
Chapter 13
Face Tracking and Recognition in Video

Rama Chellappa, Ming Du, Pavan Turaga, and Shaohua Kevin Zhou

13.1 Introduction

Faces are expressive three dimensional objects. Information useful for recognition
tasks can be found both in the geometry and texture of the face and also facial
motion. While geometry and texture together determine the ‘appearance’ of the face,
motion encodes behavioral cues such as idiosyncratic head movements and gestures
which can potentially aid in recognition tasks. Traditional face recognition systems
have relied on a gallery of still images for learning and a probe of still images for
recognition. While the advantage of using motion information in face videos has
been widely recognized, computational models for video based face recognition
have only recently gained attention.

In this chapter, we consider applications where one is presented with a video
sequence—either in a single camera setting or a multi-camera setting—and the goal
is to recognize the person in the video. The gallery could consist of either still-
images or could be videos themselves.

Video is a rich source of information in that it can lead to potentially better rep-
resentations by offering more views of the face. Further, the role of facial motion
for face perception has been well documented. Psychophysical studies [26] have
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found evidence that when both structure and dynamics information is available, hu-
mans tend to rely more on dynamics under nonoptimal viewing conditions (such
as low spatial resolution, harsh illumination conditions etc.). Dynamics also aids in
recognition of familiar faces [31]. If one were to ignore temporal dependencies, a
video sequence can be considered as a collection of still images; so still-image-based
recognition algorithms can always be applied. The properties of video sequences
that can be exploited are (1) temporal correlations, (2) idiosyncratic dynamic infor-
mation, and (3) availability of multiple views. Video thus proves useful in various
tasks—it can be used to generate better appearance models, mitigate effects of non-
cooperative viewing conditions, localize a face using motion, model facial behavior
for improved recognition, generate better models of face shape from multiple views,
etc.

The rest of the chapter is organized as follows. In Sect. 13.2, we describe the
utility of videos in enhancing performance of image-based recognition tasks. In
Sect. 13.3, we discuss a joint tracking-recognition framework that allows for using
the motion information in a video to better localize and identify the person in the
video using still galleries. In Sect. 13.4, we discuss how to jointly capture facial
appearance and dynamics to obtain a parametric representation for video-to-video
recognition. In Sect. 13.5, we discuss recognition in multi-camera networks where
the probe and gallery both consist of multi-camera videos. Finally in Sect. 13.6, we
present concluding remarks and directions for future research.

13.2 Utility of Video

Frame-Based Fusion An immediate possible utilization of temporal information
for video-based face recognition is to fuse the results obtained by a 2D face recogni-
tion algorithm on each frame of the sequence. The video sequence can be seen as an
unordered set of images to be used for both training and testing phases. During test-
ing one can use the sequence as a set of probes, each of them providing a decision
regarding the identity of the person. Appropriate fusion techniques can then be ap-
plied to provide the final identity. Perhaps the most frequently used fusion strategy
in this case is majority voting [24, 34].

In [28], Park et al. adopt three matchers for frame-level face recognition: Face-
VACS, PCA and correlation. They use the sum rule (with min-max normalization)
to fuse results obtained from the three matchers and the maximum rule to fuse re-
sults of individual frames. In [21], the concept of identity surface is proposed to
represent the hyper-surface formed by projecting face patterns of an individual to
the feature vector space parameterized with respect to pose. This surface is learned
from gallery videos. In testing stage, model trajectories are synthesized on the iden-
tity surfaces of enrolled subjects after the pose parameters of probe video have been
estimated. Every point on the trajectory corresponds to a frame of the video and
trajectory distance is defined as a weighted sum of point-wise distances. The model
trajectory that yields minimum distance to the probe video’s trajectory gives the final
identification result. Based on the result that images live approximately in a bilinear
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space of motion and illumination variables, Xu et al. estimate these parameters for
each frame of a probe video sequence with a registered 3D generic face model [38].
They then replace the generic model with a person-specific model of each subject
in the gallery to synthesize video sequences with the estimated illumination and
motion parameters. Frame-wise comparison is conducted between the synthesized
videos and the probe video. A synthesized video is considered as a winner if one
of its frames yield the smallest distance across all frames and all the subjects in the
gallery.

Ensemble Matching Without recourse to modeling temporal dynamics, one can
consider a video as an ensemble of images. Recent methods have focused on utiliz-
ing image-ensembles for object and face recognition [4, 15, 17, 41]. For example, it
was shown by Jacobs et al. that the illumination cone of a convex Lambertian surface
can be approximated by a 9-dimensional linear subspace [5]. Motivated by this, the
set of face images of the same person under varying illumination conditions is fre-
quently modeled as a linear subspace of 9-dimensions [19]. In such applications, an
object ‘category’ consists of image-sets of several ‘instances’. A common approach
in such applications is to approximate the image-space of a single face/object un-
der these variations as a linear subspace [14, 15]. A simplistic model for object
appearance variations is then a mixture of subspaces. In [41], Zhou and Chellappa
study the problem of measuring similarity between two ensembles by projecting the
data into a Reproducing Kernel Hilbert Space (RKHS). The ensemble distance is
then characterized as the probabilistic distance (Chernoff distance, Bhattacharyya
distance, Kullback–Leibler (KL) divergence etc.) in RKHS.

Appearance Modeling Most face recognition approaches rely on a model of
appearance for each individual subject. The simplest appearance model is a static
image of the person. Such appearance models are rather limited in utility in video-
based face recognition tasks where subjects may be imaged under varying view-
points, illuminations, expressions etc. Thus, instead of using a static image as an
appearance model, a sufficiently long video which encompasses several variations
in facial appearance can lend itself to building more robust appearance models. Sev-
eral methods have been proposed for extracting more descriptive appearance models
from videos. For example, a facial video is considered as a sequence of images sam-
pled from an ‘appearance manifold’ in [20]. In principle, the appearance manifold
of a subject contains all possible appearances of the subject. In practice, the appear-
ance manifold for each person is estimated from training data of videos. For ease of
estimation, the appearance manifold is considered to be a collection of affine sub-
spaces, where each subspace encodes a set of similar appearances of the subject.
Temporal variations of appearances in a given video sequence are then modeled as
transitions between the appearance subspaces. This method is robust to large ap-
pearance changes if sufficient 3D view variations and illumination variations are
available in the training set. Further, the tracking problem can be integrated into this
framework by searching for a bounding-box on the test image that minimizes the
distance of the cropped region to the learnt appearance manifold.
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In a related work, [3] represents the appearance variations due to shape and illu-
mination on human faces, using the assumption that the ‘shape-illumination mani-
fold’ of all possible illuminations and head poses is generic for human faces. This
means that the shape-illumination manifold can be estimated using a set of subjects
exclusive of the test set. They show that the effects of face shape and illumination
can be learnt using Probabilistic PCA from a small, unlabeled set of video sequences
of faces in randomly varying lighting conditions. Given a novel sequence, the learnt
model is used to decompose the face appearance manifold into albedo and shape-
illumination manifolds, producing the classification decision using robust likelihood
estimation.

