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Abstract

Maize is an excellent model for the study of plant adaptation. Indeed, post domestication maize quickly
adapted to a host of new environments across the globe. And work over the last decade has begun to
highlight the role of the wild relatives of maize—the teosintes Zea mays ssp. parviglumis and ssp. mex-
icana—as excellent models for dissecting long-term local adaptation.
Although human-driven selection associated with maize domestication has been extensively studied, the

genetic basis of natural variation is still poorly understood. Here we review studies on the genetic basis of
adaptation and plasticity in maize and its wild relatives. We highlight a range of different processes that
contribute to adaptation and discuss evidence from natural, cultivated, and experimental populations. From
an applied perspective, understanding the genetic bases of adaptation and the contribution of plasticity will
provide us with new tools to both better understand and mitigate the effect of climate changes on natural
and cultivated populations.
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1 Introduction

A combination of archeobotanical records and genetic data has
established that maize (Zea mays ssp. mays) was domesticated
around 9000 years ago in the Balsas river valley of Mexico from
the wild teosinte Zea mays ssp. parviglumis [1–3]. Unlike complex
domestication scenarios involving multiple domestication events in
the common bean (Phaseolus vulgaris L.) and the lima bean (Pha-
seolus lunatus L.) [4] or multiple progenitors from different regions
in barley (Hordeum vulgare; [5], maize stands a relatively simple
scenario involving only a single domestication event resulting in a
moderate decrease of genetic diversity of roughly 20% [6].

With the rise of coalescent simulation tools since the late 1990s
[7], researchers have repeatedly attempted to establish demo-
graphic scenarios of maize domestication. All concur with a simple
bottleneck model, that is, a reduction of effective population size
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(Ne), with <10% of the teosinte population contributing to the
maize gene pool [8–11]. A recent investigation indicates that this
bottleneck was followed by a major expansion resulting in anNe for
modern maize much larger than that of teosinte [11]. However,
the complexity of the forces acting to shape diversity at a genome-
wide scale makes it difficult to disentangle them. On the one hand,
domestication has likely promoted strong positive selection at ~2%
to 4% of loci [10] producing one of the most famous textbook
example of selective sweeps at tb1, a gene responsible for the
reduced branching phenotype in maize [12]. On the other hand,
purifying selection has also reduced neutral genetic diversity
[11]. Such selection may lead to an excess of rare variants, a foot-
print easily confounded with both positive selection and population
expansion [13].

After its initial domestication, the geographic range of maize
has rapidly exceeded that of its wild relatives, with documented
routes of diffusion northward and southward out of Mexico
[14, 15] and to the European continent [16]. Today the maize
gene pool worldwide consists of locally adapted open-pollinated
populations (landraces) as well as modern inbred lines, derived
from landraces, that are used in hybrid production for modern
breeding. Such spatial movement has exerted a diversity of selective
pressures, triggering changes in the phenology of individuals that
ultimately determines the completion of the annual cycle and indi-
vidual fitness [17, 18].

In the last decade, the annual teosintes Zea mays ssp. parviglu-
mis and ssp. mexicana have emerged as models for dissecting long-
term adaptation to natural selection [19]. While their distribution is
rather limited geographically, teosintes span extremely various envi-
ronmental conditions in terms of temperatures, precipitations and
elevations. Migration is also somewhat limited by the complex
landscape of Mexico [20, 21]. Moreover, both teosinte taxa display
a high level of nucleotide diversity [22] consistent with large esti-
mates of effective population sizes from 120k to 160k
[23]. Together, these conditions set the stage for extensive local
adaptation.

Populations respond to environmental changes in three ways:
(1) by shifting their range via migration to environments whose
conditions are similar to their original conditions; (2) by genetic
adaptation through the recruitment of preexisting or new alleles
that increase the fitness of individuals carrying them; or (3) by
phenotypic adjustments without genetic alterations, a mechanism
called phenotypic plasticity.

