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Chapter 11
Conclusions and Future Directions

Problems arising in the PPC systems that support the complex global supply chains 
driving the modern economy were among the earliest to be addressed with the tools 
of operations research (Arrow et al. 1958; Hanssmann 1959; Holt et al. 1960; Buffa 
and Taubert 1972; Johnson and Montgomery 1974), leading to a broad, mature body 
of knowledge using a variety of mathematical formalisms including mathematical 
programming, queueing, simulation, and stochastic optimization. By the nature of 
this problem domain, this volume has ranged widely over a great deal of ground, 
and we hope that the reader has found the journey worthwhile. This chapter con-
cludes the book with a brief review of the principal results and their implications for 
future work, both related to the clearing functions that are the central concern of this 
volume and for the broader field of production planning models.

11.1  The Gordian Knot: Output, Cycle Time, and Workload

The problem at the heart of this volume is the intimate interconnection between the 
output, cycle time, and workload of a production unit, with, of course, the individual 
production resource as a special case. Whether the problem faced is that of coordi-
nating a number of production units across a supply chain, or planning the releases 
of work into an individual production unit to meet demand in the best possible man-
ner, PPC systems simply cannot operate effectively without some cognizance of the 
impact of their decisions on cycle times. As discussed in Chap. 2, queueing models, 
simulation experiments, and industrial observation all indicate that the cycle time of 
an order through a production unit is a random variable whose distribution depends, 
among potentially many other things, on the utilization of the resource, i.e., the 
workload available for it to process that is determined by the work release decisions 
made by any PPC system discussed in Chap. 1. Hence cycle times should be consid-
ered as endogenous to the planning process, rather than as an exogenous parameter, 
which is manifestly not the case in most of the production planning literature that 
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goes by that name. Most of this literature can, with more or less of a stretch, be 
positioned within one of the two principal frameworks for PPC systems that have 
emerged as a (admittedly evolving) consensus between industrial practice and aca-
demic research: Manufacturing Planning and Control (Jacobs et  al. 2011) and 
Advanced Planning and Scheduling (APS) (Stadtler et al. 2015). The discussion of 
these frameworks in Chap. 3 highlights the importance of cycle times to the effec-
tive operation of both. This circularity—that planning systems need to be cognizant 
of cycle times, but cycle times are a consequence of the work release decisions 
made by the planning systems themselves—has, in our opinion, constituted a sig-
nificant barrier to progress. The contents of this volume can thus be viewed as a 
series of attempts to address this difficulty or mitigate its negative impacts.

Chapter 4 discusses the workload control (WLC) paradigm, which constitutes a 
first-order response to the relation between workload, output, and cycle time. 
Despite their wide variety, all WLC approaches seek to identify a workload level for 
the production unit that will yield an acceptable compromise between the goals of 
maintaining low WIP and cycle times on the one hand, and sufficient output to meet 
demand on the other. Most such systems are rule-based, designed to operate in an 
environment where the demand distribution faced by the production unit remains 
approximately constant; they do not easily adapt to changing operating conditions, 
which would require recalculation of their various parameters as the environment 
changes. It is probably fair to say that there is as yet no unified theory governing the 
relations between the environmental conditions faced by such WLC systems and the 
values of the various parameters they require. Only a few of these approaches use an 
explicit model of material flow through the production unit to inform their work 
release decisions. The optimization models discussed in the subsequent chapters 
can be viewed as natural extensions of these model-based WLC approaches.

Most existing approaches to production planning, from the material require-
ments planning (MRP) procedure widely used in industry (Orlicky 1975; Baker 
1993; Jacobs et al. 2011) to the mathematical programming models that form the 
central engine of many advanced planning and scheduling (APS) systems (Voss and 
Woodruff 2006; Hackman 2008), approach this issue using planned lead times that 
are treated as exogenous, workload-independent parameters. As long as lot-sizing 
or capacity expansion decisions are not considered, avoiding the need for integer 
variables, these models can generally be formulated as linear programs that can be 
solved with existing commercial solvers, even for very large problem instances. 
One of us (RU) had the opportunity a decade ago to observe the implementation of 
a new planning system at a major high-technology manufacturer. The complete 
workflow for generating a plan for a significant portion of the supply chain, involv-
ing multiple plants, multiple production lines within plants and distribution facili-
ties, took approximately 24 h at that time, of which only 45 min was required for the 
solution of the optimization model. The remaining time was taken up by acquiring, 
formatting, and cleaning input data from the firm’s ERP system and then transfer-
ring the output of the planning model back to the ERP system for execution. Chapter 
5 summarizes the state of the art in these models when the planned lead time remains 
constant over time.
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There is considerable evidence, including our own presented in Chap. 10, that 
despite its evident inconsistency with queueing theory the use of fixed planned lead 
times frequently does not lead to unacceptably bad performance. One reason for this 
may be that many facilities are operated within a relatively narrow range of operat-
ing conditions as defined by product mix, available resources, and demand, allow-
ing planned lead times that provide good shop-floor performance to be arrived at 
over time. There is also often considerable opportunity for shop-floor decisions to 
mitigate the negative effects of suboptimal work release decisions by scheduling 
overtime, exploiting alternative resources, expediting and other such measures.

