
Chapter 4
Local Representation of Facial Features

Joni-Kristian Kämäräinen, Abdenour Hadid, and Matti Pietikäinen

The aim of this chapter is to give a comprehensive overview of different facial rep-
resentations and in particular describe local facial features.

4.1 Introduction

Developing face recognition systems involves two crucial issues: facial representa-
tion and classifier design [47, 101]. The aim of facial representation is to derive a set
of features from the raw face images which minimizes the intra-class variations (i.e.,
within face instances of a same individual) and maximizes the extra-class variations
(i.e., between face images of different individuals). Obviously, if inadequate facial
representations are adopted, even the most sophisticated classifiers fail to accom-
plish the face recognition task. Therefore, it is important to carefully decide on what
facial representation to adopt when designing face recognition systems. Ideally, the
facial feature representation should: (i) discriminate different individuals well while
tolerating within-class variations; (ii) be easily extracted from the raw face images
in order to allow fast processing; and (iii) lie in a low dimensional space (short vec-
tor length) in order to avoid a computationally expensive classifier. Naturally, it is
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not easy to find features which meet all these criteria because of the large variabil-
ity in facial appearances due to different imaging factors such as scale, orientation,
pose, facial expressions, lighting conditions, aging, presence of glasses, etc. These
considerations are important for the other subtasks in face biometrics: detection, lo-
calization and registration, and verification, and thus, a key issue in face recognition
is finding efficient facial feature representations.

Numerous methods have been proposed in literature for representing facial im-
ages for recognition purposes. The earliest attempts, such as Kanade’s work in early
70s [41], are based on representing faces in terms of geometrical relationships, such
as distances and angles, between the facial landmarks (eyes, mouth etc.). Later, ap-
pearance based techniques have been proposed. These methods generally consider a
face as a 2D array of pixels and aim at deriving descriptors for face appearance with-
out explicit use of face geometry. Following these lines, different holistic methods
such as Principal Component Analysis (PCA) [82], Linear Discriminant Analysis
(LDA) [21] and the more recent 2D PCA [92] have been widely studied. Lately
local descriptors have gained an increasing attention due to their robustness to chal-
lenges such as pose and illumination changes. Among these descriptors are Gabor
filters and Local Binary Patterns [2] which are shown to be very successful in en-
coding facial appearance.

4.1.1 Structure and Scope of the Chapter

The aim of this chapter is to give a comprehensive overview of different facial rep-
resentations and in particular describe local facial features. Section 4.2 discusses the
major methods which have been proposed in literature. Then, more detailed descrip-
tions of two widely used approaches, namely local binary patterns and Gabor filters,
are presented in Sects. 4.3 and 4.4, respectively. Section 4.5 discusses related issues
and promising directions. Finally, concluding remarks are drawn in Sect. 4.6.

The methods discussed in this chapter can be applied to detection and recognition
of faces or face parts (landmarks). Face parts are also referred to as facial features,
but we use the terms feature and facial feature interchangeably for any features ex-
tracted from the face area. We specifically discuss local binary patterns in the con-
text of face recognition and Gabor features in the context of face part detection, but
they can be used in the both tasks. Furthermore, the feature extraction methods are
discussed from the face image processing point of view and other face description
methods are available for the modeling purposes, such as the active shape models
and morphable model described in the following chapters. These novel modeling
methods can also be applied to face recognition without explicit feature extraction
and classification as discussed in this chapter.
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4.2 Review of Facial Feature Representations

We first justify and restrict the scope of this chapter to generic features which do not
require optimization or learning stages and then proceed to the actual review.

Zhao et al. [101] divide face recognition algorithms into (i) appearance-based
(holistic), (ii) feature-based, and (iii) hybrid approaches. This taxonomy is widely
accepted and also applies to face detection, localization and verification algo-
rithms [33]. This chapter specifically focuses on the feature-based and hybrid meth-
ods which utilize representations of local face parts. Zhao et al. further divide the
feature-based and hybrid approaches into: (1) generic methods based on generic
image processing features, such as edges, lines, curves, etc.; (2) feature-template-
based methods that are used to detect specific facial features such as eyes, nostrils,
etc.; and (3) structural matching methods that take into consideration geometrical
constraints on the features. From the feature extraction point of view, the holistic
approach and the feature-template-based methods are equivalent. They both learn a
scanning window template or templates to represent and detect faces or facial parts.
The most popular solutions are Viola–Jones detector [85] and PCA or LDA com-
puted subspace-templates (Eigenfaces or Fisherfaces) [9] and their seminal works.
These methods can be effective, but we do not include the Haar-cascades produced
by the Viola-Jones method or subspace templates produced by the PCA and LDA to
this chapter since they are not generic features. They should be considered as learned
statistical or algorithmic detectors themselves. Subspace methods are discussed in
Chap. 3 and Viola–Jones type boosted detectors in Chap. 11. The Haar-like features
used by the Viola-Jones detector, however, are generic features for facial feature
representation. The structural matching methods are not in the scope either since
they too involve the learning stage for a “constellation model” which captures in-
formation about spatial relationships between local features. Typical examples are
active shape models, discussed in Chap. 4, and the Elastic Bunch Graph Match-
ing (EBGM) [89]. The generic low level features used by these methods, however,
belong to this chapter.

The selection of features for a proper facial feature representation is actually
similar to the feature selection and extraction task occurring in the most computer
vision and image analysis applications. But what features are the most suitable for
face biometrics? The best results have been achieved by concatenating and learn-
ing person specific features computed from several local areas, for example, from
fixed area (Fig. 4.1(a)) or varying area regions (Fig. 4.1(b)) which can be regu-
lar or feature-driven, or simply at specific locations with no strictly defined spatial
extent (Fig. 4.1(c)). As already mentioned, implementations based on the subspace
approach [11] and the boosted Haar-like features [103] for face detection and recog-
nition exist, but they are not included here due to their need of task-specific learning.

