Chapter 7
INlumination Modeling for Face Recognition

Ronen Basri and David Jacobs

7.1 Introduction

Changes in lighting can produce large variability in the appearance of faces, as il-
lustrated in Fig. 7.1. Characterizing this variability is fundamental to understanding
how to account for the effects of lighting on face recognition. In this chapter, we
will discuss solutions to a problem: Given (1) a three-dimensional description of a
face, its pose, and its reflectance properties, and (2) a 2D query image, how can we
efficiently determine whether lighting conditions exist that can cause this model to
produce the query image? We describe methods that solve this problem by produc-
ing simple, linear representations of the set of all images a face can produce under
all lighting conditions. These results can be directly used in face recognition sys-
tems that capture 3D models of all individuals to be recognized. They also have the
potential to be used in recognition systems that compare strictly 2D images but that
do so using generic knowledge of 3D face shapes.

One way to measure the difficulties presented by lighting, or any variability, is
the number of degrees of freedom needed to describe it. For example, the pose of
a face relative to the camera has six degrees of freedom—three rotations and three
translations. Facial expression has a few tens of degrees of freedom if one considers
the number of muscles that may contract to change expression. To describe the light
that strikes a face, we must describe the intensity of light hitting each point on
the face from each direction. That is, light is a function of position and direction,
meaning that light has an infinite number of degrees of freedom. In this chapter,
however, we will show that effective systems can account for the effects of lighting
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Fig. 7.1 Same face under
different lighting conditions

using fewer than 10 degrees of freedom. This can have considerable impact on the
speed and accuracy of recognition systems.

Support for low-dimensional models is both empirical and theoretical. Principal
component analysis (PCA) on images of a face obtained under various lighting con-
ditions shows that this image set is well approximated by a low-dimensional, linear
subspace of the space of all images (see, e.g., [19]). Experimentation shows that al-
gorithms that take advantage of this observation can achieve high performance, for
example, [17, 21].

In addition, we describe theoretical results that, with some simplified assump-
tions, prove the validity of low-dimensional, linear approximations to the set of
images produced by a face. For these results, we assume that light sources are dis-
tant from the face, but we do allow arbitrary combinations of point sources (e.g., the
Sun) and diffuse sources (e.g., the sky). We also consider only diffuse components
of reflectance, modeled as Lambertian reflectance, and we ignore the effects of cast
shadows, such as those produced by the nose. We do, however, model the effects of
attached shadows, as when one side of a head faces away from a light. Theoretical
predictions from these models provide a good fit to empirical observations and pro-
duce useful recognition systems. This suggests that the approximations made cap-
ture the most significant effects of lighting on facial appearance. Theoretical models
are valuable not only because they provide insight into the role of lighting in face
recognition, but also because they lead to analytically derived, low-dimensional, lin-
ear representations of the effects of lighting on facial appearance, which in turn can
lead to more efficient algorithms.

An alternate stream of work attempts to compensate for lighting effects without
the use of 3D face models. This work directly matches 2D images using representa-
tions of images that are found to be insensitive to lighting variations. These include
image gradients [12], Gabor jets [29], the direction of image gradients [13, 24],
and projections to subspaces derived from linear discriminants [8]. A large num-
ber of these methods are surveyed in [50]. These methods are certainly of interest,
especially for applications in which 3D face models are not available. However,
methods based on 3D models may be more powerful, as they have the potential to
compensate completely for lighting changes, whereas 2D methods cannot achieve
such invariance [1, 13, 35]. Another approach of interest, the Morphable Model, is
to use general 3D knowledge of faces to improve methods of image comparison.
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7.2 Background on Reflectance and Lighting

Throughout this chapter, we consider only distant light sources. By a distant light
source, we mean that it is valid to make the approximation that a light shines on
each point in the scene from the same angle and with the same intensity (this also
rules out, for example, slide projectors).

We consider two lighting conditions. A point source is described by a single
direction, represented by the unit vector u;, and intensity, /. These factors can be
combined into a vector with three components, [ = lu;. Lighting may also come
from multiple sources, including diffuse sources such as the sky. In that case we can
describe the intensity of the light as a function of its direction, £(u;), which does not
depend on the position in the scene. Light, then, can be thought of as a nonnegative
function on the surface of a sphere. This allows us to represent scenes in which light
comes from multiple sources, such as a room with a few lamps, and also to represent
light that comes from extended sources, such as light from the sky, or light reflected
off a wall.

Most of the analysis in this chapter accounts for attached shadows, which occur
when a point in the scene faces away from a light source. That is, if a scene point
has a surface normal v,, and light comes from the direction u;, when u; - v, <0
none of the light strikes the surface. We also discuss methods of handling cast shad-
ows, which occur when one part of a face blocks the light from reaching another
part of the face. Cast shadows have been treated by methods based on rendering a
model to simulate shadows [18], whereas attached shadows can be accounted for
with analytically derived linear subspaces.

Building truly accurate models of the way the face reflects light is a complex
task. This is in part because skin is not homogeneous; light striking the face may be
reflected by oils or water on the skin, by melanin in the epidermis, or by hemoglobin
in the dermis, below the epidermis (see, for example, [2, 3, 33], which discuss these
effects and build models of skin reflectance; see also Chap. 6). Based on empirical
measurements of skin, Marschner et al. [32] state: “The BRDF itself is quite un-
usual; at small incidence angles it is almost Lambertian, but at higher angles strong
forward scattering emerges.” Furthermore, light entering the skin at one point may
scatter below the surface of the skin, and exit from another point. This phenomenon,
known as subsurface scattering, cannot be modeled by a bidirectional reflectance
function (BRDF), which assumes that light leaves a surface from the point that it
strikes it. Jensen et al. [25] presented one model of subsurface scattering.

For purposes of realistic computer graphics, this complexity must be confronted
in some way. For example, Borshukov and Lewis [11] reported that in The Matrix
Reloaded, they began by modeling face reflectance using a Lambertian diffuse com-
ponent and a modified Phong model to account for a Fresnel-like effect. “As produc-
tion progressed, it became increasingly clear that realistic skin rendering couldn’t
be achieved without subsurface scattering simulations.”

