
Chapter 9
Skin Color in Face Analysis

J. Birgitta Martinkauppi, Abdenour Hadid, and Matti Pietikäinen

9.1 Introduction

Color is a common feature used in machine vision applications. As a cue, it offers
several advantages: easy to understand and use. Implementations can be made com-
putationally fast and efficient, thus providing a low level cue. Under stable and uni-
form illumination, color cue remains robust against geometrical changes. Its ability
to separate the targets from background depends on the color dissimilarity between
targets and background. In some scenes, the color itself is enough for object detec-
tion.

The main difficulty in using color in machine vision applications is that the cam-
eras are not able to distinguish changes of surface colors from color shifts caused
by varying illumination spectra. Thus, color is sensitive to changes in illumination
which are common under uncontrolled environments. The changes can be due to
varying light level, for example, shadowing, varying light color due to changes
in spectral power distribution (like daylight and fluorescent light source), or both.
Cameras and their settings may produce different appearances which are different
from the perception of human vision system.

Several strategies have been employed to reduce the illumination sensitivity. In
one strategy, the color information is separated into two components, color inten-
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sity and color chromaticity. Use of color chromaticity component reduces the effect
of varying light levels. To cancel the effect of illumination color and thus differ-
ent spectral power distributions, numerous color constancy algorithms have been
suggested, but their success has been limited [6]. A different strategy to these is
to tolerate or adapt the model to the illumination changes. This strategy can pro-
duce promising results even under drastic variations in target colors as shown in this
chapter for facial recognition.

It is often preferable to get rid as much as possible of the dependencies on lighting
intensity. The perfect case would be to also cancel-out the effect of the illuminant
color (by defining a color representation which is only a function of the surface re-
flectance) but, thus far this has not been achieved in machine vision. The human
visual system is superior in this sense, since human visual perception in which the
color is perceived by the eye depends quite significantly on surface reflectance, al-
though the light reaching the eye is a function of surface reflectance, illuminant
color and lighting intensity.

For face detection, color has been an intriguing and popular cue. It is often used
as a preprocessing step to select regions of interests for further, more computation-
ally demanding processing. For instance, with the appearance-based face detection,
an exhaustive scan (at different locations and scales) of the images is conducted
when searching for the faces [54]. However, when the color cue is available, one
can reduce the search regions by pre-processing the images and selecting the skin-
like areas only.

This chapter deals with the role of color in facial image analysis such as face
detection and recognition. First, we introduce the use of color information in the
field of facial image analysis in particular (Sect. 9.2). Then, in Sect. 9.3, we give
an introduction to color formation and discuss the effect of illumination on color
appearance, and its consequences. The skin data can come from different sources
like real faces, photos or print. Separating the sources of skin data is presented in
Sect. 9.4, and skin color modeling is discussed in Sect. 9.5. Section 9.6 reviews the
use of color in face detection, while the contribution of color to face recognition is
covered in Sect. 9.7. Finally, conclusions are drawn in Sect. 9.8.

9.2 Color Cue and Facial Image Analysis

The properties of the face pattern pose a very difficult problem for facial image
analysis: a face is a dynamic and nonrigid object which is difficult to handle. Its ap-
pearance varies due to changes in pose, expressions, illuminations and other factors
such as age and make-up. As a consequence, most of the facial analysis tasks gener-
ally involve heavy computations due to the complexity of facial patterns. Therefore,
one may need some additional cues, such as color or motion, in order to assist and
accelerate the analysis. These additional cues also offer an indication of the relia-
bility of the face analysis results: the more the cues support the analysis, the more
one can be confident about the results. For instance, with the appearance-based face
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Fig. 9.1 A general block diagram of face analysis which shows different phases of facial image
analysis

detection an exhaustive scan (at different locations and scales) of the images is con-
ducted when searching the faces [54]. However, when the color cue is available, one
can reduce the search regions by pre-processing the images and selecting only the
skin-like areas. Therefore, it is not surprising that the color of skin has been com-
monly used to assist face detection. Also, in face recognition, it has been argued
that color does play a role under degraded conditions by facilitating low-level facial
image analysis such as better estimations of the boundaries, shapes and sizes of fa-
cial features [56]. As mentioned above, among the advantages of using color is the
computational efficiency and robustness against some geometric changes such as
scaling and rotation, when the scene is observed under a uniform illumination field.
However, the main limitation with the use of color lies in its sensitivity to illumina-
tion changes (especially changes in the chromaticity of the illuminant source which
are difficult to cancel-out).

Let us consider the general block diagram of face analysis, shown in Fig. 9.1.
The color cue is involved at different stages [36]. In the first stage, the color images
(or video sequences) are acquired and preprocessed. The preprocessing may include
gamma correction, color space transformation, and so on. It is often preferable to
get rid as much as possible of the dependencies on lighting intensity.

Among the different stages shown in Fig. 9.1, the use of color in face detection is
probably the most obvious. It is generally used to select the skin-like color regions.
Then, simple refining procedures can be launched to discriminate the faces from
other skin-like regions such as hands, wood, etc. Thus, much faster face detectors
are generally obtained when the color cue is considered.

Using the fact that some facial features, such as eyes, are darker than their sur-
rounding regions, holes should then appear in the face area when labeling the skin
pixels. Such observation is commonly exploited when detecting facial features in
color images [10, 15, 54].

