
221

Chapter 9
Lot-Sizing Models Using Multi-dimensional 
Clearing Functions

The order release models described in this volume rely heavily on the functional 
relationship between the expected output of a production resource and its expected 
workload which, as discussed in Chap. 2 for the case of steady-state queues, is 
related to the expected cycle time by Little’s Law. This relationship is significantly 
affected by various decision rules used within the PPC system, such as scheduling 
policies on the shop floor. Lot sizing, the decision as to how much of a product to 
produce each time a machine is set up for the product, is of particular importance in 
this respect. For a given production quantity, determined by the master production 
schedule, the lot sizes influence capacity utilization (via the amount of setup time 
required on the resource in a planning period), the mean and variance of the interar-
rival times (via the number and size of production lots), and the mean and variance 
of the service times (via the lot sizes). Lot-sizing models were among the earliest 
mathematical formulations of production planning problems (Harris 1915). The 
extensive literature on deterministic lot-sizing problems (Drexl and Kimms 1997; 
Brahimi et al. 2006; Pochet and Wolsey 2006; Quadt and Kuhn 2008) has generally 
focused on the tradeoff between fixed setup or ordering costs and inventory holding 
costs without considering the effects of congestion. The relationship between the lot 
size Q and average cycle time has been explored from several angles, including 
simultaneous lot sizing and scheduling (Drexl and Kimms 1997) and lot streaming 
(Missbauer 2002; Jen Huei and Huan Neng 2005; Cheng et al. 2013). Following the 
discussion in Chap. 2, we begin this section with insights from simple queueing 
models, and then show how these can be used to develop a system of multivariate 
clearing functions to address a dynamic lot-sizing problem.
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9.1 � Impact of Lot Sizes on the Performance of Production 
Resources

As the extensive literature on deterministic economic order quantities would sug-
gest, lot-sizing decisions have significant impact on the behavior of production sys-
tems even in completely deterministic environments. Karmarkar (1989) proposes an 
example by considering a synchronous production line with N stations producing a 
single item in batches of a fixed size of Q units. Batches are transferred to the next 
station at the completion of processing, and a setup time of S time units is required 
for each batch. The production rate at each station is assumed to be P units/time 
unit. Thus each batch has a cycle time of (S + Q/P) time units at each station, and a 
total cycle time in the line of T = N(S + Q/P) time units. Since under synchronous 
operation there will be no queueing, and one batch will complete its processing and 
leave the system every T/N time units, the average output rate of the line will be
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(9.1)

which is a saturating, non-decreasing function of the lot size. The non-decreasing, 
saturating nature of the function arises from the fact that as the lot size Q increases, 
the setup time per part, which constitutes a loss of production capacity, is reduced, 
eventually reaching 0 as Q → ∞.

Karmarkar (1987) and Zipkin (1986) were among the first to study the relation-
ship between lot size and mean flow time in an M/M/1 queueing system operating at 
a fixed output rate. Karmarkar (1987) derived this relationship for a single-server 
queue producing a single item. We follow this derivation for an M/G/1 system using 
the following notation:

D: total demand per period (in product units)
p: processing time per unit
S: setup time per lot
λ: arrival rate of the lots at the server
te, σ, ce: mean, standard deviation, and coefficient of variation, respectively, of the 

service times of the lots, given by the sum of setup and processing times
Q: lot size, assumed to be identical for all lots

For brevity of exposition, we will assume the coefficient of variation ce of the 
service times is independent of the lot size Q. Then the expected arrival rate of lots 
at the machine is given by λ = D/Q and the expected service time of a lot te = S + pQ, 
yielding a utilization of u = λte = D(p + S/Q). Assuming a Poisson arrival process, 
the Pollaczek–Khintchine formula (Medhi 1991) gives the mean queue (waiting) 
time of a lot as

9  Lot-Sizing Models Using Multi-dimensional Clearing Functions
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(9.2)

and the mean cycle time as

	 T T S pQQ= + + 	 (9.3)

Both the mean queue time (9.2) and the mean cycle time (9.3) are convex func-
tions of the common lot size Q. When different lot sizes Qj for multiple products j 
are used, the mean waiting time remains a convex function of the lot sizes, but the 
mean cycle time is non-convex (Karmarkar et al. 1992).

