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Preface

Problems related to planning and control of production facilities and the larger sup-
ply chains of which they form an essential part were among the earliest to be 
addressed using mathematical models, beginning in the early years of the twentieth 
century and making great advances in the 1950s and 1960s. Lot sizing, workload 
control, mathematical programming models for capacity allocation and release 
planning, and performance analysis using queueing or simulation are broadly studied 
and taught, and many ideas from this work are implemented in practice.

A central concept in the study of production systems, from whatever angle they 
are approached, is loosely referred to as capacity—their ability to convert a speci-
fied set of inputs into a specified set of outputs over time. This capability can be 
captured to an arbitrary level of accuracy (at least in theory) in simulation models 
and to different degrees, depending on the mathematical assumptions adopted, by 
mathematical programming, queueing, and stochastic analysis models. Thus if a 
given production system is modeled by different mathematical formalisms the 
results obtained ought to be in agreement, at least to the extent permitted by their 
different assumptions.

Our work in this volume originated in our realization that the concept of capacity 
in the widely taught and implemented mathematical programming models for pro-
duction planning produced results incompatible with those suggested by simulation 
models and queueing analysis. Their wide use suggests that many researchers and 
practitioners find them sufficient to their purposes, and these approaches indeed 
have several advantages, most notably transparency to the user and computational 
tractability. However, research over the last three decades, in which we have partici-
pated, has produced a body of results allowing a more comprehensive view of 
these issues.

This monograph seeks to bring together in one volume the state of the art in the 
domain of production planning at the time of writing, beginning with the different 
frameworks in which this work is deployed in industry, the principal approaches by 
which these problems have been addressed, and their strengths and limitations. The 
latter half of the book focuses on recent work that seeks to bridge the gap between 
deterministic optimization and queueing, by using ideas from the latter to develop 
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metamodels of system behavior that can be incorporated effectively in the former—
clearing functions. Our intention is that the interested reader can find all the material 
they need to understand the basic issues arising from this body of work and the vari-
ous solution approaches deployed to date. We hope that by the end of the volume the 
reader will agree with us that there are still many interesting and challenging 
research problems in the domain of production systems, which big data and increas-
ingly powerful commercial optimization and simulation software open to new 
approaches.

The two of us arrived at this body of work through quite different paths—Uzsoy 
through production planning and scheduling in semiconductor manufacturing, and 
Missbauer from production planning and control concepts and workload control. 
This collaboration Correct sentence should read “This collaboration that began with 
a chance meeting at the INFORMS International Conference in Istanbul in 2004 has 
led us to learn from each other and from the numerous students and collaborators 
with whom we have interacted along the way. Many have contributed to our under-
standing of this material and to the body of research as their extensive presence in 
the bibliography suggests. Special thanks are due to the students of ISE 789 at NC 
State in the Fall of 2017, who were subjected to an early draft of the book and 
offered extensive, constructive feedback which improved both content and presen-
tation very significantly.

We would also like to express our deep appreciation for the ongoing support and 
encouragement we have received from the Springer personnel during this effort, 
starting with Gary Folven, and later Neil Levine and Matt Amboy, as well as the 
Series Editor, Professor Fred Hillier.

Reha Uzsoy would like to acknowledge the support of the National Science 
Foundation and Intel Corporation and by the Edward P.  Fitts Department of 
Industrial and Systems Engineering at North Carolina State University. And, as 
ever, he owes his family—Lucia Mendez, Isabel, and Ana Sofia—and his parents, 
Nancy and Safak Uzsoy—a debt of gratitude for their love, patience, and support 
that cannot be measured, only acknowledged.

Hubert Missbauer would like to thank the members of the Production and 
Logistics Management team at the University of Innsbruck who supported this 
work. He especially thanks Stefan Häussler for critical reading and helpful sugges-
tions, Alexander Lohr for his help in finishing the manuscript, and the secretaries 
Güler Ammann, Birgit Baldan, Pia Dialer, Julia Egger, and Simone Kirchner for 
typing the difficult text in a foreign language. This work is in loving memory of his 
late parents, Karl and Wilhelmine.

Innsbruck, Austria� Hubert Missbauer 
Raleigh, NC, USA � Reha Uzsoy  
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Chapter 1
Introduction

In this chapter, we lay out a generic conceptual framework for the production plan-
ning and control (PPC) problems in discrete parts manufacturing systems. We argue 
that a PPC system must address two distinct problems: coordination of material 
flow across the different production units making up the supply chain and effective 
control of the detailed production activities within the different production units. 
The first of these is the task of the planning level. Since the production units are 
managed autonomously and their internal operations are not under the direct control 
of the planning level, order release becomes a crucial function linking the two lev-
els. We illustrate the application of these ideas to structure the PPC problems in two 
quite different environments: semiconductor wafer fabrication and manufacturing 
of optical storage media (CDs and DVDs). We conclude the chapter with an outline 
of the remainder of the volume.

1.1 � The Production Planning and Control Problem

Any manufacturing firm must have some formal or informal system to decide how 
much of what product is to be made when, to ensure that all materials needed for 
production are on hand when needed and that products are delivered to customers 
on time. This task is referred to in the literature as production planning and control 
(Hopp and Spearman 2008; Buzacott et al. 2013) or manufacturing planning and 
control (Vollmann et al. 2005; Jacobs et al. 2011). Since value-adding processes in 
industry are increasingly distributed among multiple supply chain partners such as 
manufacturers, distributors, and third-party logistics providers, efficient production 
requires coordination not just within the production system itself but across all enti-
ties within the supply chain. Planning and control of material flow through the sup-
ply chain, in turn, require coordination with functional areas such as investment/
finance, strategic planning, human resources, marketing, and sales. The terms plan-
ning and control accurately reflect the nature of these tasks: “planning” that 
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coordinated decisions must be made over time and “control” that the progress of 
work through the production and distribution network must be monitored to ensure 
it proceeds as planned. Throughout this volume, we shall refer to the generic set of 
planning and control procedures used by a firm for this purpose as a production 
planning and control (PPC) system.

Even in this age of powerful computing, vast data storage, extremely cheap sen-
sors, and, for all practical purposes, instantaneous data transfer, the amount of infor-
mation and computing required for centralized control of large manufacturing 
enterprises remains prohibitive. Hence firms are organized into smaller subunits 
focused on meaningful subsets of the production and distribution processes, or spe-
cific support functions such as sales, marketing, and human resources. The internal 
processes of these subunits are usually opaque to other units, requiring the specifi-
cation of protocols to coordinate their activities. Hence in a manufacturing firm of 
any size, both the authority and the expertise for management decisions are distrib-
uted across different organizational units. Another important source of complexity 
is the need to coordinate decisions made over quite different time scales. Factories 
operate essentially in continuous time, new products may be introduced several 
times a year, while sequence-dependent setup times may require weekly or monthly 
lot sizing computations for critical equipment.

In this volume, we adopt the view of PPC systems for discrete parts manufacturing 
suggested by Bertrand et al. (1990) and extended to supply chains by de Kok and 
Fransoo (2003). These authors view a production system or supply chain (henceforth 
simply the production system) as a network of production units, which, in turn, are 
defined as groups of production resources managed as an autonomous unit and 
responsible for completing a well-defined portion of the production process required 
by the firm’s final products. Each production unit consists of one or more workcenters, 
groups of machines performing a set of related processing steps, and the products may 
require processing at several production units before delivery to the customer.

This framework poses two fundamental problems to ensure the timely and profit-
able delivery of finished products to customers: coordinating the flow of material 
between production units and the efficient execution of activities within the produc-
tion units themselves. This suggests a two-level, hierarchical approach to produc-
tion planning and control in which the upper, planning, level addresses the material 
coordination task by specifying coordinated production targets leading to the 
desired combination of inventory levels and output across the entire system. This 
also requires that the planning level determine the use and adjustment of capacity 
over time based on appropriately aggregated demand information. Hence the plan-
ning level performs planning and control of the material flow through the entire 
production system using only an abstract representation of the production units. We 
refer to this planning and control problem as the goods flow problem, as in the term 
goods flow control introduced in Bertrand et al. (1990: 29 ff.).

The internal operations of each production unit are directed by its local manage-
ment to achieve the production targets set by the planning level, constituting the 
lower, scheduling and control, level of the planning and control system. This, in its 
most general definition, allocates the individual unit operations of a particular prod-
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uct to specific machines or workers, determining their sequences and exact timing 
(Pinedo and Chao 2005; Pinedo 2012). Since it has no control over the internal 
operations of the production units, the planning level requires a model of how the 
production units convert their inputs—obtained from suppliers or other production 
units—into outputs that become available to other production units over time. These 
predictive models of production unit performance, referred to as anticipation func-
tions (Schneeweiss 2003), lie at the heart of the research described in this volume.

The essential interface between the planning and scheduling levels is order 
release. The planning level coordinating the production units issues production 
orders that specify the particular product or component to be produced, the amount 
to be produced, and the dates by which the order must be completed by each produc-
tion unit. The amount to be produced for each order (its lot size) determines its setup 
and processing time, and setup times may be sequence-dependent. Control over the 
production orders then passes to the detailed scheduling level within the production 
units concerned. Thus the planning level has no direct access to the exact timing of 
individual processing steps (operations) performed on the production orders, but can 
only decide their required due dates and when to release them to the scheduling 
level, i.e., to the control of the local management of the production unit in question. 
Hence in this view, production planning models are actually order release models 
since only order releases can be executed by the planning level; at the planning level, 
the completion time of a production order is not a decision but an estimate.

This separation of the planning task of determining production targets for the 
different production units from that of executing the plans through detailed schedul-
ing and shop-floor control is the primary motivation for the research in this volume. 
In order for the firm to perform effectively, the planning function must coordinate 
the material flows across the different production units effectively; if it fails to do so, 
some production units may be idle waiting for material from others, substantial 
inventories may accumulate between some production units, or, frequently, both. 
Effective coordination of the material flow, in turn, requires that the planning level 
be cognizant of the capabilities of the production units it seeks to coordinate, at least 
to the point of ensuring a reasonable probability that they can complete the tasks 
assigned them in a timely manner.

It is possible, in principle, to build highly detailed models of the capabilities of 
each production unit and use these to compute detailed schedules, at the level of 
individual processing steps, for all production units across the entire enterprise. This 
can, in fact, be done in smaller firms with simple production processes whose capa-
bilities are relatively easy to determine. However, for complex products such as cars 
or machine tools, where thousands of components, each requiring its own produc-
tion process that, in turn, requires multiple unit operations, must be assembled into 
the final product, this approach is impractical due to the volume of information 
required and the complexity of the resulting planning procedures. Although in prin-
ciple detailed scheduling can be interpreted as a planning activity, it turns out that, 
especially in discrete manufacturing, it is so closely linked to rescheduling and 
other control activities that separating the scheduling and control tasks does not 
reflect the actual decision structure (McKay and Wiers 2004).

1.1  The Production Planning and Control Problem
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This structuring of the production planning and control system into a planning level 
and a scheduling and control level is common to virtually all frameworks proposed to 
address the production planning and control task, especially in discrete manufacturing, 
indicating a broad consensus across the research and practitioner communities that 
centralized solution of these problems is neither practical nor desirable. In most large 
manufacturing firms, the complexity of the planning task itself is such that it must be 
decomposed into smaller subtasks operating on different time scales with different 
types of information; thus, the planning level is itself hierarchical.

Process industries such as steelmaking, continuous chemical processing, or 
paper production often exhibit substantially different characteristics that do not 
allow a straightforward decomposition into planning and scheduling levels. This is 
because the technical characteristics of facilities and products, such as sequence-
dependent setups and sequencing constraints leading to cyclic production with long 
production campaigns, or constraints on the amount of time intermediate products 
can wait between operations, require close coordination between workcenters. In 
such environments, the scheduling decisions strongly influence the planning level’s 
decisions, requiring specific decision structures. PPC systems for the process indus-
tries are discussed by Gunther and van Beek (2003) and Floudas and Lin (2004, 
2005), while Tang et al. (2001) and Missbauer et al. (2011) discuss the particular 
case of steel plants. Local scheduling of groups of production resources organized 
into semiautonomous units similar to the production units defined above can also be 
observed in these environments, but the coordination protocol can be different from 
the planning–scheduling hierarchy described above. For example, Cowling and 
Rezig (2000) use heterarchical, negotiation-like concepts to coordinate continuous 
casting and hot rolling in steel plants. Therefore, the following description primarily 
holds for discrete manufacturing, although similar structures are often observed in 
process industries as well.

For the firm to operate, the planning level must eventually provide the production 
units or the manufacturing system as a whole with a build schedule specifying what 
is to be built when in terms of specific items and specific time points—whatever the 
process used to reach these decisions. This build schedule must be defined at the 
level of the individual items that constitute the output of each production unit or, at 
a minimum, at a sufficient level of detail that specific production targets for the 
production units can be derived and the necessary scheduling activities within the 
production unit can proceed. The problem is essentially that of matching the supply 
provided by the production units over time to the demand for final products in the 
best possible manner. The “best possible manner,” of course, can vary widely based 
on the specific firm and production environment being considered. Substantial com-
plications arise in practice from the need for the build schedule to reconcile the 
longer-term, often conflicting requirements of different functional groups within the 
firm. A product development unit may request scarce manufacturing capacity to 
validate a new product design; sales may insert a small, uneconomic production 
order that they believe may bring additional business in the future. Trade-offs of this 
nature are difficult to capture directly in a business process, let alone an optimiza-
tion model, and involve negotiation between the different functional units.

1  Introduction
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This discussion has several implications. Firstly, deriving a build schedule that 
successfully reconciles the requirements of sales, production, and other functional 
areas is a complex negotiation process that can be supported by optimization mod-
els, but in all but the simplest cases cannot be, and probably should not be, fully 
automated. Secondly, whatever its internal structure, the planning level must trans-
late the build schedule into capacity-feasible production targets—usually communi-
cated in the form of production orders and their required due dates—for the 
production units. How this is accomplished will largely depend on the complexity 
of the products (e.g., their bill of material (BOM) structure) and their production 
processes (e.g., the importance of setup or batching requirements). Finally, detailed 
scheduling is not just a planning level defined for complexity reduction: it is a dis-
tinct decision function performed by the management of the production units, who 
are autonomous decision makers with their own targets, objectives, and domain 
knowledge. However, the decision space of the scheduling and control level is 
largely determined by the output targets that the planning level assigns to the pro-
duction units. Since, as will be discussed in Chap. 2, the production unit can be 
usefully viewed as a queueing system, these output targets must be consistent with 
the production unit state variables like work in process inventory (WIP) levels and 
output rates. Ensuring that the production targets can be met with the resources 
available to the production units requires maintaining the state variables describing 
the production units at their desired values.

This leads to two questions. The first is how the build schedule of final products, 
whether for the entire production system or for portions of it such as production 
sites, is formulated. The second is how the production targets for the production 
units, usually described by a set of production orders with their release dates and 
required due dates, are derived from this build schedule. The answers to these ques-
tions largely determine the structure of the planning level of the PPC system. A still 
ongoing process of conceptual and software development that started about 1960 
has led to two principal proposals for the structure of the planning level: the 
Manufacturing Planning and Control framework described by Vollmann et  al. 
(2005) and Jacobs et al. (2011) and the Advanced Planning Systems (APS) frame-
work (Stadtler et al. 2015), which are discussed in Chap. 3.

Whichever of these frameworks is adopted, the problem addressed in this volume 
remains important: the computation of capacity-feasible release schedules for each 
production unit that meet the output targets set by the planning level in the best pos-
sible way. However, the production units may not be able to meet the output targets 
corresponding to the build schedule for every product in every period due to the 
necessarily aggregate, incomplete nature of the computations used to obtain the 
output requirements at the planning level. Hence the output targets derived from the 
build schedule must often be refined by a subsequent decision level that receives 
these output targets as input and computes the size and timing of the production 
orders, specifying the amount of material for each product that is to be released to 
each production unit over time, together with their required due dates. Thus, the 
output targets generated by the planning level act as the demand for the products or 
stock-keeping units produced by the production units and will be used in this sense 
in the order release models described from Chap. 3 onwards.

1.1  The Production Planning and Control Problem
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Since the production units represent autonomous decision-making units, coordi-
nation norms between the planning and scheduling levels are necessary to deter-
mine what output targets can be requested by the planning level with reasonable 
hope of timely delivery by the scheduling level. A great many firms use planned 
lead times as an estimate of the time that will elapse between the work being released 
into the production unit and its emergence as finished product that can be used to 
meet internal or external demand. A maximum capacity loading, on the other hand, 
specifies an upper limit on the amount of work, usually measured in units of time 
required on a critical resource, that can be released to a given production unit in a 
planning period. The most common approach in practice is for the planning level to 
assume a constant planned lead time for each production order at each production 
unit, which the production unit commits to meeting as long as the agreed-upon 
maximum capacity loading is not exceeded. Thus effective management of cycle 
times, the time between the release of the production order to the production unit 
and its completion by the production unit, and correct specification of the planned 
lead times and maximum allowable capacity loading, which represent the capabili-
ties of the production unit to the planning level, are of utmost importance. Serious 
discrepancies between the planned lead times used by the planning level and the 
cycle times realized in the production units lead to problems, usually the simultane-
ous presence of high WIP levels and poor on-time delivery performance.

This combination of fixed planned lead times and a maximum capacity loading 
is only one possible set of coordination norms. Relaxing the assumption of fixed 
lead times may allow cycle times and capacity loading to be better adapted to the 
output targets eventually determined by the planning level. If the planning level 
could accurately predict the consequences of its order release decisions on the 
amount and timing of the production units’ output over time, it could better adjust 
capacity loading and output targets to their capabilities. This, in turn, requires more 
sophisticated anticipation of the production units’ capabilities as well as optimiza-
tion models for order release that can exploit this anticipation. The formulation of 
mathematical programming models for the computation of capacity-feasible release 
schedules with enhanced anticipation functions is the central topic of this volume.

We now illustrate the application of these ideas to the structuring of PPC systems 
in two different industries: semiconductor manufacturing and the manufacturing of 
compact discs (CDs).

1.2 � Applications of Hierarchical PPC Systems

1.2.1 � Semiconductor Manufacturing

The process by which very large-scale integrated circuits are manufactured can be 
divided into four stages as shown in Fig. 1.1: wafer fabrication, wafer probe, assem-
bly or packaging, and final testing (Uzsoy et al. 1992, 1994; Moench et al. 2013).

1  Introduction
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Fig. 1.1  Basic steps of the semiconductor manufacturing process (Uzsoy et al. 1992)

Wafer fabrication is the most technologically complex and capital-intensive of 
all four phases. It involves the processing of wafers of silicon (or another semicon-
ductor material such as gallium arsenide) to build up layers of patterned metal and 
wafer material to produce the required circuitry. The number of unit operations can 
reach several hundred for a complex component such as a microprocessor. To pre-
vent particulate contamination of the wafers, processing must take place in a clean-
room environment referred to as a wafer fab, or fab for short. Material moves 
through the fab in lots, usually of a standard size determined by the material han-
dling system in use. While the specific operations vary with the specific product and 
technology in use, the basic operations can be described as follows:

Cleaning: The removal of particulate matter from the wafer before a layer of 
circuitry is fabricated.

Oxidation, deposition, metallization: A layer of material is grown or deposited 
on the surface of the cleaned wafer. Extensive setup times are involved in switching 
from one type of operation to another, resulting in machines being dedicated to a 
limited number of operations.

Lithography: This is the operation requiring greatest precision. A photoresistant 
liquid (photoresist) is deposited onto the wafer and the circuitry defined using pho-
tography. The photoresist is first deposited and baked. It is then exposed to ultravio-
let light through a mask that defines the pattern of the circuit. Finally the exposed 
wafer is developed and baked.

Etching: In order to define the circuits, the exposed material is etched away. This 
may be accomplished through wet etching, where the wafer is immersed in a liquid 
that removes the exposed material, or dry etching, where the operation is carried out 
by exposure to gas that produces a chemical reaction resulting in the removal of 
unprotected material.

Ion implantation: Selected impurities are introduced in a controlled fashion to 
change the electrical properties of the exposed portion of the layer.

Photoresist strip: The photoresist remaining on the wafer is removed by a pro-
cess similar to etching.

1.2  Applications of Hierarchical PPC Systems
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Inspection and measurement: The layer is inspected and measured to identify 
defects and guide future operations.

This sequence of operations is repeated, with variations, for each layer of cir-
cuitry on the wafer. Detailed descriptions of the technologies used in wafer fabrica-
tion can be found in texts on this subject such as Doering and Nishi (2007).

In wafer probe, the individual circuits, of which there may be hundreds on each 
wafer, are tested electrically, and the locations of circuits that fail to meet specifica-
tions are recorded for each wafer. The wafers are then cut into individual circuits 
and the defective circuits discarded.

In assembly the circuits are placed in plastic or ceramic packages that protect 
them from the environment, and leads are attached to allow the devices to be 
mounted on printed circuit boards. Since a given circuit may be packaged in many 
different ways, there is a great proliferation of product types at this stage. After 
leads are attached and the package sealed and tested for leaks and other defects, the 
product is sent to final test.

The goal of the testing process is to ensure that customers receive a defect-free 
product by using automated testing equipment to determine whether each integrated 
circuit is operating at the required specifications. An interesting aspect of the final 
testing process is that of binning, where a device manufactured to a particular speci-
fication may fail to meet that specification but may be acceptable for a lower grade 
of product (Moench et al. 2017). This also allows the possibility of downgrading, 
where a higher-grade product may be substituted for a lower grade one if necessary. 
For example, a microprocessor with a clock speed of 4 MHz can be used to meet 
demand for a 3 MHz device if the manufacturer deems it profitable to do so. Hence 
a given product may have several alternative bills of material, which the planning 
level must consider in its decisions. The ongoing evolution of products and manu-
facturing processes often results in significant differences in production capabilities 
and costs between different wafer fabs, with more recently built plants capable of 
processing both older and newer products while older fabs can process only older 
ones. A similar phenomenon occurs within individual fabs; newer equipment can 
process both older and newer products, while older equipment cannot produce the 
newer devices that usually have smaller feature sizes (line widths). Hence a given 
product can be produced using several alternative bills of material (due to the pos-
sibility of substituting different devices raised by binning), alternative processing 
recipes within an individual fab, and also in alternative fabs, whose production costs 
may differ substantially.

Several factors make production planning and scheduling in the semiconductor 
industry particularly difficult (Moench et  al. 2017). The presence of alternative 
processing recipes and alternative equipment for different processing steps within 
fabs complicates the interface between the planning and scheduling levels, making 
it difficult for the planning level to gain an accurate picture of the capabilities of the 
production facilities. The presence of alternative bills of material requires any effec-
tive planning system to consider multiple production units (fabs). Uncertainty is 
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pervasive throughout the supply chain, which is subject to significant business 
cycles and short product life cycles. The overall yield of the supply chain, defined 
as the fraction of raw material introduced into the fab that completes all four stages 
of the manufacturing process as salable devices at their original specification, varies 
over time due to rapid evolution of technology and products that often does not 
allow time for extensive process and equipment optimization. Finally, the extremely 
high capital cost of production facilities and skilled personnel, especially for wafer 
fabs, means that these facilities must operate at high levels of utilization to be eco-
nomically viable. As we shall see in Chap. 2, this requires them to operate in a 
regime where the anticipation function consisting of fixed planned lead times and 
maximum capacity loading becomes increasingly problematic.

The focus of supply chain management in the semiconductor industry is on 
reducing production costs and cycle times while improving quality and delivery 
time performance. Major factors affecting costs are yield, labor, materials, inven-
tory, equipment and facility depreciation, and equipment utilization. Historically, 
the major forces in the industry were the integrated high-volume manufacturers of 
standard products such as microprocessors and memory devices. In these supply 
chains, a common approach is to buffer the wafer fabs against fluctuations in exter-
nal demand by holding inventories of probed die, referred to as die bank inventories, 
between the front-end and back-end operations. This allows the fabs to operate in a 
make-to-stock mode at a level production rate, with production lots rarely being 
associated with a specific customer order or due date. Together with the high capital 
costs, this results in strong emphasis on maintaining high throughput and equipment 
utilization while reducing both the mean and the variance of cycle times and 
inventories.

Recent decades have seen the rapid growth of foundry operations, where prod-
ucts designed by other companies are manufactured to order, due to the ever-
increasing capital cost of new fabs (Chou et al. 2007). This prevents many firms that 
design circuits from building their own production facilities and motivates manufac-
turers to seek economies of scope by producing devices for other firms using their 
own excess capacity. Hence these foundries produce a wide range of products for 
different customers, usually with a common manufacturing process, emphasizing 
the effective management of individual orders to maintain reliable delivery perfor-
mance. The make-to-order nature of foundry operations prevents the producing firm 
from using inventories to smooth production rates at the factory. Many firms address 
these issues through increasingly complex contracting arrangements between 
designing and producing firms (Shirodkar and Kempf 2006; Milne et  al. 2015). 
These contracting arrangements impose a number of constraints on the PPC system, 
since they require the firm to satisfy a variety of clauses such as minimum volumes, 
maximum change in order from month to month, and significant changes in prices 
depending on the timing and volume of orders (Knoblich et al. 2011, 2012, 2015; 
Wu et al. 2014). Extensive discussion of these issues is given in Moench et al. (2017).

1.2  Applications of Hierarchical PPC Systems
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1.2.1.1 � The PPC Problem

The semiconductor industry has been a global industry from its earliest days, with 
many firms operating plants in North America, Europe, and Asia. Thus the PPC 
system must manage the flow of material through this global network to customers. 
This involves determining which demands will be met from which factories; how 
probed die will be moved from front-end to back-end operations; and how packaged 
and tested devices will be routed to their final customers through distribution cen-
ters in different countries.

The overall planning cycle in a typical firm begins with the collection of demand 
forecasts from different sources in the firm. The sales and marketing organization 
obtains sales estimates from its field sales force, which are then aggregated by geo-
graphical regions (e.g., North America, South Asia) and product families (server 
CPUs, laptop CPUs, auxiliary chipsets such as graphics processors, flash memory). 
This information is supplemented with input from the research and development 
organizations as to when new products and manufacturing processes will become 
available for introduction into the plants, and plans for the construction of new 
plants and the decommissioning of older ones.

Given these complex and constantly changing inputs, which are subject to con-
siderable uncertainty, the PPC system must consider multiple production units 
(fabs, probe, assembly, and testing facilities) as well as possibly outsourcing of 
certain portions of the process. The presence of alternative manufacturing routings, 
both within facilities and across different facilities, and alternative BOMs due to 
binning adds considerable complexity. Fordyce et al. (2011) and Leachman et al. 
(1996) present detailed descriptions of PPC systems implemented at IBM and 
Harris semiconductor, respectively. Ahmadi et  al. (1999) discuss another system 
implemented at Advanced Micro Devices. Eventually, however it is accomplished, 
a build schedule of specific wafer types for each manufacturing process within each 
facility must be obtained, and the quantity of each type of wafer to be released to 
each facility over time determined. The PPC systems described above all accom-
plish this, although in somewhat different ways.

The productive capacity of a wafer fab resides in the different types of produc-
tion equipment located within the facility. This equipment is usually organized by 
function, according to the basic manufacturing process it performs, such as ion 
implantation, lithography, dry etch, metal deposition, and so on. A typical fab will 
generally have between 80 and 100 such equipment groups, which we shall refer to 
as workcenters. The equipment within a workcenter is seldom completely homoge-
neous; it usually represents several generations of technology, so that not all prod-
ucts can be processed on all machines, while some process steps can be processed 
on several different machines within the workcenter with different processing times 
and yields (Leachman and Carmon 1992; Johri 1994; Bermon and Hood 1999). 
Workcenters often contain additional equipment supporting the basic process being 
performed; for example, an etching workcenter may contain cleaning equipment to 
remove particulate contamination from wafers prior to etching and metrology 
equipment for process monitoring.
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Wafers move through the fab in lots whose size is dictated by the material han-
dling interfaces of the automated production and material handling equipment 
within the fab. The release of a lot into the fab requires considerable processing to 
prepare the raw material and set up the information systems necessary to track the 
lot and its associated data throughout the production process. Once a lot is released 
to the shop floor, its progress is tracked using an automated Manufacturing Execution 
System. Responsibility for its progress, and control of when and how it is processed 
at the different workcenters it requires, now rests with the management of the work-
centers through which it must pass. This is accomplished by a combination of 
detailed scheduling, generally involving some form of dispatching rule, with man-
ual intervention and expediting by shop-floor management as necessary (Moench 
et al. 2013).

Thus the primary control variable exercised at the planning level is the release of 
lots into the fab; once a lot is released, its progress is controlled by fab management 
and cannot be directly influenced by the planning level, although shop-floor infor-
mation systems generally allow monitoring of its progress. A number of alternative 
approaches for managing the release of lots into the fab have been discussed in the 
literature (Uzsoy et al. 1992, 1994; Moench et al. 2013). Several of these are based 
on variations of the workload control concept discussed in Chap. 4, while others use 
an optimization model. In order to be effective, however, an optimization model for 
release planning must incorporate a mechanism for assessing the impact of its deci-
sions (in this case, weekly order releases) on the ability of the workcenters to com-
plete processing of the lots by the desired time. The clearing functions we introduce 
in Chap. 7 form the basis of this mechanism, serving as anticipation functions that 
permit the fab-level planning problem to estimate the performance of the fab under 
specific release decisions. This allows us to formulate optimization models that 
account for these impacts and have been tested on several large data sets drawn from 
this industry (Kacar et al. 2012, 2013, 2016). We present some of these results in 
Chap. 10.

1.2.2 � CD/DVD Manufacturing

Production of optical storage media (CDs, DVDs) has a much simpler material flow 
structure than semiconductor manufacturing. Hence we use this example to illus-
trate the PPC problem encountered in a small- to medium-sized company producing 
discrete products with a simple bill of material (BOM) structure in a make-to-order 
environment. The central issue is the coordination of the production targets and the 
resulting state of the production unit with customer orders; material coordination 
across multiple production units is not necessary.

We consider a customer-driven optical storage media producer making about 
90,000,000 CDs and DVDs per year to fill approximately 31,500 customer orders. 
The basic production process is divided into five stages as follows:
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Premanufacturing: Each customer provides the data to be reproduced, which is 
written to a silicon or glass master about 20 cm in diameter, referred to as a stamper, 
with a laser beam that records the information to be replicated by producing tiny 
indentations on the polycarbonate known as pits and lands. The stamper is then used 
to make a disc ingot for further duplication.

Graphics: The graphics department produces the covers of the discs according to 
the design provided by the customer. This involves making print stencils for the dif-
ferent printing technologies (serigraphy or offset printing).

Manufacturing: After the stamper is made, the disc duplication using molding 
machines begins. A syringe injects a heated liquid polycarbonate at approximately 
360 °C, producing a disc that contains digital information but cannot be scanned 
since at this stage it is completely transparent. After a brief cooling, the side of the 
disc containing the information is covered with a layer of silver, aluminum, or gold, 
followed by a layer of lacquer that reflects the laser beam, permitting the disc to be 
read. After an inspection, the discs are collected on a spindle.

Printing: Depending on their quality requirements, the disc labels are applied to 
the discs using either serigraphy or offset printing presses. The principal difference 
between these techniques is that for serigraphy printing machines, the mesh has to 
be cleaned after each order and the colors have to be prepared beforehand. The off-
set printing machines use the CMYK colors (cyan, magenta, yellow, black), requir-
ing only a stencil change after each order.

Packaging: All orders are sent to fully- or semiautomated machines where the 
covers, booklets, inserts, etc. are added to the discs and packaged according to the 
customer’s need (boxes, paper bags, trays, etc.).

The premanufacturing and graphics stages do not pose substantial planning 
problems, so they are not included in the following discussion.

Figure 1.2 depicts the workflow through the production facility, which is orga-
nized as a flexible flow shop. Work flows from left to right in the diagram as each 
product moves through a subset of the 29 machines on the shop floor. The flow of 
materials required for printing and packing is depicted by the vertical arrows into 
the respective departments. The manufacturing stage is organized into two areas, 
CD and DVD production, consisting of ten and six identical machines, respectively. 
The printing stage is organized into three areas by printing technology: the serigra-
phy area (SD) (three machines) and two offset areas (KOD, MOD) consisting of 
three machines and a single machine, respectively. The packaging stage consists of 
four areas, V1–V4, for different packaging with usually two machines, which may 
not be identical, in each area. The system operates 24 h per day, 7 days a week. 
Bottlenecks generally occur at the printing and packaging stages due to the varying 
product mix.

The manufacturing system is a flexible flow shop (Pinedo 2012), where all prod-
ucts are processed by exactly one machine in each stage, yielding 2 × 3 × 4 = 24 
possible production routes, all of which occur in practice. Since machines are only 
interchangeable within areas, temporary bottlenecks can occur, so releasing an 
order mix that leads to balanced workloads across the areas is desirable.
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Fig. 1.2  Structure of optical media production system

1.2.2.1 � The PPC Problem

The material flow and BOM structure in this application are both relatively simple. 
Although packing can be considered an assembly operation since it requires the 
simultaneous availability of the discs, packing material, and booklets, separate 
assembly orders are not necessary. Therefore, the entire three-stage production sys-
tem can be treated as a single production unit.

Production planning is driven by customer orders. The time between the arrival 
of an order and its latest start date ranges from zero to about 10 days and follows a 
historically known distribution, largely determining the opportunities for produc-
tion smoothing and load balancing across machines. The delivery date assigned to a 
customer order may be delayed if the customer fails to provide necessary material 
or information (e.g., booklets). Hence matching demand and capacity by controlling 
order acceptance is difficult because due date changes can lead to situations where 
demand temporarily exceeds capacity which must be resolved at the planning level.

The number of discs in a customer order varies substantially. In order to reduce 
variability in the material flow, large customer orders are divided into smaller pro-
duction orders of about 3500 discs that are processed independently. The processing 
times of these production orders in the manufacturing and printing departments are 
of the order of 0.1–0.25 shifts on average, depending on the machine group, and 
substantially lower on the packing lines. This represents less than 10% of the aver-
age cycle time of the overall process.

Since the manufacturing system operates 24 h a day, 7 days a week, capacity 
cannot be expanded by overtime. Releasing orders based on their planned due dates 
alone may leave some machines temporarily idle while overloading others, result-
ing in poor due date performance and low utilization. Hence both load leveling over 
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time and load balancing among workcenters are necessary to avoid releasing an 
order mix that causes shifting bottlenecks. This is partly addressed by informal 
dispatching mechanisms: the shop-floor Manufacturing Execution System (MES) 
provides information on the queue lengths at the machine groups, allowing sequenc-
ing decisions at upstream workcenters to prioritize work away from overloaded 
workcenters.

In the terminology of this chapter, the planning level sets preliminary due dates 
for the customer orders (orders are accepted whenever possible), derives production 
orders from the customer orders (which in this case is rather simple), and releases 
the production orders to the manufacturing system which is organized as a single 
production unit. While the material coordination task is very simple, controlling the 
workload at the workcenters is important due to the inflexible working hours and the 
possibility of temporary bottlenecks. While at the time of this analysis, workload 
control was performed by the dispatching policy in the informal system, redesign-
ing the production planning level would formalize this logic at the order release 
level, coordinating order release and order acceptance/due date setting to reduce 
WIP and cycle time. This can be done by various methods discussed in the follow-
ing chapters and is possible due to the presence of a significant time interval between 
order arrival and latest release time.

1.3 � Contributions and Perspectives of This Volume

The remainder of this volume assumes that production orders specifying the prod-
uct or item to be manufactured, the quantity to produce and the required due dates, 
are available and have been generated by the planning level of whatever PPC system 
the firm in question is using. However, it may not be possible to complete all pro-
duction orders by their required due dates due to discrepancies between available 
and required capacity. Hence order release must perform production smoothing and 
control the system state of the production units simultaneously. This requires mod-
els of the production units that can accurately anticipate the impact of release deci-
sions on the time-dependent WIP, cycle times, and output. The volume mainly deals 
with mathematical programming models for order release that incorporate such 
anticipation models.

Much of the work in this volume focuses on a particular family of anticipation 
functions, referred to as clearing functions, which seek to represent the potential 
output of a production unit in a planning period as a function of a set of variables 
describing the state of its workcenters at the start of that period. This approach, 
which originated in the late 1980s, has been the subject of renewed interest in the 
last two decades. The approach can be viewed as treating each workcenter as a 
queue or queueing network, and then building a metamodel for this queueing sys-
tem that is amenable to incorporation in a mathematical programming model. This 
leads to nonlinear mathematical programming formulations that differ substantially 
from previous approaches based on exogenous planned lead times. We compare 
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these two formulation approaches in terms of their view of production systems, and 
the information they can provide to users. We then discuss alternative approaches to 
the formulation of clearing functions, their incorporation into mathematical pro-
gramming models, and the strengths and weaknesses of the approach. Our objective 
is to bring together in a single volume the relevant literature on this approach, which 
spans a wide range of journals over an extended period of time, so that the interested 
researcher or practitioner has easy access to this material.

1.4 � Outline of This Volume

In Chap. 2 we motivate the main ideas of the book by discussing the relation between 
workload and cycle times in production resources that can be modeled as queueing 
systems.

Chapter 3 discusses the concepts of structuring the planning level that generates 
the production orders, beginning with the MPC concept based on MRP/MRPII and 
the hierarchical planning concept that provides the basis for Advanced Planning 
Systems (APS). Chapter 4 then describes the workload control (WLC) concept that 
aims at controlling, as opposed to merely predicting, cycle times by releasing the 
right amount and mix of production orders, and describes workload control systems 
for a single production unit that do not incorporate optimization models. Chapter 5 
then describes optimization models for planning the aggregate material flow and 
order release for multiple planning periods using the conventional coordination 
mechanism of planned lead times and maximum allowable capacity loading, assum-
ing that the planned lead times remain constant over time.

Chapter 6 discusses the more complex situation that arises when the planned lead 
times can vary over time and then examines multi-model production planning 
approaches that use a detailed simulation or scheduling model to represent the inte-
rior workings of the production units while capturing goods flow decisions in a 
mathematical programming model. These approaches combine well-known math-
ematical modeling techniques familiar to practitioners (usually linear programming 
and discrete-event simulation), but the principles governing their convergence and 
solution quality are not yet well understood, although recent studies are beginning 
to shed light on these aspects.

Chapters 7 and 8 discuss an alternative anticipation mechanism, the clearing 
function, proposed by a number of authors (Graves 1986; Srinivasan et al. 1988; 
Karmarkar 1989) starting in the late 1980s. In its most basic form, a clearing func-
tion represents the capabilities of a production resource as a relation between some 
estimate of the work available to the resource in a planning period and its expected 
output in that period. Chapter 7 focuses on univariate clearing functions. We first 
discuss alternative ways to estimate clearing functions, considering ideas from 
queueing models, traffic modeling, and empirical data analysis. We implement the 
most common form of a clearing function, a saturating, concave non-decreasing 
function of the workload, in an optimization model that differs in several ways from 
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the conventional models based on planned lead times and capacity limits. We then 
identify a major disadvantage of this formulation, which we address by the Allocated 
Clearing Function formulation. We also analyze the dual of this formulation, which 
allows the computation of dual prices for resources with utilization below 1, which 
the LP models of Chap. 5 cannot do.

Chapter 8 examines multivariate clearing functions that have been developed to 
address the dependence of the output of a production resource on the longer history 
of the process as well as problems where there are significant interactions between 
products in terms of their capacity consumption, typically setup times. This chapter 
examines the benefits of these enriched representations that, however, often lead to 
non-convex optimization models. Chapter 9 examines the extension of the clearing 
function approach to lot-sizing problems, while Chap. 10 is devoted to applications 
of the clearing function concept to a number of different areas including release 
planning in semiconductor wafer fabrication, dynamic pricing, and modeling of 
process improvements. Chapter 11 concludes the volume with a summary of the 
principal insights from the work reported and discusses several directions for future 
research at length.
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Chapter 2
Workload and Cycle Time 
in the Production Unit

Our description of the PPC problem in Chap. 1 identified the effective management 
of cycle times as a critical link between the planning level and the realized perfor-
mance of the production units it seeks to coordinate. Most of the PPC systems 
prevalent in industry today approach this issue through planned lead times and max-
imum capacity loading, assuming that as long as the capacity loading does not 
exceed the agreed-upon maximum level, the production units will be able to com-
plete work within the planned lead time with high probability. This chapter argues 
that reliance on exogenous planned lead times represents a significant drawback of 
this approach because cycle times through a production unit are, in fact, an outcome 
of the work release decisions made by the PPC system. Since this dependence 
between cycle times and work release decisions lies at the center of the problems 
addressed in this volume, we now discuss the relationship between a production 
unit’s workload and cycle time in more detail.

2.1 � Preliminaries

Per Chap. 1, we follow Bertrand et al. (1990) in viewing a production system as a 
network of production units—groups of production resources such as machines and 
personnel that must perform specific tasks (e.g., particular operations on particular 
production orders by a specified due date) and can exhibit different material flow 
structures such as job shop, flow shop, manufacturing cells, etc. Detailed scheduling 
and resource allocation decisions within the production unit are not visible to, or 
subject to the control of, the planning level. Hence the construction of optimization 
models for planning releases into production units, the primary concern of this vol-
ume, must begin with a viable model of an individual production unit that permits 
anticipation of their behavior by the planning level. Since we seek optimization 
models that are applicable to a wide variety of manufacturing environments, we 
must seek general laws describing the behavior of production units. Laws of this 
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type have been studied extensively in the field of production economics (Fandel 
1991; Hackman 2008), which views production as a transformation process that 
converts input factors (such as labor and machines) into goods and services for 
internal or external customers.

Our focus is on the relationship between the work release decisions made at the 
planning level and the performance measures, particularly work-in-process (WIP) 
inventory levels, cycle times and output, of the individual production units. Since 
the planning level seeks to ensure that supply from the production units matches 
demand for the final products in some “optimal” way, the cycle time, the delay 
between work being released into the production unit and the completion of its pro-
cessing at that production unit, takes on a critical role. Hence we are primarily 
interested in the time dimension of the relationship between factor input, whose 
timing is determined by work release, and the time the work is completed and out-
put of the finished product occurs.

Since, as argued in Chap. 1, the primary actionable decision of a PPC system is 
the quantity and timing of work releases into the production units, the evolution of 
resource workloads over time is determined by decisions at the planning level. 
Queueing models (Buzacott and Shanthikumar 1993; Curry and Feldman 2000; 
Hopp and Spearman 2008), which represent production systems as networks of 
queues, provide useful tools for examining the consequences of planning decisions 
on the WIP levels, cycle times, and output realized at the production units.

2.2 � Insights from Queueing Models

A production unit consists of one or more workcenters, groups of possibly noniden-
tical machines that are managed on the shop floor as a unit. For simplicity of exposi-
tion, we shall frame our discussion in terms of a single production resource, such as 
a machine, whose behavior can be modeled as a queueing system. While production 
units may have multiple machines and complex structures within themselves, the 
problem of how to anticipate their behavior at the planning level is the same in its 
essence, although the resulting queueing models are more complex. Beyond a cer-
tain level of complexity, simulation models are required to describe the behavior of 
many production units as discussed in later chapters.

We consider a single-machine workcenter modeled as a queueing system, closely 
following the development in Chap. 8 of Hopp and Spearman (2008). Production 
orders, which we shall refer to as jobs to avoid confusion with lot-sizing models, are 
released to the production unit and—possibly after being processed at some work-
centers that are not modeled explicitly—arrive at the workcenter under consider-
ation according to some stochastic process. The interarrival times between jobs 
follow a known probability distribution Fa(.) with mean ta and squared coefficient of 
variation (SCV) ca

2. The effective processing times of the jobs, which incorporate 
the effects of disruptions such as setup times, machine failures, and scrap, are inde-
pendent of their arrival times and follow a known probability distribution Fe(.) with 
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mean te and SCV ce
2. Hence the average arrival rate is λ = 1/ta and the average service 

rate μ = 1/te. The cycle time spent by a job in this queueing system consists of the 
time it spends in the queue and the time to complete its processing (including setup), 
and is a random variable determined jointly by the two probability distributions 
Fa(.) and Fe(.). A well-known result (Kingman 1961; Hopp and Spearman 2008) 
states that the steady-state expected cycle time T of this G/G/1 queue (Kendall 
1953) is approximated by

	
T

c c u

u
t t

a e

e e=
+( )

−
+

2 2

2 1 	
(2.1)

where the average utilization of the resource is given by u =  te/ta. Equation (2.1) 
suggests that the expected cycle time is influenced by four quantities: the variabili-
ties of the arrival and service processes, expressed by ca

2 and ce
2, respectively; the 

mean effective processing time te; and the average utilization u of the workcenter, 
which, in turn, is jointly determined by ta and te. The effect of the average utilization 
u is of particular interest for production planning models. The release decisions 
made by the planning level that specify how much work to release to a given pro-
duction unit in a planning period determine the mean arrival rate of work λ = 1/ta to 
the workcenter.

Figure 2.1 shows the behavior of the average cycle time T per Eq. 2.1 as the aver-
age utilization u and the variance term C c ca e= +( )2 2 2/  vary. T increases nonlinearly 
with u, eventually tending to infinity as u approaches 1. This behavior shows that the 
planning level’s work release decisions affect the average cycle time; T is endoge-
nous to the planning decision, not an exogenous parameter unaffected by the plan-
ning process.

Another important observation from Eq. 2.1 is that T is also affected by the vari-
ability ca

2 in the material flow into the workcenter and the variability ce
2 of the pro-

duction process itself. The influence of ca
2 is particularly important since the arrival 

Fig. 2.1  Behavior of average cycle time T of a G/G/1 queue
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process to a workcenter is determined by the departure processes from the upstream 
workcenters that provide its inputs. Hence the average cycle time T at a workcenter 
is affected by how the workcenters upstream of it are managed; variability at 
upstream workcenters will affect the performance of those downstream, as dis-
cussed by Hopp and Spearman (2008) and Godinho Filho and Uzsoy (2014). This 
functional relationship between average WIP and output, average flow time, and 
possibly other performance measures of the production unit is referred to as the 
characteristic or operating curve in the literature (Aurand and Miller 1997; 
Schoemig 1999) and is often estimated by simulation (Yang et al. 2006).

Representing our basic workcenter as a G/G/1 queue allows us to invoke another 
fundamental queueing result. In a production context, the number of customers in 
the queueing system (in the queue or at a server) at a given point in time corresponds 
to the amount of work in process inventory (WIP) at the workcenter, which is a 
random variable we shall denote by WIP, with W = E[WIP] denoting the expected 
WIP level expressed as number of customers or, in our context, jobs. If WIP is mea-
sured in units of the product or amount of work (standard hours) the queueing rela-
tionships given below must be modified accordingly. Following standard queueing 
analysis, let us also assume that we observe the system over a long period of time, 
such that the average rate of arrivals to the production unit is equal to its average 
processing rate. Thus the system is stable with no unbounded increase in the WIP 
quantity, and the expected throughput rate X of the system, the average rate at which 
completed work leaves the workcenter, will be X = λ = 1/ta. Under these conditions, 
Little’s Law (Little 1961; Hopp and Spearman 2008) gives

	
W XT

T

ta
= =

	
(2.2)

This expression has several important implications. For the purposes of manag-
ing a production system to achieve a given average throughput rate X, the average 
WIP level W and average cycle time T are directly proportional. A given throughput 
rate X can be achieved either by controlling the average cycle time T to achieve a 
desired average WIP level W or by controlling the average WIP level W to achieve 
an average cycle time of T = W/X. Loosely speaking, the former approach is associ-
ated with “push” systems such as MRP, where work is released into the production 
unit to meet due dates derived from customer orders or from forecasts of future 
demand. The latter is associated with “pull” systems such as the kanban system used 
in the Toyota Production System (Sugimori et al. 1977; Liker 2004). An excellent 
discussion of the distinctions between, and relative merits of, push and pull systems 
is given by Hopp and Spearman (2004).

Combining Eqs. (2.1) and (2.2), the expected WIP level of the steady-state 
queue is
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The average utilization u can be interpreted as the long-run fraction of time the 
resource will be busy, and thus producing output. Using the average WIP level W as 
a measure of the resource’s workload, i.e., the amount of work available for it to 
process, and solving for u in terms of W yields a quadratic in W whose nonnegative 
solution is given by

	
u

W W C W
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− +( ) + +( ) + −( )
−( )
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1 1 4 1

2 1
1

2
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where C c ca e= +( )2 2 2/ . When C = 1, representing an M/M/1 queue with exponen-
tially distributed interarrival and service times, Eq. (2.4) takes the simpler form
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yielding
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As shown in Fig. 2.2, for given values of te and C, u is a monotonically non-
decreasing concave function of W; as the average WIP level W increases, u increases 
at a decreasing rate. Intuitively, the higher the average WIP level W in the system, 
the lower the probability (1−u) that the resource will be idle due to lack of work; 
maintaining a given average throughput requires maintaining a certain average WIP 
level in the production unit.

Fig. 2.2  Average utilization as a function of average WIP
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Relationships similar to Eq. (2.4) between the expected throughput of a queueing 
system and its expected WIP level can be derived analytically for a variety of queue-
ing models, under steady-state or transient behavior (Selçuk et al. 2007; Asmundsson 
et  al. 2009; Missbauer 2009). When closed-form analytical expressions are not 
available, empirical relations can be postulated by fitting an appropriate functional 
form to data obtained from either industrial observations (Häussler and Missbauer 
2014) or a simulation model (Kacar et al. 2012; Kacar and Uzsoy 2015). We shall 
refer to these functions as clearing functions, since they represent the ability of the 
workcenter to process, or clear, some fraction of its workload in a planning period. 
They are the central construct of interest to this volume, discussed in Chaps. 7 and 8.

Equations (2.1) and (2.2) together determine the relationship between average 
WIP and average cycle time. Substituting Eq. (2.4) or Eq. (2.6) for u into Eq. 
(2.1) yields
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The average cycle time increases linearly for the M/M/1 case where C = 1. For 
C < 1 the slope is smaller for low WIP levels in both single- and multiple-server 
systems since there will be (almost) no queueing delay for low WIP levels.

Together, Eqs. (2.4) and (2.7) imply that given the queueing characteristics of the 
production unit, once the average WIP level is determined, the average utilization 
and cycle time are determined as well. This observation motivates the Workload 
Control framework presented in Chap. 4.

A number of caveats are, however, in order. The discussion above assumes that 
the given input rate λ unambiguously determines the utilization of the workcenter. 
This is not the case in the presence of sequence-dependent setup times, since in this 
case the distribution of the effective processing time depends on the sequence in 
which the jobs are processed. If jobs are released without considering this issue, 
some form of batching and sequencing must be performed within the production 
unit to manage setup times. More WIP in the production unit gives its management 
more options to optimize the job sequence with respect to setups, reducing the total 
setup time for the given production quantities as average WIP increases. Several 
papers have examined the relationship between average WIP level and total setup 
time per period (Kekre 1984; Kim and Bobrowski 1995; Missbauer 1997; Thürer 
et al. 2012). Since these savings in setup time reduce the utilization required to pro-
duce a given output, the relationship between WIP and output illustrated in Fig. 2.2 
is also affected. Informal production control rules applied at the shop-floor level, 
such as those that adapt the processing rate to the WIP level (e.g., Agnew (1976)), 
might also affect the operating curve.
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The queueing analysis above suggests that the cycle time of a job through a pro-
duction unit is a random variable whose distribution is affected by the utilization u 
of the resources. The planned lead times used for order release planning by the PPC 
system are based on estimates of the cycle times through the production units mak-
ing up the production system, so it is important to understand the structure of these 
cycle times. We now turn to this discussion.

2.3 � Structure of Cycle Times in Production Units

The cycle time of a production order (job) through a production unit is the time 
elapsing between its release and its completion and is the sum of the cycle times of 
all operations performed on this order, accounting appropriately for any overlaps in 
time. The cycle time of the k’th operation of a job (a throughput element in Wiendahl 
1995: 41 ff.) is usually defined as the time from the completion of the previous 
operation k−1 to the completion of operation k and consists of any necessary delay 
between the completion of operation k−1 and the start of operation k (such as curing 
time for a painting operation, or transportation time between locations), queueing 
time and the setup and processing time of operation k. In discrete manufacturing, 
the interoperation time, defined as the time from the completion of the previous 
operation k−1 to the start of operation k, consists mainly of waiting time due to 
queueing at capacitated resources and is often substantially higher than the opera-
tion time. Empirical studies report the ratio of operation time (raw process time in 
the terminology of Hopp and Spearman) to cycle time as about 0.1 in mechanical 
engineering (Wiendahl 1995: 37f.), and about 10% in the CD/DVD manufacturing 
system in Sect. 1.2.2. This is consistent with queuing-theoretical results where at 
high utilization the queuing time constitutes by far the greater part of the average 
cycle time in (Eq. 2.1).

Hence the variance of the cycle times is mainly determined by the variance of the 
waiting times, which is often fairly high in queueing systems. In the M/M/1 queue, 
the conditional waiting time given that the server is busy on arrival is exponentially 
distributed. For the G/G/1 queue, the waiting time distribution depends on the dis-
tributions of the interarrival and service times (Shortle et al. 2018: 320 ff.). In line 
with these analytical results, the empirical distribution of the cycle times at a work-
center often exhibits high variance, as illustrated in Fig. 2.3. The positive skewness 
due to very long cycle times experienced by a small fraction of the orders is typical 
of many production environments, and can be caused both by time-varying WIP 
levels at a workcenter and by expediting or delaying orders by dispatching; 
Ehteshami et al. (1992) illustrate the effect of expediting in the context of semicon-
ductor wafer fabrication. Four priority classes can be distinguished in the figure; 
some orders are deliberately delayed for the reasons given in the legend. However, 
even the cycle times of the normal orders exhibit high variance, making it difficult 
to derive planned lead times from observed cycle times.

2.3  Structure of Cycle Times in Production Units
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Fig. 2.3  Distribution of the weighted cycle time of the orders processed at a lathe workcenter over 
16 weeks; Wiendahl (1995): 30

The mean cycle time at a workcenter, which is of major concern in this book, is 
usually defined as the mean of the distribution of the individual job cycle times, 
which is also the standard definition in the scheduling literature (Pinedo 2012). 
Wiendahl (1995: 55ff) recommends using the weighted mean cycle time
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since it is less sensitive to priorities at the dispatching level than the unweighted 
mean cycle time. In Eq. (2.8) Tjm denotes the observed cycle time of order j at work-
center m, ajm the processing time (including setup time) of order j at that workcenter, 
and ℑ the set of all operations represented in the observed sample of orders. This 
quantity represents an estimate of the average cycle time of each hour’s worth of 
work processed at the workcenter in a certain time interval, the definition used in 
Fig. 2.3.

The importance of realistic lead times for the planning level and the large contri-
bution of waiting time to the observed cycle times, at least at bottleneck workcen-
ters, makes management of the waiting times an essential task for shop-floor 
management, and the derivation of accurate planned lead times from them crucial to 
effective operation of the planning level.
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2.4 � From the Production Unit to the Goods Flow Problem

Having described the behavior of a generic production unit, we are now in a position 
to relate the conceptual model of PPC systems developed in Chap. 1 to the vital 
statistics of our production unit: WIP, throughput, and cycle time. Since the produc-
tion units are managed autonomously to meet the output targets determined by the 
planning level, the planning level must be able to estimate the impact of its requests, 
i.e., planned releases and output, on the ability of the production unit to meet them 
in a timely and cost-effective manner. Per Sect. 2.1, such a model must recognize 
the nonlinear relationship between average throughput X and average cycle time T 
as approximated by Eqs. (2.3), (2.7), or some similar relation. The task of the plan-
ning level is to release production orders into the production units such that they can 
carry out the processing necessary to meet demand in time. This requires coordina-
tion of activities across multiple production units across time. This, in turn, requires 
both effective management of the cycle times within each production unit to coor-
dinate the timing of production with demand, and planning and control of the 
production-inventory system according to the product structure, including the deter-
mination of desired stock levels at the various stock points over time. Much of the 
complexity of the PPC task results from the interference of these two modeling and 
control tasks, and it is not surprising that PPC systems in practice emphasize one or 
the other of these tasks in order to keep complexity manageable. We now turn to the 
PPC frameworks that provide the basis for the developments presented in this book.
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Chapter 3
Production Planning and Control 
Frameworks

The work described in this volume lies at the intersection of two streams of litera-
ture. The first of these addresses the structuring of the planning problem as a 
sequence of decisions made at different levels of the organization with different 
levels of information and different time frames. The second is related to the math-
ematical modeling techniques used to describe and solve planning problems formu-
lated at different levels of the organization. We begin by reviewing the different 
ways in which the problem of planning and coordinating production in complex 
organizations has been addressed by presenting the two most widely used decision 
frameworks for designing and implementing PPC systems in this chapter.

3.1 � Material Requirements Planning (MRP) 
and the Manufacturing Planning and Control (MPC) 
Framework

The steady increase in the scale of industrial operations over the course of the nine-
teenth and twentieth centuries brought the need for more sophisticated organiza-
tional structures and management tools to support the effective coordination of 
complex activities over wide geographical areas (Chandler 1962, 1980). These 
developments, together with the increasing complexity and technical sophistication 
of industrial products, rapidly rendered it impossible for any individual, or body of 
individuals, to have complete command of all the information needed to manage the 
entire organization effectively. The unsuccessful attempts at centralized planning in 
the totalitarian economies, despite the very high levels of resources dedicated to 
these exercises, serve only to underscore the difficulty of this undertaking. As a 
result, most firms decompose the planning function into a sequence of steps carried 
out by different groups, with each group’s decisions defining the range of possibili-
ties for those made by the next and successively adding detail until a workable 
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solution has been obtained. Initially such systems were almost completely manual, 
but various computational and informational aids were developed over time. An 
overview of the early development of such systems, which has been centered on the 
widely used Material Requirements Planning (MRP) approach systematized by 
Orlicky (1975), is given by McKay (2010). The resulting Manufacturing Planning 
and Control (MPC) framework, although subject to variation, has been widely 
adopted and represents the state of industrial practice across a wide range of indus-
tries. Hence we begin by discussing this framework in detail, which will allow us to 
identify potential improvements that may be obtained using the more elaborate 
approaches discussed in this volume.

In many discrete manufacturing industries, final products are assembled from a 
large number of components, each of which is itself manufactured using a multi-
stage process. For example, in the mechanical engineering industries, the produc-
tion of complex products such as construction machines or machine tools requires 
the coordination of tens of thousands of purchased, manufactured, and intermediate 
items, referred to as stock-keeping units (SKUs). In these environments, the PPC 
system has to coordinate thousands of parallel material flows for the components in 
order to guarantee the availability of all required components at the time of assem-
bly. Demand for components is mostly a dependent demand required to meet the 
build schedule stated in the Master Production Schedule (MPS). The computation 
of this dependent demand through the well-known bill of material (BOM) explosion 
logic of Material Requirements Planning (MRP) (Vollmann et al. 2005) requires 
substantial computational power and, not surprisingly, was one of the first planning 
tasks to be automated when computers became available for business applications 
in the early 1960s.

Combining the current inventory levels and planned lead times of the production 
units (which are, of course, estimates of cycle times) with the BOM explosion yields 
time-phased net requirements for each SKU in the BOM. Since the gross require-
ments of each SKU are calculated from the lot sizes of the SKUs for whose produc-
tion the SKU under consideration is required, lot sizing is an integral part of this 
calculation. Once time-phased net requirements and lot sizes for both production 
and purchase orders are calculated, the planned lead times of the production orders 
can be decomposed into planned lead times for the individual manufacturing opera-
tions at the workcenters performing them. This process also assigns the capacity 
requirements of these operations to the planning periods in which their performance 
is planned, permitting the calculation of time-phased capacity requirements using 
the Capacity Requirements Planning (CRP) procedure (Vollmann et  al. 2005). 
Software systems performing these functions, termed MRP systems, represented 
the state of the art in the mid-1970s and constituted a tremendous advance over the 
independent demand inventory control systems or, in some cases, manual calcula-
tions of material requirements (Wight 1983: 44) used previously. We do not describe 
the MRP computations in detail here; a concise description with illustrative exam-
ples is given by Hopp and Spearman (2008). More extensive descriptions are pre-
sented by Baker (1993) and Vollmann et  al. (2005), while Tardif and Spearman 
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(1997) and Voss and Woodruff (2003) describe MRP in terms of mathematical 
programming. The original book by Orlicky (1975) remains an interesting and use-
ful reference.

Several characteristics of MRP are of interest to the discussion in this volume:

	1.	 The procedure uses fixed, exogenous planned lead times, usually derived from 
historical observations of realized cycle times. This facilitates both lead time set-
ting and coordination of the material flow through multiple production stages.

	2.	 MRP is uncapacitated. The capacity requirements over time result directly from 
the MPS, the lot-sizing rules, the planned lead times, and the current inventory 
levels of SKUs at the various levels of the BOM. Hence substantial imbalances 
between required and available capacity can occur.

	3.	 The Master Production Schedule (MPS), which determines the medium-term 
capacity requirements, is an exogenous input to the system.

MRP does largely what its name implies—material requirements planning with 
very limited support for capacity planning. The lack of support for Master Production 
Scheduling is particularly critical; the MPS is treated as a fixed, exogenous input 
that may be infeasible with respect to capacities. Any infeasibility must first be 
identified, often a challenging task in itself, and then “repaired” by adjusting either 
the available or required capacity in the planning periods. The latter can be accom-
plished by adjusting the MPS, modifying the lot-sizing rules after the CRP process 
has been completed, or by detailed scheduling at the order or operation level within 
the production units, which requires a fairly high amount of released work and WIP 
to be effective. In order to overcome these limitations, a PPC system should support 
integrated planning of both material and capacities for all resources, as well as the 
creation of the build schedule (the MPS) that determines the resource requirements.

The serious nature of these limitations raises the question of why a production 
planning approach with such deficiencies is so widely employed. A confluence of 
several factors has led to this situation. Firstly, in environments where production 
capacity is relatively cheap, plentifully available, or both, it is relatively easy to 
address delays in production plans by adding capacity through overtime, subcon-
tracting, or additional machines. In production environments that maintain rela-
tively constant capacity utilization, cycle times will also remain relatively stable, 
allowing suitable planned lead times to be learned over time. We have observed 
several cases of firms deliberately maintaining a constant utilization level, to the 
extent of temporarily deactivating production equipment in periods of low demand. 
Another factor in favor of MRP is the transparency of its logic to the end users, in 
contrast to optimization models that frequently produce solutions that are difficult 
to explain. Historically, MRP was a tremendous advance over independent demand 
inventory control systems since it derives the material requirements from the MPS, 
which is a statement of future production as opposed to a forecast. Finally, the wide 
adoption of MRP in industry has provided an extensive ecosystem of software, con-
sultants, and corporate knowledge supporting its use.
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3.1.1 � Role of the Master Production Schedule

Master production scheduling has proven more difficult to standardize than the 
MRP calculation itself. A reference structure for a master production scheduling 
system derived mainly from empirical observations that covers many practical cases 
in discrete manufacturing was proposed by Berry et al. (1979) and is described in 
Vollmann et  al. (2005). This MPS reference structure considers the general case 
where the production and purchasing activities upstream of a specified customer 
order decoupling point (CODP) are based on demand forecasts and the completion 
of final products downstream of the CODP on customer orders. The CODP is 
located at the point in the supply chain where material is committed to a particular 
order and cannot be used to fill any other. A CODP located at the assembly stage 
results in assemble-to-order (ATO) production, as is common with PCs, and allows 
short delivery times for complex products, e.g., in mechanical engineering. Make to 
stock and make to order are special cases with the CODP at the final product or at 
the raw material level, respectively.

