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Preface

Face recognition is one of the most important abilities that we use in our daily lives.
There are several reasons for the growing interest in automated face recognition,
including rising concerns for public security, the need for identity verification for
physical and logical access, and the need for face analysis and modeling techniques
in multimedia data management and digital entertainment. Research in automatic
face recognition started in the 1960s. Recent years have seen significant progress
in this area and a number of face recognition and modeling systems have been de-
veloped and deployed. However, accurate and robust face recognition still offers a
number of challenges to computer vision and pattern recognition researchers, espe-
cially under unconstrained environments.

This book is written with two primary motivations. The first is to compile major
approaches, algorithms, and technologies available for automated face recognition.
The second is to provide a reference book to students, researchers, and practitioners.

The book is intended for anyone who plans to work in face recognition or who
wants to become familiar with the state-of-the-art in face recognition. It also pro-
vides references for scientists and engineers working in image processing, computer
vision, biometrics and security, computer graphics, animation, and the computer
game industry. The material contained in the book fits the following categories: ad-
vanced tutorial, state-of-the-art survey, and a guide to current technology.

This second edition consists of twenty seven chapters, with additions and up-
dates from the sixteen chapters in the first edition. It covers all the subareas and
major components necessary for developing face recognition algorithms, designing
operational systems, and addressing related issues in large scale applications. Each
chapter focuses on a specific topic or system component, introduces background in-
formation, reviews up-to-date techniques, presents results, and points out challenges
and future directions.

The twenty seven chapters are divided into four parts according to the main prob-
lems addressed. Part I, Face Image Modeling and Representation, consists of ten
chapters, presenting theories in face image modeling and facial feature representa-
tion. Part II, Face Recognition Techniques, also consists of ten chapters, presenting
techniques for face detection, landmark detection, and face recognition in static face
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vi Preface

images, in video, in non-visible spectrum images, and in 3D. Part III, Performance
Evaluation: Machines and Humans, consists of three chapters, presenting methods
and programs for face recognition evaluation and also studies and comparisons with
human performance. Part IV, Face Recognition Applications, consists of four chap-
ters, presenting various applications of face recognition and related issues.

A project like this requires the efforts and support of many individuals and or-
ganizations. First of all, we would like to thank all the authors for their outstanding
contributions which made this edition possible. We also thank Wayne Wheeler and
Simon Rees, the Springer editors for their support and patience during the course
of this project. Thanks are also due to a number of individuals who have assisted us
during the editing phase of this project, including Shikun Feng, Shengcai Liao, Xi-
angsheng Huang, Brendan Klare, Unsang Park, Abhishek Nagar, and not the least
Kim Thompson for her careful proofreading of the manuscript. Stan Z. Li would
like to acknowledge the support of the Chinese National Natural Science Foun-
dation Project #61070146, the National Science and Technology Support Program
Project #2009BAK43B26, the AuthenMetric R&D Funds, and the TABULA RASA
project (http://www.tabularasa-euproject.org) under the Seventh Framework Pro-
gramme for research and technological development (FP7) of the European Union
(EU), grant agreement #257289. Anil Jain’s research was partially supported by
the WCU (World Class University) program funded by the Ministry of Education,
Science and Technology through the National Research Foundation of Korea (R31-
10008) to the Brain & Cognitive Engineering Department, Korea University where
he is an Adjunct Professor.

Stan Z. Li
Anil K. Jain

Beijing, People’s Republic of China
East Lansing, USA

http://www.tabularasa-euproject.org
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Chapter 1
Introduction

Stan Z. Li and Anil K. Jain

1.1 Face Recognition

Face recognition is a task that humans perform routinely and effortlessly in our daily
lives. Wide availability of powerful and low-cost desktop and embedded computing
systems has created an enormous interest in automatic processing of digital images
in a variety of applications, including biometric authentication, surveillance, human-
computer interaction, and multimedia management. Research and development in
automatic face recognition follows naturally.

Face recognition has several advantages over other biometric modalities such as
fingerprint and iris: besides being natural and nonintrusive, the most important ad-
vantage of face is that it can be captured at a distance and in a covert manner. Among
the six biometric attributes considered by Hietmeyer [16], facial features scored the
highest compatibility in a Machine Readable Travel Documents (MRTD) [27] sys-
tem based on a number of evaluation factors, such as enrollment, renewal, machine
requirements, and public perception, shown in Fig. 1.1. Face recognition, as one
of the major biometric technologies, has become increasingly important owing to
rapid advances in image capture devices (surveillance cameras, camera in mobile
phones), availability of huge amounts of face images on the Web, and increased
demands for higher security.

The first automated face recognition system was developed by Takeo Kanade
in his Ph.D. thesis work [18] in 1973. There was a dormant period in automatic
face recognition until the work by Sirovich and Kirby [19, 38] on a low dimen-

S.Z. Li (�)
Center for Biometrics and Security Research & National Laboratory of Pattern Recognition,
Institute of Automation, Chinese Academy of Sciences, Beijing, China
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2 S.Z. Li and A.K. Jain

Fig. 1.1 A scenario of using biometric MRTD systems for passport control (left), and a compar-
ison of various biometric traits based on MRTD compatibility (right, from Hietmeyer [16] with
permission)

sional face representation, derived using the Karhunen–Loeve transform or Princi-
pal Component Analysis (PCA). It is the pioneering work of Turk and Pentland on
Eigenface [42] that reinvigorated face recognition research. Other major milestones
in face recognition include: the Fisherface method [3, 12], which applied Linear
Discriminant Analysis (LDA) after a PCA step to achieve higher accuracy; the use
of local filters such as Gabor jets [21, 45] to provide more effective facial features;
and the design of the AdaBoost learning based cascade classifier architecture for
real time face detection [44].

Face recognition technology is now significantly advanced since the time when
the Eigenface method was proposed. In the constrained situations, for example
where lighting, pose, stand-off, facial wear, and facial expression can be controlled,
automated face recognition can surpass human recognition performance, especially
when the database (gallery) contains a large number of faces.1 However, automatic
face recognition still faces many challenges when face images are acquired under
unconstrained environments. In the following sections, we give a brief overview of
the face recognition process, analyze technical challenges, propose possible solu-
tions, and describe state-of-the-art performance.

This chapter provides an introduction to face recognition research. Main steps of
face recognition processing are described. Face detection and recognition problems
are explained from a face subspace viewpoint. Technology challenges are identified
and possible strategies for solving some of the problems are suggested.

1.2 Categorization

As a biometric system, a face recognition system operates in either or both of two
modes: (1) face verification (or authentication), and (2) face identification (or recog-
nition). Face verification involves a one-to-one match that compares a query face

1Most individuals can identify only a few thousand people in real life.



1 Introduction 3

image against an enrollment face image whose identity is being claimed. Person
verification for self-serviced immigration clearance using E-passport is one typical
application.

Face identification involves one-to-many matching that compares a query face
against multiple faces in the enrollment database to associate the identity of the
query face to one of those in the database. In some identification applications, one
just needs to find the most similar face. In a watchlist check or face identification
in surveillance video, the requirement is more than finding most similar faces; a
confidence level threshold is specified and all those faces whose similarity score is
above the threshold are reported.

The performance of a face recognition system largely depends on a variety of
factors such as illumination, facial pose, expression, age span, hair, facial wear, and
motion. Based on these factors, face recognition applications may be divided into
two broad categories in terms of a user’s cooperation: (1) cooperative user scenarios
and (2) noncooperative user scenarios.

The cooperative case is encountered in applications such as computer login,
physical access control, and e-passport, where the user is willing to be coopera-
tive by presenting his/her face in a proper way (for example, in a frontal pose with
neutral expression and eyes open) in order to be granted the access or privilege.

In the noncooperative case, which is typical in surveillance applications, the user
is unaware of being identified. In terms of distance between the face and the camera,
near field face recognition (less than 1 m) for cooperative applications (e.g., access
control) is the least difficult problem, whereas far field noncooperative applications
(e.g., watchlist identification) in surveillance video is the most challenging.

Applications in-between the above two categories can also be foreseen. For ex-
ample, in face-based access control at a distance, the user is willing to be coopera-
tive but he is unable to present the face in a favorable condition with respect to the
camera. This may present challenges to the system even though such cases are still
easier than identifying the identity of the face of a subject who is not cooperative.
However, in almost all of the cases, ambient illumination is the foremost challenge
for most face recognition applications.

1.3 Processing Workflow

Face recognition is a visual pattern recognition problem, where the face, represented
as a three-dimensional object that is subject to varying illumination, pose, expres-
sion, and other factors, needs to be identified based on acquired images. While two-
dimensional face images are commonly used in most applications, certain applica-
tions requiring higher levels of security demand the use of three-dimensional (depth
or range) images or optical images beyond the visual spectrum. A face recognition
system generally consists of four modules as depicted in Fig. 1.2: face localiza-
tion, normalization, feature extraction, and matching. These modules are explained
below.
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Fig. 1.2 Depiction of face recognition processing flow

Face detection segments the face area from the background. In the case of video,
the detected faces may need to be tracked across multiple frames using a face track-
ing component. While face detection provides a coarse estimate of the location and
scale of the face, face landmarking localizes facial landmarks (e.g., eyes, nose,
mouth, and facial outline). This may be accomplished by a landmarking module
or face alignment module.

Face normalization is performed to normalize the face geometrically and pho-
tometrically. This is necessary because state-of-the-art recognition methods are ex-
pected to recognize face images with varying pose and illumination. The geomet-
rical normalization process transforms the face into a standard frame by face crop-
ping. Warping or morphing may be used for more elaborate geometric normaliza-
tion. The photometric normalization process normalizes the face based on properties
such as illumination and gray scale.

Face feature extraction is performed on the normalized face to extract salient
information that is useful for distinguishing faces of different persons and is robust
with respect to the geometric and photometric variations. The extracted face features
are used for face matching.

In face matching the extracted features from the input face are matched against
one or many of the enrolled faces in the database. The matcher outputs ‘yes’ or
‘no’ for 1:1 verification; for 1:N identification, the output is the identity of the in-
put face when the top match is found with sufficient confidence or unknown when
the tip match score is below a threshold. The main challenge in this stage of face
recognition is to find a suitable similarity metric for comparing facial features.

The accuracy of face recognition systems highly depends on the features that are
extracted to represent the face which, in turn, depend on correct face localization and
normalization. While face recognition still remains a challenging pattern recognition
problem, it may be analyzed from the viewpoint of face subspaces or manifolds, as
follows.

1.4 Face Subspace

Although face recognition technology has significantly improved and can now be
successfully performed in “real-time” for images and videos captured under favor-
able (constrained) situations, face recognition is still a difficult endeavor, especially
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Fig. 1.3 Face subspace or manifolds. a Face versus nonface manifolds. b Face manifolds of dif-
ferent individuals

for unconstrained tasks where viewpoint, illumination, expression, occlusion, and
facial accessories can vary considerably. This can be illustrated from face subspace
or manifold viewpoint.

Subspace analysis techniques for face recognition are based on the fact that a
class of patterns of interest, such as the face, resides in a subspace of the input
image space. For example, a 64 × 64 8-bit image with 4096 pixels can express a
large number of pattern classes, such as trees, houses, and faces. However, among
the 2564096 > 109864 possible “configurations,” only a tiny fraction correspond to
faces. Therefore, the pixel-based image representation is highly redundant, and the
dimensionality of this representation could be greatly reduced when only the face
patterns are of interest.

The eigenface or PCA method [19, 42] derives a small number (typically 40 or
lower) of principal components or eigenfaces from a set of training face images.
Given the eigenfaces as basis for a face subspace, a face image is compactly rep-
resented by a low dimensional feature vector and a face can be reconstructed as a
linear combination of the eigenfaces. The use of subspace modeling techniques has
significantly advanced the face recognition technology.

The manifold or distribution of all the faces accounts for variations in facial ap-
pearance whereas the nonface manifold accounts for all objects other than the faces.
If we examine these manifolds in the image space, we find them highly nonlinear
and nonconvex [5, 41]. Figure 1.3(a) illustrates face versus nonface manifolds and
Fig. 1.3(b) illustrates the manifolds of two individuals in the entire face manifold.
Face detection can be considered as a task of distinguishing between the face and
nonface manifolds in the image (subwindow) space and face recognition can be con-
sidered as a task of distinguishing between faces of different individuals in the face
manifold.

Figure 1.4 further demonstrates the nonlinearity and nonconvexity of face mani-
folds in a PCA subspace spanned by the first three principal components, where the
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Fig. 1.4 Nonlinearity and nonconvexity of face manifolds under (from top to bottom) translation,
rotation, scaling, and Gamma transformations

plots are drawn from real face image data. Each plot depicts the manifolds of three
individuals (in three colors). The data consists of 64 frontal face images for each
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individual. A transform (horizontal transform, in-plane rotation, size scaling, and
gamma transform for the 4 groups, respectively) is performed on each face image
with 11 gradually varying parameters, producing 11 transformed face images; each
transformed image is cropped to contain only the face region; the 11 cropped face
images form a sequence. A curve in this figure represents such a sequence in the
PCA space, and so there are 64 curves for each individual. The three-dimensional
(3D) PCA space is projected on three different 2D spaces (planes). We can observe
the nonlinearity of the trajectories.

The following observations can be drawn based on Fig. 1.4. First, while this
example is demonstrated in the PCA space, more complex (nonlinear and noncon-
vex) trajectories are expected in the original image space. Second, although these
face images have been subjected to geometric transformations in the 2D plane and
pointwise lighting (gamma) changes, more significant complexity of trajectories is
expected for geometric transformations in 3D space (for example, out-of-plane head
rotations) and ambient lights.

1.5 Technology Challenges

As shown in Fig. 1.3, the problem of face detection is highly nonlinear and non-
convex, even more so for face matching. Face recognition evaluation reports, for
example Face Recognition Technology (FERET) [34], Face Recognition Vendor
Test (FRVT) [31] and other independent studies, indicate that the performance of
many state-of-the-art face recognition methods deteriorates with changes in light-
ing, pose, and other factors [8, 43, 50]. The key technical challenges in automatic
face recognition are summarized below.

Large Variability in Facial Appearance Whereas shape and reflectance are in-
trinsic properties of a face, the appearance (i.e., the texture) of a face is also influ-
enced by several other factors, including the facial pose (or, equivalently, camera
viewpoint), illumination, and facial expression. Figure 1.5 shows an example of
large intra-subject variations caused by these factors. Aging is also an important
factor that leads to an increase in the intra-subject variations especially in applica-
tions requiring duplication of government issued photo ID documents (e.g., driver
licenses and passports). In addition to these, various imaging parameters, such as
aperture, exposure time, lens aberrations, and sensor spectral response also increase
intra-subject variations. Face-based person identification is further complicated by
possible small inter-subject variations (Fig. 1.6). All these factors are confounded
in the image data, so “the variations between the images of the same face due to il-
lumination and viewing direction are almost always larger than the image variation
due to change in face identity” [30]. This variability makes it difficult to extract the
intrinsic information about the face identity from a facial image.

Complex Nonlinear Manifolds As illustrated above, the entire face manifold
is highly nonconvex, and so is the face manifold of any individual under various
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Fig. 1.5 Intra-subject variations in pose, illumination, expression, occlusion, accessories (e.g.,
glasses), color, and brightness. (Courtesy of Rein-Lien Hsu [17])

Fig. 1.6 Similarity of frontal faces between a twins (downloaded from www.marykateandashley.
com); and b a father and his son (downloaded from BBC news, news.bbc.co.uk)

changes. Linear methods such as PCA [19, 42], independent component analysis
(ICA) [2], and linear discriminant analysis (LDA) [3]) project the data linearly from
a high-dimensional space (for example, the image space) to a low-dimensional sub-
space. As such, they are unable to preserve the nonconvex variations of face man-
ifolds necessary to differentiate among individuals. In a linear subspace, Euclidean
distance and, more generally, the Mahalanobis distance do not perform well for dis-
criminating between face and nonface manifolds and between manifolds of differ-
ent individuals (Fig. 1.7(a)). This limits the power of the linear methods to achieve
highly accurate face detection and recognition in many practical scenarios.

High Dimensionality and Small Sample Size Another challenge in face recogni-
tion is the generalization ability, which is illustrated in Fig. 1.7(b). The figure depicts
a canonical face image of size 112 × 92 which resides in a 10,304-dimensional fea-
ture space. The number of example face images per person (typically fewer than 10,
and sometimes just one) available for learning the manifold is usually much smaller

http://www.marykateandashley.com
http://www.marykateandashley.com
http://news.bbc.co.uk
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Fig. 1.7 Challenges in face recognition from subspace viewpoint. a Euclidean distance is unable to
differentiate between individuals. When using Euclidean distance, an inter-person distance can be
smaller than an intra-person distance. b The learned manifold or classifier is unable to characterize
(i.e., generalize) unseen images of the same face

than the dimensionality of the image space; a system trained on a small number of
examples may not generalize well to unseen instances of the face.

1.6 Solution Strategies

There are two strategies for tackling the challenges outlined in Sect. 1.5: (i) extract
invariant and discriminative face features, and (ii) construct a robust face classifier.
A set of features, constituting a feature space, is deemed to be good if the face man-
ifolds are simple (i.e., less nonlinear and nonconvex). This requires two stages of
processing: (1) normalizing face images geometrically and photometrically (for ex-
ample, using geometric warping into a standard frame and photometric illumination
correction) and (2) extracting features in the normalized images, such as using Ga-
bor wavelets and LBP (local binary pattern), that are stable with respect to possible
geometric and photometric variations.

A powerful classification engine is still necessary to deal with difficult nonlin-
ear classification and regression problems in the constructed feature space. This is
because the normalization and feature extraction cannot solve the problems of non-
linearity and nonconvexity. Learning methods are useful tools to find good features
and build powerful robust classifiers based on these features. The two stages of pro-
cessing may be designed jointly using learning methods.

In the early development of face recognition [6, 13, 18, 36], geometric facial
features such as eyes, nose, mouth, and chin were explicitly used. Properties of
the features and relations (e.g., areas, distances, angles) between the features were
used as descriptors for face recognition. Advantages of this approach include econ-
omy and efficiency when achieving data reduction and insensitivity to variations
in illumination and viewpoint. However, facial feature detection and measurement
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techniques developed to date are not sufficiently reliable for the geometric feature-
based recognition [9]. Further, geometric properties alone are inadequate for face
recognition because rich information contained in the facial texture or appearance
is not utilized. These are the main reasons why early feature-based techniques were
not effective.

Statistical learning methods are the mainstream approach that has been used
in building current face recognition systems. Effective features and classifiers are
learned from training data (appearance images or features extracted therefrom). Dur-
ing the learning, both prior knowledge about face(s) and variations encountered in
the training data are taken into consideration. The appearance-based approach, such
as PCA [42] and LDA [3] based methods, has significantly advanced face recog-
nition technology. Such an approach generally operates directly on an image-based
representation (i.e., array of pixel intensities). It extracts features in a subspace de-
rived from training images. Using PCA, an “optimal” face subspace is constructed
to represent only the face object; using LDA, a discriminant subspace is constructed
to distinguish faces of different persons. It is now well known that LDA-based meth-
ods generally yields better results than PCA-based methods [3].

These linear, holistic appearance-based methods encode prior knowledge con-
tained in the training data and avoid instability of manual selection and tuning
needed in the early geometric feature-based methods. However, they are not effec-
tive in describing local variations in the face appearance and are unable to capture
subtleties of face subspaces: protrusions of nonconvex manifolds may be smoothed
out and concavities may be filled in, thereby loosing useful information. Note that
the appearance-based methods require that the face images be properly aligned, typ-
ically based on the eye locations.

