
Chapter 9

Coalescent Simulation with msprime

Jerome Kelleher and Konrad Lohse

Abstract

Coalescent simulation is a fundamental tool in modern population genetics. The msprime library provides
unprecedented scalability in terms of both the simulations that can be performed and the efficiency with which
the results can be processed.We showhow coalescentmodels for population structure and demography can be
constructed using a simple Python API, as well as how we can process the results of such simulations to
efficiently calculate statistics of interest. We illustrate msprime’s flexibility by implementing a simple (but
functional) approximate Bayesian computation inference method in just a few tens of lines of code.

Key words Population genetics, Coalescent theory, Simulation, Python

1 Introduction

Thanks to the rapid advances in sequencing technology, generating
genome-wide sequence datasets for many species has become rou-
tine and there is great interest in learning about the history of
populations from sequence variation. The coalescent [15, 25, 40]
gives an elegant mathematical description of the ancestry of a
sample of sequences from a more or less idealized population and,
given its focus on samples, has become the backbone of modern
population genetics [16, 43]. However, despite the flood of
sequence data and the plethora of coalescent-based inference
tools now available, many analyses of genome wide variation remain
superficial or entirely descriptive. Progress on developing efficient
inference methods has been hindered in two ways. First, analytic
results for models of population structure and/or history are often
restricted to average coalescence times and small (often pairwise)
samples. Even when it is possible to derive the full distribution of

Julien Y. Dutheil (ed.), Statistical Population Genomics, Methods in Molecular Biology, vol. 2090,
https://doi.org/10.1007/978-1-0716-0199-0_9, © The Author(s) 2020, Corrected Publication 2021

The original version of this chapter was revised. The correction to this chapter is available at https://doi.org/
10.1007/978-1-0716-0199-0_20

Electronic supplementary material:The online version of this chapter (https://doi.org/10.1007/978-1-0716-
0199-0_9) contains supplementary material, which is available to authorized users.

191

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-0716-0199-0_9&domain=pdf
https://doi.org/10.1007/978-1-0716-0199-0_9#DOI
https://doi.org/10.1007/978-1-0716-0199-0_20
https://doi.org/10.1007/978-1-0716-0199-0_20
https://doi.org/10.1007/978-1-0716-0199-0_9#DOI
https://doi.org/10.1007/978-1-0716-0199-0_9#DOI

genealogies for realistic models and sample sizes, the results are
cumbersome and generally rely on automation using symbolic
mathematics software [28]. Second, and perhaps more fundamen-
tally, dealing with recombination has proven extremely challenging
and we still lack analytic results for basic population genetic quan-
tities for a linear sequence with recombination even under the
simplest null models of genetic drift. Thus, inference methods
that incorporate linkage information [12, 26] generally rely on
substantial simplifying assumptions about recombination [31].

Because analytic approaches relating sequence variation to
mechanistic models of population structure and history are severely
limited, simulations—in particular, coalescent simulations—have
become an integral part of inference in a number of ways. First,
comparisons between analytic results and simulations serve as an
important sanity check for both. Second, while it is often possible
to use analytic approaches to obtain unbiased point estimates of
demographic parameters by ignoring linkage [10], quantifying the
uncertainty and potential biases in such estimates requires para-
metric bootstrapping on data simulated with linkage. Finally, a
range of inference methods directly rely on coalescent simulations
to approximate the likelihood (or in a Bayesian setting, the poste-
rior) of parameters under arbitrarily complex models of demogra-
phy. Inference based on approximate Bayesian computation (ABC)
[2, 6] or approximate likelihoods can be based either on single
nucleotide polymorphisms (SNPs) [9] or multilocus data [3, 4].

This chapter is a tutorial for running and analyzing coalescent
simulations using msprime [23]. As the name implies, msprime is
heavily indebted to the classical ms program [17], and largely
follows the simulation model that it popularized. The methods
for representing genealogies that underlie msprime are based on
earlier work on simulating coalescent processes in a spatial contin-
uum [21, 22]. There are many other coalescent simulators avail-
able—see refs. 1, 5, 14, 27, 46 for reviews—but msprime has some
distinct advantages. Firstly, msprime is capable of simulating sam-
ple sizes far larger than any other simulator, and is generally
extremely efficient. The ability to simulate hundreds of thousands
of realistic human genomes has already enabled simulation studies
that were hitherto impossible [29]. Secondly, msprime can simu-
late realistic models of recombination over whole chromosomes
without resorting to approximations. The Sequentially Markov
Coalescent (SMC) approximation [31] was largely motivated by
the need to efficiently simulate chromosome-length sequences
under the effects of recombination, which was unfeasible with
simulators such as ms [17]. However, for large sample sizes,
msprime is significantly faster than the most efficient SMC simula-
tor [39], rendering this approximation unnecessary for simulation
purposes [23]. (The SMC is an important analytic approximation,
however, and has led to many important advances in inference; see,
e.g., [12, 26, 36, 37]. See also Chapter 1 in this volume for formal

192 Jerome Kelleher and Konrad Lohse

https://doi.org/10.1007/978-1-0716-0199-0

definitions of the SMC approximation, and Chapters 7, 8, and 10
for further applications.) Thirdly, the data structure that msprime
uses to represent the results of simulations is extremely concise and
can be efficiently processed. This data structure is known as a
succinct tree sequence (or tree sequence for brevity), and its applica-
tions to other areas of population genomics is an active research
topic [24]. The tree sequence data structure reduces the amount of
space required to store simulations and removes the significant
overhead of loading and parsing large volumes of text in order to
analyze simulation data. As we see in Section 3, it also leads to
powerful algorithms for analyzing variation data. Finally,
msprime’s primary interface is through a simple but powerful
Python API, providing many advantages over command-line or
GUI based alternatives. One of the advantages of this approach is
the ease with which we can integrate with state-of-the-art analysis
tools from the Python ecosystem such as NumPy [42], SciPy [20],
Matplotlib [18], Pandas [30], Seaborn [44], and Jupyter Note-
books [35]. Part of the goal of this tutorial is to provide idiomatic
examples for interacting with these toolkits.

We assume a minimal working knowledge of Python, although
it should be possible to follow and replicate the examples given here
with no prior knowledge. All of the examples given here can be
found in the accompanying Jupyter notebook (see the Online
Resources section at the end of this chapter for details.) For those
beginning with Python, we recommend the tutorial that is part of
the official documentation. We also assume a basic knowledge of
coalescent theory; [43] is an excellent introduction.

The chapter is organized as follows. Section 2 provides an
overview of how to run coalescent simulations in msprime, includ-
ing some of the most important extensions to the basic model.
Section 3 illustrates by way of simple examples how we can effi-
ciently process the results of such simulations, with particular
emphasis on the methods required to work with large sample sizes.
We then provide some examples of how to compare simulations with
analytic predictions in Section 4, emphasizing idiomatic ways of
interacting with toolkits such as Pandas and Seaborn. In Section 5,
we show how msprime can be used to set up a simple ABC inference.
Inference tools are generally implemented with a command line or
graphical user interface and designed for a more or less narrow set of
inference problems. Thus the aim of Section 5 is to illustrate how
msprime’s flexible Python API can be used to build inference tools
for arbitrary demographic histories from first principles. Finally, we
outline some future plans for msprime in Section 6.

2 Running Simulations

In the following subsections we examine some basic examples of
running simulations with msprime, starting with the simplest pos-
sible models and adding the various complexities required to model

Coalescent Simulation with msprime 193

https://doi.org/10.1007/978-1-0716-0199-0_7
https://doi.org/10.1007/978-1-0716-0199-0_8
https://doi.org/10.1007/978-1-0716-0199-0

biological populations. We use a notebook-like approach through-
out, where we intersperse code chunks and their results freely
within the text.

2.1 Trees

and Replication

At the simplest level, coalescent simulation is about generating trees
(or genealogies). These trees (which are always rooted) represent
the simulated history of a sample of individuals drawn from an
idealized population (in later sections we show how to vary the
properties of this idealized population). The function msprime.
simulate runs these simulations and the parameters that we pro-
vide define the simulation that is run. It returns a TreeSequence
object, which represents the full coalescent history of the sample. In
later sections we discuss the effects of recombination, when this
TreeSequence contains a sequence of correlated trees. For now,
we focus on non-recombining sequences and use the method
first() to obtain the tree object from this tree sequence.
(In general, we can use the trees() iterator to get all trees; see
Section 2.7.) For example, here we simulate a history for a sample
of three chromosomes:

1 import msprime
2 ts = msprime.simulate(3)
3 tree = ts.first()
4 SVG(tree.draw())

This code chunk illustrates the basic approach required to draw
a tree in a Jupyter notebook. We first generate a tree sequence
object (ts), and we then obtain the tree object representing the
first (and only) tree in this sequence. Finally, we draw a representa-
tion of this tree using the IPython SVG function on the output of
the tree.draw() method. By default, tree.draw() returns a
depiction of the tree in SVG format, but also supports plain text
rendering. For example, print(tree.draw(for-
mat¼unicode)) prints the tree to the console using Unicode
box-drawing characters. This is a very useful debugging tool. We
have omitted the import statements required for the SVG function
here as it is rather specific to the Jupyter notebook environment. All
code chunks in this chapter are included in the accompanying
Jupyter notebook and are fully runnable.

The output of one random realization of this process is shown
in Fig. 1. The resulting tree has five nodes: nodes 0, 1, and 2 are
leaves, and represent our samples. Node 3 is an internal node, and is
the parent of 0 and 2. Node 4 is also an internal node, and is the
root of the tree. In msprime, we always refer to nodes by their
integer IDs and obtain information about these nodes by calling
methods on the tree object. For example, the code tree.chil-
dren(4) will return the tuple (1, 3) here, as these are the node
IDs of the children of the root node. Similarly, tree.parent(0)
will return 3.

194 Jerome Kelleher and Konrad Lohse

The height of a tree node is determined by the time at which
the corresponding ancestor was born. So, contemporary samples
always have a node time of zero, and time values increase as we go
upwards in the tree (i.e., further back in time). Times in msprime
are always measured in generations.

When we run a single simulation, the resulting tree is a single
random sample drawn from the probability distribution of coales-
cent trees. Since a single random draw from any distribution is
usually uninformative, we nearly always need to run many differ-
ent replicate simulations to obtain useful information. The sim-
plest way to do this in msprime is to use the num_replicates
argument.

