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Chapter 5
Planning Models with Stationary Fixed 
Lead Times

In this chapter, we present optimization models for order release using exogenous 
planned lead times that remain constant (stationary) over the planning horizon. 
We describe the material flow dynamics implied by these models, beginning by 
assuming lead times that are integer multiples of the underlying planning period. 
We construct a series of linear programming models for this problem and examine 
their dual, noting several implications that are inconsistent with insights from the 
queueing models discussed in Chap. 2. We then extend this approach to consider 
fractional lead times and a more general formulation where a production order may 
consume capacity in multiple, not necessarily consecutive, periods.

5.1  Preliminaries

The previous chapters have, we hope, set the stage upon which we propose to 
address the principal topic of this volume: the development of novel, and hopefully 
more effective, optimization models to support the goods flow problem faced by 
the planning level, whose purpose is to coordinate the releases of work across mul-
tiple production units in the production system or supply chain to meet demand in 
the best possible manner. Due to the need to match production with demand, the 
models must take into account the cycle times, the delay between work being 
released into the production unit and its emergence as completed product that can 
meet demand.

We shall refer to the smallest unit of work recognized by the goods flow problem 
as an order. Orders may be of external or internal origin; external orders represent 
a specific quantity of a specific product ordered by a specific customer, while inter-
nal orders are generated by the PPC system for purposes of production management 
within the production unit, and thus may represent material destined for several 
customers, a portion of a larger customer order, or simply material intended to 
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replenish inventory positions along the supply chain. For the purposes of the goods 
flow problem, both can be treated in the same manner, so we will use the term 
“order” for both.

Following the discussion in Chap. 1, a production unit is an organizational unit 
whose internal operations are not under the control of the planning level, which is 
tasked with managing the goods flow problem. A production unit consists of several 
workcenters with limited capacity, through which each order processed in the pro-
duction unit follows a specified routing. For exposition we assume the routing to be 
deterministic, ignoring the possibility of random routing due to causes such as alter-
native resources or rework. While this is certainly not the most general model that 
could be presented, it is sufficient to convey the essence of the problems we consider. 
Hackman and Leachman (1989a, b) and Hackman (1990, 2008) provide a much 
more general treatment encompassing other modes of production such as resource-
constrained project scheduling. Per Chap. 2, the cycle time of a unit of work is a 
random variable that follows some probability distribution, but can only be observed 
after the fact. We shall use the term lead time to denote an estimate of the cycle time 
used in planning models for the goods flow problem. The focus of this chapter is on 
planning models that use constant, exogenous lead times to represent the progress of 
orders through the production unit. For brevity of exposition, we shall refer to these 
lead times as fixed lead times. In this chapter, we consider the simpler case where the 
planned lead times associated with a production unit and its workcenters remain 
constant over time, i.e., do not vary across time periods. The more complex case of 
time- varying planned lead times is treated in the next chapter.

5.2  A Generic Production Unit

Figure 5.1 illustrates a generic production unit that produces a set J of products j = 1, 
…, |J|, for which it has a queue of orders waiting to be processed that have been 
released by the planning level, and a finished goods inventory location where fin-
ished items are stored. The production process uses a set K of different workcenters 
k = 1, …, |K|, with limited capacity, each of which, per Chap. 2, can be modeled as a 
queueing system. We denote the set of workcenters used by product j by K(j) and the 
time required to process a unit of product j on workcenter k as ajk. The set of products 
requiring a workcenter k will be denoted by J(k). The planning horizon is divided 
into discrete time periods, which we shall assume without loss of generality to be of 
equal length Δ, such that period t ends at time tΔ. When it causes no ambiguity, 
we shall assume the time periods to be of unit length so that period t ends at time t. 
The basic sequence of events taking place in the production unit is as follows:

 1. The planning level authorizes the release of an order consisting of a specific 
quantity Rjt of product j to the production unit at time t.

 2. The order is released for production and enters the queue for the first workcenter 
in its routing. Control over its progress through the production unit is transferred 
to the internal management of the production unit. Upon completion of its 
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Fig. 5.1 Generic Production Unit with Time Lags

processing at each workcenter, the order moves directly to the next workcenter 
in its routing.

 3. The order completes processing on the last workcenter in its routing and moves 
from the production facility to the production unit’s finished inventory location.

Each order of product j released in period t will wait in the queue for workcenter 
k for an average of Qjkt time units and will require an expected processing time of 
Pjkt = Rjtajk time units, which we assume includes any necessary setup times. The 
expected cycle time of the order from its release to its entry into finished inventory 
is thus given by

 

T Q Pjkt
k K j

jkt jkt= +( )
∈ ( )
∑

 

(5.1)

The cycle time of an order at a workcenter k is thus the sum of its processing time 
and its queue time. Per Chap. 2, the queue time is a random variable whose proba-
bility distribution depends on the utilization of the workcenter, which is determined 
by the work release decisions Rjt, while the service time is also a random variable. 
These random variables are represented in (5.1) by their expectations. The expected 
cycle time of an order is thus given by the sum of its expected processing and queue 
times at each workcenter k in its routing. In practice, additional delays may be 
incurred, such as transportation time between workstations, preparation of compo-
nents and raw materials, or transfer of the finished order to finished inventory, which 
are also likely to be random variables. A wide variety of domain-specific events may 
need to be considered, such as the need to allow a specified time for lumber to cure 
before its use in furniture manufacturing or the need to perform a thin-film deposi-
tion step within a specified time of a cleaning step in semiconductor manufacturing. 
The modeling of fixed delays between such events is discussed at length by Hackman 
and Leachman (1989b) and Hackman (2008). However, the events shown in Fig. 5.1 
are sufficient to account for most cases of interest.

5.2 A Generic Production Unit
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5.3  Lead Times in Models of the Goods Flow Problem

The wide range of planning models using fixed exogenous lead times, including 
both MRP (Orlicky 1975; Baker 1993; Vollmann et  al. 2005) and mathematical 
programming models (Voss and Woodruff 2006; Missbauer and Uzsoy 2011), all 
assume that as long as all constraints in the model are satisfied, the production unit 
will be able to produce its output in a manner consistent with the lead time values 
specified. Thus the lead times serve the planning level as an anticipation function 
(Schneeweiss 2003) describing the impact of its release decisions on the output of 
the production units. We view a lead time Ljk as a parameter whose value is an esti-
mate of a suitably high percentile of the order cycle time distribution whose mean 
Tjkt is given by (5.1). Hence under normal conditions any order released to the pro-
duction unit will enter finished goods inventory within Lj = ∑kLjk time units of its 
release with high probability. Under this view the lead time is treated as a delay 
between the release of an order into the production unit and its completion.

Billington et al. (1983) suggest using only the minimum time required to transfer 
material between operations without considering queue time or processing time; 
they argue that delays due to limited capacity will be computed by the planning 
model itself, which should produce materials ahead of time and hold it in finished 
inventory until needed to meet demand, ignoring the workload-dependent nature of 
the queue time Qjkt. These transfer times between operations can be modeled as 
fixed delays following Hackman and Leachman (1989b) if their duration is signifi-
cant relative to that of the planning period. Another class of planning models treats 
the fixed lead time not as a delay, but as a time interval within which the production 
unit must process the order once it is released. We shall first discuss models that 
treat lead times as delays and treat this latter view in Sect. 5.6.

5.3.1  Planning Models with Fixed Exogenous Lead Times

The vast majority of the mathematical programming models of interest to this vol-
ume approach the goods flow problem faced by the planning level following the 
early formulations of Modigliani and Hohn (1955), Manne (1957), Hanssmann and 
Hess (1960), and Holt et al. (1955). A finite time horizon is divided into discrete 
time periods, usually, but not necessarily, of the same length. Decision variables are 
associated with each period, and the objective is either to minimize total cost or to 
maximize total contribution (revenue minus variable costs) over the planning hori-
zon. All quantities are treated as deterministic. Following Hackman and Leachman 
(1989b), such models require three basic sets of constraints:

 1. Inventory or material balance constraints for all input and finished inventory 
points, which coordinate material flows through both space and time. These also 
enforce the satisfaction of demand, which is treated as a material flow out of the 
production system to an external demand source.
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 2. Capacity constraints, which model how the production activities capture and 
consume production resources.

 3. Domain-specific constraints reflecting the special structure and requirements of 
the particular production environment being modeled. The structure of these 
constraints will differ widely based on the specific environment under study and 
hence will not be discussed in detail. We shall focus on the first two constraint 
sets, which are critical to the model’s ability to accurately reflect the realized 
behavior of the production system for which the plans are developed.