Nonlinear subspace methods use nonlinear transforms to convert a face image
into a feature vector in a discriminative feature space. Kernel PCA [37] and kernel
LDA [29] use kernel tricks to map the original data into a high-dimension space to
make the data separable. Manifold learning, which assumes that face images occupy
a low-dimensional manifold in the original space, attempts to model such manifolds.
These include ISOMAP [39], LLE [35], and LPP [15]. Although these methods
achieve good performance on the training data, they tend to overfit and hence do not
generalize well to unseen data.

The most successful approach to date for handling the nonconvex face distribu-
tion works with local appearance-based features extracted using appropriate image
filters. This is advantageous in that distributions of face images in local feature space
are less affected by the changes in facial appearance. Early work in this direction in-
cluded local features analysis (LFA) [33] and Gabor wavelet-based features [21, 45].
Current methods are based on local binary pattern (LBP) [1] and many variants (for
example ordinal feature [23], Scale-Invariant Feature Transform (SIFT) [26], and
Histogram of Oriented Gradients (HOG) [10]). While these features are general-
purpose and can be extracted from arbitrary images, face-specific local filters may
be learned from images [7, 20].

A large number of local features can be generated by varying parameters associ-
ated with the position, scale, and orientation of the filters. For example, more than
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400 000 local appearance features can be generated when an image of size 100×100
is filtered with Gabor filters with five different scales and eight different orientation
for all pixel positions. While some of these features are useful for face recognition,
others may be less useful or may even degrade the recognition performance. Boost-
ing based methods have been implemented to select good local features [46, 48, 49].
A discriminant analysis step can be applied to further transform the space of the se-
lected local features to discriminative subspace of a lower dimensionality to achieve
better face classification [22, 24, 25]. This leads to a framework for learning both
effective features and powerful classifiers.

There have been only a few studies reported on face recognition at a distance.
These approaches can be essentially categorized into two groups: (i) generating
a super resolution face image from the given low resolution image [11, 32] and
(ii) acquiring high resolution face image using a special camera system (e.g., a high
resolution camera or a PTZ camera) [4, 14, 28, 40, 47].

The availability of high resolution face images (i.e., tens of megapixels per im-
age) provides new opportunities in facial feature representation and matching. In the
2006 Face Recognition Vendor Test (FRVT) [31], the best face matching accuracies
were obtained from the high resolution 2D images or 3D images. This underlines the
importance of developing advanced sensors as well as robust feature extraction and
matching algorithms in achieving high face recognition accuracy. The increasing
popularity of infrared cameras also supports the importance of sensing techniques.

1.7 Current Status

For cooperative scenarios, frontal face detection and tracking in normal lighting
environment is a reasonably well-solved problem. Assuming the face is captured
with sufficient image resolution, 1:1 face verification also works satisfactorily well
for cooperative frontal faces. Figure 1.8 illustrates an application of face verification
at the 2008 Beijing Olympic Games. This system verifies the identity of a ticket
holder (spectator) at entrances to the National Stadium (Bird’s Nest). Each ticket
is associated with a unique ID number, and the ticket holder is required to submit
his registration form with a two-inch ID/passport photo attached. The face photo is
scanned into the system. At the entrance, the ticket is read in by an RFID reader,
and the face image is captured using a video camera, which is compared with the
enrollment photo scan, and the verification result is produced.

A novel solution to deal with uncontrolled illumination is to use active near in-
frared (NIR) face imaging to control the illumination direction and the strength. This
enables the system to achieve high face recognition accuracy. The NIR face recog-
nition technology has been in use at China–Hong Kong border2 for self-service
immigration clearance since 2005 (see Fig. 1.8).

2The ShenZhen (China)–Hong Kong border is the world’s largest border crossing point, with more
than 400 000 crossings every day.
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Fig. 1.8 1:1 Face verification used at the 2008 Beijing Olympic Games, and 1:1 NIR face verifi-
cation used at the China–Hong Kong border control since 2005

Fig. 1.9 An embedded NIR face recognition system for access control in 1:N identification mode
and watch-list face surveillance and identification at subways

One-to-many face identification using the conventional, visible band face images
has not yet met the accuracy requirements of practical applications even for coop-
erative scenarios. The main problem is the uncontrolled ambient illumination. The
NIR face recognition provides a good solution, even for 1:N identification. Embed-
ded NIR face recognition based access control products (Fig. 1.9) have been on the
market since 2008.

Face recognition in noncooperative scenarios, such as watch-list identification,
remains a challenging task. Major problems include pose, illumination, and motion
blur. Because of growing emphasis on security, there have been several watch-list
identification application trials. On the right of Fig. 1.9, it shows a snapshot of 1:N
watch-list face surveillance and identification at a Beijing Municipal Subways sta-
tion, aimed at identifying suspects in the crowd. CCTV cameras are mounted at the
subway entrances and exits, in such a way that images of frontal faces are more
likely to be captured. The best system could achieve a recognition rate of up to 60%
at a FAR = 0.1%.
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1.8 Summary

Face recognition technology has made impressive gains, but it is still not able to
meet the accuracy requirements of many applications. A sustained and collaborative
effort is needed to address many of the open problems in face recognition.
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Chapter 2
Face Recognition in Subspaces

Gregory Shakhnarovich and Baback Moghaddam

2.1 Introduction

Images of faces, represented as high-dimensional pixel arrays, often belong to a
manifold of intrinsically low dimension. Face recognition, and computer vision re-
search in general, has witnessed a growing interest in techniques that capitalize on
this observation and apply algebraic and statistical tools for extraction and analy-
sis of the underlying manifold. In this chapter, we describe in roughly chronologic
order techniques that identify, parameterize, and analyze linear and nonlinear sub-
spaces, from the original Eigenfaces technique to the recently introduced Bayesian
method for probabilistic similarity analysis. We also discuss comparative experi-
mental evaluation of some of these techniques as well as practical issues related to
the application of subspace methods for varying pose, illumination, and expression.

2.2 Face Space and Its Dimensionality

Computer analysis of face images deals with a visual signal (light reflected off the
surface of a face) that is registered by a digital sensor as an array of pixel values.
The pixels may encode color or only intensity. In this chapter, we assume the latter
case (i.e., gray-level imagery). After proper normalization and resizing to a fixed
m-by-n size, the pixel array can be represented as a point (i.e., vector) in an mn-
dimensional image space by simply writing its pixel values in a fixed (typically
raster) order. A critical issue in the analysis of such multidimensional data is the
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dimensionality, the number of coordinates necessary to specify a data point. Below
we discuss the factors affecting this number in the case of face images.

2.2.1 Image Space Versus Face Space

To specify an arbitrary image in the image space, one needs to specify every pixel
value. Thus, the “nominal” dimensionality of the space, dictated by the pixel repre-
sentation, is mn, a high number even for images of modest size. Recognition meth-
ods that operate on this representation suffer from a number of potential disadvan-
tages, most of them rooted in the so-called curse of dimensionality.

• Handling high-dimensional examples, especially in the context of similarity- and
matching-based recognition, is computationally expensive.

• For parametric methods, the number of parameters one needs to estimate typically
grows exponentially with the dimensionality. Often this number is much higher
than the number of images available for training, making the estimation task in
the image space ill-posed.

• Similarly, for nonparametric methods, the sample complexity—the number of
examples needed to represent the underlying distribution of the data efficiently—
is prohibitively high.

However, much of the surface of a face is smooth and has regular texture. There-
fore, per-pixel sampling is in fact unnecessarily dense: The value of a pixel is typ-
ically highly correlated with the values of the surrounding pixels. Moreover, the
appearance of faces is highly constrained; for example, any frontal view of a face is
roughly symmetrical, has eyes on the sides, nose in the middle, and so on. A vast
proportion of the points in the image space does not represent physically possible
faces. Thus, the natural constraints dictate that the face images are in fact confined
to a subspace referred to as the face subspace.

2.2.2 Principal Manifold and Basis Functions

It is common to model the face subspace as a (possibly disconnected) principal
manifold embedded in the high-dimensional image space. Its intrinsic dimensional-
ity is determined by the number of degrees of freedom within the face subspace; the
goal of subspace analysis is to determine this number and to extract the principal
modes of the manifold. The principal modes are computed as functions of the pixel
values and referred to as basis functions of the principal manifold.

To make these concepts concrete, consider a straight line in R
3, passing through

the origin and parallel to the vector a = [a1, a2, a3]T. Any point on the line can be
described by three coordinates; nevertheless, the subspace that consists of all points
on the line has a single degree of freedom, with the principal mode corresponding
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to translation along the direction of a. Consequently, representing the points in this
subspace requires a single basis function: φ(x1, x2, x3)=∑3

j=1 ajxj . The analogy

here is between the line and the face subspace and between R
3 and the image space.

Note that, in theory, according to the described model any face image should
fall in the face subspace. In practice, owing to sensor noise, the signal usually has
a nonzero component outside the face subspace. This introduces uncertainty into
the model and requires algebraic and statistical techniques capable of extracting the
basis functions of the principal manifold in the presence of noise. In Sect. 2.2.3,
we briefly describe principal component analysis, which plays an important role in
many of such techniques. For a more detailed discussion, see Gerbrands [12] and
Joliffe [17].

2.2.3 Principal Component Analysis

Principal component analysis (PCA) [17] is a dimensionality reduction technique
based on extracting the desired number of principal components of the multidimen-
sional data. The first principal component is the linear combination of the original
dimensions that has the maximum variance; the nth principal component is the lin-
ear combination with the highest variance, subject to being orthogonal to the n− 1
first principal components.

The idea of PCA is illustrated in Fig. 2.1a; the axis labeled φ1 corresponds to the
direction of maximum variance and is chosen as the first principal component. In a
two-dimensional case, the second principal component is then determined uniquely
by the orthogonality constraints; in a higher-dimensional space the selection process
would continue, guided by the variances of the projections.

PCA is closely related to the Karhunen–Loève Transform (KLT) [21], which was
derived in the signal processing context as the orthogonal transform with the basis
Φ = [φ1, . . . ,φN ]T that for any k ≤ N minimizes the average L2 reconstruction
error for data points x

ε(x)=
∥
∥
∥
∥
∥
x −

k∑

i=1

(
φT
i x
)
φi

∥
∥
∥
∥
∥
. (2.1)

One can show [12] that, under the assumption that the data are zero-mean, the
formulations of PCA and KLT are identical. Without loss of generality, we here-
after assume that the data are indeed zero-mean; that is, the mean face x̄ is always
subtracted from the data.

The basis vectors in KLT can be calculated in the following way. Let X be the
N ×M data matrix whose columns x1, . . . ,xM are observations of a signal em-
bedded in R

N ; in the context of face recognition,M is the number of available face
images, and N =mn is the number of pixels in an image. The KLT basis Φ is ob-
tained by solving the eigenvalue problem Λ = ΦTΣΦ , where Σ is the covariance
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Fig. 2.1 The concept of PCA/KLT. a Solid lines, the original basis; dashed lines, the KLT basis.
The dots are selected at regularly spaced locations on a straight line rotated at 30° and then per-
turbed by isotropic 2D Gaussian noise. b The projection (1D reconstruction) of the data using only
the first principal component

matrix of the data

Σ = 1

M

M∑

i=1

xix
T
i (2.2)

Φ = [φ1, . . . ,φm]T is the eigenvector matrix of Σ , and Λ is the diagonal matrix
with eigenvalues λ1 ≥ · · · ≥ λN of Σ on its main diagonal, so φj is the eigenvector
corresponding to the j th largest eigenvalue. Then it can be shown that the eigenvalue
λi is the variance of the data projected on φi .

Thus, to perform PCA and extract k principal components of the data, one must
project the data onto Φk , the first k columns of the KLT basis Φ , which correspond
to the k highest eigenvalues of Σ . This can be seen as a linear projection R

N → R
k ,

which retains the maximum energy (i.e., variance) of the signal. Another important
property of PCA is that it decorrelates the data: the covariance matrix of ΦT

kX is
always diagonal.

The main properties of PCA are summarized by the following

x ≈ Φky, ΦT
kΦk = I , E{yiyj }i �=j = 0 (2.3)

namely, approximate reconstruction, orthonormality of the basis Φk , and decor-
related principal components yi = φT

i x, respectively. These properties are illus-
trated in Fig. 2.1, where PCA is successful in finding the principal manifold, and
in Fig. 2.8a (see later), where it is less successful, owing to clear nonlinearity of the
principal manifold.

PCA may be implemented via singular value decomposition (SVD). The SVD of
anM ×N matrix X (M ≥N ) is given by

X = UDV T (2.4)
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where the M ×N matrix U and the N ×N matrix V have orthonormal columns,
and the N × N matrix D has the singular values1 of X on its main diagonal and
zero elsewhere.

It can be shown that U = Φ , so SVD allows efficient and robust computation
of PCA without the need to estimate the data covariance matrix Σ (2.2). When the
number of examples M is much smaller than the dimension N , this is a crucial
advantage.

2.2.4 Eigenspectrum and Dimensionality

An important largely unsolved problem in dimensionality reduction is the choice
of k, the intrinsic dimensionality of the principal manifold. No analytical derivation
of this number for a complex natural visual signal is available to date. To simplify
this problem, it is common to assume that in the noisy embedding of the signal of
interest (in our case, a point sampled from the face subspace) in a high-dimensional
space, the signal-to-noise ratio is high. Statistically, that means that the variance of
the data along the principal modes of the manifold is high compared to the variance
within the complementary space.

This assumption relates to the eigenspectrum, the set of eigenvalues of the data
covariance matrix Σ . Recall that the ith eigenvalue is equal to the variance along
the ith principal component; thus, a reasonable algorithm for detecting k is to search
for the location along the decreasing eigenspectrum where the value of λi drops sig-
nificantly. A typical eigenspectrum for a face recognition problem, and the natural
choice of k for such a spectrum, is shown in Fig. 2.3b (see later).

In practice, the choice of k is also guided by computational constraints, related
to the cost of matching within the extracted principal manifold and the number of
available face images. See Penev and Sirovich [29] as well as Sects. 2.3.2 and 2.3.4
for more discussion on this issue.

2.3 Linear Subspaces

Perhaps the simplest case of principal manifold analysis arises under the assumption
that the principal manifold is linear. After the origin has been translated to the mean
face (the average image in the database) by subtracting it from every image, the face
subspace is a linear subspace of the image space. In this section, we describe meth-
ods that operate under this assumption and its generalization, a multilinear manifold.

1A singular value of a matrix X is the square root of an eigenvalue of XXT.
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Fig. 2.2 Eigenfaces: the average face on the left, followed by seven top eigenfaces. From Turk
and Pentland [36], with permission

2.3.1 Eigenfaces and Related Techniques

In their ground-breaking work in 1990, Kirby and Sirovich [19] proposed the use of
PCA for face analysis and representation. Their paper was followed by the “eigen-
faces” technique by Turk and Pentland [35], the first application of PCA to face
recognition. Because the basis vectors constructed by PCA had the same dimension
as the input face images, they were named “eigenfaces.” Figure 2.2 shows an exam-
ple of the mean face and a few of the top eigenfaces. Each face image was projected
(after subtracting the mean face) into the principal subspace; the coefficients of the
PCA expansion were averaged for each subject, resulting in a single k-dimensional
representation of that subject. When a test image was projected into the subspace,
Euclidean distances between its coefficient vector and those representing each sub-
ject were computed. Depending on the distance to the subject for which this distance
would be minimized, and the PCA reconstruction error (2.1), the image was clas-
sified as belonging to one of the familiar subjects, as a new face, or as a nonface.
The latter demonstrates the dual use of subspace techniques for detection: When the
appearance of an object class (e.g., faces) is modeled by a subspace, the distance
from this subspace can serve to classify an object as a member or a nonmember of
the class.

2.3.2 Probabilistic Eigenspaces

The role of PCA in the original Eigenfaces was largely confined to dimensional-
ity reduction. The similarity between images I 1 and I 2 was measured in terms
of the Euclidean norm of the difference Δ = I 1 − I 2 projected to the subspace,
essentially ignoring the variation modes within the subspace and outside it. This
was improved in the extension of eigenfaces proposed by Moghaddam and Pent-
land [24, 25], which uses a probabilistic similarity measure based on a parametric
estimate of the probability density p(Δ |Ω).

A major difficulty with such estimation is that normally there are not nearly
enough data to estimate the parameters of the density in a high dimensional space.
Moghaddam and Pentland overcame this problem by using PCA to divide the vector
space R

N into two subspaces, as shown in Fig. 2.3: the principal subspace F , ob-
tained by Φk (the first k columns of Φ) and its orthogonal complement F̄ spanned
by the remaining columns of Φ . The operating assumption here is that the data have
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Fig. 2.3 a Decomposition of R
N into the principal subspace F and its orthogonal complement

F̄ for a Gaussian density. b Typical eigenvalue spectrum and its division into the two orthogonal
subspaces

intrinsic dimensionality k (at most) and thus reside in F , with the exception of ad-
ditive white Gaussian noise within F̄ . Every image can be decomposed into two
orthogonal components by projection into these two spaces. Figure 2.3a shows the
decomposition of Δ into distance within face subspace (DIFS) and the distance from
face subspace (DFFS). Moreover, the probability density can be decomposed into
two orthogonal components.

P(Δ |Ω)= PF (Δ |Ω) · PF̄ (Δ |Ω). (2.5)

In the simplest case, P(Δ |Ω) is a Gaussian density. As derived by Moghaddam
and Pentland [24], the complete likelihood estimate in this case can be written as
the product of two independent marginal Gaussian densities

P̂ (Δ |Ω) =
[

exp(− 1
2

∑k
i=1

y2
i

λi
)

(2π)k/2
∏k
i=1 λ

1/2
i

]

·
[

exp(− ε2(Δ)
2ρ )

(2πρ)(N−k)/2

]

= PF (Δ |Ω)P̂F̄ (Δ |Ω;ρ) (2.6)

where PF (Δ |Ω) is the true marginal density in F ; P̂F̄ (Δ |Ω;ρ) is the estimated
marginal density in F̄ ; yi = φT

i Δ are the principal components of Δ; and ε(Δ) is
the PCA reconstruction error (2.1). The information-theoretical optimal value for
the noise density parameter ρ is derived by minimizing the Kullback–Leibler (KL)
divergence [8] and can be shown to be simply the average of the N − k smallest
eigenvalues

ρ = 1

N − k
N∑

i=k+1

λi. (2.7)

This is a special case of the recent, more general factor analysis model called prob-
abilistic PCA (PPCA) proposed by Tipping and Bishop [34]. In their formulation,
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the above expression for ρ is the maximum-likelihood solution of a latent variable
model in contrast to the minimal-divergence solution derived by Moghaddam and
Pentland [24].

In practice, most of the eigenvalues in F̄ cannot be computed owing to insuffi-
cient data, but they can be estimated, for example, by fitting a nonlinear function to
the available portion of the eigenvalue spectrum and estimating the average of the
eigenvalues beyond the principal subspace. Fractal power law spectra of the form
f−n are thought to be typical of “natural” phenomenon and are often a good fit to
the decaying nature of the eigenspectrum, as illustrated by Fig. 2.3b.

In this probabilistic framework, the recognition of a test image x is carried out
in terms of computing for every database example xi the difference Δ = x − xi
and its decomposition into the F and F̄ components and then ranking the examples
according to the value in (2.6).

2.3.3 Linear Discriminants: Fisherfaces

When substantial changes in illumination and expression are present, much of the
variation in the data is due to these changes. The PCA techniques essentially select
a subspace that retains most of that variation, and consequently the similarity in the
face subspace is not necessarily determined by the identity.