In this MPC structure, the MPS incorporates information from both demand 
forecasts and confirmed customer orders to provide a time-phased build schedule 
for all independent demand items, usually based on weekly time buckets. This build 
schedule provides the input to the MRP system that generates the orders for the 
production units that are forecast driven (e.g., purchasing and component produc-
tion). The time-phased capacity requirements that result from an MPS can be calcu-
lated by estimating the capacity requirements induced at all relevant workcenters by 
each unit of the final product to be completed in a given period based on the BOM 
and process routings for the individual BOM items (Vollmann et al. 2005: 339 ff.). 
Such Rough-Cut Capacity Planning (RCCP) procedures consider neither existing 
inventories nor the effects of lot sizing and can thus be quite inaccurate. More 
advanced methods such as Capacity Requirements Planning (Vollmann et al. 2005) 
are applied after the MRP computation, considering planned lead times, component 
inventories, and lot sizes.

In an ATO environment, the forecast-based MPS drives only the production of 
the components upstream of the CODP. Final Assembly Scheduling is driven by 
customer orders and controls the production of customer-specific products by the 
manufacturing stages downstream of the CODP.  If any components are not yet 
available at assembly (due to inaccurate demand forecasts or production issues), 
exception orders are generated and their production expedited to minimize the delay 
at assembly. This structure leads to two interrelated control loops within the PPC 
system that are controlled based on the MPS and the final assembly schedule, 
respectively, as shown in Fig. 3.1.

This MPC structure is complemented by an aggregate planning level above the 
two control loops that performs seasonal planning of production and sales quanti-
ties, capacities and inventories over time, usually for product families and longer 
time buckets over a planning horizon of 12–18 months. Since the aggregate “prod-
ucts” representing product families cannot actually be produced, the planned 
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production quantities at this level represent capacity reservations for each product 
family that serve to coordinate production and capacity planning. Aggregate pro-
duction quantities also largely determine possible sales, inventory levels, and cash 
inflows and outflows, etc., and thus are crucial to coordinating the functional areas 
of the company. They also serve as a coordination instrument with strategic plan-
ning since planned changes in sales quantities in different markets are reflected 
there. This task, termed Sales & Operation Planning (S&OP), links production 
planning and the larger corporate planning process, forming an important input to 
the MPS.

This structure leads to a hierarchical PPC system that, at least conceptually, 
simultaneously considers all resources necessary for production (primarily material 
and capacities) at each level, which are

•	 Sales and operations planning—resource planning
•	 Master production scheduling—rough-cut capacity planning
•	 MRP—capacity requirements planning and load levelling
•	 Shop-floor control—detailed scheduling

with increasing levels of detail as one moves down the list. This type of PPC system, 
often termed MRP II (Wight 1983; Landvater and Gray 1995) or the Manufacturing 
Planning and Control framework, is depicted in Fig. 3.2.

PPC systems of this type allow seasonal inventories only for MPS items, which 
are generally final products but may also include important subassemblies. All esti-
mated capacity requirements are derived from the MPS. However, this approach 
does not allow integrated planning of the material flow across the supply chain 
when inventory levels at each stage must be considered. If coordination across the 
supply chain is necessary, the production quantities at each production unit, the 
transportation quantities between the production units and their inventory levels in 
each planning period must be defined as separate decision variables whose values 
determine the MPS, requiring a high level of detail in the MPS. This type of master 
planning, described in Chap. 1 for semiconductor manufacturing, is a standard func-
tion of today’s Advanced Planning Systems (APS). Voss and Woodruff (2003) dis-
cuss its formulation as a mathematical program and its relationship to MRP II. The 
resulting planning and control structure is described in Sect. 3.2.

In the MRP II framework, sales and operations planning is performed for aggre-
gate product families, and the MPS is obtained by disaggregating this aggregate 
production plan. To accomplish this effectively, products in the same family should 
share similar seasonal demand patterns and resource requirements, even if the 
strong assumptions of perfect aggregation (Axsäter 1981) do not hold. Similarly, 
master planning for product families requires aggregate bills of material and deter-
mination of safety stock levels that allow feasible disaggregation even if the mix of 
individual product demands within the aggregate demand varies (disaggregation 
slack). These issues, raised in Bitran et al. (1981), remain critical today.

MRP/MRP II thus has its origins in the material coordination task addressed by 
the planning level. Several important issues related to this task have attracted exten-
sive research, such as MRP nervousness (Blackburn et al. 1985, 1986; Sahin et al. 
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Fig. 3.2  Hierarchical structure of a MRP II/MPC system (Vollmann et al. 2005: 371, modified)

2013; Lin and Uzsoy 2016), multilevel lot sizing (Kimms 1997) and determination 
of safety stocks and safety times (Meal 1979; Miller 1979; de Bodt and Van 
Wassenhove 1983; Grubbstrom 1999). As expected, when a complex stochastic pro-
duction—inventory system operating in a rolling horizon environment is controlled 
by a simple procedure like MRP, the complexity that is not addressed by MRP 
emerges elsewhere, and the resulting control system will be as complex as required 
by the planning problem according to the Law of Requisite Variety (Ashby 1956: 
202 ff.). However, our focus in this volume is on the ability of MRP/MRP II to 
effectively control the system state within the production units in order to manage 
the cycle times and other performance measures of the manufacturing system.

3.1.2 � Lead Time Management in MRP/MRP II Systems

The observed cycle times of production orders through the production units and the 
planned lead times estimated from them play a crucial role in the performance of 
PPC systems, and hence of the production systems they control. As discussed in 
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Chap. 2, Little’s Law (Little 1961; Hopp and Spearman 2008) implies that average 
cycle times determine the average WIP level at a given throughput rate, while their 
variability determines how consistently the production system is able to meet the 
planned lead times, influencing due date performance and safety stock levels. The 
lead times also constrain the location of the CODP since the total lead time of the 
make to order portions of the system cannot exceed the customer’s requested deliv-
ery time. Thus the planned lead times strongly influence essential elements of the 
MPC problem, making lead time management an important issue.

Planned lead times in MRP/MRP II are treated as forecast variables to be esti-
mated from observations of realized cycle times. It is assumed that, as long as some 
maximum capacity loading is not exceeded, historical cycle times will provide a 
reasonable estimate of the cycle times of production orders released in the current 
time frame; the past is representative of the future. This use of planned lead times 
and maximum capacity loads to coordinate the production planning and detailed 
scheduling levels for the production unit poses substantial problems. First of all, it 
requires accurate time-phased load projections and sufficient planning capability to 
avoid the unduly long cycle times that arise when resources are temporarily over-
loaded. Capacity planning methods are provided in MRP II both at the MPS level 
(RCCP) and after the MRP run (CRP). However, since RCCP can only approximate 
the time-phased capacity requirements with no information on lot sizes or compo-
nent inventories, and load leveling after the MRP run is based on predetermined lot 
sizes and lead times (and is a very complex task in its own right), the result can be 
far from optimal. Integrating MRP and capacity planning by solving multilevel 
capacitated lot-sizing models remains challenging for practical applications despite 
substantial progress in recent years (Tempelmeier and Buschkühl 2009; Helber and 
Sahling 2010). Thus there is always a substantial possibility that capacities are over-
loaded in certain periods or that overloading is avoided by suboptimal measures.

If realized cycle times deviate from the planned lead times, the latter are often 
updated to maintain high due date performance, and the release schedule is adapted 
accordingly. As discussed in detail in Chap. 2, however, the workload in the produc-
tion unit—controlled by the order release function—determines the cycle times. 
This inconsistency—treating a control variable as a forecast variable—can lead to a 
vicious cycle called the lead time syndrome illustrated in Fig. 3.3: planners respond 
to long and unreliable cycle times by specifying longer planned lead times, causing 
orders to be released earlier in order to meet their required due dates. This increases 
the number of orders in the production unit (i.e., the WIP level), leading to longer 
queues at the workcenters, which, in turn, increases the average cycle time. Planners 
often react by increasing the planned lead times still further, causing the next batch 
of orders to be released even earlier. This effect is often further exacerbated in prac-
tice by uncontrolled releases of urgent orders (usually for missing parts that are 
delaying assembly of an order).

The lead time syndrome was first described in the 1970s (Wight 1974; Mather 
and Plossl 1978). Although rigorous studies are quite recent (Selcuk et al. 2006, 
2009), anecdotal evidence suggests that it can inflate planned lead times beyond any 
defensible level (Wight 1974: 108 ff.). Whether the lead time syndrome is reversible 
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Fig. 3.3  Lead time syndrome

and the circumstances under which the system can become “locked” in a long lead 
time regime are still not well understood. Selcuk et al. (2009) show that the vari-
ability of planned lead times increases with their update frequency, suggesting a 
trade-off between lead time accuracy and system stability when lead times are 
treated as forecast variables.

Overcoming the lead time syndrome requires a fundamental change of perspec-
tive: instead of treating lead times as an exogenous parameter to be forecast, they 
should be treated as a control variable whose value can be influenced by order 
release and capacity decisions. This requires replacing the forecasting task of MRP/
MRP II by an anticipation task—that of understanding the relationship between 
order release and capacity adjustment decisions and the cycle times that will be real-
ized when these decisions are implemented. This view of lead times as endogenous 
to the planning process lies at the heart of this volume and will be discussed in more 
detail in later chapters.

3.2 � Hierarchical Production Planning (HPP) and Advanced 
Planning Systems (APS)

Developments in information technologies over the second half of the twentieth 
century, most notably the development of ever more powerful computers, relational 
database systems capable of organizing the massive amounts of data involved, and 
the evolution of client-server computing, brought the possibility of Hierarchical 
Production Planning (HPP) systems where material flows and capacities are planned 
simultaneously at multiple time frames from medium-term aggregate planning to 
very short-term dispatching. Conceptually, this is a vertical decomposition of the 

3.2 � Hierarchical Production Planning (HPP) and Advanced Planning Systems (APS)



38

overall PPC problem into a series of (hopefully!) tractable planning subproblems 
that avoids the well-known problems of solving and implementing a single mono-
lithic model of the overall production planning problem as a single planning task. 
The advantages of hierarchical planning in companies are obvious, and the observa-
tion that hierarchical planning systems fit the organizational structure better than 
monolithic models may well be due to the fact that the organizational structure is an 
adaptation to the same factors that make hierarchical planning systems desirable. 
Thus ideas for Hierarchical Production Planning (HPP) systems were expressed 
very early in the literature on production planning and management (Holt et  al. 
1960; Anthony 1966).

Mathematical models have been developed to support a range of planning tasks 
within this hierarchy. However, due to the complexity of the planning problem, 
especially in multistage production systems with complex BOM structures, deriv-
ing this decision hierarchy and the respective planning models by mathematical 
decomposition of a monolithic model has not proved possible, although it remains 
an interesting theoretical goal.

For simpler production planning problems a theoretically sound hierarchical pro-
duction planning system should be within reach, and a body of research addressing 
this problem has emerged alongside the MRP approach. We now describe the 
essence of this work on Hierarchical Production Planning, using this term not in the 
general sense that each PPC system exhibits a hierarchical structure (although this 
is usually the case), but to refer to specific PPC systems within this research tradi-
tion, although the boundary is often ambiguous. We then describe the structure of 
Advanced Planning Systems (APS) based on this hierarchical concept and have a 
different focus compared to the MRP/MRP II framework.

3.2.1 � Hierarchical Production Planning

The seminal paper in this research tradition is that of Hax and Meal (1975), who 
model a tire manufacturer as a single-stage production system. The number of prod-
ucts is high, and the planning horizon must cover at least one entire seasonal cycle 
due to substantial demand seasonality. A centralized PPC approach must determine 
the production, sales, and inventory quantities of each product in each period of the 
planning horizon using a single monolithic model. This requires medium-term 
demand forecasts for each product and period, including forecast updating before 
each planning cycle, and makes medium-term decisions (e.g., how to handle sea-
sonal demand) and short-term production decisions (production quantities for the 
next production run) simultaneously. Such an approach, although feasible from a 
modeling and algorithmic perspective, is very likely to fail; Meal (1984) describes 
the failure of such a centralized approach. The hierarchical approach provides a way 
out of this dilemma. Products that share setups constitute natural product families 
with negligible setup times between products of the same family and hence can be 
aggregated. Product families with similar seasonal demand patterns, capacity 
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requirements, revenues, and unit costs (or inventory investment produced per unit 
time; see Graves (1982)) can be further aggregated into product types. This three-
level structure is specific to the particular case of the tire manufacturer, but has 
proven to be viable in many batch manufacturing environments (Hax 2013: 709).

Once this aggregation hierarchy is identified, planning tasks can be assigned to 
the aggregation levels as follows:

Seasonal planning can be performed at the product type level since this level deter-
mines capacities and their usage or reservation, and the parameters that deter-
mine the seasonal plan are similar for products of the same type. The decision 
model is usually a linear program.

Lot sizes are determined at the level of product families since setups only occur with 
a change of product family. The decision model is specific to the case of the tire 
manufacturer and is solved by a heuristic.

Production quantities for individual products within the product families are deter-
mined in the short term to approximately equalize the projected run-out times of 
the products, when inventory will be exhausted and must be replenished by another 
production run. Since all costs are determined at the product type and product fam-
ily levels, this allows products of the same family to share a family setup.

Only the seasonal planning performed at the product type level considers multi-
ple planning periods. Product family and item-level planning are only performed for 
the first planning period, and the entire process is repeated at the start of the next 
planning period.

The key issue in HPP is that of aggregation, primarily of products in this case, 
but also of capacities (machines to workcenters to production units) and time. The 
higher level decisions constrain the lower level ones; only if these constraints are 
satisfied are the decisions at the different levels consistent. The ability to aggregate 
products depends on the specific situation, although common structures such as 
aggregate products that allow capacity-oriented seasonal production planning can 
be identified in many cases.

The vertical decomposition and strict top-down approach of the Hax/Meal 
approach impose some important limitations. Although the planning models are 
specified at all levels and the production quantities of product types, product fami-
lies, and individual products are consistent, overall optimality is not guaranteed, for 
two primary reasons:

	1.	 The production plan obtained from the optimal aggregate plan is only equal to 
the optimal production plan obtained from a model formulated at the item level 
under the strong assumptions of perfect aggregation (Axsäter 1981, 1986). In 
practice the data of individual products differ to some extent, making only 
approximate aggregation possible.

	2.	 The decision models at higher levels often cannot accurately anticipate the 
impact of their decisions on the costs of the base-level decisions. For instance, in 
the Hax/Meal framework, the seasonal planning carried out at the product-type 
level does not accurately represent the impact of its decisions on the total setup 
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costs determined by the product family subproblem at the next lower level 
(Graves 1982: 263 ff.). This information can only be obtained by feedback from 
the product family level. Graves (1982) extends the Hax/Meal approach with a 
feedback mechanism based on Lagrangian techniques that modifies the holding 
cost coefficients used in the product type problem, dividing the holding costs 
between the product type and product family subproblems (Graves 1982: 265).

The Hax/Meal case study considers only one production stage. Extending the 
approach to a two-stage system as in Bitran et al. (1982) raises additional issues. 
Product aggregation now requires aggregation of multistage material flows, requir-
ing the definition of aggregate bills of material (Axsäter 1986). Secondly, minimum 
inventory levels must be defined for aggregate planning in order to guarantee SKU 
availability at the item level. Determining these minimum inventory levels is a com-
plex research topic in its own right (Axsäter 1986; Lasserre and Mercé 1990; Gfrerer 
and Zäpfel 1995).

In the 1980s and 1990s, the HPP research tradition was largely pursued through 
case studies, with some conceptual work (Bitran and Tirupati 1993). McKay et al. 
(1995) present a review and critique of the approach, while Leachman (1993, 2001) 
presents an extensive case study in the semiconductor industry. Conceptual issues 
are discussed in Schneeweiss (2003).

Since HPP emphasizes the capacity aspects of the PPC problem that are the prin-
cipal weak point of MRP, whose focus is material planning, integrating the two 
frameworks seems reasonable. Meal et al. (1987) attempt this integration for a man-
ufacturer of computer peripherals, noting that HPP encompasses the allocation of 
production among plants that is not considered in MRP. At the plant level, although 
“both MRP and HPP deal with capacity and material plans” (p. 952), HPP tends to 
focus on the capacity side of the MPC hierarchy (Fig.  3.2) “communicating the 
constraints from the front end to the engine to the back end,” whereas MRP focuses 
on the material side communicating the material requirements from production 
planning to Master Production Schedule to detailed material requirements. The dis-
tinction between “capacity oriented” and “product oriented” planning approaches 
(Bertrand et al. 1990: 57 ff.) expresses this difference. Hence capacity requirements 
can be derived from MRP, while estimates of available capacity can come from HPP 
(Meal et al. 1987: 953). MRP determines material and capacity requirements, while 
HPP “starts with capacity available and schedules the jobs to fill the capacity” 
(p. 954).

This capacity-oriented view of HPP raises the question of how much the maxi-
mum possible output the system can produce is affected by the aggregate capacity 
loading. High capacity loading may allow more effective optimization of lot sizes 
than is possible when there is less work available to the resources. A large amount 
of work available to a machine reduces the probability of its idling due to lack of 
material. The clearing function models discussed in Chaps. 7 and 8 formulate sev-
eral different models of this relationship between workload and output. We now 
discuss the Advanced Planning Systems framework that has its roots in the HPP 
research we have just briefly reviewed.
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3.2.2 � Advanced Planning Systems (APS)

Today’s Advanced Planning Systems (APS) (Stadtler et al. 2015) seek to implement 
essential PPC functions, emphasizing planning and coordination of the material 
flow between companies or manufacturing plants using the data collection and orga-
nization capabilities of the Enterprise Resource Planning (ERP) and Manufacturing 
Execution Systems (MES) used by many companies today. The Supply Chain 
Planning Matrix (Fleischmann et  al. 2015), shown in Fig.  3.4, provides a basic 
framework for the development of these systems. In the figure, which is modified 
somewhat from the original to avoid additional terminology, each planning func-
tion, represented by a rectangle, produces decisions that may form inputs for other 
planning functions. The horizontal axis represents material flow across business 
functions (procurement, production, distribution, and sales), and the vertical axis 
the time frame associated with those decisions (long-, mid-, and short-term).

Strategic Network Design is an ongoing long-term process across all business 
functions, determining the products to be produced, the markets to be served, and 
the locations and sizes of the facilities to produce and distribute them. As in the 
MPC framework in Sect. 3.1, Demand Management involves developing demand 
forecasts at different levels of aggregation: long-term aggregate forecasts at the 
level of product families, large time buckets and regional geographies required for 
Strategic Network Planning, and the disaggregated, shorter-term forecasts used for 
Master Planning. Master Planning takes as inputs the long-term Strategic Network 
Design decisions and determines a time-phased plan specifying how much of each 

Strategic Network Design
- supply chain strategy - sustainability
- network planning
- supply chain contracts

Master Planning

Capacity Planning

Production Planning

Inventory
Manage-

ment

Demand
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Demand
Fulfillment/

ATP

Procurement Distribution

Material
Requirements
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Scheduling Transport
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mid-
term

short-
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SalesProduction

Fig. 3.4  Supply chain planning matrix (Fleischmann et al. 2015, modified by Moench et al. 2017)
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product or product family will be produced in what facilities in order to coordinate 
material flow through the supply chain. Since the management of seasonal demand 
fluctuations by building inventories ahead of demand peaks, outsourcing, or delay-
ing demand is an important consideration, the time frame for Master Planning must 
consider an entire seasonal cycle. The level of aggregation in the Master Planning 
activity can vary; it is usually focused on potentially constraining resources and 
product families, but can also be performed at the level of individual products. Note 
that the Master Plan of the Supply Chain Planning Matrix is not necessarily the 
same thing as the Master Production Schedule of the MPC framework; the Master 
Plan is not necessarily computed at the level of specific items and usually considers 
multiple production units and capacity constraints at potentially limiting workcen-
ters. The Master Production Schedule, on the other hand, does not consider the bill 
of material explosion necessary to synchronize material flow across multiple pro-
duction units; in the MPC framework, this is performed by the MRP logic.

After Master Planning is complete, Production Planning seeks a capacity-feasible 
release plan that will allow each facility in the supply chain to meet the production 
targets set for it by Master Planning. Again, the Supply Chain Planning Matrix uses 
the term “Production Planning” in a different meaning than that in the MPC frame-
work (and this volume); in the latter it encompasses all planning activities leading 
up to the computation of the order releases, while under the Supply Chain Planning 
Matrix, it is limited to computing capacity-feasible order releases that will meet the 
production goals set by Master Planning for the individual production units. Once 
work is released into a production unit, its progress towards completion is con-
trolled by that unit’s internal scheduling function.

The structures of the mathematical models for Master Planning and Aggregate 
Production Planning are quite similar; in fact, the term “Sales and Operations 
Planning” is used in both the frameworks (Vollmann et al. 2005, Chap. 3 and Stadtler 
et al. 2015: 173 f.). The principal decision variables are either releases or production 
quantities of each product (or product family) in each period in the planning horizon 
at each facility considered; we show in Chap. 5 that under the assumption of fixed, 
workload-independent lead times, these two quantities are equivalent. The models 
must include material balance constraints for all inventory locations considered, 
capacity constraints for critical resources, and domain-specific constraints repre-
senting technological and business policy constraints specific to the application of 
interest. Models for Aggregate Production Planning or Master Production 
Scheduling are usually formulated for one level in the product structure, mostly 
final products or—more generally—MPS items, whereas Master Planning explic-
itly models flows and inventories for all facilities considered at the specified level of 
detail. As the level of detail in Master Planning models is increased to model the 
process more precisely, at least some portions of a Master Planning model can 
easily acquire the level of detail usually associated with the Production Planning 
function of APS. Hence the authors of both MPC and APS frameworks emphasize 
that they need to be adapted to different situations. The primary function of the 
combined problems is to coordinate the flow of material through the supply chain to 
best meet the firm’s objectives.
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Both PPC frameworks described here—the MPC framework based on MRP/
MRP II and APS—eventually yield production orders for the production units: from 
MRP and lot sizing in the MPC framework, or from the master planning and pro-
duction planning functions under APS.  Production orders can also be generated 
from independent demand inventory control systems (e.g., for spare parts), and in 
MTO companies, production orders can result directly from customer orders. A 
(hopefully small) fraction of the production orders might be unplanned, resulting, 
e.g., from specific material requirements of customer-specific product variants in 
assemble-to-order production as described in Sect. 3.1. All these orders must be 
released to the production units in a way that guarantees that the planned due dates 
are satisfied, which requires keeping the cycle times under control.

Mechanisms for managing cycle times within PPC systems fall into two basic 
camps: those that treat cycle time as an exogenous variable to be forecast and those 
that view it as a variable to be controlled (Tatsiopoulos and Kingsman 1983). The 
former contradicts the queueing perspective developed in Chap. 2, which makes it 
quite clear that the average cycle time T is determined by the planning level’s release 
decisions through their effect on resource utilization and the variability of material 
flows. The other camp, motivated by Little’s Law discussed in Sect. 2.2, attempts to 
maintain stable mean cycle times T by regulating the short-term release of work into 
production units over time to maintain a constant workload W. We now turn to a 
discussion of these latter approaches.
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Chapter 4
The Workload Control Approach

The relation between workload and cycle time revealed by queueing models sug-
gests that regulating the workload of the production unit can maintain its average 
cycle time at a desired level while still producing the desired level of output. Since 
workload is determined by the order release process linking the planning and sched-
uling levels, a wide range of order release procedures based on maintaining a stable 
workload level in the production units have been suggested. In this chapter, we 
discuss the extensive body of work that approaches this problem without explicit 
models of material flow over time. We then discuss the advantages and shortcom-
ings of this family of approaches, setting the stage for the model-driven release 
planning approaches presented in the subsequent chapters.

4.1 � Basic Concepts

MRP/MRP II approaches lead time management by focusing on the left side of the 
vicious cycle in Fig. 3.3, treating lead times as forecast variables to be estimated 
from historical observations instead of endogenous variables determined by the 
state of the production system. The computation of coordinated production plans for 
manufacturing stages or plants by master planning, which is a standard function of 
today’s APS systems and widely applied, e.g., in semiconductor manufacturing (see 
Sect. 1.2.1), often makes the same assumptions, although their sophisticated load 
leveling procedures usually mitigate the negative consequences of this assumption 
to some degree. Viewed from the queueing perspective developed in Chap. 2, the 
mechanism that produces the lead times—the nonlinear relation between workload 
and cycle time—is not captured at the planning level in either of these PPC 
frameworks.

The Workload Control (WLC) approach is motivated by the insight that, at least 
if the system is approximately in steady state, its mean cycle times and throughput 
are determined by the average WIP level. Thus the behavior of any production unit 

© Springer Science+Business Media, LLC, part of Springer Nature 2020
H. Missbauer, R. Uzsoy, Production Planning with Capacitated Resources  
and Congestion, https://doi.org/10.1007/978-1-0716-0354-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-0354-3_4&domain=pdf
https://doi.org/10.1007/978-1-0716-0354-3_3#Fig3
https://doi.org/10.1007/978-1-0716-0354-3_1#Sec3
https://doi.org/10.1007/978-1-0716-0354-3_2
https://doi.org/10.1007/978-1-0716-0354-3_4#DOI


48

Fig. 4.1  Curves for output and mean flow time per operation with change in the work in process 
(simulation result; source: Wiendahl 1995: 246)

can be described, at least in principle, by the operating or characteristic curves 
(Aurand and Miller 1997) linking these variables shown in Fig. 2.1 and, in more 
detail, in Fig. 4.1. Cycle times, and hence the planned lead times derived from them, 
are treated as control variables, whose target values can be related to a target WIP 
level yielding an acceptable compromise between the goals of maintaining low WIP 
and short cycle times on the one hand and high capacity utilization and output on the 
other. Hence in the short term when capacities are fixed, order release becomes the 
principal decision function of the WLC approach.

Under the WLC framework, all production orders arriving at a production unit, 
whether they originate as external customer orders or production orders generated 
internally by the planning level, are held in a pre-shop pool until their release to the 
production unit. The time a particular order is released depends on its due date and 
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some measure of the WIP level in the production unit. An order can be released 
when the WIP measure falls below a specified threshold, which is thus an important 
parameter of any WLC approach.

This idea has important implications for the architecture of the broader PPC 
system. The characteristic curves depicted in Fig. 4.1 depend not only on the techni-
cal properties of products and the production system but also on decision logic such 
as sequencing rules, lot sizes, capacity flexibility and order release frequency. 
Workload Control assumes that these decision procedures are either fixed over time 
or functionally related to the average WIP level. Collectively, they determine the 
stochastic processes describing job arrivals at and departures from the workcenters, 
and thus the operational characteristics of the production units, as suggested in 
Chap. 2. Hence, a PPC system using the WLC approach at some planning level must 
define consistent target WIP values across different production units and requires 
decision procedures both at the planning level (e.g., lot sizing) and within the pro-
duction units themselves (e.g., dispatching) to be consistent with these targets 
(Bertrand and Wortmann 1981; de Kok and Fransoo 2003). Adoption of the WLC 
framework thus implies an architecture for the entire PPC system. Important con-
ceptual discussions of the WLC approach, which was developed in the 1980s and 
early 1990s, are given by Bertrand et al. (1990), Zäpfel and Missbauer (1993b), and 
Missbauer (1998). A PPC system following this architecture must release produc-
tion orders to the production units to maintain desired (not necessarily constant) 
WIP levels while coordinating the material flow across the production units to the 
customers. Implementing WLC thus requires the solution of two subproblems: (1) 
determining the target WIP levels at all workcenters along the process routing and 
(2) determining release times for specific orders, i.e., how work will be released into 
the shop over time to maintain these target WIP levels. We first describe the general 
logic of the former task and then possible approaches to the latter.

4.1.1 � Determining Target WIP Levels Under WLC

The target WIP level in a WLC-based order release procedure must represent an 
acceptable compromise between the goals of maintaining short, stable cycle times 
(which requires low WIP levels) on the one hand and high output (which requires 
low probability of bottleneck starvation, and hence high WIP levels) on the other. 
The characteristic curves show which combinations of these performance measures 
are mutually consistent. A desirable target WIP level in Fig. 4.1 would be around 
6000 h; higher WIP yields very little additional output, while lower WIP leads to a 
sharp decrease in output, and hence serious loss of revenue.

Unless extensive simulations are performed to map them (Yang et  al. 2006; 
Ankenman et al. 2010), the characteristic curves are not known in practice since 
available empirical data represent only the limited range of operating conditions, 
especially WIP levels, under which the production unit has historically operated. 
Thus an initial target WIP level is frequently obtained by applying Little’s Law to 
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the target average cycle time and the desired output level that, in turn, is derived 
from the workcenter capacity. The target cycle time should be as short as possible 
while allowing the production unit to reliably maintain the desired output level. 
Note, however, that the target WIP and output levels determine only the average 
cycle time; individual order or operation cycle times are random variables whose 
distribution is affected by dispatching and scheduling decisions within the produc-
tion unit, as seen in Fig. 2.3. Thus safety stocks or safety lead times obtained by 
appropriate due date setting (Land 2004: 13 ff.) will be necessary, although the 
controlled WIP level should result in reduced cycle time variance, and hence lower 
safety stock levels.

Several additional factors can complicate the situation. The characteristic curves 
assume that specifying the average WIP level is sufficient to determine the long-
term average output; effectively, the average WIP level is used as the argument of a 
deterministic function that estimates the corresponding average output, assuming 
that the production system remains unchanged over time. This implies that reducing 
the average WIP level below the value suggested by the characteristic curves will 
lead to a sharp decrease in utilization and output. However, in practice the WIP 
reduction may eventually lead to improvements in the production unit that allow 
high output to be maintained at a lower WIP level than that suggested by the char-
acteristic curve. This is a common argument in the literature on Just in Time or lean 
production (Krajewski et al. 2013): inventories, including WIP, hide inefficiencies. 
Reducing WIP reveals imbalanced capacities, process uncertainty, etc., as targets 
for improvement efforts, eventually allowing high levels of output to be achieved at 
a lower WIP level. This process of continuous improvement, generally accomplished 
by eliminating sources of variability, is widely used in industry under a variety of 
labels such as lean manufacturing (Womack et  al. 1990), the Toyota Production 
System (Liker 2004), Six Sigma (Pande et  al. 2000), and Theory of Constraints 
(Goldratt and Fox 1986), among others. These improvements will change the shape 
of the output (and the related cycle time) functions in Fig. 4.1 towards a lower WIP 
level for given output. Hence the characteristic curves obtained by simulation 
always reflect the structure and operating rules of the production unit assumed in the 
simulation model, and it is difficult to determine with certainty the minimum WIP 
level required to maintain high utilization given the possibility of improvements that 
can be realized without substantial investment. Our discussion of WLC in this chap-
ter will thus assume, with most of the literature on this subject, that all target values 
and decision rules are part of the definition of the system under study, and hence not 
subject to change over the time frame of the study.

4.1.2 � Order Release Mechanisms Under WLC

The problem of determining how to release work over time to maintain a predeter-
mined target WIP level has been studied since the 1970s. Two main approaches can 
be distinguished:
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	(a)	 Rule-based order release mechanisms that select orders to release over a short 
planning horizon, typically one planning period (e.g., 1 day or 1 week), usually 
without explicit reference to an objective function. These constitute the majority 
of WLC research since the early 1980s (Land 2004; Stevenson and Hendry 2006).

	(b)	 Model-based order release mechanisms that determine the release quantities or 
the orders to release over a multiple period planning horizon based on an explicit 
model of the material flow and the resulting WIP levels over this planning hori-
zon. If, as is common, the model only specifies the release quantities, additional 
logic may be needed to define the orders to release in a manner consistent with 
these release quantities, especially when lot sizing issues are significant.

These approaches differ substantially with respect to their integration into the 
overall PPC system. The rule-based approach seeks to maintain a specified WIP 
level in the short term, so it must be supported by a medium-term planning system 
that balances load and capacity over a time horizon beyond the current period. 
Model-based order release, on the other hand, simultaneously determines order 
releases and material flow over a specified planning horizon, performing both 
medium-term planning (e.g., load leveling for time-varying demand) and release 
planning in the same model. Order release planning can be performed at the level of 
individual products, but also in aggregate terms, based on product families or hours 
of work moving through the system along different production routings. In the latter 
case, short-term order release must determine which individual orders to release 
within these targets, which is usually a straightforward task.

We now discuss rule-based order release mechanisms for WLC in more detail, 
since the limitations of these approaches motivate the optimization models that are 
the main topic of this volume.

4.2 � Rule-Based WLC Approaches

4.2.1 � Overview

The most common approach to designing rule-based WLC algorithms assumes that 
the production orders, their required due dates, and the available capacities are bal-
anced in the medium term by some medium-term planning function such as capaci-
tated Master Planning (Stadtler et al. 2015), or an MRP II procedure with Rough-Cut 
Capacity Planning (RCCP) or Capacity Requirements Planning (CRP) capability as 
discussed in Chap. 3. The order release function seeks to manage short-term order 
releases to maintain the target WIP level over the current planning period, typically 
1 day to 1 week. Since no order release plan is made for future periods, there is no 
reference to an objective function such as minimizing costs over a certain planning 
horizon. Therefore we refer to these algorithms collectively as rule-based WLC 
although in a few cases optimization models play a limited role (Irastorza and Deane 
1974; Yan et al. 2016).
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Several rule-based order release mechanisms of this type were proposed in the 
1980s and 1990s. These include CONWIP (Spearman et al. 1990), Load-Oriented 
Order Release (Wiendahl 1995), the LUMS approach (Hendry and Kingsman 
1991a, b), and the method of Bertrand and Wortmann (1981). Bergamaschi et al. 
(1997), Land (2004), Fredendall et al. (2010), and Thürer et al. (2011) review devel-
opments in this very active research area over the last 30 years. Kanban (Sugimori 
et al. 1977; Liker 2004) can also be considered a Workload Control technique, but 
is based on more restrictive assumptions. Drum-Buffer-Rope (Goldratt and Fox 
1986; Cohen 1988; Gupta 2005) is based on a detailed schedule of the bottleneck 
(the “drum beat”) and thus differs from the hierarchical MPC concept underlying 
this chapter (Zäpfel and Missbauer 1993a), although the determination of the con-
straint buffer size and the control of order releases into the constraint buffer via the 
“rope” are related to WLC ideas.

The input to most rule-based order release mechanisms is a list of production 
orders, each specifying a product or component type, quantity, and required due 
date, generated by the production planning system applied in the company. These 
orders are initially held in a pre-shop pool of unreleased orders, which may be a 
physical area where raw materials are staged and documentation prepared, or sim-
ply a list of unreleased orders maintained by the firm’s information systems. A 
planned start date derived from the required due date and a planned lead time con-
sistent with the target WIP level used in the WLC logic are usually available for 
each order. Orders are released from the pool based on their planned start dates and 
the load situation in the shop. Upon order release, control over the order is trans-
ferred to the management of the production unit whose task is to meet the required 
due date. The goal is to complete all orders on time while maintaining the target 
WIP levels.

In its most common version (Land 2004), the procedure is invoked periodically 
(e.g., daily or weekly) to select a subset of the candidate orders in the order pool for 
release in the current period. The orders in the pool are first sequenced in some 
priority order, usually by planned start date (due date minus planned lead time). A 
time limit specifying how far in advance of its planned start date an order can be 
released may also be considered. All orders with planned start dates within the time 
limit are considered for release in increasing order of their planned start date and 
released if their release does not violate the target WIP level at any workcenter 
along its routing. Unreleased orders are reconsidered in the next period.

Order release mechanisms of this type perform three functions: load leveling, 
load balancing, and timing (Land 2004: 36). Load leveling refers to the smoothing 
of the capacity loading over time by advancing (within the time limit) or delaying 
the release of particular orders. Load balancing requires releasing a mix of orders 
that maintain a balanced capacity loading across workcenters over time, avoiding 
both temporary bottlenecks and idleness. These aspects of order release seek to 
maximize throughput, but also support the timing function that seeks to ensure high 
due date performance by releasing urgent orders before less urgent ones.
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A wide variety of order release mechanisms can be obtained by specifying sev-
eral design options left open by this generic procedure in different ways. Following 
Bergamaschi et al. (1997), these are summarized in Table 4.1 using the terminology 
common to this literature.

Order release mechanism: “Under load limited OR [order release], orders are 
released to the shop based upon their distinctive features and the existing workload 
in the shop” (Bergamaschi et al. 1997). The workload in the shop can be defined and 
measured in various ways as discussed below. Workload limits may be determined 
for each workcenter, the entire production unit, or both based on the characteristic 
curves of the respective unit (Fig. 4.1), and the order release mechanism prevents 
these load limits from being exceeded. Time-phased release, in contrast, computes 
a planned release time for each order without explicitly considering the workload.

Timing convention: Order release is usually performed at the beginning of each 
period. The time between two consecutive invocations of the order release logic, 
referred to as the check period, need not be equal to the planning period (Perona and 
Portioli 1998), although this is often the case; event-driven order release in continu-
ous time is also possible as in CONWIP (Spearman et al. 1989, 1990). Both options 
can be used simultaneously. For instance, LUMS uses an “intermediate pull release” 
option that can release orders within a check period to prevent workcenters from 
starving (Stevenson and Hendry 2006).

Workload measure: Workload can be measured in number of orders or in amount 
of work (e.g., standard hours). Under work-conserving dispatching rules, the orders 
at the workcenter completely determine the amount of work; under sequence-
dependent setup times, this is no longer the case (see Sect. 2.1).

Aggregation of workload measure: The workload limit can be defined for the 
entire production unit (total shop load), only for bottleneck workcenters, or for each 
workcenter.

Workload accounting over time: If target WIP levels are defined for individual 
workcenters, WLC can control the direct load at each workcenter, defined as work that 
has arrived at the workcenter and requires processing there. The direct load in the 
future—even its evolution during the period under consideration—has to be estimated 
at the time of the release decision, since the input to a workcenter is controlled by 
scheduling decisions at upstream workcenters and hence is not known with certainty.

Table 4.1  Design options in traditional order release mechanisms (Bergamaschi et al. 1997)

Design option Choices

Order release mechanism Load limited, time phased
Timing convention Discrete, continuous
Workload measure Number of jobs, workload quantity
Aggregation of workload measure Total shop load, bottleneck load, workcenter load
Workload control Upper bound, lower bound, upper and lower bounds, 

workload balancing
Capacity planning Passive, active
Schedule visibility Limited, extended
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This forecasting of detailed order arrival patterns at specific workcenters can be 
avoided by using the aggregate load as the relevant workload measure. The aggre-
gate load of a workcenter is the sum of the direct load and the load in transit, work 
already released to the shop that will require processing by that workcenter but has 
not yet arrived there. This requires that the release function have access to informa-
tion on the progress of jobs through the shop when it performs its calculations. In 
small or medium businesses, such feedback may not be available at all points on the 
routing or at all points in time. If feedback from the shop floor is only available on 
order completion, the extended aggregate load, given by the sum of the operation 
times at the workcenter for all orders in the shop, can be used (Oosterman et al. 
2000; Henrich et al. 2004). The corrected aggregate load (Oosterman et al. 2000: 
112) is calculated by multiplying the aggregate load by a factor that can be inter-
preted as the steady-state ratio of aggregate load to average direct load, providing an 
estimate of the direct load (Missbauer 2009).

These load measures are defined for each point in time, most importantly for the 
start of the current planning period for which the order releases are being deter-
mined, and allow limited predictions of the future load situation. A workcenter’s 
aggregate load and its capacity jointly determine the time span for which the 
released work can keep the workcenter busy, as long as its direct load is high 
enough to avoid excessive idle time. The time bucketing approach divides the time 
horizon into discrete time buckets. Based on cycle time estimates for each opera-
tion the order must undergo, a forward finite loading technique is used to check 
whether releasing an order will violate a load limit at any workcenter along its rout-
ing. The operations of the candidate order are assigned to the required workcenter 
in the period determined by the estimated cycle time if capacity is available. 
Otherwise the operation is loaded in the earliest future period with available capac-
ity. The decision whether or not to release the order is based on the match between 
calculated and required due date (Bobrowski 1989). Although release decisions are 
only made for the current period, explicitly considering multiple periods opens the 
possibility (at least in principle) of extending the method to order release planning, 
the second order release approach in Sect. 4.1.2.

Workload control: This option specifies whether upper and/or lower bounds for 
the workload are used.

Workload balancing: This refers to the presence or absence of logic that compen-
sates for the overloading of certain workcenters by adjusting the loading of others 
(Bergamaschi et al. 1997).

Capacity planning and schedule visibility: In most rule-based order release 
mechanisms, the workcenter capacities are fixed (passive capacity planning). 
Schedule visibility refers to the look-ahead capability of the release mechanism that 
defines its ability to perform load leveling (smoothing) over time and is controlled 
by the time limit (Zäpfel and Missbauer 1993a).

We now discuss some important release mechanisms of this type to illustrate the 
variety of WLC approaches possible.
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4.2.2 � Load-Oriented Order Release

Load-Oriented Order Release was developed at the University of Hannover (Bechte 
1980, 1988) and is presented in detail in Wiendahl (1995). The approach is largely 
based on the characteristic curves shown in Fig. 4.1 and is linked to flow diagrams 
and their extensions that are recommended as diagnosis tools (Nyhuis and 
Wiendahl 2009).

In Load-Oriented Order Release, orders are released in each period (in practice 
1 day to 1 week) for the current planning period only. A time limit is used to prevent 
premature release of orders. A target WIP level, measured in hours of work, is 
defined for each workcenter and represents an upper bound on the amount of WIP 
that can accumulate at that workcenter. It is expressed as a limit on the direct load 
Λt of the workcenter in the planning period t, given by the sum of the WIP available 
at the start of the period and the estimated work arriving during the period. The 
release algorithm follows the generic release procedure described in Sect. 4.2.1. The 
limit on the direct load of a workcenter, referred to as the load limit, is used such 
that the first order that exceeds the load limit of a workcenter in the release run can 
still be released. After release of this last eligible order, the workcenter is blocked 
and all other orders requiring this workcenter are rejected in the current release run.

The value Λmax of the load limit is derived from the target WIP level assuming an 
idealized material flow at a workcenter whose input and output rates are held con-
stant and equal to its capacity C (stated in units of time) during the planning period. 
WIP is assumed to be held constant at the target WIP level. In this situation, the load 
limit for the planning period is given by the sum of the target WIP level Ŵ  and the 
available capacity C in the planning period, giving

	 Λmax = +Ŵ C 	 (4.1)

It is often convenient to express the load limit as a percentage of the capacity per 
period. This load percentage Λpercent is defined as

	
Λ
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(4.2)

By Little’s Law, the average cycle time T is

	
T

W

C
=

ˆ
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Substituting (4.1) into (4.2) yields
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Finally, substituting (4.3) into (4.4) yields
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	 Λpercent = +( )( )1 100T % 	 (4.5)

Thus a target flow time of one planning period requires a load percentage of 
200% of capacity, a target flow time norm of two periods a load percentage of 
300%, and so on.

The precise arrival time of an order at any workcenter that is not the first in its 
routing is uncertain at the time of order release. Load-Oriented Order Release 
approaches this issue by estimating the probability that the order arrives at the work-
centers on its route during the planning period under consideration. The order then 
contributes its expected work content, given by the product of its processing time 
(including setup time) and the probability of its arrival during the period, to the 
planned load at these workcenters during the planning period. This probability is

derived from the load percentage Λm
percent at workcenter m, as defined in (4.2). 

100

Λpercent

 then represents the fraction of the direct load at workcenter m that leaves that work-
center during the period. This can be interpreted as the probability that an order cur-
rently contributing to the direct load of workcenter m will arrive at the subsequent 
workcenter during the planning period. If these probabilities are assumed to be sta-
tistically independent, the probability that an order will pass through the first m 
workcenters of its routing and arrive at workcenter m+1 within the planning period is
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(4.6)

and its expected contribution to the direct load of workcenter m+1 is the product of 
the probability (4.6) and the order’s operation time at workcenter m+1. These orders 
contribute only the fraction (4.6) of their operation time to the direct load of a down-
stream workcenter, which increases the closer they are to workcenter m. Hence the 
direct load at a workcenter can increase in a period even if no orders are released in 
that period.

Equation (4.6) is a particular solution to a general problem that occurs in order 
release models that seek to control the length of individual queues in production 
units with multiple workcenters. These models require an estimate of the fraction of 
releases in a period τ that contributes to output (or to the load of the downstream 
workcenters) in periods t = τ, τ + 1, …. The probability (4.6) is treated as a deter-
ministic fraction. Thus, if we consider an operation that is to be performed at work-
center m+1 on an order j released in period t, the fraction wj t t

m
, ,
+1 of the time of this 

operation that reaches workcenter m+1 in the release period t is assumed to be
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(4.7)

Since only one planning period is considered, the wj t
m
, ,τ
+1 values for τ < t need not 

be specified. We shall encounter these loading factors again in Chap. 6.
Load-Oriented Order Release was developed from extensive work on monitoring 

and diagnosing the material flow in manufacturing systems. Standard software that 
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implements both the monitoring/diagnosis aspects and the order release algorithm 
has been available since the 1980s (Bechte 1988), and good results have been 
reported. A description of a typical software functionality can be found in Wiendahl 
(1995: 292ff.), and Yan et al. (2016) present several improvements to the method.

4.2.3 � The LUMS Order Release Mechanism

The Lancaster University Management School (LUMS) approach (Stevenson and 
Hendry 2006) is a comprehensive framework for a PPC system based on WLC spe-
cifically for make-to-order (MTO) companies. It encompasses order release as well 
as customer enquiry and order entry and, at least conceptually, priority dispatching.

The LUMS order release mechanism follows the generic procedure described 
above. Orders are released periodically, but mechanisms for event-oriented release 
are included to prevent workcenter starvation and late orders. Work is measured in 
time units (e.g., standard hours), and the workload measure is the aggregate load 
(direct load plus load in transit) or—more recently—the corrected aggregate load 
(Thürer et al. 2012). A limit is set on the Released Backlog Length per workcenter, 
the time required to process the aggregate load given the current capacity con-
straints. A non-enforced lower bound is provided to foremen as a decision support, 
e.g., for intermediate pull release.

4.2.4 � CONWIP

CONWIP (CONstant Work In Process) (Spearman et  al. 1989, 1990; Hopp and 
Spearman 2008) is designed for controlling serial production lines as an alternative 
to Kanban with less restrictive requirements. In the form described in Hopp and 
Spearman (2008), “a new job is introduced to the line each time a job departs,” 
which “results in a WIP level that is very nearly constant” (Hopp and Spearman 
2008: 363). The WIP level is measured in units of product. Measuring WIP in work 
content, e.g., hours of work at the bottleneck, has also been proposed (Spearman 
et  al. 1989); this is largely equivalent to the number of orders if, as assumed in 
Spearman et al. (1990), “that parts are moved in standard containers, each of which 
contains roughly the same amount of ‘work’.” Order release is driven by events 
(departure of jobs) in continuous time, not on a periodic basis. Unlike most other 
order release mechanisms of this type, CONWIP is not designed for job shop con-
trol, which must cope with substantially more complex material flows than serial 
production lines. The approach is less restrictive than Kanban, which assumes a 
serial production-inventory system with low demand variation over time for each 
product, whereas the product mix in the CONWIP line can vary. Therefore, 
CONWIP can be viewed as a generalized form of Kanban (Spearman et al. 1990).
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4.3 � Design and Parameter Setting of Order Release 
Mechanisms

Designing a rule-based order release mechanism for a specific system requires:

•	 Determining the design options that specify the release mechanism
•	 Determining the values of the parameters required by the selected design options 

(time limit, target WIP level or load limit, length of the planning period and of 
the check period)

The extensive body of research in this area over the last three decades, mainly 
using simulation, seeks to provide a rule base suggesting which design options from 
the menu in Table 4.1 and what values of the associated parameters are most appro-
priate under which circumstances. To the best of our knowledge, a unified summary 
of the design rules studied so far does not yet exist, and providing this is beyond the 
scope of this volume. Establishing rules for setting the parameters of order release 
mechanisms is easier and has been explored extensively in the WLC literature, sug-
gesting the following guidelines:

The time limit determines how far in advance of their planned start dates orders 
can be released, determining the ability to perform load leveling over time. The 
demand pattern strongly influences the optimal time limit: under low demand, and 
thus low resource utilization, there is no reason to release orders before their planned 
start date since this would just increase finished goods inventory. Under time-
varying demand, a longer time limit allows load leveling and is advantageous unless 
load leveling is done at the medium-term planning level, before the order release 
logic is invoked (Zäpfel et  al. 1992). Thus any general guideline on the optimal 
length of the time limit (for instance, Wiendahl (1995) recommends three planning 
periods as a reasonable starting value) represents a situation-specific compromise.

The WIP targets at the workcenters are closely related to the target value of the 
average cycle time (see Sect. 4.1). They can be expressed in different ways depend-
ing on the order release mechanism (e.g., load limit or load percentage in Load-
Oriented Order Release) and define the trade-off between output, WIP and cycle 
time. Since WIP acts as a buffer against various types of variability, including 
demand variability, a higher WIP level allows the system to operate under higher 
demand variability without starving bottleneck workcenters. Thus the optimal val-
ues of the target WIP level and the time limit may be related, but to our knowledge 
this issue has not been studied.

Other parameters that we do not discuss in detail include the length of the plan-
ning period and the order release frequency if orders are released periodically 
(Perona and Portioli 1998). Event-driven release in continuous time as in CONWIP 
represents a limiting case where the check period approaches zero.

Until now we have considered the order release decision assuming that the vol-
ume of orders arriving in the pre-shop pool is compatible with available capacity in 
the medium term. For the WLC system to work properly, the order release mecha-
nisms must be integrated into a PPC system that generates the orders and their 
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required due dates, thus controlling the input of new work to the pool. Since this 
order input is usually based on the Master Production Schedule (in the MPC frame-
work) or the Master Plan (in the APS framework), unless independent demand 
inventory control systems are applied, the Master Production Scheduling or Master 
Planning functions must be structured to support the order release mechanism from 
this perspective.

4.4 � Rule-Based Workload Control Within the MPC system

The relationship of the Master Production Schedule (MPS) to the inflow of orders 
to the pre-shop pool depends on the architecture of the PPC system. We must distin-
guish between PPC systems based on a mid-term MPS derived from demand fore-
casts and/or customer orders whose production orders are generated by the MRP 
and lot-sizing logic, and MTO systems whose production orders are generated 
directly from accepted customer orders. We now describe the integration of order 
release mechanisms for these two structures and the shortcomings of the resulting 
system architectures.

Much WLC research has focused on MTO companies where the acceptance of 
customer orders leads directly to the addition of production orders to the pre-shop 
pool. For MTO companies, the released orders in the shop and the as yet unreleased 
orders in the pool are treated as a hierarchy of workloads (Kingsman 2000) that are 
controlled by order input and capacity decisions at different stages of an order’s 
progress through the production system. Three such stages are usually distinguished 
(Land 2004):

Order entry, which determines the input to the pre-shop pool by order accep-
tance/rejection and due date assignment. At this stage, medium-term capacity 
adjustments based on the volume of work accepted can be recommended.

Order release, which determines the input to the production unit through order 
release decisions. At this stage, short-term capacity adjustments can be recom-
mended to ensure their timely completion.

Priority dispatching, which determines the sequencing and timing of the opera-
tions for the released orders. Capacity adjustments in the very short term, such as 
expediting or unplanned overtime, constitute the corresponding output control. 
Note that the dispatching rule or shop-floor scheduling policy in use can influence 
both the total amount of work to be performed, if setup times are sequence depen-
dent, and the workload balance among workcenters if it considers the load at down-
stream workcenters.

LUMS divides the order entry stage into two stages (Kingsman 2000; Stevenson 
and Hendry 2006):

Customer enquiry: A proposal to deliver the requested work at a specified time is 
made in response to a customer enquiry and the customer’s decision is awaited.

Order entry: An order enters the company if the customer accepts the proposal. 
Order entry is considered as a separate decision since the company’s situation may 
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Fig. 4.2  Planning and control levels and hierarchy of workloads (Stevenson and Hendry 2006, 
modified)

change between the proposal being made and its acceptance by the customer 
(Kingsman 2000).

Hence an order must pass through four stages before exiting the system: cus-
tomer enquiry, order entry, order release, and dispatching. This sequence of events 
on each order induces a hierarchy of workloads (backlogs) and an associated hier-
archy of lead times. Figure 4.2 depicts the relationship between the planning and 
control stages and their associated backlogs, while Fig. 4.3 depicts the timeline and 
the associated hierarchy of lead times.

The hierarchy of workloads implied by the stages of an order’s progress through 
the system can be described as follows: The released workload consists of all 
released orders in the production unit and is controlled by order release, based on 
the planned shop cycle time. The planned workload combines the orders in the pool 
and the released workload and is controlled by the order entry level. The total cycle 
time for an order is the sum of pool waiting time and shop cycle time. The total 
workload further includes orders that have not yet entered the pre-shop pool. 
Controlling the total workload requires an estimate of the probability that a proposal 
will be accepted by the customer (Kingsman and Mercer 1997). The delivery lead 
time to the customer is related to this total workload.

Keeping these cycle times at the specified target levels requires holding the 
respective workloads at their target levels, which must be derived from the target 
cycle times and the workcenter capacities. This is done by a combination of input 
control at the respective decision points and capacity adjustments (Kingsman 2000). 
We define the following notation:

PBmt: planned workload for workcenter m at the end of period t, defined as the total 
work content of all jobs in the job pool requiring this workcenter and all jobs on 
the shop floor requiring this workcenter that have not yet completed their pro-
cessing there. This represents the total work required to complete all jobs cur-
rently in the pool and the released workload.
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Fig. 4.3  Lead time hierarchy in WLC systems for MTO companies (Kingsman 2000, modified)

TBmt: total workload of workcenter m at the end of period t, defined as the total work 
in the firm that has to be carried out on workcenter m.

τp: planned total cycle time from entering the order pool until completion of the last 
operation.

τD: target (maximum) delivery time.
τs: target (maximum) shop cycle time.
Xmt: output of workcenter m in period t.

In order to maintain the total cycle time τp and the delivery time τD at their 
planned values, the workload at each workcenter must be limited to the maximum 
value that can be cleared within the target lead time, implying the constraints
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Equation (4.9) states that the total workload of each workcenter at the current 
time, which is the start of period 1 and end of period 0, must be processed within the 
maximum delivery time τD. If (4.8) is to be formulated for periods t = τD − τP + 1, 
…, τD as well, end of horizon effects must be considered appropriately. The material 
balance constraints for PBmt are given in Kingsman (2000).
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In (4.8) and (4.9) the output is limited by the available capacity

	 X C m tmt mt< , , , ,for all = …1 T 	 (4.10)

As in (4.8) and (4.9), the aggregate load for each workcenter m, given by its 
released workload RBmt, cannot exceed the relevant upper bound. The resulting con-
straint equivalent to (4.8) would be
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Additional elaboration of the constraints may be necessary to incorporate addi-
tional factors that must be considered at this level, such as the fraction of high-
priority orders and the order’s operation times at the workcenters (Hendry and 
Kingsman 1991a).

Constraints (4.8)–(4.11), with suitable modifications, ensure the feasibility of the 
cycle times provided that the workload norms (the specified upper bounds) used 
allow output close to the maximum capacity. The complete mathematical formula-
tion, including additional constraints that guarantee due date feasibility of the 
orders, can be found in Kingsman (2000). The model is dynamic and relates the 
workload norms to the future output and operation due dates within the delivery 
time tD. Hence the LUMS approach exceeds our narrow definition of rule-based 
workload control by incorporating some characteristics of the multi-period optimi-
zation models for order release models discussed in Chap. 5. Thürer et al. (2014) 
describe the integration of customer enquiry management, including due date set-
ting, with order release based on LUMS.

The lowest level in the WLC decision hierarchy is priority dispatching. Early 
WLC literature (Ragatz and Mabert 1988) states that limiting the WIP level reduces 
the differences in performance between dispatching rules due to shorter queues and 
makes simple FCFS dispatching preferable provided that there is no unplanned 
delay of the orders once they have entered the shop due to factors such as machine 
breakdowns or quality problems (Bechte 1988). This shifts complexity from the 
dispatching level to the release level, suggesting that appropriate release control can 
largely obviate the need for delaying or expediting of orders on the shop floor. Due-
date-oriented rules can be beneficial since they reduce the lateness dispersion and 
can correct progress disruptions of orders (Kayton et al. 1997; Land 2004). The case 
of sequence-dependent setup times is more complex since setup time reduction and 
due date performance are conflicting goals and the optimal dispatching rule depends 
on the importance of these goals and on the significance of the setup times (Thürer 
et al. 2012). An interesting study of precisely this issue in the context of semicon-
ductor manufacturing was conducted by Lu et al. (1994), who concluded that in 
their experiments, order release was the primary determinant of mean performance 
measures, but dispatching rules can still have significant impact on their variance.

The LUMS decision structure was developed specifically for MTO companies. If 
rule-based WLC is applied, e.g., to component manufacturing shops that receive 
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their orders from an MRP system, order release must be integrated into the MPC 
architecture. In this case, order release is based on the results of the MRP/lot-sizing 
calculation and the associated infinite capacity loading that determines the planned 
start and finish dates of the orders (Vollmann et al. 2005). Ideally, the WLC func-
tionality replaces the CRP/load-leveling logic provided that the orders from the 
MRP system are balanced with the capacities in the medium term. The extent to 
which load leveling is necessary after the MRP run depends on the degree to which 
this condition is satisfied and on the ability of the release mechanism to cope with 
time-varying demand. This interface can be complex and is discussed in the next 
section. Wiendahl (1995: 279ff.) and Zäpfel and Missbauer (1993a) discuss the inte-
gration of order release into the MPC system in this situation. The situation is 
largely analogous under an APS system if the orders result from Master Planning 
and a subsequent lot-sizing stage where capacity requirements and availability are 
computed for all production units in the master plan. This is the case, e.g., in semi-
conductor manufacturing for which tailored order release approaches have been 
developed (Moench et al. 2013, Chap. 6).

4.5 � Critical Assessment of Rule-Based Workload Control

Rule-based workload control, defined in the broad sense as WLC order release 
mechanisms supported by medium-term planning to balance workload with avail-
able capacity and appropriate dispatching rules to maintain the flow of orders 
through the production unit, is an important way to achieve short, predictable shop 
cycle times and improved shop-floor transparency. Unlike model-based WLC 
approaches, it decomposes the production planning problem into a short-term order 
release subproblem and a medium-term load-leveling and capacity adjustment sub-
problem. This allows relatively straightforward release mechanisms that do not 
require accurate time-phased load projections that are difficult to obtain (Bechte 
1980; Tatsiopoulos and Kingsman 1983). The complexity of the overall planning 
problem is largely shifted to the medium-term planning level, which must be effec-
tively integrated with short-term order release. Hence the overall planning system 
can be very complex, especially when the system faces substantial demand vari-
ability and thus deviates from idealized steady-state assumptions.

An example of this limitation is the dynamic behavior of Load-Oriented Order 
Release (Sect. 4.2.2) in production systems with directed material flow, such as a 
flow line, with its bottleneck at the end of the line. If the system starts with no WIP 
and a large number of orders in the pool whose planned start dates lie within the 
time limit, Load-Oriented Order Release cannot prevent overloading of the bottle-
neck workcenter in future periods even if the load limit is not exceeded in the current 
planning period. This is because the load of the bottleneck workcenter in period 1 is 
mostly still at upstream workcenters, and only the expected direct load, a fraction of 
the actual operation time, contributes to the load in period 1 per (4.7). Several peri-
ods later, the work actually arrives at the bottleneck workcenter, requiring its full 
operation time and leading to an overload situation.
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We now discuss the limitations of rule-based WLC, namely their concentration 
on the cycle times in the production unit and their integration into the overall PPC 
system. The latter issue motivates the multi-period order release models with fixed 
lead times described in Chap. 5.

The central idea of most rule-based WLC methods is to maintain a target WIP 
level, and thus planned cycle times, in the production unit by controlled release of 
orders, decoupling short-term release decisions from medium-term planning and 
material coordination. However, the unreleased orders that do not contribute to the 
WIP (and the workload) within the production unit do not disappear; they remain in 
the order pool outside the production unit. Thus it is critical to assess the perfor-
mance of rule-based order release when the system boundary is extended beyond 
the production unit. If the production unit is modeled as a queueing network, con-
trolled order release changes an open queueing system to a controlled one (Kushner 
2001) where the orders that arrive from “outside” first enter an admission queue 
(order pool) and are then admitted to the queueing network according to the release 
algorithm. Thus the effects of controlled order release can be analyzed by means of 
queueing models or simulation.

Compared to an open queueing system with an exogenous arrival process, con-
trolled order release reduces WIP and shop cycle times (from release to completion) 
not only because of the WIP reduction for a given functional relationship between 
WIP and output, but because it induces negative correlation between the WIP level 
at the workcenters and the probability of additional input in the near future, altering 
the functional relationship between WIP and output in a favorable direction. For 
CONWIP, which in its basic form is a serial, single-class closed queueing network, 
Hopp and Spearman (2008) state that “for a given level of throughput, a push sys-
tem will have more WIP on average than an equivalent CONWIP system.” However, 
this assumes an order pool sufficiently large to prevent unnecessary idle time and 
does not count the unreleased orders waiting in the pool as WIP.  Kanet (1988) 
argues that for a single-stage queueing system with an autonomous external arrival 
process, controlled release merely partitions the system into two subsystems: the 
pool of unreleased orders and the server with the queue containing the released, but 
as yet unfinished, orders. Thus the total cycle time from arrival to completion 
remains unchanged. For production systems with complex material flows, like job 
shops, the situation is different since the order release mechanism has no direct 
control over the input to the individual queues. In this case, limiting the WIP level 
by controlled releases can lead to idle time at some workcenters, reducing available 
capacity and actually increasing total cycle time since the admission queue faces a 
system with reduced capacity. This highlights the importance of the master produc-
tion scheduling function in decoupling the external demand from the order input to 
the pre-shop pool (Spearman and Zazanis 1992).

