM,
Nokia, Philips, Siemens, Toshiba, and many other
global companies followed suit and built new
laboratories in technology parks far from the pres-
sure of immediate manufacturing needs.

The contrast between great advances in science
and engineering and a weak economy prompted
the USA’s first decision to end the US dollar’s
gold backing in 1971 in the hope of recovering
exponential per capita growth. That was just-in-
time because the second move came with printing
money against the fourfold oil price hike of
1973–1975. Since the growth rate continued its
decrease, the final move came in 1981 with cut-
ting the top tax rate for the rich to 28% with the
immediately criticized argument that the freed
money would “trickle down” to the poor. With
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due delay the UK, Japan, Germany, and many
other nations followed suit.

Yet even such a tax cut could not increase the
growth rate. Instead, pension funds and financial
analysts discovered the opportunity to stimulate
profit instead of growth by innovating managerial
and financial processes. This started the diver-
gence of executive incomes. Pension fund man-
agers and financial analysts demanded fast return
on investment and increasing shareholder value as
top criteria for corporate policy. Cash-strapped
communities were convinced to selling their infra-
structure and leasing it back. Banks created unlim-
ited derivatives just by different packaging and
called them products. Hedge funds were invented
and speculations against the Euro allowed. Bank
leverages exceeded the factor 10.

This concerted effort prepared the stage for an
uncontrolled monetarism. Finally, the subprime
mortgage crisis culminated in the global banking
disaster after the US government refused the Leh-
man Brother’s bailout in 2007. With the expres-
sion “house poor,” a new kind of poverty
emerged. Since 1981 trillions of dollars or Euros
were injected into G7 level nations for stimulating
growth, after 2008 also for stabilizing the Euro
and many European banks. The final coup was
creating “bad banks” just for sweeping junk
papers under the carpet.

As short-term result, the technology push had
not enough time to materialize. Central sales and
just completed research divisions were closed
because their corporate mission prevented buying
and selling manufacturing divisions. MBAs and
lawyers replaced engineers and scientists in man-
agement and supervisory boards. This required a
booming management consultant business
because boards were professionally too narrow
for a global market where technology became a
commodity for locating factories in regions with
cheap labor. Streamlining until every company
looked simple enough for lean top management
became a goal for management consulting also
because it extended relations, sometimes ending
with an attractive position.

The divergence of incomes was also driven by
the consolidation of business from independent
crafts and groceries to global industry and

supermarket chains. This silent social revolution
created the most powerful hierarchy in business.
The shift from political to global business power
is highly visible. Transnational trade agreements
are the logic consequence. Some professionals
had the chance of starting with the research
boom in the USA and experiencing the full revo-
lution during their careers by finishing in a stream-
lined European board.

But G7 level growth continued saturating, and
instead of trickling down, the injected money
found its way into the top decile’s accounts.
From 1942 to 1981, its share of the USA’s annual
income was stable at 34%, and then it grew nearly
linearly to 51% in 2012 (Saez 2014). The worst
consequence is that pension funds dry out fast
with negligible growth and interest. Assuming
the entire pension system consists of one big
fund, its required per capita volume is

k� ¼ s p=zð Þy (22)

(Danielmeyer and Martinetz 2009). Compared
with the national physical capital of Eq. 5, this
pension fund must be maintained with a capital
coefficient of

m�G� ¼ k�=y ¼ sp=z: (23)

For estimating the fund’s required volume,
assume it pays an interest rate of z = 1%
p.a. above the rate of inflation for a really mini-
mum pension level per individual of s = 0.1 rel-
ative to the real GDP per capita. The retired
fraction p(t) of the population depends on its age
distribution. A not too simple model calculation
with a logistic tail for L(t) from Eq. 16 yields for
this century p = 0.6 and 0.4 for an effective
retirement age of 60 and for an increase in pro-
portion to L(t) from 60 to 85 in 2100, respectively,
when the mean life expectancy will be 107 years
(Danielmeyer and Martinetz 2009). Taking the
average value p = 0.5 yields in 2100 toward the
end of this century a capital coefficient
m�G� = 5 years for the required pension fund.
For a real fund with G� = 25 years, the capital
function’s value must be m� = 0.2.
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There is only one such fund per G7 level
nation, namely, the total value of its physical
capital. But that is already owned by the rich.
For the USA, the top quintile owns 80 � 5% of
total wealth (Saez 2014). This means that even for
a 1% growth rate above inflation and increasing
retirement age, there will be no alternative to
returning to a fair distribution of incomes and
wealth and reviving the classical tax-based pen-
sion system. This example shows how simple and
useful analytic solutions are compared to numer-
ical approximations.

