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Chapter 6
Time-Varying Lead Times and Iterative 
Multi-Model Approaches

The planning models in the previous chapter assume the planned lead times to be 
workload-independent, exogenous parameters that remain constant over the entire 
planning horizon. We now consider models with exogenous lead times that vary 
over time, seeking to accommodate time-varying levels of resource utilization. 
Since, as discussed in Chap. 2, cycle times depend on capacity utilization, which is 
determined by release decisions, obtaining time-varying estimates of lead time 
parameters requires observation or prediction of resource utilization across the time 
periods in the planning horizon. This tight linkage of utilization and cycle time sug-
gests that releases and lead times should be jointly determined, i.e., the lead times 
should be endogenous to the model.

We begin this chapter with formulations based on exogenous, time-varying lead 
times, discuss the issues that arise in estimating these parameters, and then describe 
order release models that treat time-varying lead times as decision variables linked 
to the order releases. Noting that many of these formulations result in non-convex 
optimization models, we then discuss a class of iterative multi-model approaches 
that have been proposed in the literature.

6.1 � Preliminaries

It is important to distinguish the problem addressed in this chapter, that of estimat-
ing planned lead times to represent cycle times that vary over time, from that of 
updating existing lead time estimates as new information becomes available from 
the market and the shop floor. The lead time parameters of MRP systems are 
reviewed relatively infrequently in practice (Jonsson and Matsson 2006), but must 
be updated periodically as the production system and its products evolve over time. 
In this chapter we consider time-varying lead time parameters within a single plan-
ning run, so this line of research is not directly relevant. Time-varying lead times are 
also of interest for due-date assignment (Ioannou and Dimitriou 2012), since the 
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state of the shop at the time an order is placed will impact its planned finish date. 
This is again somewhat different from our problem since we use lead times as input 
parameters to an order release model that determines the release dates for all orders 
simultaneously, as opposed to predicting the cycle time of a particular order intro-
duced into the shop at a particular time.

Flow factors or flow allowances, which estimate the lead time associated with an 
order at a workcenter as a multiple of its processing time, have been widely used for 
estimating lead times (Keskinocak and Tayur 2004). This approach appears to have 
originated in the literature on due date setting for make-to-order shops (Keskinocak 
and Tayur 2004) and has since been widely used in production planning and sched-
uling. Morton and Pentico (1993) extend this concept to suggest a load-dependent 
proportionality factor that can be estimated from historical data for lightly, moder-
ately, and heavily loaded shops (p.  218), or by regression from historical data. 
However, at high levels of resource utilization, cycle times will consist mainly of 
waiting time in the queues, rendering a proportional relationship between process-
ing and cycle time common to all orders in the shop unlikely except under specific 
conditions, such as lot sizes that depend strongly on resource utilization, or a 
sequencing rule that prioritizes jobs with short operation times. Ozturk et al. (2006) 
apply data mining based on regression tree techniques to this problem.

In Sects. 6.1–6.3 we discuss the representation and modeling of time-varying 
lead times. Sections 6.4–6.5 then present improved methods to adjust the lead times 
to the order release plan. In particular, Sect. 6.5 presents methods for iterative 
adjustment of order releases and time-varying lead times, an approach that has also 
been proposed for other production planning problems as discussed in Sect. 6.6.

6.2 � Relaxing the Fixed Lead Time Constraint: Conceptual 
Issues

In discrete manufacturing systems, the cycle time of production orders at bottleneck 
resources consists mainly of waiting time in the queues and usually follows a prob-
ability distribution with substantial variance. The moments of this distribution, 
notably its mean, are highly nonlinear functions of the resource utilization as shown 
in Chap. 2. Planned lead times, which are parameters of the planning system, are 
derived from these cycle times or their distribution. In MRP, this is accomplished by 
treating the cycle times as a quantity to be forecast or predicted. In most order 
release models, planned lead times are obtained by specifying target lead times and 
controlling the WIP level to ensure that observed cycle times are consistent with 
these targets via Little’s Law. The definition of “consistent” depends on how cycle 
time uncertainty is handled in the planning system—this uncertainty is (hopefully) 
reduced, but not eliminated by load-based order release. If the estimated average 
cycle time is used as the planned lead time, safety stock or a downstream time buffer 
can help to manage the uncertainty. The alternative is safety lead time achieved, for 
example, by setting planned lead times equal to the historical mean cycle time plus 
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a specified safety lead time (Hopp and Sturgis 2000). This approach amounts to set-
ting the planned lead time to some percentile of the underlying cycle time distribu-
tion. A number of authors have addressed the problem of determining optimal lead 
times for different production and inventory systems, including Ben-Daya and 
Raouf (1994) for inventory systems and Gong et al. (1994) and Milne et al. (2015) 
for MRP systems.

If the relationship between the cycle time distribution and lead times can be 
specified, lead time parameters that remain constant over time can be consistent 
with the steady-state behavior of the production unit. When the aggregate demand 
faced by the production unit, and hence the average utilization of its bottleneck 
resources, exhibit little variation over time, this approach is likely to be quite satis-
factory. However, if demand varies widely over time, even if the release model has 
some load-leveling capability, the releases, and thus the work input to the resources 
and their utilization, may also vary over time, and the constant lead times will not 
match the actual cycle times. This issue can arise due to both the total demand for 
all products varying over time and the time-varying demand for individual products 
with different production routings and resource requirements.

Inconsistency between constant lead times and load-dependent cycle time distri-
butions causes two distinct difficulties. On the one hand, the lead times must allow 
high bottleneck utilization, which requires high WIP levels, high average cycle 
times, and thus a high value of the planned lead time. A temporary decrease in 
demand will lead to reduced releases, work input, and resource utilization, resulting 
in shorter cycle times. Material will be released earlier than is necessary to meet 
demand, causing unnecessarily high FGI levels. On the other hand, temporarily 
increasing releases, and hence WIP levels between workcenters, to improve load 
smoothing is not possible since this would raise realized lead times above the 
planned lead time. Directly addressing the latter issue within the release model 
requires estimates of lead times in the face of time-varying demand, either through 
a separate planning module that estimates the lead time parameters to be used in the 
release model or within the release procedure itself. The latter requires representa-
tion of time-varying lead times in the order release model, either explicitly as deci-
sion variables or implicitly as time-varying WIP, leading to additional complications 
discussed in the next two chapters.

To illustrate the issues that arise when considering time-varying lead times, con-
sider the following example.

Example 6.1  The fixed lead times associated with the orders released in each 
period are given in Table 6.1 for 12 consecutive planning periods. We make no pre-
tense that these lead times are realistic in any way; our purpose is to illustrate the 
issues that arise in selecting time-varying lead time estimates. The reader will note 
that the lead times increase and decrease by substantial jumps, with some being 
fractional and others integer.