Recent range shifts driven by global warming have been
reported in tree species distributed in California, Oregon and
Washington with an average shift compared to mature trees of
about 27 m in altitude and 11kms northward, toward colder envir-
onments [24]. Likewise, rising temperatures have likely caused the
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upslope migration reported for vascular plants species across
European boreal-to-temperate mountains [25].

Such measurement in natural populations of teosintes are cur-
rently unavailable making the assessment of recent migration in
response to climate change unknown. However, a niche modeling
study showed that the range of annual teosintes appears to be quite
similar to what it was at the time of domestication [26]. From the
same study, relatively minor shifts of the niche have occurred even
over the dramatic changes of the last glacial maximum, suggesting
that migration over long ranges was not necessary.

In this chapter, we focus on adaptation and phenotypic plastic-
ity. We review methods used to explore genetic adaptation and the
factors constraining it. Next, we review empirical reports of short-
and long-term adaptation in maize and teosintes. Finally, we discuss
the role genetic convergence and phenotypic plasticity have played
during adaptation.

2 How to Explore Adaptation?

Genetic adaptation can be defined as the modulation of allele
frequencies through natural and/or artificial selection. Natural
selection is imposed by changes in environmental conditions, or
artificial selection by humans. Identification of adaptive loci
(Fig. 1a, b) and/or traits (Fig. 1c, d) uses spatial or temporal
variation in conjunction with quantification of traits in native envir-
onments (Fig. 1f) or in common gardens (Fig. 1g) [27–30]. While
the temporal approach includes retrospective studies that follow the
phenotypic and genetic composition of populations through time
(for instance [31] to infer past selective events, the spatial approach
relies on samples of populations that are geographically separated
[30, 32].

In Zea, experimental approaches have been coupled with gen-
otyping of sampled/evolved populations to identify the genomic
bases of observed phenotypic changes. More often, however, stud-
ies have focused only on species-wide population genomic analyses
tracing patterns of variation. These include searches for (1) spatial
associations of allele frequencies with environmental factors or
phenotypes (Fig. 1a); (2); shifts in allele frequencies across genetic
groups (e.g., comparing wild and cultivated samples) using genome
scans (Fig. 1b); and (3) differential gene expressions related to
population/subspecies differentiation. An increasingly popular
approach that was initiated in 2003 by Jaenicke-Despres [33] is
the use of ancient DNA, as maize cobs are often well preserved
making them an attractive source for ancient DNA studies. Such
studies provide access to temporal samples to address past selective
events that shaped genomes.
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3 What Constraints Adaptation?

Genetic adaptation can proceed through a single beneficial muta-
tion that occurs after the onset of selection pressure, in which case
the classical genetic footprint of a “hard” selective sweep is
observed. Alternatively, it can proceed through a single mutation
segregating in the population before the onset of selection (stand-
ing genetic variation), or through recurrent beneficial mutations.
In these latter cases, adaptation produces a “soft” sweep
footprint [34].

Hard sweeps are characterized by local shifts in allele frequen-
cies due to the hitchhiking of neutral sites around a selected de
novo variant occurring on a specific haplotype. Such changes in
allele frequencies can easily be detected by genome scans. In con-
trast, soft sweeps, which derive from multiple adaptive alleles
sweeping in the population, are substantially harder to detect at a
genome-wide scale.
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Fig. 1 Experimental approaches to detect potentially adaptive polymorphisms and traits using population
genetic (a, b) or phenotypic (c, d) data, or combining both (e, f). A candidate polymorphism whose allele
frequency among populations varies with spatial or temporal variation can be detected using correlation-
based methods (a) or genome-wide scans, where it displays an elevated differentiation of allele frequencies
compared with neutral (squares) loci (b). A candidate trait that covaries with spatial or temporal variation
among populations can be detected using correlation-based methods (c) or when phenotypic differentiation
measured in common environment(s) exceeds genotypic differentiation at neutral (squares) loci (d). A link
between candidate loci and traits can be established by correlating genotypic and phenotypic variation
measures in common environment(s) across populations (e), and within populations (f)
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The relative contribution of hard and soft sweeps has been a
long-standing debate and ultimately raises the important question
of what limits adaptation. Experimental evolution in model organ-
isms with short generation time such as Escherichia coli, yeast and
Drosophila melanogaster have provided insights into those ques-
tions [35–40]. What emerges from these studies is that relevant
parameters include the mutation rate, drift and selection
[41, 42]. We surveyed these parameters in eight divergent selection
experiments undertaken in maize (Table 1) and detail below our
interpretations. By applying continuous directional selection on a
given quantitative trait, such experiments aim to quantify and
understand the limits of selection. However, it should be noted
none of the cited work has included multiple replicates.