Belhumeur et al. [2] propose to solve this problem with “Fisherfaces”, an ap-
plication of Fisher’s linear discriminant (FLD). FLD selects the linear subspace Φ ,
which maximizes the ratio

|ΦTSbΦ|
|ΦTSwΦ| (2.8)

where

Sb =
m∑

i=1

Ni(x̄i − x̄)(x̄i − x̄)T

is the between-class scatter matrix, and

Sw =
m∑

i=1

∑

x∈Xi

(x − x̄i )(x − x̄i )
T

is the within-class scatter matrix; m is the number of subjects (classes) in the
database. Intuitively, FLD finds the projection of the data in which the classes are
most linearly separable. It can be shown that the dimension of Φ is at most m− 1.2

Because in practice Sw is usually singular, the Fisherfaces algorithm first re-
duces the dimensionality of the data with PCA so (2.8) can be computed and then

2For comparison, note that the objective of PCA can be seen as maximizing the total scatter across
all the images in the database.
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applies FLD to further reduce the dimensionality to m− 1. The recognition is then
accomplished by a NN classifier in this final subspace. The experiments reported
by Belhumeur et al. [2] were performed on data sets containing frontal face images
of 5 people with drastic lighting variations and another set with faces of 16 people
with varying expressions and again drastic illumination changes. In all the reported
experiments Fisherfaces achieve a lower error rate than eigenfaces.

2.3.4 Bayesian Methods

Consider now a feature space of Δ vectors, the differences between two images
(Δ = I j − I k). One can define two classes of facial image variations: intrapersonal
variations ΩI (corresponding, for example, to different facial expressions and illu-
minations of the same individual) and extrapersonal variations ΩE (corresponding
to variations between different individuals). The similarity measure S(Δ) can then
be expressed in terms of the intrapersonal a posteriori probability of Δ belonging
to ΩI given by the Bayes rule.

S(Δ)= P(ΩI | Δ)= P(Δ |ΩI)P (ΩI )
P (Δ |ΩI)P (ΩI )+ P(Δ |ΩE)P (ΩE) . (2.9)

Note that this particular Bayesian formulation, proposed by Moghaddam et
al. [27], casts the standard face recognition task (essentially an m-ary classifica-
tion problem form individuals) into a binary pattern classification problem withΩI
and ΩE .

The densities of both classes are modeled as high-dimensional Gaussians, using
an efficient PCA-based method described in Sect. 2.3.2.

P(Δ |ΩE) = e− 1
2 ΔTΣ−1

E Δ

(2π)D/2|ΣE |1/2 ,

P (Δ|ΩI ) = e− 1
2 ΔTΣ−1

I Δ

(2π)D/2|ΣI |1/2
.

(2.10)

These densities are zero-mean, because for each Δ = I j − I i there exists a I i − I j .
By PCA, the Gaussians are known to occupy only a subspace of image space

(face subspace); thus, only the top few eigenvectors of the Gaussian densities are rel-
evant for modeling. These densities are used to evaluate the similarity in (2.9). Com-
puting the similarity involves first subtracting a candidate image I from a database
example I j . The resulting Δ image is then projected onto the eigenvectors of the
extrapersonal Gaussian and also the eigenvectors of the intrapersonal Gaussian. The
exponentials are computed, normalized, and then combined as in (2.9). This opera-
tion is iterated over all examples in the database, and the example that achieves the
maximum score is considered the match. For large databases, such evaluations are
expensive and it is desirable to simplify them by off-line transformations.
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To compute the likelihoods P(Δ |ΩI ) and P(Δ |ΩE), the database images I j
are preprocessed with whitening transformations [11]. Each image is converted and
stored as a set of two whitened subspace coefficients: yΦI for intrapersonal space
and yΦE for extrapersonal space

y
j
ΦI

= Λ
− 1

2
I V I I j , y

j
ΦE

= Λ
− 1

2
E V EI j (2.11)

where ΛX and V X are matrices of the largest eigenvalues and eigenvectors, respec-
tively, of ΣX (X being a substituting symbol for I or E).

After this preprocessing, evaluating the Gaussians can be reduced to simple Eu-
clidean distances as in (2.12). Denominators are of course precomputed. These like-
lihoods are evaluated and used to compute the maximum a posteriori (MAP) simi-
larity S(Δ) in (2.9). Euclidean distances are computed between the kI -dimensional
yΦI vectors as well as the kE-dimensional yΦE vectors. Thus, roughly 2× (kE+kI )
arithmetic operations are required for each similarity computation, avoiding re-
peated image differencing and projections

P(Δ |ΩI ) = P(I − I j |ΩI )= e
−‖yΦI−y

j
ΦI

‖2/2

(2π)kI /2|ΣI |1/2 ,

P (Δ |ΩE) = P(I − I j |ΩE)= e
−‖yΦE−y

j
ΦE

‖2/2

(2π)kE/2|ΣE |1/2 .
(2.12)

The maximum likelihood (ML) similarity matching is even simpler, as only the
intrapersonal class is evaluated, leading to the following modified form for the sim-
ilarity measure.

S′(Δ)= P(Δ |ΩI)= e
−‖yΦI−y

j
ΦI

‖2/2

(2π)kI /2|ΣI |1/2 . (2.13)

The approach described above requires two projections of the difference vec-
tor Δ, from which likelihoods can be estimated for the Bayesian similarity mea-
sure. The computation flow is illustrated in Fig. 2.4b. The projection steps are linear
while the posterior computation is nonlinear. Because of the double PCA projec-
tions required, this approach has been called a “dual eigenspace” technique. Note
the projection of the difference vector Δ onto the “dual eigenfaces” (ΩI and ΩE)
for computation of the posterior in (2.9).

It is instructive to compare and contrast LDA (Fisherfaces) and the dual sub-
space technique by noting the similar roles of the between-class/within-class and
extrapersonal/intrapersonal subspaces. One such analysis was presented by Wang
and Tang [39] where PCA, LDA, and Bayesian methods were “unified” under a
three-parameter subspace method. Ultimately, the optimal probabilistic justification
of LDA is for the case of two Gaussian distributions of equal covariance (although
LDA tends to perform rather well even when this condition is not strictly true). In
contrast, the dual formulation is entirely general and probabilistic by definition, and
it makes no appeals to geometry, Gaussianity, or symmetry of the underlying data
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Fig. 2.4 Signal flow diagrams for computing the similarity g between two images. a Original
eigenfaces. b Bayesian similarity. The difference image is projected through both sets of (in-
tra/extra) eigenfaces to obtain the two likelihoods

or, in fact, the two “meta classes” (intra-, and extrapersonal). These two probability
distributions can take on any form (e.g., arbitrary mixture models), not just single
Gaussians, although the latter case does make for easy visualization by diagonaliz-
ing the dual covariances as two sets of “eigenfaces”.

2.3.5 Independent Component Analysis and Source Separation

While PCA minimizes the sample covariance (second-order dependence) of the
data, independent component analysis (ICA) [6, 18] minimizes higher-order depen-
dencies as well, and the components found by ICA are designed to be non-Gaussian.
Like PCA, ICA yields a linear projection R

N → R
M but with different properties

x ≈ Ay, ATA �= I , P (y)≈
∏
p(yi) (2.14)

that is, approximate reconstruction, nonorthogonality of the basis A, and the near-
factorization of the joint distribution P(y) into marginal distributions of the (non-
Gaussian) ICs.

An example of ICA basis is shown in Fig. 2.5, where it is computed from a set
of 3D points. The 2D subspace recovered by ICA appears to reflect the distribution
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Fig. 2.5 ICA vs. PCA decomposition of a 3D data set. a The bases of PCA (orthogonal) and ICA
(nonorthogonal). b Left: the projection of the data onto the top two principal components (PCA).
Right: the projection onto the top two independent components (ICA). (From Bartlett et al. [1],
with permission)

of the data much better than the subspace obtained with PCA. Another example of
an ICA basis is shown in Fig. 2.8b where we see two unordered nonorthogonal IC
vectors, one of which is roughly aligned with the first principal component vector
in Fig. 2.8a (see later), (i.e., the direction of maximum variance). Note that the
actual non-Gaussianity and statistical independence achieved in this toy example
are minimal at best, and so is the success of ICA in recovering the principal modes
of the data.

ICA is intimately related to the blind source separation problem: decomposition
of the input signal (image) x into a linear combination (mixture) of independent
source signals. Formally, the assumption is that xT = AsT, with A the unknown
mixing matrix. ICA algorithms3 try to find A or the separating matrix W such that
uT = WxT = WAsT. When the data consist of M observations with N variables,
the input to ICA is arranged in an N ×M matrix X.

Bartlett et al. [1, 10] investigated the use of ICA framework for face recognition
in two fundamentally different architectures:

Architecture I Rows of S are independent basis images, which combined by A

yield the input images X. Learning W allows us to estimate the basis images in
the rows of U . In practice, for reasons of computational tractability, PCA is first
performed on the input data X to find the top K eigenfaces; these are arranged in
the columns of a matrix E.4 Then ICA is performed on ET; that is, the images
are variables, and the pixel values are observations. Let C be the PCA coefficient
matrix, that is, X = CET. Then the k independent ICA basis images (Fig. 2.6,
top) are estimated by the rows of U = WET, and the coefficients for the data are
computed from X = EW−1U .

Architecture II This architecture assumes that the sources in S are independent co-
efficients, and the columns of the mixing matrix A are the basis images; that is, the

3A number of algorithms exist; most notable are Jade [5], InfoMax, and FastICA [16].
4These eigenfaces are linear combination of the original images, which under the assumptions of
ICA should not affect the resulting decomposition.
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Fig. 2.6 Basis images obtained with ICA: Architecture I (top) and II (bottom). (From Draper et
al. [10], with permission)

variables in the source separation problem are the pixels. Similar to Architecture I,
ICA is preceded by PCA; however, in this case the input to ICA is the coefficient
matrix C. The resulting ICA basis consists of the columns of EA (Fig. 2.6, bot-
tom), and the coefficients are found in the rows of U = WCT. These coefficients
give the factorial representation of the data.

Generally, the bases obtained with Architecture I reflect more local properties of the
faces, whereas the bases in Architecture II have global properties and much more
resemble faces (Fig. 2.6).

2.3.6 Multilinear SVD: “Tensorfaces”

The linear analysis methods discussed above have been shown to be suitable when
pose, illumination, or expression are fixed across the face database. When any of
these parameters is allowed to vary, the linear subspace representation does not cap-
ture this variation well (see Sect. 2.6.1). In Sect. 2.4, we discuss recognition with
nonlinear subspaces. An alternative, multilinear approach, called “tensorfaces,” has
been proposed by Vasilescu and Terzopoulos in [37, 38].

Tensor is a multidimensional generalization of a matrix: a n-order tensor A is
an object with n indices, with elements denoted by ai1,...,in ∈ R. Note that there
are n ways to flatten this tensor (i.e., to rearrange the elements in a matrix): The
ith row of A(s) is obtained by concatenating all the elements of A of the form
ai1,...,is−1,i,is+1,...,in .

A generalization of matrix multiplication for tensors is the l-mode product
A ×l M of a tensor A and an m × k matrix M , where k is the lth dimension
of A .

(A ×l M)i1,...il−1,j,il+1,...in =
k∑

i=1

ai1,...il−1,i,il+1,...inmji . (2.15)
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Fig. 2.7 Tensorfaces. a Data tensor; the four dimensions visualized are identity, illumination, pose,
and the pixel vector. The fifth dimension corresponds to expression (only the subtensor for neutral
expression is shown). b Tensorfaces decomposition. (From Vasilescu and Terzopoulos [37], with
permission)

Under this definition, Vasilescu and Terzopoulos proposed [38] an algorithm they
called n-mode SVD, which decomposes an n-dimensional tensor A into

A = Z ×1 U1 ×2 U2 · · · ×n Un. (2.16)

The role of the core tensor Z in this decomposition is similar to the role of the
singular value matrix Σ in SVD (2.4): It governs the interactions between the mode
matrices U1, . . . ,Un, which contain the orthonormal bases for the spaces spanned
by the corresponding dimensions of the data tensor. The mode matrices can be ob-
tained by flattening the tensor across the corresponding dimension and performing
PCA on the columns of the resulting matrix; then the core tensor is computed as

Z = A ×1 UT
1 ×2 UT

2 · · · ×N UT
n.

The notion of tensor can be applied to a face image ensemble in the following
way [38]: Consider a set ofN -pixel images ofNp people’s faces, each photographed
in Nv viewpoints, with Ni illuminations and Ne expressions. The entire set may be
arranged in an Np ×Nv ×Ni ×Ne ×N tensor of order 5. Figure 2.7a illustrates this
concept: Only four dimensions are shown; to visualize the fifth one (expression),
imagine that the four-dimensional tensors for different expressions are “stacked.”

In this context, the face image tensor can be decomposed into

A = Z ×1 Up ×2 Uv ×3 U i ×4 U e ×5 Upixels. (2.17)

Each mode matrix represents a parameter of the object appearance. For example,
the columns of the Ne × Ne matrix U e span the space of expression parameters.
The columns of Upixels span the image space; these are exactly the eigenfaces that
would be obtained by direct PCA on the entire data set.



2 Face Recognition in Subspaces 33

Each person in the database can be represented by a single Np vector, which
contains coefficients with respect to the bases comprising the tensor

B = Z ×2 Uv ×3 U i ×4 U e ×5 Upixels.

For a given viewpoint v, illumination i, and expression e, an Np × N matrix
Bv,i,e can be obtained by indexing into B for v, i, e and flattening the resulting
Np × 1 × 1 × 1 × N subtensor along the identity (people) mode. Now a training
image xp,v,e,i of a person j under the given conditions can be written as

xp,v,e,i = BT
v,i,ecp (2.18)

where cj is the j th row vector of Up.
Given an input image x, a candidate coefficient vector cv,i,e is computed for all

combinations of viewpoint, expression, and illumination, solving (2.18). The recog-
nition is carried out by finding the value of j that yields the minimum Euclidean
distance between c and the vectors cj across all illuminations, expressions, and
viewpoints.5

Vasilescu and Terzopoulos [38] reported experiments involving the data tensor
consisting of images of Np = 28 subjects photographed in Ni = 3 illumination con-
ditions fromNv = 5 viewpoints, withNe = 3 different expressions; the images were
resized and cropped so they contain N = 7493 pixels. The performance of tensor-
faces is reported to be significantly better than that of standard eigenfaces described
in Sect. 2.3.1.

2.4 Nonlinear Subspaces

In this section, we describe a number of techniques that do not assume that the
principal manifold is linear.

2.4.1 Principal Curves and Nonlinear PCA

The defining property of nonlinear principal manifolds is that the inverse image of
the manifold in the original space R

N is a nonlinear (curved) lower-dimensional
surface that “passes through the middle of the data” while minimizing the sum total
distance between the data points and their projections on that surface. Often referred
to as principal curves [14], this formulation is essentially a nonlinear regression on
the data. An example of a principal curve is shown in Fig. 2.8c.

One of the simplest methods for computing nonlinear principal manifolds is the
nonlinear PCA (NLPCA) autoencoder multilayer neural network [9, 20] shown in

5This also provides an estimate of the parameters (e.g., illumination) for the input image.
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Fig. 2.8 a PCA basis (linear, ordered, and orthogonal). b ICA basis (linear, unordered, and
nonorthogonal). c Principal curve (parameterized nonlinear manifold). The circle shows the data
mean

Fig. 2.9 Autoassociative (“bottleneck”) neural network for computing principal manifolds y ∈ R
k

in the input space x ∈ R
N

Fig. 2.9. The “bottleneck” layer forms a lower-dimensional manifold representation
by means of a nonlinear projection function f (x), implemented as a weighted sum-
of-sigmoids. The resulting principal components y have an inverse mapping with
a similar nonlinear reconstruction function g(y), which reproduces the input data
as accurately as possible. The NLPCA computed by such a multilayer sigmoidal
neural network is equivalent (with certain exceptions6) to a principal surface under
the more general definition [13, 14]. To summarize, the main properties of NLPCA
are

y = f (x), x ≈ g(y), P (y)= ? (2.19)

6The class of functions attainable by this neural network restricts the projection function f () to be
smooth and differentiable, and hence suboptimal in some cases [22].
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corresponding to nonlinear projection, approximate reconstruction, and typically
no prior knowledge regarding the joint distribution of the components, respectively
(however, see Zemel and Hinton [43] for an example of devising suitable priors in
such cases). The principal curve in Fig. 2.8c was generated with a 2-4-1-4-2 layer
neural network of the type shown in Fig. 2.9. Note how the principal curve yields
a compact, relatively accurate representation of the data, in contrast to the linear
models (PCA and ICA).

2.4.2 Kernel-PCA and Kernel-Fisher Methods

Recently nonlinear principal component analysis has been revived with the “kernel
eigenvalue” method of Schölkopf et al. [32]. The basic methodology of KPCA is to
apply a nonlinear mapping to the input Ψ (x) : R

N → R
L and then solve for a linear

PCA in the resulting feature space R
L, where L is larger than N and possibly infi-

nite. Because of this increase in dimensionality, the mapping Ψ (x) is made implicit
(and economical) by the use of kernel functions satisfying Mercer’s theorem [7]

k(xi,xj )=
[
Ψ (xi) ·Ψ (xj )

]
(2.20)

where kernel evaluations k(xi ,xj ) in the input space correspond to dot-products
in the higher dimensional feature space. Because computing covariance is based
on dot-products, performing a PCA in the feature space can be formulated with
kernels in the input space without the explicit (and possibly prohibitively expensive)
direct computation of Ψ (x). Specifically, assuming that the projection of the data in
feature space is zero-mean (“centered”), the covariance is given by

ΣK = 〈Ψ (xi ),Ψ (xi )T
〉

(2.21)

with the resulting eigenvector equation λV = ΣKV . Since the eigenvectors
(columns of V ) must lie in the span of the training data Ψ (xi), it must be true
that for each training point

λ
(
Ψ (xi ) · V

)= (Ψ (xi ) ·ΣKV
)

for i = 1, . . . , T (2.22)

and that there must exist coefficients {wi} such that

V =
T∑

i=1

wiΨ (xi ). (2.23)

Using the definition of ΣK , substituting the above equation into (2.22) and defining
the resulting T -by-T matrix K by K ij = [Ψ (xi ) · Ψ (xj )] leads to the equivalent
eigenvalue problem formulated in terms of kernels in the input space

T λw = Kw (2.24)
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where w = (w1, . . . ,wT )
T is the vector of expansion coefficients of a given eigen-

vector V as defined in (2.23). The kernel matrix K ij = k(xi ,xj ) is then diagonal-
ized with a standard PCA.7 Orthonormality of the eigenvectors, (V n · V n) = 1,
leads to the equivalent normalization of their respective expansion coefficients,
λn(w

n · wn)= 1.
Subsequently, the KPCA principal components of any input vector can be effi-

ciently computed with simple kernel evaluations against the dataset. The nth princi-
pal component yn of x is given by

yn = (V n ·Ψ (x))=
T∑

i=1

wni k(x,xi ) (2.25)

where V n is the nth eigenvector of the feature space defined by Ψ . As with PCA,
the eigenvectors V n can be ranked by decreasing order of their eigenvalues λn and a
d-dimensional manifold projection of x is y = (y1, . . . , yd)

T, with individual com-
ponents defined by (2.25).

