
Chapter 19
Facial Expression Analysis

Fernando De la Torre and Jeffrey F. Cohn

Abstract The face is one of the most powerful channels of nonverbal communi-
cation. Facial expression provides cues about emotion, intention, alertness, pain,
personality, regulates interpersonal behavior, and communicates psychiatric and
biomedical status among other functions. Within the past 15 years, there has been in-
creasing interest in automated facial expression analysis within the computer vision
and machine learning communities. This chapter reviews fundamental approaches
to facial measurement by behavioral scientists and current efforts in automated fa-
cial expression recognition. We consider challenges, review databases available to
the research community, approaches to feature detection, tracking, and representa-
tion, and both supervised and unsupervised learning.

19.1 Introduction

An automatic analysis of the facial expressions of people are highly important for
automatic understanding of humans, their actions and their behavior in general. Fa-
cial expression has been a focus of research in human behavior for over a hundred
years [30]. It is central to several leading theories of emotion [38, 116] and has
been the focus of, at times, heated debate about issues in emotion science. Facial
expression figures prominently in research on almost every aspect of emotion, in-
cluding psychophysiology [66], neural correlates [39], development [84], percep-
tion [2], addiction [47], social processes [52], depression [27] and other emotion
disorders [118]. Facial expression communicates physical pain [100], alertness, per-
sonality and interpersonal relations [46]. Applications of facial expression analysis
include marketing [107], perceptual user interfaces, human–robot interaction [98,
126, 145], drowsy driver detection [128], telenursing [29], pain assessment [79],
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analyzing mother–infant interaction [45], autism [83], social robotics [6, 18], facial
animation [72, 110] and expression mapping for video gaming [54] among others.
A large number of examples are also provided in particular in Chaps. 22, 26 and 23.

In part because of its importance and potential uses as well as its inherent chal-
lenges, automated facial expression recognition has been of keen interest in com-
puter vision and machine learning. Beginning with a seminal meeting sponsored
by the US National Science Foundation [41], research on this topic has become
increasingly broad, systematic, and productive. IEEE-sponsorship of international
conferences (http://www.fg2011.org/), workshops, and a new journal in affective
computing, among other outlets (e.g., IEEE journal System, Man, and Cybernetics
and special issues of journals such as Image, Vision, and Computing Journal) speak
to the vitality of research in this area. Automated facial expression analysis is crit-
ical as well to the emerging fields of Computational Behavior Science and Social
Signal Processing.

Automated facial image analysis confronts a series of challenges. The face and
facial features must be detected in video; shape or appearance information must be
extracted and then normalized for variation in pose, illumination and individual dif-
ferences; the resulting normalized features are used to segment and classify facial
actions. Partial occlusion is a frequent challenge that may be intermittent or continu-
ous (e.g., bringing an object in front of the face, self-occlusion from head turns, eye-
glasses or facial jewelry). While human observers easily accommodate for changes
in pose, scale, illumination, occlusion, and individual differences, these and other
sources of variation represent considerable challenges for computer vision. Then
there is the machine-learning challenge of automatically detecting actions that re-
quire significant training and expertise even for human coders. There is much good
research to do.

We begin with a description of approaches to annotation and then review publicly
available databases. Research in automated facial expression analysis depends on
access to large, well-annotated, video data. We then review approaches to feature
detection, representation, and registration, and both supervised and unsupervised
learning of facial expression. We close with implications for future research in this
area.

19.2 Annotation of Facial Expression

Two broad approaches to annotating facial expression are message–judgment and
sign-based [25]. In the former, observers make inferences about the meaning of fa-
cial actions and assign corresponding labels. The most widely used approach of
this sort makes inferences about felt emotion. Inspired by cross-cultural studies
by Ekman [38] and related work by Izard [55], a number of expressions of what
are referred to as basic emotions have been described. These include joy, surprise,
anger, fear, disgust, sadness, embarrassment, and contempt. Examples of the first
six are shown in Fig. 19.1. Message–judgment approaches tend to be holistic; that
is, they typically combine information from multiple regions of the face, implicitly

http://www.fg2011.org/
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Fig. 19.1 Basic facial expression phenotypes. 1, disgust; 2, fear; 3, joy; 4, surprise; 5, sadness;
6, anger. Figure reproduced with permission from [105]. © 2010 IEEE

acknowledge that the same emotion or cognitive state may be expressed in various
ways, and they utilize the perceptual wisdom of human observers, which may in-
clude taking account of context. A limitation is that many of these emotions may
occur infrequently in daily life and much human experience involves blends of two
or more emotions. While a small set of specific expressions that vary in multiple re-
gions of the face may be advantageous for training and testing, their generalizability
to new image sources and applications is limited. Moreover, the use of emotion la-
bels implies that posers are experiencing the actual emotion. This inference often
is unwarranted, as when facial expression is posed or faked, and the same expres-
sion may map to different felt emotions. Smiles, for instance, occur in both joy and
embarrassment [1].

In a sign-based approach, physical changes in face shape or texture are the de-
scriptors. The most widely used approach is that of Ekman and colleagues. Their
Facial Action Coding System (FACS) [40] segments the visible effects of facial
muscle activation into “action units”. Each action unit is related to one or more facial
muscles. The Facial Action Coding System (FACS) is a comprehensive, anatomi-
cally based system for measuring nearly all visually discernible facial movement.
FACS describes facial activity on the basis of 44 unique action units (AUs), as well
as several categories of head and eye positions and movements. Facial movement
is thus described in terms of constituent components, or AUs. Any facial event (for
example, an emotion expression or paralinguistic signal) may be decomposed into
one or more AUs. For example, what has been described as the felt or Duchenne
smile typically includes movement of the zygomatic major (AU12) and orbicularis
oculi, pars lateralis (AU6).

The FACS taxonomy was defined by manually observing graylevel variation be-
tween expressions in images and to a lesser extent by recording the electrical activ-
ity of underlying facial muscles [24]. Depending on which edition of FACS is used,
there are 30 to 44 AUs and additional “action descriptors.” Action descriptors are
movements for which the anatomical basis is not established. More than 7000 AU
combinations have been observed [104]. Figures 19.2 and 19.3 illustrate AUS from
the upper and lower portions of the face, respectively. Figure 19.4 provides an ex-
ample in which FACS action units have been used to label a prototypic expression
of pain. Because of its descriptive power, FACS has become the standard for facial
measurement in behavioral research and has supplanted use of message–judgment
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Fig. 19.2 FACS action units (AU) for the upper face. Figure reproduced with permission from [24]

Fig. 19.3 Action units of the lower face. Figure reproduced with permission from [24]

Fig. 19.4 An example of facial action units associated with a prototypic expression of pain. Figure
reproduced with permission from [75]. © 2011 IEEE
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Fig. 19.5 FACS coding typically involves frame-by-frame inspection of the video, paying close
attention to subtle cues such as wrinkles, bulges, and furrows to determine which facial action
units have occurred and their intensity. Full labeling requires marking onset, peak and offset of the
action unit and all changes in intensity. Full coding generally is too costly. Left to right, evolution
of an AU 12 (involved in smiling), from onset, peak, to offset

approaches in automated facial image analysis. As well, FACS has become influen-
tial in the related area of computer facial animation. The MPEG-4 facial animation
parameters [92] are derived from FACS.

Facial actions can vary in intensity, which FACS represents at an ordinal level of
measurement. The original (1978) version of FACS included criteria for measuring
intensity at three levels (X, Y, and Z). The more recent 2002 edition provides criteria
for measuring intensity at five levels, ranging from A to E. FACS scoring produces
a list of AU-based descriptions of each facial event in a video record. Figure 19.5
shows an example for FACS coding AU12 (Smile), where the onset, peak and offset
are labeled.

For both message–judgment and sign-based approaches, the reliability of human
coding has been a neglected topic in the automated facial expression recognition
literature. With some exceptions, publicly available databases (Table 19.1) and re-
search reports fail to provide information about inter-observer reliability or agree-
ment. This is an important lack, in that inter-system agreement between manual
and automated coding is inherently limited by intra-system agreement. If manual
coding disagrees about the ground truth used to train classifiers, it is unlikely that
classifiers will surpass them. Inter-system reliability can be considered in numerous
ways [26]. These range from the precision of measurement of onsets, peaks, offsets,
and changes in action unit intensity, to whether or not observers agree on action unit
occurrence within some number of frames. More attention to reliability of coding
would be useful in evaluating training data and test results. Sayette and Cohn [103]
found inter-observer agreement varied among AU. Agreement for AU 7 (lower lid
tightener) was relatively low, possibly due to confusion with AU 6 (cheek raiser).
Some AU may occur too infrequently to measure reliably (e.g., AU 11). Investiga-
tors may want to consider pooling some AU to achieve more reliable units.

Agreement between human coders is better when temporal precision is relaxed.
In behavioral research, it is common to expect coders to agree only within a 1

2 sec-
ond window. In automated facial image analysis, investigators typically assume ex-
act agreement between classifiers and ground truth, which is a level of temporal
precision beyond what may be feasible for many AU [24].
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19.3 Databases

The development of robust facial recognition algorithms requires well labeled
databases of sufficient size that include carefully controlled variations of pose, il-
lumination and resolution. Publicity available databases are necessary to compara-
tively evaluate algorithms. Collecting a high quality database is a resource-intensive
task. The availability of public facial expression databases is important for the ad-
vancement of the field. Table 19.1 illustrates the characteristics of publicly available
databases.

Most face expression databases have been collected by asking subjects to per-
form a series of expressions. These directed facial action tasks may differ in ap-
pearance and timing from spontaneously occurring behavior. Deliberate and spon-
taneous facial behavior are mediated by separate motor pathways, the pyramidal
and extrapyramidal motor tracks, respectively. As a consequence, fine-motor control
of deliberate facial actions is often inferior and less symmetrical than what occurs
spontaneously. Many people, for instance, are able to raise their outer Brows spon-
taneously while leaving their inner brows at rest; few can perform this action volun-
tarily. Spontaneous depression of the lip corners (AU 15) and raising and narrowing
the inner corners of the brow (AU 1+4) are common signs of sadness. Without train-
ing, few people can perform these actions deliberately, which incidentally is an aid
to lie detection [36]. Differences in the temporal organization of spontaneous and
deliberate facial actions are particularly important in that many pattern recognition
approaches, such as HMMs, are highly dependent on the timing of the appearance
change. Unless a database includes both deliberate and spontaneous facial actions, it
will likely prove inadequate for developing face expression methods that are robust
to these differences.