13.3 Still Gallery vs. Video Probes

Following Phillips et al. [29], we define a still-to-video scenario as follows. The
gallery consists of still facial templates, and the probe set consists of video se-
quences containing the facial region. Though significant research has been con-
ducted on still-to-still recognition, research efforts on still-to-video recognition are
relatively fewer owing to the following challenges [40] in typical surveillance ap-
plications: poor video quality, significant illumination and pose variations, and low
image resolution. Most existing video-based recognition systems [9, 40] attempt the
following: The face is first detected and then tracked over time. Only when a frame
satisfying certain criteria (size, pose) is acquired, recognition is performed using
still-to-still recognition technique. For this, the face part is cropped from the frame
and transformed or registered using appropriate transformations. This tracking-then-
recognition approach attempts to resolve uncertainties in tracking and recognition
sequentially and separately and requires a criterion for selecting good frames and
estimation of parameters for registration. Also, still-to-still recognition does not ef-
fectively exploit temporal information.

We will assume that a certain feature representation for spatio-temporal patterns
of moving faces has been made. We will also assume that there exists a set of hid-
den parameters, constituting the state vector, which govern how the spatio-temporal
patterns evolve in time. The state vector encodes information such as motion pa-
rameters which can be used for tracking and identity parameters that can be used
for recognition. Given a set of features, we need inference algorithms for estimating
these hidden parameters. The three basic components of the model are the follow-
ing.

• A motion equation governing the kinematic behavior of the tracking motion vec-
tor

• An identity equation governing the temporal evolution of the identity variable
• An observation equation establishing a link between the motion vector and the

identity variable

We denote the gallery as I = {I1, I2, . . . , IN }, indexed by the identity variable n,
which lies in a finite sample space N = {1,2, . . . ,N}. And we denote the identity,
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motion vector, and the observation at time t as nt , θt and zt , respectively. Using
the Sequential Importance Sampling (SIS) [12, 18, 22] technique, the joint posterior
distribution of the motion vector and the identity variable [i.e., p(nt , θt | z0:t )] is
estimated at each time instant and then propagated to the next time instant governed
by motion and identity equations. The marginal distribution of the identity variable
[i.e., p(nt | z0:t )] is estimated to provide the recognition result.

The recognition model consists of the following components.

• Motion equation
In its most general form, the motion model can be written as

θt = g(θt−1, ut ); t ≥ 1 (13.1)

where ut is noise in the motion model, whose distribution determines the mo-
tion state transition probability p(θt | θt−1). The function g(., .) characterizes the
evolving motion, and it could be a function learned offline or given a priori. One
of the simplest choices is an additive function (i.e., θt = θt−1 + ut ), which leads
to a first-order Markov chain.

The choice of θt is dependent on the application. Affine motion parameters
are often used when there is no significant pose variation available in the video
sequence. However, if a three-dimensional (3D) face model is used, 3D motion
parameters should be used accordingly.

• Identity equation
Assuming that the identity does not change as time proceeds, we have

nt = nt−1; t ≥ 1. (13.2)

In practice, one may assume a small transition probability between identity vari-
ables to increase the robustness.

• Observation equation
By assuming that the transformed observation is a noise-corrupted version of
some still template in the gallery, the observation equation can be written as

Tθt {zt } = Int + vt ; t ≥ 1 (13.3)

where vt is observation noise at time t , whose distribution determines the obser-
vation likelihood p(zt | nt , θt ), and Tθt {zt } is a transformed version of the ob-
servation zt . This transformation could be geometric, photometric, or both. How-
ever, when confronting difficult scenarios, one should use a more sophisticated
likelihood function as discussed in [43].

• Statistical independence
We assume statistical independence between all noise variables ut and vt .

• Prior distribution
The prior distribution p(n0 | z0) is assumed to be uniform.

p(n0 | z0) = 1

N
; n0 = 1,2, . . . ,N. (13.4)
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In our experiments, p(θ0|z0) is assumed to be Gaussian: its mean comes from an
initial detector or manual input and its covariance matrix is manually specified.

Using an overall state vector xt = (nt , θt ), (13.1) and (13.2) can be combined into
one state equation (in a normal sense) that is completely described by the overall
state transition probability

p(xt | xt−1) = p(nt | nt−1)p(θt | θt−1). (13.5)

Given this model, our goal is to compute the posterior probability p(nt | z0:t ).
It is in fact a probability mass function (PMF), as nt only takes values from
N = {1,2, . . . ,N}, as well as a marginal probability of p(nt , θt | z0:t ), which is
a mixed distribution. Therefore, the problem is reduced to computing the posterior
probability.

13.3.1 Posterior Probability of Identity Variable

The evolution of the posterior probability p(nt | z0:t ) as time proceeds is interesting
to study, as the identity variable does not change by assumption [i.e., p(nt | nt−1) =
δ(nt − nt−1), where δ(.) is a discrete impulse function at zero, that is, δ(x) = 1 if
x = 0; otherwise δ(x) = 0]. Using time recursion, Markov properties, and statistical
independence embedded in the model, one can derive the following expressions:

p(n0:t , θ0:t | z0:t )

= p(n0:t−1, θ0:t−1 | z0:t−1)
p(zt | nt , θt )p(nt | nt−1)p(θt | θt−1)

p(zt | z0:t−1)

= p(n0, θ0 | z0)

t∏

i=1

p(zi | ni, θi)p(ni | ni−1)p(θi | θi−1)

p(zi | z0:i−1)

= p(n0 | z0)p(θ0 | z0)

t∏

i=1

p(zi | ni, θi)δ(ni − ni−1)p(θi | θi−1)

p(zi | z0:i−1)
. (13.6)

Therefore, by marginalizing over θ0:t and n0:t−1, we obtain the marginal posterior
distribution for the identity j .

p(nt = j | z0:t ) = p(n0 = j | z0)

∫

θ0

· · ·
∫

θt

p(θ0 | z0)

×
t∏

i=1

p(zi | j, θi)p(θi | θi−1)

p(zi | z0:i−1)
dθt · · · dθ0. (13.7)

Thus, p(nt = j | z0:t ) is determined by the prior distribution p(n0 = j | z0) and the
product of the likelihood functions

∏t
i=1 p(zi | j, θi). If a uniform prior is assumed,

then
∏t

i=1 p(zi | j, θi) is the only determining factor.
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13.3.2 Sequential Importance Sampling Algorithm

Consider a general time series state space model fully determined by (1) the overall
state transition probability p(xt | xt−1); (2) the observation likelihood p(zt | xt ); and
(3) prior probability p(x0) and statistical independence among all noise variables.
We wish to compute the posterior probability p(xt | z0:t ).