Computer vision and image processing literature contains numerous features and
feature extraction methods. In face biometrics, however, certain features retain their
popularity and continuously succeed to producing state-of-the-art results for vari-
ous benchmarks. Widely adopted are features constructed from responses of Gabor
filters on various orientations and scales. More recent, and particularly successful,
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Fig. 4.1 Facial feature computation from a a regular grid of fixed size regions, b irregular variable
size regions (feature-driven) and c around central feature locations

are local binary pattern (LBP) features. In order to verify their status and to spot
new trends, we reviewed the recently published feature-intense articles in the top
tier forums of computer vision and face biometrics. A short summary of the review
is presented in Table 4.1. We draw the following conclusions: (1) Gabor filters and
other similar “local oriented frequency approaches” are still a popular choice and
produce state-of-the-art results in face detection and recognition; (2) a new feature
appears in the literature: the SIFT descriptor which is popular in visual object cate-
gorization and baseline matching; (3) gray-level patch remains as a popular choice
as well despite of its extreme simplicity; and finally (4) success of LBP in bio-
metrics promotes other similar algorithmically constructed features. An interesting
work is the method by Xu et al. [90], which uses several different kind of features
on different processing levels in their hierarchical system.

The most popular region features, modular PCA, LBP and Gabor magnitudes,
were compared for face recognition in [103]. The LBP and Gabor features produced
good results and were generally recommended. In Table 4.1, we classify many fea-
tures, such as complex and smooth wavelets, steerable filters and difference of Gaus-
sians, to Gabor-based methods, because there is no fundamental difference between
them and properly utilized they should lead to equally good results. Similarly, SIFT,
LBP and Daugman’s phase descriptor have similar characteristics. The flexibility of
LBP features, however, makes them more suitable and preferable for face biomet-
rics. The flexibility, appearing as various intuitive parameterizations and extensions
to the standard LBP are further discussed in Sect. 4.3. The Haar-like features seem
to succeed for the boosting approaches, but as a generic method for face biometrics
there is no clear evidence for their success. Their accuracy to locate different facial
landmarks have been studied in [11] and recently, other kind of features, such as
anisotropic Gaussian [60] or constructed features [87], have succeeded in the boost-
ing scheme.

It is clear from all previously published surveys and from the recent state-of-
the-art results that the three mentioned features pop up as very popular and suc-
cessful: features based on Gabor filter responses, local binary patterns (LBPs) and
Haar-like features. Since the Haar-like features are covered in Chap. 11, this chapter
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Table 4.1 Feature-based methods for face detection and/or recognition. Papers utilizing LBP are
numerous and therefore not included here but in Sect. 4.3

# Ref. Feature(s) Comment

1 Zhang et al. [98] “Local derivative pattern” Similar to LBP

2 Kozakaya et al. [42] Histogram of gradients (HOG) Similar to SIFT

3 Zhang and Wang [94] SIFT

4 Su et al. [77] Gabor Reg. grid, magn. only

5 Pinto et al. [68] Gabor, Patch Magn. only,
post-processing

6 Hua and Akbarzadeh [34] Gradient descriptor in [88]

7 Lee et al. [46] Modular PCA

8 Liu and Dai [53] Wavelet Similar to Gabor

9 McCool and Marcel [56] DCT coeffs. Similar to Gabor magn.
histogram

10 Ashraf et al. [7] Patch

11 Ding and Martinez [19] Patch and geometric

12 Liang et al. [50] Patch

13 Meyers and Wolf [59] Gabor V1 type post-processing

14 Mian et al. [61] 3D descriptor and SIFT

15 Xu et al. [90] Patch, gradient (AAM) and
geometric

Fusion over layers of
processing

16 Yan et al. [91] Haar based pattern (LAB) Similar to LBP

17 Gökberk et al. [27] Gabor Magn. only, centroids

18 Shastri and Levine [75] Non-negative sparse codebook Similar to Gabor magn.

19 Zhang et al. [97] Gabor Daugman’s phase
code [18] (similar to
SIFT)

20 Arca et al. [6] Gabor Magn. only, centroids

21 Bicego et al. [10] SIFT

22 Ekenel and Stiefelhagen [20] DCT coeffs. Similar to Gabor magn.
histogram

23 Zhang and Jia [93] Steerable filters Similar to Gabor

24 Dalal and Triggs [14] Histogram of gradients (HOG) Similar to SIFT

introduces the remaining two and presents results from face recognition and facial
feature localization experiments.

4.3 Local Binary Patterns

The use of local binary patterns in face analysis started in 2004 when a novel facial
representation for face recognition was proposed [1, 2]. In this approach, the face



84 J.-K. Kämäräinen et al.

Fig. 4.2 The basic LBP operator

image is divided into several regions from which the LBP features are extracted and
concatenated into an enhanced feature histogram which is used as a face descriptor.
The approach has evolved to be a growing success and has been adopted and further
developed by a large number of research groups and companies around the world.
The LBP operator and its variants have been used not only in face recognition but
also in various other face-related problems such as face detection, facial expres-
sion recognition, gender classification, age estimation and visual speech recogni-
tion. The success of LBP in face description is due to the discriminative power and
computational simplicity of the operator, and its robustness to monotonic gray scale
changes caused by, for example, illumination variations. The use of histograms as
features also makes the LBP approach robust to face misalignment and pose varia-
tions. The Matlab code of the LBP operators can be found and freely downloaded
from http://www.ee.oulu.fi/mvg/page/downloads.

4.3.1 Local Binary Patterns

4.3.1.1 LBP in the Spatial Domain

The LBP texture analysis operator, introduced by Ojala et al. [63, 64], is defined as a
gray-scale invariant texture measure, derived from a general definition of texture in
a local neighborhood. It is a powerful texture descriptor and among its properties in
real-world applications are its discriminative power, computational simplicity and
tolerance against monotonic gray-scale changes.

The original LBP operator forms labels for the image pixels by thresholding the
3×3 neighborhood with the center value and considering the result as a binary num-
ber. The histogram of these 28 = 256 different labels can then be used as an image
descriptor. See Fig. 4.2 for an illustration of the basic LBP operator. The operator
has been extended to use neighborhoods of different sizes [64]. Using a circular
neighborhood and bilinear interpolation at noninteger pixel coordinates allow any
radius and number of sampling points. In the following, the notation (P,R) will be
used for pixel neighborhoods which means P sampling points on a circle of radius
R. See Fig. 4.3 for an example of circular neighborhoods.