19.4 Facial Feature Tracking, Registration and Feature
Extraction

Prototypical expression and AU detection from video are challenging computer vi-
sion and pattern recognition problems. Some of the most important challenges are:
(1) non-frontal pose and moderate to large head motion make facial image registra-
tion difficult, (2) classifiers can suffer from over-fitting when trained with relatively
few examples for each AU; (3) many facial actions are inherently subtle making
them difficult to be model; (4) individual differences among faces in shape and ap-
pearance make the classification task difficult to generalize across subjects; (5) tem-
poral dynamics of AUs are highly variable. These differences can signal different
communicative intentions [62], levels of distress [9], and presents a challenge for
detection and classification; (6) and the number of possible combinations of 40+
individual action units numbers in the thousands (more than 7000 action unit com-
binations have been observed [42]). To address these issues over the last 20 years, a
large number of facial expression and AU recognition/detection systems have been
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Fig. 19.6 Block diagram of our the CMU system. The face is tracked using an AAM; shape
and appearance features are extracted, normalized, and output to a linear SVM for action unit or
expression detection. Figure reproduced with permission from [78]. © 2010 IEEE

proposed. Some of the leading efforts include those at: Carnegie Mellon Univer-
sity [81, 108, 112, 142], University of California, San Diego [7, 68], University
of Illinois at Urbana-Champaign [23, 129], Rensselaer Polytechnic Institute [117],
Massachusetts Institute of Technology [43], University of Maryland [13, 131], Im-
perial College [59, 95, 123], IDIAP Dalle Molle Institute for Perceptual Artificial
Intelligence [44], and others [82, 138].

Most facial expression recognition systems are composed of three main modules:
(1) face detection, facial feature tracking and registration, (2) feature extraction and
(3) supervised or unsupervised learning. Figure 19.6 illustrates an example of these
three modules. In the following sections we will discuss each of these modules in
more detail with emphasis in the current CMU system. For other systems see [44,
93, 113].

19.4.1 Facial Feature Detection and Tracking

Face detection is an initial step in most automatic facial expression recognition sys-
tems (see Chap. 5). For real-time, frontal face detection, the Viola and Jones [127]
face detector is arguably the most commonly employed algorithm. See [137] for
a survey of recent advances in face detection. Once the face is detected two ap-
proaches to registration are common. One performs coarse registration by detecting
a sparse set of facial features (e.g., eyes) in each frame. The other detects detailed
features (i.e. dense points around the eyes and other facial landmarks) in the video
sequence. In this section we will describe a unified framework for the latter, which
we refer to as Parameterized Appearance Models (PAMs). PAMs include the Lucas–
Kanade method [74], Eigentracking [12], Active Appearance Models [28, 33, 34,
87] , and Morphable Models [14, 57], which have been popular approaches for facial
feature detection, tracking and modeling faces in general.

PAMs are among the most popular methods for facial feature detection and face
alignment in general. PAMs for faces build an appearance and/or shape representa-
tion from the principal components of labeled training data. Let di ∈ �m×1 (see an
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Fig. 19.7 The figure shows
the mean and first two modes
of variation of 2D AAM
shape a and appearance b
variation and the mean and
first two modes of 3D AAM
shape. c Reconstructed face.
Reproduced with permission
from [88]

explanation of the notation1) be the ith sample of a training set D ∈ �m×n of n sam-
ples, where each vector di is a vectorized image of m pixels. In a training set, each
face image is previously manually labeled with p landmarks. A 2p-dimensional
shape vector is constructed by stacking all (x, y) positions of the landmarks as
s = [x1;y1;x2;y2; . . . ;xp;yp]. Figure 19.9a shows an example of several face im-
ages that have been labeled with 66 landmarks. Given the labeled training samples,
Procrustes analysis [28] is applied to the shape vectors to remove two-dimensional
rigid transformations. After removing rigid transformation with Procrustes, prin-
cipal component analysis (PCA) is applied to the shape vectors to build a linear
shape model. The shape model can reconstruct any shape on the training shape as
the mean (s0) and linear combination of a shape basis (Us ) (eigenvectors of the
shape covariance matrix), that is, s ≈ s0 + Uscs , where cs are the shape coefficients.
Us spans the shape space that accounts for identity, expression and pose variation
in the training set. Figure 19.7a shows the shape mean and PCA basis. Similarly,
after backwarping the texture to a canonical configuration, the appearance (normal-
ized graylevel) is vectorized into an m-dimensional vector and stacked into the n

columns of D ∈ �m×n. The appearance model, U ∈ �m×k is computed by calcu-
lating the first k principal components [56] of D. Figure 19.7b shows the mean
appearance and the PCA basis. Figure 19.7c contains face images generated using
the Active Appearance Model (AAM) by setting appropriate parameters of shape
and texture.

Once the appearance and shape model have been learned from training samples
(i.e., U, Us is known), alignment is achieved by finding the motion parameter p that

1Bold uppercase letters denote matrices (e.g., D), bold lowercase letters denote column vectors
(e.g., d). dj represents the j th column of the matrix D. dij denotes the scalar in the row ith and
column j th of the matrix D. Non-bold letters represent scalar variables. tr(D) = ∑

i dii is the trace

of square matrix D. ‖d‖2 = √
dT d designates Euclidean norm of d.
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best aligns the image w.r.t. the subspace U by minimizing:

min
c,p

∥
∥d

(
f(x,p)

) − Uc
∥
∥2

2, (19.1)

where c is the vector for the appearance coefficients. x = [x1, y1, . . . , xl, yl]T is
the coordinate vector with the pixels to track. f(x,p) is the function for geometric
transformation; the value of f(x,p) is a vector denoted by [u1, v1, . . . , ul, vl]T . d is
the image frame in consideration, and d(f(x,p)) is the appearance vector of which
the ith entry is the intensity of image d at pixel (ui , vi ). For affine and non-rigid
transformations, (ui , vi ) relates to (xi , yi ) by:

[
ui

vi

]

=
[
a1 a2
a4 a5

][
xs
i

ys
i

]

+
[
a3
a6

]

. (19.2)

Here [xs
1, y

s
1, . . . , x

s
l , y

s
l ]T = x + Uscs . The affine and non-rigid motion parameters

are a, cs , respectively, and p = [a; cs] a combination of both affine and non-rigid
motion parameters. In the case of the Lukas–Kanade tracker [74], c is fixed to be
one and U is the subspace that contains a single vector, the reference template which
is the appearance of the tracked object in the initial/previous frame.

Given an unseen facial image d, facial feature detection or tracking with PAM
alignment algorithms optimize (19.1). Due to the high dimensionality of the motion
space, a standard approach to efficiently search over the parameter space is to use
gradient-based methods [5, 10, 12, 28, 31, 87]. To compute the gradient of the cost
function given in (19.1), it is common to use Taylor series expansion to approximate:

d
(
f(x,p + δp)

) ≈ d
(
f(x,p)

) + Jpd(p)δp, (19.3)

where Jpd(p) = ∂d(f(x,p))
∂p is the Jacobian of the image d w.r.t. to the motion parame-

ter p [74]. Once linearized, a standard approach is to use the Gauss–Newton method
for optimization [10, 12]. Other approaches learn an approximation of the Jacobian
matrix with linear [28] or non-linear [71, 102] regression. Figure 19.9a shows an
example of tracking 66 facial features with an AAM in the RU-FACS database [7].

19.4.2 Registration and Feature Extraction

After the face has been detected and the facial feature points have been tracked, the
next two steps registration and feature extraction follow.

Registration: The main goal of registration is to normalize the image to remove
3D rigid head motion, so features can be geometrically normalized. 3D transforma-
tions could be estimated from monocular (up to a scale factor) or multiple cameras
using structure from motion algorithms [51, 130]. However, if there is not much out
of plane rotation (i.e. less than about 15 to 20 degrees) and the face is relatively far
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Fig. 19.8 Registration with two-step alignment. Figure reproduced with permission from [142].
© 2009 IEEE

away from the camera (assume orthographic projection), the 2D projected motion
field of a 3D planar surface can be recovered with an affine model of six parame-
ters. In this situation, simpler algorithms may be used to register the image to extract
normalized facial features.

Following [108, 142] a similarity transform registers facial features with respect
to an average face (see middle column in Fig. 19.8). To extract appearance repre-
sentations in areas that have not been explicitly tracked (e.g. nasolabial furrow), we
use a backward piece-wise affine warp with Delaunay triangulation. Fig. 19.8 shows
the two step process for registering the face to a canonical pose for facial expression
recognition. Purple squares represent tracked points and blue dots represent non-
tracked meaningful points. The dashed blue line shows the mapping between the
point in the mean shape and the corresponding points on the original image. Using
an affine transformation plus backwarping, we can preserve the shape variation in
appearance better than by geometric normalization alone. This two-step registration
proves particularly important to detect low intensity AUs.

Geometric features: After the registration step, the shape and appearance fea-
tures can be extracted from the normalized image. Geometric features contain infor-
mation about shape and the locations of permanent facial features (e.g., eyes, brows,
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Fig. 19.9 a AAM fitting across different subjects. b Eight different features extracted from dis-
tance between tracked points, height of facial parts, angles for mouth corners, and appearance
patches. Figure reproduced with permission from [144]. © 2010 IEEE

nose). Approaches that use only geometric features (or their derivatives) mostly rely
on detecting sets of fiducial facial points [94, 96, 123], a connected face mesh or ac-
tive shape model [20, 22, 61], or face component shape parametrization [113]. Some
prototypical features include [108]: xU

1 the distance between inner brow and eye, xU
2

the distance between outer brow and eye, xU
3 the height of eye, xL

1 the height of lip,
xL

2 the height of teeth, and xL
3 the angle of mouth corners, see Fig. 19.9b. How-

ever, shape features alone are unlikely to capture differences between subtle facial
expressions or ones that are closely related. Many action units that are easily confus-
able by shape (e.g., AU 6 and AU 7 in FACS) can be discriminated by differences
in appearance (e.g., furrows lateral to the eyes and cheek raising in AU 6 but not
AU 7). Other AUs such as AU 11 (nasolabial furrow deepener), 14 (mouth corner
dimpler), and 28 (inward sucking of the lips) cannot be detected from the movement
of a sparse set of points alone but may be detected from changes in skin texture.