Does color information contribute to face recognition? The answer to this ques-
tion is not obvious, although some studies have suggested that color does play a role
in face recognition as well, and this contribution becomes evident when the shape
cues are degraded [56]. Section 9.7 discusses this issue.
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9.3 Color Appearance for Color Cameras

9.3.1 Color Image Formation and Illumination

Color cameras reproduce the scene with three components which are typically red
(R), green (G) and blue (B). The components are named after the spectral range
over which the response was integrated. An example of color camera filters is shown
in Fig. 9.2. The spectral filters typically operate in the visible wavelength spectrum
range, that is, 400 nm–700 nm. Of course, different filter selections affect the ob-
tainable descriptor set and most likely produce different values for the same input.

The descriptors themselves are obtained by filtering the color signal C(λ) with
suitable spectral filters and integration over the filtered signal. The color signal is
a spectral distribution of electromagnetic radiation, which is the light from an illu-
mination source, light reflected from a surface or a combination of these. This is
similar to calculation of human vision responses (see, e.g., [50]).

The following simple model represents camera output with white balancing:

D =
∫

ηD(λ)Ip(λ)S(λ)dλ
∫

ηD(λ)Ic(λ)dλ
, (9.1)

where D is R,G or B response, λ is the wavelength, p is prevailing (illumination)
and c is calibration (illumination), η is the spectral responsivity of a spectral filter, I

is the spectral power distribution of the light (SPD), and S is the spectral reflectance
of the surface. The nominator of (9.1) alone describes image formation as a sum of
the camera sensitivity, the illumination SPD and the reflectance over the wavelength
range. Thus, for each pixel, the output value depends on the illumination, reflectance
and camera sensitivity. This is a very simplified presentation of the formation but
can be used as a basic theoretical estimation of the camera response to the input
light. The denominator models the white balance. White balance means adjusting
gains of camera so that the cameras response for white (or very bright gray) is equal
in every channels. For example, the response of a white is adjusted to (255, 255,
255).

Equation (9.1) can be used to simulate the effect of illumination. When the pre-
vailing and calibration illumination are the same, then the output image is called as
a canonical or calibrated image and colors are canonical colors. This is described
in more detail in Sect. 9.3.2. The prevailing and calibration illumination can also be
different, and the output image in this case is called non-canonical image. The mod-
eling is, however, more problematic. The problem of normalization can be demon-
strated theoretically [32]. Let us assume that the prevailing illumination is originally
Inp and its normalization factor is the constant factor fp , and the calibration illumi-
nation is in the unnormalized format Inc, which is normalized by the factor constant
fc. For example, if we insert these variables into (9.1), we can derive the following
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Fig. 9.2 Spectral
responsivity curves of a Sony
camera, originally obtained
from a graph provided by the
manufacturer

format:

R =
∫

ηR(λ)Ip(λ)S(λ)dλ
∫

ηR(λ)Ic(λ) dλ
=

∫
ηR(λ)

Inp(λ)

fp
S(λ)dλ

∫
ηR(λ)

Inc(λ)
fc

dλ
= fc

fp

∫
ηR(λ)Inp(λ)S(λ)dλ
∫

ηR(λ)Inc(λ) dλ
.

(9.2)
The ratio fc/fp is 1 only when the illumination conditions are the same. Different
choices for normalization methods may produce different results [32].

9.3.2 The Effect of White Balancing

The effect of white balancing on the perceived images and colors is examined in
more details in this chapter. White balancing is one of the important factors affecting
image quality. The white balancing factor depends on the illumination. Many digital
images have been taken under canonical conditions or very near to them to avoid
distortions in colors. The color distortions are easily noticed and taken as annoying
artifacts. This is especially true for certain colors which humans remember very
well; thus, they are referred to as memory colors. One of these memory colors is,
quite naturally, skin tone.

Humans are very sensitive to any distortion in skin tones [12, 25], thus, it is not
so surprising that these have been investigated a lot. Skin tones refer here to the
correct or acceptable colors for skin as perceived by a human. Skin colors refers to
all those RGBs which a camera can perceive as skin under different illuminations.
Note that human and cameras can perceive skin color differently.

In cameras, white balancing can be done automatically or manually. In manual
selection, the user selects the best option for the prevailing illumination, while auto-
matic option provides settings from a program. However, it is not always possible to
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Fig. 9.3 The face is illuminated by the nonuniform illumination field and the white balancing
partially fails. The color appearance of the face varies at different parts of the light field

select or compute proper white balancing factors. This is especially true under vary-
ing, nonuniform illumination, which can cause more drastic color changes. For ex-
ample, it is common to have more than one light source on a scene. If these sources
with different SPDs shine over an object, it is not possible to conduct the correct
white balancing for the whole image. This is demonstrated in Fig. 9.3. The face
is imaged under a nonuniform illumination field. The camera was balanced under
the light of fluorescent lamps on the ceiling and thus the part of the face under only
fluorescent illumination field appears in skin tones. However, the daylight from win-
dows causes a bluish color shift on the right side of the face image. The colors are
distorted because the white balancing fails partially. The distortion between these
two sides varies to a different degree as a function of illumination field. The nonuni-
form illumination fields are encountered commonly, but they are rarely considered
in face detection or recognition applications.

Of course, one can apply some color correction techniques to improve the quality.
For example, Do et al. used sclera region of the eye to estimate illumination color
and then apply skin detection [4]. Even a nonuniform illumination field is possible
to correct if the light colors are given by the user [16]. However, the failure in white
balancing may cause information loss, which is generally very difficult to correct
properly.

