
Chapter 11
Face Detection

Stan Z. Li and Jianxin Wu

11.1 Introduction

Face detection is the first step in automated face recognition. Its reliability has a ma-
jor influence on the performance and usability of the entire face recognition system.
Given a single image or a video, an ideal face detector should be able to identify and
locate all the present faces regardless of their position, scale, orientation, age, and
expression. Furthermore, the detection should be done irrespectively of extraneous
illumination conditions and the image and video content.

Face detection can be performed based on several cues: skin color (for faces
in color images and videos), motion (for faces in videos), facial/head shape, facial
appearance, or a combination of these parameters. Most successful face detection
algorithms are appearance-based without using other cues. The processing is done
as follows: An input image is scanned at all possible locations and scales by a sub-
window. Face detection is posed as classifying the pattern in the subwindow as
either face or nonface. The face/nonface classifier is learned from face and nonface
training examples using statistical learning methods.

This chapter presents appearance-based and learning-based methods.1 It will
highlight AdaBoost-based methods because so far they are the most successful ones
in terms of detection accuracy and speed. Effective postprocessing methods are also
described. Experimental results are provided.

1The reader is referred to a review article [50] for other earlier face detection methods.
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Fig. 11.1 Face (top) and nonface (bottom) examples

11.2 Appearance and Learning-Based Approaches

With appearance-based methods, face detection is treated as a problem of classi-
fying each scanned subwindow as one of two classes (that is, face and nonface).
Appearance-based methods avoid difficulties in modeling 3D structures of faces
by considering possible face appearances under various conditions. A face/nonface
classifier may be learned from a training set composed of face examples taken un-
der possible conditions as would be seen in the running stage and nonface examples
as well (see Fig. 11.1 for a random sample of 10 face and 10 nonface subwindow
images). Building such a classifier is possible because pixels on a face are highly
correlated, whereas those in a nonface subwindow present much less regularity.

However, large variations brought about by changes in facial appearance, light-
ing, and expression make the face manifold or face/nonface boundaries highly com-
plex [4, 37, 40]. Changes in facial view (head pose) further complicate the situation.
A nonlinear classifier is needed to deal with the complicated situation. The speed is
also an important issue for realtime performance.

Great research effort has been made for constructing complex yet fast classi-
fiers and much progress has been achieved since 1990s. Turk and Pentland [41]
describe a detection system based on principal component analysis (PCA) subspace
or eigenface representation. Whereas only likelihood in the PCA subspace is con-
sidered in the basic PCA method, Moghaddam and Pentland [23] also consider the
likelihood in the orthogonal complement subspace; using that system, the likeli-
hood in the image space (the union of the two subspaces) is modeled as the product
of the two likelihood estimates, which provide a more accurate likelihood estimate
for the detection. Sung and Poggio [38] first partition the image space into several
face and nonface clusters and then further decompose each cluster into the PCA
and null subspaces. The Bayesian estimation is then applied to obtain useful sta-
tistical features. The system of Rowley et al.’s [31] uses retinally connected neu-
ral networks. Through a sliding window, the input image is examined after going
through an extensive preprocessing stage. Osuna et al. [24] train a nonlinear support
vector machine to classify face and nonface patterns, and Yang et al. [51] use the
SNoW (Sparse Network of Winnows) learning architecture for face detection. In
these systems, a bootstrap algorithm is used iteratively to collect meaningful non-
face examples from images that do not contain any faces for retraining the detector.
Schneiderman and Kanade [34] use multiresolution information for different levels
of wavelet transform. A nonlinear classifier is constructed using statistics of prod-
ucts of histograms computed from face and nonface examples. The system of five
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view detectors takes about 1 minute to detect faces for a 320 × 240 image over
only four octaves of candidate size [34]. The speed is later improved in [35] to five
seconds for an image of size 240 × 256 using a Pentium II at 450 MHz.

Recent progresses in face detection mostly are made within the cascade detec-
tor framework proposed by Viola and Jones [43, 45], which provides fast and ro-
bust face detection system. Three major components contribute to the cascade face
detector: an over-complete set of local features that can be evaluated quickly, an
AdaBoost based method to build strong nonlinear classifiers from the weak local
features, and a cascade detector architecture that leads to realtime detection speed.

An over-complete set of rectangle features, which are simple scalar Haar wavelet-
like features, are shown to be effective in distinguishing faces from nonfaces. Viola
and Jones make use of several techniques [7, 36] for effective computation of a
large number of such features under varying scale and location, which is important
for realtime performance. A single Haar-like feature, however, is far from enough
to build a powerful nonlinear classifier. The AdaBoost algorithm is used to solve
the following three fundamental problems: (1) selecting effective features from a
large feature set; (2) constructing weak classifiers, each of which is based on one
of the selected features; and (3) boosting the weak classifiers to construct a strong
classifier. Moreover, the simple-to-complex cascade of classifiers makes the com-
putation even more efficient, which follows the principles of pattern rejection [3, 8]
and coarse-to-fine search [2, 10]. Their system is the first realtime frontal-view face
detector, and it runs at about 15 frames per second on a 384 × 288 image [45].

Various improvements have been proposed for the cascade detector, including
reducing the training and testing time, and achieving higher detection accuracies.
Extensions of the simple Haar-like feature set have been proposed to introduce more
complex local features (for example, in [14, 21, 27]). The original cascade detec-
tor takes weeks of training time [45]. More local features lead to higher detection
accuracies, but also incur even higher time and storage requirements. A strategy is
introduced by Wu et al. in [47] that reduces the training time to a few hours by using
a precomputation strategy. The speedup of [47] is achieved by reducing the training
time of weak classifiers. An alternative strategy by Pham and Cham [27] uses one
dimensional Gaussian distributions to model faces and nonfaces for a single feature,
and saves more than half of the training time compared to [47].

Variants of the discrete AdaBoost algorithm used in [45] have been shown to
improve the trained nonlinear classifiers, for example, using real-valued variants of
AdaBoost [21]. Face detection poses an asymmetric learning problem, because we
usually have only thousands of face training examples, but billions of nonfaces. It
is important to specifically deal with this asymmetric learning goal. Asymmetric
boosting [44] and linear asymmetric classifier (LAC) [47] are two examples that
achieve higher detection performances using asymmetric learning methods.