One of the most puzzling observations across experiments is
that the response to selection is generally steady over time. In the
Golden Glow (GG) experiment, the response varies from 4.7% to
8.7% of the original phenotypic value per cycle of selection across
24 cycles [48]. In the Krug Yellow Dent (KYD), it was estimated at
1.6% and 2.5% per cycle respectively, for high and low seed size
direction [59]. In the Iowa Stalk Synthetic (BSSS), the response
was of 3.9% per cycle for higher grain yield [50]. In the Iowa Long
Ear Synthetic (BSLE), an increase of 1.4% and a decrease of 1.9%
per cycle for high and low ear length were observed [59]. The
results were more equivocal for Burn’s White (BW), for which the
response is much stronger and steadier toward high (between 0.1%
and 0.3%) than low values (between 0% and 0.32%) for both protein
and oil content. This pattern of shift between a strong and steady
response to a plateau-like response for the low trait values is
explained by physiological limits. Hence after 65 generations a
lower limit for protein content is reached where the percentage of
oil in the grain (close to 0% in the late generations) is no longer
detectable [46, 47]. A similar situation has been reported for some
of the late flowering families of MBS847 and F252 that are not able
to produce seeds in the local climate conditions where they are
selected, while the early still display a significant response after
16 generations [43]. Overall, mutations do not appear limiting
regardless of the design, whether it started from highly inbred
material or a diverse set of intercrossed landraces (Table 1).

What differs from one experiment to another, however, is the
genomic footprint of the response to selection. Such footprints
have been investigated in all but the BW and BSLE design. In
GG, in which the mutational target size—the number of sites
affecting the trait—was restricted, the effective population size
was the highest of all and the selection was intense. The signal is
consistent with genome-wide soft sweeps [48, 49]. In KYD, char-
acterized by a larger mutational target, stronger drift (smaller effec-
tive population size), but weaker selection, both hard and soft
sweeps are observed [45]. In BSSS, in which the mutational target
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size is the largest, the effective population size small and the selec-
tion intense, the signal is consistent with hard sweeps [51]. The
F252 and MBS populations display the most limited standing
variation and at the same time the strongest drift and selection of
all experiments; in these a rapid fixation of new mutations explains
the response to selection [43, 44]. Effective population size primar-
ily determines the likelihood of soft sweeps. Hence, when θ (four
times the product of effective population size and the beneficial
mutation rate) is equal or above 1, and selection is strong enough,
adaptation proceeds from multiple de novo mutations or standing
variation [60]. Below 1, soft sweeps’ contribution diminishes with
θ. In the experiments from Table 1, selection is strong but θ � 1 in
all cases. Nevertheless, hard and soft sweeps were associated respec-
tively with the lowest (F252 and MBS) and highest (GG) effective
population size, consistent withNe being a key player. Comparisons
among experiments thus contribute to understanding the para-
meters of importance and their interactions that together shape
the genomic patterns of the response to selection.