The single-product cycle time (9.2) illustrates an intuitive phenomenon termed 
the “Process Batching Law” by Hopp and Spearman (2008): the presence of posi-
tive setup times imposes a lower limit on the lot sizes, and as the lot size approaches 
this limit from above the utilization u → 1, and hence the average cycle time T → ∞. 
If the lot size becomes large, i.e., Q → ∞, the impact of the setup time vanishes and 
T increases asymptotically proportionally with the lot size. As a consequence of this 
structure, Karmarkar (1987) shows that T is minimized for a well-defined lot size.

These insights have been refined and extended in subsequent work that is beyond 
the scope of this volume (Wijngaard 1989; Benjaafar 1996; Missbauer 2002; Jutz 
2017). Extensions include considering multiple products, more complex material 
flow structures, and its integration with the inventory control system that determines 
the arrival process of the lots (Zipkin 1986; Vaughan 2006). The modeling approach 
can also be extended to multistage systems with stage-specific lot sizes (Missbauer 
and Jutz 2018).

In order to develop clearing function models, this model must be reformulated to 
express the expected output as a function of lot sizes and expected WIP. By the 
PASTA (Poisson Arrivals See Time Averages) property of the arrival process 
(Buzacott and Shanthikumar 1993, p. 54), the average actual waiting time of the 
customers (lots) TQ is identical to the average virtual waiting time at time t, defined 
as the waiting time that would be seen by a customer arriving at time t. For a single-
server system, the average virtual waiting time is identical to the average WIP at the 
server, measured in hours of work (average remaining work). Using (9.2) the 
expected output pD, excluding time spent in setups and expressed in hours of work, 
can be written as:
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Equation (9.4) implies that higher service time variability reduces the output for a 
given average WIP. The impact of the lot size Q on the relationship between average 
WIP and output is shown in Fig. 9.1 for different lot sizes.

9.1  Impact of Lot Sizes on the Performance of Production Resources
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Fig. 9.1  Expected output as a function of expected WIP for different values of the lot size Q 
(p = 5, S = 15, ce = 0.5)

This modeling approach can be applied in two ways. The relationship between 
lot sizes and average flow time can be used to derive standard lot sizes that yield a 
good compromise between the potentially conflicting goals of reducing cycle times 
on the one hand and minimizing setup and cycle inventory holding costs on the 
other (Missbauer 2002). The actual lot sizes implemented on the shop floor can be 
determined by modifying these standard lot sizes based on short-term demand 
information, leading to a hierarchical lot-sizing system (Söhner and Schneeweiss 
1995). The benefit of modifying the standard lot sizes has been questioned in the 
literature (Wijngaard 1989). Within this decision structure the lots to release are 
determined outside the release model and consume the release quantities Rjt calcu-
lated by the release model as described in Chaps. 5 through 8.

An alternative approach is to determine lot sizes and order releases simultane-
ously using a release model with a multi-dimensional clearing function that includes 
some measure of workload and the lot sizes as state variables determining the 
expected output in the spirit of (9.4). We discuss a model of this type in the next 
section.

9.2 � A MDCF Model for Lot Sizing

In this section, we present a single-stage multi-item dynamic lot-sizing model 
developed by Kang et al. (2014) where the production resource is modeled as an 
M/G/1 queue. The behavior of the system is modeled by a set of multi-dimensional 
clearing functions (MDCFs) derived by steady-state queueing analysis, instead of 
the empirically estimated MDCFs described in the previous chapter.
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We consider a single production resource processing N different products 
i = 1,…, N with deterministic processing time pi and sequence-independent setup 
time si that is incurred whenever a unit of product i is processed after completion of 
a different product. The planning horizon is divided into T discrete time periods of 
uniform length, and all processing and setup times are expressed in units of this 
planning period length. Lots of product i arrive at the resource following a Poisson 
process with rate λi. Due to the random arrival process, the service time is a random 
variable. In order to address the lot-sizing problem, the MDCFs describing the out-
put of the resource must reflect the lot sizes. This is accomplished by assuming that 
the planning periods are sufficiently long that the system is in steady state, and fol-
lowing the analysis of Karmarkar (1987) and Karmarkar et  al. (1992). Since we 
derive the MDCFs for a generic planning period, the period index is dropped in the 
following analysis.

