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Chapter 8
Multivariate Clearing Functions

The clearing functions examined in Chap. 7 all assume that the expected output of 
a production resource in a planning period is a function of a single, aggregate state 
variable characterizing the amount of work available to the resource during the 
planning period; hence they were termed univariate clearing functions. As discussed 
in Chap. 7, several alternative definitions of this aggregate workload have been pro-
posed, including the average WIP level during the planning period, the sum of enter-
ing WIP and new releases, or solely the beginning WIP. The use of such aggregate 
clearing functions in production environments with multiple products created 
anomalous behavior in the resulting optimization models as seen in Example 7.4. 
The allocated clearing function formulation develops an approximate formulation 
that provides effective solutions to this issue and has been validated in extensive 
computational experiments (Asmundsson et  al. 2006, 2009; Kacar et  al. 2012, 
2013, 2016).

However, the allocated clearing function formulation is based on the assumption 
that the workload on the production resource resulting from all products in the sys-
tem competing for its capacity can be aggregated into a single measure of workload 
without major loss of accuracy. An alternative statement of this assumption is that 
for a given total workload, however it is measured, the total amount of output, mea-
sured in the same units, that the resource can produce in a planning period is inde-
pendent of the mix of products making up that total.

Univariate clearing functions also assume that the workload information for the 
current state, however defined, is sufficient to characterize the output of the resource 
in the current period. While this assumption may be valid for planning periods that 
are sufficiently long that the queues representing resource behavior can reach steady 
state and the periods of transient behavior at the beginning of the period due to new 
release decisions can be neglected, it is clearly questionable in many planning situ-
ations. Planning periods are often too short for steady state to be reached, and the 
release decisions introduced by the planning models at the start of each period are 
continually creating new workload situations by design. Queueing models suggest 
that the output of the system in any period can potentially depend on the entire 
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 history of the arrival and service processes previous to the period, as well as their 
evolution during the period itself.

In this chapter, we shall examine more complex clearing functions that attempt 
to address these issues. The obvious first step is to disaggregate the single state vari-
able for each period that forms the basis of the clearing functions in Chap. 7 in dif-
ferent ways. This approach begins by separating the two components of the period 
workload Λt into its two components, Rt and Wt−1, and treating each as a separate 
state variable. The presence of multiple products makes disaggregation of both WIP 
and releases by products a natural step. When cycle times exceed the length of the 
planning period, there may also be benefit to considering the workload in previous 
periods. For each set of state variables selected, a specific functional form for the 
clearing function must also be chosen. Many of these functional forms result in non- 
convex optimization models, but there is considerable computational evidence that 
in many cases a standard convex solver yields high-quality solutions.

We shall begin our discussion by using transient queueing models to provide an 
initial intuition for why additional state variables are needed. We then discuss clear-
ing functions that explicitly attempt to represent the transient behavior of the system 
without assuming steady state, and then proceed to consider additional state vari-
ables related to individual products and previous periods. The discussion of lot- 
sizing models based on multi-dimensional clearing functions that consider WIP 
levels, planned output levels, and planned lot sizes as state variables is treated sepa-
rately in Chap. 9 since lot sizing raises some additional issues.

8.1  Limitations of Single-Dimensional Clearing Functions

The functional forms of the single-dimensional clearing functions described in 
Chap. 7 are almost all derived from steady-state queuing models. Hence they relate 
the average WIP or workload of the production system in steady state over a plan-
ning period to the expected output in this period. Similarly, a clearing function esti-
mated from simulation data reflects the environmental conditions represented in the 
data set used to fit the clearing function. Any order release planning model using the 
clearing function thus implicitly assumes that these relationships continue to hold 
for each period of the planning horizon. However, since both demand and release 
quantities will vary over time, this assumption is often problematic. The order 
releases obtained from the clearing function model can exhibit characteristics that 
systematically deviate from steady state or from the characteristics of the simulation 
data used for setting the clearing function parameters, invalidating the shape of the 
clearing function assumed by the order release model.

This issue can be demonstrated by the following simple example. Consider a 
single production resource that can be modeled as an M/M/1 queuing system in 
steady state. Recall from Chap. 2 that the clearing function for this system is given 
by (2.6). A clearing function based release planning model assumes that this func-
tion is valid for each period of the planning horizon. However, only the production 
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orders available to the resource at the start of period 1 are known with certainty 
since they can be observed directly. If the processing times are known with cer-
tainty, the initial WIP level W0, measured in hours of work is thus known. If no 
releases of new work are expected during period 1, its workload will be Λ1 = W0, and 
the deterministic clearing function for period 1 will be

 X C W C1 1 1 0 1= { } = { }max maxΛ , ,  (8.1)

unless machine breakdowns occur or work is delayed deliberately, which we shall 
assume is not the case. This is essentially the best-case clearing function of Hopp 
and Spearman (2008). Figure 8.1 compares the steady-state clearing function (7.24) 
derived by Missbauer for an M/M/1 queue and (8.1). They clearly differ substan-
tially, but a release planning model using a clearing function assumes that they are 
identical. In this case, the steady-state clearing function substantially and consis-
tently underestimates the expected output of the resource in period 1 for a given 
workload, for the reasons discussed in (8.8) below.

This example describes an extreme case. We now generalize the underlying rea-
soning using the queueing-theoretical analysis presented below.

8.2  Transient Queueing Analysis of Clearing Functions

We arbitrarily select a particular planning period of an order release model, and 
consider a production resource modeled as an M/M/1 queue that can be in transient 
regime. The number of the period is 1 without loss of generality, that is, the first 
planning period can have a negative period index. At the start of the period (time 
t = 0) the amount W0 of WIP available to the resource, again measured in units of 
time, can be observed and hence is known with certainty. The resource is available 
for production for Δ time units during the planning period. We shall derive the 
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Fig. 8.1 Clearing function for idealized situation vs. for steady-state M/M/1 system (Eq. (7.24) 
with te = 0.2, σ = te)
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 functional relationship between expected load E[Λ1] and expected output E[X1] of 
the resource for this period, where both quantities are measured in units of time. The 
analysis follows the approach of Missbauer (2011) where WIP is measured in num-
ber of orders; the following analysis for deterministic initial WIP is due to 
Missbauer (2014).