However, simpler models may be adequate for face recognition. They also lead
to much simpler, more efficient algorithms. This suggests that even if one wishes to
model face reflectance more accurately, simple models may provide useful, approx-
imate algorithms that can initialize more complex ones. In this chapter, we discuss
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analytically derived representation of the images produced by a convex, Lambertian
object illuminated by distant light sources. We restrict ourselves to convex objects
so we can ignore the effect of shadows cast by one part of the object on another part
of it. We assume that the surface of the object reflects light according to Lambert’s
law [30], which states that materials absorb light and reflect it uniformly in all di-
rections. The only parameter of this model is the albedo at each point on the object,
which describes the fraction of the light reflected at that point.

Specifically, according to Lambert’s law, if a light ray of intensity / coming from
the direction u; reaches a surface point with albedo p and normal direction v,, the
intensity i reflected by the point due to this light is given by

i =1(u;)p max(uy - vy, 0). (7.1)

If we fix the lighting and ignore p for now, the reflected light is a function of the
surface normal alone. We write this function as r(6,, ¢,), or r(v,). If light reaches
a point from a multitude of directions, the light reflected by the point would be the
integral over the contribution for each direction. If we denote k(- v) = max(u - v, 0),
we can write:

F(voy) = / k(g - 0,)€up) duy (72)
52

where | 2 denotes integration over the surface of the sphere.

7.3 PCA Based Linear Lighting Models

We can consider a face image as a point in a high-dimensional space by treating each
pixel as a dimension. Then one can use PCA to determine how well one can approx-
imate a set of face images using a low-dimensional, linear subspace. PCA was first
applied to images of faces by Sirovitch and Kirby [44], and used for face recognition
by Turk and Pentland [45]. Hallinan [19] used PCA to study the set of images that a
single face in a fixed pose produces when illuminated by a floodlight placed in var-
ious positions. He found that a five- or six-dimensional subspace accurately models
this set of images. Epstein et al. [14] and Yuille et al. [47] described experiments
on a wide range of objects that indicate that images of Lambertian objects can be
approximated by a linear subspace of between three and seven dimensions. Specif-
ically, the set of images of a basketball were approximated to 94.4% by a 3D space
and to 99.1% by a 7D space, whereas the images of a face were approximated to
90.2% by a 3D space and to 95.3% by a 7D space. This work suggests that lighting
variation has a low-dimensional effect on face images, although it does not make
clear the exact reasons for it.

Because of this low-dimensionality, linear representations based on PCA can
be used to compensate for lighting variation. Georghiades et al. [18] used a 3D
model of a face to render images with attached or with cast shadows. PCA is used to
compress these images to a low-dimensional subspace, in which they are compared
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to new images (also using nonnegative lighting constraints we discuss in Sect. 7.5).
One issue raised by this approach is that the linear subspace produced depends on
the face’s pose. Computing this on-line, when pose is determined, is potentially
expensive. Georghiades et al. [17] attacked this problem by sampling pose space
and generating a linear subspace for each pose. Ishiyama and Sakamoto [21] instead
generated a linear subspace in a model-based coordinate system, so this subspace
can be transformed in 3D as the pose varies.

7.4 Linear Lighting Models without Shadows

The empirical study of the space occupied by the images of various real objects was
to some degree motivated by a previous result that showed that Lambertian objects,
in the absence of all shadows, produce a set of images that form a three-dimensional
linear subspace [34, 40]. To see this, consider a Lambertian object illuminated by
a point source described by the vector . Let p; denote a point on the object, let n;
be a unit vector describing the surface normal at p;, let p; denote the albedo at p;,
and define n; = p;n;. In the absence of attached shadows, Lambertian reflectance
is described by [ T7;. If we combine all of an object’s surface normals into a single
matrix N, so the ith column of N is n;, the entire image is described by I = ITN.
This implies that any image is a linear combination of the three rows of N. These
are three vectors consisting of the x, y, and z components of the object’s surface
normals, scaled by albedo. Consequently, all images of an object lie in a three-
dimensional space spanned by these three vectors. Note that if we have multiple

light sources, ] 1... l_d, we have

I1=> (;N)= (Zz,)zv (7.3)

i

so this image, too, lies in this three-dimensional subspace. Belhumeur et al. [8]
reported face recognition experiments using this 3D linear subspace. They found
that this approach partially compensates for lighting variation, but not as well as
methods that account for shadows.

Hayakawa [20] used factorization to build 3D models using this linear repre-
sentation. Koenderink and van Doorn [28] augmented this space to account for an
additional, perfect diffuse component. When in addition to a point source there is
also an ambient light, £(u;), which is constant as a function of direction, and we
ignore cast shadows, it has the effect of adding the albedo at each point, scaled by a
constant to the image. This leads to a set of images that occupy a four-dimensional
linear subspace.
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7.5 Nonlinear Models with Attached Shadows

Belhumeur and Kriegman [9] conducted an analytic study of the images an object
produces when shadows are present. First, they pointed out that for arbitrary illu-
mination, scene geometry, and reflectance properties, the set of images produced by
an object forms a convex cone in image space. It is a cone because the intensity of
lighting can be scaled by any positive value, creating an image scaled by the same
positive value. It is convex because two lighting conditions that create two images
can always be added together to produce a new lighting condition that creates an
image that is the sum of the original two images. They call this set of images the
illumination cone.

Then they showed that for a convex, Lambertian object in which there are at-
tached shadows but no cast shadows the dimensionality of the illumination cone is
O (n?) where n is the number of distinct surface normals visible on the object. For
an object such as a sphere, in which every pixel is produced by a different surface
normal, the illumination cone has volume in image space. This proves that the im-
ages of even a simple object do not lie in a low-dimensional linear subspace. They
noted, however, that simulations indicate that the illumination cone is “thin”; that
is, it lies near a low-dimensional image space, which is consistent with the experi-
ments described in Sect. 7.3. They further showed how to construct the cone using
the representation of Shashua [40]. Given three images obtained with lighting that
produces no attached or cast shadows, they constructed a 3D linear representation,
clipped all negative intensities at zero, and took convex combinations of the result-
ing images.

Georghiades and colleagues [17, 18] presented several algorithms that use the
illumination cone for face recognition. The cone can be represented by sampling
its extremal rays; this corresponds to rendering the face under a large number of
point light sources. An image may be compared to a known face by measuring
its distance to the illumination cone, which they showed can be computed using
nonnegative least-squares algorithms. This is a convex optimization guaranteed to
find a global minimum, but it is slow when applied to a high-dimensional image
space. Therefore, they suggested running the algorithm after projecting the query
image and the extremal rays to a lower-dimensional subspace using PCA.