Now the highly profitable time of fast recovery
is over and with it the main social ordering power
for the first two generations after World War
II. The social situation disclosed by Emmanuel
Saez and Thomas Piketty in 2014 is quantitatively
confirmed with an analytic theory that unites all
dynamic subsystems of the industrial society for
this century. So far, the consequence was the
electorate’s observed split into an international
top class and a disappointed national majority.

The responsible governments allowed this
social splitting consciously but without knowing
the so far hidden fundamental cause. The resulting
disorder can and must be corrected. The enormous
subsidies for recovering exponential growth and
rescuing banks were especially critical for the
European Union because it lacks the uniting
power of a common constitution.

Details

This natural theory could only be developed for
per capita quantities because reproduction and
immigration rates are unpredictable. In the long
run, even very small monotonic changes spoil
analytic solutions. However, by replacing G with
Gp = G/(1 + gpG), the theory accepts small and
slowly changing population growth with rate gp.
The impact of this approximation follows from
three examples.

For poor nations, a population growth rate of
gp= 4% p.a. all but excludes catching up with the
G7 because that rate will exactly double the cost
of just maintaining physical capital’s value per
capita. This can already be seen with Eq. 5 and

its physical lifetime of G = 25 years. The PR of
China knew why it stabilized its population with a
tough but successful one child per family policy,
but it must already correct it for preventing the
projected decrease to 0.75 of the female to male
ratio in the relevant age for reproduction.

Japan’s population is expected to decrease for
the foreseeable future with rate gp 	 � 1%
p.a. This will save with Gp = 33 years about
25% of the maintenance cost of physical capital
compared to the case of constant population. For-
tunately, the natural theory allows controlled
retreat from untenable levels of affluence. The
capital function must be reduced from 0.21 to
0.17. As observed, the real GDP decreases in
spite of subsidizing growth with building.

The natural theory’s second long-term require-
ment is using the annual working timewith the unit
of Eq. 1 as macroeconomic labor variable. So far
economics used employment or cost of the work
force. This lead in 1923 to the neoclassical produc-
tion function y = A(t)‘’k1 � ’ as theoretical work-
horse. Since this is unlike Eq. 2 a static equation, all
variables were assumed to grow with the same
constant exponential growth rate except for the
technical progress function A(t) with an estimated
growth rate near 2% p.a. But no original producer
can separate technical progress from the price of
physical capital. Equation 2 leads to _w=w ¼ � _k=k

for constant GDP. The relative value of new indus-
trial physical capital increases in proportion to its
saving of relative working time. This is the natural
pricing rule for physical capital.

The sum of neoclassical exponents must be
1 because of dimensional coherence and scaling
with population. Another so far silent reason for
fractional exponents is that housing is included
although it is designed for reproduction at home.
Such exponents are physically wrong, and neoclas-
sical production functions are underdetermined in
spite of two fitting possibilities. The natural
production function of Eq. 2 is completely deter-
mined without any fitting. This is one of the best
examples for synergetics: finding simple solutions
for seemingly insoluble problems by accepting that
macro-systems exist only because they are stronger
than the sum of its subsystems. Keeping micro- and
macroeconomics together in one academic
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discipline is easy when their natural differences are
understood and accepted as inevitable.

Figure 5 shows Germany’s predicted GDP
with a parametric plot over the entire evolution.
Its first 250 years before 1950 are now irrelevant.
The predicted wide maximum is due to the indus-
trial evolution’s smooth dynamics. According to
Eq. 13, it peaks 21 years after the industrial evo-
lution’s halftime in 2040. The evolution’s defini-
tion with Eq. 9 can be directly read from the axis
intersections of the dashed line for _a=a: Since _y=y

converges into it without overshoot, Eq. 10
describes the optimal path from the deepest level
of destruction to the final level a without fitting
parameter. This excludes the existence of a third
kind of obstacle for the industrial society. The
natural theory is complete.