The deterministic processing time of a lot of Qi units of product i is given by:

	 P s pQi i i i= + 	 (9.5)

Since lots of product i arrive following a Poisson process with rate λi, the prob-
ability that a randomly selected batch is of product i is given by λi/λ, where
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(9.6)

Thus the mean and variance of the random variable P denoting the processing 
time of lots at the resource are given by:
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It is a standard result in queueing theory (Buzacott and Shanthikumar 1993, 
p. 62) that the expected waiting time for the M/G/1 queue is given by:
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(9.8)

where u denotes the average utilization as in previous chapters. The expected cycle 
time of product i is then given by τi = Pi + TQ. Little’s Law then yields
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where Wi denotes the time-average WIP of product i over the duration of the plan-
ning period. Since we assume the system is in steady state, the number Yi of lots of 
product i produced during the period can be substituted for λi, yielding
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Noting that all processing times are in units of the planning period, and multiply-
ing both sides of (9.10) by Qi, we obtain the total number of units of product i pro-
duced in the planning period as
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which can be written out as

	

f Q W Y Q W Y QY

W

s pQ
Y s pQ

i i i i i i i i i

i

i i i

i i i i j i

, , , , ,′ ′ ′

≠

( ) =

=

+( ) +
+( ) +

2 ∑∑
∑

+( )
− +( ) − +( )( )≠

Y s p Q

s pQ Y s p Q

j j j j

i i i j i j j j j

2

2 1
	

(9.12)

where Qi
′ denotes the vector of lot sizes Qj for all products except i, and ′W i and Yi

′ 
are defined analogously. The MDCF (9.12) is an ugly, non-convex expression, but 
is actually quite intuitive: The output of a particular product i in a planning period 
depends on its own lot size Qi, the number of lots produced Yi, and its time-average 
WIP level Wi, as would be expected in a single-product model. However, it is also 
affected by the lot sizes, WIP levels, and number of lots of all other products. As 
seen in the intermediate expression (9.11), this is because these quantities determine 
the fraction of current machine utilization available to the product i in the planning 
period. Thus the output mix of the machine is jointly determined by the set of N 
MDCFs (9.12). The explicit consideration of lot sizing has resulted in the addition 
of state variables reflecting the lot sizes of each product during the planning period. 
An example of this MDCF is illustrated in Fig. 9.2; note that the level sets shown on 
the horizontal plane, which are the feasible combinations of WIP and lot sizes that 
yield the specified output, match those given by Karmarkar (1987).

Anli et al. (2007) present a MDCF with similar state variables, but take a very 
different approach to estimating it; they use an iterative approach between the 
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Fig. 9.2  Illustration of MDCF with lot sizing for two-product system: output of product 1 as a 
function of its lot size and WIP for fixed lot size and output of product 2 (Kang et al. 2014)

individual production units for which the MDCF is being developed and the goods 
flow model. Tentative release plans are computed by the planning level, which are 
then used by the production units to estimate their realized performance. These real-
ized performance estimates are then fed back to the planning level, which generates 
additional constraints derived from these estimates to refine its models of the capa-
bilities of the production units. In the language of Schneeweiss (2003), tentative 
release plans are communicated to the production units and their feedback is then 
used to refine the planning level’s anticipation functions for the production units. 
The approach of Anli et al. (2007) is unique in presenting an integrated, well thought 
out decomposition of the supply chain planning problem into multiple subproblems, 
including the goods flow problem, safety stock levels, and MDCFs for the individ-
ual production units, with promising computational results.