1 import msprime
2 N = 1000
3 mean_T_mrca = 0
4 for ts in msprime.simulate(10, num_replicates=N):
5 tree = ts.first()
6 mean_T_mrca += tree.time(tree.root)
7 mean_T_mrca = mean_T_mrca / N
8 print(mean_T_mrca)
9

10 >>> 3.6717548653768133

In this example we run 1000 independent replicates of the
coalescent for a sample of 10 chromosomes, and compute the
mean time to the MRCA of the entire sample, i.e., the root of the
tree. The value of 3.7 generations in the past we obtain is of course
highly unrealistic. However, by default, time is measured in units of
4Ne generations (see the next section for details on how to specify
populationmodels and interpret times). It is important to note here
that although time is measured in units of generations, this is of
course an approximation and we may have fractional values. Inter-
nally, during a simulation time is scaled into coalescent units using

3

4

1 0 2

Fig. 1 Coalescent tree with mutations using the tree.draw() method

Coalescent Simulation with msprime 195

the Ne parameter and once the simulation is complete, times are
scaled back into units of generations before being presented to the
user. This removes the burden of such tedious time scaling calcula-
tions from the user. We discuss these time scaling issues in more
detail in the next section.

The simulate function behaves slightly differently when it is
called with the num_replicates argument: rather than returning
a single tree sequence, we return an iterator over the individual
replicates. This means that we can use the convenient for loop
construction to consider each simulation in turn, but without
actually storing all these simulations. As a result, we can run
millions of replicates using this method without using any extra
storage.

When simulating coalescent trees, we are often interested in
more than just the mean of the distribution of some statistic. Rather
than compute the various summaries by hand (as we have done for
the mean in the last example), it is convenient to store the result for
each replicate in a NumPy array and analyze the data after the
simulations have completed. For example:

1 import msprime
2 import numpy as np
3 N = 1000
4 T_mrca = np.zeros(N)
5 for j, ts in enumerate(msprime.simulate(10, num_replicates=N)):
6 tree = ts.first()
7 T_mrca[j] = tree.time(tree.root)
8 print([np.mean(T_mrca), np.var(T_mrca)])
9

10 >>> [3.6690718290544053, 4.8541533617765706]

Here we simulate 1000 replicates, storing the time to the
MRCA for each replicate in the array T_mrca. We use the Python
enumerate function to simplify the process of efficiently inserting
values into this array, which simply ensures that j is 0 for the first
replicate, 1 for the second, and so on. Thus, by the time we finish
the loop, the array has been filled with TMRCA values generated
under the coalescent. We then use the NumPy library (which has an
extensive suite of statistical functions) to compute the mean and
variance of this array. This example is idiomatic, and we will use this
type of approach throughout. In the interest of brevity, we will omit
all further import statements from code chunks.

It is usually more convenient to use the num_replicates
argument to perform replication, but there are situations in which
it is desirable to specify random seeds manually. For example, if
simulations require a long time to run, we may wish to use multiple
processes to run these simulations. To ensure that the seeds used in
these different processes are unique, it is best to manually specify
them. For example,

196 Jerome Kelleher and Konrad Lohse

1 def run_simulation(seed):
2 ts = msprime.simulate(10, random_seed=seed)
3 tree = ts.first()
4 return tree.time(tree.root)
5
6 N = 1000
7 seeds = np.random.randint(1, 2**32 - 1, N)
8 with multiprocessing.Pool(4) as pool:
9 T_mrca = np.array(pool.map(run_simulation, seeds))

10 print(np.mean(T_mrca))
11
12 >>> 3.6459775450221832

In this example we create a list of 1000 seeds between 1 and
232 � 1 (the range accepted by msprime) randomly. We then use
the multiprocessing module to create a worker pool of four pro-
cesses, and run our different replicates in these subprocesses. The
results are then collected together in an array so that we can easily
process them. This approach is a straightforward way to utilize
modern multi-core processors.

Specifying the same random seed for two different simulations
(with the same parameters) ensures that we get precisely the same
results from both simulations (at least, on the same computer and
with the same software versions). This is very useful when we wish
to examine the properties of a specific simulation (for example,
when debugging), or if we wish to illustrate a particular example.
We will often set the random seed in the examples in this tutorial for
this reason.

2.2 Population

Models

In the previous section the only parameters we supplied to simu-
late were the sample_size and num_replicates parameters.
This allows us to randomly sample trees with a given number of
nodes, but, as it leaves the population unspecified, has little con-
nection with biological reality. The most fundamental population
parameter is the effective population size, or Ne. This parameter
simply rescales time; larger effective population sizes correspond
to older coalescence times:

1 def pairwise_T_mrca(Ne):
2 N = 10000
3 T_mrca = np.zeros(N)
4 for j, ts in enumerate(
5 msprime.simulate(2, Ne=Ne, num_replicates=N)):
6 tree = ts.first()
7 T_mrca[j] = tree.time(tree.root)
8 return np.mean(T_mrca)
9

10 print(
11 pairwise_T_mrca(0.5), pairwise_T_mrca(10),
12 pairwise_T_mrca(100))
13
14 >>> (0.99569690432656333, 19.816809844176138, 196.42125227336615)

Coalescent Simulation with msprime 197

Thus, when we specifyNe ¼ 10 we get a mean pairwise coales-
cence time of about 20 generations, and with Ne ¼ 100, the mean
coalescence time is about 200 generations. See ref. 43 for details on
the biological interpretation of effective population size.

By default,Ne ¼ 1 in msprime, which is equivalent to measur-
ing time in units ofNe generations. It is very important to note that
Ne in msprime is the diploid effective population size, which means
that all times are scaled by 2Ne (rather than Ne for a haploid
coalescent). Thus, if we wish to compare the results that are given
in the literature for a haploid coalescent, then we must setNe to 1/
2 to compensate. For example, we know that the expected coales-
cence time for a sample of size 2 is 1, and this is the value we obtain
from the pairwise_T_mrca function when we haveNe ¼ 0.5. We
will usually assume that we are working in haploid coalescent time
units from here on, and so set Ne ¼ 0.5 in most examples. How-
ever, when running simulations of a specific organism and/or
population, it is substantially more convenient to use an appropriate
estimated value for Ne so that times are directly interpretable.

2.2.1 Exponentially

Growing/Shrinking

Populations

When we provide an Ne parameter, this specifies a fixed effective
population size. We can also model populations that are exponen-
tially growing or contracting at some rate over time. Given a
population size at the present s and a growth rate α, the size of
the population t generations in the past is se�αt. (Note again that
time and rates are measured in units of generations, not coalescent
units.)

In msprime, the initial size and growth rate for a particular
population are specified using the PopulationConfiguration
object. A list of these objects (describing the different populations;
see Section 2.4) are then provided to the simulate function.
When providing a list of PopulationConfiguration objects,
the Ne parameter to simulate is not required, as the initial_-
size of the population configurations performs the same task. For
example,

1 def pairwise_T_mrca(growth_rate):
2 N = 10000
3 T_mrca = np.zeros(N)
4 replicates = msprime.simulate(
5 population_configurations=[
6 msprime.PopulationConfiguration(
7 sample_size=2, initial_size=0.5,
8 growth_rate=growth_rate)],
9 num_replicates=N, random_seed=100)

10 for j, ts in enumerate(replicates):
11 tree = ts.first()
12 T_mrca[j] = tree.time(tree.root)
13 return np.mean(T_mrca)
14
15 print(
16 pairwise_T_mrca(0.05), pairwise_T_mrca(0),
17 pairwise_T_mrca(-0.05))
18 >>> (0.96598072124289924, 1.0124999939843193, 1.0694803236032397)

198 Jerome Kelleher and Konrad Lohse

Here we simulate the pairwise TMRCA for positive, zero, and
negative growth rates. When we have a growth rate of zero, we see
that we recover the usual result of 1.0 (as our initial size, and hence
Ne, is set to 1/2). When the growth rate is positive, we see that the
mean coalescence time is reduced, since the population size is
getting smaller as we go backwards in time, resulting in an increased
rate of coalescence. Conversely, when we have a negative growth
rate, the population is getting larger as we go backwards in time,
resulting in a slower coalescence rate. (Care must be taken with
negative growth rates, however, as it is possible to specify models in
which theMRCA is never reached. In some cases this will lead to an
error being raised, but it is also possible that the simulator will keep
generating events indefinitely. This is particularly important in
simulation based approaches to inference from real data.)

2.3 Mutations We cannot directly observe gene genealogies; rather, we observe
mutations in a sample of sequences which ultimately have occurred
on genealogical branches. We are therefore very often interested
not just in the genealogies generated by the coalescent process, but
also in the results of mutational processes imposed on these trees.
msprime currently supports simulating mutations under the infi-
nitely many sites model (arbitrarily complex mutations are sup-
ported by the underlying data model, however). This is accessed
by the mutation_rate parameter to the simulate function. As
usual, this rate is the per-generation rate.

1 ts = msprime.simulate(3, mutation_rate=1, random_seed=7)
2 tree = ts.first()
3 SVG(tree.draw())

The tree produced by this code chunk is shown in Fig. 2. Here
we have two mutations, shown by the red squares. Mutations occur
above a given node in the tree, and all samples beneath this node
will inherit the mutation. The infinite sites mutations used here are

3

4

1 0 2

01

Fig. 2 Coalescent tree with mutations

Coalescent Simulation with msprime 199

simple binary mutations, that is, the ancestral state is 0 and the
derived state is 1. One convenient way to access the resulting
sample genotypes is to use the genotype_matrix() method,
which returns an m � n NumPy array, if we have m variable sites
and n samples. Thus, if G is the genotype matrix, G[j, k] is the state
of the kth sample at the jth site. In our example above, the site 0 has
a mutation over node 3, and site 1 has a mutation over node 1, and
so we get the following matrix:

1 print(ts.genotype_matrix())
2
3 >>> array([[1, 0, 1],
4 [0, 1, 0]], dtype=uint8)

The genotype matrix gives a convenient way of accessing geno-
type information, but will consume a great deal of memory for
larger simulations. See Section 3.4 for more information on how
to access genotype data efficiently.