This argument can be evaluated by modeling a workload control system as a 
semi-open queueing network (Jia and Heragu 2009) in which orders arrive at an 
admission queue from where they enter the queueing network, which admits at 
most N orders. Each time a completed order leaves the system, a new order is intro-
duced to the queueing network if it is available in the admission queue; otherwise 
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the number of orders in the queueing network is reduced by 1 until the next order 
arrives. Unfortunately, analytical tools for analyzing semi-open queueing networks 
are as yet very limited (Heragu and Srinivasan 2011).

Jansen (2012) shows by means of an analytical model that the capacity reduc-
tion effect described by Kanet (1988) can occur even in a single-stage queueing 
model if orders are released periodically and there is a maximum WIP level of N 
orders at the server. If the total operation time of the N orders at the server after 
release is less than the capacity during the release period, the server may idle even 
with many orders in the admission queue, reducing the available capacity and 
hence the maximum arrival rate that allows a stable system. The average length of 
the admission queue approaches infinity as the arrival rate approaches this thresh-
old value (Jansen 2012). In a single-stage system, this phenomenon can only occur 
if the load limit is expressed in number of orders (not in amount of work, which is 
more usual for periodic release) and if there is no possibility of releasing orders 
during the period to prevent idleness, such as the intermediate pull release option in 
LUMS. Nevertheless, the model clearly supports the argument in Kanet (1988).

The arguments presented so far do not consider systematic changes in the prod-
uct mix and therefore cannot fully account for the complex material flow structure 
in production units. Simulation can overcome this limitation and hence has been the 
most prevalent research tool for this type of order release mechanism. The impact of 
limiting workload under a specified release mechanism is usually depicted as para-
metric curves with the target WIP level (measured appropriately) as control vari-
able, shop cycle time on the x-axis and other performance measures, especially the 
total cycle time (in the shop and the pool), on the y-axis. Figure 4.4 shows a typical 
graph obtained from simulation.

The highest value of the shop cycle time (x-axis) and the corresponding total 
(gross) cycle time (y-axis) are obtained with unconstrained WIP, i.e., immediate 
release of arriving orders. Limiting the WIP level reduces the shop cycle time, 
which in the graph also reduces the total cycle time and the percent tardy for FCFS 
dispatching, contradicting the arguments presented above. However, this is not the 
case for Operation Due Date (ODD) dispatching (Land 2004: 71). Hence in at least 
some cases controlling the workload in the shop can reduce both shop cycle time 
and total cycle time as long as the target WIP level is not too low.

An important explanation for this phenomenon is the load balancing capability 
of the release mechanisms, which is especially important in multi-product situations 
(Van Ooijen 1998). Orders that require certain workcenters may arrive at a lower or 
higher rate at different times, so releasing all orders immediately can lead to tempo-
rary overloading of certain workcenters and idling of others unless the dispatching 
policy can prevent this. WLC generally seeks to prevent the release of orders pro-
cessed on overloaded workcenters by releasing instead orders that require 
underloaded workcenters. Ideally, a balanced mix of orders is released by changing 
the release sequence of the orders relative to the sequence of their planned start 
dates, avoiding temporary idleness and increasing throughput.

Even if limiting WIP and shop cycle time leads to a modest increase in total cycle 
time, it may be economically preferable depending on the relative importance of 
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Fig. 4.4  Average shop cycle time (shop floor throughput time) and average total cycle time (gross 
throughput time) for different target WIP levels and FCFS dispatching (A: direct load norms, B: 
aggregate load norms) (Land 2004: 70)

these objectives, specifically the ratio of WIP costs to lead time costs (Bertrand and 
Van Ooijen 2008). There are several reasons to emphasize the importance of the 
shop cycle time and the advantages of delayed order release (Land and Gaalman 
1998; Thürer et  al. 2010). Inventory holding costs for raw materials are usually 
lower than those for WIP inventory due to the lower value of the items. Delaying the 
operations performed on an order also delays the associated cash outflows relative 
to given cash inflow by the customer which implies reduced investment in inventory 
and lower interest payments (Grubbstrom 1980).

Although in principle most WLC methods require that the material for an order 
in the pool be available, the same material can be used for several products, but once 
the first operation is started, the material cannot be used for anything else. Thus 
postponing order release can realize pooling effects through delayed ordering of 
raw materials and reduce the risk of obsolescence. Whether the constraint of mate-
rial availability for the orders in the pool can be relaxed, and if so to what degree, is 
difficult to say in general.

From a planning perspective, under WLC the time at which control over the 
material flow is passed from the production planning level to the production unit is 
delayed. Ideally this leads to predictable finish dates for the planning level since the 
release dates are known and the shop flow times are under control. The high vari-
ability of cycle time distributions observed in practice was an important motivation 
for developing the WLC concept, and delaying released orders due to changes in 
demand or due date can substantially contribute to this variability (Fig. 2.3). It can 
also be argued that the perspective of the planning level goes beyond the production 

4  The Workload Control Approach

https://doi.org/10.1007/978-1-0716-0354-3_2#Fig3


67

unit as an “internal supplier,” and retaining control over orders at the planning level 
as long as possible may provide benefits. Reduced queue lengths tend to reduce both 
the importance of dispatching and its complexity.

The effects of rule-based order release mechanisms on flow times and other per-
formance measures like due date performance have been investigated extensively by 
simulation, often examining the effects of different design options and parameter 
settings for the release mechanisms. Empirical field research (McKay 2010a, b) on 
the effects of implementing WLC release mechanisms has been relatively rare, 
although positive effects were reported in the literature relatively early (Bechte 
1988; Wiendahl 1992; Thürer et al. 2011). Some researchers (Melnyk and Ragatz 
1989; Bertrand and Van Ooijen 2002) state that these positive experiences cannot be 
explained by the limited evidence for improvements obtained from simulation stud-
ies. It is often concluded that effects of WLC that are usually not captured in simula-
tion models might explain this. Land (2004: 171) distinguishes between non-modeled 
aspects of the shop and non-modeled aspects of the planning system but concludes 
that “…our simulation results showed that strongly restricting the quantity of work 
on the shop floor should not necessarily jeopardize other performance aspects” by 
some of the reasoning given above. However, integration of rule-based WLC into 
the larger PPC system is complex, and this complexity may well limit our ability to 
predict the impact of implementing these release mechanisms on the overall system 
performance.

Starting around 2005, several empirical studies have sought to address this 
research gap by using case studies to identify relevant research issues that have not 
received sufficient attention in WLC theory and by using WLC implementation 
projects to gain experience and insights into the implementation process, necessary 
refinements of the concept and methods, and their practical performance (Henrich 
et al. 2004; Hendry et al. 2008, 2013; Stevenson and Silva 2008; Stevenson et al. 
2011; Soepenberg et al. 2012; Silva et al. 2015). Thürer et al. (2011) give an over-
view of WLC implementations, while Hendry et al. (2013) and Silva et al. (2015) 
give a detailed report on a particular WLC implementation. A recent report on a 
WLC implementation as well as a review of the empirical WLC literature, structur-
ing the research into work on implementation results, applicability/implementation 
process, and implementation strategies, can be found in Hutter et al. (2018).

The relative importance of shop cycle time and total cycle time is related to the 
process governing order input to the pool, and hence to the degree of integration of 
the release algorithm into the overall planning and control system. The myopic 
nature of rule-based release mechanisms requires a medium-term planning level 
that balances load and capacity for the next several periods. Keeping the hierarchy 
of workloads at their target levels per Sect. 4.4 is consistent with WLC-based order 
release for MTO companies. If the order release mechanism is integrated into an 
MPC system based on MRP/MRPII (Sect. 3.1) or the APS logic (Sect. 3.2.2), capac-
ity planning usually balances the required and available capacity in each period, 
which is not necessarily consistent with keeping WIP at a desired level. Conventional 
capacity planning techniques and order release mechanisms differ in their modeling 
assumptions. For instance, assuming that each order is completed within its planned 
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operation lead times is not the same as assuming the loading factors (4.7) used in 
Load-Oriented Order Release. Hence the interface between mid-term planning and 
order release is critical.

It is also difficult to determine the extent to which load variations must be 
smoothed out by mid-term production and capacity planning. Appropriate parame-
ter values allow order release mechanisms to cope with varying demand patterns to 
a certain extent. The values of the time limit and target WIP level that provide the 
desired smoothing behavior and lead to the desired compromise between through-
put and cycle time depend strongly on the demand pattern and also, quite possibly, 
on each other. Since the demand pattern may change over time, these values will 
generally be time-dependent. Even if reliable demand forecasts are not available, 
the choice of these parameters implies certain assumptions about future demand. 
Zäpfel and Missbauer (1993a) formulate aggregate models of a production unit that 
is aggregated to a single workcenter and derive the optimal time and load limits for 
Load-Oriented Order Release based on the optimal material flow obtained from 
these models. This provides an alternative to a rule-based parameter setting of the 
form if underutilization then time limit close to zero, etc. Apparently this line of 
research has not been pursued, but it is a step towards optimization of order releases 
by means of multi-period optimization models: The optimization model estimates 
the aggregate material flow over all products and workcenters, and the release 
mechanism disaggregates the resulting release quantities, measured in hours of 
work, to individual orders. If the production unit is modeled in more detail, disag-
gregation is easier, eventually leading to multi-period planning models that jointly 
determine the material flow and the order releases. There appears to be little research 
on the relationship between rule-based workload control and planning models that 
optimize the material flow over a multi-period planning horizon.

By limiting their scope to individual production units and short-term order 
release, rule-based workload control mechanisms treat an isolated subproblem 
whose integration into the overall PPC system is not straightforward. This motivates 
the development of planning models that embed order release into mid-term plan-
ning and thus avoid these shortcomings, which are treated extensively in this vol-
ume. It is based on mathematical models for mid-term production planning, and this 
stream of literature is reviewed next.

4.6 � Mathematical Models for Mid-Term Production 
Planning

While production planning has obviously been executed in some form since the 
beginning of even craft production, quantitative methods for these problems are of 
surprisingly recent origin. McKay (2010a, b) reviews the historical development of 
production planning since the beginning of the Industrial Revolution. While the 
well-known work of Harris (1915) launched the area of inventory modeling, it was 
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not until the 1950s that this became a major research area (Arrow et  al. 1958). 
Optimization models for planning production over time have their origins in the 
work of Modigliani and Hohn (1955), although its roots reach back to the activity-
based economic models of economists such as Leontief (1951), Koopmans (1951), 
and Schneider (Whitin 1954). The area of sequencing and scheduling also had its 
pioneering papers in this period, notably those of Jackson (1955) on single machine 
scheduling problems and Manne (1960) on job shop scheduling. Thus the basic 
formulations of most classical production planning and scheduling problems were 
essentially in place by 1960, when the book by Holt et al. (1960) collecting their 
previous work appeared. It is worthwhile examining these early papers in some 
detail to understand why these formulations developed the way they did, and their 
implications for the current situation.

The work of Modigliani and Hohn (1955) views the problem of production plan-
ning over time as that of trading off production costs against inventory holding 
costs. Production costs are assumed to be convex with increasing marginal produc-
tion costs, while inventory holding costs are approximated by the time average of 
the ending period inventories, leading to a linear cost function. The problem is for-
mulated on discrete time periods, the cost function is assumed to be stationary over 
time, demand in each period is known with certainty, and no backlogging is allowed. 
The monotone increasing marginal production cost makes it more economical to 
meet periods of high demand by producing in prior periods of low demand and 
holding inventory, defining the basic trade-off in the problem. The authors develop 
an optimal solution based on calculus that essentially identifies planning horizons, 
allowing the problem to be decomposed along the time horizon into subproblems 
consisting of a certain number of consecutive periods that can be solved indepen-
dently. This approach forms the basis for their later work (Holt et al. 1955, 1956), 
which subsequently led to the Holt, Modigliani, Muth and Simon (HMMS) book 
(Holt et al. 1960). In Chap. 6 of their book, they explicitly address the extension of 
their decision rules to an environment with uncertain demand and show that under 
the specific quadratic objective function they assume, the deterministic equivalent 
of the stochastic problem is achieved by using expected demand values in their 
deterministic rule, which is equivalent to assuming an unbiased demand forecasting 
procedure. This insight appears to have contributed to the heavy focus on determin-
istic models in the production domain, although the proof they provide is only valid 
for the specific case of a quadratic objective function. An interesting discussion of 
this body of work is given by Singhal and Singhal (2007).

It is interesting that capacity constraints are not modeled; the implicit assump-
tion appears to be that capacity can be varied in the short run, and the costs of doing 
this are captured by the increasing marginal cost of production. This discussion is 
made more explicit in the context of labor costs by Charnes et al. (1955). It is also 
interesting that while the cost function is explicitly built up from holding, produc-
tion and fixed costs that are independent of production volume, there is no discus-
sion of how one might actually estimate these costs from existing business records. 
Finally, the basic paradigm is that of modeling the physical flows in the problem—
production and inventories—and assigning costs to these, rather than modeling the 
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cash flows explicitly as a means of capturing the financial impact. The Modigliani 
and Hohn (1955) paper also seems to have motivated the idea that in problems over 
time, perfect information for the entire planning horizon is not necessary, but rather 
just planning the first few periods on a rolling horizon basis is quite close to opti-
mality. This has led to a long stream of papers using these and related ideas, includ-
ing the well-known dynamic lot-sizing model of Wagner and Whitin (1958).

In the mid-1950s, researchers realized that the models of Modigliani and Hohn 
(1955) and Holt et al. (1956) could be formulated as linear programs. The two prin-
cipal papers that appear to have accomplished this independently of each other are 
Hanssmann and Hess (1960), whose title very much resonates with the HMMS 
work, and Manne (1957). Another notable early paper is that of Bowman (1956), 
which appears to be one of the earliest to identify the extensive network structure 
present in production planning models.

The principal characteristics of the mathematical programming models used for 
most production planning problems were now in place. The decisions cover a plan-
ning horizon that is divided into discrete time periods, each of which has an associ-
ated set of decision variables reflecting the decisions made in that period. The 
decision variables represent the physical flows of materials through the different 
production resources and inventory points; the objective function is generally that of 
minimizing the variable costs of production, inventories, and backlogs over the 
planning horizon, while satisfying aggregate capacity constraints on the production 
resources in each period. In Chap. 5 we shall investigate the basic assumptions of 
these models in more detail, focusing on how they model the dynamics of capaci-
tated production resources. As noted earlier, the MRP procedure for exploding a bill 
of materials and computing time-phased releases can be formulated as a mixed-
integer linear program (Voss and Woodruff 2006). In order to overcome the well-
known limitations of MRP, Billington et  al. (1983) introduced the multilevel 
capacitated lot-sizing problem (MLCLSP) that performs capacitated lot sizing for a 
multistage production system and all SKUs simultaneously, integrating lot sizing 
into mathematical programming models for production planning.

Most deterministic production planning models establish optimal production, 
inventory, and release levels over a finite planning horizon to meet the total demand 
(Holt et al. 1960; Buffa and Taubert 1972; Hax and Candea 1984). The planning 
horizon is divided into discrete periods during which production and demand rates 
are assumed to be constant; the capacity of the system is represented by the number 
of hours available on key resources in a planning period; and the production, 
inventory, WIP, and demand associated with a period are treated as continuous 
quantities. These models allocate capacity to products to minimize a specified 
objective and satisfy aggregate constraints representing system capacity and dynam-
ics. The need to match output to demand requires some estimate of the delay 
between work being released into the production units and its emergence as finished 
products that can be used to meet demand.

The most common approach to handle this problem in both the research litera-
ture and industrial practice is to use planned lead times that are fixed, exogenous 
quantities independent of resource load, as long as a maximum capacity loading is 
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not exceeded. As we have seen, the Material Requirements Planning (MRP) 
approach (Orlicky 1975) uses fixed planned lead times in its backward scheduling 
step to determine job releases. Several authors have suggested ways of adapting 
MRP to uncertain demand. Meal (1979) and Grubbstrom (1998) derive component 
plans with safety stocks in the MRP records. Miller (1979) proposes hedging of the 
master schedule to provide safety stocks within the system. However, all these 
assume fixed exogenous lead times.

Another common approach to production planning under fixed lead times and 
deterministic demand is the use of linear (LP) and integer programming (IP) mod-
els, of which a wide variety exist (Johnson and Montgomery 1974; Hackman and 
Leachman 1989; Voss and Woodruff 2003). These represent capacity as a fixed 
upper bound on the number of hours available at the resource in a period, and model 
input and output time lags between stages as well as planned lead times for different 
production units. However, these time lags are generally independent of workload, 
although these models can accommodate a wide range of specific technological and 
managerial constraints specific to particular production environments. The basic 
structure of these models is described in detail in Chap. 5.
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Chapter 5
Planning Models with Stationary Fixed 
Lead Times

In this chapter, we present optimization models for order release using exogenous 
planned lead times that remain constant (stationary) over the planning horizon. 
We describe the material flow dynamics implied by these models, beginning by 
assuming lead times that are integer multiples of the underlying planning period. 
We construct a series of linear programming models for this problem and examine 
their dual, noting several implications that are inconsistent with insights from the 
queueing models discussed in Chap. 2. We then extend this approach to consider 
fractional lead times and a more general formulation where a production order may 
consume capacity in multiple, not necessarily consecutive, periods.

5.1 � Preliminaries

The previous chapters have, we hope, set the stage upon which we propose to 
address the principal topic of this volume: the development of novel, and hopefully 
more effective, optimization models to support the goods flow problem faced by 
the planning level, whose purpose is to coordinate the releases of work across mul-
tiple production units in the production system or supply chain to meet demand in 
the best possible manner. Due to the need to match production with demand, the 
models must take into account the cycle times, the delay between work being 
released into the production unit and its emergence as completed product that can 
meet demand.

We shall refer to the smallest unit of work recognized by the goods flow problem 
as an order. Orders may be of external or internal origin; external orders represent 
a specific quantity of a specific product ordered by a specific customer, while inter-
nal orders are generated by the PPC system for purposes of production management 
within the production unit, and thus may represent material destined for several 
customers, a portion of a larger customer order, or simply material intended to 
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replenish inventory positions along the supply chain. For the purposes of the goods 
flow problem, both can be treated in the same manner, so we will use the term 
“order” for both.

Following the discussion in Chap. 1, a production unit is an organizational unit 
whose internal operations are not under the control of the planning level, which is 
tasked with managing the goods flow problem. A production unit consists of several 
workcenters with limited capacity, through which each order processed in the pro-
duction unit follows a specified routing. For exposition we assume the routing to be 
deterministic, ignoring the possibility of random routing due to causes such as alter-
native resources or rework. While this is certainly not the most general model that 
could be presented, it is sufficient to convey the essence of the problems we consider. 
Hackman and Leachman (1989a, b) and Hackman (1990, 2008) provide a much 
more general treatment encompassing other modes of production such as resource-
constrained project scheduling. Per Chap. 2, the cycle time of a unit of work is a 
random variable that follows some probability distribution, but can only be observed 
after the fact. We shall use the term lead time to denote an estimate of the cycle time 
used in planning models for the goods flow problem. The focus of this chapter is on 
planning models that use constant, exogenous lead times to represent the progress of 
orders through the production unit. For brevity of exposition, we shall refer to these 
lead times as fixed lead times. In this chapter, we consider the simpler case where the 
planned lead times associated with a production unit and its workcenters remain 
constant over time, i.e., do not vary across time periods. The more complex case of 
time-varying planned lead times is treated in the next chapter.

5.2 � A Generic Production Unit

Figure 5.1 illustrates a generic production unit that produces a set J of products j = 1, 
…, |J|, for which it has a queue of orders waiting to be processed that have been 
released by the planning level, and a finished goods inventory location where fin-
ished items are stored. The production process uses a set K of different workcenters 
k = 1, …, |K|, with limited capacity, each of which, per Chap. 2, can be modeled as a 
queueing system. We denote the set of workcenters used by product j by K(j) and the 
time required to process a unit of product j on workcenter k as ajk. The set of products 
requiring a workcenter k will be denoted by J(k). The planning horizon is divided 
into discrete time periods, which we shall assume without loss of generality to be of 
equal length Δ, such that period t ends at time tΔ. When it causes no ambiguity, 
we shall assume the time periods to be of unit length so that period t ends at time t. 
The basic sequence of events taking place in the production unit is as follows:

	1.	 The planning level authorizes the release of an order consisting of a specific 
quantity Rjt of product j to the production unit at time t.

	2.	 The order is released for production and enters the queue for the first workcenter 
in its routing. Control over its progress through the production unit is transferred 
to the internal management of the production unit. Upon completion of its 
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Fig. 5.1  Generic Production Unit with Time Lags

processing at each workcenter, the order moves directly to the next workcenter 
in its routing.

	3.	 The order completes processing on the last workcenter in its routing and moves 
from the production facility to the production unit’s finished inventory location.

Each order of product j released in period t will wait in the queue for workcenter 
k for an average of Qjkt time units and will require an expected processing time of 
Pjkt = Rjtajk time units, which we assume includes any necessary setup times. The 
expected cycle time of the order from its release to its entry into finished inventory 
is thus given by

	

T Q Pjkt
k K j

jkt jkt= +( )
∈ ( )
∑

	

(5.1)

The cycle time of an order at a workcenter k is thus the sum of its processing time 
and its queue time. Per Chap. 2, the queue time is a random variable whose proba-
bility distribution depends on the utilization of the workcenter, which is determined 
by the work release decisions Rjt, while the service time is also a random variable. 
These random variables are represented in (5.1) by their expectations. The expected 
cycle time of an order is thus given by the sum of its expected processing and queue 
times at each workcenter k in its routing. In practice, additional delays may be 
incurred, such as transportation time between workstations, preparation of compo-
nents and raw materials, or transfer of the finished order to finished inventory, which 
are also likely to be random variables. A wide variety of domain-specific events may 
need to be considered, such as the need to allow a specified time for lumber to cure 
before its use in furniture manufacturing or the need to perform a thin-film deposi-
tion step within a specified time of a cleaning step in semiconductor manufacturing. 
The modeling of fixed delays between such events is discussed at length by Hackman 
and Leachman (1989b) and Hackman (2008). However, the events shown in Fig. 5.1 
are sufficient to account for most cases of interest.

5.2  A Generic Production Unit
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5.3 � Lead Times in Models of the Goods Flow Problem

The wide range of planning models using fixed exogenous lead times, including 
both MRP (Orlicky 1975; Baker 1993; Vollmann et  al. 2005) and mathematical 
programming models (Voss and Woodruff 2006; Missbauer and Uzsoy 2011), all 
assume that as long as all constraints in the model are satisfied, the production unit 
will be able to produce its output in a manner consistent with the lead time values 
specified. Thus the lead times serve the planning level as an anticipation function 
(Schneeweiss 2003) describing the impact of its release decisions on the output of 
the production units. We view a lead time Ljk as a parameter whose value is an esti-
mate of a suitably high percentile of the order cycle time distribution whose mean 
Tjkt is given by (5.1). Hence under normal conditions any order released to the pro-
duction unit will enter finished goods inventory within Lj = ∑kLjk time units of its 
release with high probability. Under this view the lead time is treated as a delay 
between the release of an order into the production unit and its completion.

Billington et al. (1983) suggest using only the minimum time required to transfer 
material between operations without considering queue time or processing time; 
they argue that delays due to limited capacity will be computed by the planning 
model itself, which should produce materials ahead of time and hold it in finished 
inventory until needed to meet demand, ignoring the workload-dependent nature of 
the queue time Qjkt. These transfer times between operations can be modeled as 
fixed delays following Hackman and Leachman (1989b) if their duration is signifi-
cant relative to that of the planning period. Another class of planning models treats 
the fixed lead time not as a delay, but as a time interval within which the production 
unit must process the order once it is released. We shall first discuss models that 
treat lead times as delays and treat this latter view in Sect. 5.6.

5.3.1 � Planning Models with Fixed Exogenous Lead Times

The vast majority of the mathematical programming models of interest to this vol-
ume approach the goods flow problem faced by the planning level following the 
early formulations of Modigliani and Hohn (1955), Manne (1957), Hanssmann and 
Hess (1960), and Holt et al. (1955). A finite time horizon is divided into discrete 
time periods, usually, but not necessarily, of the same length. Decision variables are 
associated with each period, and the objective is either to minimize total cost or to 
maximize total contribution (revenue minus variable costs) over the planning hori-
zon. All quantities are treated as deterministic. Following Hackman and Leachman 
(1989b), such models require three basic sets of constraints:

	1.	 Inventory or material balance constraints for all input and finished inventory 
points, which coordinate material flows through both space and time. These also 
enforce the satisfaction of demand, which is treated as a material flow out of the 
production system to an external demand source.
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	2.	 Capacity constraints, which model how the production activities capture and 
consume production resources.

	3.	 Domain-specific constraints reflecting the special structure and requirements of 
the particular production environment being modeled. The structure of these 
constraints will differ widely based on the specific environment under study and 
hence will not be discussed in detail. We shall focus on the first two constraint 
sets, which are critical to the model’s ability to accurately reflect the realized 
behavior of the production system for which the plans are developed.

Two points in time are of particular interest: the point at which the production 
order actually consumes capacity on the resources required to process it and the 
time it is completed and can be used to meet demand. Knowledge of the former is 
necessary to ensure that capacity constraints are not violated over time and of the 
latter to allow accurate prediction of the amount of material available to meet 
demand over time.

5.3.2 � A Single Production Unit

We begin by considering a production unit modeled as in Fig. 5.1. Since the timing 
and quantity of order releases constitute the link between planning and detailed 
scheduling within the production unit, release quantities are the primary decision 
variables of interest. We shall assume all demand must be met without backlogging; 
this will allow us to focus on representing the behavior of the production unit. Thus 
negative inventory levels are not permitted at any inventory location. Material flows 
within the production unit itself are of interest only to ensure that releases are capac-
ity feasible for all workcenters k ∈  K, and hence the production unit can meet 
demand within the specified lead times.

5.3.2.1 � Single Product, Instantaneous Production, Unlimited Inputs

The simplest model of production, encountered in classical inventory models such 
as the Economic Order Quantity model and the Wagner-Whitin dynamic lot-sizing 
model (Zipkin 2000; Hopp and Spearman 2008), is instantaneous production where 
the quantity ordered at a given point in time becomes available immediately upon 
production being initiated. In mathematical programming models, this implies that 
cycle time is negligible relative to the length of the planning period, so that the 
entire quantity Rt of material released into the system during period t is available to 
meet demand by the end of that period. The assumption of unlimited inputs implies 
either instantaneous acquisition or sufficient on-hand inventory of all inputs. Thus 
inputs will never constrain the ability of the production unit to meet demand, and 
there is no need to model input inventories. Since we have only a single product, the 
product subscript j is suppressed.

5.3  Lead Times in Models of the Goods Flow Problem
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To ensure consistent material flows over time, we model the finished goods 
inventory level across periods with the material balance equations

	 I I X D t Tt t t t= + − = …−1 1, , , 	 (5.2)

where It denotes the amount of finished goods on hand at the end of period t, Xt the 
output of the production unit in period t, and Dt the demand during that period. 
Under instantaneous production, we have Rt = Xt; all materials released into the 
production unit in a period are converted into output by the end of the period. 
Denoting the amount of finished goods inventory at the start of the first period (the 
end of period 0) by I0, (5.2) can be rewritten as

	
I I X D t Tt

t t

= + − = …
= =
∑ ∑0

1 1

1
τ

τ
τ

τ , , ,
	

(5.3)

by summing the constraints (5.2) for consecutive periods 1, …, t.
The most common capacity constraint encountered in the literature seeks to 

ensure that the total production Xt for a given period t, and hence the planned 
releases Rt, cannot exceed the available capacity Ckt of any workcenter k. Since we 
produce a single product, Ckt can be expressed in units of the end item, allowing this 
constraint to be written as:

	 R C t T k Kt kt≤ = … = …, , , ; , ,1 1 	 (5.4)

Taken together, (5.2) and (5.4) imply that as long as releases do not violate 
capacity constraints on any workcenter, materials released in period t will be avail-
able to meet demand by the end of the same period. If demand Dt in any period t 
exceeds the capacity of some workcenter k, the only course open to the model is to 
produce the excess demand in an earlier period s < t, holding finished inventory in 
the periods s to t. Combining (5.3) and (5.4) yields

	 τ
τ

τ
τ

τ
τ

τ
τ

= = = =
∑ ∑ ∑ ∑≥ = ≥ − = … ∈

1 1 1 1
0 1
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k

t t t

C X R D I t T k K, , , , ,
	

(5.5)

as a necessary condition for a feasible solution to exist. The only reason to release an 
order in advance of the period in which it is due is lack of capacity at some workcenter 
k in that period. Denoting the unit cost of holding FGI for one period by ht and the unit 
incremental cost of production by ct, the planning model can be written as:

	
min

t

T

t t t th I c R
=
∑ +( )

1 	
(5.6)

subject to

	 I I R D t Tt t t t= + − = …−1 1, , , 	 (5.7)

	 R C t T k Kt kt≤ = … ∈, , , ,1 	 (5.8)
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	 I R t Tt t, , , ,≥ = …0 1 	 (5.9)

This model, although simplistic in its assumptions, has all the basic components 
of a production planning model: decision variables associated with each period (the 
Rt), state variables arising from the decision variables and the constraints (the It), an 
objective function minimizing the sum of production and inventory holding costs 
(5.6), material balance constraints (5.7) for the finished inventory location, and 
capacity constraints (5.8) for each resource k in each period t.

The capacity constraint (5.8) ensures that the total planned resource usage during 
the planning period does not exceed the amount of the resource available during the 
period. This is necessary, but not sufficient, to ensure that the planned releases can 
actually be processed within the planning period, since the model does not control 
the timing of work arrivals at the workcenter within the period. If for some reason 
such as a machine failure on the shop floor, 75% of the amount released became 
available only in the second half of the planning period, the workcenter might well 
not be able to process all of it by the end of the period.

5.3.2.2 � Single Product, Non-instantaneous Production

The model (5.6)–(5.9) is not realistic when the magnitude of the workcenter cycle 
times Qjkt + Pjkt is significant relative to that of the planning period. The most com-
mon representation of this situation in the literature is a fixed lead time L represent-
ing the estimated time required for work released in a given period to become 
available to meet demand, most commonly expressed as an integer number of plan-
ning periods.

Under these assumptions, material released into the production unit during 
period t becomes available for use L time periods later during period t + L, implying 
that Xt = Rt−L. The material balance constraints for the finished inventory are now

	 I I X D I R D t Tt t t t t t L t= + − = + − = …− − −1 1 1, , , 	 (5.10)

This is exactly the model of lead times used in MRP in its backward scheduling 
phase, where the fixed lead time represents the amount of time elapsing between the 
time an order for a BOM item is placed and its receipt (Baker 1993; Voss and 
Woodruff 2003). Since we have only one product (end item), the product index j 
remains suppressed.

Under instantaneous production, an order consumes capacity at each resource k 
in the period in which it is released, rendering constraints (5.8) sufficient to ensure 
capacity feasible releases. However, when lead times exceed one period a question 
of timing arises—at what point in the lead time L does the job consume capacity on 
a given resource k? This requires knowledge of the process routing, the sequence in 
which the different resources are utilized by the order. Without loss of generality, we 
shall assume that the order visits each resource exactly once in a known, deterministic 
sequence and that the resources are indexed in the order of their use. Thus resource 
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k = 1 is the first resource used in the routing, and resource k = |K| the last one before 
the order enters finished inventory. Let Lk denote the estimated delay between the 
release of the order to the production unit and its becoming available for processing 
on workcenter k. Thus Lk represents an estimate of the total cycle time of the order 
at all workcenters in its routing prior to k, implying that

	
E Q P L Lkt kt k k+[ ] = − −1 	

(5.11)

Clearly we must have

	
max
1≤ ≤

{ } ≤
k K

kL L
	

(5.12)

for consistency. Our capacity constraints (5.8) now take the form

	
R C k K t Tt L ktk− ≤ ∈ = …, ; , ,for all 1

	
(5.13)

Since no inventory is held within the production unit other than the WIP waiting 
for processing or in transit between stages, the output of individual workcenters is 
represented to capture their incremental costs of production and their limited capac-
ity in each period. By the definition of the lead times Lk, an order processed on 
workcenter k in period t will have been released in period t − Lk. For simplicity of 
exposition, we shall assume that the total production cost of an order completed in 
period t, given by

	
c ct

k

K

k t L Lk
=

=1
∑ ( ). – –

	
(5.14)

where ckt denotes the unit cost of production on workcenter k in period t, is assessed 
in period t; this could easily be relaxed at the expense of additional notation. The 
single-product multiple workcenter model with integer lead times Lk associated 
with each resource k, and an overall lead time L associated with the entire produc-
tion unit, is as follows:

	
min

t

T

t t t t Lh I c R
=

−∑ +( )
1 	

(5.15)

subject to

	 I I R D t Tt t t L t= + − = …− −1 1, , , 	 (5.16)

	
R C t T k Kt L kk− ≤ = … ∈, , , ,1

	
(5.17)

	 I R t Tt t, , , ,≥ = …0 1 	 (5.18)

Decision variables with non-positive subscripts correspond to decisions made 
prior to the start of the planning horizon that are known with certainty, and as such 
are parameters of the model. This is essentially the step-separated formulation of 

5  Planning Models with Stationary Fixed Lead Times



85

Leachman and Carmon (1992), without the alternative production routings consid-
ered in that paper. The amount of production that can take place on resource k in a 
given period t is limited by both the capacity Ckt and the amount of work available 
for processing, given by past releases Rt Lk−  per (5.17). Hence the amount of WIP 
available to process on workcenter k in period t is simply Rt Lk− . The total amount of 
WIP in the production unit—the amount of material that has been released but not 
yet completed—is given by

	
W R Xt

t L

t

t

t L

= =
= − + = +

+

∑ ∑
τ

τ
τ

τ
1 1 	

(5.19)

This quantity does not appear in LP models of production planning, such as those 
discussed in Johnson and Montgomery (1974), Hackman and Leachman (1989a, b), 
and Voss and Woodruff (2006) that treat fixed lead times as a delay between order 
release and completion. The reason for this is apparent from (5.19): when a fixed 
lead time represents a delay the amount of WIP is determined by the lead time L and 
the releases Rt; any WIP holding cost can be incorporated into the incremental pro-
duction cost ct.

The movement of material through a system with four machines in series under 
this model is traced in Fig.  5.2. The vertical axis shows the lead times for each 
machine, and each timeline the material processed by each machine in each period, 
identified by the period of its release to the first machine, machine 1. The material 
released in each period is indicated by the numeral above it; thus, material released 
at the start of period 1 is indicated by a “1” above the line indicating the material. 
Material released in a given period is shown with a bar of a given color until it exits 
the system; thus the material released in period 1 is shown as a red bar as it proceeds 
through the machines. Material released at the start of the planning horizon, at the 
start of period 1, indicated by the red bars, becomes available to machine 2 at the 
start of period 2, is in WIP at machine 2 at the start of period 3, is available to 
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Fig. 5.2  Timing of material flow under fixed lead times
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machine 3 at the start of period 4, and is available to machine 4 at the start of period 
4. At the end of period 5 or, equivalently, the start of period 6, the WIP at machine 4 
consists of the material entering the system (i.e., released to machine 1) in period 2; 
at machine 3, the material released in periods 3 and 4, and at machine 2, that released 
in period 5. The figure also indicates that not all the WIP at a machine at the start of 
a period is necessarily available to be processed at the machine in the period. For 
example, at the start of period 6, material entering the system in periods 3 and 4 is in 
WIP at machine 4, but even if the machine has sufficient capacity, only the material 
entering in period 3 will be processed. In other words, WIP cannot accumulate, but 
flows through the system in discrete units equal to the quantity released in each period.

The model assumes that WIP will not accumulate in the system over time; only 
the material released in period t − Lk is available to resource k for processing in 
period t. Equivalently, all Rt units of product released in period t are assumed to 
move through the production process as a single entity, occupying capacity on each 
workcenter within a single period. Since (5.17) ensures that releases do not exceed 
capacity, the system can always process this quantity in a single period. The remain-
ing WIP still to be processed by the workcenter, given by

	

W Rkt

t L

t L L

k

k k
˜

=
= − +

− −( )+−

∑
τ

τ
1

11

	

(5.20)

has no effect on the cycle time of the workcenter, which can never exceed Lk−Lk−1 as 
long as the capacity Ckt of the resource in period t is not exceeded. The lead time Lk 
simply delays the arrival of work to the workcenter after its release into the produc-
tion unit; it does not describe the behavior of the workcenter itself.

Examination of constraints (5.16) and (5.17) reveals another consequence of the 
fixed lead times: the output of the production unit in periods 1 through L cannot be 
influenced by release decisions in periods 1, …, L−1 but is determined by release 
decisions in periods –L+1 through 0 which, since they lie in the past, are assumed 
to be known with certainty. Thus positive fixed lead times bring the need to initialize 
the model with information about decisions in the early periods of the planning 
horizon. These quantities are analogous to the scheduled receipts used in MRP cal-
culations (Baker 1993; Jacobs et  al. 2011). Similarly, the model will not plan 
releases in periods T – L + 1 through T, since this material can only meet demand in 
periods T + 1 through T + L − 1 that lie outside the planning horizon. Thus the use 
of fixed lead times requires specifying boundary conditions for the planning models 
at the beginning and end of the planning horizon.

The timing of releases and output under fixed lead times is illustrated in Fig. 5.3, 
which assumes a fixed lead time of L = 2 periods. Releases Rt in each period t are 
assumed to be uniformly distributed across the period. Hence the output X3 in period 
3 is determined by the amount of releases R1 in period 1. However, the output X1 of 
the production unit in period 1 lies within the fixed lead time, and hence depends on 
decisions made in the past, in period t = −1. To avoid introducing additional notation 
for these historical release decisions associated with periods t = −L + 1 through 
t = 0, we assume henceforth that any decision variable with a non-positive subscript 

5  Planning Models with Stationary Fixed Lead Times



87

Releases Rt

Output Xt

-2 -1 0 1 2 3 4

R1

X3

R-1

X1

t=-1 t=0 t=1 t=2 t=3 t=4

Figure 5.3  Timing of material flows under integer fixed lead times

is a parameter corresponding to a historical decision. Under this model of fixed lead 
times, the time series Xt, t = 1,…,T representing the output of the workcenter is 
simply the time series Rt, t = 1,…, T of the releases shifted L periods to the right.

Hence under fixed lead times, the output variables Xt and release variables Rt are 
completely interchangeable. We have written our formulation in terms of the release 
variables Rt, but since Xt = Rt−L it is straightforward to write it in terms of the output 
variables Xt.

Finally, the model (5.15)–(5.18) can be rewritten using (5.3) to eliminate the 
inventory variables. Defining I0 to be the amount of finished goods inventory on 
hand at the start of the first period in the planning horizon, we see that
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Substituting (5.21) into (5.15) yields
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Discarding constants independent of the decision variables, we can rewrite 
(5.15)–(5.18) as

	
min
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(5.23)

	
R C k K t Tt L kk− ≤ = … = …, , , ; , ,1 1

	
(5.24)

	 R t Tt ≥ = …0 1, , , 	 (5.25)

Model (5.22)–(5.25) shows that the It variables are not essential; they are a con-
sequence of the primary decisions, given by the releases Rt, and the constraints 
describing the behavior of the system. While the model (5.6)–(5.9) is probably more 
familiar to the reader, as it is widely used in textbooks, the model (5.22)–(5.25) 
provides some advantages when analyzing the structure of optimal solutions, par-
ticularly the dual solutions that we shall examine later in this chapter.

This basic formulation can be extended in a number of directions without materi-
ally affecting its structure. Models involving lot-sizing considerations due to the 
presence of setup costs or setup times, such as that of Billington et al. (1983) or 
those studied by Pochet and Wolsey (2006), involve integer variables—a significant 
difference from a computational perspective—but their treatment of capacity and 
lead times is essentially the same. Far more elaborate objective functions are pos-
sible, but our emphasis is on the representation of production capacity and material 
flow. The assumption of no backlogging can be relaxed in the standard manner 
(Johnson and Montgomery 1974). Since a backlog corresponds to a negative inven-
tory level, we can represent the net inventory level Nt as the difference of two non-
negative variables Nt = It − Bt, where It denotes on-hand, positive inventory, at the 
end of period t, and Bt the backlog. Since the column vectors for It and Bt in the 
constraint matrix of the linear programming model will be linearly dependent, both 
variables cannot take positive values in an optimal solution.

5.3.2.3  Multiple Items

The single-item multiple workcenter model (5.22)–(5.25) extends to the multi-item 
case with items j ∈ JF in a very natural manner. Capacity constraints at each work-
center k must now consider the total capacity consumption by all items j ∈ J(k) 
using that workcenter in each period, and separate finished goods inventory balance 
equations must be written for each product j. All lead time parameters are now 
product-dependent, with Lj denoting the lead time of product j from release until 
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completion and Ljk its lead time from release until its availability for processing at 
workcenter k. With these changes, the multi-item model can be written as:

	

min ,
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subject to
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I R j J t Tjt jt, , , , ,≥ ∀ ∈ = …0 1F 	

(5.29)

The only representation of resource contention between the products j at the 
workcenters k is the left hand side of (5.28), which is linear in the release quantities 
of each product. This is in marked contrast to Fig. 2.2, where the output of the 
resources is a concave non-decreasing function of the workload, determined by the 
production quantities. The presence of multiple products with different processing 
times on the workcenter will result in increased coefficients of variation of the pro-
cessing times Pjkt and a downward shift in the output function. The lead times Ljk are 
also unaffected by production quantities, in contrast to the highly nonlinear behav-
ior of the cycle time with workload seen in Fig. 2.1. It begins to be apparent that the 
workcenter behavior described by this model differs quite fundamentally from that 
of the queueing models discussed in Chap. 2. The inventory variables can also be 
eliminated using (5.21), resulting in the formulation
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R j J t L T Ljt j j≥ ∀ ∈ = … −0, , , ,

	
(5.33)

We now use this formulation to discuss the dual model and its interpretation.
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5.4 � Dual Formulation

Unless it is infeasible or its optimal value is unbounded, any linear program is asso-
ciated with another linear program, its dual, whose optimal value is equal to that of 
the original (the primal) at optimality (Bazaraa et al. 2004). Each decision variable 
in the dual is associated with a constraint in the primal and each dual constraint with 
a primal decision variable. Thus, the generic linear program
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will be associated with its dual
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	 y i mi ≥ = …0 1, , , 	 (5.39)

The dual variables yi associated with each primal constraint i correspond to the 
Lagrange multipliers associated with that constraint, representing the partial deriva-
tive of the optimal objective function value with respect to the right-hand side bi of 
constraint i at optimality. An important property arising from the Kuhn–Tucker opti-
mality conditions for linear programs is the complementary slackness condition
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(5.40)

The dual variables have an economic interpretation that is often helpful in inter-
preting the results of a model. An important advantage of the models developed in 
Chap. 7 is their ability to provide richer dual information than that obtained from the 
models discussed in this chapter.

Since our primary concern lies with production planning models, we discuss dual-
ity in an intuitive, heuristic fashion; rigorous mathematical treatments are given by 
Bazaraa et al. (2004) and Bertsimas and Tsitsiklis (1997). Correct interpretation of 
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dual variables can be quite subtle, especially in the presence of a degenerate optimal 
solution where some constraints are redundant; extensive discussions of these issues 
are given by Jansen et al. (1997), Koltai and Terlaky (2000), and Rubin and Wagner 
(1990). To avoid the extensive mathematical digressions required to address the issues 
in estimating dual prices in the face of degenerate optimal solutions, our discussion 
will assume that all optimal solutions are non-degenerate, closely following the devel-
opment in Kefeli (2011) but omitting some details to focus on insights.

We will develop the dual formulation for the model (5.30)–(5.33). For further 
simplicity in exposition, we shall assume all costs are time-stationary such that, for 
example, cjt  =  cj for all periods t. In this case, the no-backlogging assumption 
implies that as long as a feasible solution exists, in any optimal solution total pro-
duction of any product will exactly equal its total demand net of the initial invento-
ries Ij0, and the production costs will have no influence on the optimal solution. This 
results in the simplified primal linear program
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The Greek letters in parentheses denote the dual variables associated with each 
constraint set. The dual of this linear program is given by
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γ jt j J t T≥ ∀ ∈ = …0 1, , , ,

	
(5.47)

	 σ kt k K t T≥ ∀ ∈ = …0 1, , , , 	 (5.48)

The primal variables corresponding to the dual constraints are shown next to 
each dual constraint set. While the primal problem chooses releases Rjt in each 
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period t to minimize the cost of meeting demand under capacity constraints, the 
dual problem chooses prices γit and σkt to maximize revenue. γjt can be interpreted 
(subject to the mathematical caveats discussed by Rubin and Wagner (1990) and 
others) as the minimum amount the firm should charge an additional unit of demand 
for item j in period t. σkt, on the other hand, represents the maximum amount the firm 
should be willing to pay to acquire an additional unit of resource k in period t. The 
cost coefficients (T − t + 1)hj of the primal problem represent the contribution to the 
total cost of a unit of item j produced in period t, given by its incremental contribu-
tion to holding cost until the end of the planning horizon.

The first term in (5.45) represents the revenue from an additional unit of demand 

for item j in period t, which will increase the cumulative net demand 
τ

τ
=
∑ −

1
0

t

j jD I  in

each subsequent period until the end of the horizon. The second term in (5.45) rep-
resents the marginal cost of all resources required to process this additional unit of 
demand; recall that all demands must be met without backlogging. Hence the right-
hand side of (5.46) represents the net marginal revenue (marginal revenue minus 
marginal resource costs) associated with an additional unit of demand for item j in 
period t. (5.46) ensures that the total marginal cost of the additional item cannot 
exceed its marginal net revenue. The complementary slackness property (5.40) 
implies that when there is positive slack in constraint (5.46) for some item j and 
period t at optimality, we will have Rjt = 0 in an optimal solution. Conversely, Rjt > 0 
at optimality implies (5.46) is satisfied at equality.

Our primary interest in this discussion is the dual variables σkt associated with the 
primal capacity constraints (5.43). These dual variables represent the impact on the 
objective function of an additional unit of capacity at resource k in period t, which is 
of interest for several reasons. A high value of this dual variable indicates that limited 
capacity at this machine is significantly affecting the ability of the production unit to 
meet demand in a cost-effective manner, suggesting particular attention by manage-
ment to improving its performance. It will also turn out, as we shall see in Chap. 7, that 
the clearing function formulations introduced in that chapter yield much more infor-
mative dual information than that obtained from this model, as we shall illustrate below.

Recall that a unit of product j that completes processing in period t will consume 
capacity on its k’th workcenter in period t − Lj + Ljk. Thus the output X Rjt j t L j

= −,  of 
each item j in any period t is potentially constrained by at most |K(j)| of the capacity 
constraints (5.43), each corresponding to a workcenter k in period t – Lj + Ljk. To 
ensure a non-degenerate optimal solution, we shall assume that for each item j at 
most one of these associated capacity constraints is satisfied at equality; this condi-
tion can be enforced if necessary by perturbing the right-hand side of the constraints 
by an arbitrarily small quantity. The specific workcenter k whose capacity constraint 
is binding in period t – Lj + Ljk will be denoted by k*(j,t), indicating that this work-
center limits the output of item j in period t. We will refer to resource k*(j,t) as the 
limiting workcenter for item j in period t. Our assumption of non-degeneracy 
implies at most one limiting workcenter for each product j in each period t of the 
planning horizon. The limiting workcenter of an item j may be used concurrently by 
other items and may change from period to period, i.e., it is perfectly possible to 
have k*(j,t) ≠ k*(j,s) for t ≠ s. Different items j may have different limiting resources 
in a given period.
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As long as the production costs ct are non-decreasing in the time period t, it is 
straightforward to show that an optimal solution to the primal will satisfy
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implying that the model will hold finished inventory against future demand in period 
t  −  1 if and only if capacity at a resource k*(j,t) is fully utilized in period 
t L Lj j k j t
− + ∗ ( ), ,

. Hence the model will hold finished inventory of product j in some 
period t only if the total demand for all items 
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requiring the model to meet the demand in period s by building up finished inven-
tory in periods prior to s. Periods s into which no finished inventory is carried in the 
optimal solution indicate that the optimal decisions for periods s < t are independent 
of those for periods s ≥ t. Hence an optimal solution to (5.41)–(5.44) will consist of 
one or more busy intervals, each consisting of q ≥ 0 consecutive periods S = {s−q, 
s−q+1, …, s} with Ijq > 0 for some items j ∈ J such that

	
j J k j s
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(5.51)

Since the limiting workcenter k*(j,s) has a binding capacity constraint in period s by 
definition, our assumption of a non-degenerate solution implies that all products i ≠ 
j requiring this resource in this period will have positive inventory in this busy inter-
val, implying that γjt = 0 by the complementary slackness condition for constraints 
(5.42). Based on these observations, we will have dual prices σkt  >  0  in periods 
s q L Lj jk
−( ) − −( )∗  for all products j that use workcenter k*(j,s) in period s. We 

shall restrict our attention to periods in this interval where production activity is 
taking place, i.e., X Rjt j t L j

= >−, 0 . By complementary slackness, the dual con-
straints (5.46) will be tight in periods s − q through s. Solving recursively from 
period s + 1 backwards in time to period s, Kefeli (2011) shows that
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(5.52)

Our assumption of non-degeneracy implies that the output of each product j is lim-
ited by at most one resource k in each period, but there may be multiple workcenters 
with positive dual prices corresponding to different subsets of products. The limit-
ing workcenter for a product j may also change from one period to the next, i.e., 
k*(j,t − 1) ≠ k*(j,t). When the same workcenter is limiting for item j in two consecu-
tive periods t − 1 and t, (5.52) simplifies to
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(5.53)
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Examining this expression shows that the absolute value of the dual price of 
capacity increases linearly with time over the busy interval, starting with a value of 
zero and increasing in absolute value by h aj j k j t

/
, ∗ ( ),  in each period. This is intuitive;

an additional unit of capacity at workcenter k*(j,t) in period t L
j k j t

− ∗ ( ), ,
 will allow 

1 /
,

a
j k j t∗ ( ),  units held in inventory in period s to be produced in this period, reducing

holding costs by t s a
j k j t

− +( ) ∗ ( )1 /
, ,

.
The following numerical example illustrates this structure of optimal solutions.

Example 5.1  To illustrate the structure of the optimal solution and the dual vari-
ables, consider a production unit with two products and four workcenters with the 
data given in Table 5.1. The unit finished goods holding costs are given by h1 = h2 = 5, 
and the overall lead times by L1 = L2 = 5. Initial inventory at the end of period 0 is 
I10 = 20 units for Product 1 and I20 = 25 units for Product 2. Both products require 
processing on all four resources in increasing order of machine number. The demand 
for each product in each period is given in Table 5.2.

Table 5.2  Demand data for 
Example 5.1

Period Item 1 demand Item 2 demand

1 0 0
2 0 0
3 5 0
4 4 0
5 4 2
6 5 4
7 5 5
8 5 5
9 6 3
10 7 4
11 6 3
12 6 3
13 0 6
14 0 5
15 0 0

Table 5.1  Parameter values for Example 5.1

Item Machine 1 Machine 2 Machine 3 Machine 4

Production cost 1 1 1 1 2
2 2 2 2 2

Processing time 1 3 3 2 4
2 3 4 4 4

Lead time Ljk 1 0 1 2 4
2 0 1 2 4

Capacity Ckt 100 100 18 20
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Solving the primal model (5.41)–(5.44) yields the optimal solution given in 
Table 5.3, with optimal objective function value 2636.25. Machine 3 is the limiting 
resource for Product 1 in periods 4 through 8, and for Product 2 in periods 9 and 10. 
The dual prices σkt associated with this machine in the optimal solution are plotted 
in Fig.  5.4; only Machine 3 has nonzero dual prices. The relation (5.53) can be 
clearly observed, with the dual price increasing linearly until the capacity loading 
falls below resource capacity. Note that although Machine 4 has utilization of 0.9 in 
periods 12 and 13, and would thus be expected to have high cycle time and WIP, its 
dual price remains at zero since the capacity constraint is not binding.

Table 5.3  Optimal solution for Example 5.1

Period
Releases, Rj Resource loading Ending inventory, Ijt

Item 1 Item 2 Machine 1 Machine 2 Machine 3 Machine 4 Item 1 Item 2

−3
−2
−1
0 20 25
1 0 3.75 11.25 0 0 0 20 25
2 3 2.25 15.75 15 0 0 20 25
3 6 0 18 18 15 0 15 25
4 6 0 18 18 18 0 11 25
5 6 0 18 18 18 15 7 23
6 6 0 18 18 18 15 2 22.75
7 6 0 18 18 18 12 0 20
8 0 4.5 13.5 18 18 12 1 15
9 0 4.5 13.5 18 18 12 1 12
10 0 0 0 18 18 12 0 8
11 0 0 0 0 18 12 0 5
12 0 0 0 0 0 18 0 2
13 0 0 0 0 0 18 0 0.5
14 0 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0

0
2
4
6
8

10
12

0 5 10 15 

Dual
 Price 

Period

Fig. 5.4  Dual variables 
associated with Machine 3 
in optimal solution to 
Example 5.1
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5.4.1 � Insights from the Dual

Our analysis of the dual solution indicates a number of drawbacks of the formulation 
(5.41)–(5.44), particularly its representation of workcenter behavior. By complemen-
tary slackness, the dual variables σkt associated with the capacity constraints (5.43) 
will only take nonzero values if the associated primal constraint is binding at opti-
mality, implying that the workcenter’s capacity is fully utilized. Since σkt represents 
the maximum amount the firm should be willing to pay for an additional unit of 
output from workcenter k in period t, this implies that no improvement in the optimal 
objective function value can be obtained from additional output at a workcenter 
unless its capacity is fully utilized. However, as discussed in Chap. 2, queueing 
models suggest qualitative changes in the behavior of a capacitated workcenter at 
utilization levels well below 1; more precisely, they show a nonlinear increasing rela-
tion proportional to 1/(1 − u) between cycle time and utilization (Hopp and Spearman 
2008), implying that additional capacity at the workcenter might improve system 
performance even though currently capacity is not fully utilized. Likewise, improv-
ing the performance of a workcenter such that it can generate more output for the 
same average WIP level, shifting the curves in Fig. 2.2 to the left, should allow 
reduced cycle time and hence reduced costs, which the current model is unable to 
capture. Note, however, that this does not necessarily imply that adding capacity 
would be economically beneficial, especially if capacity can only be added in dis-
crete increments.

A second drawback of this model can be observed directly in (5.53): the dual 
price of a resource in a period is independent of events at other resources as long as 
the limiting resources do not change. This again contradicts insights from queueing 
models (Hopp and Spearman 2008), which show that the behavior of downstream 
resources is affected by the utilization of upstream ones. Consider two resources 
operating in series where work flows from workcenter 1 to workcenter 2. Per Hopp 
and Spearman (2008) Chap. 8, the squared coefficient of variation (SCV) of the 
interarrival times at workcenter 2 is given by the SCV of the departure process from 
workcenter 1, which, in turn, can be approximated by

	
c u c u cd e a
2 2 2 2 21= + −( ) 	

(5.54)

where u denotes the average utilization of workcenter 1, ce
2  the SCV of the effective 

processing time distribution at workcenter 1, and ca
2  the SCV of the external arrival 

process to workcenter 1. This relation suggests that the dual price of capacity at 
workcenter 2 ought to be influenced by decisions at workcenter 1; under most con-
ditions, unless ce is small relative to ca, adding capacity to workcenter 1 will reduce 
u, reducing the average cycle time at workcenter 2 which ought to improve overall 
performance, or at least leave it no worse.

This analysis of the dual prices of capacity suggests that the use of fixed lead 
times can model the behavior of production resources subject to queueing behavior 
to at best a limited degree. The largest discrepancies are to be expected when 
resource utilization levels vary significantly over time, causing the fixed lead times 
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to over- and/or underestimate actual cycle times; and when multiple resources have 
high utilization levels close to, but not quite equal to, 1, such that small changes in 
utilization lead to large changes in cycle times.

5.5 � Fractional Lead Times

Our discussion of fixed lead times up to this point has assumed lead times expressed 
as integer multiples of the planning period length Δ, recalling that period t ends at 
time tΔ. Assuming that all release and demand rates are uniform over each planning 
period, Hackman and Leachman (1989b) have shown that non-integer fixed lead 
times can be incorporated easily. We first illustrate the basic idea with a single-
product single-workcenter model and then discuss generalizations.

Any fractional fixed lead time L can be decomposed into integer and fractional 
parts as L = ⌊L⌋ + ϕ, where ⌊L⌋ denotes the largest integer less than or equal to L 
and ϕ = L − ⌊L⌋ the fractional part of the lead time. We assume L remains constant 
in all planning periods; the case where lead times can vary over time is addressed 
in the next chapter. Under uniform release and demand rates over the planning 
period, if Rt units of a product are released during this period, the material will 
enter the production unit at a rate of Rt/Δ units per unit time. The material flow 
through the workcenter can then be represented as in Fig. 5.5. The upper timeline 
represents the progression of releases into the production unit over time and the 
lower timeline the entry of this material into finished inventory. The amount of 
material becoming available to meet demand in period t is given by

	
Y R Rt t L t L= + −( )− − − 

φ φ1 1
	

(5.55)

R0 R1 R2 R3 R4

1-ff
-1 0 1 2 3 4 5

Fig. 5.5  Fractional lead times
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Table 5.4  Data for fractional lead time example

Period Releases Outputs Demand Ending inventory

−1 50 – –
0 80 – 0
1 120 65 50 15
2 150 100 110 5
3 150 135 140 0
4 160 150 150 0
5 150 155 155 0
6 80 155 150 5
7 25 115 100 20
8 0 52.5 60 12.5
9 0 12.5 25 0

and the material balance constraint analogous to (5.16) takes the form

	
I I R R D t Tt t t L t L t= + + −( ) − = …− − − − 1 1 1 1φ φ , , ,

	
(5.56)

where It denotes the amount of finished goods inventory at the end of period t.
However, let us take a closer look at the implications of this formulation. Recall 

that we assume constant release and production rates throughout each planning 
period. Now consider the data given in Table 5.4, under a fixed lead time of L = 1.5 
periods and Rt = 0 for t < −1.

The output (production) in each period t is computed assuming that releases Rt 
and demands Dt are uniformly distributed across their associated planning periods 
as in (5.56). The ending inventory is computed using the inventory balance equation 
(5.56) at the end of each period. The reader should verify these calculations to con-
firm that inventory levels are nonnegative at the end of all planning periods.

However, all is not as it seems. Although the release rate over each planning 
period is constant, the output rate, which defines the rate of inflow into the inven-
tory, is not. Due to the fractional nature of the lead time, material released at the start 
of period t emerges as output in the middle of period t + 1, as illustrated in Fig. 5.6, 
where each period is divided into two subintervals of length ϕ and 1 − ϕ, in this case 
both equal to 0.5 periods. In periods 1, 2, and 3, the output rate of the production 
resource during the first subinterval of the period is different from that in the second 
subinterval.

Table 5.5 recalculates Table 5.4 at each half-period. As the reader can (and should!) 
verify, changes in output rates within the planning periods result in negative inventory 
levels at some of these intermediate points.

As pointed out by Hackman and Leachman (1989b), there are two possible solu-
tions to this problem. The most obvious, especially in the very structured example 
we have used here, is to reduce the size of the planning periods such that rate 
changes within planning periods are no longer possible, and enforce material 
balance and capacity constraints at the boundaries of each of these subintervals. 
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Fig. 5.6  Output of production unit with fractional lead times per Table 5.5

Table 5.5  Effect of fractional lead times at interior points of planning periods

Period Output Demand FGI

0.5 25 25 0
1 40 25 15
1.5 40 55 0
2 60 55 5
2.5 60 70 -5
3 75 70 0
3.5 75 75 0
4 75 75 0
4.5 75 77.5 −2.5
5 80 77.5 0
5.5 80 75 5
6 75 75 5
6.5 75 50 30
7 40 50 20
7.5 40 30 30
8 12.5 30 12.5
8.5 12.5 12.5 12.5
9 0 12.5 0
9.5 0 0 0
10 0 0 0
10.5 0 0 0
11 0 0 0

To ensure consistency, the length of the subintervals must be equal to the least com-
mon divisor of the fractional lead times. This will significantly increase the size of 
the formulation, since both the number of constraints and the number of decision 
variables depend on the number of periods. It is also impractical in the presence of 
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the time-varying lead times discussed in Chap. 6, where the lead time associated 
with each period may have a different fractional part. In this case a period length 
equal to the greatest common divisor of all lead times must be used, which may 
result in a much larger model than necessary.

Hackman and Leachman (1989b) propose a much simpler solution to this diffi-
culty by noting that it is only necessary to write additional constraints at points in 
time where output or release rates may change. This includes the boundaries of the 
original planning periods and intermediate points where a fractional lead time 
causes a change in output (and hence the rate of inflow into finished inventory) or 
the amount of material requiring capacity at a particular resource. Under the time-
stationary lead times assumed in this chapter, each planning period will have at most 
one intermediate point for which additional constraints for a given product need to 
be written.

Although we have focused on the overall lead time Lj of the production unit for 
a particular item j, the same issues arise with respect to the capacity constraints for 
each workcenter k and their associated lead times Lk. In this case the changes in 
release rate within a planning period may result in capacity constraints being vio-
lated at interior points of the period (Hackman and Leachman 1989b). To see this, 
consider the situation illustrated in Fig. 5.7 where we have two items whose respec-
tive lead times are L1k = 1.5 and L2k = 1.75 periods. The upper time line shows the 
releases of each item and the lower the arrival of each item at the resource under 
consideration. Recalling our convention that period t ends at time t, the rate of mate-
rial arriving at the resource k during period t can change at three potential points in 
time: t  −  1, t  + ϕ1k, and t  + ϕ2k, where ϕjk  =  Ljk  − ⌊Ljk⌋, requiring the capacity 
constraints

Rj0 Rj1 Rj2 Rj3

f1k

f2k

-1 0 1 2 3

Fig. 5.7  Impact of multiple products with fractional lead times on capacity constraints
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This approach results in a large number of additional capacity constraints, espe-
cially in environments such as semiconductor wafer fabrication where a given 
resource may be used by tens of different unit operations. Leachman (2001) points 
out that the presence of many items j with slightly different fractional components 
ϕjk is likely to yield a roughly uniform distribution of workload over the planning 
interval, allowing approximate capacity constraints of the form

	 j J k
jk jk t L jk t L kta R R C t T k K

jk jk
∈ ( )

− − −∑ + −( )



 ≤ = … = …φ φ1 1 1 1, , ; , ,

	

(5.58)

to be used without inducing excessive error. Note that (5.58) simply adds up the 
total amount of each product loading the resource within the planning period, 
without considering the specific timing of the loading within the period. The basic 
operation of these constraints is the same as that for material flow discussed above 
and can be illustrated in the following example.