Two points in time are of particular interest: the point at which the production 
order actually consumes capacity on the resources required to process it and the 
time it is completed and can be used to meet demand. Knowledge of the former is 
necessary to ensure that capacity constraints are not violated over time and of the 
latter to allow accurate prediction of the amount of material available to meet 
demand over time.

5.3.2  A Single Production Unit

We begin by considering a production unit modeled as in Fig. 5.1. Since the timing 
and quantity of order releases constitute the link between planning and detailed 
scheduling within the production unit, release quantities are the primary decision 
variables of interest. We shall assume all demand must be met without backlogging; 
this will allow us to focus on representing the behavior of the production unit. Thus 
negative inventory levels are not permitted at any inventory location. Material flows 
within the production unit itself are of interest only to ensure that releases are capac-
ity feasible for all workcenters k ∈  K, and hence the production unit can meet 
demand within the specified lead times.

5.3.2.1  Single Product, Instantaneous Production, Unlimited Inputs

The simplest model of production, encountered in classical inventory models such 
as the Economic Order Quantity model and the Wagner-Whitin dynamic lot-sizing 
model (Zipkin 2000; Hopp and Spearman 2008), is instantaneous production where 
the quantity ordered at a given point in time becomes available immediately upon 
production being initiated. In mathematical programming models, this implies that 
cycle time is negligible relative to the length of the planning period, so that the 
entire quantity Rt of material released into the system during period t is available to 
meet demand by the end of that period. The assumption of unlimited inputs implies 
either instantaneous acquisition or sufficient on-hand inventory of all inputs. Thus 
inputs will never constrain the ability of the production unit to meet demand, and 
there is no need to model input inventories. Since we have only a single product, the 
product subscript j is suppressed.

5.3 Lead Times in Models of the Goods Flow Problem
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To ensure consistent material flows over time, we model the finished goods 
inventory level across periods with the material balance equations

 I I X D t Tt t t t= + − = …−1 1, , ,  (5.2)

where It denotes the amount of finished goods on hand at the end of period t, Xt the 
output of the production unit in period t, and Dt the demand during that period. 
Under instantaneous production, we have Rt = Xt; all materials released into the 
production unit in a period are converted into output by the end of the period. 
Denoting the amount of finished goods inventory at the start of the first period (the 
end of period 0) by I0, (5.2) can be rewritten as

 
I I X D t Tt

t t

= + − = …
= =
∑ ∑0

1 1

1
τ

τ
τ

τ , , ,
 

(5.3)

by summing the constraints (5.2) for consecutive periods 1, …, t.
The most common capacity constraint encountered in the literature seeks to 

ensure that the total production Xt for a given period t, and hence the planned 
releases Rt, cannot exceed the available capacity Ckt of any workcenter k. Since we 
produce a single product, Ckt can be expressed in units of the end item, allowing this 
constraint to be written as:

 R C t T k Kt kt≤ = … = …, , , ; , ,1 1  (5.4)

Taken together, (5.2) and (5.4) imply that as long as releases do not violate 
capacity constraints on any workcenter, materials released in period t will be avail-
able to meet demand by the end of the same period. If demand Dt in any period t 
exceeds the capacity of some workcenter k, the only course open to the model is to 
produce the excess demand in an earlier period s < t, holding finished inventory in 
the periods s to t. Combining (5.3) and (5.4) yields

 τ
τ

τ
τ

τ
τ

τ
τ

= = = =
∑ ∑ ∑ ∑≥ = ≥ − = … ∈

1 1 1 1
0 1

t

k

t t t

C X R D I t T k K, , , , ,
 

(5.5)

as a necessary condition for a feasible solution to exist. The only reason to release an 
order in advance of the period in which it is due is lack of capacity at some workcenter 
k in that period. Denoting the unit cost of holding FGI for one period by ht and the unit 
incremental cost of production by ct, the planning model can be written as:

 
min

t

T

t t t th I c R
=
∑ +( )

1  
(5.6)

subject to

 I I R D t Tt t t t= + − = …−1 1, , ,  (5.7)

 R C t T k Kt kt≤ = … ∈, , , ,1  (5.8)
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 I R t Tt t, , , ,≥ = …0 1  (5.9)

This model, although simplistic in its assumptions, has all the basic components 
of a production planning model: decision variables associated with each period (the 
Rt), state variables arising from the decision variables and the constraints (the It), an 
objective function minimizing the sum of production and inventory holding costs 
(5.6), material balance constraints (5.7) for the finished inventory location, and 
capacity constraints (5.8) for each resource k in each period t.

The capacity constraint (5.8) ensures that the total planned resource usage during 
the planning period does not exceed the amount of the resource available during the 
period. This is necessary, but not sufficient, to ensure that the planned releases can 
actually be processed within the planning period, since the model does not control 
the timing of work arrivals at the workcenter within the period. If for some reason 
such as a machine failure on the shop floor, 75% of the amount released became 
available only in the second half of the planning period, the workcenter might well 
not be able to process all of it by the end of the period.

5.3.2.2  Single Product, Non-instantaneous Production

The model (5.6)–(5.9) is not realistic when the magnitude of the workcenter cycle 
times Qjkt + Pjkt is significant relative to that of the planning period. The most com-
mon representation of this situation in the literature is a fixed lead time L represent-
ing the estimated time required for work released in a given period to become 
available to meet demand, most commonly expressed as an integer number of plan-
ning periods.

Under these assumptions, material released into the production unit during 
period t becomes available for use L time periods later during period t + L, implying 
that Xt = Rt−L. The material balance constraints for the finished inventory are now

 I I X D I R D t Tt t t t t t L t= + − = + − = …− − −1 1 1, , ,  (5.10)

This is exactly the model of lead times used in MRP in its backward scheduling 
phase, where the fixed lead time represents the amount of time elapsing between the 
time an order for a BOM item is placed and its receipt (Baker 1993; Voss and 
Woodruff 2003). Since we have only one product (end item), the product index j 
remains suppressed.

Under instantaneous production, an order consumes capacity at each resource k 
in the period in which it is released, rendering constraints (5.8) sufficient to ensure 
capacity feasible releases. However, when lead times exceed one period a question 
of timing arises—at what point in the lead time L does the job consume capacity on 
a given resource k? This requires knowledge of the process routing, the sequence in 
which the different resources are utilized by the order. Without loss of generality, we 
shall assume that the order visits each resource exactly once in a known,  deterministic 
sequence and that the resources are indexed in the order of their use. Thus resource 
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k = 1 is the first resource used in the routing, and resource k = |K| the last one before 
the order enters finished inventory. Let Lk denote the estimated delay between the 
release of the order to the production unit and its becoming available for processing 
on workcenter k. Thus Lk represents an estimate of the total cycle time of the order 
at all workcenters in its routing prior to k, implying that

 
E Q P L Lkt kt k k+[ ] = − −1  

(5.11)

Clearly we must have

 
max
1≤ ≤

{ } ≤
k K

kL L
 

(5.12)

for consistency. Our capacity constraints (5.8) now take the form

 
R C k K t Tt L ktk− ≤ ∈ = …, ; , ,for all 1

 
(5.13)

Since no inventory is held within the production unit other than the WIP waiting 
for processing or in transit between stages, the output of individual workcenters is 
represented to capture their incremental costs of production and their limited capac-
ity in each period. By the definition of the lead times Lk, an order processed on 
workcenter k in period t will have been released in period t − Lk. For simplicity of 
exposition, we shall assume that the total production cost of an order completed in 
period t, given by

 
c ct

k

K

k t L Lk
=

=1
∑ ( ). – –

 
(5.14)

where ckt denotes the unit cost of production on workcenter k in period t, is assessed 
in period t; this could easily be relaxed at the expense of additional notation. The 
single-product multiple workcenter model with integer lead times Lk associated 
with each resource k, and an overall lead time L associated with the entire produc-
tion unit, is as follows:

 
min

t

T

t t t t Lh I c R
=

−∑ +( )
1  

(5.15)

subject to

 I I R D t Tt t t L t= + − = …− −1 1, , ,  (5.16)

 
R C t T k Kt L kk− ≤ = … ∈, , , ,1

 
(5.17)

 I R t Tt t, , , ,≥ = …0 1  (5.18)

Decision variables with non-positive subscripts correspond to decisions made 
prior to the start of the planning horizon that are known with certainty, and as such 
are parameters of the model. This is essentially the step-separated formulation of 
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Leachman and Carmon (1992), without the alternative production routings consid-
ered in that paper. The amount of production that can take place on resource k in a 
given period t is limited by both the capacity Ckt and the amount of work available 
for processing, given by past releases Rt Lk−  per (5.17). Hence the amount of WIP 
available to process on workcenter k in period t is simply Rt Lk− . The total amount of 
WIP in the production unit—the amount of material that has been released but not 
yet completed—is given by

 
W R Xt

t L

t

t

t L

= =
= − + = +

+

∑ ∑
τ

τ
τ

τ
1 1  

(5.19)

This quantity does not appear in LP models of production planning, such as those 
discussed in Johnson and Montgomery (1974), Hackman and Leachman (1989a, b), 
and Voss and Woodruff (2006) that treat fixed lead times as a delay between order 
release and completion. The reason for this is apparent from (5.19): when a fixed 
lead time represents a delay the amount of WIP is determined by the lead time L and 
the releases Rt; any WIP holding cost can be incorporated into the incremental pro-
duction cost ct.