9.3.2.1 Canonical Images and Colors

Even though an image is taken under canonical condition, it does not guarantee that
the objects appear in the same colors under different canonical illumination. White,
grays and black do appear at least in most of the cases very similarly under different
light sources, but of course there are some limitations. It is not possible even in the-
ory to perceive all RGB components for a gray object if the prevailing illumination
does not have spectral output in components’ spectral range. The ideal camera RGB
responses for white in canonical case should have equal RGB values even under
different light sources, given that the sources are not very extreme. Cameras do re-
produce a white surface quite well over a range of light sources, but of course there
is a physical limitation due to gain control, for example.

If a camera has linear response over a certain input signal range, then those grays
falling the range will be reproduced in gray colors if the color signal from scene falls
into the input range. The grays here refer to those objects whose spectra is constant
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Fig. 9.4 Skin complexions of three skin groups: pale, yellowish, and dark. Their reflectances are
smooth and similar, mainly separated by their levels. Measured skin reflectances are available, for
example, in the Physics-based face database [31]

over the wavelength range, but the value of this constant is smaller than the max-
imum value (“white”). When the spectra is not constant over the range, the effect
of illumination cannot be canceled out from the reproduced RGB values. Thus, the
object colors will be affected to a different degree between different light sources.
Therefore, a camera can reproduce only the achromatic colors similarly under dif-
ferent light sources assuming that the camera is white balanced to the prevailing
light sources. This means that skin can have different colors under images taken
with different conditions.

The reproduction differences can be demonstrated very easily. First, the objects
need to be selected, and, in this case, three skin complexions (pale, yellowish and
dark) are used. The spectral reflectances for the complexions are shown in Fig. 9.4.
The reflectances are smooth and similar. They are separated mainly by their level,
but not their shape [8, 17, 51], which suggests the similar reproduction in color.
Due to this, skin spectra can be reconstructed at high quality using only three ba-
sis vectors [18, 38]. The similarity is due to the colorants (melanin, carotene, and
hemoglobin) determining the reflectance [5]. As a natural object, skin has not uni-
form coloration.

Using (9.1), the RGB values for skin are calculated using the Sony camera’s
responses. The RGB values are then converted into NCC chromaticity. These the-
oretical skin chromaticities are displayed in Fig. 9.5. The canonical skin values are
dissimilar under different illuminations even in an ideal case.

Cameras produce even bigger variations in skin colors: Fig. 9.6 shows skin chro-
maticities for a Sony camera taken under the same light sources as the ones used
in simulation (Horizon 2300 K or light at sunset/sunrise), Incandescent A 2856 K,
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Fig. 9.5 Canonical skin
tones were obtained by
converting the theoretical skin
RGBs to Normalized Color
Coordinate (NCC) space

Fig. 9.6 The skin tone appearance difference can be clearly observed in the four images taken
with the Sony camera (see Fig. 9.2). From the selected area marked with a box the RGB values
were taken and converted to NCC color space. As shown in the graph below the images, the areas
of canonical chromaticities more or less overlap

fluorescent lamp TL84, and daylight D65 6500 K. The overlap between loci is sig-
nificant. Note that the locus obtained using Horizon light covers a bigger area than
for other light sources. This might be due to unsuccessful white balancing.



9 Skin Color in Face Analysis 231

Fig. 9.7 The color appearance shift is apparent in (a) and (b). The color temperature of the light
sources increases from left to right. The arrow indicates the change in the color of the light. The
limited dynamic response range causes distortion in color: pixels can saturate to a maximum value
(the rightmost image at the upper row) or be under-exposed to zero (the leftmost image at the lower
row)

9.3.2.2 Non-canonical Images and Colors

If images are not taken under the illumination used in camera calibration, the colors
are distorted even more. The distortion will appear as a shift in colors, as can be seen
in Fig. 9.7 which displays images taken under four different light sources while the
camera is calibrated to one of them. In the upper image series, the camera was
calibrated to the light source Horizon (first image on the left) and after light source
was changed to incandescent A, TL84 and daylight, respectively. In the lower image
series, the camera was calibrated to daylight (first image on the right) and then
images were taken under TL84, A and Horizon.

The skin color tends to shift in the direction of illumination color change. More
reddish prevailing illumination causes color shift towards red, while more bluish one
adds blue components. Of course, a light source with strong spikes in spectra can
cause additional distortions for certain colors. Since cameras have limited dynamic
response ranges, the colors can be distorted also due to saturation or under-exposure.
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Fig. 9.8 The skin NCC chromaticities were simulated using the data of the Sony camera (see
Fig. 9.2) and the skin reflectances from Fig. 9.4. a shows the possible skin chromaticities when
the camera was calibrated to a Planckian of 3000 K and b when the calibration illumination was
a Planckian of 6000 K. The chromaticity range depends on the calibration illumination and the
possible color temperature range of prevailing illuminations

Manual or automatic brightness control in the camera can alleviate this problem, but
manual operation tends to be tedious and automatic control might cause problems
by itself.

Figure 9.8 shows simulated skin chromaticities using only one calibration. The
chromaticity range obtained depends on the calibration light and the color temper-
ature range of the prevailing illumination. The possible range of skin colors (lo-
cus [44]) is affected by the amount of calibrations. Figure 9.8 shows that different
white balancing illuminants have dissimilar ranges of possible skin chromaticities
and produce separate skin locus. When the loci of all different calibrations are gath-
ered together, a bigger locus is obtained, as shown in Fig. 9.9. Of course, the illumi-
nation range as well as different camera settings affect the locus size.