An additional advantage of planning models based on exogenous planned lead 
times is their intuitive nature. The idea of a delay between the release of work and 
its emergence as finished product is an easy one to grasp, making acceptance of the 
resulting planning models by their ultimate users, the managers responsible for the 
performance of the production units making up the supply chain, much easier than 
for a complex, nonlinear mathematical model. This does not mean, however, that 
the decisions obtained from a complex optimization model are always intuitive; 
anyone who has tried to explain to a manager why the optimization model chose to 
produce a specific amount of a specific item at a specific time on a specific resource, 
instead of using one of the many available alternatives (usually including the man-
ager’s favorite), will recognize the difficulty in parsing the output of a large mathe-
matical program into a narrative explanation. The work of Greenberg (1996) on a 
rule-based system for explaining the results of linear programming models suggests 
an interesting direction for future research customizing this generic approach to 
specific production planning formulations.

The planning models in Chap. 5 can be viewed as optimizing work releases for a 
given set of planned lead times. The endogeneity of cycle times to work release 
decisions discussed in Chap. 2 suggests a model that can jointly optimize releases 
and cycle times simultaneously. Thus, if we could find the “correct” planned lead 
times for each planning period, the models of Chap. 5 would provide the optimal 
releases directly. Chapter 6 explores the difficulties that arise in identifying a con-
sistent set of planned lead times across the planning horizon, and then focuses on 
approaches that decompose the planning problem into two subproblems. The first of 
these takes estimates of planned lead times as input and computes optimal releases 
based on these lead times. The second model takes a set of releases as input, and 
returns estimates of the resulting cycle times from which revised planned lead times 
can be computed. The release planning model is usually a linear program similar to 
those described in Chap. 5, while the lead time estimation model is usually a more 
or less detailed simulation model of the production unit of interest, although queue-
ing and statistical models can also be used. A variety of such models have been 
proposed since the initial work of Hung and Leachman (1996), none of which have 
yielded conclusively positive results. Their computational burden tends to be high 
due to the need for multiple replications of a (often large) simulation model at each 
iteration. Their convergence behavior is not well understood; there appears to be no 
theoretical guarantee of their convergence, and experimental observations include 
cycling between solutions, failure to converge in any recognizable way, and 
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 dependence on the starting solution. The prime advantage of these approaches is 
that they combine two techniques, mathematical programming and simulation, that 
are each familiar to practitioners and have access to excellent commercial software. 
However, this approach does not build an explicit model linking output, workload, 
and cycle time; this model is implicit in the dynamics of the simulation or queueing 
model used to estimate the planned lead times given a set of releases.

Chapter 7 introduces univariate clearing functions that formulate a mathematical 
relation linking the expected output of a production resource in a planning period to 
some measure of its workload in the planning period. The basic concept was intro-
duced, apparently independently, by several researchers in the late 1980s (Graves 
1986; Srinivasan et al. 1988; Karmarkar 1989). Univariate clearing functions that 
are concave in their measure of workload (whatever that may be) yield convex opti-
mization models. Since a concave function can be approximated to any degree of 
accuracy by a set of linear functions, it is easy to approximate these as linear pro-
grams, although the growing computational power of convex nonlinear solvers ren-
ders this less important than it once was. However, serious difficulties arise when 
multiple products competing for capacity on the same resource are considered, and 
straightforward extension of the single-product models results in clearly anomalous 
behavior. These difficulties are closely related to those ably explored by Carey and 
his coauthors in the domain of traffic modeling (Carey 1987, 1990; Carey and 
Subrahmanian 2000; Carey and Bowers 2012) and discussed in Chap. 6 in the con-
text of time-varying planned lead times. After illustrating the behavior of the clear-
ing function as a representation of a production unit, this chapter presents the 
allocated clearing function model of Asmundsson et al. (2006, 2009), which pro-
vides an effective although approximate solution to these difficulties and remains 
the state of the art at this time of writing. The chapter also illustrates one of the 
primary theoretical advantages of the clearing function approach over the models of 
Chap. 5, its ability to provide richer dual information on the marginal price of capac-
ity at the different resources in the production unit.