When comparing simulations to analytic results, it is very
important to be aware of the way in which the mutation rates are
defined in coalescent theory. For historical reasons, the scaled
mutation rate θ is defined as 2Neμ, where μ is the per-generation
mutation rate. Since all times and rates are specified in units of
generations in msprime, we must divide by a factor of two if we
are to compare with analytic predictions. For example, the mean
number of segregating sites for a sample of two is θ; to run this in
msprime we do the following:

1 N = 10000
2 theta = 5
3 S = np.zeros(N)
4 replicates = msprime.simulate(
5 2, Ne=0.5, mutation_rate=theta / 2, num_replicates=N)
6 for j, ts in enumerate(replicates):
7 S[j] = ts.num_sites # Number of segregrating sites.
8 print(np.mean(S))
9

10 >>> 4.8276000000000003

Note that here we set the mutation rate to θ/2 (to cancel out
the factor of 2 in the definition of θ) andNe ¼ 1/2 (so that time is
measured in haploid coalescent time units). Such factor-of-two
gymnastics are unfortunately unavoidable in coalescent theory.

2.4 Population

Structure

Following ms [17], msprime supports a discrete-deme model of
population structure in which d panmictic populations exchange
migrants according to the rates defined in an d � d matrix. This
approach is very flexible, allowing us to simulate island models
(in which all populations exchange migrants at a fixed rate), one-

200 Jerome Kelleher and Konrad Lohse

and two-dimensional stepping stone models (where migrants only
move to adjacent demes) and other more complex migration pat-
terns. This population structure is declared in msprime via the
population_configurations and migration_matrix para-
meters in the simulate function. The list of population config-
urations defines the populations; each element of this list must be a
PopulationConfiguration instance (each population has inde-
pendent initial population size and growth rate parameters). The
migration matrix is a NumPy array (or list of lists) of per-generation
migration rates; m[j, k] defines the fraction of population j that
consists of migrants from population k in each generation. (Note
that when running simulations on the coalescence scale, i.e. setting
Ne ¼ 1/2, this is equivalent to the number of migrants per deme
and generation M[j, k] ¼ 2Nem[j, k].)

1 pop_configs = [
2 msprime.PopulationConfiguration(sample_size=2),
3 msprime.PopulationConfiguration(sample_size=2)]
4 M = np.array([
5 [0, 0.1],
6 [0, 0]])
7 ts = msprime.simulate(
8 population_configurations=pop_configs, migration_matrix=M,
9 random_seed=2)

10 tree = ts.first()
11 colour_map = {0:"red", 1:"blue"}
12 node_colours = {
13 u: colour_map[tree.population(u)] for u in tree.nodes()}
14 SVG(tree.draw(node_colours=node_colours))

We create our model by first making a list of two Popula-
tionConfiguration objects. For convenience here, we use the
sample_size argument to these objects to state that we wish to
have two samples from each population. This results in samples
being allocated sequentially to the populations when simulate is
called: 0 and 1 are placed in population 0, and samples 2 and 3 are
placed in population 1. We then declare our migration matrix,
which is asymmetric in this example. Because M[0, 1] ¼ 0.1 and
M[1, 0] ¼ 0, forwards in time, individuals can migrate from popu-
lation 1 to population 0 but not vice versa. This is illustrated in
Fig. 3a which shows the tree produced by this simulation. Each
node has been colored by its population (red is population 0 and
blue population 1). Thus, the leaf nodes 0 and 1 are both from
population 0, and 2 and 3 are both from population 2 (as explained
above). As we go up the tree, the first event that occurs is 2 and
3 coalescing in population 1, creating node 4. After this, 4 coalesces
with node 0, which has at some point before this migrated into
deme 1, creating node 5. Node 1 also migrates into deme 1, where
it coalesces with 5. Because migration is asymmetric here, the
MRCA of the four samples must occur within deme 1.

Coalescent Simulation with msprime 201

The exact history of migration events is available if we use the
record_migrations option. In the next example, we set up a
symmetric island model and track every migration event:

1 pop_configs = [
2 msprime.PopulationConfiguration(sample_size=3),
3 msprime.PopulationConfiguration(sample_size=1),
4 msprime.PopulationConfiguration(sample_size=1)]
5 M = [
6 [0, 1, 1],
7 [1, 0, 1],
8 [1, 1, 0]]
9 ts = msprime.simulate(

10 population_configurations=pop_configs, migration_matrix=M,
11 record_migrations=True, random_seed=101)
12 tree = ts.first()
13 colour_map = {0:"red", 1:"blue", 2: "green"}
14 node_colours = {
15 u: colour_map[tree.population(u)] for u in tree.nodes()}
16 SVG(tree.draw(node_colours=node_colours))

Figure 3b shows the tree produced by this code chunk. Here
we sample three nodes from population 0, but because there is a lot
of migration, the locations of coalescences are quite random. For
example, the first coalescence occurs in deme 2 (green), after node
0 has migrated in. To see the details of these migration events, we
can examine the “migration records” that are stored by msprime.
(These are not stored by default, as they may consume a substantial
amount of memory. The record_migrations parameter must be
supplied to simulate to turn on this feature.) Migration records
store complete information about the time, source, and destination
demes and the genomic interval in question. Here we are interested
in the total number of migration events experienced by each node:

5

4

6

1 0 2 3

(a) Two populations with

asymmetric migration

7 6

5

8

2 1 3 0 4

(b) Three population island

model

Fig. 3 Example trees produced in models with multiple populations and
migration. Nodes are colored by population. (a) Two populations with
asymmetric migration. (b) Three-population island model

202 Jerome Kelleher and Konrad Lohse

1 node_count = np.zeros(ts.num_nodes)
2 for migration in ts.migrations():
3 node_count[migration.node] += 1
4 plt.bar(np.arange(ts.num_nodes), node_count)
5 plt.xlabel("Node ID")
6 plt.ylabel("Number of migrations");

This code produces the plot in Fig. 4. We can see that node
0 experienced very few migration events before it ended up in deme
2, where it coalesced with 4 (which never migrated). Node 2, on
the other hand, migrated 30 times before it finally coalesced with
7 in deme 0. Note that there are many more migration events than
nodes here, implying that most migration events are not identifi-
able from a genealogy in real data [38].

Other forms of migration are also possible between specific
demes at specific times. These different demographic events are
dealt with in the next section.

2.5 Demographic

Events

Demographic events allow us to model more complex histories
involving changes to the population structure over time, and are
specified using the demographic_events parameter to simu-
late. Each demographic event occurs at a specific time, and the
list of events must be supplied in the order they occur (backwards in
time). There are a number of different types of demographic event,
which we examine in turn.

2.5.1 Migration Rate

Change

Migration rate change events allow us to update the migration rate
matrix at some point in time. We can either update a single cell in
the matrix or all (non-diagonal) entries at the same time.

Fig. 4 Number of migration events for each tree node in a simulation with migration

Coalescent Simulation with msprime 203

1 ts = msprime.simulate(
2 population_configurations=[
3 msprime.PopulationConfiguration(sample_size=2),
4 msprime.PopulationConfiguration(sample_size=2)],
5 demographic_events=[
6 msprime.MigrationRateChange(20, rate=1.0, matrix_index=(0, 1))],
7 random_seed=2)
8 tree = ts.first()

The tree produced by this code chunk is shown in Fig. 5a
(in this example and those following we have omitted the code
required to draw the tree). The samples 0 and 1, and 2 and 3 coa-
lesce quickly within their own populations. However, because the
migration rate between the populations is zero these lineages are
isolated and would never coalesce without some change in demog-
raphy. The migration rate change event happens at time 20, result-
ing in node 5 migrating to deme 1 soon afterwards. The lineages
then coalesce at time 21.4.

2.5.2 Mass Migration This class of event allows us to move some proportion of the
lineages in one deme to another at a particular time. This allows
us to model population splits and admixture events. Population
splits occur when (backwards in time) all the lineages in one popu-
lation migrate to another.

1 ts = msprime.simulate(
2 population_configurations=[
3 msprime.PopulationConfiguration(sample_size=3),
4 msprime.PopulationConfiguration(sample_size=3)],
5 demographic_events=[
6 msprime.MassMigration(15, source=1, dest=0, proportion=1)],
7 random_seed=20)
8 tree = ts.first()

5 (t=2.0)
4 (t=0.4)

6(t=21.4)

(a) Migration rate change

6

9 (t=3.64)
78 (t=2.69)

10(t=17.15)

(b) Mass migration

9 (t=4.5)

8 (t=0.7)
67

10(t=6.9)

2 3 0 1 2 0 1 5 3 4 5 2 4 0 1 3
(c) Admixture

Fig. 5 Example trees produced in models with demographic events. Nodes are colored by population. (a)
Migration rate change. (b) Mass migration. (c) Admixture

204 Jerome Kelleher and Konrad Lohse

The tree produced by this code chunk is shown in Fig. 5b. In
this case we also have two isolated populations which coalesce down
to a single lineage. The population split at time 15 (which, forwards
in time produced all the individuals in population 1) results in this
lineage migrating back to population 0, where it coalesces with the
ancestor of the samples 0, 1, and 2.

Admixture events (i.e., where some fraction of the lineages
move to a different deme) are specified in the same way:

1 ts = msprime.simulate(
2 population_configurations=[
3 msprime.PopulationConfiguration(sample_size=6),
4 msprime.PopulationConfiguration(sample_size=0)],
5 demographic_events=[
6 msprime.MassMigration(0.5, source=0, dest=1, proportion=0.5),
7 msprime.MigrationRateChange(1.1, rate=0.1),
8],
9 random_seed=26)

10 tree = ts.first()

The tree produced by this code chunk is shown in Fig. 5c. We
begin in this example with six lineages sampled in population
0, zero samples in population 1, and with no migration between
these populations. At time 0.5, we specify an admixture event
where each of the four extant lineages (5, 7, 0, and 6) has a
probability of 1/2 of moving to deme 1. Linages 0 and 6 migrate,
and subsequently coalesce into node 8. Further back in time, at
t ¼ 1.1, another demographic event occurs, changing the migra-
tion rate between the demes to 0.1, thereby allowing lineages to
move between them. Eventually, all lineages end up in deme
1, where they coalesce into the MRCA at time t ¼ 6.9.

2.5.3 Population

Parameter Change

This class of event represents a change in the growth rate or size of a
particular population. Since each population has its own individual
size and growth rates, we can change these arbitrarily as we go
backwards in time. Keeping track of the actual sizes of different
populations can be a little challenging, and for this reason msprime
provides a DemographyDebugger class.