9.4 Separating Sources of Skin Data

Many materials, like inks and dyes, are used to imitate the appearance of skin. Some
studies have been already done to examine how well the imitation works and how
the real skin can be separated from imitation.

The skin data can come from different sources like real faces, photos or print [37].
The source cannot often be determined from normal RGB data, so spectral data is
needed. An interesting spectral data region is near infrared. Figure 9.10 shows near
infrared spectra for real faces, facial skin from photos and facial skin from a print of
three different skin complexions. The spectra from photos and prints, which are flat,
are clearly different from that of real faces. Thus simple ratio between two channels
can be used to separate real skin from other sources. The level difference in real
spectra between different complexions start to diminish as a degree of wavelength.
Skin complexion groups are separable in print spectra, but not in photo spectra.
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Fig. 9.9 The skin locus
formed with all prevailing
illumination/white balancing
combinations

Fig. 9.10 Near infrared skin spectra from real faces (left), photos (middle) and paper (right)

The skin color appearance for mannequins is also sought after, but it clearly is
different from real skin [1]. Kim et al. [24] have studied the differences between
masked fake faces and real skin. They concluded that wavelengths of 685 nm and
850 nm can be used to discriminate them.

9.5 Modeling Skin Colors

Skin color model is a description of possible skin tones. To create such a model, one
has to first select the color space in which the model is formed, then the mathemat-
ical model to describe the possible skin colors, and finally, the data upon which the
model is defined. The performance of the model depends on all these factors and is
a trade-off between generality of the model and accuracy for a certain image.

Skin detection methods have been compared in several studies using different
data [22, 35, 46]. The studies disagree, which might be because the optimality of
the model depends on its purpose, data, material and modeling parameters.
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9.5.1 Behavior of Skin Complexions at Different Color Spaces
Under Varying Illumination

Color space in which skin data is processed, has also an effect on detection. Not all
color spaces are equal: they can map RGB values differently, which can be used to
separate certain colors. Even a mixture of color spaces can be used like in [47], at
least for canonical or nearly canonical images.

As mentioned earlier, a color space conversion does not remove chromaticity
shifts due to illumination or effects caused by noise. In fact, noise can be detri-
mental for low RGB values or near thresholds. The brightness control or lack of
it can have a strong effect on the possible skin chromaticities. If there is no auto-
matic brightness or gain controller, it is possible for one channel to have low values
or even underclipping. Therefore, the skin colors have been studied under varying
illuminations [34].

RGB coordinates are device-oriented, but they can be converted into human
vision oriented spaces like XYZ or CIE Lab. A correct conversion requires an
illumination-dependent transform matrix, including also the effect of device char-
acteristics. Of course, there exist general transforms matrices. None of the matrix
transforms reduce the effect of changing light since it has already affected RGBs.

The more device oriented color spaces can be classified, based on the conversion
method, into two groups: those using linear transforms from RGB and those ob-
tained via non-linear transforms. For example, linear transform based color spaces
are: I1I2I3, YES, YIQ, YUV, YCrCb (Rec. 601–5 and 709). Among the nonlinear
transforms are: NCC rgb, modified rgb, natural logarithm ln-chromaticity, P1P2,
l1l2l3, ratios between channels (G/R, B/R, and B/G), HSV, HSL, modified ab, TLS
and Yuv.

Overlap between different skin complexions vary in color spaces. In [34], the
overlaps between two complexions (pale and yellowish) were compared in different
color spaces and across different cameras: the overlaps between them were reason-
ably high in all color spaces (ranging from 50–75 percent) when using different
canonical images. When using both canonical and uncanonical images, the overlap
still increased due to the fact that more colors fall into the region. However, when
comparing skin data from different cameras, the overlaps between skin RGBs were
smaller and dependent on the cameras used in comparison. Therefore, one can argue
that color spaces and cameras used do have an effect on skin detection and thus for
face recognition.

9.5.2 Color Spaces for Skin

Several color spaces have been suggested for general skin color modeling, but thus
far, none of them has been shown to be superior to the other. The list of compar-
ison studies for color spaces can be found, for example, in [33] or [22]. However,
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it seems that those spaces in which intensity is not separated so clearly from chro-
maticity are similar to RGB. The separation can be evaluated using linear or lin-
earized RGB data: RGB is transformed into color space using substitution R → cR,
G → cG, and B → cB , in which c describes a uniform change in the intensity lev-
els. If the factor c does not cancel out for chromaticity descriptors, the separation is
incomplete.

Normalized color coordinates (NCC) are quite often used in modeling, and they
separates the intensity and chromaticity. To avoid the intensity changes, only the
chromaticity coordinates are used. In [46], different color spaces are compared in
terms of efficiency and transferability of the model. The performance of NCC and
CIE xy was superior to several other skin color models. It was also shown in [55]
that NCC has a good discrimination power. More details of color spaces for skin
detection can be found in [33] or [22].

A color can be uniquely defined in by its intensity and two chromaticity coordi-
nates since r + g + b = 1. The chromaticity coordinates for NCC color space are
defined as

r = R

R + G + B
, (9.3)

g = G

R + G + B
. (9.4)

The intensity is canceled from chromaticity coordinates since they are calculated
by dividing the descriptor value of the channel by the sum of all descriptor values
(intensity) at that pixel.

The modeling can be done using only the chromaticity coordinates to reduce the
effect of illumination intensity changes, which are common in videos and images.
Some models do include intensity (like in [14]), but more data is needed to construct
the model and computational costs are increased due to a third component.