The development of the allocated clearing function model exposes the limita-
tions of the use of univariate clearing functions. The univariate clearing function 
estimates the aggregate output of the production unit across all products as a func-
tion of the aggregate workload of all products and then, as its name implies, allo-
cates this aggregate output optimally among the different products. Chapter 8 
departs from the observation that the allocated clearing function approach fails quite 
badly when the aggregate output depends heavily on the mix of products, not just on 
the aggregate workload. This is clearly the case when there are significant setup 
times between different products on the production resources; lot-sizing and 
sequencing decisions now have major impact on output. This chapter examines 
efforts to formulate multivariate clearing functions, raising the question of what 
additional state variables should be included. A variety of such state variables have 
been tried, including decomposing the workload of a product into the WIP available 
at the start of the period and releases during the period; inclusion of state variables 
related to previous periods; and using the output of each product as a state variable 
describing the output of all others. Many of these efforts result in non-convex 
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 optimization models, although computational evidence suggests that convex solvers 
can often obtain global optimal solutions in many cases, suggesting the presence of 
considerable structure that remains to be uncovered. Computational results, how-
ever, indicate that considerable improvement over univariate clearing functions can 
be obtained, at the cost of additional computational burden. It is probably safe to 
classify much of the work in this chapter as exploratory, leaving considerable room 
for future research.

Chapter 9 briefly explores the relation between the clearing function concept and 
lot-sizing decisions in the context of a single production resource. The seminal work 
of Karmarkar and his coworkers (Karmarkar 1987; Karmarkar et  al. 1992) used 
queueing models to illustrate the relation between lot-sizing decisions and cycle 
times, which can then be used to derive multivariate clearing functions in which the 
output of a product depends on the lot sizes and output of all products in the system. 
The chapter then develops a non-convex optimization model using multivariate 
clearing functions for a single-machine dynamic lot-sizing problem and shows that 
this can yield significant performance improvements over prior approaches that do 
not consider queueing behavior. The chapter closes with an admittedly heuristic 
discussion using this model to illustrate the difficulty of accurately estimating the 
setup costs that are a crucial parameter of most lot-sizing models in the literature, 
which focus on the tradeoff between setup and cycle stock holding costs.

Having presented the clearing function concept in various forms in Chaps. 7 
through 9, Chap. 10 examines several applications of the concept. A series of com-
putational experiments using the allocated clearing function model for release plan-
ning for semiconductor wafer fabrication yield admittedly mixed results. While the 
clearing function model outperforms fixed lead time models with integer lead times, 
the use of fractional lead times largely eliminates the advantage of the clearing func-
tions except under time-varying demand. Other applications include the use of 
clearing function models in a rolling horizon context, where they largely retain their 
advantage over fixed lead time models, the integrated planning of production and 
improvement activities, and dynamic pricing in an environment where demand is 
sensitive to both lead time and price. By and large, the results of the clearing func-
tion approaches are promising, especially when the richer dual information they 
yield can be used to gain insight into system behavior.

11.2  Weaknesses and Limitations of the Clearing Function 
Approach

Having laid out in the preceding chapters the basic motivation for the clearing func-
tion approach and the state of our knowledge to date, we would be remiss if we 
implied that we have a watertight case; we most certainly do not. The perceptive 
reader will have raised a number of criticisms themselves by this point in the vol-
ume, and there are many such both stated and implied in the previous pages. In this 
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section, we will discuss several of the most important of these difficulties, some of 
which are the subject of ongoing research while others await the attention of the 
research community.