Also of interest is the approach of Blicher and Roy [10], which buckets nearby
surface normals, and renders a model based on the average intensity of image pixels
that have been matched to normals within a bucket. This method assumes that simi-
lar normals produce similar intensities (after the intensity is divided by the albedo),
so it is suitable for handling attached shadows. It is also extremely fast.

7.6 Spherical Harmonic Representations

The empirical evidence showing that for many common objects the illumination
cone is “thin” even in the presence of attached shadows has remained unexplained
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until recently, when Basri and Jacobs [4, 6], and in parallel Ramamoorthi and Hanra-
han [38], analyzed the illumination cone in terms of spherical harmonics. This anal-
ysis showed that, when we account for attached shadows, the images of a convex
Lambertian object can be approximated to high accuracy using nine (or even fewer)
basis images. In addition, this analysis provides explicit expressions for the basis
images. These expressions can be used to construct efficient recognition algorithms
that handle faces under arbitrary lighting. At the same time these expressions can
be used to construct new shape reconstruction algorithms that work under unknown
combinations of point and extended light sources. We next review this analysis. Our
discussion is based primarily on the work of Basri and Jacobs [6].

7.6.1 Spherical Harmonics and the Funk—-Hecke Theorem

The key to producing linear lighting models that account for attached shadows lies
in noting that (7.2), which describes how lighting is transformed to reflectance, is
analogous to a convolution on the surface of a sphere. For every surface normal
vy, reflectance is determined by integrating the light coming from all directions
weighted by the kernel k(; - v,) = max(u; - vy, 0). For every v, this kernel is just a
rotated version of the same function, which contains the positive portion of a cosine
function. We denote the (unrotated) function k(u;) (defined by fixing v, at the north
pole) and refer to it as the half-cosine function. Note that on the sphere convolution
is well defined only when the kernel is rotationally symmetrical about the north
pole, which indeed is the case for this kernel.

Just as the Fourier basis is convenient for examining the results of convolutions
in the plane, similar tools exist for understanding the results of the analog of con-
volutions on the sphere. We now introduce these tools, and use them to show that
when producing reflectance, k acts as a low-pass filter.

The surface spherical harmonics are a set of functions that form an orthonor-
mal basis for the set of all functions on the surface of the sphere. We denote these
functions by Y, withn =0,1,2,...and —n <m <n:

2n+1) (n — |m))! .
Yom (0, ¢) :/( ”4: )EZ+ :Z:;'Pmm(cose)e’md’ (7.4)

where Py, represents the associated Legendre functions, defined as

(1 _ ZZ)m/Z dn+m ) "
Pan(@) = = o (= 1) (1.5)

We say that Y}, is an nth order harmonic.
It is sometimes convenient to parameterize Yy, as a function of space coordinates
(x, v, z) rather than angles. The spherical harmonics, written Y,,,(x, y, z), then be-
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come polynomials of degree n in (x, y, z). The first nine harmonics then become

Y —1 Y —3
00 = ) 0= Z,
4 4
3 3
Ye = —X, YO — ,
11 nx 11 ny
1 /5 5
Yao ==y — (B2 —1),  ¥§ =3 ——xz, (7.6)

where the superscripts e and o denote the even and odd components of the har-
monics, respectively (so Yy, = n""ml + iY;?\mp according to the sign of m; in fact
the even and odd versions of the harmonics are more convenient to use in practice
because the reflectance function is real).

Because the spherical harmonics form an orthonormal basis, any piecewise con-
tinuous function, f, on the surface of the sphere can be written as a linear combina-

tion of an infinite series of harmonics. Specifically, for any f,

F@ =" fumYum() (7.7)

n=0m=—n

where f,,, is a scalar value, computed as

Jm 2/2 F@)Y,, () du (7.8)
s
and Y,;, (1) denotes the complex conjugate of Y, (u).
Rotating a function f results in a phase shift. Define for every n the n’th order
amplitude of f as

n
def 1
A, = 2. 7.9
= |5 +1m;n n (7.9)

Then rotating f does not change the amplitude of a particular order. It may shuffle
values of the coefficients, f,,, for a particular order, but it does not shift energy
between harmonics of different orders.

Both the lighting function, ¢, and the Lambertian kernel, k, can be written as
sums of spherical harmonics. Denote by

o0 n
=" lumYum (7.10)

n=0m=—n
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the harmonic expansion of £, and by

k() =" knYno. (7.11)

n=0

Note that, because k(u) is circularly symmetrical about the north pole, only the
zonal harmonics participate in this expansion, and

/k(u) Y:, (u)du=0, m=0. (7.12)

Spherical harmonics are useful for understanding the effect of convolution by k
because of the Funk—Hecke theorem, which is analogous to the convolution theo-
rem. Loosely speaking, the theorem states that we can expand ¢ and k in terms of
spherical harmonics, and then convolving them is equivalent to multiplication of the
coefficients of this expansion (see Basri and Jacobs [6] for details).

Following the Funk—Hecke theorem, the harmonic expansion of the reflectance
function, r, can be written as:

k*e_z Z <1/2 1 nnm)Ynm- (713)

n=0m=—n

7.6.2 Properties of the Convolution Kernel

The Funk—Hecke theorem implies that when producing the reflectance function, r,
the amplitude of the light, £, at every order n is scaled by a factor that depends only
on the convolution kernel, k. We can use this to infer analytically what frequencies
dominate r. To achieve this, we treat £ as a signal and k as a filter and ask how the
amplitudes of ¢ change as it passes through the filter.

The harmonic expansion of the Lambertian kernel (7.11) can be derived [6] yield-
ing

VT
2
g
T :1
k= V3 =0 (7.14)

141 C@n+m (n
D e (1) =2,

(— even,
0 n>2, odd.
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Fig. 7.2 From left to right: the first 11 coefficients of the Lambertian kernel; the relative energy
captured by each of the coefficients; and the cumulative energy

The first few coefficients, for example, are

ko= Y ~0.8862. k= % ~1.0233,
2 3
NG
ky = Y2 04954, ko= YT A _0.1108, (7.15)
8 16
ko= Y7 00499, ks = YT A 0.0285
6= g T 8= 56

(ks = ks = k7 = 0), |k,| approaches zero as O(n=2). A graphic representation of
the coefficients may be seen in Fig. 7.2.