Appearance features: Represent the appearance (skin texture) changes and tex-
ture of the face, such as wrinkles and furrows. Appearance features for AU detec-
tion [3, 7, 50, 68, 111] outperformed shape only features for some action units,
especially when registration is noisy see Lucey et al. [4, 77, 81] for a comparison.

Several approaches to appearance have been explored. Gabor wavelet coeffi-
cients are a popular approach. In several studies, Gabor wavelet coefficients outper-
formed optical flow, shape features, and Independent Component Analysis repre-
sentations [3]. Tian [111, 113], however, reported that the combination of shape and
appearance achieved better results than either shape or appearance alone. Recently,
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Zhu et al. [142] have explored the use of SIFT [73] and DAISY [114] descriptors as
appearance features. Given feature points tracked with AAMs, SIFT descriptors are
first computed around the points of interest. SIFT descriptors are computed from
the gradient vector for each pixel in the neighborhood to build a normalized his-
togram of gradient directions. For each pixel within a subregion, SIFT descriptors
add the pixel’s gradient vector to a histogram of gradient directions by quantizing
each orientation to one of 8 directions and weighting the contribution of each vector
by its magnitude. Similar in spirit to SIFT descriptors, DAISY descriptors are an ef-
ficient feature descriptor based on histograms. They are often used to match stereo
images [114]. DAISY descriptors use circular grids instead of SIFT descriptors’
regular grids; the former have been found to have better localization properties [89]
and to outperform many state-of-the-art feature descriptors for sparse point match-
ing [115]. At each pixel, DAISY builds a vector made of values from the convolved
orientation maps located on concentric circles centered on the location. The amount
of Gaussian smoothing is proportional to the radius of the circles. Donato [37] com-
bined Gabor wavelet decomposition and independent component analysis. These
representations use graylevel texture filters that share properties of spatial locality,
independence, and have relationships to the response properties of visual cortical
neurons. Zheng [138] investigated the use of two types of features extracted from
face images for recognizing facial expressions. The first type is the geometric po-
sitions of a set of fiducial points on a face. The second type is a set of multi-scale
and multi-orientation Gabor wavelet coefficients extracted from the face image at
the fiducial points.

Other features: Other popular technique for feature extraction include more dy-
namic features such as optical flow [3], dynamic textures [21] and Motion His-
tory Images (MHIs) [16]. In an early exploration of facial expression recognition,
Mase [86] used optical flow to estimate the activity in a subset of the facial mus-
cles. Essa [43] extended this approach by using optic flow to estimate activity in
a detailed anatomical and physical model of the face. Motion estimates from op-
tic flow were refined by the physical model in a recursive estimation and control
framework. The estimated forces were used to classify facial expressions. Yacoob
and Davis [131] bypassed the physical model and constructed a mid-level repre-
sentation of facial motion, such as a right mouth corner raise, directly from the
optical flow. Ira et al. [22] implicitly recovered motion representations by build-
ing features such that each feature motion corresponded to a simple deformation
of the face. MHIs were First proposed by Davis and Bobick [16]. MHIs compress
the motion over a number of frames into a single image. This is done by layering
the thresholded differences between consecutive frames one over the other. Valstar
et al. [121] encoded face motion into Motion History Images. Zhao et al. [139] use
volume Local Binary Patterns (LBPs), a temporal extension of local binary patterns
often used in 2D texture analysis. The face is divided into overlapping blocks and the
extracted LBP features in each block are concatenated into a single feature vector.
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19.5 Supervised Learning

Supervised and more recently unsupervised approaches to action unit and expres-
sion detection have been pursued. In supervised learning event categories are de-
fined in advance in labeled training data. In unsupervised learning no labeled train-
ing data are available and event categories must be discovered. In this section we
discuss the supervised approach.

Early work in supervised learning sought to detect the six universal expressions
of joy, surprise, anger, fear, disgust, and sadness; see Fig. 19.1. More recent work
has attempted to detect expressions of pain [4, 69, 79], drowsiness, adult attach-
ment [135], and indices of psychiatric disorder [27, 60]. Action unit detection re-
mains a compelling challenge especially in unposed facial behavior. An open ques-
tion is whether emotion and similar judgment-based categories are best detected by
first detecting AU or by direct detection in which an AU detection step is bypassed.
Work on this topic is just beginning [70, 79] and the question remains open.

Whether the focus is expression or AU, two main approaches have been pursued
for supervised learning. These are (1) static modeling—typically posed as a discrim-
inative classification problem in which each video frame is evaluated independently;
and (2) temporal modeling—in which frames are segmented into sequences and typ-
ically modeled with a variant of DBNs (e.g. Hidden Markov Models, Conditional
Random Fields).

19.5.1 Classifiers

In the case of static models, different feature representations and classifiers for
frame-by-frame facial expression detection have been extensively studied. The pio-
neering work of Black and Yacoob [13] recognized facial expressions by fitting local
parametric motion models to regions of the face and then feeding the resulting pa-
rameters to a nearest neighbor classifier for expression recognition. Tian et al. [111]
made use of ANN classifiers for facial expression recognition. Barlett et al. [7, 8,
68] used Gabor filters in conjunction with AdaBoost feature selection followed by a
Support Vector Machine (SVM) classifier. Lee and Elgammal [65] used multi-linear
models to construct a non-linear manifold that factorizes identity from expression.
Lucey et al. [76, 81] evaluated different shape and appearance representations de-
rived from an AAM facial feature tracker, and an SVM for classification. Similarly,
[139] made use of SVM.

More recent work has focused on incorporating the dynamics of facial expres-
sions to improve performance (i.e. temporal modeling). De la Torre et al. [35] used
condensation and appearance models to simultaneously track and recognize facial
expression. Chang et al. [20] used a low-dimensional Lipschitz embedding to build
a manifold of shape variation across several people and then used I-condensation to
simultaneously track and recognize expressions. A popular strategy is to use HMMs
to temporally segment expressions by establishing a correspondence between the ac-
tion’s onset, peak, and offset and an underlying latent state. Valstar and Pantic [123]
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used a combination of SVM and HMM to temporally segment and recognize AUs.
Valstar and Pantic [94, 122, 125] proposed a system that enables fully automated
robust facial expression recognition and temporal segmentation of onset, peak and
offset from video of mostly frontal faces. Koelstra and Pantic [59] used Gentle-
Boost classifiers on motion from a non-rigid registration combined with an HMM.
Similar approaches include a nonparametric discriminant HMM from Shang and
Chan [106], and partially observed Hidden Conditional Random Fields by Chang
et al. [19]. For other comprehensive surveys see [44, 95, 113, 136]. Tong et al. [117]
used DBNs with appearance features to detect facial action units in posed facial be-
havior. The correlation among action units served as priors in action unit detection.
Ira et al. [22] used a BN classifiers for classifying the six universal expressions from
video. In particular they used a Naive-Bayes classifiers and change the distribution
from Gaussian to Cauchy, and use Gaussian Tree-Augmented Naive Bayes (TAN)
classifiers to learn the dependencies among different facial motion features.

19.5.2 Selection of Positive and Negative Samples During Training

Previous research in expression and AU detection has emphasized types of registra-
tion methods, features and classifiers (e.g., [67, 97, 113, 134, 140]). Little attention
has been paid to make efficiently use of the training data for assignment of video
frames to positive and negative classes. Typically, assignment has been done in one
of two ways. One is to assign to the positive class those frames that occur at the
peak of each AU or proximal to it. Peaks refer to the maximum intensity of an ac-
tion unit between the frame at which begins (“onset”) and ends (“offset”). Negative
class then is chosen by randomly sampling other AUs, including AU 0 or neutral.
This approach suffers at least three drawbacks: (1) the number of training exam-
ples will often be small, which results in a large imbalance between positive and
negative frames; and (2) peak frames may provide too little variability to achieve
good generalization. These problems may be circumvented by following an alterna-
tive approach; that is to include all frames from onset to offset in the positive class.
This approach improves the ratio of positive to negative frames and increases rep-
resentativeness of positive examples. The downside is confusability of positive and
negative classes. Onset and offset frames and many of those proximal or even further
from them may be indistinguishable from the negative class. As a consequence, the
number of false positives may dramatically increase. Moreover, how to make use of
all negative samples in an efficient manner? Is there a better approach to selecting
positive and negative training samples?

In this section, we consider two approaches that have shown promise; one static
and one dynamic. We illustrate the methods with particular classifiers and features,
but the methods are not specific to the specific features or classifiers. As before, we
distinguish between static and dynamic approaches. In the former, video frames are
assumed to be independent. In the latter, first-order dependencies are assumed.
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19.5.2.1 Static Approach

Recently, Zhu et al. [142] proposed an extension of cascade AdaBoost called Dy-
namic Cascade Bidirectional Bootstrapping (DCBB) to iteratively select positive
samples and improve AU detection performance. In the first iteration, DCBB se-
lected only the peaks and the two neighboring frames as positive frames, and ran-
domly sample other AUs and non-AUs as negative samples. As in standard Ad-
aBoost [127], DCBB defines the false positive target ratio, the maximum accept-
able false positive ratio per cascade stage, and the minimum acceptable true posi-
tive ratio per each of the cascades. DCBB uses Classification and Regression Tree
(CART) [17] as weak classifier. Once a cascade of peak frame detectors is learned
in the first iteration, DCBB enlarges the positive set to increase the discriminative
performance of the whole classifier. The new positive samples are selected after run-
ning the current classifier (learned in the previous iteration) in the original training
data and selecting for the new positive training set the frames that were classified as
positive. Recall that we have only trained with the peak frames in the first iteration.
For more details see [142].