If the model is linear with Gaussian noise, it is analytically solvable by a Kalman
filter, which essentially propagates the mean and variance of a Gaussian distribution
over time. For nonlinear and non-Gaussian cases, an extended Kalman filter and its
variants have been used to arrive at an approximate analytic solution [2]. Recently,
the SIS technique, a special case of the Monte Carlo method [12, 18, 22] has been
used to provide a numerical solution and propagate an arbitrary distribution over
time.

The essence of the Monte Carlo method is to represent an arbitrary probability
distribution π(x) closely by a set of discrete samples. It is ideal to draw i.i.d. sam-
ples {x(m)}Mm=1 from π(x). However, it is often difficult to implement, especially
for nontrivial distributions. Instead, a set of samples {x(m)}Mm=1 is drawn from an
importance function g(x); then a weight

w(m) = π
(
x(m)

)
/g

(
x(m)

)
(13.8)

is assigned to each sample. This technique is called importance sampling. It can
be shown [22] that the importance sample set S = {(x(m),w(m))}Mm=1 is properly
weighted to the target distribution π(x). To accommodate a video, importance sam-
pling is used in a sequential fashion, which leads to SIS. SIS propagates St−1 ac-
cording to the sequential importance function, say g(xt | xt−1), and calculates the
weight using

wt = wt−1p(zt | xt )p(xt | xt−1)/g(xt | xt−1). (13.9)

In the CONDENSATION algorithm, g(xt | xt−1) is taken to be p(xt | xt−1) and (13.9)
becomes

wt = wt−1p(zt | xt ). (13.10)

In fact, (13.10) is implemented by first resampling the sample set St−1 according to
wt−1 and then updating the weight wt using p(zt | xt ). For a complete description
of the SIS method, refer to Doucet et al. [12] and Liu and Chen [22].

In the context of video-based face recognition, the posterior probability p(nt , θt |
z0:t ) is represented by a set of indexed and weighted samples

St = {(
n

(m)
t , θ

(m)
t ,w

(m)
t

)}M

m=1 (13.11)

with nt as the above index. We can sum the weights of the samples belonging to
the same index nt to obtain a proper sample set {nt , βnt }Nnt=1 with respect to the
posterior PMF p(nt |z0:t ). Straightforward implementation of the CONDENSATION

algorithm for simultaneous tracking and recognition is not efficient in terms of its
computational load. We refer the reader to [42] for a more detailed treatment of this
issue.
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13.3.3 Experimental Results

In this section, we describe the still-to-video scenarios used in our experiments and
model choices, followed by a discussion of results. Two databases are used in the
still-to-video experiments.

Database-0 was collected outside a building. We mounted a video camera on a
tripod and requested subjects to walk straight toward the camera to simulate typi-
cal scenarios for visual surveillance. Database-0 includes one face gallery and one
probe set. The probe contains 12 videos, one for each individual.

In Database-1, we have video sequences with subjects walking in a slant path
toward the camera. There are 30 subjects, each having one face template. The face
gallery is shown in Fig. 13.1. The probe contains 30 video sequences, one for each
subject. Figure 13.1 shows some frames extracted from one probe video. As far
as imaging conditions are concerned, the gallery is quite different from the probe,
especially in terms of lighting. This is similar to the “FC” test protocol of the FERET
test [29]. These images/videos were collected as part of the HumanID project by the
National Institute of Standards and Technology and University of South Florida
researchers.

13.3.3.1 Results for Database-0

We now consider affine transformation. Specifically, the motion is characterized
by θ = (a1, a2, a3, a4, tx, ty), where {a1, a2, a3, a4} are deformation parameters and
{tx, ty} are 2D translation parameters. It is a reasonable approximation because there
is no significant out-of-plane motion as the subjects walk toward the camera. Re-
garding the photometric transformation, only the zero-mean-unit-variance operation
is performed to compensate partially for contrast variations. The complete transfor-
mation Tθ {z} is processed as follows. Affine transform z using {a1, a2, a3, a4}, crop
out the interested region at position {tx, ty} with the same size as the still template
in the gallery, and perform the zero-mean-unit-variance operation.

A time-invariant first-order Markov Gaussian model with constant velocity is
used for modeling motion transition. Given that the subject is walking toward the
camera, the scale increases with time. However, under perspective projection, this
increase is no longer linear, causing the constant-velocity model to be not optimal.
However, experimental results show that so long as the samples of θ can cover the
motion, this model is sufficient.

The likelihood measurement is simply set as a “truncated” Laplacian:

p1(zt | nt , θt ) = L
(∥∥Tθt {zt } − Int

∥∥;σ1, τ1
)

(13.12)

where ‖.‖ is sum of absolute distance, σ1 and λ1 are manually specified, and

L(x;σ, τ) =
{
σ−1 exp(−x/σ) if x ≤ τσ,

σ−1 exp(−τ) otherwise.
(13.13)
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Fig. 13.1 Database-1. First row: the face gallery with image size of 30 × 26. Second and third
rows: four frames in one probe video with image size of 720 × 480; the actual face size ranged
from approximately 20 × 20 in the first frame to 60 × 60 in the last frame. Note the significant
illumination variations between the probe and the gallery

Gaussian distribution is widely used as a noise model, accounting for sensor noise
and digitization noise among others. However, given the observation equation: vt =
Tθt {zt } − Int , the dominant part of vt becomes the high-frequency residual if θt is
not proper; and it is well known that the high-frequency residual of natural images is
more Laplacian-like. The “truncated” Laplacian is used to give a “surviving” chance
for samples to accommodate abrupt motion changes.

Table 13.1 summarizes the average recognition performance and computa-
tional time of the CONDENSATION and the proposed algorithm when applied to
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Table 13.1 Recognition performance of algorithms when applied to Database-0

Algorithm CONDENSATION Proposed

Recognition rate within top one match 100% 100%

Time per frame 7 seconds 0.5 seconds

Table 13.2 Performances of algorithms when applied to Database-1

Case Case 1 Case 2 Case 3 Case 4 Case 5

Tracking accuracy 83% 87% 93% 100% NA

Recognition within top 1 match 13% NA 83% 93% 57%

Recognition within top 3 matches 43% NA 97% 100% 83%

Database-0. Both algorithms achieved 100% recognition rate with top match. How-
ever, the proposed algorithm is more than 10 times faster than the CONDENSATION

algorithm.

13.3.3.2 Results on Database-1

Case 1: Tracking and Recognition Using Laplacian Density We first inves-
tigate the performance using the same setting as described in Sect. 13.3.3.1. Ta-
ble 13.2 shows that the recognition rate is poor: only 13% are correctly identified
using the top match. The main reason is that the “truncated” Laplacian density is
not able to capture the appearance difference between the probe and the gallery, in-
dicating a need for more effective appearance modeling. Nevertheless, the tracking
accuracy is reasonable, with 83% successfully tracked because we are using multi-
ple face templates in the gallery to track the specific face in the probe video. After
all, faces in both the gallery and the probe belong to the same class of human face,
and it seems that the appearance change is within the class range.