To illustrate this, we consider a very simple example in which
we have a single population experiencing a phase of exponential
growth from 750 to 100 generations ago. The size of the popula-
tion 750 generations ago was 2000, and it grew to 20,000 over the
next 650 generations. The size of the population has been stable at
this value for the past 100 generations. We encode this model as
follows:

Coalescent Simulation with msprime 205

1 N1 = 20000 # Population size at present
2 N2 = 2000 # Population size at start (forwards in time) of exponential growth.
3 T1 = 100 # End of exponential growth period (forwards in time)
4 T2 = 750 # Start of exponential growth period (forwards in time)
5 # Calculate growth rate; solve N2 = N1 * exp(-alpha * (T2 - T1))
6 growth_rate = -np.log(N2 / N1) / (T2 - T1)
7 population_configurations = [
8 msprime.PopulationConfiguration(initial_size=N1)
9]

10 demographic_events = [
11 msprime.PopulationParametersChange(time=T1, growth_rate=growth_rate),
12 msprime.PopulationParametersChange(time=T2, growth_rate=0),
13]
14 dd = msprime.DemographyDebugger(
15 population_configurations=population_configurations,
16 demographic_events=demographic_events)
17 dd.print_history()

It gives the following output:

=============================

Epoch: 0 -- 100.0 generations

=============================

start end growth_rate | 0

-------- -------- -------- | --------

0 | 2e+04 2e+04 0 | 0

Events @ generation 100.0

- Population parameter change for -1: growth_rate -> 0.0035

=================================

Epoch: 100.0 -- 750.0 generations

=================================

start end growth_rate | 0

-------- -------- -------- | --------

0 | 2e+04 2e+03 0.00354 | 0

Events @ generation 750.0

- Population parameter change for -1: growth_rate -> 0

===============================

Epoch: 750.0 -- inf generations

===============================

start end growth_rate | 0

-------- -------- -------- | --------

0 | 2e+03 2e+03 0 | 0

After we set up our model, we use the DemographyDebugger
to check our calculations. We see that time has been split into three
“epochs.” From the present until 100 generations ago, the

206 Jerome Kelleher and Konrad Lohse

population size is constant at 20,000. Then, we have a demo-
graphic event that changes the growth rate to 0.0035, which
applies over the next epoch (from 100 to 750 generations ago).
Over this time, the population grows from 2000 to 20,000 (note
that the “start” and “end” of each epoch is looking backwards in
time, as we consider epochs starting from the present and moving
backwards). At generation 750, another event occurs, setting the
growth rate for the population to 0. Then, the population size is
constant at 20,000 from generation 750 until the indefinite past.

A more complex example involving a three-population out-of-
Africa human model is available in the online documentation.

2.6 Ancient Samples Up to this point we have assumed that all samples are taken at the
present time. However, msprime allows us to specify arbitrary
sampling times and locations, allowing us to simulate (for example)
ancient samples.

1 ts = msprime.simulate(
2 samples=[
3 msprime.Sample(0, 0), msprime.Sample(0, 0),
4 msprime.Sample(0, 0),
5 msprime.Sample(1, 0.75), # Ancient sample in deme 1
6],
7 population_configurations=[
8 msprime.PopulationConfiguration(),
9 msprime.PopulationConfiguration()],

10 migration_matrix=[
11 [0, 1],
12 [1, 0]],
13 random_seed=22)
14 tree = ts.first()

The tree produced by this code chunk is shown in Fig. 6. All of
the trees that we previously considered had leaf nodes at time zero.
In this case, the samples 0, 1, and 2 are taken at time 0 in population
0, but node 3 is sampled at time 0.75 in population 1. Note that in
this case we used the samples parameter to simulate to specify
our samples. This is the most general approach to assigning

5

4

6

3 (t=0.75)

2 0 1

Fig. 6 Example tree produced by simulation with ancient samples

Coalescent Simulation with msprime 207

samples, and allows samples to be assigned to arbitrary populations
and at arbitrary times.

2.7 Recombination One of the key innovations of msprime is that it makes simulation
of the full coalescent with recombination possible at whole-
chromosome scale. Adding recombination to a simulation is sim-
ple, requiring very minor changes to the methods given above.

1 ts = msprime.simulate(
2 10, Ne=1e4, length=1e5, recombination_rate=1e-8, random_seed=3)
3 print(ts.num_trees)
4 >>> 82

In this case, we provide two extra parameters: length, which
defines the length of the genomic region to be simulated, and
recombination_rate, which defines the rate of recombination
per unit of sequence length, per generation. It is often useful to
think of both sequence lengths and recombination rates as defined
in units of base-pairs. (Note, however, that these are continuous
values, so this correspondence should not be taken too literally.
Note also that because msprime assumes an infinite sites mutation
model the length parameter is not connected to the number of
mutational sites. Thus any number of mutations can occur on a
given sequence length, depending on the mutation rate specified.)
For this example, we defined a sequence length of 100 kb, and a
recombination rate of 10�8 per base per generation. The result of
this particular simulation is a tree sequence that contains 82 distinct
trees. Other replicate simulations with different random seeds will
usually result in different numbers of trees.

Up to this point we have focused on simulations that returned a
single tree representing the genealogy of a sample. The inclusion of
recombination, however, means that there may be more than one
tree relating our samples. The TreeSequence object returned by
msprime is a very concise and efficient representation of these
highly correlated trees. To process the trees, we simply consider
them one at a time, using the trees() iterator.

1 tmrca = np.zeros(ts.num_trees)
2 breakpoints = np.zeros(ts.num_trees)
3 for tree in ts.trees():
4 tmrca[tree.index] = tree.time(tree.root)
5 breakpoints[tree.index] = tree.interval[0]
6 plt.ylabel("T_mrca (Generations)")
7 plt.xlabel("Position (kb)")
8 plt.plot(breakpoints / 1000, tmrca, "o");

This code generates the plot in Fig. 7 showing the time of the
MRCA of the sample for each tree across the sequence. We find the
TMRCA as before, and plot this against the left coordinate of the

208 Jerome Kelleher and Konrad Lohse

genomic interval that each tree covers. A full description of tree
sequences and the methods for working with them is beyond the
scope of this chapter (but see the online documentation for more
details).

It is also possible to simulate data with recombination rates
varying across the genome (for example, in recombination hot-
spots). To do this, we first create a RecombinationMap instance
that describes the properties of the recombination landscape that
we wish to simulate. We then supply this object to simulate using
the recombination_map argument. In the following example, we
simulate 100 samples using the human chromosome 22 recombi-
nation map from the HapMap project [19]. Figure 8 shows the
recombination rate and the locations of breakpoints from the sim-
ulation, and the density of breakpoints closely follows the recombi-
nation rate, as expected.

1 # Read in the recombination map and run the simulation.
2 infile = "genetic_map_GRCh37_chr22.txt"
3 recomb_map = msprime.RecombinationMap.read_hapmap(infile)
4 ts = msprime.simulate(
5 sample_size=100,
6 Ne=10**4,
7 recombination_map=recomb_map,
8 random_seed=1)

Although coordinates are specified in floating point values,
msprime uses a discrete loci model when performing simulations.
By default, the number of loci is very large (�232), and the loca-
tions of breakpoints are translated back into the coordinate system
defined by the recombination map. However, the number of loci is

Fig. 7 Time to the MRCA of a sample across a 100 kb region

Coalescent Simulation with msprime 209

configurable and it is possible to simulate a specific number of
discrete loci.

2 length=10, rate=1, num_loci=10)
3 ts = msprime.simulate(2, recombination_map=recomb_map)
4 print(list(ts.breakpoints()))
5 >>> [0, 1.0, 2.0, 3.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0]

1 recomb_map = msprime.RecombinationMap.uniform_map(

Here we simulate the history of two samples in a system with
ten loci, each of length 1 with recombination rate of 1 between
adjacent loci per generation. In the output, we see that the break-
points between trees now occur exactly at the integer boundaries
between these loci. This shows that we can also simulate models of
recombination with discrete loci in msprime, as well as the more
standard continuous genome.

3 Processing Results

In the previous section we showed how to run simulations in
msprime, and how to construct population models and demo-
graphic histories. In this section we show how to process the results
of simulations. This is not a comprehensive review of the capabil-
ities of the msprime Python API, but concentrates on some useful
examples. msprime is specifically designed to enable very large
simulations, and the processing methods we demonstrate below
are all very efficient. To illustrate this, we consider a simulation of

Fig. 8 The HapMap genetic map for chromosome 22 (blue) matches the density of breakpoints for a simulated
chromosome (green) well

210 Jerome Kelleher and Konrad Lohse

200,000 samples of ten megabases from a simple two-population
model with human-like parameters:

1 ts = msprime.simulate(
2 population_configurations=[
3 msprime.PopulationConfiguration(sample_size=10**5),
4 msprime.PopulationConfiguration(sample_size=10**5)],
5 demographic_events=[
6 msprime.MassMigration(time=50000, source=1, destination=0)],
7 Ne=10**4, recombination_rate=1e-8, mutation_rate=1e-8, length=10*10**6,
8 random_seed=3)
9 print((ts.num_trees, ts.num_sites))

10
11 >>> (93844, 102270)

This simulation required about 20 s to complete.

3.1 Computing

MRCAs

We are often interested in finding the most recent common ances-
tor (MRCA) of a pair (or many pairs) of samples. For example,
identity-by-descent (IBD) tracts are defined as contiguous stretches
of genome in which the MRCA for a pair of samples is the same.
Computing IBD segments for a pair of samples is very
straightforward:

1 def ibd_segments(ts, a, b):
2 trees_iter = ts.trees()
3 tree = next(trees_iter)
4 last_mrca = tree.mrca(a, b)
5 last_left = 0
6 segment_lengths = []
7 for tree in trees_iter:
8 mrca = tree.mrca(a, b)
9 if mrca != last_mrca:
10 left = tree.interval[0]
11 segment_lengths.append(left - last_left)
12 last_mrca = mrca
13 last_left = left
14 segment_lengths.append(ts.sequence_length - last_left)
15 return np.array(segment_lengths) / ts.sequence_length
16
17 sns.distplot(ibd_segments(ts, 0, 1), label="Within population")
18 sns.distplot(ibd_segments(ts, 0, 10**5), label="Between populations")
19 plt.xlim(-0.0001, 0.003)
20 plt.legend()
21 plt.xlabel("Fraction of genome length");
22 plt.ylable("Count")

In this example we create a function ibd_segments that
returns a NumPy array of the lengths of IBD segments for a given
pair of samples, a and b. It works simply by computing the MRCA
for the samples at the left-hand side of the sequence and then,
moving rightwards, records a segment each time the MRCA
changes. We then plot the distribution of tract lengths for samples
0 and 1 (which are both in population 0), and also the tract lengths

Coalescent Simulation with msprime 211

for a pair of samples from different populations. The results are
shown in Fig. 9. As we might expect, the tract lengths are shorter
for the between population pair.