Table 6.2 shows the loading factors that represent the fraction of material released 
in period τ that will emerge in period t based on these lead time estimates. The lower 
diagonal is, as expected, empty since a positive entry in this area would imply a 
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Table 6.1  Lead time parameters for Example 6.1

Period 0 1 2 3 4 5 6 7 8 9 10 11 12

Lead time 1 2 2.5 2.5 3 4.5 3 2.5 2.5 2 1.5 1 1

Period 1 2 3 4 5 6 7 8 9 10 11 13 13
0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0.5 0.5 0 0 0 0 0 0 0 0
3 0 0 0 0 0.5 0.5 0 0 0 0 0 0 0
4 0 0 0 0 0 0 1 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0.5 0.5 0 0 0
6 0 0 0 0 0 0 0 0 1 0 0 0 0
7 0 0 0 0 0 0 0 0 0.5 0.5 0 0 0
8 0 0 0 0 0 0 0 0 0 0.5 0.5 0 0
9 0 0 0 0 0 0 0 0 0 0 1 0 0
10 0 0 0 0 0 0 0 0 0 0 0.5 0.5 0
11 0 0 0 0 0 0 0 0 0 0 0 1 0
12 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 6.2  Loading fractions for Example 6.1

negative lead time, which, although it might be welcomed by many manufacturing 
managers, is difficult to achieve. There are, however, several areas of interest above 
the diagonal. No output emerges at all in period 8, due to the long lead times in 
preceding periods. Material released in period 4 emerges in period 7, but material 
released in period 5 emerges in periods 9 and 10. All materials released in period 6 
emerge in period 9. However, half the material released in period 5 emerges in 
period 9 and the other half in period 10, indicating that the releases from period 5 
are being overtaken by those from period 6.

This example illustrates that unless time-varying lead times are selected with 
some care, they can lead to quite unrealistic behavior in a planning model. It is thus 
useful to seek conditions to impose on lead time estimates that will ensure reason-
able behavior of the planning models in which they are deployed. One such require-
ment would seem to be that of no-passing, or first-in-first-out (FIFO): material 
released in earlier periods should not emerge from the system before material that is 
released later. In the dynamic traffic assignment literature (Peeta and Ziliaskopoulos 
2001), this implies no overtaking: vehicles entering a road segment at a point in time 
cannot exit before those entering earlier.

Carey (1992) examines several such conditions in the context of the dynamic 
traffic assignment problem, focusing on the need to preserve the FIFO property, in 
our context to ensure that material that is released earlier does not emerge after 
material released later. He first considers the case of a single product where xts rep-
resents the amount of the product arriving at the resource in period t and completing 
its processing in period s. Thus the amount of material xts will remain at the resource 
for (s − t) periods, and the average time a unit of work arriving in period t will spend 
at the resource will be given by
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Note that since it represents an average, the value of mt need not be an integer. To 
maintain FIFO on the basis of the average flows, material that arrives at the resource 
in period t must exit by period t mt+ . Thus, to ensure that on average material arriv-
ing later exits later, material entering in a later period s > t must exit in period s ms+ . 
Thus to preserve FIFO on average, we must have

	 m m s t s tt s≤ + −( ) ≥, for 	 (6.2)

yielding

	 t m s m s tt s+ ≤ + ≥, for all 	 (6.3)

Since (s − t) ≥ 1, this implies that the constraints

	 m mt t≤ ++1 1	 (6.4)

are necessary and sufficient to ensure FIFO for the average flows, although, as he 
shows by a counterexample, necessary but not sufficient for the individual compo-
nents xts. Note that in this representation, the planned lead times are not represented 
explicitly as a parameter, but through the definition of the decision variables xts, with 
mt defined as in (6.1). The explicit inclusion of condition (6.4) in an optimization 
formulation with a planning horizon of T periods requires O(T2) non-convex con-
straints, resulting in a model that is significantly more difficult to solve. He goes on 
to show that analogous conditions are necessary and sufficient for the average flow 
in the presence of multiple vehicle classes, analogous to multiple products in our 
context, and necessary but not sufficient to maintain FIFO at the level of individual 
items. This necessary condition plays an important role in the formulation of the 
Allocated Clearing Function model in Chap. 7 and will be revisited in that context. 
However, Carey’s findings are, in general, discouraging: they show that a variety of 
approaches to maintain the FIFO property all lead to planning models with non-
convex feasible regions.

6.3 � Modeling Time-Varying Lead Times

We can distinguish two different types of planned lead times for a single workcenter 
using a continuous representation of time and orders as seen in Fig. 6.1. The for-
ward lead time Lf(t) represents the lead time of an order that arrives at time t, i.e., 
the estimated time spent in the workcenter by an order arriving at time t. Similarly, 
the backward lead time Lb(t) represents the planned amount of time spent in the 
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Fig. 6.1  Evolution of forward and backward lead time over time

workcenter by an order leaving the workcenter at time t. In other words, a unit of 
work arriving at the workcenter at time t departs at time t + Lf(t), while one depart-
ing at time t must have arrived at time t − Lb(t).

Following our previous notation, let R(t) denote the rate of material release into 
the workcenter at time t, and X(t) its output rate at time t. We shall denote the cumu-
lative releases and output up to t by Rcum(t) and Xcum(t), respectively, and let W(t) 
denote the planned WIP level at time t. If we require the FIFO or no-passing prop-
erty, under which work released at time t cannot complete before work released at 
any time s < t and production orders (or work particles in the continuous representa-
tion) depart the workcenter in the same sequence as they arrive, the cycle times are 
determined by the evolution of WIP over time. Based on Fig. 6.1, we have the mate-
rial balance relations

	
W R d X d

t t L t

0
0 0

( ) + ( ) = ( )∫ ∫
+ ( )

τ τ τ τ
f

	
(6.5)

	
W R d X d

t L t t

0
0 0

( ) + ( ) = ( )
− ( )

∫ ∫
b

τ τ τ τ
	

(6.6)

which calculate the time-dependent output of the workcenter from its time-
dependent input, constituting a dynamic production function (Hackman 2008). 
Equation (6.5) states that all materials entering the system by time t must, by the 
definition of Lf(t), have been converted into output by time t + Lf(t). Similarly, (6.6) 
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states that all materials leaving the system by time t must have entered by time 
t − Lb(t). Hence Lf(t) and Lb(t) are related as

	

L t L t L t

L t L t L t

b f b

f b f

( ) = − ( )( )
( ) = + ( )( ) 	

(6.7)

Extending this logic to discrete-time models is not straightforward. The simplest 
analogy is period-based, integer lead times Lt

f  and Lt
b representing the lead times of 

orders arriving or departing in period t, respectively. Thus the fixed lead time formu-
lation in Chap. 5 represents a backward lead time implying

	
R X

t L t
t−
=b 	

(6.8)

This is perfectly adequate when L Lt t
b b= +1 for all periods t = 1,..., T − 1 in the 

planning horizon; each unit of work emerging as output at any time within period t 
was released exactly Lt

b time units earlier. However, if the planned lead time at the 
workcenter increases by 1 period from period t to period t+1 such that L Lt t+ = +1 1b b , 
(6.8) implies that the output of two or more consecutive periods was released in the 
same period, as was the case for period 9  in Example 5.1. Hence, (6.8) must be 
formulated as an inequality constraint of the form

	 k

t L

k
k
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t
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(6.9)

for all t, which only gives a lower bound on the releases or, expressed in terms of 
time, the latest possible release period for given output over time. Thus it represents 
time-varying lead time parameters only in the context of a release model that delays 
releases as much as possible, usually due to positive WIP holding costs in the objec-
tive function (as in the release models in Chap. 5). This is the first shortcoming of 
representing lead times directly as parameters Lt

f  or Lt
b.

A second problem is that this representation cannot express lead time distribu-
tions. Empirical cycle time distributions often exhibit high coefficients of variation 
as seen in Fig. 2.3, and an effective planning model should be able to represent this. 
One approach to representing lead time distributions is the use of loading factors wτt 
defined as the fraction of the work released in period τ that emerges as output in 
period t.