Case 2: Pure Tracking Using Laplacian Density In Case 2, we measure the
appearance change within the probe video as well as the noise in the background.
To this end, we introduce a dummy template T0, a cut version in the first frame of
the video. Define the observation likelihood for tracking as

q(zt | θt ) = L
(∥∥Tθt {zt } − T0

∥∥;σ2, τ2
)

(13.14)

where σ2 and τ2 are set manually. The other setting, such as motion parameter and
model, is the same as in Case 1. We still can run the CONDENSATION algorithm to
perform pure tracking. Table 13.2 shows that 87% are successfully tracked by this
simple tracking model, which implies that the appearance within the video remains
similar.
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Case 3: Tracking and Recognition Using Probabilistic Subspace Density As
mentioned in Case 1, we need a new appearance model to improve the recogni-
tion accuracy. Of the many approaches suggested in the literature, we decided to
use the approach suggested by Moghaddam et al. [25] because of its computational
efficiency and high recognition accuracy. However, here we model only the intrap-
ersonal variations.

We need at least two facial images for one identity to construct the intrapersonal
space (IPS). Apart from the available gallery, we crop out the second image from
the video ensuring no overlap with the frames actually used in probe videos.

We then fit a probabilistic subspace density on top of the IPS. It proceeds as
follows: A regular PCA is performed for the IPS. Suppose the eigensystem for the
IPS is {(λi, ei)}di=1, where d is the number of pixels and λ1 ≥ · · · ≥ λd . Only top
r principal components corresponding to top r eigenvalues are then kept while the
residual components are considered isotropic. The density is written as follows

Q(x) =
{

exp(− 1
2

∑r
i=1

y2
i

λi
)

(2π)r/2
∏r

i=1 λ
1/2
i

}{
exp(− ε2

2ρ
)

(2πρ)(d−r)/2

}
(13.15)

where the principal components yi , the reconstruction error ε2, and the isotropic
noise variance ρ are defined as

yi = eT
i x, ε2 = ‖x‖2 −

r∑

i=1

y2
i , ρ = (d − r)−1

d∑

i=r+1

λi. (13.16)

It is easy to write the likelihood as follows:

p2(zt | nt , θt ) = QIPS(Tθt {zt } − Int ). (13.17)

Table 13.2 lists the performance using this new likelihood measurement. It turns
out that the performance is significantly better than in Case 1, with 93% tracked
successfully and 83% correctly recognized within the top match. If we consider the
top three matches, 97% are correctly identified.

Case 4: Tracking and Recognition Using Combined Density In Case 2, we
studied appearance changes within a video sequence. In Case 3, we studied the
appearance change between the gallery and the probe. In Case 4, we attempt to take
advantage of both cases by introducing a combined likelihood defined as follows.

p3(zt | nt , θt ) = p2(zt | nt , θt )q(zt | θt ). (13.18)

Again, all other settings are the same as in Case 1. We now obtain the best perfor-
mance so far: no tracking error, 93% are correctly recognized as the first match, and
no error in recognition when the top three matches are considered.
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Case 5: Still-to-Still Face Recognition We also performed an experiment for
still-to-still face recognition. We selected the probe video frames with the best
frontal face view (i.e., biggest frontal view) and cropped out the facial region by
normalizing with respect to the eye coordinates manually specified. It turns out that
the recognition result is 57% correct for the top match and 83% for the top three
matches. Clearly, Case 4 is the best among all.

13.4 Video Gallery vs. Video Probes

Here we describe a parametric model for appearance and dynamics to understand the
manifold structures of these models, which are then used to devise joint appearance
and dynamic based recognition algorithms.

13.4.1 Parametric Model for Appearance and Dynamic Variations

A wide variety of spatio-temporal data have often been modeled as realizations
of dynamical models. Examples include dynamic textures [11], human joint an-
gle trajectories [6] and silhouettes [37]. A well-known dynamical model for such
time-series data is the autoregressive and moving average (ARMA) model. Linear
dynamical systems represent a class of parametric models for time-series. A wide
variety of time series data such as dynamic textures, human joint angle trajecto-
ries, shape sequences, video based face recognition etc., are frequently modeled as
autoregressive and moving average (ARMA) models [1, 6, 11, 37]. Let f (t) be a
sequence of features extracted from a video indexed by time t . The ARMA model
parametrizes the evolution of the features f (t) using the following equations:

f (t) = Cz(t) + w(t) w(t) ∼ N(0,R), (13.19)

z(t + 1) = Az(t) + v(t) v(t) ∼ N(0,Q) (13.20)

where, z ∈ R
d is the hidden state vector, A ∈ R

d×d the transition matrix and C ∈
R

p×d the measurement matrix. f ∈ R
p represents the observed features while w

and v are noise components modeled as normal with 0 mean and covariances R ∈
R

p×p and Q ∈ R
d×d , respectively.

For high-dimensional time-series data (dynamic textures etc), the most common
approach is to first learn a lower-dimensional embedding of the observations via
PCA, and learn temporal dynamics in the lower-dimensional space. Closed form
solutions for learning the model parameters (A,C) from the feature sequence (f1:T )
have been proposed by [11, 27] and are widely used in the computer vision com-
munity. Let observations f (1), f (2), . . . , f (τ ), represent the features for the time
indices 1,2, . . . , τ . Let [f (1), f (2), . . . , f (τ )] = UΣV T be the singular value de-
composition of the data. Then Ĉ = U , Â = ΣV TD1V (V TD2V )−1Σ−1, where
D1 = [00; Iτ−1 0] and D2 = [Iτ−10;00].
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The model parameters (A,C) do not lie in a vector space. The transition ma-
trix A is only constrained to be stable with eigenvalues inside the unit circle. The
observation matrix C is constrained to be an orthonormal matrix. For comparison
of models, the most commonly used distance metric is based on subspace angles
between column-spaces of the observability matrices [10]. For the ARMA model
of (13.20), starting from an initial condition z(0), it can be shown that the expected
observation sequence is given by

E

⎡

⎢⎢⎢⎢⎣

f (0)

f (1)

f (2)

.

.

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎣

C

CA

CA2

.

.

⎤

⎥⎥⎥⎥⎦
z(0) = O∞(M)z(0). (13.21)

Thus, the expected observation sequence generated by a time-invariant model
M = (A,C) lies in the column space of the extended observability matrix given by

OT∞ = [
CT, (CA)T,

(
CA2)T

, . . . ,
(
CAn

)T
, . . .

]
. (13.22)

In experimental implementations, we approximate the extended observability
matrix by the finite observability matrix as is commonly done [33]

OT
m = [

CT, (CA)T,
(
CA2)T

, . . . ,
(
CAm−1)T]

. (13.23)

The size of this matrix is mp×d . The column space of this matrix is a d-dimensional
subspace of R

mp , where d is the dimension of the state-space z in (13.20). d is
typically of the order of 5–10.