Of course, we would need to sample many such pairs of samples
or longer sequences to get a reasonable approximation of the real
distribution of block lengths. Because the main cost of this function
is the iteration over all the trees in the sequence, it would be more
efficient to keep track of the MRCAs for different pairs in a single
iteration rather than repeatedly call the above ibd_segments
function.

3.2 Sample Counts The msprime API provides an extremely efficient way to count the
number of samples that are beneath a particular node in a tree. This
can be used, for example, to compute allele frequencies efficiently
and is the basis for many of the fast algorithms in the API. As a simple
illustration of this technique, consider the following code to com-
pute the number of sites with derived allele frequency less than 1%:

1 N = ts.num_samples
2 threshold = 0.01
3 num_rare_derived = 0
4 for tree in ts.trees():
5 for site in tree.sites():
6 # Only works for infinite sites mutations.
7 assert len(site.mutations) == 1
8 mutation = site.mutations[0]
9 if tree.num_samples(mutation.node) / N < threshold:
10 num_rare_derived += 1
11 print((num_rare_derived, num_rare_derived / ts.num_sites))
12
13 >>> (65258, 0.638095238095238)

Fig. 9 The distribution of the length of IBD segments for a pair of samples taken from the same or different
populations

212 Jerome Kelleher and Konrad Lohse

In this example we iterate over all the trees in the tree sequence,
and then iterate over all the sites in each tree. We find the frequency
of the derived allele at each site using the num_samples method,
which returns the number of samples subtending a given node. The
underlying implementation ensures that this operation requires
constant time, and so it is very efficient. We see that such rare alleles
are common. (We reiterate that msprime currently generates muta-
tions under the infinitely many sites model so that each mutation
occurs at a unique site. Future versions of msprime or other
software packages may produce tree sequences with back or recur-
rent mutations, where this simple approach will not work. To
emphasize this point and to ensure that the above code chunk is
not accidentally applied in such situations we have included an
assert statement. We use asserts in a similar way in later code
chunks.)

A powerful feature of this sample-counting approach is that we
can perform the same operation over an arbitrary subset of the
samples. For example, suppose we wished to count the number of
sites that are private to a specific population:

1 def num_private_sites(pop_id):
2 pop_samples = ts.samples(pop_id)
3 num_private = 0
4 for tree in ts.trees(tracked_samples=pop_samples):
5 for site in tree.sites():
6 # Only works for infinite sites mutations.
7 assert len(site.mutations) == 1
8 mutation = site.mutations[0]
9 total = tree.num_samples(mutation.node)

10 within_pop = tree.num_tracked_samples(mutation.node)
11 if total == within_pop:
12 num_private += 1
13 return num_private
14
15 private_0 = num_private_sites(0)
16 private_1 = num_private_sites(1)
17 print((ts.num_sites, private_0 + private_1, private_0, private_1))
18
19 >>> (102270, 101607, 51295, 50312)

This example is very similar, except we provide an extra argu-
ment to ts.trees. The tracked_samples argument specifies a
list of samples to be tracked, which can be any arbitrary subset of
the samples in the simulation. Here we indicate that we are inter-
ested in tracking the set of samples within the population in ques-
tion. Again, we iterate over all trees and over all sites within trees.
Then, for each infinite sites mutation we compute two frequencies:
the overall number of samples that inherit from the mutation’s
node, and the number of tracked samples within the focal popula-
tion that inherit from this node. If the total count is equal to the
within-population count, we know that this mutation is private to
the population.

Coalescent Simulation with msprime 213

3.3 Obtaining

Subsets

In some situations it is useful to analyze data for different subsets of
the samples separately. This is possible using the simplify method:

1 samples = [1, 3, 5, 7]
2 ts_subset = ts.simplify(samples)
3 print((
4 ts_subset.num_sites, ts_subset.num_trees,
5 ts.num_sites, ts.num_trees))
6 >>> (11939, 5483, 102270, 93844)

Here we extract the tree sequence representing the history of a
tiny subset of the original samples, with IDs 1, 3, 5, and 7. The
subset tree sequence contains all the genealogical information rele-
vant to the subsamples, but no more. Concretely, both coalescences
that are not ancestral to the subsample and coalescences that pre-
date the MRCA of the subsample are excluded. Thus, the number
of distinct trees is greatly reduced. By default, we also remove any
sites that have no mutations within these subtrees (i.e., those that
are fixed for the ancestral state). These can be retained by using the
filter_sites¼False argument.

Node IDs in the simplified tree sequence are not the same as in
the original. The map_nodes argument allows us to obtain the
mapping from IDs in the original tree sequence to their equivalent
nodes in the new tree sequence.

1 ts_subset, node_map = ts.simplify(samples, map_nodes=True)
2 tree = ts_subset.first()
3 node_labels = {
4 node_map[j]: "{}({})".format(node_map[j], str(j))
5 for j in range(ts.num_nodes)}
6 SVG(tree.draw(node_labels=node_labels, width=400))

The result of running this code chunk is shown inFig. 10.Herewe
draw the first tree in the subset tree sequence, showing the new node
IDs along with the IDs from the original tree sequence in parentheses.
The number of nodes is greatly reduced from the original.

1458(459639)

15(445380)

2880(463632)

2(5) 3(7) 0(1) 1(3)

Fig. 10 Tree of a subset of the samples in a large simulation. Node IDs in the subset and full tree sequences
are shown

214 Jerome Kelleher and Konrad Lohse

3.4 Processing

Variants

While it is nearly always more efficient to work with mutations in
terms of their context within the trees, it is sometimes more conve-
nient to work with the allelic states of the samples. This information
is obtained in msprime using the variants() iterator, which
returns a Variant object for each site in the tree sequence. A
Variant consists of: (a) a reference to the Site in question;
(b) the alleles at this site (the strings representing the actual
states); and (c) the genotypes representing the observed state for
each sample. The genotypes are encoded in a NumPy array, such
that variant.alleles[variant.genotypes[j]] gives the
allelic state for sample j. The values in the genotypes array are
therefore indexes into the alleles list. The ancestral state at a
given site is guaranteed to be the first element in the alleles list,
but no other assumptions about ordering of the alleles list should
be made.

For biallelic sites, working with genotypes is straightforward as
the genotypes array can only contain 0 and 1 values, which corre-
spond to the ancestral and derived states, respectively. The geno-
types values are returned as a NumPy array, and so the full NumPy
library is available for efficient processing. As an example, we show
here how to count the number of sites at which the derived allele is
at frequency less than 10%. Using the genotypes in this way is
convenient, as complex patterns of back and recurrent mutations
can be handled without difficulty.

1 %%time
2 threshold = 0.1
3 num_rare = 0
4 for variant in ts.variants():
5 # Will work for any biallelic sites; back/recurrent mutations OK
6 assert len(variant.alleles) == 2
7 if np.sum(variant.genotypes) / ts.num_samples < threshold:
8 num_rare += 1
9 print(num_rare)

10 >>> 83081
11 CPU times: user 1min 30s, sys: 4 ms, total: 1min 30s

This code is straightforward, as we simply iterate over all var-
iants and count the number of one values in the genotypes array.
Using the np.sum function, this operation is efficient. Generating
all the genotypes for 200,000 samples at 100,000 sites, however, is
an expensive operation and the overall calculation takes about
1.5 min to complete.

In the case of infinite sites mutations, we can recast this opera-
tion to use the efficient sample counting methods described in
Section 3.2. This approach is far more efficient, requiring less
than 2 s to compute the same value.

Coalescent Simulation with msprime 215

1 %%time
2 num_rare = 0
3 for tree in ts.trees():
4 for site in tree.sites():
5 # Only works for infinite sites mutations.
6 assert len(site.mutations) == 1
7 mutation = site.mutations[0]
8 if tree.num_samples(mutation.node) / ts.num_samples < threshold:
9 num_rare += 1

10 print(num_rare)
11 >>> 83081
12 CPU times: user 1.75 s, sys: 36 ms, total: 1.79 s

3.5 Incremental

Calculations

A powerful property of the tree sequence representation is that we
can efficiently find the differences between adjacent trees. This is
very useful when we have some value that we wish to compute that
changes in a simple way between trees. The edge_diffs iterator
provides us with the information that we need to perform such
incremental calculations. Here we use it to keep a running track of
the total branch length of our trees, without needing to perform a
full traversal each time.

1 def get_total_branch_length(ts):
2 current = 0
3 total_branch_length = np.zeros(ts.num_trees)
4 for j, (_, edges_out, edges_in) in enumerate(ts.edge_diffs()):
5 for e in edges_out:
6 current -= ts.node(e.parent).time - ts.node(e.child).time
7 for e in edges_in:
8 current += ts.node(e.parent).time - ts.node(e.child).time
9 total_branch_length[j] = current

10 return total_branch_length

This function returns the total branch length value for each tree
in the sequence as a NumPy array. It works by keeping track of the
total branch length as we proceed from left to right, and storing this
value in the output array for each tree. The edge_diffs method
returns a list of the edges that are removed for each tree transition
(edges_out) and a list of edges that are inserted (edges_in).
Computing the current value for the total branch length is then
simply a case of subtracting the branch lengths for all outgoing
edges and adding the branch lengths for all incoming edges. This is
extremely efficient because, after the first tree has been constructed
there is at most four incoming and outgoing edges [23]. Thus, each
tree transition costs constant time.

1 %%time
2 tbl = get_total_branch_length(ts)
3
4 CPU times: user 7.67 s, sys: 64 ms, total: 7.74 s

216 Jerome Kelleher and Konrad Lohse

In contrast, if we compute the total branch length by
performing a full traversal for each tree, each tree transition is
very costly when we have a large sample size. In this example,
computing the array of branch lengths using the incremental
approach given here took 8 s. Computing the same array using
the tree.total_branch_length for each tree in a straightfor-
ward way still had not completed after twenty minutes. (This is
because msprime currently implements this operation by a full
traversal in Python; in future, this may change to using the algo-
rithm given here.) Full tree traversals of large trees are expensive,
and great gains can be made if calculations can be expressed in an
incremental manner using edge_diffs.