The energy captured by every harmonic term is measured commonly by the
square of its respective coefficient divided by the total squared energy of the trans-
formed function. The total squared energy in the half cosine function is given by

2r  pw % 27
/ / k() sin0dodp = 271/ cos? 0 sinf do = R (7.16)
0 0 0

(Here, we simplify our computation by integrating over 6 and ¢ rather than u.
The sin 6 factor is needed to account for the varying length of the latitude over the
sphere.) Figure 7.2 shows the relative energy captured by each of the first several
coefficients. It can be seen that the kernel is dominated by the first three coefficients.
Thus, a second-order approximation already accounts for (7 + % + Z—Z) / 2?” ~
99.22% of the energy. With this approximation, the half cosine function can be
written as:

k(O) ~ i+1cos9+ 15 ose, (7.17)
32 2 32

The quality of the approximation improves somewhat with the addition of the fourth

order term (99.81%) and deteriorates to 87.5% when a first order approximation is

used. Figure 7.3 shows a one-dimensional slice of the Lambertian kernel and its

various approximations.
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Fig. 7.3 A slice of the Lambertian kernel (solid line) and its approximations (dashed line) of first
(left), second (middle), and fourth (right) order

7.6.3 Approximating the Reflectance Function

Because the Lambertian kernel, &, acts as a low-pass filter, the high frequency com-
ponents of the lighting have little effect on the reflectance function. This implies
that we can approximate the reflectance function that occurs under any lighting con-
ditions using only low-order spherical harmonics. In this section, we show that this
leads to an approximation that is always quite accurate.

We achieve a low-dimensional approximation to the reflectance function by trun-
cating the sum in (7.13). That is, we have:

N n
| 4x
r:k*E%Z Z < 2’1—_Hk;zlnm>ynm (718)

n=0m=—n

for some choice of order N. This means considering only the effects of the low
order components of the lighting on the reflectance function. Intuitively, we know
that because k,, is small for large n, this approximation should be good. However,
the accuracy of the approximation also depends on /,,,, the harmonic expansion of
the lighting.

To evaluate the quality of the approximation, consider first, as an example, light-
ing, £ = §, generated by a unit directional (distant point) source at the z direction
(0 = ¢ =0). In this case the lighting is simply a delta function whose peak is at the
north pole (8 = ¢ = 0). It can be readily shown that

r(v) =k %8 = k(v). (7.19)

If the sphere is illuminated by a single directional source in a direction other than
the z direction, the reflectance obtained would be identical to the kernel but shifted
in phase. Shifting the phase of a function distributes its energy between the harmon-
ics of the same order n (varying m), but the overall energy in each n is maintained.
The quality of the approximation therefore remains the same, but now for an Nth
order approximation we need to use all the harmonics with n < N for all m. Re-
call that there are 2n 4 1 harmonics in every order n. Consequently, a first-order
approximation requires four harmonics. A second-order approximation adds five
more harmonics, yielding a 9D space. The third-order harmonics are eliminated by
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the kernel, so they do not need to be included. Finally, a fourth order approximation
adds nine more harmonics, yielding an 18D space.

We have seen that the energy captured by the first few coefficients k; (1 <i < N)
directly indicates the accuracy of the approximation of the reflectance function when
the light consists of a single point source. Other light configurations may lead to
different accuracy. Better approximations are obtained when the light includes en-
hanced diffuse components of low frequency. Worse approximations are anticipated
if the light includes mainly high frequency patterns.

However, even if the light includes mostly high frequency patterns the accuracy
of the approximation is still high. This is a consequence of the nonnegativity of
light. A lower bound on the accuracy of the approximation for any light function is

given by
k(% (7.20)
F-TLg |

n=1"n

(Proof appears in Basri and Jacobs [6].)

It can be shown that using a second order approximation (involving nine harmon-
ics) the accuracy of the approximation for any light function exceeds 97.96%. With a
fourth order approximation (involving 18 harmonics) the accuracy exceeds 99.48%.
Note that the bound computed in (7.20) is not tight, as the case that all the higher
order terms are saturated yields a function with negative values. Consequently, the
worst case accuracy may even be higher than the bound.

7.6.4 Generating Harmonic Reflectances

Constructing a basis to the space that approximates the reflectance functions is
straightforward: We can simply use the low order harmonics as a basis (see (7.18)).
However, in many cases we want a basis vector for the nm component of the re-
flectances to indicate the reflectance produced by a corresponding basis vector de-
scribing the lighting, Y,,;,,. This makes it easy for us to relate reflectances and light-
ing, which is important when we want to enforce the constraint that the reflectances
arise from nonnegative lighting (see Sect. 7.7.1). We call these reflectances har-
monic reflectances and denote them by r;,,,,. Using the Funk—Hecke theorem, r,,,, is

given by
4
'nm Zk*Ynm = 2n—_i_lkn Ynm. (721)

Then, following (7.18),

N n
I’=k*£%2 Z LnmTnm. (7.22)

n=0m=—n
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The first few harmonic reflectances are given by

2 T
roo = 7 Yoo, Fim = ?Ylm» Fom = ZYZm,
(7.23)
T T
r4m:ﬁY4m7 76m:6_4Y6m7 rSm:ﬁYSm

for —n <m <n (and r3,, = rs;;, =r7, =0).

7.6.5 From Reflectances to Images

Up to this point, we have analyzed the reflectance functions obtained by illuminat-
ing a unit albedo sphere by arbitrary light. Our objective is to use this analysis to
represent efficiently the set of images of objects seen under varying illumination. An
image of an object under certain illumination conditions can be constructed from the
respective reflectance function in a simple way: Each point of the object inherits its
intensity from the point on the sphere whose normal is the same. This intensity is
further scaled by its albedo.

We can write this explicitly as follows. Let p; denote the ith object point. Let
n; denote the surface normal at p;, and let p; denote the albedo of p;. Let the
illumination be expanded with the coefficients /,,,, (7.10). Then the image, I; of p;
is

I; = pir(n;) (7.24)
where
rmi) =Y > lunTam(i). (7.25)
n=0m=—n

Then any image is a linear combination of harmonic images, by, , of the form

bum (pi) = pitnm(ni) (7.26)

with
n

ZZ Z nmbum (Pi)- (7.27)

Figure 7.4 shows the first nine harmonic images derived from a 3D model of a face.