9.5.3 Skin Color Model and Illumination

Section 9.3 showed that illumination affects skin color both in canonical and un-
canonical images. What is more, this dependency is camera-specific: the camera
sensors and internal image preprocessing of the camera affect the color production
and thus on the end results (see Fig. 9.11). Therefore, creating a universal model is
difficult.

Many face detection algorithms assume that the images are taken under canonical
or near canonical conditions. For many data sets, this is true. An example of this kind
of image data set is a set of personal photos.

When the illumination varies, the previous approaches have a high risk of fail-
ure. Of course, the images can be subjected to color correction or color constancy
algorithm, but sometimes this can lead even more serious color distortions [35].
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Fig. 9.11 The camera and its properties determine the skin locus, as indicated by the loci of four
cameras. However, some regions are common to all, most notable the region of skin tones

Color correction based approach has been suggested, for example, by Hsu et
al. [15]: the colors in image are corrected so that the skin would appear in skin
tones and after this segment the image using skin color model. The color correction
is based on a pixel with a high brightness value which are assumed to belong to
a white object. These pixels are used to calculate correction coefficient which are
applied to the image. This approach can fail for many reasons like data loss due to
saturation, or if a pixel with high brightness belongs to a nonwhite object. The latter
case is demonstrated in Fig. 9.12.

For a more general skin model, one should use the knowledge of illumination
changes, calibration and camera settings like in the skin locus-based approach [43].
The drawback of this model is that it is not so specific as canonical models—more
color tones are included. Thus, more nonskin objects will be considered skin candi-
dates. Since color itself is rarely enough to determine whether the target is skin or
not, the face candidates are in case subjected for further processing.

9.5.4 Mathematical Models for Skin Color

The model for skin color can be either a mathematically defined area in color space
or a statistical approach in which a probability to belong skin is attached to color



9 Skin Color in Face Analysis 237

Fig. 9.12 The upper row displays the color segmentation results using Hsu et al. model [15]
without the color correction part. The lower row shows the segmentation with their color correction
method. The color correction fails because the yellow curtains have the highest brightness values
and is assumed to be a white object

tones. The model may be fixed or adaptive, and in the latter case, the update depends
whether it is applied on single images or video frames. A more detailed review can
be found, for example, in [33] or [22].

The area based approach uses a spatial constraint in the color space to define
possible skin areas. The shape of the constraint can be simple thresholds like in [3]
or a more complex shaped function like in [15]. Generally no thresholding is done,
since the colors that fall inside the area are considered skin. These models often
assume that skin has or can be corrected to have skin tone appearance. An exception
is the skin locus in which the illumination changes are included in the model.

It is possible to adapt the model even for single images (e.g., [3, 26, 45]) although
the successfulness depends on the validity of assumptions behind the adaptation cri-
teria. The adaptation schema generally use a general skin model obtained from a
representative image set and after that fine-tune into an image specific model. For
example, in Cho et al. [3], the fine-tuning phase assumes that the skin color his-
togram is unimodal and skin color occurs mainly on real skin areas. This approach
can fail if the image has dominant skin-colored, nonfacial object or the histogram is
not unimodal.

The challenge of the probability-based approach is to be able to reliably find the
probability distribution of skin colors. This requires collecting a representative data
set of images for forming the model. An example of a statistical model is the one
presented by Jones and Rehg [21]. They calculate the histogram and Gaussian mod-
els using over 1 billion labeled pixels. Many other statistical models like SOM or
neural networks has been suggested and a review of them can be found, for exam-
ple, in [33] or [22]. In addition to the statistical model, one has to determine the
threshold limit for separating the skin from nonskin. It is difficult to automatically
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Fig. 9.13 Two consecutive frames are taken from a video sequence (the first and second image
from the left). The facial skin areas of the frames are manually extracted and their skin RGB values
are then converted to the NCC chromaticity space. The chromaticities from these two frames are
marked with different colors in the right image. As can be observed from the rightmost image, the
chromaticities overlap significantly

find the threshold value because the probability model found may not be valid for
all images.

9.5.4.1 Video Sequences

The processing of video sequences is similar to that of single, independent images.
Thus, the skin detection presented earlier can also be used for videos. The fixed
skin color models are suitable for videos in which changes in illumination are min-
imal. Generally, this is not the case and the skin color models need to be updated.
The model adaptation relies often on the dependencies between consecutive frames,
which is true for many videos: The consecutive frames often exhibit sequential de-
pendency. This can be observed in Fig. 9.13: the overlap between the chromaticities
from two consecutive frames is significant.

If the illumination changes between images are slow (no abrupt, drastic ob-
ject color changes) or the person moves in a nonuniform illumination field slowly
enough, the skin color model can adapt to the color changes. This required some
constraint for selecting the pixels used in the model update. Three different adap-
tive schemes have been suggested: two of them use spatial constraints [39, 57] (see
Fig. 9.14) and one skin locus [35]. The basic idea is the same: to use some constraint
to select the pixels for model updating. The spatial constraints use different ideas to
select candidate pixels from a located face: the method of Raja et al. [39] updates the
skin color model using pixels inside the localized face area. The pixels are selected
from an area which is 1/3 of the localization area and 1/3 from the localization
boundaries. Yoo and Oh [57] argued that the localization should resemble the shape
of the object (face) and they used all pixels inside the elliptical face localization.
The skin locus can be used in two ways: either the whole locus or partial locus is
used to select skin colored pixels from the localized face and its near surroundings.
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Fig. 9.14 Spatial constraints
suggested for adaptive skin
color modeling: the left image
shows the method suggested
by Raja et al. [39]. The outer
box indicates the localized
face while the pixels inside
the inner box are used for
model updating. The image
on the right shows elliptical
constraint by Yoo and Oh [57]