An additional layer of complexity that may substantially impact
evolutionary trajectories is that of genetic correlations among traits.
Such correlations may emerge from genes with pleiotropic effects,
epistatic interactions among genes, and/or loci in tight linkage
affecting various traits. While some studies have found that covari-
ance between traits rarely affect adaptation [61], several examples
instead suggest that they may either constrain or facilitate adapta-
tion as predicted by Lande [62]. For instance, in Arabidopsis thali-
ana a recent study indicates that polymorphisms with intermediate
degrees of pleiotropy favored rapid adaptation to microhabitats in
natura [63]. In the case of domestication, tight linkage between
genes conferring the so-called domestication syndrome has been
invoked as a mechanism facilitating adaptation to the cultivated
environment in allogamous species, preventing gene flow from
wild relatives to break coadapted suites of alleles [64]. It turns out
that rather than clustering, plant domestication genes identified so
far are single locus which are mainly transcription factors (reviewed
in [65]) most of which likely display strong epistatic interactions.
tb1 in maize, for instance, interacts with another locus on a different
chromosome to alter the sex of maize inflorescences. The intro-
gression of the tb1 teosinte allele alone changes only ~20% of the
inflorescence sex but the introgression of both alleles converts 90%
of maize’s female flowers to male [66]. The maize tb1 allele segre-
gates at low frequency in teosinte populations but is rarely found
associated with the domesticated allele of chromosome 3, as both
are likely to evolve under negative selection in teosinte
[12, 66]. Their association in maize has however facilitated the
acquisition of the domesticated phenotype.
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4 Mechanisms of Genetic Adaptation in Maize and Teosintes

Populations of teosinte have long evolved under natural selection.
In contrast, maize populations have been under artificial human
selection that moved phenotypes toward optimal traits tailored to
agriculture during a shorter time frame of ~9000 years [1, 2,
22]. These time scales have left distinct genetic signatures. In
theory, traits fixed by domestication should involve genes with
larger effect sizes, and standing variation should be a major con-
tributor to domestication [67]. This is supported by crosses
between maize and teosintes that led to the discovery of six main
QTLs responsible for major phenotypic differences between them,
notably vegetative architecture and inflorescence sexuality
([68, 69], reviewed in [70]). Among these QTLs, genes with
major phenotypic effects have been discovered such as tb1 and
tga1 (teosinte glume architecture1). In addition to these major
genes, a collection of targets (2–4% of the genome according to
[6, 10]) have likely contributed to the domesticated phenotype. In
contrast, Genome Wide Association (GWA) studies on traits
selected over much longer time scale such as drought tolerance or
flowering time have highlighted only minor effect loci that rarely
contribute to more than 5% of the phenotypic variation [54, 67, 71,
72].

In addition to the time frame over which adaptation occurs,
another important factor for evolution is the nature of variation for
selection to act on. Maize and teosintes are genetically very diverse,
with as much nucleotide diversity in coding regions between two
maize lines as there are between humans and chimpanzees
[73]. This diversity is even higher in intergenic regions
[74, 75]. Some adaptive mutations are found in coding sequences.
Examples include nonsynonymous changes in the tga1 gene
responsible for the “naked kernel” maize phenotype, and in the
diacylglycerol acyltransferase (DGAT1–2) gene resulting in elevated
kernel oil content in maize lines [76, 77]. But most observations
support adaptation from regulatory noncoding sequences. Indeed,
in comparison with Arabidopsis, where adaptive variants are
enriched in coding sequences [78], in maize and teosintes these
are predominantly found in noncoding region: estimates in Zea
show that noncoding variants may explain as much phenotypic
variation as those in coding regions [79, 80]. Selection on regu-
latory sequences drive important expression changes; hence, genes
displaying footprints of selection in maize are usually more
expressed than in teosintes [6], and are associated with modified
coexpression networks [81].

