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Chapter 7
Univariate Clearing Functions

In this chapter, we introduce the concept of the clearing function (CF), a metamodel 
of a production resource that relates the expected output of a resource to some mea-
sure of the work available to it in the planning period. We focus on clearing func-
tions with a single state variable and examine a variety of functional forms that have 
been proposed in the production and traffic literature. We then formulate release 
planning models using these functions and show that while single-product models 
yield tractable convex optimization problems, the presence of multiple products 
competing for capacity at a shared resource creates significant difficulties. The allo-
cated clearing function formulation is presented to address these issues and shown 
to yield more informative dual prices for resource capacity than conventional 
LP models.

7.1  Preliminaries

The models in the previous two chapters anticipate the performance of the produc-
tion units using exogenous, workload-independent lead times that are assumed to 
remain valid as long as a maximum capacity loading is not exceeded. These lead 
time estimates may take different forms based on how capacity is consumed during 
the lead time, as discussed in Chap. 5, and can be specific to individual planning 
periods as discussed in Chap. 6.

The combination of fixed, exogenous planned lead times with a maximum capac-
ity limit as an anticipation function yields computationally tractable linear program-
ming (LP) models as long as lot sizing is not a consideration; the presence of lot 
sizing requires the introduction of integer variables and yields considerably more 
challenging models (Pochet and Wolsey 2006). As long as the production unit oper-
ates at approximately constant utilization over time, historical data can be used to 
estimate planned lead times that are consistent with observed cycle times, for exam-
ple by setting the planned lead times to a specified fractile of the observed cycle 
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time distribution. However, if the resource utilization level, the product mix, or both 
vary over time, the distribution of the cycle time will also change over time. This, in 
turn, may cause the cycle times observed on the shop floor to deviate significantly 
from the lead times used in the planning models, adversely affecting the perfor-
mance of the production units trying to execute these plans.

In contrast to these LP models where the output of the system is determined by 
the combination of planned lead times and a maximum capacity loading, the models 
in this chapter express the expected output of the production unit in a planning 
period as a function of the workload available to the resource for processing in that 
period. Models of this type have arisen in the context of queueing systems, in the 
management of traffic networks and as representations of particular production con-
trol policies. We shall refer to models of this type as clearing functions, following 
the terminology of Karmarkar (1989).

We define a clearing function as a functional relationship that specifies the 
expected output Xt of a production resource in a planning period t of duration Δ as

 
X ft t= ( )∆ Ω,

 
(7.1)

where Ωt denotes a set of state variables that collectively describe the amount of 
work available to the resource in period t. The specific set of state variables to 
include in the set Ωt is not immediately obvious. From a queueing perspective, the 
state of the resource at time t potentially depends on the entire past history of the 
relevant stochastic processes (interarrival times, service times, machine failures, 
setups, number of available machines, etc.) up to that instant in time. It is also 
apparent that the clearing function must depend on the length Δ of the planning 
period for which it is being constructed. Finally, the amount of work available to the 
resource and the distribution of its arrival over time depend on the model used by 
the planning level to determine releases over time. In queueing terms, the release 
decisions made by the planning level affect both the mean interarrival time of orders 
to the resource and its variance.

The purpose of the clearing function is to represent the behavior of the resource 
to an acceptable degree of accuracy while still yielding tractable optimization mod-
els for the planning problem. The extremely high dimensionality and complex func-
tional forms required by general methods, such as queueing approaches considering 
the entire history of the process or a large portion of it, make it very difficult to 
obtain clearing functions leading to tractable optimization models. Even simple 
functional forms for clearing functions can yield non-convex optimization models. 
Hence most clearing functions proposed to date have used a single state variable; we 
shall see that even in this case formulations involving multiple products can become 
challenging. In this chapter, we discuss various single-variable clearing functions, 
the difficulties that arise when multiple products compete for capacity at a resource, 
and solutions to these difficulties. We also show that planning models using clearing 
functions can produce meaningful dual prices for resources at any level of utiliza-
tion, which is not the case for the models discussed in Chaps. 5 and 6.
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7.2  Single-Variable Clearing Functions

7.2.1  Average WIP-Based Clearing Functions

This family of clearing functions, the motivation for which was sketched in Sect. 
2.2, uses the set of state variables Ωt tW= { } , where Wt  denotes the time-average 
WIP level, measured in number of units or lots, at the production resource over the 
planning period t. Specifically, if planning period t spans the time interval (t−Δ, t] 
and W(t) denotes the amount of WIP at the resource at time t, we have

 
W W dt

t

t

= ( )
−
∫

1

∆ ∆

τ τ
 

(7.2)

The advantage of Wt  as a workload metric is its straightforward relation to the 
well-known steady-state analyses of queues such as the M/G/1 and G/G/1 (Buzacott 
and Shanthikumar 1993; Curry and Feldman 2000), from which exact or approxi-
mate expressions relating the expected WIP, expected cycle time and utilization can 
be derived. As discussed in Sect. 2.2, the expected WIP level of the G/G/1 queue in 
steady state is given by
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(7.3)

dropping the time subscript since this is a steady-state relation. Solving for u in 
terms of W  yields a quadratic equation in W  whose nonnegative solution is
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(7.4)

where ψ = +( )c ca e
2 2 2/ ; recall from Sect. 2.2 that ψ = 1 represents the special case 

of the M/M/1 queue. Intuitively, the higher the average WIP level W  at the resource, 
the lower the probability (1 − u) that the resource will be idle due to lack of work; 
hence maintaining a planned average throughput rate of X in a planning period 
requires maintaining a certain average WIP level at the resource. The average utili-
zation can be interpreted as the fraction of the planning period during which the 
resource will be producing usable output. Thus the expected number of units pro-
duced over the planning period is given by:
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(7.5)
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Incorporating this state variable into optimization models requires some addi-
tional considerations. At the point in time the optimization model is solved to deter-
mine releases for the next T periods, the average WIP values Wt  are not known with 
certainty; they are in fact random variables whose distribution is determined by the 
release decisions made by the planning model. Hence the state variables Wt repre-
senting WIP in the optimization models actually represent the planned state of the 
resource at the end of period t and do not capture the evolution of the WIP level 
throughout the planning period. However, many different WIP trajectories W(t) may 
give the same beginning and ending WIP levels Wt−1 and Wt. Optimization models 
using this type of clearing function must estimate the planned value of Wt  for a 
given planning period t using the planned values of Wt−1 and Wt. The most obvious 
approach is to use the arithmetic average to obtain

 
W

W W
t

t t=
+( )−1

2  
(7.6)

However, this has implications for the behavior of the resulting optimization 
models. Note that if Wt−1 is increased by a certain amount in (7.6) and Wt reduced 
by the same amount, Wt  remains unchanged. Depending on the structure of the 
optimization model, this can lead to oscillating WIP levels at the period boundaries 
due to the presence of alternative optimal solutions, which is undesirable (Missbauer 
(1998): 413 ff.).

Given their origin in steady-state queueing analysis, clearing functions of this 
type are more appropriate for longer planning periods, where the transient behavior 
of the resource at the start of the period due to changes in releases can safely be 
neglected. Note that it is possible to have X Wt t≥  using a clearing function of this 
type; at low utilization levels, the average queue length will be very small, while the 
total output will be approximately equal to the number of arrivals during the period.

Although it is not explicitly stated as such, the practical worst case model of 
production lines given in Chap. 7 of Hopp and Spearman (2008) also represents an 
average WIP-based clearing function. This model considers a balanced serial pro-
duction line operating under the CONWIP policy discussed in Chap. 4. They define 
the system state as a vector whose components represent the number of jobs in front 
of each machine in the line. Assuming all such states to be equally likely, they note 
that for a total WIP level of w jobs in the line, a new job entering the system will see 
on average

 
W

w

Ni =
−( )1

 
(7.7)

jobs ahead of it at each of the N machines in the system, implying an average 
cycle time of
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where T0 denotes the raw processing time of the line, the average time in system a 
job will encounter if it enters an empty line, and rb the processing rate of the bottle-
neck machine. Substituting (7.8) into Little’s Law yields an average through-
put rate of

 
X

wr

r T w
=

+ −
b

b 0 1  
(7.9)

Since in a CONWIP system the average WIP level will be equal to the total WIP 
level w permitted in the system, this represents an average WIP-based clearing func-
tion that can be shown to be concave and monotonically non-decreasing in the aver-
age WIP level w. The assumption of equally likely system states is exact only for a 
balanced line with a single exponential server at each stage, but provides a WIP 
level that is unlikely to be exceeded in systems with more general structures.

7.2.2  Initial WIP-Based Clearing Functions

This family of clearing functions assumes that the expected output of the resource 
in a planning period is determined solely by the amount of work available to it at the 
start of the planning period; work arriving during the period will have no effect on 
expected output. Hence the set of state variables considered in each period t is 
Ωt = {Wt − 1}. Under this model either the probability of new work arriving during 
the planning period is negligible, the scheduling policy only allows work to be 
released at the start of a period (which coincides with the end of the previous one), 
or the planning interval is sufficiently short that work available at the start of the 
period will fully occupy the resource until the next period.

Clearing functions of this type have been discussed extensively in the context of 
traffic assignment problems (Dafermos and Sparrow 1969; Carey 1987; Peeta and 
Ziliaskopoulos 2001) where they are used to model the behavior of a section of 
highway in a given time period. In these networks, which bear considerable similar-
ity to those studied in this volume, a traffic system is modeled as a network with 
node set N and directed arc set A. The arcs (i, j) ∈ A correspond to specific segments 
of roadway whose starting and ending points are represented by nodes i, j ∈ N, 
respectively. The amount of traffic Xij(t) that can exit the arc (i,j) over a planning 
period t is expressed as a concave, non-decreasing function gij(Wij(t−1)) of the 
amount of traffic Wij(t−1) present on the arc at the start of the period. These exit 
functions are used in discrete-time optimization models very similar to those devel-
oped later in this chapter.