The cascade structure has been altered for faster detection speed. Instead of eval-
uating all the weak classifiers in a strong classifier, the strong classifier can make
a decision prematurely (evaluating only a subset of weak classifiers), for example,
in the soft cascade method [5]. This “multi-exit” strategy [28, 49] usually leads to
higher detection performance besides reducing testing time.
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The ability to deal with nonfrontal faces is important for many real applica-
tions because approximately 75% of the faces in home photos are nonfrontal [16].
A reasonable treatment for the multiview face detection problem is the view-based
method [26], in which several face models are built, each describing faces in a cer-
tain view range. This way, explicit 3D face modeling is avoided. Feraud et al. [9]
adopt the view-based representation for face detection and use an array of five de-
tectors, with each detector responsible for one facial view. Wiskott et al. [46] build
elastic bunch graph templates for multiview face detection and recognition. Huang
et al. [13] use SVMs to estimate the facial pose. The algorithm of Schneiderman and
Kanade [34] consists of an array of five face detectors in the view-based framework.

Li et al. [17–19] present a multiview face detection system. A new boosting al-
gorithm, called FloatBoost, is proposed to incorporate Floating Search [29] into
AdaBoost (RealBoost). An extended Haar feature set is proposed for dealing with
out-of-plane (left-right) rotation. A modified cascade detector (following the coarse-
to-fine and simple-to-complex principle) is designed for the fast detection of multi-
view faces. This work leads to the first realtime multiview face detection system. It
runs at 200 ms per image (320 × 240 pixels) on a Pentium-III CPU of 700 MHz.

Huang et al. [14] presents a similar solution that detects full-range in-plane and
out-of-plane rotated faces. The main contributions of [14] include a manually de-
signed new cascade architecture, a new set of local features called granular features,
and a new multi-class boosting learning algorithm called Vector Boosting.

Given that the cascade detector based on boosting learning methods has achieved
the best performance to date in terms of both accuracy and speed, our presentation
in the following sections focuses on this thread of research efforts. Strategies are
also described for efficient detection of multiview faces.

11.3 AdaBoost-Based Methods

For AdaBoost learning, a complex nonlinear strong classifier HM(x) is constructed
as a linear combination of M simpler, easily constructible weak classifiers in the
following form [11]

HM(x) =
M∑

m=1

αmhm(x) (11.1)

where x is a pattern to be classified, hm(x) are the M weak classifiers, αm ≥ 0 are
the combining coefficients in R. In the discrete version, hm(x) takes a discrete value
in {−1,+1}, whereas in the real-valued version, the output of hm(x) is a number
in R. HM(x) is real-valued, but the prediction of class label for x is obtained as
ŷ(x) = sign[HM(x)].

The AdaBoost learning procedure is aimed at learning a sequence of best weak
classifiers hm(x) and the best combining weights αm. A set of N labeled training
examples {(x1, y1), . . . , (xN , yN)} is assumed available, where yi ∈ {+1,−1} is the
class label for the example xi ∈ R

n. A distribution [w1, . . . ,wN ] of the training
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Fig. 11.2 Four types of
rectangular Haar wavelet-like
features. A feature is a scalar
calculated by summing up the
pixels in the white region and
subtracting those in the dark
region

examples, where wi is associated with a training example (xi, yi), is computed and
updated during the learning to represent the distribution of the training examples.
After iteration m, harder-to-classify examples (xi, yi) are given larger weights w

(m)
i ,

so that at iteration m + 1, more emphasis is placed on these examples. AdaBoost
assumes that a procedure is available for learning a weak classifier hm(x) from the
training examples, given the distribution [w(m)

i ].
In Viola and Jones’s face detection work [43, 45],2 a weak classifier hm(x) ∈

{−1,+1} is obtained by thresholding on a scalar feature zk(x) ∈ R selected from
an overcomplete set of Haar wavelet-like features [25, 39]. In the real-valued ver-
sions of AdaBoost, such as RealBoost and LogitBoost, a real-valued weak classifier
hm(x) ∈ R can also be constructed from zk(x) ∈ R [19, 21, 33]. The following dis-
cusses how to generate candidate weak classifiers.

11.3.1 Local Features

Viola and Jones propose four basic types of scalar features for face detection
[25, 45], as shown in Fig. 11.2. Such a block feature is located in a subregion of
a subwindow and varies in shape (aspect ratio), size, and location inside the sub-
window. For a subwindow of size 20×20, there can be tens of thousands of such
features for varying shapes, sizes and locations. Feature k, taking a scalar value
zk(x) ∈ R, can be considered a transform from the n-dimensional space (n = 400 if
a face example x is of size 20×20) to the real line. These scalar numbers form an
overcomplete feature set for the intrinsically low-dimensional face pattern.

One Haar-like feature can be viewed as a mask consisting of three values: 1 for
those pixels in the white region of the feature, −1 for those dark region pixels in the
feature, and 0 for those pixels outside of the feature region. The mask is of the same
size as the subwindow. If we stack pixels of a subwindow into a vector x, and stack
the mask associated with a feature into a vector m, this particular feature will have
feature value mTx.

2Viola and Jones [43, 45] used hm(x) ∈ {0,1}. Our notation is slightly different from but equivalent
to theirs.
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Fig. 11.3 The sum of the pixels within rectangle D can be computed with four array references.
The value of the integral image at location 1 is the sum of the pixels in rectangle A. The value at
location 2 is A+B , at location 3 is A+C, and at location 4 is A+B +C +D. The sum within D

can be computed as (4 + 1) − (2 + 3). From Viola and Jones [43], © 2001 IEEE, with permission

These Haar-like features are interesting for two reasons: (1) powerful face/non-
face classifiers can be constructed based on these features (see later); and (2) they
can be computed efficiently [36] using the summed-area table [7] or integral im-
age [43] technique.