Thus, given a database of videos, we estimate the model parameters as described
above for each video. The finite observability matrix is computed as in (13.23). To
represent the subspace spanned by the columns of this matrix, we store an orthonor-
mal basis computed by Gram-Schmidt orthonormalization. Since, a subspace is a
point on a Grassmann manifold [35, 36], a linear dynamical system can be alter-
nately identified as a point on the Grassmann manifold corresponding to the column
space of the observability matrix. The goal now is to devise methods for classifica-
tion and recognition using these model parameters. Given a set of videos for a given
class, we would like to compute a parametric or non-parametric class-conditional
density. Then, the maximum likelihood classification for each test instance can be
performed using these class conditional distributions. To enable these, we need to
understand the geometry of the Grassmann manifold.

13.4.2 The Manifold Structure of Subspaces

The set of all d-dimensional linear subspaces of R
n is called the Grassmann man-

ifold which will be denoted as Gn,d . The set of all n × d orthonormal matrices is
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called the Stiefel manifold and shall be denoted as Sn,d . As discussed in the appli-
cations above, we are interested in computing statistical models over the Grassmann
manifold. Let U1,U2, . . . ,Uk be some previously estimated points on Sn,d and we
seek their sample mean, an average, for defining a probability model on Sn,d . Re-
call that these Uis are tall, orthogonal matrices. It is easy to see that the Euclidean
sample mean 1

k

∑k
i=1 Ui is not a valid operation, because the resultant mean does

not have the property of orthonormality. This is because Sn,d is not a vector space.
Similarly, many of the standard tools in estimation and modeling theory do not di-
rectly apply to such spaces but can be adapted by accounting for the underlying
nonlinear geometry.

A subspace is stored as an orthonormal matrix which forms a basis for the sub-
space. As mentioned earlier, orthonormal matrices are points on the Stiefel mani-
fold. However, since the choice of basis for a subspace is not unique, any notion
of distance and statistics should be invariant to this choice. This requires us to in-
terpret each point on the Grassmann manifold as an equivalence of points on the
Stiefel manifold, where all orthonormal matrices that span the same subspace are
considered equivalent. This interpretation is more formally described as a quotient
interpretation that is, the Grassmann manifold is considered a quotient space of the
Stiefel manifold. Quotient interpretations allow us to extend the results of the base
manifold such as tangent spaces, geodesics etc to the new quotient manifold. In our
case, it turns out that the Stiefel manifold itself can be interpreted as a quotient of a
more basic manifold—the special orthogonal group SO(n). A quotient of Stiefel is
thus a quotient of SO(n) as well.

A point U on Sn,d is represented as a tall-thin n × d orthonormal matrix. The
corresponding equivalence class of n × d matrices [U ] = UR, for R ∈ GL(d) is
called the Procrustes representation of the Stiefel manifold. Thus, to compare two
points in Gn,d , we simply compare the smallest squared distance between the cor-
responding equivalence classes on the Stiefel manifold according to the Procrustes
representation. Given matrices U1 and U2 on Sn,d , the smallest squared Euclidean
distance between the corresponding equivalence classes is given by

d2
Procrust

([U1], [U2]
) = min

R
tr(U1 − U2R)T(U1 − U2R) (13.24)

= min
R

tr
(
RTR − 2UT

1 U2R + Ik

)
. (13.25)

When R varies over the orthogonal group O(d), the minimum is attained at
R = H1H

T
2 = A(ATA)−1/2, where A = H1DHT

2 is the singular value decompo-
sition of A. We refer the reader to [8] for proofs and alternate cases. Given several
examples from a class (U1,U2, . . . ,Un) on the manifold, the class conditional den-
sity can be estimated using an appropriate kernel function. We first assume that an
appropriate choice of a divergence on the manifold has been made such as the one
above. For the Procrustes measure, the density estimate is given by [8] as

f̂ (U ;M) = 1

n
C(M)

n∑

i=1

K
[
M−1/2(Ik − UT

i UUTUi

)
M−1/2] (13.26)
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where K(T ) is the kernel function, M is a d ×d positive definite matrix which plays
the role of the kernel width or a smoothing parameter. C(M) is a normalizing factor
chosen so that the estimated density integrates to unity. The matrix valued kernel
function K(T ) can be chosen in several ways. We have used K(T ) = exp(−tr(T ))

in all the experiments reported in this chapter. In this non-parametric method for
density estimation, the choice of kernel width M becomes important. Thus, though
this is a non-iterative procedure, the optimal choice of the kernel width can have
a large impact on the final results. In general, there is no standard way to choose
this parameter except for cross-validation. In the experiments reported here, we use
M = I , the d × d identity matrix.

In addition to such nonparametric methods, there are principled methods to de-
vise parametric densities on manifolds. Here, we simply refer the reader to [36]
for mathematical details. In brief, using the tangent structure of the manifold, it is
possible to define the well-known parametric densities such as multi-variate Gaus-
sian, mixture-of-Gaussians etc., on the tangent spaces and wrap them back to the
manifold. Densities defined in such a manner are called ‘wrapped’-densities. In the
experiments section, we use a wrapped-Gaussian to model class-condition densities
on the Grassmann manifold. This is compared to the simpler nonparametric method
described above.

13.4.3 Video-Based Face Recognition Experiments

We performed a recognition experiment on the NIST’s Multiple Biometric Grand
Challenge (MBGC) dataset. The MBGC Video Challenge dataset consists of a large
number of subjects walking towards a camera in a variety of illumination conditions.
Face regions are manually tracked and a sequence of cropped images is obtained.
There were a total of 143 subjects with the number of videos per subject ranging
from 1 to 5. In our experiments, we took subsets of the dataset which contained at
least 2 sequences per person denoted as S2, at least 3 sequences per person denoted
as S3 etc. Each of the face-images was first preprocessed to zero-mean and unity
variance. In each of these subsets, we performed a leave-one-out testing. The results
of the leave one out testing are shown in Table 13.3. Also reported are the total
number of distinct subjects and the total number of video sequences in each of the
subsets. In the comparisons, we show results using the ‘arc-length’ metric between
subspaces [13]. This metric computes the subspace angles between two subspaces
and takes the Frobenius norm of the angles as a distance measure [13]. We also
show comparisons with the Procrustes measure, the Kernel density estimate with
M = I and a parametric wrapped Gaussian density on the manifold. The wrapped
Gaussian is estimated on the tangent-plane centered at the mean-point of the dataset.
The mean, more formally defined as the Karcher mean, is defined as the point that
minimizes the sum of squared geodesic distances to all other points. The tangent-
plane being a vector space allows the use of multi-variate statistics to define class-
conditional densities. We refer the reader to [36] for mathematical details.
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Table 13.3 Comparison of video based face recognition approaches using (a) Subspace Angles
+ Arc-length metric, (b) Procrustes Distance, (c) kernel density, (d) Wrapped Normal on Tangent
Plane

Subset Distinct
Subjects

Total Se-
quences

Arc-length
Metric

Procrustes
Metric

Kernel
density

Wrapped
Normal

S2 143 395 38.48 43.79 39.74 63.79

S3 55 219 48.85 53.88 50.22 74.88

S4 54 216 48.61 53.70 50.46 75

Avg. 45.31% 50.45% 46.80% 71.22%

As can be seen, statistical methods outperform nearest-neighbor based ap-
proaches. As one would expect, the results improve when more examples per class
are available. Since the optimal kernel-width is not known in advance, this might
explain the relatively poor performance of the kernel density method. More exam-
ples of statistical inference on the Grassmann manifold for image and video-based
recognition can be found in [35].