Figure 19.10 shows the improvement in the Receiver–Operator Characteristic
(ROC) curve for testing data (subjects not in the training) using DCBB for three
AUs (AU12, AU14, AU17). The ROC is obtained by plotting true positives ratios
against false positives ratios for different decision threshold values of the classifier.
In each subfigure there are five or six ROCs corresponding to alternative selection
strategies: using only peak in the first step (same as standard Cascade AdaBoost),
running three or four iterations in DCBB (spread x), and using all the frames be-
tween onset and offset (All+Boost). That is, there are three results shown using
different positive training samples: 1) peak frames (first step); 2) all frames between
onset and offset (All+Boost); and 3) iterations of DCBB (spread x). The first num-
ber between lines | denotes the area under the ROC, the second number is the size
of positive samples in the testing dataset and separated by / is the size of negative
samples in the testing dataset. The third number denotes the size of positive samples
in training working sets and separated by / the total frames of target AU in training
datasets. We can observe that the area under the ROC for frame-by-frame detection
is improved gradually during each learning stage and the performance improves
faster for some AU rather than others. Improvement rate appears to be influenced by
the base rate of the AU. For AU14 and AU17, fewer potential training samples are
available than for AU12.

Top of Fig. 19.11 shows the manual labeling for AU12 of the subject S015. We
can see eight instances of AU12 with varying intensities ranging from A (weak) to E
(strong). The strong AUs are represented by rectangles of height 4 and the weak ones
with height 1. The remaining eight figures illustrates the sample selection process
for each of the instances of the AU12. In the top right of each subfigure there is the
corresponding AU instance number. The black curve in the bottom of the subfigures
represents the similarity between the peak and the neighboring frames. The peak
is the maximum of the curve. The positive samples in the first step are represented
by green asterisks, in the second iteration by red crosses, in the third iteration by
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Fig. 19.10 ROCs for AU detection using DBCC: See text for the explanation of Init+Boost,
spread x and All+Boost. Figure reproduced with permission from [142]. © 2009 IEEE

blue crosses, and in the final iteration by black circles. Observe that in the case of
high peak intensity, subfigures 3 and 8 (top right number in the similarity plots), the
final selected positive samples contain areas with low similarity values. However,
when AU intensity is low, subfigure 7, the positive samples are only selected if they
have a high similarity with the peak because otherwise we would select samples that
will lead to many false positives. The ellipses and rectangles in the figures contain
frames that are selected as positive samples, and correspond to strong and subtle
AUs. The triangles correspond to frames between the onset and offset that are not
selected as positive samples, and represent the ambiguous AUs.

Table 19.2 shows the area under the ROC for 14 AUs using DCBB and different
set of features. The appearance features are based on SIFT descriptors. For all AUs
the SIFT descriptor is built using a square of 48 × 48 pixels for twenty feature
points for the lower face AUs or sixteen feature points for upper face. The shape
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Table 19.2 Area under the ROC for six different appearance and sampling strategies. AU peak
frames with shape features and SVM (Peak+Shp+SVM), All frames between onset and offset
with shape features and SVM (All+Shp+SVM), AU peak frames with appearance features and
SVM (Peak+App+SVM), Sampling 1 frame in every 4 frames between onset and offset with PCA
reduced appearance features and SVM (All+PCA+App+SVM), AU peak frames with appearance
features and Cascade AdaBoost (Peak+App+Cascade Boost), DCBB with appearance features
(DCBB)

AU1 AU2 AU4 AU5 AU6 AU7 AU10 AU12 AU14 AU15 AU17 AU18 AU23

Peak+Shp+SVM 0.71 0.62 0.76 0.58 0.93 0.64 0.61 0.89 0.57 0.73 0.66 0.86 0.74

All+Shp+SVM 0.68 0.65 0.78 0.55 0.88 0.64 0.67 0.77 0.72 0.61 0.72 0.88 0.67

Peak+App+SVM 0.43 0.45 0.61 0.86 0.77 0.67 0.63 0.90 0.50 0.69 0.53 0.95 0.62

All+PCA+App+SVM 0.74 0.74 0.85 0.89 0.96 0.63 0.54 0.91 0.82 0.86 0.78 0.94 0.54

Peak+App+Cascade
Boost

0.75 0.71 0.53 0.49 0.93 0.56 0.52 0.83 0.50 0.52 0.59 0.57 0.34

DCBB 0.76 0.75 0.76 0.77 0.97 0.69 0.72 0.92 0.72 0.86 0.81 0.86 0.75

features are the landmarks of the AAM. For more details see [142]. It is important
to notice that the results illustrated in this section are obtained using a particular set
of features and classifiers, but the strategy of positive sample selection in principle
can be used with any combination of classifiers and features.

19.5.2.2 Dynamic Approach

Extensions of DBNs have been a popular approach for expression analysis [22, 106,
117, 123]. A major challenge for DBNs based on generative models such as HMMs
is how to effectively model the null class (none of the labeled classes) and how
to train effectively on all possible segments of the video (rather than independent
features). In this section, we review recent work on a temporal extensions of a bag-
of-words (BoW) model called kSeg-SVM [108] that overcomes these drawbacks.
kSeg-SVM is inspired by the success of the spatial BoW sliding-window model [15]
that has been used in difficult object detection problems. We pose the AU detection
problem as one of detecting temporal events (segments) in time series of visual fea-
tures. Events correspond to AUs, including all frames between onset and offset (see
Fig. 19.12). kSeg-SVM represents each segment as a BoW; however, the standard
histogram of entries is augmented with a soft-clustering assignment of words to ac-
count for smoothly varying signals. Given several videos with AU labeled events,
kSeg-SVM learns the SVM parameters that maximize the response on positive seg-
ments (AU to be detected) and minimize the response in the rest of the segments (all
other positions and lengths). Figure 19.12 illustrates the main idea of kSeg-SVM.

kSeg-SVM can be efficiently trained on all available video using the Structure
Output SVM (SO-SVM framework) [119]. Recent research [90] in the related area
of sequence-labeling has shown that SO-SVMs can out-perform other algorithms
including HMM, CRF[63] and Max-Margin Markov Networks [109]. SO-SVMs
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Fig. 19.12 During testing, the AU events are found by efficiently searching over the segments
(position and length) that maximize the SVM score. During training, the algorithm searches over
all possible negative segments to identify those hardest to classify, which improves classification
of subtle AUs. Figure reproduced with permission from [108]. © 2009 IEEE

have several benefits in the context of AU detection: (1) they model the depen-
dencies between visual features and the duration of AUs; (2) they can be trained
effectively on all possible segments of the video (rather than on independent se-
quences); (3) they explicitly select negative examples that are most similar to the
AU to be detected; and (4) they make no assumptions about the underlying structure
of the AU events (e.g., i.i.d.). Finally, a novel parameterization of the output space
is proposed to handle multiple AU event occurrences such that occur in long time
series and search simultaneously for the k-or-fewer best matching segments in the
time-series.

Given frame-level features, we will denote each processed video sequence i as
xi ∈ R

d×mi , where d is the number of features and mi is the number of frames in
the sequence. To simplify, we will assume that each sequence contains at most one
occurrence of the AU event to be detected. For extensions to k-or-fewer occurrences
see [108]. The AU event will be described by its corresponding onset to offset frame
range and will be denoted by yi ∈ Z

2. Let the full training set of video sequences be
x1, . . . ,xn ∈ X , and their associated ground truth annotations for the occurrence of
AUs y1, . . . ,yn ∈ Y . We wish to learn a mapping f : X → Y for automatically
detecting the AU events in unseen signals. This complex output space contains all
contiguous time intervals; each label yi consists of two numbers indicating the onset
and the offset of an AU:

Y = {
y | y = ∅ or y = [s, e] ∈ Z

2,1 ≤ s ≤ e
}
. (19.4)
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Table 19.3 Performance on the RU-FACS-1 dataset, ROC metric and F1 metric. Higher numbers
indicate better performance, and best results are printed in bold

Area under ROC Max F1 score

AU SVM HMM2 HMM4 BoW-
kSeg

kSeg-
SVM

SVM HMM2 HMM4 BoW-
kSeg

kSeg-
SVM

1 0.86 0.85 0.83 0.52 0.86 0.48 0.43 0.39 0.13 0.59

2 0.79 0.71 0.62 0.45 0.81 0.42 0.42 0.18 0.14 0.56

6 0.89 0.92 0.92 0.69 0.91 0.50 0.62 0.63 0.28 0.59

12 0.94 0.94 0.95 0.77 0.94 0.74 0.76 0.77 0.61 0.78

14 0.70 0.70 0.69 0.56 0.68 0.20 0.18 0.12 0.17 0.27

15 0.90 0.86 0.85 0.49 0.90 0.50 0.26 0.25 0.04 0.59

17 0.90 0.76 0.85 0.51 0.87 0.55 0.38 0.28 0.06 0.56

24 0.85 0.83 0.67 0.52 0.73 0.15 0.18 0.05 0.04 0.08

1+2 0.86 0.67 0.77 0.46 0.89 0.36 0.31 0.31 0.12 0.56

6+12 0.95 0.98 0.98 0.69 0.96 0.55 0.64 0.63 0.28 0.62

The empty label y = ∅ indicates no occurrence of the AU. We will learn the mapping
f as in the structured learning framework [15, 120] as

f (x) = argmax
y∈Y

g(x,y), (19.5)

where g(x,y) assigns a score to any particular labeling y; the higher this value is, the
closer y is to the ground truth annotation. For structured output learning, the choice
of g(x,y) is often taken to be a weighted sum of features in the feature space:

g(x,y) = wT ϕ(x,y), (19.6)

where ϕ(x,y) is a joint feature mapping for temporal signal x and candidate label
y, and w is the weight vector. Learning f can therefore be posed as an optimization
problem:

min
w,ξ

1

2
‖w‖2 + C

n∑

i=1

ξi,

s.t. wT ϕ(xi ,yi ) ≥ wT ϕ(xi ,y) + Δ(yi ,y) − ξi ∀y,

ξi ≥ 0 ∀i. (19.7)

Here, Δ(yi ,y) is a loss function that decreases as a label y approaches the ground
truth label yi . Intuitively, the constraints in (19.7) force the score of g(x,y) to be
higher for the ground truth label yi than for any other value of y, and moreover, to
exceed this value by a margin equal to the loss associated with labeling y.