The integral image II(x, y) at location x, y contains the sum of the pixels above
and to the left of x, y, defined as [43]

II(x, y) =
∑

x′≤x,y′≤y

I(x, y). (11.2)

The image can be computed in one pass over the original image using the following
pair of recurrences

S(x, y) = S(x, y − 1) + I(x, y), (11.3)

II(x, y) = II(x − 1, y) + S(x, y), (11.4)

where S(x, y) is the cumulative row sum, S(x,−1) = 0 and II(−1, y) = 0. Using
the integral image, any rectangular sum can be computed in four array references,
as illustrated in Fig. 11.3. The use of integral images leads to enormous savings in
computation for features at varying locations and scales.

With the integral images, the intensity variation within a rectangle D of any size
and any location can be computed efficiently; for example VD = √

V ∗ V where
V = (4+1)− (2+3) is the sum within D, and a simple intensity normalization can
be done by dividing all the pixel values in the subwindow by the variation.

Equation (11.4) shows that the feature value mTx can be evaluated extremely fast
when the rectangular structures in the mask m is utilized. Recently, extended sets
of Haar-like features have been proposed for improving detection accuracy [27],
dealing with out-of-plane head rotation [14, 19] and for in-plane head rotation [14,
21]. The extended features are carefully designed such that special structures exist
in their corresponding masks, thus the feature values can be computed quickly using
ideas similar to (11.4).
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Fig. 11.4 One example
granular feature

Fig. 11.5 Illustration of LBP (a) and MB-LBP (b)

Figure 11.4 shows an example of the granular features used in [14]. The masks
corresponding to granular features have this special structure: most of the mask
values are 0, while a few nonoverlapping square subregions in the mask have values
of all +1 (or all −1). The square subregions are confined to be of size 1 × 1, 2 × 2,
4 × 4, or 8 × 8, so that the integral image trick can be used to quickly compute
granular features.

The subwindow in Fig. 11.4 is of size 20 × 20, thus a feature is equivalent to a
20×20 mask, in which the gray pixels correspond to the value 0, the 8×8 subregion
correspond to the value +1 in the mask, and the two 4 × 4 subregions correspond to
the value −1. By precomputing three integral images for size 2, 4, and 8 subregions
correspondingly, the granular feature values can be quickly computed.

Recently other local features are also proposed for usage in face detection, among
which the local binary pattern feature (LBP) has exhibited promising results.3 As
illustrated in Fig. 11.5(a), the original LBP operator compares a pixel with its 8
neighbors, generating a single bit ‘1’ if the neighboring pixel has higher intensity
values (and a bit ‘0’ if otherwise). The LBP value is then a combination of these
8 bits. The multi-block LBP (MB-LBP) generalize LBP by comparing the average

3The modified Census Transform feature [15] is also used for face detection, and is very similar to
LBP.
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intensity of pixels within a region instead of comparing single pixel intensities (il-
lustrated in Fig. 11.5(b)).

MB-LBP is used in [20] and [52] for face detection and recognition, which shows
that MB-LBP can produced improved performance than Haar-like features in face
detection. The MB-LBP features can also be computed efficiently using integral
images [20].

11.3.2 Learning Weak Classifiers

As mentioned earlier, the AdaBoost learning procedure is aimed at learning a se-
quence of weak classifiers hm(x) and the combining weights αm in (11.1). It solves
the following three fundamental problems: (1) learning effective features from a
large feature set; (2) constructing weak classifiers, each of which is based on one
of the selected features; and (3) boosting the weak classifiers to construct a strong
classifier.

AdaBoost assumes that a “weak learner’ procedure is available. The task of the
procedure is to select the most significant feature from a set of candidate features,
given the current strong classifier learned thus far, and then construct the best weak
classifier and combine it into the existing strong classifier. Here, the “significance”
is with respect to some given criterion (see below).

In the case of discrete AdaBoost, the simplest type of weak classifiers is a
“stump.” A stump is a single-node decision tree. When the feature is real-valued,
a stump may be constructed by thresholding the value of the selected feature at a
certain threshold value; when the feature is discrete-valued, it may be obtained ac-
cording to the discrete label of the feature. A more general decision tree (with more
than one node) composed of several stumps leads to a more sophisticated weak
classifier.

For discrete AdaBoost, a stump may be constructed in the following way. As-
sume that we have constructed M − 1 weak classifiers {hm(x)|m = 1, . . . ,M − 1}
and we want to construct hM(x). The stump hM(x) ∈ {−1,+1} is determined by
comparing the selected feature zk∗(x) with a threshold τk∗ as follows

hM(x) =
{+1 if zk∗ > τk∗ ,
−1 otherwise.

(11.5)

In this form, hM(x) is determined by two parameters: the type of the scalar fea-
ture zk∗ and the threshold τk∗ . The two may be determined by some criterion, for
example, (1) the minimum weighted classification error, or (2) the lowest false alarm
rate given a certain detection rate.

Supposing we want to minimize the weighted classification error with real-valued
features, then we can choose a threshold τk ∈ R for each feature zk to minimize the
corresponding weighted error made by the stump with this feature; we then choose
the best feature zk∗ among all k that achieves the lowest weighted error.
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0. (Input)
(1) Training examples Z = {(x1, y1), . . . , (xN , yN )}, and example weights (w1, . . . ,wN),

where N = a + b; of which a examples have yi = +1 and b examples have yi = −1.
(2) The mask m corresponds to a feature.

1. (Initialization)
Compute the feature values, v1, . . . , vN , where vi = mTxi .
Sort the feature values as vi1 ≤ · · · ≤ viN , such that (i1, . . . , iN ) is a permutation of
(1, . . . ,N).
ε ⇐ ∑

yi=−1 wi

2. (Updates)
For k = 1, . . . ,N :

if yik = −1 then
ε ⇐ ε − wik , εi ⇐ ε

else
ε ⇐ ε + wik , εi ⇐ ε

3. (Output)
k = arg min1≤i≤N εi .
Optimal threshold τ ∗: τ ∗ = mTτik .

Fig. 11.6 Finding the optimal threshold of a weak classifier

Wu et al. show in [47] that only N +1 possible τk values need to be evaluated, and
evaluating each τk is only O(1) if we sort the feature values for zk beforehand. This
method to find the optimal threshold of a weak classifier is illustrated in Fig. 11.6.