Example 5.2  Consider a single resource and three products with fixed fractional 
lead times L1 = 1.3, L2 = 1.5, and L3 = 1.75 that remain constant over a planning 
horizon consisting of T = 12 periods. Thus we have ϕ1 = 1.3 − ⌊1.3⌋ = 0.3, ϕ2 = 0.5, 
and ϕ3 = 0.75 by the same logic. Following Fig. 5.7, the intervals within which the 
capacity loading from each product will remain constant, assuming constant release 
rates over each planning period, are calculated in Table 5.6.

Capacity loading of the resource remains constant over each interval with the 
given start and end points. Due to the fractional lead times, the rate of capacity 

Table 5.6  Uniform loading intervals for Example 5.2

Prod. 1 Start 0.3 1 1.3 2 2.3 3 3.3 4 4.3 5 5.3 6 6.3
End 1 1.3 2 2.3 3 3.3 4 4.3 5 5.3 6 6.3 7

Prod. 2 Start 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
End 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

Prod. 3 Start 0.75 1 1.75 2 2.75 3 3.75 4 4.75 5 5.75 6 6.75
End l 1.75 2 2.75 3 3.75 4 4.75 5 5.75 6 6.75 7

Prod. 1 Start 7 7.3 8 8.3 9 9.3 10 10.3 11 11.3 12 12.3
End 7.3 8 8.3 9 9.3 10 10.3 11 11.3 12 12.3 13.3

Prod. 2 Start 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5
End 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13.5

Prod. 3 Start 7 7.75 8 8.75 9 9.75 10 10.8 11 11.8 12 12.8
End 7.75 8 8.75 9 9.75 10 10.8 11 11.8 12 12.8 13.8
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loading can change at the start of any of these intervals for any product; hence it is 
necessary to write capacity constraints for each subinterval arising from the inter-
sections of consecutive loading intervals for the individual products. Thus con-
straints similar to (5.57) need to be written for the intervals (0.3, 0.5), (0.5, 0.75), 
(0.75, 1), (1, 1.3), (1.3, 1.5), and so on, resulting in a total of 53 intervals that need 
to be considered explicitly. The large number of constraints required by this 
approach is immediately evident.

Assuming that each unit of each product requires a single unit of capacity for one 
planning period to be completed, we now calculate the capacity loading, in terms of 
units of capacity, for each interval assuming the releases in Table 5.7.

Figure 5.8 plots the total loading of the resource by all three products for the 
release schedule shown in Table 5.7. The interval load plot shows the load, in terms 
of the number of parallel machines that would be required to process all the work 
available in the interval, for each of the 53 subintervals over which load remains 
constant, while the period load plots the total load within each planning period 
using (5.58). Discrepancies between the two plots arise where one would expect, in 
regions where the releases, and hence the loading of the resources, is changing, 
which in the example are at the start and end of the planning horizon and between 
periods 5 and 6, where the releases of Product 2 are temporarily interrupted. As the 
number of products and the number of different ϕj values increase, and especially if 
the ϕj values are distributed somewhat uniformly between 0 and 1, the error induced 

Table 5.7  Release schedule for Example 5.2

Period 0 1 2 3 4 5 6 7 8 9 10 11 12

Prod. 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Prod. 2 2 2 2 2 1 0 0 0 2 2 2 2 2
Prod. 3 0 0 0 0 0 0 1 1 1 1 0 0 0

Fig. 5.8  Capacity loading with fractional lead times
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by using (5.58) is likely to be considerably smaller than that arising from other 
sources, such as errors in demand forecasts.

Kacar et al. (2016) compare the performance of planning models using integer 
and fractional lead times on a data set representing a large semiconductor wafer 
fabrication facility and find that incorporating fractional lead times for both finished 
inventory balance and capacity constraints yields markedly superior performance 
than including it for either one alone. The fractional lead time model including the 
aggregate capacity constraints (5.58) and the finished inventory balance constraints 
(5.56) yielded significantly better performance than a model using integer lead 
times, and comparable performance to the much larger model using clearing func-
tions described in Chap. 7.

Given the magnitude of the performance improvement and the capabilities of 
today’s commercial LP solvers, we see no reason not to use fractional lead times if 
they appear to be called for. The most likely case where fractional lead times will be 
beneficial is when the cycle times of the production system and individual resources 
span multiple planning periods, and the fractional parts of the lead times are sub-
stantial relative to the length of the planning period.

5.6 � Input-Output Models: An Alternative View of Fixed 
Lead Times

Our discussion so far has assumed that the entire quantity Rjt of product j released 
into the production unit in period t (the production orders released in period t) 
moves through the production unit as a single entity, such that all items released in 
that period consume capacity and enter finished inventory together. Given the 
assumption of releases taking place at a constant rate over the planning periods, 
each unit of product j will be processed at resource k Ljk time units after its release. 
Hence these lead times represent the time elapsing between the release of the mate-
rial to the first resource on its routing and its consuming capacity on resource k. 
Under integer lead times, this implies that all materials released in period t will 
consume capacity at resource k in period t + Ljk,, i.e., at the end of the specified lead 
time; the case of fractional lead times is a simple extension of this idea as discussed 
in the previous section.

An alternative view of fixed lead times allows a production order to consume 
capacity on a workcenter anywhere within the time it is expected to spend at the 
workcenter estimated by (5.11). This requires defining new lead time parameters 
L′jk representing the arrival times of the orders at the workcenters, i.e., the earliest 
possible time after its release that processing of the material at the k’th resource on 
its routing can start. Note that the lead times Ljk we have used in the previous sec-
tions represent a different quantity, the time elapsing between release and capacity 
consumption. Thus a production order of product j released in period t can consume 
capacity on the k’th workcenter in its routing anywhere in the time interval [t + L′jk, 
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t + L′j,k+1−1], instead of in period t + Ljk. Management of the production unit may 
elect to process portions of a production order in several, not necessarily consecu-
tive, periods, while still ensuring completion of the order within its planned lead 
time Lj. This timing flexibility reflects the possibility of production smoothing 
within the lead times through scheduling decisions, whereas in the models in the 
previous sections production quantities are entirely determined by the releases. 
Models of this kind have been proposed in several different contexts. Pürgstaller 
and Missbauer (2012) note that the Input-Output Control approach of Wight (1970) 
implies a model of this form, although the model is not explicitly stated. We have 
also shown in Chap. 4 that a similar model is implicit in the LUMS order release 
mechanism for make-to-order production (Hendry et  al. 2013). The structure of 
these models is also related to a much older formulation by Bowman (1956). Spitter 
et al. (2005) and de Kok and Fransoo (2003) consider a production unit with a single 
bottleneck workcenter that may consist of a number of parallel machines. In these 
latter papers, the primary purpose of the model is for supply chain coordination 
rather than detailed release planning, so they do not directly accommodate model-
ing of production flows across multiple resources within a production unit. The 
formulation given below extends these models to incorporate such production flows.

Since the release quantities Rjt no longer define the capacity loading of resources 
in a unique manner, we define additional decision variables Z jts

k  specifying the 
amount of product j released in period t that consumes capacity on workcenter k in 
period s. To ensure that the workcenters in the routing are visited in the correct 
sequence, we must define these variables to ensure that processing on workcenter k 
can only take place in the correct time interval such that t + L′jk ≤ s ≤ t + L′j,k+1 − 1 
and 1 ≤ t ≤ T − Lj.

Since all materials entering the system must be processed on every workcenter 
(neglecting details such as scrap or yield losses), we have
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(5.59)

Since the processing of a given production order may now be distributed over 
several periods, all materials associated with the production order released in period 
t need not necessarily enter finished inventory together. If the production order can 
enter finished inventory only after the planned lead time has elapsed, irrespective of 
the actual time(s) the material is processed, the finished inventory balance equations 
will take the form

	
I I R D t T j Jjt j t j t L jtj

= + − = … ∈− −, , , , , ,1 1
	

(5.60)

If, however, material can enter finished inventory as it completes its processing, 
without having to wait for the remainder of the order, the finished inventory balance 
equation will be
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where K(j) denotes the last resource in the process routing of item j. Since (5.60) is 
more consistent with the intent of a planned lead time to ensure availability of the 
material after the planned lead time with high probability while leaving internal 
resource allocation decisions to the local management, we shall adopt this assump-
tion from now on. The Rjt variables can, of course, be eliminated using (5.59) to 
reduce the number of variables when solving the model.

The capacity constraints for each workcenter k will now take the form

	 j J s t L

t

jk jst
k

kt j

jk

a Z C t T L k K
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where the summation on the left hand side represents the total amount of work allo-
cated to workcenter k in period t. Hence while it is possible to incorporate time-
dependent production costs at the different workcenters, if costs are time-stationary 
there is no need to do so due to the no backlogging assumption. The complete for-
mulation can now be written as
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j J t
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j jt

j
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(5.63)

subject to (5.59), (5.60) or (5.61), (5.62) depending on assumptions, and

	
R j J t Tjt ≥ ∀ ∈ = …0 1, , , ,

	
(5.64)
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Since imposing the additional constraint that
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with Ljk denoting the pre-specified lead time in the interval [L'jk; L'j, k + 1 − 1] recovers 
formulation (5.26)–(5.29), (5.63)–(5.65) is a relaxation of the former in the sense 
that any feasible solution to (5.26)–(5.29) is feasible for (5.63)–(5.65), but not vice 
versa. As with formulation (5.26)–(5.29), (5.63)–(5.65) can be rewritten to elimi-
nate the Ijt variables giving a model analogous to (5.41)–(5.44).

The formulation until this point has ignored WIP costs. Their inclusion requires 
some additional thought. If material released at t and processed at workcenter k can-
not move to the next workcenter in its routing until time t + L'j,k+1, two different types 
of WIP may exist at a workcenter: material that has been processed and is waiting to 
move to the next stage and material that has not yet been processed. If the value of 
the WIP depends on the timing of production that results from the mode, i.e., earlier 
production within the lead time means higher WIP holding costs, this can be 
accounted for by decomposing the WIP at the workcenters into WIP before and WIP 
after processing and assigning different WIP holding costs to each component. 
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Denoting Wjkt
b  and Wjkt

a  the WIP of product j at workcenter k at the end of period t 
before and after processing, respectively, the WIP balance equations are
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where in (5.68) L Lj K j, +
′ =1 . The complete model formulation is given by Pürgstaller 

and Missbauer (2012). We do not consider this extension in the following example, 
but note it as an illustration of an issue that the more flexible treatment of lead times 
may raise.

Example 5.3  We implement the model (5.63)–(5.65) with the finished inventory 
balance constraints (5.60) on the problem instance solved in Example 5.1, where we 
set the values of the L'jk to the Ljk values in that example. An optimal solution with 
objective function value 2505 is obtained as shown in Table 5.8.

The principal difference, as one would expect, lies in the distribution of the 
capacity loading on Machine 3. Since this machine has a local lead time of 
L'j4 − L'j3 = 4 – 2 = 2 periods for both products, it is able to allocate capacity across 
two different periods to releases made in a single period, unlike the previous model 
where all releases from a given period t will load a resource in the single period 
t + Ljk (assuming integer lead times). This difference is seen in Table 5.9 that shows 

Table 5.8  Optimal solution for Example 5.3

Period
Releases Capacity loading Ending inventory
Item 1 Item 2 Machine 1 Machine 2 Machine 3 Machine 4 11 12

0 0 0 0 0 0 0 20 25
1 3 1.5 13.5 0 0 0 20 25
2 6 0 18 15 0 0 15 25
3 6 0 18 18 15 0 11 25
4 6 0 18 18 18 0 7 23
5 6 1.5 22.5 18 18 12 2 19
6 6 2 24 24 18 12 0 15.5
7 0 5 15 26 18 12 1 10.5
8 0 5 15 20 18 12 1 7.5
9 0 0 0 20 18 18 0 3.5
10 0 0 0 0 18 20 0 2
11 0 0 0 0 18 20 0 1
12 0 0 0 0 0 20 0 0
13 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0
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Table 5.9  Z jst
3

 values for Machine 3 in Example 5.3

Release Loading period
Period 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Item 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 3 0 0 0 0 0 0 0 0 0 0 0
3 0 0 6 0 0 0 0 0 0 0 0 0 0
4 0 0 6 0 0 0 0 0 0 0 0 0
5 0 0 6 0 0 0 0 0 0 0 0
6 0 0 6 0 0 0 0 0 0 0
7 0 0 4 2 0 0 0 0 0
8 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0
10 0 0 0 0 0 0
11 0 0 0 0 0
12 0 0 0 0
13 0 0 0
14 0 0
15 0

Item 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 1.5 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 1.5 0 0 0 0 0 0
7 0 0 0 2 0 0 0 0 0
8 0 0 1 4 0 0 0 0
9 0 0 0.5 4.5 0 0 0
10 0 0 0 0 0 0
11 0 0 0 0 0
12 0 0 0 0
13 0 0 0
14 0 0
15 0

the values of the Z jst
3  variables for Machine 3. Releases of Product 1 made in period 

7 are processed in periods 9 and 10; releases of Product 2 in period 8 are processed 
in periods 10 and 11, and those from period 9 in periods 11 and 12. Thus in period 
11, releases of Product 2 from two different, but consecutive, periods are being 
processed.

The dual prices associated with this optimal solution are plotted in Fig. 5.9. Note 
that now both Machines 3 and 4 have binding capacity constraints and hence posi-
tive absolute dual prices, in the later periods of the planning horizon. While the 
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Fig. 5.9  Dual variables for Example 5.3

formulation in Example 5.1 results in positive dual prices for Machine 3 over the 
same time interval as in this case, Machine 4 never achieves a positive dual price 
under the previous formulation.

5.7 � A Caveat: Lot-Sizing Issues

The models described so far yield the release quantities per product and period Rjt 
as the essential result that is used by the planning level. Executing these decisions 
in a straightforward manner means releasing production orders of size Rjt in the 
respective periods. However, if the sizes of the production orders are fixed, as is the 
case when production orders are released to the shop floor by an MRP system that 
specifies standard lot sizes, the Rjt quantities should be viewed as release “budgets” 
that are filled or consumed by the orders. This is also the case if the model is formu-
lated for aggregate products or product families j with similar routing and resource 
requirements for the products within one family. Even if the demand Djt is derived 
from the order sizes, the release quantities need not be a sum of the order sizes due 
to the capacity constraints and the real-valued Rjt. In this case the orders to release 
within the quantities Rjt must be determined by a separate planning step. One obvi-
ous possibility is to release the orders of product j in period t in the sequence of 
increasing due date until the cumulative actual release quantity reaches its planned 
value, that is

	 τ
τ

τ
τ

= =
∑ ∑≤ ∀ ∈ = …

1 1

1
t

j

t

jR j J t TActual release quantity , , , ,
	

(5.69)

perhaps with the possibility to exceed the cumulative planned releases by the last 
order as applied in Load-Oriented Order Release discussed in Sect. 4.2.2.

Alternatively, the release model can be formulated at the level of production 
orders p = 1, …, Pj with order size, due date, and capacity requirements (setup and 
processing time) given for each order. Without loss of generality, we assume that the 
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orders are indexed in the order of increasing due dates. The model then determines 
the period in which each order will be released. The decision variables are

	
δ jpt

p j t
=




1

0

,

,

if order of product is released in period

otherwise
..
	

The release periods are subject to the constraints

	 t

T

jpt jj p P
=
∑ = ∀ ∀ = …

1
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(5.70)
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(5.71)

where (5.70) ensures that each order is released exactly once and (5.71) main-
tains the correct release sequence of the orders. The release quantities can be 
obtained by

	

R Q j tjt
p

P

jp jpt

j

= ∀
=
∑

1

δ , ,

	

(5.72)

where Qjp denotes the order size of order p of product j.
This modeling technique can be applied to both the conventional fixed lead time 

model (5.26)–(5.29) and for the alternative model with variable timing of produc-
tion described in this section, which is described in Missbauer (2014). At the present 
time, there is no experience with the solvability of the resulting MILP model for 
real-life problems. Heuristics, e.g., decomposing by product and coordinating the 
resulting subproblems by Lagrangian techniques or by column generation, are an 
obvious possibility.

5.8 � Summary and Conclusions

In this chapter, we have examined the structure of production planning models 
based on fixed, exogenous lead times that remain constant over the planning hori-
zon. This constitutes the most prevalent mechanism for representing cycle times in 
both the research literature and industrial practice. We have shown that different 
models are possible depending on what assumptions are made on the timing of dif-
ferent events, such as when capacity is consumed on specific resources relative to 
the release time. We have also shown that models with fixed positioning of produc-
tion within the lead time treat WIP in a rather restrictive manner, assuming WIP 
cannot accumulate and only a portion of the total WIP in the system is available to 
be processed by a resource in a given period.

5.8  Summary and Conclusions



110

We have also illustrated several limitations of these models relative to the behav-
ior of production resources discussed in Chap. 2. Queueing models show that aver-
age cycle time is nonlinear in the average resource utilization, which is directly 
determined by the work release decisions made by planning models. However, fixed 
exogenous lead times ignore this relationship, assuming that as long as all capacity 
constraints are satisfied changes in cycle time due to workload will be negligible. 
Queueing models also suggest that cycle times begin to degrade well before utiliza-
tion reaches 1, suggesting there may be benefit to additional capacity at resources 
whose utilization is below 1. However, our analysis of the dual prices of capacity 
shows that until a resource is fully utilized, dual prices will be zero, suggesting no 
benefit from additional resources.

The limited research examining the benefits of more sophisticated models with 
workload-dependent lead times (Kacar et  al. 2012, 2013, 2016) suggests that as 
long as the average resource utilization remains relatively constant, fixed lead time 
models with appropriately chosen values of the lead times yield performance very 
similar to that of much more complex models with workload-dependent lead times. 
The use of fractional lead times yields a significant improvement over integer lead 
times, at little additional cost in model complexity. However, when resource utiliza-
tion and product mix vary significantly over time, the performance of fixed lead 
time models begins to deteriorate. For this reason, as well as to address the theoreti-
cal drawbacks of fixed lead time models discussed above, it is of interest to explore 
planning models capable of recognizing the nonlinear relation between utilization 
and cycle time. Put another way, fixed lead time models optimize over releases only; 
queueing results suggest that jointly optimizing releases and lead times may yield 
better results. We now explore these more advanced models in the next chapters.

References

Baker KR (1993) Requirements planning. In: Graves SC, Kan AHGR, Zipkin PH (eds) Handbooks 
in operations research and management science. Logistics of production and inventory, vol 3. 
Elsevier Science, Amsterdam, pp 571–627

Bazaraa MS, Jarvis J, Sherali HD (2004) Linear programming and network flows. Wiley, New York
Bertsimas D, Tsitsiklis JN (1997) Introduction to linear optimization. Scientific, Athena
Billington PJ, Mcclain JO, Thomas JL (1983) Mathematical programming approaches to 

capacity-constrained MRP Systems: review, formulation and problem reduction. Manag Sci 
29:1126–1141

Bowman EB (1956) Production scheduling by the transportation method of linear programming. 
Oper Res 4(1):100–103

de Kok AG, Fransoo JC (2003) Planning supply chain operations: definition and comparison of 
planning concepts. In: de Kok AG, Graves SC (eds) Handbooks in operations research and 
management science. Supply chain management: design, coordination and operation, vol 11. 
Elsevier, Amsterdam, pp 597–675

Hackman S (1990) An axiomatic framework of dynamic production. J Prod Anal 1:309–324
Hackman S (2008) Production economics. Springer, Berlin
Hackman S, Leachman RC (1989a) An aggregate model of project oriented production. IEEE 

Trans Syst Man Cybern 19(2):220–231

5  Planning Models with Stationary Fixed Lead Times

https://doi.org/10.1007/978-1-0716-0354-3_2


111

Hackman ST, Leachman RC (1989b) A general framework for modeling production. Manag Sci 
35(4):478–495

Hanssmann F, Hess SW (1960) A linear programming approach to production and employment 
scheduling. Manag Technol 1(1):46–51

Hendry L, Huang Y, Stevenson M (2013) Workload control: successful implementation tak-
ing a contingency-based view of production planning and control. Int J Oper Prod Manag 
33(1):69–103

Holt CC, Modigliani F, Simon HA (1955) A linear decision rule for production and employment 
scheduling. Manag Sci 2(1):1–30

Hopp WJ, Spearman ML (2008) Factory physics: foundations of manufacturing management. 
Irwin/McGraw-Hill, Boston

Jacobs FR, Berry WL, Whybark DC, Vollmann TE (2011) Manufacturing planning and control for 
supply chain management. McGraw-Hill Irwin, New York

Jansen B, de Jong JJ, Roos C, Terlaky T (1997) Sensitivity analysis in linear programming: just be 
careful! Eur J Oper Res 101(1997):15–28

Johnson LA, Montgomery DC (1974) Operations research in production planning, scheduling and 
inventory control. Wiley, New York

Kacar NB, Irdem DF, Uzsoy R (2012) An experimental comparison of production planning 
using clearing functions and iterative linear programming-simulation algorithms. IEEE Trans 
Semicond Manuf 25(1):104–117

Kacar NB, Moench L, Uzsoy R (2013) Planning wafer starts using nonlinear clearing functions: a 
large-scale experiment. IEEE Trans Semicond Manuf 26(4):602–612

Kacar NB, Moench L, Uzsoy R (2016) Modelling cycle times in production planning models for 
wafer fabrication. IEEE Trans Semicond Manuf 29(2):153–167

Kefeli A (2011) Production planning models with clearing functions: dual behavior and applica-
tions. Unpublished Ph.D. Dissertation. Edward P. Fitts Department of Industrial and Systems 
Engineering. North Carolina State University, Raleigh, NC

Koltai T, Terlaky T (2000) The difference between the managerial and mathematical interpretation 
of sensitivity results in linear programming. Int J Prod Econ 65:257–274

Leachman RC (2001) Semiconductor production planning. In: Pardalos PM, Resende MGC (eds) 
Handbook of applied optimization. Oxford University Press, New York, pp 746–762

Leachman RC, Carmon TF (1992) On capacity modeling for production planning with alternative 
machine types. IIE Trans 24(4):62–72

Manne AS (1957) A note on the Modigliani-Hohn production smoothing model. Manag Sci 
3(4):371–379

Missbauer H (2014) From cost-oriented input-output control to stochastic programming? Some 
reflections on the future development of order release planning models. In: Gössinger R, Zäpfel 
G (eds) Management Integrativer Leistungserstellung. Festschrift für Hans Corsten. Duncker 
& Humblot GmbH, Berlin, pp 525–544

Missbauer H, Uzsoy R (2011) Optimization models of production planning problems. In: Planning 
production and inventories in the extended enterprise: a state of the art handbook. Springer, 
Boston, pp 437–508

Modigliani F, Hohn FE (1955) Production planning over time and the nature of the expectation and 
planning horizon. Econometrica 23(1):46–66

Orlicky J (1975) Material requirements planning: the new way of life in production and inventory 
management. McGraw-Hill, New York

Pochet Y, Wolsey LA (2006) Production planning by mixed integer programming. Springer 
Science and Business Media, New York

Pürgstaller P, Missbauer H (2012) Rule-based vs. optimization-based order release in workload 
control: a simulation study of an MTO manufacturer. Int J Prod Econ 140:670–680

Rubin DS, Wagner HM (1990) Shadow prices: tips and traps for managers and instructors. 
Interfaces 20(4):150–157

Schneeweiss C (2003) Distributed decision making. Springer-Verlag, Berlin

References



112

Spitter JM, Hurkens CAJ, de Kok AG, Lenstra JK, Negenman EG (2005) Linear program-
ming models with planned lead times for supply chain operations planning. Eur J Oper Res 
163(3):706–720

Vollmann TE, Berry WL, Whybark DC, Jacobs FR (2005) Manufacturing planning and control for 
supply chain management. McGraw-Hill, New York

Voss S, Woodruff DL (2003) Introduction to computational optimization models for production 
planning in a supply chain. Springer, Berlin, New York

Voss S, Woodruff DL (2006) Introduction to computational optimization models for production 
planning in a supply chain. Springer, New York

Wight O (1970) Input-output control: a real handle on lead times. Prod Invent Manag J 11(3):9–31
Zipkin PH (2000) Foundations of inventory management. Burr Ridge, IL, Irwin

5  Planning Models with Stationary Fixed Lead Times



113

Chapter 6
Time-Varying Lead Times and Iterative 
Multi-Model Approaches

The planning models in the previous chapter assume the planned lead times to be 
workload-independent, exogenous parameters that remain constant over the entire 
planning horizon. We now consider models with exogenous lead times that vary 
over time, seeking to accommodate time-varying levels of resource utilization. 
Since, as discussed in Chap. 2, cycle times depend on capacity utilization, which is 
determined by release decisions, obtaining time-varying estimates of lead time 
parameters requires observation or prediction of resource utilization across the time 
periods in the planning horizon. This tight linkage of utilization and cycle time sug-
gests that releases and lead times should be jointly determined, i.e., the lead times 
should be endogenous to the model.

We begin this chapter with formulations based on exogenous, time-varying lead 
times, discuss the issues that arise in estimating these parameters, and then describe 
order release models that treat time-varying lead times as decision variables linked 
to the order releases. Noting that many of these formulations result in non-convex 
optimization models, we then discuss a class of iterative multi-model approaches 
that have been proposed in the literature.

6.1 � Preliminaries

It is important to distinguish the problem addressed in this chapter, that of estimat-
ing planned lead times to represent cycle times that vary over time, from that of 
updating existing lead time estimates as new information becomes available from 
the market and the shop floor. The lead time parameters of MRP systems are 
reviewed relatively infrequently in practice (Jonsson and Matsson 2006), but must 
be updated periodically as the production system and its products evolve over time. 
In this chapter we consider time-varying lead time parameters within a single plan-
ning run, so this line of research is not directly relevant. Time-varying lead times are 
also of interest for due-date assignment (Ioannou and Dimitriou 2012), since the 
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state of the shop at the time an order is placed will impact its planned finish date. 
This is again somewhat different from our problem since we use lead times as input 
parameters to an order release model that determines the release dates for all orders 
simultaneously, as opposed to predicting the cycle time of a particular order intro-
duced into the shop at a particular time.

Flow factors or flow allowances, which estimate the lead time associated with an 
order at a workcenter as a multiple of its processing time, have been widely used for 
estimating lead times (Keskinocak and Tayur 2004). This approach appears to have 
originated in the literature on due date setting for make-to-order shops (Keskinocak 
and Tayur 2004) and has since been widely used in production planning and sched-
uling. Morton and Pentico (1993) extend this concept to suggest a load-dependent 
proportionality factor that can be estimated from historical data for lightly, moder-
ately, and heavily loaded shops (p.  218), or by regression from historical data. 
However, at high levels of resource utilization, cycle times will consist mainly of 
waiting time in the queues, rendering a proportional relationship between process-
ing and cycle time common to all orders in the shop unlikely except under specific 
conditions, such as lot sizes that depend strongly on resource utilization, or a 
sequencing rule that prioritizes jobs with short operation times. Ozturk et al. (2006) 
apply data mining based on regression tree techniques to this problem.

In Sects. 6.1–6.3 we discuss the representation and modeling of time-varying 
lead times. Sections 6.4–6.5 then present improved methods to adjust the lead times 
to the order release plan. In particular, Sect. 6.5 presents methods for iterative 
adjustment of order releases and time-varying lead times, an approach that has also 
been proposed for other production planning problems as discussed in Sect. 6.6.

6.2 � Relaxing the Fixed Lead Time Constraint: Conceptual 
Issues

In discrete manufacturing systems, the cycle time of production orders at bottleneck 
resources consists mainly of waiting time in the queues and usually follows a prob-
ability distribution with substantial variance. The moments of this distribution, 
notably its mean, are highly nonlinear functions of the resource utilization as shown 
in Chap. 2. Planned lead times, which are parameters of the planning system, are 
derived from these cycle times or their distribution. In MRP, this is accomplished by 
treating the cycle times as a quantity to be forecast or predicted. In most order 
release models, planned lead times are obtained by specifying target lead times and 
controlling the WIP level to ensure that observed cycle times are consistent with 
these targets via Little’s Law. The definition of “consistent” depends on how cycle 
time uncertainty is handled in the planning system—this uncertainty is (hopefully) 
reduced, but not eliminated by load-based order release. If the estimated average 
cycle time is used as the planned lead time, safety stock or a downstream time buffer 
can help to manage the uncertainty. The alternative is safety lead time achieved, for 
example, by setting planned lead times equal to the historical mean cycle time plus 
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a specified safety lead time (Hopp and Sturgis 2000). This approach amounts to set-
ting the planned lead time to some percentile of the underlying cycle time distribu-
tion. A number of authors have addressed the problem of determining optimal lead 
times for different production and inventory systems, including Ben-Daya and 
Raouf (1994) for inventory systems and Gong et al. (1994) and Milne et al. (2015) 
for MRP systems.

If the relationship between the cycle time distribution and lead times can be 
specified, lead time parameters that remain constant over time can be consistent 
with the steady-state behavior of the production unit. When the aggregate demand 
faced by the production unit, and hence the average utilization of its bottleneck 
resources, exhibit little variation over time, this approach is likely to be quite satis-
factory. However, if demand varies widely over time, even if the release model has 
some load-leveling capability, the releases, and thus the work input to the resources 
and their utilization, may also vary over time, and the constant lead times will not 
match the actual cycle times. This issue can arise due to both the total demand for 
all products varying over time and the time-varying demand for individual products 
with different production routings and resource requirements.

Inconsistency between constant lead times and load-dependent cycle time distri-
butions causes two distinct difficulties. On the one hand, the lead times must allow 
high bottleneck utilization, which requires high WIP levels, high average cycle 
times, and thus a high value of the planned lead time. A temporary decrease in 
demand will lead to reduced releases, work input, and resource utilization, resulting 
in shorter cycle times. Material will be released earlier than is necessary to meet 
demand, causing unnecessarily high FGI levels. On the other hand, temporarily 
increasing releases, and hence WIP levels between workcenters, to improve load 
smoothing is not possible since this would raise realized lead times above the 
planned lead time. Directly addressing the latter issue within the release model 
requires estimates of lead times in the face of time-varying demand, either through 
a separate planning module that estimates the lead time parameters to be used in the 
release model or within the release procedure itself. The latter requires representa-
tion of time-varying lead times in the order release model, either explicitly as deci-
sion variables or implicitly as time-varying WIP, leading to additional complications 
discussed in the next two chapters.

To illustrate the issues that arise when considering time-varying lead times, con-
sider the following example.

Example 6.1  The fixed lead times associated with the orders released in each 
period are given in Table 6.1 for 12 consecutive planning periods. We make no pre-
tense that these lead times are realistic in any way; our purpose is to illustrate the 
issues that arise in selecting time-varying lead time estimates. The reader will note 
that the lead times increase and decrease by substantial jumps, with some being 
fractional and others integer.

Table 6.2 shows the loading factors that represent the fraction of material released 
in period τ that will emerge in period t based on these lead time estimates. The lower 
diagonal is, as expected, empty since a positive entry in this area would imply a 
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Table 6.1  Lead time parameters for Example 6.1

Period 0 1 2 3 4 5 6 7 8 9 10 11 12

Lead time 1 2 2.5 2.5 3 4.5 3 2.5 2.5 2 1.5 1 1

Period 1 2 3 4 5 6 7 8 9 10 11 13 13
0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0.5 0.5 0 0 0 0 0 0 0 0
3 0 0 0 0 0.5 0.5 0 0 0 0 0 0 0
4 0 0 0 0 0 0 1 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0.5 0.5 0 0 0
6 0 0 0 0 0 0 0 0 1 0 0 0 0
7 0 0 0 0 0 0 0 0 0.5 0.5 0 0 0
8 0 0 0 0 0 0 0 0 0 0.5 0.5 0 0
9 0 0 0 0 0 0 0 0 0 0 1 0 0
10 0 0 0 0 0 0 0 0 0 0 0.5 0.5 0
11 0 0 0 0 0 0 0 0 0 0 0 1 0
12 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 6.2  Loading fractions for Example 6.1

negative lead time, which, although it might be welcomed by many manufacturing 
managers, is difficult to achieve. There are, however, several areas of interest above 
the diagonal. No output emerges at all in period 8, due to the long lead times in 
preceding periods. Material released in period 4 emerges in period 7, but material 
released in period 5 emerges in periods 9 and 10. All materials released in period 6 
emerge in period 9. However, half the material released in period 5 emerges in 
period 9 and the other half in period 10, indicating that the releases from period 5 
are being overtaken by those from period 6.

This example illustrates that unless time-varying lead times are selected with 
some care, they can lead to quite unrealistic behavior in a planning model. It is thus 
useful to seek conditions to impose on lead time estimates that will ensure reason-
able behavior of the planning models in which they are deployed. One such require-
ment would seem to be that of no-passing, or first-in-first-out (FIFO): material 
released in earlier periods should not emerge from the system before material that is 
released later. In the dynamic traffic assignment literature (Peeta and Ziliaskopoulos 
2001), this implies no overtaking: vehicles entering a road segment at a point in time 
cannot exit before those entering earlier.

Carey (1992) examines several such conditions in the context of the dynamic 
traffic assignment problem, focusing on the need to preserve the FIFO property, in 
our context to ensure that material that is released earlier does not emerge after 
material released later. He first considers the case of a single product where xts rep-
resents the amount of the product arriving at the resource in period t and completing 
its processing in period s. Thus the amount of material xts will remain at the resource 
for (s − t) periods, and the average time a unit of work arriving in period t will spend 
at the resource will be given by
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Note that since it represents an average, the value of mt need not be an integer. To 
maintain FIFO on the basis of the average flows, material that arrives at the resource 
in period t must exit by period t mt+ . Thus, to ensure that on average material arriv-
ing later exits later, material entering in a later period s > t must exit in period s ms+ . 
Thus to preserve FIFO on average, we must have

	 m m s t s tt s≤ + −( ) ≥, for 	 (6.2)

yielding

	 t m s m s tt s+ ≤ + ≥, for all 	 (6.3)

Since (s − t) ≥ 1, this implies that the constraints

	 m mt t≤ ++1 1	 (6.4)

are necessary and sufficient to ensure FIFO for the average flows, although, as he 
shows by a counterexample, necessary but not sufficient for the individual compo-
nents xts. Note that in this representation, the planned lead times are not represented 
explicitly as a parameter, but through the definition of the decision variables xts, with 
mt defined as in (6.1). The explicit inclusion of condition (6.4) in an optimization 
formulation with a planning horizon of T periods requires O(T2) non-convex con-
straints, resulting in a model that is significantly more difficult to solve. He goes on 
to show that analogous conditions are necessary and sufficient for the average flow 
in the presence of multiple vehicle classes, analogous to multiple products in our 
context, and necessary but not sufficient to maintain FIFO at the level of individual 
items. This necessary condition plays an important role in the formulation of the 
Allocated Clearing Function model in Chap. 7 and will be revisited in that context. 
However, Carey’s findings are, in general, discouraging: they show that a variety of 
approaches to maintain the FIFO property all lead to planning models with non-
convex feasible regions.

6.3 � Modeling Time-Varying Lead Times

We can distinguish two different types of planned lead times for a single workcenter 
using a continuous representation of time and orders as seen in Fig. 6.1. The for-
ward lead time Lf(t) represents the lead time of an order that arrives at time t, i.e., 
the estimated time spent in the workcenter by an order arriving at time t. Similarly, 
the backward lead time Lb(t) represents the planned amount of time spent in the 
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Fig. 6.1  Evolution of forward and backward lead time over time

workcenter by an order leaving the workcenter at time t. In other words, a unit of 
work arriving at the workcenter at time t departs at time t + Lf(t), while one depart-
ing at time t must have arrived at time t − Lb(t).

Following our previous notation, let R(t) denote the rate of material release into 
the workcenter at time t, and X(t) its output rate at time t. We shall denote the cumu-
lative releases and output up to t by Rcum(t) and Xcum(t), respectively, and let W(t) 
denote the planned WIP level at time t. If we require the FIFO or no-passing prop-
erty, under which work released at time t cannot complete before work released at 
any time s < t and production orders (or work particles in the continuous representa-
tion) depart the workcenter in the same sequence as they arrive, the cycle times are 
determined by the evolution of WIP over time. Based on Fig. 6.1, we have the mate-
rial balance relations

	
W R d X d

t t L t

0
0 0

( ) + ( ) = ( )∫ ∫
+ ( )

τ τ τ τ
f

	
(6.5)

	
W R d X d

t L t t

0
0 0

( ) + ( ) = ( )
− ( )

∫ ∫
b

τ τ τ τ
	

(6.6)

which calculate the time-dependent output of the workcenter from its time-
dependent input, constituting a dynamic production function (Hackman 2008). 
Equation (6.5) states that all materials entering the system by time t must, by the 
definition of Lf(t), have been converted into output by time t + Lf(t). Similarly, (6.6) 
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states that all materials leaving the system by time t must have entered by time 
t − Lb(t). Hence Lf(t) and Lb(t) are related as

	

L t L t L t

L t L t L t

b f b

f b f

( ) = − ( )( )
( ) = + ( )( ) 	

(6.7)

Extending this logic to discrete-time models is not straightforward. The simplest 
analogy is period-based, integer lead times Lt

f  and Lt
b representing the lead times of 

orders arriving or departing in period t, respectively. Thus the fixed lead time formu-
lation in Chap. 5 represents a backward lead time implying

	
R X

t L t
t−
=b 	

(6.8)

This is perfectly adequate when L Lt t
b b= +1 for all periods t = 1,..., T − 1 in the 

planning horizon; each unit of work emerging as output at any time within period t 
was released exactly Lt

b time units earlier. However, if the planned lead time at the 
workcenter increases by 1 period from period t to period t+1 such that L Lt t+ = +1 1b b , 
(6.8) implies that the output of two or more consecutive periods was released in the 
same period, as was the case for period 9  in Example 5.1. Hence, (6.8) must be 
formulated as an inequality constraint of the form

	 k

t L

k
k

t
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t

R X
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1 1
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(6.9)

for all t, which only gives a lower bound on the releases or, expressed in terms of 
time, the latest possible release period for given output over time. Thus it represents 
time-varying lead time parameters only in the context of a release model that delays 
releases as much as possible, usually due to positive WIP holding costs in the objec-
tive function (as in the release models in Chap. 5). This is the first shortcoming of 
representing lead times directly as parameters Lt

f  or Lt
b.

A second problem is that this representation cannot express lead time distribu-
tions. Empirical cycle time distributions often exhibit high coefficients of variation 
as seen in Fig. 2.3, and an effective planning model should be able to represent this. 
One approach to representing lead time distributions is the use of loading factors wτt 
defined as the fraction of the work released in period τ that emerges as output in 
period t.

A backward lead time Lt
b can be converted into a loading factor by noting that
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yielding the relationship between releases and output as
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The loading factors can be interpreted as the expected fraction of work released 
in a certain period that leaves the workcenter after a certain time, representing a 
discrete probability distribution for lead times. In (6.11), and most of the iterative 
approaches discussed below, this expectation is treated as a deterministic fraction, 
resulting in a set of linear constraints.

6.4 � Epoch-Based Lead Times

Until now we have assumed period-based lead times such that lead times are associ-
ated with specified planning periods, implying that that all releases (for forward 
lead times) or output (for backward lead times) associated with a period is subject 
to the same lead time. Hung and Leachman (1996) suggest the use of epoch-based 
lead times defined at the period boundaries, which permits a more general represen-
tation of fractional lead times. We now describe this approach since it forms the 
basis for many of the iterative approaches in Sect. 6.5.

The basic formulation is derived from the model discussed in Chap. 5, which 
requires lead time estimates Ljk representing the time required for a unit of product 
j to reach the k’th resource in its product routing after being released into the plant. 
However, instead of fixed lead times that remain constant over the entire planning 
horizon, Hung and Leachman (1996) associate lead time parameters with the start 
of each planning period. In the following we shall assume unit-length planning 
periods such that period t starts at time t − 1, i.e., t = 0 is the start of period 1, t = 1 
the start of period 2, etc. Equivalently, this can be viewed as period t ending at time 
t. The lead time parameters Ljkt, which may take on fractional values, represent the 
lead time after its release required for an order of product j to reach the k’th resource 
on its routing if the order reaches that resource at the end of period t. This definition 
of epoch-based lead time parameters is depicted in Fig. 6.2. The key assumption is 
that the releases associated with a planning period take place at a uniform rate over 
the planning period, as discussed in Chap. 5 and in Hackman and Leachman (1989).

Given these lead times, the loading of the production resource in period t is 
defined by releases occurring in the time interval Qt = [(t−1) − Lj,k,t-1, t−Ljkt], recall-
ing that planning period t starts at time (t−1) and ends at time t. There are two cases 
to consider here. In the first, simpler case, the time interval Qt lies within a single 
planning period ⌈(t − 1) − Lj, k, t − 1⌉ = ⌈t − Ljkt⌉ where ⌈x⌉ denotes the smallest 
integer greater than or equal to x. In this case the entire amount released in period 
⌈(t − 1) − Lj, k, t − 1⌉ arrives at workcenter k in period t. Hence the amount Yjkt of 
product j loading workcenter k in period t is given by
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Fig. 6.2  Relationship between releases and loading with time-dependent lead times. Adapted 
from Hung and Leachman (1996)
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where Δ denotes the period length (set to 1 by definition) and eij the average fraction 
of the release quantity of product j that will arrive at resource k.

If, on the other hand, the time interval Qt spans multiple planning periods, we 
allocate the load due to releases in that period in proportion to the fraction of that 
period’s total duration included in the interval Qt assuming uniform release rates 
over the planning periods, yielding
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The operation of this approach is illustrated in Fig. 6.2. The upper part of the 
figure shows the uniform release rates in each planning period, and the lower por-
tion the resource loading resulting from these releases arriving at the resource after 
the specified fixed lead times. Releases in periods 2 and 3 contribute to the work 
input in period 3 at resource k corresponding to the first and the third term in (6.13); 
the second term is not relevant here because the release interval only spans the two 
periods 2 and 3. Due to the use of backward lead times, the lead times are associated 
with the boundary points between periods at the workcenter, not those between the 
release periods, and hence the lead time at the start of a period may not be the same 
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as that at the end. The coloring indicates the correspondence between the releases 
and the arrival of the material at the resource.

The loading factors wjτt that denote the fraction of releases of product j in period 
τ that contribute to output in period t follow immediately from (6.12) or (6.13), 
depending on the case. The amount Yjt of product j arriving at the workcenter in 
period t is, analogously to (6.11), given by the linear expression
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τ τ
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(6.14)

If we could obtain the correct values of the loading factors wjτt efficiently, we 
would no longer need an explicit capacity constraint since the loading factors would 
reflect the ability of the resource to produce output over time. However, formulating 
and solving a model that encompasses both order release planning and estimation of 
the wjτt values turns out to be challenging, as we discuss below.

6.5 � Lead Time Estimation Within the Order Release 
Procedure

The previous section described different ways to represent time-varying lead times 
in an order release model, assuming these were treated as exogenous parameters. 
We now turn to the crucial question of how to specify values for these lead times, 
that is, how to represent the functional relationship between capacity loading and 
lead times. This can be handled in two fundamentally different ways:

•	 Time-varying lead times can be treated as exogenous parameters whose values 
are determined based on information known prior to order release, such as his-
torical flow times, capacity, and demand. Orders are then released based on these 
lead time parameters.

•	 The order release model, or the order release procedure of which it is a part, can 
treat the lead times as functionally related to the release schedule and hence must 
represent this functional relationship. This can, in turn, be accomplished in two 
ways:

–– The lead times can be defined as decision variables endogenous to the optimi-
zation model, which optimizes releases and lead times simultaneously.

–– The problem can be decomposed into two related subproblems: one that 
determines an optimal release schedule given the estimates of lead times, and 
another that estimates lead times based on a given release schedule. An itera-
tive procedure then solves these subproblems in sequence until some conver-
gence criterion is satisfied.

The first approach, that of setting lead times prior to order release, has been treated 
extensively in the MRP literature. “MRP treats lead times as attributes of the part and 
possibly the job, but not of the status of the shop floor” (Hopp and Spearman 2008: 
124). Planned lead times “serve as a proxy for dealing with capacity constraints; a 
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longer planned lead time leads to a longer planned queue that permits more produc-
tion smoothing” (Graves 2011: 93). As described in Chap. 2, using this approach, 
lead times are usually estimated from historical cycle times and are updated only 
infrequently. Due to the importance of planned lead times for manufacturing perfor-
mance, there has been extensive research on improving lead time estimation (Milne 
et al. 2015). Since the role of the lead times in this framework is to coordinate the 
various planning levels of the PPC system, their values are determined by a parame-
ter-setting function that seeks to ensure this coordination (see Chap. 1). Since the 
cycle times are closely related to capacity utilization, they must be coordinated with 
the production smoothing decisions made at the master production scheduling level, 
but we are not aware of any research on jointly determining the master production 
schedule and time-dependent lead times.

The principal difficulty in determining time-varying lead times derives from the 
nonlinear relation between cycle time and resource utilization described in Chap. 2. 
Since cycle times depend on resource utilization, and resource utilization on the 
release decisions, determining time-varying lead times for use in an order release 
model requires knowledge of capacity loading over time, and hence of the order 
releases, at least at an aggregate level. If the aggregate level of capacity loading, and 
hence resource utilization, remains largely constant over time, this may not be a 
major issue. However, even this may be moot at high utilization levels, where small 
changes in resource utilization may lead to large changes in cycle times. Directly 
addressing this interdependence between lead time estimates and release decisions 
requires models that simultaneously determine time-varying lead times and order 
releases, which we discuss in the following section.

6.5.1 � Models Without WIP Evolution

The evolution of cycle times over time is closely related to the evolution of WIP 
over time as expressed in (6.5) and (6.6); Hackman (2008: 309ff.) gives a more 
detailed discussion. For complex manufacturing systems modeled as networks of 
queues that need not be in steady state, models that accurately anticipate the evolu-
tion of WIP and cycle time over time generally involve some type of simulation, 
either of the discrete-event type (Law and Kelton 2004) or continuous-time models 
based on ordinary or partial differential equations (Armbruster and Uzsoy 2012), 
which are difficult to incorporate into a tractable mathematical programming model. 
Therefore, a number of approaches that estimate load-dependent lead times within 
the order release model without explicitly considering the evolution of WIP over 
time have been proposed.

Since in steady state the average cycle time increases nonlinearly with utiliza-
tion, it is intuitively appealing that this pattern also holds within each planning 
period of an order release model. A number of authors have developed models that 
select an appropriate lead time for each planning period based on the resource load-
ing in that period. These are closely related to those developed for dynamic traffic 
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Fig. 6.3  Conservation of flows on a time-expanded network (Carey and Subrahmanian 2000)

assignment models (Peeta and Ziliaskopoulos 2001) that seek to determine the rout-
ing of vehicles through a road network to optimize some measure of performance. 
Since individual traffic links (road segments) are subject to congestion, consider-
able effort has been devoted to developing models that capture the relationship 
between the volume of flow on a traffic link and the velocity of that flow.

One way to model congestion in traffic networks is through the use of time–
space links (Carey and Subrahmanian 2000). If two nodes i and j of a traffic network 
are connected by a spatial link (in other words, a road segment), this two-node net-
work can be expanded over time to yield a network of time–space nodes as seen in 
Fig. 6.3. The flow on a time–space link represents the number of vehicles that pass 
the nodes at the times corresponding to the nodes at the end points of the link and 
hence requires the associated (integer) traversal time.

The impact of congestion is manifested as a link traversal time that increases 
with the volume of flow on the link and can be represented by having the upper 
bounds on the flow through the time–space links leaving node i at time t depend on 
the flow through node i at time t, i.e., the inflow to the time–space links leaving node 
(i,t). In the model of Carey and Subrahmanian (2000), the capacities of at most two 
neighboring time–space links leaving node (i,t) are positive and the other time–
space links are closed for the given inflow. As the inflow increases, the time–space 
links with positive capacities move to higher traversal times, implying a flow-
dependent traversal time distribution that is stationary over time for a given inflow. 
The relationship between the flow x through the time–space link and the time s it 
takes to traverse the link, referred to as the travel time function s = f(x), is assumed 
to be convex, increasing, and piecewise linear, which allows the breakpoints of the 
function to be mapped onto the time–space links as in Fig. 6.4. If the inflow x is 
exactly at a breakpoint, only the corresponding time–space link is active. Otherwise 
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Fig. 6.4  Relationship between time–space link capacities (left) and travel time function (right) 
(Carey and Subrahmanian 2000)

the respective fractions of the inflow are assigned to the two adjacent time–space 
links (Carey and Subrahmanian 2000: 163). The authors consider a piecewise linear 
convex objective function and develop two alternative formulations based on this 
representation. Using concepts from separable programming (Bazaraa et al. 1979), 
they show that under these assumptions at most two adjacent time–space links will 
carry positive flow. They also show that as long as there is no holding back behavior, 
where traffic that has entered a link is not allowed to exit in order to alleviate con-
gestion in later periods, the solutions will satisfy FIFO unless a sharp increase in 
inflow is followed by a sharp decrease. When holding back occurs, however, solu-
tions may violate the FIFO property.

The traversal time of a spatial link in a traffic network is analogous to the cycle 
time at a workcenter, and models with similar structure have been developed for 
order release planning in manufacturing. Voss and Woodruff (2003) assume a 
steady-state relationship between workcenter utilization and the expected cycle 
time at that workcenter. They then discretize this curve using integer variables to 
ensure that only one segment of the discretized curve is active in a given time period. 
The relationship between utilization and expected lead time is evaluated at discrete 
utilization levels (breakpoints) BPq, q = 1,…,U where Lq denotes the expected lead 
time value associated with the q’th utilization level BPq. Thus the expected lead time 
of the resource is assumed to be Lq when its utilization level is between BPq and 
BPq−1. The authors suggest setting the breakpoints BPq such that each lead time Lq 
corresponds to an integer number of periods. If aj denotes the fraction of the avail-
able resource capacity required for one unit of product j, j = 1,…,P, and Rjt the 
amount of product j released in period t, the utilization of the resource in period t is 
given by
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We now define binary variables ytq that select a particular lead time value Lq to be 
active in a given period t as follows:
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Additional constraints of the form
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ensure that the lead time selected is consistent with the workload. In addition, for 
any given period t, we require Lt – Lt+1 ≤ 1, giving
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This latter constraint is interesting in that it restricts the changes in lead time 
from one period to the next to at most one period to avoid overtaking, i.e., material 
released into the system at a later time emerging before material released earlier. 
Note that (6.19) enforces the condition (6.4) shown by Carey (1992) to be necessary 
for the flow through a node to satisfy the first-in-first-out (FIFO) condition.

To complete the formulation, the authors present an objective function that 
includes an explicit holding cost for WIP, based on Little’s Law (Hopp and Spearman 
2008), leading to
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This objective function is nonlinear due to the product of the ytr and Rjt, leading 
to a formulation that is computationally hard to solve.

Lautenschläger (1999) describes a similar approach. In order to consider load-
dependent lead times for master production scheduling, this model determines the 
fraction of the planned production available in a period t that has to be started one 
period ahead in period (t − 1) assuming the rest is produced in period t. This fraction 
is a function of the planned utilization. Thus production on a resource can be per-
formed in two modes, one with lead time of zero periods and the other with lead 
time of one period, essentially the same idea as the time-expanded network in 
Fig. 6.3. The maximum production volumes that can be realized in each mode are 
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limited, leading to a utilization-dependent lead time distribution. Short-term oscil-
lations in capacity utilization over time, which are considered undesirable due to 
considerations not explicitly represented in the model, are reduced by a low-pass 
filter (Lautenschläger 1999: 114ff.). Many factory managers consider large varia-
tions in utilization to be detrimental to performance, perhaps due to their impact on 
staffing and other support services such as material procurement (Lautenschläger 
1999: 114f). However, the high-frequency oscillations may also be due to the sim-
plifications in the flow time modeling. Orcun and Uzsoy (2011) have shown that 
inconsistencies between the lead times used in a planning model and the cycle times 
in the production system can lead to significant oscillating behavior when the plan-
ning model is implemented in a rolling horizon environment, supporting the latter 
conclusion.

6.5.2 � Critique of Lead Time Estimation Without WIP 
Evolution

While the models in the previous section address the load-dependent nature of lead 
times, they ignore the relationship between time-dependent lead times and WIP 
evolution over time expressed in (6.5) and (6.6) and formulated more generally in 
transient versions of Little’s Law (Bertsimas and Mourtzinou 1997; Riaño 2003) in 
order to obtain a tractable mathematical programming formulation. As such, they 
must be viewed as approximations that exhibit several shortcomings:

•	 All the models described above assume a well-defined relationship between the 
workload or utilization of a resource in a planning period and its expected cycle 
time in that period. The form of this relationship is generally posited assuming 
steady-state is reached by all related queues during the planning period. However, 
since planning models assume discrete planning periods of a fixed length and 
work releases vary over time, planning models inherently operate in a transient 
regime, and the cycle time of work released in a given period may deviate quite 
substantially from the long-run steady-state average.

•	 If the amount of work released decreases sharply from period t to period t+1, 
the estimated lead time for the orders can decrease by more than one period 
from t to t+1, implying overtaking (Voss and Woodruff 2003: 165; Carey and 
Subrahmanian (2000)). This is unlikely to occur in practice—although it may 
be accomplished to a limited extent by expediting, which has its own disadvan-
tages (Ehteshami et  al. 1992; Narahari and Khan 1997)—and violates the 
assumption that the released work must be processed first-in-first-out. This sug-
gests that these models can lead to unrealistic results. Voss and Woodruff (2003) 
add a constraint that keeps the lead time from decreasing by more than one 
period from t to t+1, which Carey (1992) has shown is a necessary condition for 
the preservation of the FIFO property.
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Several researchers have sought to address these problems by using either a 
discrete-event simulation model or a transient queueing model to model the joint 
evolution of lead times and WIP levels. This leads to computationally intractable 
optimization models, requiring lead time estimation to be performed outside the 
optimization model. This approach will be discussed in the next section.

6.6 � Lead Time Estimation Outside the Optimization Model: 
Iterative Multi-Model Approaches

6.6.1 � Overview

Modeling the joint evolution of lead times and WIP levels in a transient setting usu-
ally leads to computationally intractable order release models even in simple cases. 
This can be seen from (6.5) and (6.9) where the lead times are elements of the inte-
gration or summation limits. However, this structure can be addressed by decom-
posing the order release problem into two separate subproblems: one that computes 
a release plan given a set of time-varying lead time estimates and another that com-
putes the expected lead times or output associated with each period, or boundary 
between periods, for a given release plan. These are usually deployed within an 
iterative framework that seeks convergence to a pair of consistent subproblem solu-
tions. A review of multi-model approaches combining optimization and simulation 
is given by Figueira and Almada-Lobo (2014).

The central difficulty of multi-model approaches that decompose the release 
planning problem into separate release planning and lead time estimation problems 
is that of any decomposition procedure: that of efficiently achieving a solution 
simultaneously satisfying the constraints of both subproblems. In isolation, both 
subproblems can be addressed satisfactorily with well-known techniques. The 
release planning subproblem can be solved directly by the LP models described in 
Chap. 5, whose mathematical structure easily accommodates time-varying lead 
time estimates as long as reasonable estimates can be obtained as discussed in Sect. 
6.1. The lead time estimation subproblem can be addressed by queueing or simula-
tion models. What is required is a coordination mechanism that leads to mutually 
consistent solutions to the two subproblems that are at least feasible, and hopefully 
near-optimal, to the overall problem. In order to preserve the tractability of the 
release planning subproblem, its parameters (capacities and lead times) must be 
exogenous to whatever model is used to solve it, i.e., unaffected by the release 
schedule it produces. Similarly, the lead time/output estimation subproblem must 
treat the release schedule as an exogenous input. Hence these procedures combine 
mathematical programming and simulation or queueing models such that each 
model determines estimated values of parameters required by the other. Since the 
primary optimization mechanism is embedded in the mathematical programming 
model, the simulation or queueing model used for lead time estimation is subordinate 

6  Time-Varying Lead Times and Iterative Multi-Model Approaches

https://doi.org/10.1007/978-1-0716-0354-3_5


129

Flow times (HL)
Loading factors (R)
Loading factors +
utilization (KK)

Order release
schedule

Updating
procedure

Updated loading
factors /capacities

Fixed lead time order release model
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Fig. 6.5  Iterative simulation—LP approach for order release planning: the generic mechanism. 
HL: Hung/Leachman, KK: Kim/Kim, R: Riaño

to the optimization model per the taxonomy of hybrid simulation/analytic models 
by Shanthikumar and Sargent (1983). The procedure is outlined in Fig. 6.5.

How the parameters of each model are updated based on the results of the other 
is likely to have significant impact on both the convergence of the procedure and the 
quality of the solution to which it converges. The communication from the release 
planning model to the lead time estimation model is generally straightforward: the 
quantity of each product released in each period. The information passed from the 
lead time/output estimation model to the release planning model usually consists of 
the estimated mean cycle times associated with each period or epoch, while some 
approaches also consider average resource utilization levels in each period. The 
cycle times observed by the lead time estimation model may be represented in the 
release planning model as exogenous lead times or loading ratios as described in 
Sect. 6.2.

At each iteration, the current estimates of cycle times or loading ratios and utili-
zation are used to update the lead times and capacities that constitute the parameters 
of the order release model, and the order release model is re-run. This iterative 
procedure is repeated until convergence, which can be defined as reaching a fixed 
point of the iterative mechanism, a solution where the parameters of the order 
release model lead to an order release schedule that results in the same cycle time 
and output estimates by which the order release schedule was produced. Thus, once 
the algorithm arrives at this solution, it remains there. Ideally, the optimal solution 
should be a fixed point, but there is as yet no rigorous proof that this is the case in 
general. There is considerable experimental evidence that the solution spaces of 
some formulations of this problem are non-convex, leading to the procedure 
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converging to different points from different initial solutions. Experimental evi-
dence discussed later in the chapter suggests that even quite subtle differences in 
implementation may produce qualitative differences in computational behavior.

6.6.2 � Iterative Simulation-LP Algorithms

Zaepfel (1984) was the first author to formulate such an iterative mechanism and its 
associated order release model. In his procedure only the estimated lead times are 
communicated from the lead time estimation (simulation) model to the order release 
model which assumes fixed lead times and unlimited capacities. The reasoning is 
that since overloading of capacities leads to higher flow times, information on 
capacity overload (excessive releases in certain periods) is captured in the revised 
lead time estimates in the feedback from the simulation model. No numerical results 
are provided.

Hung and Leachman (1996) were the first to provide numerical tests of this type 
of iterative scheme. Their order release model modifies the step-separated formula-
tion of Leachman and Carmon (1992) to represent the lead times as loading factors 
per Sect. 6.2, with epoch-based backward lead times defined at the period boundar-
ies as in Fig. 6.2. Updating these lead time parameters during the iterations requires 
observing the simulated flow times at the period boundaries, which are interpolated 
from the flow times of orders arriving at the workcenters immediately before and 
immediately after the boundary epoch (Hung and Leachman 1996: 262). The order 
release model includes capacity constraints and assumes that capacity is consumed 
at the end of the planned lead time. The release period determines the period in 
which the work is processed and capacity is required. Hung and Leachman (1996) 
examine the rate of convergence of the flow time estimates to the flow times observed 
in the simulation and find that convergence to the correct expected flow time values 
can be quite rapid but that the procedure can fail to converge in some cases which 
are not fully understood. Subsequent numerical tests by other authors (Irdem et al. 
2010; Kacar et al. 2012) confirm that the convergence behavior of the general pro-
cedure is not well understood, as will be discussed further in Sect. 6.6.3.

Hung and Hou (2001) use the same basic procedure as Hung and Leachman 
(1996) but replace the simulation model with an analytical queueing model. The 
queueing model proceeds by dividing each planning period into a number of shorter 
subperiods and assumes steady-state behavior within the subperiods. The lead times 
applicable at the boundaries of the subperiods are obtained using the epoch-based 
lead time estimates obtained at a previous iteration. The M/M/s queueing model is 
used to predict average cycle times at individual workcenters, which are then com-
posed into estimates of cycle times from the beginning of the process to each opera-
tion. They terminate the iterations when the percentage mean absolute deviation 
between the flow time estimates at successive iterations is sufficiently small. 
However, they find that especially at high utilization levels, the M/M/s queueing 
model predicts extremely high flow times, rendering the cycle time predictions 
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inaccurate. They also find that the method has difficulty in converging (specifically 
in Fig. 7 of Hung and Hou (2001)). Hence they develop an empirical approach that 
uses historical data to develop a model relating expected cycle times to workload at 
individual workcenters, similar to the function used by Voss and Woodruff (2003). 
They report short computation times and good convergence for longer sub-periods, 
but this issue is only described briefly.

Riaño (2003) proposes a rather different iterative technique in which loading fac-
tors wst that describe the fraction of total releases in period s that will emerge by 
period t ≥ s are estimated using a transient model of a queueing network. To present 
the basic idea, we shall consider its application to a single-server workcenter; the 
extension to multiple stages and servers is discussed in Riaño et al. (2006). A job 
released to the workcenter at time s will see Q(s) jobs ahead of it in the queue or in 
process. Hence the cycle time of that job will be given by
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where Sk, k = 2,…,Q(s) denote the processing times of jobs ahead of this job in the 
queue, S1 the residual (remaining) processing time of the job currently in process 
and S the processing time for the new arrival. The distribution function of the cycle 
time of the job introduced into the system at time s is then given by
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where F1 denotes the distribution function of the residual processing time of the job 
currently in process, ∗ the convolution operation, and Fn∗ the n-fold convolution of 
the processing time distribution F at the server. G(s,t) thus describes a state-
dependent cycle time distribution that depends on the number of jobs Q(s) in the 
system at the time s the job was released. We seek an approximation of this function 
that will allow us to calculate approximate values of the loading factors wst. To 
develop this approximation, the author assumes that this time-dependent delay dis-
tribution of an arriving order will have the same form as the steady-state distribution 
of the waiting time for an M/G/1 queue, which is given by Shortle et  al. (2018: 
273), as
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where Fe is the steady-state residual processing time distribution derived assuming 
that the time a new job enters the system is uniformly distributed over the duration 
of the current service time. This suggests an approximation of the form
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where β(s) denotes a time-dependent traffic intensity. Noting that for a phase-type 
service time distribution (Neuts 1981), G(s,t) will also be of phase type, the author 
proposes heuristic estimates of β(s), obtaining an approximation for G(s,t) that 
depends only on the expected WIP level at time s, denoted by ϕ(s), and its time 
derivative ϕ′(s). Hence, to obtain an approximation to G(s,t), we now need a viable 
technique for estimating ϕ(s) and ϕ′(s). These quantities are clearly linked to the 
evolution of WIP over time, which, in turn, depends on the pattern of releases into 
the production system, suggesting a recursive technique. Given a release pattern, we 
can compute estimates of ϕ(t) for every planning period t in a recursive manner, 
starting from period t = 1 and moving forward in time. If the processing time distri-
bution at the server is phase-type, these computations can be performed efficiently. 
The resulting approximation to G(s,t) yields approximate values of the wst, which 
can be interpreted as the probability that a job released in period s will complete in 
period t. The author suggests a successive approximation method to compute the wst, 
where for a given release pattern estimates of the wst are developed after which a 
planning problem is solved to estimate WIP levels over time. These new WIP levels 
are used to estimate new loading factors until the estimates of weights converge.