The small detail’s data are collected for Ger-
many in Table 2 of the appendix. Their agreement

with the investment peak of _k ¼ k _y=yþ _m=mÞð
from Eq. 5 shows the advantage of analytic solu-
tions. All derivatives and analytic integrals are
also valid solutions for the system. We named
the new phenomenon convergence crisis. The
peak and economic growth are physically due to
the term _mGy in Eq. 6. Just this term was neglected
to date. The USA’s smooth development was short
of showing a peak because that appears only for
b > 0.05 p.a.

Without having the real explanation, Japan
coined the term “hollowing out” for its conver-
gence crisis. Assuming that due to cheaper
imports from China about 4% of its manufactur-
ing was lost, Japan began immediately with
injecting money into new housing and Tokyo
office towers (dashed). By now it is clear that
this classical policy could only deepen and extend
the crisis. In Germany, employment collapsed
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Industrial Society’s
Natural Future,
Fig. 5 Parametric plots
over the industrial evolution
(Eq. 10) of its growth rate
_a=a, West Germany’s
annual addition of physical
capital (with data during its
convergence crisis’ peak
from Table 2 in the
appendix), and its rapidly
decreasing growth rate after
1950 from Eq. 8. Both
continue into Germany’s
evolutionary saturation

Industrial Society’s Natural Future, Table 2 Data processing for West Germany’s convergence crisis

Page Quantity, unit 1960 1970 1980 1990 1993

46 Population P, millions 55.4 60.7 61.5 63.3 65.5

678 K, 109 DM of 1991 3291 5719 8479 10,989 11,975

678 Kw/K 0.42 0.44 0.45 0.45 0.46

678 DKin 245 362 418 502 487

678 DKout 38 73 131 188 210
_K ϵ(DKin � DKout) 207 289 287 314 277

_k _K/P in 103 US$ of 2010 2.8 3.5 3.4 3.6 3.0

Source: Statistical Yearbook of Germany 1995, Metzger-Poeschl 1996
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initially by 4%, but thereafter West Germany’s
63 million people were saved by well-timed uni-
fication with 18 million East Germans and their
huge demand for renewing their entire infrastruc-
ture with G7 level standards.

Table 1 of the appendix predicts the PR of
China’s convergence crisis from 2045 to 2055.
Due to its longer linear path, China’s peak will
top Germany and Japan’s peak by a factor 2 to
3. With a population of 1.6 billion instead of West
Germany’s 63 million, China’s convergence crisis
will cause the industrial society’s largest imagin-
able financial and social disaster.

Outlook

Figure 6 shows the change Dk of net physical
capital over the change Dy of the GDP between
2006 and 2014 for European nations. Both quan-
tities were obtained from Eurostat’s tables
(eurostat.eu) for 2006 and 2014. Luxembourg
and Norway grew exceptionally because they are
dominated by finance and offshore oil, respec-
tively. Such sectors have no special influence on
the life expectancy because the latter requires
balanced educational, medical, social, and techni-
cal progress. All other nations follow the natural
theory’s course (dashed) surprisingly well, not
only the European G7 level nations. The UK’s
departure from industry started already with the
oil price hike in 1973. Except for Ireland (ie),

Spain (es), and Greece (gr), the subprime mort-
gage crisis left in the critical 8 years hardly a trace.

The top positions are occupied by Austria (at),
Denmark (dk), and Sweden (se). These countries
profited from Europe’s recovery because their
technical infrastructure survived World War
II. The central G7 level group is quite homoge-
neous. The lower group consists mainly of nations
that are still recovering fromWorldWar II because
in the socialist block they could not benefit from
the Cold War’s Western boom.

Longer Dk/Dy-lines for the top nations should
not be mistaken for stronger growth. Their aver-
age levels are in the denominator of both growth
rates (besides the factor of 8) so that for equal
growth rates, the top lines should have three
times the length of the low group. Since the top
lengths are much shorter, the entire continent’s
growth rate saturates.

Europe’s future depends essentially on a func-
tioning common market for a dozen G7 level
nations, another dozen relatively poor and/or
politically critical nations, and the Russian Feder-
ation. The latter is geographically invincible, has
again global ambitions, and is with 150 million
people the natural enemy of a strong European
Union with 500 million people. The USA and
China have also increasing internal problems,
but they can defend themselves.

The European Union can no longer afford
fighting the laws of nature by injecting tens of
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billions of Euros per year without any possible
success for increasing the growth rate. That
money doesn’t trickle down but ends up in top
accounts and tax havens. Asking the most suc-
cessful nations to be less successful would impede
Europe’s physical sustainability without solving
the problems of the other nations and offend the
professional ethics of systems engineers espe-
cially in Central Europe where the “ingenieur”
derives from genius instead of engine.