3.6 Exporting

Variant Data

If the msprime API doesn’t provide methods to easily calculate the
statistics you are interested in, it’s straightforward to export the
variant data into other libraries using the genotype_matrix() or
variants() methods. We recommend the excellent scikit-
allel [32] and pylibseq [https://pypi.python.org/pypi/
pylibseq] libraries (pylibseq is a Python interface to libse-
quence [41]). If you wish to export data to external programs,
VCF may be best option, which is supported using the write_vcf
method. The simplifymethod is useful here if you wish to export
data from a subset of the simulated samples.

However, it is worth noting that for large sample sizes, export-
ing genotype data may require a great deal of memory and take
some time. One of the advantages of the msprime API is that we
do not need to explicitly generate genotypes in order to compute
many statistics of interest.

4 Validating Analytic Predictions

In this section we show some examples of validating simple analytic
predictions from coalescent theory using simulations. The number
of segregating sites is the total number of mutations that occurred
in the history of the sample (assuming the infinite sites mutation
model). Since mutations happen as a Poisson process along the
branches of the tree, what we are really interested in is the distribu-
tion of the total branch length of the tree. The results in this section
are well-known classical results from coalescent theory; this section
is intended as a demonstration of how to proceed when comparing
analytic results to simulations. We show some idiomatic examples
for integrating with the state-of-the-art data analysis packages such
as Pandas [30] and Seaborn [44]. All analytic predictions are taken
from [43].

Coalescent Simulation with msprime 217

https://pypi.python.org/pypi/pylibseq
https://pypi.python.org/pypi/pylibseq

4.1 Total Branch

Length and

Segregating Sites

The first properties we are interested in are the mean and the
variance of the total branch length of coalescent trees. (Note that,
as before, we set Ne ¼ 1/2 to convert between msprime’s diploid
time scaling to the haploid time scaling of these analytic results.)

1 ns = np.array([5, 10, 15, 20, 25, 30])
2 num_reps = 10000
3 n_col = np.zeros(ns.shape[0] * num_reps)
4 T_total_col = np.zeros(ns.shape[0] * num_reps)
5 row = 0
6 for n in ns:
7 for ts in msprime.simulate(n, Ne=0.5, num_replicates=num_reps):
8 tree = ts.first()
9 n_col[row] = n

10 T_total_col[row] = tree.total_branch_length
11 row += 1
12 df = pd.DataFrame({"n": n_col, "T_total": T_total_col})

We first create an array of the six different n values that we wish
to simulate, and then create arrays to hold the results of the simula-
tions. Because we are running 10,000 replicates for each sample
size, we allocate arrays to hold 60,000 values. This approach of
storing the data in arrays is convenient because it allows us to use
Pandas dataframes in an idiomatic fashion. We then iterate over all
of our sample sizes and run 10,000 replicates of each. For each
simulation, we simply store the sample size value and the total
branch length in a Pandas dataframe. This gives us access to many
powerful data analysis tools (including the Seaborn library, which
we use for visualization here).

After we have created our simulation data, we define our ana-
lytic predictions and plot the data.

1 def T_total_mean(n):
2 return 2 * np.sum(1 / np.arange(1, n))
3
4 def T_total_var(n):
5 return 4 * np.sum(1 / np.arange(1, n)**2)
6
7 mean_T = np.array([T_total_mean(n) for n in ns])
8 stddev_T = np.sqrt(np.array([T_total_var(n) for n in ns]))
9 ax = sns.violinplot(

10 x="n", y="T_total", data=df, color="grey", inner=None)
11 ax.plot(mean_T, "-");
12 ax.plot(mean_T - stddev_T, "--", color="black");
13 ax.plot(mean_T + stddev_T, "--", color="black");
14 group = df.groupby("n")
15 mean_sim = group.mean()
16 stddev_sim = np.sqrt(group.var())
17 x = np.arange(ns.shape[0])
18 ax.plot(x, mean_sim, "o")
19 line, = ax.plot(x, mean_sim - stddev_sim, "ˆ")
20 ax.plot(x, mean_sim + stddev_sim, "ˆ", color=line.get_color());

The plot in Fig. 11a shows the simulated distribution of the
total branch length over replicate simulations (each violin is a

218 Jerome Kelleher and Konrad Lohse

distribution for a given sample size). We also show our analytic
prediction for the mean and variance of each distribution (the
dashed lines show � 1 standard deviation from the mean). Also
shown are the observed means and standard deviations from the
simulations, as green circles and red triangles, respectively. We can
see that the simulated values match our theoretical predictions for
mean and variance very well. We can also see, however, that these

Fig. 11 Comparisons of the distribution of simulated total branch lengths with
analytic results. (a) The full distribution of simulated values (violin plots) along with
observed and predicted mean and standard deviations for a range of sample sizes.
(b) The full simulated and predicted distribution of total branch length for n ¼ 20

Coalescent Simulation with msprime 219

one-dimensional summaries of the distribution capture some essen-
tial properties but lose some important aspects of the distribution.

Ideally, we wish to capture the full distribution analytically. In
the following code chunk we define the analytic prediction for the
total branch length distribution, and compare it with the simulated
distribution for a sample of size 20. The results are shown in
Fig. 11b. We can see an excellent agreement between the smoothed
kernel density estimate produced by Seaborn and the theoretical
prediction.

1 def T_total_density(n, t):
2 e_t2 = np.exp(-t / 2)
3 return 0.5 * (n - 1) * e_t2 * (1 - e_t2)**(n - 2)
4
5 n = 20
6 T_total_20 = T_total_col[n_col == n]
7 ts = np.linspace(0, np.max(T_total_20), 25)
8 t_densities = np.array([T_total_density(n, t) for t in ts])
9 sns.distplot(T_total_20)

10 plt.plot(ts, t_densities, marker="o", label="Analytical")
11 plt.xlabel("T_total")
12 plt.legend();

Since we cannot directly observe branch lengths, we are usually
more interested in mutations when working with data. The muta-
tion process is intimately related to the distribution of branch
lengths, since mutations occur randomly along tree branches.
One simple summary of the mutational process is the total number
of segregating sites, that is, the number of sites at which we observe
variation. We can obtain this very easily from simulations simply by
specifying a mutation rate parameter. (Note again that we set
Ne ¼ 1/2 and our mutation rate ¼ θ/2 in order to convert to
msprime’s time scales.)

1 def S_dist(n, theta, k):
2 S = 0
3 for i in range(2, n + 1):
4 S += ((-1)**i * scipy.special.binom(n - 1, i - 1)
5 * (i - 1) / (theta + i - 1)
6 * (theta / (theta + i - 1))**k)
7 return S
8
9 n = 20

10 theta = 5
11 num_replicates = 1000
12 simulation = np.zeros(num_replicates)
13 replicates = msprime.simulate(
14 n, Ne=0.5, mutation_rate=theta / 2, num_replicates=num_replicates)
15 for j, ts in enumerate(replicates):
16 simulation[j] = ts.num_sites # number of seg. sites
17 ks = np.arange(np.max(simulation))
18 analytical = np.array([S_dist(n, theta, k) for k in ks])
19 sns.distplot(simulation)
20 plt.plot(ks, analytical, marker=’o’, label="Analytical")
21 plt.xlabel("Segregating sites")
22 plt.legend();

220 Jerome Kelleher and Konrad Lohse

Here we take 1000 replicate simulations, store the number of
infinite sites mutations for each, and plot this distribution in
Fig. 12a. Also plotted is the analytic prediction, which again pro-
vides an excellent fit.

Fig. 12 Simulations of the number of segregating sites, and comparisons with
analytic predictions. (a) The distribution of the number of segregating sites for
n ¼ 20, θ ¼ 5 and no recombination over 1000 simulation replicates, along
with analytic prediction. (b) The mean and variance of the number of segregating
sites over 10000 simulation replicates with n ¼ 2, θ ¼ 2 and varying recombi-
nation rate, along with analytic predictions

Coalescent Simulation with msprime 221

4.2 Recombination In the previous section we saw how to run simulations to generate
trees under the assumptions of the single-locus coalescent and
compare these with analytic predictions. This assumes that our
data is not affected by recombination, which is often unrealistic.
Here we show how to compute empirical distributions of equiva-
lent quantities, and compare these with classical results from the
literature. Since analytic results for many quantities are generally
unknown for the case of recombination along a linear sequence, we
limit ourselves to the pairwise samples.

1 theta = 2
2 num_replicates = 10000
3 rhos = np.arange(1, 10)
4 N = rhos.shape[0] * num_replicates
5 rho_col = np.zeros(N)
6 s_col = np.zeros(N)
7 row = 0
8 for rho in rhos:
9 replicates = msprime.simulate(

10 sample_size=2, Ne=0.5, mutation_rate=theta / 2,
11 recombination_rate=rho / 2, num_replicates=num_replicates)
12 for ts in replicates:
13 rho_col[row] = rho
14 s_col[row] = ts.num_sites
15 row += 1
16 df = pd.DataFrame({"rho": rho_col, "s": s_col})

In this code chunk we again run 104 replicate simulations for a
range of input parameters, and store the results in a Pandas data
frame. We are interested in the effects of recombination rate in this
example, and so the parameter that we vary is the scaled recombi-
nation rate ρ (noting, again, that we set Ne ¼ 1/2 and recombi-
nation_rate ¼ ρ/2 to convert to msprime’s time scales).

1 def pairwise_S_mean(theta):
2 return theta
3
4 def f2(rho):
5 return (rho + 18) / (rho**2 + 13 * rho + 18)
6
7 def pairwise_S_var(theta, rho):
8 integral = scipy.integrate.quad(lambda x: (rho - x) * f2(x), 0, rho)
9 return theta + 2 * theta**2 * integral[0] / rho**2
10
11 group = df.groupby("rho")
12 plt.plot(group.mean(), "o", label="simulated mean")
13 plt.plot(group.var(), "ˆ", label="simulated variance")
14 plt.plot(
15 rhos, [pairwise_S_mean(theta) for rho in rhos], "-",
16 label="Analytical mean")
17 plt.plot(rhos, [pairwise_S_var(theta, rho) for rho in rhos], "--",
18 label="Analytical variance")
19 plt.xlabel("rho")
20 plt.legend();

222 Jerome Kelleher and Konrad Lohse

After defining our analytic predictions for the mean and
variance of the number of segregating sites, we then plot the
observed and predicted values in Fig. 12b. Comparing the
simulated results to analytic predictions we see excellent agree-
ment. The mean number of segregating sites is not affected by
recombination, but recombination does substantially reduce the
variance.