A backward lead time Lt
b can be converted into a loading factor by noting that
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(6.10)

yielding the relationship between releases and output as
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The loading factors can be interpreted as the expected fraction of work released 
in a certain period that leaves the workcenter after a certain time, representing a 
discrete probability distribution for lead times. In (6.11), and most of the iterative 
approaches discussed below, this expectation is treated as a deterministic fraction, 
resulting in a set of linear constraints.

6.4 � Epoch-Based Lead Times

Until now we have assumed period-based lead times such that lead times are associ-
ated with specified planning periods, implying that that all releases (for forward 
lead times) or output (for backward lead times) associated with a period is subject 
to the same lead time. Hung and Leachman (1996) suggest the use of epoch-based 
lead times defined at the period boundaries, which permits a more general represen-
tation of fractional lead times. We now describe this approach since it forms the 
basis for many of the iterative approaches in Sect. 6.5.

The basic formulation is derived from the model discussed in Chap. 5, which 
requires lead time estimates Ljk representing the time required for a unit of product 
j to reach the k’th resource in its product routing after being released into the plant. 
However, instead of fixed lead times that remain constant over the entire planning 
horizon, Hung and Leachman (1996) associate lead time parameters with the start 
of each planning period. In the following we shall assume unit-length planning 
periods such that period t starts at time t − 1, i.e., t = 0 is the start of period 1, t = 1 
the start of period 2, etc. Equivalently, this can be viewed as period t ending at time 
t. The lead time parameters Ljkt, which may take on fractional values, represent the 
lead time after its release required for an order of product j to reach the k’th resource 
on its routing if the order reaches that resource at the end of period t. This definition 
of epoch-based lead time parameters is depicted in Fig. 6.2. The key assumption is 
that the releases associated with a planning period take place at a uniform rate over 
the planning period, as discussed in Chap. 5 and in Hackman and Leachman (1989).

Given these lead times, the loading of the production resource in period t is 
defined by releases occurring in the time interval Qt = [(t−1) − Lj,k,t-1, t−Ljkt], recall-
ing that planning period t starts at time (t−1) and ends at time t. There are two cases 
to consider here. In the first, simpler case, the time interval Qt lies within a single 
planning period ⌈(t − 1) − Lj, k, t − 1⌉ = ⌈t − Ljkt⌉ where ⌈x⌉ denotes the smallest 
integer greater than or equal to x. In this case the entire amount released in period 
⌈(t − 1) − Lj, k, t − 1⌉ arrives at workcenter k in period t. Hence the amount Yjkt of 
product j loading workcenter k in period t is given by
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Fig. 6.2  Relationship between releases and loading with time-dependent lead times. Adapted 
from Hung and Leachman (1996)
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where Δ denotes the period length (set to 1 by definition) and eij the average fraction 
of the release quantity of product j that will arrive at resource k.

If, on the other hand, the time interval Qt spans multiple planning periods, we 
allocate the load due to releases in that period in proportion to the fraction of that 
period’s total duration included in the interval Qt assuming uniform release rates 
over the planning periods, yielding
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The operation of this approach is illustrated in Fig. 6.2. The upper part of the 
figure shows the uniform release rates in each planning period, and the lower por-
tion the resource loading resulting from these releases arriving at the resource after 
the specified fixed lead times. Releases in periods 2 and 3 contribute to the work 
input in period 3 at resource k corresponding to the first and the third term in (6.13); 
the second term is not relevant here because the release interval only spans the two 
periods 2 and 3. Due to the use of backward lead times, the lead times are associated 
with the boundary points between periods at the workcenter, not those between the 
release periods, and hence the lead time at the start of a period may not be the same 
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as that at the end. The coloring indicates the correspondence between the releases 
and the arrival of the material at the resource.

The loading factors wjτt that denote the fraction of releases of product j in period 
τ that contribute to output in period t follow immediately from (6.12) or (6.13), 
depending on the case. The amount Yjt of product j arriving at the workcenter in 
period t is, analogously to (6.11), given by the linear expression

	
Y R wjt

t

j j t=
=
∑
τ

τ τ
1 	

(6.14)

If we could obtain the correct values of the loading factors wjτt efficiently, we 
would no longer need an explicit capacity constraint since the loading factors would 
reflect the ability of the resource to produce output over time. However, formulating 
and solving a model that encompasses both order release planning and estimation of 
the wjτt values turns out to be challenging, as we discuss below.

6.5 � Lead Time Estimation Within the Order Release 
Procedure

The previous section described different ways to represent time-varying lead times 
in an order release model, assuming these were treated as exogenous parameters. 
We now turn to the crucial question of how to specify values for these lead times, 
that is, how to represent the functional relationship between capacity loading and 
lead times. This can be handled in two fundamentally different ways:

•	 Time-varying lead times can be treated as exogenous parameters whose values 
are determined based on information known prior to order release, such as his-
torical flow times, capacity, and demand. Orders are then released based on these 
lead time parameters.

•	 The order release model, or the order release procedure of which it is a part, can 
treat the lead times as functionally related to the release schedule and hence must 
represent this functional relationship. This can, in turn, be accomplished in two 
ways:

–– The lead times can be defined as decision variables endogenous to the optimi-
zation model, which optimizes releases and lead times simultaneously.

–– The problem can be decomposed into two related subproblems: one that 
determines an optimal release schedule given the estimates of lead times, and 
another that estimates lead times based on a given release schedule. An itera-
tive procedure then solves these subproblems in sequence until some conver-
gence criterion is satisfied.

The first approach, that of setting lead times prior to order release, has been treated 
extensively in the MRP literature. “MRP treats lead times as attributes of the part and 
possibly the job, but not of the status of the shop floor” (Hopp and Spearman 2008: 
124). Planned lead times “serve as a proxy for dealing with capacity constraints; a 
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longer planned lead time leads to a longer planned queue that permits more produc-
tion smoothing” (Graves 2011: 93). As described in Chap. 2, using this approach, 
lead times are usually estimated from historical cycle times and are updated only 
infrequently. Due to the importance of planned lead times for manufacturing perfor-
mance, there has been extensive research on improving lead time estimation (Milne 
et al. 2015). Since the role of the lead times in this framework is to coordinate the 
various planning levels of the PPC system, their values are determined by a parame-
ter-setting function that seeks to ensure this coordination (see Chap. 1). Since the 
cycle times are closely related to capacity utilization, they must be coordinated with 
the production smoothing decisions made at the master production scheduling level, 
but we are not aware of any research on jointly determining the master production 
schedule and time-dependent lead times.

The principal difficulty in determining time-varying lead times derives from the 
nonlinear relation between cycle time and resource utilization described in Chap. 2. 
Since cycle times depend on resource utilization, and resource utilization on the 
release decisions, determining time-varying lead times for use in an order release 
model requires knowledge of capacity loading over time, and hence of the order 
releases, at least at an aggregate level. If the aggregate level of capacity loading, and 
hence resource utilization, remains largely constant over time, this may not be a 
major issue. However, even this may be moot at high utilization levels, where small 
changes in resource utilization may lead to large changes in cycle times. Directly 
addressing this interdependence between lead time estimates and release decisions 
requires models that simultaneously determine time-varying lead times and order 
releases, which we discuss in the following section.