Another extension to the original operator is the definition of so called uniform
patterns [64]. This extension was inspired by the fact that some binary patterns

http://www.ee.oulu.fi/mvg/page/downloads
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Fig. 4.3 Neighborhood set
for different (P,R). The
pixel values are bilinearly
interpolated whenever the
sampling point is not in the
center of a pixel

Fig. 4.4 Examples of texture
primitives detected by LBP
(white circles represent ones
and black zeros)

occur more frequently than others in texture images. A local binary pattern is called
uniform if the binary pattern contains at most two bitwise transitions from 0 to 1
or vice versa when the bit pattern is traversed circularly. For example, the patterns
00000000 (0 transitions), 01110000 (2 transitions) and 11001111 (2 transitions) are
uniform whereas the patterns 11001001 (4 transitions) and 01010011 (6 transitions)
are not. In the computation of the LBP labels, uniform patterns are used so that
there is a separate label for each uniform pattern and all the non-uniform patterns
are labeled with a single label. For example, when using (8,R) neighborhood, there
are a total of 256 patterns of which 58 are uniform thus yielding to the total of 59
different labels.

Ojala et al. noticed in their experiments with texture images that uniform patterns
account for almost 90% of all patterns when using the (8,1) neighborhood and
around 70% for the (16,2) neighborhood. We have found that 90.6% of the patterns
in the (8,1) neighborhood and 85.2% of the patterns in the (8,2) neighborhood
are uniform in the case of preprocessed FERET face images [67]. Each LBP code
can be regarded as a micro-texton. Local primitives which are codified by these bins
include different types of curved edges, spots, flat areas etc. as illustrated in Fig. 4.4.

We use the following notation for the LBP operator: LBPu2
P,R . The subscript de-

notes the operator in a (P,R) neighborhood. Superscript u2 stands for uniform pat-
terns of maximum of 2 transitions and labeling all remaining patterns with a single
label.

After the LBP labeled image fl(x, y) has been obtained, the LBP histogram can
be defined as

Hi =
∑

x,y

I
{
fl(x, y) = i

}
, i = 0, . . . , n − 1, (4.1)

in which n is the number of different labels produced by the LBP operator and

I {A} =
{

1, if A is true,
0, if A is false.



86 J.-K. Kämäräinen et al.

Fig. 4.5 a Three planes of dynamic texture; b LBP histograms of each plane; c Concatenated
feature

When the image patches whose histograms are to be compared have different sizes,
the histograms must be normalized to get a coherent description:

Ni = Hi∑n−1
j=0 Hj

. (4.2)

4.3.1.2 Spatiotemporal LBP

The original LBP operator was defined to only deal with the spatial information, but
recently it has been extended to a spatiotemporal representation for dynamic texture
(DT) analysis. This has yielded to so called Volume Local Binary Pattern operator
(VLBP) [99]. The idea behind VLBP consists of looking at dynamic texture as a
set of volumes in the (X,Y,T)-space where X and Y denote the spatial coordinates
and T the frame index (time). The neighborhood of each pixel is thus defined in a
three dimensional space. Then, similarly to LBP, volume textons can be defined and
extracted into histograms. Therefore, VLBP combines motion and appearance into
a dynamic texture description.

To make the VLBP computationally simple and easy to extend, the cooccurrences
of the LBP on the three orthogonal planes (LBP-TOP) was introduced [99]. LBP-
TOP consists of the three orthogonal planes: XY , XT and YT , and concatenating
local binary pattern co-occurrence statistics in these three directions. The circular
neighborhoods are generalized to elliptical sampling to fit to the space-time statis-
tics. The LBP codes are extracted from the XY , XT and YT planes, denoted as
XY -LBP, XT -LBP and YT -LBP, for all pixels, and statistics of the three different
planes are concatenated into a single histogram. The procedure is shown in Fig. 4.5.
In this representation, dynamic texture (DT) is encoded by XY -LBP, XT -LBP and
YT -LBP.

Using equal radii for the time and spatial axes is not reasonable for dynamic tex-
tures [99] and therefore, in the XT and YT planes, different radii can be assigned to
sample neighboring points in space and time. More generally, the radii in axes X, Y

and T , and the number of neighboring points in the XY , XT and YT planes can also
be different denoted by RX , RY and RT , PXY , PXT and PYT . The corresponding
feature is denoted as LBP-TOPPXY ,PXT ,PYT ,RX,RY ,RT

.
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Let us assume we are given an X × Y × T dynamic texture (xc ∈ {0, . . . ,X −
1}, yc ∈ {0, . . . , Y − 1}, tc ∈ {0, . . . , T − 1}). A histogram of the DT can be defined
as

Hi,j =
∑

x,y,t

I
{
fj (x, y, t) = i

}
, i = 0, . . . , nj − 1; j = 0,1,2, (4.3)

in which nj is the number of different labels produced by the LBP operator in the
j th plane (j = 0 : XY , 1 : XT and 2 : YT ) and fi(x, y, t) expresses the LBP code of
central pixel (x, y, t) in the j th plane. Similarly to the original LBP, the histograms
must be normalized to get a coherent description for comparing the DTs:

Ni,j = Hi,j

∑nj −1
k=0 Hk,j

. (4.4)

4.3.1.3 Multi-Scale LBP

Noticing that LBP features calculated in a local 3 × 3 neighborhood cannot capture
large-scale structures, multi-scale LBP has been proposed to overcome this limi-
tation. A straightforward way of enlarging the spatial support area is to combine
the information provided by N LBP operators with varying P and R values. This
way, each pixel in an image gets N different LBP codes. The most accurate infor-
mation would be obtained by using the joint distribution of these codes. However,
such a distribution would be overwhelmingly sparse with any reasonable image size.
Therefore, only the marginal distributions of the different operators are considered.
Even though the LBP codes at different radii are not statistically independent in
the typical case, using multi-resolution analysis often enhances the discriminative
power of the resulting features. With most applications, this straightforward way of
building a multi-scale LBP operator has resulted in very good accuracy.

An extension of multi-scale LBP operator is the multiscale block local binary
pattern (MB-LBP) [51] which has gained popularity especially in facial image anal-
ysis. The key idea of MB-LBP is to compare average pixel values within small
blocks instead of comparing pixel values. The operator always considers 8 neigh-
bors, producing labels from 0 to 255. For instance, if the block size is 3 × 3 pixels,
the corresponding MB-LBP operator compares the average gray value of the center
block to the average values of the 8 neighboring blocks of the same size and the
effective area of the operator is 9 × 9 pixels.