The exit functions used in the dynamic traffic assignment work are derived from 
flow-density functions, which are discussed in detail in Carey and Bowers (2012). 
The basic resource considered in these models, analogous to the machine or work-
center in production units, is a segment of road whose characteristics such as width, 
surface quality, visibility, and signage are assumed to be known. For ease of exposi-
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tion we shall assume the road segment to be of unit length, and will drop the time 
subscript to discuss a generic time period, as in the discussion of steady-state clear-
ing functions in Sect. 7.2.1. The progress of individual vehicles along the road seg-
ment is represented as a continuous flow, in much the same manner as the LP models 
of Chap. 5 treat the processing of discrete orders at the production resources. The 
traffic density k represents the number of vehicles occupying the road segment of 
unit length being considered. This quantity is analogous to the average WIP Wt  or 
workload in production contexts. The flow rate q, the number of vehicles passing a 
particular point on the road per unit time, is analogous to the throughput rate X of a 
workcenter or production resource. Hence the exit function captures the rate at 
which vehicles pass the end point of the road segment, either entering another seg-
ment or exiting the system. The space mean speed v of the traffic along the unit road 
segment is given by the length of the road segment divided by the average time to 
traverse it. The relation between flow rate q, speed v, and traffic density k is thus

 q kv=  (7.10)

Noting that v = 1/T, where T denotes the average time to traverse the road seg-
ment, we obtain

 
q

k

T
=

 
(7.11)

which can be rewritten as

 k qT=  (7.12)

Replacing each term with its counterpart in the production context (k with W  
and q with X) and noting that the interpretation of T as the average time to traverse 
the system under consideration is the same in both traffic and production contexts, 
we recover Little’s Law (Hopp and Spearman 2008):

 W XT=  (7.13)

Flow-density functions q  =  f(k) are intended to be empirical relations whose 
parameters are estimated from appropriately collected data. However, most flow-
density functions f(.) used in traffic research have been derived using a limited set 
of parameters:

 – The free-flow velocity V0 of the road segment, representing the flow of traffic at 
very low density, analogous to the raw process time T0 discussed in the previous 
section. Since by (7.10) the average velocity v = q/k = f(k)/k, we have
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(7.14)

 – The jam density kj, the density at which v = q = 0, i.e., traffic comes to a stop.
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 – The wave speed at jam density cj, the rate at which flow decreases as density 
increases to the jam density kj, given by
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dkk kj
j
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→
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(7.15)

 – The maximum flow rate qc. The density at which the maximum flow rate occurs 
is referred to as the critical density kc, analogous to the critical WIP concept of 
Hopp and Spearman (2008).

Carey and Bowers (2012) propose several desirable properties for a flow-density 
function. These include unimodality, appropriate finite values of the free-flow speed 
V0, jam density kj, and the ratio kj/kc, as well as an appropriate negative value of cj 
and the possibility of convexity as k → kj. A generic flow-density function f(k) sat-
isfying these conditions would appear as shown in Fig. 7.1.

Production systems research has generally assumed an infinite jam density 
kj = ∞, under the assumption that as the work available to a queueing system in a 
planning period increases its output rate X will eventually level off at 1/te, but will 
never decrease. In environments where jobs do not interfere with each other through 
sequence- dependent setup times or scheduling policies, this assumption appears 
reasonable. Hence most clearing functions proposed by production system research-
ers have taken the form of monotonically non-decreasing concave functions that 
asymptotically approach the maximum production rate as workload or WIP 
approach infinity. Clearing functions for environments where this assumption is not 
valid, such as those with significant sequence-dependent setup times, are discussed 
in the next two chapters. Clearing functions that decrease beyond a certain WIP 
level like the flow-density function in Fig.  7.1, due to e.g., reduced worker effi-
ciency when workload is too high or by excessive material shuffling which reduces 
capacity, are rare in the literature (Van Ooijen and Bertrand 2003).

While a wide range of flow-density functions have been discussed in the traffic 
research community, we will use two examples to illustrate the types of models 

Fig. 7.1 A generic flow-density function (Carey and Bowers 2012)
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considered. The output function proposed by Newell (1961) and Franklin (1961) 
takes the form
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(7.16)

Carey and Bowers (2012) note that this flow-density function satisfies more of 
the desirable properties they propose than any other function; however, it is concave 
everywhere, not admitting convexity as the jam density is approached. They also 
point out that the function is defined by three parameters (kj, V0, and cj) that give the 
behavior of the function at the origin and at jam density unduly high influence on its 
overall shape. This function appears to have motivated the clearing function of 
Srinivasan et al. (1988) discussed below. Another class of flow-density functions 
proposed by Van Aerde and Rakha (1995) takes the form
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where c1, c2, and c3 are constants computed from V0, kj, qc, and vc, where the latter 
denotes the average speed at critical density qc. The resemblance to (7.4) is striking.

7.2.3  Workload-Based Clearing Functions

The discrete-time nature of production planning models creates difficulties for aver-
age WIP-based clearing functions due to the fact that multiple combinations of val-
ues for Wt and Wt−1 can yield the same Wt  value for any period t. Initial WIP-based 
clearing functions assume that the expected output Xt of the resource in period t 
cannot exceed the initial WIP Wt−1 available at the start of the period, ignoring the 
possibility that work released during the period might be completed during the 
period.  Workload- based clearing functions address this issue by using a state vari-
able Λt that represents the total amount of work made available to the resource dur-
ing period t, given by

 Λ t t tW R= +−1  (7.18)

where Wt−1 denotes the amount of WIP carried over from the previous period t − 1 
and Rt the amount of work released to the resource during period t. Clearing func-
tions of this form must have
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(7.19)
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for all Λt ≥ 0, implying that the resource can never convert more material into output 
in a period than becomes available to it over the period.

Missbauer (2002) proposes a clearing function of this form for a resource that 
can be represented as an M/G/1 queue in steady state. We present here the same 
development for a G/G/1 queue. Recall from (7.5) that the expected throughput of a 
G/G/1 queue in steady state can be approximated as
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(7.20)

Now consider a G/G/1 queue in steady state where at the start of some planning 
period t there are Wt−1 units of work remaining on hand from the previous period 
and Rt units are released into the production unit. Recalling that the workload 
Λt = Wt − 1 + Rt, we have Wt − 1 = Λt − Rt. Since the queue is assumed to be in steady 
state, we must have Xt = Rt and W Wt t− =1 . Substituting W Xt t t= −Λ  into (7.20) and 
solving for Xt, we obtain
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(7.21)

The basic form of this expression is quite similar to that derived for the average 
WIP case in (7.20); most notably, it retains the concave saturating form and guaran-
tees that Xt ≤ Λt. Its drawback is the assumption of steady state, which is not gener-
ally valid under the conditions of time-varying demand and finite period length 
under which we wish to use the release planning models we study. Again, we note 
in passing the similarity to (7.17).

7.2.4  The Constant Cycle Time Clearing Function

Graves (1986) proposes a discrete-time model of a production resource whose 
expected output Xt in period t is given by the clearing function

 X Wt t= −α 1  (7.22)

where Wt−1 denotes the amount of WIP available to the resource at the start of period 
t, i.e., the end of period t−1. Since Graves assumes that work can only arrive at or 
depart from the resource at the start of a planning period, this can also be viewed as 
a workload-based clearing function in our terminology. The resource will always 
process a fraction α of the WIP Wt−1 available to it at the start of the period, no mat-
ter how large Wt−1 may be. Equivalently, the model assumes that the resource is 
managed to maintain an average cycle time of 1/α periods; as the amount of avail-
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able work Wt−1 increases, the resource can work faster. Hence this linear clearing 
function is best viewed as describing the behavior of the production resource under 
a specified production control policy, where the processing rate can be varied to 
maintain the planned lead time of 1/α periods. The clearing function will, naturally, 
only be valid over the range of operating conditions that satisfy this condition.

The author uses clearing functions of this type to analyze the performance of a 
job shop by computing the mean and variance of performance measures such as 
throughput, queue length, and backlog. In particular, he examines the tradeoff 
between production smoothing (which requires long planned lead times and hence 
low values of α) and reducing cycle times and WIP levels (which requires high val-
ues of α) by simulating a job shop environment. The author uses this model in sev-
eral subsequent papers to examine the issue of setting safety stocks in such systems 
(Graves 1988), planning in multistage production-inventory systems (Graves et al. 
1998), and setting planned lead times in make-to-order systems (Teo et al. 2011; 
Teo et al. 2012). Parrish (1987) extends the model to a network of workcenters in a 
transient regime.

7.2.5  Empirically Based Single-Variable Clearing Functions

These are functional forms that have been used to fit clearing functions empirically 
to data obtained from either industrial data or simulation. One or another of the 
clearing function families discussed above is used to postulate a basic functional 
form whose parameters are then fitted to empirical data gathered from either direct 
observation of the production unit or, more frequently, a simulation model.

Karmarkar (1989) proposes a workload-based clearing function of the form
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motivated by the clearing function for an M/M/1 queue. Here K1 represents the 
maximum expected output of the resource assuming unlimited workload and K2 a 
user- determined parameter governing the curvature of the clearing function. In 
general, K2 is increasing in the amount of variability in the system as described by 
the coefficients of variation of the service times and interarrival times. The clear-
ing function is given as the minimum of two quantities to ensure that output does 
not exceed the total workload available to the resource; this can also be achieved 

by selecting the value of K2 such that 
∂
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1 . This function is concave and 
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The functional form Xt = K1Λt/(K2 + Λt) in (7.23) originates from the functional 
relationship between average WIP (in contrast to the workload Λt) and output; there-
fore, it can exceed the available workload in period t. Missbauer (2002) shows that 
for the M/G/1 model in equilibrium, the expected output Xt and expected load Λt of 
a workcenter are related as follows:
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with K1 the maximum expected output of the resource (capacity) as above, K
t
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and σ2 the variance of the service times. This function is analogous to (7.21) and can 
be parameterized using empirical or simulated data.