Table 19.3 shows the experimental results on the RU-FACS-1 dataset. As can
be seen, kSeg-SVM consistently outperforms frame-based classification. It has the
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highest ROC area for seven out of 10 AUs. Using the ROC metric, kSeg-SVM ap-
pears comparable to standard SVM. kSeg-SVM achieves highest F1 score on nine
out of 10 test cases. As shown in Table 19.3, BoW-kSeg performs poorly. There are
two possible reasons for this. First, clustering is done with K-means, an unsuper-
vised, non-discriminative method that is not informed by the ground truth labels.
Second, due to the hard dictionary assignment, each frame is forced to commit to a
single cluster. While hard-clustering shows good performance in the task of object-
detection, our time-series vary smoothly, resulting in large groups of consecutive
frames being assigned to the same cluster.

At this point, it is worth pointing out that until now, a common measure of clas-
sifier performance for AU detection has been area under the curve (i.e. ROC). In
object detection, the common measure represents the relation between recall and
precision. The two approaches give very different views of classifier performance.
This difference is not unanticipated in the object detection literature, but little atten-
tion has been paid to this issue in facial expression literature. In pattern recognition
and machine learning, a common evaluation strategy is to consider correct classi-
fication rate (classification accuracy) or its complement error rate. However, this
assumes that the natural distribution (prior probabilities) of each class are known
and balanced. In an imbalanced setting, where the prior probability of the posi-
tive class is significantly less than the negative class (the ratio of these being de-
fined as the skew), accuracy is inadequate as a performance measure since it be-
comes biased toward the majority class. That is, as the skew increases, accuracy
tends toward majority class performance, effectively ignoring the recognition ca-
pability with respect to the minority class. This is a very common (if not the de-
fault) situation in facial expression recognition setting, where the prior probabil-
ity of each target class (a certain facial expression) is significantly less than the
negative class (all other facial expressions). Thus, when evaluating performance of
automatic facial expression recognizer, other performance measures such as pre-
cision (this indicates the probability of correctly detecting a positive test sample
and it is independent of class priors), recall (this indicates the fraction of the posi-
tives detected that are actually correct and, as it combines results from both pos-
itive and negative samples, it is class prior dependent), F1-measure (this is cal-
culated as 2*recall*precision/(recall + precision)), and ROC (this is calculated as
P(x|positive)/P(x|negative), where P(x|C) denotes the conditional probability that a
data entry has the class label C, and where a ROC curve plots the classification
results from the most positive to the most negative classification) are more appro-
priate.

19.6 Unsupervised Learning

With few exceptions, previous work on facial expression or action unit recognition
has been supervised in nature. Little attention has been paid to the problem of unsu-
pervised temporal segmentation or clustering facial events prior to recognition. Essa
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and Pentland [43] proposed an unsupervised probabilistic flow-based method to de-
scribe facial expressions. Hoey [53] presented a multilevel BN to learn in a weakly
supervised manner the dynamics of facial expression. Bettinger et al. [11] used
AAMs to learn the dynamics of person-specific facial expression models. Zelnik-
Manor and Irani [133] proposed a modification of structure-from-motion factoriza-
tion to temporally segment rigid and non-rigid facial motion. De la Torre et al. [32]
proposed a geometric-invariant clustering algorithm to decompose a stream of one
person’s facial behavior into facial gestures. Their approach suggested that unusual
facial expressions might be detected through temporal outlier patterns. In recent
work, Zhou et al. [143] proposed Aligned Cluster Analysis (ACA), an extension
of spectral clustering for time series clustering and embedding. ACA was applied
to discover in unsupervised manner facial actions across individuals that achieves
moderate agreement with FACS. In this section, we briefly illustrate the applications
of ACA for facial expression analysis, and refer the reader to [141, 143] for further
details.

19.6.1 Facial Event Discovery for One Subject

Figure 19.13 shows the results of running unsupervised ACA on a video sequence
of 1000 frames to summarize the facial expression of an infant into 10 temporal
clusters. Appearance and shape features in the eyes and mouth, as described in
Sect. 19.4.2, are used for temporal clustering. These 10 clusters provide a sum-
marization of the infant’s facial events. This visual summarization can be useful to
automatically count the amount of time that the baby spends doing a particular facial
expression (i.e. temporal cluster), such as crying, smiling or sleeping.

Extensions of ACA [143] can be used for facial expression indexing, given a se-
quence labeled by a user. Figure 19.14a on the left shows a frame of a sequence
labeled by the user, and to the right there are six frames corresponding to six se-
quences returned by Supervised ACA (SACA). Next to the frames one can observe
the matching score, which become higher the closer the retrieved sequence is to the
user-specified sequence of facial expression.

Fig. 19.13 Temporal clustering of infant facial behavior. Each color denotes a temporal unique
cluster. Each facial gesture is coded with a different color. Observe how the frames of the same
cluster correspond to similar facial expressions. Figure reproduced with permission from [108].
© 2010 IEEE
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Fig. 19.14 a Facial expression indexing. The user specifies a query sequence and Supervised ACA
returns six sequences with similar facial behavioral content as the video sequence selected by the
user. b Three-dimensional embedding of 30 subjects with different facial expressions from the
Cohn–Kanade database

ACA inherits the benefits of spectral clustering algorithms in that it provides a
mechanism for finding a semantic low-dimensional embedding. In an evaluation,
we tested the ability of unsupervised ACA to temporally cluster images and provide
a visualization tool of several emotion-labeled sequences. Figure 19.14b shows the
ACA embedding of 112 sequences from 30 randomly selected subjects from the
Cohn–Kanade database [58]. The frames are labeled with five emotion labels: sur-
prise, sadness, fear, joy and anger. The number of facial expressions varies across
subjects. It is important to notice that, unlike traditional dimensionality reduction
methods, each three-dimensional point in the embedding represents a video segment
(of possibly different length) containing different facial expression. The ACA’s em-
bedding provides a natural mechanism for visualizing facial events and detecting
outliers.

19.6.2 Facial Event Discovery for Sets of Subjects

This section illustrates the ability of ACA to discover dynamic facial events in the
more challenging database RU-FACS [7] that contains naturally occurring facial
behavior of multiple people. For this database the labels are AUs. We randomly se-
lected 10 sets of 5 people and reported the mean clustering results and variance. The
clustering accuracy is measured as the overlap between the temporal segmentation
provided by ACA and the manually labeled FACS. ACA achieved an average ac-
curacy of 52.2% in clustering the lower face and 68.8% in upper face using AUs
labels. Figure 19.15a shows the results for temporal segmentation achieved by ACA
on subjects S012, S028 and S049. Each color denotes a temporal cluster discovered
by ACA. Figure 19.15 shows some of the dynamic vocabularies for facial expres-
sion analysis discovered by ACA. The algorithm correctly discovered smiling, with
and without speech as different facial events. Visual inspection of all subjects’ data
suggests that the vocabulary of facial events is moderately consistent with human
evaluation. More details are given in [143].
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Fig. 19.15 a Results obtained by ACA for subjects S012, S028 and S049. b Corresponding video
frames. Figure reproduced with permission from [108]. © 2010 IEEE

19.7 Conclusion and Future Challenges

Although many recent advances and successes in automatic facial expression anal-
ysis have been achieved, as described in the previous sections, many questions re-
main open, for which answers must be found. Few challenges remain such as (1)
how to detect subtle AUs: more robust 3D models that effectively decouple rigid
and non-rigid motion and better models that normalize for subject variability are
needed to be researched. (2) More robust real-time systems for face acquisition,
facial data extraction and representation, and facial expression recognition to han-
dle head motion (both in-plane and out-of-plane), occlusion, lighting change, and
low intensity expressions, all of which are common in spontaneous facial behav-
ior in naturalistic environments; new 3D sensors such as structure light cameras
or time-of-flight cameras can are a promising direction for real-time segmentation
(3) most work on facial expression analysis has been done in the area of recogni-
tion (temporal segmentation is provided), and more specialized machine learning
algorithms are needed for the problem of detection in naturally occurring behav-
ior.

Because most investigators have used relatively limited datasets (with typically
unknown reliability), the generalizability of different approaches to facial expres-
sion analysis remains unknown. With few exceptions, investigators have failed
to report inter-observer reliability and the validity of the facial expressions they
have analyzed. Approaches to facial expression analysis that have been devel-
oped in this way may transfer poorly to applications in which expressions, sub-
jects, contexts, or image properties are more variable. In the absence of compara-
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tive tests on common data, the relative strengths and weaknesses of different ap-
proaches are difficult to determine. In particular, there is need for fully FACS coded
databases with natural occurring behavior. Because intensity and duration measure-
ments are critical, it is important to include descriptive data on these features as
well.

Facial expression is one of several modes of nonverbal communication. The mes-
sage value of various modes may differ depending on context and may be congruent
or discrepant with each other. An interesting research topic is the integration of
facial expression analysis with gesture, prosody, and speech. Combining facial fea-
tures with acoustic features would help to separate the effects of facial actions due
to facial expression and those due to speech-related movements.