A significant advantage of KPCA over neural network and principal curves is that
KPCA does not require nonlinear optimization, is not subject to overfitting, and does
not require prior knowledge of network architecture or the number of dimensions.
Furthermore, unlike traditional PCA, one can use more eigenvector projections than
the input dimensionality of the data (because KPCA is based on the matrix K , the
number of eigenvectors or features available is T ). On the other hand, the selec-
tion of the optimal kernel (and its associated parameters) remains an “engineering
problem.” Typical kernels include Gaussians exp(−‖xi − xj‖)2/σ 2), polynomials
(xi · xj )

d and sigmoids tanh(a(xi · xj ) + b), all of which satisfy Mercer’s theo-
rem [7].

Similar to the derivation of KPCA, one may extend the Fisherfaces method (see
Sect. 2.3.3) by applying the FLD in the feature space. Yang [42] derived the kernel
Fisherfaces algorithm, which maximizes the between-scatter to within-scatter ratio
in the feature space through the use of the kernel matrix K . In experiments on two
data sets that contained images from 40 and 11 subjects, respectively, with varying
pose, scale, and illumination, this algorithm showed performance clearly superior
to that of ICA, PCA, and KPCA and somewhat better than that of the standard
Fisherfaces.

2.5 Empirical Comparison of Subspace Methods

Moghaddam [23] reported on an extensive evaluation of many of the subspace meth-
ods described above on a large subset of the FERET data set [31] (see also Chap. 13).

7However, computingΣK in (2.21) requires “centering” the data by computing the mean of Ψ (xi).
Because there is no explicit computation of Ψ (xi ), the equivalent must be carried out when com-
puting the kernel matrix K . For details on “centering” K , see Schölkopf et al. [32].
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Fig. 2.10 Experiments on FERET data. a Several faces from the gallery. b Multiple probes for
one individual, with different facial expressions, eyeglasses, variable ambient lighting, and image
contrast. c Eigenfaces. d ICA basis images

The experimental data consisted of a training “gallery” of 706 individual FERET
faces and 1123 “probe” images containing one or more views of every person in the
gallery. All these images were aligned and normalized as described by Moghaddam
and Pentland [25]. The multiple probe images reflected various expressions, light-
ing, glasses on/off, and so on. The study compared the Bayesian approach described
in Sect. 2.3.4 to a number of other techniques and tested the limits of the recogni-
tion algorithms with respect to image resolution or equivalently the amount of vis-
ible facial detail. Because the Bayesian algorithm was independently evaluated in
DARPA’s 1996 FERET face recognition competition [31] with medium resolution
images (84 × 44 pixels)—achieving an accuracy of ≈95% onO(103) individuals—
it was decided to lower the resolution (the number of pixels) by a factor 16. There-
fore, the aligned faces in the data set were downsampled to 21 × 12 pixels, yielding
input vectors in a R

N=252 space. Several examples are shown in Fig. 2.10a, b.
The reported results were obtained with a fivefold Cross-Validation (CV) analy-

sis. The total data set of 1829 faces (706 unique individuals and their collective 1123
probes) was randomly partitioned into five subsets with unique (nonoverlapping) in-
dividuals and their associated probes. Each subset contained both gallery and probe
images of ≈140 unique individuals. For each of the five subsets, the recognition
task was correctly matching the multiple probes to the ≈140 gallery faces using the
other four subsets as training data. Note that with N = 252 and using 80% of the
entire dataset for training, there are nearly three times as many training samples than
the data dimensionality; thus, parameter estimations (for PCA, ICA, KPCA, and the
Bayesian method) were properly overconstrained.

The resulting five experimental trials were pooled to compute the mean and stan-
dard deviation of the recognition rates for each method. The fact that the training
and testing sets had no overlap in terms of individual identities led to an evaluation
of the algorithms’ generalization performance—the ability to recognize new indi-
viduals who were not part of the manifold computation or density modeling with
the training set.

The baseline recognition experiments used a default manifold dimensionality of
k = 20. This choice of k was made for two reasons: It led to a reasonable PCA re-
construction error of MSE = 0.0012 (or 0.12% per pixel with a normalized intensity
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range of [0,1]) and a baseline PCA recognition rate of ≈80% (on a different 50/50
partition of the dataset), thereby leaving a sizable margin for improvement. Note
that because the recognition experiments were essentially a 140-way classification
task, chance performance was approximately 0.7%.

2.5.1 PCA-Based Recognition

The baseline algorithm for these face recognition experiments was standard PCA
(eigenface) matching. The first eight principal eigenvectors computed from a sin-
gle partition are shown in Fig. 2.10c. Projection of the test set probes onto the
20-dimensional linear manifold (computed with PCA on the training set only) fol-
lowed by nearest-neighbor matching to the ≈140 gallery images using a Euclidean
metric yielded a mean recognition rate of 77.31%, with the highest rate achieved
being 79.62% (Table 2.1). The full image-vector nearest-neighbor (template match-
ing) (i.e., on x ∈ R

252) yielded a recognition rate of 86.46% (see dashed line in
Fig. 2.11). Clearly, performance is degraded by the 252 → 20 dimensionality re-
duction, as expected.

2.5.2 ICA-Based Recognition

For ICA-based recognition (Architecture II, see Sect. 2.3.5) two algorithms based
on fourth-order cumulants were tried: the “JADE” algorithm of Cardoso [5] and
the fixed-point algorithm of Hyvärinen and Oja [15]. In both algorithms a PCA
whitening step (“sphering”) preceded the core ICA decomposition. The correspond-
ing nonorthogonal JADE-derived ICA basis is shown in Fig. 2.10d. Similar basis
faces were obtained with the method of Hyvärinen and Oja. These basis faces are
the columns of the matrix A in (2.14), and their linear combination (specified by
the ICs) reconstructs the training data. The ICA manifold projection of the test set
was obtained using y = A−1x. Nearest-neighbor matching with ICA using the Eu-
clidean L2 norm resulted in a mean recognition rate of 77.30% with the highest rate
being 82.90% (Table 2.1). We found little difference between the two ICA algo-
rithms and noted that ICA resulted in the largest performance variation in the five
trials (7.66% SD). Based on the mean recognition rates it is unclear whether ICA
provides a systematic advantage over PCA or whether “more non-Gaussian” and/or
“more independent” components result in a better manifold for recognition purposes
with this dataset.

Note that the experimental results of Bartlett et al. [1] with FERET faces did
favor ICA over PCA. This seeming disagreement can be reconciled if one considers
the differences in the experimental setup and in the choice of the similarity measure.
First, the advantage of ICA was seen primarily with more difficult time-separated
images. In addition, compared to the results of Bartlett et al. [1] the faces in this
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Table 2.1 Recognition
accuracies with k = 20
subspace projections using
fivefold cross validation.
Results are in percents

Partition PCA ICA KPCA Bayes

1 78.00 82.90 83.26 95.46

2 79.62 77.29 92.37 97.87

3 78.59 79.19 88.52 94.49

4 76.39 82.84 85.96 92.90

5 73.96 64.29 86.57 93.45

Mean 77.31 77.30 87.34 94.83

SD 2.21 7.66 3.39 1.96

experiment were cropped much tighter, leaving no information regarding hair and
face shape, and they were much lower in resolution, factors that when combined
make the recognition task much more difficult.

The second factor is the choice of the distance function used to measure similar-
ity in the subspace. This matter was further investigated by Draper et al. [10]. They
found that the best results for ICA are obtained using the cosine distance, whereas
for eigenfaces the L1 metric appears to be optimal; with L2 metric, which was also
used in the experiments of Moghaddam [23], the performance of ICA (Architec-
ture II) was similar to that of eigenfaces.

2.5.3 KPCA-Based Recognition

For KPCA, the parameters of Gaussian, polynomial, and sigmoidal kernels were
first fine-tuned for best performance with a different 50/50 partition validation set,
and Gaussian kernels were found to be the best for this data set. For each trial,
the kernel matrix was computed from the corresponding training data. Both the
test set gallery and probes were projected onto the kernel eigenvector basis (2.25) to
obtain the nonlinear principal components which were then used in nearest-neighbor
matching of test set probes against the test set gallery images. The mean recognition
rate was found to be 87.34%, with the highest rate being 92.37% (Table 2.1). The
standard deviation of the KPCA trials was slightly higher (3.39) than that of PCA
(2.21), but Fig. 2.11 indicates that KPCA does in fact do better than both PCA and
ICA, hence justifying the use of nonlinear feature extraction.

2.5.4 MAP-Based Recognition

For Bayesian similarity matching, appropriate training Δs for the two classes ΩI
(Fig. 2.10b) and ΩE (Fig. 2.10a) were used for the dual PCA-based density esti-
mates P(Δ | ΩI) and P(Δ | ΩE), which were both modeled as single Gaussians
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Fig. 2.11 Recognition
performance of PCA, ICA,
and KPCA manifolds versus
Bayesian (MAP) similarity
matching with a k = 20
dimensional subspace.
Dashed line indicates the
performance of
nearest-neighbor matching
with the full-dimensional
image vectors

with subspace dimensions of kI and kE , respectively. The total subspace dimen-
sionality k was divided evenly between the two densities by setting kI = kE = k/2
for modeling.8

With k = 20, Gaussian subspace dimensions of kI = 10 and kE = 10 were used
for P(Δ |ΩI) and P(Δ |ΩE), respectively. Note that kI + kE = 20, thus matching
the total number of projections used with the three principal manifold techniques.
Using the maximum a posteriori (MAP) similarity in (2.9), the Bayesian matching
technique yielded a mean recognition rate of 94.83%, with the highest rate achieved
being 97.87% (Table 2.1). The standard deviation of the five partitions for this algo-
rithm was also the lowest (1.96) (Fig 2.11).

2.5.5 Compactness of Manifolds

The performance of various methods with different size manifolds can be compared
by plotting their recognition rates R(k) as a function of the first k principal compo-
nents. For the manifold matching techniques, this simply means using a subspace di-
mension of k (the first k components of PCA/ICA/KPCA), whereas for the Bayesian
matching technique this means that the subspace Gaussian dimensions should sat-
isfy kI + kE = k. Thus all methods used the same number of subspace projections.
This test was the premise for one of the key points investigated by Moghaddam [23]:
Given the same number of subspace projections, which of these techniques is bet-
ter at data modeling and subsequent recognition? The presumption is that the one
achieving the highest recognition rate with the smallest dimension is preferred.

8In practice, kI > kE often works just as well. In fact, as kE → 0, one obtains a maximum-
likelihood similarity S = P (Δ | ΩI ) with kI = k, which for this data set is only a few percent
less accurate than MAP [26].
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Fig. 2.12 Recognition
accuracy R(k) of PCA,
KPCA, and Bayesian
similarity with increasing
dimensionality k of the
principal subspace. ICA
results, not shown, are similar
to those of PCA

For this particular dimensionality test, the total data set of 1829 images was parti-
tioned (split) in half: a training set of 353 gallery images (randomly selected) along
with their corresponding 594 probes and a testing set containing the remaining 353
gallery images and their corresponding 529 probes. The training and test sets had no
overlap in terms of individuals’ identities. As in the previous experiments, the test
set probes were matched to the test set gallery images based on the projections (or
densities) computed with the training set. The results of this experiment are shown
in Fig. 2.12, which plots the recognition rates as a function of the dimensionality
of the subspace k. This is a more revealing comparison of the relative performance
of the methods, as compactness of the manifolds—defined by the lowest accept-
able value of k—is an important consideration in regard to both generalization error
(overfitting) and computational requirements.

2.5.6 Discussion

The relative performance of the principal manifold techniques and Bayesian match-
ing is summarized in Table 2.1 and Fig. 2.11. The advantage of probabilistic match-
ing over metric matching on both linear and nonlinear manifolds is quite evident
(≈18% increase over PCA and ≈8% over KPCA). Note that the dimensionality test
results in Fig. 2.12 indicate that KPCA outperforms PCA by a ≈10% margin, and
even more so with only few principal components (a similar effect was reported
by Schölkopf et al. [32] where KPCA outperforms PCA in low-dimensional man-
ifolds). However, Bayesian matching achieves ≈90% with only four projections—
two for each P(Δ |Ω)—and dominates both PCA and KPCA throughout the entire
range of subspace dimensions in Fig. 2.12.

A comparison of the subspace techniques with respect to multiple criteria is
shown in Table 2.2. Note that PCA, KPCA, and the dual subspace density estima-
tion are uniquely defined for a given training set (making experimental comparisons
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Table 2.2 Comparison of the
subspace techniques across
multiple attributes (k = 20)

PCA ICA KPCA Bayes

Accuracy 77% 77% 87% 95%

Computation 108 109 109 108

Uniqueness Yes No Yes Yes

Projections Linear Linear Nonlinear Linear

repeatable), whereas ICA is not unique owing to the variety of techniques used to
compute the basis and the iterative (stochastic) optimizations involved. Considering
the relative computation (of training), KPCA required ≈7 × 109 floating-point op-
erations compared to PCA’s ≈2×108 operations. On the average, ICA computation
was one order of magnitude larger than that of PCA. Because the Bayesian similar-
ity method’s learning stage involves two separate PCAs, its computation is merely
twice that of PCA (the same order of magnitude).

Considering its significant performance advantage (at low subspace dimension-
ality) and its relative simplicity, the dual-eigenface Bayesian matching method is a
highly effective subspace modeling technique for face recognition. In independent
FERET tests conducted by the U.S. Army Laboratory [31], the Bayesian similarity
technique outperformed PCA and other subspace techniques, such as Fisher’s linear
discriminant (by a margin of at least 10%). Experimental results described above
show that a similar recognition accuracy can be achieved using mere “thumbnails”
with 16 times fewer pixels than in the images used in the FERET test. These results
demonstrate the Bayesian matching technique’s robustness with respect to image
resolution, revealing the surprisingly small amount of facial detail required for high
accuracy performance with this learning technique.

2.6 Methodology and Usage

In this section, we discuss issues that require special care from the practitioner, in
particular, the approaches designed to handle database with varying imaging con-
ditions. We also present a number of extensions and modifications of the subspace
methods.

2.6.1 Multiple View-Based Approach for Pose

The problem of face recognition under general viewing conditions (change in pose)
can also be approached using an eigenspace formulation. There are essentially two
ways to approach this problem using an eigenspace framework. GivenM individuals
under C different views, one can do recognition and pose estimation in a universal
eigenspace computed from the combination of MC images. In this way, a single
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Fig. 2.13 Parametric versus view-based eigenspace methods. a Reconstructions of the input image
(left) with parametric (middle) and view-based (right) eigenspaces. Top: training image; bottom:
novel (test) image. b Difference in the way the two approaches span the manifold

parametric eigenspace encodes identity as well as pose. Such an approach, for ex-
ample, has been used by Murase and Nayar [28] for general 3D object recognition.

Alternatively, givenM individuals under C different views, we can build a view-
based set ofC distinct eigenspaces, each capturing the variation of theM individuals
in a common view. The view-based eigenspace is essentially an extension of the
eigenface technique to multiple sets of eigenvectors, one for each combination of
scale and orientation. One can view this architecture as a set of parallel observers,
each trying to explain the image data with their set of eigenvectors. In this view-
based, multiple-observer approach, the first step is to determine the location and
orientation of the target object by selecting the eigenspace that best describes the
input image. This can be accomplished by calculating the likelihood estimate using
each viewspace’s eigenvectors and then selecting the maximum.

The key difference between the view-based and parametric representations
can be understood by considering the geometry of face subspace, illustrated in
Fig. 2.13b. In the high-dimensional vector space of an input image, multiple-
orientation training images are represented by a set of C distinct regions, each de-
fined by the scatter ofM individuals. Multiple views of a face form nonconvex (yet
connected) regions in image space [3]. Therefore, the resulting ensemble is a highly
complex and nonseparable manifold.

The parametric eigenspace attempts to describe this ensemble with a projection
onto a single low-dimensional linear subspace (corresponding to the first k eigenvec-
tors of the MC training images). In contrast, the view-based approach corresponds
to C independent subspaces, each describing a particular region of the face sub-
space (corresponding to a particular view of a face). The principal manifold vc of
each region c is extracted separately. The relevant analogy here is that of modeling a
complex distribution by a single cluster model or by the union of several component
clusters. Naturally, the latter (view-based) representation can yield a more accurate
representation of the underlying geometry.

This difference in representation becomes evident when considering the quality
of reconstructed images using the two methods. Figure 2.13 compares reconstruc-
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Fig. 2.14 Multiview face image data used in the experiments described in Sect. 2.6.1. (From
Moghaddam and Pentland [25], with permission)

tions obtained with the two methods when trained on images of faces at multiple
orientations. In the top row of Fig. 2.13a, we see first an image in the training set,
followed by reconstructions of this image using first the parametric eigenspace and
then the view-based eigenspace. Note that in the parametric reconstruction, neither
the pose nor the identity of the individual is adequately captured. The view-based
reconstruction, on the other hand, provides a much better characterization of the ob-
ject. Similarly, in the bottom row of Fig. 2.13a, we see a novel view (+68°) with
respect to the training set (−90° to +45°). Here, both reconstructions correspond
to the nearest view in the training set (+45°), but the view-based reconstruction
is seen to be more representative of the individual’s identity. Although the qual-
ity of the reconstruction is not a direct indicator of the recognition power, from an
information-theoretical point-of-view, the multiple eigenspace representation is a
more accurate representation of the signal content.

The view-based approach was evaluated [25] on data similar to that shown in
Fig. 2.14 which consisted of 189 images: nine views of 21 people. The viewpoints
were evenly spaced from −90° to +90° along the horizontal plane. In the first se-
ries of experiments, the interpolation performance was tested by training on a sub-
set of the available views (±90°, ±45°, 0°) and testing on the intermediate views
(±68°, ±23°). A 90% average recognition rate was obtained. A second series of
experiments tested the extrapolation performance by training on a range of views
(e.g., −90° to +45°) and testing on novel views outside the training range (e.g.,
+68° and +90°). For testing views separated by ±23° from the training range, the
average recognition rate was 83%. For ±45° testing views, the average recognition
rate was 50%.
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Fig. 2.15 Modular eigenspaces. a Rectangular patches whose appearance is modeled with eigen-
features. b Performance of eigenfaces, eigenfeatures, and the layered combination of both as a
function of subspace dimension. (From Pentland et al. [30], with permission)

2.6.2 Modular Recognition

The eigenface recognition method is easily extended to facial features [30], as
shown in Fig. 2.15a. This leads to an improvement in recognition performance by
incorporating an additional layer of description in terms of facial features. This can
be viewed as either a modular or layered representation of a face, where a coarse
(low-resolution) description of the whole head is augmented by additional (higher
resolution) details in terms of salient facial features. Pentland et al. [30] called the
latter component eigenfeatures. The utility of this layered representation (eigenface
plus eigenfeatures) was tested on a small subset of a large face database: a rep-
resentative sample of 45 individuals with two views per person, corresponding to
different facial expressions (neutral vs. smiling). This set of images was partitioned
into a training set (neutral) and a testing set (smiling). Because the difference be-
tween these particular facial expressions is primarily articulated in the mouth, this
feature was discarded for recognition purposes.

Figure 2.15b shows the recognition rates as a function of the number of eigenvec-
tors for eigenface-only, eigenfeature only, and the combined representation. What
is surprising is that (for this small dataset at least) the eigenfeatures alone were
sufficient to achieve an (asymptotic) recognition rate of 95% (equal to that of the
eigenfaces).

More surprising, perhaps, is the observation that in the lower dimensions of
eigenspace eigenfeatures outperformed the eigenface recognition. Finally, by us-
ing the combined representation, one gains a slight improvement in the asymptotic
recognition rate (98%). A similar effect was reported by Brunelli and Poggio [4],
where the cumulative normalized correlation scores of templates for the face, eyes,
nose, and mouth showed improved performance over the face-only templates.