Srinivasan et al. (1988) suggest an initial WIP-based clearing function similar to 
the flow-density function (7.16), given by
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(7.25)

Here K1 again represents the maximum expected output of the resource with 
unlimited WIP, and K2 a user-defined parameter governing the curvature of the 
clearing function. Once again we have lim

Λt

X Kt→∞
= 1 .

Concave, saturating functional forms of clearing functions derived from queue-
ing models usually approach their limit (the maximum possible expected output) 
asymptotically because the underlying assumptions of renewal processes usually 
allow arbitrarily long interarrival and service times. In reality, this is often not the 
case since the order release system will try to prevent very long interarrival times 
and service times can be controlled by lot sizing. Nyhuis and Wiendahl (2009) sug-
gest defining threshold values W u  and W o  with W Wu o<  for the average WIP W  
where for W W< u  output is proportional to W , as in the “Best Case” clearing 
function of Hopp and Spearman (2008), and for W W> o  the workcenter is fully 
utilized. Appropriate functional forms are derived. In order to apply this logic to a 
period-based clearing function with the workload Λt as state variable, threshold 
values Λ t

u  and Λ t
o  with Λ Λt t

u o≤  are defined for the workload, leading to different 
clearing functions for different regimes of operation such that
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In this case, the problem of estimating the clearing function is essentially that of 
estimating its deviation from the ideal shape Xt =  Min (Λt; Ct).
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7.3  Piecewise Linear Single-Variable Clearing Functions

Many authors using single-variable clearing functions in optimization models have 
chosen to approximate the concave clearing function by outer linearization. This 
approach has several benefits: it allows the overall production planning model to 
take the form of a linear program, which is computationally tractable and scalable. 
In addition, piecewise linearization of a univariate clearing function proves 
extremely useful in the development of clearing function models for multiple-item 
systems. We shall present the ideas in this section using the workload-based clear-
ing function as our vehicle, but the basic issues are relevant to all concave single-
variable clearing functions.

It is well known in convex analysis, as a consequence of the Fenchel-Young 
Theorem (that any convex region can be represented as the supremum of its affine 
minorants) (Boyd and Vandenberghe 2009), that any convex function can be approx-
imated to any desired degree of accuracy by the convex hull of a set of affine func-
tions of the form

 
f q Qq

t
q

t
qΛ Λ( ) = + = …α β , , ,1

 
(7.27)

In order to reflect the concavity of the original clearing function f(Λt), we assume 
that the segments have slopes such that α1 ≥ 1 > α2 > … > αQ = 0, and intercepts 
0 = β1 < β2 < … < βQ. The intercept βQ of the final segment represents the maximum 
possible expected output from the production unit in a time period, while the slope 
α1 of the first segment is bounded above by 1, since even at very low workloads 
there may be a nonzero probability of some work remaining incomplete at the end 
of the period if, for example, a large fraction of the workload arrives very late in 
the period.

Given a concave clearing function of whatever specific functional form, the 
problem of determining the best piecewise linear approximation can be formulated 
as an optimization problem in several different ways. We shall describe one such 
formulation described by Turkseven (2005), which we shall refer to as the trapezoi-
dal formulation, to illustrate the basic approach. Imamoto and Tang (2008) present 
an alternative formulation that minimizes the maximum error of the piecewise lin-
ear approximation for a given number of segments.

For illustrative purposes, we shall consider the problem of obtaining the best 
piecewise linear approximation to a concave non-decreasing clearing function f(Λt) 
using three linear segments of the form (7.27) as seen in Fig. 7.2. Let tq, q = 1, …, 
Q denote the value of Λt at which segments q and q+1 intersect, and aq, q = 1, … Q 
the value of Λt at which the qth linear segment is tangent to the concave clearing 
function. Additionally we define t0 = 0 and tQ+1 = Λmax, an upper limit on the work-
load considered. For given values of αq and βq straightforward geometry gives

 

aq q

q q

q q

q=
−( )
−( ) +

+

+

β
α α

β β
α1

1  

(7.28)
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t1 t2 t30

f( )

β3

β1

β2

a1 a2 a3 t4

Fig. 7.2 Illustration of trapezoid formulation for piecewise linearization of a concave clearing 
function

 

tq
q q

q q

=
−
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+

+

α α

β β
1

1  

(7.29)

The decision variables in the optimization formulation are the slopes αq and 
intercepts βq of the linear segments q = 1, ..., Q. The objective function to be mini-
mized is given by the difference in the areas under the convex clearing function and 
its piecewise linear approximation, which is equivalent to minimizing the area under 
the piecewise linear approximation when the segments q are constrained to be tan-
gent to the original clearing function. For Q linear segments, the area under the 
piecewise linear approximation will consist of Q trapezoids, with the area of the 
trapezoid formed by segments q and q + 1 given by

 
A t tq

q q
q q= + +( )−β α

1

2 1
 

(7.30)

The optimization model can then be written as

 

min
q

Q

qA
=
∑

1  

(7.31)

subject to

 
α βq

q
q
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(7.32)
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(7.33)

 α βq q q Q, , , ,≥ = …0 1  (7.34)

The fractional structure of (7.28) and (7.29) generally results in a non-convex 
nonlinear formulation for which a global optimum is hard to obtain in reasonable 
CPU times. Imamoto and Tang (2008) provide an exact recursive algorithm for their 
minimax formulation, while Turkseven (2005) proposes an alternative heuristic for 
the trapezoid formulation. Asmundsson et al. (2009) solve the trapezoid formulation 
with a standard convex nonlinear solver, obtaining a local optimum that appears 
satisfactory in most cases, although some instances where the solver failed to con-
verge were also encountered.

We make no claim as to the originality of the trapezoid formulation; it is one of 
several fairly obvious approaches to the problem, and has almost certainly been 
formulated before, although we have been unable to find the original reference. We 
provide it here for the sake of completeness. However, recent work by Gopalswamy 
and Uzsoy (2019) suggests that rather than fitting a nonlinear functional form to 
data and then piecewise linearizing this concave function, directly fitting a piece-
wise linear concave function to the data using convex regression (Toriello and 
Vielma 2012; Hannah and Dunson 2013; Gopalswamy et al. 2019) yields consider-
ably better results.

7.4  Optimization Models for a Single Production Resource

The clearing functions presented above all represent the system state in an aggre-
gate manner; the workload Λt, the initial WIP Wt−1, or the time-average WIP Wt  are 
aggregated over the different products in the system, in a manner similar to that used 
by queueing models of multi-item systems: the mix of different items arriving ran-
domly at the resource over time results in the effective service times following a 
probability distribution whose first and second moments can be used to derive a 
clearing function. However, any useful production planning model must determine 
the mix of products to be released into the system in each planning period t, requir-
ing disaggregation if an aggregate single-variable clearing function is used. The 
development of clearing function models for multiple-item systems presents a num-
ber of challenges; similar issues are encountered in traffic modeling with multiple 
vehicle classes or origin-destination pairs (Carey 1992). These difficulties have 
proven to be persistent in both research areas, and merit detailed discussion since a 
fully satisfactory solution remains elusive.

To illustrate the issues, we first present a model of a simple single-product prob-
lem, closely following the development of Karmarkar (1989). For ease of exposi-
tion, we assume a time-stationary workload-based clearing function f(Λt) and 
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time-stationary cost parameters. We also assume no backlogging of unmet demand 
is allowed; if present, it can be incorporated easily (Johnson and Montgomery 
1974). We define the following notation:

Indices:
 t: planning period, t = 1,…,T. t = 0 will be used to denote the initial state of the 
system at the start of period 1, i.e., the end of period 0.

Parameters:
c: unit production cost
h: unit finished goods inventory holding cost
w: unit WIP holding cost
 r: unit cost of raw materials, incurred upon release of the material to the produc-
tion unit
 f(Λt): clearing function representing the behavior of the production unit, which 
we assume to be a concave monotonically non-decreasing function of Λt

Dt: demand in period t
I0: amount of product in finished goods inventory at the start of period 1
W0: amount of product in WIP at the start of period 1

Decision Variables:
Xt: output of production unit in period t, in units of product
Rt: amount of product released into production unit in period t
It: amount of product in finished goods inventory at the end of period t
Wt: amount of product remaining in WIP at the end of period t

In the fixed lead time models of Chap. 5, material released at the start of period t 
subject to a fixed lead time L emerges as finished product at the start of period 
t+L. Thus the output of the production unit is simply the time-shifted release sched-
ule. However, in clearing function models the output of the resource in a given 
period t is driven only indirectly by the releases Rt. In a given period t, the resource 
is assumed to have Wt−1 ≥ 0 units of WIP remaining from the previous period. Rt 
units of product are released to the resource, resulting in a workload of Λt = Wt − 1 + Rt 
units. The output of the resource during this period t is then determined by the clear-
ing function as Xt = f(Λt). These dynamics yield the following single-product clear-
ing function (SPCF) model:

 
min

t

T

t t t trR cX hI wW
=
∑ + + +[ ]

1  
(7.35)

subject to

 W W R X t Tt t t t= + − = …−1 1, , ,  (7.36)

 I I X D t Tt t t t= + − = …−1 1, , ,  (7.37)
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X f t Tt t≤ ( ) = …Λ , , ,1

 
(7.38)

 R X I W t Tt t t t, , , , , ,≥ = …0 1  (7.39)

The objective function (7.35) minimizes the sum of raw material, production, fin-
ished goods holding and WIP holding costs over the planning horizon of T periods. 
Constraints (7.36) are material balance equations for the WIP, and constraints (7.37) 
those for finished goods inventory. Constraints (7.38) limit the output in each period by 
the clearing function, while (7.39) ensure nonnegativity of the decision variables. Like 
most of the LP models discussed in Chap. 5, the SPCF model can be represented as a 
network flow model on a time-replicated network as shown in Fig. 7.3.