We now discuss how the accuracy of our low dimensional linear approximation
to a model’s images can be affected by the mapping from the reflectance function
to images. The accuracy of our low dimensional linear approximation can vary ac-
cording to the shape and albedos of the object. Each shape is characterized by a
different distribution of surface normals, and this distribution may significantly dif-
fer from the distribution of normals on the sphere. Viewing direction also affects
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Fig. 7.4 First nine harmonic images for a model of a face. The fop row contains the zeroth har-
monic (left) and the three first order harmonic images (right). The second row shows the images
derived from the second harmonics. Negative values are shown in black, positive values in white

this distribution, as all normals facing away from the viewer are not visible in the
image. Albedo further affects the accuracy of our low dimensional approximation,
as it may scale each pixel by a different amount. In the worst case, this can make
our approximation arbitrarily poor. For many objects, it is possible to illuminate the
object by lighting configurations that produce images for which low order harmonic
representations provide a poor approximation.

However, generally, things are not so bad. In general, occlusion renders an ar-
bitrary half of the normals on the unit sphere invisible. Albedo variations and cur-
vature emphasize some normals and deemphasize others. In general, though, the
normals whose reflectances are poorly approximated are not emphasized more than
any other reflectances, and we can expect our approximation of reflectances on the
entire unit sphere to be about as good over those pixels that produce the intensities
visible in the image.

The following argument shows that the lower bound on the accuracy of a har-
monic approximation to the reflectance function also provides a lower bound on the
average accuracy of the harmonic approximation for any convex object. (This result
was derived by Frolova et al. [15].) We assume that lighting is equally likely from
all directions. Given an object, we can construct a matrix M whose columns con-
tain the images obtained by illuminating the object by a single point source, for all
possible source directions. (Of course there are infinitely many such directions, but
we can sample them to any desired accuracy.) The average accuracy of a low rank
representation of the images of the object then is determined by

1M — M2
min ———————— (7.28)
we M|
where M* is low rank, and ||.|| denotes the Frobenius Norm of a matrix. Now con-
sider the rows of M. Each row represents the reflectance of a single surface point
under all point sources. Such reflectances are identical to the reflectances of a sphere
with uniform albedo under a single point source. (To see this, simply let the sur-
face normal and the lighting directions change roles.) We know that under a point
source the reflectance function can be approximated by a combination of the first
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nine harmonics to 99.22%. Because by this argument every row of M can be ap-
proximated to the same accuracy, there exists a rank nine matrix M* that approxi-
mates M to 99.22%. This argument can be applied to convex objects of any shape.
Thus, on average, nine harmonic images approximate the images of an object by
at least 99.22%, and likewise four harmonic images approximate the images of an
object by at least 87.5%. Note that this approximation can even be improved some-
what by selecting optimal coefficients to better fit the images of the object. Indeed,
simulations indicate that optimal selection of the coefficients often increases the ac-
curacy of the second order approximation up to 99.5% and that of the first order
approximation to about 95%.

Ramamoorthi [37] further derived expressions to calculate the accuracies ob-
tained with spherical harmonics for orders less than nine. His analysis, in fact,
demonstrates that generically the spherical harmonics of the same order are not
equally significant. The reason is that the basis images of an object are not generally
orthogonal, and in some cases are quite similar. For example, if the z components of
the surface normals of an object do not vary much, some of the harmonic images are
quite similar, such as bgg = p versus bjg = pz. Ramamoorthi’s calculations show a
good fit (with a slight overshoot) to the empirical results. With his derivations, the
accuracy obtained for a 3D representation of a human face is 92% (in contrast to
90.2% in empirical studies) and for 7D 99% (in contrast to 95.3%). The somewhat
lower accuracies obtained in empirical studies may be attributed to the presence of
specularities, cast shadows, and noisy measurements.

Finally, it is interesting to compare the basis images determined by our spherical
harmonic representation with the basis images derived for the case of no shadows.
As mentioned in Sect. 7.4, Shashua [40] and Moses [34] pointed out that in the ab-
sence of attached shadows every possible image of an object is a linear combination
of the x, y, and z components of the surface normals scaled by the albedo. They
therefore proposed using these three components to produce a 3D linear subspace
to represent a model’s images. Interestingly, these three vectors are identical, up
to a scale factor, to the basis images produced by the first-order harmonics in our
method.

We can therefore interpret Shashua’s method as also making an analytic approx-
imation to a model’s images using low-order harmonics. However, our previous
analysis tells us that the images of the first harmonic account for only 50% of the
energy passed by the half-cosine kernel. Furthermore, in the worst case it is pos-
sible for the lighting to contain no component in the first harmonic. Most notably,
Shashua’s method does not make use of the zeroth harmonic (commonly referred
to as the DC component). These are the images produced by a perfectly diffuse
light source. Nonnegative lighting must always have a significant DC component.
We noted in Sect. 7.4 that Koenderink and van Doorn [28] suggested augmenting
Shashua’s method with this diffuse component. This results in a linear method that
uses the four most significant harmonic basis images, although Koenderink and van
Doorn proposed it as apparently a heuristic suggestion, without analysis or reference
to a harmonic representation of lighting.
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7.7 Applications

We have developed an analytic description of the linear subspace that lies near the
set of images an object can produce. We now show how to use this description in
various tasks, including object recognition and shape reconstruction. We begin by
describing methods for recognizing faces under different illuminations and poses.
Later, we briefly describe reconstruction algorithms for stationary and moving ob-
jects.

7.7.1 Recognition

In a typical recognition problem, the 3D shape and reflectance properties (including
surface normals and albedos) of faces may be available. The task then is, given
an image of a face seen under unknown pose and illumination, to recognize the
individual. Our spherical harmonic representation enables us to perform this task
while accounting for complicated, unknown lighting that includes combinations of
point and extended sources. Below, we assume that the pose of the object is already
known but that its identity and lighting conditions are not. For example, we may
wish to identify a face that is known to be facing the camera; or we may assume that
either a human or an automatic system has identified features, such as the eyes and
the tip of the nose, that allow us to determine the pose for each face in the database,
but that the database is too large to allow a human to select the best match.

Recognition proceeds by comparing a new query image to each model in turn.
To compare to a model, we compute the distance between the query image and the
nearest image the model can produce. We present two classes of algorithms that vary
in their representation of a model’s images. The linear subspace can be used directly
for recognition, or we can restrict ourselves to a subset of the linear subspace that
corresponds to physically realizable lighting conditions.

We stress the advantages we gain by having an analytic description of the sub-
space available, in contrast to previous methods in which PCA could be used to
derive a subspace from a sample of an object’s images. One advantage of an ana-
lytic description is that we know it provides an accurate representation of an object’s
possible images, not subject to the vagaries of a particular sample of images. A sec-
ond advantage is efficiency; we can produce a description of this subspace much
more rapidly than PCA would allow. The importance of this advantage depends on
the type of recognition problem we tackle. In particular, we are interested in recog-
nition problems in which the position of an object is not known in advance but
can be computed at run-time using feature correspondences. In this case, the linear
subspace must also be computed at run-time, and the cost of doing this is important.