6.5.1 � Models Without WIP Evolution

The evolution of cycle times over time is closely related to the evolution of WIP 
over time as expressed in (6.5) and (6.6); Hackman (2008: 309ff.) gives a more 
detailed discussion. For complex manufacturing systems modeled as networks of 
queues that need not be in steady state, models that accurately anticipate the evolu-
tion of WIP and cycle time over time generally involve some type of simulation, 
either of the discrete-event type (Law and Kelton 2004) or continuous-time models 
based on ordinary or partial differential equations (Armbruster and Uzsoy 2012), 
which are difficult to incorporate into a tractable mathematical programming model. 
Therefore, a number of approaches that estimate load-dependent lead times within 
the order release model without explicitly considering the evolution of WIP over 
time have been proposed.

Since in steady state the average cycle time increases nonlinearly with utiliza-
tion, it is intuitively appealing that this pattern also holds within each planning 
period of an order release model. A number of authors have developed models that 
select an appropriate lead time for each planning period based on the resource load-
ing in that period. These are closely related to those developed for dynamic traffic 
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Fig. 6.3  Conservation of flows on a time-expanded network (Carey and Subrahmanian 2000)

assignment models (Peeta and Ziliaskopoulos 2001) that seek to determine the rout-
ing of vehicles through a road network to optimize some measure of performance. 
Since individual traffic links (road segments) are subject to congestion, consider-
able effort has been devoted to developing models that capture the relationship 
between the volume of flow on a traffic link and the velocity of that flow.

One way to model congestion in traffic networks is through the use of time–
space links (Carey and Subrahmanian 2000). If two nodes i and j of a traffic network 
are connected by a spatial link (in other words, a road segment), this two-node net-
work can be expanded over time to yield a network of time–space nodes as seen in 
Fig. 6.3. The flow on a time–space link represents the number of vehicles that pass 
the nodes at the times corresponding to the nodes at the end points of the link and 
hence requires the associated (integer) traversal time.

The impact of congestion is manifested as a link traversal time that increases 
with the volume of flow on the link and can be represented by having the upper 
bounds on the flow through the time–space links leaving node i at time t depend on 
the flow through node i at time t, i.e., the inflow to the time–space links leaving node 
(i,t). In the model of Carey and Subrahmanian (2000), the capacities of at most two 
neighboring time–space links leaving node (i,t) are positive and the other time–
space links are closed for the given inflow. As the inflow increases, the time–space 
links with positive capacities move to higher traversal times, implying a flow-
dependent traversal time distribution that is stationary over time for a given inflow. 
The relationship between the flow x through the time–space link and the time s it 
takes to traverse the link, referred to as the travel time function s = f(x), is assumed 
to be convex, increasing, and piecewise linear, which allows the breakpoints of the 
function to be mapped onto the time–space links as in Fig. 6.4. If the inflow x is 
exactly at a breakpoint, only the corresponding time–space link is active. Otherwise 
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Fig. 6.4  Relationship between time–space link capacities (left) and travel time function (right) 
(Carey and Subrahmanian 2000)

the respective fractions of the inflow are assigned to the two adjacent time–space 
links (Carey and Subrahmanian 2000: 163). The authors consider a piecewise linear 
convex objective function and develop two alternative formulations based on this 
representation. Using concepts from separable programming (Bazaraa et al. 1979), 
they show that under these assumptions at most two adjacent time–space links will 
carry positive flow. They also show that as long as there is no holding back behavior, 
where traffic that has entered a link is not allowed to exit in order to alleviate con-
gestion in later periods, the solutions will satisfy FIFO unless a sharp increase in 
inflow is followed by a sharp decrease. When holding back occurs, however, solu-
tions may violate the FIFO property.

The traversal time of a spatial link in a traffic network is analogous to the cycle 
time at a workcenter, and models with similar structure have been developed for 
order release planning in manufacturing. Voss and Woodruff (2003) assume a 
steady-state relationship between workcenter utilization and the expected cycle 
time at that workcenter. They then discretize this curve using integer variables to 
ensure that only one segment of the discretized curve is active in a given time period. 
The relationship between utilization and expected lead time is evaluated at discrete 
utilization levels (breakpoints) BPq, q = 1,…,U where Lq denotes the expected lead 
time value associated with the q’th utilization level BPq. Thus the expected lead time 
of the resource is assumed to be Lq when its utilization level is between BPq and 
BPq−1. The authors suggest setting the breakpoints BPq such that each lead time Lq 
corresponds to an integer number of periods. If aj denotes the fraction of the avail-
able resource capacity required for one unit of product j, j = 1,…,P, and Rjt the 
amount of product j released in period t, the utilization of the resource in period t is 
given by
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We now define binary variables ytq that select a particular lead time value Lq to be 
active in a given period t as follows:
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Additional constraints of the form
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ensure that the lead time selected is consistent with the workload. In addition, for 
any given period t, we require Lt – Lt+1 ≤ 1, giving
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This latter constraint is interesting in that it restricts the changes in lead time 
from one period to the next to at most one period to avoid overtaking, i.e., material 
released into the system at a later time emerging before material released earlier. 
Note that (6.19) enforces the condition (6.4) shown by Carey (1992) to be necessary 
for the flow through a node to satisfy the first-in-first-out (FIFO) condition.

To complete the formulation, the authors present an objective function that 
includes an explicit holding cost for WIP, based on Little’s Law (Hopp and Spearman 
2008), leading to
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This objective function is nonlinear due to the product of the ytr and Rjt, leading 
to a formulation that is computationally hard to solve.

Lautenschläger (1999) describes a similar approach. In order to consider load-
dependent lead times for master production scheduling, this model determines the 
fraction of the planned production available in a period t that has to be started one 
period ahead in period (t − 1) assuming the rest is produced in period t. This fraction 
is a function of the planned utilization. Thus production on a resource can be per-
formed in two modes, one with lead time of zero periods and the other with lead 
time of one period, essentially the same idea as the time-expanded network in 
Fig. 6.3. The maximum production volumes that can be realized in each mode are 
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limited, leading to a utilization-dependent lead time distribution. Short-term oscil-
lations in capacity utilization over time, which are considered undesirable due to 
considerations not explicitly represented in the model, are reduced by a low-pass 
filter (Lautenschläger 1999: 114ff.). Many factory managers consider large varia-
tions in utilization to be detrimental to performance, perhaps due to their impact on 
staffing and other support services such as material procurement (Lautenschläger 
1999: 114f). However, the high-frequency oscillations may also be due to the sim-
plifications in the flow time modeling. Orcun and Uzsoy (2011) have shown that 
inconsistencies between the lead times used in a planning model and the cycle times 
in the production system can lead to significant oscillating behavior when the plan-
ning model is implemented in a rolling horizon environment, supporting the latter 
conclusion.

6.5.2 � Critique of Lead Time Estimation Without WIP 
Evolution

While the models in the previous section address the load-dependent nature of lead 
times, they ignore the relationship between time-dependent lead times and WIP 
evolution over time expressed in (6.5) and (6.6) and formulated more generally in 
transient versions of Little’s Law (Bertsimas and Mourtzinou 1997; Riaño 2003) in 
order to obtain a tractable mathematical programming formulation. As such, they 
must be viewed as approximations that exhibit several shortcomings:

•	 All the models described above assume a well-defined relationship between the 
workload or utilization of a resource in a planning period and its expected cycle 
time in that period. The form of this relationship is generally posited assuming 
steady-state is reached by all related queues during the planning period. However, 
since planning models assume discrete planning periods of a fixed length and 
work releases vary over time, planning models inherently operate in a transient 
regime, and the cycle time of work released in a given period may deviate quite 
substantially from the long-run steady-state average.