11.2.1  Why Clearing Functions?

The first question that needs to be addressed is simply that of why the clearing func-
tion construct should be used at all. Chapter 7 pointed out that a clearing function is 
a metamodel describing certain aspects of the behavior of a queue. If this is indeed 
the case, there are a wide range of alternative approaches to choose from, such as 
other forms of metamodeling (Li et al. 2016), system dynamics (Sterman 2000), 
transient queueing models (Askin and Hanumantha 2018) and, of course, simula-
tion (Law and Kelton 2004). Given that the reason for using clearing functions is not 
at all obvious, and at least one reviewer of our work has stated categorically that “…
the clearing function idea is outdated,” some discussion of this issue appears to be 
necessary.

The primary reason for using a clearing function to represent a production unit is 
the ability to embed it in a tractable optimization model to plan releases for the next 
several periods. For this purpose, what is required is a sufficiently accurate repre-
sentation of the relation between workload and output; six decimal places of preci-
sion are not required in a planning model whose purpose is simply to ensure that the 
workload in the production unit is at the correct level to meet the desired output 
without unnecessarily increasing WIP and cycle time.

The other types of model described above do not lend themselves easily to the 
formulation of tractable mathematical programming models. It is certainly true that 
queueing or simulation models can be embedded in an optimization framework, 
using algorithms similar to those used for simulation optimization (Fu 2015). A 
number of models of this latter type have been presented in the literature, notably 
the metamodel-based simulation optimization algorithm of Li et al. (2016) and the 
simulation optimization approaches of Kacar and Uzsoy (2015). These models ben-
efit from the superior ability of simulation models to incorporate detailed system 
dynamics that are difficult to capture in a clearing function. However, the develop-
ment of the metamodel requires extensive simulation experiments to collect data 
and fit the metamodel, while simulation optimization is very time-consuming. The 
use of the clearing function construct is aimed at enabling the use of a mathematical 
programming model to optimize releases as well as providing the information from 
the dual solution that may help management better understand the behavior of their 
system. It is very unlikely that a clearing function can provide a highly precise pre-
diction of output in each period, but that is not its purpose; it seeks to provide suf-
ficiently accurate descriptions of system behavior to ensure that the planning model 
using it maintains the system workload in a state that will sustain the desired out-
put level.
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The advantage of a mathematical programming model, in turn, is that it allows 
rapid solution of a complex optimization problem, especially when it can be formu-
lated as a linear program. The estimation of the clearing function used in the model 
will require considerable computational effort, but this work can be performed 
offline and is not part of the run generating the planning solution. In contrast, any 
model utilizing a detailed simulation of the production unit of interest, whether a 
full-blown simulation optimization approach or one of the iterative multi-model 
approaches discussed in Chap. 6, requires multiple replications of simulation runs 
for the actual solution of the release planning model, requiring considerably 
more time.

11.2.2  Choice of Functional Form for the Clearing Function

While the idea of a concave non-decreasing functional relation between the work-
load and the expected output of a production resource is quite intuitive, it should be 
evident to the reader by this point that the state of our knowledge as to what func-
tional forms to use and how to estimate their parameters from either industrial or 
simulation data is as yet highly unsatisfactory. The derivation of clearing functions 
from steady-state queueing models is inherently dangerous in a discrete-time plan-
ning model unless planning periods are long enough for the underlying queues to at 
least approximately reach steady state, which is frequently not the case in practice. 
The early work of Asmundsson et al. (2009) revealed that using conventional least- 
squares regression to fit one of the empirical functional forms discussed in Chap. 7 
results in systematic overestimation of the expected output, due to the relation cap-
tured by Jensen’s inequality (8.8) discussed in Sect. 8.2. Gopalswamy and Uzsoy 
(2019) identify a number of additional issues arising in the fitting of clearing func-
tions to simulation data, and the design of appropriate simulation experiments to 
obtain such data.

Even if the issues associated with estimating clearing functions of a tractable 
computational form were addressed satisfactorily, the currently common approach 
of fitting a single clearing function that is expected to represent the behavior of the 
production resource in all planning periods is clearly a significant approximation, as 
discussed in Sect. 8.2 and illustrated in Fig. 8.2. The simulation optimization 
approach of Kacar and Uzsoy (2015) found that fitting a clearing function to each 
planning period gave superior results to using a single clearing function for all peri-
ods. However, this simulation optimization approach is computationally demand-
ing, especially when used in a rolling horizon environment.