Several aspects of this MDCF are worthy of comment. Like Karmarkar (1987), 
it highlights the strong interdependence of products in a multiproduct queueing sys-
tem: decisions made for any product, such as the level of output or the lot size, affect 
all other products. The use of this MDCF for a planning period of fixed finite length 
is clearly heuristic; the derivation assumes the queue is in steady state during the 
planning period, which is unlikely to be the case in general. The model also assumes 
that the lot sizes are decision variables associated with each planning period, and 
hence that these can be changed by management in each planning period. This is 
clearly possible for newly released orders, but it is unlikely that lots already released 
to production can be reconfigured without considerable disruption of ongoing oper-
ations. If the cycle time of some fraction of lots in each period exceeds the length of 
a planning period, it is thus likely that there will be lots of different sizes on the shop 
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floor at least some of the time; the transient state refers not only to the number of 
orders at the workcenters but to the composition of the order sizes as well.

The MDCFs (9.12) can be incorporated into an integrated release planning and 
lot-sizing model in a straightforward manner, using the following notation:

Decision variables:
Yit: number of lots of product i produced in period t
Qit: lot size of product i in period t
Iit: finished goods inventory of product i at the end of period t
Bit: amount of product i backlogged at the end of period t
Wit: WIP of product i at the end of period t
Wit: time-average WIP level of product i during period t
Rit: number of units of product i released in period t

Parameters:
hit: unit finished goods holding cost in period t
wit: unit WIP holding cost in period t
bit: unit backlogging cost in period t

The model can then be written as follows:
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Constraints (9.18) are a stability condition that is redundant when the MDCFs 
(9.17) are present; it is included in the model to help reduce the solution time. The 
model (9.13)–(9.19) is a single-stage multi-item dynamic lot-sizing model, with 
some interesting differences. The presence of the MDCFs leads to non-convex con-
straints, even when the integrality constraints are relaxed. In addition, traditional 
lot-sizing models focus on the tradeoff between the fixed cost of setups and inven-
tory holding costs, while in this model setup costs are conspicuous by their absence. 
It can be argued that the actual cash costs of setup changes are relatively small and 
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are usually limited to the scrap generated while adjusting the machine and tooling 
to the new product. In the short term, labor and machinery are all fixed costs, so the 
main component of a setup cost in a production environment is the opportunity cost 
of the lost production time. This opportunity cost, however, is difficult to estimate 
in practice. If the facility has sufficient excess capacity that the setup will not result 
in any loss of revenue, the opportunity cost of capacity associated with the setup is 
clearly zero; this is equally clearly not the case if the facility is highly utilized and 
setups result in lost sales due to reduced output.

Due to the complexity of the integer nonlinear program (9.13)–(9.19), Kang 
et al. (2014) relax the integrality constraints, solve the resulting non-convex model 
to a local optimum and then heuristically round the resulting fractional solution to 
an integer feasible solution. In a later paper (Kang et al. 2018), they propose a more 
sophisticated rounding heuristic that gives considerably improved solutions over the 
original approach. Due to the absence of setup costs, the performance of the model 
is compared to that of a model due to Erenguc and Mercan (1990), which requires 
some additional notation:

Decision variables:
Kit: �binary variable equal to 1 if a setup is performed for product i in period t, and 

zero otherwise
Xit: amount of product i produced in period t

Parameters:
M: a very large number

The model can be stated as follows:
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There are some interesting contrasts between this model and the MDCF-based 
model (9.13)–(9.19). The model of Mercan and Erenguc assumes that all production 
of a given product in a given period will be processed as a single lot, while the 
MDCF-based model allows multiple smaller lots. The Mercan–Erenguc model does 
not consider queueing effects at all, while these are central to the MDCF-based 
model. In fairness, the Erenguc–Mercan model was never intended to be used in a 
queueing environment, but rather for big-bucket lot-sizing or product cycling prob-
lems where queueing does not arise.