Suppose the features are sorted in the order vi1 ≤ · · · ≤ viN , and τk1 and τk2

satisfy that vij < τk1 , τk2 < vij+1 , then setting the threshold to either τk1 or τk2 will
result in the same weighted error. Thus, in Fig. 11.6 only the feature values (plus
−∞) are considered as possible thresholds. Given the weighted error at τk = vij , a
simple update is sufficient to compute the error when τk = vij+1 , because at most
one example has changed its classification result.

Most of the computations in Fig. 11.6 is spent in the initialization part. One
important observation in [47] is that the feature values need to be computed and
sorted only once, because they do not change during the AdaBoost process even
though the weights w change at each iteration. By storing the sorted feature values
for all features in a table, the AdaBoost training time is reduced from weeks ([45])
to hours ([47]).

More features usually lead to higher detection accuracy [27]. However, it also
means that the table of sorted feature values may be too large to be stored in the
main memory. Pham and Cham construct weak classifiers using the mean and stan-
dard deviation of feature values. Given a feature, its associated mask m, and the
AdaBoost weights w(M−1), the average feature value is

∑
i w

(M−1)
i mTxi , where xi

is a set of training examples.
The integral image trick can be used to accelerate the computation of the mean

feature value and standard deviation, that is, providing a way to utilize the structures
in the mask m and computes mTx quickly. Let x be an image subwindow in the
stacked vector form and y be the corresponding integral image, it is clear from (11.2)
that the transformation that generates y from x is linear, that is, there exists a square



286 S.Z. Li and J. Wu

matrix B such that y = Bx, and mTx = mTB−1y. The average feature value is
then [27]

∑

i

w
(M−1)
i mTxi = mTB−1

(
∑

i

w
(M−1)
i yi

)
. (11.6)

In (11.6), the weighted average integral image
∑

i w
(M−1)
i yi can be computed in lin-

ear time, and the transformed mask mTB−1 is sparse because of the structure in the
mask m. Thus, the average feature value can be computed very quickly. Similarly,
the (weighted) standard deviation can be quickly computed, too.

The faces are then modeled as a one-dimensional Gaussian distribution
N(μ+, σ 2+), where μ+ and σ+ are computed from face examples. Nonfaces are
modeled by N(μ−, σ 2−) similarly. The best threshold that separate two 1-d Gaus-
sians can then be solved in a closed form.

This method is faster than examining all possible τk values, and has a much
smaller storage requirement [27]. It is reported in [27] that the training speed is
about two times faster than the algorithm presented in Fig. 11.6. This method has
much less storage requirements and thus can train a strong classifier with more local
features.

A decision stump is simple but may not fully utilize the information contained
in a feature. A more complex weak classifier can be constructed by using piece-
wise decision functions [14, 22]: dividing the range of feature values into k non-
overlapping cells, and learn a decision function (for example, a decision stump) for
every cell. Piece-wise decision functions take longer training time but usually have
higher discrimination power than simple decision stumps.

Supposing that we want to achieve the lowest false alarm rate given a certain
detection rate, we can set a threshold τk for each zk so a specified detection rate
(with respect to w(M−1)) is achieved by hM(x) corresponding to a pair (zk, τk).
Given this, the false alarm rate (also with respect to w(M−1)) due to this new hM(x)

can be calculated. The best pair (zk∗ , τk∗) and hence hM(x) is the one that minimizes
the false alarm rate.

There is still another parameter that can be tuned to balance between the detec-
tion rate and the false alarm rate: The class label prediction ŷ(x) = sign[HM(x)] is
obtained by thresholding the strong classifier HM(x) at the default threshold value 0.
However, it can be done as ŷ(x) = sign[HM(x)−TM ] with another value TM , which
can be tuned for the balance.

The form of (11.5) is for Discrete AdaBoost. In the case of real-valued versions
of AdaBoost, such as RealBoost and LogitBoost, a weak classifier should be real-
valued or output the class label with a probability value. For the real-value type, a
weak classifier may be constructed as the log-likelihood ratio computed from the
histograms of the feature value for the two classes. (See the literature for more
details [17–19].) For the latter, it may be a decision stump or tree with probability
values attached to the leaves [21].
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11.3.3 Learning Strong Classifiers Using AdaBoost

AdaBoost learns a sequence of weak classifiers hm and boosts them into a strong
one HM effectively by minimizing the upper bound on classification error achieved
by HM . The bound can be derived as the following exponential loss function [32]

J (HM) =
∑

i

e−yiHM(xi ) =
∑

i

e−yi

∑M
m=1 αmhm(x) (11.7)

where i is the index for training examples. AdaBoost constructs hm(x) (m =
1, . . . ,M) by stagewise minimization of (11.7). Given the current HM−1(x) =∑M−1

m=1 αmhm(x), and the newly learned weak classifier hM , the best combining
coefficient αM for the new strong classifier HM(x) = HM−1(x) + αMhM(x) mini-
mizes the cost

αM = arg min
α

J
(
HM−1(x) + αmhM(x)

)
. (11.8)

The minimizer is

αM = log
1 − εM

εM

(11.9)

where εM is the weighted error rate

εM =
∑

i

w
(M−1)
i 1

[
sign

(
HM(xi)

) 
= yi

]
(11.10)

where 1[C] is 1 if C is true but 0 otherwise.
Each example is reweighted after an iteration that is, w

(M−1)
i is updated accord-

ing to the classification performance of HM :

w
(M)
i = w

(M−1)
i exp

(−yiαMhM(xi)
)

= exp
(−yiHM(xi)

)
(11.11)

which is used for calculating the weighted error or another cost for training the weak
classifier in the next round. This way, a more difficult example is associated with a
larger weight so it is emphasized more in the next round of learning. The algorithm
is summarized in Fig. 11.7.

11.3.4 Alternative Feature Selection Methods

In boosting based methods (cf. Fig. 11.7), the weak classifiers hM and their related
weights αM are determined simultaneously: hM is chosen to minimize certain ob-
jective value (for example, weighted error rate of the feature) and αM is a function
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0. (Input)
(1) Training examples Z = {(x1, y1), . . . , (xN , yN )},

where N = a + b; of which a examples have yi = +1 and b examples have yi = −1.
(2) The number M of weak classifiers to be combined.