Several differences from the models of Chap. 5 are worth highlighting. First of 
all, no lead times appear in the formulation; the delay between material being 
released and its emergence as finished product capable of meeting demand is 
implied by the clearing function constraints (7.38). Since the argument of the clear-
ing function depends on the WIP variables Wt, material balance constraints (7.36) 
are required to keep track of these variables. This distinction between WIP and fin-
ished goods inventory is intuitive, since in practice these inventories serve different 
purposes. Production is made possible by having sufficient WIP in the system, while 
finished goods inventory, represented by the It variables, allows inventories to be 
built up in anticipation of future demand peaks.

While appearing deceptively simple, the SPCF model already involves a number of 
subtleties. The reader will have noticed that the output constraints (7.38) are written in 
inequality form; this is because writing them as equalities results in a non-convex 
feasible region (Merchant and Nemhauser 1978) as seen in the following example:

Production Finished Goods Inventory

Period t

Period t+1

Rt

Rt+1

Wt-1 It-1

Xt
Dt

Wt
It

Wt+1

Xt+1 Dt+1

It+1

Fig. 7.3 Material Flows in Single-Product CF Model (Karmarkar 1989)
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Example 7.1 Consider a two-period production planning problem with D1  =  3, 
D2 = 9, I0 = W0 = 0 and a clearing function

 
f

W R

W Rt
t

t

t t

t t
tΛ

Λ
Λ

Λ( ) =
+

=
+( )

+ +
≥−

−

10

10

10

10
01

1

,
 

(7.40)

Consider the two solutions Y1 and Y2 summarized in Table 7.1.
Now consider a solution Y3 = 0.3Y1 + 0.7Y2. The reader can easily verify that Y3 

satisfies the material balance constraints (7.36) and (7.37). However, 
X X X f R W R W f3

1
1
1

1
2

1
1

0 1
2

00 3 0 7 5 67 0 3 0 7 15 5= + = < +( ) + +( )( ) = ( ) =. . . . . . 66 07. .  

Similarly, X f2
3 7 51 0 3 90 0 7 40 7 84= < ( ) + ( )( ) =. . . . . Thus Y3 is not a feasible solu-

tion when the clearing function constraints (7.38) are enforced at equality, indicat-
ing a non-convex feasible region.

The slack variables associated with constraints (7.38) represent a situation where 
the resource is not producing the maximum output it is capable of given the work-
load available to it; it is holding back some WIP that it is capable of converting into 
output because of adverse consequences in future periods. The following example 
illustrates this behavior of the SPCF model.

Example 7.2 Consider a two-period instance of the SPCF model with r = 1, w = 2, 
h = 3, c = 1, D1 = 9, and D2 = 3. Assume the same workload-based clearing function 
used in Example 7.1. The optimal solution to this instance is illustrated in Fig. 7.4.

Table 7.1 Data for Example 7.1

Solution
Ri
1 Ri

2 Wi
1 Wi

2 Λ1
i Λ2

i Xi
1 Xi

2 I i1 I i2

Y1 5 65 1.67 57.97 5 66.67 3.33 8.70 0.33 0.03
Y2 20 10 13.33 16.33 20 23.33 5.67 7.51 2.67 1.17

W1 = 81

I0 =0

R1 = 90

R2 = 0

W0 =0

W2 = 78

I1 =0

I2 =0

X2 = 3

D1 = 9

D2 = 3

X1 = 9

Fig. 7.4 Example of 
optimal solution with slack 
in CF constraints for 
Example 7.2
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The high demand in period 1 requires the release of a large amount of work in 
that period to raise the workload to a level allowing output to meet the demand. The 
concave shape of the clearing function results in a large amount of WIP remaining 
at the end of period 1. However, the low demand in period 2 can be met with only 
three units of production. Since processing a unit of WIP to pass it into finished 
goods inventory incurs a total unit cost of c = 1 for production and h = 3 for holding 
the resulting finished inventory, it is cheaper to hold the excess material as WIP, 
resulting in a production of X2 = 3 < f(81) = 8.9 units. Note that the behavior remains 
the same even if c = 0; simply having h > w is sufficient.

Carey (1987) shows that constraints (7.38) will be satisfied as equalities as long 
as the marginal cost c + (h − w) of moving material from WIP to finished goods in 
the absence of demand for it is nonpositive. To see this, note that in the network 
representation in Fig. 7.4, there are exactly two arcs incident out of the node corre-
sponding to the WIP balance equation (7.36). Material in WIP at the start of period 
t is either retained in WIP in the next period (the vertical arc), or produced and 
moved to FGI (the horizontal arc). When a unit of WIP is converted into output and 
remains in finished inventory at the end of the period, the production cost of c is 
incurred, and the total holding cost in that period increases by (h − w). An item for 
which there is external demand in the period will not incur the FGI holding cost h, 
and will be produced even if c > w since otherwise demand will not be met, resulting 
in an infeasible solution in the absence of backlogging.

This holding back behavior can be explained in the context of traffic modeling as 
avoiding the release of traffic from one road segment to prevent congestion at down-
stream segments, say using traffic lights to regulate the flow of traffic. However, in 
production systems it is uncommon to hold WIP within the production process (as 
opposed to inventory points where intermediate products can be stored) without 
processing it if the capacity to process it is available, unless it is on hold due to qual-
ity or engineering problems. Thus this holding back behavior needs to be considered 
when implementing clearing function based planning models. The simplest 
approach is to set WIP holding costs sufficiently high (w > c + h in this example) to 
ensure it is cheaper to move material downstream rather than retain it in the queue 
for a given process as WIP; after all, this is how production managers seem to 
behave in practice. However, this contradicts conventional cost accounting practice 
under which the holding cost of an item increases as it moves towards completion, 
due to the increasing value added during production. While it can be justified in 
some situations, such as semiconductor wafer fabrication where the high cost and 
limited availability of clean room space makes holding strategic inventory inside the 
factory undesirable, the manipulation of costs in this manner needs to be considered 
carefully in the context of the economics of the production system under study.

We have just seen that the SPCF model exhibits interesting behavior when 
restricted to a single-stage production system. We now explore its obvious exten-
sions to multistage single-product and single-stage multiple product systems.

7 Univariate Clearing Functions
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7.5  Multistage Single-Product Systems

The SPCF model (7.35)–(7.39) can be extended to multistage single-product envi-
ronments in a straightforward manner by defining an index n denoting the stage of 
the production process. Thus a product is assumed to require a total of n = 1, 2, ..., 
N operations whose sequence, or routing, is known and deterministic. However, this 
requires addressing the issue raised above of whether strategic inventory can be held 
between production stages or only at the output of the final stage. We shall first 
examine the model assuming such inventory cannot be held at intermediate loca-
tions, and then briefly discuss the case where such inventory can be held. For sim-
plicity of exposition, we shall assume that each stage of the production process or 
routing corresponds to a distinct resource, each represented by its own clearing 
function. The extension to reentrant flows, where the product may undergo multiple 
operations at the same workcenter, is straightforward and can be addressed in 
exactly the same manner used for conventional models with fixed lead times 
(Leachman 2001; Kacar et al. 2016).

The parameters and decision variables remain the same as those in the SPCF 
model, except for the addition of an index n denoting the stage of the production 
process to which they refer. Demand can only be met with the output of stage N, and 
we shall again assume no backlogging of missed demand.

Our first model assumes that no inventory can be held within the production unit 
for tactical purposes such as anticipation of a future demand peak; such inventory is 
only held after stage N and consists of finished goods that can be used to meet 
demand. In this situation, work is released into the system at stage n = 1; the input 
Ynt to stages n > 1 in a period t is given by the output of the previous stage in that 
period, i.e., Ynt = Xn−1,t in the notation of Chap. 6. This single-product multistage 
clearing function model (SPMCF) can be written as follows:
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The decision variables and constraints in this model are analogous to those in the 
single-stage SPCF model (7.35)–(7.39). The WIP balance constraint (7.43) is writ-
ten for stages 2, …, N, where the output from the previous stage n − 1 provides the 
input of new work entering the stage. The WIP balance constraint (7.42) for Stage 1 
is written using the release variables Rt representing external releases of new work 
into the production unit. Constraints (7.44) represent the material balance equations 
for the finished goods inventory held after the final stage N.

The objective function of this model is straightforward; our interest lies in the 
constraint set which attempts to model the behavior of a multistage production unit. 
The following example illustrates the behavior of these constraints.

Example 7.3 To illustrate the behavior of the constraint set (7.42)–(7.46), consider 
a serial production system consisting of five identical stages. Each stage is modeled 
by the workload-based clearing function f(Λt) = 10Λt/(10 + Λt) used in the previous 
examples. Assuming Wn

0 0=  for all n = 1, …, N, we release R1 = 10 units of work 
into the first stage in the first period, with Rt = 0 for all remaining t > 1. Table 7.2 
shows the evolution of the system state and output over time, while Fig. 7.5 illus-
trates the output of each stage.

Several interesting observations emerge from Table 7.2. 16.7% of the material 
released at the start of period 1 exits the overall system in the period in which it is 
released, traversing all five stages in a single period. This is analogous to Equation 
(4.6) in the discussion of load-oriented order release that estimates the fraction of 
the workload released in a certain period that traverses the first n workcenters on its 
routing within the same period. Given our assumption of instantaneous material 
transfer between stages and the fact that all stages are empty at the start of period 1, 
this behavior seems reasonable. It requires slightly more than six periods for all 
material released to exit the system. The small ending WIP levels at stages 4 and 5 
and the end of period 6 are due to the fact that f(Λt) < Λt for the CF in the example.