It is clear that if we have W0 ≥ Δ, the output X1 = Δ. We now analyze the non- 
trivial case where W0 < Δ. In this case, the resource operates continuously from time 
t = 0 until time t = W0. Within this time interval of length W0 time units, work arrives 
according to a Poisson arrival process with arrival rate λ, but no arriving work is 
processed due to the FIFO assumption (highlighting, incidentally, the dependence 
of the clearing function on the specific dispatching policy used in the production 
unit). In contrast to the initial WIP W0, which is known with certainty at time t = 0, 
we assume that no information is available about orders that arrive after the start of 
the period. Defining pn(t) as the probability of having n orders in the system at time 
t, the probability distribution of the number of orders in the system at time W0, given 
by the number of orders arriving during the interval [0, W0], is
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Given this probability distribution, the output of the system during the interval 
[W0, Δ] can be derived by calculating the probability of idleness for all t in the inter-
val [W0, Δ] (Missbauer 2011). Denoting the output of the system in the time interval 
[t1,t2] within period 1 by the random variable X1(t1,t2), the expected output in period 
1 for mean arrival rate λ and initial WIP W0 can be written as:
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We must now calculate E[X1(W0, Δ)], the expected output in the interval [W0, Δ]. 
After time t  =  W0, the arrival process continues with rate λ until the end of the 
period. The state probabilities of having n orders in the system at time t, W0 < t ≤ Δ, 
can be calculated from the state probabilities at time W0 given by (8.2) and the con-
ditional state probabilities prn(t) of having n customers in the system at time t given 
r customers in the system at time 0. The latter is well-known in queueing theory 
(Cohen 1969: 82 ff. and 178) and is given by
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for t ≥ 0, where Ij(x) denotes the modified Bessel function of the first kind, te the 
mean service time, u = λte the utilization and
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The state probabilities at time t > W0 are:
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with pn(W0) defined by (8.2). The expected output during the interval [W0, Δ], mea-
sured in time units, is the expected total time during this interval the server is 
not idle:
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where p0(t) is obtained from (8.5) by setting r = 0. Substituting into (8.3) to calcu-
late the output per period for deterministic initial WIP W0, we obtain
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(8.7)

Figure 8.2 illustrates the expected output (8.7) as a function of the expected 
workload in the period for different values of the initial WIP W0. Missbauer (2011) 
presents the same analysis with initial WIP measured in number of orders. In that 
case, the differences in the expected output for different initial WIP levels are 
smaller because for a finite number of orders at the server at t = 0 there is always a 
positive probability of idleness within the period due to the exponentially distrib-
uted service times. Figure 8.2 clearly demonstrates that the entire shape of the clear-
ing function changes based on the value of W0, even when the latter is deterministic 
and not a random variable.

The assumption of deterministic initial WIP is reasonable for the first period in 
the planning horizon of an order release model. However, the initial WIP Wt−1 avail-
able at the start of all subsequent planning periods t is a random variable. If we 
interpret the planned value of this random variable calculated in the release plan-
ning model as its expectation E[Wt−1], the concavity of the clearing function and 
Jensen’s inequality (Billingsley 1995: 80) yield
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Fig. 8.2 Clearing functions for different deterministic initial WIP levels measured in hours of 
work. Period length Δ = 5 time units, expected service time te = 1

implying that a clearing function treating the planned value of Wt−1 as a determinis-
tic parameter is likely to overestimate the expected output.

Continuing the analysis for period 1 with WIP measured in units of time, we 
define f wW0

( ) as the probability density function of the initial WIP W0. The expected 
output for given initial WIP W0 is given by (8.7), and the expected output for sto-
chastic initial WIP can then be obtained by conditioning as:
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where E[X1(0, Δ)| w] is given by (8.3).

Example 8.1 We consider the steady-state distribution of the initial WIP for the 
M/M/1 system which, by the PASTA property that Poisson arrivals see time aver-
ages (Buzacott and Shanthikumar 1993: 54), is equal to the distribution of the 
(actual) waiting time of the arriving customers. This distribution is given by

 f w u w u e wW
t u

0
1 1 00

1 1( ) = −( ) ( ) + −( ) ≥− −( )δ λ / ,e w for  (8.10)

where δ0(w) denotes the Dirac Delta (unit impulse) function occurring at time w = 0 
(Papadopoulos et al. 1993: 363).
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Fig. 8.3 Clearing functions for expected W0 = 2, deterministic vs. steady-state distribution. Δ = 5 
time units, te = 1

The clearing functions (8.10) for different values of the expected initial WIP are 
plotted in Fig. 8.3 for the same data as in Fig. 8.2. Each point of E[X1] corresponds 
to a specified value of the arrival rate λ that, added to the expected initial WIP, leads 
to the expected workload given on the horizontal axis. For computational purposes, 
the numerical integral in (8.7) is discretized using 10 segments with a finite upper 
integration limit.

This analysis demonstrates that the expected output for a given expected load 
depends on the composition of the load (initial WIP vs. work released during the 
period), on the distribution of the initial WIP and also, implicitly, the probability 
distribution of the arriving work determined by the manner in which the new work 
is released over the duration of the period.

Armbruster et al. (2012) perform a similar analysis to that presented above for 
both a constant and time-varying arrival rate (influx, in their terminology) to the 
resource, analyzing the latter case using discrete-event simulation. They show that 
the functions depicted in Fig. 8.3 depend on the functional form of the influx over 
the period, concluding that “the clearing function cannot be just a parametric rela-
tionship between input and output” (p. 135).

Missbauer (2009) uses metamodels of the transient behavior of single-stage 
queueing systems developed from queueing models and simulation, specifically of 
the transient evolution of WIP over time, to estimate the output of a production 
resource per period. He shows that this leads to an integer, nonlinear formulation 
and that modeling errors occur that can lead to counterintuitive behavior. Hence at 
present the applicability of this approach is unclear.

8.2 Transient Queueing Analysis of Clearing Functions
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The results of the analysis so far suggest that we may face a fundamental tradeoff 
in addressing the problem of formulating clearing functions. If one regards the clear-
ing function as a metamodel of the behavior of the production resource of interest, 
the primary concern is to develop a model that best predicts the behavior of the 
resource for a given state at a given point of time. This suggests the use of sophisti-
cated, high-dimensional statistical modeling methods such as Gaussian processes 
and time series analysis. Such techniques have been used by simulation researchers 
to develop the operating curves that describe expected cycle time as a function of 
resource utilization (Yang et al. 2006; Ankenman et al. 2010). Li et al. (2016) use 
similar techniques to develop a metamodel predicting the output of a production 
system over time based on a number of state variables, which they then use in place 
of a discrete-event simulation model in a simulation optimization approach.

While properly formulated and calibrated models of this kind are capable of 
predicting the output of a production resource or production unit in a planning 
period quite accurately, they are generally unsuitable for use in a mathematical pro-
gramming model due to their complex functional forms. As we shall see later in this 
chapter, even relatively simple multivariate clearing functions lead to non-convex 
order release models. Hence there appears to be a basic tradeoff between computa-
tional tractability of the resulting order release model and the accuracy of the output 
estimates produced by a clearing function. This issue will surface frequently in the 
discussion of different functional forms for multivariate clearing functions in this 
chapter.

Selçuk et al. (2008) formulate a “short-term nonlinear” (STN) clearing function 
assuming that the WIP at the server is measured in number of orders. Each order 
that contributes to the load in a certain period is available as soon as it is needed for 
processing. For exponentially distributed service times, the departure process from 
the server is a Poisson process with mean rate equal to the service rate μ until the 
last order available in this period is completed, after which the server is idle. Under 
these assumptions, the expected output as a function of the number of available 
orders (i.e., the workload) can be calculated. Note that idle time at the server due to 
stochastic interarrival times cannot occur in this model. This simplification allows 
the univariate clearing function to model the transient state. The saturating shape of 
this CF is due to the uncertain work content of the orders, which is assumed to be 
unobservable even for the initial WIP at the time of planning. Asmundsson et al. 
(2009) use a similar but somewhat more general formulation to prove the concavity 
of the clearing function in a transient regime.