A potential advantage of the eigenfeature layer is the ability to overcome the
shortcomings of the standard eigenface method. A pure eigenface recognition sys-
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tem can be fooled by gross variations in the input image (e.g., hats, beards). How-
ever, the feature-based representation may still find the correct match by focusing
on the characteristic nonoccluded features (e.g., the eyes and nose).

2.6.3 Recognition with Sets

An interesting recognition paradigm involves the scenario in which the input con-
sists not of a single image but of a set of images of an unknown person. The set may
consist of a contiguous sequence of frames from a video or a noncontiguous, per-
haps unordered, set of photographs extracted from a video or obtained from individ-
ual snapshots. The former case is discussed in Chap. 13 (recognition from video).
In the latter case, which we consider here, no temporal information is available.
A possible approach, and in fact the one often taken until recently, has been to apply
standard recognition methods to every image in the input set and then combine the
results, typically by means of voting.

However, a large set of images contains more information than every individual
image in it: It provides clues not only on the possible appearance on one’s face
but also on the typical patterns of variation. Technically, just as a set of images
known to contain an individual’s face allows one to represent that individual by an
estimated intrinsic subspace, so the unlabeled input set leads to a subspace estimate
that represents the unknown subject. The recognition task can then be formulated in
terms of matching the subspaces.

One of the first approaches to this task has been the mutual subspace method
(MSM) [41], which extracts the principal linear subspace of fixed dimension (via
PCA) and measures the distance between subspaces by means of principal angles
(the minimal angle between any two vectors in the subspaces). MSM has the de-
sirable feature that it builds a compact model of the distribution of observations.
However, it ignores important statistical characteristics of the data, as the eigenval-
ues corresponding to the principal components, as well as the means of the samples,
are disregarded in the comparison. Thus its decisions may be statistically subopti-
mal.

A probabilistic approach to measuring subspace similarity has been pro-
posed [33]. The underlying statistical model assumes that images of the j th per-
son’s face have probability density pj ; the density of the unknown subject’s face is
denoted by p0. The task of the recognition system is then to find the class label j∗,
satisfying

j∗ = argmax
j

Pr(p0 = pj ). (2.26)

Therefore, given a set of images distributed by p0, solving (2.26) amounts to choos-
ing optimally between M hypotheses of the form in statistics is sometimes referred
to as the two-sample hypothesis: that two sets of examples come from the same dis-
tribution. A principled way to solve this task is to choose the hypothesis j for which
the Kullback-Leibler divergence between p0 and pj is minimized.



2 Face Recognition in Subspaces 47

In reality, the distributions pj are unknown and must be estimated from data, as
well as p0. Shakhnarovich et al. [33] modeled these distributions as Gaussians (one
per subject), which are estimated according to the method described in Sect. 2.3.2.
The KL divergence is then computed in closed form. In the experiments reported by
these authors [33], this method significantly outperformed the MSM.

Modeling the distributions by a single Gaussian is somewhat limiting; Wolf and
Shashua [40] extended this approach and proposed a nonparametric discrimina-
tive method: kernel principal angles. They devised a positive definite kernel that
operates on pairs of data matrices by projecting the data (columns) into a feature
space of arbitrary dimension, in which principal angles can be calculated by com-
puting inner products between the examples (i.e., application of the kernel). Note
that this approach corresponds to nonlinear subspace analysis in the original space;
for instance, one can use polynomial kernels of arbitrary degree. In experiments
that included a face recognition task on a set of nine subjects, this method signif-
icantly outperformed both MSM and the Gaussian-based KL-divergence model of
Shakhnarovich et al. [33].

2.7 Conclusions

Subspace methods have been shown to be highly successful in face recognition, as
they have in many other vision tasks. The exposition in this chapter roughly follows
the chronologic order in which these methods have evolved. Two most notable di-
rections in this evolution can be discerned: (1) the transition from linear to general,
possibly nonlinear, and disconnected manifolds; and (2) the introduction of proba-
bilistic and specifically Bayesian methods for dealing with the uncertainty and with
similarity. All of these methods share the same core assumption: that ostensibly
complex visual phenomena such as images of human faces, represented in a high-
dimensional measurement space, are often intrinsically low-dimensional. Exploiting
this low dimensionality allows a face recognition system to simplify computations
and to focus the attention on the features of the data relevant for the identity of a
person.
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Chapter 3
Face Subspace Learning

Wei Bian and Dacheng Tao

3.1 Introduction

The last few decades have witnessed a great success of subspace learning for face
recognition. From principal component analysis (PCA) [43] and Fisher’s linear dis-
criminant analysis [1], a dozen of dimension reduction algorithms have been devel-
oped to select effective subspaces for the representation and discrimination of face
images [17, 21, 45, 46, 51]. It has demonstrated that human faces, although usu-
ally represented by thousands of pixels encoded in high-dimensional arrays, they
are intrinsically embedded in a vary low dimensional subspace [37]. The using of
subspace for face representation helps to reduce “the curse of dimensionality” in
subsequent classification, and suppress variations of lighting conditions and facial
expressions. In this chapter, we first briefly review conventional dimension reduc-
tion algorithms and then present the trend of recent dimension reduction algorithms
for face recognition.

The earliest subspace method for face recognition is Eigenface [43], which uses
PCA [23] to select the most representative subspace for representing a set of face
images. It extracts the principal eigenspace associated with a set of training face
images. Mathematically, PCA maximizes the variance in the projected subspace for
a given dimensionality, decorrelates the training face images in the projected sub-
space, and maximizes the mutual information between appearance (training face
images) and identity (the corresponding labels) by assuming that face images are
Gaussian distributed. Thus, it has been successfully applied for face recognition. By
projecting face images onto the subspace spanned by Eigenface, classifiers can be
used in the subspace for recognition. One main limitation of Eigenface is that the
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class labels of face images cannot be explored in the process of learning the projec-
tion matrix for dimension reduction. Another representative subspace method for
face recognition is Fisherface [1]. In contrast to Eigenface, Fisherface finds class
specific linear subspace. The dimension reduction algorithm used in Fisherface is
Fisher’s linear discriminant analysis (FLDA), which simultaneously maximizes the
between-class scatter and minimizes the within-class scatter of the face data. FLDA
finds in the feature space a low dimensional subspace where the different classes
of samples remain well separated after projection to this subspace. If classes are
sampled from Gaussian distributions, all with identical covariance matrices, then
FLDA maximizes the mean value of the KL divergences between different classes.
In general, Fisherface outperforms Eigenface due to the utilized discriminative in-
formation.

Although FLDA shows promising performance on face recognition, it has the fol-
lowing major limitations. FLDA discards the discriminative information preserved
in covariance matrices of different classes. FLDA models each class by a single
Gaussian distribution, so it cannot find a proper projection for subsequent classifi-
cation when samples are sampled from complex distributions, for example, mixtures
of Gaussians. In face recognition, face images are generally captured with different
expressions or poses, under different lighting conditions and at different resolution,
so it is more proper to assume face images from one person are mixtures of Gaus-
sians. FLDA tends to merge classes which are close together in the original feature
space. Furthermore, when the size of the training set is smaller than the dimension
of the feature space, FLDA has the undersampled problem.

To solve the aforementioned problems in FLDA, a dozen of variants have been
developed in recent years. Especially, the well-known undersample problem of
FLDA has received intensive attention. Representative algorithms include the op-
timization criterion for generalized discriminant analysis [44], the unified subspace
selection framework [44] and the two stage approach via QR decomposition [52].
Another important issue is that FLDA meets the class separation problem [39].
That is because FLDA puts equal weights on all class pairs, although intuitively
close class pairs should contribute more to the recognition error [39]. To reduce this
problem, Lotlikar and Kothari [30] developed the fractional-step FLDA (FS-FLDA)
by introducing a weighting function. Loog et al. [28] developed another weighting
method for FLDA, namely the approximate pairwise accuracy criterion (aPAC). The
advantage of aPAC is that the projection matrix can be obtained by the eigenvalue
decomposition. Both methods use weighting schemes to select a subspace that bet-
ter separates close class pairs. Recently, the general mean [39] (including geometric
mean [39] and harmonic mean [3]) base subspace selection and the max-min dis-
tance analysis (MMDA) [5] have been proposed to adaptively choose the weights.

Manifold learning is a new technique for reducing the dimensionality in face
recognition and has received considerable attentions in recent years. That is because
face images lie in a low-dimensional manifold. A large number of algorithms have
been proposed to approximate the intrinsic manifold structure of a set of face im-
ages, such as locally linear embedding (LLE) [34], ISOMAP [40], Laplacian eigen-
maps (LE) [2], Hessian eigenmaps (HLLE) [11], Generative Topographic Mapping
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(GTM) [6] and local tangent space alignment (LTSA) [53]. LLE uses linear coef-
ficients, which reconstruct a given measurement by its neighbors, to represent the
local geometry, and then seeks a low-dimensional embedding, in which these co-
efficients are still suitable for reconstruction. ISOMAP preserves global geodesic
distances of all pairs of measurements. LE preserves proximity relationships by
manipulations on an undirected weighted graph, which indicates neighbor rela-
tions of pairwise measurements. LTSA exploits the local tangent information as
a representation of the local geometry and this local tangent information is then
aligned to provide a global coordinate. Hessian Eigenmaps (HLLE) obtains the fi-
nal low-dimensional representations by applying eigen-analysis to a matrix which
is built by estimating the Hessian over neighborhood. All these algorithms have
the out of sample problem and thus a dozen of linearizations have been proposed,
for example, locality preserving projections (LPP) [20] and discriminative locality
alignment (DLA) [55]. Recently, we provide a systematic framework, that is, patch
alignment [55], for understanding the common properties and intrinsic difference
in different algorithms including their linearizations. In particular, this framework
reveals that: i) algorithms are intrinsically different in the patch optimization stage;
and ii) all algorithms share an almost-identical whole alignment stage. Another uni-
fied view of popular manifold learning algorithms is the graph embedding frame-
work [48]. It is shown that manifold learning algorithms are more effective than
conventional dimension reduction algorithms, for example, PCA and FLDA, in ex-
ploiting local geometry information.

In contrast to conventional dimension reduction algorithms that obtain a low di-
mensional subspace with each basis being a linear combination of all the original
high dimensional features, sparse dimension reduction algorithms [9, 24, 59] se-
lect bases composed by only a small number of features of the high dimensional
space. The sparse subspace is more interpretable both psychologically and physio-
logically. One popular sparse dimension reduction algorithm is sparse PCA, which
generalizes the standard PCA by imposing sparsity constraint on the basis of the
low dimensional subspace. The Manifold elastic net (MEN) [56] proposed recently
is another sparse dimension reduction algorithm. It obtains a sparse projection ma-
trix by imposing the elastic net penalty (i.e., the combination of the lasso penalty
and the L2-norm penalty) over the loss (i.e., the criterion) of a discriminative man-
ifold learning, and formulates the problem as lasso which can be efficiently solved.
In sum, sparse learning has many advantages, because (1) sparsity can make the data
more succinct and simpler, so the calculation of the low dimensional representation
and the subsequent recognition becomes more efficient. Parsimony is especially im-
portant for large scale face recognition systems; (2) sparsity can control the weights
of original variables and decrease the variance brought by possible over-fitting with
the least increment of the bias. Therefore, the learn model can generalize better and
obtain high recognition rate for distorted face images; and (3) sparsity provides a
good interpretation of a model, thus reveals an explicit relationship between the ob-
jective of the model and the given variables. This is important for understanding
face recognition.

One fundamental assumption in face recognition, including dimension reduc-
tion, is that the training and test samples are independent and identically distributed
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(i.i.d.) [22, 31, 38]. It is, however, very possible that this assumption does not hold,
for example, the training and test face images are captured under different expres-
sions, postures or lighting conditions, letting alone test subjects do not even appear
in the training set [38]. Transfer learning has emerged as a new learning scheme to
deal with such problem. By properly utilizing the knowledge obtained from the aux-
iliary domain task (training samples), it is possible to boost the performance on the
target domain task (test samples). The idea of cross domain knowledge transfer was
also introduced to subspace learning [31, 38]. It has shown that by using transfer
subspace learning, the recognition performance on the cases where the face images
in training and test sets are not identically distributed can be significantly improved
compared with comparison against conventional subspace learning algorithms.

The rest of this chapter presents three groups of dimension reduction algorithms
for face recognition. Specifically, Sect. 3.2 presents the general mean criterion and
the max-min distance analysis (MMDA). Section 3.3 is dedicated to manifold learn-
ing algorithms, including the discriminative locality alignment (DLA) and mani-
fold elastic net (MEN). The transfer subspace learning framework is presented in
Sect. 3.4. In all of these sections, we first present principles of algorithms and then
show thorough empirical studies.

3.2 Subspace Learning—A Global Perspective

Fisher’s linear discriminant analysis (FLDA) is one of the most well-known meth-
ods for linear subspace selection, and has shown great value in subspace based
face recognition. Being developed by Fisher [14] for binary-class classification and
then generalized by Rao [33] for multiple-class tasks, FLDA utilizes the ratio of
the between-class to within-class scatter as a definition of discrimination. It can be
verified that under the homoscedastic Gaussian assumption, FLDA is Bayes opti-
mal [18] in selecting a c− 1 dimensional subspace, wherein c is the class number.
Suppose there are c classes, represented by homoscedastic GaussiansN(μi,Σ | ωi)
with the prior probability pi , 1 ≤ i ≤ c, where μi is the mean of class ωi and Σ is
the common covariance. The Fisher’s criterion is given by [15]

max
W

tr
((
WTΣW

)−1
WTSbW

)
(3.1)

where

Sb =
c∑

i=1

pi(μi −μ)(μi −μ)T, with μ=
c∑

i=1

piμi. (3.2)

It has been pointed out that the Fisher’s criterion implies the maximization of the
arithmetic mean of the pairwise distances between classes in the subspace. To see
this, let us first define the distance between classes ωi and ωj in the subspace W as

Δ(ωi,ωi |W)= tr
((
WTΣW

)−1
WTDijW

)
, with Dij = (μi −μj )(μi −μj )T.

(3.3)
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Fig. 3.1 An illustrative example on the class separation problem of FLDA. a 2-dimensional scatter
plot of three classes, b plots of pairwise separabilities and the arithmetic mean (FLDA) separability
verse projection directions, from −180 degree to 180 degree with respect to horizontal direction
in (a), and c shows the histogram of three classes projected onto the FLDA direction, which is
around 66 degree

Then, simple algebra shows that (3.1) is equivalent to the arithmetic mean criterion
below

max
W
A(W)=

∑

1≤i<j≤c
pipjΔ(ωi,ωj |W). (3.4)

We call it arithmetic mean based subspace selection (AMSS). Since the arithmetic
mean of all pairwise distance is used as the criterion, one apparent disadvantage
of (3.4) is that it ignores the major contributions of close class pairs to classification
error and may cause the merge of those class pairs in the selected subspace. Such
phenomenon of FLDA or AMSS is called the class separation problem [39].

Figure 3.1 illustrates the class separation problem of FLDA [5]. In the toy ex-
ample, three class are represented by homoscedastic Gaussian distributions on the
two dimensional space. And we want to find a one dimensional subspace (or pro-
jection direction) such that the three classes can be well separated. Varying the one
dimensional subspace, that is, changing the angle of projection direction with re-
spect to the horizontal direction, the three pairwise distances change. FLDA finds
the subspace that maximizes the average of the three pairwise distances. However,
as illustrated, the obtained one dimensional subspace by FLDA severely merges the
blue and green classes.

3.2.1 General Mean Criteria

To improve the separation between close class pairs, the general mean criteria has
been proposed by Tao et al., of which two examples are the geometric mean based
subspace selection (GMSS) [39] and the harmonic mean based subspace selection
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(HMSS) [3]

max
W
G(W)=

∏

1≤i<j≤c
Δ(ωi,ωj |W)(pipj ) (GMSS) (3.5)

and

max
W
H(W)=

[ ∑

1≤i<j≤c

pipj

Δ(ωi,ωj |W)
]−1

(HMSS). (3.6)

We give an mathematical analysis to interpret how criteria (3.5) and (3.6) work in
dealing with the class separation problem, and why criterion (3.6) is even better than
criterion (3.5). Consider a general criterion below

max
W
J(W)= f (Δ(ω1,ω2 |W),Δ(ω1,ω3 |W), . . . ,Δ(ωc−1,ωc |W)). (3.7)

In order to reduce the class separation problem, the objective J (W) must has the
ability to balance all the pairwise distances. We claim that this ability relies on the
partial derivative of J (W) with respect to the pairwise distances. Apparently, an in-
crement of any Δ(ωi,ωj |W) will enlarge J (W), and for this an small one should
have bigger inference, because from the classification point of view when the dis-
tance between two classes is small then any increment of the distance will signif-
icantly improve the classification accuracy, but when the distance is large enough
then the improvement of accuracy will be ignorable (it is well known that for Gaus-
sian distribution the probability out the range of ±3σ is less than 0.01%). Besides,
the partial derivatives must vary as the varying of the pairwise distances so as to
take account of the current values of the pairwise distances in the procedure of sub-
space selection, but not only the initial distances in the original high dimensional
space. According to the discussion above, the partial derivatives must be monotone
decreasing functions ofΔ(ωi,ωj |W). In the cases of criteria (3.4) and (3.5), we set
J (W)= logG(W) and J (W)= −H−1(W), and then the derivatives are calculated
as below

∂ logG(W)

∂Δ(ωi,ωj |W) = qiqj

(Δ(ωi,ωj |W))−1
(3.8)

and

∂ −H−1(W)

∂Δ(ωi,ωj |W) = qiqj

(Δ(ωi,ωj |W))−2
. (3.9)

We can see that in both cases the partial derivative monotonically decreases with
respect to the pairwise distance and thus provides the ability to reduce the class sep-
aration problem. However, note that the order of decreasing for HMSS is higher than
that for GMSS (−2 vs −1), which implies that HMSS is more powerful than GMSS
in reducing the class separation problem. Besides, as Δ(ωi,ωj |W) increases, we
have

log
(
Δ(ωi,ωj |W))→ ∞ (3.10)
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Fig. 3.2 GMSS, HMSS and MMDA for the same three-class problem in Fig. 3.1: first column,
GMSS; second column, HMSS; third column, MMDA. Top row shows plots of pairwise separations
and the separations by different criteria, i.e., GMSS, HMSS and MMDA. Bottom row shows the
histograms of the three classes projected onto the GMSS, HMSS and MMDA directions, which
are around 93 degree, 104 degree and 115 degree, respectively

but

−Δ(ωi,ωj |W)−1 → 0. (3.11)

The logarithm value (3.10) is unbounded, and thus in GMSS a large pairwise dis-
tance still possibly affects small ones. In contrast, the bounded result (3.11) makes
HMSS is more favorable. To solve the maximization problems of (3.5) and (3.6),
[39] provides a gradient descent algorithm with a projection onto the orthogonal
constraint set. Further, [3] suggests exploiting the structure of orthogonal constraint
and optimizing the subspace on the Grassmann manifold [12]. For details of these
optimization algorithms, please refer to [39] and [3]. The corresponding results of
GMMS and HMSS on the illustrative example in Fig. 3.1 are shown in Fig. 3.2. One
can see that the merged class pair in the FLDA subspace is better separated by using
the more sophisticated methods.