13.5 Face Recognition in Camera Network

Video-based face recognition algorithms exploit information temporally across the
video sequence to improve recognition performance. With camera networks, we
can capture multi-view videos which allow us to further integrate information spa-
tially across view angles. It is worth noting that this is different from traditional
face recognition of single-camera videos in which various face poses exhibit. In
that case, one usually needs to model the dynamics of pose changes in the training
phase and estimate pose in the testing phase. For example, in [20], Lee et al. train
a representation for the face appearance manifold. The manifold consists of locally
linear subspaces for different poses. A transition probability matrix is also trained
to characterize the temporal dynamics for this representation. In [23], the dynamics
are encoded in the learned Hidden Markov Models (HMMs). The mean observa-
tions of hidden states are shown to represent facial images at various poses. These
approaches are designed to work with a single camera.

On the other hand, in camera network deployments there are multiple images of
the face in different poses at a given time instant. These images could include a mix
of frontal and nonfrontal images of the face, or, in some cases, a mix of nonfrontal
images (see Fig. 13.2). Videos captured in such a mode have natural advantages in
providing persistent sensing over a large area and stronger cues for handling pose
variations. Nonetheless, if we do not leverage the collaboration among cameras, the
power of multi-view data over single-views cannot be fully exploited. For example,
if we extend the single-view video-based methods, such as [20] and [23], to a camera
network, they have to function in such a mode that cameras do not collaborate with
each other except at the final fusion stage.
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Fig. 13.2 Images acquired
by a multi-camera network.
Each column corresponds to a
different camera, and each
row corresponds to a different
time instant and subject. Note
that, under unconstrained
acquisition, it is entirely
possible that none of the
images are frontal in spite of
using five cameras to observe
the subject [32]

In general, there are some principles one should follow in developing a video-
based face recognition algorithm for camera networks: First, the method should be
able to collaboratively utilize information collected by multiple cameras and arrive
at a multi-view representation from it, as opposed to perform recognition for each
view individually and then fusing the result. Second, the method should be able to
tackle pose variations effectively, as this is the major concern of a multi-view face
recognition system. Third, the method should work on data whose acquisition con-
ditions are as close to practical surveillance situations as possible. These conditions
include: reasonable distance between subject and cameras, relatively low resolution
in the face region, uncontrolled pose variations, uncontrolled subject motion, and
possible interruptions in acquisition (say, the subject moves out of the field of view
of a camera) etc.

Next, we will introduce a video-based face tracking and recognition framework
following these principles. The system first tracks a subject’s head from multi-
view videos and back-projects textures to a spherical head-model. Then a rotation-
invariant feature based on spherical harmonic (SH) transform is constructed from
the texture maps. Finally, video-based recognition is achieved through measurement
of ensemble similarity.

13.5.1 Face Tracking from Multi-view Videos

The tracker is set in a Sequential Importance Resampling (SIR) (particle filtering)
framework, which can be broken down into a description of its state space, the state
transition model and the observation model. To fully describe the position and pose
of a 3D object, we usually need a 6-D representation (R3 × SO(3)), where the 3-D
real vector space is used to represent the object’s location, and the special orthogonal
group SO(3) is used to represent the object’s rotation. In our work, we model the
human head as a sphere and perform pose-robust recognition. This enables us to
explore in 3-D state space S = R

3. Each state vector s = [x, y, z] represents the 3-D
position of a sphere’s center, disregarding the orientation. The radius of the sphere
is assumed to be known through an initialization step. The low dimensionality of
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the state space contributes to the reliability of the tracker, since for SIR, even a large
number of particles will necessarily be sparse in high dimensional space.

The state transition model P(st | st−1) is set as a Gaussian distribution N (st |
st−1, σ

2I). We have found that the tracking result is relatively insensitive to the
specific value of σ and fixed it at 50 mm (our external camera calibration is metric).
The observations for the filter are histograms extracted from the multi-view video
frames I

j
t , where j is the camera index and t is the frame index. Histogram features

are invariant to rotations and thus fit the circumstance of reduced state space. To
adopt this feature, we need to back-project I

j
t onto the spherical head model and

establish the histogram over the texture map. The observation likelihood is modeled
as follows:

P
(
Ot | s(i)

t

) = P
(
I 1
t , I 2

t , . . . , IK
t | s(i)

t

) ∝ 1 − D
(
H(Mt,i),Htemplate

)
, (13.27)

where s(i)
t is the ith particle at the t th frame; H(Mt,i) is the histogram of the texture

map built from the particle s(i)
t ; Htemplate is the histogram of template texture map.

The template texture map is computed after initializing the head position in the
first frame, then updated by back-projecting the head region in the image, which
is fixed by the maximum a posteriori (MAP) estimate onto the sphere model. The
D(H1,H2) function calculates the Bhattacharyya distance between two normalized
histograms.

We now describe the procedure for obtaining texture map on the surface of the
head model. First, we uniformly sample the spherical surface. Then for the j th cam-
era, the world coordinates of sample points [xn, yn, zn], n = 1,2, . . . ,N are trans-

formed into coordinates in that camera’s reference frame [xCj
n , y

Cj
n , z

Cj
n ] to deter-

mine their visibility in that camera’s view. Only unoccluded points (i.e., those satis-

fying z
Cj
n ≤ z

Cj

0 , where z
Cj

0 is the distance from the head center to the j th camera
center) are projected onto the image plane. By relating these model surface points

[xn, yn, zn] to the pixels at their projected image coordinates I (x
Pj
n , y

Pj
n ), we build

the texture map Mj of the visible hemisphere for the j th camera view. This con-
tinues until we have transformed the texture maps obtained from all camera views
to the spherical model. Points in the overlapped region are fused using a weight-
ing strategy, based on representing the texture map of the j th camera view as a
function of locations of surface points Mj(x, y, z). We assign the function value at
point [xn, yn, zn] a weight Wn,j , according to the point’s proximity to the projec-
tion center. This is based on the fact that, on the rim of a sphere, a large number
of surface points tend to project to the same pixel, so image pixels corresponding
to those points are not suitable for back-projection. The intensity value at the point
[xn, yn, zn] of the resulting texture map will be:

M(xn, yn, zn) = Mjmax(xn, yn, zn), (13.28)

where

jmax = arg maxWn,j , j = 1,2, . . . ,K. (13.29)
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Fig. 13.3 Feature extraction. We first obtain the texture map of the human head on the surface of
a spherical model through back projection of multi-view images captured by the camera network,
then represent it with spherical harmonics

The texture mapping and back-projection processes are illustrated in the left part of
Fig. 13.3.