5 Example Inference Scheme

The analytical challenges of deriving likelihood functions even
under highly idealized models of population structure and history
have led to the development of likelihood-free inference methods,
in particular Approximate Bayesian Computation (ABC) [2]. ABC
approximates the posterior distribution of model parameters by
drawing from simulations. Because of its flexibility ABC has
become a standard inference tool in statistical population genetics
(see ref. 7, for a review). We will demonstrate how msprime can be
used to set up an ABC inference by means of a simple toy example.
We stress that this is meant as an illustration rather than an
inference tool for practical use. However, given the flexibility of
msprime, it should be relatively straightforward to implement
more a realistic framework focused on specific inference
applications.

We assume that data for 200 loci or sequence blocks (these
could be RAD loci in practice) for a single diploid individual have
been generated from each of two populations. We would like to
infer the amount of gene flow between the two populations. For
the sake of simplicity, we will assume the simplest possible model of
population structure; that is, two populations, of the same effective
size exchanging migrants at a constant rate of m migrants per
generation.

The function run_sims simulates a dataset consisting of a
specified number of loci (num_loci) given a migration rate M.
We generate a single dataset of 50 loci assuming a migration rate
M ¼ 0.3 migrants per generation, which we will use as a (pseudo)
observed dataset in the ABC implementation.

Coalescent Simulation with msprime 223

1 nsamp = 2
2 theta = 2
3 true_M = 0.3
4 num_loci = 200
5
6 def run_sims(m, num_loci=1,theta=0):
7 return msprime.simulate(
8 Ne=1/2,
9 population_configurations=[

10 msprime.PopulationConfiguration(sample_size=nsamp),
11 msprime.PopulationConfiguration(sample_size=nsamp)],
12 migration_matrix=[[0, m], [m, 0]],
13 num_replicates=num_loci,
14 mutation_rate=theta / 2)
15
16 def get_joint_site_frequency_spectra(reps):
17 data = np.zeros((num_loci, nsamp + 1, nsamp + 1))
18 for rep_index, ts in enumerate(reps):
19 # Track the samples from population 0.
20 for tree in ts.trees(tracked_samples=[0, 1]):
21 for site in tree.sites():
22 # Only works for infinite sites mutations.
23 assert len(site.mutations) == 1
24 mutation = site.mutations[0]
25 nleaves0 = tree.num_tracked_samples(mutation.node)
26 nleaves1 = tree.num_samples(mutation.node) - nleaves0
27 data[rep_index, nleaves0, nleaves1] += 1
28 return data
29
30 truth = get_joint_site_frequency_spectra(
31 run_sims(true_M, num_loci=num_loci, theta=2))

The run_sims function returns an iterator with the complete
tree sequence and mutational information of each locus. We use the
function get_joint_site_frequency_spectra to summarize
the polymorphism information as the joint site frequency spectrum
(jSFS) of each locus, i.e. the blockwise site frequency spectrum or
bSFS [sensu 28]. Note that higher level population genetic sum-
maries, e.g. pairwise measures of divergence and diversity such as
DXY [33] and FST [45] or multi-population F statistics [8, 34]
which are often used in ABC inference are just further (and lossy)
summaries of the jSFS.

Since msprime simulates rooted trees, the columns and rows of
the unfolded jSFS correspond to the frequency of derived muta-
tions in each population and the entries of the jSFS are simply
mutation counts. For example, for the first locus we have:

2
3 >>> [[0. 1. 4.]
4 [5. 0. 7.]
5 [0. 0. 0.]]

1 print(truth[0])

224 Jerome Kelleher and Konrad Lohse

One could base inference on the bSFS [4, 28], but we will for
the sake of simplicity use a simpler (and lossy) summary of the data:
the average jSFS across loci. For analyses based on SNPs, it is
convenient to normalize the jSFS by the total number of mutations:

1 truth_mean = np.mean(truth, axis=0)
2 truth_mean /= np.sum(truth_mean)
3 print(truth_mean)
4
5 >>> [[0. 0.22099954 0.16139386]
6 [0.25630445 0.03255387 0.08482348]
7 [0.16093535 0.08298945 0.]]

To illustrate a simple ABC inference, we will focus on a single
parameter of interest, the migration rateM. ABCmeasures the fit of
data simulated under the prior to the observed data via a vector of
summary statistics. We will use the jSFS as a summary statistic and
approximate the jSFS for each M value as the mean length of
genealogical branches across 100 simulation replicates (num_-
reps). Below we draw 10,000 M values from the prior and use
the functions run_sims and approx_jSFS to approximate the
jSFS for replicate. We assume an exponential distribution, a com-
mon choice of prior [13].

1 num_reps = 100
2 num_prior_draws = 10000
3 prior_M = np.random.exponential(0.1, num_prior_draws)
4
5 def approx_jSFS(m):
6 reps = run_sims(m, num_loci=num_reps)
7 B = np.zeros((num_reps, nsamp + 1, nsamp + 1))
8 for rep_index, ts in enumerate(reps):
9 samp1 = ts.samples(population_id=0)

10 for tree in ts.trees(tracked_samples=samp1):
11 # Note that this will be inefficient if we have
12 # lots of trees. Should use an incremental update
13 # strategy using edge_diffs in this case.
14 for u in tree.nodes():
15 n1 = tree.num_tracked_samples(u)
16 n2 = tree.num_samples(u) - n1
17 if tree.parent(u) != msprime.NULL_NODE:
18 B[rep_index, n1, n2] += tree.branch_length(u)
19 data = np.mean(B, axis=0)
20 return data / np.sum(data)
21
22 with multiprocessing.Pool() as pool:
23 prior_jSFS = pool.map(approx_jSFS, prior_M)

Here we run 100 simulation replicates for each of the 10,000
m values drawn from the prior, giving a total of one million indi-
vidual simulations. We use the multiprocessing module to
distribute these computations over the available CPU cores. Once
this has completed, we compute the Euclidean distance between
the estimated jSFS for each draw from the prior (prior_jSFS) and
the jSFS in the (pseudo)observed data (truth_mean):

Coalescent Simulation with msprime 225

1 distances = np.zeros(num_prior_draws)
2 for j in range(num_prior_draws):
3 distances[j] = np.sqrt(np.sum((prior_jSFS[j] - truth_mean)**2))

In its simplest form, ABC approximates the posterior by sam-
pling from the simulated data via an acceptance threshold. Here we
approximate the posterior distribution of m using the 5% of simu-
lation replicates that most closely match the average jSFS of the
observed data. Figure 13a shows that the posterior distribution
(shown in green) is centered around m ¼ 0.25.

Fig. 13 ABC results. (a) Prior and posterior ABC distributions and estimated 95%
approximate credible interval. (b) Mean and root-mean-square-error of migra-
tion rate estimates computed from pseudo-observed data sets

226 Jerome Kelleher and Konrad Lohse

1 cutoff = np.percentile(distances, 5)
2 keep = np.where(distances < cutoff)
3 post_m = prior_m[keep]
4 mean_m = np.mean(post_m)
5 ci_m = np.percentile(post_m, 2.5), np.percentile(post_m, 95.75)
6 sns.distplot(prior_m, label="Prior")
7 sns.distplot(post_m, label="Posterior")
8 # Plotting code omitted.

The mean and the 95% approximate posterior credible interval
for m are:

1 print([mean_m, ci_m])
2
3 >>> [0.22494687232052613, (0.14574598726102159, 0.32315656482448107)]

Although the true value of m ¼ 0.3 is contained within the
95% credible interval, the posterior distribution is clearly down-
wardly biased. This bias is in fact expected given that our prior is
also strongly biased towards low m. We can check the effect the
acceptance threshold on the inference and get a sense of the
expected information about m using a cross-validation procedure:
we repeat the inference on pseudo-observed data sets (PODS)
simulated under a known truth. Since we can re-use the same set
of replicates simulated under the prior for inference, such cross-
validation is computationally efficient.

Figure 13b shows the mean and the root mean square error
(RMSE) of m estimates (across 100 PODS) against the acceptance
threshold and confirms that both the downward bias inm estimates
and the associated RMSE increase with larger acceptance thresh-
olds. While this toy example illustrates the principle of ABC infer-
ence, sampling only a small fraction of simulations generated under
the prior is clearly computationally inefficient and more efficient
sampling strategies for ABC inference have been developed [2]. In
practice, we are generally interested in fitting parameter-rich mod-
els and it would be straightforward to implement ABC inference for
complex model of population structure and demography in
msprime.

6 Discussion

In this chapter we have focused on the usage of msprime as a
coalescent simulator, and illustrated its flexibility through concrete
examples. While many examples discuss how to create and run the
simulations themselves, others are concerned with how we analyze
the output of these simulations. We have shown particularly in
Section 3 that these methods can be very efficient, allowing us to

Coalescent Simulation with msprime 227

easily analyze chromosome scale data for hundreds of thousands of
samples. The data structures and APIs used in msprime are cur-
rently being developed to increase their generality and applicability.
Recent work [11, 24] has shown that forward-time simulations can
also benefit from these methods. By recording all genealogical
information for the simulated population in the form of a succinct
tree sequence, we avoid the need to generate and carry forward
neutral mutations; by definition, they do not affect the genealogies,
and can therefore be placed on them afterwards. Not only does this
provide us with much more complete information about the
forward-time simulation, it also leads to substantially faster running
times (up to 50� faster, in the simulations performed). Through
the use of a well-documented interchange API and thoroughly
specified data formats, forward-time simulators can output data
that is compatible with the msprime API, and precisely the same
techniques described here can be used to analyze the results. Thus,
code written to analyze coalescent simulations can equally be
applied to analyze forwards simulations.

There is currently a great deal of activity from a growing
community around msprime. We plan to separate the tree
sequence processing code from the simulator and create a library,
provisionally known as tskit. This standalone library (C and
Python interfaces are planned) will greatly facilitate integration
with forwards-time simulators, allowing them to easily offload
tree sequence processing to tskit. Algorithms for efficiently cal-
culating statistics using the incremental techniques outlined in
Section 3.5 are in development, and promise to be significantly
more efficient than the state of the art. Also in development are
methods to estimate the tree sequence data structure from real
data, which would allow us to use these efficient algorithms on
observed as well as simulated data. New features are being added to
the msprime simulator also, with support for a discrete time
Wright-Fisher model and a family of multiple-merger coalescent
models in development. We hope that in the coming years a diverse
ecosystem of tools and applications using these APIs and data
structures will emerge.