7.7.1.1 Linear Methods

The most straightforward way to use our prior results for recognition is to compare a
novel image to the linear subspace of images that correspond to a model, as derived
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by our harmonic representation. To do this, we produce the harmonic basis images of
each model, as described in Sect. 7.6.5. Given an image I we seek the distance from
I to the space spanned by the basis images. Let B denote the basis images. Then
we seek a vector a that minimizes ||Ba — I||. B is p X r, p is the number of points
in the image, and r is the number of basis images used. As discussed above, nine is
a natural value to use for r, but r = 4 provides greater efficiency and r = 18 offers
even better potential accuracy. Every column of B contains one harmonic image
bum . These images form a basis for the linear subspace, though not an orthonormal
one. Hence we apply a QR decomposition to B to obtain such a basis. We compute
0, a p x r matrix with orthonormal columns, and R, an r X r matrix so that OR = B
and QT Q is an r x r identity matrix. Then Q is an orthonormal basis for B, and
QT QI is the projection of I into the space spanned by B. We can then compute the
distance from the image, 7, and the space spanned by B as ||Q QT — I|. The cost
of the QR decomposition is O (pr?), assuming p > r.

The use of an analytically derived basis can have a substantial effect on the speed
of the recognition process. In previous work Georghiades et al. [17] performed
recognition by rendering the images of an object under many possible lightings
and finding an 11D subspace that approximates these images. With our method this
expensive rendering step is unnecessary. When s sampled images are used (typi-
cally s > r), with s < p PCA requires O (ps?). Also, in MATLAB, PCA of a thin,
rectangular matrix seems to take exactly twice as long as its QR decomposition.
Therefore, in practice, PCA on the matrix constructed by Georghiades et al. would
take about 150 times as long as using our method to build a 9D linear approximation
to a model’s images. (This is for s = 100 and r = 9. One might expect p to be about
10000, but this does not affect the relative costs of the methods.) This may not be
significant if pose is known ahead of time and this computation takes place off line.
When pose is computed at run time, however, the advantages of our method can
become significant.

7.7.1.2 Enforcing Nonnegative Light

When we take arbitrary linear combinations of the harmonic basis images, we may
obtain images that are not physically realizable. This is because the corresponding
linear combination of the harmonics representing lighting may contain negative val-
ues. That is, rendering these images may require negative “light,” which of course
is physically impossible. In this section, we show how to use the basis images while
enforcing the constraint of nonnegative light.

When we use a 9D approximation to an object’s images, we can efficiently en-
force the nonnegative lighting constraint in a manner similar to that proposed by
Belhumeur and Kriegman [9], after projecting everything into the appropriate 9D
linear subspace. Specifically, we approximate any arbitrary lighting function as a
nonnegative combination of a fixed set of directional light sources. We solve for the
best such approximation by fitting to the query image a nonnegative combination of
images each produced by a single, directional source.
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We can do this efficiently using the 9D subspace that represents an object’s im-
ages. We project into this subspace a large number of images of the object, in which
each image is produced by a single directional light source. Such a light source is
represented as a delta function; we can derive the representation of the resulting
image in the harmonic basis simply by taking the harmonic transform of the delta
function that represents the lighting. Then we can also project a query image into
this 9D subspace and find the nonnegative linear combination of directionally lit im-
ages that best approximate the query image. Finding the nonnegative combination
of vectors that best fit a new vector is a standard, convex optimization problem. We
can solve it efficiently because we have projected all the images into a space that is
only 9D.

Note that this method is similar to that presented in Georghiades et al. [18]. The
primary difference is that we work in a low dimensional space constructed for each
model using its harmonic basis images. Georghiades et al. performed a similar com-
putation after projecting all images into a 100-dimensional space constructed using
PCA on images rendered from models in a 10-model database. Also, we do not
need to explicitly render images using a point source and project them into a low-
dimensional space. In our representation, the projection of these images is given in
closed form by the spherical harmonics.

A further simplification can be obtained if the set of images of an object is ap-
proximated only up to first order. Four harmonics are required in this case. One is
the DC component, representing the appearance of the object under uniform am-
bient light, and three are the basis images also used by Shashua. In this case, we
can reduce the resulting optimization problem to one of finding the roots of a sixth
degree polynomial in a single variable, which is extremely efficient. Further details
of both methods can be found elsewhere [6].

The approach of enforcing nonnegative lighting for 9 harmonics relies on repre-
senting lighting as the nonnegative sum of a large number of delta functions. In this
way, the nonnegativity of the lighting follows from the nonnegativity of the coeffi-
cients of the delta functions. However, in recent work, Shirdhonkar and Jacobs [41]
have shown that nonnegativity can be enforced when representing lighting using low
frequency spherical harmonics. To do this, one must be able to determine whether
a set of low frequency spherical harmonics are consistent with a nonnegative func-
tion; that is, could one add higher frequency harmonics to make the complete func-
tion nonnegative. By extending Szego’s eigenvalue distribution theorem to spherical
harmonics, Shirdhonkar and Jacobs show that a matrix constructed using the coef-
ficients of low frequency lighting, represented as spherical harmonics, must be pos-
itive semi-definite in order for these harmonics to be consistent with non-negative
lighting. This allows them to compute the low frequency lighting that best matches
a 3D model to an image by solving a semi-definite programming problem. This
leads to solutions that are more accurate and efficient than previous methods that
represent lighting using delta functions.
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7.7.1.3 Specularity

Other work has built on this spherical harmonic representation to account for non-
Lambertian reflectance [36]. The method first computes Lambertian reflectance,
which constrains the possible location of a dominant compact source of light. Then
it extracts highlight candidates as pixels that are brighter than we can predict from
Lambertian reflectance. Next, we determine which of these candidates is consistent
with a known 3D object. A general model of specular reflectance is used that im-
plies that the surface normals of specular points obtained by thresholding intensity
form a disk on the Gaussian sphere. Therefore, the method proceeds by selecting
candidate specularities consistent with such a disk. It maps each candidate specular-
ity to the point on the sphere having the same surface normal. Next, a plane is found
that separates the specular pixels from the other pixels with a minimal number of
misclassifications. The presence of specular reflections that are consistent with the
object’s known 3D structure then serves as a cue that the model and image match.