At present, taxonomies of facial expression are based on FACS or other observer-
based schemes. Consequently, approaches to automatic facial expression recog-
nition are dependent on access to corpuses of FACS or similarly labeled video.
This is a significant concern, in that recent work suggests that extremely large
corpuses of labeled data may be needed to train robust classifiers. An open ques-
tion in facial analysis is of whether facial actions can be learned directly from
video in an unsupervised manner. That is, can the taxonomy be learned directly
from video? And unlike FACS and similar systems that were initially developed
to label static expressions, can we learn dynamic trajectories of facial actions?
In our preliminary findings [143] on unsupervised learning using the using the
RU-FACS database, agreement between facial actions identified by unsupervised
analysis of face dynamics and FACS approached the level of agreement that has
been found between independent FACS coders. These findings suggest that un-
supervised learning of facial expression is a promising alternative to supervised
learning of FACS-based actions. At least three benefits follow. One is the prospect
that automatic facial expression analysis may be freed from its dependence on
observer-based labeling. Second, because the current approach is fully empiri-
cal, it potentially can identify regularities in video that have not been anticipated
by the top–down approaches such as FACS. New discoveries become possible.
Three, similar benefits may accrue in other areas of image understanding of hu-
man behavior. Recent efforts by Guerra-Filho and Aloimonos [49] to develop vo-
cabularies and grammars of human actions depend on advances in unsupervised
learning. However, more robust and efficient algorithms that can learn from large
databases are needed, as well as algorithms that can cluster more subtle facial be-
havior.

While research challenges in automated facial image and analysis remain, the
time is near to apply these emerging tools to real-world problems in clinical science
and practice, marketing, surveillance and human computer interaction.

Acknowledgements This work was partially supported by National Institute of Health Grant
R01 MH 051435, and the National Science Foundation under Grant No. EEC-0540865. Thanks to
Tomas Simon, Minh H. Nguyen, Feng Zhou, Simon Baker, Simon Lucey and Iain Matthews for
helpful discussions, and some figures.



19 Facial Expression Analysis 403

References

1. Ambadar, Z., Cohn, J.F., Reed, L.I.: All smiles are not created equal: Morphology and timing
of smiles perceived as amused, polite, and embarrassed/nervous. J. Nonverbal Behav. 33(1),
17–34 (2009) [379]

2. Ambadar, Z., Schooler, J.W., Cohn, J.F.: Deciphering the enigmatic face. Psychol. Sci. 16(5),
403–410 (2005) [377]

3. Anderson, K., McOwan, P.W.: A real-time automated system for the recognition of human
facial expressions. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 36(1), 96–105 (2006)
[388,389]

4. Ashraf, A.B., Lucey, S., Cohn, J.F., Chen, T., Ambadar, Z., Prkachin, K.M., Solomon, P.E.:
The painful face-pain expression recognition using active appearance models. Image Vis.
Comput. 27(12), 1788–1796 (2009) [388,390]

5. Baker, S., Matthews, I.: Lucas–Kanade 20 years on: A unifying framework. Int. J. Comput.
Vis. 56(3), 221–255 (2004) [386]

6. Bartlett, M., Littlewort, G., Fasel, I., Movellan, J.R.: Real time face detection and facial
expression recognition: Development and applications to human computer interaction. In:
CVPR Workshops for HCI (2003) [378]

7. Bartlett, M.S., Littlewort, G.C., Frank, M.G., Lainscsek, C., Fasel, I., Movellan, J.R.: Au-
tomatic recognition of facial actions in spontaneous expressions. J. Multimed. 1(6), 22–35
(2006) [382,384,386,388,390,400]

8. Bartlett, M.S., Littlewort, G., Frank, M., Lainscsek, C., Fasel, I., Movellan, J.: Fully au-
tomatic facial action recognition in spontaneous behavior. In: AFGR, pp. 223–230 (2006)
[390]

9. Beebe, B., Badalamenti, A., Jaffe, J., Feldstein, S., Marquette, L., Helbraun, E.: Distressed
mothers and their infants use a less efficient timing mechanism in creating expectancies of
each other’s looking patterns. J. Psycholinguist. Res. 37(5), 293–307 (2008) [383]

10. Bergen, J.R., Anandan, P., Hanna, K.J., Hingorani, R.: Hierarchical model-based motion
estimation. In: European Conference on Computer Vision, pp. 237–252 (1992) [386]

11. Bettinger, F., Cootes, T.F., Taylor, C.J.: Modelling facial behaviours. In: BMVC (2002) [399]
12. Black, M.J., Jepson, A.D.: Eigentracking: Robust matching and tracking of objects using

view-based representation. Int. J. Comput. Vis. 26(1), 63–84 (1998) [384,386]
13. Black, M.J., Yacoob, Y.: Recognizing facial expressions in image sequences using local pa-

rameterized models of image motion. Int. J. Comput. Vis. 25(1), 23–48 (1997) [384]
14. Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In: SIGGRAPH

(1999) [384]
15. Blaschko, M., Lampert, C.: Learning to localize objects with structured output regression.

In: ECCV, pp. 2–15 (2008) [395,397]
16. Bobick, A., Davis, J.: The recognition of human movement using temporal templates. IEEE

Trans. Pattern Anal. Mach. Intell. 23(3), 257–267 (2001) [389]
17. Breiman, L.: Classification and Regression Trees. Chapman & Hall, London (1998) [392]
18. Bruce, V.: What the human face tells the human mind: Some challenges for the robot–human

interface. In: IEEE Int. Workshop on Robot and Human Communication (1992) [378]
19. Chang, K.Y., Liu, T.L., Lai, S.H.: Learning partially-observed hidden conditional random

fields for facial expression recognition. In: CVPR (2009) [391]
20. Chang, Y., Hu, C., Feris, R., Turk, M.: Manifold based analysis of facial expression. In:

CVPR Workshops, p. 81 (2004) [388,390]
21. Chetverikov, D., Péteri, R.: A brief survey of dynamic texture description and recognition.

In: Computer Recognition Systems, pp. 17–26 (2005) [389]
22. Cohen, I., Sebe, N., Cozman, F.G., Cirelo, M.C., Huang, T.S.: Learning Bayesian network

classifiers for facial expression recognition using both labeled and unlabeled data. In: CVPR
(2003) [388,389,391,395]

23. Cohen, I., Sebe, N., Garg, A., Chen, L.S., Huang, T.S.: Facial expression recognition from
video sequences: Temporal and static modeling. Comput. Vis. Image Underst. 91(1–2), 160–
187 (2003) [384]



404 F. De la Torre and J.F. Cohn

24. Cohn, J.F., Ambadar, Z., Ekman, P.: Observer-based measurement of facial expression with
the facial action coding system. In: The Handbook of Emotion Elicitation and Assessment.
Series in Affective Science. Oxford University Press, New York (2007) [379-381]

25. Cohn, J.F., Ekman, P.: Measuring facial action by manual coding, facial emg, and automatic
facial image analysis. In: Handbook of Nonverbal Behavior Research Methods in the Affec-
tive Sciences, pp. 9–64 (2005) [378]

26. Cohn, J.F., Kanade, T.: Automated facial image analysis for measurement of emotion expres-
sion. In: The Handbook of Emotion Elicitation and Assessment, pp. 222–238 (2007) [381]

27. Cohn, J.F., Simon, T., Hoai, M., Zhou, F., Tejera, M., De la Torre, F.: Detecting depression
from facial actions and vocal prosody. In: ACII (2009) [377,390]

28. Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. IEEE Trans. Pattern
Anal. Mach. Intell. 23(6), 681–685 (2001) [384-386]

29. Dai, Y., Shibata, Y., Ishii, T., Hashimoto, K., Katamachi, K., Noguchi, K., Kakizaki, N., Ca,
D.: An associate memory model of facial expressions and its application in facial expression
recognition of patients on bed. In: ICME, pp. 591–594 (2001) [377]

30. Darwin, C.: The Expression of the Emotions in Man and Animals. Oxford University Press
New York (1872/1998) [377]

31. De la Torre, F., Black, M.J.: Robust parameterized component analysis: theory and applica-
tions to 2d facial appearance models. Comput. Vis. Image Underst. 91, 53–71 (2003) [386]

32. De la Torre, F., Campoy, J., Ambadar, Z., Cohn, J.: Temporal segmentation of facial behavior.
In: International Conference on Computer Vision (2007) [399]

33. De la Torre, F., Collet, A., Cohn, J., Kanade, T.: Filtered component analysis to increase
robustness to local minima in appearance models. In: CVPR (2007) [384]

34. De la Torre, F., Vitrià, J., Radeva, P., Melenchón, J.: Eigenfiltering for flexible eigentracking.
In: ICPR (2000) [384]

35. De la Torre, F., Yacoob, Y., Davis, L.: A probabilistic framework for rigid and non-rigid
appearance based tracking and recognition. In: AFGR, pp. 491–498 (2000) [390]

36. DePaulo, B., Lindsay, J., Malone, B., Muhlenbruck, L., Charlton, K., Cooper, H.: Cues to
deception. Psychol. Bull. 129(1), 74–118 (2003) [383]

37. Donato, G., Bartlett, M.S., Hager, J.C., Ekman, P., Sejnowski, T.J.: Classifying facial actions.
IEEE Trans. Pattern Anal. Mach. Intell. 21(10), 979–984 (1999) [389]

38. Ekman, P.: An argument for basic emotions. Cogn. Emot. 6, 169–200 (1992) [377,378]
39. Ekman, P., Davidson, R.J., Friesen, W.V.: The Duchenne smile: Emotional expression and

brain physiology II. J. Pers. Soc. Psychol. 58(2), 342–353 (1990) [377]
40. Ekman, P., Friesen, W.: Facial Action Coding System: A Technique for the Measurement of

Facial Movement. Consulting Psychologists Press, Palo Alto (1978) [379]
41. Ekman, P., Huang, T.S., Sejnowski, T.J., Hager, J.C.: Final report to NSF of the planning

workshop on facial expression understanding. Human Interaction Laboratory, University of
California, San Francisco (1993) [378]

42. Ekman, P., Rosenberg, E.L.: What the Face Reveals: Basic and Applied Studies of Sponta-
neous Expression Using the Facial Action Coding System (FACS). Oxford University Press,
London (2005) [383]

43. Essa, I.A., Pentland, A.P.: Coding, analysis, interpretation, and recognition of facial expres-
sions. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 757–763 (2002) [384,389,399]