4.3.2 Face Description Using LBP

4.3.2.1 Description of Static Face Images

In the LBP approach for texture classification [64], the occurrences of the LBP codes
in an image are collected into a histogram. The classification is then performed by
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Fig. 4.6 Example of an LBP based facial representation

computing simple histogram similarities. However, considering a similar approach
for facial image representation results in a loss of spatial information and therefore
one should codify the texture information with their locations. One way to achieve
this goal is to use the LBP texture descriptors to build several local descriptions of
the face and combine them into a global description. Such local descriptions have
gained interest lately which is understandable given the limitations of the holistic
representations. These local feature based methods seem to be more robust against
variations in pose or illumination than holistic methods.

The basic methodology for LBP based face description is as follows: The facial
image is divided into local regions and LBP texture descriptors are extracted from
the each region independently. The descriptors are then concatenated to a global
face description, as shown in Fig. 4.6.

The basic histogram that is used to gather information about LBP codes in an
image can be extended into a spatially enhanced histogram which encodes both
the appearance and the spatial relations of facial regions. As the facial regions
R0,R1, . . . ,Rm−1 have been determined, the spatially enhanced histogram is de-
fined as

Hi,j =
∑

x,y

I
{
fl(x, y) = i

}
I
{
(x, y) ∈ Rj

}
, i = 0, . . . , n − 1, j = 0, . . . ,m − 1.

This histogram effectively has a description of the face on three different levels of
locality: the LBP labels for the histogram contain information about the patterns
on a pixel-level, the labels are summed over a small region to produce information
on a regional level and the regional histograms are concatenated to build a global
description of the face. It should be noted that when using the histogram based
methods the regions R0,R1, . . . ,Rm−1 do not need to be rectangular. Neither do
they need to be of the same size or shape, and they do not necessarily have to cover
the whole image. It is also possible to have partially overlapping regions.

This outlines the original LBP based facial representation [1, 2] that has been
later adopted to various facial image analysis tasks [31, 45]. Figure 4.6 shows an
example of an LBP based facial representation.



4 Local Representation of Facial Features 89

Fig. 4.7 Features in each block volume. a Block volumes; b LBP features from three orthogonal
planes; c Concatenated features for one block volume with the appearance and motion

4.3.2.2 Description of Face Sequences

How can moving faces be efficiently represented? Psychophysical findings state that
facial movements can provide valuable information to face analysis. Therefore, ef-
ficient facial representations should encode both appearance and motion. We thus
describe an LBP based spatiotemporal representation for face analysis in videos us-
ing region-concatenated descriptors. Like in [2], an LBP description computed over
a whole face sequence encodes only the occurrences of the micro-patterns with-
out any indication about their locations. To overcome this effect, a representation
in which the face image is divided into several overlapping blocks is used. The
LBP-TOP histograms in each block are computed and concatenated into a single
histogram, as illustrated in Fig. 4.7. All features extracted from the each volume are
connected to represent the appearance and motion of the face in the sequence. The
basic VLBP features could also be considered and extracted on the basis of region
motion in the same way as the LBP-TOP features.

The LBP-TOP histograms in each block volume are computed and concatenated
into a single histogram. All features extracted from each block volume are connected
to represent the appearance and motion of the face. In this way, we effectively have
a description of the face on three different levels of locality. The labels (bins) in the
histogram contain information from three orthogonal planes, describing appearance
and temporal information at the pixel level. The labels are summed over a small
block to produce information on a regional level expressing the characteristics for
the appearance and motion in specific locations, and all information from the re-
gional level is concatenated to build a global description of the face sequence.

4.3.3 Face Recognition Using LBP Descriptors

This section describes the application of the LBP based face description to face
recognition. Typically a nearest neighbor classification rule is used in the face recog-
nition task. This is due to the fact that the number of training (gallery) images per
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Fig. 4.8 a An example of a
facial image divided into
7 × 7 windows. b The
weights set for weighted χ2

dissimilarity measure. The
black squares indicate
weight 0.0, dark gray 1.0,
light gray 2.0 and white 4.0

subject is low, often only one. However, the idea of a spatially enhanced histogram
can be exploited further when defining the distance measure for the classifier. An
indigenous property of the proposed face description method is that each element
in the enhanced histogram corresponds to a certain small area of the face. Based on
the psychophysical findings, which indicate that some facial features (such as eyes)
play a more important role in human face recognition than other features [101], it
can be expected that some of the facial regions contribute more than others in terms
of extra-personal variance. Utilizing this assumption the regions can be weighted
based on the importance of the information they contain. Figure 4.8 shows an ex-
ample of weighting different facial regions. The weighted Chi square distance can
be defined as

χ2
w(x, ξ) =

∑

j,i

wj

(xi,j − ξi,j )
2

xi,j + ξi,j

, (4.5)

in which x and ξ are the normalized enhanced histograms to be compared, indices i

and j refer to ith bin corresponding to the j th local region and wj is the weight for
the region j .

In [1, 2, 4], Ahonen et al. performed a set of experiments on the FERET face im-
ages [67]. The results showed that the LBP approach yields higher face recognition
rates than the control algorithms (PCA [82], Bayesian Intra/Extra-personal Clas-
sifier (BIC) [62] and Elastic Bunch Graph Matching EBGM [89]). To gain better
understanding on whether the obtained recognition results are due to general idea
of computing texture features from local facial regions or due to the discriminatory
power of the local binary pattern operator, we also compared LBP to three other tex-
ture descriptors, namely the gray-level difference histogram, homogeneous texture
descriptor [55] and an improved version of the texton histogram [83]. The details
of these experiments can be found in [4]. The results confirmed the validity of the
LBP approach and showed that the performance of LBP in face description exceeds
that of other texture operators as shown in Table 4.2. We believe that the main ex-
planation for the better performance over other texture descriptors is the tolerance
to monotonic gray-scale changes. Additional advantages are the computational effi-
ciency and avoidance of gray-scale normalization prior to the LBP operator.
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Table 4.2 The recognition rates obtained using different texture descriptors for local facial re-
gions. The first four columns show the recognition rates for the FERET test sets and the last three
columns contain the mean recognition rate of the permutation test with a 95% confidence interval

Method fb fc dup I dup II lower mean upper

Difference histogram 0.87 0.12 0.39 0.25 0.58 0.63 0.68

Homogeneous texture 0.86 0.04 0.37 0.21 0.58 0.62 0.68

Texton Histogram 0.97 0.28 0.59 0.42 0.71 0.76 0.80

LBP (nonweighted) 0.93 0.51 0.61 0.50 0.71 0.76 0.81

Fig. 4.9 Example of Gallery and probe images from the FRGC database, and their corresponding
filtered images with Tan and Triggs’ preprocessing chain [80]

Recently, Tan and Triggs developed a very effective preprocessing chain for
face images and obtained excellent results using LBP-based face recognition for
the FRGC database [80]. Since then, many others have adopted their preprocess-
ing chain for applications dealing with severe illumination variations. Figure 4.9
shows an example of gallery and probe images from the FRGC database and the
corresponding filtered images with the preprocessing method.