All national media know that the European
Union redistributes 90% of its budget also for
integrating the poorer member states. The media
must stop criticizing the 10% used for administra-
tive tasks that all members would need separately
with altogether much higher costs. Not the young
but national media, languages, and governments
are the obstacles to unification.

Reversing the divergence of incomes and
wealth requires much more time than legislative
periods permit. The evolution constant E = 62
years is the natural time horizon for sustainable
planning because it is the reaction time for human
maturation, mean life expectancy, and industrial
evolution. This coincidence and proximity to 2Lo
suggests that aging is due to a well-defined pro-
cess involving parents and grandparents.
Investing this time now with dedicated patience
is Europe’s last chance and challenge for survival
in China’s and North America’s world.

Conclusion

The industrial society’s theoretical base is now
complete. Six simple constructive relations unite
four subsystems and their associated academic
disciplines with a unique family of six analytic
solutions. They are completely determined by
three inherited time constants of the human spe-
cies and two national constants for the educational
and technical infrastructure.

This progress was possible with the discovery
of two directly correlated pairs of variables evolv-
ing from the eighteenth-century UK to the current
G7 level nations nearly without a trace of financial
and political disasters: the life insurer’s disaster-
corrected national predictions of the unisex life

expectancy after birth and the envelope of the
best real (inflation-corrected) GDPs per capita
above all disasters named industrial evolution and
the engineer’s division of the annual flow of active
time into annual spare time and paid and unpaid
annual working time. Initially, agricultural and
industrial annual working times overlap. Physical
capital for paid work in production and housing for
unpaid work in reproduction must be separated.
The latter may allow quantifying the average
home evolution. Then Gary Becker’s pioneering
work of 1964 could also be completed after half a
century with quantitative forecasting power.

The best time for global development was the
Cold War’s peace on G7 soil. After 1950 the
annual spare time became implicitly the main
driver of growth into affluence far beyond bio-
logic needs. After 1980 writing and copying soft-
ware for robot manufacturing became so easy and
cheap that employment shifted to stand-by jobs
known from supervising chemical production.
The cost of hard labor in classical disciplines
became the cost of time across disciplines. School
and university teaching adapted too late, espe-
cially in Europe.

Due to the Great Depression in the USA and
the destruction of Germany and Japan in World
War II, the per capita destructible physical capital
showed two constant time delays relative to the
normalized GDPs. Before the transition in the
1980s, three observed delays allowed the first
measurement of the physical lifetime (25 years)
of physical capital against technical obsolescence.
After the transition, the delay allowed measuring
the superposition of the physical capital’s lifetime
and the human reaction time (62 years) to improv-
ing existential conditions.

The corresponding effect between the indus-
trial evolution’s existential conditions and the
industrial increase of the mean unisex life expec-
tancy at birth resulted in the latter’s constant pre-
cedence (59 years). Human life integrates and
averages linearly over the existential conditions
from life to death. This leads to a life expectancy
whose relation to the industrial evolution is an
invariant of the macro-system named bio-
economic relation. This precedence equals half
the final average life expectancy of 118 years.
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All three time constants are encoded with the
heritable human maturation program. They fix
and limit the dynamics of all variables so that all
data are reproduced without any fitting parameter.
The implicit assumption that the industrial
society’s evolution can be optimized by any sub-
system’s independent reasoning or paradigm is
refuted against any defense by the genetic power
of human nature. The saving constant for physical
capital is the dominant national parameter; it fixes
the speed of recovery and the G7 level lifestyle.
The national effort for education must just be large
enough for challenging human adaptability to
affluence to its inherited limit. These conditions
provide forecasting power.

As overall result, the industrial evolution sur-
vived all unnatural policies nearly without a trace
and became implicitly an extended projection of
the individual maturation program. This formed
the largest possible and sufficiently diversified
macro-system. Longevity is the industrial
society’s uniting natural goal; Adam Smith’s
accumulation of wealth was a dividing spin-off.
Reaching the genetic limits takes half a millen-
nium instead of the maximum unisex life expec-
tancy because only the part adapted to within the
generation gap can be heritable. Without this pro-
jection and the partial heritability of longevity, the
majority cannot reach the genetic limits of the
human species.