An approximate model of transient queuing systems that can be integrated into 
order release models is the stationary backlog carryover (SBC) approach introduced 
by Stolletz (2008) for M(t)/M(t)/c(t) systems and extended to G(t)/G/1/K systems by 
Stolletz and Lagershausen (2013). We shall describe the technique for an M(t)/M/c 
system, characterized by a time-varying Poisson arrival process, exponential service 
times, and c servers. In the SBC approach, time is divided into short intervals, usu-
ally equal in length to the mean service time te, with arrival rate λt during each 
interval t. We shall refer to these short intervals as micro-periods to distinguish them 
from the longer planning periods discussed throughout the volume. The average 
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utilization in period 1 is assumed to be equal to the steady-state utilization of an 
M/M/c/c queue with arrival rate λt, which is given by

 E u g t1 1 1[ ] = ( )λ λ e (8.11)

where g(λ) denotes the steady-state fraction of served customers in an Erlang loss 
(M/M/c/c) system with c servers and a mean service time te as a function of the 
arrival rate λ. Recall that a finite capacity queue or loss system with capacity c can 
accommodate at most c customers; an arriving customer encountering c customers 
already in the system will depart without being served. Hence, in this model a frac-
tion P1 = 1 − g(λ1) of the arriving orders will be blocked from entering the system, 
giving the expected number of blocked orders in period 1 as

 b P1 1 1= λ  (8.12)

For all subsequent micro-periods t  =  2, 3,…, an artificial arrival rate λt  that 
accounts for both the (artificial) backlog and new external arrivals is calculated as

 
λt t tb t= + = …−1 2 3λ , , ,  (8.13)

The expected utilization is then calculated from this artificial arrival rate as

 
E u g t tt t t[ ] = ( ) =� � �λ λ e , , ,2 3

 
(8.14)

Note that if the output estimate is correct the expected artificial backlog bt−1 rep-
resents the expected WIP, measured in number of orders, in the real system at the 
end of micro-period t − 1 and hence the start of micro-period t. Hence (8.14) calcu-
lates the expected utilization as a concave saturating function of the workload λ

˜

t, 
making SBC a special case of a clearing function model (Missbauer 2007), but with 
an equality constraint on the output. Missbauer and Stolletz (2016) formulate and 
test an order release model based on SBC, finding it to be mathematically consistent 
and solvable by standard NLP solvers. Closely related approximate queueing mod-
els for transient systems are suggested by Askin and Hanumantha (2018).

8.3  Transient Clearing Functions with Multiple Variables

The problems with the usual one-dimensional clearing functions are obvious: they 
express the relationship between load and output under long-run average (steady- 
state) conditions although the actual relation is conditional on the history prior to 
the planning period under consideration and can be very different from any steady- 
state condition, especially for the first period of the planning model where initial 
WIP is largely deterministic. This suggests that extending the one-dimensional CF 
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with additional explanatory variables that reflect the history of the process should 
improve its ability to estimate output. The queueing-theoretical results derived 
above indicate that disaggregating the period workload into initial WIP and releases 
during the period is the most obvious extension. This leads to a two-dimensional CF 
of the form

 X f W Rt t t= ( )−1,  (8.15)

where Rt denotes the work input in period t.
Andersson et al. (1981) propose a linear clearing function of this form without 

explicit reference to the queueing argument above. In our context, a saturating clear-
ing function of the form (8.15) must be used in order to reflect the congestion phe-
nomena arising from the stochastic nature of arrivals and service times and the finite 
capacity of the resource. Deriving a piecewise linear approximation of such a func-
tion based on empirical or simulated data is difficult without postulating an underly-
ing nonlinear functional form. In contrast to steady-state queueing models, the 
expressions describing the behavior of transient queueing systems can only be eval-
uated numerically, rendering the derivation of a tractable expression for a saturating, 
two- dimensional clearing function difficult. Häussler and Missbauer (2014) propose 
what appears to be a reasonable functional form with the following properties:

• A fraction β of the initial WIP, measured in time units (hours of work), is con-
verted into output during the period, up to the maximum available capacity Ct. 
Simulation models generally assume β = 1. In general, β is a parameter whose 
value must be estimated from the data.

• For positive releases Rt > 0 the output Xt ≤ Min {Wt − 1 + Rt, Ct}.
• For given initial WIP Wt−1 the clearing function is concave and monotonically 

non-decreasing (saturating) in Rt, with
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(8.16)

• For Rt >0 we assume that for fixed Wt−1 the increase of the clearing function with 
Rt follows the same functional form as the one-dimensional clearing function 
derived from a steady-state M/G/1 model in (7.24). The two-dimensional clear-
ing function is then
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Fig. 8.4 Two-dimensional CF (Equation (8.17)) for initial WIP levels from 0 (lower function) to 
4. Parameters: Ct = 5, k = 1.5, β = 0.95. The dashed line is the ideal curve Min{Wt − 1 + Rt, Ct}

Figure 8.4 depicts (8.17) and shows that, when parameterized appropriately, this 
CF exhibits a shape very similar to that of the transient CF in Fig. 8.2.

This logic suggests that the fit of the CF can be improved by switching from a 
1-dimensional to a 2-dimensional CF.  This hypothesis is tested in Häussler and 
Missbauer (2014) for both simulated and empirical data. The quality of the fit is 
measured by the adjusted coefficient of determination (adj. R2). Overall, the hypoth-
esis is confirmed for bottleneck resources although the improvements in fit are often 
smaller than one might expect. To the best of our knowledge no significance test for 
changes in R2 exists, but the sample size is large (1690 periods for simulation, 350 
periods for the empirical data).

Table 8.1 shows the R2 values for three machines operating at the manufacturer 
of optical storage media described in Chap. 1; the simulation represents a scaled- 
down version of this manufacturing system. Note the substantial difference between 
the results for simulated and empirical data caused by the noise in the empirical 
data, as also observed by Fine and Graves (1989). As expected, the fit for simulation 
data depends on the period length. In Table 8.1, a period length of five times the 
average processing time te is used. For the period length of the empirical data, which 
is about 15 times the average processing time, the adj. R2 for simulation is very 
close to 1.

A saturating, 2-dimensional clearing function based on Wt−1 and Rt such as (8.17) 
leads to a convex, nonlinear order release model. Although there is little experience 
with this structure, it appears to be computationally tractable. Approximating (8.17) 
by a set of linear functions, in the manner used for 1-dimensional clearing functions, 
leads to a high number of constraints in the resulting LP model. Successive linear 
approximation in the optimal region (Hadley 1964) is an alternative as well as using 
NLP solvers. Determining the best way to solve the resulting models remains a 
topic for future research.