44. Fasel, B., Luettin, J.: Automatic facial expression analysis: a survey. Pattern Recognit. 36(1),
259–275 (2003) [384,391]

45. Forbes, E.E., Cohn, J.F., Allen, N.B., Lewinsohn, P.M.: Infant affect during parent–infant
interaction at 3 and 6 months: Differences between mothers and fathers and influence of
parent history of depression. Infancy 5, 61–84 (2004) [378]

46. Gatica-Perez, D.: Automatic nonverbal analysis of social interaction in small groups: A re-
view. Image Vis. Comput. 27(12), 1775–1787 (2009) [377]



19 Facial Expression Analysis 405

47. Griffin, K.M., Sayette, M.A.: Facial reactions to smoking cues relate to ambivalence about
smoking. Psychol. Addict. Behav. 22(4), 551 (2008) [377]

48. Gross, R., Matthews, I., Cohn, J.F., Kanade, T., Baker, S.: The cmu multi-pose, illumina-
tion, and expression (multi-pie) face database. Technical report, Carnegie Mellon University
Robotics Institute, TR-07-08 (2007) [382]

49. Guerra-Filho, G., Aloimonos, Y.: A language for human action. Computer 40, 42–51 (2007)
[402]

50. Guo, G., Dyer, C.R.: Learning from examples in the small sample case: Face expression
recognition. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 35(3), 477–488 (2005) [388]

51. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge Uni-
versity Press, Cambridge (2000) [386]

52. Hatfield, E., Cacioppo, J.T., Rapson, R.L.: Primitive emotional contagion. Emotion and So-
cial Behavior 13, 151–177 (1992) [377]

53. Hoey, J.: Hierarchical unsupervised learning of facial expression categories. In: IEEE Work-
shop on Detection and Recognition of Events in Video, pp. 99–106 (2002) [399]

54. Huang, D., De la Torre, F.: Bilinear kernel reduced rank regression for facial expression
synthesis. In: ECCV (2010) [378]

55. Izard, C.E., Huebner, R.R., Risser, D., Dougherty, L.: The young infant’s ability to produce
discrete emotion expressions. Dev. Psychol. 16(2), 132–140 (1980) [378]

56. Jolliffe, I.T.: Principal Component Analysis. Springer, New York (1986) [385]
57. Jones, M.J., Poggio, T.: Multidimensional morphable models. In: ICCV (1998) [384]
58. Kanade, T., Cohn, J.F., Tian, Y.: Comprehensive database for facial expression analysis. In:

AFGR (2000) [382,400]
59. Koelstra, S., Pantic, M.: Non-rigid registration using free-form deformations for recognition

of facial actions and their temporal dynamics. In: AFGR (2008) [384,391]
60. Kohler, C.G., Martin, E.A., Stolar, N., Barrett, F.S., Verma, R., Brensinger, C., Bilker, W.,

Gur, R.E., Gur, R.C.: Static posed and evoked facial expressions of emotions in schizophre-
nia. Schizophr. Res. 105, 49–60 (2008) [390]

61. Kotsia, I., Pitas, I.: Facial expression recognition in image sequences using geometric de-
formation features and support vector machines. IEEE Trans. Image Process. 16, 172–187
(2007) [388]

62. Krumhuber, E., Manstead, A.S., Cosker, D., Marshall, D., Rosin, P.: Effects of dynamic
attributes of smiles in human and synthetic faces: A simulated job interview setting. J. Non-
verbal Behav. 33(1), 1–15 (2009) [383]

63. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic models for
segmenting and labeling sequence data. In: ICML (2001) [395]

64. Langner, O., Dotsch, R., Bijlstra, G., Wigboldus, D.H.J., Hawk, S.T., van Knippenberg, A.:
Presentation and validation of the Radboud Faces Database. Cogn. Emot. 24(8), 1377–1388
(2010) [382]

65. Lee, C., Elgammal, A.: Facial expression analysis using nonlinear decomposable generative
models. In: IEEE International Workshop on Analysis and Modeling of Faces and Gestures,
pp. 17–31 (2005) [390]

66. Levenson, R.W., Ekman, P., Friesen, W.V.: Voluntary facial action generates emotion-specific
autonomic nervous system activity. Psychophysiology 27(4), 363–384 (1990) [377]

67. Li, S., Jain, A.: Handbook of Face Recognition. Springer, New York (2005) [391]
68. Littlewort, G., Bartlett, M.S., Fasel, I., Susskind, J., Movellan, J.: Dynamics of facial expres-

sion extracted automatically from video. Image Vis. Comput. 24(6), 615–625 (2006) [384,
388,390]

69. Littlewort, G.C., Bartlett, M.S., Lee, K.: Automatic coding of facial expressions displayed
during posed and genuine pain. Image Vis. Comput. 12(27), 1797–1803 (2009) [390]

70. Littlewort, G., Bartlett, M.S., Whitehill, J., Wu, T.F., Butko, N., Ruvulo, P., et al.: The motion
in emotion: A cert based approach to the fera emotion challenge. In: Paper presented at
the 1st Facial Expression Recognition and Analysis challenge 2011, 9th IEEE International
Conference on AFGR (2011) [390]



406 F. De la Torre and J.F. Cohn

71. Liu, X.: Generic face alignment using boosted appearance model. In: CVPR (2007) [386]
72. Lo, H., Chung, R.: Facial expression recognition approach for performance animation. In:

International Workshop on Digital and Computational Video (2001) [378]
73. Lowe, D.: Object recognition from local scale-invariant features. In: ICCV (1999) [389]
74. Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo

vision. In: Proceedings of Imaging Understanding Workshop (1981) [384,386]
75. Lucey, P., Cohn, J., Howlett, J., Lucey, S., Sridharan, S.: Recognizing emotion with head

pose variation: Identifying pain segments in video. IEEE Trans. Syst. Man Cybern., Part B,
Cybern. 41(3), 664–674 (2011) [380]

76. Lucey, P., Cohn, J., Lucey, S., Sridharan, S., Prkachin, K.M.: Automatically detecting action
units from faces of pain: Comparing shape and appearance features. In: CVPR Workshops
(2009) [390]

77. Lucey, P., Cohn, J.F., Lucey, S., Sridharan, S., Prkachin, K.M.: Automatically detecting pain
using facial actions. In: ACII (2009) [388]

78. Lucey, P., Cohn, J.F., Kanade, T., Saragih, J., Ambadar, Z., Matthews, I.: The extended Cohn–
Kanade dataset (CK+): A complete dataset for action unit and emotion-specified expression.
In: CVPR Workshops for Human Communicative Behavior Analysis (2010) [382,384]

79. Lucey, P., Cohn, J.F., Matthews, I., Lucey, S., Sridharan, S., Howlett, J., Prkachin, K.M.:
Automatically detecting pain in video through facial action units. IEEE Trans. Syst. Man
Cybern., Part B, Cybern. PP(99), 1–11 (2010) [377,390]

80. Lucey, P., Cohn, J.F., Prkachin, K.M., Solomon, P., Matthews, I.: Painful data: The UNBC-
McMaster shoulder pain expression archive database. In: AFGR (2011) [382]

81. Lucey, S., Matthews, I., Hu, C., Ambadar, Z., De la Torre, F., Cohn, J.: AAM derived face
representations for robust facial action recognition. In: AFGR (2006) [384,388,390]

82. Lyons, M., Akamatsu, S., Kamachi, M., Gyoba, J.: Coding facial expressions with gabor
wavelets. In: AFGR (2002) [382,384]

83. Madsen, M., el Kaliouby, R., Eckhardt, M., Hoque, M., Goodwin, M., Picard, R.W.: Lessons
from participatory design with adolescents on the autism spectrum. In: Proc. Computer Hu-
man Interaction (2009) [378]

84. Malatesta, C.Z., Culver, C., Tesman, J.R., Shepard, B., Fogel, A., Reimers, M., Zivin, G.:
The Development of Emotion Expression During the First Two Years of Life. Monographs
of the Society for Research in Child Development, pp. 97–136 (1989) [377]

85. Martinez, A.M., Benavente, R.: The AR face database. In: CVC Technical Report, number
24 (June 1998) [382]

86. Mase, K., Pentland, A.: Automatic lipreading by computer. Trans. Inst. Electron. Inf. Com-
mun. Eng. J73-D-II(6), 796–803 (1990) [389]

87. Matthews, I., Baker, S.: Active appearance models revisited. Int. J. Comput. Vis. 60(2), 135–
164 (2004) [384,386]

88. Matthews, I., Xiao, J., Baker, S.: 2d vs. 3d deformable face models: Representational power,
construction, and real-time fitting. Int. J. Comput. Vis. 75(1), 93–113 (2007) [385]

89. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans.
Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005) [389]

90. Nguyen, N., Guo, Y.: Comparisons of sequence labeling algorithms and extensions. In: ICML
(2007) [395]

91. O’Toole, A.J., Harms, J., Snow, S.L., Hurst, D.R., Pappas, M.R., Ayyad, J.H., Abdi, H.: A
video database of moving faces and people. IEEE Trans. Pattern Anal. Mach. Intell. 27(5),
812–816 (2005) [382]

92. Pandzic, I.S., Forchheimer, R.R. (eds.): MPEG-4 Facial Animation: The Standard, Imple-
mentation and Applications. Wiley, New York (2002) [381]

93. Pantic, M., Bartlett, M.S.: Machine analysis of facial expressions. In: Face Recognition, pp.
377–416 (2007) [384]

94. Pantic, M., Patras, I.: Dynamics of facial expression: Recognition of facial actions and their
temporal segments from face profile image sequences. IEEE Trans. Syst. Man Cybern., Part
B, Cybern. 36, 433–449 (2006) [388,391]



19 Facial Expression Analysis 407

95. Pantic, M., Rothkrantz, L.J.M.: Automatic analysis of facial expressions: The state of the art.
IEEE Trans. Pattern Anal. Mach. Intell. 22(12), 1424–1445 (2002) [384,391]