In order to estimate the average cycle time at each stage in each period, we shall 
use the expression
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(7.47)

Assuming that all quantities are given in units of product, the clearing function 
implies that the maximum possible output from each stage in a planning period is 
10 units, for an average processing time per unit of 0.1 periods. The first expression 
represents the situation where the workload is sufficiently low that the entire avail-
able workload Λ t

n  can be converted into output in the same period. This is a slight 
approximation, since the slope of the CF at the origin is equal to 1 and is decreasing 
in Λ t

n ; however, at Λ t
n  = 0.25 the clearing function posits an output of 0.2439 units 

of product, an error of 2.5%. The second term estimates cycle time using Little’s 
Law, where the time-average WIP level in a period is estimated as the arithmetic 
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Fig. 7.5 Output by Stage and Period for Empty System in Example 7.3

average of its beginning and ending WIP levels. These estimates of cycle time are 
clearly crude averages; in particular, the use of Little’s Law implies that the queue 
representing each stage in each period is in steady state, which requires, at the very 
least, long planning periods. If required, a relationship analogous to (6.5) can 
be used.

However, within these limitations, the results are still interesting, as shown in 
Fig. 7.6. The cycle time estimates at each stage increase in the early periods, as 
material arrives, and then decrease as the released material flows out of the system 
and is not replaced. The cycle time at each stage varies over time, highlighting the 
difficulties of using exogenous lead times in planning models. If we were to assume 
that each stage had a fixed lead time of 1 period and a maximum production capac-
ity of 10 units per period—compatible with the clearing function used in the exam-
ple—each stage n would produce an output of 10 units in period n, a completely 
different profile from that illustrated in Fig. 7.5.

For comparison, consider the situation illustrated in Table 7.3 and Fig. 7.7, where 
we again release 10 units into the system at the start of period 1, but each stage has 
10 units in WIP at the start of that period. The combination of previous WIP and 
new releases results in a workload of Λn = 20 units at each stage n at the start of 
period 1. It now requires 12 periods for all work to exit the system. The output of all 
stages decreases over time, since the material released at the start of period 1 
increases the output of all stages in that period, and hence moves material down-
stream to all stages in the subsequent periods. The additional 10 units of input at the 
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Fig. 7.6 Estimated Cycle Times for Example 7.3

start of period 1 increase the output of each subsequent stage in period 1 by less than 
2 units; note that if there were no new releases, the output of each stage in period 1 
would be 5  units. However, this does not imply that 16% of the newly released 
material completes all its processing in period 1. If we assume first-in-first-out pro-
cessing at each stage, no new material is processed at Stage 1 in period 1; there are 
10 units of WIP at the start of the period, of which only 6.667 units are converted 
into output. This is due to the relatively flat clearing function, which requires 
Λ = 1000 units to achieve an output of 9.9 units (Fig. 7.8).

The cycle times are now substantially higher than was the case with an empty 
system. The relatively slow decrease in the cycle times at all stages in periods 1 
through 3 is noteworthy; after period 5, though, as the workload decreases the cycle 
time decreases rapidly. The relative stability of the cycle times in the early periods 
provides some insight into why fixed lead time models can work well under many 
situations: as long as the workload does not vary greatly from period to period, cycle 
times may remain stable, allowing a fixed lead time to provide a sufficiently accu-
rate solution, especially if fractional lead times as suggested by Hackman and 
Leachman (1989) are used (Kacar et al. 2016).

This example provides a qualitative illustration of the behavior of the constraints 
(7.42)–(7.46) that represent the behavior of the production system using clearing 
functions, particularly the strong differences from the fixed lead time models in 
Chap. 5. We now extend this model to the case of multiple products competing for 
capacity at the resource, which proves to be treacherous territory.

7.5 Multistage Single-Product Systems
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7.6  Single-Variable Clearing Functions with Multiple 
Products

The presence of multiple items brings the need to allocate the output of the resources 
among the different items. The use of a single-variable clearing function implies 
that the output of a resource is determined by its total workload, and hence that the 
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amount of output of each item must depend in some way on the workload of the 
other items. On the shop floor, the mix of items produced for a given workload of 
each item is determined by events on the shop floor, such as the arrival times of 
specific jobs at specific machines as well as scheduling and dispatching decisions. 
Since these operational policies are internal to the production unit, and hence not 
transparent to the planning level, it is difficult to model these directly in the plan-
ning problem. Even if the performance induced by these policies in the production 
unit could be described in computationally tractable models, it is not evident that it 
would be beneficial to do so, since local management will have the most current 
information on the status of the shop floor, and is responsible for managing the 
production unit in the face of changing local conditions. Hence a reasonable objec-
tive for the planning problem is to produce a release plan for each production unit 
that does not violate the basic constraints viewed by management as essential for 
the release plan to be usable.

One such set of constraints that has been widely discussed in the context of both 
production planning and traffic modeling is the maintenance of basic continuity 
conditions on the material flow. In both the traffic and production contexts, these 
can be expressed as a requirement that material entering the production unit earlier 
ought to exit earlier. Some deviation from this condition at the level of individual 
orders is clearly possible, and even desirable, in practice due to the ability of local 
management to expedite the processing of some jobs over others. Hence it ought to 
be sufficient for planning models to satisfy this requirement on average, while 
avoiding gross violations. Several sets of necessary and sufficient conditions for this 
first in first out (FIFO) property derived by Carey (1992) were discussed in Chap. 6, 
noting that they all lead to non-convex feasible regions.

We shall begin our discussion of multi-item models with single-variable clearing 
functions by presenting a naive extension of the SPCF model (7.35)–(7.39), to illus-
trate the difficulties that arise. We then discuss several solution approaches, most 
suggested in the context of traffic modeling (Carey 1992; Carey and Subrahmanian 
2000a, b) which result in non-convex formulations. Finally, we present the allocated 
clearing function (ACF) model of Asmundsson et al. (2006, 2009), which provides 
a workable solution to these difficulties in the limited context of a single-variable 
clearing function.

7.6.1  Difficulties with Multiple Items

At first sight, extending the SPCF model to multiple items appears quite straightfor-
ward: we should add an item index i, write WIP balance and finished goods inven-
tory balance equations for each item and add a clearing function constraint shared 
across all items. We use the following notation in addition to that already defined:

Indices:
i: item index, i = 1,…, I

7 Univariate Clearing Functions
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Parameters:
ci: unit production cost of item i
hi: unit finished goods inventory holding cost for item i
wi: unit WIP holding cost for item i
 ri: unit cost of raw materials for item i, incurred upon release of the material to 
the resource
ai: amount of time required on the resource to produce one unit of item i
 f(Λt): the clearing function, which we assume to be a concave, monotonically 
non-decreasing function of the total workload Λt

Dit: demand for item i in period t
Ii0: number of units of item i in finished goods inventory at start of period 1
Wi0: number of unprocessed units of item i in WIP at the start of period 1

Decision Variables:

Xit: output of item i in period t, in units of product
Rit: number of units of item i released to the resource in period t
 Iit: number of units of item i remaining in finished goods inventory at the end of 
period t
Wit: number of units of item i in WIP at the end of period t
Λit : workload due to item i in period t, given by ai(Rit+Wi,t-1) in units of time
Λt: total workload available to resource at the start of period t, given by

 
Λ Λt

i

I

i ita=
=
∑

1  
(7.48)

As in the previous examples, we assume time-stationary values of all parameters 
for simplicity of exposition. The Naive extension of the SPCF model to multiple 
items, which we shall refer to as the NSPCF model, can now be written as:

 
min

t

T

i

I

i it i it i it i itr R wW c X h I
= =
∑∑ + + +[ ]

1 1  
(7.49)

subject to:

 
I I X D i I t Tit i t it it= + − = … = …−, , , , , , ,1 1 1

 
(7.50)

 
W W R X i I t Tit i t it it= + − = … = …−, , , , , , ,1 1 1

 
(7.51)

 i

I

i it ta X f t T
=
∑ ≤ ( ) = …

1

1Λ , , ,
 

(7.52)

 R X I W i I t Tit it it it, , , , , , , , ,≥ = … = …0 1 1  (7.53)
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Table 7.5 Demand data for Example 7.4

Item i Period 1 Period 2 Period 3 Period 4 Period 5

1 0 0 0 0 0
2 8 8 8 8 8

Item i ai ri ci wi hi Wi0 Ii0

1 1 1 0 1 0 0 0
2 1 1 0 6 0 0 0

Table 7.4 Parameter values 
for Example 7.4

The decision variables and constraints of this model are completely analogous to 
those in the SPCF model. However, the treatment of the clearing function causes 
some interesting difficulties, which we illustrate in the following example.

Example 7.4 Consider a problem instance with two items, five periods, the param-
eter values shown in Table 7.4, and the demand data in Table 7.5. We again use the 
clearing function f(Λt) = 10Λt/(10 + Λt) used in the previous examples.

Solving the model (7.49)–(7.53) yields the solution in Table 7.6. The problem is 
evident upon inspecting the results. There is no demand for item 1 in any period, and 
yet 29.93 units of Item 1 are released into the system, none of which is converted 
into output. The total workload generated by both products is used to meet the 
demand for item 2 with minimum WIP holding cost. Note that in periods 1 and 2, 
the model elects to produce less output than the clearing function allows: 8.18 units 
in period 1 as opposed to the 8.35 units the clearing function allows for the available 
workload of Λt = 50.59 units.

The problem is now clear: the WIP of item 1 is being held stationary in the sys-
tem to artificially raise the available workload and permit the expensive item 2 to 
pass through the system rapidly. The planned releases of item 2 cannot, on their 
own, generate sufficient workload to produce the planned output of item 2. Simply 
parking idle WIP on the shop floor is increasing the output capacity of the system!

The reason for this behavior is also apparent. There is nothing in the model that 
links the output of the system to the composition of the workload enabling that 
output. This can be interpreted as a violation of the no-passing condition mentioned 
above—we are allowing the new releases of item 2 to constantly overtake the mate-
rial of item 1 released in period 1. While in any practical production system some 
overtaking will arise naturally through the operation of shop-floor scheduling and 
dispatching systems, the idea that holding inert, idle WIP in the system increases the 
capability of the resources is clearly unrealistic.