1. (Initialization)
w

(0)
i = 1

2a
for those examples with yi = +1 or w

(0)
i = 1

2b
for those examples with yi = −1.

2. (Forward inclusion)
For m = 1, . . . ,M :

(1) Choose optimal hm to minimize the weighted error.
(2) Choose αm according to (11.9).
(3) Update w

(m)
i ← w

(m)
i exp[−yiαmhm(xi)] and normalize to

∑
i w

(m)
i = 1.

3. (Output)
Classification function: HM(x) as in (11.1).
Class label prediction: ŷ(x) = sign[HM(x)].

Fig. 11.7 AdaBoost learning algorithm

of the objective value. Wu et al. [47] show that if these tasks (learning hM and set-
ting αM ) are decoupled into two sequential steps, a more accurate strong classifier
HM can be obtained.

Different methods can be used to select features and train weak classifiers. Be-
sides AdaBoost and other boosting variants, [47] showed that a greedy Forward
Feature Selection (FFS) method can successfully select a subset of features from a
large feature pool and learn corresponding weak classifiers. In boosting methods,
a feature is selected if its corresponding weak classifier has minimum weighted er-
ror rate. FFS uses a different selection criterion that is directly related to the strong
classifier’s performance. In FFS, if a partial strong classifier HM−1 is already con-
structed, a feature hM∗ is selected in iteration M only if it leads to highest strong
classifier accuracy, that is, HM−1 ∪ hM∗ has the highest accuracy among all possi-
ble hM . FFS uses majority vote (that is, αi = 1 for all i). A table of feature values
are stored to ensure fast weak classifier training. FFS trains faster than the Ad-
aBoost method, and achieves comparable but slightly lower detection accuracy than
AdaBoost.

In fact, it is shown that AdaBoost is a sequential forward search procedure using
the greedy selection strategy to minimize a certain margin on the training set [32].
Conceptually, FFS and AdaBoost shares the greedy feature selection idea, although
different objective functions are used to guide the greedy search procedures.

A crucial heuristic assumption used in such a sequential forward search proce-
dure is the monotonicity (that is, that addition of a new weak classifier to the current
set does not decrease the value of the performance criterion). The premise offered
by the sequential procedure in AdaBoost or FFS breaks down when this assumption
is violated. Floating Search [29] is a sequential feature selection procedure with
backtracking, aimed to deal with nonmonotonic criterion functions for feature se-
lection. The sequential forward floating search (SFFS) methods [29] adds or deletes
a single (� = 1) feature and then backtracks r steps, where r depends on the current
situation.
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0. (Input)
(1) Training examples Z = {(x1, y1), . . . , (xN,yN )},

where N = a + b; of which a examples have yi = +1 and b examples have yi = −1.
(2) The maximum number Mmax of weak classifiers.
(3) The cost function J (HM), and the maximum acceptable cost J ∗.

1. (Initialization)
(1) w

(0)
i = 1

2a
for those examples with yi = +1 or w

(0)
i = 1

2b
for those examples

with yi = −1.
(2) J min

m =max-value (for m = 1, . . . ,Mmax), M = 0, H0 = {}.
2. (Forward inclusion)

(1) M ← M + 1.
(2) Learn hM and αM .
(3) Update w

(M)
i ← w

(M−1)
i exp[−yiαMhM(xi)], normalize to

∑
i w

(M)
i = 1.

(4) HM = HM−1 ∪ {hM };
If J min

M > J(HM), then J min
M = J (HM).

3. (Conditional exclusion)
(1) h′ = arg minh∈HM

J (HM − h).
(2) If J (HM − h′) < J min

M−1, then
(a) HM−1 = HM − h′.

J min
M−1 = J (HM − h′); M = M − 1.

(b) If h′ = hm′ , then

recalculate w
(j)
i and hj for j = m′, . . . ,M .

(c) Go to 3.(1).
(3) Else

(a) If M = Mmax or J (HM) < J ∗, then go to 4.
(b) Go to 2.(1).

4. (Output)
Classification function: HM(x) as in (11.1).
Class label prediction: ŷ(x) = sign[HM(x)].

Fig. 11.8 FloatBoost algorithm

The FloatBoost Learning procedure is shown in Fig. 11.8. It is composed of sev-
eral parts: the training input, initialization, forward inclusion, conditional exclusion,
and output. In step 2 (forward inclusion), the currently most significant weak classi-
fiers are added one at a time, which is the same as in AdaBoost. In step 3 (conditional
exclusion), FloatBoost removes the least significant weak classifier from the set HM

of current weak classifiers, subject to the condition that the removal leads to a lower
cost than J min

M−1. Supposing that the weak classifier removed was the m′th in HM ,
then hm′ , . . . , hM−1 and the αm’s must be relearned. These steps are repeated until
no more removals can be done.

11.3.5 Asymmetric Learning Methods

The face detection (and other object detection) problem is a rare-event detection
problem [47], in the sense that the face (or target object) only occupies a small
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number of subwindows while the nonface (or nonobject) subwindows are on the
order of millions even in a small-sized image. This asymmetric nature of the classi-
fier learning problem is long recognized and methods have been proposed to build
a strong classifier that takes into account the asymmetry property.

Viola and Jones proposed the AsymBoost method [44], which is a modification
of the AdaBoost algorithm. The essence of AsymBoost is to focus more on positive
examples by changing the weight update rule (11.11) to

w
(M)
i = C exp

(−yiHM(xi)
)
, (11.12)

where C = (
√

K)(1/T ) if yi > 0 and C = (
√

K)(−1/T ) if yi < 0, and K > 1 is
a parameter that measures that level of asymmetry. We assume that the boosting
learning procedure will repeat T rounds. In the T rounds of AdaBoost algorithm,
positive examples are continuously assigned higher weights than negative examples.