Yet another difficulty with the use of clearing functions arises in multistage envi-
ronments. Expression (2.1) shows that the expected cycle time at a given resource 
depends on the mean and variance of both interarrival and service times; the vari-
ability of the interarrival times in turn depends on decisions made at upstream 
resources. Thus, at least in theory, the shape of the clearing function at a given 
resource is affected by the production decisions at upstream resources. The clearing 
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function models we have discussed in this volume do not take this type of interrela-
tion between production resources, or production units, into account. Instead they 
assume that the mean and variance of interarrival and service times at each resource 
are independent of other resources, an assumption referred to in queueing theory as 
decomposition. Clearly some error is introduced into the models by this approach. 
One would expect this to become especially serious in multistage systems with 
setup times at each resource, where lot-sizing decisions at each stage in each period 
may affect the shape of clearing functions at downstream resources.

The situation for MDCFs is still more complicated. The fact of the matter is that 
at present we have no firm theoretical foundation for deciding which state variables 
to include in an MDCF; it is notable, and lamentable, that most of the MDCFs pro-
posed to date draw their functional form from steady-state queueing analyses, often 
of very simple models. For example, the MDCFs of Albey et al. (2014, 2017) follow 
the functional form suggested by Karmarkar (1989) which is motivated primarily by 
steady-state analysis of the M/M/1 queue. The experimental work of Gopalswamy 
and Uzsoy (2019) suggests that the empirical functional forms used extensively in 
the past cannot provide good fits across the entire operating range of workloads a 
production resource will encounter.

Our current state of knowledge suggests that the best approach to fitting clearing 
functions available at present is the use of concave piecewise linear regression, 
which can be formulated as a mixed integer program (Toriello and Vielma 2012; 
Gopalswamy et  al. 2019) although the solution of large models with many data 
points remains computationally challenging. The piecewise linear approach allows 
great modeling flexibility and yields a clearing function that when implemented in 
the allocated clearing function model of Chap. 7 results in a linear program. 
However, the establishment of a strong theoretical and methodological foundation 
for the fitting of clearing functions, encompassing both the choice of state variables 
and of a suitable functional form, remains important directions for future research. 
The promising performance of clearing function based production planning models 
presented in this volume suggests that this effort may well be worthwhile.

11.3  Some Directions for Future Research

The limitations of the clearing function approach discussed in the previous section 
suggest a broad range of interesting research questions for the future, many of which 
lie at the intersection of what have traditionally been viewed as quite distinct 
research streams. The basic idea of a clearing function lies at the intersection of 
queueing and mathematical programming models of production systems, research 
areas that have developed largely independently until today. In this section, we dis-
cuss several longer-term research efforts that can build on the clearing function 
concept, but which address much broader issues spanning several research streams 
and mathematical modeling tools.
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It is clear from the discussion in Chaps. 5 and 6 of this volume that, from a tech-
nical perspective, order release models and mechanisms that assume fixed, exoge-
nous lead times are quite mature, although their integration into the overall PPC 
system can raise numerous questions. Load-dependent lead times, on the other 
hand, are much more difficult to handle technically (and also organizationally, 
although this is not our primary focus), and this research stream is far from mature. 
This provides great opportunities for researchers to advance the frontier of our 
knowledge in this domain that is, as described in Chap. 1, an essential element of 
the PPC architecture in most discrete manufacturing companies. We now briefly 
describe some of the most important research questions, starting with technical 
issues and proceeding to more conceptual topics.

11.3.1  Parameter Setting for Order Release Models

Order release models with exogenous lead times require lead time parameters that 
are often taken to be constant over time as in Chap. 5, but can also vary over time as 
discussed in Chap. 6. Clearing function models must specify the functional form 
and the shape parameters of the clearing functions. These parameters anticipate the 
behavior of the production units, but since both the realized cycle times and the real-
ized output are random variables subject to often unknown and changing probability 
distributions, the parameters cannot simply be set to the “correct” values. This is 
especially evident for clearing functions where the conditional distribution of the 
output for a given planned load depends on various factors including the order 
release pattern itself, due to the planning circularity described in Chap. 2. Therefore, 
the choice of parameter values encompasses both an anticipation aspect (how accu-
rately will the clearing function anticipate the realized output from the production 
unit or resource?) and an implicit decision as to the tradeoffs between WIP and FGI 
inventory levels and due date performance (with the importance of the latter depend-
ing on whether safety stocks are maintained, as discussed below). The performance 
of order release models can be quite sensitive to the parameter values as indicated, 
e.g., by the performance differences between fixed lead time models with integer 
and fractional lead times discussed in Chaps. 5 and 10. Very similar questions can 
be raised in terms of estimating suitable fixed lead times: assuming the distribution 
of the cycle times in each planning period was known, what is the optimal value of 
the planned lead times?