9.2  A MDCF Model for Lot Sizing
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Fig. 9.3  Performance comparison of Erenguc–Mercan model (EMM) and MDCF-based lot-
sizing model (RIM)

The logical way to evaluate the performance of this integrated release planning 
and lot-sizing model is to simulate the behavior of the production system operating 
under the lot sizes and release quantities it suggests. Details of the computational 
experiments are given in Kang et al. (2014), but representative findings are sum-
marized in Fig. 9.3. The planned quantities refer to the objective function values 
from the mathematical models, while the realized values are those observed when 
the decisions from the mathematical models are implemented. Since the Erenguc–
Mercan model does not consider congestion, and hence ignores WIP, we report the 
objective functions with and without WIP costs to observe how well the mathemati-
cal models predict the consequences of their decisions. The simulation model 
relaxes the assumption of a constant lot size in each period; if all lots released in a 
given period have not exited the system by the start of the following period, lots 
with different sizes will coexist in the system.

It is clear from the figure that the failure of the Erenguc–Mercan model to con-
sider WIP results in the MDCF model performing considerably better. The planned 
objective function of the Erenguc–Mercan model, which considers only inventory 
and backorder costs, is actually quite close to those components of the planned cost 
from the MDCF model. However, the ability of the MDCF model to produce the 
demand for a given period in a number of small batches results in considerable 
improvement in cycle times, and major differences in performance between the two 
models. Although it is not evident from the limited data shown, the differences 
between the two models are largest at low to medium demand levels. At high 
demand, and hence utilization, lot sizes have to be large in order for the system to 
meet demand. Hence all production of a product in a given period is processed in a 
single lot, as required by the Erenguc–Mercan model. At lower utilization levels, 
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however, the MDCF model can take advantage of the available excess capacity by 
using smaller batches with more setups, resulting in lower flow times and better 
performance.

As discussed above, the development of this model rests on a number of heuristic 
assumptions: the use of steady-state queueing models to derive the MDCF and the 
approximate solution of the resulting nonlinear integer program by solving its con-
tinuous relaxation and rounding to an integer feasible solution. There is no doubt 
that each of these introduces errors, which are likely to grow as the length of the 
planning period decreases. However, the MDCF model is in any case unsuitable for 
short-term release planning due to the difficulty of adjusting lot sizes on the shop 
floor after release. The model is better viewed as a longer-term aggregate model that 
can be used to examine the impact of lot sizes in the presence of changing demand 
conditions. It is also likely that some of the more egregious errors introduced by 
these assumptions are remedied to some degree by the myopic rounding scheme 
implemented at the execution level in the simulation model.

9.3 � Insights from a MDCF-Based Lot-Sizing Model

The MDCF-based lot-sizing model (9.13)–(9.19) is clearly an extension to the 
multi-item capacitated lot-sizing problem of the type studied by Billington et al. 
(1983) and Trigeiro et  al. (1989) and reviewed extensively by Quadt and Kuhn 
(2008). These models, along with their many successors, focus on the tradeoff 
between the fixed costs of setups and inventory holding costs, while considering 
capacity constraints without congestion as reflected by constraint (9.23) in the 
Erenguc–Mercan model above. In this section, we present a column generation heu-
ristic for the MDCF-based lot-sizing model developed by Kang et al. (2011), with 
the purpose of providing insight into the practical difficulties of estimating setup 
costs in production environments. Similar column generation approaches for capac-
itated lot-sizing problems without congestion have been developed by Lasdon and 
Terjung (1971) and de Graeve and Jans (2007).

The basic idea of column generation approaches for capacitated lot-sizing prob-
lems is to decompose the problem into a master problem that allocates capacity 
among the N different products, and pricing subproblems that perform the optimal 
lot sizing for each product subject to the capacity allocation given by the master 
problem. Hence, in the Lasdon–Terjung approach (Lasdon and Terjung 1971), when 
the master problem allocates capacity, the pricing subproblems are single-item 
uncapacitated dynamic lot-sizing problems whose objective function is modified by 
the dual prices obtained from the master problem. Detailed presentations of 
Dantzig–Wolfe decomposition and column generation methods can be found in 
Desaulniers et al. (2005) and Lasdon (1970).