96. Pantic, M., Rothkrantz, L.J.M.: Facial action recognition for facial expression analysis from
static face images. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 34(3), 1449–1461 (2004)
[388]

97. Pantic, M., Sebe, N., Cohn, J.F., Huang, T.: Affective multimodal human–computer interac-
tion. In: ACM International Conference on Multimedia, pp. 669–676 (2005) [391]

98. Pentland, A.: Looking at people: Sensing for ubiquitous and wearable computing. IEEE
Trans. Pattern Anal. Mach. Intell. 22(1), 107–119 (2000) [377]

99. Pilz, S.K., Thornton, I.M., Bülthoff, H.H.: A search advantage for faces learned in motion.
Exp. Brain Res. 171(4) 436–447 (2006) [382]

100. Prkachin, K.M., Solomon, P.E.: The structure, reliability and validity of pain expression:
Evidence from patients with shoulder pain. Pain 139(2), 267–274 (2008) [377]

101. Rademaker, R., Pantic, M., Valstar, M.F., Maat, L.: Web-based database for facial expression
analysis. In: ICME (2005) [382]

102. Saragih, J., Goecke, R.: A nonlinear discriminative approach to AAM fitting. In: ICCV
(2007) [386]

103. Sayette, M.A., Cohn, J.F., Wertz, J.M., Perrott, M.A., Parrott, D.J.: A psychometric evalu-
ation of the facial action coding system for assessing spontaneous expression. J. Nonverbal
Behav. 25(3), 167–185 (2001) [381]

104. Scherer, K., Ekman, P.: Handbook of Methods in Nonverbal Behavior Research. Cambridge
University Press, Cambridge (1982) [379]

105. Schmidt, K.L., Cohn, J.F.: Human facial expressions as adaptations: Evolutionary perspec-
tives in facial expression research. Yearb. Phys. Antropol. 116, 8–24 (2001) [379]

106. Shang, L.F., Chan, K.P.: Nonparametric discriminant HMM and application to facial expres-
sion recognition. In: CVPR (2009) [391,395]

107. Shergill, G.H., Sarrafzadeh, H., Diegel, O., Shekar, A.: Computerized sales assistants: The
application of computer technology to measure consumer interest;a conceptual framework.
J. Electron. Commer. Res. 9(2), 176–191 (2008) [377]

108. Simon, T., Nguyen, M.H., De la Torre, F., Cohn, J.F.: Action unit detection with segment-
based SVMs. In: Conference on Computer Vision and Pattern Recognition, pp. 2737–2744
(2010) [384,387,388,395,396,401]

109. Taskar, B., Guestrin, C., Koller, D.: Max-margin Markov networks. In: NIPS (2003) [395]
110. Theobald, B.J., Cohn, J.F.: Facial image synthesis. In: Oxford Companion to Emotion and

the Affective Sciences, pp. 176–179. Oxford University Press, London (2009) [378]
111. Tian, Y., Kanade, T., Cohn, J.F.: Evaluation of Gabor-wavelet-based facial action unit recog-

nition in image sequences of increasing complexity. In: AFGR (2002) [388,390]
112. Tian, Y., Kanade, T., Cohn, J.F.: Recognizing action units for facial expression analysis. IEEE

Trans. Pattern Anal. Mach. Intell. 23(2), 97–115 (2002) [384]
113. Tian, Y., Kanade, T., Cohn, J.F.: Facial expression analysis. In: Handbook of Face Recogni-

tion, Springer, Berlin (2008) [384,388,391]
114. Tola, E., Lepetit, V., Fua, P.: A fast local descriptor for dense matching. In: CVPR (2008)

[389]
115. Tola, E., Lepetit, V., Fua, P.: Daisy: An efficient dense descriptor applied to wide baseline

stereo. IEEE Trans. Pattern Anal. Mach. Intell. 99(1) (2009) [389]
116. Tomkins, S.S.: Affect, Imagery, Consciousness. Springer, New York (1962) [377]
117. Tong, Y., Liao, W., Ji, Q.: Facial action unit recognition by exploiting their dynamic and

semantic relationships. IEEE Trans. Pattern Anal. Mach. Intell. 29 1683–1699 (2007) [384,
391,395]

118. Tremeau, F., Malaspina, D., Duval, F., Correa, H., Hager-Budny, M., Coin-Bariou, L.,
Macher, J.P., Gorman, J.M.: Facial expressiveness in patients with schizophrenia compared
to depressed patients and nonpatient comparison subjects. Am. J. Psychiatr. 162(1), 92 (2005)
[377]

119. Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods for structured
and interdependent output variables. J. Mach. Learn. Res. 6, 1453–1484 (2005) [395]



408 F. De la Torre and J.F. Cohn

120. Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods for structured
and interdependent output variables. J. Mach. Learn. Res. 6, 1453–1484 (2005) [397]

121. Valstar, M., Pantic, M., Patras, I.: Motion history for facial action detection in video. In:
IEEE Int’l Conf. on Systems, Man and Cybernetics, pp. 635–640 (2005) [389]

122. Valstar, M.F., Pantic, M.: Fully automatic facial action unit detection and temporal analysis.
In: CVPR (2006) [391]

123. Valstar, M.F., Pantic, M.: Combined support vector machines and hidden Markov models for
modeling facial action temporal dynamics. In: ICCV Workshop on HCI (2007) [384,388,
390,395]

124. Valstar, M.F., Pantic, M.: Induced disgust, happiness and surprise: an addition to the mmi
facial expression database. In: Proceedings of the EMOTION 2010 Workshop (2010) [382]

125. Valstar, M.F., Patras, I., Pantic, M.: Facial action unit detection using probabilistic actively
learned support vector machines on tracked facial point data. In: CVPR Workshops (2005)
[391]

126. van Dam, A.: Beyond wimp. IEEE Comput. Graph. Appl. 20(1), 50–51 (2000) [377]
127. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In:

CVPR (2001) [384,392]
128. Vural, E., Bartlett, M., Littlewort, G., Cetin, M., Ercil, A., Movellan, J.: Discrimination of

moderate and acute drowsiness based on spontaneous facial expressions. In: ICPR (2010)
[377]

129. Wen, Z., Huang, T.S.: Capturing subtle facial motions in 3d face tracking. In: CVPR (2008)
[384]

130. Xiao, J., Baker, S., Matthews, I., Kanade, T.: Real-time combined 2D+3D active appearance
models. In: CVPR (2004) [386]

131. Yacoob, Y., Davis, L.S.: Recognizing human facial expressions from long image sequences
using optical flow. IEEE Trans. Pattern Anal. Mach. Intell. 18(6), 636–642 (2002) [384,389]

132. Yin, L., Wei, X., Sun, Y., Wang, J., Rosato, M.J.: A 3d facial expression database for facial
behavior research. In: AFGR (2006) [382]

133. Zelnik-Manor, L., Irani, M.: Temporal factorization vs. spatial factorization. In: ECCV
(2004) [399]

134. Zeng, Z., Pantic, M., Roisman, G.I., Huang, T.S.: A survey of affect recognition methods:
Audio, visual, and spontaneous expressions. IEEE Trans. Pattern Anal. Mach. Intell. 31(1),
39–58 (2008) [391]

135. Zeng, Z., Hu, Y., Roisman, G.I., Wen, Z., Fu, Y., Huang, T.S.: Audio-visual emotion recogni-
tion in adult attachment interview. In: 8th International Conference on Multimodal Interfaces
(2009) [390]

136. Zeng, Z., Pantic, M., Roisman, G.I., Huang, T.S.: A survey of affect recognition methods:
Audio, visual, and spontaneous expressions. IEEE Trans. Pattern Anal. Mach. Intell. 31(1),
31–58 (2009) [391]

137. Zhang, C., Zhango, Z.: A survey of recent advances in face detection. In: Technical Report,
MSR-TR-2010-66 Microsoft Research (June 2010) [384]

138. Zhang, Z., Lyons, M., Schuster, M., Akamatsu, S.: Comparison between geometry-based and
gabor-wavelets-based facial expression recognition using multi-layer perceptron. In: AFGR
(2002) [384,389]

139. Zhao, G., Pietikainen, M.: Dynamic texture recognition using local binary patterns with an
application to facial expressions. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 915–928
(2007) [389,390]

140. Zhao, W., Chellappa, R.: Face Processing: Advanced Modeling and Methods. Academic
Press, San Diego (2006) [391]

141. Zhou, F., De la Torre, F., Hodgins, J.: Aligned cluster analysis for temporal segmentation of
human motion. In: IEEE Automatic Face and Gesture Recognition (2008) [399]

142. Zhu, Y., De la Torre, F., Cohn, J.F.: Dynamic cascades with bidirectional bootstrapping for
spontaneous facial action unit detection. In: ACII (2009) [384,387,389,392-395]



19 Facial Expression Analysis 409

143. Zhou, F., De la Torre, F., Cohn, J.: Unsupervised discovery of facial events. In: CVPR (2010)
[399,400,402]

144. Zhou, F., De la Torre, F., Cohn, J.F.: Unsupervised discovery of facial events. In: Conference
on Computer Vision and Pattern Recognition, pp. 2574–2581 (2010) [388]

145. Zue, V.W., Glass, J.R.: Conversational interfaces: Advances and challenges. Proc. IEEE
88(8), 1166–1180 (2002) [377]


	Chapter 19: Facial Expression Analysis
	19.1 Introduction
	19.2 Annotation of Facial Expression
	19.3 Databases
	19.4 Facial Feature Tracking, Registration and Feature Extraction
	19.4.1 Facial Feature Detection and Tracking
	19.4.2 Registration and Feature Extraction
	Registration:
	Geometric features:
	Appearance features:
	Other features:


	19.5 Supervised Learning
	19.5.1 Classiﬁers
	19.5.2 Selection of Positive and Negative Samples During Training
	19.5.2.1 Static Approach
	19.5.2.2 Dynamic Approach


	19.6 Unsupervised Learning
	19.6.1 Facial Event Discovery for One Subject
	19.6.2 Facial Event Discovery for Sets of Subjects

	19.7 Conclusion and Future Challenges
	 References