The movement of material through a system with four machines in series under 
this model is traced in Fig.  5.2. The vertical axis shows the lead times for each 
machine, and each timeline the material processed by each machine in each period, 
identified by the period of its release to the first machine, machine 1. The material 
released in each period is indicated by the numeral above it; thus, material released 
at the start of period 1 is indicated by a “1” above the line indicating the material. 
Material released in a given period is shown with a bar of a given color until it exits 
the system; thus the material released in period 1 is shown as a red bar as it proceeds 
through the machines. Material released at the start of the planning horizon, at the 
start of period 1, indicated by the red bars, becomes available to machine 2 at the 
start of period 2, is in WIP at machine 2 at the start of period 3, is available to 
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Fig. 5.2 Timing of material flow under fixed lead times
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machine 3 at the start of period 4, and is available to machine 4 at the start of period 
4. At the end of period 5 or, equivalently, the start of period 6, the WIP at machine 4 
consists of the material entering the system (i.e., released to machine 1) in period 2; 
at machine 3, the material released in periods 3 and 4, and at machine 2, that released 
in period 5. The figure also indicates that not all the WIP at a machine at the start of 
a period is necessarily available to be processed at the machine in the period. For 
example, at the start of period 6, material entering the system in periods 3 and 4 is in 
WIP at machine 4, but even if the machine has sufficient capacity, only the material 
entering in period 3 will be processed. In other words, WIP cannot accumulate, but 
flows through the system in discrete units equal to the quantity released in each period.

The model assumes that WIP will not accumulate in the system over time; only 
the material released in period t − Lk is available to resource k for processing in 
period t. Equivalently, all Rt units of product released in period t are assumed to 
move through the production process as a single entity, occupying capacity on each 
workcenter within a single period. Since (5.17) ensures that releases do not exceed 
capacity, the system can always process this quantity in a single period. The remain-
ing WIP still to be processed by the workcenter, given by

 

W Rkt

t L

t L L

k

k k
˜

=
= − +

− −( )+−

∑
τ

τ
1

11

 

(5.20)

has no effect on the cycle time of the workcenter, which can never exceed Lk−Lk−1 as 
long as the capacity Ckt of the resource in period t is not exceeded. The lead time Lk 
simply delays the arrival of work to the workcenter after its release into the produc-
tion unit; it does not describe the behavior of the workcenter itself.

Examination of constraints (5.16) and (5.17) reveals another consequence of the 
fixed lead times: the output of the production unit in periods 1 through L cannot be 
influenced by release decisions in periods 1, …, L−1 but is determined by release 
decisions in periods –L+1 through 0 which, since they lie in the past, are assumed 
to be known with certainty. Thus positive fixed lead times bring the need to initialize 
the model with information about decisions in the early periods of the planning 
horizon. These quantities are analogous to the scheduled receipts used in MRP cal-
culations (Baker 1993; Jacobs et  al. 2011). Similarly, the model will not plan 
releases in periods T – L + 1 through T, since this material can only meet demand in 
periods T + 1 through T + L − 1 that lie outside the planning horizon. Thus the use 
of fixed lead times requires specifying boundary conditions for the planning models 
at the beginning and end of the planning horizon.

The timing of releases and output under fixed lead times is illustrated in Fig. 5.3, 
which assumes a fixed lead time of L = 2 periods. Releases Rt in each period t are 
assumed to be uniformly distributed across the period. Hence the output X3 in period 
3 is determined by the amount of releases R1 in period 1. However, the output X1 of 
the production unit in period 1 lies within the fixed lead time, and hence depends on 
decisions made in the past, in period t = −1. To avoid introducing additional notation 
for these historical release decisions associated with periods t = −L + 1 through 
t = 0, we assume henceforth that any decision variable with a non-positive subscript 
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Figure 5.3 Timing of material flows under integer fixed lead times

is a parameter corresponding to a historical decision. Under this model of fixed lead 
times, the time series Xt, t = 1,…,T representing the output of the workcenter is 
simply the time series Rt, t = 1,…, T of the releases shifted L periods to the right.

Hence under fixed lead times, the output variables Xt and release variables Rt are 
completely interchangeable. We have written our formulation in terms of the release 
variables Rt, but since Xt = Rt−L it is straightforward to write it in terms of the output 
variables Xt.

Finally, the model (5.15)–(5.18) can be rewritten using (5.3) to eliminate the 
inventory variables. Defining I0 to be the amount of finished goods inventory on 
hand at the start of the first period in the planning horizon, we see that
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(5.21)

Substituting (5.21) into (5.15) yields
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Discarding constants independent of the decision variables, we can rewrite 
(5.15)–(5.18) as

 
min

t

T

t

T

t t Lh c R
= =

−∑ ∑ +










1 τ
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(5.22)

 τ
τ

τ
τ

=

− +

=
∑ ∑≥ − = …

1

1

1
0 1

t L t

R D I t T, , ,
 

(5.23)
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 R t Tt ≥ = …0 1, , ,  (5.25)

Model (5.22)–(5.25) shows that the It variables are not essential; they are a con-
sequence of the primary decisions, given by the releases Rt, and the constraints 
describing the behavior of the system. While the model (5.6)–(5.9) is probably more 
familiar to the reader, as it is widely used in textbooks, the model (5.22)–(5.25) 
provides some advantages when analyzing the structure of optimal solutions, par-
ticularly the dual solutions that we shall examine later in this chapter.

This basic formulation can be extended in a number of directions without materi-
ally affecting its structure. Models involving lot-sizing considerations due to the 
presence of setup costs or setup times, such as that of Billington et al. (1983) or 
those studied by Pochet and Wolsey (2006), involve integer variables—a significant 
difference from a computational perspective—but their treatment of capacity and 
lead times is essentially the same. Far more elaborate objective functions are pos-
sible, but our emphasis is on the representation of production capacity and material 
flow. The assumption of no backlogging can be relaxed in the standard manner 
(Johnson and Montgomery 1974). Since a backlog corresponds to a negative inven-
tory level, we can represent the net inventory level Nt as the difference of two non-
negative variables Nt = It − Bt, where It denotes on-hand, positive inventory, at the 
end of period t, and Bt the backlog. Since the column vectors for It and Bt in the 
constraint matrix of the linear programming model will be linearly dependent, both 
variables cannot take positive values in an optimal solution.

5.3.2.3 Multiple Items

The single-item multiple workcenter model (5.22)–(5.25) extends to the multi-item 
case with items j ∈ JF in a very natural manner. Capacity constraints at each work-
center k must now consider the total capacity consumption by all items j ∈ J(k) 
using that workcenter in each period, and separate finished goods inventory balance 
equations must be written for each product j. All lead time parameters are now 
product-dependent, with Lj denoting the lead time of product j from release until 
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completion and Ljk its lead time from release until its availability for processing at 
workcenter k. With these changes, the multi-item model can be written as:

 

min ,
t
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j J
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subject to
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(5.29)

The only representation of resource contention between the products j at the 
workcenters k is the left hand side of (5.28), which is linear in the release quantities 
of each product. This is in marked contrast to Fig. 2.2, where the output of the 
resources is a concave non-decreasing function of the workload, determined by the 
production quantities. The presence of multiple products with different processing 
times on the workcenter will result in increased coefficients of variation of the pro-
cessing times Pjkt and a downward shift in the output function. The lead times Ljk are 
also unaffected by production quantities, in contrast to the highly nonlinear behav-
ior of the cycle time with workload seen in Fig. 2.1. It begins to be apparent that the 
workcenter behavior described by this model differs quite fundamentally from that 
of the queueing models discussed in Chap. 2. The inventory variables can also be 
eliminated using (5.21), resulting in the formulation
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We now use this formulation to discuss the dual model and its interpretation.