Adaptive variation also results from structural variants. In con-
trast to the Arabidopsis or rice genomes where Transposable Ele-
ments (TEs) account for 20–40% of sequence, the maize genome is

Adaptation in Zea 297



composed of about 85% TEs [82, 83]. Genome size varies consid-
erably within Zea resulting in over 30% differences among maize
lines or landraces [79, 84, 85]. Because of their deleterious effect,
TEs are often negatively selected and silenced by DNAmethylation
[86]. But some may also impact gene expression and function in a
beneficial manner by various mechanisms such as gene inactivation
or differential expression caused by insertion in regulatory regions
[87] or TE-mediated genomic rearrangements causing gene inser-
tion, deletion or duplication (reviewed in [88]). A handful of
examples of their beneficial impact has been reported in Zea. A
classic example in maize is at the tb1 locus, where a transposon
inserted in the cis-regulatory region, doubling expression
[89]. Teosinte, like most grasses, produces numerous branches
tipped by a male inflorescence. In contrast, maize has only one
main stalk terminated by a single tassel with repressed development
of lateral branches. The increased expression level of tb1 is the
major contributor to this apical dominance [89]. Beyond TEs,
Copy Number Variants (CNVs) are also common in the maize
genome [90] and they contribute significantly to phenotypic varia-
tion [79, 91].

Another important player in adaptation in Zea is gene flow.
Indeed, teosinte populations are found in sympatry with maize and
hybridization between them is common [92]. Highland maize
shows up to 20% mexicana introgression, which has likely facili-
tated their adaptation to high elevations [3, 93]. An ancient DNA
study revealed that ancestral highland maize already showed evi-
dence of introgression from mexicana [15]. Introgressed regions
found at high frequency in highland maize overlap with previously
identified QTLs driving adaptive traits [93, 94], emphasizing the
importance of introgression during post-domestication adaptation.
Similarly, recent results suggest that admixture between distinct
genetic groups has facilitated adaptation to mid-latitudes in
North America and Europe [16].

5 Local Adaptation in Maize and Teosintes

Strictly defined, a genotype can be considered locally adapted if it
has a higher fitness at its native site than any other nonnative
genotypes [95]. Locally adapted alleles can be either neutral or
deleterious in other environments. Two models depict those situa-
tions, namely conditional neutrality and antagonistic pleiotropy
[96]. Despite numerous studies, the genetic processes underlying
local adaptation in natural populations are still poorly understood.
This is mainly due to traits driving local adaptation being mostly
quantitative [29]. This complex determinism may involve numer-
ous, but not necessarily substantial, allele frequency changes.
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Studies showed that highland maize landraces outperform low-
land maize populations in their native environment but perform
worse than any other population at lower elevation sites [97],
suggesting strong adaptation for high altitude.

Natural selection acts on phenotypic traits, changing the fre-
quency of underlying alleles and shifting population phenotypes
toward local optima. Since these optima rely on local conditions,
genes ecologically important usually differ between
sub-populations in heterogeneous environments, resulting in
divergence in allele frequencies over time. This characteristic has
been utilized in genome scans to mine correlations between allele
frequencies and environmental variables (Fig. 1a). Such studies
have revealed that, in teosintes, these loci impact flowering time
and adaptation to soil composition [20, 98, 99]. Flowering time
was also a key component of maize’s local adaptation to higher
latitudes during post-domestication. Maize evolved a reduced sen-
sitivity to photoperiod, in part due to a CACTA-like TE insertion in
the promoter region of the ZmCCT gene that drives photoperiod
response in early flowering maize [100, 101]. An example of adap-
tation driven by soil interactions is the tolerance of maize and
teosintes to aluminum in highly acidic soils. In these lines, the
adaptation is linked to tandem duplications of the MATE1 gene
involved in the extrusion of toxic compounds [91].

Numerous other biotic and abiotic factors are likely involved in
adaptation in maize and teosintes, including predation, parasitism,
moisture, and herbicide [102, 103]. For example, a study on
parviglumis has shown that in response to herbivory, immunity
genes involved in the inhibition of insects’ digestive proteases
experienced a recent selective sweep in a region ofMexico, probably
reflecting local adaptation [104].