There are many possible methods for updating the skin color model, but perhaps
a common method is the moving average, as presented in (9.5):

M̌ = (1 − α) ∗ Mt + α ∗ Mt−1

max((1 − α) ∗ Mt + α ∗ Mt−1)
, (9.5)

where M̌ is a new, refreshed model, M is the model, t is the frame number and α is a
weighting factor. Quite often, the weighting factor is set to 0.5 to get equal emphasis
on the skin color model of current and previous frames. The moving average method
provides a smooth transition between models from different frames. It also reduces
the effect of noise, which can change pixel color without any variation in external
factors and thus be detrimental to the models.

However, the spatial constraint models have been shown to be very sensitive
to localization errors, therefore, they can easily adapt to nonskin objects [35]. The
failure due to these constraints can happen even under a fairly moderate illumination
change. In Fig. 9.15, Raja et al.’s method has failed while tracking a face on a video
sequence and the skin color model is adapted to nonskin colored target, as shown in
this image.

The constraint suggested by Raja et al. easily fails under a nonuniform illumi-
nation field change, as demonstrated in Fig. 9.16. The model is updated using the
pixel inside the localization and therefore, it can adapt only to global illumination
changes, but not to the nonuniform illumination field variation.

The correct localization of face is not so sensitive for a skin locus based approach
since the nonskin colored pixels can be filtered out. Large skin colored objects con-
nected to the face are problematic and cues other than color are needed to solve
this.

9.6 Color Cue for Face Detection

As mentioned above, color is a useful cue for face detection as it can greatly reduce
the search area by selecting only the skin-like regions. However, it is obvious that
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Fig. 9.15 The face tracking based on Raja et al.’s method failed and adapted to a nonfacial target.
The left image displays the “localized face”. The right image shows the pixels selected by the
current skin color model. The red box shows the pixels used for refreshing the model

Fig. 9.16 The constraint suggested by Raja et al.’s selects a nonpresentative set of skin pixels

the use of skin color only is not enough to distinguish between faces and other
objects with a skin-like appearance (such as hands, wood, etc.). Therefore, other
procedures are needed to verify whether the selected regions are (or contain) faces or
not. Depending on the robustness of the skin model and changes in the illumination
conditions, one can notice two cases:

• Case #1: The initial skin color detection step produces consistently reliable re-
sults. The skin color model is valid for the illumination conditions, the camera
and its settings. The skin color model can be designed either for stable, controlled
illumination (typical case) or for variable illumination (skin locus). In such cases,
it is generally enough to consider each connected resultant component from the
skin detection as a face candidate. Then, one can verify the “faceness” of the
candidate by simple and fast heuristics.

• Case #2: The initial skin color detection step produces unsatisfactory results or
even fails. In this case, the skin color model does not correspond to the prevailing
illumination, used camera or settings of the camera. One can hope that the results
would indicate the locations of the faces, but their size estimation is too unreli-
able. Therefore, a different method for face detection (either an appearance-based
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or feature-based one) should be used when searching for the faces in and around
the detected skin regions.

In both cases, the use of color accelerates the detection process. In the following,
we review some methods based on color information for detecting faces. Most of
the color-based face detectors start by determining the skin pixels which are then
grouped using connected component analysis. Then, for each connected compo-
nent, the best fit ellipse is computed using geometric moments, for example. The
skin components which verify some shape and size constraints are selected as face
candidates. Finally, features (such as eyes and mouth) are searched for inside each
face candidate based on the observation that holes inside the face candidate are due
to these features being different from skin color. Therefore, most of the color-based
face detection methods mainly differ in the selection of the color space and the de-
sign of the skin model. In this context, as seen in Sect. 9.5, many methods for skin
modeling in different color spaces have been proposed. For comparison studies, re-
fer to [35, 46] and [34].

Among the works using color for face detection is Hsu et al.’s system which con-
sists of two major modules: (1) face localization for finding face candidates, and
(2) facial feature detection for verifying detected face candidates [15]. For finding
the face candidates, the skin tone pixels are labeled using an elliptical skin model
in the YCbCr color space, after applying a lighting compensation technique. The
detected skin tone pixels are iteratively segmented using local color variance into
connected components which are then grouped into face candidates. Then, the fa-
cial feature detection module constructs eye, mouth and face boundary maps to ver-
ify the face candidates. Good detection results have been reported on several test
images. However, no comparative study has been made thus far.

In [7], Garcia and Tziritas presented another approach for detecting faces in color
images. First, color clustering and filtering using approximations of the YCbCr and
HSV skin color subspaces are applied to the original image, providing quantized
skin color regions. Then a merging stage is iteratively performed on the set of ho-
mogeneous skin color regions in the color quantized image, in order to provide a set
of face candidates. Finally, constraints related to shape and size of faces are applied,
and face intensity texture is analyzed by performing a wavelet packet decomposi-
tion on each face area candidate in order to detect human faces. The authors have
reported a detection rate of 94.23% and a false dismissal rate of 5.76% on a data set
of 100 images containing 104 faces. Though the method can handle nonconstrained
scene conditions, such as the presence of a complex background and uncontrolled
illumination, its main drawback lies on that fact that it is computationally expensive
due to its complicated segmentation algorithm and time-consuming wavelet packet
analysis.