5.3 Lead Times in Models of the Goods Flow Problem

https://doi.org/10.1007/978-1-0716-0354-3_2#Fig2
https://doi.org/10.1007/978-1-0716-0354-3_2#Fig1
https://doi.org/10.1007/978-1-0716-0354-3_2


90

5.4  Dual Formulation

Unless it is infeasible or its optimal value is unbounded, any linear program is asso-
ciated with another linear program, its dual, whose optimal value is equal to that of 
the original (the primal) at optimality (Bazaraa et al. 2004). Each decision variable 
in the dual is associated with a constraint in the primal and each dual constraint with 
a primal decision variable. Thus, the generic linear program
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will be associated with its dual
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subject to

 i

m

ji i ja y c j n
=
∑ ≤ = …

1

1, , ,
 

(5.38)

 y i mi ≥ = …0 1, , ,  (5.39)

The dual variables yi associated with each primal constraint i correspond to the 
Lagrange multipliers associated with that constraint, representing the partial deriva-
tive of the optimal objective function value with respect to the right-hand side bi of 
constraint i at optimality. An important property arising from the Kuhn–Tucker opti-
mality conditions for linear programs is the complementary slackness condition
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The dual variables have an economic interpretation that is often helpful in inter-
preting the results of a model. An important advantage of the models developed in 
Chap. 7 is their ability to provide richer dual information than that obtained from the 
models discussed in this chapter.

Since our primary concern lies with production planning models, we discuss dual-
ity in an intuitive, heuristic fashion; rigorous mathematical treatments are given by 
Bazaraa et al. (2004) and Bertsimas and Tsitsiklis (1997). Correct interpretation of 
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dual variables can be quite subtle, especially in the presence of a degenerate optimal 
solution where some constraints are redundant; extensive discussions of these issues 
are given by Jansen et al. (1997), Koltai and Terlaky (2000), and Rubin and Wagner 
(1990). To avoid the extensive mathematical digressions required to address the issues 
in estimating dual prices in the face of degenerate optimal solutions, our discussion 
will assume that all optimal solutions are non- degenerate, closely following the devel-
opment in Kefeli (2011) but omitting some details to focus on insights.

We will develop the dual formulation for the model (5.30)–(5.33). For further 
simplicity in exposition, we shall assume all costs are time- stationary such that, for 
example, cjt  =  cj for all periods t. In this case, the no-backlogging assumption 
implies that as long as a feasible solution exists, in any optimal solution total pro-
duction of any product will exactly equal its total demand net of the initial invento-
ries Ij0, and the production costs will have no influence on the optimal solution. This 
results in the simplified primal linear program
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subject to

 τ
τ

τ
τ γ

=
−

=
∑ ∑≥ − ∀ ∈ = … ( )

1 1
0 1

t

j L

t

j j jtR D I j J t T
j, , , , ,

 
(5.42)

 j J k
jk t L kt kta R C k K t T

jk
∈ ( )

−∑ ≤ ∀ ∈ = … ( ), , , ,1 σ
 

(5.43)

 
R j J t L T Ljt j j≥ ∀ ∈ = … −0, , , ,

 
(5.44)

The Greek letters in parentheses denote the dual variables associated with each 
constraint set. The dual of this linear program is given by

 

max
t

T

j J

t

j j jt
k K

kt ktD I C
= ∈ = ∈
∑∑ ∑ ∑−









 −











1 1
0

τ
τ γ σ

 

(5.45)

subject to

 

τ
τγ σ

= ∈ ( )
− −( ) −∑ ∑− ≤ − +( ) ( )

∀ ∈

t

T

j
k K j

jk k t L L j j t La T t h R

j J t

j jk j, ,,

,

1

== −( ) + …L L Tj jk 1, ,
 

(5.46)
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 σ kt k K t T≥ ∀ ∈ = …0 1, , , ,  (5.48)

The primal variables corresponding to the dual constraints are shown next to 
each dual constraint set. While the primal problem chooses releases Rjt in each 
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period t to minimize the cost of meeting demand under capacity constraints, the 
dual problem chooses prices γit and σkt to maximize revenue. γjt can be interpreted 
(subject to the mathematical caveats discussed by Rubin and Wagner (1990) and 
others) as the minimum amount the firm should charge an additional unit of demand 
for item j in period t. σkt, on the other hand, represents the maximum amount the firm 
should be willing to pay to acquire an additional unit of resource k in period t. The 
cost coefficients (T − t + 1)hj of the primal problem represent the contribution to the 
total cost of a unit of item j produced in period t, given by its incremental contribu-
tion to holding cost until the end of the planning horizon.

The first term in (5.45) represents the revenue from an additional unit of demand 

for item j in period t, which will increase the cumulative net demand 
τ

τ
=
∑ −

1
0

t

j jD I  in

each subsequent period until the end of the horizon. The second term in (5.45) rep-
resents the marginal cost of all resources required to process this additional unit of 
demand; recall that all demands must be met without backlogging. Hence the right-
hand side of (5.46) represents the net marginal revenue (marginal revenue minus 
marginal resource costs) associated with an additional unit of demand for item j in 
period t. (5.46) ensures that the total marginal cost of the additional item cannot 
exceed its marginal net revenue. The complementary slackness property (5.40) 
implies that when there is positive slack in constraint (5.46) for some item j and 
period t at optimality, we will have Rjt = 0 in an optimal solution. Conversely, Rjt > 0 
at optimality implies (5.46) is satisfied at equality.

Our primary interest in this discussion is the dual variables σkt associated with the 
primal capacity constraints (5.43). These dual variables represent the impact on the 
objective function of an additional unit of capacity at resource k in period t, which is 
of interest for several reasons. A high value of this dual variable indicates that limited 
capacity at this machine is significantly affecting the ability of the production unit to 
meet demand in a cost- effective manner, suggesting particular attention by manage-
ment to improving its performance. It will also turn out, as we shall see in Chap. 7, that 
the clearing function formulations introduced in that chapter yield much more infor-
mative dual information than that obtained from this model, as we shall illustrate below.

Recall that a unit of product j that completes processing in period t will consume 
capacity on its k’th workcenter in period t − Lj + Ljk. Thus the output X Rjt j t L j

= −,  of 
each item j in any period t is potentially constrained by at most |K(j)| of the capacity 
constraints (5.43), each corresponding to a workcenter k in period t – Lj + Ljk. To 
ensure a non-degenerate optimal solution, we shall assume that for each item j at 
most one of these associated capacity constraints is satisfied at equality; this condi-
tion can be enforced if necessary by perturbing the right-hand side of the constraints 
by an arbitrarily small quantity. The specific workcenter k whose capacity constraint 
is binding in period t – Lj + Ljk will be denoted by k*(j,t), indicating that this work-
center limits the output of item j in period t. We will refer to resource k*(j,t) as the 
limiting workcenter for item j in period t. Our assumption of non-degeneracy 
implies at most one limiting workcenter for each product j in each period t of the 
planning horizon. The limiting workcenter of an item j may be used concurrently by 
other items and may change from period to period, i.e., it is perfectly possible to 
have k*(j,t) ≠ k*(j,s) for t ≠ s. Different items j may have different limiting resources 
in a given period.
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As long as the production costs ct are non-decreasing in the time period t, it is 
straightforward to show that an optimal solution to the primal will satisfy

 j J k
j k j t j t L L k j t t j ta R C I

j j k j t
∈ ( )
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implying that the model will hold finished inventory against future demand in period 
t  −  1 if and only if capacity at a resource k*(j,t) is fully utilized in period 
t L Lj j k j t
− + ∗ ( ), ,