Theoretically this natural goal is embodied in
the unique structure of the analytic solutions. It
allows the technical and human infrastructures to
contribute independently to longevity by compet-
ing with different time constants in the denomina-
tor. Physically, economic growth is achieved by
removal of technical and human obstacles as they
appear during the industrial evolution.

When two competing exponential terms com-
pete in the nominator, the faster will win, and
human maturation is missed. Money can be expo-
nentially printed in the nominator; it is not subject
to and, therefore, not controlled by the laws of
nature. Optimizing the financial subsystem with-
out knowing its structural incompatibility with the
natural subsystems caused the new financial and
political problems of the G7 level nations listed in
the introduction and explained in the section on

finance. Realizing and respecting this difference is
the key to surviving this century’s saturation of G7
level economic growth.

The top demand’s data come with the life
expectancy free house. Everyone’s learned capac-
ity is individually entangled with human nature’s
priceless inherited capacity. The latter comes also
free house. Together they allow discriminating
positive, neutral, and negative contributions to
longevity. Hereby billions of daily decisions
achieve long-term equilibrium between demand
and supply. No human institution has the power
and diligence to mastermind the industrial evolu-
tion above all disasters in three continents with
different cultures for half a millennium. Society’s
master plan is the human maturation program, and
this is installed in every individual.

The seamless agreement without fitting param-
eter between data and theory in Figs. 1, 2, 3, 4, and
5 suggests that forcing different master plans onto
society will fail like communism. Subsidizing the
financial utopia of exponential growth per capita
at G7 level must stop immediately because fight-
ing the laws of nature is futile even for mankind’s
most powerful institutions. The currently avail-
able money should be saved from inflation by
century projects that stabilize Europe and its rela-
tion with Africa. The same applies to North and
South America. China agreed recently to its
change from exponential to linear growth, but it
must also agree to contain its convergence crisis
immediately by reducing its growth rate even
faster than predicted by the natural theory.

The natural theory’s forecasting power reduces
the macro-system’s apparent complexity and the
risk of long-term social planning decisively. The
divergence of the distributions of wealth and
income can and must be reversed. The national
pension systems can and must be stabilized not for
the next election but for the life insurer’s predicted
life expectancy. The section on finance showed
against any defense that returning to tax-based
pension systems is inevitable.

Jobs must be created for the young and for the
lusty seniors because both groups are powerful
voters. Reproducing couples need stable jobs.
The G7 level employment challenge requires a
level of social innovation that is only comparable
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to the level of technical innovation. There can be
no political stability without success on the job
front with fair pay.

All nations have nearly the same final prob-
lems because (with the XY-difference) they are
subject to the same maturation program. Beyond
that, the new possibility of long-term planning
raises the question what governments and their
national and international institutions can actually
contribute to the industrial society’s long-term
success. Most of their creative time was probably
spent with preventing national and international
disasters and repairing the damages when that
failed. Finding socially uniting goals before man-
kind’s biologic limits are practically reached is
this century’s top challenge.
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Appendix

Natural Constants of the Human Species
ϵ = 1 p.a, the calendar year’s unit for measuring
the annual flow of working and spare time

E = 62 years, evolution constant, effective
reaction time of L(t), a(t), and h(t)

G = 25 years, generation constant, effective
physical lifetime of k(t)

Lo = 30 years, mean minimum life expectancy
for maintaining the medieval population

L ¼ 118years, mean maximum life expectancy
at time of birth for the G7 level life style

Main Variables of the Industrial Society
y(t), gross domestic product (GDP) per capita,
after recovery !a(t), industrial evolution

kw(t), national physical capital per capita in
production; k(t) includes the housing part

he(t), educated part of human capacity h(t) per
capita; hs(t) includes the inherited part

L(t), mean G7 level life expectancy
s(t), annual spare time
w(t), annual working time

Evaluating National Policy
The fastest way is inserting the recent data of the
nation to be tested into Figs. 1, 2, 3, 4, 5, and 6.
This should yield the halftime t and the initial
growth rate b of the last recovery. National statis-
tics show the total annual support _k þ k=G of
Eq. 6 for physical capital as gross fixed capital
formation (GFCF). Then the saving constant is
given bym ¼ GFCF tð Þ=y tð Þ. When this ratio is not
fairly constant, the economy is centrally planned
(like China’s). Starting central planning means
endless central planning or a veritable revolution
for a free (nearly self-ordering) society.
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