The larger pattern of the iteration procedure is now clear: we begin with an initial 
release pattern, and calculate initial estimates of the wst. We then calculate a new 
release pattern using these weights, and repeat until, hopefully, convergence is 
achieved. As in Zaepfel (1984), the model does not include separate capacity con-
straints because the load factors wst reflect how the input is transformed into output. 
“If correctly computed, they will ensure the output is actually bounded. If too much 
input is placed into the system the weights will reflect these longer lead times” 
(Riaño 2003: 72).

As with the approach of Hung and Leachman (1996), the convergence behavior 
of this procedure is not well understood; when it converges, it converges quite rap-
idly to a solution that does not depend on the initial solution used, but in other cases, 
it can cycle through a limited number of solutions (Riaño 2003: 83). Further experi-
mental and theoretical work is necessary to understand this convergence issue (see 
Sect. 6.5.3), but the overall approach stands as a very interesting and novel approach 
to modeling workload-dependent lead times in production planning, with a strong 
theoretical underpinning. Interesting discussions in this direction are given by 
Hackman (2008).

The iterative mechanisms discussed so far iterate solely on the lead times or on 
the loading factors. Byrne and Bakir (1999) iterate between a conventional multi-
period LP production planning model that determines the optimal production levels 
for given capacity constraints and a simulation model that is used to update the 
available capacities if the production levels obtained from the initial optimization 
run turn out to be infeasible in the simulation. Lead times are not considered. Byrne 
and Hossain (2005) provide some extensions to this mechanism, again without con-
sidering lead times in the production planning model.

Kim and Kim (2001) also use loading factors to express lead times and include 
capacity constraints in their release model. Simulation is used to obtain estimates of 
the effective loading factors and resource utilization that are used to update the lead 
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times and the capacities in the release model within an iterative mechanism. The 
authors do not report convergence problems in their numerical tests. Irdem et al. 
(2010) report good convergence of this approach under both high and low levels of 
resource utilization. They conclude that “the convergence behavior of the KK (Kim 
and Kim 2001) procedure is qualitatively different from that of the HL (Hung and 
Leachman 1996) procedure” (452f.). Albey and Bilge (2014) conduct extensive 
experiments with the KK procedure and find that the procedure converges to differ-
ent solutions from different initial release plans. They also observe that when the 
release planning model proposes a release plan that results in low capacity utiliza-
tion, agreement with the lead time estimation model is often achieved fairly quickly, 
which may result in the procedure converging to a suboptimal solution. Once capac-
ity estimates have been revised downwards and passed to the release planning 
model, they are implemented in a hard constraint that does not permit them to be 
revised upwards again at a subsequent iteration. They also find that combining the 
values of estimates from successive iterations using a smoothing constant improves 
performance and that convergence in aggregate convergence criteria such as total 
throughput over all periods and products is much easier to obtain that agreement for 
each product in each period. These authors also examine the performance of the KK 
procedure in the presence of routing flexibility and find that increasing flexibility 
improves its performance.

Bang and Kim (2010) formulate an iterative procedure using an aggregate pro-
duction planning model designed for semiconductor wafer fabrication that uses a 
separate disaggregation stage to obtain the release quantities over time. Based on an 
extended (compared to Hung and Leachman 1996) simulation model, not only is 
cycle time information updated but also product types are regrouped for the next run 
of the aggregate production planning model. The authors report improvements com-
pared to Hung and Leachman (1996) and good convergence for both methods in all 
problem instances tested, although convergence cannot be guaranteed. Kim and Lee 
(2016) propose an iterative scheme where the production planning level determines 
production and WIP levels (or the deviations from target values, respectively). 
These target values are updated based on the simulated cycle times, number of set-
ups, and available WIP. The convergence of the procedure seems to depend on the 
variable used to specify the convergence criterion.

6.6.3 � Critique of Iterative Simulation-LP Algorithms

The iterative simulation-LP approach to order release planning combines two famil-
iar, off-the-shelf modeling techniques, linear programming, and simulation, in an 
iterative scheme that addresses the complex interdependency of releases and lead 
times. However, the simulation model requires large amounts of engineering effort 
and data to construct, validate, and maintain and increases run time significantly. 
The computational burden can be reduced by limiting the level of detail of the 
model to what is necessary for the specific purpose (Law and Kelton 2000: 267ff.), 
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e.g., by focusing on highly utilized workcenters and replacing operations at low-
utilization workstations with fixed time lags (Hung and Leachman 1999). The ongo-
ing increase in computational power alleviates this problem somewhat, but does not 
eliminate it. The overall procedure—starting with reasonable cycle time estimates 
that are refined based on the simulated dynamics of the material flow—is intuitive 
and easy to explain. Modeling the flow time dynamics outside the optimization 
model allows complex system dynamics to be embedded in the simulation or queue-
ing models used to estimate lead times, permitting realistic modeling of the system 
within the limits of the available computational resources.

However, the behavior of this type of order release mechanism is not well under-
stood. There is no guarantee of optimality and hardly any insight into its deviation 
from the optimum. Although convergence is ergodic in some numerical experiments 
(Riaño 2003), there is no proof of this property. The approaches often converge 
within a reasonable number of iterations (five or six in Hung and Leachman (1996)), 
but can frequently fail to converge, in which case it does not reach a feasible solu-
tion. This is not acceptable in real-life situations and largely precludes practical 
application. However, Kim and Kim (2001) do not report convergence problems in 
their numerical tests, which might indicate that including the capacities in the itera-
tive mechanism makes a substantial difference. Note that updating the capacities 
changes the right-hand side of the order release model, while updating the lead 
times changes the coefficient matrix. However, it is not clear how this difference is 
related to the mechanism that coordinates the order release and lead time estima-
tion models.

Irdem et al. (2008, 2010) and Kacar et al. (2012) perform numerical studies that 
explore both the convergence of the HL (Hung and Leachman 1996) and the KK 
(Kim and Kim 2001) method and, in the latter paper, their performance relative to a 
clearing function model of the type described in the next chapter. All three papers 
use the same simulation testbed, a scaled-down wafer fabrication facility first stud-
ied by Kayton et al. (1997). Irdem et al. (2008) find substantial convergence prob-
lems for the HL method, especially under high bottleneck utilization, which are 
confirmed in Irdem et al. (2010). This behavior is qualitatively different from the 
KK procedure for which they report good convergence (Irdem et al. 2010; Kacar 
et al. 2012). Kacar et al. (2012) compare a clearing function model with two param-
eter settings to the KK and the HL procedure using the same testbed. They find that 
for the KK method convergence is achieved after four iterations in most test cases, 
while the HL method is “consistently outperformed by the clearing function model” 
(p. 116). They also conclude that the dynamic behavior of the HL method is prob-
lematic due to large swings in releases from one period to the next. The KK proce-
dure is mostly outperformed by the clearing function model, at least for the better of 
the two parameter settings.

The convergence issue highlights the fact that the theory behind the iterative 
simulation-LP approach is largely unclear, making it difficult to explain their 
behavior and the nature of the solution to which they converge. Missbauer (2020) 
analyzes a simplified version of the HL procedure assuming a production unit with 
a single workcenter. He shows that in the order release model the lead times, which 
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are time-varying parameters, act as prices for producing an item in a certain period. 
This is because the WIP holding costs are assigned to the production period due to 
the use of backward lead times and are proportional to the lead time assigned to this 
period. Similar insights arise in the analysis of fixed lead time models in Chap. 5, 
notably Equation (5.19). Hence an iterative order release procedure that iterates on 
the lead times behaves like a price coordination mechanism. Missbauer (2020) 
shows that the price coordination mechanism implied by the iterative order release 
mechanism does not meet the theoretical requirements for an effective price coordi-
nation mechanism, so a reasonable solution can only be expected under very spe-
cific conditions. This argument clearly does not extend, e.g., to the KK procedure 
that iterates on the capacities as well, suggesting different theoretical underpinning 
for different variants of the iterative mechanisms. These issues are largely unex-
plored, and more research is needed. Future research should link the design of itera-
tive LP-simulation algorithms to the theory of mathematical decomposition and 
coordination that is available in the mathematical programming literature.

A comparison to the widely used techniques of simulation optimization (Fu 
2002; Zapata et  al. 2011) provides additional perspective on the performance of 
these iterative approaches. Simulation optimization is used when the objective func-
tion and constraints of the system of interest do not admit of a tractable mathemati-
cal representation but instead can be represented in a discrete-event simulation 
model. Thus the performance measure of interest cannot be computed directly, but 
must be estimated based on samples obtained from replications of the simulation. If 
we denote the vector of decision variables by θ and the estimate of the performance 
measure to be optimized obtained from the simulation replication w by L(θ, w), the 
general statement of a simulation optimization problem is then

	
min
θ

θ
∈

( )
Θ
J

	
(6.25)

where J(θ) = Ew[L(θ, w] where Θ denotes the set of all acceptable decision variable 
vector θ. The decision variables θ can be discrete or continuous. Fu (2002), 
Henderson and Nelson (2006), and Zapata et al. (2011) provide extensive reviews of 
this area. A wide variety of such algorithms exist, including genetic algorithms that 
use the simulation model to compute a fitness measure for different solutions and 
stochastic approximation methods for continuous state spaces. The latter methods 
start with an initial solution θ0 that is updated iteratively using an estimate of the 
gradient ∇J(θ) of J(θ). The general form of the stochastic approximation algorithm 
is as follows:

Step 1: Choose an initial solution θ0. Set n = 0.
Step 2: Compute a new solution θn + 1 = ΠΘ(θn + an ∇ J(θn)) where θn is the variable 

set at the n’th iteration, an a step size, and ΠΘ denotes a projection onto Θ such 
that if θn + 1 lies outside the feasible region, ΠΘ returns it to the feasible region; 
one such projection is setting θn + 1 = θn. If a specified stopping criterion is satis-
fied, stop and return θn + 1 as the estimated optimal solution. Otherwise set n = 
n+1 and return to Step 2.
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The quality of the solution obtained and the speed of convergence to that solution 
depend on the choices of the step sizes an and the manner in which the gradient 
∇J(θn) is computed. There are four general gradient estimation techniques: finite 
differences, likelihood ratio, perturbation analysis, and frequency domain experi-
mentation. The finite difference technique estimates the gradient by running multi-
ple simulations to obtain an approximation of the gradient. One version of finite 

differences is ˆ ˆ ˆ∇ ( )( ) = ∇ ( ) ∇ ( ) J J Jn n p n
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Convergence requires that ci → 0. Here ei denotes the i’th unit vector and the ci 
difference parameters whose values represent a trade-off between too much noise 
(small values) and too much bias (large values). This gradient estimation technique 
is broadly applicable, but requires 2p simulation runs at each iteration.

The direct application of simulation optimization to release planning would treat 
the release quantities Rit of each product i in each period t as the decision variables 
and seek to optimize some objective function. Although simulation optimization is 
generally employed in the presence of random variables such as processing times, 
machine failures and yields, the basic approach can be implemented in completely 
deterministic simulations. Although models based on this approach have been 
developed and shown to yield good solutions (Liu et al. 2011; Kacar and Uzsoy 
2015), their computational requirements are usually very high due to the time 
required to run multiple independent replications of a large simulation model. Some 
recent work attempts to reduce the computational burden of these procedures by 
replacing the simulation model with a metamodel based on extensive offline simula-
tion experiments, with promising results (Li et al. 2016).

The iterative multi-model approaches can be viewed as simulations of a particu-
lar decision process: initial estimates of planning parameters such as lead times and 
resource utilizations are obtained, the release planning model is run, and the result-
ing release pattern is simulated. This perspective provides some insight into their 
performance. First, most multi-model iterative approaches do not consider the 
objective function value in their convergence criteria; instead they focus on achiev-
ing consistency in the flow time estimates obtained from successive iterations. 
Hence there is no a priori evidence that these procedures will converge to even a 
locally optimal solution with respect to the objective function of concern, as imple-
mented in the release planning model; the best that can be hoped for is a feasible 
solution. Although the primary concern is the reduction of the differences in lead 
time estimates obtained at successive iterations, this is never explicitly formulated 
as an objective function to be reduced from one iteration to the next, nor is any 
information on the gradient of this quantity used. Simulation optimization methods 
that explicitly consider the gradient of the objective function generally yield good 
solutions, although their computational burden is very high.
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Viewing these techniques as applications of fixed point iteration also raises con-
cerns. The basic fixed point iteration procedure, common in numerical analysis, 
generates a sequence of solutions xn+1 = f(xn), n = 0, 1, .... In the context of the itera-
tive multi-model methods, the solution xn at iteration n represents a vector of lead 
time estimates, while the function f(xn) represents the simulation of the decision 
process by which a release schedule is obtained by the LP model from the previous 
iteration's lead time estimates xn−1. This release schedule is then simulated to obtain 
revised lead time estimates. Per the Banach Fixed Point Theorem (O'Regan et al. 
2001), the existence of a fixed point in general requires the existence of a contrac-
tion mapping such that for any two points xi and xj there exists a constant 0 ≤ q < 1 
such that ||f(xi) − f(xj)|| ≤ q||xi − xj||. In the current iterative methods, no conditions 
of this type are considered, let alone satisfied.

Our discussion of simulation optimization and fixed point iteration in relation to 
the iterative multi-model procedures is clearly heuristic in nature and provides no 
mathematically rigorous evidence. However, these considerations do suggest that 
most existing iterative methods are, in mathematical terms, ill-posed and require the 
imposition of additional conditions to ensure reliable performance in terms of solu-
tion quality and convergence.

6.7 � Iterative Methods for Production Planning 
and Scheduling

The iterative methods described in Sect. 6.5.2 represent a small and rather special-
ized research direction in order release planning. However, a closer look at the lit-
erature reveals that this is a special case of a more general problem: Order release 
planning—as a subproblem of production planning—requires information on lead 
times and maximum possible production which, in turn, depend on the detailed 
schedule within the production unit. While it is true that, as stated in the optimized 
production technology (OPT) approach, “lead times are the result of a schedule and 
can’t be predetermined” (Vollmann et al. 1997: 797), the monolithic approach to 
production planning and control, at least for the bottleneck workcenters, that results 
from this view is not always applicable, motivating the hierarchical approaches 
described in Chap. 1. Planned lead times allow decomposition of the complex plan-
ning problem into planning and scheduling levels (Graves 2011: 93) and thus are 
necessary within this planning concept, but both lead times and capacities should 
anticipate the outcomes of the scheduling level reliably (Kanet and Sridharan 1998).

It is thus not surprising that iteration between the planning and scheduling levels 
has also been proposed for other production planning tasks. Integrating the planning 
and scheduling levels is particularly important in lot sizing. This can be achieved, 
e.g., by anticipating the queuing effects of lot sizes using stochastic models and 
determining lot sizes accordingly, as discussed in Chap. 9, or by lot streaming, that 
is, splitting up production lots into smaller transfer batches whose processing on 
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different workcenters can be overlapped in time (Cheng et al. 2013). Dauzere-Peres 
and Lasserre (2002) present an integrated model for lot sizing and scheduling and 
an algorithm that iterates between a lot-sizing module that assumes a fixed produc-
tion sequence and a scheduling module that sequences the given lots. In this 
approach the lead time acts as a capacity constraint (p.  789). Negenman (2000) 
presents an algorithm that iterates between an LP model that calculates the produc-
tion plan for a production network and a flexible flow shop scheduling model that is 
solved by a heuristic. The feedback information provided by the scheduling level is 
the completion times of the orders. If the planned lead times are exceeded, the plan-
ning level reduces the available capacities of the workcenters in the next iteration. A 
detailed analysis of the convergence behavior is not provided. Albey and Bilge 
(2011) present a hierarchical production planning and control system framework for 
a Flexible Manufacturing System that consists of three levels: aggregate planning, 
loading, and detailed planning. The behavior of the shop floor for a given produc-
tion plan is anticipated using simulation. The simulation result is used to update 
capacity coefficients in the upper-level modules. Again, convergence is not ana-
lyzed in detail, but the authors indicate that capacity updating is complex due to the 
special problem and decision structure.

Planned lead times can also be required for dispatching decisions when the dis-
patching rule compares a job’s current slack time to its remaining lead time. In this 
case the lead time estimate must be consistent with the schedule that is based on this 
estimate (Vepsalainen and Morton 1988). The lead time iteration method 
(Vepsalainen and Morton 1988; Morton and Pentico 1993) updates initial lead time 
estimates used for scheduling using the actual flow times obtained from the schedul-
ing algorithm using exponential smoothing (Morton and Pentico 1993: 218f). 
Convergence is not guaranteed, and “it is then an empirical question whether such a 
procedure obtains good results or not” (Morton and Pentico 1993: 219). Lu et al. 
(1994) provide an interesting illustration of the lead time iteration procedure in a 
semiconductor wafer fabrication facility. Note that the role of planned lead times in 
scheduling algorithms is different from that in order release models, and thus the 
relationship of these results to the convergence issue of the LP-simulation approaches 
discussed in the previous section is not straightforward. A unifying view of algo-
rithms that iterate between a production planning model, independent of its formu-
lation, and a scheduling model, independent of the scheduling algorithm, is a 
challenge for future research.

6.8 � Conclusions

The various models discussed in this chapter highlight the difficulty of the central 
problem addressed in this volume: how to anticipate the behavior of the scheduling 
level in planning models in a manner that is both sufficiently accurate and compu-
tationally tractable. The linear programming models presented in Chap. 5 can be 
extended easily to handle time-varying exogenous lead times, but this begs the 
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question of how to obtain such estimates since lead times are determined by utiliza-
tion and utilization by the release decisions the model seeks to address. Work in 
traffic modeling suggests that optimization models with lead times as an endoge-
nous decision variable are often non-convex and hence hard to solve. Attempts to 
preserve computational tractability have led to the use of multi-model approaches 
that separate the problems of release planning and lead time estimation, but the 
convergence behavior of these is not well understood, and the use of a simulation 
model to construct the planning solution (as opposed to estimating its parameters 
offline, outside the planning run) result in high computational burden for large pro-
duction systems. What is needed is a way of representing the behavior of the sched-
uling level within the release planning model that is consistent with the queueing 
view of production resources in Chap. 2, but which yields tractable optimization 
models. The clearing functions discussed in the next two chapters seek to provide 
such a model.
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Chapter 7
Univariate Clearing Functions

In this chapter, we introduce the concept of the clearing function (CF), a metamodel 
of a production resource that relates the expected output of a resource to some mea-
sure of the work available to it in the planning period. We focus on clearing func-
tions with a single state variable and examine a variety of functional forms that have 
been proposed in the production and traffic literature. We then formulate release 
planning models using these functions and show that while single-product models 
yield tractable convex optimization problems, the presence of multiple products 
competing for capacity at a shared resource creates significant difficulties. The allo-
cated clearing function formulation is presented to address these issues and shown 
to yield more informative dual prices for resource capacity than conventional 
LP models.

7.1 � Preliminaries

The models in the previous two chapters anticipate the performance of the produc-
tion units using exogenous, workload-independent lead times that are assumed to 
remain valid as long as a maximum capacity loading is not exceeded. These lead 
time estimates may take different forms based on how capacity is consumed during 
the lead time, as discussed in Chap. 5, and can be specific to individual planning 
periods as discussed in Chap. 6.

The combination of fixed, exogenous planned lead times with a maximum capac-
ity limit as an anticipation function yields computationally tractable linear program-
ming (LP) models as long as lot sizing is not a consideration; the presence of lot 
sizing requires the introduction of integer variables and yields considerably more 
challenging models (Pochet and Wolsey 2006). As long as the production unit oper-
ates at approximately constant utilization over time, historical data can be used to 
estimate planned lead times that are consistent with observed cycle times, for exam-
ple by setting the planned lead times to a specified fractile of the observed cycle 
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time distribution. However, if the resource utilization level, the product mix, or both 
vary over time, the distribution of the cycle time will also change over time. This, in 
turn, may cause the cycle times observed on the shop floor to deviate significantly 
from the lead times used in the planning models, adversely affecting the perfor-
mance of the production units trying to execute these plans.

In contrast to these LP models where the output of the system is determined by 
the combination of planned lead times and a maximum capacity loading, the models 
in this chapter express the expected output of the production unit in a planning 
period as a function of the workload available to the resource for processing in that 
period. Models of this type have arisen in the context of queueing systems, in the 
management of traffic networks and as representations of particular production con-
trol policies. We shall refer to models of this type as clearing functions, following 
the terminology of Karmarkar (1989).

We define a clearing function as a functional relationship that specifies the 
expected output Xt of a production resource in a planning period t of duration Δ as

	
X ft t= ( )∆ Ω,

	
(7.1)

where Ωt denotes a set of state variables that collectively describe the amount of 
work available to the resource in period t. The specific set of state variables to 
include in the set Ωt is not immediately obvious. From a queueing perspective, the 
state of the resource at time t potentially depends on the entire past history of the 
relevant stochastic processes (interarrival times, service times, machine failures, 
setups, number of available machines, etc.) up to that instant in time. It is also 
apparent that the clearing function must depend on the length Δ of the planning 
period for which it is being constructed. Finally, the amount of work available to the 
resource and the distribution of its arrival over time depend on the model used by 
the planning level to determine releases over time. In queueing terms, the release 
decisions made by the planning level affect both the mean interarrival time of orders 
to the resource and its variance.

The purpose of the clearing function is to represent the behavior of the resource 
to an acceptable degree of accuracy while still yielding tractable optimization mod-
els for the planning problem. The extremely high dimensionality and complex func-
tional forms required by general methods, such as queueing approaches considering 
the entire history of the process or a large portion of it, make it very difficult to 
obtain clearing functions leading to tractable optimization models. Even simple 
functional forms for clearing functions can yield non-convex optimization models. 
Hence most clearing functions proposed to date have used a single state variable; we 
shall see that even in this case formulations involving multiple products can become 
challenging. In this chapter, we discuss various single-variable clearing functions, 
the difficulties that arise when multiple products compete for capacity at a resource, 
and solutions to these difficulties. We also show that planning models using clearing 
functions can produce meaningful dual prices for resources at any level of utiliza-
tion, which is not the case for the models discussed in Chaps. 5 and 6.
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7.2 � Single-Variable Clearing Functions

7.2.1 � Average WIP-Based Clearing Functions

This family of clearing functions, the motivation for which was sketched in Sect. 
2.2, uses the set of state variables Ωt tW= { } , where Wt  denotes the time-average 
WIP level, measured in number of units or lots, at the production resource over the 
planning period t. Specifically, if planning period t spans the time interval (t−Δ, t] 
and W(t) denotes the amount of WIP at the resource at time t, we have

	
W W dt

t

t

= ( )
−
∫

1

∆ ∆

τ τ
	

(7.2)

The advantage of Wt  as a workload metric is its straightforward relation to the 
well-known steady-state analyses of queues such as the M/G/1 and G/G/1 (Buzacott 
and Shanthikumar 1993; Curry and Feldman 2000), from which exact or approxi-
mate expressions relating the expected WIP, expected cycle time and utilization can 
be derived. As discussed in Sect. 2.2, the expected WIP level of the G/G/1 queue in 
steady state is given by
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dropping the time subscript since this is a steady-state relation. Solving for u in 
terms of W  yields a quadratic equation in W  whose nonnegative solution is

	

u
W W W

=
− +( ) + +( ) + −( )

−( )
1 1 4 1

2 1

2
ψ

ψ
	

(7.4)

where ψ = +( )c ca e
2 2 2/ ; recall from Sect. 2.2 that ψ = 1 represents the special case 

of the M/M/1 queue. Intuitively, the higher the average WIP level W  at the resource, 
the lower the probability (1 − u) that the resource will be idle due to lack of work; 
hence maintaining a planned average throughput rate of X in a planning period 
requires maintaining a certain average WIP level at the resource. The average utili-
zation can be interpreted as the fraction of the planning period during which the 
resource will be producing usable output. Thus the expected number of units pro-
duced over the planning period is given by:
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Incorporating this state variable into optimization models requires some addi-
tional considerations. At the point in time the optimization model is solved to deter-
mine releases for the next T periods, the average WIP values Wt  are not known with 
certainty; they are in fact random variables whose distribution is determined by the 
release decisions made by the planning model. Hence the state variables Wt repre-
senting WIP in the optimization models actually represent the planned state of the 
resource at the end of period t and do not capture the evolution of the WIP level 
throughout the planning period. However, many different WIP trajectories W(t) may 
give the same beginning and ending WIP levels Wt−1 and Wt. Optimization models 
using this type of clearing function must estimate the planned value of Wt  for a 
given planning period t using the planned values of Wt−1 and Wt. The most obvious 
approach is to use the arithmetic average to obtain

	
W

W W
t

t t=
+( )−1

2 	
(7.6)

However, this has implications for the behavior of the resulting optimization 
models. Note that if Wt−1 is increased by a certain amount in (7.6) and Wt reduced 
by the same amount, Wt  remains unchanged. Depending on the structure of the 
optimization model, this can lead to oscillating WIP levels at the period boundaries 
due to the presence of alternative optimal solutions, which is undesirable (Missbauer 
(1998): 413 ff.).

Given their origin in steady-state queueing analysis, clearing functions of this 
type are more appropriate for longer planning periods, where the transient behavior 
of the resource at the start of the period due to changes in releases can safely be 
neglected. Note that it is possible to have X Wt t≥  using a clearing function of this 
type; at low utilization levels, the average queue length will be very small, while the 
total output will be approximately equal to the number of arrivals during the period.

Although it is not explicitly stated as such, the practical worst case model of 
production lines given in Chap. 7 of Hopp and Spearman (2008) also represents an 
average WIP-based clearing function. This model considers a balanced serial pro-
duction line operating under the CONWIP policy discussed in Chap. 4. They define 
the system state as a vector whose components represent the number of jobs in front 
of each machine in the line. Assuming all such states to be equally likely, they note 
that for a total WIP level of w jobs in the line, a new job entering the system will see 
on average

	
W

w

Ni =
−( )1

	
(7.7)

jobs ahead of it at each of the N machines in the system, implying an average 
cycle time of

	
T T

w
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(7.8)
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where T0 denotes the raw processing time of the line, the average time in system a 
job will encounter if it enters an empty line, and rb the processing rate of the bottle-
neck machine. Substituting (7.8) into Little’s Law yields an average through-
put rate of

	
X

wr

r T w
=

+ −
b

b 0 1 	
(7.9)

Since in a CONWIP system the average WIP level will be equal to the total WIP 
level w permitted in the system, this represents an average WIP-based clearing func-
tion that can be shown to be concave and monotonically non-decreasing in the aver-
age WIP level w. The assumption of equally likely system states is exact only for a 
balanced line with a single exponential server at each stage, but provides a WIP 
level that is unlikely to be exceeded in systems with more general structures.

7.2.2 � Initial WIP-Based Clearing Functions

This family of clearing functions assumes that the expected output of the resource 
in a planning period is determined solely by the amount of work available to it at the 
start of the planning period; work arriving during the period will have no effect on 
expected output. Hence the set of state variables considered in each period t is 
Ωt = {Wt − 1}. Under this model either the probability of new work arriving during 
the planning period is negligible, the scheduling policy only allows work to be 
released at the start of a period (which coincides with the end of the previous one), 
or the planning interval is sufficiently short that work available at the start of the 
period will fully occupy the resource until the next period.

Clearing functions of this type have been discussed extensively in the context of 
traffic assignment problems (Dafermos and Sparrow 1969; Carey 1987; Peeta and 
Ziliaskopoulos 2001) where they are used to model the behavior of a section of 
highway in a given time period. In these networks, which bear considerable similar-
ity to those studied in this volume, a traffic system is modeled as a network with 
node set N and directed arc set A. The arcs (i, j) ∈ A correspond to specific segments 
of roadway whose starting and ending points are represented by nodes i, j ∈ N, 
respectively. The amount of traffic Xij(t) that can exit the arc (i,j) over a planning 
period t is expressed as a concave, non-decreasing function gij(Wij(t−1)) of the 
amount of traffic Wij(t−1) present on the arc at the start of the period. These exit 
functions are used in discrete-time optimization models very similar to those devel-
oped later in this chapter.

The exit functions used in the dynamic traffic assignment work are derived from 
flow-density functions, which are discussed in detail in Carey and Bowers (2012). 
The basic resource considered in these models, analogous to the machine or work-
center in production units, is a segment of road whose characteristics such as width, 
surface quality, visibility, and signage are assumed to be known. For ease of exposi-
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tion we shall assume the road segment to be of unit length, and will drop the time 
subscript to discuss a generic time period, as in the discussion of steady-state clear-
ing functions in Sect. 7.2.1. The progress of individual vehicles along the road seg-
ment is represented as a continuous flow, in much the same manner as the LP models 
of Chap. 5 treat the processing of discrete orders at the production resources. The 
traffic density k represents the number of vehicles occupying the road segment of 
unit length being considered. This quantity is analogous to the average WIP Wt  or 
workload in production contexts. The flow rate q, the number of vehicles passing a 
particular point on the road per unit time, is analogous to the throughput rate X of a 
workcenter or production resource. Hence the exit function captures the rate at 
which vehicles pass the end point of the road segment, either entering another seg-
ment or exiting the system. The space mean speed v of the traffic along the unit road 
segment is given by the length of the road segment divided by the average time to 
traverse it. The relation between flow rate q, speed v, and traffic density k is thus

	 q kv= 	 (7.10)

Noting that v = 1/T, where T denotes the average time to traverse the road seg-
ment, we obtain

	
q

k

T
=

	
(7.11)

which can be rewritten as

	 k qT= 	 (7.12)

Replacing each term with its counterpart in the production context (k with W  
and q with X) and noting that the interpretation of T as the average time to traverse 
the system under consideration is the same in both traffic and production contexts, 
we recover Little’s Law (Hopp and Spearman 2008):

	 W XT= 	 (7.13)

Flow-density functions q  =  f(k) are intended to be empirical relations whose 
parameters are estimated from appropriately collected data. However, most flow-
density functions f(.) used in traffic research have been derived using a limited set 
of parameters:

–– The free-flow velocity V0 of the road segment, representing the flow of traffic at 
very low density, analogous to the raw process time T0 discussed in the previous 
section. Since by (7.10) the average velocity v = q/k = f(k)/k, we have
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(7.14)

–– The jam density kj, the density at which v = q = 0, i.e., traffic comes to a stop.
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–– The wave speed at jam density cj, the rate at which flow decreases as density 
increases to the jam density kj, given by

	
c

df k

dkk kj
j

=
( )

→
lim

	
(7.15)

–– The maximum flow rate qc. The density at which the maximum flow rate occurs 
is referred to as the critical density kc, analogous to the critical WIP concept of 
Hopp and Spearman (2008).

Carey and Bowers (2012) propose several desirable properties for a flow-density 
function. These include unimodality, appropriate finite values of the free-flow speed 
V0, jam density kj, and the ratio kj/kc, as well as an appropriate negative value of cj 
and the possibility of convexity as k → kj. A generic flow-density function f(k) sat-
isfying these conditions would appear as shown in Fig. 7.1.

Production systems research has generally assumed an infinite jam density 
kj = ∞, under the assumption that as the work available to a queueing system in a 
planning period increases its output rate X will eventually level off at 1/te, but will 
never decrease. In environments where jobs do not interfere with each other through 
sequence-dependent setup times or scheduling policies, this assumption appears 
reasonable. Hence most clearing functions proposed by production system research-
ers have taken the form of monotonically non-decreasing concave functions that 
asymptotically approach the maximum production rate as workload or WIP 
approach infinity. Clearing functions for environments where this assumption is not 
valid, such as those with significant sequence-dependent setup times, are discussed 
in the next two chapters. Clearing functions that decrease beyond a certain WIP 
level like the flow-density function in Fig.  7.1, due to e.g., reduced worker effi-
ciency when workload is too high or by excessive material shuffling which reduces 
capacity, are rare in the literature (Van Ooijen and Bertrand 2003).

While a wide range of flow-density functions have been discussed in the traffic 
research community, we will use two examples to illustrate the types of models 

Fig. 7.1  A generic flow-density function (Carey and Bowers 2012)
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considered. The output function proposed by Newell (1961) and Franklin (1961) 
takes the form
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Carey and Bowers (2012) note that this flow-density function satisfies more of 
the desirable properties they propose than any other function; however, it is concave 
everywhere, not admitting convexity as the jam density is approached. They also 
point out that the function is defined by three parameters (kj, V0, and cj) that give the 
behavior of the function at the origin and at jam density unduly high influence on its 
overall shape. This function appears to have motivated the clearing function of 
Srinivasan et al. (1988) discussed below. Another class of flow-density functions 
proposed by Van Aerde and Rakha (1995) takes the form
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where c1, c2, and c3 are constants computed from V0, kj, qc, and vc, where the latter 
denotes the average speed at critical density qc. The resemblance to (7.4) is striking.

7.2.3 � Workload-Based Clearing Functions

The discrete-time nature of production planning models creates difficulties for aver-
age WIP-based clearing functions due to the fact that multiple combinations of val-
ues for Wt and Wt−1 can yield the same Wt  value for any period t. Initial WIP-based 
clearing functions assume that the expected output Xt of the resource in period t 
cannot exceed the initial WIP Wt−1 available at the start of the period, ignoring the 
possibility that work released during the period might be completed during the 
period. Workload-based clearing functions address this issue by using a state vari-
able Λt that represents the total amount of work made available to the resource dur-
ing period t, given by

	 Λ t t tW R= +−1 	 (7.18)

where Wt−1 denotes the amount of WIP carried over from the previous period t − 1 
and Rt the amount of work released to the resource during period t. Clearing func-
tions of this form must have
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(7.19)

7  Univariate Clearing Functions



151

for all Λt ≥ 0, implying that the resource can never convert more material into output 
in a period than becomes available to it over the period.

Missbauer (2002) proposes a clearing function of this form for a resource that 
can be represented as an M/G/1 queue in steady state. We present here the same 
development for a G/G/1 queue. Recall from (7.5) that the expected throughput of a 
G/G/1 queue in steady state can be approximated as
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Now consider a G/G/1 queue in steady state where at the start of some planning 
period t there are Wt−1 units of work remaining on hand from the previous period 
and Rt units are released into the production unit. Recalling that the workload 
Λt = Wt − 1 + Rt, we have Wt − 1 = Λt − Rt. Since the queue is assumed to be in steady 
state, we must have Xt = Rt and W Wt t− =1 . Substituting W Xt t t= −Λ  into (7.20) and 
solving for Xt, we obtain
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The basic form of this expression is quite similar to that derived for the average 
WIP case in (7.20); most notably, it retains the concave saturating form and guaran-
tees that Xt ≤ Λt. Its drawback is the assumption of steady state, which is not gener-
ally valid under the conditions of time-varying demand and finite period length 
under which we wish to use the release planning models we study. Again, we note 
in passing the similarity to (7.17).

7.2.4 � The Constant Cycle Time Clearing Function

Graves (1986) proposes a discrete-time model of a production resource whose 
expected output Xt in period t is given by the clearing function

	 X Wt t= −α 1 	 (7.22)

where Wt−1 denotes the amount of WIP available to the resource at the start of period 
t, i.e., the end of period t−1. Since Graves assumes that work can only arrive at or 
depart from the resource at the start of a planning period, this can also be viewed as 
a workload-based clearing function in our terminology. The resource will always 
process a fraction α of the WIP Wt−1 available to it at the start of the period, no mat-
ter how large Wt−1 may be. Equivalently, the model assumes that the resource is 
managed to maintain an average cycle time of 1/α periods; as the amount of avail-
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able work Wt−1 increases, the resource can work faster. Hence this linear clearing 
function is best viewed as describing the behavior of the production resource under 
a specified production control policy, where the processing rate can be varied to 
maintain the planned lead time of 1/α periods. The clearing function will, naturally, 
only be valid over the range of operating conditions that satisfy this condition.

The author uses clearing functions of this type to analyze the performance of a 
job shop by computing the mean and variance of performance measures such as 
throughput, queue length, and backlog. In particular, he examines the tradeoff 
between production smoothing (which requires long planned lead times and hence 
low values of α) and reducing cycle times and WIP levels (which requires high val-
ues of α) by simulating a job shop environment. The author uses this model in sev-
eral subsequent papers to examine the issue of setting safety stocks in such systems 
(Graves 1988), planning in multistage production-inventory systems (Graves et al. 
1998), and setting planned lead times in make-to-order systems (Teo et al. 2011; 
Teo et al. 2012). Parrish (1987) extends the model to a network of workcenters in a 
transient regime.

7.2.5 � Empirically Based Single-Variable Clearing Functions

These are functional forms that have been used to fit clearing functions empirically 
to data obtained from either industrial data or simulation. One or another of the 
clearing function families discussed above is used to postulate a basic functional 
form whose parameters are then fitted to empirical data gathered from either direct 
observation of the production unit or, more frequently, a simulation model.

Karmarkar (1989) proposes a workload-based clearing function of the form
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, 1
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motivated by the clearing function for an M/M/1 queue. Here K1 represents the 
maximum expected output of the resource assuming unlimited workload and K2 a 
user-determined parameter governing the curvature of the clearing function. In 
general, K2 is increasing in the amount of variability in the system as described by 
the coefficients of variation of the service times and interarrival times. The clear-
ing function is given as the minimum of two quantities to ensure that output does 
not exceed the total workload available to the resource; this can also be achieved 

by selecting the value of K2 such that 
∂
∂

=
=

Xt

t
t

Λ
Λ 0

1 . This function is concave and 

monotonically non-decreasing, with lim
Λt

X Kt→∞
= 1 .
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The functional form Xt = K1Λt/(K2 + Λt) in (7.23) originates from the functional 
relationship between average WIP (in contrast to the workload Λt) and output; there-
fore, it can exceed the available workload in period t. Missbauer (2002) shows that 
for the M/G/1 model in equilibrium, the expected output Xt and expected load Λt of 
a workcenter are related as follows:

	
X K K K K K K K Kt t t t t= + + − + + − + +( )1

2
2 2 21 2 1

2
1 2 2

2
1 2

2Λ Λ Λ Λ
	
(7.24)

with K1 the maximum expected output of the resource (capacity) as above, K
t

t
2

2

2 2
= +
σ

e

e  

and σ2 the variance of the service times. This function is analogous to (7.21) and can 
be parameterized using empirical or simulated data.

Srinivasan et al. (1988) suggest an initial WIP-based clearing function similar to 
the flow-density function (7.16), given by

	
X K K Wt t= − −( ) −1 2 11 exp

	
(7.25)

Here K1 again represents the maximum expected output of the resource with 
unlimited WIP, and K2 a user-defined parameter governing the curvature of the 
clearing function. Once again we have lim

Λt

X Kt→∞
= 1 .

Concave, saturating functional forms of clearing functions derived from queue-
ing models usually approach their limit (the maximum possible expected output) 
asymptotically because the underlying assumptions of renewal processes usually 
allow arbitrarily long interarrival and service times. In reality, this is often not the 
case since the order release system will try to prevent very long interarrival times 
and service times can be controlled by lot sizing. Nyhuis and Wiendahl (2009) sug-
gest defining threshold values W u  and W o  with W Wu o<  for the average WIP W  
where for W W< u  output is proportional to W , as in the “Best Case” clearing 
function of Hopp and Spearman (2008), and for W W> o  the workcenter is fully 
utilized. Appropriate functional forms are derived. In order to apply this logic to a 
period-based clearing function with the workload Λt as state variable, threshold 
values Λ t

u  and Λ t
o  with Λ Λt t

u o≤  are defined for the workload, leading to different 
clearing functions for different regimes of operation such that
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(7.26)

In this case, the problem of estimating the clearing function is essentially that of 
estimating its deviation from the ideal shape Xt =  Min (Λt; Ct).
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7.3 � Piecewise Linear Single-Variable Clearing Functions

Many authors using single-variable clearing functions in optimization models have 
chosen to approximate the concave clearing function by outer linearization. This 
approach has several benefits: it allows the overall production planning model to 
take the form of a linear program, which is computationally tractable and scalable. 
In addition, piecewise linearization of a univariate clearing function proves 
extremely useful in the development of clearing function models for multiple-item 
systems. We shall present the ideas in this section using the workload-based clear-
ing function as our vehicle, but the basic issues are relevant to all concave single-
variable clearing functions.

It is well known in convex analysis, as a consequence of the Fenchel-Young 
Theorem (that any convex region can be represented as the supremum of its affine 
minorants) (Boyd and Vandenberghe 2009), that any convex function can be approx-
imated to any desired degree of accuracy by the convex hull of a set of affine func-
tions of the form

	
f q Qq

t
q

t
qΛ Λ( ) = + = …α β , , ,1

	
(7.27)

In order to reflect the concavity of the original clearing function f(Λt), we assume 
that the segments have slopes such that α1 ≥ 1 > α2 > … > αQ = 0, and intercepts 
0 = β1 < β2 < … < βQ. The intercept βQ of the final segment represents the maximum 
possible expected output from the production unit in a time period, while the slope 
α1 of the first segment is bounded above by 1, since even at very low workloads 
there may be a nonzero probability of some work remaining incomplete at the end 
of the period if, for example, a large fraction of the workload arrives very late in 
the period.

Given a concave clearing function of whatever specific functional form, the 
problem of determining the best piecewise linear approximation can be formulated 
as an optimization problem in several different ways. We shall describe one such 
formulation described by Turkseven (2005), which we shall refer to as the trapezoi-
dal formulation, to illustrate the basic approach. Imamoto and Tang (2008) present 
an alternative formulation that minimizes the maximum error of the piecewise lin-
ear approximation for a given number of segments.

For illustrative purposes, we shall consider the problem of obtaining the best 
piecewise linear approximation to a concave non-decreasing clearing function f(Λt) 
using three linear segments of the form (7.27) as seen in Fig. 7.2. Let tq, q = 1, …, 
Q denote the value of Λt at which segments q and q+1 intersect, and aq, q = 1, … Q 
the value of Λt at which the qth linear segment is tangent to the concave clearing 
function. Additionally we define t0 = 0 and tQ+1 = Λmax, an upper limit on the work-
load considered. For given values of αq and βq straightforward geometry gives

	

aq q

q q

q q

q=
−( )
−( ) +

+

+

β
α α

β β
α1

1 	

(7.28)
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t1 t2 t30

f( )

β3

β1
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a1 a2 a3 t4

Fig. 7.2  Illustration of trapezoid formulation for piecewise linearization of a concave clearing 
function
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The decision variables in the optimization formulation are the slopes αq and 
intercepts βq of the linear segments q = 1, ..., Q. The objective function to be mini-
mized is given by the difference in the areas under the convex clearing function and 
its piecewise linear approximation, which is equivalent to minimizing the area under 
the piecewise linear approximation when the segments q are constrained to be tan-
gent to the original clearing function. For Q linear segments, the area under the 
piecewise linear approximation will consist of Q trapezoids, with the area of the 
trapezoid formed by segments q and q + 1 given by

	
A t tq

q q
q q= + +( )−β α

1

2 1
	

(7.30)

The optimization model can then be written as

	

min
q

Q

qA
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(7.31)

subject to
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(7.32)
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(7.33)

	 α βq q q Q, , , ,≥ = …0 1 	 (7.34)

The fractional structure of (7.28) and (7.29) generally results in a non-convex 
nonlinear formulation for which a global optimum is hard to obtain in reasonable 
CPU times. Imamoto and Tang (2008) provide an exact recursive algorithm for their 
minimax formulation, while Turkseven (2005) proposes an alternative heuristic for 
the trapezoid formulation. Asmundsson et al. (2009) solve the trapezoid formulation 
with a standard convex nonlinear solver, obtaining a local optimum that appears 
satisfactory in most cases, although some instances where the solver failed to con-
verge were also encountered.

We make no claim as to the originality of the trapezoid formulation; it is one of 
several fairly obvious approaches to the problem, and has almost certainly been 
formulated before, although we have been unable to find the original reference. We 
provide it here for the sake of completeness. However, recent work by Gopalswamy 
and Uzsoy (2019) suggests that rather than fitting a nonlinear functional form to 
data and then piecewise linearizing this concave function, directly fitting a piece-
wise linear concave function to the data using convex regression (Toriello and 
Vielma 2012; Hannah and Dunson 2013; Gopalswamy et al. 2019) yields consider-
ably better results.

7.4 � Optimization Models for a Single Production Resource

The clearing functions presented above all represent the system state in an aggre-
gate manner; the workload Λt, the initial WIP Wt−1, or the time-average WIP Wt  are 
aggregated over the different products in the system, in a manner similar to that used 
by queueing models of multi-item systems: the mix of different items arriving ran-
domly at the resource over time results in the effective service times following a 
probability distribution whose first and second moments can be used to derive a 
clearing function. However, any useful production planning model must determine 
the mix of products to be released into the system in each planning period t, requir-
ing disaggregation if an aggregate single-variable clearing function is used. The 
development of clearing function models for multiple-item systems presents a num-
ber of challenges; similar issues are encountered in traffic modeling with multiple 
vehicle classes or origin-destination pairs (Carey 1992). These difficulties have 
proven to be persistent in both research areas, and merit detailed discussion since a 
fully satisfactory solution remains elusive.

To illustrate the issues, we first present a model of a simple single-product prob-
lem, closely following the development of Karmarkar (1989). For ease of exposi-
tion, we assume a time-stationary workload-based clearing function f(Λt) and 
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time-stationary cost parameters. We also assume no backlogging of unmet demand 
is allowed; if present, it can be incorporated easily (Johnson and Montgomery 
1974). We define the following notation:

Indices:
�t: planning period, t = 1,…,T. t = 0 will be used to denote the initial state of the 
system at the start of period 1, i.e., the end of period 0.

Parameters:
c: unit production cost
h: unit finished goods inventory holding cost
w: unit WIP holding cost
�r: unit cost of raw materials, incurred upon release of the material to the produc-
tion unit
�f(Λt): clearing function representing the behavior of the production unit, which 
we assume to be a concave monotonically non-decreasing function of Λt

Dt: demand in period t
I0: amount of product in finished goods inventory at the start of period 1
W0: amount of product in WIP at the start of period 1

Decision Variables:
Xt: output of production unit in period t, in units of product
Rt: amount of product released into production unit in period t
It: amount of product in finished goods inventory at the end of period t
Wt: amount of product remaining in WIP at the end of period t

In the fixed lead time models of Chap. 5, material released at the start of period t 
subject to a fixed lead time L emerges as finished product at the start of period 
t+L. Thus the output of the production unit is simply the time-shifted release sched-
ule. However, in clearing function models the output of the resource in a given 
period t is driven only indirectly by the releases Rt. In a given period t, the resource 
is assumed to have Wt−1 ≥ 0 units of WIP remaining from the previous period. Rt 
units of product are released to the resource, resulting in a workload of Λt = Wt − 1 + Rt 
units. The output of the resource during this period t is then determined by the clear-
ing function as Xt = f(Λt). These dynamics yield the following single-product clear-
ing function (SPCF) model:

	
min

t

T

t t t trR cX hI wW
=
∑ + + +[ ]

1 	
(7.35)

subject to

	 W W R X t Tt t t t= + − = …−1 1, , , 	 (7.36)

	 I I X D t Tt t t t= + − = …−1 1, , , 	 (7.37)
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X f t Tt t≤ ( ) = …Λ , , ,1

	
(7.38)

	 R X I W t Tt t t t, , , , , ,≥ = …0 1 	 (7.39)

The objective function (7.35) minimizes the sum of raw material, production, fin-
ished goods holding and WIP holding costs over the planning horizon of T periods. 
Constraints (7.36) are material balance equations for the WIP, and constraints (7.37) 
those for finished goods inventory. Constraints (7.38) limit the output in each period by 
the clearing function, while (7.39) ensure nonnegativity of the decision variables. Like 
most of the LP models discussed in Chap. 5, the SPCF model can be represented as a 
network flow model on a time-replicated network as shown in Fig. 7.3.

Several differences from the models of Chap. 5 are worth highlighting. First of 
all, no lead times appear in the formulation; the delay between material being 
released and its emergence as finished product capable of meeting demand is 
implied by the clearing function constraints (7.38). Since the argument of the clear-
ing function depends on the WIP variables Wt, material balance constraints (7.36) 
are required to keep track of these variables. This distinction between WIP and fin-
ished goods inventory is intuitive, since in practice these inventories serve different 
purposes. Production is made possible by having sufficient WIP in the system, while 
finished goods inventory, represented by the It variables, allows inventories to be 
built up in anticipation of future demand peaks.

While appearing deceptively simple, the SPCF model already involves a number of 
subtleties. The reader will have noticed that the output constraints (7.38) are written in 
inequality form; this is because writing them as equalities results in a non-convex 
feasible region (Merchant and Nemhauser 1978) as seen in the following example:

Production Finished Goods Inventory

Period t

Period t+1

Rt

Rt+1

Wt-1 It-1

Xt
Dt

Wt
It

Wt+1

Xt+1 Dt+1

It+1

Fig. 7.3  Material Flows in Single-Product CF Model (Karmarkar 1989)
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Example 7.1  Consider a two-period production planning problem with D1  =  3, 
D2 = 9, I0 = W0 = 0 and a clearing function
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(7.40)

Consider the two solutions Y1 and Y2 summarized in Table 7.1.
Now consider a solution Y3 = 0.3Y1 + 0.7Y2. The reader can easily verify that Y3 

satisfies the material balance constraints (7.36) and (7.37). However, 
X X X f R W R W f3

1
1
1

1
2

1
1

0 1
2

00 3 0 7 5 67 0 3 0 7 15 5= + = < +( ) + +( )( ) = ( ) =. . . . . . 66 07. .  

Similarly, X f2
3 7 51 0 3 90 0 7 40 7 84= < ( ) + ( )( ) =. . . . . Thus Y3 is not a feasible solu-

tion when the clearing function constraints (7.38) are enforced at equality, indicat-
ing a non-convex feasible region.

The slack variables associated with constraints (7.38) represent a situation where 
the resource is not producing the maximum output it is capable of given the work-
load available to it; it is holding back some WIP that it is capable of converting into 
output because of adverse consequences in future periods. The following example 
illustrates this behavior of the SPCF model.

Example 7.2  Consider a two-period instance of the SPCF model with r = 1, w = 2, 
h = 3, c = 1, D1 = 9, and D2 = 3. Assume the same workload-based clearing function 
used in Example 7.1. The optimal solution to this instance is illustrated in Fig. 7.4.

Table 7.1  Data for Example 7.1

Solution
Ri
1 Ri

2 Wi
1 Wi

2 Λ1
i Λ2

i Xi
1 Xi

2 I i1 I i2

Y1 5 65 1.67 57.97 5 66.67 3.33 8.70 0.33 0.03
Y2 20 10 13.33 16.33 20 23.33 5.67 7.51 2.67 1.17

W1 = 81

I0 =0

R1 = 90

R2 = 0

W0 =0

W2 = 78

I1 =0

I2 =0

X2 = 3

D1 = 9

D2 = 3

X1 = 9

Fig. 7.4  Example of 
optimal solution with slack 
in CF constraints for 
Example 7.2
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The high demand in period 1 requires the release of a large amount of work in 
that period to raise the workload to a level allowing output to meet the demand. The 
concave shape of the clearing function results in a large amount of WIP remaining 
at the end of period 1. However, the low demand in period 2 can be met with only 
three units of production. Since processing a unit of WIP to pass it into finished 
goods inventory incurs a total unit cost of c = 1 for production and h = 3 for holding 
the resulting finished inventory, it is cheaper to hold the excess material as WIP, 
resulting in a production of X2 = 3 < f(81) = 8.9 units. Note that the behavior remains 
the same even if c = 0; simply having h > w is sufficient.

Carey (1987) shows that constraints (7.38) will be satisfied as equalities as long 
as the marginal cost c + (h − w) of moving material from WIP to finished goods in 
the absence of demand for it is nonpositive. To see this, note that in the network 
representation in Fig. 7.4, there are exactly two arcs incident out of the node corre-
sponding to the WIP balance equation (7.36). Material in WIP at the start of period 
t is either retained in WIP in the next period (the vertical arc), or produced and 
moved to FGI (the horizontal arc). When a unit of WIP is converted into output and 
remains in finished inventory at the end of the period, the production cost of c is 
incurred, and the total holding cost in that period increases by (h − w). An item for 
which there is external demand in the period will not incur the FGI holding cost h, 
and will be produced even if c > w since otherwise demand will not be met, resulting 
in an infeasible solution in the absence of backlogging.

This holding back behavior can be explained in the context of traffic modeling as 
avoiding the release of traffic from one road segment to prevent congestion at down-
stream segments, say using traffic lights to regulate the flow of traffic. However, in 
production systems it is uncommon to hold WIP within the production process (as 
opposed to inventory points where intermediate products can be stored) without 
processing it if the capacity to process it is available, unless it is on hold due to qual-
ity or engineering problems. Thus this holding back behavior needs to be considered 
when implementing clearing function based planning models. The simplest 
approach is to set WIP holding costs sufficiently high (w > c + h in this example) to 
ensure it is cheaper to move material downstream rather than retain it in the queue 
for a given process as WIP; after all, this is how production managers seem to 
behave in practice. However, this contradicts conventional cost accounting practice 
under which the holding cost of an item increases as it moves towards completion, 
due to the increasing value added during production. While it can be justified in 
some situations, such as semiconductor wafer fabrication where the high cost and 
limited availability of clean room space makes holding strategic inventory inside the 
factory undesirable, the manipulation of costs in this manner needs to be considered 
carefully in the context of the economics of the production system under study.

We have just seen that the SPCF model exhibits interesting behavior when 
restricted to a single-stage production system. We now explore its obvious exten-
sions to multistage single-product and single-stage multiple product systems.
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7.5 � Multistage Single-Product Systems

The SPCF model (7.35)–(7.39) can be extended to multistage single-product envi-
ronments in a straightforward manner by defining an index n denoting the stage of 
the production process. Thus a product is assumed to require a total of n = 1, 2, ..., 
N operations whose sequence, or routing, is known and deterministic. However, this 
requires addressing the issue raised above of whether strategic inventory can be held 
between production stages or only at the output of the final stage. We shall first 
examine the model assuming such inventory cannot be held at intermediate loca-
tions, and then briefly discuss the case where such inventory can be held. For sim-
plicity of exposition, we shall assume that each stage of the production process or 
routing corresponds to a distinct resource, each represented by its own clearing 
function. The extension to reentrant flows, where the product may undergo multiple 
operations at the same workcenter, is straightforward and can be addressed in 
exactly the same manner used for conventional models with fixed lead times 
(Leachman 2001; Kacar et al. 2016).

The parameters and decision variables remain the same as those in the SPCF 
model, except for the addition of an index n denoting the stage of the production 
process to which they refer. Demand can only be met with the output of stage N, and 
we shall again assume no backlogging of missed demand.

Our first model assumes that no inventory can be held within the production unit 
for tactical purposes such as anticipation of a future demand peak; such inventory is 
only held after stage N and consists of finished goods that can be used to meet 
demand. In this situation, work is released into the system at stage n = 1; the input 
Ynt to stages n > 1 in a period t is given by the output of the previous stage in that 
period, i.e., Ynt = Xn−1,t in the notation of Chap. 6. This single-product multistage 
clearing function model (SPMCF) can be written as follows:
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The decision variables and constraints in this model are analogous to those in the 
single-stage SPCF model (7.35)–(7.39). The WIP balance constraint (7.43) is writ-
ten for stages 2, …, N, where the output from the previous stage n − 1 provides the 
input of new work entering the stage. The WIP balance constraint (7.42) for Stage 1 
is written using the release variables Rt representing external releases of new work 
into the production unit. Constraints (7.44) represent the material balance equations 
for the finished goods inventory held after the final stage N.

The objective function of this model is straightforward; our interest lies in the 
constraint set which attempts to model the behavior of a multistage production unit. 
The following example illustrates the behavior of these constraints.

Example 7.3  To illustrate the behavior of the constraint set (7.42)–(7.46), consider 
a serial production system consisting of five identical stages. Each stage is modeled 
by the workload-based clearing function f(Λt) = 10Λt/(10 + Λt) used in the previous 
examples. Assuming Wn

0 0=  for all n = 1, …, N, we release R1 = 10 units of work 
into the first stage in the first period, with Rt = 0 for all remaining t > 1. Table 7.2 
shows the evolution of the system state and output over time, while Fig. 7.5 illus-
trates the output of each stage.

Several interesting observations emerge from Table 7.2. 16.7% of the material 
released at the start of period 1 exits the overall system in the period in which it is 
released, traversing all five stages in a single period. This is analogous to Equation 
(4.6) in the discussion of load-oriented order release that estimates the fraction of 
the workload released in a certain period that traverses the first n workcenters on its 
routing within the same period. Given our assumption of instantaneous material 
transfer between stages and the fact that all stages are empty at the start of period 1, 
this behavior seems reasonable. It requires slightly more than six periods for all 
material released to exit the system. The small ending WIP levels at stages 4 and 5 
and the end of period 6 are due to the fact that f(Λt) < Λt for the CF in the example.

In order to estimate the average cycle time at each stage in each period, we shall 
use the expression

	

T W W
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n
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t
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t
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n

t
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=

<

+( )
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

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−

0 1 0 25

2

1

. , .

,

Λ Λif

otherwise

	

(7.47)

Assuming that all quantities are given in units of product, the clearing function 
implies that the maximum possible output from each stage in a planning period is 
10 units, for an average processing time per unit of 0.1 periods. The first expression 
represents the situation where the workload is sufficiently low that the entire avail-
able workload Λ t

n  can be converted into output in the same period. This is a slight 
approximation, since the slope of the CF at the origin is equal to 1 and is decreasing 
in Λ t

n ; however, at Λ t
n  = 0.25 the clearing function posits an output of 0.2439 units 

of product, an error of 2.5%. The second term estimates cycle time using Little’s 
Law, where the time-average WIP level in a period is estimated as the arithmetic 
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Fig. 7.5  Output by Stage and Period for Empty System in Example 7.3

average of its beginning and ending WIP levels. These estimates of cycle time are 
clearly crude averages; in particular, the use of Little’s Law implies that the queue 
representing each stage in each period is in steady state, which requires, at the very 
least, long planning periods. If required, a relationship analogous to (6.5) can 
be used.

However, within these limitations, the results are still interesting, as shown in 
Fig. 7.6. The cycle time estimates at each stage increase in the early periods, as 
material arrives, and then decrease as the released material flows out of the system 
and is not replaced. The cycle time at each stage varies over time, highlighting the 
difficulties of using exogenous lead times in planning models. If we were to assume 
that each stage had a fixed lead time of 1 period and a maximum production capac-
ity of 10 units per period—compatible with the clearing function used in the exam-
ple—each stage n would produce an output of 10 units in period n, a completely 
different profile from that illustrated in Fig. 7.5.

For comparison, consider the situation illustrated in Table 7.3 and Fig. 7.7, where 
we again release 10 units into the system at the start of period 1, but each stage has 
10 units in WIP at the start of that period. The combination of previous WIP and 
new releases results in a workload of Λn = 20 units at each stage n at the start of 
period 1. It now requires 12 periods for all work to exit the system. The output of all 
stages decreases over time, since the material released at the start of period 1 
increases the output of all stages in that period, and hence moves material down-
stream to all stages in the subsequent periods. The additional 10 units of input at the 

7  Univariate Clearing Functions

https://doi.org/10.1007/978-1-0716-0354-3_6#Equ5


165

1

2

3

4

5
0

0.2

0.4

0.6

0.8

1

1
2

3
4

5
6

7

Stage

Output

Period

Fig. 7.6  Estimated Cycle Times for Example 7.3

start of period 1 increase the output of each subsequent stage in period 1 by less than 
2 units; note that if there were no new releases, the output of each stage in period 1 
would be 5  units. However, this does not imply that 16% of the newly released 
material completes all its processing in period 1. If we assume first-in-first-out pro-
cessing at each stage, no new material is processed at Stage 1 in period 1; there are 
10 units of WIP at the start of the period, of which only 6.667 units are converted 
into output. This is due to the relatively flat clearing function, which requires 
Λ = 1000 units to achieve an output of 9.9 units (Fig. 7.8).

The cycle times are now substantially higher than was the case with an empty 
system. The relatively slow decrease in the cycle times at all stages in periods 1 
through 3 is noteworthy; after period 5, though, as the workload decreases the cycle 
time decreases rapidly. The relative stability of the cycle times in the early periods 
provides some insight into why fixed lead time models can work well under many 
situations: as long as the workload does not vary greatly from period to period, cycle 
times may remain stable, allowing a fixed lead time to provide a sufficiently accu-
rate solution, especially if fractional lead times as suggested by Hackman and 
Leachman (1989) are used (Kacar et al. 2016).

This example provides a qualitative illustration of the behavior of the constraints 
(7.42)–(7.46) that represent the behavior of the production system using clearing 
functions, particularly the strong differences from the fixed lead time models in 
Chap. 5. We now extend this model to the case of multiple products competing for 
capacity at the resource, which proves to be treacherous territory.
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Fig. 7.7  Output of Loaded System in Example 7.3
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7.6 � Single-Variable Clearing Functions with Multiple 
Products

The presence of multiple items brings the need to allocate the output of the resources 
among the different items. The use of a single-variable clearing function implies 
that the output of a resource is determined by its total workload, and hence that the 
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amount of output of each item must depend in some way on the workload of the 
other items. On the shop floor, the mix of items produced for a given workload of 
each item is determined by events on the shop floor, such as the arrival times of 
specific jobs at specific machines as well as scheduling and dispatching decisions. 
Since these operational policies are internal to the production unit, and hence not 
transparent to the planning level, it is difficult to model these directly in the plan-
ning problem. Even if the performance induced by these policies in the production 
unit could be described in computationally tractable models, it is not evident that it 
would be beneficial to do so, since local management will have the most current 
information on the status of the shop floor, and is responsible for managing the 
production unit in the face of changing local conditions. Hence a reasonable objec-
tive for the planning problem is to produce a release plan for each production unit 
that does not violate the basic constraints viewed by management as essential for 
the release plan to be usable.