8.2 Transient Queueing Analysis of Clearing Functions
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Table 8.1 Adjusted R2 for representative bottleneck machines in the manufacturing (Man), 
printing (Pri), and packing (Pack) department of an optical storage media manufacturer

Machine Utilization R2 1-dim. CF R2 2-dim. CF

Simulation data

ManBNS Gateway workcenter
PriBNS 95.34% 0.743 0.939
PackBNS 71.95% 0.937 0.977
Empirical data

ManBN 88.71% 0.664 0.687
PriBN 82.77% 0.578 0.600
PackBN 80.03% 0.656 0.702

1-dim. CF Equation (7.24), 2-dim. CF Equation (8.17) (Häussler and Missbauer 2014)

Decomposing Wt−1 into its components Wt−2 and Rt−1, which leads to a three- or 
more dimensional clearing function with explanatory variables that reflect the evo-
lution of work input and output over time, has not been considered in the research 
so far. Kacar and Uzsoy (2014) explore this issue using a product-based clearing 
function that makes no distinction between the different operations l of each product 
at each workcenter, but fits a clearing function for each product at each workcenter. 
Thus the release, WIP, and output variables are defined as
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and clearing functions fik(.) are formulated for each product i ∈ I and workcenter k. 
Plotting the total output for all products against the total initial WIP 
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releases 
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iktR
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∑  to a workcenter k subject to machine failures, as illustrated in Fig. 8.5, 

suggests that there is benefit in disaggregating the workload into its components, 
releases Rt and entering WIP Wt−1, as suggested in (8.15). Hence they propose three 
different product-based clearing functions. Model 1 uses only state information for 
the current period, given by
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where μik denotes the intercept and βik and θik the regression coefficients to be esti-
mated. Model 2 extends Model 1 by considering the releases of product g in the 
immediately preceding period, yielding
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Fig. 8.5 Total Output at a Machine Subject to Failures as a Function of Releases and Initial WIP 
(Kacar and Uzsoy 2014)

The final model, Model 3, augments Model 2 by adding the releases for all prod-
ucts in the immediately preceding period, giving
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The planning model using the product-based clearing functions differs some-
what from the ACF model used with the workload-based clearing function discussed 
in Sect. 7.2.3. The objective function remains the same, assuming all operations of 
a given product incur the same WIP holding cost. The material balance equations 
for finished goods inventory of each product and WIP of each operation of each 
product are also the same as in the ACF model. However, the constraints governing 
the output of each product in each period are given by

 X f i I k K t Tikt kt≤ ( ) ∈ ∈ = …. , , , , ,1  (8.22)
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where fkt(.) is defined by one of (8.19), (8.20), or (8.21). Constraints (8.23) were 
included because, occasionally, the fitting procedure will return a fit whose intercept 
exceeds the theoretical capacity of the workcenter.

The comparison of the different product-based clearing functions sheds some 
light on the issue of whether or not to include state variables related to previous his-
tory in the clearing function. Under low utilization the clearing functions (8.19) that 
consider only variables for the current period are among the best performers, 
although the difference in expected profit between the models is sometimes small 
(though statistically significant). At high utilization the model (8.20) that includes 
the releases of the individual product from the previous period is consistently among 
the best performers. These results are in general intuitive: at lower utilization levels 
the production resources will be able to convert the majority of the available work-
load in a period into output, leaving little WIP at the workcenter at the end of the 
period. When utilization increases, cycle times will also increase, causing the 
releases in the previous period to affect output in the current period.

An interesting finding of this work is the analysis of the residuals from the regres-
sion models fitted. Figure 8.6 shows the residuals (difference between predicted and 
realized output) of one of the product-based clearing functions as a function of the 
observed output of one of the products. Ordinary least-squares regression assumes 
that the residuals should be independent and normally distributed with homogenous 
variance and mean zero. It is apparent from Fig. 8.6 that the model illustrated did 

Fig. 8.6 Residuals for Product-based Clearing Function (8.20) of Unreliable Machine
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not satisfy these conditions. While the mean residual is close to zero at low output 
levels, as output levels increase an upward trend appears. In addition, the variance 
of the residuals for a given output level, shown in the figure by the vertical  dispersion 
of the points around the horizontal axis, is also increasing, and far from symmetric, 
suggesting frequent underestimation in the output range 120–220  units. At very 
high output levels, the problem seems to be one of systematic overestimation. 
Clearly, the interactions between the state variables are complex, and there is much 
room for improvement.

In hindsight, the failure to distinguish between the workloads of different opera-
tions, i.e., workload of the same product at different stages of processing, confounds 
the results of these experiments considerably. Comparison of the product-based 
clearing function and the workload-based clearing functions used in the ACF model 
shows, unsurprisingly, that in five of the eight experimental conditions the workload- 
based clearing function outperforms the various product-based clearing functions. 
The product-based clearing functions perform better for both low utilization short 
failure cases and low utilization long failures with high demand CV. The reason for 
this lies in the more granular representation of the production resources in the 
workload- based clearing function. Recall that in the product-based clearing func-
tions there is no information capturing the flow of material through the different 
operations of each product routing; the product-based clearing function considers 
only the total number of lots of each product processed in that period. This creates 
the opportunity for incorrect behavior such as that illustrated in Chap. 7 for single-
variable clearing functions. The product-based clearing function for a given product 
must produce the different operations in the right combination, but there is nothing 
in the model to ensure this apart from the finished goods inventory balance equation, 
which meets demand for each product using output from the last operation on its 
routing. In contrast, the workload-based clearing function creates a single clearing 
function for the workcenter whose capacity is shared among the operations, and uses 
the allocated clearing function formulation to allocate the estimated total output of 
the workcenter among all operations of all products processed there. The observa-
tion that the workload-based clearing function outperforms the best product- based 
clearing functions in five of the eight experimental conditions, particularly those at 
high utilization, suggests that the product-based clearing functions as implemented 
in this study are deficient in multiple aspects. The results of Albey et al. (2014, 2017) 
discussed below, which examine different aggregations of state variables in single- 
and multistage production systems, also contribute to this discussion.

Häussler and Missbauer (2014) examine the fit of various 3-dimensional clearing 
functions to the empirical and simulated data for the manufacturer of optical media 
described in Chap. 1 and for simulation data specifically designed for this experi-
ment. Since no functional form for saturating 3-dimensional clearing functions is 
known, they use a linear and a specific cubic function. Although minor improve-
ments in fit were observed in some cases, the results are largely inconclusive. This 
suggests rapidly diminishing returns to increasing the dimensionality of the clearing 
functions, but this must be examined in further studies.
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The findings presented so far demonstrate that the expected output in a given 
planning period depends, in principle, on the entire history of the process up to the 
current period. Neglecting this dependence leads to an inaccurate estimate of the 
expected output in the planning period, which can be termed an estimation error. 
The inclusion of this inaccurate clearing function in the order release model leads to 
suboptimal releases over time, which we shall term optimization error. In particular, 
since the clearing function represents the expected output of the system for a given 
state and time as opposed to its maximum possible output, the effects of temporary 
periods of high workload (workload peaks) are unlikely to be predicted accurately. 
A number of experiments have shown that CF-based order release models can lead 
to fluctuations in releases over time that exceed those in external demand (Missbauer 
1998, 2009; Bischoff 2017), which might well be due to this estimation error. Orcun 
and Uzsoy (2011) observe oscillations of this type in a system where the planning 
model assumes a fixed lead time but realization follows a clearing function, creating 
a mismatch between the planning model and the system it is representing.