. Hence the model will hold finished inventory of product j in some 
period t only if the total demand for all items 

j J
jsD

∈
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overloads the available capacity on its limiting resource k*(j,s) for period s, i.e.,
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requiring the model to meet the demand in period s by building up finished inven-
tory in periods prior to s. Periods s into which no finished inventory is carried in the 
optimal solution indicate that the optimal decisions for periods s < t are independent 
of those for periods s ≥ t. Hence an optimal solution to (5.41)–(5.44) will consist of 
one or more busy intervals, each consisting of q ≥ 0 consecutive periods S = {s−q, 
s−q+1, …, s} with Ijq > 0 for some items j ∈ J such that
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Since the limiting workcenter k*(j,s) has a binding capacity constraint in period s by 
definition, our assumption of a non-degenerate solution implies that all products i ≠ 
j requiring this resource in this period will have positive inventory in this busy inter-
val, implying that γjt = 0 by the complementary slackness condition for constraints 
(5.42). Based on these observations, we will have dual prices σkt  >  0  in periods 
s q L Lj jk
−( ) − −( )∗  for all products j that use workcenter k*(j,s) in period s. We 

shall restrict our attention to periods in this interval where production activity is 
taking place, i.e., X Rjt j t L j

= >−, 0 . By complementary slackness, the dual con-
straints (5.46) will be tight in periods s − q through s. Solving recursively from 
period s + 1 backwards in time to period s, Kefeli (2011) shows that
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Our assumption of non-degeneracy implies that the output of each product j is lim-
ited by at most one resource k in each period, but there may be multiple workcenters 
with positive dual prices corresponding to different subsets of products. The limit-
ing workcenter for a product j may also change from one period to the next, i.e., 
k*(j,t − 1) ≠ k*(j,t). When the same workcenter is limiting for item j in two consecu-
tive periods t − 1 and t, (5.52) simplifies to
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(5.53)
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Examining this expression shows that the absolute value of the dual price of 
capacity increases linearly with time over the busy interval, starting with a value of 
zero and increasing in absolute value by h aj j k j t

/
, ∗ ( ),  in each period. This is intuitive;

an additional unit of capacity at workcenter k*(j,t) in period t L
j k j t

− ∗ ( ), ,
 will allow 

1 /
,

a
j k j t∗ ( ),  units held in inventory in period s to be produced in this period, reducing

holding costs by t s a
j k j t

− +( ) ∗ ( )1 /
, ,

.
The following numerical example illustrates this structure of optimal solutions.

Example 5.1 To illustrate the structure of the optimal solution and the dual vari-
ables, consider a production unit with two products and four workcenters with the 
data given in Table 5.1. The unit finished goods holding costs are given by h1 = h2 = 5, 
and the overall lead times by L1 = L2 = 5. Initial inventory at the end of period 0 is 
I10 = 20 units for Product 1 and I20 = 25 units for Product 2. Both products require 
processing on all four resources in increasing order of machine number. The demand 
for each product in each period is given in Table 5.2.

Table 5.2 Demand data for 
Example 5.1

Period Item 1 demand Item 2 demand

1 0 0
2 0 0
3 5 0
4 4 0
5 4 2
6 5 4
7 5 5
8 5 5
9 6 3
10 7 4
11 6 3
12 6 3
13 0 6
14 0 5
15 0 0

Table 5.1 Parameter values for Example 5.1

Item Machine 1 Machine 2 Machine 3 Machine 4

Production cost 1 1 1 1 2
2 2 2 2 2

Processing time 1 3 3 2 4
2 3 4 4 4

Lead time Ljk 1 0 1 2 4
2 0 1 2 4

Capacity Ckt 100 100 18 20
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Solving the primal model (5.41)–(5.44) yields the optimal solution given in 
Table 5.3, with optimal objective function value 2636.25. Machine 3 is the limiting 
resource for Product 1 in periods 4 through 8, and for Product 2 in periods 9 and 10. 
The dual prices σkt associated with this machine in the optimal solution are plotted 
in Fig.  5.4; only Machine 3 has nonzero dual prices. The relation (5.53) can be 
clearly observed, with the dual price increasing linearly until the capacity loading 
falls below resource capacity. Note that although Machine 4 has utilization of 0.9 in 
periods 12 and 13, and would thus be expected to have high cycle time and WIP, its 
dual price remains at zero since the capacity constraint is not binding.

Table 5.3 Optimal solution for Example 5.1

Period
Releases, Rj Resource loading Ending inventory, Ijt

Item 1 Item 2 Machine 1 Machine 2 Machine 3 Machine 4 Item 1 Item 2

−3
−2
−1
0 20 25
1 0 3.75 11.25 0 0 0 20 25
2 3 2.25 15.75 15 0 0 20 25
3 6 0 18 18 15 0 15 25
4 6 0 18 18 18 0 11 25
5 6 0 18 18 18 15 7 23
6 6 0 18 18 18 15 2 22.75
7 6 0 18 18 18 12 0 20
8 0 4.5 13.5 18 18 12 1 15
9 0 4.5 13.5 18 18 12 1 12
10 0 0 0 18 18 12 0 8
11 0 0 0 0 18 12 0 5
12 0 0 0 0 0 18 0 2
13 0 0 0 0 0 18 0 0.5
14 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0

0
2
4
6
8

10
12

0 5 10 15 

Dual
 Price 

Period

Fig. 5.4 Dual variables 
associated with Machine 3 
in optimal solution to 
Example 5.1
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5.4.1  Insights from the Dual

Our analysis of the dual solution indicates a number of drawbacks of the formulation 
(5.41)–(5.44), particularly its representation of workcenter behavior. By complemen-
tary slackness, the dual variables σkt associated with the capacity constraints (5.43) 
will only take nonzero values if the associated primal constraint is binding at opti-
mality, implying that the workcenter’s capacity is fully utilized. Since σkt represents 
the maximum amount the firm should be willing to pay for an additional unit of 
output from workcenter k in period t, this implies that no improvement in the optimal 
objective function value can be obtained from additional output at a workcenter 
unless its capacity is fully utilized. However, as discussed in Chap. 2, queueing 
models suggest qualitative changes in the behavior of a capacitated workcenter at 
utilization levels well below 1; more precisely, they show a nonlinear increasing rela-
tion proportional to 1/(1 − u) between cycle time and utilization (Hopp and Spearman 
2008), implying that additional capacity at the workcenter might improve system 
performance even though currently capacity is not fully utilized. Likewise, improv-
ing the performance of a workcenter such that it can generate more output for the 
same average WIP level, shifting the curves in Fig. 2.2 to the left, should allow 
reduced cycle time and hence reduced costs, which the current model is unable to 
capture. Note, however, that this does not necessarily imply that adding capacity 
would be economically beneficial, especially if capacity can only be added in dis-
crete increments.

A second drawback of this model can be observed directly in (5.53): the dual 
price of a resource in a period is independent of events at other resources as long as 
the limiting resources do not change. This again contradicts insights from queueing 
models (Hopp and Spearman 2008), which show that the behavior of downstream 
resources is affected by the utilization of upstream ones. Consider two resources 
operating in series where work flows from workcenter 1 to workcenter 2. Per Hopp 
and Spearman (2008) Chap. 8, the squared coefficient of variation (SCV) of the 
interarrival times at workcenter 2 is given by the SCV of the departure process from 
workcenter 1, which, in turn, can be approximated by

 
c u c u cd e a
2 2 2 2 21= + −( )  

(5.54)

where u denotes the average utilization of workcenter 1, ce
2  the SCV of the effective 

processing time distribution at workcenter 1, and ca
2  the SCV of the external arrival 

process to workcenter 1. This relation suggests that the dual price of capacity at 
workcenter 2 ought to be influenced by decisions at workcenter 1; under most con-
ditions, unless ce is small relative to ca, adding capacity to workcenter 1 will reduce 
u, reducing the average cycle time at workcenter 2 which ought to improve overall 
performance, or at least leave it no worse.

This analysis of the dual prices of capacity suggests that the use of fixed lead 
times can model the behavior of production resources subject to queueing behavior 
to at best a limited degree. The largest discrepancies are to be expected when 
resource utilization levels vary significantly over time, causing the fixed lead times 
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to over- and/or underestimate actual cycle times; and when multiple resources have 
high utilization levels close to, but not quite equal to, 1, such that small changes in 
utilization lead to large changes in cycle times.

5.5  Fractional Lead Times

Our discussion of fixed lead times up to this point has assumed lead times expressed 
as integer multiples of the planning period length Δ, recalling that period t ends at 
time tΔ. Assuming that all release and demand rates are uniform over each planning 
period, Hackman and Leachman (1989b) have shown that non-integer fixed lead 
times can be incorporated easily. We first illustrate the basic idea with a single-
product single-workcenter model and then discuss generalizations.