Sobottka and Pitas presented a method for face localization and facial feature ex-
traction using shape and color [42]. First, color segmentation in HSV space is per-
formed to locate skin-like regions. After facial feature extraction, connected com-
ponent analysis and best fit ellipse calculation, a set of face candidates are obtained.
To verify the “faceness” of each candidate, a set of eleven lowest-order-geometric
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Fig. 9.17 Examples of face detection results using the color-based face detector in [10]

moments is computed and used as inputs to a neural network. The authors reported
a detection rate of 85% on a test set of 100 images.

In [11], Haiyuan et al. presented a different approach for detecting faces in color
images. Instead of searching for facial features to verify the face candidates, the
authors modeled the face pattern as a composition of a skin part and a hair part.
They made two fuzzy models to describe the skin color and hair color in CIE XYZ
color space. The two models are used to extract the skin color regions and the hair
color regions which are compared with the prebuilt head-shape models by using a
fuzzy theory based pattern-matching method to detect the faces.

In [10], Hadid et al. presented an efficient color-based face detector, using the
skin locus model to extract skin-like region candidates, and then performing the se-
lection by simple yet efficient refining stages. After ellipse fitting and orientation
normalization, a set of criteria (face symmetry, presence of some facial features,
variance of pixel intensities and connected component arrangement) are evaluated
to keep only facial regions. The refining stages are organized in a cascade to achieve
high accuracy and to keep the system fast. The system was able to detect faces and
deal with different conditions (size, orientation, illumination and complex back-
ground). Figure 9.17 shows some detection examples performed by the system un-
der different conditions.

Several other approaches using color information for detecting and tracking faces
and facial features in still images and video sequences have been proposed [13, 54].
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Fig. 9.18 Examples of face detection results using the color-based face detector in [9]

It appears that most of the methods have not been tested under practical illumination
changes (usually only mild changes are considered), which makes them belonging
to the first category (Case #1) described above.

More recently, to detect faces in natural and unconstrained environments, Hadid
and Pietikänen [9] proposed an approach which considers the fact that color is a very
powerful and useful cue for face detection, but unfortunately, it may also produce
unsatisfactory results or even fail. The proposed approach consists of first prepro-
cessing the images to find the potential skin regions, avoiding thus scanning the
whole image when searching for faces, and then performing an exhaustive search
in and around the detected skin regions. The exhaustive search is performed using
a two-stage SVM based approach, exploiting the discrimination power of the Lo-
cal Binary Patterns (LBP) features. The obtained results are interesting in the sense
that the proposed approach inherits the speed from the color-based methods and
the efficiency from the gray scale-based ones. Some detection results are shown in
Fig. 9.18.

One problem of color-based face detectors lies in the fact that they are gener-
ally camera specific. Most of the methods have reported their results on specific and
limited data sets and this fact does not facilitate performing a comparative analy-
sis between the methods. Among the attempts to define a standard protocol and a
common database for testing color-based face detector is the work of Sharma and
Reilly [41].

Currently, most methods for face detection rely only on gray scale information
even when color images are available. Generally these methods scan the images at
all possible locations and scales and then classify the sub-windows either as face or
nonface, yielding in more robust but also computationally more expensive process-
ing methods, especially with large-sized images. Among robust approaches based
only on gray scale information is Viola and Jones’s approach [49]. The approach
uses Haar-like features and AdaBoost as a fast training algorithm. AdaBoost is used
to select the most prominent features among a large number of extracted features and
construct a strong classifier from boosting a set of weak classifiers. Such systems
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generally run in real-time for small-sized images (e.g., 240 × 320 pixels), but tend
to be slow for larger images. Including other cues such color or motion information
may thus be very useful for speeding-up the detection process.

9.7 Color Cue for Face Recognition

The role of color information in the recognition of nonface objects has been the
subject of much debate. However, there has only been a small amount of work which
examines its contribution to face recognition. Most of the work has only focused on
the luminance structure of the face, thus ignoring color cues, due to several reasons.

The first reason lies in the lack of evidence from human perception studies about
the role of color in face recognition. Indeed, a notable study in this regard was done
in [23], in which the authors found that the observers were able to quite normally
process even those faces that had been subjected to hue-reversals. Color seemed to
contribute no significant recognition advantages beyond the luminance information.
In another piece of work [56], it is explained that the possible reason for a lack
of observed color contribution in these studies is the availability of strong shape
cues which make the contribution of color not very evident. The authors then in-
vestigated the role of color by designing experiments in which the shape cues were
progressively degraded. They concluded that the luminance structure of the face
is undoubtedly of great significance for recognition, but that color cues are not en-
tirely discarded by the face recognition process. They suggested that color does play
a role under degraded conditions by facilitating low-level facial image analysis such
as better estimations of the boundaries, shape and sizes of facial features [56].

A second possible reason for a lack of work on color-based face recognition re-
lates to the difficulties of associating illumination with white balancing of cameras.
Indeed, as discussed in Sect. 9.3, illumination is still a challenging problem in auto-
matic face recognition, therefore, there is no need to further complicate the task.

A third possible reason for ignoring color cues in the development of automatic
recognition systems is the lack of color image databases1 available for the testing of
the proposed algorithms, in addition to the unwillingness to develop methods which
cannot be used with the already existing monochrome databases and applications.