However, the relationship between the fit of the CF and the quality of the release 
schedules (at the discrete-event level) is complex (Kacar and Uzsoy (2015)). 
Preliminary numerical experiments with 2-dimensional CFs show that they can lead 
to high variations of the releases over time. Figure  8.7 depicts the optimization 
results for the single-stage, single-product CF model described in Sect. 7.2 (repeated 
for convenience) that seeks to minimize
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subject to the standard WIP and finished goods inventory balance equations, the CF 
(8.17) with β = 1 and nonnegativity constraints for all variables. The WIP holding 
cost coefficient w = 0.5, and the FGI holding cost h = 1 per unit-period. The param-
eters of the CF are k = 200, C = 950.

This behavior appears to arise because output in a given period can be increased 
by either providing initial WIP or by releasing work in the period. Providing initial 
WIP generates capacity more efficiently since all of it is cleared up to the available 
capacity. Releasing new work generates less capacity due to the nonlinearity of the 
CF in Rt. For instance, in Fig.  8.7 900 units are released in period 1, held back 
(W1 = 900) and processed in period 2 (X2 = 900) since this is cheaper than releasing 
more work in period 2 in order to generate a capacity of 900. This point at which it 
becomes more economical to release WIP rather than hold it back will change with 
the utilization due to the specific nonlinear shape of the CF (8.17) that is depicted as 
a contour plot in Fig. 8.8. This is also related to the findings of Carey (1987) that 
holding back behavior will arise when releasing WIP in the current period will 
cause congestion in later periods. This is counterintuitive and indicates that integrat-
ing the history of the process into order release models requires modification of the 
model structure as well. How to do this is largely a topic for future research.

The fact that the expected output in a period depends on the entire history of the 
process up to that period leads to another important issue: Except for initial WIP of 
the order release model, the values of the independent variables of the clearing func-
tion are point forecasts of a future state of the system, and hence subject to random 
forecast error, which influences the expected output as seen in Fig. 8.3; different 
realized values of the initial WIP result in a different curvature for the clearing func-
tion. Describing this forecast error for some future period as a function of the deci-

Fig. 8.8 Contour plot of the CF (8.17) for β = 1, Ct = 950, k = 200
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sion variables in a release planning model is difficult for two reasons. Firstly, it is 
not based on hard data that can be measured, but instead reflects the decision mak-
er’s state of knowledge at a certain time, e.g., the accuracy with which the WIP level 
on Thursday morning can be estimated on Monday morning, given specified work 
releases during the intervening period. Stochastic models of the evolution of the 
forecast error over time are required. The Martingale Model of Forecast Evolution 
(Heath and Jackson 1994) is one such approach that has been successfully applied 
to production planning under uncertain demand (Albey et  al. 2015). Secondly, 
errors in the WIP estimation will increase as the future periods become more remote. 
Integrating these factors into the order release model results in a complex stochastic 
programming problem since the evolution of information over time must be consid-
ered in a rolling horizon planning framework (Missbauer 2014). While some initial 
efforts have been made to formulate stochastic optimization models of such prob-
lems (Aouam and Uzsoy 2012, 2015; Albey et al. 2015; Lin and Uzsoy 2016), the 
development of scalable, practically applicable models remains a topic for future 
research.

8.4  Multivariate Multiproduct Clearing Functions

The second principal motivation for the development of multivariate clearing func-
tions is the need to consider the interactions of multiple products competing for 
capacity at the production resources of interest. This issue has already raised its ugly 
head in Chap. 7, where we saw that when a univariate clearing function based on a 
state variable aggregated over different products is used, counterintuitive behavior 
can result even in the absence of setup times between products. The allocated clear-
ing function formulation addresses this issue to a degree of approximation in the 
absence of significant setup times. We shall show in this section that when conten-
tion between multiple products can lead to significant loss of output, as is the case 
in the presence of setups, the univariate clearing function fails to predict output at 
the level of individual products.

We shall first use a simple aggregate queueing model to explore the impact of 
multiple products on the output of a production resource. We then examine a num-
ber of multivariate clearing functions that explicitly address the presence of multi-
ple products, and then consider production units with internal routing flexibility. 
Under these conditions it is no longer possible to describe the behavior of the pro-
duction resources using a single clearing function; instead, a system of nonlinear 
clearing functions that describe the output of each item for fixed WIP and output 
levels of all other products in the system is required.
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8.4.1  Motivation

The simple, steady-state queueing analysis used in Chap. 2 can be extended to 
examine the impact of product mix on system output. In that chapter, we had shown 
that the average utilization u of a G/G/1 queue in steady state as a function of the 
average WIP level W can be approximated as
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2 denotes the squared coefficient of variation of the interar-

rival times and ce
2 that of the effective service time. Recall that the effective service 

time is a random variable representing the amount of time a job will spend in ser-
vice, taking into account both the natural processing time and disruptions such as 
setups, quality issues, and machine failures (Hopp and Spearman (2008), Chap. 8).

If significant setup times must be incurred when switching between different 
products, the impact of product mix on the distribution of the effective processing 
time can be characterized as in Hopp and Spearman (2008). Suppose the natural 
processing time, the time required to process a job without any detractors such as 
setups and machine failures, has mean t0 and variance σ 0

2. Assuming a setup is 
equally likely to occur after each part being processed, with the average number of 
parts processed between setups being Ns, and denoting the mean and variance of the 
setup time by ts and σ s

2, respectively, the mean and variance of the effective process-
ing time are given by Hopp and Spearman (2008), Chap. 8:
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The mix of products processed by the system can potentially affect all terms in 
the expressions above. The more frequently setups need to be performed, the smaller 
Ns will be; in addition, both the mean and variance of the setup time distribution 
may increase as a more diverse portfolio of products requiring different equipment 
configurations are processed. In practice, lot sizing policies will affect Ns, and con-
tinuous improvement programs such as single minute exchange of die (SMED) 
(Shingo 1986) seek to reduce both ts and σ s

2. However, the impact of product mix on 
utilization, and hence output, through its impact on ce

2 is evident.
A simple simulation experiment reported by Albey et al. (2014) makes this point 

quite graphically (no pun intended!). They consider a single-stage production sys-
tem capable of producing two different parts, whose processing times are lognor-
mally distributed with a mean of t0 = 100 s and a coefficient of variation of 0.13. 
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Fig. 8.9 Impact of Product Mix on System Output

Parts are released into the system one by one following a cyclic pattern based on the 
heuristic of Askin and Standridge (1993). They consider two different situations: 
one in which there are no setup times between part types, and one where the setup 
time follows a triangular distribution with mean ts  =  0.1t0. The demand in each 
period follows a Poisson distribution, leading to a mean total workload of 1600 s in 
each period. The total workload for the period is then disaggregated into individual 
products over 10 different product mixes, where the ratio of the second product to 
the first ranges from 0 to 5 (i.e., 0, 0.2, 0.25, 0.33, 0.5, 1, 2, 3, 4, and 5). Each 
 product mix is simulated for 1000 different workload realizations, resulting in a 
total of 10,000 observations of workload and output. The resulting plot of the output 
of the system in a planning period of 1800 s is shown in Fig. 8.9.