Any fractional fixed lead time L can be decomposed into integer and fractional 
parts as L = ⌊L⌋ + ϕ, where ⌊L⌋ denotes the largest integer less than or equal to L 
and ϕ = L − ⌊L⌋ the fractional part of the lead time. We assume L remains constant 
in all planning periods; the case where lead times can vary over time is addressed 
in the next chapter. Under uniform release and demand rates over the planning 
period, if Rt units of a product are released during this period, the material will 
enter the production unit at a rate of Rt/Δ units per unit time. The material flow 
through the workcenter can then be represented as in Fig. 5.5. The upper timeline 
represents the progression of releases into the production unit over time and the 
lower timeline the entry of this material into finished inventory. The amount of 
material becoming available to meet demand in period t is given by

 
Y R Rt t L t L= + −( )− − − 

φ φ1 1
 

(5.55)

R0 R1 R2 R3 R4

1-ff
-1 0 1 2 3 4 5

Fig. 5.5 Fractional lead times
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Table 5.4 Data for fractional lead time example

Period Releases Outputs Demand Ending inventory

−1 50 – –
0 80 – 0
1 120 65 50 15
2 150 100 110 5
3 150 135 140 0
4 160 150 150 0
5 150 155 155 0
6 80 155 150 5
7 25 115 100 20
8 0 52.5 60 12.5
9 0 12.5 25 0

and the material balance constraint analogous to (5.16) takes the form

 
I I R R D t Tt t t L t L t= + + −( ) − = …− − − − 1 1 1 1φ φ , , ,

 
(5.56)

where It denotes the amount of finished goods inventory at the end of period t.
However, let us take a closer look at the implications of this formulation. Recall 

that we assume constant release and production rates throughout each planning 
period. Now consider the data given in Table 5.4, under a fixed lead time of L = 1.5 
periods and Rt = 0 for t < −1.

The output (production) in each period t is computed assuming that releases Rt 
and demands Dt are uniformly distributed across their associated planning periods 
as in (5.56). The ending inventory is computed using the inventory balance equation 
(5.56) at the end of each period. The reader should verify these calculations to con-
firm that inventory levels are nonnegative at the end of all planning periods.

However, all is not as it seems. Although the release rate over each planning 
period is constant, the output rate, which defines the rate of inflow into the inven-
tory, is not. Due to the fractional nature of the lead time, material released at the start 
of period t emerges as output in the middle of period t + 1, as illustrated in Fig. 5.6, 
where each period is divided into two subintervals of length ϕ and 1 − ϕ, in this case 
both equal to 0.5 periods. In periods 1, 2, and 3, the output rate of the production 
resource during the first subinterval of the period is different from that in the second 
subinterval.

Table 5.5 recalculates Table 5.4 at each half-period. As the reader can (and should!) 
verify, changes in output rates within the planning periods result in negative inventory 
levels at some of these intermediate points.

As pointed out by Hackman and Leachman (1989b), there are two possible solu-
tions to this problem. The most obvious, especially in the very structured example 
we have used here, is to reduce the size of the planning periods such that rate 
changes within planning periods are no longer possible, and enforce material 
balance and capacity constraints at the boundaries of each of these subintervals. 

5 Planning Models with Stationary Fixed Lead Times
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Fig. 5.6 Output of production unit with fractional lead times per Table 5.5

Table 5.5 Effect of fractional lead times at interior points of planning periods

Period Output Demand FGI

0.5 25 25 0
1 40 25 15
1.5 40 55 0
2 60 55 5
2.5 60 70 -5
3 75 70 0
3.5 75 75 0
4 75 75 0
4.5 75 77.5 −2.5
5 80 77.5 0
5.5 80 75 5
6 75 75 5
6.5 75 50 30
7 40 50 20
7.5 40 30 30
8 12.5 30 12.5
8.5 12.5 12.5 12.5
9 0 12.5 0
9.5 0 0 0
10 0 0 0
10.5 0 0 0
11 0 0 0

To ensure consistency, the length of the subintervals must be equal to the least com-
mon divisor of the fractional lead times. This will significantly increase the size of 
the formulation, since both the number of constraints and the number of decision 
variables depend on the number of periods. It is also impractical in the presence of 
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the  time- varying lead times discussed in Chap. 6, where the lead time associated 
with each period may have a different fractional part. In this case a period length 
equal to the greatest common divisor of all lead times must be used, which may 
result in a much larger model than necessary.

Hackman and Leachman (1989b) propose a much simpler solution to this diffi-
culty by noting that it is only necessary to write additional constraints at points in 
time where output or release rates may change. This includes the boundaries of the 
original planning periods and intermediate points where a fractional lead time 
causes a change in output (and hence the rate of inflow into finished inventory) or 
the amount of material requiring capacity at a particular resource. Under the time-
stationary lead times assumed in this chapter, each planning period will have at most 
one intermediate point for which additional constraints for a given product need to 
be written.

Although we have focused on the overall lead time Lj of the production unit for 
a particular item j, the same issues arise with respect to the capacity constraints for 
each workcenter k and their associated lead times Lk. In this case the changes in 
release rate within a planning period may result in capacity constraints being vio-
lated at interior points of the period (Hackman and Leachman 1989b). To see this, 
consider the situation illustrated in Fig. 5.7 where we have two items whose respec-
tive lead times are L1k = 1.5 and L2k = 1.75 periods. The upper time line shows the 
releases of each item and the lower the arrival of each item at the resource under 
consideration. Recalling our convention that period t ends at time t, the rate of mate-
rial arriving at the resource k during period t can change at three potential points in 
time: t  −  1, t  + ϕ1k, and t  + ϕ2k, where ϕjk  =  Ljk  − ⌊Ljk⌋, requiring the capacity 
constraints

Rj0 Rj1 Rj2 Rj3

f1k

f2k

-1 0 1 2 3

Fig. 5.7 Impact of multiple products with fractional lead times on capacity constraints
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This approach results in a large number of additional capacity constraints, espe-
cially in environments such as semiconductor wafer fabrication where a given 
resource may be used by tens of different unit operations. Leachman (2001) points 
out that the presence of many items j with slightly different fractional components 
ϕjk is likely to yield a roughly uniform distribution of workload over the planning 
interval, allowing approximate capacity constraints of the form

 j J k
jk jk t L jk t L kta R R C t T k K

jk jk
∈ ( )

− − −∑ + −( )



 ≤ = … = …φ φ1 1 1 1, , ; , ,

 

(5.58)

to be used without inducing excessive error. Note that (5.58) simply adds up the 
total amount of each product loading the resource within the planning period, 
without considering the specific timing of the loading within the period. The basic 
operation of these constraints is the same as that for material flow discussed above 
and can be illustrated in the following example.

Example 5.2 Consider a single resource and three products with fixed fractional 
lead times L1 = 1.3, L2 = 1.5, and L3 = 1.75 that remain constant over a planning 
horizon consisting of T = 12 periods. Thus we have ϕ1 = 1.3 − ⌊1.3⌋ = 0.3, ϕ2 = 0.5, 
and ϕ3 = 0.75 by the same logic. Following Fig. 5.7, the intervals within which the 
capacity loading from each product will remain constant, assuming constant release 
rates over each planning period, are calculated in Table 5.6.

Capacity loading of the resource remains constant over each interval with the 
given start and end points. Due to the fractional lead times, the rate of capacity 

Table 5.6 Uniform loading intervals for Example 5.2

Prod. 1 Start 0.3 1 1.3 2 2.3 3 3.3 4 4.3 5 5.3 6 6.3
End 1 1.3 2 2.3 3 3.3 4 4.3 5 5.3 6 6.3 7

Prod. 2 Start 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
End 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

Prod. 3 Start 0.75 1 1.75 2 2.75 3 3.75 4 4.75 5 5.75 6 6.75
End l 1.75 2 2.75 3 3.75 4 4.75 5 5.75 6 6.75 7

Prod. 1 Start 7 7.3 8 8.3 9 9.3 10 10.3 11 11.3 12 12.3
End 7.3 8 8.3 9 9.3 10 10.3 11 11.3 12 12.3 13.3

Prod. 2 Start 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5
End 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13.5

Prod. 3 Start 7 7.75 8 8.75 9 9.75 10 10.8 11 11.8 12 12.8
End 7.75 8 8.75 9 9.75 10 10.8 11 11.8 12 12.8 13.8
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loading can change at the start of any of these intervals for any product; hence it is 
necessary to write capacity constraints for each subinterval arising from the inter-
sections of consecutive loading intervals for the individual products. Thus con-
straints similar to (5.57) need to be written for the intervals (0.3, 0.5), (0.5, 0.75), 
(0.75, 1), (1, 1.3), (1.3, 1.5), and so on, resulting in a total of 53 intervals that need 
to be considered explicitly. The large number of constraints required by this 
approach is immediately evident.