Considering the anticipation aspect of the parameter setting problem, one would 
assume that best performance can be achieved by setting, e.g., clearing function 
parameters to the values obtained from observation, such as running a least-squares 
regression over observed load–output data. However, the parameter setting that 
yields the best system performance can be substantially different (Kacar and Uzsoy 
2015) and the mechanisms behind these deviations are not fully understood. We 
must also keep in mind that the vast majority of research on parameterization issues 
is performed on simulated data. Empirical data exhibit substantial noise which 
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makes functional relationships between load and output difficult to identify (Fine 
and Graves 1989; Häussler and Missbauer 2014), and further research is needed to 
examine the validity of insights obtained from simulations to real-life situations.

11.3.2  A Deeper Understanding of Clearing Functions: 
Properties, Theoretical Basis, and Integration 
with Order Release Models

In Chap. 7, clearing functions were motivated by queueing models that suggest a 
concave, saturating functional relationship between WIP and output, caused primar-
ily by the variability of the arrival and departure process. However, the clearing 
function concept was introduced by Graves (1986) assuming that output in a period 
is proportional to the load in that period. The smoothing parameter that is implied 
by this model is assumed to be “set … so that the resulting time series for produc-
tion is consistent with the work center capability” which can be obtained by assum-
ing that “As a queue builds at a work center, a manager will direct more resources 
to the work center to reduce the queue to normal levels” (p. 524). Hence this propor-
tional clearing function models the effect of a production control rule, which is quite 
distinct from the variability argument invoked to justify the nonlinear, saturating 
shape. Linear and saturating clearing functions differ not just with respect to their 
shape, but also with respect to the underlying phenomenon they seek to represent. It 
is important to keep both modeling aspects of clearing functions in mind—model-
ing variability versus modeling production control rules. The latter aspect opens up 
the possibility of modeling behavioral aspects such as load-dependent processing 
times, possible capacity loss due to congestion (e.g., because material must be shuf-
fled by the production workers), etc. The modeling of these often largely informal 
factors is still at its beginning—an important research question within behavioral 
operations management—and can substantially influence the behavior of clearing 
function models.

Applying clearing functions in a transient regime leads to additional complica-
tions. While it is easy to prove that decomposing the workload in a period t (the 
explanatory variable of most one-dimensional clearing functions) into its compo-
nents and formulating a multi-dimensional clearing function that takes the history 
of the process into account can improve output estimation, incorporating this func-
tion into order release models can lead to oscillating order releases as discussed in 
Chap. 8. Naïvely we would assume that more accurate anticipation of the output 
should improve the performance of the optimization model, but apparently things 
are not that simple. This indicates that a comprehensive, consistent theory of order 
release models incorporating functions that estimate the conditional future output is 
not yet available. This aspect also raises the question of which characteristics of 
queueing systems are most critical to the model behavior and thus should be mod-
eled most accurately. These might include the steady-state behavior, the WIP and 
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output evolution in the transient phase, or the propagation of variability through the 
workcenters, including the transient phase.

Production orders that are released are eventually finished, unless they are can-
celed deliberately; only their finish time is uncertain. Clearing function models 
express this timing uncertainty as an uncertainty in output quantities across the peri-
ods. This maintains the basic structure of production planning models established in 
the pioneering works described in Sect. 4.6, and is a significant modeling decision 
since this basic structure was not originally designed for handling lead times. 
Integrating lead time variables into this modeling framework, that is, expressing the 
timing uncertainty directly, either leads to intractable model structures or discards 
the tight relationship between WIP and cycle time demonstrated in Chap. 2. The 
difficulty with cycle time oriented release models and iterative approaches is an 
immediate consequence. Research on alternative modeling approaches such as 
robust optimization is an obvious possibility.