One such set of constraints that has been widely discussed in the context of both 
production planning and traffic modeling is the maintenance of basic continuity 
conditions on the material flow. In both the traffic and production contexts, these 
can be expressed as a requirement that material entering the production unit earlier 
ought to exit earlier. Some deviation from this condition at the level of individual 
orders is clearly possible, and even desirable, in practice due to the ability of local 
management to expedite the processing of some jobs over others. Hence it ought to 
be sufficient for planning models to satisfy this requirement on average, while 
avoiding gross violations. Several sets of necessary and sufficient conditions for this 
first in first out (FIFO) property derived by Carey (1992) were discussed in Chap. 6, 
noting that they all lead to non-convex feasible regions.

We shall begin our discussion of multi-item models with single-variable clearing 
functions by presenting a naive extension of the SPCF model (7.35)–(7.39), to illus-
trate the difficulties that arise. We then discuss several solution approaches, most 
suggested in the context of traffic modeling (Carey 1992; Carey and Subrahmanian 
2000a, b) which result in non-convex formulations. Finally, we present the allocated 
clearing function (ACF) model of Asmundsson et al. (2006, 2009), which provides 
a workable solution to these difficulties in the limited context of a single-variable 
clearing function.

7.6.1 � Difficulties with Multiple Items

At first sight, extending the SPCF model to multiple items appears quite straightfor-
ward: we should add an item index i, write WIP balance and finished goods inven-
tory balance equations for each item and add a clearing function constraint shared 
across all items. We use the following notation in addition to that already defined:

Indices:
i: item index, i = 1,…, I

7  Univariate Clearing Functions
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Parameters:
ci: unit production cost of item i
hi: unit finished goods inventory holding cost for item i
wi: unit WIP holding cost for item i
�ri: unit cost of raw materials for item i, incurred upon release of the material to 
the resource
ai: amount of time required on the resource to produce one unit of item i
�f(Λt): the clearing function, which we assume to be a concave, monotonically 
non-decreasing function of the total workload Λt

Dit: demand for item i in period t
Ii0: number of units of item i in finished goods inventory at start of period 1
Wi0: number of unprocessed units of item i in WIP at the start of period 1

Decision Variables:

Xit: output of item i in period t, in units of product
Rit: number of units of item i released to the resource in period t
�Iit: number of units of item i remaining in finished goods inventory at the end of 
period t
Wit: number of units of item i in WIP at the end of period t
Λit : workload due to item i in period t, given by ai(Rit+Wi,t-1) in units of time
Λt: total workload available to resource at the start of period t, given by

	
Λ Λt

i

I

i ita=
=
∑

1 	
(7.48)

As in the previous examples, we assume time-stationary values of all parameters 
for simplicity of exposition. The Naive extension of the SPCF model to multiple 
items, which we shall refer to as the NSPCF model, can now be written as:

	
min

t

T

i

I

i it i it i it i itr R wW c X h I
= =
∑∑ + + +[ ]

1 1 	
(7.49)

subject to:

	
I I X D i I t Tit i t it it= + − = … = …−, , , , , , ,1 1 1

	
(7.50)

	
W W R X i I t Tit i t it it= + − = … = …−, , , , , , ,1 1 1

	
(7.51)

	 i

I

i it ta X f t T
=
∑ ≤ ( ) = …

1

1Λ , , ,
	

(7.52)

	 R X I W i I t Tit it it it, , , , , , , , ,≥ = … = …0 1 1 	 (7.53)
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Table 7.5  Demand data for Example 7.4

Item i Period 1 Period 2 Period 3 Period 4 Period 5

1 0 0 0 0 0
2 8 8 8 8 8

Item i ai ri ci wi hi Wi0 Ii0

1 1 1 0 1 0 0 0
2 1 1 0 6 0 0 0

Table 7.4 Parameter values 
for Example 7.4

The decision variables and constraints of this model are completely analogous to 
those in the SPCF model. However, the treatment of the clearing function causes 
some interesting difficulties, which we illustrate in the following example.

Example 7.4  Consider a problem instance with two items, five periods, the param-
eter values shown in Table 7.4, and the demand data in Table 7.5. We again use the 
clearing function f(Λt) = 10Λt/(10 + Λt) used in the previous examples.

Solving the model (7.49)–(7.53) yields the solution in Table 7.6. The problem is 
evident upon inspecting the results. There is no demand for item 1 in any period, and 
yet 29.93 units of Item 1 are released into the system, none of which is converted 
into output. The total workload generated by both products is used to meet the 
demand for item 2 with minimum WIP holding cost. Note that in periods 1 and 2, 
the model elects to produce less output than the clearing function allows: 8.18 units 
in period 1 as opposed to the 8.35 units the clearing function allows for the available 
workload of Λt = 50.59 units.

The problem is now clear: the WIP of item 1 is being held stationary in the sys-
tem to artificially raise the available workload and permit the expensive item 2 to 
pass through the system rapidly. The planned releases of item 2 cannot, on their 
own, generate sufficient workload to produce the planned output of item 2. Simply 
parking idle WIP on the shop floor is increasing the output capacity of the system!

The reason for this behavior is also apparent. There is nothing in the model that 
links the output of the system to the composition of the workload enabling that 
output. This can be interpreted as a violation of the no-passing condition mentioned 
above—we are allowing the new releases of item 2 to constantly overtake the mate-
rial of item 1 released in period 1. While in any practical production system some 
overtaking will arise naturally through the operation of shop-floor scheduling and 
dispatching systems, the idea that holding inert, idle WIP in the system increases the 
capability of the resources is clearly unrealistic.

As seen in Example 7.1, the non-convexity of clearing function models for sin-
gle-item formulations enforcing the clearing function constraints as equalities was 
identified by Merchant and Nemhauser (1978). Carey (1987) demonstrated that 
implementing the clearing (exit) functions as inequalities results in a convex optimi-
zation problem for the single-item case, and discusses the issue of flow controls, 
where the clearing function constraints may hold as strict inequalities. He shows 
that the holding back behavior discussed in Example 7.2 will be avoided if the 
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marginal cost of moving flow downstream (in our context, moving material from 
WIP to finished goods inventory) is lower than that of holding it at its current loca-
tion. Carey discusses this issue in the context of modeling traffic flows and suggests 
a number of options. We digress briefly to discuss several of these, since they high-
light a number of issues arising in optimization models involving flows through 
production networks. Our discussion follows that of Carey (1992), adapting the 
notation to the production planning models of interest in this work.

7.6.2 � Enforcing Average No-Passing (FIFO) Behavior

Returning for a moment to the single-item problem, let Rst denote the amount of 
material released in period s that is converted into output in period t. Thus, in the 
notation of the SPCF model, we have

	
X Rt

s

t

st=
=
∑

1 	
(7.54)

One way of enforcing a no-passing condition is to ensure that material released 
earlier cannot be converted into output (i.e., transition from WIP to finished goods 
inventory) after material that is released later. This implies a condition that
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∑0 0
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, 	

(7.55)

If we have multiple items i = 1,...,I, (7.55) must hold for each item i, as well as 
all pairs of items i and j. The explicit enforcement of this condition requires the use 
of integer variables to represent what are effectively disjunction constraints, result-
ing in computationally demanding integer programming models.

Intuition suggests that the no-passing property is likely to be violated if there are 
large changes in cycle times from one period to the next. This would suggest that as 
long as the cycle times (flow times in the traffic terminology) are “smooth enough” 
over time, violations of no-passing ought to be at least mitigated. As seen in Chap. 
6, we can calculate the average cycle time for material released into the system in 
period s as
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(7.56)

which is non-convex in the Rst variables (Carey 1992). Thus the average unit of work 
emerging as finished goods inventory at time t Lt+  must have entered the system at 
time t. Carey (1992) then shows that the condition
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	 L Lt t≤ ++1 1 	 (7.57)

is necessary and sufficient to ensure no-passing of the average flows, and necessary 
but not sufficient to ensure no-passing on all individual work releases in the single-
item case. This implies that the possibility of passing only arises when cycle times 
associated with the release periods are decreasing over time, i.e., the workload in the 
system is decreasing. As was the case for (7.55), in the presence of multiple items, 
this requires similar constraints to be written for each item i and all pairs of items i, 
requiring O(I2) additional non-convex constraints in each period where I is the num-
ber of items. In the presence of multiple items, we can enforce no-passing for all 
items by requiring that all pairs of items i and j have the same average cycle time, i.e.,

	
L L L i j I i jit jt t= = = … ≠, , , , ,for all pairs of items 1

	
(7.58)

where Lt  denotes the average cycle time associated with material released in period 
t over all items i = 1,…,I, and then enforcing (7.58).

A third approach to ensuring no-passing solutions is to assume that the produc-
tion unit selects work for processing from the available workload without systemati-
cally prioritizing any item over any other. In this case, the mix of items converted 
into finished goods inventory in a period should match the mix of the items in the 
available workload, i.e., for all items i we should have
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(7.59)

Although these conditions also result in non-convex constraints (Carey 1992), 
they form the basis for the allocated clearing function presented in the next section, 
which provides a computationally tractable approximate formulation that has 
proven effective for multi-item problems.

7.7 � The Allocated Clearing Function (ACF) Model

The difficulties with the NSPCF formulation (7.49)–(7.53) arise because there is no 
constraint linking the output of each item in a period to the workload of that item 
available for processing in the period. This results in violation of the no-passing 
property, where workload of a cheap item is held immobile to allow rapid through-
put of an expensive item without the need for high WIP levels of the latter. Clearly 
additional constraints of some sort are needed to address this situation, and we have 
discussed several possibilities in the previous section. However, all of these result in 
non-convex optimization models, which are computationally challenging to solve 
exactly for a proven global optimum. Hence some kind of approximation will be 
necessary.
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To derive the ACF formulation, we consider the clearing function constraints 
(7.52) from the NSPCF model:

	 i

I

i it ta X f
=
∑ ≤ ( )

1

Λ .
	

We wish to develop a set of constraints that relate the output Xit of each item i in 
period t to the workload Λit of that item in that period, while continuing to satisfy 
(7.52). To this end, we define a new set of variables Zit as the fraction of total system 
output in period t allocated to item i in that period, i.e.,
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(7.60)

The definition of the Zit implies that
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(7.61)

The following constraint set is now equivalent to (7.52):

	

a X Z f i I t T

Z t T

i it it t

i

I

it

≤ ( ) = … = …

= = …
=
∑

Λ , , , , , ,

, , ,

forall 1 1

1 1
1 	

(7.62)

since summing the first set of constraints over all items i recovers (7.52). We can 
now incorporate the no-passing conditions (7.59) suggested by Carey (1992) to 
obtain the constraints
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(7.64)

The last constraint implies that
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(7.65)

yielding the constraint set

7  Univariate Clearing Functions



175

	

a X Z f
Z

i I

Z

a X

a

i it it
it

it

i

I

it

i it

i

I

i

≤








 = …

=
=

=

∑

∑

Λ
, , ,forall 1

1
1

1

XX
Z i

it

it

i

I

it

it= =

=
∑
Λ

Λ
1

, forall

	

(7.66)

The first constraint in (7.66) achieves our initial goal of obtaining a set of con-
straints that link the available workload Λit of each item in the period to the output 
of that item in the period. However, it looks like we now have some seriously non-
convex constraints. The situation is not as bad as it appears at first sight, however. A 
standard result in convex analysis states that for any convex function f(x), its per-
spective zf(x/z) is also convex (Boyd and Vandenberghe (2009): 89). Hence the two 
constraints in (7.66) define a convex feasible region. However, we have seen in 
Chap. 6 that the last constraint results in a non-convex feasible region.

To develop an approximate constraint set that may be more tractable than (7.66), 
we relax the third constraint set, which leaves us with the constraints
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The consequence of this relaxation is that the argument of the clearing function 
in the first constraints may not be accurate; we need not necessarily have Λt = aiΛit/Zit. 
This, in turn, introduces the possibility that the aggregate output constraint (7.52) 
may be violated if aiΛit/Zit > Λt for some items i. To see that this is not the case, we 
need to show that the total output of all items i cannot exceed the aggregate output 
of the system implied by its total workload Λt, i.e.,
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(7.68)

We can write
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where the first inequality holds by the assumed concavity of f(.) and (7.61), the first 
equality from simple algebra and the second from the definitions of Λt and Λit. Since 
this assumes only the concavity of the clearing function f(.), it holds for any concave 
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clearing function. We can thus write the complete allocated clearing function for-
mulation for a single-stage multi-item problem as follows:

	
min
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subject to
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	 R X W I Z i I t Tit it it it it, , , , , , , , , ,≥ = … = …0 1 1for 	 (7.75)

It is important to clarify the precise nature of the approximation being used here. 
The approximation arises from the fact that we estimate the total output of the system 

f(Λt) by f
Z

it

it

Λ







  in the constraints (7.68). If we retain the no-passing constraints

(7.64), the estimate of f(Λt)is exact; however, retaining these constraints results in a 
non-convex optimization model. By relaxing (7.64), we allow the mix of the output, 
defined by the ratios a X a Xi it

i

I

i it/
=
∑

1

 to deviate from the mix of available workload,

determined by the ratios Λit/Λt. Thus the ACF model may decide to process a larger 
fraction of the workload of one item i at the expense of another item j. However, there 
are limits to what is possible, as discussed in the next section. The primary insight is 
that despite their rather intimidating appearance, constraints (7.73) and (7.74) define 
a convex feasible region, resulting in a convex feasible region for the overall model 
(7.70)–(7.75) as long as the clearing function is concave.

7.7.1 � ACF Model with Piecewise Linearized Clearing Function

Piecewise linearizing the clearing function as in (7.27), we can approximate the 
convex constraints (7.73) with the linear constraints
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Now the ACF formulation has come into its own: the piecewise linear approxi-
mation of the single-variable clearing function has resulted in a set of linear con-
straints, yielding a linear program. However, this comes at the price of a substantial 
increase in the size of the model. The nonlinear model (7.70)–(7.75) has 5IT deci-
sion variables and 3IT + T constraints, of which the IT constraints (7.73) are nonlin-
ear. The piecewise linearized formulation requires IQT linear constraints to 
approximate the nonlinear constraints (7.73). As a point of reference, a model using 
exogenous lead times would require 2IT decision variables representing releases 
and finished inventories and IT capacity and finished inventory balance constraints. 
As might be expected, the effort to model congestion more effectively increases the 
computational effort required to solve the models.

The following example illustrates the operation of the ACF formulation.

Example 7.5  Consider a problem with T = 14 time periods and two products whose 
data is given in Table 7.7 below:

The ci, ri, and initial WIP and inventory levels for both products have been set to 
zero for simplicity of exposition. The demand data over the planning horizon is 
given in Table 7.8, and the data for the linear segments approximating the workload-
based clearing function in Table 7.9.

The solution of the ACF model is summarized in Table 7.10. The reader can verify 
that there is no slack in the clearing function constraints in any period. The high 
inventory holding costs require the model to operate with as little finished inventory 
as possible. In periods 1 through 3 and periods 11 through 14, only one product is 
produced. The shaded cells for periods 4 through 10 represent periods in which both 
products are in production. In periods 8 and 10 a higher fraction of the aggregate 
output, represented by the Zit variables, is allocated to Product 1 than would be 
implied by the WIP fraction. For example, in period 10, Product 1 makes up 47% 
of the average WIP and yet is allocated 68% of the output capacity. This illustrates 

Table 7.8  Demand Data for Example 7.5

Period 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Product 1 5 5 5 5 5 3 4 5 6 7 0 0 0 0 0
Product 2 0 0 0 0 0 4 3 2 1 2 3 4 3 2 0

Table 7.9  Clearing Function 
Parameters for Example 7.5

Segment c Slope αq Intercept βq

1 1 0
2 0.3 10
3 0 20

Product ai ci wi hi ri Wi0 Ii0

1 2 0 6 5 0 0 0
2 4 0 11 10 0 0 0

Table 7.7 Parameters for 
Example 7.5
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Table 7.10  Solution to ACF Model of Example 7.5

the impact of relaxing the FIFO constraints (7.64) on the solution of the ACF model: 
Product 1 is being prioritized over Product 2 due to its higher WIP holding cost. This 
is possible because of the structure of the linearized clearing function constraints.

It is of particular interest to compare the output fraction of each product, given 
by the values of the Zit variables in each period, with the workload fraction. The next 
to last two columns of the table show the extrapolated workload (Ext. WL) for each 
product, given by Λit/Zit which can be compared to the actual workload Λt shown in 
the last column. In period 10, the extrapolated workload of Product 2 exceeds the 
actual workload by a considerable margin, while that of Product 1 falls below it. 
However, the weighted average of the two extrapolated workloads remains equal to 
the actual workload. In periods where the output fraction matches the workload 
fraction, extrapolated workload is equal to actual workload for both products. Thus 
the ACF model is increasing the output fraction of Product 2 by applying a smaller 
output fraction to larger extrapolated workload.

To see how this is accomplished, note that the output aiXit of product i in period t 
can be decomposed into two components: one that is proportional to its workload 
WIP, given by α q

itΛ , and a portion of the intercept given by Zit βq. Unless Zit = 0, the 
first component will always be produced in proportion to the available average WIP 
and the slope of the clearing function segment. However, the ACF model may dis-
tribute the βc units of output due to the intercept of the linear segment in the manner 
yielding the best objective function value. The amount of this discretionary output, 
which can be allocated among products subject only to the WIP balance constraints, 
increases as the resource is more heavily utilized, leading to higher workload Λt, 
whichever way the clearing function has been formulated. However, since the Zit 
variables must sum to 1, the total output in units of time allocated among the differ-
ent products cannot exceed the disposable output βq. Note that if the workload were 
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sufficiently high that only segment Q of the CF, with slope αQ = 0, were binding, the 
model could allocate output arbitrarily among products subject only to the WIP bal-
ance constraints, essentially replicating the N-SPCF model. However, it is easy to 
see that such a solution can never be optimal, as the same output can be achieved 
with lower total workload, and hence lower WIP holding costs.

In summary, the ACF formulation avoids the issues encountered with the N-SPCF 
formulation discussed in Sect. 7.6.1 by relaxing the constraint that output mix must 
exactly match the workload mix in each period. This allows flexibility in allocating 
output among the different products, but ensures positive production of all products 
with positive workload, avoiding the creation of capacity for one product by simply 
holding static WIP of another. It is by no means a fully satisfactory solution, but it 
has been extensively tested over more than a decade since its first introduction, and 
has consistently produced satisfactory, consistent solutions that have in many cases 
outperformed the fixed lead time models described in Chap. 5. Recent results 
(Gopalswamy and Uzsoy 2018) have shown that as long as the CF used is concave, 
the ACF model can be extended to a second-order conic programming formulation 
which preserves the structure of the dual solution described in the following section, 
and also significantly reduces the variability of releases across time periods fre-
quently observed with linear programming models.

7.7.2 � Dual Solution of the ACF Model

Recall from Chap. 5 that any resource with utilization below 1 in any period will 
have slack in its capacity constraint for that period, resulting in a zero value for the 
associated dual variable. We now develop and analyze the dual solution for the mul-
tistage clearing function model equivalent to that analyzed in Sect. 5.4. The analysis 
in this section is based on that in Kefeli and Uzsoy (2016), modified slightly for 
consistency with the discussion in Chap. 5. We shall consider the production system 
consisting of K resources in series modeled in (5.42)–(5.55) for the case of fixed 
lead times. No strategic inventory of intermediate products is held between stages 
inside the production unit; the output of all stages k = 1, ..., K−1 except the final one 
moves directly into the WIP of the next stage k+1. Raw material is released into 
stage 1, and material completing processing at stage K enters finished goods inven-
tory from where it can be withdrawn to meet demand. We represent each stage with 
its own workload-based clearing function fk(Λkt), where Λkt denotes the planned 
workload at stage k in period t. To implement the ACF model fk(Λkt) will be approxi-
mated using the piecewise linearization (7.27) as

	
f q Qk kt k

q
kt k

qΛ Λ( ) = + = …α β , , ,1
	

(7.77)

To facilitate the sometimes extensive notation, we shall denote the set of all prod-
ucts by I and the index set of all linear segments approximating the clearing function 
for resource k as Q, assuming without loss of generality that all resources are 
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approximated by the same number of linear segments. Using this notation, we write 
the ACF formulation as follows:
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Rewriting this in the cumulative form to eliminate the Iit and Wit
k  variables and 

dropping constants from the objective function, we obtain
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Analysis of the ACF model is simplified by defining two dummy resources 0 and 
K + 1, where resource K + 1 represents the arrival of the material in the finished 
goods inventory. Resource 0, on the other hand, represents the release of the raw 
material of product i into the line. Thus we define pit

0  = rit for all products i ∈ I, and 
wit

0  = 0. Similarly w hit
K

it
+ =1  for all i ∈ I and t = 1,…,T, implying that X Rit it

0 =  in 
the current notation. The formulation can now be written as follows:
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with the Greek letters in parentheses denoting the dual variables associated with 
each constraint. The dual of the formulation (7.94)–(7.100) is given by:
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with the associated primal variable indicated in parentheses next to each dual con-
straint. In the FLT model, the dual price of capacity is directly accessible as the dual 
variable σ̂ kt  associated with the capacity constraints. Hence it is meaningful to refer 
to σ̂ kt  as the dual price of capacity at workcenter k. The situation for the ACF model 
is more complex. The CF does not represent the “capacity” of the system in the 
sense of an upper limit on output; rather, it represents the relationship between 
expected workload and expected output at each workcenter k. Constraints (7.96) 
ensure that WIP is nonnegative in all periods, while (7.97) ensure that the output in 
each period is consistent with the capabilities of the workcenter described by its 
CF. Thus the dual variables Γit

k  associated with (7.96) will only be nonzero when 
these constraints are tight at optimality, i.e., when workcenter k has no WIP of prod-
uct i on hand at the end of period t. This is achieved when the cumulative output of 
product i at resource k in period t and the cumulative input of that item to that work-
center differ by Wi

k
0 , the initial WIP of product i at resource k at the start of the 

planning horizon. Thus the Γit
k  can be interpreted as the cost impact in period t of a 

unit change in the initial WIP level Wi
k
0 . As implied by the dual objective (7.101), if 

all initial WIP and FGI values are set to I Wi i
k

0 0 0= = , the Γit
k  variables have no 

impact on the optimal solution value except via the artificial workcenter K+1 repre-
senting the finished inventory. The dual variables Γit

K +1  represent the maximum 
amount the firm should be willing to pay for an additional unit of finished inventory 
of product i in period t, or, equivalently, the minimum price it should charge an 
additional unit of demand.

The right hand side of the primal constraints (7.97) that limit output of each 
product by the CF computes the total output, in units of time, of product i for a given 
workload level. Thus the dual variables σ itq

k  indicate the amount the firm should be 
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willing to pay for an additional time unit of output of product i from resource k in 
period t. Examining the dual constraint (7.102), recall that ai

k  is the time required 
to process one additional unit of product i on resource k, and let q ∈ Q denote the 
linear segment of resource k’s CF with slope αq

k  that is binding at optimality. 
Rearranging (7.102) as follows provides some insight:
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The right hand side indicates that an additional unit of output of product i at 
resource k in period t will reduce the WIP at this resource by one unit while increas-
ing the WIP at the next resource k + 1 along product i’s routing; it will also save the 
incremental production cost pit

k . The left hand side represents the total reduction in 
the objective function value due to this allocation over the remainder of the planning 
horizon. The impact in the current period t is the value of the additional output that 
can be generated from resource k + 1, net of the value of the output from resource k, 
and the impact in the remainder of the planning horizon in a similar fashion. Thus 
the price paid by the firm for the additional output allocation should not exceed the 
cost savings from the purchase of the additional allocation.

In an optimal solution to the formulation (7.94)–(7.100), in any period t the 
workcenters can be classified into three groups: congested workcenters where 

i
it
kW∑ > 0 , non-congested workcenters where 

i
it
kW∑ = 0  and 

i
it
kX∑ > 0 , and idle 

workcenters where 
i

it
k

i
it
kX W∑ ∑= = 0 . We shall define congested, non-congested, 

and idle periods for a workcenter analogously, depending on which of the three 
states defined above (congested, non-congested, or idle) the workcenter is in during 
the period in question. Recall we assume all products i are processed on all work-
centers k ∈ K.

During idle periods, there is no external release of any product into the workcen-
ter k and no production at the preceding operation in the product’s routing, i.e., 
X jt

k− =1 0 . Hence there is no production or WIP present for that product at that 
resource k. In non-congested periods, production takes place but no WIP is carried 
from one period to the other. In this case, the workcenter is operating at sufficiently 
low utilization that all material arriving from previous operations or external releases 
is processed in the same period; the segment q = 1 with α1 1q =  and β1 0q =  is tight 
at optimality. If a resource k is congested in some period t, on the other hand, the 
entire workload available to it in that period cannot be processed into output within 
the period, forcing some to be carried over to the next period as WIP. This means the 
system is operating at higher utilization and at least one segment of the CF with 
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index q > 1 is tight. Our analysis will focus on congested resources since these are 
where the differences with the FLT model are most clearly visible.

We define a congested interval Ψ(k) for resource k to be a collection of consecu-
tive congested periods starting with a period s and ending with a period s' > s, i.e., 
Ψ(k)  =  {s, s+1,…,s'} such that 

i
i s
kW∑ − =, 1 0  and 

i
it
kW∑ > 0  for all 

t ∈ Ψ(k) and 
i

i s
kW∑ + =, ’ 1 0 .

Before we can apply complementary slackness to (7.101)–(7.106), we need sev-
eral assumptions regarding the congested interval Ψ(k). The complementary slack-
ness conditions imply that Γit

k = 0  for all t ∈ Ψ(k) since Wit
k > 0 . We also assume 

that Wit
k+ >1 0 , so that we have Γit

k+ =1 0 , implying that the workcenter performing 
the next operation in the routing is also congested.

In order to be able to apply the complementary slackness conditions directly 
without the need to examine a wide range of cases, we will restrict our attention to 
periods where the system is in regular operation, i.e., Rit > 0 and Xit

k− >1 0  for some 
product i. These assumptions imply that X t kit

k > ∀ ∈ ( )0 Ψ , i.e., if a product is pres-
ent at a workcenter due to either external releases or output from preceding work-
centers, there must be production of that product on the workcenter. Otherwise we 
can release the work in a later period and save the WIP holding cost. For brevity of 
exposition, we shall assume that the last period T ∉ Ψ(k); in this case constraints 
(7.103) become active and are subject to a similar analysis.

We now apply complementary slackness to (7.101)–(7.106) during a congested 
interval Ψ(k). Under the assumptions just stated, (7.102) and hence (7.107) are tight 
at optimality for all t ∈ Ψ(k), yielding
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Equations (7.108) collectively define the dual behavior of the optimal σ itq
k  in a 

congested interval. It is immediately evident that, unlike the FLT model, the dual 
price σ itq

k  associated with output of any product i at resource k is related to that 
associated with the preceding workcenter k − 1 in its routing. We now rearrange 
(7.108) in such a fashion that their meaning is clearer by defining the quantity
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and rewriting (7.108) as follows:
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Writing (7.110) for periods t and t + 1 and subtracting yields
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illustrating the fact that the dual price associated with additional output of product i 
at workcenter k in period t impacts the dual prices at the downstream workcenter 
k+1 in its routing as suggested by queueing theory (Hopp and Spearman (2008), 
Chap. 8). Note also that the right hand side of this expression represents the impact 
of moving a unit of output from resource k to resource k+1 in period t, while the left 
hand side reflects its impact across time, from period t to t+1.

For the first workcenter k = 1 in the common routing (7.110) implies that
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Writing (7.112) for periods from s′ back to s and solving recursively yields

	
Φit it i t itp p w1 0
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(7.113)

Under time-stationary costs p r r w w h h w p pit it i it
k

i
k

it i K it
k

i
k0

1= = = = = =( )+, , ,  this 
expression simplifies to Φ Ψit iw i I t k s1 1= ∈ ∈ ( ) { }′, , \ .

The primal constraints (7.98) represent the fact that the expected total output a 
workcenter k can produce in a given period t with a specified workload Λ t

k  is 
bounded above by the value fk t

kΛ( )  of the CF. Therefore the dual variables λt
k  

associated with (7.98) represent the change in objective function obtained by chang-
ing the value of this upper limit, i.e., changing the expected output of the workcenter 
in a period for a given workload Λ t

k . This can be interpreted as the impact on the 
objective function value of having one additional time unit of output available in 
period t for allocation among the different products i, thus increasing the disposable 
output βq

k  (again in units of time) available for allocation by the Zit variables. 
Although the dual variables λt

k  are free in sign as a result of constraint (7.98) being 
defined as an equality, in any optimal solution these variables will only take nega-
tive values since an increase in the right hand side of (7.98) cannot yield an increase 
in the objective function value. Applying complementary slackness to (7.98), we get:
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Thus at optimality output at each resource k is allocated among products to 
equalize the marginal value of the capacity allocated to each, in a manner consistent 
with the marginal value of additional output of each product i in each period t, given 
by the σ iqt

k . Hence in our numerical experiments below, we shall use this quantity 
λt

k  as the analog of the dual price of capacity derived for the FLT model.
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Example 7.6  To see the difference in the behavior of the dual prices related to 
capacity, we compare the dual solution of the two-product single-stage problem in 
Example 7.5 using model (7.70)–(7.75), with (7.76) replacing (7.73) as in that exam-
ple, with those from the LP model using only the third, horizontal segment of the CF 
as a capacity constraint. Figure 7.9 plots the total processing time required to process 
the demand for both products in the period in which it arises, against the maximum 
possible output of 20 units per period as a reference. It is apparent that for most of the 
planning horizon the system has considerable excess capacity, but will have to build 
anticipatory inventory to meet the demand peaks in periods 6 and 10.

The dual prices for capacity computed by the two models (λt for the ACF model 
and σ̂ t  for the LP model) are shown in Fig. 7.10. The qualitative difference between 
the dual prices from the two models is immediately apparent. The LP model, which 
does not consider congestion, only returns positive dual prices for capacity in peri-
ods 6, 7, and 9, and these values are an order of magnitude lower than those for the 
ACF model. The dual prices for the ACF model begin increasing well ahead of the 
demand peaks representing the congestion caused by increasing releases, and reach 
substantial values even when the output of the system is below the theoretical maxi-
mum of 20 time units implied by the horizontal segment of the clearing function. 
The dual prices from the ACF are significantly higher than those for the LP model 
because they consider the additional workload required to raise output in the pres-
ence of congestion, which increases rapidly at high levels of output where the slope 
of the CF is small.
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Fig. 7.9  Demand Levels for Examples 7.5 and 7.6
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Fig. 7.10  Comparison of Dual Prices for LP and ACF Models in Examples 7.5 and 7.6

7.8 � Conclusions

In this chapter, we have introduced the clearing function concept that provides a 
systematic approach to obtain tractable optimization models for release planning 
that recognize the nonlinear relation between workload, output, and cycle time dis-
cussed in the queueing models of Chap. 2. This chapter has focused on univariate 
clearing functions that represent the expected output of a production resource in a 
planning period as a concave non-decreasing function of a single state variable rep-
resenting the amount of work available to the resource in the period. After reviewing 
several different types of clearing functions that adopt different state variables, we 
incorporate them into a convex optimization model for the single-product case. We 
then extend this model to illustrate the difficulties that arise in the presence of mul-
tiple products competing for capacity at a shared resource, and present the allocated 
clearing function formulation that provides an effective approximate solution to 
these difficulties. Finally, we show that the use of clearing functions leads to more 
informative dual prices for capacity than do the LP models of Chap. 5; in particular, 
the ACF model produces meaningful dual prices when resource utilization is below 
1, which the LP models of Chap. 5 cannot.

While the clearing functions and the resulting optimization models described in 
this chapter have several desirable properties, especially those related to dual prices 
for resources and the more effective modeling of congestion, they also have some 
accompanying disadvantages. The need to include decision variables to explicitly 
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model WIP, and the piecewise linearization of the ACF model required to obtain an 
LP representation of this model, results in substantially larger formulations than 
those of Chap. 5. While the nonlinear form of the ACF model also yields a convex 
nonlinear program, due to the preservation of convexity by the perspective transfor-
mation, there is as yet little computational work exploring this area. Finally, the 
basic operation of the ACF model, which uses aggregate workload to estimate 
aggregate output and then allocates this aggregate output among competing prod-
ucts in a planning period, fails when this type of aggregation is no longer accurate, 
especially in the presence of significant setup times. In the next two chapters, we 
explore several more general clearing function models that seek to address these 
difficulties.
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Chapter 8
Multivariate Clearing Functions

The clearing functions examined in Chap. 7 all assume that the expected output of 
a production resource in a planning period is a function of a single, aggregate state 
variable characterizing the amount of work available to the resource during the 
planning period; hence they were termed univariate clearing functions. As discussed 
in Chap. 7, several alternative definitions of this aggregate workload have been pro-
posed, including the average WIP level during the planning period, the sum of enter-
ing WIP and new releases, or solely the beginning WIP. The use of such aggregate 
clearing functions in production environments with multiple products created 
anomalous behavior in the resulting optimization models as seen in Example 7.4. 
The allocated clearing function formulation develops an approximate formulation 
that provides effective solutions to this issue and has been validated in extensive 
computational experiments (Asmundsson et  al. 2006, 2009; Kacar et  al. 2012, 
2013, 2016).

However, the allocated clearing function formulation is based on the assumption 
that the workload on the production resource resulting from all products in the sys-
tem competing for its capacity can be aggregated into a single measure of workload 
without major loss of accuracy. An alternative statement of this assumption is that 
for a given total workload, however it is measured, the total amount of output, mea-
sured in the same units, that the resource can produce in a planning period is inde-
pendent of the mix of products making up that total.

Univariate clearing functions also assume that the workload information for the 
current state, however defined, is sufficient to characterize the output of the resource 
in the current period. While this assumption may be valid for planning periods that 
are sufficiently long that the queues representing resource behavior can reach steady 
state and the periods of transient behavior at the beginning of the period due to new 
release decisions can be neglected, it is clearly questionable in many planning situ-
ations. Planning periods are often too short for steady state to be reached, and the 
release decisions introduced by the planning models at the start of each period are 
continually creating new workload situations by design. Queueing models suggest 
that the output of the system in any period can potentially depend on the entire 
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history of the arrival and service processes previous to the period, as well as their 
evolution during the period itself.

In this chapter, we shall examine more complex clearing functions that attempt 
to address these issues. The obvious first step is to disaggregate the single state vari-
able for each period that forms the basis of the clearing functions in Chap. 7 in dif-
ferent ways. This approach begins by separating the two components of the period 
workload Λt into its two components, Rt and Wt−1, and treating each as a separate 
state variable. The presence of multiple products makes disaggregation of both WIP 
and releases by products a natural step. When cycle times exceed the length of the 
planning period, there may also be benefit to considering the workload in previous 
periods. For each set of state variables selected, a specific functional form for the 
clearing function must also be chosen. Many of these functional forms result in non-
convex optimization models, but there is considerable computational evidence that 
in many cases a standard convex solver yields high-quality solutions.

We shall begin our discussion by using transient queueing models to provide an 
initial intuition for why additional state variables are needed. We then discuss clear-
ing functions that explicitly attempt to represent the transient behavior of the system 
without assuming steady state, and then proceed to consider additional state vari-
ables related to individual products and previous periods. The discussion of lot-
sizing models based on multi-dimensional clearing functions that consider WIP 
levels, planned output levels, and planned lot sizes as state variables is treated sepa-
rately in Chap. 9 since lot sizing raises some additional issues.

8.1 � Limitations of Single-Dimensional Clearing Functions

The functional forms of the single-dimensional clearing functions described in 
Chap. 7 are almost all derived from steady-state queuing models. Hence they relate 
the average WIP or workload of the production system in steady state over a plan-
ning period to the expected output in this period. Similarly, a clearing function esti-
mated from simulation data reflects the environmental conditions represented in the 
data set used to fit the clearing function. Any order release planning model using the 
clearing function thus implicitly assumes that these relationships continue to hold 
for each period of the planning horizon. However, since both demand and release 
quantities will vary over time, this assumption is often problematic. The order 
releases obtained from the clearing function model can exhibit characteristics that 
systematically deviate from steady state or from the characteristics of the simulation 
data used for setting the clearing function parameters, invalidating the shape of the 
clearing function assumed by the order release model.

This issue can be demonstrated by the following simple example. Consider a 
single production resource that can be modeled as an M/M/1 queuing system in 
steady state. Recall from Chap. 2 that the clearing function for this system is given 
by (2.6). A clearing function based release planning model assumes that this func-
tion is valid for each period of the planning horizon. However, only the production 
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orders available to the resource at the start of period 1 are known with certainty 
since they can be observed directly. If the processing times are known with cer-
tainty, the initial WIP level W0, measured in hours of work is thus known. If no 
releases of new work are expected during period 1, its workload will be Λ1 = W0, and 
the deterministic clearing function for period 1 will be

	 X C W C1 1 1 0 1= { } = { }max maxΛ , , 	 (8.1)

unless machine breakdowns occur or work is delayed deliberately, which we shall 
assume is not the case. This is essentially the best-case clearing function of Hopp 
and Spearman (2008). Figure 8.1 compares the steady-state clearing function (7.24) 
derived by Missbauer for an M/M/1 queue and (8.1). They clearly differ substan-
tially, but a release planning model using a clearing function assumes that they are 
identical. In this case, the steady-state clearing function substantially and consis-
tently underestimates the expected output of the resource in period 1 for a given 
workload, for the reasons discussed in (8.8) below.

This example describes an extreme case. We now generalize the underlying rea-
soning using the queueing-theoretical analysis presented below.

8.2 � Transient Queueing Analysis of Clearing Functions

We arbitrarily select a particular planning period of an order release model, and 
consider a production resource modeled as an M/M/1 queue that can be in transient 
regime. The number of the period is 1 without loss of generality, that is, the first 
planning period can have a negative period index. At the start of the period (time 
t = 0) the amount W0 of WIP available to the resource, again measured in units of 
time, can be observed and hence is known with certainty. The resource is available 
for production for Δ time units during the planning period. We shall derive the 
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Fig. 8.1  Clearing function for idealized situation vs. for steady-state M/M/1 system (Eq. (7.24) 
with te = 0.2,  σ = te)
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functional relationship between expected load E[Λ1] and expected output E[X1] of 
the resource for this period, where both quantities are measured in units of time. The 
analysis follows the approach of Missbauer (2011) where WIP is measured in num-
ber of orders; the following analysis for deterministic initial WIP is due to 
Missbauer (2014).

It is clear that if we have W0 ≥ Δ, the output X1 = Δ. We now analyze the non-
trivial case where W0 < Δ. In this case, the resource operates continuously from time 
t = 0 until time t = W0. Within this time interval of length W0 time units, work arrives 
according to a Poisson arrival process with arrival rate λ, but no arriving work is 
processed due to the FIFO assumption (highlighting, incidentally, the dependence 
of the clearing function on the specific dispatching policy used in the production 
unit). In contrast to the initial WIP W0, which is known with certainty at time t = 0, 
we assume that no information is available about orders that arrive after the start of 
the period. Defining pn(t) as the probability of having n orders in the system at time 
t, the probability distribution of the number of orders in the system at time W0, given 
by the number of orders arriving during the interval [0, W0], is
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(8.2)

Given this probability distribution, the output of the system during the interval 
[W0, Δ] can be derived by calculating the probability of idleness for all t in the inter-
val [W0, Δ] (Missbauer 2011). Denoting the output of the system in the time interval 
[t1,t2] within period 1 by the random variable X1(t1,t2), the expected output in period 
1 for mean arrival rate λ and initial WIP W0 can be written as:
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We must now calculate E[X1(W0, Δ)], the expected output in the interval [W0, Δ]. 
After time t  =  W0, the arrival process continues with rate λ until the end of the 
period. The state probabilities of having n orders in the system at time t, W0 < t ≤ Δ, 
can be calculated from the state probabilities at time W0 given by (8.2) and the con-
ditional state probabilities prn(t) of having n customers in the system at time t given 
r customers in the system at time 0. The latter is well-known in queueing theory 
(Cohen 1969: 82 ff. and 178) and is given by
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for t ≥ 0, where Ij(x) denotes the modified Bessel function of the first kind, te the 
mean service time, u = λte the utilization and
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The state probabilities at time t > W0 are:

	
p t p W p t W W tr

n
n nr( ) = ( ) −( ) < ≤

=

∞

∑
0

0 0 0for ∆
	

(8.5)

with pn(W0) defined by (8.2). The expected output during the interval [W0, Δ], mea-
sured in time units, is the expected total time during this interval the server is 
not idle:
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where p0(t) is obtained from (8.5) by setting r = 0. Substituting into (8.3) to calcu-
late the output per period for deterministic initial WIP W0, we obtain
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(8.7)

Figure 8.2 illustrates the expected output (8.7) as a function of the expected 
workload in the period for different values of the initial WIP W0. Missbauer (2011) 
presents the same analysis with initial WIP measured in number of orders. In that 
case, the differences in the expected output for different initial WIP levels are 
smaller because for a finite number of orders at the server at t = 0 there is always a 
positive probability of idleness within the period due to the exponentially distrib-
uted service times. Figure 8.2 clearly demonstrates that the entire shape of the clear-
ing function changes based on the value of W0, even when the latter is deterministic 
and not a random variable.

The assumption of deterministic initial WIP is reasonable for the first period in 
the planning horizon of an order release model. However, the initial WIP Wt−1 avail-
able at the start of all subsequent planning periods t is a random variable. If we 
interpret the planned value of this random variable calculated in the release plan-
ning model as its expectation E[Wt−1], the concavity of the clearing function and 
Jensen’s inequality (Billingsley 1995: 80) yield

	
E X W E X E Wt t t t− −( )  ≤ [ ]( ) 1 1, ,∆ ∆

	
(8.8)
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Fig. 8.2  Clearing functions for different deterministic initial WIP levels measured in hours of 
work. Period length Δ = 5 time units, expected service time te = 1

implying that a clearing function treating the planned value of Wt−1 as a determinis-
tic parameter is likely to overestimate the expected output.

Continuing the analysis for period 1 with WIP measured in units of time, we 
define f wW0

( ) as the probability density function of the initial WIP W0. The expected 
output for given initial WIP W0 is given by (8.7), and the expected output for sto-
chastic initial WIP can then be obtained by conditioning as:
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where E[X1(0, Δ)| w] is given by (8.3).

Example 8.1  We consider the steady-state distribution of the initial WIP for the 
M/M/1 system which, by the PASTA property that Poisson arrivals see time aver-
ages (Buzacott and Shanthikumar 1993: 54), is equal to the distribution of the 
(actual) waiting time of the arriving customers. This distribution is given by

	 f w u w u e wW
t u

0
1 1 00

1 1( ) = −( ) ( ) + −( ) ≥− −( )δ λ / ,e w for 	 (8.10)

where δ0(w) denotes the Dirac Delta (unit impulse) function occurring at time w = 0 
(Papadopoulos et al. 1993: 363).
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Fig. 8.3  Clearing functions for expected W0 = 2, deterministic vs. steady-state distribution. Δ = 5 
time units, te = 1

The clearing functions (8.10) for different values of the expected initial WIP are 
plotted in Fig. 8.3 for the same data as in Fig. 8.2. Each point of E[X1] corresponds 
to a specified value of the arrival rate λ that, added to the expected initial WIP, leads 
to the expected workload given on the horizontal axis. For computational purposes, 
the numerical integral in (8.7) is discretized using 10 segments with a finite upper 
integration limit.

This analysis demonstrates that the expected output for a given expected load 
depends on the composition of the load (initial WIP vs. work released during the 
period), on the distribution of the initial WIP and also, implicitly, the probability 
distribution of the arriving work determined by the manner in which the new work 
is released over the duration of the period.

Armbruster et al. (2012) perform a similar analysis to that presented above for 
both a constant and time-varying arrival rate (influx, in their terminology) to the 
resource, analyzing the latter case using discrete-event simulation. They show that 
the functions depicted in Fig. 8.3 depend on the functional form of the influx over 
the period, concluding that “the clearing function cannot be just a parametric rela-
tionship between input and output” (p. 135).

Missbauer (2009) uses metamodels of the transient behavior of single-stage 
queueing systems developed from queueing models and simulation, specifically of 
the transient evolution of WIP over time, to estimate the output of a production 
resource per period. He shows that this leads to an integer, nonlinear formulation 
and that modeling errors occur that can lead to counterintuitive behavior. Hence at 
present the applicability of this approach is unclear.
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The results of the analysis so far suggest that we may face a fundamental tradeoff 
in addressing the problem of formulating clearing functions. If one regards the clear-
ing function as a metamodel of the behavior of the production resource of interest, 
the primary concern is to develop a model that best predicts the behavior of the 
resource for a given state at a given point of time. This suggests the use of sophisti-
cated, high-dimensional statistical modeling methods such as Gaussian processes 
and time series analysis. Such techniques have been used by simulation researchers 
to develop the operating curves that describe expected cycle time as a function of 
resource utilization (Yang et al. 2006; Ankenman et al. 2010). Li et al. (2016) use 
similar techniques to develop a metamodel predicting the output of a production 
system over time based on a number of state variables, which they then use in place 
of a discrete-event simulation model in a simulation optimization approach.

While properly formulated and calibrated models of this kind are capable of 
predicting the output of a production resource or production unit in a planning 
period quite accurately, they are generally unsuitable for use in a mathematical pro-
gramming model due to their complex functional forms. As we shall see later in this 
chapter, even relatively simple multivariate clearing functions lead to non-convex 
order release models. Hence there appears to be a basic tradeoff between computa-
tional tractability of the resulting order release model and the accuracy of the output 
estimates produced by a clearing function. This issue will surface frequently in the 
discussion of different functional forms for multivariate clearing functions in this 
chapter.

Selçuk et al. (2008) formulate a “short-term nonlinear” (STN) clearing function 
assuming that the WIP at the server is measured in number of orders. Each order 
that contributes to the load in a certain period is available as soon as it is needed for 
processing. For exponentially distributed service times, the departure process from 
the server is a Poisson process with mean rate equal to the service rate μ until the 
last order available in this period is completed, after which the server is idle. Under 
these assumptions, the expected output as a function of the number of available 
orders (i.e., the workload) can be calculated. Note that idle time at the server due to 
stochastic interarrival times cannot occur in this model. This simplification allows 
the univariate clearing function to model the transient state. The saturating shape of 
this CF is due to the uncertain work content of the orders, which is assumed to be 
unobservable even for the initial WIP at the time of planning. Asmundsson et al. 
(2009) use a similar but somewhat more general formulation to prove the concavity 
of the clearing function in a transient regime.

An approximate model of transient queuing systems that can be integrated into 
order release models is the stationary backlog carryover (SBC) approach introduced 
by Stolletz (2008) for M(t)/M(t)/c(t) systems and extended to G(t)/G/1/K systems by 
Stolletz and Lagershausen (2013). We shall describe the technique for an M(t)/M/c 
system, characterized by a time-varying Poisson arrival process, exponential service 
times, and c servers. In the SBC approach, time is divided into short intervals, usu-
ally equal in length to the mean service time te, with arrival rate λt during each 
interval t. We shall refer to these short intervals as micro-periods to distinguish them 
from the longer planning periods discussed throughout the volume. The average 
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utilization in period 1 is assumed to be equal to the steady-state utilization of an 
M/M/c/c queue with arrival rate λt, which is given by

	 E u g t1 1 1[ ] = ( )λ λ e	 (8.11)

where g(λ) denotes the steady-state fraction of served customers in an Erlang loss 
(M/M/c/c) system with c servers and a mean service time te as a function of the 
arrival rate λ. Recall that a finite capacity queue or loss system with capacity c can 
accommodate at most c customers; an arriving customer encountering c customers 
already in the system will depart without being served. Hence, in this model a frac-
tion P1 = 1 − g(λ1) of the arriving orders will be blocked from entering the system, 
giving the expected number of blocked orders in period 1 as

	 b P1 1 1= λ 	 (8.12)

For all subsequent micro-periods t  =  2, 3,…, an artificial arrival rate λt  that 
accounts for both the (artificial) backlog and new external arrivals is calculated as

	
λt t tb t= + = …−1 2 3λ , , , 	 (8.13)

The expected utilization is then calculated from this artificial arrival rate as

	
E u g t tt t t[ ] = ( ) =� � �λ λ e , , ,2 3

	
(8.14)

Note that if the output estimate is correct the expected artificial backlog bt−1 rep-
resents the expected WIP, measured in number of orders, in the real system at the 
end of micro-period t − 1 and hence the start of micro-period t. Hence (8.14) calcu-
lates the expected utilization as a concave saturating function of the workload λ

˜

t, 
making SBC a special case of a clearing function model (Missbauer 2007), but with 
an equality constraint on the output. Missbauer and Stolletz (2016) formulate and 
test an order release model based on SBC, finding it to be mathematically consistent 
and solvable by standard NLP solvers. Closely related approximate queueing mod-
els for transient systems are suggested by Askin and Hanumantha (2018).

8.3 � Transient Clearing Functions with Multiple Variables

The problems with the usual one-dimensional clearing functions are obvious: they 
express the relationship between load and output under long-run average (steady-
state) conditions although the actual relation is conditional on the history prior to 
the planning period under consideration and can be very different from any steady-
state condition, especially for the first period of the planning model where initial 
WIP is largely deterministic. This suggests that extending the one-dimensional CF 
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with additional explanatory variables that reflect the history of the process should 
improve its ability to estimate output. The queueing-theoretical results derived 
above indicate that disaggregating the period workload into initial WIP and releases 
during the period is the most obvious extension. This leads to a two-dimensional CF 
of the form

	 X f W Rt t t= ( )−1, 	 (8.15)

where Rt denotes the work input in period t.
Andersson et al. (1981) propose a linear clearing function of this form without 

explicit reference to the queueing argument above. In our context, a saturating clear-
ing function of the form (8.15) must be used in order to reflect the congestion phe-
nomena arising from the stochastic nature of arrivals and service times and the finite 
capacity of the resource. Deriving a piecewise linear approximation of such a func-
tion based on empirical or simulated data is difficult without postulating an underly-
ing nonlinear functional form. In contrast to steady-state queueing models, the 
expressions describing the behavior of transient queueing systems can only be eval-
uated numerically, rendering the derivation of a tractable expression for a saturating, 
two-dimensional clearing function difficult. Häussler and Missbauer (2014) propose 
what appears to be a reasonable functional form with the following properties:

•	 A fraction β of the initial WIP, measured in time units (hours of work), is con-
verted into output during the period, up to the maximum available capacity Ct. 
Simulation models generally assume β = 1. In general, β is a parameter whose 
value must be estimated from the data.

•	 For positive releases Rt > 0 the output Xt ≤ Min {Wt − 1 + Rt, Ct}.
•	 For given initial WIP Wt−1 the clearing function is concave and monotonically 

non-decreasing (saturating) in Rt, with

	
lim
R t t t
t

f W R C
→∞ −( ) =1, 	

(8.16)

•	 For Rt >0 we assume that for fixed Wt−1 the increase of the clearing function with 
Rt follows the same functional form as the one-dimensional clearing function 
derived from a steady-state M/G/1 model in (7.24). The two-dimensional clear-
ing function is then
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Fig. 8.4  Two-dimensional CF (Equation (8.17)) for initial WIP levels from 0 (lower function) to 
4. Parameters: Ct = 5, k = 1.5, β = 0.95. The dashed line is the ideal curve Min{Wt − 1 + Rt, Ct}

Figure 8.4 depicts (8.17) and shows that, when parameterized appropriately, this 
CF exhibits a shape very similar to that of the transient CF in Fig. 8.2.

This logic suggests that the fit of the CF can be improved by switching from a 
1-dimensional to a 2-dimensional CF.  This hypothesis is tested in Häussler and 
Missbauer (2014) for both simulated and empirical data. The quality of the fit is 
measured by the adjusted coefficient of determination (adj. R2). Overall, the hypoth-
esis is confirmed for bottleneck resources although the improvements in fit are often 
smaller than one might expect. To the best of our knowledge no significance test for 
changes in R2 exists, but the sample size is large (1690 periods for simulation, 350 
periods for the empirical data).

Table 8.1 shows the R2 values for three machines operating at the manufacturer 
of optical storage media described in Chap. 1; the simulation represents a scaled-
down version of this manufacturing system. Note the substantial difference between 
the results for simulated and empirical data caused by the noise in the empirical 
data, as also observed by Fine and Graves (1989). As expected, the fit for simulation 
data depends on the period length. In Table 8.1, a period length of five times the 
average processing time te is used. For the period length of the empirical data, which 
is about 15 times the average processing time, the adj. R2 for simulation is very 
close to 1.

A saturating, 2-dimensional clearing function based on Wt−1 and Rt such as (8.17) 
leads to a convex, nonlinear order release model. Although there is little experience 
with this structure, it appears to be computationally tractable. Approximating (8.17) 
by a set of linear functions, in the manner used for 1-dimensional clearing functions, 
leads to a high number of constraints in the resulting LP model. Successive linear 
approximation in the optimal region (Hadley 1964) is an alternative as well as using 
NLP solvers. Determining the best way to solve the resulting models remains a 
topic for future research.
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Table 8.1  Adjusted R2 for representative bottleneck machines in the manufacturing (Man), 
printing (Pri), and packing (Pack) department of an optical storage media manufacturer

Machine Utilization R2 1-dim. CF R2 2-dim. CF

Simulation data

ManBNS Gateway workcenter
PriBNS 95.34% 0.743 0.939
PackBNS 71.95% 0.937 0.977
Empirical data

ManBN 88.71% 0.664 0.687
PriBN 82.77% 0.578 0.600
PackBN 80.03% 0.656 0.702

1-dim. CF Equation (7.24), 2-dim. CF Equation (8.17) (Häussler and Missbauer 2014)

Decomposing Wt−1 into its components Wt−2 and Rt−1, which leads to a three- or 
more dimensional clearing function with explanatory variables that reflect the evo-
lution of work input and output over time, has not been considered in the research 
so far. Kacar and Uzsoy (2014) explore this issue using a product-based clearing 
function that makes no distinction between the different operations l of each product 
at each workcenter, but fits a clearing function for each product at each workcenter. 
Thus the release, WIP, and output variables are defined as
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and clearing functions fik(.) are formulated for each product i ∈ I and workcenter k. 
Plotting the total output for all products against the total initial WIP 

i I
iktW

∈
∑  and total 

releases 
i I

iktR
∈
∑  to a workcenter k subject to machine failures, as illustrated in Fig. 8.5, 

suggests that there is benefit in disaggregating the workload into its components, 
releases Rt and entering WIP Wt−1, as suggested in (8.15). Hence they propose three 
different product-based clearing functions. Model 1 uses only state information for 
the current period, given by
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(8.19)

where μik denotes the intercept and βik and θik the regression coefficients to be esti-
mated. Model 2 extends Model 1 by considering the releases of product g in the 
immediately preceding period, yielding
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(8.20)
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Fig. 8.5  Total Output at a Machine Subject to Failures as a Function of Releases and Initial WIP 
(Kacar and Uzsoy 2014)

The final model, Model 3, augments Model 2 by adding the releases for all prod-
ucts in the immediately preceding period, giving
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(8.21)

The planning model using the product-based clearing functions differs some-
what from the ACF model used with the workload-based clearing function discussed 
in Sect. 7.2.3. The objective function remains the same, assuming all operations of 
a given product incur the same WIP holding cost. The material balance equations 
for finished goods inventory of each product and WIP of each operation of each 
product are also the same as in the ACF model. However, the constraints governing 
the output of each product in each period are given by

	 X f i I k K t Tikt kt≤ ( ) ∈ ∈ = …. , , , , ,1 	 (8.22)
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where fkt(.) is defined by one of (8.19), (8.20), or (8.21). Constraints (8.23) were 
included because, occasionally, the fitting procedure will return a fit whose intercept 
exceeds the theoretical capacity of the workcenter.

The comparison of the different product-based clearing functions sheds some 
light on the issue of whether or not to include state variables related to previous his-
tory in the clearing function. Under low utilization the clearing functions (8.19) that 
consider only variables for the current period are among the best performers, 
although the difference in expected profit between the models is sometimes small 
(though statistically significant). At high utilization the model (8.20) that includes 
the releases of the individual product from the previous period is consistently among 
the best performers. These results are in general intuitive: at lower utilization levels 
the production resources will be able to convert the majority of the available work-
load in a period into output, leaving little WIP at the workcenter at the end of the 
period. When utilization increases, cycle times will also increase, causing the 
releases in the previous period to affect output in the current period.

An interesting finding of this work is the analysis of the residuals from the regres-
sion models fitted. Figure 8.6 shows the residuals (difference between predicted and 
realized output) of one of the product-based clearing functions as a function of the 
observed output of one of the products. Ordinary least-squares regression assumes 
that the residuals should be independent and normally distributed with homogenous 
variance and mean zero. It is apparent from Fig. 8.6 that the model illustrated did 

Fig. 8.6  Residuals for Product-based Clearing Function (8.20) of Unreliable Machine
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not satisfy these conditions. While the mean residual is close to zero at low output 
levels, as output levels increase an upward trend appears. In addition, the variance 
of the residuals for a given output level, shown in the figure by the vertical dispersion 
of the points around the horizontal axis, is also increasing, and far from symmetric, 
suggesting frequent underestimation in the output range 120–220  units. At very 
high output levels, the problem seems to be one of systematic overestimation. 
Clearly, the interactions between the state variables are complex, and there is much 
room for improvement.

In hindsight, the failure to distinguish between the workloads of different opera-
tions, i.e., workload of the same product at different stages of processing, confounds 
the results of these experiments considerably. Comparison of the product-based 
clearing function and the workload-based clearing functions used in the ACF model 
shows, unsurprisingly, that in five of the eight experimental conditions the workload-
based clearing function outperforms the various product-based clearing functions. 
The product-based clearing functions perform better for both low utilization short 
failure cases and low utilization long failures with high demand CV. The reason for 
this lies in the more granular representation of the production resources in the 
workload-based clearing function. Recall that in the product-based clearing func-
tions there is no information capturing the flow of material through the different 
operations of each product routing; the product-based clearing function considers 
only the total number of lots of each product processed in that period. This creates 
the opportunity for incorrect behavior such as that illustrated in Chap. 7 for single-
variable clearing functions. The product-based clearing function for a given product 
must produce the different operations in the right combination, but there is nothing 
in the model to ensure this apart from the finished goods inventory balance equation, 
which meets demand for each product using output from the last operation on its 
routing. In contrast, the workload-based clearing function creates a single clearing 
function for the workcenter whose capacity is shared among the operations, and uses 
the allocated clearing function formulation to allocate the estimated total output of 
the workcenter among all operations of all products processed there. The observa-
tion that the workload-based clearing function outperforms the best product-based 
clearing functions in five of the eight experimental conditions, particularly those at 
high utilization, suggests that the product-based clearing functions as implemented 
in this study are deficient in multiple aspects. The results of Albey et al. (2014, 2017) 
discussed below, which examine different aggregations of state variables in single- 
and multistage production systems, also contribute to this discussion.

Häussler and Missbauer (2014) examine the fit of various 3-dimensional clearing 
functions to the empirical and simulated data for the manufacturer of optical media 
described in Chap. 1 and for simulation data specifically designed for this experi-
ment. Since no functional form for saturating 3-dimensional clearing functions is 
known, they use a linear and a specific cubic function. Although minor improve-
ments in fit were observed in some cases, the results are largely inconclusive. This 
suggests rapidly diminishing returns to increasing the dimensionality of the clearing 
functions, but this must be examined in further studies.
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The findings presented so far demonstrate that the expected output in a given 
planning period depends, in principle, on the entire history of the process up to the 
current period. Neglecting this dependence leads to an inaccurate estimate of the 
expected output in the planning period, which can be termed an estimation error. 
The inclusion of this inaccurate clearing function in the order release model leads to 
suboptimal releases over time, which we shall term optimization error. In particular, 
since the clearing function represents the expected output of the system for a given 
state and time as opposed to its maximum possible output, the effects of temporary 
periods of high workload (workload peaks) are unlikely to be predicted accurately. 
A number of experiments have shown that CF-based order release models can lead 
to fluctuations in releases over time that exceed those in external demand (Missbauer 
1998, 2009; Bischoff 2017), which might well be due to this estimation error. Orcun 
and Uzsoy (2011) observe oscillations of this type in a system where the planning 
model assumes a fixed lead time but realization follows a clearing function, creating 
a mismatch between the planning model and the system it is representing.

However, the relationship between the fit of the CF and the quality of the release 
schedules (at the discrete-event level) is complex (Kacar and Uzsoy (2015)). 
Preliminary numerical experiments with 2-dimensional CFs show that they can lead 
to high variations of the releases over time. Figure  8.7 depicts the optimization 
results for the single-stage, single-product CF model described in Sect. 7.2 (repeated 
for convenience) that seeks to minimize

	
min

t
t

t
twW hI∑ ∑+
	

(8.24)

0

200

400

600

800

1000

1200

1400

1600

1800

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Product
units

Period
Xt Rt  It Dt

Fig. 8.7  Optimization result for oscillating demand

8  Multivariate Clearing Functions

https://doi.org/10.1007/978-1-0716-0354-3_7#Sec2


207

subject to the standard WIP and finished goods inventory balance equations, the CF 
(8.17) with β = 1 and nonnegativity constraints for all variables. The WIP holding 
cost coefficient w = 0.5, and the FGI holding cost h = 1 per unit-period. The param-
eters of the CF are k = 200, C = 950.

This behavior appears to arise because output in a given period can be increased 
by either providing initial WIP or by releasing work in the period. Providing initial 
WIP generates capacity more efficiently since all of it is cleared up to the available 
capacity. Releasing new work generates less capacity due to the nonlinearity of the 
CF in Rt. For instance, in Fig.  8.7 900 units are released in period 1, held back 
(W1 = 900) and processed in period 2 (X2 = 900) since this is cheaper than releasing 
more work in period 2 in order to generate a capacity of 900. This point at which it 
becomes more economical to release WIP rather than hold it back will change with 
the utilization due to the specific nonlinear shape of the CF (8.17) that is depicted as 
a contour plot in Fig. 8.8. This is also related to the findings of Carey (1987) that 
holding back behavior will arise when releasing WIP in the current period will 
cause congestion in later periods. This is counterintuitive and indicates that integrat-
ing the history of the process into order release models requires modification of the 
model structure as well. How to do this is largely a topic for future research.