The upper row of graphs represent the performance of the system without setup 
times. The first two graphs plot the output of Product 1 in the planning period as a 
function of the WIP of Product 1 and the total WIP in the system, in units of time; 
the rightmost graph shows total output of both products as a function of the total 
WIP of both products. The banded appearance of the two leftmost charts is due to 
the discrete product mix combinations used in the experiment. A specified output of 
Product 1 can be obtained for various WIP levels of that product (leftmost graph), 
or of all products (middle graph), depending on the amount of Product 2 in the sys-
tem. Hence the output of Product 1 is not well described by either its own WIP or 
the total WIP of both products. The rightmost chart, however, shows that the total 
system output of both products is well represented by a function of the total WIP.

The lower panel of graphs tells a similar story—representing the output of 
Product 1  in terms of a WIP measure is inaccurate. However, in the presence of 
setup times, the output of Product 1 can decrease as its WIP increases, if the amount 
of Product 2 in the system is also increasing. For a given level of either WIP mea-
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sure (Product 1’s WIP or the total WIP), different output levels of Product 1 can be 
achieved depending on the amount of Product 2 in the system. The rightmost graph 
in the lower row differs qualitatively from that above it, showing that in the presence 
of setup times the aggregate output of the system does not present a monotonically 
increasing, concave shape.

Motivated by these observations, Albey et al. (2014) examine a number of differ-
ent multi-dimensional clearing functions (MDCFs) for a single production resource. 
Their point of departure is the univariate clearing function of Karmarkar (1989), 
given by
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where Λt denotes the workload available to the resource throughout period t as dis-
cussed in Chap. 7. They note that in a multiproduct environment, the output of a 
given product in a planning period must depend on both the amount of that particu-
lar product available to the resource during the period, and the amount of capacity 
allocated to other products. The allocated clearing function formulation of Chap. 7 
addresses this issue by estimating the aggregate output of the resource in units of 
time as a function of the total workload of all products available to it, and then dis-
aggregating this into estimates of output for individual products. Albey et al. (2014) 
take a different approach by formulating a MDCF for each product i, representing 
the capabilities of the resource by a system of nonlinear, linked clearing functions 
that use state variables related to all products in the system in the planning period. 
They consider two classes of these MDCFs: WIP-based MDCFs (W-MDCFs), 
where the impact of other products j ≠ i in the system is represented by the average 
WIP level of each product during the planning period; and output-based MDCFs 
(O-MDCFs), where the impact of the other products is estimated using their planned 
output. They experiment with several functional forms of each type, represented by 
the O-MDCF
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where Xi denotes the expected output of product i in the planning period, Wi the 
planned time-average WIP level of product i over the period, and Mi, ai and bi are 
user-defined parameters to be estimated from data. C denotes the expected capacity 
of the resource in the period. The general form of the W-MDCFs is
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Several different versions of each MDCF family, the details of which are given in 
Albey et al. (2014), were tested in computational experiments. The authors show that 
the MDCFs are non-convex functions, so that the resulting release planning models 
can be reduced to quadratically constrained nonlinear programs (Linderoth 2005; 
Bao et al. 2011), which are known to be strongly NP-hard but can be solved by enu-
merative methods using solvers such as BARON (Tawarmalani and Sahinidis 2005). 
Some specific MDCFs belong to the class of bilinearly constrained bilinear prob-
lems (Al-Khayyal 1992), whose non-convex nature appears to be less severe than 
that of the general quadratically constrained nonlinear problem. The nine different 
MDCFs are fitted using least-squares regression using an extensive set of training 
data generated from a simulation model of a resource processing four different prod-
ucts in different proportions. They consider three different experimental situations. 
In the first, there is no loss of capacity in switching from one product to another, and 
products are processed in FIFO order. In the second case switching from one product 
to another involves a tool change time, with FIFO dispatching. The final case 
assumes no tool change time and dispatching in order of Shortest Processing Time 
(SPT), to examine the impact of shop-floor dispatching policy on the performance of 
the various MDCFs. In all experiments, the products to be released in a period are 
sequenced in a cyclic pattern and released all together at the start of the planning 
period, which will result in a very large number of tool changes in the second experi-
mental configuration. The performance of the MDCFs is measured by implementing 
them in a release planning model, consisting of balance equations for the WIP and 
finished goods inventory of each product and the MDCFs for each product in each 
period, and simulating the performance of the production system under the releases 
determined by these models. Since obtaining globally optimal solutions to the result-
ing non-convex optimization models requires very high CPU times, the authors use 
a convex nonlinear solver to obtain locally optimal solutions.

Under FIFO dispatching without tool changes, all but the most simplistic MDCFs 
perform comparably with the ACF model and a simpler LP model that ignores con-
gestion. The striking feature of this experiment is the good performance of the simple 
LP model, which assumes that work released in a planning period will be converted 
to output within the same period. This may seem to suggest that congestion is not 
particularly important in this experiment, but this is unlikely, since the average utili-
zation in each period is in excess of 0.90, with considerable variation over time. 
However, under the given demand conditions the resource must operate close to its 
full capacity for most of the planning horizon, resulting in similar behavior for all 
planning models. Interestingly, all planning models underestimate the realized cost 
of the releases they propose. Detailed results are given in the original paper.

The presence of tool changes between different products changes the situation 
dramatically, as seen in Fig. 8.10. The performance of the ACF model collapses, 
which is not surprising since it was not designed to consider capacity losses of this 
type. Not only does it yield higher costs than other MDCFs, but the planning model 
severely underestimates the realized cost. The LP model uses a conservative esti-
mate of capacity, based on the worst-case number of tool changes, resulting in poor 
cost performance but, interestingly, a very accurate prediction of the realized costs 
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Fig. 8.10 Performance of various MDCFs relative to ACF and conservative LP Model. MDCFs 1 
through 5 are O-based, MDCFs 6 and 7 are WIP-based

of the releases it generates. The W-MDCFs are now the best performers by a consid-
erable margin, suggesting that in the presence of mix-dependent capacity losses, 
detailed representation of product mix is required. The poorer performance of the 
O-MDCFs is likely due to the fact that the output of a particular product depends on 
the amount of WIP of that product available during the period. The final experiments 
examine the impact of shop-floor dispatching with no tool changes. Similar to the 
findings of Asmundsson et al. (2006), the performance of the better MDCFs and 
ACF are generally comparable, suggesting that the use of non-delay dispatching 
policies in the absence of interference between products does not adversely affect 
the performance of ACF, while some of the MDCFs perform quite poorly. The poor 
performance of certain MDCFs is likely due to the release planning model converg-
ing to a poor local optimum rather than a global one.