•	 If the amount of work released decreases sharply from period t to period t+1, 
the estimated lead time for the orders can decrease by more than one period 
from t to t+1, implying overtaking (Voss and Woodruff 2003: 165; Carey and 
Subrahmanian (2000)). This is unlikely to occur in practice—although it may 
be accomplished to a limited extent by expediting, which has its own disadvan-
tages (Ehteshami et  al. 1992; Narahari and Khan 1997)—and violates the 
assumption that the released work must be processed first-in-first-out. This sug-
gests that these models can lead to unrealistic results. Voss and Woodruff (2003) 
add a constraint that keeps the lead time from decreasing by more than one 
period from t to t+1, which Carey (1992) has shown is a necessary condition for 
the preservation of the FIFO property.
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Several researchers have sought to address these problems by using either a 
discrete-event simulation model or a transient queueing model to model the joint 
evolution of lead times and WIP levels. This leads to computationally intractable 
optimization models, requiring lead time estimation to be performed outside the 
optimization model. This approach will be discussed in the next section.

6.6 � Lead Time Estimation Outside the Optimization Model: 
Iterative Multi-Model Approaches

6.6.1 � Overview

Modeling the joint evolution of lead times and WIP levels in a transient setting usu-
ally leads to computationally intractable order release models even in simple cases. 
This can be seen from (6.5) and (6.9) where the lead times are elements of the inte-
gration or summation limits. However, this structure can be addressed by decom-
posing the order release problem into two separate subproblems: one that computes 
a release plan given a set of time-varying lead time estimates and another that com-
putes the expected lead times or output associated with each period, or boundary 
between periods, for a given release plan. These are usually deployed within an 
iterative framework that seeks convergence to a pair of consistent subproblem solu-
tions. A review of multi-model approaches combining optimization and simulation 
is given by Figueira and Almada-Lobo (2014).

The central difficulty of multi-model approaches that decompose the release 
planning problem into separate release planning and lead time estimation problems 
is that of any decomposition procedure: that of efficiently achieving a solution 
simultaneously satisfying the constraints of both subproblems. In isolation, both 
subproblems can be addressed satisfactorily with well-known techniques. The 
release planning subproblem can be solved directly by the LP models described in 
Chap. 5, whose mathematical structure easily accommodates time-varying lead 
time estimates as long as reasonable estimates can be obtained as discussed in Sect. 
6.1. The lead time estimation subproblem can be addressed by queueing or simula-
tion models. What is required is a coordination mechanism that leads to mutually 
consistent solutions to the two subproblems that are at least feasible, and hopefully 
near-optimal, to the overall problem. In order to preserve the tractability of the 
release planning subproblem, its parameters (capacities and lead times) must be 
exogenous to whatever model is used to solve it, i.e., unaffected by the release 
schedule it produces. Similarly, the lead time/output estimation subproblem must 
treat the release schedule as an exogenous input. Hence these procedures combine 
mathematical programming and simulation or queueing models such that each 
model determines estimated values of parameters required by the other. Since the 
primary optimization mechanism is embedded in the mathematical programming 
model, the simulation or queueing model used for lead time estimation is subordinate 
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Flow times (HL)
Loading factors (R)
Loading factors +
utilization (KK)

Order release
schedule

Updating
procedure

Updated loading
factors /capacities

Fixed lead time order release model

Lead time / output estimation model

Fig. 6.5  Iterative simulation—LP approach for order release planning: the generic mechanism. 
HL: Hung/Leachman, KK: Kim/Kim, R: Riaño

to the optimization model per the taxonomy of hybrid simulation/analytic models 
by Shanthikumar and Sargent (1983). The procedure is outlined in Fig. 6.5.

How the parameters of each model are updated based on the results of the other 
is likely to have significant impact on both the convergence of the procedure and the 
quality of the solution to which it converges. The communication from the release 
planning model to the lead time estimation model is generally straightforward: the 
quantity of each product released in each period. The information passed from the 
lead time/output estimation model to the release planning model usually consists of 
the estimated mean cycle times associated with each period or epoch, while some 
approaches also consider average resource utilization levels in each period. The 
cycle times observed by the lead time estimation model may be represented in the 
release planning model as exogenous lead times or loading ratios as described in 
Sect. 6.2.

At each iteration, the current estimates of cycle times or loading ratios and utili-
zation are used to update the lead times and capacities that constitute the parameters 
of the order release model, and the order release model is re-run. This iterative 
procedure is repeated until convergence, which can be defined as reaching a fixed 
point of the iterative mechanism, a solution where the parameters of the order 
release model lead to an order release schedule that results in the same cycle time 
and output estimates by which the order release schedule was produced. Thus, once 
the algorithm arrives at this solution, it remains there. Ideally, the optimal solution 
should be a fixed point, but there is as yet no rigorous proof that this is the case in 
general. There is considerable experimental evidence that the solution spaces of 
some formulations of this problem are non-convex, leading to the procedure 
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converging to different points from different initial solutions. Experimental evi-
dence discussed later in the chapter suggests that even quite subtle differences in 
implementation may produce qualitative differences in computational behavior.

6.6.2 � Iterative Simulation-LP Algorithms

Zaepfel (1984) was the first author to formulate such an iterative mechanism and its 
associated order release model. In his procedure only the estimated lead times are 
communicated from the lead time estimation (simulation) model to the order release 
model which assumes fixed lead times and unlimited capacities. The reasoning is 
that since overloading of capacities leads to higher flow times, information on 
capacity overload (excessive releases in certain periods) is captured in the revised 
lead time estimates in the feedback from the simulation model. No numerical results 
are provided.

Hung and Leachman (1996) were the first to provide numerical tests of this type 
of iterative scheme. Their order release model modifies the step-separated formula-
tion of Leachman and Carmon (1992) to represent the lead times as loading factors 
per Sect. 6.2, with epoch-based backward lead times defined at the period boundar-
ies as in Fig. 6.2. Updating these lead time parameters during the iterations requires 
observing the simulated flow times at the period boundaries, which are interpolated 
from the flow times of orders arriving at the workcenters immediately before and 
immediately after the boundary epoch (Hung and Leachman 1996: 262). The order 
release model includes capacity constraints and assumes that capacity is consumed 
at the end of the planned lead time. The release period determines the period in 
which the work is processed and capacity is required. Hung and Leachman (1996) 
examine the rate of convergence of the flow time estimates to the flow times observed 
in the simulation and find that convergence to the correct expected flow time values 
can be quite rapid but that the procedure can fail to converge in some cases which 
are not fully understood. Subsequent numerical tests by other authors (Irdem et al. 
2010; Kacar et al. 2012) confirm that the convergence behavior of the general pro-
cedure is not well understood, as will be discussed further in Sect. 6.6.3.