The fact that the expected output in a period depends on the entire history of the 
process up to that period leads to another important issue: Except for initial WIP of 
the order release model, the values of the independent variables of the clearing func-
tion are point forecasts of a future state of the system, and hence subject to random 
forecast error, which influences the expected output as seen in Fig. 8.3; different 
realized values of the initial WIP result in a different curvature for the clearing func-
tion. Describing this forecast error for some future period as a function of the deci-

Fig. 8.8  Contour plot of the CF (8.17) for β = 1,  Ct = 950,  k = 200
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sion variables in a release planning model is difficult for two reasons. Firstly, it is 
not based on hard data that can be measured, but instead reflects the decision mak-
er’s state of knowledge at a certain time, e.g., the accuracy with which the WIP level 
on Thursday morning can be estimated on Monday morning, given specified work 
releases during the intervening period. Stochastic models of the evolution of the 
forecast error over time are required. The Martingale Model of Forecast Evolution 
(Heath and Jackson 1994) is one such approach that has been successfully applied 
to production planning under uncertain demand (Albey et  al. 2015). Secondly, 
errors in the WIP estimation will increase as the future periods become more remote. 
Integrating these factors into the order release model results in a complex stochastic 
programming problem since the evolution of information over time must be consid-
ered in a rolling horizon planning framework (Missbauer 2014). While some initial 
efforts have been made to formulate stochastic optimization models of such prob-
lems (Aouam and Uzsoy 2012, 2015; Albey et al. 2015; Lin and Uzsoy 2016), the 
development of scalable, practically applicable models remains a topic for future 
research.

8.4 � Multivariate Multiproduct Clearing Functions

The second principal motivation for the development of multivariate clearing func-
tions is the need to consider the interactions of multiple products competing for 
capacity at the production resources of interest. This issue has already raised its ugly 
head in Chap. 7, where we saw that when a univariate clearing function based on a 
state variable aggregated over different products is used, counterintuitive behavior 
can result even in the absence of setup times between products. The allocated clear-
ing function formulation addresses this issue to a degree of approximation in the 
absence of significant setup times. We shall show in this section that when conten-
tion between multiple products can lead to significant loss of output, as is the case 
in the presence of setups, the univariate clearing function fails to predict output at 
the level of individual products.

We shall first use a simple aggregate queueing model to explore the impact of 
multiple products on the output of a production resource. We then examine a num-
ber of multivariate clearing functions that explicitly address the presence of multi-
ple products, and then consider production units with internal routing flexibility. 
Under these conditions it is no longer possible to describe the behavior of the pro-
duction resources using a single clearing function; instead, a system of nonlinear 
clearing functions that describe the output of each item for fixed WIP and output 
levels of all other products in the system is required.
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8.4.1 � Motivation

The simple, steady-state queueing analysis used in Chap. 2 can be extended to 
examine the impact of product mix on system output. In that chapter, we had shown 
that the average utilization u of a G/G/1 queue in steady state as a function of the 
average WIP level W can be approximated as

	
u
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2 denotes the squared coefficient of variation of the interar-

rival times and ce
2 that of the effective service time. Recall that the effective service 

time is a random variable representing the amount of time a job will spend in ser-
vice, taking into account both the natural processing time and disruptions such as 
setups, quality issues, and machine failures (Hopp and Spearman (2008), Chap. 8).

If significant setup times must be incurred when switching between different 
products, the impact of product mix on the distribution of the effective processing 
time can be characterized as in Hopp and Spearman (2008). Suppose the natural 
processing time, the time required to process a job without any detractors such as 
setups and machine failures, has mean t0 and variance σ 0

2. Assuming a setup is 
equally likely to occur after each part being processed, with the average number of 
parts processed between setups being Ns, and denoting the mean and variance of the 
setup time by ts and σ s

2, respectively, the mean and variance of the effective process-
ing time are given by Hopp and Spearman (2008), Chap. 8:
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The mix of products processed by the system can potentially affect all terms in 
the expressions above. The more frequently setups need to be performed, the smaller 
Ns will be; in addition, both the mean and variance of the setup time distribution 
may increase as a more diverse portfolio of products requiring different equipment 
configurations are processed. In practice, lot sizing policies will affect Ns, and con-
tinuous improvement programs such as single minute exchange of die (SMED) 
(Shingo 1986) seek to reduce both ts and σ s

2. However, the impact of product mix on 
utilization, and hence output, through its impact on ce

2 is evident.
A simple simulation experiment reported by Albey et al. (2014) makes this point 

quite graphically (no pun intended!). They consider a single-stage production sys-
tem capable of producing two different parts, whose processing times are lognor-
mally distributed with a mean of t0 = 100 s and a coefficient of variation of 0.13. 
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Fig. 8.9  Impact of Product Mix on System Output

Parts are released into the system one by one following a cyclic pattern based on the 
heuristic of Askin and Standridge (1993). They consider two different situations: 
one in which there are no setup times between part types, and one where the setup 
time follows a triangular distribution with mean ts  =  0.1t0. The demand in each 
period follows a Poisson distribution, leading to a mean total workload of 1600 s in 
each period. The total workload for the period is then disaggregated into individual 
products over 10 different product mixes, where the ratio of the second product to 
the first ranges from 0 to 5 (i.e., 0, 0.2, 0.25, 0.33, 0.5, 1, 2, 3, 4, and 5). Each 
product mix is simulated for 1000 different workload realizations, resulting in a 
total of 10,000 observations of workload and output. The resulting plot of the output 
of the system in a planning period of 1800 s is shown in Fig. 8.9.

The upper row of graphs represent the performance of the system without setup 
times. The first two graphs plot the output of Product 1 in the planning period as a 
function of the WIP of Product 1 and the total WIP in the system, in units of time; 
the rightmost graph shows total output of both products as a function of the total 
WIP of both products. The banded appearance of the two leftmost charts is due to 
the discrete product mix combinations used in the experiment. A specified output of 
Product 1 can be obtained for various WIP levels of that product (leftmost graph), 
or of all products (middle graph), depending on the amount of Product 2 in the sys-
tem. Hence the output of Product 1 is not well described by either its own WIP or 
the total WIP of both products. The rightmost chart, however, shows that the total 
system output of both products is well represented by a function of the total WIP.

The lower panel of graphs tells a similar story—representing the output of 
Product 1  in terms of a WIP measure is inaccurate. However, in the presence of 
setup times, the output of Product 1 can decrease as its WIP increases, if the amount 
of Product 2 in the system is also increasing. For a given level of either WIP mea-
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sure (Product 1’s WIP or the total WIP), different output levels of Product 1 can be 
achieved depending on the amount of Product 2 in the system. The rightmost graph 
in the lower row differs qualitatively from that above it, showing that in the presence 
of setup times the aggregate output of the system does not present a monotonically 
increasing, concave shape.

Motivated by these observations, Albey et al. (2014) examine a number of differ-
ent multi-dimensional clearing functions (MDCFs) for a single production resource. 
Their point of departure is the univariate clearing function of Karmarkar (1989), 
given by
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where Λt denotes the workload available to the resource throughout period t as dis-
cussed in Chap. 7. They note that in a multiproduct environment, the output of a 
given product in a planning period must depend on both the amount of that particu-
lar product available to the resource during the period, and the amount of capacity 
allocated to other products. The allocated clearing function formulation of Chap. 7 
addresses this issue by estimating the aggregate output of the resource in units of 
time as a function of the total workload of all products available to it, and then dis-
aggregating this into estimates of output for individual products. Albey et al. (2014) 
take a different approach by formulating a MDCF for each product i, representing 
the capabilities of the resource by a system of nonlinear, linked clearing functions 
that use state variables related to all products in the system in the planning period. 
They consider two classes of these MDCFs: WIP-based MDCFs (W-MDCFs), 
where the impact of other products j ≠ i in the system is represented by the average 
WIP level of each product during the planning period; and output-based MDCFs 
(O-MDCFs), where the impact of the other products is estimated using their planned 
output. They experiment with several functional forms of each type, represented by 
the O-MDCF

	

X

C a X W

M b a X Wi

j i
j j i

i i
j i

j j i

=

−










− +
≠

≠

∑

∑
	

(8.29)

where Xi denotes the expected output of product i in the planning period, Wi the 
planned time-average WIP level of product i over the period, and Mi, ai and bi are 
user-defined parameters to be estimated from data. C denotes the expected capacity 
of the resource in the period. The general form of the W-MDCFs is
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Several different versions of each MDCF family, the details of which are given in 
Albey et al. (2014), were tested in computational experiments. The authors show that 
the MDCFs are non-convex functions, so that the resulting release planning models 
can be reduced to quadratically constrained nonlinear programs (Linderoth 2005; 
Bao et al. 2011), which are known to be strongly NP-hard but can be solved by enu-
merative methods using solvers such as BARON (Tawarmalani and Sahinidis 2005). 
Some specific MDCFs belong to the class of bilinearly constrained bilinear prob-
lems (Al-Khayyal 1992), whose non-convex nature appears to be less severe than 
that of the general quadratically constrained nonlinear problem. The nine different 
MDCFs are fitted using least-squares regression using an extensive set of training 
data generated from a simulation model of a resource processing four different prod-
ucts in different proportions. They consider three different experimental situations. 
In the first, there is no loss of capacity in switching from one product to another, and 
products are processed in FIFO order. In the second case switching from one product 
to another involves a tool change time, with FIFO dispatching. The final case 
assumes no tool change time and dispatching in order of Shortest Processing Time 
(SPT), to examine the impact of shop-floor dispatching policy on the performance of 
the various MDCFs. In all experiments, the products to be released in a period are 
sequenced in a cyclic pattern and released all together at the start of the planning 
period, which will result in a very large number of tool changes in the second experi-
mental configuration. The performance of the MDCFs is measured by implementing 
them in a release planning model, consisting of balance equations for the WIP and 
finished goods inventory of each product and the MDCFs for each product in each 
period, and simulating the performance of the production system under the releases 
determined by these models. Since obtaining globally optimal solutions to the result-
ing non-convex optimization models requires very high CPU times, the authors use 
a convex nonlinear solver to obtain locally optimal solutions.

Under FIFO dispatching without tool changes, all but the most simplistic MDCFs 
perform comparably with the ACF model and a simpler LP model that ignores con-
gestion. The striking feature of this experiment is the good performance of the simple 
LP model, which assumes that work released in a planning period will be converted 
to output within the same period. This may seem to suggest that congestion is not 
particularly important in this experiment, but this is unlikely, since the average utili-
zation in each period is in excess of 0.90, with considerable variation over time. 
However, under the given demand conditions the resource must operate close to its 
full capacity for most of the planning horizon, resulting in similar behavior for all 
planning models. Interestingly, all planning models underestimate the realized cost 
of the releases they propose. Detailed results are given in the original paper.

The presence of tool changes between different products changes the situation 
dramatically, as seen in Fig. 8.10. The performance of the ACF model collapses, 
which is not surprising since it was not designed to consider capacity losses of this 
type. Not only does it yield higher costs than other MDCFs, but the planning model 
severely underestimates the realized cost. The LP model uses a conservative esti-
mate of capacity, based on the worst-case number of tool changes, resulting in poor 
cost performance but, interestingly, a very accurate prediction of the realized costs 
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Fig. 8.10  Performance of various MDCFs relative to ACF and conservative LP Model. MDCFs 1 
through 5 are O-based, MDCFs 6 and 7 are WIP-based

of the releases it generates. The W-MDCFs are now the best performers by a consid-
erable margin, suggesting that in the presence of mix-dependent capacity losses, 
detailed representation of product mix is required. The poorer performance of the 
O-MDCFs is likely due to the fact that the output of a particular product depends on 
the amount of WIP of that product available during the period. The final experiments 
examine the impact of shop-floor dispatching with no tool changes. Similar to the 
findings of Asmundsson et al. (2006), the performance of the better MDCFs and 
ACF are generally comparable, suggesting that the use of non-delay dispatching 
policies in the absence of interference between products does not adversely affect 
the performance of ACF, while some of the MDCFs perform quite poorly. The poor 
performance of certain MDCFs is likely due to the release planning model converg-
ing to a poor local optimum rather than a global one.

The primary conclusion is that while MDCFs appear to be essential for good 
release planning in multiproduct systems where the processing time depends on the 
product mix, such as in the presence of setups, the resulting optimization models are 
substantially more involved than the linear programs resulting from the ACF model. 
The non-convex nature of these optimization models ought to come as no surprise 
to the reader; after all, even the univariate clearing functions discussed in Chap. 7 
resulted in non-convex formulations in the presence of multiple products. The good 
news seems to be that for many functional forms, the non-convex behavior of the 
MDCFs seems rather benign, allowing locally optimal solutions obtained by con-
ventional convex solvers to provide good performance. The development of effi-
cient solution algorithms for these models, as quadratically constrained quadratic 
programs or bilinear models, remains an important topic for future work. The func-
tional form of these MDCFs is also quite similar to those derived in the next chapter 
for lot-sizing problems.

8.3  Multivariate Multiproduct Clearing Functions

https://doi.org/10.1007/978-1-0716-0354-3_7


214

In a subsequent paper, Albey et al. (2017) extend the idea of clearing functions 
from a single production resource to a production unit consisting of multiple 
resources, where in addition to requiring processing on several different resources, 
products also have routing flexibility that allows a given operation to be performed 
on one of several different machines. The objective of this work is to identify a set 
of state variables and a functional form for a MDCF that will allow the output of the 
overall production unit—not individual resources—in a planning period to be esti-
mated to an acceptable degree of accuracy.

The point of departure for this work is the MDCF form (8.30), which was ini-
tially developed for a single production resource. In a production unit consisting of 
multiple resources, this functional form can be implemented at several levels of 
aggregation. The minimal unit of work is the machine-operation pair, specifying the 
processing of a particular operation of a specific product on a specific machine. In 
the presence of routing flexibility, a given operation may be performed on several 
alternative, non-identical machines. Operation-machine pairs can be summed for a 
specified operation, a specified machine, and over products. Summation over 
machines combines all operations processed on a given machine, while summation 
over a product sums the workload from all operations performed on that product. 
The reader will note we have met both these aggregations already: the single-
variable clearing functions developed in Chap. 7 are based on aggregate workload 
over all operations processed at a given machine, while the product-based clearing 
functions of Kacar and Uzsoy (2014) aggregate the workload from all operations of 
a given product at a particular resource. The authors develop MDCFs for each of 
these levels of aggregation, and examine their performance in the presence of differ-
ent levels of utilization and processing flexibility.

The release planning models based on the MDCFs follow the basic structure of 
other clearing function based models, with balance equations for finished goods 
inventory of each product and WIP of each of the basic units of aggregation. Thus 
in the model based on operation-machine pairs using the MDCF form (8.30), WIP 
balance equations are written for each operation at each machine as in the allocated 
clearing function model. When using the operation-based MDCF (8.29), WIP bal-
ance equations are written for each operation in each period. The P-MDCF requires 
WIP balance equations for each operation, since the WIP of each operation is 
weighted to reflect the likelihood of its emerging as finished product in the current 
period. As was the case for the single-stage systems, the resulting release planning 
models are non-convex, but are solved to a local optimum using the KNITRO con-
vex nonlinear solver. The performance of the MDCFs is evaluated by the perfor-
mance of the production unit under the releases developed by the release planning 
models using them. The univariate clearing function of Srinivasan et al. (1988) is 
used as a benchmark for comparison, and is implemented in a release planning 
model using the allocated clearing function formulation, but without piecewise lin-
earization of the clearing functions. This will be referred to as the single-dimensional 
clearing function (SDCF) model in our discussions. The resulting nonlinear pro-
gram is convex per the discussion in Chap. 7, and is solved to a global optimum by 
KNITRO. The production unit considered is a job shop consisting of six machines 
producing four products with different routings.
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The first experiment examines the performance of the MDCFs as a function of 
utilization with no setups required between different products and no routing flexibility; 
each operation can be processed on exactly one machine. The findings from this 
experiment are confirmatory rather than surprising: at low to medium utilization lev-
els, whose average across all machines and periods varies from 0.6 through 0.8, the 
performance of all MDCFs is fairly similar, with a slight advantage to OM-MDCF 
based on individual operation-machine pairs. The authors compare the planned and 
realized costs of the different models and find very close agreement for these utiliza-
tion levels, indicating that the release planning model is able to accurately predict the 
consequences of its decisions on the shop floor. The SDCF also exhibits close agree-
ment between planned and realized profit, but as average utilization reaches 0.8 it 
yields substantially lower profit than the MDCFs, suggesting once again that it sys-
tematically underestimates the capabilities of the production unit. This latter finding 
once again emphasizes the need for MDCFs when multiple products are present.

At higher average utilization levels, ranging from 0.9 through 1.1—the latter 
representing a major overload of the system—results are qualitatively different. 
Major differences appear between the different MDCFs. In terms of realized profit, 
OM-MDCF, the least aggregated of the MDCFs, is consistently the best performer. 
O-MDCF is the next best, followed by P-MDCF by a wide margin. The highly 
aggregated P-MDCF fails dramatically at these higher utilization levels, yielding 
extremely poor realized performance relative to the other MDCFs.

The second experiment in this study introduces routing flexibility by incremen-
tally adding a single alternative machine for each operation of different products: 
first for the operations of Product 1, then Product 2, and then for all products. 
However, the choice of which of the alternative machines to use for a given opera-
tion is made by the shop-floor dispatching logic and is not available to the planning 
models. The improvement in performance of all models with the addition of even a 
limited amount of flexibility for a single product is quite striking, even when it 
affects only one of the four products. While the single-dimensional clearing func-
tion (SDCF) is the worst performer by a wide margin when there is no flexibility, the 
presence of flexibility for Product 1 alone more than doubles its expected profit. The 
marked improvement it obtained when flexibility is allowed for Product 1 suggests 
that most of its problems are due to the clearing functions estimated for the machines 
used by that product, machines 1, 3, and 5. The realized performances of OM-MDCF 
and O-MDCF are now very similar, and with the higher levels of flexibility even 
P-MDCF provides realized profit comparable to O-MDCF. This suggests that the 
presence of flexibility, in the form of alternative machines for specific operations of 
a product, allows capacity to be pooled across machines in a manner that makes it 
easier for the MDCFs, and even the SDCF, to predict.

The final experiment in this study examines the impact of setups between the dif-
ferent products, extending the analysis in Albey et al. (2014). Results for average 
utilization of 1.0 are shown in Fig. 8.11. Once again, under low average utilization all 
MDCFs and SDCF lead to quite similar performance, but as in the earlier study of 
single-stage systems the situation changes markedly at high utilization. As utilization 
increases, the more aggregated O-MDCF and P-MDCF begin to fall behind the less 
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Fig. 8.11  Performance of MDCFS and SDCF with Setups under High Utilization

aggregated OM-MDCF in relative performance. The realized profit of all models 
decreases with increasing utilization, due to increasing backorder costs. The close 
agreement between the planned and realized costs of SDCF combined with its lower 
profit again suggests that it is underestimating the capabilities of the system, releasing 
less material which makes it easier for it to realize its planned profit, which remains 
substantially lower than those of the MDCFs. The very close agreement between the 
planned and realized profit of OM-MDCF and the very poor agreement for P-MDCF 
are equally interesting. Since setups are incurred by the processing of specific opera-
tions on specific machines, OM-MDCF is able to predict the potential output of each 
operation-machine pair quite accurately. P-MDCF fails since it does not capture 
operation-machine level data. O-MDCF occupies an intermediate position.

Once again, the performance of the MDCFs can be explained using intuition 
from queueing models. The impact of setups in a multiproduct system is to increase 
the variability of the effective processing time distribution, making it difficult for 
the more aggregated clearing functions to estimate the output of the system accu-
rately over a wide range of product mixes and operating conditions. The reader will 
observe the recurring theme: the more different factors contributing to the variabil-
ity of the effective processing time distribution at any resource, the harder for a 
clearing function with a few, aggregate state variables to estimate its output accu-
rately. Setups are incurred on the basis of specific operations at specific machines, 
while machine failures affect all operations at a given machine in essentially the 
same way. One wishes that the authors had carried their experimental design to its 
logical conclusion, examining the impact of flexibility on problems with setups, and 
introducing machine failures. One would conjecture that if machine failures are the 
dominant source of variability, SDCF ought to perform fairly well, while if the 
primary source of variability is at the level of operation-machine pairs, OM-MDCF 
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ought to do better. The only situation in which P-MDCF might be expected to per-
form fairly well would be if all products required very similar processes in terms of 
both routing and operation processing times.

It is important to note that in this last experiment, as in the setup experiments 
reported for the single-stage systems, there is no attempt to perform any kind of lot 
sizing that would make use of setups with maximum efficiency; the cyclic sequence 
in which products are released approaches a worst-case situation in terms of the 
number of setups incurred. Clearly there is considerable scope for exploring the 
impact of different sequencing policies on the shape of the MDCF required to antic-
ipate the behavior of the production unit.

8.5 � Discussion

Our discussion of MDCFs has ranged over several different possibilities for extend-
ing the univariate clearing functions of Chap. 7, which have been the primary focus 
of research in this area for many years. Univariate clearing functions have been used 
to estimate the aggregate output of a production resource over all products, usually 
measured in units of time. For single product systems without sequence-dependent 
setup times this is, obviously, sufficient, but when multiple items compete for capac-
ity additional logic is required. Chapter 7 discussed the difficulties encountered by 
univariate clearing functions in the presence of multiple products and presented the 
allocated clearing function formulation as an approximate, but generally effective, 
solution in the absence of setup times between products or under predetermined lot 
sizes. However, both queueing analysis and empirical observation suggest that 
when the amount of output the system can generate is significantly affected by the 
mix of the desired output, univariate clearing functions are inadequate.

The development of MDCFs requires additional state variables in the clearing 
functions, and the development of clearing functions estimating the output of each 
output item, which is usually a product but can also be defined as an operation-
machine pair or multiple operation-machine pairs representing an operation that can 
be performed on alternative machines. The output capabilities of the system, 
whether a resource or a larger production unit, are captured by a system of MDCFs 
that jointly capture the tight interdependence of the output of different items. This 
approach requires the use of state variables related to each of the items produced, 
and use of state variables related to earlier planning periods has also been examined.

The common theme across experiments examining different MDCFs is that 
while univariate clearing functions are capable of estimating the aggregate output of 
a production resource or unit fairly accurately in the absence of setup times, their 
ability to estimate the mix of this output, at the level of individual items, is much 
more limited. Upon reflection, this should be no surprise; even in the absence of 
setups between products, the presence of multiple products with different service 
time distributions will increase the variability of the effective service time 
distribution, making it harder for a single-variable clearing function to produce 
accurate estimates of output under a wide range of operating conditions and product 

8.4  Discussion

https://doi.org/10.1007/978-1-0716-0354-3_7
https://doi.org/10.1007/978-1-0716-0354-3_7


218

mixes. In the presence of significant setup times, especially when lot sizes are deter-
mined at the scheduling level, the aggregate, univariate clearing functions fail dis-
mally, as is only to be expected.

The use of MDCFs explicitly distinguishing between individual items yields 
more accurate output estimates, and hence better performance by the planning mod-
els that use them, but comes at the cost of significantly larger and more complex 
release planning models. In particular, the use of MDCFs results in non-convex 
optimization models that are significantly more difficult to solve than the linear 
programs of Chap. 5, or the convex nonlinear models and linear programs of Chap. 
7. The nature of the non-convexity should be the subject of considerable future 
study. Anli et al. (2007) observe that non-convex behavior arises either when operat-
ing policies at the production units are “flagrantly suboptimal” or the items pro-
duced are highly diverse in nature, leading to a highly variable effective processing 
time distribution. Albey et  al. (2014) also find that the objective function values 
obtained by the BARON global solver were the same as those from the KNITRO 
convex nonlinear solver in all cases where BARON converged to a solution. This 
further suggests that the non-convexity of these models is somewhat structured, 
raising the possibility that more efficient solution procedures may be possible. 
Further exploration of this issue is clearly an interesting direction for future research 
and provides a useful application of global optimization methods.

The development of clearing functions that explicitly recognize the transient 
state of the queues describing the system, without assuming steady-state behavior 
within the planning periods, has also raised a number of interesting issues. Both 
empirical evidence and queueing arguments demonstrate quite conclusively that the 
shape of the clearing function is different in the transient regime from the steady-
state environment that is best studied. This issue of transient behavior is com-
pounded by the fact that release planning models treat the planned state of the 
system in future periods as a deterministic parameter, while in reality these are 
better treated as (possibly biased) forecasts of random variables. The argument from 
Jensen’s inequality suggests that even assuming unbiased forecasts of the future 
state variables, treating these estimates as deterministic parameters is likely to result 
in systematic overestimation of the output, an observation supported by consider-
able experimental evidence.

There also appears to be a basic tradeoff between the accuracy of the output pre-
dictions made by a clearing function and its computational tractability. In general, 
adding state variables and developing MDCFs for each item produced tend to 
improve the accuracy of the output predictions, but greatly increase the complexity 
of the resulting release planning models, as well as the complexity of fitting the 
MDCFs themselves. Advanced, high-dimensional machine learning techniques 
such as metamodeling of various kinds and neural networks may be able to produce 
quite accurate predictions of output, but are not amenable to incorporation in math-
ematical programming models of the kind this volume has focused on. The use of 
metamodels to accelerate simulation optimization approaches, by replacing a 
time-consuming simulation model with a fast running metamodel as in Li et  al. 
(2016), suggests a possible way out of this dilemma, but considerable additional 
work is needed in this area.
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Chapter 9
Lot-Sizing Models Using Multi-dimensional 
Clearing Functions

The order release models described in this volume rely heavily on the functional 
relationship between the expected output of a production resource and its expected 
workload which, as discussed in Chap. 2 for the case of steady-state queues, is 
related to the expected cycle time by Little’s Law. This relationship is significantly 
affected by various decision rules used within the PPC system, such as scheduling 
policies on the shop floor. Lot sizing, the decision as to how much of a product to 
produce each time a machine is set up for the product, is of particular importance in 
this respect. For a given production quantity, determined by the master production 
schedule, the lot sizes influence capacity utilization (via the amount of setup time 
required on the resource in a planning period), the mean and variance of the interar-
rival times (via the number and size of production lots), and the mean and variance 
of the service times (via the lot sizes). Lot-sizing models were among the earliest 
mathematical formulations of production planning problems (Harris 1915). The 
extensive literature on deterministic lot-sizing problems (Drexl and Kimms 1997; 
Brahimi et al. 2006; Pochet and Wolsey 2006; Quadt and Kuhn 2008) has generally 
focused on the tradeoff between fixed setup or ordering costs and inventory holding 
costs without considering the effects of congestion. The relationship between the lot 
size Q and average cycle time has been explored from several angles, including 
simultaneous lot sizing and scheduling (Drexl and Kimms 1997) and lot streaming 
(Missbauer 2002; Jen Huei and Huan Neng 2005; Cheng et al. 2013). Following the 
discussion in Chap. 2, we begin this section with insights from simple queueing 
models, and then show how these can be used to develop a system of multivariate 
clearing functions to address a dynamic lot-sizing problem.
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9.1 � Impact of Lot Sizes on the Performance of Production 
Resources

As the extensive literature on deterministic economic order quantities would sug-
gest, lot-sizing decisions have significant impact on the behavior of production sys-
tems even in completely deterministic environments. Karmarkar (1989) proposes an 
example by considering a synchronous production line with N stations producing a 
single item in batches of a fixed size of Q units. Batches are transferred to the next 
station at the completion of processing, and a setup time of S time units is required 
for each batch. The production rate at each station is assumed to be P units/time 
unit. Thus each batch has a cycle time of (S + Q/P) time units at each station, and a 
total cycle time in the line of T = N(S + Q/P) time units. Since under synchronous 
operation there will be no queueing, and one batch will complete its processing and 
leave the system every T/N time units, the average output rate of the line will be
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which is a saturating, non-decreasing function of the lot size. The non-decreasing, 
saturating nature of the function arises from the fact that as the lot size Q increases, 
the setup time per part, which constitutes a loss of production capacity, is reduced, 
eventually reaching 0 as Q → ∞.

Karmarkar (1987) and Zipkin (1986) were among the first to study the relation-
ship between lot size and mean flow time in an M/M/1 queueing system operating at 
a fixed output rate. Karmarkar (1987) derived this relationship for a single-server 
queue producing a single item. We follow this derivation for an M/G/1 system using 
the following notation:

D: total demand per period (in product units)
p: processing time per unit
S: setup time per lot
λ: arrival rate of the lots at the server
te, σ, ce: mean, standard deviation, and coefficient of variation, respectively, of the 

service times of the lots, given by the sum of setup and processing times
Q: lot size, assumed to be identical for all lots

For brevity of exposition, we will assume the coefficient of variation ce of the 
service times is independent of the lot size Q. Then the expected arrival rate of lots 
at the machine is given by λ = D/Q and the expected service time of a lot te = S + pQ, 
yielding a utilization of u = λte = D(p + S/Q). Assuming a Poisson arrival process, 
the Pollaczek–Khintchine formula (Medhi 1991) gives the mean queue (waiting) 
time of a lot as
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and the mean cycle time as

	 T T S pQQ= + + 	 (9.3)

Both the mean queue time (9.2) and the mean cycle time (9.3) are convex func-
tions of the common lot size Q. When different lot sizes Qj for multiple products j 
are used, the mean waiting time remains a convex function of the lot sizes, but the 
mean cycle time is non-convex (Karmarkar et al. 1992).

The single-product cycle time (9.2) illustrates an intuitive phenomenon termed 
the “Process Batching Law” by Hopp and Spearman (2008): the presence of posi-
tive setup times imposes a lower limit on the lot sizes, and as the lot size approaches 
this limit from above the utilization u → 1, and hence the average cycle time T → ∞. 
If the lot size becomes large, i.e., Q → ∞, the impact of the setup time vanishes and 
T increases asymptotically proportionally with the lot size. As a consequence of this 
structure, Karmarkar (1987) shows that T is minimized for a well-defined lot size.

These insights have been refined and extended in subsequent work that is beyond 
the scope of this volume (Wijngaard 1989; Benjaafar 1996; Missbauer 2002; Jutz 
2017). Extensions include considering multiple products, more complex material 
flow structures, and its integration with the inventory control system that determines 
the arrival process of the lots (Zipkin 1986; Vaughan 2006). The modeling approach 
can also be extended to multistage systems with stage-specific lot sizes (Missbauer 
and Jutz 2018).

In order to develop clearing function models, this model must be reformulated to 
express the expected output as a function of lot sizes and expected WIP. By the 
PASTA (Poisson Arrivals See Time Averages) property of the arrival process 
(Buzacott and Shanthikumar 1993, p. 54), the average actual waiting time of the 
customers (lots) TQ is identical to the average virtual waiting time at time t, defined 
as the waiting time that would be seen by a customer arriving at time t. For a single-
server system, the average virtual waiting time is identical to the average WIP at the 
server, measured in hours of work (average remaining work). Using (9.2) the 
expected output pD, excluding time spent in setups and expressed in hours of work, 
can be written as:

	

X pD
pQT

pQ S T c pQ S

Q

Q

= =
+( ) + +( ) +( )
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

2

2 12
e 	

(9.4)

Equation (9.4) implies that higher service time variability reduces the output for a 
given average WIP. The impact of the lot size Q on the relationship between average 
WIP and output is shown in Fig. 9.1 for different lot sizes.

9.1  Impact of Lot Sizes on the Performance of Production Resources
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Fig. 9.1  Expected output as a function of expected WIP for different values of the lot size Q 
(p = 5, S = 15, ce = 0.5)

This modeling approach can be applied in two ways. The relationship between 
lot sizes and average flow time can be used to derive standard lot sizes that yield a 
good compromise between the potentially conflicting goals of reducing cycle times 
on the one hand and minimizing setup and cycle inventory holding costs on the 
other (Missbauer 2002). The actual lot sizes implemented on the shop floor can be 
determined by modifying these standard lot sizes based on short-term demand 
information, leading to a hierarchical lot-sizing system (Söhner and Schneeweiss 
1995). The benefit of modifying the standard lot sizes has been questioned in the 
literature (Wijngaard 1989). Within this decision structure the lots to release are 
determined outside the release model and consume the release quantities Rjt calcu-
lated by the release model as described in Chaps. 5 through 8.

An alternative approach is to determine lot sizes and order releases simultane-
ously using a release model with a multi-dimensional clearing function that includes 
some measure of workload and the lot sizes as state variables determining the 
expected output in the spirit of (9.4). We discuss a model of this type in the next 
section.

9.2 � A MDCF Model for Lot Sizing

In this section, we present a single-stage multi-item dynamic lot-sizing model 
developed by Kang et al. (2014) where the production resource is modeled as an 
M/G/1 queue. The behavior of the system is modeled by a set of multi-dimensional 
clearing functions (MDCFs) derived by steady-state queueing analysis, instead of 
the empirically estimated MDCFs described in the previous chapter.
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We consider a single production resource processing N different products 
i = 1,…, N with deterministic processing time pi and sequence-independent setup 
time si that is incurred whenever a unit of product i is processed after completion of 
a different product. The planning horizon is divided into T discrete time periods of 
uniform length, and all processing and setup times are expressed in units of this 
planning period length. Lots of product i arrive at the resource following a Poisson 
process with rate λi. Due to the random arrival process, the service time is a random 
variable. In order to address the lot-sizing problem, the MDCFs describing the out-
put of the resource must reflect the lot sizes. This is accomplished by assuming that 
the planning periods are sufficiently long that the system is in steady state, and fol-
lowing the analysis of Karmarkar (1987) and Karmarkar et  al. (1992). Since we 
derive the MDCFs for a generic planning period, the period index is dropped in the 
following analysis.

The deterministic processing time of a lot of Qi units of product i is given by:

	 P s pQi i i i= + 	 (9.5)

Since lots of product i arrive following a Poisson process with rate λi, the prob-
ability that a randomly selected batch is of product i is given by λi/λ, where

	
λ λ=

=
∑
i

N

i
1 	

(9.6)

Thus the mean and variance of the random variable P denoting the processing 
time of lots at the resource are given by:
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(9.7)

It is a standard result in queueing theory (Buzacott and Shanthikumar 1993, 
p. 62) that the expected waiting time for the M/G/1 queue is given by:
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(9.8)

where u denotes the average utilization as in previous chapters. The expected cycle 
time of product i is then given by τi = Pi + TQ. Little’s Law then yields
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(9.9)
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where Wi denotes the time-average WIP of product i over the duration of the plan-
ning period. Since we assume the system is in steady state, the number Yi of lots of 
product i produced during the period can be substituted for λi, yielding
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Noting that all processing times are in units of the planning period, and multiply-
ing both sides of (9.10) by Qi, we obtain the total number of units of product i pro-
duced in the planning period as
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(9.11)

which can be written out as
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(9.12)

where Qi
′ denotes the vector of lot sizes Qj for all products except i, and ′W i and Yi

′ 
are defined analogously. The MDCF (9.12) is an ugly, non-convex expression, but 
is actually quite intuitive: The output of a particular product i in a planning period 
depends on its own lot size Qi, the number of lots produced Yi, and its time-average 
WIP level Wi, as would be expected in a single-product model. However, it is also 
affected by the lot sizes, WIP levels, and number of lots of all other products. As 
seen in the intermediate expression (9.11), this is because these quantities determine 
the fraction of current machine utilization available to the product i in the planning 
period. Thus the output mix of the machine is jointly determined by the set of N 
MDCFs (9.12). The explicit consideration of lot sizing has resulted in the addition 
of state variables reflecting the lot sizes of each product during the planning period. 
An example of this MDCF is illustrated in Fig. 9.2; note that the level sets shown on 
the horizontal plane, which are the feasible combinations of WIP and lot sizes that 
yield the specified output, match those given by Karmarkar (1987).

Anli et al. (2007) present a MDCF with similar state variables, but take a very 
different approach to estimating it; they use an iterative approach between the 
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Fig. 9.2  Illustration of MDCF with lot sizing for two-product system: output of product 1 as a 
function of its lot size and WIP for fixed lot size and output of product 2 (Kang et al. 2014)

individual production units for which the MDCF is being developed and the goods 
flow model. Tentative release plans are computed by the planning level, which are 
then used by the production units to estimate their realized performance. These real-
ized performance estimates are then fed back to the planning level, which generates 
additional constraints derived from these estimates to refine its models of the capa-
bilities of the production units. In the language of Schneeweiss (2003), tentative 
release plans are communicated to the production units and their feedback is then 
used to refine the planning level’s anticipation functions for the production units. 
The approach of Anli et al. (2007) is unique in presenting an integrated, well thought 
out decomposition of the supply chain planning problem into multiple subproblems, 
including the goods flow problem, safety stock levels, and MDCFs for the individ-
ual production units, with promising computational results.

Several aspects of this MDCF are worthy of comment. Like Karmarkar (1987), 
it highlights the strong interdependence of products in a multiproduct queueing sys-
tem: decisions made for any product, such as the level of output or the lot size, affect 
all other products. The use of this MDCF for a planning period of fixed finite length 
is clearly heuristic; the derivation assumes the queue is in steady state during the 
planning period, which is unlikely to be the case in general. The model also assumes 
that the lot sizes are decision variables associated with each planning period, and 
hence that these can be changed by management in each planning period. This is 
clearly possible for newly released orders, but it is unlikely that lots already released 
to production can be reconfigured without considerable disruption of ongoing oper-
ations. If the cycle time of some fraction of lots in each period exceeds the length of 
a planning period, it is thus likely that there will be lots of different sizes on the shop 
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floor at least some of the time; the transient state refers not only to the number of 
orders at the workcenters but to the composition of the order sizes as well.

The MDCFs (9.12) can be incorporated into an integrated release planning and 
lot-sizing model in a straightforward manner, using the following notation:

Decision variables:
Yit: number of lots of product i produced in period t
Qit: lot size of product i in period t
Iit: finished goods inventory of product i at the end of period t
Bit: amount of product i backlogged at the end of period t
Wit: WIP of product i at the end of period t
Wit: time-average WIP level of product i during period t
Rit: number of units of product i released in period t

Parameters:
hit: unit finished goods holding cost in period t
wit: unit WIP holding cost in period t
bit: unit backlogging cost in period t

The model can then be written as follows:
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i
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= =
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(9.13)
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	 Q Y R I W Bit it it it it it, , , , , ,≥ 0 integer	 (9.19)

Constraints (9.18) are a stability condition that is redundant when the MDCFs 
(9.17) are present; it is included in the model to help reduce the solution time. The 
model (9.13)–(9.19) is a single-stage multi-item dynamic lot-sizing model, with 
some interesting differences. The presence of the MDCFs leads to non-convex con-
straints, even when the integrality constraints are relaxed. In addition, traditional 
lot-sizing models focus on the tradeoff between the fixed cost of setups and inven-
tory holding costs, while in this model setup costs are conspicuous by their absence. 
It can be argued that the actual cash costs of setup changes are relatively small and 
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are usually limited to the scrap generated while adjusting the machine and tooling 
to the new product. In the short term, labor and machinery are all fixed costs, so the 
main component of a setup cost in a production environment is the opportunity cost 
of the lost production time. This opportunity cost, however, is difficult to estimate 
in practice. If the facility has sufficient excess capacity that the setup will not result 
in any loss of revenue, the opportunity cost of capacity associated with the setup is 
clearly zero; this is equally clearly not the case if the facility is highly utilized and 
setups result in lost sales due to reduced output.

Due to the complexity of the integer nonlinear program (9.13)–(9.19), Kang 
et al. (2014) relax the integrality constraints, solve the resulting non-convex model 
to a local optimum and then heuristically round the resulting fractional solution to 
an integer feasible solution. In a later paper (Kang et al. 2018), they propose a more 
sophisticated rounding heuristic that gives considerably improved solutions over the 
original approach. Due to the absence of setup costs, the performance of the model 
is compared to that of a model due to Erenguc and Mercan (1990), which requires 
some additional notation:

Decision variables:
Kit: �binary variable equal to 1 if a setup is performed for product i in period t, and 

zero otherwise
Xit: amount of product i produced in period t

Parameters:
M: a very large number

The model can be stated as follows:
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There are some interesting contrasts between this model and the MDCF-based 
model (9.13)–(9.19). The model of Mercan and Erenguc assumes that all production 
of a given product in a given period will be processed as a single lot, while the 
MDCF-based model allows multiple smaller lots. The Mercan–Erenguc model does 
not consider queueing effects at all, while these are central to the MDCF-based 
model. In fairness, the Erenguc–Mercan model was never intended to be used in a 
queueing environment, but rather for big-bucket lot-sizing or product cycling prob-
lems where queueing does not arise.

9.2  A MDCF Model for Lot Sizing
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Fig. 9.3  Performance comparison of Erenguc–Mercan model (EMM) and MDCF-based lot-
sizing model (RIM)

The logical way to evaluate the performance of this integrated release planning 
and lot-sizing model is to simulate the behavior of the production system operating 
under the lot sizes and release quantities it suggests. Details of the computational 
experiments are given in Kang et al. (2014), but representative findings are sum-
marized in Fig. 9.3. The planned quantities refer to the objective function values 
from the mathematical models, while the realized values are those observed when 
the decisions from the mathematical models are implemented. Since the Erenguc–
Mercan model does not consider congestion, and hence ignores WIP, we report the 
objective functions with and without WIP costs to observe how well the mathemati-
cal models predict the consequences of their decisions. The simulation model 
relaxes the assumption of a constant lot size in each period; if all lots released in a 
given period have not exited the system by the start of the following period, lots 
with different sizes will coexist in the system.

It is clear from the figure that the failure of the Erenguc–Mercan model to con-
sider WIP results in the MDCF model performing considerably better. The planned 
objective function of the Erenguc–Mercan model, which considers only inventory 
and backorder costs, is actually quite close to those components of the planned cost 
from the MDCF model. However, the ability of the MDCF model to produce the 
demand for a given period in a number of small batches results in considerable 
improvement in cycle times, and major differences in performance between the two 
models. Although it is not evident from the limited data shown, the differences 
between the two models are largest at low to medium demand levels. At high 
demand, and hence utilization, lot sizes have to be large in order for the system to 
meet demand. Hence all production of a product in a given period is processed in a 
single lot, as required by the Erenguc–Mercan model. At lower utilization levels, 
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however, the MDCF model can take advantage of the available excess capacity by 
using smaller batches with more setups, resulting in lower flow times and better 
performance.

As discussed above, the development of this model rests on a number of heuristic 
assumptions: the use of steady-state queueing models to derive the MDCF and the 
approximate solution of the resulting nonlinear integer program by solving its con-
tinuous relaxation and rounding to an integer feasible solution. There is no doubt 
that each of these introduces errors, which are likely to grow as the length of the 
planning period decreases. However, the MDCF model is in any case unsuitable for 
short-term release planning due to the difficulty of adjusting lot sizes on the shop 
floor after release. The model is better viewed as a longer-term aggregate model that 
can be used to examine the impact of lot sizes in the presence of changing demand 
conditions. It is also likely that some of the more egregious errors introduced by 
these assumptions are remedied to some degree by the myopic rounding scheme 
implemented at the execution level in the simulation model.

9.3 � Insights from a MDCF-Based Lot-Sizing Model

The MDCF-based lot-sizing model (9.13)–(9.19) is clearly an extension to the 
multi-item capacitated lot-sizing problem of the type studied by Billington et al. 
(1983) and Trigeiro et  al. (1989) and reviewed extensively by Quadt and Kuhn 
(2008). These models, along with their many successors, focus on the tradeoff 
between the fixed costs of setups and inventory holding costs, while considering 
capacity constraints without congestion as reflected by constraint (9.23) in the 
Erenguc–Mercan model above. In this section, we present a column generation heu-
ristic for the MDCF-based lot-sizing model developed by Kang et al. (2011), with 
the purpose of providing insight into the practical difficulties of estimating setup 
costs in production environments. Similar column generation approaches for capac-
itated lot-sizing problems without congestion have been developed by Lasdon and 
Terjung (1971) and de Graeve and Jans (2007).

The basic idea of column generation approaches for capacitated lot-sizing prob-
lems is to decompose the problem into a master problem that allocates capacity 
among the N different products, and pricing subproblems that perform the optimal 
lot sizing for each product subject to the capacity allocation given by the master 
problem. Hence, in the Lasdon–Terjung approach (Lasdon and Terjung 1971), when 
the master problem allocates capacity, the pricing subproblems are single-item 
uncapacitated dynamic lot-sizing problems whose objective function is modified by 
the dual prices obtained from the master problem. Detailed presentations of 
Dantzig–Wolfe decomposition and column generation methods can be found in 
Desaulniers et al. (2005) and Lasdon (1970).

Following the usual approach to developing a column generation approach, let us 
denote the set of all feasible schedules for product i, i = 1, …, N, by ϒi. Since all 
decision variables associated with a product i in the model (9.13)–(9.19) must take 
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integer values, the sets ϒi, i = 1, …, N will each consist of a very large number of 
discrete schedules. Let τ i

k denote a column vector with T entries associated with a 
solution k ∈ ϒi whose tth entry is the capacity required by product i in period t for 
schedule k, given by

	 τ it
k

i i it
k

it
ks p Q Y= +( ) 	 (9.25)

where Qit
k denotes the lot size of product i in period t in the schedule k ∈ ϒi and Yit

k 
denotes the number of lots of product i produced in period t in this schedule. We 
also define the cost vector Vi

k as a column vector with T entries.
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it it
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Defining the decision variables
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we can rewrite the model (9.13)–(9.19) as that of selecting exactly one schedule for 
each product such that the resulting schedules are capacity feasible and the objec-
tive function is minimized. The resulting master problem is given by:

(Master Problem: MP)
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Since this is a binary set covering problem that is hard to solve, we relax the 
integrality constraints (9.31), replacing them with
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to obtain the relaxed master problem (RMP).
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subject to
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Since enumerating all columns in the RMP is impractical, we use a restricted 
relaxed master problem (RRMP) with a limited number of columns that are gener-
ated by a column generation approach. The RRMP is initialized with an initial set 
of columns and solved to optimality. However, this solution is only optimal with 
respect to the limited set of columns considered in the RRMP; there may yet exist 
columns in some of the sets ϒi that have not yet entered the RRMP, but which might 
improve the objective function if they were to enter, i.e., have negative reduced 
costs. A pricing subproblem is thus solved for each product i = 1,…, N to determine 
whether any columns with negative reduced costs exist.

To formulate the pricing subproblem for product i, we define αit
k to be the dual 

variable associated with the capacity constraints (9.34) and ∝i
k those associated with 

constraints (9.35). Then the reduced cost for a new column to enter the basis of the 
RRMP will be
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The pricing subproblem seeks a schedule k for product i such that the reduced 
cost is negative; if no such schedule can be found for any product an optimal solu-
tion to the relaxed master problem has been obtained. We can thus state the pricing 
subproblem for product i, i = 1,…, N, as follows:
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where
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denotes the utilization on the machine due to products other than i in the optimal 
solution to the restricted master problem at the current iteration. This pricing sub-
problem is a single-item dynamic lot-sizing problem, where the amount of capacity 
available to the product i is fixed by decisions corresponding to the other products. 
Dropping the constant ∝i

k we can write the objective function (9.38) as
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and compare this to the objective function of the classical capacitated dynamic lot-
sizing problem, which is given by:
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where Ξit is a binary variable equal to 1 if product i is produced in period t, and zero 
otherwise, while Sit denotes the fixed cost of a setup. Note that classical capacitated 
lot-sizing models all assume a single lot of each product in a given period, which 
would require the additional constraint Yit

k ″ 1. Matching equivalent terms in (9.44) 
and (9.45) shows that the two objectives treat finished goods inventory and backlogs 
identically. Since the classical formulations do not consider congestion, and hence 
ignore WIP, let us assume that the cost of holding WIP is negligible. In this case, for 
(9.44) and (9.45) to give the same value, and hence the same solution, we must have

	 S s pQit it
k

i i it
k= +( )α 	 (9.46)

showing that even under the very restrictive assumptions imposed to achieve 
compatibility between the classical and MDCF-based lot-sizing models, the fixed 
cost of a setup must depend on the dual price of capacity at optimality—which is 
impossible to determine without obtaining an optimal solution for all products 
simultaneously.

Thus, while classical dynamic lot-sizing models can be justified in a purchasing 
environment, or in an environment with significant excess capacity, their use in a 
production environment is fraught with problems. Once the utilization of the 
machine reaches a certain point, it will become necessary to produce exactly one lot 
of each item in each period in which it is to be produced; however, the relative mag-
nitudes of the fixed setup costs relative to inventory holding costs will determine the 
frequency of production. At lower utilization levels, however, (9.44) suggests that 
estimating the setup cost is far from trivial; at the very least, the setup cost for a 
product i will be time dependent, driven by the evolution of its demand over time as 
well as that of all other products competing with it for capacity.
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9.4 � Discussion

In this chapter, we have seen that the queueing perspective of Chap. 2 leads quite 
naturally to a series of models describing the impact of lot-sizing decisions on the 
performance of production units. The MDCFs developed in the previous chapter 
turn out to be a suitable mechanism to describe the behavior of such systems in 
mathematical programming models. The resulting optimization models are gener-
ally non-convex, requiring significant additional computational effort to guarantee a 
global optimal solution. However, there is considerable computational evidence that 
the non-convexity is of a somewhat benign nature; in many cases, the use of a con-
vex nonlinear solver leads to confirmed global optimal solutions, suggesting the 
existence of considerable structure in the problem that remains an objective for 
future research. The use of steady-state queueing models to develop the MDCFs is 
clearly heuristic, and open to criticism; however, the significant improvements in 
system performance obtained in simulation experiments suggest that these models 
are worth developing further.

The contrast between these models and the traditional lot-sizing models that 
focus on the tradeoff between setup and holding costs is also informative. The 
(admittedly heuristic) column generation approach outlined in Sect. 9.3 highlights 
the complexity of estimating setup costs accurately. The results of Sect. 9.2, on the 
other hand, highlight a central implication of the traditional lot-sizing models such 
as the multilevel capacitated lot-sizing problem and its variants, which is that all 
production for a planning period must be produced in a single lot. Given that setup 
costs are charged on a per lot basis, this is natural, but the superior shop-floor per-
formance obtained by the MDCF model suggests that especially at medium levels 
of utilization the use of smaller lot sizes can lead to considerable benefits. At high 
utilization levels there is no capacity to spare for additional setups, and hence the 
results of the traditional models and the MDCF model approach each other.

The work in this chapter is clearly exploratory in nature and merely scratches the 
surface of a broad and complex research agenda. The extension of this type of 
approach to multistage systems, such as those treated by Missbauer and Jutz (2018), 
or multilevel systems such as those arising in the context of MRP computations is a 
natural direction. It is unlikely that exact solutions to such formulation can be obtained 
for industrial scale problem instances, especially given the non-convex nature of 
many MDCF planning models, but an understanding of the structure of good solu-
tions should serve as a pathway to computationally efficient approximations.
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Chapter 10
Applications of Clearing Functions

The previous chapters have motivated the need for more advanced anticipation 
functions that can reflect, at least to a reasonable level of accuracy, the nonlinear 
relations between the workload of a production resource and its expected through-
put. Whatever their academic interest, one would hope that the clearing function 
formalism could provide new insights or performance advantages over the models 
based on fixed exogenous lead times described in Chap. 5. We have already seen 
some such insights; models based on a simple upper bound on resource loading in a 
planning period and constraint can only provide meaningful dual prices for resources 
that are fully utilized, i.e., for whom the associated upper bound constraint in the 
period is satisfied at equality. Chapter 7 illustrates how the dual information obtained 
from the ACF model is considerably richer and more nuanced than that from the 
fixed lead time models. This chapter presents several studies where clearing func-
tions have been applied to different problems related to production systems. In sev-
eral cases, the use of clearing functions provides interesting insights that would be 
difficult to obtain using the conventional approach of exogenous planned lead times 
and maximum capacity loading.

10.1 � Release Planning in Semiconductor Wafer Fabrication

Kacar et  al. (2013, 2016) have conducted extensive computational experiments 
comparing the performance of clearing function models to those based on fixed lead 
times in the context of semiconductor wafer fabrication using the MIMAC I bench-
mark data sets (Fowler and Robinson 2012). The experiments proceeded in two 
stages: in the first, the allocated clearing function (ACF) formulation of Asmundsson 
et al. (2006, 2009) was compared to a fixed lead time formulation based on that 
given in Sect. 5.2 using integer lead times. The second paper extends this by consid-
ering fractional fixed lead times.
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The MIMAC I data set, which is publicly available at https://www.sim.unihan-
nover.de/~svs/wise0809/pds/masmlab/factory−datasets/, represents a wafer fab 
with more than 200 machines grouped into 84 workcenters. Processing times are 
deterministic, and FIFO dispatching and instantaneous material transfer between 
processing steps (operations) are assumed. Variability in the system arises from 
exponentially distributed machine failures as well as from different processing 
times for different operations of the two products. The facility produces two prod-
ucts, one with 210 unit operations and the other with 245, and the number of step-
pers at the photolithography workcenter is adjusted to ensure that this workcenter 
has the highest long-term average utilization when the two products are produced in 
equal proportions. Batch processing machines, where a number of lots requiring the 
same operation can be processed simultaneously, are represented as well as machines 
with sequence-dependent setup times.

Each operation in a product routing has exactly one predecessor and one succes-
sor, except for the first and last operations in the routing. Material that is processed 
at each operation is assumed to become available to the next operation in the prod-
uct’s routing as soon as it completes its processing at the current operation, and 
strategic inventory is not held anywhere in the fab except after the final operation. 
The objective is to maximize the total contribution over the planning horizon, given 
by the total revenue minus the sum of WIP holding, release, finished goods inven-
tory holding and backordering costs.

The formulation with integer lead times used in the first set of experiments 
described in Kacar et al. (2013) is essentially that given in (5.26)–(5.29) in Chap. 5. 
An immediate issue is how to set the planned lead times (Lj and Ljk in the notation 
of Chap. 5). The authors approach this issue using the mean cycle time at each 
workcenter obtained from a simulation model of the fab, which was run at utiliza-
tion levels corresponding to those in the experimental design (0.7 and 0.9), and 
observing the realized cycle times. Since, as might be expected, many of these 
quantities yield a fractional number of periods, the authors propose two alternative 
approaches to convert these into integer lead times. In the first of these, referred to 
as simple rounding down (SRD), all fractional lead times are truncated to the next 
lower integer value. The obvious disadvantage of this approach is that since all 
mean cycle times are rounded down, lead times will consistently underestimate the 
actual cycle times. An alternative approach seeks to obtain the workcenter lead 
times Ljk by rounding some workcenter cycle times up and others down in a manner 
consistent with the observed overall mean cycle time Lj. This is accomplished by 
solving an integer program initially proposed by Turkseven (2005) that minimizes 
the sum of the integer lead time estimates subject to constraints ensuring they can-
not be less than the observed cumulative cycle times from which they are derived. 
Details of the formulation are given in Turkseven (2005) and Kacar et al. (2013). 
The fixed lead time model using the integer lead times obtained in this manner is 
referred to as the IPR model.

The clearing functions for the workcenters are fitted to data from extensive simu-
lation experiments. Demand realizations yielding seven levels of average bottleneck 
utilization ranging from 0.5 through 0.97 are generated, and the system simulated 
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assuming releases of each product in each period are equal to the demand in that 
period. The workload and output of each workcenter are observed for each planning 
period, and the observations are pooled. For each workcenter, the workload axis is 
partitioned into two segments, each containing an equal number of data points, and 
simple linear regression is used to fit a linear function to the data in each segment. 
With the benefit of today’s knowledge substantially better CF fits can be obtained, 
using either simulation optimization (Kacar and Uzsoy 2015) or the iterative refine-
ment approach of Gopalswamy and Uzsoy (2019), at the expense of additional com-
putational effort. These clearing functions are embedded in an optimization model 
based on (7.70)–(7.75), with the piecewise linear constraints (7.76) representing the 
clearing functions.

The three different models—ACF, SRD, and IPR—are tested under an extensive 
experimental design that compares constant versus time-varying mean demand, as 
well as different levels of demand variability and production uncertainty due to 
machine failures. The experiments consist of solving the optimization models for 
five independent demand realizations in each experimental configuration. The 
releases obtained from the optimization model are then fed into a detailed simula-
tion model of the fab, using 20 independent replications, to observe their realized 
performance under random machine failures. Thus the results represent the esti-
mated performance of the production system when the decisions from the optimiza-
tion models are implemented.

Representative results from this experiment with constant mean demand are 
shown in Fig. 10.1. The first field of the labels denotes the machine failures (short 
or long); the second the average utilization (70 or 90%); and the third the demand 
variability (LowCV or HighCV). The ACF formulation consistently produces higher 
expected profit than SRD and IPR, by a considerable margin in several cases. The 
IPR model is dominated by SRD under short machine failures, but achieves compa-
rable performance under the long machine failures, i.e., with higher variability in 
the production system. The IPR model consistently yields longer planned lead times 
than SRD, bringing to light a weakness in the original experimental design: the 
impact of a finite planning horizon on the release decisions is not well accounted 
for. Faced with a finite planning horizon, all models will reduce releases in the final 
periods of the planning horizon to avoid excessive inventories remaining on hand at 
the end of the horizon. Other things being equal, a fixed lead time model with longer 
planned lead times reduces releases earlier than one with shorter planned lead times, 
resulting in reduced revenue in the final periods of the horizon. This appears to be 
the case with IPR and SRD; the total costs of the two models are roughly compa-
rable in magnitude, but the profit for IPR is generally lower than that for SRD. The 
results for time-varying mean demand are qualitatively similar and are not presented 
here for reasons of space.

These results suggest that the ACF model consistently yields better performing 
production plans compared to the use of fixed integer lead times. While SRD yields 
higher profit solutions than IPR in this experiment, some of the difference in perfor-
mance may be due to the different behavior of the two models in the ending periods 
of the planning horizon, which will affect IPR more severely than SRD. Thus these 
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Fig. 10.1  Comparison of planning models for constant mean demand

experiments should not be viewed as demonstrating the superiority of SRD over 
IPR; additional experiments carefully controlling the end of horizon effects as sug-
gested by Hung and Leachman (1996) should be performed to carefully examine 
this issue. Nevertheless, these initial experiments suggest that the clearing function 
models have the potential to yield significantly better solutions than the fixed lead 
time models with integer planned lead times. It should be noted, in fairness, that the 
ACF formulation results in a significantly larger formulation than the fixed lead 
time models; each operation of each product at each workcenter requires its own 
decision variables, which, together with the use of multiple linear segments, signifi-
cantly increases the size of the model (Kacar et al. 2016).

The obvious next step of comparing the ACF model to fixed lead time models 
with fractional lead times is performed in Kacar et al. (2016). The SRD and ACF 
formulations and the overall experimental design from the previous paper are 
retained and compared to three different models with fractional lead times: FLT-C, 
which considers fractional lead times for capacity loading constraints (5.58) only; 
FLT-I, which considers fractional lead times for finished goods inventory balance 
constraints only; and FLT-B, which considers both constraint sets. End-of-horizon 
effects were accounted for systematically in this experiment, providing a more 
accurate comparison of the different models, as well as expressions for the size of 
the formulations in terms of number of decision variables and constraints.
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Fig. 10.2  Profit comparison for constant average demand and fractional lead times

Comparisons of the expected profit under constant average demand are shown in 
Fig. 10.2. While ACF retains its superior performance over SRD, FLT-B achieves 
the same performance as ACF for all practical purposes, suggesting that under con-
ditions of constant average load and product mix the advantage of the clearing func-
tion models is largely lost. Upon reflection, this is intuitive; if the average workload 
on the workcenters remains constant over time, the average cycle times will also 
remain approximately constant, and the planned lead times will accurately reflect at 
least the average observed cycle time. This line of thought would also suggest that 
when the average workload is varying over time, the clearing function models ought 
to perform better than a fixed lead time model with constant lead times across the 
entire horizon. The results of this experiment with time-varying average demands 
are shown in Fig.  10.3. Under short machine failures, FLT-B again outperforms 
ACF. However, under the long failures, ACF is now the better performer on average, 
although the advantage is not very large; detailed statistical analysis is given in the 
original paper. Additional experiments with larger demand variations suggest that 
the performance advantage of ACF increases as the magnitude of the changes in the 
average demand, and hence the average workload, increase. Albey and Uzsoy 
(2015) extend the experiments described above for the smaller, scaled down wafer 
fab data set of Kayton et al. (1997) and find that when simulation optimization is 
used to obtain approximately optimal planned lead times with perfect visibility of 
the demand, both the ACF and the FLT models with a constant fractional planned 
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Fig. 10.3  Expected profit comparison for time-varying average demands

lead time across the entire planning horizon achieve quite similar performance, with 
a slight advantage to the ACF model. The gap between the model with optimized 
lead times and the ACF formulation is of the order of 4%, suggesting that both ACF 
and the FLT model are very close to the best that can be expected without the benefit 
of hindsight.

The results of these experiments suggest that despite the greater sophistication 
and complexity of the clearing function models, their superior performance should 
not be taken for granted. The (in hindsight) relatively simplistic methods of fitting 
the clearing functions may be doing the ACF model a disservice, but the causes of 
this behavior require further study. Albey and Uzsoy (2015) found that while all 
three models represented lead times at the bottleneck workstation quite accurately, 
there were significant differences between planned and realized lead times at other 
machines; in particular, although the FLT model assumes a constant planned lead 
time across the entire planning horizon the observed cycle times varied quite dra-
matically over time. This observation, taken with the fact that the ACF and FLT 
models turn in essentially equal performance in terms of expected profit, suggests 
that fixed lead time LP models may be robust to errors in the planned lead time 
estimates, at least under some experimental conditions. Although the clearing 
function approach provides some theoretical advantages, such as the improved dual 
variables, there clearly remains a lot to learn about its performance in practice.
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Applying the order release models in rolling horizon planning substantially 
changes their relationship to the actual material flow since only the first-period deci-
sions are actually executed. Input-output control models that consider fixed lead 
times as time windows within which the operations can be scheduled arbitrarily (see 
Sect. 5.6) anticipate production smoothing more accurately and might also change 
the relative performance of models with fixed and variable lead times. Some of 
these issues are discussed in more detail in Sect. 10.2.

In summary, these comparisons of clearing function models for the problem they 
were originally designed to address—that of determining releases into a production 
system to optimally match its output to demand—are less definitive than we would 
like. The clearing function models appear to outperform fixed lead time models with 
integer planned lead times by a sometimes considerable margin in a static solution 
environment, where the planning model is solved for the entire planning horizon 
under deterministic demand and the resulting releases implemented without revi-
sion in the face of stochastic production events such as machine failures. However, 
this conclusion must be treated with caution given the limitations of the experimen-
tal design discussed above, and the use of a constant fractional planned lead time 
over the entire horizon brings the performance of the fixed lead time models to par-
ity with the ACF model over a wide range of experimental conditions. Clearing 
functions appear to retain an advantage over fractional lead times when the work-
load on the production system varies over time, and both ACF and fractional lead 
time models are outperformed by a fixed lead time model using optimized lead 
times that differ in each period (Albey and Uzsoy 2015). This latter is only to be 
expected, since the use of a single clearing function to represent the system over 
time is clearly an approximation. However, the consistently strong performance of 
fixed lead time models with constant fractional lead times is less easy to explain. An 
obvious place to seek improvements is in the fitting of the clearing functions them-
selves, for which significantly better approaches now exist than were available when 
the Kacar et al. studies were performed. A puzzling aspect of these experiments is 
that the fractional fixed lead time models with a time-stationary planned lead time 
perform well, despite significant variations in the observed cycle times at the 
resources over time, while the same model with fixed integer lead times results in 
significantly poorer performance. The reasons for this behavior would yield inter-
esting insights into the relation between planning and execution, and require careful 
experimental work.