The primary conclusion is that while MDCFs appear to be essential for good 
release planning in multiproduct systems where the processing time depends on the 
product mix, such as in the presence of setups, the resulting optimization models are 
substantially more involved than the linear programs resulting from the ACF model. 
The non-convex nature of these optimization models ought to come as no surprise 
to the reader; after all, even the univariate clearing functions discussed in Chap. 7 
resulted in non-convex formulations in the presence of multiple products. The good 
news seems to be that for many functional forms, the non-convex behavior of the 
MDCFs seems rather benign, allowing locally optimal solutions obtained by con-
ventional convex solvers to provide good performance. The development of effi-
cient solution algorithms for these models, as quadratically constrained quadratic 
programs or bilinear models, remains an important topic for future work. The func-
tional form of these MDCFs is also quite similar to those derived in the next chapter 
for lot-sizing problems.
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In a subsequent paper, Albey et al. (2017) extend the idea of clearing functions 
from a single production resource to a production unit consisting of multiple 
resources, where in addition to requiring processing on several different resources, 
products also have routing flexibility that allows a given operation to be performed 
on one of several different machines. The objective of this work is to identify a set 
of state variables and a functional form for a MDCF that will allow the output of the 
overall production unit—not individual resources—in a planning period to be esti-
mated to an acceptable degree of accuracy.

The point of departure for this work is the MDCF form (8.30), which was ini-
tially developed for a single production resource. In a production unit consisting of 
multiple resources, this functional form can be implemented at several levels of 
aggregation. The minimal unit of work is the machine-operation pair, specifying the 
processing of a particular operation of a specific product on a specific machine. In 
the presence of routing flexibility, a given operation may be performed on several 
alternative, non-identical machines. Operation-machine pairs can be summed for a 
specified operation, a specified machine, and over products. Summation over 
machines combines all operations processed on a given machine, while summation 
over a product sums the workload from all operations performed on that product. 
The reader will note we have met both these aggregations already: the single- 
variable clearing functions developed in Chap. 7 are based on aggregate workload 
over all operations processed at a given machine, while the product-based clearing 
functions of Kacar and Uzsoy (2014) aggregate the workload from all operations of 
a given product at a particular resource. The authors develop MDCFs for each of 
these levels of aggregation, and examine their performance in the presence of differ-
ent levels of utilization and processing flexibility.

The release planning models based on the MDCFs follow the basic structure of 
other clearing function based models, with balance equations for finished goods 
inventory of each product and WIP of each of the basic units of aggregation. Thus 
in the model based on operation-machine pairs using the MDCF form (8.30), WIP 
balance equations are written for each operation at each machine as in the allocated 
clearing function model. When using the operation-based MDCF (8.29), WIP bal-
ance equations are written for each operation in each period. The P-MDCF requires 
WIP balance equations for each operation, since the WIP of each operation is 
weighted to reflect the likelihood of its emerging as finished product in the current 
period. As was the case for the single-stage systems, the resulting release planning 
models are non-convex, but are solved to a local optimum using the KNITRO con-
vex nonlinear solver. The performance of the MDCFs is evaluated by the perfor-
mance of the production unit under the releases developed by the release planning 
models using them. The univariate clearing function of Srinivasan et al. (1988) is 
used as a benchmark for comparison, and is implemented in a release planning 
model using the allocated clearing function formulation, but without piecewise lin-
earization of the clearing functions. This will be referred to as the single- dimensional 
clearing function (SDCF) model in our discussions. The resulting nonlinear pro-
gram is convex per the discussion in Chap. 7, and is solved to a global optimum by 
KNITRO. The production unit considered is a job shop consisting of six machines 
producing four products with different routings.
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The first experiment examines the performance of the MDCFs as a function of 
utilization with no setups required between different products and no routing  flexibility; 
each operation can be processed on exactly one machine. The findings from this 
experiment are confirmatory rather than surprising: at low to medium utilization lev-
els, whose average across all machines and periods varies from 0.6 through 0.8, the 
performance of all MDCFs is fairly similar, with a slight advantage to OM-MDCF 
based on individual operation-machine pairs. The authors compare the planned and 
realized costs of the different models and find very close agreement for these utiliza-
tion levels, indicating that the release planning model is able to accurately predict the 
consequences of its decisions on the shop floor. The SDCF also exhibits close agree-
ment between planned and realized profit, but as average utilization reaches 0.8 it 
yields substantially lower profit than the MDCFs, suggesting once again that it sys-
tematically underestimates the capabilities of the production unit. This latter finding 
once again emphasizes the need for MDCFs when multiple products are present.

At higher average utilization levels, ranging from 0.9 through 1.1—the latter 
representing a major overload of the system—results are qualitatively different. 
Major differences appear between the different MDCFs. In terms of realized profit, 
OM-MDCF, the least aggregated of the MDCFs, is consistently the best performer. 
O-MDCF is the next best, followed by P-MDCF by a wide margin. The highly 
aggregated P-MDCF fails dramatically at these higher utilization levels, yielding 
extremely poor realized performance relative to the other MDCFs.

The second experiment in this study introduces routing flexibility by incremen-
tally adding a single alternative machine for each operation of different products: 
first for the operations of Product 1, then Product 2, and then for all products. 
However, the choice of which of the alternative machines to use for a given opera-
tion is made by the shop-floor dispatching logic and is not available to the planning 
models. The improvement in performance of all models with the addition of even a 
limited amount of flexibility for a single product is quite striking, even when it 
affects only one of the four products. While the single-dimensional clearing func-
tion (SDCF) is the worst performer by a wide margin when there is no flexibility, the 
presence of flexibility for Product 1 alone more than doubles its expected profit. The 
marked improvement it obtained when flexibility is allowed for Product 1 suggests 
that most of its problems are due to the clearing functions estimated for the machines 
used by that product, machines 1, 3, and 5. The realized performances of OM-MDCF 
and O-MDCF are now very similar, and with the higher levels of flexibility even 
P-MDCF provides realized profit comparable to O-MDCF. This suggests that the 
presence of flexibility, in the form of alternative machines for specific operations of 
a product, allows capacity to be pooled across machines in a manner that makes it 
easier for the MDCFs, and even the SDCF, to predict.