Hung and Hou (2001) use the same basic procedure as Hung and Leachman 
(1996) but replace the simulation model with an analytical queueing model. The 
queueing model proceeds by dividing each planning period into a number of shorter 
subperiods and assumes steady-state behavior within the subperiods. The lead times 
applicable at the boundaries of the subperiods are obtained using the epoch-based 
lead time estimates obtained at a previous iteration. The M/M/s queueing model is 
used to predict average cycle times at individual workcenters, which are then com-
posed into estimates of cycle times from the beginning of the process to each opera-
tion. They terminate the iterations when the percentage mean absolute deviation 
between the flow time estimates at successive iterations is sufficiently small. 
However, they find that especially at high utilization levels, the M/M/s queueing 
model predicts extremely high flow times, rendering the cycle time predictions 
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inaccurate. They also find that the method has difficulty in converging (specifically 
in Fig. 7 of Hung and Hou (2001)). Hence they develop an empirical approach that 
uses historical data to develop a model relating expected cycle times to workload at 
individual workcenters, similar to the function used by Voss and Woodruff (2003). 
They report short computation times and good convergence for longer sub-periods, 
but this issue is only described briefly.

Riaño (2003) proposes a rather different iterative technique in which loading fac-
tors wst that describe the fraction of total releases in period s that will emerge by 
period t ≥ s are estimated using a transient model of a queueing network. To present 
the basic idea, we shall consider its application to a single-server workcenter; the 
extension to multiple stages and servers is discussed in Riaño et al. (2006). A job 
released to the workcenter at time s will see Q(s) jobs ahead of it in the queue or in 
process. Hence the cycle time of that job will be given by
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where Sk, k = 2,…,Q(s) denote the processing times of jobs ahead of this job in the 
queue, S1 the residual (remaining) processing time of the job currently in process 
and S the processing time for the new arrival. The distribution function of the cycle 
time of the job introduced into the system at time s is then given by
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where F1 denotes the distribution function of the residual processing time of the job 
currently in process, ∗ the convolution operation, and Fn∗ the n-fold convolution of 
the processing time distribution F at the server. G(s,t) thus describes a state-
dependent cycle time distribution that depends on the number of jobs Q(s) in the 
system at the time s the job was released. We seek an approximation of this function 
that will allow us to calculate approximate values of the loading factors wst. To 
develop this approximation, the author assumes that this time-dependent delay dis-
tribution of an arriving order will have the same form as the steady-state distribution 
of the waiting time for an M/G/1 queue, which is given by Shortle et  al. (2018: 
273), as
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where Fe is the steady-state residual processing time distribution derived assuming 
that the time a new job enters the system is uniformly distributed over the duration 
of the current service time. This suggests an approximation of the form
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where β(s) denotes a time-dependent traffic intensity. Noting that for a phase-type 
service time distribution (Neuts 1981), G(s,t) will also be of phase type, the author 
proposes heuristic estimates of β(s), obtaining an approximation for G(s,t) that 
depends only on the expected WIP level at time s, denoted by ϕ(s), and its time 
derivative ϕ′(s). Hence, to obtain an approximation to G(s,t), we now need a viable 
technique for estimating ϕ(s) and ϕ′(s). These quantities are clearly linked to the 
evolution of WIP over time, which, in turn, depends on the pattern of releases into 
the production system, suggesting a recursive technique. Given a release pattern, we 
can compute estimates of ϕ(t) for every planning period t in a recursive manner, 
starting from period t = 1 and moving forward in time. If the processing time distri-
bution at the server is phase-type, these computations can be performed efficiently. 
The resulting approximation to G(s,t) yields approximate values of the wst, which 
can be interpreted as the probability that a job released in period s will complete in 
period t. The author suggests a successive approximation method to compute the wst, 
where for a given release pattern estimates of the wst are developed after which a 
planning problem is solved to estimate WIP levels over time. These new WIP levels 
are used to estimate new loading factors until the estimates of weights converge.

The larger pattern of the iteration procedure is now clear: we begin with an initial 
release pattern, and calculate initial estimates of the wst. We then calculate a new 
release pattern using these weights, and repeat until, hopefully, convergence is 
achieved. As in Zaepfel (1984), the model does not include separate capacity con-
straints because the load factors wst reflect how the input is transformed into output. 
“If correctly computed, they will ensure the output is actually bounded. If too much 
input is placed into the system the weights will reflect these longer lead times” 
(Riaño 2003: 72).

As with the approach of Hung and Leachman (1996), the convergence behavior 
of this procedure is not well understood; when it converges, it converges quite rap-
idly to a solution that does not depend on the initial solution used, but in other cases, 
it can cycle through a limited number of solutions (Riaño 2003: 83). Further experi-
mental and theoretical work is necessary to understand this convergence issue (see 
Sect. 6.5.3), but the overall approach stands as a very interesting and novel approach 
to modeling workload-dependent lead times in production planning, with a strong 
theoretical underpinning. Interesting discussions in this direction are given by 
Hackman (2008).

The iterative mechanisms discussed so far iterate solely on the lead times or on 
the loading factors. Byrne and Bakir (1999) iterate between a conventional multi-
period LP production planning model that determines the optimal production levels 
for given capacity constraints and a simulation model that is used to update the 
available capacities if the production levels obtained from the initial optimization 
run turn out to be infeasible in the simulation. Lead times are not considered. Byrne 
and Hossain (2005) provide some extensions to this mechanism, again without con-
sidering lead times in the production planning model.

Kim and Kim (2001) also use loading factors to express lead times and include 
capacity constraints in their release model. Simulation is used to obtain estimates of 
the effective loading factors and resource utilization that are used to update the lead 
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times and the capacities in the release model within an iterative mechanism. The 
authors do not report convergence problems in their numerical tests. Irdem et al. 
(2010) report good convergence of this approach under both high and low levels of 
resource utilization. They conclude that “the convergence behavior of the KK (Kim 
and Kim 2001) procedure is qualitatively different from that of the HL (Hung and 
Leachman 1996) procedure” (452f.). Albey and Bilge (2014) conduct extensive 
experiments with the KK procedure and find that the procedure converges to differ-
ent solutions from different initial release plans. They also observe that when the 
release planning model proposes a release plan that results in low capacity utiliza-
tion, agreement with the lead time estimation model is often achieved fairly quickly, 
which may result in the procedure converging to a suboptimal solution. Once capac-
ity estimates have been revised downwards and passed to the release planning 
model, they are implemented in a hard constraint that does not permit them to be 
revised upwards again at a subsequent iteration. They also find that combining the 
values of estimates from successive iterations using a smoothing constant improves 
performance and that convergence in aggregate convergence criteria such as total 
throughput over all periods and products is much easier to obtain that agreement for 
each product in each period. These authors also examine the performance of the KK 
procedure in the presence of routing flexibility and find that increasing flexibility 
improves its performance.

Bang and Kim (2010) formulate an iterative procedure using an aggregate pro-
duction planning model designed for semiconductor wafer fabrication that uses a 
separate disaggregation stage to obtain the release quantities over time. Based on an 
extended (compared to Hung and Leachman 1996) simulation model, not only is 
cycle time information updated but also product types are regrouped for the next run 
of the aggregate production planning model. The authors report improvements com-
pared to Hung and Leachman (1996) and good convergence for both methods in all 
problem instances tested, although convergence cannot be guaranteed. Kim and Lee 
(2016) propose an iterative scheme where the production planning level determines 
production and WIP levels (or the deviations from target values, respectively). 
These target values are updated based on the simulated cycle times, number of set-
ups, and available WIP. The convergence of the procedure seems to depend on the 
variable used to specify the convergence criterion.