Chan et al. [12] considered multi-scale LBPs and derived new face descriptor
from Linear Discriminant Analysis (LDA) of multi-scale local binary pattern his-
tograms. The face image is first partitioned into several non-overlapping regions.
In each region, multi-scale uniform LBP histograms are extracted and concatenated
into a regional feature. The features are then projected on the LDA space to be used
as a discriminative facial descriptor. The method was tested in face identification
on the standard FERET database and in face verification on the XM2VTS database
with very promising results.

Zhang et al. [95] considered the LBP methodology for face recognition and
used AdaBoost learning algorithm for selecting an optimal set of local regions and
their weights. This yielded to a smaller feature vector than that used in the original
LBP approach [1]. However, no significant performance enhancement was obtained.
Later, Huang et al. [36] proposed a variant of AdaBoost called JSBoost for selecting
the optimal set of LBP features for face recognition.

In order to deal with strong illumination variations, Li et al. developed a very
successful system combining near infrared (NIR) imaging with local binary pattern
features and AdaBoost learning [49]. The invariance of LBP with respect to mono-
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tonic gray level changes makes the features extracted from NIR images illumination
invariant.

In [70], Rodriguez and Marcel proposed an approach based on adapted, client-
specific LBP histograms for the face verification task. The method considers local
histograms as probability distributions and computes a log-likelihood ratio instead
of χ2 similarity. A generic face model is considered as a collection of LBP his-
tograms. Then, a client-specific model is obtained by an adaptation technique from
the generic model under a probabilistic framework. The reported experimental re-
sults show that the proposed method yields good performance on two benchmark
databases (XM2VTS and BANCA). Later, Ahonen and Pietikäinen [3] have further
enhanced the face verification performance on the BANCA database by developing
a novel method for estimating the local distributions of LBP labels. The method is
based on kernel density estimation in xy-space, and it provides much better spatial
accuracy than the block-based method of Rodriguez and Marcel [70].

4.3.4 LBP in Other Face-Related Problems

The LBP approach has also been adopted to several other face analysis tasks such
as facial expression recognition [23, 74], gender recognition [78], age classifica-
tion [86], face detection [30, 71, 91], iris recognition [79], head pose estimation [54]
and 3D face recognition [48]. For instance, LBP is used in [35] with Active Shape
Model (ASM) for localizing and representing facial key points since an accurate
localization of such points of the face is crucial to many face analysis and synthesis
problems. The local appearance of the key points in the facial images are modeled
with an Extended version of Local Binary Patterns (ELBP). ELBP was proposed in
order to encode not only the first derivation information of facial images but also the
velocity of local variations. The experimental analysis showed that the combination
ASM-ELBP enhances the face alignment accuracy compared to the original ASM
method.

In [30], the authors devised another LBP based representation which is suitable
for low-resolution images and has a short feature vector needed for fast process-
ing. A specific aspect of this representation is the use of overlapping regions and a
4-neighborhood LBP operator (LBP4,1) to avoid statistical unreliability due to long
histograms computed over small regions. Additionally, the holistic description of a
face was enhanced by including the global LBP histogram computed over the whole
face image. The proposed representation performed well in the face detection prob-
lem.

Spatiotemporal LBP descriptors, especially LBP-TOP, have been successfully
utilized in many video-based applications, for example, dynamic facial expression
recognition [100], visual speech recognition [102] and gender recognition from
videos [29]. They can effectively describe appearance, horizontal motion and verti-
cal motion from the video sequence. LBP-TOP based approach was also extended
to include multiresolution features which are computed from different sized blocks,
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Fig. 4.10 Selected 15 slices for different facial expression pairs

different neighboring samplings and different sampling scales, and utilize AdaBoost
to select the slice features for all the expression classes or every class pair, to im-
prove the performance with short feature vectors. After that, on the basis of selected
slices, the location and feature types of most discriminative features for every class
pair are considered. Figure 4.10 shows the selected features for two expression pairs.
They are different and specific depending on the expressions.

4.4 Gabor Features

4.4.1 Introduction

Methods using Gabor features have been particularly successful in biometrics. For
example, Daugman’s iris code [18] is The Method for iris recognition, Gabor fea-
tures were used in the two best methods in the ICPR 2004 face recognition con-
test [57] and they are among the top performers in fingerprint matching [38], and
so on. It is interesting, why feature extraction based on the Gabor’s principle of
simultaneous localization in the frequency and spatial domains [25], is so success-
ful in many applications of computer vision and image processing. The same prin-
ciple was independently found as an intuitive requirement for a “general picture
processing operator” by Granlund [28], and later rigorously defined in 2D by Daug-
man [16].

As the well-known result in face recognition, Lades et al. developed a Gabor
based system using dynamic link architecture (DLA) framework which recognizes
faces by extracting a set of features (“Gabor jet”) at each node of a rectangular grid
over the face image [44]. Later, Wiskott et al. extended the approach and devel-
oped the well-known Gabor wavelet-based elastic bunch graph matching (EBGM)
method to label and recognize faces [89]. In the EBGM algorithm, faces are rep-
resented as graphs with nodes positioned at fiducial points (such as the eyes and
the tip of the nose) and edges labeled with distance vectors. Each node contains a
set of Gabor wavelet coefficients, known as a jet. Thus, the geometry of the face is
encoded by the edges while the local appearance is encoded by the jets. The iden-
tification of a face consists of determining among the constructed graphs the one
which maximizes the graph similarity function.
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In this section, we first explain the main properties of Gabor filters, then describe
how image features can be constructed from filter responses, and finally, demon-
strate how these features can accurately and efficiently represent and detect facial
features. Note that, similarly to LBP, Gabor filters can be used to either detect face
parts or whole face for recognition. In the previous sections, we explained the use
of LBP for face appearance description. For completeness, we focus below on the
use of Gabor filters for representing and detecting facial landmarks.