Assuming that each unit of each product requires a single unit of capacity for one 
planning period to be completed, we now calculate the capacity loading, in terms of 
units of capacity, for each interval assuming the releases in Table 5.7.

Figure 5.8 plots the total loading of the resource by all three products for the 
release schedule shown in Table 5.7. The interval load plot shows the load, in terms 
of the number of parallel machines that would be required to process all the work 
available in the interval, for each of the 53 subintervals over which load remains 
constant, while the period load plots the total load within each planning period 
using (5.58). Discrepancies between the two plots arise where one would expect, in 
regions where the releases, and hence the loading of the resources, is changing, 
which in the example are at the start and end of the planning horizon and between 
periods 5 and 6, where the releases of Product 2 are temporarily interrupted. As the 
number of products and the number of different ϕj values increase, and especially if 
the ϕj values are distributed somewhat uniformly between 0 and 1, the error induced 

Table 5.7 Release schedule for Example 5.2

Period 0 1 2 3 4 5 6 7 8 9 10 11 12

Prod. 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Prod. 2 2 2 2 2 1 0 0 0 2 2 2 2 2
Prod. 3 0 0 0 0 0 0 1 1 1 1 0 0 0

Fig. 5.8 Capacity loading with fractional lead times
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by using (5.58) is likely to be considerably smaller than that arising from other 
sources, such as errors in demand forecasts.

Kacar et al. (2016) compare the performance of planning models using integer 
and fractional lead times on a data set representing a large semiconductor wafer 
fabrication facility and find that incorporating fractional lead times for both finished 
inventory balance and capacity constraints yields markedly superior performance 
than including it for either one alone. The fractional lead time model including the 
aggregate capacity constraints (5.58) and the finished inventory balance constraints 
(5.56) yielded significantly better performance than a model using integer lead 
times, and comparable performance to the much larger model using clearing func-
tions described in Chap. 7.

Given the magnitude of the performance improvement and the capabilities of 
today’s commercial LP solvers, we see no reason not to use fractional lead times if 
they appear to be called for. The most likely case where fractional lead times will be 
beneficial is when the cycle times of the production system and individual resources 
span multiple planning periods, and the fractional parts of the lead times are sub-
stantial relative to the length of the planning period.

5.6  Input-Output Models: An Alternative View of Fixed 
Lead Times

Our discussion so far has assumed that the entire quantity Rjt of product j released 
into the production unit in period t (the production orders released in period t) 
moves through the production unit as a single entity, such that all items released in 
that period consume capacity and enter finished inventory together. Given the 
assumption of releases taking place at a constant rate over the planning periods, 
each unit of product j will be processed at resource k Ljk time units after its release. 
Hence these lead times represent the time elapsing between the release of the mate-
rial to the first resource on its routing and its consuming capacity on resource k. 
Under integer lead times, this implies that all materials released in period t will 
consume capacity at resource k in period t + Ljk,, i.e., at the end of the specified lead 
time; the case of fractional lead times is a simple extension of this idea as discussed 
in the previous section.

An alternative view of fixed lead times allows a production order to consume 
capacity on a workcenter anywhere within the time it is expected to spend at the 
workcenter estimated by (5.11). This requires defining new lead time parameters 
L′jk representing the arrival times of the orders at the workcenters, i.e., the earliest 
possible time after its release that processing of the material at the k’th resource on 
its routing can start. Note that the lead times Ljk we have used in the previous sec-
tions represent a different quantity, the time elapsing between release and capacity 
consumption. Thus a production order of product j released in period t can consume 
capacity on the k’th workcenter in its routing anywhere in the time interval [t + L′jk, 
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t + L′j,k+1−1], instead of in period t + Ljk. Management of the production unit may 
elect to process portions of a production order in several, not necessarily consecu-
tive, periods, while still ensuring completion of the order within its planned lead 
time Lj. This timing flexibility reflects the possibility of production smoothing 
within the lead times through scheduling decisions, whereas in the models in the 
previous sections production quantities are entirely determined by the releases. 
Models of this kind have been proposed in several different contexts. Pürgstaller 
and Missbauer (2012) note that the Input-Output Control approach of Wight (1970) 
implies a model of this form, although the model is not explicitly stated. We have 
also shown in Chap. 4 that a similar model is implicit in the LUMS order release 
mechanism for make-to-order production (Hendry et  al. 2013). The structure of 
these models is also related to a much older formulation by Bowman (1956). Spitter 
et al. (2005) and de Kok and Fransoo (2003) consider a production unit with a single 
bottleneck workcenter that may consist of a number of parallel machines. In these 
latter papers, the primary purpose of the model is for supply chain coordination 
rather than detailed release planning, so they do not directly accommodate model-
ing of production flows across multiple resources within a production unit. The 
formulation given below extends these models to incorporate such production flows.

Since the release quantities Rjt no longer define the capacity loading of resources 
in a unique manner, we define additional decision variables Z jts

k  specifying the 
amount of product j released in period t that consumes capacity on workcenter k in 
period s. To ensure that the workcenters in the routing are visited in the correct 
sequence, we must define these variables to ensure that processing on workcenter k 
can only take place in the correct time interval such that t + L′jk ≤ s ≤ t + L′j,k+1 − 1 
and 1 ≤ t ≤ T − Lj.

Since all materials entering the system must be processed on every workcenter 
(neglecting details such as scrap or yield losses), we have
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Since the processing of a given production order may now be distributed over 
several periods, all materials associated with the production order released in period 
t need not necessarily enter finished inventory together. If the production order can 
enter finished inventory only after the planned lead time has elapsed, irrespective of 
the actual time(s) the material is processed, the finished inventory balance equations 
will take the form

 
I I R D t T j Jjt j t j t L jtj
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(5.60)

If, however, material can enter finished inventory as it completes its processing, 
without having to wait for the remainder of the order, the finished inventory balance 
equation will be
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where K(j) denotes the last resource in the process routing of item j. Since (5.60) is 
more consistent with the intent of a planned lead time to ensure availability of the 
material after the planned lead time with high probability while leaving internal 
resource allocation decisions to the local management, we shall adopt this assump-
tion from now on. The Rjt variables can, of course, be eliminated using (5.59) to 
reduce the number of variables when solving the model.

The capacity constraints for each workcenter k will now take the form

 j J s t L

t

jk jst
k

kt j

jk

a Z C t T L k K
∈ = −
∑ ∑ ≤ = … − ∀ ∈

’

, , , ,1

 

(5.62)

where the summation on the left hand side represents the total amount of work allo-
cated to workcenter k in period t. Hence while it is possible to incorporate time-
dependent production costs at the different workcenters, if costs are time-stationary 
there is no need to do so due to the no backlogging assumption. The complete for-
mulation can now be written as

 

min
j J t

T L

j jt

j
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(5.63)

subject to (5.59), (5.60) or (5.61), (5.62) depending on assumptions, and
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Since imposing the additional constraint that
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with Ljk denoting the pre-specified lead time in the interval [L'jk; L'j, k + 1 − 1] recovers 
formulation (5.26)–(5.29), (5.63)–(5.65) is a relaxation of the former in the sense 
that any feasible solution to (5.26)–(5.29) is feasible for (5.63)–(5.65), but not vice 
versa. As with formulation (5.26)–(5.29), (5.63)–(5.65) can be rewritten to elimi-
nate the Ijt variables giving a model analogous to (5.41)–(5.44).

The formulation until this point has ignored WIP costs. Their inclusion requires 
some additional thought. If material released at t and processed at workcenter k can-
not move to the next workcenter in its routing until time t + L'j,k+1, two different types 
of WIP may exist at a workcenter: material that has been processed and is waiting to 
move to the next stage and material that has not yet been processed. If the value of 
the WIP depends on the timing of production that results from the mode, i.e., earlier 
production within the lead time means higher WIP holding costs, this can be 
accounted for by decomposing the WIP at the workcenters into WIP before and WIP 
after processing and assigning different WIP holding costs to each component. 
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Denoting Wjkt
b  and Wjkt

a  the WIP of product j at workcenter k at the end of period t 
before and after processing, respectively, the WIP balance equations are
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where in (5.68) L Lj K j, +
′ =1 . The complete model formulation is given by Pürgstaller 

and Missbauer (2012). We do not consider this extension in the following example, 
but note it as an illustration of an issue that the more flexible treatment of lead times 
may raise.