Figure 13.4 shows an example of our pose-free tracking result for a multi-view
video sequence. The video sequence has 500 frames. The tracker is able to stably
track all the frames without failure, despite the considerably abrupt motions and
the frequent occurrences of rotation, translation and scaling of the human head as
shown. Sometimes the subject’s head is outside the field-of-view of certain cam-
eras. Though subjects usually do not undergo such extreme motion in real-world
surveillance videos, this example clearly illustrates the reliability of our tracking
algorithm. In our experiments, the tracker handles all the captured videos without
difficulty. The occasionally observed inaccuracies in bounding circles are mostly
due to the difference between sphere and the exact shapes of human heads. Success-
ful tracking enables the subsequent recognition task.

13.5.2 Pose-Free Feature Based on Spherical Harmonics

In this section, we describe the procedure for extracting a rotation-invariant feature
from the texture map obtained in Sect. 13.5.1. The process is illustrated in Fig. 13.3.
According to the Spherical Harmonics (SH) theory, SHs form a set of orthonormal
basis functions over the unit sphere, and can be used to linearly expand any square-
integrable function on S2. SH representation has been used for matching 3D shapes
[16] due to its properties related to the rotation group. In the vision community,
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Fig. 13.4 Sample tracking results for a multi-view video sequence. 5 views are shown here. Each
row of images is captured by the same camera. Each column of images corresponds to the same
time-instant

following the work of Basri and Jacobs [5], researchers have used SH to understand
the impact of illumination variations in face recognition [30, 39].

The general SH representation is used to analyze complex functions (For de-
scription of general SH, please refer to [5] or [30]). However, the spherical function
determined by the texture map are real functions, and thus we consider real spherical
harmonics (or Tesseral SH):

Ym
l (θ,φ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Yl0 if m = 0,

1√
2
(Ylm + (−1)mYl,−m) if m > 0,

1√
2i

(Yl,−m − (−1)mYlm) if m < 0

(13.30)
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where Ylm(·, ·) denotes the general SH basis function of degree l ≥ 0 and order m in
(−l,−l + 1, . . . , l − 1, l). Note that here we are using the spherical coordinate sys-
tem. θ ∈ (0,π) and φ ∈ (0,2π) are the zenith angle and azimuth angle, respectively.
The Real SHs are also orthonormal and they share most of the major properties of
the general Spherical Harmonics. From now on, the word “Spherical Harmonics”
shall refer only to the Real SHs. As in Fourier expansion, the SH expansion coeffi-
cients f m

l of function f (θ,φ) can be computed as:

f m
l =

∫

θ

∫

φ

f (θ,φ)Ym
l (θ,φ)dθ dφ. (13.31)

The expansion coefficients have a very important property which is directly related
to our ‘pose-free’ face recognition application:

Proposition If two functions defined on S2: f (θ,φ) and g(θ,φ) are related by a
rotation R ∈ SO(3), that is, g(θ,φ) = R(f (θ,φ)), and their SH expansion coef-
ficients are f m

l and gm
l (l = 0,1, . . . and m = −l . . . l), respectively, the following

relationship exists:

gm
l =

l∑

m′=−l

Dl
mm′f m′

l (13.32)

and the Dl
mm′s satisfy:

l∑

m′=−l

(
Dl

mm′
)2 = 1. (13.33)

In other words, after rotation, the SH expansion coefficients at a certain degree
l are actually linear combinations of those before the rotation, and coefficients at
different degrees do not affect each other. This proposition is a direct result of the
following lemma [7, 16]:

Lemma Denote El the subspace spanned by Ym
l (θ,φ), m = −l . . . l, then El is an

irreducible representation for the rotation group SO(3).

Thus, given a texture map f (θ,φ) and its corresponding SH coefficient {f m
l , l =

0,1, . . . ,m = −l, . . . , l}, we can formulate the energy vector associated with
f (θ,φ) as ef = (‖f0‖2,‖f1‖2,‖fl‖2, . . .), where fl is the vector of all f m

l at de-
gree l. Equation (13.33) guarantees that ef keeps unchanged when the texture map
is rotated, and this enables pose-robust face recognition. We refer to ef as the SH
Energy feature. Note that this is different from the energy feature defined in [16].
In practice, we further normalize the SH energy feature with regard to total energy.
This is the same as assuming that all the texture maps have the same total energy,
and somehow function as an illumination-normalized signature. Although this also
means that skin color information is not used for recognition, it proves to work very
well in experiments.
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Fig. 13.5 Comparison of the reconstruction qualities of head/face texture map with different num-
ber of spherical harmonic coefficients. The images from left to right are: the original 3D head/face
texture map, the texture map reconstructed from 40-degree, 30-degree and 20-degree SH coeffi-
cients, respectively [32]

The remaining issue concerns with obtaining a suitable band-limited approxima-
tion with SH for our application. In Fig. 13.5, we show a 3D head texture map and
its reconstructed version with 20, 30 and 40 degree SH transform, respectively. The
ratio of computation time for the 3 cases is roughly 1:5:21. (The exact time varies
with configuration of the computer, for example, on a PC with Xeon 2.13 GHz CPU,
it takes roughly 1.2 seconds to do a 20 degree SH transform for 18 050 points.) We
have observed that the 30-degree transform achieves the best balance between ap-
proximation precision and computational cost.

13.5.3 Measure Ensemble Similarity

Given two multi-view video sequences with m and n frames (Every “frame” is actu-
ally a group of images, each captured by a camera in the network.), respectively, we
generate 2 ensembles of feature vectors, respectively. They may contain different
number of vectors. To achieve video-level recognition, we are interested in measur-
ing the similarity between these two sets of vectors. Now, we calculate the ensemble
similarity as the limiting Bhattacharyya distance in RKHS following [41]. In experi-
ments, we measure the ensemble similarity between feature vectors of a probe video
and those of all the gallery videos. The gallery video with the shortest distance to
the probe is considered as the best match. For detailed derivations and explanation
of limiting Bhattacharyya distance in the RKHS, please refer to [41].

13.5.4 Experiments

Most existing “multi-view” still or video face databases, such as PIE, Yale-B, the
oriental face data, M2VTS etc., target recognition-across-pose algorithms, so they
are not applicable to our multi-view to multi-view matching algorithm. The data
we used in this work are multi-view video sequences captured with 4 or 5 video
cameras in an indoor environment, collected at 3 different sessions: one for building
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Fig. 13.6 Example of gallery and probe video frames. Images on the top are gallery frames, and
those on the bottom are probe frames of the same subjects. Many subjects look differently in gallery
and probe

a gallery and the other two for constructing probes. To test the robustness of our
recognition algorithm, we arranged the second session to be one week after the
first one, and the third 6 months after the second. The appearance of some subjects
change significantly between the sessions. The database enrolls 25 subjects. Each
subject has 1 gallery video and most subjects have 2 probe videos. Each video is
100 to 200 frames in length. Since each video sequence is captured with multiple
cameras, it is equivalent to 4 or 5 videos in the single camera case. Figure 13.6
shows some example frames from gallery and probe video sequences. This data set
poses great challenges to multi-view face recognition algorithms.