Online Resources:

Jupyter
notebook

https://github.com/StatisticalPopulationGenomics/
msprime

Documentation https://msprime.readthedocs.io/en/stable/

GitHub https://github.com/tskit-dev/msprime

Mailing list https://groups.google.com/forum/#!forum/msprime-
users

228 Jerome Kelleher and Konrad Lohse

https://github.com/StatisticalPopulationGenomics/msprime
https://github.com/StatisticalPopulationGenomics/msprime
https://msprime.readthedocs.io/en/stable/
https://github.com/tskit-dev/msprime
https://groups.google.com/forum/#!forum/msprime-users
https://groups.google.com/forum/#!forum/msprime-users

Acknowledgements

We would like to thank Simon Aeschbacher for comments on the
ABC inference example, and to thank Yan Wong, Joseph Marcus,
and Julien Dutheil for detailed and insightful feedback. JK is sup-
ported by Wellcome Trust grant 100956/Z/13/Z to Gil McVean.
KL is supported by an Independent Research fellowship from the
Natural Environment Research Council (NE/L011522/1).

References

1. Arenas M (2012) Simulation of molecular data
under diverse evolutionary scenarios. PLoS
Comput Biol 8(5):e1002495

2. Beaumont MA, Zhang W, Balding DJ (2002)
Approximate Bayesian computation in popula-
tion genetics. Genetics 162:2025–2026

3. Becquet C, Przeworski M (2007) A new
approach to estimate parameters of speciation
models with application to apes. Genome Res
17(10):1505–1519

4. Beeravolu Reddy C, Hickerson MJ, Frantz
LAF, Lohse K (2017) Blockwise site frequency
spectra for inferring complex population his-
tories and recombination, bioRxiv. https://
doi.org/10.1101/077958

5. Carvajal-Rodrı́guez A (2008) Simulation of
genomes: a review. Curr Genomics 9
(3):155–159

6. Cornuet JM, Santos F, Beaumont MA, Robert
CP, Marin JM, Balding DJ, Guillemaud T,
Estoup A (2008) Inferring population history
with DIY ABC: a user-friendly approach to
approximate Bayesian computation. Bioinfor-
matics 24(23):2713–2719

7. Csilléry K, Blum M, Gaggiotti OE, François O
(2010) Approximate Bayesian computation
(ABC) in practice. Trends Eco Evol 25
(7):410–418

8. Durand EY, Patterson N, Reich D, Slatkin M
(2011) Testing for ancient admixture between
closely related populations. Mol Biol Evol 28
(8):2239–2252

9. Excoffier L, Dupanloup I, Huerta-Sánchez E,
Sousa VC, Foll M (2013) Robust demographic
inference from genomic and SNP data. PLoS
Genet 9(10):e1003905

10. Gutenkunst RN, Hernandez RD, Williamson
SH, Bustamante CD (2009) Inferring the joint
demographic history of multiple populations
from multidimensional SNP frequency data.
PLoS Genet 5(10):e1000695

11. Haller BC, Galloway J, Kelleher J, Messer PW,
Ralph PL (2018) Tree-sequence recording in

SLiM opens new horizons for forward-time
simulation of whole genomes, bioRxiv.
https://doi.org/10.1101/407783. https://
www.biorxiv.org/content/early/2018/09/
04/407783

12. Harris K, Nielsen R (2013) Inferring demo-
graphic history from a spectrum of shared hap-
lotype lengths. PLoS Genet 9(6):e1003521

13. Hey J, Nielsen R (2004) Multilocus methods
for estimating population sizes, migration rates
and divergence time, with applications to the
divergence of Drosophila pseudoobscura and
D. persimilis. Genetics 167(2):747–760

14. Hoban S, Bertorelle G, Gaggiotti OE (2012)
Computer simulations: tools for population and
evolutionary genetics. Nat Rev Genet 13(2):110

15. Hudson RR (1983) Testing the constant-rate
neutral allele model with protein sequence
data. Evolution 37(1):203–217

16. Hudson RR (1990) Gene genealogies and the
coalescent process. Oxf Surv Evol Biol 7:1–44

17. Hudson RR (2002) Generating samples under
a Wright-Fisher neutral model of genetic varia-
tion. Bioinformatics 18(2):337–338

18. Hunter JD (2007) Matplotlib: a 2d graphics
environment. Comput Sci Eng 9(3):90–95

19. International HapMap Consortium (2003)
The international HapMap project. Nature
426(6968):789

20. Jones E, Oliphant T, Peterson P, et al (2018)
SciPy: open source scientific tools for Python
(2001–2018). http://www.scipy.org/
[Online; Accessed 30 Jan 2018]

21. Kelleher J, Barton NH, Etheridge AM (2013)
Coalescent simulation in continuous space.
Bioinformatics 29(7):955–956

22. Kelleher J, Etheridge A, Barton N (2014) Coa-
lescent simulation in continuous space: algo-
rithms for large neighbourhood size. Theor
Popul Biol 95:13–23

23. Kelleher J, Etheridge AM, McVean G (2016)
Efficient coalescent simulation and

Coalescent Simulation with msprime 229

https://doi.org/10.1101/077958
https://doi.org/10.1101/077958
https://doi.org/10.1101/407783
https://www.biorxiv.org/content/early/2018/09/04/407783
https://www.biorxiv.org/content/early/2018/09/04/407783
https://www.biorxiv.org/content/early/2018/09/04/407783
http://www.scipy.org/

genealogical analysis for large sample sizes.
PLoS Comput Biol 12(5):e1004842

24. Kelleher J, Thornton K, Ashander J, Ralph P
(2018) Efficient pedigree recording for fast
population genetics simulation. PLoS Comput
Biol 14(11):e1006581

25. Kingman JFC (1982) The coalescent. Stoch
Processes Appl 13(3):235–248

26. Li H, Durbin R (2011) Inference of human
population history from individual whole-
genome sequences. Nature 475:493–496

27. Liu Y, Athanasiadis G, Weale ME (2008) A
survey of genetic simulation software for pop-
ulation and epidemiological studies. Hum
Genomics 3(1):79

28. Lohse K, Chmelik M, Martin SH, Barton NH
(2016) Efficient strategies for calculating
blockwise likelihoods under the coalescent.
Genetics 202(2):775–786

29. Martin AR, Gignoux CR, Walters RK, Wojcik
GL, Neale BM, Gravel S, Daly MJ, Bustamante
CD, Kenny EE (2017) Human demographic
history impacts genetic risk prediction across
diverse populations. Am J Hum Genet 100
(4):635–649

30. McKinney W, et al (2010) Data structures for
statistical computing in python. In: Proceed-
ings of the 9th Python in science conference,
Austin, TX, vol 445, pp 51–56

31. McVean GAT, Cardin NJ (2005) Approximat-
ing the coalescent with recombination. Philos
Trans R Soc Lond B Biol Sci 360
(1459):1387–1393

32. Miles A, Harding N (2017) scikit-allel.
https://doi.org/10.5281/zenodo.822784

33. Nei M (1972) Genetic distance between popu-
lations. Am Nat 106(949):283–292

34. Patterson N, Moorjani P, Luo Y, Mallick S,
Rohland N, Zhan Y, Genschoreck T,
Webster T, Reich D (2012) Ancient admixture
in human history. Genetics 192(3):
1065–1093

35. Pérez F, Granger BE (2007) Ipython: a system
for interactive scientific computing. Comput
Sci Eng 9(3):21–29

36. Rasmussen MD, Hubisz MJ, Gronau I, Siepel
A (2014) Genome-wide inference of ancestral
recombination graphs. PLoS Genet 10(5):
e1004342

37. Schiffels S, Durbin R (2014) Inferring human
population size and separation history from
multiple genome sequences. Nat Genet
46:919–925

38. Sousa VC, Grelaud A, Hey J (2011) On the
nonidentifiability of migration time estimates
in isolation with migration models. Mol Ecol
20(19):3956–3962

39. Staab PR, Zhu S, Metzler D, Lunter G (2014)
scrm: efficiently simulating long sequences
using the approximated coalescent with recom-
bination. Bioinformatics 31(10):1680–1682

40. Tajima F (1983) Evolutionary relationship of
DNA sequences in finite populations. Genetics
105(2):437–460

41. Thornton K (2003) Libsequence: a C++ class
library for evolutionary genetic analysis. Bioin-
formatics (Oxf, Engl) 19(17):2325–2327

42. van der Walt S, Colbert SC, Varoquaux G
(2011) The NumPy array: a structure for effi-
cient numerical computation. Comput Sci Eng
13(2):22–30

43. Wakeley J (2008) Coalescent theory: an intro-
duction. Roberts and Company, Englewood

44. Waskom M, Botvinnik O, O’Kane D,
Hobson P, Lukauskas S, Gemperline DC,
Augspurger T, Halchenko Y, Cole JB,
Warmenhoven J, de Ruiter J, Pye C, Hoyer S,
Vanderplas J, Villalba S, Kunter G, Quintero E,
Bachant P, Martin M, Meyer K, Miles A,
Ram Y, Yarkoni T, Williams ML, Evans C,
Fitzgerald C, Brian, Fonnesbeck C, Lee A,
Qalieh A (2017) mwaskom/seaborn: v0.8.1
(September 2017). https://doi.org/10.
5281/zenodo.883859

45. Wright S (1950) Genetical structure of popula-
tions. Nature 166:247–249

46. Yuan X, Miller DJ, Zhang J, Herrington D,
Wang Y (2012) An overview of population
genetic data simulation. J Comput Biol 19
(1):42–54

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.

230 Jerome Kelleher and Konrad Lohse

https://doi.org/10.5281/zenodo.822784
https://doi.org/10.5281/zenodo.883859
https://doi.org/10.5281/zenodo.883859
http://creativecommons.org/licenses/by/4.0/

	Chapter 9: Coalescent Simulation with msprime
	1 Introduction
	2 Running Simulations
	2.1 Trees and Replication
	2.2 Population Models
	2.2.1 Exponentially Growing/Shrinking Populations

	2.3 Mutations
	2.4 Population Structure
	2.5 Demographic Events
	2.5.1 Migration Rate Change
	2.5.2 Mass Migration
	2.5.3 Population Parameter Change

	2.6 Ancient Samples
	2.7 Recombination

	3 Processing Results
	3.1 Computing MRCAs
	3.2 Sample Counts
	3.3 Obtaining Subsets
	3.4 Processing Variants
	3.5 Incremental Calculations
	3.6 Exporting Variant Data

	4 Validating Analytic Predictions
	4.1 Total Branch Length and Segregating Sites
	4.2 Recombination

	5 Example Inference Scheme
	6 Discussion
	References