6.6.3 � Critique of Iterative Simulation-LP Algorithms

The iterative simulation-LP approach to order release planning combines two famil-
iar, off-the-shelf modeling techniques, linear programming, and simulation, in an 
iterative scheme that addresses the complex interdependency of releases and lead 
times. However, the simulation model requires large amounts of engineering effort 
and data to construct, validate, and maintain and increases run time significantly. 
The computational burden can be reduced by limiting the level of detail of the 
model to what is necessary for the specific purpose (Law and Kelton 2000: 267ff.), 
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e.g., by focusing on highly utilized workcenters and replacing operations at low-
utilization workstations with fixed time lags (Hung and Leachman 1999). The ongo-
ing increase in computational power alleviates this problem somewhat, but does not 
eliminate it. The overall procedure—starting with reasonable cycle time estimates 
that are refined based on the simulated dynamics of the material flow—is intuitive 
and easy to explain. Modeling the flow time dynamics outside the optimization 
model allows complex system dynamics to be embedded in the simulation or queue-
ing models used to estimate lead times, permitting realistic modeling of the system 
within the limits of the available computational resources.

However, the behavior of this type of order release mechanism is not well under-
stood. There is no guarantee of optimality and hardly any insight into its deviation 
from the optimum. Although convergence is ergodic in some numerical experiments 
(Riaño 2003), there is no proof of this property. The approaches often converge 
within a reasonable number of iterations (five or six in Hung and Leachman (1996)), 
but can frequently fail to converge, in which case it does not reach a feasible solu-
tion. This is not acceptable in real-life situations and largely precludes practical 
application. However, Kim and Kim (2001) do not report convergence problems in 
their numerical tests, which might indicate that including the capacities in the itera-
tive mechanism makes a substantial difference. Note that updating the capacities 
changes the right-hand side of the order release model, while updating the lead 
times changes the coefficient matrix. However, it is not clear how this difference is 
related to the mechanism that coordinates the order release and lead time estima-
tion models.

Irdem et al. (2008, 2010) and Kacar et al. (2012) perform numerical studies that 
explore both the convergence of the HL (Hung and Leachman 1996) and the KK 
(Kim and Kim 2001) method and, in the latter paper, their performance relative to a 
clearing function model of the type described in the next chapter. All three papers 
use the same simulation testbed, a scaled-down wafer fabrication facility first stud-
ied by Kayton et al. (1997). Irdem et al. (2008) find substantial convergence prob-
lems for the HL method, especially under high bottleneck utilization, which are 
confirmed in Irdem et al. (2010). This behavior is qualitatively different from the 
KK procedure for which they report good convergence (Irdem et al. 2010; Kacar 
et al. 2012). Kacar et al. (2012) compare a clearing function model with two param-
eter settings to the KK and the HL procedure using the same testbed. They find that 
for the KK method convergence is achieved after four iterations in most test cases, 
while the HL method is “consistently outperformed by the clearing function model” 
(p. 116). They also conclude that the dynamic behavior of the HL method is prob-
lematic due to large swings in releases from one period to the next. The KK proce-
dure is mostly outperformed by the clearing function model, at least for the better of 
the two parameter settings.

The convergence issue highlights the fact that the theory behind the iterative 
simulation-LP approach is largely unclear, making it difficult to explain their 
behavior and the nature of the solution to which they converge. Missbauer (2020) 
analyzes a simplified version of the HL procedure assuming a production unit with 
a single workcenter. He shows that in the order release model the lead times, which 
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are time-varying parameters, act as prices for producing an item in a certain period. 
This is because the WIP holding costs are assigned to the production period due to 
the use of backward lead times and are proportional to the lead time assigned to this 
period. Similar insights arise in the analysis of fixed lead time models in Chap. 5, 
notably Equation (5.19). Hence an iterative order release procedure that iterates on 
the lead times behaves like a price coordination mechanism. Missbauer (2020) 
shows that the price coordination mechanism implied by the iterative order release 
mechanism does not meet the theoretical requirements for an effective price coordi-
nation mechanism, so a reasonable solution can only be expected under very spe-
cific conditions. This argument clearly does not extend, e.g., to the KK procedure 
that iterates on the capacities as well, suggesting different theoretical underpinning 
for different variants of the iterative mechanisms. These issues are largely unex-
plored, and more research is needed. Future research should link the design of itera-
tive LP-simulation algorithms to the theory of mathematical decomposition and 
coordination that is available in the mathematical programming literature.

A comparison to the widely used techniques of simulation optimization (Fu 
2002; Zapata et  al. 2011) provides additional perspective on the performance of 
these iterative approaches. Simulation optimization is used when the objective func-
tion and constraints of the system of interest do not admit of a tractable mathemati-
cal representation but instead can be represented in a discrete-event simulation 
model. Thus the performance measure of interest cannot be computed directly, but 
must be estimated based on samples obtained from replications of the simulation. If 
we denote the vector of decision variables by θ and the estimate of the performance 
measure to be optimized obtained from the simulation replication w by L(θ, w), the 
general statement of a simulation optimization problem is then

	
min
θ

θ
∈

( )
Θ
J

	
(6.25)

where J(θ) = Ew[L(θ, w] where Θ denotes the set of all acceptable decision variable 
vector θ. The decision variables θ can be discrete or continuous. Fu (2002), 
Henderson and Nelson (2006), and Zapata et al. (2011) provide extensive reviews of 
this area. A wide variety of such algorithms exist, including genetic algorithms that 
use the simulation model to compute a fitness measure for different solutions and 
stochastic approximation methods for continuous state spaces. The latter methods 
start with an initial solution θ0 that is updated iteratively using an estimate of the 
gradient ∇J(θ) of J(θ). The general form of the stochastic approximation algorithm 
is as follows:

Step 1: Choose an initial solution θ0. Set n = 0.
Step 2: Compute a new solution θn + 1 = ΠΘ(θn + an ∇ J(θn)) where θn is the variable 

set at the n’th iteration, an a step size, and ΠΘ denotes a projection onto Θ such 
that if θn + 1 lies outside the feasible region, ΠΘ returns it to the feasible region; 
one such projection is setting θn + 1 = θn. If a specified stopping criterion is satis-
fied, stop and return θn + 1 as the estimated optimal solution. Otherwise set n = 
n+1 and return to Step 2.
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The quality of the solution obtained and the speed of convergence to that solution 
depend on the choices of the step sizes an and the manner in which the gradient 
∇J(θn) is computed. There are four general gradient estimation techniques: finite 
differences, likelihood ratio, perturbation analysis, and frequency domain experi-
mentation. The finite difference technique estimates the gradient by running multi-
ple simulations to obtain an approximation of the gradient. One version of finite 

differences is ˆ ˆ ˆ∇ ( )( ) = ∇ ( ) ∇ ( ) J J Jn n p n

T

θ θ θ1   where p denotes the number of 
decision variables and

	

ˆ
ˆ ˆ

∇ ( ) =
+( ) − −( )

i n
n i i n i i

i

J
J c e J c e

c
θ

θ θ
2 	

(6.26)

Convergence requires that ci → 0. Here ei denotes the i’th unit vector and the ci 
difference parameters whose values represent a trade-off between too much noise 
(small values) and too much bias (large values). This gradient estimation technique 
is broadly applicable, but requires 2p simulation runs at each iteration.

The direct application of simulation optimization to release planning would treat 
the release quantities Rit of each product i in each period t as the decision variables 
and seek to optimize some objective function. Although simulation optimization is 
generally employed in the presence of random variables such as processing times, 
machine failures and yields, the basic approach can be implemented in completely 
deterministic simulations. Although models based on this approach have been 
developed and shown to yield good solutions (Liu et al. 2011; Kacar and Uzsoy 
2015), their computational requirements are usually very high due to the time 
required to run multiple independent replications of a large simulation model. Some 
recent work attempts to reduce the computational burden of these procedures by 
replacing the simulation model with a metamodel based on extensive offline simula-
tion experiments, with promising results (Li et al. 2016).