11.3.3  Integration of Order Release into the Overall Supply 
Chain

Both model-based and rule-based order release mechanisms mainly deal with order 
releases to single production units. This is adequate for MTO companies where 
customer orders translate directly to production orders in the order pool and are 
processed mainly by a single production unit, like the CD/DVD manufacturer in 
Sect. 1.2.2. However, if the orders must be processed sequentially by multiple pro-
duction units as in semiconductor manufacturing (Sect. 1.2.1), the order releases to 
the production units must be coordinated according to the BOM structure. Fixed 
lead times greatly simplify this material coordination task (de Kok and Fransoo 
2003) and can, in principle, be combined with clearing functions (Jansen et  al. 
2013). Extending load-dependent lead time models to incorporate material coordi-
nation along the multistage production-inventory system is much more difficult and 
remains a topic for future research. A central question is whether a sequential 
approach that derives the demand for the end items of a production unit from the 
planned releases to the downstream production units, or an integrated model that 
encompasses all production units simultaneously, extending the fixed lead time sup-
ply chain model in de Kok and Fransoo (2003), is preferable. This problem can be 
viewed, at an extreme, as that of incorporating the queueing behavior of resources 
described in Chap. 2 into the MRP logic of the MPC framework described in Chap. 
3; should we modify the release schedule obtained by the MRP logic after the fact 
to accommodate the effects of limited capacity and queueing, or should this be done 
within the MRP run itself in some way? Analogously, if master planning as imple-
mented in APS systems is applied the queueing perspective must be integrated into 
the capacity and lead time modeling used at this level.
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Order release models integrate the tasks of production smoothing and cycle time 
anticipation and control. Production smoothing is also performed at the master 
planning/MPS level to ensure that the number of end items requested from a pro-
duction unit in each period (the Djt parameters in the release models) is consistent 
with the capabilities of the production unit. Hence the smoothing capabilities 
required at the order release stage depend on the smoothing logic at the master plan-
ning/MPS level, and perhaps even at the lot-sizing level. Seamless integration of 
these levels requires consistency between the decision models at each level, in par-
ticular in how they anticipate the dynamic behavior of the production units. The 
anticipation models applied at the master planning/MPS level should be aggregate 
versions of the respective models applied for order release. Since master planning 
models and resource profiles for master production scheduling are generally not 
WIP based, this is not trivial. The research task behind this is the aggregation of 
transient queueing networks. Finding suitable approximations that are applicable in 
practice is still largely unsolved; Zäpfel and Missbauer (1993) give a first attempt to 
handle this aggregation problem. To what extent aggregation methods designed for 
the steady state, such as the effective processing time approach of Kock et al. (2011), 
Hopp and Spearman (2008), and Veeger et al. (2011), can be extended to the tran-
sient states implied by load-dependent lead times remains to be clarified.

Integrating order release models into the material coordination task also requires 
the determination of inventory levels of stock keeping units between the production 
units, including safety stocks. Order release models that explicitly determine WIP 
levels within the production units provide, at least in principle, the possibility of 
considering the interaction between WIP and safety stock that is evident from inven-
tory theory—the stockout probability for a given demand distribution depends on 
both the safety stock and the WIP level, with WIP providing some functionality of 
safety stock (Graves 1988). Simultaneous optimization of safety stocks and lead 
times or planned WIP, respectively, using clearing function models and an aggregate 
representation of the production units has been demonstrated in Albey et al. (2015), 
Albey and Uzsoy (2016), Aouam and Uzsoy (2012, 2015), and Orcun et al. (2009). 
Extending this work to multistage systems and/or more detailed representations of 
the production units is an obvious research topic.

Optimizing inventory levels refers to handling uncertainty of demand and other 
planning parameters. Since demand uncertainty is usually higher for more remote 
planning periods, which implies that for a certain period it becomes smaller as the 
time of planning proceeds, simply optimizing the (safety) stock levels for given 
demand distributions can lead to exaggerated planned stock levels for the more 
distant planning periods that most likely are corrected in the course of rolling hori-
zon planning; the order release and capacity plans are biased systematically. 
Stochastic demand and specific planning rules for responding to demand render 
future production quantities random variables (de Kok and Fransoo 2003), as con-
sidered in the original work of Holt et al. (1960). Aouam and Uzsoy (2012) find that 
in their simple setting linear decision rules for updating the planned production 
quantities perform well, which is an encouraging result and in line with adjustable 
robust optimization (Gorissen et al. 2015). How to extend this to realistic settings 
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and how to assign/split up the task of setting planned inventory levels to/between 
the order release and the master planning/MPS level is a challenging research topic 
since it encompasses the hierarchical design of the entire PPC system. Again the 
need to consider the impact of planned WIP at the master planning level is evident.