Interestingly, four large inversion polymorphisms seem to play
an important role in local adaptation. Among them, a 50 Mb
inversion on chromosome 1 is found at high frequency in parviglu-
mis (20–90%), low frequency in mexicana (10%), and is absent in
maize. This inversion is highly correlated with altitude and signifi-
cantly associated with temperature and precipitation
[20, 105]. Inversions on chromosomes 3, 4 and 9 also displayed
environmental association in teosintes and maize landraces for the
first two and in teosintes for the last one [20, 72]. Local adaptation
to different habitats or niches is a gradual process that can promote
divergence and, in the long run, ecological speciation [106]. Geno-
typing of a broad sample of 49 populations covering the entire
geographic range of teosintes has recently provided some evidence
of this. Aguirre-Liguori et al. [98] showed that both within parvi-
glumis and mexicana, populations distributed at the edge of the
ecological niche experience stronger local adaptation, suggesting
that local adaptation may have contributed to divergence between
these two subspecies.
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6 How Convergent Is Adaptation?

Convergent adaptation is the result of independent events of similar
phenotypic changes to adapt to analogous environmental con-
straints [107]. In this review, we concentrated on genetic conver-
gence in populations of the same, or closely related, species which
are the result of convergent evolution at the molecular level. By
molecular convergence, we include convergence at the same nucle-
otide positions, genes or orthologues. Several studies illustrate this,
suggesting that genomes may respond in predictable ways to selec-
tion [108–112]. The selected alleles can originate from indepen-
dent mutation events in different lineages, from shared ancestral
variation or by introgression [111].

A classical way to study convergence is experimental evolution.
During these experiments, replicates of the same genotype are
grown for many generations in new environments. Such studies
have often shown that convergent evolution is common
[37, 113]. Domestication can be thought of as an example of
long-term experimental evolution, and domesticates provide
striking examples of phenotypic convergence, with common traits
usually referred to as the domestication syndrome. These pheno-
types include, but are not limited to, larger fruits or gains, less
branching, loss of shattering, and loss of seed dormancy
[114]. QTL mapping can be performed to identify the genes
controlling these phenotypes in different species. As an example,
seeds on wild grasses shed naturally at maturity. During domestica-
tion this trait was rapidly selected against since it causes inefficient
harvesting [115]. QTLmapping of sorghum, rice and maize reveals
that the Shattering1 genes are involved in the loss of the dispersal
mechanism and were under convergent evolution during their
domestication [116].

But genetic convergence can also be observed over much
shorter evolutionary time, at the intraspecific level across popula-
tions. Here genome scans for extreme differentiation in allele fre-
quency between multiple pairs of diverged populations along
gradients, for instance, are typically employed. This method has
been used to test for convergent adaptation in highland maize
landraces and teosintes. Fustier et al. [99] found several instances
(24/40) of convergence involving the same haplotype in two gra-
dients of adaptation to high altitude in teosintes. In maize, the
Mesoamerican and South American populations independently
adapted from distinct lowland populations to high elevation con-
ditions [14]. These populations exhibit several similar phenotypic
characteristics not observed in lowland populations such as changes
in inflorescence morphology and stem coloration. A study found
that highland adaptation is likely due to a combination of intro-
gression events, selection on standing genetic variation and
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independent de novo mutations [117]. These studies also showed
that convergent evolution involving identical nucleotide changes is
uncommon and most selected loci arise from standing genetic
variation present in lowland populations. This is not surprising
given the relative short time frame of highland adaptation in
maize compared to teosinte subspecies.

Recently, a new method has been developed to infer modes of
convergence [118], using covariance of allele frequencies in win-
dows around a selected site to explicitly compare different models
of origin for a selected variant. This novel method should give a
better insight on the genetic mechanisms underlying convergence.