Wu et al. propose another asymmetric learning method. Wu et al. [47] shows that
it is advantageous to adjust the values of αi after the features are selected, according
to the cascade detection framework. Assuming the false alarm rate of all strong
classifiers in a cascade is 0.5, a 20-node cascade will have a 10−6 false alarm rate
if we assume the strong classifiers reject nonfaces independent to each other. Thus,
Wu et al. propose the following learning goal for the strong classifiers in a cascade:
“for every node, design a classifier with very high (e.g. 99.9%) detection rate and
only moderate (e.g., 50%) false positive rate.” Linear Asymmetric Classifier (LAC)
is designed to find the α that achieve this goal.

Given weak classifiers h1, h2, . . . , hM , an example x is mapped to a vector of
responses h(x) = (h1(x), h2(x), . . . , hM(x)). LAC computes the distributions of the
vector h(x): μ+ and Σ+ are mean and covariance matrix of h(x) when x is the set
of faces. Similarly, μ− and Σ− are the mean and covariance matrix computed using
nonfaces. It is showed in [47] that the following LAC solution vector α∗ ∈ R

M is
globally optimal for the cascade learning goal under certain reasonable assumptions:

α∗ = Σ−1+ (μ+ − μ−). (11.13)

Another way to set the α vector is to use the Fisher’s Discriminant Analysis (FDA).
Experiments in [47] show that using LAC or FDA to set the α vector consistently
improve cascade detection accuracy, no matter the weak classifiers are selected and
trained using AdaBoost or FFS.

11.3.6 Cascade of Strong Classifiers

A boosted strong classifier effectively eliminates a large portion of nonface subwin-
dows while maintaining a high detection rate. Nonetheless, a single strong classifier
may not meet the requirement of an extremely low false alarm rate (for example,
10−6 or even lower). A solution is to arbitrate between several detectors (strong
classifier) [31], for example, using the “AND” operation.
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Fig. 11.9 A cascade of n strong classifiers (SC). The input is a subwindow x. It is sent to the
next SC for further classification only if it has passed all the previous SCs as the face (F) pattern;
otherwise it exits as nonface (N). x is finally considered to be a face when it passes all the n SCs

Viola and Jones [43, 45] further extend this idea by training a cascade consist-
ing of a cascade of strong classifiers, as illustrated in Fig. 11.9. A strong classifier
is trained using bootstrapped nonface examples that pass through the previously
trained cascade. Usually, 10 to 20 strong classifiers are cascaded. For face detec-
tion, subwindows that fail to pass a strong classifier are not further processed by the
subsequent strong classifiers. This strategy can significantly speed up the detection
and reduce false alarms, with a little sacrifice of the detection rate.

Various improvements have also been proposed to the cascade structure. Xiao
et al. argue that historical information is useful during the cascade training [48],
that is, we should not ignore the information contained in the strong classifiers
SC1, . . . ,SCM−1 when we train the M-th strong classifier SCM (which is the prac-
tice in Fig. 11.7). The Boosting Chain framework is proposed in [48] to incorporate
such historical information: the strong classifier SCM−1 is treated as the first “weak
classifier” in SCM . This modification to the cascade framework reduces the number
of required weak classifiers and increases detection accuracy [6, 48].

Another attempt to modify the cascade framework is the soft cascade method [5]
or similar ideas [28, 49]. Soft cascade is an extreme cascade structure: a “mono-
lithic” strong classifier composed of multiple weak classifiers, much similar to the
strong classifier in the cascade framework. Let c1(x), . . . , cT (x) be the weak classi-
fiers that form a soft cascade:

HT (x) =
T∑

i=1

ci(x). (11.14)

A soft cascade associates a rejection threshold rt for every partial strong classifier
Ht(x) = ∑t

i=1 ci(x). If Ht(x) < rt , the input subwindow x is rejected as nonface
and the weak classifiers ct+1, . . . , cT are not evaluated. In other words, a soft cas-
cade is similar to a cascade structure that requires only 1 weak classifier per node.
However, since historical information is preserved in Ht , soft cascades achieves
high detection performances.

After the weak classifiers c1, . . . , cT are trained, the soft cascade method rear-
ranges the order of these weak classifiers. This step is carried out using a separate
set of validation examples. An optimal ordering of weak classifiers and rejection
thresholds rt are chosen to minimize both the detection errors and testing time com-
putational costs [5].

Similar ideas are proposed to improve the original cascade framework in [6].
Suppose that a cascade consists of strong classifiers SC1, . . . ,SCM , where SCi is
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trained using the AdaBoost method. By adjusting the threshold of the strong classi-
fier, we can get different strong classifier performance in terms of false alarm rates
and detection rates. This threshold is usually determined manually by setting a fixed
goal for either detection or false alarm rate, which not necessarily leads to optimal
cascade detection performance. Brubaker et al. proposed a “two-point” algorithm
to automatically find optimal thresholds of strong classifiers. The two-point algo-
rithm uses less weak classifiers than fixed goal AdaBoost (and thus faster detection
speed), and achieves higher detection performances.

11.4 Dealing with Head Rotations

Multiview face detection should be able to detect nonfrontal faces. Face detection
methods usually handle two major types of head rotation: (1) out-of-plane (left-
right) rotation; (2) in-plane rotation.

Rowley et al. [30] propose to use two neural network classifiers for detection of
frontal faces subject to in-plane rotation. The first is the router network, trained to
estimate the orientation of an assumed face in the subwindow, though the window
may contain a nonface pattern. The inputs to the network are the intensity values
in a preprocessed 20 × 20 subwindow. The angle of rotation is represented by an
array of 36 output units, in which each unit represents an angular range. With the
orientation estimate, the subwindow is derotated to make the potential face upright.
The second neural network is a normal frontal, upright face detector.

Within the cascade detector framework, detector-pyramids have been proposed
to detect and merge faces in different poses and have achieved the state-of-the-art
detection performance.

11.4.1 Hierarchical Organization of Multi-view Faces

The Width-First-Search structure (Fig. 11.10) by Huang et al. in [14] handles in-
plane and out-of-plane rotations simultaneously. Huang et al. [14] manually divides
the face range into 15 different poses, and arranges such poses in a four level tree
structure. The top level tree node includes all face poses. The second level contains
3 nodes, which correspond to left profile, frontal, and right profile faces. The third
level further refines to 5 nodes, where left and right profile faces are split into 2
different nodes based on the out-of-plane rotation angle. The first 3 levels handle
out-of-plane rotations. Each node in the third level is split to 3 nodes in the final
level, handling different in-plane rotation angles.