Following the usual approach to developing a column generation approach, let us 
denote the set of all feasible schedules for product i, i = 1, …, N, by ϒi. Since all 
decision variables associated with a product i in the model (9.13)–(9.19) must take 
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integer values, the sets ϒi, i = 1, …, N will each consist of a very large number of 
discrete schedules. Let τ i

k denote a column vector with T entries associated with a 
solution k ∈ ϒi whose tth entry is the capacity required by product i in period t for 
schedule k, given by

	 τ it
k

i i it
k

it
ks p Q Y= +( ) 	 (9.25)

where Qit
k denotes the lot size of product i in period t in the schedule k ∈ ϒi and Yit

k 
denotes the number of lots of product i produced in period t in this schedule. We 
also define the cost vector Vi

k as a column vector with T entries.

	 V h I w W b Bit
k

it it
k

it it
k

it it
k= + + 	 (9.26)

Defining the decision variables

	
γ

ϒ
k
i ik i
=

∈

1

0

,

,

if schedule is selected for product

otherwise 	
(9.27)

we can rewrite the model (9.13)–(9.19) as that of selecting exactly one schedule for 
each product such that the resulting schedules are capacity feasible and the objec-
tive function is minimized. The resulting master problem is given by:

(Master Problem: MP)

	
min

i

N

k
i
k

i
k

i

V
= ∈
∑∑

1 ϒ

γ
	

(9.28)

subject to

	 k
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i
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(9.29)
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i
k

i

i N
∈
∑ = = …
ϒ

γ 1 1, , ,
	

(9.30)

	 γ ϒi
k

ik i N∈{ } ∈ = …01 1, , , , , 	 (9.31)

Since this is a binary set covering problem that is hard to solve, we relax the 
integrality constraints (9.31), replacing them with

	 0 1 1≤ ≤ = … ∈γ ϒi
k

ii N k, , , , 	 (9.32)

to obtain the relaxed master problem (RMP).

	
min

i

n

k
i
k

i
k

i

V
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(9.33)
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subject to

	 i
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(9.34)

	 k
i
k

i

i N
∈
∑ = = …
ϒ

γ 1 1, , ,
	

(9.35)

	 0 1 1≤ ≤ = … ∈γ ϒi
k

ii N k, , , , 	 (9.36)

Since enumerating all columns in the RMP is impractical, we use a restricted 
relaxed master problem (RRMP) with a limited number of columns that are gener-
ated by a column generation approach. The RRMP is initialized with an initial set 
of columns and solved to optimality. However, this solution is only optimal with 
respect to the limited set of columns considered in the RRMP; there may yet exist 
columns in some of the sets ϒi that have not yet entered the RRMP, but which might 
improve the objective function if they were to enter, i.e., have negative reduced 
costs. A pricing subproblem is thus solved for each product i = 1,…, N to determine 
whether any columns with negative reduced costs exist.

To formulate the pricing subproblem for product i, we define αit
k to be the dual 

variable associated with the capacity constraints (9.34) and ∝i
k those associated with 

constraints (9.35). Then the reduced cost for a new column to enter the basis of the 
RRMP will be

	 t

T

it
k

it
k

i i it
k

it
k

i
kV s p Q Y
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∑ + +( )



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1

α µ
	

(9.37)

The pricing subproblem seeks a schedule k for product i such that the reduced 
cost is negative; if no such schedule can be found for any product an optimal solu-
tion to the relaxed master problem has been obtained. We can thus state the pricing 
subproblem for product i, i = 1,…, N, as follows:

	
min

t

T

it
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it
k

i i it
k

it
k
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kV s p Q Y
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(9.38)

subject to
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where
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j j jt
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j
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≠ ∈
∑∑γ

	
(9.43)

denotes the utilization on the machine due to products other than i in the optimal 
solution to the restricted master problem at the current iteration. This pricing sub-
problem is a single-item dynamic lot-sizing problem, where the amount of capacity 
available to the product i is fixed by decisions corresponding to the other products. 
Dropping the constant ∝i

k we can write the objective function (9.38) as

	 t
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(9.44)

and compare this to the objective function of the classical capacitated dynamic lot-
sizing problem, which is given by:

	 t

T

it it it it it ith I b B S
=
∑ + +[ ]