This method has succeeded in recognizing shiny objects, such as pottery. How-
ever, informal face recognition experiments with this method, using the data set de-
scribed in the next section, have not shown significant improvements. Our sense is
that most of our recognition errors are due to misalignments in pose, and that when
a good alignment is found between a 3D model and image a Lambertian model is
sufficient to produce good performance on a data set of 42 individuals.

In other work, Georghiades [16] augmented the recognition approach of Georghi-
ades et al. [17] to include specular reflectance. After initialization using a Lamber-
tian model, the position of a single light source and parameters of the Torrance-
Sparrow model of specular reflectance are optimized to fit a 3D model of an indi-
vidual. Face recognition experiments with a data set of 10 individuals show that this
produces a reduction in overall errors from 2.96% to 2.47%. It seems probable that
experiments with data sets containing large numbers of individuals are needed to
truly gauge the value of methods that account for specular reflectance.

7.7.1.4 Experiments

We have experimented with these recognition methods using a database of faces
collected at NEC in Japan. The database contains models of 42 faces, each including
the 3D shape of the face (acquired using a structured light system) and estimates of
the albedos in the red, green, and blue color channels. As query images, we use 42
images each of 10 individuals taken across seven poses and six lighting conditions
(shown in Fig. 7.5). In our experiment, each of the query images is compared to
each of the 42 models, and then the best matching model is selected.

In all methods, we first obtain a 3D alignment between the model and the image
using the algorithm of Blicher and Roy [10]. In brief, a dozen or fewer features on
the faces were identified by hand, and then a 3D rigid transformation was found to
align the 3D features with the corresponding 2D image features.

In all methods, we only pay attention to image pixels that have been matched
to some point in the 3D model of the face. We also ignore image pixels that are
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Fig. 7.5 Test images used in the experiments

of maximum intensity, as they may be saturated and provide misleading values.
Finally, we subsample both the model and the image, replacing each m x m square
with its average values. Preliminary experiments indicate that we can subsample
quite a bit without significantly reducing accuracy. In the experiments below, we
ran all algorithms subsampling with 16 x 16 squares, while the original images
were 640 x 480.

Our methods produce coefficients that tell us how to combine the harmonic im-
ages linearly to produce the rendered image. These coefficients were computed on
the sampled image but then applied to harmonic images of the full, unsampled im-
age. This process was repeated separately for each color channel. Then a model
was compared to the image by taking the root mean squared error derived from the
distance between the rendered face model and all corresponding pixels in the image.

Figure 7.6 shows performance curves for three recognition methods: the 9D lin-
ear method and the methods that enforce positive lighting in 9D and 4D. The curves
show the fraction of query images for which the correct model is classified among
the top k, as k varies from 1 to 40. The 4D positive lighting method performs signif-
icantly less well than the others, getting the correct answer about 60% of the time.
However, it is much faster and seems to be quite effective under simpler pose and
lighting conditions. The 9D linear method and 9D positive lighting method each
pick the correct model first 86% of the time. With this data set, the difference be-
tween these two algorithms is quite small compared to other sources of error. Such
errors may include limitations in our model for handling cast shadows and specu-
larities, but they also include errors in the model building and pose determination
processes. In fact, on examining our results, we found that one pose (for one person)



7 Ilumination Modeling for Face Recognition 189
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was grossly wrong because a human operator selected feature points in the wrong
order. We eliminated from our results the six images (under six lighting conditions)
that used this pose.

7.7.2 Modeling

The recognition methods described in the previous section require detailed 3D mod-
els of faces, as well as their albedos. Such models can be acquired in various ways.
For example, in the experiments described above we used a laser scanner to re-
cover the 3D shape of a face, and we estimated the albedos from an image taken
under ambient lighting (which was approximated by averaging several images of a
face). As an alternative, it is possible to recover the shape of a face from images
illuminated by structured light or by using stereo reconstruction, although stereo
algorithms may give somewhat inaccurate reconstructions for nontextured surfaces.
Finally, other studies have developed reconstruction methods that use the harmonic
formulation to recover both the shape and the albedo of an object simultaneously. In
the remainder of this section, we briefly describe three such methods. We first de-
scribe how to recover the shape of an object when the input images are obtained with
a stationary object illuminated by variable lighting, a problem commonly referred
to as “photometric stereo.” Later, we discuss an approach for shape recovery of a
moving object. We conclude with an approach that can recover the shape of faces
from single images by exploiting prior knowledge of the generic shape of faces.

7.7.2.1 Photometric Stereo

In photometric stereo, we are given a collection of images of a stationary object
under varying illumination. Our objective is to recover the 3D shape of the object
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and its reflectance properties, which for a Lambertian object include the albedo
at every surface point. Previous approaches to photometric stereo under unknown
lighting generally assume that in every image the object is illuminated by a domi-
nant point source for example, [20, 28, 47]. However, by using spherical harmonic
representations it is possible to reconstruct the shape and albedo of an object under
unknown lighting configurations that include arbitrary collections of point and ex-
tended sources. In this section, we summarize this work, which is described in more
detail elsewhere [5, 7].

We begin by stacking the input images into a matrix M of size f x p, in which
every input image of p pixels occupies a single row, and f denotes the number of
images in our collection. The low dimensional harmonic approximation then implies
that there exist two matrices, L and S, of sizes f x r and r x p respectively, that
satisfy

M~LS (7.29)

where L represents the lighting coefficients, S is the harmonic basis, and r is the
dimension used in the approximation (usually 4 or 9). If indeed we can recover L
and S, obtaining the surface normals and albedos of the shape is straightforward
using (7.23) and (7.26).

We can attempt to recover L and S using singular value decomposition (SVD).
This produces a factorization of M into two matrices L and S‘, which are related
to the correct lighting and shape matrices by an unknown, arbitrary r x r ambigu-
ity matrix A. We can try to reduce this ambiguity. Consider the case that we use
a first-order harmonic approximation (r = 4). Omitting unnecessary scale factors,
the zero-order harmonic contains the albedo at every point, and the three first-order
harmonics contain the surface normal scaled by the albedo. For a given point we can
write these four components in a vector: p = (p, pny, pny, on:)T. Then p should
satisfy pTJ p =0, where J = diag{—1, 1, 1, 1}. Enforcing this constraint reduces
the ambiguity matrix from 16 degrees of freedom to just 7. Further resolution of the
ambiguity matrix requires additional constraints, which can be obtained by specify-
ing a few surface normals or by enforcing integrability.