The iterative multi-model approaches can be viewed as simulations of a particu-
lar decision process: initial estimates of planning parameters such as lead times and 
resource utilizations are obtained, the release planning model is run, and the result-
ing release pattern is simulated. This perspective provides some insight into their 
performance. First, most multi-model iterative approaches do not consider the 
objective function value in their convergence criteria; instead they focus on achiev-
ing consistency in the flow time estimates obtained from successive iterations. 
Hence there is no a priori evidence that these procedures will converge to even a 
locally optimal solution with respect to the objective function of concern, as imple-
mented in the release planning model; the best that can be hoped for is a feasible 
solution. Although the primary concern is the reduction of the differences in lead 
time estimates obtained at successive iterations, this is never explicitly formulated 
as an objective function to be reduced from one iteration to the next, nor is any 
information on the gradient of this quantity used. Simulation optimization methods 
that explicitly consider the gradient of the objective function generally yield good 
solutions, although their computational burden is very high.
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Viewing these techniques as applications of fixed point iteration also raises con-
cerns. The basic fixed point iteration procedure, common in numerical analysis, 
generates a sequence of solutions xn+1 = f(xn), n = 0, 1, .... In the context of the itera-
tive multi-model methods, the solution xn at iteration n represents a vector of lead 
time estimates, while the function f(xn) represents the simulation of the decision 
process by which a release schedule is obtained by the LP model from the previous 
iteration's lead time estimates xn−1. This release schedule is then simulated to obtain 
revised lead time estimates. Per the Banach Fixed Point Theorem (O'Regan et al. 
2001), the existence of a fixed point in general requires the existence of a contrac-
tion mapping such that for any two points xi and xj there exists a constant 0 ≤ q < 1 
such that ||f(xi) − f(xj)|| ≤ q||xi − xj||. In the current iterative methods, no conditions 
of this type are considered, let alone satisfied.

Our discussion of simulation optimization and fixed point iteration in relation to 
the iterative multi-model procedures is clearly heuristic in nature and provides no 
mathematically rigorous evidence. However, these considerations do suggest that 
most existing iterative methods are, in mathematical terms, ill-posed and require the 
imposition of additional conditions to ensure reliable performance in terms of solu-
tion quality and convergence.

6.7 � Iterative Methods for Production Planning 
and Scheduling

The iterative methods described in Sect. 6.5.2 represent a small and rather special-
ized research direction in order release planning. However, a closer look at the lit-
erature reveals that this is a special case of a more general problem: Order release 
planning—as a subproblem of production planning—requires information on lead 
times and maximum possible production which, in turn, depend on the detailed 
schedule within the production unit. While it is true that, as stated in the optimized 
production technology (OPT) approach, “lead times are the result of a schedule and 
can’t be predetermined” (Vollmann et al. 1997: 797), the monolithic approach to 
production planning and control, at least for the bottleneck workcenters, that results 
from this view is not always applicable, motivating the hierarchical approaches 
described in Chap. 1. Planned lead times allow decomposition of the complex plan-
ning problem into planning and scheduling levels (Graves 2011: 93) and thus are 
necessary within this planning concept, but both lead times and capacities should 
anticipate the outcomes of the scheduling level reliably (Kanet and Sridharan 1998).

It is thus not surprising that iteration between the planning and scheduling levels 
has also been proposed for other production planning tasks. Integrating the planning 
and scheduling levels is particularly important in lot sizing. This can be achieved, 
e.g., by anticipating the queuing effects of lot sizes using stochastic models and 
determining lot sizes accordingly, as discussed in Chap. 9, or by lot streaming, that 
is, splitting up production lots into smaller transfer batches whose processing on 
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different workcenters can be overlapped in time (Cheng et al. 2013). Dauzere-Peres 
and Lasserre (2002) present an integrated model for lot sizing and scheduling and 
an algorithm that iterates between a lot-sizing module that assumes a fixed produc-
tion sequence and a scheduling module that sequences the given lots. In this 
approach the lead time acts as a capacity constraint (p.  789). Negenman (2000) 
presents an algorithm that iterates between an LP model that calculates the produc-
tion plan for a production network and a flexible flow shop scheduling model that is 
solved by a heuristic. The feedback information provided by the scheduling level is 
the completion times of the orders. If the planned lead times are exceeded, the plan-
ning level reduces the available capacities of the workcenters in the next iteration. A 
detailed analysis of the convergence behavior is not provided. Albey and Bilge 
(2011) present a hierarchical production planning and control system framework for 
a Flexible Manufacturing System that consists of three levels: aggregate planning, 
loading, and detailed planning. The behavior of the shop floor for a given produc-
tion plan is anticipated using simulation. The simulation result is used to update 
capacity coefficients in the upper-level modules. Again, convergence is not ana-
lyzed in detail, but the authors indicate that capacity updating is complex due to the 
special problem and decision structure.

Planned lead times can also be required for dispatching decisions when the dis-
patching rule compares a job’s current slack time to its remaining lead time. In this 
case the lead time estimate must be consistent with the schedule that is based on this 
estimate (Vepsalainen and Morton 1988). The lead time iteration method 
(Vepsalainen and Morton 1988; Morton and Pentico 1993) updates initial lead time 
estimates used for scheduling using the actual flow times obtained from the schedul-
ing algorithm using exponential smoothing (Morton and Pentico 1993: 218f). 
Convergence is not guaranteed, and “it is then an empirical question whether such a 
procedure obtains good results or not” (Morton and Pentico 1993: 219). Lu et al. 
(1994) provide an interesting illustration of the lead time iteration procedure in a 
semiconductor wafer fabrication facility. Note that the role of planned lead times in 
scheduling algorithms is different from that in order release models, and thus the 
relationship of these results to the convergence issue of the LP-simulation approaches 
discussed in the previous section is not straightforward. A unifying view of algo-
rithms that iterate between a production planning model, independent of its formu-
lation, and a scheduling model, independent of the scheduling algorithm, is a 
challenge for future research.

6.8 � Conclusions

The various models discussed in this chapter highlight the difficulty of the central 
problem addressed in this volume: how to anticipate the behavior of the scheduling 
level in planning models in a manner that is both sufficiently accurate and compu-
tationally tractable. The linear programming models presented in Chap. 5 can be 
extended easily to handle time-varying exogenous lead times, but this begs the 
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question of how to obtain such estimates since lead times are determined by utiliza-
tion and utilization by the release decisions the model seeks to address. Work in 
traffic modeling suggests that optimization models with lead times as an endoge-
nous decision variable are often non-convex and hence hard to solve. Attempts to 
preserve computational tractability have led to the use of multi-model approaches 
that separate the problems of release planning and lead time estimation, but the 
convergence behavior of these is not well understood, and the use of a simulation 
model to construct the planning solution (as opposed to estimating its parameters 
offline, outside the planning run) result in high computational burden for large pro-
duction systems. What is needed is a way of representing the behavior of the sched-
uling level within the release planning model that is consistent with the queueing 
view of production resources in Chap. 2, but which yields tractable optimization 
models. The clearing functions discussed in the next two chapters seek to provide 
such a model.
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