The tree structure in [14] handles out-of-plane rotation in Θ = [−90◦,+90◦]
and in-plane rotation in Φ2 = [−45◦,+45◦]. The full in-plane rotation range Φ =
[−180◦,+180◦] is covered by rotating the features 90°, 180°, and 270°. It is noticed
that for these specific rotation angles, rotating the features is equivalent to rotate the
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Fig. 11.10 Illustration of the structure for detecting multi-view faces. From Huang et al. [14],
© 2007 IEEE, with permission

Fig. 11.11 Out-of-plane view partition. Out-of-plane head rotation (row 1), the facial view labels
(row 2), and the coarse-to-fine view partitions at the three levels of the detector-pyramid (rows 3
to 5)

mask m associated with a feature by a corresponding angle. Rotating features is
more efficient than rotating images.

A similar hierarchy is used by Li et al. [17, 19] to handle out-of-plane rotation in
[−90◦,+90◦], shown in Fig. 11.11. It is worth noting that the face-pose hierarchy
in Fig. 11.11 does not handle in-plane rotations. The leaf detectors are designed
to handle in-plane rotations in the range [−15◦,+15◦]. The full in-plane rotation
in Φ = [−45◦,+45◦] is dealt with by also applying the detector-pyramid on the
rotated test images (±30◦).

11.4.2 From Face-Pose Hierarchy to Detector-Pyramid

A detector-pyramid that detects multi-view faces can be derived directly from the
face-pose hierarchy. Every node in Fig. 11.10 corresponds to a strong classifier. For
example, the root node determines whether a subwindows contains a left profile,
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Table 11.1 Desired vectors
for different face poses and
non-faces in Vector Boosting
training

Cases Desired output vector

Left profile face (1,0,0,0)

Frontal face (0,1,0,0)

Right profile face (0,0,1,0)

Nonfaces (−1,0,0,0), (0,−1,0,0), (0,0,−1,0)

Fig. 11.12 Merging from different channels. From left to right: Outputs of frontal, left, and right
view channels and the final result after the merge

frontal, or right profile face. It is important to note that multiple children nodes of
the same parent node can be activated simultaneously (that is, a width-first-search of
a tree structure). Huang et al. made this choice based on the following argument: dif-
ferent face poses are jointly competing with nonfaces, and the discrimination among
them is less important (except in the final level). This hypothesis requires nodes in
the top 3 levels to be multi-class classifiers, and a Vector Boosting algorithm is
proposed in [14] to satisfy this special requirement.

For example, a partial profile face with a 45° out-of-plane rotation angle can
be detected by both the right profile face node and the frontal face node in the
second layer. In order to achieve higher detection accuracy, it is reasonable to further
examine the two sub-trees rooted at both nodes. In the Vector Boosting classifier for
the root node, the desired output is a vector and the desired vectors for different
cases are summarized in Table 11.1.

At the final level, the single node with the highest confidence is chosen as the
detected face pose. In order to get a classifier with very low false alarm rate, the
classifier in the leaf node of the width-first-search tree in [14] is in fact a cascade
detector.

Figure 11.11 leads to another detector pyramid. Instead of using a multi-class
boosting algorithm that generates a vector output, [17] uses k binary RealBoost
strong classifiers if a node has k children nodes. Multiple children of a node can be
activated (that is, further examining the subtree rooted at a child node) if more than
one binary RealBoost classifiers output positively. At the final level, multiple leaf
nodes (corresponding to different face poses) can be active for one subwindow. Dif-
ferent from [14], faces detected by the seven channels at the final level of Fig. 11.11
are merged to obtain the final result. This is illustrated in Fig. 11.12.
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Fig. 11.13 Merging multiple detections

11.5 Postprocessing

A single face in an image may be detected several times at close locations or on
multiple scales. False alarms may also occur but usually with less consistency than
multiple face detections. The number of multiple detections in a neighborhood of
a location can be used as an effective indication for the existence of a face at that
location. This assumption leads to a heuristic for resolving the ambiguity caused by
multiple detections and eliminating many false detections. A detection is confirmed
if the number of multiple detections is greater than a given value; and given the
confirmation, multiple detections are merged into a consistent one. This is practiced
in most face detection systems [31, 38]. Figure 11.13 gives an illustration. The im-
age on the left shows a typical output of initial detection, where the face is detected
four times with four false alarms on the cloth. On the right is the final result af-
ter merging. After the postprocessing, multiple detections are merged into a single
face and the false alarms are eliminated. Figures 11.14 and 11.15 show some typical
frontal and multiview face detection examples; the multiview face images are from
the Carnegie Mellon University (CMU) face database [42].

11.6 Performance Evaluation

The result of face detection from an image is affected by the two basic compo-
nents: the face/nonface classifier and the postprocessing (merger). To understand
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Fig. 11.14 Results of frontal face detection

how the system works, it is recommended that the two components be evaluated
separately [1], with two types of test data. The first consists of face icons of a fixed
size (as are used for training). This process aims to evaluate the performance of the
face/nonface classifier (preprocessing included), without being affected by merging.
The second type of test data consists of normal images. In this case, the face detec-
tion results are affected by both trained classifier and merging; the overall system
performance is evaluated.

11.6.1 Performance Measures

The face detection performance is primarily measured by two rates: the correct de-
tection rate (which is 1 minus the miss rate) and the false alarm rate. The perfor-
mance can be observed by plotting on the receiver operating characteristic (ROC)
curves.

The false alarm rate is computed as the percentage of the subwindows that are
nonfaces but wrongly classified as faces. However, the number of false detections
(remaining after merging multiple detections) is a better suited metric because it
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Fig. 11.15 Results of multiview face detection

reflects the effect of postprocessing and directly links to the final output of a face
detection system. Although the false alarm rate is usually positively correlated with
the number of false detections, recently more authors are reporting number of false
detections (after postprocessing) in the X-axis of the ROC curves. Figure 11.16
shows several examples of the ROC curves, including four recent methods evaluated
on the benchmark MIT-CMU frontal face dataset [42].