3.2.2 Max–Min Distance Analysis

Previous discussions show that GMSS and HMSS are able to reduce the class sepa-
ration problem of FLDA. Such merits come from the inherence of geometric or har-
monic means in adaptively emphasizing small pairwise distance between classes.
A further question is: can we select a subspace that mostly considers small pair-
wise distance? Namely, we may intend to find an optimal subspace which gives the



58 W. Bian and D. Tao

maximized minimum pairwise distance. Generally, such aim cannot be achieved by
GMSS or HMSS, neither other subspace selection methods. To this end, [5] pro-
posed the max-min distance analysis (MMDA) criterion,

max
W

min
1≤i<j≤cΔ(ωi,ωj |W) (3.12)

where the inner minimization chooses the minimum pairwise distance of all class
pairs in the selected subspace, and the outer maximization maximizes this minimum
distance. Let the optimal value and solution of (3.12) beΔopt andWopt, and then we
have

Δ(ωi,ωj |Wopt)≥Δopt, for all i �= j, (3.13)

which ensures the separation (as best as possible) of any class pairs in the selected
low dimensional subspace. Furthermore, by taking the prior probability of each class
into account, the MMDA criterion is given by

max
W

min
1≤i<j≤c

{
(pipj )

−1Δ(ωi,ωi |W)
}
. (3.14)

Note that, the use of (pipj )−1 as weighting factor is an intuitive choice. In order
to obtain a relatively high accuracy, it has to put more weight on classes with high
prior probabilities; however, because the minimization in the max-min operation
has a negative effect, we need to put a smaller factor, for example, the inverse factor
(pipj )

−1, on the pairwise distance between high-prior probability classes so that it
has a greater chance to be maximized.

The solving of MMDA criteria (3.12) and (3.14) can be difficult. The inner min-
imizations there are over discrete variables i and j, and thus it makes the objective
function for the outer maximization nonsmooth. To deal with this nonsmooth max-
min problem [5] introduced the convex relaxation technique. Specifically, the au-
thors proposed a sequential semidefinite programming (SDP) relaxation algorithm,
with which an approximate solution of (3.12) or (3.14) can be obtained in poly-
nomial time. Refer to [5] for details of the algorithm. The MMDA result on the
illustrative example in Fig. 3.1 is shown in Fig. 3.2, from which one can see that
MMDA gives the best separation between blue and green classes among the four
criteria.

3.2.3 Empirical Evaluation

The evaluation of general mean criteria, including GMSS and HMSS, and the
MMDA are conducted on two benchmark face image datasets, UMIST [1] and
FERET [32]. The UMIST database consists of 564 face images from 20 individ-
uals. The individuals are a mix of race, sex and appearance and are photographed
in a range of poses from profile to frontal views. The FERET database contains
13 539 face images from 1565 subjects, with varying pose, facial expression and
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Fig. 3.3 Face recognition by subspace selection and nearest neighbor classification in the selected
low dimensional subspace

age. 50 subjects with 7 images for each are used in the evaluation. Images from
both databases are cropped with reference to the eyes, and normalized to 40 by
40 pixel arrays with 256 gray levels per pixel. On UMIST, 7 images for each subject
are used for training and the rest images are used for test, while on FERET, a 6 to
1 split is used for training/test setup. The average recognition performances over
ten random trials are shown in Fig. 3.3. One can see that, on FERET, the general
mean criterion (GMSS and HMSS) and MMDA show significant improvements on
recognition rate compared with FLDA, while on UMIST, though GMSS gives slight
inferior performance to FLDA, HMSS and MMDA still improve the performance
in certain extent.

3.2.4 Related Works

In addition to the general mean criteria and max-min distance analysis, there are also
some methods proposed in recent years to deal with the class separation problem
of FLDA. Among these methods, approximate pairwise accuracy criterion (aPAC)
[28] and fractional step LDA (FS-LDA) [30] are the most representative ones, and
both of them use weighting schemes to emphasize close class pairs during sub-
space selection. Besides, the Bayes optimality of FLDA is further studied when
the dimensionality of subspace is less than class number minus 1. In particular,
it is shown that the one dimensional Bayes optimal subspace can be obtained by
convex optimization given the information of the order of class centers projected
onto the subspace [18]. Such result generalizes the early result of Bayes optimal
one dimensional Bayes optimal subspace on a special case of three Gaussian dis-
tributions [36]. Further, the authors of [18] suggested selecting a general subspace
by greedy one dimensional subspace selection and orthogonal projection. The ho-
moscedastic Gaussian assumption is another limitation of FLDA. Various methods
have been developed to extend FLDA to heteroscedastic Gaussian cases, e.g., the us-
ing of information theoretic divergences such as Kullback–Leibler divergence [10,
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39], and Chernoff [29] or Bhattacharyya distance [35] to measures the discrimi-
nation among heteroscedastic Gaussian distributions. Besides, nonparametric and
semiparametric method provide alternative ways for extensions of FLDA, by which
classic work includes Fukunaga’s nonparametric discriminant analysis (NDA) [16],
its latest extension to multiclass case [27] and subclass discriminant analysis [57].
In addition, recent studies show that FLDA can be converted to a least square prob-
lem via a proper coding of class labels [49, 50]. The advantages of such least square
formulation are that the computational speed can be significantly improved and also
regularizations on the subspace are more readily imposed.

3.3 Subspace Learning—A Local Perspective

It has shown that the global linearity of PCA and FLDA prohibit their effectiveness
for non-Gaussian distributed data, such as face images. By considering the local
geometry information, a dozen of manifold learning algorithms have been devel-
oped, such as locally linear embedding (LLE) [34], ISOMAP [40], Laplacian eigen-
maps (LE) [2], Hessian eigenmaps (HLLE) [11], and local tangent space alignment
(LTSA) [53]. All of these algorithms have been developed intuitively and pragmat-
ically, that is, on the base of the experience and knowledge of experts for their
own purposes. Therefore, it will be more informative to provide some a systematic
framework for understanding the common properties and intrinsic differences in the
algorithms. In this section, we introduce such a framework, that is, “patch align-
ment”, which consists of two stages: part optimization and whole alignment. The
framework reveals (i) that algorithms are intrinsically different in the patch opti-
mization stage and (ii) that all algorithms share an almost identical whole alignment
stage.

3.3.1 Patch Alignment Framework

The patch alignment framework [55] is composed of two ingredients, first, part op-
timization and then whole alignment. For part optimization, different algorithms
have different optimization criteria over patches, each of which is built by one mea-
surement associated with its related ones. For whole alignment, all part optimiza-
tions are integrated into together to form the final global coordinate for all indepen-
dent patches based on the alignment trick. Figure 3.4 illustrates the patch alignment
framework.

Given an instance xi and its k nearest neighbors [x(1)i , x(2)i , . . . , x(k)i ], the part
optimization at xi is defined by

arg min
Yi

tr
(
YiLiY

T
i

)
(3.15)
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Fig. 3.4 Patch alignment framework

where Yi = [yi, y(1)i , y(2)i , . . . , y(k)i ] is projection of the local patch Xi = [xi, x(1)i ,
x
(2)
i , . . . , x

(k)
i ] onto the low dimensional subspace, and Li encodes the local geome-

try information at instance xi and is chosen algorithm-specifically. By summarizing
part optimizations over all instances, we get

arg min
Y1,Y2,...,Yn

n∑

i=1

tr
(
YiLiY

T
i

)
. (3.16)

Let Y = [y1, y2, . . . , yn] be the projection of all instances X = [x1, x2, . . . , xn]. As
for each local patch Yi should be a subset of the whole alignment Y , the relationship
between them can be expressed by

Yi = YSi (3.17)

where Si is a proper 0-1 matrix called the selection matrix. Thus,

arg min
Y

N∑

i=1

tr
(
YiLiY

T
i

)

= arg min
Y

N∑

i=1

tr
(
YSiLiS

T
i Y

T)

= arg min
Y

tr
(
YLYT) (3.18)

with

L=
(
N∑

i=1

SiLiS
T
i

)

(3.19)
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Table 3.1 Manifold learning algorithms filled in the patch alignment framework

Algorithm Patch Xi Representation of part
optimization Li

Objective function

LLE Given instance and
its neighbors

[
1 −cT

i

−ci cic
T
i

]
Nonlinear

NPE Linear

ONPP Orthogonal linear

ISOMAP Given instance and
the rest ones

(1/N) · τ(DiG) Nonlinear

LE Given instance and its
connected ones in the
undirected graph

[∑l
j=1(wi)j −wT

i

−wi diag(wi)

]
Nonlinear

LPP Linear

LTSA Given instance and
its neighbors

Rk+1 − ViV T
i , where Vi denotes

d largest right singular vectors of
XiRk+1

Nonlinear

LLTSA Linear

Given instance and
its neighbors

HiH
T
i Nonlinear

called the alignment matrix. Further by letting Y =UTX, that is, a linear projection,
(3.18) is rewritten as

arg min
U

tr
(
UTXLXTU

)
. (3.20)

Further, we can impose the orthogonal constraint UTU = I on the projection matrix
U , or the constraint YTY = I on the Y , which leads to UTXXTU = I . In both cases,
(3.20) is solved by eigen- or generalized eigen-decomposition.

Among all the manifold learning algorithms, the most representatives are locally
linear embedding (LLE) [34], ISOMAP [40], Laplacian eigenmaps (LE) [2]. LLE
uses linear coefficients to represent local geometry information, and find a low-
dimensional embedding such that these coefficients are still suitable for reconstruc-
tion. ISOMAP preserves geodesic distances between all instance pairs. And LE pre-
serves proximity relationships by manipulations on an undirected weighted graph,
which indicates neighbor relations of pairwise instances. It has been shown that all
these algorithms can be filled into the patch alignment framework, where the differ-
ence among algorithms lies in the part optimization stage while the whole alignment
stage is almost the same. There are also other manifold learning algorithms, for ex-
ample, Hessian eigenmaps (HLLE) [11], Generative Topographic Mapping (GTM)
[6] and local tangent space alignment (LTSA) [53]. We can use the patch alignment
framework to explain them in a unified way. Table 3.1 summarizes these algorithms
in the patch alignment framework.
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Fig. 3.5 The motivation of
DLA. The measurements
with the same shape and color
come from the same class

3.3.2 Discriminative Locality Alignment

One representative subspace selection method based on the patch alignment frame-
work is the discriminative locality alignment (DLA) [54]. In DLA, the discrimina-
tive information, encoded in labels of samples, is imposed on the part optimization
stage and then the whole alignment stage constructs the global coordinate in the
projected low-dimensional subspace.

Given instance xi and its k nearest neighbors [x(1)i , x(2)i , . . . , x(k)i ], we divide the
k neighbors into two groups according to the label information, that is, belonging to
the same class with xi or not. Without losing generality, we can assume the first k1

neighbors [x(1)i , x(2)i , . . . , x(k1)
i ] having the same class label with xi and the rest k−

k1 neighbors [x(k1+1)
i , x

(k1+2)
i , . . . , x

(k)
i ] having different class labels (otherwise, we

just have to resort the indexes properly). And their low dimensional representations
are yi , [y(1)i , y(2)i , . . . , y(k1)

i ] and [y(k1+1)
i , y

(k1+2)
i , . . . , y

(k)
i ], respectively. The key

idea of DLA is enforcing yi close to [y(1)i , y(2)i , . . . , y(k1)
i ] while pushing it apart

from [y(k1+1)
i , y

(k1+2)
i , . . . , y

(k)
i ]. Figure 3.5 illustrates such motivation.

For instance, xi and its same class neighbors, we expect the summation of
squared distance in the low dimensional subspace to be as small as possible, that
is,

arg min
yi

k1∑

p=1

∥
∥yi − y(p)i

∥
∥2 (3.21)

However, for xi and its different class neighbors, we want the corresponding result
to be large, that is,

arg max
yi

k∑

p=k1+1

∥
∥yi − y(p)i

∥
∥2 (3.22)

A convenient tradeoff between (3.21) and (3.22) is

arg min
Yi

(
k1∑

p=1

∥
∥yi − y(p)i

∥
∥2 − γ

k∑

p=k1+1

∥
∥yi − y(p)i

∥
∥2

)

(3.23)
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where γ is a scaling factor between 0 and 1 to balance the importance between
measures of the within-class distance and the between-class distance. Let

ωi =
[

k1
︷ ︸︸ ︷
1, . . . ,1,

k−k1
︷ ︸︸ ︷−γ, . . . ,−γ

]T
, (3.24)

then (3.23) is readily rewritten as

arg min
Yi

tr
(
YiLiY

T
i

)
, (3.25)

where

Li =
[∑k

j=1ωi −ωT
i

−ωi diag(ωi)

]

. (3.26)

To obtain the projection mapping y =UTx, we just substitute (3.26) into the whole
alignment formula (3.18), and solve the eigen-decomposition problem with con-
straint UTU = I . It is worth emphasizing some merits of DLA here: (1) it exploits
local geometry information of data distribution; (2) it is ready to deal with the case
of nonlinear boundaries for class separation; (3) it avoids the matrix singularity
problem.

Now we evaluate the performance of the proposed DLA in comparison with
six representative algorithms, that is, PCA [23], Generative Topographic Mapping
(GTM) [6], Probabilistic Kernel Principal Components Analysis (PKPCA) [42],
LDA [14], SLPP [7] and MFA [48], on Yale face image dataset [1]. For training, we
randomly selected different numbers (3, 5, 7, 9) of images per individual, used 1/2
of the rest images for validation, and 1/2 of the rest images for testing. Such trial
was independently performed ten times, and then the average recognition results
were calculated. Figure 3.6 shows the average recognition rates versus subspace di-
mensions on the validation sets, which help to select the best subspace dimension.
It can be seen that DLA outperforms the other algorithms.

3.3.3 Manifold Elastic Net

Manifold elastic net (MEN) [56] is a subspace learning method built upon the patch
alignment framework. However, the key feature of MEN is that it is able to achieve
sparse basis (projection matrix) by imposing the popular elastic net penalty (i.e., the
combination of the lasso penalty and the L2 norm penalty). As sparse basis are more
interpretable both psychologically and physiologically, MEN is expected to give
more meaningful results on face recognition, which will be shown in experiments
later.

First, MEN uses the same part optimization and whole alignment as in DLA, that
is, the following minimization is considered

arg min
Y

tr
(
YLYT). (3.27)



3 Face Subspace Learning 65

Fig. 3.6 Recognition rate vs. subspace dimension on Yale dataset. a 3 images per subject for
training; b 5 images per subject for training; c 7 images per subject for training; d 9 images per
subject for training

However, rather than substituting Y =UTX directly, (3.27) is reformed equivalently
as below

arg min
Y,U

tr
(
YLYT)+ β∥∥Y −UTX

∥
∥2
. (3.28)

Note that (3.28) indeed will lead to Y = UTX. Given the equivalence between
the two formulations, the latter is more convenient to incorporate the minimization
of classification error. Specifically, letting stores the response or prediction result,
which are proper encodings of the class label information, we expect UTX to be
close to T , that is,

arg min
U

∥
∥T −UTX

∥
∥2
. (3.29)

By combing (3.28) and (3.29), we get the main objective of MEN

arg min
Y,U

∥
∥T −UTX

∥
∥2 + α tr

(
YTLY

)+ β∥∥Y −UTX
∥
∥2 (3.30)

where α and β are trade-off parameters to control the impacts of different terms.
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To obtain a sparse projection matrixU , an ideal approach is to restrict the number
of nonzero entries in it, that is, using the L0 norm as a penalty over (3.30). However,
the L0 norm penalized (3.30) is an NP-hard problem and thus intractable practically.
One attractive way of approximating the L0 norm is the L1 norm, i.e., the Lasso
penalty [41], which is convex and actually the closet convex relaxation of the L0
norm. Various efficient algorithms exist for solving Lasso penalized least square
regression problem, including the LARS [13]. However, the lasso penalty has the
following two disadvantages: (1) the number of variables to be selected is limited
by the number of observations and (2) the lasso penalized model can only selects
one variable from a group of correlated ones and does not care which one should
be selected. These limitations of Lasso are well addressed by the so-called elastic
net penalty, which combines the L2 and L1 norm together. MEN adopts the elastic
net penalty [58]. In detail, the L2 of the projection matrix is helpful to increase the
dimension (and the rank) of the combination of the data matrix and the response.
In addition, the combination of the L1 and L2 of the projection matrix is convex
with respect to the projection matrix and thus the obtained projection matrix has the
grouping effect property. The final form of MEN is given by

arg min
Y,U

∥
∥T −UTX

∥
∥2 + α tr

(
YTLY

)+ β∥∥Y −UTX
∥
∥2

+ λ1‖U‖1 + λ2‖U‖2. (3.31)

We report an empirical evaluation of MEN on the FERET dataset. From in total
13 539 face images of 1565 individuals, 100 individuals with 7 images per subject
are randomly selected in the experiment. 4 or 5 images per individual are selected
as training set, and the remaining is used for test. All experiments are repeated
five times, and the average recognition rates are calculated. Six representative di-
mension reduction algorithms, that is, principal component analysis (PCA) [23],
Fisher’s linear discriminant analysis (FLDA) [14], discriminative locality align-
ment (DLA) [54], supervised locality preserving projection (SLPP) [7], neighbor-
hood preserving embedding (NPE) [19], and sparse principal component analysis
(SPCA) [9], are also performed for performance comparison.

The performance of recognition is summarized in Fig. 3.7. Apparently, the seven
algorithms are divided into 3 groups according to their performance. The baseline
level methods are PCA and SPCA, which is because they are both unsupervised
methods and thus may not give satisfying performance due to the missing of la-
bel information. LPP, NPE and LDA only show moderate performance. In contrast,
DLA and MEN give rise to significant improvements. Further, the sparsity of MEN
makes it outperform DLA. The best performance of MEN is actually not surprising,
since it considers the most aspects on data representation and distribution, including
the sparse property, the local geometry information and classification error mini-
mization.

Figure 3.8 shows the first ten bases selected by different subspace selection meth-
ods. One can see that the bases selected by LPP, NPE and FLDA are contaminated
by considerable noises, which explains why they only give moderate recognition
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Fig. 3.7 Performance evaluation on the FERET dataset

Fig. 3.8 Plots of first 10 bases obtained from 7 dimensionality reduction algorithms on FERET
for each column, from top to bottom: MEN, DLA, LPP, NPE, FLDA, PCA, and SPCA

performance. The bases from PCA, that is, Eigenfaces, are smooth but present rela-
tively few discriminative information. In terms of sparsity, SPCA gives the desired
bases; however, the problem is that the patterns presented in these bases are not
grouped so that cannot provide meaningful interpretation. The bases from MEN,
which we call “MEN’s faces”, have a low level of noise and are also reasonably
sparse. And more importantly, thanks to the elastic net penalty, the sparse patterns
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Fig. 3.9 Entries of one column of projection matrix vs. its L1 norm in one LARS loop of MEN

of MEN’s bases are satisfying grouped, which gives meaningful interpretations, for
example, most discriminative facial features are obtained, including eyebrows, eyes,
nose, mouth, ears and facial contours.

The optimization algorithm of MEN is built upon LARS. In each LARS loop of
the MEN algorithm, all entries of one column in the projection matrix are zeros ini-
tially. They are sequentially added into the active set according to their importance.
The values of active ones are increased with equal altering correlation. In this pro-
cess, the L1 norm of the column vector is augmented gradually. Figure 3.9 shows
the altering tracks of some entries of the column vector in one LARS loop. These
tracks are called “coefficient paths” in LARS. As shown by these plots, one can
observe that every coefficient path starts from zero when the corresponding vari-
able becomes active, and then changes its direction when another variable is added
into the active set. All the paths keep in the directions which make the correlations
of their corresponding variables equally altering. The L1 norm is increasing along
the greedy augment of entries. The coefficient paths proceed along the gradient de-
cent direction of objective function on the subspace, which is spanned by the active
variables.