A similar technique can be applied in the case of a second order harmonic ap-
proximation (r = 9). In this case, there are many more constraints on the nine basis
vectors, and they can be satisfied by applying an iterative procedure. Using the nine
harmonics, the surface normals can be recovered up to a rotation, and further con-
straints are required to resolve the remaining ambiguity.

An application of these photometric stereo methods is demonstrated in Fig. 7.7.
A collection of 32 images of a statue of a face illuminated by two point sources in
each image were used to reconstruct the 3D shape of the statue. (The images were
simulated by averaging pairs of images obtained with single light sources taken by
researchers at Yale.) Saturated pixels were removed from the images and filled in us-
ing Wiberg’s algorithm [46]; see also [23, 42]. We resolved the remaining ambiguity
by matching some points in the scene with hand-chosen surface normals.

Photometric stereo is one way to produce a 3D model for face recognition. An
alternative approach is to determine a discrete set of lighting directions that pro-
duce a set of images that span the 9D set of harmonic images of an object. In this
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Fig. 7.7 Left: three images of a bust illuminated each by two point sources. Right: the surface
produced by the 4D method (a mesh, and painted with albedo). From Basri, Jacobs, and Kemel-
macher [7], © 2007 Springer, with permission

way, the harmonic basis can be constructed directly from images, without building
a 3D model. This problem was addressed by Lee et al. [31] and by Sato et al. [39].
Other approaches use harmonic representations to cluster the images of a face under
varying illumination [22] or determine the harmonic images of a face from just one
image using a statistical model derived from a set of 3D models of other faces [49].

7.7.2.2 Objects in Motion

Photometric stereo methods require a still object while the lighting varies. For faces,
this requires a cooperative subject and controlled lighting. An alternative approach
is to use video of a moving face. Such an approach, presented by Simakov et al. [43],
is briefly described below.

We assume that the motion of a face is known, for example, by tracking a few
feature points such as the eyes and the tips of the mouth. Thus, we know the epipolar
constraints between the images and (in case the cameras are calibrated) also the
mapping from 3D to each of the images. To obtain a dense shape reconstruction, we
need to find correspondences between points in all images. Unlike stereo, in which
we can expect corresponding points to maintain approximately the same intensity,
in the case of a moving object we expect points to change their intensity as they turn
away from or toward light sources.

We therefore adopt the following strategy. For every point in 3D, we associate a
“correspondence measure,” which indicates if its projections in all the images could
come from the same surface point. To this end, we collect all the projections and
compute the residual of the following set of equations.

I;=pl"R;Y (n). (7.30)

In this equation, 1 < j < f, f is the number of images, /; denotes the intensity of
the projection of the 3D point in the jth image, p is the unknown albedo, ! denotes
the unknown lighting coefficients, R; denotes the rotation of the object in the jth
image, and Y (n) denotes the spherical harmonics evaluated for the unknown surface
normal. Thus, to compute the residual we need to find / and » that minimize the
difference between the two sides of this equation. (Note that for a single 3D point p
and / can be combined to produce a single vector.)
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Once we have computed the correspondence measure for each 3D point, we can
incorporate the measure in any stereo algorithm to extract the surface that minimizes
the measure, possibly subject to some smoothness constraints.

The algorithm of Simakov et al. [43] described above assumes that the motion
between the images is known. Zhang et al. [48] proposed an iterative algorithm that
simultaneously recovers the motion assuming infinitesimal motion between images
and modeling reflectance using a first order harmonic approximation.

7.7.2.3 Reconstruction with Shape Prior

While the previous methods utilize collections of images to achieve 3D reconstruc-
tion, it is of interest to explore methods that can recover the shape of faces from just
a single image. Recently, Kemelmacher—Shlizerman and Basri [26, 27] proposed
such an approach that exploits prior knowledge of the rough shape of faces to make
the problem of single view reconstruction well-posed.

The algorithm obtains as input an image of a face to be reconstructed along with
a 3D model (shape and albedo) of some different face. Such a model can depict an
individual whose 3D shape is available, or an “averaged” model of a collection of
faces. The algorithm then attempts to reconstruct the shape of the face in the input
image essentially by solving a shape from shading (SFS) problem. However, while
SFS is ill-posed and its solution requires knowledge of the lighting conditions, the
reflectance properties (albedo) of the object to be reconstructed, and boundary con-
ditions (i.e., depth values at extremal points), this algorithm estimates their values
by exploiting the similarity of the input model to the desired shape.

Specifically, Kemelmacher—Shlizerman and Basri seek a solution to the follow-
ing optimization problem:

lmin/ (1= pl TY()* + (M A2+ 2042) dx dy. (7.31)
0282

In this expression, I (x, y) is the input image (x, y € £2), [ represents the unknown
lighting conditions, p(x, y) the unknown albedo, z(x, y) the unknown depth, and
Y (n) the spherical harmonic basis derived from z. The first term therefore is a data
term fitting the desired reconstruction to the image. For the second term, A1 and A;
are preset constants and we define A;(x, y) and A,(x, y) to represent respectively,
the (smoothed) difference in shape and albedo between the desired shape and the
input model. The role of this regularization term is to keep those differences small.
Figure 7.8 shows a reconstruction obtained with this method.

7.8 Conclusions

Lighting can be arbitrarily complex, but in many cases its effect is not. When objects
are Lambertian, we show that a simple, 9D linear subspace can capture the set of
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Fig. 7.8 Single view reconstruction. The figure shows two triplets of images; each includes an
input image, 3D reconstruction (output), and the input image overlayed on the reconstruction. The
reference shape used in these runs is shown on the right. Notice that veridical shape is recovered
despite change in expression relative to the reference shape. From Kemelmacher—Shlizerman and
Basri [27], © 2010 IEEE, with permission

images they produce. This explains prior empirical results. It also gives us a new
and effective way to understand the effects of Lambertian reflectance as that of a
low-pass filter on lighting.

Moreover, we show that this 9D space can be directly computed from a model,
as low-degree polynomial functions of its scaled surface normals. This description
allows us to produce efficient recognition algorithms in which we know we are
using an accurate approximation of the model’s images. In addition, we can use the
harmonic formulation to develop reconstruction algorithms to recover the 3D shape
and albedos of an object. We evaluate the effectiveness of our recognition algorithms
using a database of models and images of real faces.
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