11.3.4  Advanced Techniques for Flow Time and Output 
Modeling

Determining lead times and order release quantities simultaneously requires an 
anticipation model that predicts the future values of these performance measures for 
a given release schedule. Univariate clearing functions consider only some measure 
of WIP as explanatory variable, while multi-dimensional clearing functions 
(MCDFs) allow more accurate representation of the causal mechanisms that lead to 
certain values for cycle times and output. The conceptual problems of MDCFs, 
especially when transient effects are modeled, are described in Chap. 8. Very accu-
rate cycle time and output prediction can be obtained by discrete-event simulation, 
but this leads to the difficulties described in Sect. 6.6.

This dilemma motivates the use of metamodeling for cycle time and output pre-
diction and metamodel-based rather than simulation-based optimization (Barton 
and Meckesheimer 2006). When appropriately trained or parameterized, the 
metamodel, which is usually a deterministic function, yields estimates of the perfor-
mance measures of the production unit very close to the simulation output as a func-
tion of the input variables, which in our case are the order releases over time. The 
impact of the relevant parameters that describe the properties of the material flow, 
such as machine failure characteristics, lots sizes, and operation times of the pro-
duction lots, are either coded in the metamodel or are declared as arguments of the 
metamodel depending on its specification. Metamodels can be represented by 
generic functions such as polynomials, functions that are based on certain theoreti-
cal requirements on their shape (e.g., the MDCF in Häussler and Missbauer 2014), 
or by artificial neural networks. Applying metamodels to anticipate output and cycle 
times is an extension of MDCFs. Based on Yang and Liu (2012) who propose a 
metamodel for the transient analysis of queueing systems, Li et al. (2016) develop a 
metamodel that receives the release quantities in the planning periods as input and 
yields the first two moments of WIP and output in the planning periods. Given this 
metamodel, the releases are approximately optimized using a multi-objective 
genetic algorithm. The metamodel considers both the departures and the queue 
length over the relevant past periods for the output prediction, making reasonable 
assumptions about the underlying time series model, and is fitted using extensive 
simulation data. The model performs very well compared to a simulation-based 
optimization with excessively long computer run times. Since there is no sharp 
boundary between MDCFs and metamodels, there might be a number of ways to 
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formulate and refine metamodels for anticipating output and cycle times that can be 
explored in future research.

In the metamodeling approach, the release decision is decomposed into the two 
phases of pre-computing the metamodel and optimizing the decision variables, and 
the metamodel is fitted which usually requires large amounts of data that normally 
can only be obtained by simulation. Both of these aspects raise difficulties: the 
decomposition into metamodeling and optimization might result in suboptimal 
solutions, and the effects of informal shop-floor control rules might be difficult to 
capture in a simulation model. This motivates the use of machine learning tech-
niques that strictly learn from observed data, either to learn the response of the 
production unit to control inputs (e.g., releases) or to learn near-optimal control 
inputs for a given state of the system directly (for this distinction, see Bertsimas 
et al. 2019). While the application of machine learning at the scheduling level has 
been explored extensively (Aytug et al. 2005), very few papers apply machine learn-
ing at the order release level. Lee et al. (1997) use machine learning to select the 
release sequencing rule in a CONWIP system. Paternina-Arboleda and Das (2001) 
use reinforcement learning to optimize the operation of an extended CONWIP sys-
tem which also constrains the buffers at the workcenters and allows emergency 
authorizations of releases, similar to the force release option in LUMS (see Chap. 
4). Häussler and Schneckenreither (2019) use an artificial neural network to predict 
the cycle time of a new order entering the production unit and, based on this estima-
tion, determine the release times of the production orders, thus decomposing the 
problem of jointly determining the release times of the orders to single-order release 
problems that are combined by an algorithm developed in the paper. Clearly these 
approaches are first attempts, and further research in this area seems fruitful.

11.4  Conclusions

The domain of production planning is viewed by many as a mature area where all 
interesting problems have already been solved. We hope that the results presented in 
this volume have raised more questions in the mind of the reader than they have 
answered; this has been the effect of this work on the authors, in any event. There 
remain many challenging problems that, if even approximately solved, have the 
potential to yield significant economic benefit to many sectors of the economy. The 
convergence of vast computing power, data collection and storage technologies and 
extremely efficient optimization solvers, as well as developments in data analytics, 
stochastic optimization and machine learning, open new possibilities for advances 
in this area which has, after all, been central to the development of operations 
research, operations management, production economics, and industrial engineer-
ing since the inception of those disciplines. It is, we believe, a good time to be work-
ing in production planning and will only get better.
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