In addition, Fig. 3.10 shows 10 of the 1600 coefficient paths from LAPS loop. It
can be seen that MEN selects ten important features sequentially. For each feature,
its corresponding coefficient path and the “MEN face” when the feature is added
into active set are assigned the same color which is different with the other 9 fea-
tures. In each “MEN face”, the new added active feature is marked by a small circle,
and all the active features are marked by white crosses. The features selected by
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Fig. 3.10 Coefficient paths of 10 features in one column vector

MEN can produce explicit interpretation of the relationship between facial features
and face recognition: feature 1 is the left ear, feature 2 is the top of nose, feature
3 is on the head contour, feature 4 is the mouth, feature 5 and feature 6 are on the
left eye, feature 7 is the right ear, and feature 8 is the left corner of mouth. These
features are already verified of great importance in face recognition by many other
famous face recognition methods. Moreover, Fig. 3.10 also shows MEN can group
correlated features, for example, feature 5 and feature 6 are selected sequentially
because they are both on the left eye. In addition, features which are not very im-
portant, such as feature 9 and feature 10 in Fig. 3.10, are selected after the selection
of the other more significant features and assigned smaller value than those more
important ones. Therefore, MEN is a powerful algorithm in feature selection.

3.3.4 Related Works

Applying the idea of manifold learning, that is, exploring local geometry infor-
mation of data distribution, into semisupervised or transductive subspace selection
leads to a new framework of dimension reduction by manifold regularization. One
example is the recently proposed manifold regularized sliced inverse regression
(MRSIR) [4]. Sliced inverse regression (SIR) was proposed for sufficient dimen-
sion reduction. In a regression setting, with the predictors X and the response Y ,
the sufficient dimension reduction (SDR) subspace B is defined by the conditional
independency Y⊥X | BTX. Under the assumption that the distribution of X is ellip-
tic symmetric, it has been proved that the SDR subspace B is related to the inverse
regression curve E(X | Y). It can be estimated at least partially by a generalized
eigendecomposition between the covariance matrix of the predictors Cov(X) and
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Fig. 3.11 Point p is the
projection of query x onto the
feature line x1x2

the covariance matrix of the inverse regression curve Cov(E(X | Y)). If Y is dis-
crete, this is straightforward. While Y is continuous, it is discretized by slicing its
range into several slices so as to estimate E(X | Y) at each slice.

Suppose Γ andΣ are respectively the empirical estimates of Cov(E(X | Y)) and
Cov(X) based on a training data set. Then, the SDR subspace B is given by

max
B

trace
((
BTΣB

)−1
BTΓ B

)
. (3.32)

To construct the manifold regularization, [4] uses the graph Laplacian L of the train-
ing data X = [x1, x2, . . . , xn]. Letting Q = 1

n(n−1)XLX
T and S = 1

n(n−1)XDX
T,

with D being the degree matrix, then MRSIR is defined by

max
B

trace
((
BTΣB

)−1
BTΓ B

)− η trace
((
BTSB

)−1
BTQB

)
, (3.33)

where η is a positive weighting factor. The use of manifold regularization extends
SIR in many ways, that is, it utilizes the local geometry that is ignored originally and
enables SIR to deal with the tranductive/semisupervised subspace selection prob-
lems.

So far we have introduced subspace selection methods that exploit local geometry
information of data distribution. Based on these methods, classification can be per-
formed in the low dimensional embedding. However, as the final goal is classifica-
tion, an alternative approach is to do classification directly using the local geometry
information. This generally leads to nonparametric classifiers, for example, nearest
neighbor (NN) classifier. The problem is that simple NN classifier cannot provide
satisfying recognition performance when data are of very high dimensions as in face
recognition. To this end, Li and Liu proposed the nearest feature line (NFL) for face
recognition [25, 26]. In NFL, a query is projected onto a line segment between any
two instances within each class, and the nearest distance between the query and the
projected point is used to determine its class label. Figure 3.11 shows an example
of projecting a query x onto the feature line spanned by instances x1 and x2, where
the projected point p is given by

p = x1 +μ ∗ (x2 − x1), (3.34)

with

μ= (x − x1)
T(x2 − x1)

‖x2 − x1‖2
. (3.35)
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One extension of NFL is the nearest linear combination (NLC) [25]. There a
query is projected onto a linear subspace spanned by a set of basis vectors, where
the basis vectors can be any form from a subspace analysis or a set of local features,
and the distance between the query and the projection point is used as the metric for
classification. Empirical studies shown that NFL and NLC produces significantly
better performance than the simple nearest neighborhood (NN) when the number of
prototype templates (basis vectors representing the class) is small.

Another method related to NLC and NS approach is the sparse representation
classifier (SRC) [47], which treats the face recognition problem as searching for
an optimal sparse combination of gallery images to represent the probe one. SRC
differs from the standard NLC in the norm used to define the projection distance.
Instead of using the 2-norm as in NLC [25], SRC uses the 1- or 0-norm, such that
the sparsity emerges.

3.4 Transfer Subspace Learning

Conventional algorithms including subspace selection methods are built under the
assumption that training and test samples are independent and identically distributed
(i.i.d.). For practical applications, however, this assumption cannot be hold always.
Particularly, in face recognition, the difference of expressions, postures, aging prob-
lem and lighting conditions makes the distributions of training and test face differ-
ent. To this end, a transfer subspace learning (TSL) framework is proposed [38].
TSL extends conventional subspace learning methods by using a Bregman diver-
gence based regularization, which encourages the difference between the training
and test samples in the selected subspace to be minimized. Thus, we can approx-
imately assume the samples of training and test are almost i.i.d. in the learnt sub-
space.

3.4.1 TSL Framework

The TSL framework [38] is presented by the following unified form

arg min
U

F(U)+ λDU(Pl ||Pu) (3.36)

where F(U) is the objective function of a subspace selection method, for example,
FLDA or PCA et al., and DU(Pl ||Pu) is the Bregman divergence between the train-
ing data distribution Pl and the test data distribution Pu in the low dimension sub-
space U , and parameter λ controls the balance between the objective function and
the regularization. Note that generally the objective function F(U) only depends on
the training data.

For example, when F(U) is chosen to be FLDA’s objective, (32) will give a sub-
space in which the training and test data distributions are close to each other and
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Fig. 3.12 Two classes of training samples are marked as 1 and 2, while three classes of test sam-
ples are marked as A, B and C. Blue circles A and C are merged together in the FLDA subspace,
where discrimination of the training samples can be well preserved. Blue circles A and B are mixed
in the regularization subspace, where there exists the smallest divergence between training domain
(1, 2) and test domain (A, B and C). Blue circles A, B and C can be well separated in the discrim-
inative subspace, which is obtained by optimizing the combination of the proposed regularization
(the divergence between training sets 1, 2 and test sets A, B, C) and FLDA

the discriminative information in the training data is partially preserved. In particu-
lar, suppose we have two classes of training samples, represented by two red circles
(1 and 2, e.g., face images in the FERET dataset), and three classes of test sam-
ples, represented by three blue circles (A, B and C, e.g., face images in the YALE
dataset), as shown in Fig. 3.12. On one hand, FLDA finds a subspace that fails to
separate the test circle A from the test circle C, but the subspace is helpful to dis-
tinct different subjects in the training set. On the other hand, the minimization of the
Bregman divergence between training and test distributions would give a subspace
that makes the training data and test data almost i.i.d., but give little discriminative
power. Apparently, neither of them individually can find a best discriminative sub-
space for test. However, as shown in the figure, a combination of FLDA and the
Bregman regularization does find the optimal subspace for discrimination, wherein
A, B and C can be well separated and samples in them can be correctly classi-
fied with given references. It is worth emphasizing that the combination works well
because the training and test samples are coming from different domains but both
domains share some common properties.

The authors suggest solving (3.36) by gradient descent method [38],

U ←U − τ
(
∂F (U)

∂U
+ λ∂DU(Pl ||Pu)

∂U

)

(3.37)

where τ is the learning rate, that is, step size for updating. As F(U) is usually
known, so is its derivative. The problem remaining is how to estimate DU(Pl ||Pu)
and its derivatives.
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Definition 1 (Bregman divergence regularization) Let f : S→R be a convex func-
tion defined on a closed convex set S ∈ R+. We denote the first order derivative
of f as f ′, whose inverse function as ξ = (f ′)−1. The probability density for the
training and test samples in the projected subspace U are pl(y) and pu(y) respec-
tively, wherein y = UTx is the low-dimensional representation of the sample x.
The difference at ξ(pl(y)) between the function f and the tangent line to f at
(ξ(pl(y)), f (ξ(pl(y)))) is given by:

d
(
ξ
(
pl(y)

)
, ξ
(
pu(y)

))

= {f (ξ(pu(y)
))− f (ξ(pl(y)

))}− pl(y)
{
ξ
(
pu(y)

)− ξ(pl(y)
)}
. (3.38)

Based on (3.38), the Bregman divergence regularization, which measures the dis-
tance between pl(y) and pu(y), is a convex function given by

DU(Pl ||Pu)=
∫

d
(
ξ
(
pl(y)

)
, ξ
(
pu(y)

))
dμ (3.39)

where dμ is the Lebesgue measure.

By taking a special form f (y)= y2, DU(Pl ||Pu) can be expressed as [38]

DW(Pl ||Pu)
=
∫
(
pl(y)− pu(y)

)2
dy

=
∫
(
pl(y)

2 − 2pl(y)pu(y)+ pu(y)2
)
dy. (3.40)

Further, the kernel density estimation (KDE) technique is used to estimate pl(y) and
pu(y). Suppose there are nl training instances {x1, x2, . . . , xnl } and nu test instances
{x1, x2, . . . , xnl }, then through projection yi =UTxi , we have the estimates [38]

pl(y)= (1/nl)
nl∑

i=1

GΣ1(y − yi) (3.41)

and

pu(y)= (1/nu)
nl+nu∑

i=nl+1

GΣ2(y − yi) (3.42)

where GΣ1(y) is a Gaussian kernel with covariance Σ1, so is GΣ2(y). With these
estimates, the quadratic divergence (3.40) is rewritten as [38]
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DW(Pl ||Pu) = 1

n2
l

nl∑

s=1

nl∑

t=1

GΣ11(yt − ys)+
1

n2
u

nl+nu∑

s=nl+1

nl+nu∑

t=nl+1

GΣ22(yt − ys)

− 2

nlnu

nl∑

s=1

nl+nu∑

t=nl+1

GΣ12(yt − ys) (3.43)

where Σ11 = Σ1 + Σ1, Σ12 = Σ1 + Σ2 and Σ22 = Σ2 + Σ2. Further, by basis
matrix calculus, we have

∂DU(Pl ||Pu)
∂U

= 2

n2
l

nl∑

i=1

nl∑

t=1

GΣ11(yi − yt )(Σ11)
−1(yt − yi)xT

i

− 2

nlnu

nl∑

i=1

nl+nu∑

t=nl+1

GΣ12(yt − yi)(Σ12)
−1(yt − yi)xT

i

+ 2

u2

nl+nu∑

i=nl+1

nl+nu∑

t=nl+1

GΣ22(yi − yt )(Σ22)
−1(yt − yi)xT

i

− 2

nlnu

nl+nu∑

i=l+1

nl∑

t=1

GΣ12(yt − yi)(Σ12)
−1(yt − yi)xT

i . (3.44)

3.4.2 Cross Domain Face Recognition

Based on the YALE, UMIST and a subset of FERET datasets, cross-domain face
recognition is performed by applying the TSL framework. In detail, we have
(1) Y2F: the training set is on YALE and the test set is on FERET; (2) F2Y: the
training set is on FERET and the test set is on YALE; and (3) YU2F: the training
set is on the combination of YALE and UMIST and the test set is on FERET. In
the training stage, the labeling information of test images is blind to all subspace
learning algorithms. However, one reference image for each test class is preserved
so that the classification can be done in the test stage. The nearest neighbor classifier
is adopted for classification, i.e., we calculate the distance between a test image and
every reference image and predict the label of the test image as that of the nearest
reference image.

We compare TSL algorithms, for example, TPCA, TFLDA, TLPP, TMFA, and
TDLA, with conventional subspace learning algorithms, for example, PCA [23],
FLDA [14], LPP [20], MFA [48], DLA [54] and the semi-supervised discriminant
analysis (SDA) [8]. Table 3.2 shows the recognition rate of each algorithm with the
corresponding optimal subspace dimension. In detail, conventional subspace learn-
ing algorithms, for example, FLDA, LPP and MFA, perform poorly because they
assume training and test samples are i.i.d. variables and this assumption is unsuit-
able for cross-domain tasks. Although SDA learns a subspace by taking test sam-
ples into account, it assumes samples in a same class are drawn from an identical
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Table 3.2 Recognition rates
of different algorithms under
three experimental settings.
The number in the parenthesis
is the corresponding subspace
dimensionality

Y2F F2Y YU2F

LDA 39.71(70) 36.36(30) 29.57(30)

LPP 44.57(65) 44.24(15) 45.00(35)

MFA 40.57(65) 34.54(60) 27.85(70)

DLA 50.43(80) 50.73(15) 50.86(65)

SDA 44.42(65) 41.81(40) 32.00(35)

MMDR 45.60(60) 42.00(75) 49.75(80)

TLDA 57.28(15) 50.51(20) 55.57(45)

TLPP 58.28(30) 53.93(25) 58.42(30)

TMFA 63.14(70) 56.96(35) 65.42(70)

TDLA 63.12(60) 61.82(30) 65.57(70)

underlying manifold. Therefore, SDA is not designed for the cross-domain tasks.
Although MMDR considers the distribution bias between the training and the test
samples, it ignores the discriminative information contained in the training samples.
We have given an example in the synthetic data test to show that the training dis-
criminative information is helpful to separate test classes. Example TSL algorithms
perform consistently and significantly better than others, because the training dis-
criminative information can be properly transferred to test samples by minimizing
the distribution distance between the training and the test samples. In particular,
TDLA performs best among all TSL examples because it inherits the merits of DLA
in preserving both the discriminative information of different classes and the local
geometry of samples in an identical class.
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Chapter 4
Local Representation of Facial Features

Joni-Kristian Kämäräinen, Abdenour Hadid, and Matti Pietikäinen

The aim of this chapter is to give a comprehensive overview of different facial rep-
resentations and in particular describe local facial features.

4.1 Introduction

Developing face recognition systems involves two crucial issues: facial representa-
tion and classifier design [47, 101]. The aim of facial representation is to derive a set
of features from the raw face images which minimizes the intra-class variations (i.e.,
within face instances of a same individual) and maximizes the extra-class variations
(i.e., between face images of different individuals). Obviously, if inadequate facial
representations are adopted, even the most sophisticated classifiers fail to accom-
plish the face recognition task. Therefore, it is important to carefully decide on what
facial representation to adopt when designing face recognition systems. Ideally, the
facial feature representation should: (i) discriminate different individuals well while
tolerating within-class variations; (ii) be easily extracted from the raw face images
in order to allow fast processing; and (iii) lie in a low dimensional space (short vec-
tor length) in order to avoid a computationally expensive classifier. Naturally, it is
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not easy to find features which meet all these criteria because of the large variabil-
ity in facial appearances due to different imaging factors such as scale, orientation,
pose, facial expressions, lighting conditions, aging, presence of glasses, etc. These
considerations are important for the other subtasks in face biometrics: detection, lo-
calization and registration, and verification, and thus, a key issue in face recognition
is finding efficient facial feature representations.

Numerous methods have been proposed in literature for representing facial im-
ages for recognition purposes. The earliest attempts, such as Kanade’s work in early
70s [41], are based on representing faces in terms of geometrical relationships, such
as distances and angles, between the facial landmarks (eyes, mouth etc.). Later, ap-
pearance based techniques have been proposed. These methods generally consider a
face as a 2D array of pixels and aim at deriving descriptors for face appearance with-
out explicit use of face geometry. Following these lines, different holistic methods
such as Principal Component Analysis (PCA) [82], Linear Discriminant Analysis
(LDA) [21] and the more recent 2D PCA [92] have been widely studied. Lately
local descriptors have gained an increasing attention due to their robustness to chal-
lenges such as pose and illumination changes. Among these descriptors are Gabor
filters and Local Binary Patterns [2] which are shown to be very successful in en-
coding facial appearance.

4.1.1 Structure and Scope of the Chapter

The aim of this chapter is to give a comprehensive overview of different facial rep-
resentations and in particular describe local facial features. Section 4.2 discusses the
major methods which have been proposed in literature. Then, more detailed descrip-
tions of two widely used approaches, namely local binary patterns and Gabor filters,
are presented in Sects. 4.3 and 4.4, respectively. Section 4.5 discusses related issues
and promising directions. Finally, concluding remarks are drawn in Sect. 4.6.

The methods discussed in this chapter can be applied to detection and recognition
of faces or face parts (landmarks). Face parts are also referred to as facial features,
but we use the terms feature and facial feature interchangeably for any features ex-
tracted from the face area. We specifically discuss local binary patterns in the con-
text of face recognition and Gabor features in the context of face part detection, but
they can be used in the both tasks. Furthermore, the feature extraction methods are
discussed from the face image processing point of view and other face description
methods are available for the modeling purposes, such as the active shape models
and morphable model described in the following chapters. These novel modeling
methods can also be applied to face recognition without explicit feature extraction
and classification as discussed in this chapter.
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4.2 Review of Facial Feature Representations

We first justify and restrict the scope of this chapter to generic features which do not
require optimization or learning stages and then proceed to the actual review.

Zhao et al. [101] divide face recognition algorithms into (i) appearance-based
(holistic), (ii) feature-based, and (iii) hybrid approaches. This taxonomy is widely
accepted and also applies to face detection, localization and verification algo-
rithms [33]. This chapter specifically focuses on the feature-based and hybrid meth-
ods which utilize representations of local face parts. Zhao et al. further divide the
feature-based and hybrid approaches into: (1) generic methods based on generic
image processing features, such as edges, lines, curves, etc.; (2) feature-template-
based methods that are used to detect specific facial features such as eyes, nostrils,
etc.; and (3) structural matching methods that take into consideration geometrical
constraints on the features. From the feature extraction point of view, the holistic
approach and the feature-template-based methods are equivalent. They both learn a
scanning window template or templates to represent and detect faces or facial parts.
The most popular solutions are Viola–Jones detector [85] and PCA or LDA com-
puted subspace-templates (Eigenfaces or Fisherfaces) [9] and their seminal works.
These methods can be effective, but we do not include the Haar-cascades produced
by the Viola-Jones method or subspace templates produced by the PCA and LDA to
this chapter since they are not generic features. They should be considered as learned
statistical or algorithmic detectors themselves. Subspace methods are discussed in
Chap. 3 and Viola–Jones type boosted detectors in Chap. 11. The Haar-like features
used by the Viola-Jones detector, however, are generic features for facial feature
representation. The structural matching methods are not in the scope either since
they too involve the learning stage for a “constellation model” which captures in-
formation about spatial relationships between local features. Typical examples are
active shape models, discussed in Chap. 4, and the Elastic Bunch Graph Match-
ing (EBGM) [89]. The generic low level features used by these methods, however,
belong to this chapter.