An ideal face detection system should have a detection rate of 100%, with a
false alarm rate of 0, though none of the current systems can achieve this generally.
In practical systems, increasing the detection rate is usually accompanied by an
increase in the false alarm rate. In the case where a confidence function is used to
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Fig. 11.16 Typical ROC
curve for face detection on
the MIT-CMU frontal face
dataset. The algorithms
include the AdaBoost
implementation in [6], the
2-point algorithm [6],
FloatBoost [17], and
AsymBoost + FDA [47]

distinguish between the face and nonface subwindows, with the high output value
indicating the detection of face and low value nonface, a trade-off between the two
rates can be made by adjusting the decisional threshold. In the case of the AdaBoost
learning method, the threshold for (11.1) is learned from the training face icons
and bootstrapped nonface icons, so a specified rate (usually the false alarm rate) is
under control for the training set. Remember that performance numbers of a system
are always with respect to the data sets used; two algorithms or systems cannot be
compared directly unless the same data sets are used.

11.6.2 Comparison of Cascade-Based Detectors

As the cascade-based methods (with local features) have so far provided the best
face detection solutions in terms of the statistical rates and the speed, the following
provides a comparative evaluation on different boosting algorithms (DAB: discrete
AdaBoost; RAB: real AdaBoost; and GAB: gentle AdaBoost), different training sets
preparations, and different weak classifiers. The results provide empirical references
for face detection engineers.

• Boosting Algorithms. Three 20-stage cascade classifiers were trained with DAB,
RAB, and GAB using the Haar-like feature set of Viola and Jones [43, 45] and
stumps as the weak classifiers. It is reported that GAB outperformed the other two
boosting algorithms [21]. Also, a smaller rescaling factor for scanning images was
beneficial for a high detection rate.

• Weak Classifiers. Stumps are the simplest tree type of weak classifiers (WCs)
that can be used in discrete AdaBoost. A stump is a single-node tree that does not
allow learning dependence between features. In general, n split nodes are needed
to model dependence between n − 1 variables. It is reported in [6] that using a
decision tree as weak classifier, the cascade achieves up to 15% higher detection
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Table 11.2 Average number
of features evaluated per
nonface subwindow of size
20 × 20 (reproduced from
Lienhart et al. [21])

Number of splits

AdaBoost type 1 2 3 4

DAB 45.09 44.43 31.86 44.86

GAB 30.99 36.03 28.58 35.40

RAB 26.28 33.16 26.73 35.71

rate with the same number of false detections. Other complex weak classifier (for
example, piece-wise decision functions) can also increase detection performance.

• Detection Speed. Table 11.2 compares the CART tree weak classifiers of varying
number of nodes in terms of the effectiveness of rejecting nonface subwindows.
RAB is the most effective. It is also reported in [6] that RAB has the fastest
detection speed. Reusing historical information [48] is confirmed to be effective
in reducing testing time by [6].

• Haar-like and Other Local Features. The experiments in [21] and other works
(for example, [14, 27]) suggest that whereas the larger Haar-like feature set makes
it more complex in both time and memory in the boosting learning phase, gain is
obtained in the detection phase. Using approximately the same training time, [27]
(with 295 920 local features) reported about 5% lower false alarms than the
method in Fig. 11.6 (with 40 000 local features). Other local features such as
MB-LBP also exhibits excellent detection results [52].

• Subwindow Size. Different subwindow sizes, ranging from 16×16 up to 32×32,
have been used on face detection. The experiments [21] show that a subwindow
size of 20 × 20 achieves the highest detection rate at an absolute number of false
alarms between 5 and 100 on the CMU test set of frontal faces. A subwindow
size of 24 × 24 worked better for false alarms fewer than five.

11.7 Conclusions

Face detection is the first step in automated face recognition and has applications in
biometrics and multimedia management. Owing to the complexity of the face and
nonface manifolds, highly accurate face detection with a high detection rate and low
false alarm rate has been challenging. Now this difficult problem has almost been
solved to meet the minimum requirements of most practical applications, because
of the advances in face recognition research and machine learning.

Boosting-based face detection methods [14, 17, 19, 21, 43, 45, 47] have been the
most effective of all those developed so far. In terms of detection and false alarm
rates, they are comparable to the neural network method of Rowley et al. [31], but
are several times faster.

Regarding the boosting based approach, the following conclusions can be drawn
in terms of feature sets, boosting algorithms, weak classifiers, subwindow sizes, and
training set sizes according to reported studies [14, 17, 19, 21, 43, 45, 47]:
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• An over-complete set of Haar-like features are effective for face detection. The
use of the integral image method makes computation of these features efficient
and achieves scale invariance. Extended Haar-like features help detect nonfrontal
faces.

• AdaBoost learning can select best subset from a large feature set and construct a
powerful nonlinear classifier.

• The cascade structure significantly improves the detection speed and effectively
reduces false alarms, with a little sacrifice of the detection rate.

• Selecting the weak classifiers and learning the weights that combine those weak
classifiers can be decoupled.

• Alternative feature selection methods can be used to reduce training time (for
example, FFS), or to achieve lower error rate or detection time (for example,
FloatBoost).

• Asymmetry needs to be taken care of in learning classifiers for face detection.
Weights that are specifically learned to satisfy learning goals in the cascade
framework (for example, using LAC) improve detection accuracy.

• Less aggressive versions of AdaBoost, such as GentleBoost and LogitBoost, may
be preferable to discrete and real AdaBoost in dealing with training data contain-
ing outliers [12].

• Representationally, more complex weak classifiers such as small CART trees can
model second-order and/or third-order dependencies, and may be beneficial for
the nonlinear task of face detection.

Although face detection technology is now sufficiently mature to meet the mini-
mum requirements of many practical applications, much work is still needed before
automatic face detection can achieve performance comparable to the human per-
formance. The Haar + AdaBoost approach is effective and efficient. However, the
current approach has almost reached its power limit. Within such a framework, im-
provements may be possible by designing additional sets of features that are com-
plementary to the existing ones and adopting more advanced learning techniques,
which could lead to more complex classifiers while avoiding the overfitting prob-
lem.
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