As seen in Example 7.1, the non-convexity of clearing function models for sin-
gle-item formulations enforcing the clearing function constraints as equalities was 
identified by Merchant and Nemhauser (1978). Carey (1987) demonstrated that 
implementing the clearing (exit) functions as inequalities results in a convex optimi-
zation problem for the single-item case, and discusses the issue of flow controls, 
where the clearing function constraints may hold as strict inequalities. He shows 
that the holding back behavior discussed in Example 7.2 will be avoided if the 
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marginal cost of moving flow downstream (in our context, moving material from 
WIP to finished goods inventory) is lower than that of holding it at its current loca-
tion. Carey discusses this issue in the context of modeling traffic flows and suggests 
a number of options. We digress briefly to discuss several of these, since they high-
light a number of issues arising in optimization models involving flows through 
production networks. Our discussion follows that of Carey (1992), adapting the 
notation to the production planning models of interest in this work.

7.6.2  Enforcing Average No-Passing (FIFO) Behavior

Returning for a moment to the single-item problem, let Rst denote the amount of 
material released in period s that is converted into output in period t. Thus, in the 
notation of the SPCF model, we have

 
X Rt

s

t

st=
=
∑

1  
(7.54)

One way of enforcing a no-passing condition is to ensure that material released 
earlier cannot be converted into output (i.e., transition from WIP to finished goods 
inventory) after material that is released later. This implies a condition that

 

R Rst
s s t t

s t> → =
< >{ }
∑0 0
’ ’

’, ’
,  

(7.55)

If we have multiple items i = 1,...,I, (7.55) must hold for each item i, as well as 
all pairs of items i and j. The explicit enforcement of this condition requires the use 
of integer variables to represent what are effectively disjunction constraints, result-
ing in computationally demanding integer programming models.

Intuition suggests that the no-passing property is likely to be violated if there are 
large changes in cycle times from one period to the next. This would suggest that as 
long as the cycle times (flow times in the traffic terminology) are “smooth enough” 
over time, violations of no-passing ought to be at least mitigated. As seen in Chap. 
6, we can calculate the average cycle time for material released into the system in 
period s as

 

L

s R

R
s

s

T

s

s

T

s

=
−( )

=

=

∑

∑
τ

τ

τ
τ

τ

 

(7.56)

which is non-convex in the Rst variables (Carey 1992). Thus the average unit of work 
emerging as finished goods inventory at time t Lt+  must have entered the system at 
time t. Carey (1992) then shows that the condition
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 L Lt t≤ ++1 1  (7.57)

is necessary and sufficient to ensure no-passing of the average flows, and necessary 
but not sufficient to ensure no-passing on all individual work releases in the single- 
item case. This implies that the possibility of passing only arises when cycle times 
associated with the release periods are decreasing over time, i.e., the workload in the 
system is decreasing. As was the case for (7.55), in the presence of multiple items, 
this requires similar constraints to be written for each item i and all pairs of items i, 
requiring O(I2) additional non-convex constraints in each period where I is the num-
ber of items. In the presence of multiple items, we can enforce no-passing for all 
items by requiring that all pairs of items i and j have the same average cycle time, i.e.,

 
L L L i j I i jit jt t= = = … ≠, , , , ,for all pairs of items 1

 
(7.58)

where Lt  denotes the average cycle time associated with material released in period 
t over all items i = 1,…,I, and then enforcing (7.58).

A third approach to ensuring no-passing solutions is to assume that the produc-
tion unit selects work for processing from the available workload without systemati-
cally prioritizing any item over any other. In this case, the mix of items converted 
into finished goods inventory in a period should match the mix of the items in the 
available workload, i.e., for all items i we should have

 

a X

a X

i it

i

I

i it

it

i

I

it
= =
∑ ∑

=

1 1

Λ

Λ
 

(7.59)

Although these conditions also result in non-convex constraints (Carey 1992), 
they form the basis for the allocated clearing function presented in the next section, 
which provides a computationally tractable approximate formulation that has 
proven effective for multi-item problems.

7.7  The Allocated Clearing Function (ACF) Model

The difficulties with the NSPCF formulation (7.49)–(7.53) arise because there is no 
constraint linking the output of each item in a period to the workload of that item 
available for processing in the period. This results in violation of the no-passing 
property, where workload of a cheap item is held immobile to allow rapid through-
put of an expensive item without the need for high WIP levels of the latter. Clearly 
additional constraints of some sort are needed to address this situation, and we have 
discussed several possibilities in the previous section. However, all of these result in 
non-convex optimization models, which are computationally challenging to solve 
exactly for a proven global optimum. Hence some kind of approximation will be 
necessary.
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To derive the ACF formulation, we consider the clearing function constraints 
(7.52) from the NSPCF model:

 i

I

i it ta X f
=
∑ ≤ ( )

1

Λ .
 

We wish to develop a set of constraints that relate the output Xit of each item i in 
period t to the workload Λit of that item in that period, while continuing to satisfy 
(7.52). To this end, we define a new set of variables Zit as the fraction of total system 
output in period t allocated to item i in that period, i.e.,

 

Z
a X

a X
it

i it

j

I

j jt

=

=
∑

1  

(7.60)

The definition of the Zit implies that

 i

I

itZ
=
∑ =

1

1
 

(7.61)

The following constraint set is now equivalent to (7.52):

 

a X Z f i I t T

Z t T

i it it t

i

I

it

≤ ( ) = … = …

= = …
=
∑

Λ , , , , , ,

, , ,

forall 1 1

1 1
1  

(7.62)

since summing the first set of constraints over all items i recovers (7.52). We can 
now incorporate the no-passing conditions (7.59) suggested by Carey (1992) to 
obtain the constraints

 

a X Z f i I t T

Z t T

i it it t

i

I

it

≤ ( ) = … = …

= = …
=
∑

Λ , , , , , ,

, , ,

forall 1 1

1 1
1  

(7.63)

 

a X

a X
Z i I t Ti it

i

I

i it

it

i

I

it

it

= =
∑ ∑

= = = … = …

1 1

1 1
Λ

Λ
, , , , , ,forall

 

(7.64)

The last constraint implies that

 
Λ

Λ
t

it

itZ
=

 
(7.65)

yielding the constraint set
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(7.66)

The first constraint in (7.66) achieves our initial goal of obtaining a set of con-
straints that link the available workload Λit of each item in the period to the output 
of that item in the period. However, it looks like we now have some seriously non-
convex constraints. The situation is not as bad as it appears at first sight, however. A 
standard result in convex analysis states that for any convex function f(x), its per-
spective zf(x/z) is also convex (Boyd and Vandenberghe (2009): 89). Hence the two 
constraints in (7.66) define a convex feasible region. However, we have seen in 
Chap. 6 that the last constraint results in a non- convex feasible region.

To develop an approximate constraint set that may be more tractable than (7.66), 
we relax the third constraint set, which leaves us with the constraints

 

a X Z f
Z

i I t T

Z t

i it it
it

it

i

I

it

≤








 = … = …

= =
=
∑

Λ
, , , , , ,

,

forall 1 1

1 1
1

,, ,… T
 

(7.67)

The consequence of this relaxation is that the argument of the clearing function 
in the first constraints may not be accurate; we need not necessarily have Λt = aiΛit/Zit. 
This, in turn, introduces the possibility that the aggregate output constraint (7.52) 
may be violated if aiΛit/Zit > Λt for some items i. To see that this is not the case, we 
need to show that the total output of all items i cannot exceed the aggregate output 
of the system implied by its total workload Λt, i.e.,
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We can write
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where the first inequality holds by the assumed concavity of f(.) and (7.61), the first 
equality from simple algebra and the second from the definitions of Λt and Λit. Since 
this assumes only the concavity of the clearing function f(.), it holds for any concave 
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clearing function. We can thus write the complete allocated clearing function for-
mulation for a single-stage multi-item problem as follows:

 
min

t
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It is important to clarify the precise nature of the approximation being used here. 
The approximation arises from the fact that we estimate the total output of the system 

f(Λt) by f
Z

it

it

Λ







  in the constraints (7.68). If we retain the no-passing constraints

(7.64), the estimate of f(Λt)is exact; however, retaining these constraints results in a 
non-convex optimization model. By relaxing (7.64), we allow the mix of the output, 
defined by the ratios a X a Xi it

i

I

i it/
=
∑

1

 to deviate from the mix of available workload,

determined by the ratios Λit/Λt. Thus the ACF model may decide to process a larger 
fraction of the workload of one item i at the expense of another item j. However, there 
are limits to what is possible, as discussed in the next section. The primary insight is 
that despite their rather intimidating appearance, constraints (7.73) and (7.74) define 
a convex feasible region, resulting in a convex feasible region for the overall model 
(7.70)–(7.75) as long as the clearing function is concave.

7.7.1  ACF Model with Piecewise Linearized Clearing Function

Piecewise linearizing the clearing function as in (7.27), we can approximate the 
convex constraints (7.73) with the linear constraints
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Now the ACF formulation has come into its own: the piecewise linear approxi-
mation of the single-variable clearing function has resulted in a set of linear con-
straints, yielding a linear program. However, this comes at the price of a substantial 
increase in the size of the model. The nonlinear model (7.70)–(7.75) has 5IT deci-
sion variables and 3IT + T constraints, of which the IT constraints (7.73) are nonlin-
ear. The piecewise linearized formulation requires IQT linear constraints to 
approximate the nonlinear constraints (7.73). As a point of reference, a model using 
exogenous lead times would require 2IT decision variables representing releases 
and finished inventories and IT capacity and finished inventory balance constraints. 
As might be expected, the effort to model congestion more effectively increases the 
computational effort required to solve the models.

The following example illustrates the operation of the ACF formulation.