13.5.4.1 Feature Comparison

We associate 5 different kinds of features with different classifiers to compare their
performance in image-based face recognition systems. By “image-based face recog-
nition” we mean that each frame is treated as gallery or probe individually and no
video-level fusion of results is performed. As a result, the recognition rate is com-
puted by counting the number of correctly classified frames, not videos. The inputs
to all these face recognition systems are based on the same tracking results. For any
system based on feature of raw image intensity value, we use only the head region
that is cropped by a circular mask as provided by the tracking result. All the head
images are scaled to 30 × 30. For the PCA features, Eigenvectors that preserve the
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Table 13.4 Comparison of recognition performance

Feature NN KDE SVM-Linear SVM-RBF

Intensity PCA 49.7% 39.0% 49.2% 57.8%

Intensity LDA 50.5% 27.2% 33.1% 40.7%

SH PCA 33.6% 30.9% 31.2% 44.2%

SH Energy 55.3% 47.9% 50.3% 67.1%

Normalized SH Energy 60.8% 64.7% 78.2% 86.0%

Table 13.5 KL divergence of in-class and between-class distances for different features

Intensity Intensity + PCA SH + PCA SH Energy Normalized SH Energy

0.1454 0.1619 0.2843 0.1731 1.1408

top 95% energy are kept. For the SH-based feature, we perform a 30-degree SH
transform. Here, we would like to emphasize that since both gallery and probe are
captured when subjects are performing free motion, the poses exhibited in images
of any view are arbitrary and keep changing. This is significantly different from the
settings of most existing multi-view face databases. The results are shown in Ta-
ble 13.4. As we can see, the performance of the proposed feature exceeds that of
other features by a large margin in all cases. Note that we do not fuse the results of
different views for non-SH-based features.

To quantitatively verify the proposed feature’s discrimination power, we then
conducted the following experiment. We calculate distances for each unordered pair
of feature vectors {xi, xj } in the gallery. If {xi, xj } belongs to the same subject,
then the distance is categorized as being in-class. Otherwise, the distance is catego-
rized as being between-class. We approximate the distribution of the two kinds of
distances as histograms.

Intuitively, if a feature has good discrimination power, then the in-class distances
evaluated using that feature tends to take smaller values compared to the between-
class distances. If the two distributions mix together, then this feature is not good
for classification. We use the symmetric KL divergence KL(p‖q) + KL(q‖p) to
evaluate the difference between the two distributions. We summarize the values of
KL divergence for the 5 features in Table 13.5 and plot the distributions in Fig. 13.7.
As clearly shown, the in-class distances for normalized SH energy feature are con-
centrated in the low value bins, while the between-class ones tend to have higher
values, and their modes are obviously separated from each other. For all other fea-
tures, the between-class distances do not show a clear trend of being larger than the
in-class ones, and their distributions are just mixed. The symmetric KL-divergence
also suggests the same.
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13.5.4.2 Video-Based Recognition

In this experiment, we compare the performance of 4 video-level recognition sys-
tems: (1) Ensemble-similarity-based algorithm as proposed in [41] for cropped face
images. The head images in a video are automatically cropped by a circular mask as
provided by the tracking results and scaled to 30 by 30. Then we calculate the lim-
iting Bhattacharyya distance between gallery and probe videos in RKHS for recog-
nition. The kernel is RBF. If a video has n frames and it is captured by k cameras,
then there are k × n head (face) images in the ensemble. (2) View-selection-based
algorithm. We first train a PCA subspace for frontal-view face. The training images
are a subset of the Yale B database and are scaled to 30 by 30. We then use this
subspace to pick frontal-view face images from our gallery videos. We construct
a frontal-view face PCA subspace for each individual. For every frame of a probe
video, we first compute the “frontalness” of the subject’s face in each view accord-
ing to its distance to the general PCA model. The view which best matches the
model is selected and fitted to the individual PCA subspaces of all the subjects. Af-
ter classification of all the frames has been finished, recognition result for the video
is obtained through majority voting. (3) video-based face recognition algorithm us-
ing probabilistic appearance manifold as proposed in [20]. We use 8 planes for local
manifold model and set the probability of remaining the same pose to be 0.7 in the
pose transition probability matrix. We first use this algorithm to process each view
of a probe video. To fuse results of different views we use majority voting. If there
is a tie in views’ voting, we pick the one with smaller Hausdorff distance as the
winner. (4) Normalized SH energy feature + ensemble similarity. This algorithm is
as described in Sect. 13.5.2 and Sect. 13.5.3.

We plot the cumulative recognition rate curve in Fig. 13.8. Note that the numbers
shown here should not be compared with those in the previous image-based recog-
nition experiment to draw misleading conclusions, as these two sets of recognition
rates are not convertible to each other. The view-selection method heavily relies on
the availability of frontal-view face images, however, in the camera network case,
the frontal pose may not appear in any view of the cameras. As a result, it does not
perform well in this multi-view to multi-view matching experiment. Rather than the
ad-hoc majority voting fusion scheme adopted by the view-selection algorithm, the
manifold-based algorithm and the image-ensemble-based algorithm use more rea-
sonable strategies to combine classification results of individual frames. Moreover,
they both have certain ability to handle pose variations, especially the manifold-
based one. However, because they are designed to work with a single camera, they
are single-view in nature. Repeating these algorithms for each view does not fully
utilize the multi-view information. On the other hand, the proposed method is multi-
view in nature and is based on a pose-free feature, so it performs noticeably better
than the other 3 algorithms in this experiment.
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Fig. 13.8 Cumulative
recognition rate of the 4
video-based face recognition
algorithms

13.6 Conclusions

Video offers several advantages for face recognition, in terms of motion informa-
tion and availability of more views. We reviewed several techniques that exploit
video by either fusing information on a per-frame basis, considering them as image-
ensembles, or by learning better appearance models. However, the availability of
video opens interesting questions of how to exploit the temporal correlation for bet-
ter tracking of faces, how to exploit behavioral cues available from video, and how
to fuse the multiple views afforded by a camera network. Also, algorithms need to be
derived that allow for matching a probe video to a still or video gallery. We showed
applications involving such scenarios and discussed the issues involved in design-
ing algorithms for such scenarios. There are several future research directions that
are promising. While there are several studies that suggest that humans can recog-
nize faces in non-cooperative conditions [26]—poor resolution, bad lighting etc.—if
motion and dynamic information is available. This capability has been difficult to
describe mathematically and replicate in an algorithm. If this phenomenon can be
modeled mathematically, it could lead to more accurate surveillance and biometric
systems. The role of familiarity in face recognition and the role that motion plays
in recognition of familiar faces, while well known in psychology and neuroscience
literature [31], is yet another avenue that has been challenging to model mathemat-
ically and replicate algorithmically.
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