4.4.2 Gabor Filter

Gabor filter is Gabor function changed into the linear filter form, that is, a signal or
an image can be convolved with the filter to produce a “response image”. This pro-
cess is similar to edge detection. Gabor features are formed by combining responses
of several filters from a single or multiple spatial locations. Gabor function provides
the minimal joint-uncertainty �t ×�f simultaneously in the time (spatial) and fre-
quency domains. In 1946, Dennis Gabor proved that: “The signal which occupies
the minimum area �t�f = 1

2 is the modulation product of a harmonic oscillation(∗)

of any frequency with pulse of the form of a probability function(∗∗)” [25]

ψ(t) = e−α2(t−t0)
2

︸ ︷︷ ︸
(∗∗)

ej2πf0t+φ
︸ ︷︷ ︸

(∗)

. (4.6)

In (4.6), α is the sharpness (time duration and bandwidth) of the Gaussian, t0 is
the time shift defining the time location of the Gaussian, f0 is the frequency of
the harmonic oscillations (frequency location), and φ denotes the phase shift of
the oscillation. The Gabor elementary function in (4.6) has a Fourier spectrum of
analytical form

Ψ (f ) =
√

π

α2
e−( π

α
)2(f −f0)

2
e−j2πt0(f −f0)+φ. (4.7)

Two important findings can be seen in (4.6) and (4.7): Gabor function, or more
precisely its magnitude, has the Gaussian form in the time domain and frequency
domain; The Gaussian is located at t0 in time and f0 in frequency; If you increase
the bandwidth α, the function will shrink in time (more accurate), but stretch in
frequency (more inaccurate). These are the properties which help understand Gabor
filter as a linear operator operating in time and frequency simultaneously. For the
linear filter form, the function is typically simplified by centering it to origin (t0 = 0)
and removing the phase shift (φ = 0).

Gabor’s original idea was to synthesize signals using a set of these elementary
functions. That research direction has lead to the theory of Gabor expansion (Ga-
bor transform) [8] and more generally to the Gabor frame theory [22]. Feature ex-
traction, however, is signal analysis. The development of the 2D Gabor elementary
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functions began from Granlund in 1978, when he defined some fundamental prop-
erties and proposed the form of a general picture processing operator. The general
picture processing operator had a form of the Gabor elementary function in two di-
mensions and it was derived directly from the needs of the image processing without
a connection to Gabor’s work [28]. It is noteworthy that Granlund addressed many
properties, such as the octave spacing of the frequencies, that were reinvented later
for the Gabor filters. Despite the original contribution of Granlund the most referred
works are those conducted by Daugman [16, 17]. Daugman was the first who exclu-
sively derived the uncertainty principle in two dimensions and showed the similarity
between a structure based on the 2D Gabor functions and the organization and the
characteristics of the mammalian visual system. Again, several simplifications are
justifiable [39] and 2D Gabor function can be defined as

ψ(x, y) = e−(α2x′2+β2y′2)ej2πf0x
′
,

x′ = x cos θ + y sin θ,

y′ = −x sin θ + y cos θ, (4.8)

where the new parameters are β for sharpness of the second Gaussian axis and
θ for its orientation. In practice, the sharpness is connected to the frequency in
order to make filters self-similar (Gabor wavelets) [39]. This is achieved by setting
α = |f0|/γ and β = |f0|/η and by normalizing the filter. Finally, the 2D Gabor filter
in the spatial domain is

ψ(x, y) = f 2

πγ η
e
−(

f 2

γ 2 x′2+ f 2

η2 y′2)
ej2πf x′

,

x′ = x cos θ + y sin θ,

y′ = −x sin θ + y cos θ, (4.9)

where f is the central frequency of the filter, θ the rotation angle of the Gaussian
major axis and the plane wave, γ the sharpness along the major axis, and η the
sharpness along the minor axis (perpendicular to the wave). In the given form, the
aspect ratio of the Gaussian is η/γ . The normalized 2D Gabor filter function has an
analytical form in the frequency domain

Ψ (u, v) = e
− π2

f 2 (γ 2(u′−f )2+η2v′2)
,

u′ = u cos θ + v sin θ,

v′ = −u sin θ + v cos θ. (4.10)

The effects of the Gabor filter parameters, interpretable via the Fourier similarity
theorem, are demonstrated in Fig. 4.11.
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4.4.3 Constructing Gabor Features

Gabor features are constructed by convolution of an input image ξ(x, y) with the
filter in (4.9)

rξ (x, y;f, θ) = ψ(x, y;f, θ) ∗ ξ(x, y)

=
∫ ∫ ∞

−∞
ψ(x − xτ , y − yτ ;f, θ)ξ(xτ , yτ ) dxτ dyτ . (4.11)

The convolution produces a response image rξ of the same size. Only a single filter
rarely succeeds but the response images are computed for a “bank” of filters tuned
on various frequencies and orientations. The frequencies are typically drawn from
the logarithmic scale similar to wavelets [15]:

fk = c−kfmax, for k = 0, . . . ,m − 1 (4.12)

where fmax is the maximum frequency (the smallest scale) and c is the frequency
scaling factor. Some useful values for c include c = 2 for octave spacing and c = √

2
for half-octave spacing. The filter orientations are spaced uniformly

θk = k2π

n
, k = {0, . . . , n − 1}. (4.13)

For real signals the responses on [π,2π[ are complex conjugates of responses on
[0,π[ and therefore only the responses for the half plane are needed:

θk = kπ

n
, k = {0, . . . , n − 1}. (4.14)

For a bank of Gabor filters, the responses computed at a single location (x0, y0)

with the parameters drawn from (4.12) and (4.14) a feature matrix G can be con-
structed as

G =

⎛

⎜⎜⎜⎝

r(x0, y0;f0, θ0) r(x0, y0;f0, θ1) . . . r(x0, y0;f0, θn−1)

r(x0, y0;f1, θ0) r(x0, y0;f1, θ1) . . . r(x0, y0;f1, θn−1)
...

...
. . .

...

r(x0, y0;fm−1, θ0) r(x0, y0;fm−1, θ1) . . . r(x0, y0;fm−1, θn−1)

⎞

⎟⎟⎟⎠ .