Example 7.5 Consider a problem with T = 14 time periods and two products whose 
data is given in Table 7.7 below:

The ci, ri, and initial WIP and inventory levels for both products have been set to 
zero for simplicity of exposition. The demand data over the planning horizon is 
given in Table 7.8, and the data for the linear segments approximating the workload-
based clearing function in Table 7.9.

The solution of the ACF model is summarized in Table 7.10. The reader can verify 
that there is no slack in the clearing function constraints in any period. The high 
inventory holding costs require the model to operate with as little finished inventory 
as possible. In periods 1 through 3 and periods 11 through 14, only one product is 
produced. The shaded cells for periods 4 through 10 represent periods in which both 
products are in production. In periods 8 and 10 a higher fraction of the aggregate 
output, represented by the Zit variables, is allocated to Product 1 than would be 
implied by the WIP fraction. For example, in period 10, Product 1 makes up 47% 
of the average WIP and yet is allocated 68% of the output capacity. This illustrates 

Table 7.8 Demand Data for Example 7.5

Period 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Product 1 5 5 5 5 5 3 4 5 6 7 0 0 0 0 0
Product 2 0 0 0 0 0 4 3 2 1 2 3 4 3 2 0

Table 7.9 Clearing Function 
Parameters for Example 7.5

Segment c Slope αq Intercept βq

1 1 0
2 0.3 10
3 0 20

Product ai ci wi hi ri Wi0 Ii0

1 2 0 6 5 0 0 0
2 4 0 11 10 0 0 0

Table 7.7 Parameters for 
Example 7.5
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Table 7.10 Solution to ACF Model of Example 7.5

the impact of relaxing the FIFO constraints (7.64) on the solution of the ACF model: 
Product 1 is being prioritized over Product 2 due to its higher WIP holding cost. This 
is possible because of the structure of the linearized clearing function constraints.

It is of particular interest to compare the output fraction of each product, given 
by the values of the Zit variables in each period, with the workload fraction. The next 
to last two columns of the table show the extrapolated workload (Ext. WL) for each 
product, given by Λit/Zit which can be compared to the actual workload Λt shown in 
the last column. In period 10, the extrapolated workload of Product 2 exceeds the 
actual workload by a considerable margin, while that of Product 1 falls below it. 
However, the weighted average of the two extrapolated workloads remains equal to 
the actual workload. In periods where the output fraction matches the workload 
fraction, extrapolated workload is equal to actual workload for both products. Thus 
the ACF model is increasing the output fraction of Product 2 by applying a smaller 
output fraction to larger extrapolated workload.

To see how this is accomplished, note that the output aiXit of product i in period t 
can be decomposed into two components: one that is proportional to its workload 
WIP, given by α q

itΛ , and a portion of the intercept given by Zit βq. Unless Zit = 0, the 
first component will always be produced in proportion to the available average WIP 
and the slope of the clearing function segment. However, the ACF model may dis-
tribute the βc units of output due to the intercept of the linear segment in the manner 
yielding the best objective function value. The amount of this discretionary output, 
which can be allocated among products subject only to the WIP balance constraints, 
increases as the resource is more heavily utilized, leading to higher workload Λt, 
whichever way the clearing function has been formulated. However, since the Zit 
variables must sum to 1, the total output in units of time allocated among the differ-
ent products cannot exceed the disposable output βq. Note that if the workload were 

7 Univariate Clearing Functions



179

sufficiently high that only segment Q of the CF, with slope αQ = 0, were binding, the 
model could allocate output arbitrarily among products subject only to the WIP bal-
ance constraints, essentially replicating the N-SPCF model. However, it is easy to 
see that such a solution can never be optimal, as the same output can be achieved 
with lower total workload, and hence lower WIP holding costs.

In summary, the ACF formulation avoids the issues encountered with the N-SPCF 
formulation discussed in Sect. 7.6.1 by relaxing the constraint that output mix must 
exactly match the workload mix in each period. This allows flexibility in allocating 
output among the different products, but ensures positive production of all products 
with positive workload, avoiding the creation of capacity for one product by simply 
holding static WIP of another. It is by no means a fully satisfactory solution, but it 
has been extensively tested over more than a decade since its first introduction, and 
has consistently produced satisfactory, consistent solutions that have in many cases 
outperformed the fixed lead time models described in Chap. 5. Recent results 
(Gopalswamy and Uzsoy 2018) have shown that as long as the CF used is concave, 
the ACF model can be extended to a second-order conic programming formulation 
which preserves the structure of the dual solution described in the following section, 
and also significantly reduces the variability of releases across time periods fre-
quently observed with linear programming models.

7.7.2  Dual Solution of the ACF Model

Recall from Chap. 5 that any resource with utilization below 1 in any period will 
have slack in its capacity constraint for that period, resulting in a zero value for the 
associated dual variable. We now develop and analyze the dual solution for the mul-
tistage clearing function model equivalent to that analyzed in Sect. 5.4. The analysis 
in this section is based on that in Kefeli and Uzsoy (2016), modified slightly for 
consistency with the discussion in Chap. 5. We shall consider the production system 
consisting of K resources in series modeled in (5.42)–(5.55) for the case of fixed 
lead times. No strategic inventory of intermediate products is held between stages 
inside the production unit; the output of all stages k = 1, ..., K−1 except the final one 
moves directly into the WIP of the next stage k+1. Raw material is released into 
stage 1, and material completing processing at stage K enters finished goods inven-
tory from where it can be withdrawn to meet demand. We represent each stage with 
its own workload-based clearing function fk(Λkt), where Λkt denotes the planned 
workload at stage k in period t. To implement the ACF model fk(Λkt) will be approxi-
mated using the piecewise linearization (7.27) as

 
f q Qk kt k

q
kt k

qΛ Λ( ) = + = …α β , , ,1
 

(7.77)

To facilitate the sometimes extensive notation, we shall denote the set of all prod-
ucts by I and the index set of all linear segments approximating the clearing function 
for resource k as Q, assuming without loss of generality that all resources are 
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approximated by the same number of linear segments. Using this notation, we write 
the ACF formulation as follows:
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subject to

 
W W R X i I t Tit i t it it

1
1

1 1 1= + − ∈ = …−, , , , ,
 

(7.79)

 
W W X X i I k K t Tit

k
i t
k

it
k

it
k= + − ∈ = … = …−

−
, , , , , , , ,1

1 2 1
 

(7.80)

 
I I X D i I t Tit i t it

K
it= + − ∈ = …−, , , , ,1 1

 
(7.81)

 
a X a R W Z i I q Q t Ti it q i jt i it q
1 1 1 1

0
1 1 1 1≤ +( ) + ∈ ∈ = …α β , , , , ,

 
(7.82)

a X a X W Z k K i I q Q ti
k

it
k

q
k

i
k

it
k

i t
k

it
k

q
k≤ +( ) + = … ∈ ∈ =−

−α β1
1 2 1, , , , , , , ,, ,… T  (7.83)

 i I
it
kZ k K t T

∈
∑ = = … = …1 1 1, , , , , ,

 
(7.84)

 
X R I W Z i I k K t Tit

k
it it jt

k
it
k, , , , , , , , , , ,≥ ∈ = … = …0 1 1

 
(7.85)

Rewriting this in the cumulative form to eliminate the Iit and Wit
k  variables and 

dropping constants from the objective function, we obtain
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Analysis of the ACF model is simplified by defining two dummy resources 0 and 
K + 1, where resource K + 1 represents the arrival of the material in the finished 
goods inventory. Resource 0, on the other hand, represents the release of the raw 
material of product i into the line. Thus we define pit

0  = rit for all products i ∈ I, and 
wit

0  = 0. Similarly w hit
K

it
+ =1  for all i ∈ I and t = 1,…,T, implying that X Rit it

0 =  in 
the current notation. The formulation can now be written as follows:
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with the Greek letters in parentheses denoting the dual variables associated with 
each constraint. The dual of the formulation (7.94)–(7.100) is given by:
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subject to
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with the associated primal variable indicated in parentheses next to each dual con-
straint. In the FLT model, the dual price of capacity is directly accessible as the dual 
variable σ̂ kt  associated with the capacity constraints. Hence it is meaningful to refer 
to σ̂ kt  as the dual price of capacity at workcenter k. The situation for the ACF model 
is more complex. The CF does not represent the “capacity” of the system in the 
sense of an upper limit on output; rather, it represents the relationship between 
expected workload and expected output at each workcenter k. Constraints (7.96) 
ensure that WIP is nonnegative in all periods, while (7.97) ensure that the output in 
each period is consistent with the capabilities of the workcenter described by its 
CF. Thus the dual variables Γit

k  associated with (7.96) will only be nonzero when 
these constraints are tight at optimality, i.e., when workcenter k has no WIP of prod-
uct i on hand at the end of period t. This is achieved when the cumulative output of 
product i at resource k in period t and the cumulative input of that item to that work-
center differ by Wi

k
0 , the initial WIP of product i at resource k at the start of the 

planning horizon. Thus the Γit
k  can be interpreted as the cost impact in period t of a 

unit change in the initial WIP level Wi
k
0 . As implied by the dual objective (7.101), if 

all initial WIP and FGI values are set to I Wi i
k

0 0 0= = , the Γit
k  variables have no 

impact on the optimal solution value except via the artificial workcenter K+1 repre-
senting the finished inventory. The dual variables Γit

K +1  represent the maximum 
amount the firm should be willing to pay for an additional unit of finished inventory 
of product i in period t, or, equivalently, the minimum price it should charge an 
additional unit of demand.