10.2 � Release Planning in a Rolling Horizon Environment

The order release models described in the preceding chapters, like most multi-
period production planning models in the literature, assume deterministic demand. 
Clearly this does not accurately reflect reality, which is characterized by uncertainty 
in almost all model parameters, particularly the demand, which can only be forecast 
with limited accuracy.

10.2  Release Planning in a Rolling Horizon Environment
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Incorporating demand uncertainty into multi-period models for order release 
planning can be approached in various ways, depending on the formulation of the 
planning problem, the particular assumptions about the structure of uncertainty 
(e.g., uncertainty of total demand vs. uncertainty of the product mix) and the model-
ing approach chosen (e.g., stochastic programming vs. robust optimization). A com-
prehensive review of this extensive literature (Mula et al. 2006; Dolgui and Prodhon 
2007; Dolgui et al. 2013) is beyond the scope of this volume. However, a common 
technique by which production planning systems address uncertainty and informa-
tion evolution over time is the use of rolling horizon planning, often combined with 
safety stocks to absorb unplanned demand and supply variations (Sahin et al. 2013). 
Under this approach, which is also common in industrial practice, the production 
planning (or order release) problem for a T-period problem is approximated by 
solving a subproblem considering only the next H periods at the start of each period 
s, 1 ≤ s ≤ T–H, from which only the releases for the current period s are actually 
executed. One period later, at the start of period s + 1, the system state and demand 
forecasts are updated based on new information and the next planning run is per-
formed for period s + 1,…,s + H + 1. As time advances, the planning horizon rolls 
through time as depicted in Fig. 10.4. An important aspect of this approach is that 
not only does information on the state of the system and demand forecasts evolve 
over time, the tentative decisions for a planning period are also revised several times 
before they are actually implemented. A considerable body of research dating back 
at least 40 years (Baker 1977; Blackburn and Millen 1980) shows that solution pro-
cedures that are optimal in a static setting fail to provide optimal solutions in a roll-
ing horizon setting. Issues of nervousness were also rapidly discovered and 
addressed in a variety of ways (Blackburn et al. 1985). A recent discussion of these 
issues is given by Lin and Uzsoy (2016a, b). Thus, it is not at all obvious that the 
(admittedly limited) advantages displayed by clearing function models in the static 
settings of the previous section will carry over to a rolling horizon setting.

Addressing these issues, Pürgstaller and Missbauer (2012) compare a rule-based 
order release mechanism similar to LUMS (Sects. 4.2.3 and 4.4) and an order 
release model based on input/output control (Sect. 5.6) in a rolling horizon 
environment for the make-to-order CD/DVD manufacturer described in Chap. 1. 
Demand variability, product mix variability, and forecast accuracy are treated as 

Planning 
period t

1 2 3 4 5 6 …… T

Period 
of planning s
s=1
s=2
s=3
s=4

H Periods

Fig. 10.4  Release planning with rolling horizon
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experimental factors; the forecast errors in consecutive periods are uncorrelated and 
increase as the future periods become more remote. They find that even under rather 
poor forecast accuracy the release planning model still outperforms the rule-based 
release mechanism. This suggests that exploiting the advance demand information 
provided by forecasts, even if it is error-prone, is beneficial for order release, which 
is not evident since rule-based order release mechanisms do not require explicit 
demand forecasts. The apparent explanation is that even substantial forecast errors 
have limited effect upon the first-period decisions in each period, and thus do not 
strongly affect actual releases. This is consistent with the analysis of linear decision 
rules in Holt et al. (1960), where for a quadratic objective function only the expected 
value of the future demand enters the optimal decision rule (p. 123) and the weights 
of the demand forecasts in the decision rule “become rapidly smaller as the sales 
period becomes more remote” (p. 118), which also holds for the costs of forecast 
errors (p. 173).

Häussler and Missbauer (2019) extend the Pürgstaller–Missbauer study by com-
paring the input/output control model with the ACF clearing function model devel-
oped in Chap. 7 in a rolling horizon setting, again for the make-to-order CD 
manufacturer from Chap. 1. They assume perfect demand forecasts that are “con-
sumed” by customer orders that arrive a certain time before their due date. The 
distribution of this due date slack is derived from data representing the case com-
pany. They find that considering the predicted demand in the order release model 
outperforms an alternative approach that only considers confirmed orders already 
admitted to the order pool. This holds consistently for the ACF model throughout 
and in most cases also for the input/output control model. Given the low sensitivity 
of the input/output control model to forecast errors found in Pürgstaller and 
Missbauer (2012), it is reasonable to expect these insights to extend to scenarios 
with forecast errors, but this must be explored in future studies.

Albey et  al. (2015) implement the chance-constrained production planning 
model initially developed by Norouzi and Uzsoy (2014) in a rolling horizon frame-
work with stationary demand, using the additive Martingale Model of Forecast 
Evolution to represent demand. Their experiments consider a single-stage single-
item capacitated production-inventory system and derive their test data from a major 
semiconductor manufacturer. The formulation of chance constraints explicitly con-
sidering forecast evolution exploits advance demand information with the potential 
to improve release decisions. Their experiments find that this is indeed the case, 
although the benefit of advance demand information is much reduced under high 
capacity utilization. This is intuitive, since when capacity is highly utilized across 
the entire planning horizon the optimal course of action is to simply keep the 
resource operating at full capacity especially when, as in this case, clearing func-
tions are not used to capture congestion effects. A subsequent paper (Albey and 
Uzsoy 2016) extends this approach to a multiproduct environment using simulation 
optimization.

Ziarnetzky et al. (2018) significantly extend the work of Albey et al. (2015) by 
studying an ACF-based production planning model applied to a scaled-down simu-
lation model of a wafer fab (Kayton et al. 1997) in a rolling horizon setting. Release 
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quantities and safety stocks are determined simultaneously using shortfall-based 
chance constraints (Norouzi 2013). The paper considers two levels of demand vari-
ability, multiplicative and additive versions of the Martingale Model of Forecast 
Evolution, and different correlation structures for the demand forecast updates 
made at each planning period. They find that the model variant that considers fore-
cast updates outperforms the variant without forecast update with respect to expected 
service level and profit. They conclude that “considering forecast evolution in pro-
duction planning formulations for wafer fabs leads to improved performance as 
long as there is some excess capacity that can be exploited by the planning formula-
tion” (p. 6130).

The impact of capacity utilization on the benefit of advance demand information 
is analyzed by Wijngaard (2004), who models advance demand information as the 
positive difference between the customer order lead time and the throughput time. 
He hypothesizes that “in case of highly flexible production, it is not necessary to 
have advance demand information,” while on the other hand “in case of an inflexible 
production, inventory is necessary anyway and this inventory dampens the effect of 
precise advance demand information” (p. 96). This suggests a complex relationship 
between the value of advance demand information (i.e., of modeling forecast evolu-
tion in a rolling horizon setting) and the flexibility of the manufacturing system. 
Wijngaard and Karaesmen (2007) show that “when customer order lead times are 
less than a threshold value, it is allowed to aggregate the orders over time when 
establishing the optimal production decision” (p. 643).

Rolling horizon planning is characterized by sequentially performing optimiza-
tion, implementing the first-period releases, followed by update of the demand fore-
cast and system state and a new optimization at each planning period. This process 
can conceptually be approached using scenario-based stochastic programming 
(Birge and Louveaux 1997), robust optimization (Bertsimas and Sim 2004), or simu-
lation optimization (Fu 2015). Aouam and Uzsoy (2012) compare stochastic pro-
gramming to a linear decision rule that represents a base stock policy. At the start of 
the planning horizon, initial planned release and production quantities are deter-
mined by a modified clearing function model that includes chance constraints that 
avoid stockout with high probability. As the model rolls through time release and 
production quantities are modified based on updated demand and inventory informa-
tion to obtain the implemented releases and observed production values. They find 
that when appropriately parameterized this procedure can compete effectively with 
multistage stochastic programming with a limited number of scenarios. However, 
the computational scalability of stochastic optimization methods and how to set their 
various parameters remains a question for further research (Aouam and Uzsoy 2015). 
It is interesting that by and large, the extensive literature on stochastic programming 
appears to have had very little impact on the domain of production planning.

Thus, while clearing function based models seem to retain at least some of their 
performance advantages in a rolling horizon setting, the study of production and 
release planning algorithms in rolling horizon environments is a complex problem 
with many interacting elements, making exact analytical treatments difficult. An 
obvious question that arises in the context of rolling horizon planning is that of how 
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long the forecast window used at each decision epoch must be for the first-period 
decisions, i.e., the releases that are actually implemented, to be optimal in some 
sense with regard to the infinite, or at least longer, horizon problem under consider-
ation. A forecast window length that guarantees at least optimal first-period deci-
sions is referred to as a forecast horizon. For production planning models facing 
seasonal demand, it was recognized very early that “the relevant expectation and 
planning horizon will tend to cover a full seasonal cycle (or a shorter interval yet if 
storage costs are high) but is not likely to extend beyond this cycle except in the 
presence of a rapidly rising over-all trend” (Modigliani and Hohn 1955, p. 64f). 
Subsequent work analyzed this issue in more detail and established conditions for 
planning and forecast horizons (Kunreuther and Morton 1973; Miller 1979), most 
commonly in the context of dynamic lot-sizing models (Chand 1982; Chand and 
Morton 1986), which, incidentally, were also the context for early explorations of 
rolling horizon planning (Lundin and Morton 1975; Denardo and Lee 1991; Stadtler 
2000; Van den Heuvel and Wagelmans 2005). The relevant planning horizon may be 
very small if overtime is unconstrained and relatively cheap compared to holding 
inventory (Kunreuther 1971).

Applying order release planning models in a rolling horizon setting raises a num-
ber of issues that are not easily solved. If in a planning run the initial WIP at a 
workcenter is higher than planned, this can lead to a technically infeasible solution 
that must be avoided by some modification of the release model. The analogous 
situation occurs if an order is delayed to an extent that makes timely completion 
impossible (Pürgstaller 2009). If backordering is allowed, the model can delay the 
completion of orders at a cost, but in this case the costs of delaying beyond the plan-
ning horizon cannot be modeled, that is, there is an upper limit to the delay costs 
considered in the model that can distort the release decisions.1 Nonlinear, convex 
backordering costs can mitigate or avoid this at the expense of increased model 
complexity.

Although it may sound trivial, it is important to note that under rolling horizon 
planning the order releases over time planned at a given point in time (the rows in 
Fig.  10.4) are hardly ever executed, whereas the actual releases over time (the 
shaded elements in Fig. 10.4) are not the result of a single planning problem solved 
at a specific point in time. This raises several important research issues:

–– What is the performance of order release models in a rolling horizon environ-
ment, as opposed to the static environment discussed in the previous section that 
assumes all release decisions made at the start of the planning horizon will be 
implemented?

–– Is there a degree of demand uncertainty that degrades the performance of 
optimization-based multi-period order release planning to the point that rule-
based release mechanisms perform just as well, or even better?

–– What is the best way to handle related issues such as executing the plan updates, 
end-of-horizon effects, frozen horizons, etc.?

1 The authors thank Stefan Häussler for his contribution to this idea.
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Research on these issues is particularly difficult since in a rolling horizon envi-
ronment planning is performed along two time dimensions: in a period for the speci-
fied planning periods. Hence a great deal depends on the state of the decision 
maker’s information at each decision epoch, i.e., the start of each planning period 
where a new tentative plan is constructed. Hence a model of demand forecast evolu-
tion (Graves et al. 1986, 1998; Heath and Jackson 1994) must be an integral part of 
the research setting. Finally, the only practical way to evaluate the performance of a 
planning model in a rolling horizon environment is simulation, which requires the 
integration of optimization models, forecasting models and simulation in a complex 
research infrastructure, which is time-consuming both to build and to maintain. 
However, the fact remains that almost all discrete-time planning models of the type 
treated in this volume are implemented in practice on a rolling horizon basis, ren-
dering better understanding of this environment crucial to progress in this field.

10.3 � Integrated Planning of Process Improvement 
and Production Activities

As discussed in previous chapters, a clearing function can be viewed as a metamodel 
of a production resource, describing the relation between its output in a planning 
period and some number of state variables describing the state of the resource in the 
period. This suggests that the use of clearing functions may provide useful insights 
into the behavior of production systems subject to learning effects, where the capa-
bilities of the system improve over time due to accumulated knowledge of product 
and process.

Motivated by applications in semiconductor manufacturing, Kim and Uzsoy 
(2008b) consider a simplified model of this type considering a single production 
resource that must manufacture two types of lots: production lots, denoted by P in 
what follows, that can be used to meet demand, and engineering lots, denoted by E, 
that result in improved system performance after some time lag. The model seeks to 
determine the number of production and engineering lots to be released into the 
facility to maximize contribution (profit net of variable costs) in the face of different 
demand and price patterns. The demand patterns considered include demand 
increasing over time, as well as an increase followed by a decrease that is a more 
realistic description of the semiconductor product life cycle. The price scenarios 
represent the decline in sale price over time extensively documented in the semicon-
ductor industry (Leachman and Ding 2007).

Formulating a model for this problem requires a mathematical model of the 
learning process. The first step is to specify what determines the amount of learning 
taking place over an interval of t planning periods—is it cumulative production over 
the interval, cumulative engineering work (experimentation) over the interval, or 
some combination of the two? If some combination of the two, how much learning 
arises from each, and to what degree does one activity substitute for the other? 
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We must then determine the form of the function, specifying the maximum possible 
amount of improvement that can be obtained over the entire life of the product with 
infinite effort, and the rate at which learning will take place. It seems intuitive to 
postulate a learning model with diminishing returns to the underlying activity, 
implying that early in the life cycle improvement takes place rapidly but becomes 
progressively more difficult to achieve. There is an extensive literature on learning 
models in production systems (Yelle 1979; Anzanello and Fogliatto 2011) upon 
which this work can draw.

Kim and Uzsoy (2008b) postulate a simple concave, exponential learning func-
tion that increases the maximum possible output of the resource based on the total 
number of engineering lots processed over that period, of the form

	
φ X t d V eE V X t dE

−( )( ) = −( )− −( )
1 1 2

	
(10.1)

where XE(t − d) denotes the total number of engineering lots processed up to pro-
duction period t–d, and d is the time lag between an engineering activity taking 
place and the resulting improvement in capacity being realized. The parameter V1 
denotes the maximum additional capacity that can be obtained with infinite engi-
neering activity, while V2 controls the rate at which engineering activity improves 
capacity, which in practice would be governed by the skill of the engineering group 
responsible and the complexity of the technical problems encountered. This expo-
nential form implies decreasing returns to scale on engineering activity, where the 
marginal improvement in capacity from running an additional engineering lot is 
monotonically decreasing in the number of engineering lots processed. This learn-
ing function is then combined with the clearing function of Srinivasan et al. (1988) 
to obtain a time-dependent clearing function of the form
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where Wt denotes the number of production lots in WIP at the end of period t. This 
clearing function assumes that improvement can only be obtained through the pro-
cessing of engineering lots. The impact of improvement is manifested in the maxi-
mum possible output of the resource in a planning period, given by K1 + ϕ(XE(t − d)), 
implying an expected effective processing time of
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(10.3)

It can be shown that when K2Wt ≥ 0 and V2XE(t) ≥ 0 the clearing function (10.2) 
is concave in both XE(t) and Wt. This clearing function can then be embedded in a 
release planning model that seeks to maximize the total contribution over the plan-
ning horizon. A concave clearing function results in a convex optimization problem 
that can be solved using available commercial solvers. However, analysis of the 
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Karush–Kuhn–Tucker optimality conditions provides some interesting insights into 
the marginal value of engineering activity at optimality. Figure 10.5 shows the mar-
ginal value of engineering activity over the planning horizon under different price 
scenarios: level (LV), slowly decreasing (SD), medium decreasing (MD), fast 
decreasing (FD), and increasing (INC). The INC scenario is unlikely to be encoun-
tered in practice but is included for comparison purposes. As would be expected, the 
value of engineering activity is high early in the planning horizon, and lower in the 
ending periods. Interestingly, under all price scenarios there is an extended interval 
in the middle of the planning horizon where the value on engineering activity is 
essentially constant, except in the INC scenario. As expected, in the INC scenario 
the marginal value of engineering activity is consistently but slightly higher than in 
the other price scenarios under demand that increases and then decreases over the 
product life cycle.

Kim and Uzsoy (2013) extend this approach to a reentrant environment where 
products must return to the workcenter several times for processing. They again 
assume that improvements are obtained based on the number of engineering lots of 
each operation that are processed, assuming that an engineering lot can improve 
only the specific operation for which it is targeted. In order to ensure the correct 
behavior of the model in this multiple product environment, engineering lots are 
assumed to contribute to resource workload. The allocated clearing function formu-
lation of Chap. 5 is modified to incorporate the learning function in the allocation 
constraints (7.74), as opposed to the clearing function constraints themselves. The 
model assumes a single product for simplicity of exposition, but can easily be 
extended to multiple products with the addition of a product index. However, the 
model in its current form does capture the fact that engineering lots will consume 

Fig. 10.5  Marginal value of engineering activity under different price scenarios
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capacity at multiple processing steps in addition to those they are specifically aimed 
at improving, affecting the performance of the production lots.

As in the previous model, the Karush–Kuhn–Tucker optimality conditions can 
be used to compute the marginal value of engineering activity, i.e., of an additional 
engineering lot. The authors evaluate these marginal values in a computational 
experiment with all cost parameters and demand held constant over time and the 
same engineering delay time and level of engineering skill or technical difficulty for 
all operations. Operations are indexed in the sequence of their appearance in the 
routing, so operation 1 precedes operation 2 which, in turn, precedes operation 3. As 
seen in Fig. 10.6, the marginal benefit of engineering activity decreases sharply for 
all operations over the planning horizon, which is to be expected due to the dimin-
ishing returns on engineering activity implied by the learning function. The plots in 
Fig. 10.6 differ from those in Fig. 10.5 because demand is constant across the plan-
ning horizon in the former, while it is first increasing and then decreasing in the 
latter. What is more interesting, however, is that the marginal value of engineering 
activity for downstream operations is consistently higher than that for upstream 
operations. Essentially the marginal value of engineering activity can be viewed as 
a surrogate for the marginal value of additional capacity; there is no benefit to 
increasing the output of an upstream resource if its throughput will simply accumu-
late as WIP at a downstream operation with less capacity.

Both models discussed above involve considerable simplification of the practical 
problem, the most obvious being the deterministic formulation without considering 

Fig. 10.6  Marginal benefit of engineering activity for different operations for different levels of 
possible improvement V1
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any of the stochastic elements that are essential parts of the problem. However, the 
use of the clearing function allows explicit representation of the congestion effects 
by which engineering and production lots affect the performance of production sys-
tem, and hence each other’s cycle times and throughput. Neither of the two learning 
mechanisms is completely satisfactory, since in both models the learning shifts the 
clearing function upward across its entire range. This corresponds to reducing the 
average effective processing time, but does not capture the effects of learning on its 
variance. A substantially more complex clearing function has been suggested by 
Manda et al. (2016) for the case of product transitions, where a stable product is 
gradually replaced by a newer product whose processing is subject to higher vari-
ability, which decreases over time as learning takes place. These authors also con-
sider a stochastic production process using simulation optimization to optimize the 
releases of the two products over time (Manda and Uzsoy 2018). While a nonlinear 
programming model similar in spirit to those of Kim and Uzsoy can be formulated, 
the incorporation of learning effects into the variance of the effective processing 
time results in non-convex models that are difficult to solve. However, it is clear that 
the use of clearing functions that can accurately reflect the impacts of product mix 
and engineering activity on the mean and variance of the effective processing time 
at production resources offers a useful tool to gain insight into the behavior of these 
production system.

10.4 � Dynamic Pricing Under Price and Lead Time Sensitive 
Demand

In many capital-intensive industries demand can vary significantly over time, sug-
gesting the use of dynamic pricing to shape demand by means of price promotions. 
However, aggressive use of price promotions raises the possibility of stimulating 
excessive demand, which will result in higher than expected resource utilization, 
increased cycle times, and hence missed delivery dates with the associated loss of 
customer goodwill and future business. This need has led to a body of research on 
planning models that consider both lead times and pricing (Upasani and Uzsoy 
2008). Upasani and Uzsoy (2014) have approached this problem using clearing 
functions, providing some interesting insights and highlighting the issues that can 
arise when congestion is not considered. They assume that the firm behaves as a 
monopolist and faces a demand function

	 g P L M aP bL, ,( ) = − −{ }max 0 	 (10.4)

where M represents the maximum possible demand the market can support, P the 
price of the product, and L the lead time, respectively. In a given period t, the firm 
quotes a price Pt and a delivery time Lt to customers equal to the average manufac-
turing lead time at the start of the period. Since the manufacturing lead time (deliv-
ery time) depends on the number of orders waiting, the firm can control the 
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maximum delivery time by limiting the number of orders accepted. In effect, the 
firm quotes the delivery time based on the minimum of two values: the average 
manufacturing lead time, and a guaranteed delivery time LG by which all orders 
need to be satisfied, or customers will not place orders. Hence an order received in 
period t has to be fulfilled by period t + LG. The firm needs to align its production 
system with this market preference by quoting an average delivery time below the 
value of LG. This will, in turn, determine the number of orders that a firm may accept 
and hold in queue for processing, yielding a target production rate and a target uti-
lization. Thus, the higher the guaranteed delivery time allowed by the market, the 
higher the utilization at which the firm can operate its resources. The firm may also 
control the quoted average delivery time by quoting a higher price, and thus accept-
ing fewer orders. Customers may be willing to pay a higher price for lower quoted 
delivery times, depending on their sensitivity to lead time expressed by the value of 
b in the demand function. The quotation of an average delivery lead time implies 
that some orders may be delivered earlier than promised, and the authors assume an 
upper limit ν on the number of orders delivered early, as well as a unit size for all 
orders, and they assume a clearing function of the form suggested by Karmarkar 
(1989). The following notation is used in the optimization model:

Decision variables:
Rt: order release quantity in period t
Wt: work-in-process (WIP) inventory at the end of period t
Xt: production quantity in period t
It: finished goods inventory (FGI) at end of period t
Pt: price in period t
Dt: sales quantity in period t
Yt: quantity shipped in period t

Parameters:
at: price sensitivity of demand in period t
bt: lead time sensitivity of demand in period t
ht: finished inventory holding cost in period t
wt: WIP holding cost in period t
ɸt: unit production cost in period t
ct: order release cost per unit released in period t
ν: maximum units allowed to be shipped before due date over the horizon
K1, K2: parameters of the Karmarkar clearing function
M: intercept of the demand function
T: length of planning horizon
LG: guaranteed delivery time (in periods)
f(.): clearing function

Once again the average WIP Ŵt is used as the argument of the clearing function. 
By Little’s Law, the expected lead time in period t is given by L W Xt t t= ˆ /  expressed 
in units of periods. Thus, the demand observed in period t is given by:
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The joint price-production planning model can now be stated as follows:
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The objective is to maximize total contribution, expressed as the difference 
between the total revenue in each period and variable operating costs, (10.7) and 
(10.8) are WIP and finished goods inventory balance constraints, (10.9) represents 
production capacity using the CF, and (10.10) defines the sales quantity. Constraint 
(10.11) requires that all orders be shipped within the planned delivery time, but 
allows orders to be shipped earlier than due, rather than being held as finished goods 
inventory. Since the customer may impose a limit on the number of orders shipped 
early over the horizon (given by the parameter ν), we model this preference in con-
straint (10.12) and (10.13) defines the average WIP level Ŵt within a given period. 
All variables are required to be non-negative by (10.14). No cost is imposed on 
shipping for parsimony in the experimental design. For the same reason, there is no 
penalty if the average delivery time quotation exceeds the planned delivery time, but 
sales are reduced by the operation of the demand function.
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The authors compare the performance of this model to that of a joint price-
production planning model, referred to as the FLT model, that assumes a fixed 
delivery time L ≤ LG which is specified as an exogenous parameter. The demand 
observed by this model in period t is thus given by:

	 D M a P b Lt t t t= − − 	 (10.15)

The authors conduct extensive numerical experiments as well as analyze the 
structure of optimal solutions to both models using the Karush–Kuhn–Tucker opti-
mality conditions. Figure 10.7 compares the planned and realized sales for the two 
models, assuming that the actual behavior of the production system is governed by 
the clearing function and there is no delivery flexibility, i.e., υ = 0. Realized sales are 
computed for both models assuming that the CF represents the actual capability of 
the system. While the CF model is able to deliver the planned sales quantities, the 
FLT plans for significantly higher sales but is unable to deliver them on time because 
it ignores the congestion effects reflected by the CF.  The CF model sets prices 
slightly, but not drastically, higher than the FLT model across the horizon. The FLT 
model, however, assumes that all demand within the maximum capacity of the sys-
tem can be met within the planned lead time of one period. However, the combina-
tion of low price and low quoted lead time creates high demand that cannot be met 
within the planned lead time, resulting in a substantial shortfall in delivery in the 
later periods. Figure 10.8 shows the planned and average cycle times for the two 
models. The FLT model plans using a constant planned lead time, but the realized 
average cycle time increases throughout most of the planning horizon as the system 
cannot meet the high demand it has generated. The CF model, in contrast, maintains 
a relatively smooth sales profile by varying the planned cycle time over the horizon. 
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Fig. 10.8  Lead times comparison with u = 0.9, L = 2, LG = 3

The manner in which the maximum permissible loading, i.e., the planned capacity, 
is specified in the FLT model will clearly influence the results; in these experiments, 
this parameter was set to the maximum possible output obtainable from the clearing 
function, given by the parameter K1 in (10.9). More extensive results and an in-
depth discussion of the numerical experiments can be found in the original paper.

While this model is, once again, a great simplification of the practical problem, 
the use of the clearing function to represent the behavior of congested production 
resources results in qualitatively different results from those obtained using fixed 
planned lead times. The complexity of pricing models of this type rapidly increases; 
in particular, many models of this kind result in non-convex optimization models 
where often the best that can be done, as is the case in the models reported above, is 
to examine locally optimal solutions.

10.5 � Discussion

The applications discussed in this chapter are illustrative of the types of problems 
that can be addressed using the clearing function construct. Sections 10.1 and 10.2 
compare the performance of release planning models using clearing functions to 
those using fixed lead times under both static and rolling horizon conditions. The 
results are promising but not definitive; in both sections we find that the clearing 
function models perform well under some conditions and less so under others. A 
number of factors may have affected the results, including some aspects of the 
experimental design and the way in which the clearing functions were estimated. Of 
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particular interest are the findings related to the performance of fixed lead time 
models; while integer lead times appear to lead to poor performance, fractional lead 
time models perform well even though experiments find that the observed cycle 
times at some resources can deviate considerably from the estimates over the plan-
ning horizon. While our understanding of how to best estimate clearing functions is 
highly unsatisfactory, it is interesting to observe that even though fixed lead time 
models have been in use for a long time, our understanding of how to specify the 
planned lead times they use is also far from definitive. We are not aware of any sys-
tematic experimental study of how the performance of fixed lead time release plan-
ning models is affected by the planned lead time estimates used, nor of a body of 
theory addressing this interesting question. A systematic exploration of this area 
offers some intriguing prospects for future research.

The models of engineering improvements and dynamic pricing, on the other 
hand, both illustrate how the use of clearing functions can lead to interesting models 
that provide considerable insight. In the context of engineering improvement, the 
use of clearing functions provides a much more complete picture of the adverse 
effects of engineering work on the regular production activities of the production 
unit. The increased uncertainty associated with the duration and occurrence of engi-
neering activities results in increased mean and variance of the effective processing 
time distribution in the production unit, better capturing the externalities imposed 
on production by engineering work. The dynamic pricing model, on the other hand, 
illustrates the difficulties encountered when customer lead times affect demand, 
which must be met from a production unit whose resources exhibit queueing behav-
ior. The clearing function pricing model allows the quotation of lead time and price 
combinations that allow demand to be met in a timely manner, as opposed to the 
fixed lead time case which may allow unrealistically low prices to create congestion 
and extend cycle times beyond what the customer can tolerate.

Other potential areas to which clearing functions can be applied include capacity 
expansion, explored by Kim and Uzsoy (2008a), modelling patient flow in service 
systems such as hospitals, and integrated planning models that address stochastic 
demand by planning releases and safety stocks in an integrated manner (Orcun et al. 
2009). However, we need to remember that the examples in this chapter raise as 
many questions as they answer, suggesting an interesting and fruitful research 
agenda for the future.
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Chapter 11
Conclusions and Future Directions

Problems arising in the PPC systems that support the complex global supply chains 
driving the modern economy were among the earliest to be addressed with the tools 
of operations research (Arrow et al. 1958; Hanssmann 1959; Holt et al. 1960; Buffa 
and Taubert 1972; Johnson and Montgomery 1974), leading to a broad, mature body 
of knowledge using a variety of mathematical formalisms including mathematical 
programming, queueing, simulation, and stochastic optimization. By the nature of 
this problem domain, this volume has ranged widely over a great deal of ground, 
and we hope that the reader has found the journey worthwhile. This chapter con-
cludes the book with a brief review of the principal results and their implications for 
future work, both related to the clearing functions that are the central concern of this 
volume and for the broader field of production planning models.

11.1 � The Gordian Knot: Output, Cycle Time, and Workload

The problem at the heart of this volume is the intimate interconnection between the 
output, cycle time, and workload of a production unit, with, of course, the individual 
production resource as a special case. Whether the problem faced is that of coordi-
nating a number of production units across a supply chain, or planning the releases 
of work into an individual production unit to meet demand in the best possible man-
ner, PPC systems simply cannot operate effectively without some cognizance of the 
impact of their decisions on cycle times. As discussed in Chap. 2, queueing models, 
simulation experiments, and industrial observation all indicate that the cycle time of 
an order through a production unit is a random variable whose distribution depends, 
among potentially many other things, on the utilization of the resource, i.e., the 
workload available for it to process that is determined by the work release decisions 
made by any PPC system discussed in Chap. 1. Hence cycle times should be consid-
ered as endogenous to the planning process, rather than as an exogenous parameter, 
which is manifestly not the case in most of the production planning literature that 
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goes by that name. Most of this literature can, with more or less of a stretch, be 
positioned within one of the two principal frameworks for PPC systems that have 
emerged as a (admittedly evolving) consensus between industrial practice and aca-
demic research: Manufacturing Planning and Control (Jacobs et  al. 2011) and 
Advanced Planning and Scheduling (APS) (Stadtler et al. 2015). The discussion of 
these frameworks in Chap. 3 highlights the importance of cycle times to the effec-
tive operation of both. This circularity—that planning systems need to be cognizant 
of cycle times, but cycle times are a consequence of the work release decisions 
made by the planning systems themselves—has, in our opinion, constituted a sig-
nificant barrier to progress. The contents of this volume can thus be viewed as a 
series of attempts to address this difficulty or mitigate its negative impacts.

Chapter 4 discusses the workload control (WLC) paradigm, which constitutes a 
first-order response to the relation between workload, output, and cycle time. 
Despite their wide variety, all WLC approaches seek to identify a workload level for 
the production unit that will yield an acceptable compromise between the goals of 
maintaining low WIP and cycle times on the one hand, and sufficient output to meet 
demand on the other. Most such systems are rule-based, designed to operate in an 
environment where the demand distribution faced by the production unit remains 
approximately constant; they do not easily adapt to changing operating conditions, 
which would require recalculation of their various parameters as the environment 
changes. It is probably fair to say that there is as yet no unified theory governing the 
relations between the environmental conditions faced by such WLC systems and the 
values of the various parameters they require. Only a few of these approaches use an 
explicit model of material flow through the production unit to inform their work 
release decisions. The optimization models discussed in the subsequent chapters 
can be viewed as natural extensions of these model-based WLC approaches.

Most existing approaches to production planning, from the material require-
ments planning (MRP) procedure widely used in industry (Orlicky 1975; Baker 
1993; Jacobs et al. 2011) to the mathematical programming models that form the 
central engine of many advanced planning and scheduling (APS) systems (Voss and 
Woodruff 2006; Hackman 2008), approach this issue using planned lead times that 
are treated as exogenous, workload-independent parameters. As long as lot-sizing 
or capacity expansion decisions are not considered, avoiding the need for integer 
variables, these models can generally be formulated as linear programs that can be 
solved with existing commercial solvers, even for very large problem instances. 
One of us (RU) had the opportunity a decade ago to observe the implementation of 
a new planning system at a major high-technology manufacturer. The complete 
workflow for generating a plan for a significant portion of the supply chain, involv-
ing multiple plants, multiple production lines within plants and distribution facili-
ties, took approximately 24 h at that time, of which only 45 min was required for the 
solution of the optimization model. The remaining time was taken up by acquiring, 
formatting, and cleaning input data from the firm’s ERP system and then transfer-
ring the output of the planning model back to the ERP system for execution. Chapter 
5 summarizes the state of the art in these models when the planned lead time remains 
constant over time.
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There is considerable evidence, including our own presented in Chap. 10, that 
despite its evident inconsistency with queueing theory the use of fixed planned lead 
times frequently does not lead to unacceptably bad performance. One reason for this 
may be that many facilities are operated within a relatively narrow range of operat-
ing conditions as defined by product mix, available resources, and demand, allow-
ing planned lead times that provide good shop-floor performance to be arrived at 
over time. There is also often considerable opportunity for shop-floor decisions to 
mitigate the negative effects of suboptimal work release decisions by scheduling 
overtime, exploiting alternative resources, expediting and other such measures.

An additional advantage of planning models based on exogenous planned lead 
times is their intuitive nature. The idea of a delay between the release of work and 
its emergence as finished product is an easy one to grasp, making acceptance of the 
resulting planning models by their ultimate users, the managers responsible for the 
performance of the production units making up the supply chain, much easier than 
for a complex, nonlinear mathematical model. This does not mean, however, that 
the decisions obtained from a complex optimization model are always intuitive; 
anyone who has tried to explain to a manager why the optimization model chose to 
produce a specific amount of a specific item at a specific time on a specific resource, 
instead of using one of the many available alternatives (usually including the man-
ager’s favorite), will recognize the difficulty in parsing the output of a large mathe-
matical program into a narrative explanation. The work of Greenberg (1996) on a 
rule-based system for explaining the results of linear programming models suggests 
an interesting direction for future research customizing this generic approach to 
specific production planning formulations.

The planning models in Chap. 5 can be viewed as optimizing work releases for a 
given set of planned lead times. The endogeneity of cycle times to work release 
decisions discussed in Chap. 2 suggests a model that can jointly optimize releases 
and cycle times simultaneously. Thus, if we could find the “correct” planned lead 
times for each planning period, the models of Chap. 5 would provide the optimal 
releases directly. Chapter 6 explores the difficulties that arise in identifying a con-
sistent set of planned lead times across the planning horizon, and then focuses on 
approaches that decompose the planning problem into two subproblems. The first of 
these takes estimates of planned lead times as input and computes optimal releases 
based on these lead times. The second model takes a set of releases as input, and 
returns estimates of the resulting cycle times from which revised planned lead times 
can be computed. The release planning model is usually a linear program similar to 
those described in Chap. 5, while the lead time estimation model is usually a more 
or less detailed simulation model of the production unit of interest, although queue-
ing and statistical models can also be used. A variety of such models have been 
proposed since the initial work of Hung and Leachman (1996), none of which have 
yielded conclusively positive results. Their computational burden tends to be high 
due to the need for multiple replications of a (often large) simulation model at each 
iteration. Their convergence behavior is not well understood; there appears to be no 
theoretical guarantee of their convergence, and experimental observations include 
cycling between solutions, failure to converge in any recognizable way, and 
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dependence on the starting solution. The prime advantage of these approaches is 
that they combine two techniques, mathematical programming and simulation, that 
are each familiar to practitioners and have access to excellent commercial software. 
However, this approach does not build an explicit model linking output, workload, 
and cycle time; this model is implicit in the dynamics of the simulation or queueing 
model used to estimate the planned lead times given a set of releases.

Chapter 7 introduces univariate clearing functions that formulate a mathematical 
relation linking the expected output of a production resource in a planning period to 
some measure of its workload in the planning period. The basic concept was intro-
duced, apparently independently, by several researchers in the late 1980s (Graves 
1986; Srinivasan et al. 1988; Karmarkar 1989). Univariate clearing functions that 
are concave in their measure of workload (whatever that may be) yield convex opti-
mization models. Since a concave function can be approximated to any degree of 
accuracy by a set of linear functions, it is easy to approximate these as linear pro-
grams, although the growing computational power of convex nonlinear solvers ren-
ders this less important than it once was. However, serious difficulties arise when 
multiple products competing for capacity on the same resource are considered, and 
straightforward extension of the single-product models results in clearly anomalous 
behavior. These difficulties are closely related to those ably explored by Carey and 
his coauthors in the domain of traffic modeling (Carey 1987, 1990; Carey and 
Subrahmanian 2000; Carey and Bowers 2012) and discussed in Chap. 6 in the con-
text of time-varying planned lead times. After illustrating the behavior of the clear-
ing function as a representation of a production unit, this chapter presents the 
allocated clearing function model of Asmundsson et al. (2006, 2009), which pro-
vides an effective although approximate solution to these difficulties and remains 
the state of the art at this time of writing. The chapter also illustrates one of the 
primary theoretical advantages of the clearing function approach over the models of 
Chap. 5, its ability to provide richer dual information on the marginal price of capac-
ity at the different resources in the production unit.

The development of the allocated clearing function model exposes the limita-
tions of the use of univariate clearing functions. The univariate clearing function 
estimates the aggregate output of the production unit across all products as a func-
tion of the aggregate workload of all products and then, as its name implies, allo-
cates this aggregate output optimally among the different products. Chapter 8 
departs from the observation that the allocated clearing function approach fails quite 
badly when the aggregate output depends heavily on the mix of products, not just on 
the aggregate workload. This is clearly the case when there are significant setup 
times between different products on the production resources; lot-sizing and 
sequencing decisions now have major impact on output. This chapter examines 
efforts to formulate multivariate clearing functions, raising the question of what 
additional state variables should be included. A variety of such state variables have 
been tried, including decomposing the workload of a product into the WIP available 
at the start of the period and releases during the period; inclusion of state variables 
related to previous periods; and using the output of each product as a state variable 
describing the output of all others. Many of these efforts result in non-convex 
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optimization models, although computational evidence suggests that convex solvers 
can often obtain global optimal solutions in many cases, suggesting the presence of 
considerable structure that remains to be uncovered. Computational results, how-
ever, indicate that considerable improvement over univariate clearing functions can 
be obtained, at the cost of additional computational burden. It is probably safe to 
classify much of the work in this chapter as exploratory, leaving considerable room 
for future research.

Chapter 9 briefly explores the relation between the clearing function concept and 
lot-sizing decisions in the context of a single production resource. The seminal work 
of Karmarkar and his coworkers (Karmarkar 1987; Karmarkar et  al. 1992) used 
queueing models to illustrate the relation between lot-sizing decisions and cycle 
times, which can then be used to derive multivariate clearing functions in which the 
output of a product depends on the lot sizes and output of all products in the system. 
The chapter then develops a non-convex optimization model using multivariate 
clearing functions for a single-machine dynamic lot-sizing problem and shows that 
this can yield significant performance improvements over prior approaches that do 
not consider queueing behavior. The chapter closes with an admittedly heuristic 
discussion using this model to illustrate the difficulty of accurately estimating the 
setup costs that are a crucial parameter of most lot-sizing models in the literature, 
which focus on the tradeoff between setup and cycle stock holding costs.

Having presented the clearing function concept in various forms in Chaps. 7 
through 9, Chap. 10 examines several applications of the concept. A series of com-
putational experiments using the allocated clearing function model for release plan-
ning for semiconductor wafer fabrication yield admittedly mixed results. While the 
clearing function model outperforms fixed lead time models with integer lead times, 
the use of fractional lead times largely eliminates the advantage of the clearing func-
tions except under time-varying demand. Other applications include the use of 
clearing function models in a rolling horizon context, where they largely retain their 
advantage over fixed lead time models, the integrated planning of production and 
improvement activities, and dynamic pricing in an environment where demand is 
sensitive to both lead time and price. By and large, the results of the clearing func-
tion approaches are promising, especially when the richer dual information they 
yield can be used to gain insight into system behavior.

11.2 � Weaknesses and Limitations of the Clearing Function 
Approach

Having laid out in the preceding chapters the basic motivation for the clearing func-
tion approach and the state of our knowledge to date, we would be remiss if we 
implied that we have a watertight case; we most certainly do not. The perceptive 
reader will have raised a number of criticisms themselves by this point in the vol-
ume, and there are many such both stated and implied in the previous pages. In this 
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section, we will discuss several of the most important of these difficulties, some of 
which are the subject of ongoing research while others await the attention of the 
research community.

11.2.1 � Why Clearing Functions?

The first question that needs to be addressed is simply that of why the clearing func-
tion construct should be used at all. Chapter 7 pointed out that a clearing function is 
a metamodel describing certain aspects of the behavior of a queue. If this is indeed 
the case, there are a wide range of alternative approaches to choose from, such as 
other forms of metamodeling (Li et al. 2016), system dynamics (Sterman 2000), 
transient queueing models (Askin and Hanumantha 2018) and, of course, simula-
tion (Law and Kelton 2004). Given that the reason for using clearing functions is not 
at all obvious, and at least one reviewer of our work has stated categorically that “…
the clearing function idea is outdated,” some discussion of this issue appears to be 
necessary.

The primary reason for using a clearing function to represent a production unit is 
the ability to embed it in a tractable optimization model to plan releases for the next 
several periods. For this purpose, what is required is a sufficiently accurate repre-
sentation of the relation between workload and output; six decimal places of preci-
sion are not required in a planning model whose purpose is simply to ensure that the 
workload in the production unit is at the correct level to meet the desired output 
without unnecessarily increasing WIP and cycle time.

The other types of model described above do not lend themselves easily to the 
formulation of tractable mathematical programming models. It is certainly true that 
queueing or simulation models can be embedded in an optimization framework, 
using algorithms similar to those used for simulation optimization (Fu 2015). A 
number of models of this latter type have been presented in the literature, notably 
the metamodel-based simulation optimization algorithm of Li et al. (2016) and the 
simulation optimization approaches of Kacar and Uzsoy (2015). These models ben-
efit from the superior ability of simulation models to incorporate detailed system 
dynamics that are difficult to capture in a clearing function. However, the develop-
ment of the metamodel requires extensive simulation experiments to collect data 
and fit the metamodel, while simulation optimization is very time-consuming. The 
use of the clearing function construct is aimed at enabling the use of a mathematical 
programming model to optimize releases as well as providing the information from 
the dual solution that may help management better understand the behavior of their 
system. It is very unlikely that a clearing function can provide a highly precise pre-
diction of output in each period, but that is not its purpose; it seeks to provide suf-
ficiently accurate descriptions of system behavior to ensure that the planning model 
using it maintains the system workload in a state that will sustain the desired out-
put level.
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The advantage of a mathematical programming model, in turn, is that it allows 
rapid solution of a complex optimization problem, especially when it can be formu-
lated as a linear program. The estimation of the clearing function used in the model 
will require considerable computational effort, but this work can be performed 
offline and is not part of the run generating the planning solution. In contrast, any 
model utilizing a detailed simulation of the production unit of interest, whether a 
full-blown simulation optimization approach or one of the iterative multi-model 
approaches discussed in Chap. 6, requires multiple replications of simulation runs 
for the actual solution of the release planning model, requiring considerably 
more time.

11.2.2 � Choice of Functional Form for the Clearing Function

While the idea of a concave non-decreasing functional relation between the work-
load and the expected output of a production resource is quite intuitive, it should be 
evident to the reader by this point that the state of our knowledge as to what func-
tional forms to use and how to estimate their parameters from either industrial or 
simulation data is as yet highly unsatisfactory. The derivation of clearing functions 
from steady-state queueing models is inherently dangerous in a discrete-time plan-
ning model unless planning periods are long enough for the underlying queues to at 
least approximately reach steady state, which is frequently not the case in practice. 
The early work of Asmundsson et al. (2009) revealed that using conventional least-
squares regression to fit one of the empirical functional forms discussed in Chap. 7 
results in systematic overestimation of the expected output, due to the relation cap-
tured by Jensen’s inequality (8.8) discussed in Sect. 8.2. Gopalswamy and Uzsoy 
(2019) identify a number of additional issues arising in the fitting of clearing func-
tions to simulation data, and the design of appropriate simulation experiments to 
obtain such data.

Even if the issues associated with estimating clearing functions of a tractable 
computational form were addressed satisfactorily, the currently common approach 
of fitting a single clearing function that is expected to represent the behavior of the 
production resource in all planning periods is clearly a significant approximation, as 
discussed in Sect. 8.2 and illustrated in Fig. 8.2. The simulation optimization 
approach of Kacar and Uzsoy (2015) found that fitting a clearing function to each 
planning period gave superior results to using a single clearing function for all peri-
ods. However, this simulation optimization approach is computationally demand-
ing, especially when used in a rolling horizon environment.

Yet another difficulty with the use of clearing functions arises in multistage envi-
ronments. Expression (2.1) shows that the expected cycle time at a given resource 
depends on the mean and variance of both interarrival and service times; the vari-
ability of the interarrival times in turn depends on decisions made at upstream 
resources. Thus, at least in theory, the shape of the clearing function at a given 
resource is affected by the production decisions at upstream resources. The clearing 
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function models we have discussed in this volume do not take this type of interrela-
tion between production resources, or production units, into account. Instead they 
assume that the mean and variance of interarrival and service times at each resource 
are independent of other resources, an assumption referred to in queueing theory as 
decomposition. Clearly some error is introduced into the models by this approach. 
One would expect this to become especially serious in multistage systems with 
setup times at each resource, where lot-sizing decisions at each stage in each period 
may affect the shape of clearing functions at downstream resources.

The situation for MDCFs is still more complicated. The fact of the matter is that 
at present we have no firm theoretical foundation for deciding which state variables 
to include in an MDCF; it is notable, and lamentable, that most of the MDCFs pro-
posed to date draw their functional form from steady-state queueing analyses, often 
of very simple models. For example, the MDCFs of Albey et al. (2014, 2017) follow 
the functional form suggested by Karmarkar (1989) which is motivated primarily by 
steady-state analysis of the M/M/1 queue. The experimental work of Gopalswamy 
and Uzsoy (2019) suggests that the empirical functional forms used extensively in 
the past cannot provide good fits across the entire operating range of workloads a 
production resource will encounter.

Our current state of knowledge suggests that the best approach to fitting clearing 
functions available at present is the use of concave piecewise linear regression, 
which can be formulated as a mixed integer program (Toriello and Vielma 2012; 
Gopalswamy et  al. 2019) although the solution of large models with many data 
points remains computationally challenging. The piecewise linear approach allows 
great modeling flexibility and yields a clearing function that when implemented in 
the allocated clearing function model of Chap. 7 results in a linear program. 
However, the establishment of a strong theoretical and methodological foundation 
for the fitting of clearing functions, encompassing both the choice of state variables 
and of a suitable functional form, remains important directions for future research. 
The promising performance of clearing function based production planning models 
presented in this volume suggests that this effort may well be worthwhile.

11.3 � Some Directions for Future Research

The limitations of the clearing function approach discussed in the previous section 
suggest a broad range of interesting research questions for the future, many of which 
lie at the intersection of what have traditionally been viewed as quite distinct 
research streams. The basic idea of a clearing function lies at the intersection of 
queueing and mathematical programming models of production systems, research 
areas that have developed largely independently until today. In this section, we dis-
cuss several longer-term research efforts that can build on the clearing function 
concept, but which address much broader issues spanning several research streams 
and mathematical modeling tools.
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It is clear from the discussion in Chaps. 5 and 6 of this volume that, from a tech-
nical perspective, order release models and mechanisms that assume fixed, exoge-
nous lead times are quite mature, although their integration into the overall PPC 
system can raise numerous questions. Load-dependent lead times, on the other 
hand, are much more difficult to handle technically (and also organizationally, 
although this is not our primary focus), and this research stream is far from mature. 
This provides great opportunities for researchers to advance the frontier of our 
knowledge in this domain that is, as described in Chap. 1, an essential element of 
the PPC architecture in most discrete manufacturing companies. We now briefly 
describe some of the most important research questions, starting with technical 
issues and proceeding to more conceptual topics.

11.3.1 � Parameter Setting for Order Release Models

Order release models with exogenous lead times require lead time parameters that 
are often taken to be constant over time as in Chap. 5, but can also vary over time as 
discussed in Chap. 6. Clearing function models must specify the functional form 
and the shape parameters of the clearing functions. These parameters anticipate the 
behavior of the production units, but since both the realized cycle times and the real-
ized output are random variables subject to often unknown and changing probability 
distributions, the parameters cannot simply be set to the “correct” values. This is 
especially evident for clearing functions where the conditional distribution of the 
output for a given planned load depends on various factors including the order 
release pattern itself, due to the planning circularity described in Chap. 2. Therefore, 
the choice of parameter values encompasses both an anticipation aspect (how accu-
rately will the clearing function anticipate the realized output from the production 
unit or resource?) and an implicit decision as to the tradeoffs between WIP and FGI 
inventory levels and due date performance (with the importance of the latter depend-
ing on whether safety stocks are maintained, as discussed below). The performance 
of order release models can be quite sensitive to the parameter values as indicated, 
e.g., by the performance differences between fixed lead time models with integer 
and fractional lead times discussed in Chaps. 5 and 10. Very similar questions can 
be raised in terms of estimating suitable fixed lead times: assuming the distribution 
of the cycle times in each planning period was known, what is the optimal value of 
the planned lead times?

Considering the anticipation aspect of the parameter setting problem, one would 
assume that best performance can be achieved by setting, e.g., clearing function 
parameters to the values obtained from observation, such as running a least-squares 
regression over observed load–output data. However, the parameter setting that 
yields the best system performance can be substantially different (Kacar and Uzsoy 
2015) and the mechanisms behind these deviations are not fully understood. We 
must also keep in mind that the vast majority of research on parameterization issues 
is performed on simulated data. Empirical data exhibit substantial noise which 
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makes functional relationships between load and output difficult to identify (Fine 
and Graves 1989; Häussler and Missbauer 2014), and further research is needed to 
examine the validity of insights obtained from simulations to real-life situations.

11.3.2 � A Deeper Understanding of Clearing Functions: 
Properties, Theoretical Basis, and Integration 
with Order Release Models

In Chap. 7, clearing functions were motivated by queueing models that suggest a 
concave, saturating functional relationship between WIP and output, caused primar-
ily by the variability of the arrival and departure process. However, the clearing 
function concept was introduced by Graves (1986) assuming that output in a period 
is proportional to the load in that period. The smoothing parameter that is implied 
by this model is assumed to be “set … so that the resulting time series for produc-
tion is consistent with the work center capability” which can be obtained by assum-
ing that “As a queue builds at a work center, a manager will direct more resources 
to the work center to reduce the queue to normal levels” (p. 524). Hence this propor-
tional clearing function models the effect of a production control rule, which is quite 
distinct from the variability argument invoked to justify the nonlinear, saturating 
shape. Linear and saturating clearing functions differ not just with respect to their 
shape, but also with respect to the underlying phenomenon they seek to represent. It 
is important to keep both modeling aspects of clearing functions in mind—model-
ing variability versus modeling production control rules. The latter aspect opens up 
the possibility of modeling behavioral aspects such as load-dependent processing 
times, possible capacity loss due to congestion (e.g., because material must be shuf-
fled by the production workers), etc. The modeling of these often largely informal 
factors is still at its beginning—an important research question within behavioral 
operations management—and can substantially influence the behavior of clearing 
function models.

Applying clearing functions in a transient regime leads to additional complica-
tions. While it is easy to prove that decomposing the workload in a period t (the 
explanatory variable of most one-dimensional clearing functions) into its compo-
nents and formulating a multi-dimensional clearing function that takes the history 
of the process into account can improve output estimation, incorporating this func-
tion into order release models can lead to oscillating order releases as discussed in 
Chap. 8. Naïvely we would assume that more accurate anticipation of the output 
should improve the performance of the optimization model, but apparently things 
are not that simple. This indicates that a comprehensive, consistent theory of order 
release models incorporating functions that estimate the conditional future output is 
not yet available. This aspect also raises the question of which characteristics of 
queueing systems are most critical to the model behavior and thus should be mod-
eled most accurately. These might include the steady-state behavior, the WIP and 
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output evolution in the transient phase, or the propagation of variability through the 
workcenters, including the transient phase.

Production orders that are released are eventually finished, unless they are can-
celed deliberately; only their finish time is uncertain. Clearing function models 
express this timing uncertainty as an uncertainty in output quantities across the peri-
ods. This maintains the basic structure of production planning models established in 
the pioneering works described in Sect. 4.6, and is a significant modeling decision 
since this basic structure was not originally designed for handling lead times. 
Integrating lead time variables into this modeling framework, that is, expressing the 
timing uncertainty directly, either leads to intractable model structures or discards 
the tight relationship between WIP and cycle time demonstrated in Chap. 2. The 
difficulty with cycle time oriented release models and iterative approaches is an 
immediate consequence. Research on alternative modeling approaches such as 
robust optimization is an obvious possibility.

11.3.3 � Integration of Order Release into the Overall Supply 
Chain

Both model-based and rule-based order release mechanisms mainly deal with order 
releases to single production units. This is adequate for MTO companies where 
customer orders translate directly to production orders in the order pool and are 
processed mainly by a single production unit, like the CD/DVD manufacturer in 
Sect. 1.2.2. However, if the orders must be processed sequentially by multiple pro-
duction units as in semiconductor manufacturing (Sect. 1.2.1), the order releases to 
the production units must be coordinated according to the BOM structure. Fixed 
lead times greatly simplify this material coordination task (de Kok and Fransoo 
2003) and can, in principle, be combined with clearing functions (Jansen et  al. 
2013). Extending load-dependent lead time models to incorporate material coordi-
nation along the multistage production-inventory system is much more difficult and 
remains a topic for future research. A central question is whether a sequential 
approach that derives the demand for the end items of a production unit from the 
planned releases to the downstream production units, or an integrated model that 
encompasses all production units simultaneously, extending the fixed lead time sup-
ply chain model in de Kok and Fransoo (2003), is preferable. This problem can be 
viewed, at an extreme, as that of incorporating the queueing behavior of resources 
described in Chap. 2 into the MRP logic of the MPC framework described in Chap. 
3; should we modify the release schedule obtained by the MRP logic after the fact 
to accommodate the effects of limited capacity and queueing, or should this be done 
within the MRP run itself in some way? Analogously, if master planning as imple-
mented in APS systems is applied the queueing perspective must be integrated into 
the capacity and lead time modeling used at this level.
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Order release models integrate the tasks of production smoothing and cycle time 
anticipation and control. Production smoothing is also performed at the master 
planning/MPS level to ensure that the number of end items requested from a pro-
duction unit in each period (the Djt parameters in the release models) is consistent 
with the capabilities of the production unit. Hence the smoothing capabilities 
required at the order release stage depend on the smoothing logic at the master plan-
ning/MPS level, and perhaps even at the lot-sizing level. Seamless integration of 
these levels requires consistency between the decision models at each level, in par-
ticular in how they anticipate the dynamic behavior of the production units. The 
anticipation models applied at the master planning/MPS level should be aggregate 
versions of the respective models applied for order release. Since master planning 
models and resource profiles for master production scheduling are generally not 
WIP based, this is not trivial. The research task behind this is the aggregation of 
transient queueing networks. Finding suitable approximations that are applicable in 
practice is still largely unsolved; Zäpfel and Missbauer (1993) give a first attempt to 
handle this aggregation problem. To what extent aggregation methods designed for 
the steady state, such as the effective processing time approach of Kock et al. (2011), 
Hopp and Spearman (2008), and Veeger et al. (2011), can be extended to the tran-
sient states implied by load-dependent lead times remains to be clarified.

Integrating order release models into the material coordination task also requires 
the determination of inventory levels of stock keeping units between the production 
units, including safety stocks. Order release models that explicitly determine WIP 
levels within the production units provide, at least in principle, the possibility of 
considering the interaction between WIP and safety stock that is evident from inven-
tory theory—the stockout probability for a given demand distribution depends on 
both the safety stock and the WIP level, with WIP providing some functionality of 
safety stock (Graves 1988). Simultaneous optimization of safety stocks and lead 
times or planned WIP, respectively, using clearing function models and an aggregate 
representation of the production units has been demonstrated in Albey et al. (2015), 
Albey and Uzsoy (2016), Aouam and Uzsoy (2012, 2015), and Orcun et al. (2009). 
Extending this work to multistage systems and/or more detailed representations of 
the production units is an obvious research topic.

Optimizing inventory levels refers to handling uncertainty of demand and other 
planning parameters. Since demand uncertainty is usually higher for more remote 
planning periods, which implies that for a certain period it becomes smaller as the 
time of planning proceeds, simply optimizing the (safety) stock levels for given 
demand distributions can lead to exaggerated planned stock levels for the more 
distant planning periods that most likely are corrected in the course of rolling hori-
zon planning; the order release and capacity plans are biased systematically. 
Stochastic demand and specific planning rules for responding to demand render 
future production quantities random variables (de Kok and Fransoo 2003), as con-
sidered in the original work of Holt et al. (1960). Aouam and Uzsoy (2012) find that 
in their simple setting linear decision rules for updating the planned production 
quantities perform well, which is an encouraging result and in line with adjustable 
robust optimization (Gorissen et al. 2015). How to extend this to realistic settings 
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and how to assign/split up the task of setting planned inventory levels to/between 
the order release and the master planning/MPS level is a challenging research topic 
since it encompasses the hierarchical design of the entire PPC system. Again the 
need to consider the impact of planned WIP at the master planning level is evident.

11.3.4 � Advanced Techniques for Flow Time and Output 
Modeling

Determining lead times and order release quantities simultaneously requires an 
anticipation model that predicts the future values of these performance measures for 
a given release schedule. Univariate clearing functions consider only some measure 
of WIP as explanatory variable, while multi-dimensional clearing functions 
(MCDFs) allow more accurate representation of the causal mechanisms that lead to 
certain values for cycle times and output. The conceptual problems of MDCFs, 
especially when transient effects are modeled, are described in Chap. 8. Very accu-
rate cycle time and output prediction can be obtained by discrete-event simulation, 
but this leads to the difficulties described in Sect. 6.6.

This dilemma motivates the use of metamodeling for cycle time and output pre-
diction and metamodel-based rather than simulation-based optimization (Barton 
and Meckesheimer 2006). When appropriately trained or parameterized, the 
metamodel, which is usually a deterministic function, yields estimates of the perfor-
mance measures of the production unit very close to the simulation output as a func-
tion of the input variables, which in our case are the order releases over time. The 
impact of the relevant parameters that describe the properties of the material flow, 
such as machine failure characteristics, lots sizes, and operation times of the pro-
duction lots, are either coded in the metamodel or are declared as arguments of the 
metamodel depending on its specification. Metamodels can be represented by 
generic functions such as polynomials, functions that are based on certain theoreti-
cal requirements on their shape (e.g., the MDCF in Häussler and Missbauer 2014), 
or by artificial neural networks. Applying metamodels to anticipate output and cycle 
times is an extension of MDCFs. Based on Yang and Liu (2012) who propose a 
metamodel for the transient analysis of queueing systems, Li et al. (2016) develop a 
metamodel that receives the release quantities in the planning periods as input and 
yields the first two moments of WIP and output in the planning periods. Given this 
metamodel, the releases are approximately optimized using a multi-objective 
genetic algorithm. The metamodel considers both the departures and the queue 
length over the relevant past periods for the output prediction, making reasonable 
assumptions about the underlying time series model, and is fitted using extensive 
simulation data. The model performs very well compared to a simulation-based 
optimization with excessively long computer run times. Since there is no sharp 
boundary between MDCFs and metamodels, there might be a number of ways to 
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formulate and refine metamodels for anticipating output and cycle times that can be 
explored in future research.

In the metamodeling approach, the release decision is decomposed into the two 
phases of pre-computing the metamodel and optimizing the decision variables, and 
the metamodel is fitted which usually requires large amounts of data that normally 
can only be obtained by simulation. Both of these aspects raise difficulties: the 
decomposition into metamodeling and optimization might result in suboptimal 
solutions, and the effects of informal shop-floor control rules might be difficult to 
capture in a simulation model. This motivates the use of machine learning tech-
niques that strictly learn from observed data, either to learn the response of the 
production unit to control inputs (e.g., releases) or to learn near-optimal control 
inputs for a given state of the system directly (for this distinction, see Bertsimas 
et al. 2019). While the application of machine learning at the scheduling level has 
been explored extensively (Aytug et al. 2005), very few papers apply machine learn-
ing at the order release level. Lee et al. (1997) use machine learning to select the 
release sequencing rule in a CONWIP system. Paternina-Arboleda and Das (2001) 
use reinforcement learning to optimize the operation of an extended CONWIP sys-
tem which also constrains the buffers at the workcenters and allows emergency 
authorizations of releases, similar to the force release option in LUMS (see Chap. 
4). Häussler and Schneckenreither (2019) use an artificial neural network to predict 
the cycle time of a new order entering the production unit and, based on this estima-
tion, determine the release times of the production orders, thus decomposing the 
problem of jointly determining the release times of the orders to single-order release 
problems that are combined by an algorithm developed in the paper. Clearly these 
approaches are first attempts, and further research in this area seems fruitful.

11.4 � Conclusions

The domain of production planning is viewed by many as a mature area where all 
interesting problems have already been solved. We hope that the results presented in 
this volume have raised more questions in the mind of the reader than they have 
answered; this has been the effect of this work on the authors, in any event. There 
remain many challenging problems that, if even approximately solved, have the 
potential to yield significant economic benefit to many sectors of the economy. The 
convergence of vast computing power, data collection and storage technologies and 
extremely efficient optimization solvers, as well as developments in data analytics, 
stochastic optimization and machine learning, open new possibilities for advances 
in this area which has, after all, been central to the development of operations 
research, operations management, production economics, and industrial engineer-
ing since the inception of those disciplines. It is, we believe, a good time to be work-
ing in production planning and will only get better.
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