However, the few attempts to use color in automatic face recognition includes
the work conducted by Torres et al. [48] who extended the eigenface approach to
color by computing the principal components from each color component indepen-
dently in three different color spaces (RGB, YUV and HSV). The final classification
is achieved using a weighted sum of the Mahalanobis distances computed for each
color component. In their experiments using one small database (59 images), the au-
thors noticed performance improvements for the recognition rates when using YUV
(88.14%) and HSV (88.14%) color spaces, while a RGB color space provided the

1Note that recently some color image databases have finally been collected (e.g., the color FERET
database and the FRGC version 2 database).
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same results (84.75%) when using R, G or B separately and exactly the same results
as using the luminance Y only. Therefore, they concluded that color is important for
face recognition. However, the experiments are very limited, as only one small face
database is used and the simple eigenface approach is tested.

In another piece of work that deals with color for face recognition [20], it has
been argued that a performance enhancement could be obtained if a suitable conver-
sion from color images to a monochromatic form would be adopted. The authors de-
rived a transformation from color to gray-scale images using three different methods
(PCA, linear regression and genetic algorithms). They compared their results with
those obtained after converting the color images to a monochromatic form by using
a simple transformation I = R+G+B

3 , and they noticed a performance enhancement
of 4% to 14% using a database of 280 images. However, the database considered in
the experiments is rather small, thus, one should test the generalization performance
of the proposed transformation on a larger set of images from different sources.

In [40], Rajapakse et al. considered an approach based on Nonnegative Matrix
Factorization (NMF) and compared the face recognition results using color and gray
scale images. On a test set of 100 face images, the authors have claimed a perfor-
mance enhancement when using also color information for recognition.

In [19], Jones has attempted to extend the Gabor-based approach for face recog-
nition to color images by defining the concept of quaternions (four component hy-
percomplex numbers). On a relatively limited set of experiments, the author has
reported a performance enhancement on the order of 3% to 17% when using the
proposed quaternion Gabor-based approach instead of the conventional monochro-
matic Gabor-based method.

Very recently, color face recognition has been revisited by many researchers, with
an aim to discover the efficient use of color for boosting the face recognition per-
formance. For instance, inspired by the psychophysical studies indicating that color
does play a role in recognizing faces under degraded conditions, Choi et al. [58]
carried out extensive experiments and studied the effect of color information on the
recognition of low-resolution face images (e.g., less than 20 × 20 pixels). By com-
paring the performance of grayscale and color features, the results showed that color
information can significantly improve the recognition performance.

Yang et al. [55] compared the discriminative power of several color spaces for
face recognition and found out that different color spaces display different dis-
criminating power. Experiments on a large scale face recognition grand challenge
(FRGC) problem also revealed that the RGB and XYZ color spaces are weaker than
the I1I2I3, YUV, YIQ color spaces for face recognition. The authors proposed then
color space normalization techniques for enhancing the discriminative power of dif-
ferent color spaces.

For color based face verification, Chan et al. [2] proposed a discriminative de-
scriptor encoding the color information of the face images. The descriptor is formed
by projecting the local face image acquired by multispectral LBP operators, into
LDA space. The overall similarity score is obtained by fusing local similarity scores
of the regional descriptors. The method has been tested on the XM2VTS and FRGC
2.0 databases with very promising results.
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Liu and his colleagues extensively investigated the problem of color face recog-
nition and reported very good results on FRGC database (Version 2 Experi-
ment 4) [27–30, 52, 53]. For instance, in [27], the authors first derived new (uncor-
related, independent and discriminating) color spaces from the RGB color space by
means of linear transformations. Then, vectors are formed in these color spaces by
concatenating their component images to form augmented pattern vectors, whose
dimensionality is reduced by PCA. Finally, an enhanced Fisher model (EFM) is
used for recognition. The obtained results are better than those of methods using
grayscale or RGB color images. In [29], the authors considered a hybrid color space
by combining the R component image of the RGB color space and the chromatic
components I and Q of the YIQ color space. Experiments on the Face Recog-
nition Grand Challenge (FRGC) version 2 Experiment 4 showed the hybrid color
space significantly improves face recognition performance due to the complemen-
tary characteristics of its component images. Since most of the experiments con-
ducted by Liu and his team were mainly using the FRGC database, it is of interest
to see how well the proposed methods generalize to other databases and settings.

9.8 Conclusions

Color is a useful cue in facial image analysis. Its use for skin segmentation and face
detection is probably the most obvious, while its contribution to face recognition is
not very clear. The first important issues when planning the use of color in facial
image analysis are the selection of a color space and the design of a skin model.
Several approaches have been proposed for these purposes, but unfortunately, there
is no optimal choice. The choice made depends on the requirement of the application
and also on the environment (illumination conditions, camera calibration, etc.).

Once a skin model has been defined, the contribution of color to face detection,
not surprisingly, plays an important role in pre-processing the images and in the
selection of the skin-like areas. Then, other refining stages can also be launched
in order to find faces among skin-like regions. Color-based face detectors could be
significantly much faster than other detectors which are based solely on gray-scale
information, especially with large-sized images.

In relation to the contribution of color to face recognition, the issue is still un-
der debate and among the open questions are: is color information useful for face
recognition at all? If yes, how the three different spectral channels of face images
should be combined to take advantages of the color information? What is the opti-
mal color space which provides the highest discriminative power, etc.? The current
results suggest that color cue has not yet shown its full potential and need further
investigation. Therefore, it perhaps makes sense for current automatic face recogni-
tion systems not to rely on color for recognition because its contribution is not well
established yet.
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