1

Ξ
	

(9.45)

where Ξit is a binary variable equal to 1 if product i is produced in period t, and zero 
otherwise, while Sit denotes the fixed cost of a setup. Note that classical capacitated 
lot-sizing models all assume a single lot of each product in a given period, which 
would require the additional constraint Yit

k ″ 1. Matching equivalent terms in (9.44) 
and (9.45) shows that the two objectives treat finished goods inventory and backlogs 
identically. Since the classical formulations do not consider congestion, and hence 
ignore WIP, let us assume that the cost of holding WIP is negligible. In this case, for 
(9.44) and (9.45) to give the same value, and hence the same solution, we must have

	 S s pQit it
k

i i it
k= +( )α 	 (9.46)

showing that even under the very restrictive assumptions imposed to achieve 
compatibility between the classical and MDCF-based lot-sizing models, the fixed 
cost of a setup must depend on the dual price of capacity at optimality—which is 
impossible to determine without obtaining an optimal solution for all products 
simultaneously.

Thus, while classical dynamic lot-sizing models can be justified in a purchasing 
environment, or in an environment with significant excess capacity, their use in a 
production environment is fraught with problems. Once the utilization of the 
machine reaches a certain point, it will become necessary to produce exactly one lot 
of each item in each period in which it is to be produced; however, the relative mag-
nitudes of the fixed setup costs relative to inventory holding costs will determine the 
frequency of production. At lower utilization levels, however, (9.44) suggests that 
estimating the setup cost is far from trivial; at the very least, the setup cost for a 
product i will be time dependent, driven by the evolution of its demand over time as 
well as that of all other products competing with it for capacity.
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9.4 � Discussion

In this chapter, we have seen that the queueing perspective of Chap. 2 leads quite 
naturally to a series of models describing the impact of lot-sizing decisions on the 
performance of production units. The MDCFs developed in the previous chapter 
turn out to be a suitable mechanism to describe the behavior of such systems in 
mathematical programming models. The resulting optimization models are gener-
ally non-convex, requiring significant additional computational effort to guarantee a 
global optimal solution. However, there is considerable computational evidence that 
the non-convexity is of a somewhat benign nature; in many cases, the use of a con-
vex nonlinear solver leads to confirmed global optimal solutions, suggesting the 
existence of considerable structure in the problem that remains an objective for 
future research. The use of steady-state queueing models to develop the MDCFs is 
clearly heuristic, and open to criticism; however, the significant improvements in 
system performance obtained in simulation experiments suggest that these models 
are worth developing further.

The contrast between these models and the traditional lot-sizing models that 
focus on the tradeoff between setup and holding costs is also informative. The 
(admittedly heuristic) column generation approach outlined in Sect. 9.3 highlights 
the complexity of estimating setup costs accurately. The results of Sect. 9.2, on the 
other hand, highlight a central implication of the traditional lot-sizing models such 
as the multilevel capacitated lot-sizing problem and its variants, which is that all 
production for a planning period must be produced in a single lot. Given that setup 
costs are charged on a per lot basis, this is natural, but the superior shop-floor per-
formance obtained by the MDCF model suggests that especially at medium levels 
of utilization the use of smaller lot sizes can lead to considerable benefits. At high 
utilization levels there is no capacity to spare for additional setups, and hence the 
results of the traditional models and the MDCF model approach each other.

The work in this chapter is clearly exploratory in nature and merely scratches the 
surface of a broad and complex research agenda. The extension of this type of 
approach to multistage systems, such as those treated by Missbauer and Jutz (2018), 
or multilevel systems such as those arising in the context of MRP computations is a 
natural direction. It is unlikely that exact solutions to such formulation can be obtained 
for industrial scale problem instances, especially given the non-convex nature of 
many MDCF planning models, but an understanding of the structure of good solu-
tions should serve as a pathway to computationally efficient approximations.
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