Example 5.3 We implement the model (5.63)–(5.65) with the finished inventory 
balance constraints (5.60) on the problem instance solved in Example 5.1, where we 
set the values of the L'jk to the Ljk values in that example. An optimal solution with 
objective function value 2505 is obtained as shown in Table 5.8.

The principal difference, as one would expect, lies in the distribution of the 
capacity loading on Machine 3. Since this machine has a local lead time of 
L'j4 − L'j3 = 4 – 2 = 2 periods for both products, it is able to allocate capacity across 
two different periods to releases made in a single period, unlike the previous model 
where all releases from a given period t will load a resource in the single period 
t + Ljk (assuming integer lead times). This difference is seen in Table 5.9 that shows 

Table 5.8 Optimal solution for Example 5.3

Period
Releases Capacity loading Ending inventory
Item 1 Item 2 Machine 1 Machine 2 Machine 3 Machine 4 11 12

0 0 0 0 0 0 0 20 25
1 3 1.5 13.5 0 0 0 20 25
2 6 0 18 15 0 0 15 25
3 6 0 18 18 15 0 11 25
4 6 0 18 18 18 0 7 23
5 6 1.5 22.5 18 18 12 2 19
6 6 2 24 24 18 12 0 15.5
7 0 5 15 26 18 12 1 10.5
8 0 5 15 20 18 12 1 7.5
9 0 0 0 20 18 18 0 3.5
10 0 0 0 0 18 20 0 2
11 0 0 0 0 18 20 0 1
12 0 0 0 0 0 20 0 0
13 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0

5 Planning Models with Stationary Fixed Lead Times
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Table 5.9 Z jst
3

 values for Machine 3 in Example 5.3

Release Loading period
Period 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Item 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 3 0 0 0 0 0 0 0 0 0 0 0
3 0 0 6 0 0 0 0 0 0 0 0 0 0
4 0 0 6 0 0 0 0 0 0 0 0 0
5 0 0 6 0 0 0 0 0 0 0 0
6 0 0 6 0 0 0 0 0 0 0
7 0 0 4 2 0 0 0 0 0
8 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0
10 0 0 0 0 0 0
11 0 0 0 0 0
12 0 0 0 0
13 0 0 0
14 0 0
15 0

Item 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 1.5 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 1.5 0 0 0 0 0 0
7 0 0 0 2 0 0 0 0 0
8 0 0 1 4 0 0 0 0
9 0 0 0.5 4.5 0 0 0
10 0 0 0 0 0 0
11 0 0 0 0 0
12 0 0 0 0
13 0 0 0
14 0 0
15 0

the values of the Z jst
3  variables for Machine 3. Releases of Product 1 made in period 

7 are processed in periods 9 and 10; releases of Product 2 in period 8 are processed 
in periods 10 and 11, and those from period 9 in periods 11 and 12. Thus in period 
11, releases of Product 2 from two different, but consecutive, periods are being 
processed.

The dual prices associated with this optimal solution are plotted in Fig. 5.9. Note 
that now both Machines 3 and 4 have binding capacity constraints and hence posi-
tive absolute dual prices, in the later periods of the planning horizon. While the 
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Fig. 5.9 Dual variables for Example 5.3

formulation in Example 5.1 results in positive dual prices for Machine 3 over the 
same time interval as in this case, Machine 4 never achieves a positive dual price 
under the previous formulation.

5.7  A Caveat: Lot-Sizing Issues

The models described so far yield the release quantities per product and period Rjt 
as the essential result that is used by the planning level. Executing these decisions 
in a straightforward manner means releasing production orders of size Rjt in the 
respective periods. However, if the sizes of the production orders are fixed, as is the 
case when production orders are released to the shop floor by an MRP system that 
specifies standard lot sizes, the Rjt quantities should be viewed as release “budgets” 
that are filled or consumed by the orders. This is also the case if the model is formu-
lated for aggregate products or product families j with similar routing and resource 
requirements for the products within one family. Even if the demand Djt is derived 
from the order sizes, the release quantities need not be a sum of the order sizes due 
to the capacity constraints and the real- valued Rjt. In this case the orders to release 
within the quantities Rjt must be determined by a separate planning step. One obvi-
ous possibility is to release the orders of product j in period t in the sequence of 
increasing due date until the cumulative actual release quantity reaches its planned 
value, that is

 τ
τ

τ
τ
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1 1

1
t

j

t

jR j J t TActual release quantity , , , ,
 

(5.69)

perhaps with the possibility to exceed the cumulative planned releases by the last 
order as applied in Load-Oriented Order Release discussed in Sect. 4.2.2.

Alternatively, the release model can be formulated at the level of production 
orders p = 1, …, Pj with order size, due date, and capacity requirements (setup and 
processing time) given for each order. Without loss of generality, we assume that the 
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orders are indexed in the order of increasing due dates. The model then determines 
the period in which each order will be released. The decision variables are

 
δ jpt

p j t
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,

,

if order of product is released in period

otherwise
..
 

The release periods are subject to the constraints

 t

T

jpt jj p P
=
∑ = ∀ ∀ = …

1

1 1δ , ; , ,
 

(5.70)

 τ
τ

τ
τδ δ

= =
+∑ ∑≥ ∀ ∀ = … −

1 1
1 1 1

t

jp

t

j p jj t p P, , , , ; , ,
 

(5.71)

where (5.70) ensures that each order is released exactly once and (5.71) main-
tains the correct release sequence of the orders. The release quantities can be 
obtained by
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where Qjp denotes the order size of order p of product j.
This modeling technique can be applied to both the conventional fixed lead time 

model (5.26)–(5.29) and for the alternative model with variable timing of produc-
tion described in this section, which is described in Missbauer (2014). At the present 
time, there is no experience with the solvability of the resulting MILP model for 
real-life problems. Heuristics, e.g., decomposing by product and coordinating the 
resulting subproblems by Lagrangian techniques or by column generation, are an 
obvious possibility.

5.8  Summary and Conclusions

In this chapter, we have examined the structure of production planning models 
based on fixed, exogenous lead times that remain constant over the planning hori-
zon. This constitutes the most prevalent mechanism for representing cycle times in 
both the research literature and industrial practice. We have shown that different 
models are possible depending on what assumptions are made on the timing of dif-
ferent events, such as when capacity is consumed on specific resources relative to 
the release time. We have also shown that models with fixed positioning of produc-
tion within the lead time treat WIP in a rather restrictive manner, assuming WIP 
cannot accumulate and only a portion of the total WIP in the system is available to 
be processed by a resource in a given period.
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We have also illustrated several limitations of these models relative to the behav-
ior of production resources discussed in Chap. 2. Queueing models show that aver-
age cycle time is nonlinear in the average resource utilization, which is directly 
determined by the work release decisions made by planning models. However, fixed 
exogenous lead times ignore this relationship, assuming that as long as all capacity 
constraints are  satisfied changes in cycle time due to workload will be negligible. 
Queueing models also suggest that cycle times begin to degrade well before utiliza-
tion reaches 1, suggesting there may be benefit to additional capacity at resources 
whose utilization is below 1. However, our analysis of the dual prices of capacity 
shows that until a resource is fully utilized, dual prices will be zero, suggesting no 
benefit from additional resources.

The limited research examining the benefits of more sophisticated models with 
workload-dependent lead times (Kacar et  al. 2012, 2013, 2016) suggests that as 
long as the average resource utilization remains relatively constant, fixed lead time 
models with appropriately chosen values of the lead times yield performance very 
similar to that of much more complex models with workload-dependent lead times. 
The use of fractional lead times yields a significant improvement over integer lead 
times, at little additional cost in model complexity. However, when resource utiliza-
tion and product mix vary significantly over time, the performance of fixed lead 
time models begins to deteriorate. For this reason, as well as to address the theoreti-
cal drawbacks of fixed lead time models discussed above, it is of interest to explore 
planning models capable of recognizing the nonlinear relation between utilization 
and cycle time. Put another way, fixed lead time models optimize over releases only; 
queueing results suggest that jointly optimizing releases and lead times may yield 
better results. We now explore these more advanced models in the next chapters.
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