(4.15)
In (4.15) the columns denote responses over different orientations and rows over dif-
ferent frequencies (scales). This structure is called as “simple Gabor feature space”
formally defined in [43], later revised in [39] and utilized in face detection in [32].
A significant simplification made in the proposed feature space is the use of only
one spatial location (x′, y′) to represent an object. The assumption is justified if the
objects are simple or if they are distinguishable from each other in the feature space.
This is not the case with, for example, the human face, but seems to hold between
salient sub-parts, such as nostrils, eyes, mouth corners, etc. The filters in one loca-
tion tuned to various frequencies and orientations span a sub-space whose accuracy
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Fig. 4.12 Reconstruction from responses at 10 different locations (four orientations and five fre-
quencies): a original; b reconstruction

decreases from the filter origin. This is demonstrated in Fig. 4.12 where an original
face is reconstructed using filter responses from 10 locations.

Operations for rotation and scale invariant searches of objects can be defined as
a column-wise circular shift of the response matrix corresponding to the rotation
of the object around the location (x0, y0) and a row-wise shift corresponding to the
scaling of an object by a factor c [43]. An illumination invariance can be achieved
by normalizing the feature matrix [43].

4.4.4 Learning Facial Features

In principle, Gabor features can be used similarly to LBPs or any other local fea-
tures. The filter responses are computed for various frequencies and orientations,
and a descriptor formed from the responses inside one or multiple fixed-size win-
dows as illustrated in Fig. 4.6. For example, Zou et al. [103] proposed a face recog-
nition method using such region descriptor and reported state-of-the-art results for
the FERET database: fb: 99.5%, fc: 99.5%, dup I: 85.0% and dup II: 79.5%. Ga-
bor face descriptor is easy to implement, but for completeness, in this section we
concentrate on local facial features and utilize the simple feature matrix to represent
and learn them.

We assume an annotated training set of face images. The annotations are, for
example, the centroids of selected facial landmarks (see Fig. 4.12(a)). Any classi-
fier or pattern recognition method can be used to learn the facial representations
from extracted Gabor features. A completely statistical approach, however, possess
superior properties as compared to other methods [37]: the decision making has an
interpretable basis from which the most probable option can be chosen and a within-
class comparison can be performed using statistical hypothesis testing [66]. In the
statistical approaches, a class is typically represented in terms of a class conditional
probability density function (pdf) over feature space. It should be noted, that finding
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a proper pdf estimate has a crucial impact on the success of the facial feature de-
tection. Typically, the form of the pdf’s is somehow restricted and the estimation is
reduced to a problem of fitting the restricted model to the observed features. Often
simple models such as a single Gaussian distribution (normal distributed random
variable) can efficiently represent features but a more general model, such as a fi-
nite mixture model, must be used to approximate more complex pdf’s. We adopt the
method in [37] where Gaussian mixture models represent facial feature conditional
pdf’s given the Gabor feature matrix.

The multiresolution Gabor feature in a single location can be converted from the
matrix in (4.15) to a feature vector

g = [
r(x0, y0;f0, θ0) r(x0, y0;f0, θ1) . . . r(x0, y0;fm−1, θn−1)

]
. (4.16)

Since the feature vector is complex valued the complex Gaussian distribution func-
tion needs to be used,

N C(x;μ,Σ) = 1

πD|Σ | exp
[−(x − μ)∗Σ−1(x − μ)

]
, (4.17)

where Σ denotes the covariance matrix. It should be noted that the pure complex
form of the Gaussian in (4.17) provides computational stability in the parameter
estimation as compared to a concatenation of real and imaginary parts to two real
numbers as the dimensionality of the problem doubles in the latter case [66]. Now,
a Gaussian mixture model (GMM) probability density function can be defined as a
weighted sum of Gaussians

p(x; θ) =
C∑

c=1

αc N C(x;μc,Σc), (4.18)

where αc is the weight of the cth component. The weight can be interpreted as a
priori probability that a value of the random variable is generated by the cth source,
and thus, 0 ≤ αc ≤ 1 and

∑C
c=1 αc = 1. The Gaussian mixture model probability

density function can be completely defined by the parameter list

θ = {α1,μ1,Σ1, . . . , αC,μC,ΣC}. (4.19)

The main question remains how the parameters in (4.19) can be estimated from
the given training data. The most popular estimation method is the expectation max-
imization (EM) algorithm, but the EM algorithm requires knowledge of the number
of Gaussians, C, as an input parameter. The number is often unknown and this is a
strong motivation to apply unsupervised methods, such as that of Figueiredo–Jain
(FJ) [24] or the greedy EM algorithm [84]. Of the two unsupervised methods, the
Figueiredo–Jain method provides more accurate results and its complex extension
can be directly applied to pdf’s of the complex feature vectors in (4.16) [66].

The probability distribution values, likelihoods, can be directly used to find the
best or rank facial feature candidates [66]. It is even possible to reduce the search
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Fig. 4.13 Example of using density quantile of pdf values: a Pdf surface for the left nostril class;
b Pdf values belonging to 0.5 density quantile; c Pdf values belonging to 0.05 density quantile [37]

Algorithm 4.1: Train facial feature classifier
1: for all Training images do
2: Align and normalize image to represent an object in a standard pose
3: Extract multiresolution Gabor features at given locations
4: Normalize the features
5: Store the features to the sample matrix P and their corresponding class

labels to the target vector T

6: end for
7: With samples in P estimate class conditional pdf’s for each class using

Gaussian mixture models and FJ algorithm

space considerably by discarding image features beyond a requested score level,
that is, density quantile [66]. In Fig. 4.13, the use of density quantile for reducing
the search space is demonstrated; it is clear that the spatial area corresponding to the
0.05 (0.95 confidence) density quantile contains the correct image feature.

4.4.5 Detecting Facial Features

A supervised learning algorithm to extract simple Gabor features (multiresolution
Gabor features) and to estimate the class conditional pdf’s for the facial features
is presented in Algorithm 4.1. Matlab functionality for efficient computation of the
multiresolution Gabor features [76] and for the Gaussian mixture models and the FJ
algorithm are publicly available [26]. In Algorithm 4.2, the main steps to extract the
features from an image are shown.