The right hand side of the primal constraints (7.97) that limit output of each 
product by the CF computes the total output, in units of time, of product i for a given 
workload level. Thus the dual variables σ itq

k  indicate the amount the firm should be 
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willing to pay for an additional time unit of output of product i from resource k in 
period t. Examining the dual constraint (7.102), recall that ai

k  is the time required 
to process one additional unit of product i on resource k, and let q ∈ Q denote the 
linear segment of resource k’s CF with slope αq

k  that is binding at optimality. 
Rearranging (7.102) as follows provides some insight:
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The right hand side indicates that an additional unit of output of product i at 
resource k in period t will reduce the WIP at this resource by one unit while increas-
ing the WIP at the next resource k + 1 along product i’s routing; it will also save the 
incremental production cost pit

k . The left hand side represents the total reduction in 
the objective function value due to this allocation over the remainder of the planning 
horizon. The impact in the current period t is the value of the additional output that 
can be generated from resource k + 1, net of the value of the output from resource k, 
and the impact in the remainder of the planning horizon in a similar fashion. Thus 
the price paid by the firm for the additional output allocation should not exceed the 
cost savings from the purchase of the additional allocation.

In an optimal solution to the formulation (7.94)–(7.100), in any period t the 
workcenters can be classified into three groups: congested workcenters where 

i
it
kW∑ > 0 , non-congested workcenters where 

i
it
kW∑ = 0  and 

i
it
kX∑ > 0 , and idle 

workcenters where 
i

it
k

i
it
kX W∑ ∑= = 0 . We shall define congested, non-congested, 

and idle periods for a workcenter analogously, depending on which of the three 
states defined above (congested, non-congested, or idle) the workcenter is in during 
the period in question. Recall we assume all products i are processed on all work-
centers k ∈ K.

During idle periods, there is no external release of any product into the workcen-
ter k and no production at the preceding operation in the product’s routing, i.e., 
X jt

k− =1 0 . Hence there is no production or WIP present for that product at that 
resource k. In non-congested periods, production takes place but no WIP is carried 
from one period to the other. In this case, the workcenter is operating at sufficiently 
low utilization that all material arriving from previous operations or external releases 
is processed in the same period; the segment q = 1 with α1 1q =  and β1 0q =  is tight 
at optimality. If a resource k is congested in some period t, on the other hand, the 
entire workload available to it in that period cannot be processed into output within 
the period, forcing some to be carried over to the next period as WIP. This means the 
system is operating at higher utilization and at least one segment of the CF with 
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index q > 1 is tight. Our analysis will focus on congested resources since these are 
where the differences with the FLT model are most clearly visible.

We define a congested interval Ψ(k) for resource k to be a collection of consecu-
tive congested periods starting with a period s and ending with a period s' > s, i.e., 
Ψ(k)  =  {s, s+1,…,s'} such that 

i
i s
kW∑ − =, 1 0  and 

i
it
kW∑ > 0  for all 

t ∈ Ψ(k) and 
i

i s
kW∑ + =, ’ 1 0 .

Before we can apply complementary slackness to (7.101)–(7.106), we need sev-
eral assumptions regarding the congested interval Ψ(k). The complementary slack-
ness conditions imply that Γit

k = 0  for all t ∈ Ψ(k) since Wit
k > 0 . We also assume 

that Wit
k+ >1 0 , so that we have Γit

k+ =1 0 , implying that the workcenter performing 
the next operation in the routing is also congested.

In order to be able to apply the complementary slackness conditions directly 
without the need to examine a wide range of cases, we will restrict our attention to 
periods where the system is in regular operation, i.e., Rit > 0 and Xit

k− >1 0  for some 
product i. These assumptions imply that X t kit

k > ∀ ∈ ( )0 Ψ , i.e., if a product is pres-
ent at a workcenter due to either external releases or output from preceding work-
centers, there must be production of that product on the workcenter. Otherwise we 
can release the work in a later period and save the WIP holding cost. For brevity of 
exposition, we shall assume that the last period T ∉ Ψ(k); in this case constraints 
(7.103) become active and are subject to a similar analysis.

We now apply complementary slackness to (7.101)–(7.106) during a congested 
interval Ψ(k). Under the assumptions just stated, (7.102) and hence (7.107) are tight 
at optimality for all t ∈ Ψ(k), yielding
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Equations (7.108) collectively define the dual behavior of the optimal σ itq
k  in a 

congested interval. It is immediately evident that, unlike the FLT model, the dual 
price σ itq

k  associated with output of any product i at resource k is related to that 
associated with the preceding workcenter k − 1 in its routing. We now rearrange 
(7.108) in such a fashion that their meaning is clearer by defining the quantity
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and rewriting (7.108) as follows:
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Writing (7.110) for periods t and t + 1 and subtracting yields
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illustrating the fact that the dual price associated with additional output of product i 
at workcenter k in period t impacts the dual prices at the downstream workcenter 
k+1 in its routing as suggested by queueing theory (Hopp and Spearman (2008), 
Chap. 8). Note also that the right hand side of this expression represents the impact 
of moving a unit of output from resource k to resource k+1 in period t, while the left 
hand side reflects its impact across time, from period t to t+1.

For the first workcenter k = 1 in the common routing (7.110) implies that
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Writing (7.112) for periods from s′ back to s and solving recursively yields
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Under time-stationary costs p r r w w h h w p pit it i it
k

i
k

it i K it
k

i
k0

1= = = = = =( )+, , ,  this 
expression simplifies to Φ Ψit iw i I t k s1 1= ∈ ∈ ( ) { }′, , \ .

The primal constraints (7.98) represent the fact that the expected total output a 
workcenter k can produce in a given period t with a specified workload Λ t

k  is 
bounded above by the value fk t

kΛ( )  of the CF. Therefore the dual variables λt
k  

associated with (7.98) represent the change in objective function obtained by chang-
ing the value of this upper limit, i.e., changing the expected output of the workcenter 
in a period for a given workload Λ t

k . This can be interpreted as the impact on the 
objective function value of having one additional time unit of output available in 
period t for allocation among the different products i, thus increasing the disposable 
output βq

k  (again in units of time) available for allocation by the Zit variables. 
Although the dual variables λt

k  are free in sign as a result of constraint (7.98) being 
defined as an equality, in any optimal solution these variables will only take nega-
tive values since an increase in the right hand side of (7.98) cannot yield an increase 
in the objective function value. Applying complementary slackness to (7.98), we get:
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Thus at optimality output at each resource k is allocated among products to 
equalize the marginal value of the capacity allocated to each, in a manner consistent 
with the marginal value of additional output of each product i in each period t, given 
by the σ iqt

k . Hence in our numerical experiments below, we shall use this quantity 
λt

k  as the analog of the dual price of capacity derived for the FLT model.

7.7 The Allocated Clearing Function (ACF) Model

https://doi.org/10.1007/978-1-0716-0354-3_8
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Example 7.6 To see the difference in the behavior of the dual prices related to 
capacity, we compare the dual solution of the two-product single-stage problem in 
Example 7.5 using model (7.70)–(7.75), with (7.76) replacing (7.73) as in that exam-
ple, with those from the LP model using only the third, horizontal segment of the CF 
as a capacity constraint. Figure 7.9 plots the total processing time required to process 
the demand for both products in the period in which it arises, against the maximum 
possible output of 20 units per period as a reference. It is apparent that for most of the 
planning horizon the system has considerable excess capacity, but will have to build 
anticipatory inventory to meet the demand peaks in periods 6 and 10.

The dual prices for capacity computed by the two models (λt for the ACF model 
and σ̂ t  for the LP model) are shown in Fig. 7.10. The qualitative difference between 
the dual prices from the two models is immediately apparent. The LP model, which 
does not consider congestion, only returns positive dual prices for capacity in peri-
ods 6, 7, and 9, and these values are an order of magnitude lower than those for the 
ACF model. The dual prices for the ACF model begin increasing well ahead of the 
demand peaks representing the congestion caused by increasing releases, and reach 
substantial values even when the output of the system is below the theoretical maxi-
mum of 20 time units implied by the horizontal segment of the clearing function. 
The dual prices from the ACF are significantly higher than those for the LP model 
because they consider the additional workload required to raise output in the pres-
ence of congestion, which increases rapidly at high levels of output where the slope 
of the CF is small.
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Fig. 7.10 Comparison of Dual Prices for LP and ACF Models in Examples 7.5 and 7.6

7.8  Conclusions

In this chapter, we have introduced the clearing function concept that provides a 
systematic approach to obtain tractable optimization models for release planning 
that recognize the nonlinear relation between workload, output, and cycle time dis-
cussed in the queueing models of Chap. 2. This chapter has focused on univariate 
clearing functions that represent the expected output of a production resource in a 
planning period as a concave non-decreasing  function of a single state variable rep-
resenting the amount of work available to the resource in the period. After reviewing 
several different types of clearing functions that adopt different state variables, we 
incorporate them into a convex optimization model for the single-product case. We 
then extend this model to illustrate the difficulties that arise in the presence of mul-
tiple products competing for capacity at a shared resource, and present the allocated 
clearing function formulation that provides an effective approximate solution to 
these difficulties. Finally, we show that the use of clearing functions leads to more 
informative dual prices for capacity than do the LP models of Chap. 5; in particular, 
the ACF model produces meaningful dual prices when resource utilization is below 
1, which the LP models of Chap. 5 cannot.

While the clearing functions and the resulting optimization models described in 
this chapter have several desirable properties, especially those related to dual prices 
for resources and the more effective modeling of congestion, they also have some 
accompanying disadvantages. The need to include decision variables to explicitly 

7.8 Conclusions
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model WIP, and the piecewise linearization of the ACF model required to obtain an 
LP representation of this model, results in substantially larger formulations than 
those of Chap. 5. While the nonlinear form of the ACF model also yields a convex 
nonlinear program, due to the preservation of convexity by the perspective transfor-
mation, there is as yet little computational work exploring this area. Finally, the 
basic operation of the ACF model, which uses aggregate workload to estimate 
aggregate output and then allocates this aggregate output among competing prod-
ucts in a planning period, fails when this type of aggregation is no longer accurate, 
especially in the presence of significant setup times. In the next two chapters, we 
explore several more general clearing function models that seek to address these 
difficulties.
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