7 What Is the Role of Phenotypic Plasticity?

Phenotypic plasticity is defined as the capacity of a genotype to
produce a range of expressed phenotypes in distinct environments.
This is achieved through differential developmental pathways in
response to changing conditions [119, 120]. Plasticity can be an
important process during adaptation. Indeed, populations with
flexible phenotypes are predicted to better cope with environmental
changes and to display a greater potential for expansion [121]. This
process is particularly important for plants as they are fixed in a
specific location and not sheltered from the environment [122].

When the environment changes, the phenotypic optimum of a
population is likely altered as well. As a result, individuals that show
a plastic response in the direction of the new optimum will have a
fitness advantage. In contrast, individuals that exhibit no plasticity
or that produce phenotypes too far from the optimum will be
selected against.

Plasticity has limits, however, and may entail a fitness cost. For
instance, compared to developmentally fixed phenotypes, plastic
individuals in constant environments may display lower fitness or
produce a less adapted phenotype. Possible reasons include sensory
mechanisms that have a high energetic cost, the epistatic effects of
regulatory genes involved in the plastic response, lag time between
the perception and the phenotypic response and genetic correla-
tions among traits [123–125].

Phenotypic plasticity is difficult to study as it arises from genetic
and environmental interactions which are often hard to disentan-
gle. After a number of generations of constant selection, for exam-
ple, the fixation of genetic variation that constitutively expresses the
trait can lead to a loss of plasticity via a process called genetic
assimilation [126–128]. Hence an initially plastic phenotype may
result in genetic adaptation after genetic assimilation. Some exam-
ples of plastic responses are well documented in plants, for example,
the response to vernalization in Arabidopsis regulating flowering
time in some ecotypes [122]. Another example is the change in
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seed dormancy in response to the environment which prevents
germination when conditions are unlikely to lead to the survival
of the plant [124].

Taxa in Zea are good models to investigate plasticity as maize is
grown worldwide and adapted to a diversity of environments. In
addition, studies of teosintes allow comparison to ancestral levels of
plasticity. A recent experiment evaluated plasticity in maize by
studying Genotype by Environment interactions (GxE) for a num-
ber of phenotypes in 858 inbred lines across 21 locations across
North America [129]. Results demonstrated that genes selected for
high yield in temperate climates in North America correlated with
low variance in GxE. This suggests a loss of plasticity accompanying
selection for stable crop performance across environments, a major
goal for breeders. In addition, GxE was mainly explained by regu-
latory regions [129], an observation in agreement with previous
findings indicating that most phenotypic variation in maize is due
to gene regulation [130].

Recent work on maize and parviglumis growing under envi-
ronmental conditions mimicking those encountered at the time of
maize domestication (comparatively lower CO2 atmospheric con-
centration and lower temperatures) gives better insights into this
phenomenon. The results showed that teosintes grown in these
conditions exhibit contemporary maize-like phenotypes [131]. In
contrast, modern maize has lost this plastic response. Over 2000
candidate loci associated with phenotypic changes showed altered
expression in teosintes but not in maize, implying that they are no
longer environmentally responsive (Fig. 2; [132]). Such loss of
phenotypic plasticity may limit the ability of maize to cope with
environmental variability in the face of current climate changes.

8 Conclusion

Ongoing global warming has drastic effects on maize production,
with an estimated impact of temperature and precipitation on yield
of 3.8% worldwide between 1980 and 2008 [133]. Predicted
changes that include further increases in temperatures and decline
in rainfall, as well as shifts of pests and diseases, represent a huge
challenge. There is thus a pressing need to better understand the
dynamics and genomic basis of adaptation. Future climate projec-
tions predict that changes in temperature will impact the distribu-
tion and survival of both cultivated maize and its wild relatives
[26, 134]. Most modeling studies, however, have focused on the
climate tolerance of species, while the response to climate can
depend on other factors such as plasticity and local adaptation.
This suggests that the response should be studied at the level of
individual populations to better understand the basis of adaption.
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Fig. 2 Schematic representation of differences in plastic responses between maize and teosintes in Early-
Holocene (EH) conditions. (a) Parviglumis plants exhibit maize-like phenotypes in the EH conditions (vegetative
architecture, inflorescence sexuality and seed maturation). Phenotypes of parviglumis in modern conditions
are typical of today’s plants. These changes in phenotypes are associated with altered expression levels of
over 2000 candidate loci in teosinte; here we represent the schematic expression of one gene between the
two environments in teosinte. (b) In contrast, these same traits and underlying gene expression remain
unchanged in maize between EH and modern conditions
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Hufnagel DE, Korneliussen TS, Vieira FG,
Jakobsson M, Arriaza B, Willerslev E,
Nielsen R, Hufford MB, Albrechtsen A,
Ross-Ibarra J, Gilbert MTP (2015) The ori-
gin and evolution of maize in the Southwest-
ern United States. Nat Plants 1:14003.
https://doi.org/10.1038/nplants.2014.3