Experiments Using the XM2VTS Face Database XM2VTS facial image
database is a publicly available database for benchmarking face detection and recog-
nition methods [58]. The frontal part of the database contains 600 training images
and 560 test images of size 720 ×576 (width × height) pixels. For facial images ten
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Algorithm 4.2: Extract K best face features of each class from an image I

1: Compute multiresolution Gabor features G(x,y;fm, θn) for the whole image
I (x, y)

2: for all Scale shifts do
3: for all Rotation shifts do
4: Shift Gabor features
5: Normalize Gabor features
6: Calculate confidence scores (pdf values) for all classes and for all (x, y)

7: Update feature class confidence at each location
8: end for
9: end for

10: Sort the features by their score for each class
11: Return the K best features of each facial feature class

specific regions (see Fig. 4.12(a)) have been shown to have favorable properties to
act as keypoints [32]. A normalized distance between the eyes, 1.0, will be used as
measure of image feature detection accuracy. The distance measure is demonstrated
in Fig. 4.14(a).

Gabor parameters were experimentally selected by using a cross-validation pro-
cedure over the training and evaluation sets in the database: n = 4, m = 6, k = √

3
and fhigh = 1/40. Image features were extracted in a ranked order and a keypoint
was considered to be correctly extracted if it was within a pre-set pixel distance limit
from the correct location. Results with XM2VTS are presented in Fig. 4.14(b). The
distances are scale normalized, so that the distance between centers of the eyes is
1.0 (see Fig. 4.14(a) for a demonstration). On average, 4 correct image features were
included in the first 10 image features within distance limit 0.05, but as the number
of features was increased to 100: over 9 for 0.05 and almost all features found for
0.10 and 0.20. It should be noted that accuracies of 0.10 and 0.20 are still very good
for face registration and recognition. Increasing the number of image features over
100 (10 per class) did not improve the results anymore, but relaxing the distance
limit to 0.10 almost perfect result were reached with only 10 first image features
from each class. Typical detection results are demonstrated in Figs. 4.14(c)–(e).

Methods for accurate face and facial feature detection and localization based
on the described Gabor representations have been proposed and reported to pro-
duce state-of-the-art detection accuracy for more difficult and realistic data sets
(XM2VTS/non-frontal, BANCA and BioID) [32, 40].

4.5 Discussions on Local Features

A drawback of the LBP method, as well as of all local descriptors that apply vector
quantization, is that they are not robust in the sense that a small change in the input
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Fig. 4.14 a Demonstration of accuracy distance measure; b Performance for facial feature detec-
tion in XM2VTS test images; c, d, e Examples of extracted features (left eye center: blue, right
eye outer corner: green, left nostril: red, right mouth corner: cyan, 5 best feature for each landmark
numbered from 1 to 5) [37]

image would always cause a small change in the output. LBP may not work prop-
erly for noisy images or on flat image areas of constant gray level. Many variants
of LBP have been proposed to improve its robustness. For instance, Tan and Triggs
proposed a three-level operator called local ternary patterns for example, to deal
with problems on flat image areas [80]. Liao et al. [52] introduced dominant local
binary patterns which make use of the most frequently occurred patterns of LBP to
improve the recognition accuracy compared to the original uniform patterns. Raja
and Gong proposed sparse multiscale local binary patterns to better exploit the dis-
criminative capacity of multiscale features available [69]. Inspired by LBP, higher
order local derivative patterns (LDP) were proposed by Zhang et al., with applica-
tions in face recognition [98].

LBP has also inspired the development of new effective local face descriptors,
such as the Weber Law Descriptor (WLD) containing differential excitation and ori-
entation components [13] and the blur-invariant Local Phase Quantization (LPQ)
descriptor [65]. The LPQ descriptor has received wide interest in blur-invariant face
recognition [5]. LPQ is based on quantizing the Fourier transform phase in local
neighborhoods. Similarly to the widely used LBP based face description, histograms
of LPQ labels computed within local regions are also adopted as a face descrip-
tor. The experiments showed that such LPQ descriptors are highly discriminative
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and produce very promising face recognition results, outperforming LBP both with
blurred and sharp images on CMU PIE and FRGC 1.0.4 datasets.

A current trend in the development of new effective local face image descriptors
is to combine the strengths of complementary descriptors. From the beginning, the
LBP operator was designed as a complementary measure of local image contrast.
Applying LBP to Gabor-filtered face images, or using LBP and Gabor methods
jointly, have provided excellent results in face recognition [81, 96]. For instance,
Zhang et al. [96] proposed the extraction of LBP features from images obtained by
filtering a facial image with 40 Gabor filters of different scales and orientations. Ex-
cellent results have been obtained on the all FERET sets. A downside of the method
lies in the high dimensionality of the feature vector (LBP histogram) which is calcu-
lated from 40 Gabor images derived from each single original image. To overcome
this problem of large feature dimensions, Shan et al. [73] presented a new exten-
sion using Fisher Discriminant Analysis (FDA), instead of the χ2 (Chi-square), and
histogram intersection, which have been previously used in [96]. The authors con-
structed an ensemble of piecewise FDA classifiers, each of which is built based
one segment of the high-dimensional LBP histograms. Impressive results were re-
ported on the FERET database. Other works have also successfully exploited the
complementary of Gabor filters and LBP features by fusing the two set of features
e.g. for age classification [86]. Combining ideas from Haar and LBP features have
also given excellent results in accurate and illumination invariant face detection [71,
91].

Features based on Gabor filters are very versatile. By post-processing they can
be transformed, for example, to binary descriptors of texture similar to LBPs. For
example, in the Daugman’s iris code the response phase is quantized to two bits
(four quadratures in the complex plane) [18]. The Daugman’s descriptor is very
discriminative and its histograms were used in face recognition in [97]. Utilization
of the phase information is important for discrimination, but many other efficient
post-processing methods exist in the literature and they are used in human visual
system oriented recognition methods [72]. Another important property of Gabor
filters is that the original signal can be reconstructed. This property was employed
in this chapter where we introduced the efficient facial feature descriptor based on
Gabor features at a single location. Recently, the importance of phase information
have been noticed and very good recognition results reported for features based
on Gabor phase [96]. It is important to notice that the complex-valued response,
including both magnitude and phase, is the most natural representation, and should
be used in methods based on Gabor filters.

4.6 Conclusions

Finding efficient facial or facial feature representations is a key issue in develop-
ing robust face recognition systems. Many methods have been proposed for this
purpose. Local feature based methods seem to be more robust against variations in
pose or illumination than holistic methods. Especially methods based on Gabor filter
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responses and local binary patterns have been particularly successful in face image
processing.
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