The final experiment in this study examines the impact of setups between the dif-
ferent products, extending the analysis in Albey et al. (2014). Results for average 
utilization of 1.0 are shown in Fig. 8.11. Once again, under low average utilization all 
MDCFs and SDCF lead to quite similar performance, but as in the earlier study of 
single-stage systems the situation changes markedly at high utilization. As utilization 
increases, the more aggregated O-MDCF and P-MDCF begin to fall behind the less 
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Fig. 8.11 Performance of MDCFS and SDCF with Setups under High Utilization

aggregated OM-MDCF in relative performance. The realized profit of all models 
decreases with increasing utilization, due to increasing backorder costs. The close 
agreement between the planned and realized costs of SDCF combined with its lower 
profit again suggests that it is underestimating the capabilities of the system, releasing 
less material which makes it easier for it to realize its planned profit, which remains 
substantially lower than those of the MDCFs. The very close agreement between the 
planned and realized profit of OM-MDCF and the very poor agreement for P-MDCF 
are equally interesting. Since setups are incurred by the processing of specific opera-
tions on specific machines, OM-MDCF is able to predict the potential output of each 
operation-machine pair quite accurately. P-MDCF fails since it does not capture 
operation-machine level data. O-MDCF occupies an intermediate position.

Once again, the performance of the MDCFs can be explained using intuition 
from queueing models. The impact of setups in a multiproduct system is to increase 
the variability of the effective processing time distribution, making it difficult for 
the more aggregated clearing functions to estimate the output of the system accu-
rately over a wide range of product mixes and operating conditions. The reader will 
observe the recurring theme: the more different factors contributing to the variabil-
ity of the effective processing time distribution at any resource, the harder for a 
clearing function with a few, aggregate state variables to estimate its output accu-
rately. Setups are incurred on the basis of specific operations at specific machines, 
while machine failures affect all operations at a given machine in essentially the 
same way. One wishes that the authors had carried their experimental design to its 
logical conclusion, examining the impact of flexibility on problems with setups, and 
introducing machine failures. One would conjecture that if machine failures are the 
dominant source of variability, SDCF ought to perform fairly well, while if the 
 primary source of variability is at the level of operation-machine pairs, OM-MDCF 
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ought to do better. The only situation in which P-MDCF might be expected to per-
form fairly well would be if all products required very similar processes in terms of 
both routing and operation processing times.

It is important to note that in this last experiment, as in the setup experiments 
reported for the single-stage systems, there is no attempt to perform any kind of lot 
sizing that would make use of setups with maximum efficiency; the cyclic sequence 
in which products are released approaches a worst-case situation in terms of the 
number of setups incurred. Clearly there is considerable scope for exploring the 
impact of different sequencing policies on the shape of the MDCF required to antic-
ipate the behavior of the production unit.

8.5  Discussion

Our discussion of MDCFs has ranged over several different possibilities for extend-
ing the univariate clearing functions of Chap. 7, which have been the primary focus 
of research in this area for many years. Univariate clearing functions have been used 
to estimate the aggregate output of a production resource over all products, usually 
measured in units of time. For single product systems without sequence-dependent 
setup times this is, obviously, sufficient, but when multiple items compete for capac-
ity additional logic is required. Chapter 7 discussed the difficulties encountered by 
univariate clearing functions in the presence of multiple products and presented the 
allocated clearing function formulation as an approximate, but generally effective, 
solution in the absence of setup times between products or under predetermined lot 
sizes. However, both queueing analysis and empirical observation suggest that 
when the amount of output the system can generate is significantly affected by the 
mix of the desired output, univariate clearing functions are inadequate.

The development of MDCFs requires additional state variables in the clearing 
functions, and the development of clearing functions estimating the output of each 
output item, which is usually a product but can also be defined as an operation- 
machine pair or multiple operation-machine pairs representing an operation that can 
be performed on alternative machines. The output capabilities of the system, 
whether a resource or a larger production unit, are captured by a system of MDCFs 
that jointly capture the tight interdependence of the output of different items. This 
approach requires the use of state variables related to each of the items produced, 
and use of state variables related to earlier planning periods has also been examined.

The common theme across experiments examining different MDCFs is that 
while univariate clearing functions are capable of estimating the aggregate output of 
a production resource or unit fairly accurately in the absence of setup times, their 
ability to estimate the mix of this output, at the level of individual items, is much 
more limited. Upon reflection, this should be no surprise; even in the absence of 
setups between products, the presence of multiple products with different service 
time distributions will increase the variability of the effective service time 
 distribution, making it harder for a single-variable clearing function to produce 
accurate estimates of output under a wide range of operating conditions and product 
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mixes. In the presence of significant setup times, especially when lot sizes are deter-
mined at the scheduling level, the aggregate, univariate clearing functions fail dis-
mally, as is only to be expected.

The use of MDCFs explicitly distinguishing between individual items yields 
more accurate output estimates, and hence better performance by the planning mod-
els that use them, but comes at the cost of significantly larger and more complex 
release planning models. In particular, the use of MDCFs results in non-convex 
optimization models that are significantly more difficult to solve than the linear 
programs of Chap. 5, or the convex nonlinear models and linear programs of Chap. 
7. The nature of the non-convexity should be the subject of considerable future 
study. Anli et al. (2007) observe that non-convex behavior arises either when operat-
ing policies at the production units are “flagrantly suboptimal” or the items pro-
duced are highly diverse in nature, leading to a highly variable effective processing 
time distribution. Albey et  al. (2014) also find that the objective function values 
obtained by the BARON global solver were the same as those from the KNITRO 
convex nonlinear solver in all cases where BARON converged to a solution. This 
further suggests that the non-convexity of these models is somewhat structured, 
raising the possibility that more efficient solution procedures may be possible. 
Further exploration of this issue is clearly an interesting direction for future research 
and provides a useful application of global optimization methods.

The development of clearing functions that explicitly recognize the transient 
state of the queues describing the system, without assuming steady-state behavior 
within the planning periods, has also raised a number of interesting issues. Both 
empirical evidence and queueing arguments demonstrate quite conclusively that the 
shape of the clearing function is different in the transient regime from the steady- 
state environment that is best studied. This issue of transient behavior is com-
pounded by the fact that release planning models treat the planned state of the 
system in future periods as a deterministic parameter, while in reality these are 
better treated as (possibly biased) forecasts of random variables. The argument from 
Jensen’s inequality suggests that even assuming unbiased forecasts of the future 
state variables, treating these estimates as deterministic parameters is likely to result 
in systematic overestimation of the output, an observation supported by consider-
able experimental evidence.

There also appears to be a basic tradeoff between the accuracy of the output pre-
dictions made by a clearing function and its computational tractability. In general, 
adding state variables and developing MDCFs for each item produced tend to 
improve the accuracy of the output predictions, but greatly increase the complexity 
of the resulting release planning models, as well as the complexity of fitting the 
MDCFs themselves. Advanced, high-dimensional machine learning techniques 
such as metamodeling of various kinds and neural networks may be able to produce 
quite accurate predictions of output, but are not amenable to incorporation in math-
ematical programming models of the kind this volume has focused on. The use of 
metamodels to accelerate simulation optimization approaches, by replacing a 
 time- consuming simulation model with a fast running metamodel as in Li et  al. 
(2016), suggests a possible way out of this dilemma, but considerable additional 
work is needed in this area.
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