16. Brandenburg JT, Mary-Huard T, Rigaill G,
Hearne SJ, Corti H, Joets J, Vitte C,
Charcosset A, Nicolas SD, Tenaillon MI
(2017) Independent introductions and
admixtures have contributed to adaptation of
European maize and its American counter-
parts. PLoS Genet 13(3):e1006666. https://
doi.org/10.1371/journal.pgen.1006666

17. Chuine I (2010) Why does phenology drives
species distribution? Philos Trans R Soc
London B 365:3149–3160. https://doi.
org/10.1098/rstb.2010.0142

18. Swarts K, Gutaker RM, Benz B, Blake M,
Bukowski R, Holland J, Kruse-Peeples M,
Lepak N, Prim L, Romay MC, Ross-Ibarra J,
Sanchez-Gonzalez JJ, Schmidt C, Schuene-
mann VJ, Krause J, Matson RG, Weigel D,
Buckler ES, Burbano HA (2017) Genomic
estimation of complex traits reveals ancient

304 Anne Lorant et al.

https://doi.org/10.1073/pnas.98.4.2101
https://doi.org/10.1073/pnas.052125199
https://doi.org/10.1073/pnas.052125199
https://doi.org/10.1073/pnas.1013011108
https://doi.org/10.1073/pnas.1013011108
https://doi.org/10.1093/aob/mcs207
https://doi.org/10.1093/aob/mcs207
https://doi.org/10.1186/s13059-015-0712-3
https://doi.org/10.1186/s13059-015-0712-3
https://doi.org/10.1038/ng.2309
https://doi.org/10.1038/ng.2309
https://doi.org/10.1093/bioinformatics/18.2.337
https://doi.org/10.1093/bioinformatics/18.2.337
https://doi.org/10.1073/pnas.95.8.4441
https://doi.org/10.1093/molbev/msh102
https://doi.org/10.1126/science.1107891
https://doi.org/10.1126/science.1107891
https://doi.org/10.1038/nplants.2016.84
https://doi.org/10.1038/nplants.2016.84
https://doi.org/10.1534/genetics.118.301058
https://doi.org/10.1534/genetics.118.301058
https://doi.org/10.3732/ajb.0800097
https://doi.org/10.3732/ajb.0800097
https://doi.org/10.1038/nplants.2014.3
https://doi.org/10.1371/journal.pgen.1006666
https://doi.org/10.1371/journal.pgen.1006666
https://doi.org/10.1098/rstb.2010.0142
https://doi.org/10.1098/rstb.2010.0142


maize adaptation to temperate North Amer-
ica. Science 357:512–515. https://doi.org/
10.1126/science.aam9425

19. Hufford MB, Bilinski P, Pyh€aj€arvi T, Ross-
Ibarra J (2012) Teosinte as a model system
for population and ecological genomics.
Trends Genet 28:606–615

20. Pyh€aj€arvi T, Hufford MB, Mezmouk S, Ross-
Ibarra J (2013) Complex patterns of local
adaptation in teosinte. Genome Biol Evol
5:1594–1609. https://doi.org/10.1093/
gbe/evt109
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