The selection of features for a proper facial feature representation is actually
similar to the feature selection and extraction task occurring in the most computer
vision and image analysis applications. But what features are the most suitable for
face biometrics? The best results have been achieved by concatenating and learn-
ing person specific features computed from several local areas, for example, from
fixed area (Fig. 4.1(a)) or varying area regions (Fig. 4.1(b)) which can be regu-
lar or feature-driven, or simply at specific locations with no strictly defined spatial
extent (Fig. 4.1(c)). As already mentioned, implementations based on the subspace
approach [11] and the boosted Haar-like features [103] for face detection and recog-
nition exist, but they are not included here due to their need of task-specific learning.

Computer vision and image processing literature contains numerous features and
feature extraction methods. In face biometrics, however, certain features retain their
popularity and continuously succeed to producing state-of-the-art results for vari-
ous benchmarks. Widely adopted are features constructed from responses of Gabor
filters on various orientations and scales. More recent, and particularly successful,



82 J.-K. Kämäräinen et al.

Fig. 4.1 Facial feature computation from a a regular grid of fixed size regions, b irregular variable
size regions (feature-driven) and c around central feature locations

are local binary pattern (LBP) features. In order to verify their status and to spot
new trends, we reviewed the recently published feature-intense articles in the top
tier forums of computer vision and face biometrics. A short summary of the review
is presented in Table 4.1. We draw the following conclusions: (1) Gabor filters and
other similar “local oriented frequency approaches” are still a popular choice and
produce state-of-the-art results in face detection and recognition; (2) a new feature
appears in the literature: the SIFT descriptor which is popular in visual object cate-
gorization and baseline matching; (3) gray-level patch remains as a popular choice
as well despite of its extreme simplicity; and finally (4) success of LBP in bio-
metrics promotes other similar algorithmically constructed features. An interesting
work is the method by Xu et al. [90], which uses several different kind of features
on different processing levels in their hierarchical system.

The most popular region features, modular PCA, LBP and Gabor magnitudes,
were compared for face recognition in [103]. The LBP and Gabor features produced
good results and were generally recommended. In Table 4.1, we classify many fea-
tures, such as complex and smooth wavelets, steerable filters and difference of Gaus-
sians, to Gabor-based methods, because there is no fundamental difference between
them and properly utilized they should lead to equally good results. Similarly, SIFT,
LBP and Daugman’s phase descriptor have similar characteristics. The flexibility of
LBP features, however, makes them more suitable and preferable for face biomet-
rics. The flexibility, appearing as various intuitive parameterizations and extensions
to the standard LBP are further discussed in Sect. 4.3. The Haar-like features seem
to succeed for the boosting approaches, but as a generic method for face biometrics
there is no clear evidence for their success. Their accuracy to locate different facial
landmarks have been studied in [11] and recently, other kind of features, such as
anisotropic Gaussian [60] or constructed features [87], have succeeded in the boost-
ing scheme.

It is clear from all previously published surveys and from the recent state-of-
the-art results that the three mentioned features pop up as very popular and suc-
cessful: features based on Gabor filter responses, local binary patterns (LBPs) and
Haar-like features. Since the Haar-like features are covered in Chap. 11, this chapter



4 Local Representation of Facial Features 83

Table 4.1 Feature-based methods for face detection and/or recognition. Papers utilizing LBP are
numerous and therefore not included here but in Sect. 4.3

# Ref. Feature(s) Comment

1 Zhang et al. [98] “Local derivative pattern” Similar to LBP

2 Kozakaya et al. [42] Histogram of gradients (HOG) Similar to SIFT

3 Zhang and Wang [94] SIFT

4 Su et al. [77] Gabor Reg. grid, magn. only

5 Pinto et al. [68] Gabor, Patch Magn. only,
post-processing

6 Hua and Akbarzadeh [34] Gradient descriptor in [88]

7 Lee et al. [46] Modular PCA

8 Liu and Dai [53] Wavelet Similar to Gabor

9 McCool and Marcel [56] DCT coeffs. Similar to Gabor magn.
histogram

10 Ashraf et al. [7] Patch

11 Ding and Martinez [19] Patch and geometric

12 Liang et al. [50] Patch

13 Meyers and Wolf [59] Gabor V1 type post-processing

14 Mian et al. [61] 3D descriptor and SIFT

15 Xu et al. [90] Patch, gradient (AAM) and
geometric

Fusion over layers of
processing

16 Yan et al. [91] Haar based pattern (LAB) Similar to LBP

17 Gökberk et al. [27] Gabor Magn. only, centroids

18 Shastri and Levine [75] Non-negative sparse codebook Similar to Gabor magn.

19 Zhang et al. [97] Gabor Daugman’s phase
code [18] (similar to
SIFT)

20 Arca et al. [6] Gabor Magn. only, centroids

21 Bicego et al. [10] SIFT

22 Ekenel and Stiefelhagen [20] DCT coeffs. Similar to Gabor magn.
histogram

23 Zhang and Jia [93] Steerable filters Similar to Gabor

24 Dalal and Triggs [14] Histogram of gradients (HOG) Similar to SIFT

introduces the remaining two and presents results from face recognition and facial
feature localization experiments.

4.3 Local Binary Patterns

The use of local binary patterns in face analysis started in 2004 when a novel facial
representation for face recognition was proposed [1, 2]. In this approach, the face
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Fig. 4.2 The basic LBP operator

image is divided into several regions from which the LBP features are extracted and
concatenated into an enhanced feature histogram which is used as a face descriptor.
The approach has evolved to be a growing success and has been adopted and further
developed by a large number of research groups and companies around the world.
The LBP operator and its variants have been used not only in face recognition but
also in various other face-related problems such as face detection, facial expres-
sion recognition, gender classification, age estimation and visual speech recogni-
tion. The success of LBP in face description is due to the discriminative power and
computational simplicity of the operator, and its robustness to monotonic gray scale
changes caused by, for example, illumination variations. The use of histograms as
features also makes the LBP approach robust to face misalignment and pose varia-
tions. The Matlab code of the LBP operators can be found and freely downloaded
from http://www.ee.oulu.fi/mvg/page/downloads.

4.3.1 Local Binary Patterns

4.3.1.1 LBP in the Spatial Domain

The LBP texture analysis operator, introduced by Ojala et al. [63, 64], is defined as a
gray-scale invariant texture measure, derived from a general definition of texture in
a local neighborhood. It is a powerful texture descriptor and among its properties in
real-world applications are its discriminative power, computational simplicity and
tolerance against monotonic gray-scale changes.

The original LBP operator forms labels for the image pixels by thresholding the
3×3 neighborhood with the center value and considering the result as a binary num-
ber. The histogram of these 28 = 256 different labels can then be used as an image
descriptor. See Fig. 4.2 for an illustration of the basic LBP operator. The operator
has been extended to use neighborhoods of different sizes [64]. Using a circular
neighborhood and bilinear interpolation at noninteger pixel coordinates allow any
radius and number of sampling points. In the following, the notation (P,R) will be
used for pixel neighborhoods which means P sampling points on a circle of radius
R. See Fig. 4.3 for an example of circular neighborhoods.

Another extension to the original operator is the definition of so called uniform
patterns [64]. This extension was inspired by the fact that some binary patterns

http://www.ee.oulu.fi/mvg/page/downloads
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Fig. 4.3 Neighborhood set
for different (P,R). The
pixel values are bilinearly
interpolated whenever the
sampling point is not in the
center of a pixel

Fig. 4.4 Examples of texture
primitives detected by LBP
(white circles represent ones
and black zeros)

occur more frequently than others in texture images. A local binary pattern is called
uniform if the binary pattern contains at most two bitwise transitions from 0 to 1
or vice versa when the bit pattern is traversed circularly. For example, the patterns
00000000 (0 transitions), 01110000 (2 transitions) and 11001111 (2 transitions) are
uniform whereas the patterns 11001001 (4 transitions) and 01010011 (6 transitions)
are not. In the computation of the LBP labels, uniform patterns are used so that
there is a separate label for each uniform pattern and all the non-uniform patterns
are labeled with a single label. For example, when using (8,R) neighborhood, there
are a total of 256 patterns of which 58 are uniform thus yielding to the total of 59
different labels.

Ojala et al. noticed in their experiments with texture images that uniform patterns
account for almost 90% of all patterns when using the (8,1) neighborhood and
around 70% for the (16,2) neighborhood. We have found that 90.6% of the patterns
in the (8,1) neighborhood and 85.2% of the patterns in the (8,2) neighborhood
are uniform in the case of preprocessed FERET face images [67]. Each LBP code
can be regarded as a micro-texton. Local primitives which are codified by these bins
include different types of curved edges, spots, flat areas etc. as illustrated in Fig. 4.4.

We use the following notation for the LBP operator: LBPu2
P,R . The subscript de-

notes the operator in a (P,R) neighborhood. Superscript u2 stands for uniform pat-
terns of maximum of 2 transitions and labeling all remaining patterns with a single
label.

After the LBP labeled image fl(x, y) has been obtained, the LBP histogram can
be defined as

Hi =
∑

x,y

I
{
fl(x, y)= i

}
, i = 0, . . . , n− 1, (4.1)

in which n is the number of different labels produced by the LBP operator and

I {A} =
{

1, if A is true,
0, if A is false.
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Fig. 4.5 a Three planes of dynamic texture; b LBP histograms of each plane; c Concatenated
feature

When the image patches whose histograms are to be compared have different sizes,
the histograms must be normalized to get a coherent description:

Ni = Hi
∑n−1
j=0Hj

. (4.2)

4.3.1.2 Spatiotemporal LBP

The original LBP operator was defined to only deal with the spatial information, but
recently it has been extended to a spatiotemporal representation for dynamic texture
(DT) analysis. This has yielded to so called Volume Local Binary Pattern operator
(VLBP) [99]. The idea behind VLBP consists of looking at dynamic texture as a
set of volumes in the (X,Y,T)-space where X and Y denote the spatial coordinates
and T the frame index (time). The neighborhood of each pixel is thus defined in a
three dimensional space. Then, similarly to LBP, volume textons can be defined and
extracted into histograms. Therefore, VLBP combines motion and appearance into
a dynamic texture description.

To make the VLBP computationally simple and easy to extend, the cooccurrences
of the LBP on the three orthogonal planes (LBP-TOP) was introduced [99]. LBP-
TOP consists of the three orthogonal planes: XY , XT and YT , and concatenating
local binary pattern co-occurrence statistics in these three directions. The circular
neighborhoods are generalized to elliptical sampling to fit to the space-time statis-
tics. The LBP codes are extracted from the XY , XT and YT planes, denoted as
XY -LBP, XT -LBP and YT -LBP, for all pixels, and statistics of the three different
planes are concatenated into a single histogram. The procedure is shown in Fig. 4.5.
In this representation, dynamic texture (DT) is encoded by XY -LBP, XT -LBP and
YT -LBP.

Using equal radii for the time and spatial axes is not reasonable for dynamic tex-
tures [99] and therefore, in the XT and YT planes, different radii can be assigned to
sample neighboring points in space and time. More generally, the radii in axes X, Y
and T , and the number of neighboring points in theXY ,XT and YT planes can also
be different denoted by RX , RY and RT , PXY , PXT and PYT . The corresponding
feature is denoted as LBP-TOPPXY ,PXT ,PYT ,RX,RY ,RT .
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Let us assume we are given an X × Y × T dynamic texture (xc ∈ {0, . . . ,X −
1}, yc ∈ {0, . . . , Y − 1}, tc ∈ {0, . . . , T − 1}). A histogram of the DT can be defined
as

Hi,j =
∑

x,y,t

I
{
fj (x, y, t)= i

}
, i = 0, . . . , nj − 1; j = 0,1,2, (4.3)

in which nj is the number of different labels produced by the LBP operator in the
j th plane (j = 0 :XY , 1 :XT and 2 : YT ) and fi(x, y, t) expresses the LBP code of
central pixel (x, y, t) in the j th plane. Similarly to the original LBP, the histograms
must be normalized to get a coherent description for comparing the DTs:

Ni,j = Hi,j
∑nj−1
k=0 Hk,j

. (4.4)

4.3.1.3 Multi-Scale LBP

Noticing that LBP features calculated in a local 3 × 3 neighborhood cannot capture
large-scale structures, multi-scale LBP has been proposed to overcome this limi-
tation. A straightforward way of enlarging the spatial support area is to combine
the information provided by N LBP operators with varying P and R values. This
way, each pixel in an image gets N different LBP codes. The most accurate infor-
mation would be obtained by using the joint distribution of these codes. However,
such a distribution would be overwhelmingly sparse with any reasonable image size.
Therefore, only the marginal distributions of the different operators are considered.
Even though the LBP codes at different radii are not statistically independent in
the typical case, using multi-resolution analysis often enhances the discriminative
power of the resulting features. With most applications, this straightforward way of
building a multi-scale LBP operator has resulted in very good accuracy.

An extension of multi-scale LBP operator is the multiscale block local binary
pattern (MB-LBP) [51] which has gained popularity especially in facial image anal-
ysis. The key idea of MB-LBP is to compare average pixel values within small
blocks instead of comparing pixel values. The operator always considers 8 neigh-
bors, producing labels from 0 to 255. For instance, if the block size is 3 × 3 pixels,
the corresponding MB-LBP operator compares the average gray value of the center
block to the average values of the 8 neighboring blocks of the same size and the
effective area of the operator is 9 × 9 pixels.

4.3.2 Face Description Using LBP

4.3.2.1 Description of Static Face Images

In the LBP approach for texture classification [64], the occurrences of the LBP codes
in an image are collected into a histogram. The classification is then performed by
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Fig. 4.6 Example of an LBP based facial representation

computing simple histogram similarities. However, considering a similar approach
for facial image representation results in a loss of spatial information and therefore
one should codify the texture information with their locations. One way to achieve
this goal is to use the LBP texture descriptors to build several local descriptions of
the face and combine them into a global description. Such local descriptions have
gained interest lately which is understandable given the limitations of the holistic
representations. These local feature based methods seem to be more robust against
variations in pose or illumination than holistic methods.

The basic methodology for LBP based face description is as follows: The facial
image is divided into local regions and LBP texture descriptors are extracted from
the each region independently. The descriptors are then concatenated to a global
face description, as shown in Fig. 4.6.

The basic histogram that is used to gather information about LBP codes in an
image can be extended into a spatially enhanced histogram which encodes both
the appearance and the spatial relations of facial regions. As the facial regions
R0,R1, . . . ,Rm−1 have been determined, the spatially enhanced histogram is de-
fined as

Hi,j =
∑

x,y

I
{
fl(x, y)= i

}
I
{
(x, y) ∈Rj

}
, i = 0, . . . , n− 1, j = 0, . . . ,m− 1.

This histogram effectively has a description of the face on three different levels of
locality: the LBP labels for the histogram contain information about the patterns
on a pixel-level, the labels are summed over a small region to produce information
on a regional level and the regional histograms are concatenated to build a global
description of the face. It should be noted that when using the histogram based
methods the regions R0,R1, . . . ,Rm−1 do not need to be rectangular. Neither do
they need to be of the same size or shape, and they do not necessarily have to cover
the whole image. It is also possible to have partially overlapping regions.

This outlines the original LBP based facial representation [1, 2] that has been
later adopted to various facial image analysis tasks [31, 45]. Figure 4.6 shows an
example of an LBP based facial representation.
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Fig. 4.7 Features in each block volume. a Block volumes; b LBP features from three orthogonal
planes; c Concatenated features for one block volume with the appearance and motion

4.3.2.2 Description of Face Sequences

How can moving faces be efficiently represented? Psychophysical findings state that
facial movements can provide valuable information to face analysis. Therefore, ef-
ficient facial representations should encode both appearance and motion. We thus
describe an LBP based spatiotemporal representation for face analysis in videos us-
ing region-concatenated descriptors. Like in [2], an LBP description computed over
a whole face sequence encodes only the occurrences of the micro-patterns with-
out any indication about their locations. To overcome this effect, a representation
in which the face image is divided into several overlapping blocks is used. The
LBP-TOP histograms in each block are computed and concatenated into a single
histogram, as illustrated in Fig. 4.7. All features extracted from the each volume are
connected to represent the appearance and motion of the face in the sequence. The
basic VLBP features could also be considered and extracted on the basis of region
motion in the same way as the LBP-TOP features.

The LBP-TOP histograms in each block volume are computed and concatenated
into a single histogram. All features extracted from each block volume are connected
to represent the appearance and motion of the face. In this way, we effectively have
a description of the face on three different levels of locality. The labels (bins) in the
histogram contain information from three orthogonal planes, describing appearance
and temporal information at the pixel level. The labels are summed over a small
block to produce information on a regional level expressing the characteristics for
the appearance and motion in specific locations, and all information from the re-
gional level is concatenated to build a global description of the face sequence.

4.3.3 Face Recognition Using LBP Descriptors

This section describes the application of the LBP based face description to face
recognition. Typically a nearest neighbor classification rule is used in the face recog-
nition task. This is due to the fact that the number of training (gallery) images per
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Fig. 4.8 a An example of a
facial image divided into
7 × 7 windows. b The
weights set for weighted χ2

dissimilarity measure. The
black squares indicate
weight 0.0, dark gray 1.0,
light gray 2.0 and white 4.0

subject is low, often only one. However, the idea of a spatially enhanced histogram
can be exploited further when defining the distance measure for the classifier. An
indigenous property of the proposed face description method is that each element
in the enhanced histogram corresponds to a certain small area of the face. Based on
the psychophysical findings, which indicate that some facial features (such as eyes)
play a more important role in human face recognition than other features [101], it
can be expected that some of the facial regions contribute more than others in terms
of extra-personal variance. Utilizing this assumption the regions can be weighted
based on the importance of the information they contain. Figure 4.8 shows an ex-
ample of weighting different facial regions. The weighted Chi square distance can
be defined as

χ2
w(x, ξ)=

∑

j,i

wj
(xi,j − ξi,j )2
xi,j + ξi,j , (4.5)

in which x and ξ are the normalized enhanced histograms to be compared, indices i
and j refer to ith bin corresponding to the j th local region and wj is the weight for
the region j .

In [1, 2, 4], Ahonen et al. performed a set of experiments on the FERET face im-
ages [67]. The results showed that the LBP approach yields higher face recognition
rates than the control algorithms (PCA [82], Bayesian Intra/Extra-personal Clas-
sifier (BIC) [62] and Elastic Bunch Graph Matching EBGM [89]). To gain better
understanding on whether the obtained recognition results are due to general idea
of computing texture features from local facial regions or due to the discriminatory
power of the local binary pattern operator, we also compared LBP to three other tex-
ture descriptors, namely the gray-level difference histogram, homogeneous texture
descriptor [55] and an improved version of the texton histogram [83]. The details
of these experiments can be found in [4]. The results confirmed the validity of the
LBP approach and showed that the performance of LBP in face description exceeds
that of other texture operators as shown in Table 4.2. We believe that the main ex-
planation for the better performance over other texture descriptors is the tolerance
to monotonic gray-scale changes. Additional advantages are the computational effi-
ciency and avoidance of gray-scale normalization prior to the LBP operator.
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Table 4.2 The recognition rates obtained using different texture descriptors for local facial re-
gions. The first four columns show the recognition rates for the FERET test sets and the last three
columns contain the mean recognition rate of the permutation test with a 95% confidence interval

Method fb fc dup I dup II lower mean upper

Difference histogram 0.87 0.12 0.39 0.25 0.58 0.63 0.68

Homogeneous texture 0.86 0.04 0.37 0.21 0.58 0.62 0.68

Texton Histogram 0.97 0.28 0.59 0.42 0.71 0.76 0.80

LBP (nonweighted) 0.93 0.51 0.61 0.50 0.71 0.76 0.81

Fig. 4.9 Example of Gallery and probe images from the FRGC database, and their corresponding
filtered images with Tan and Triggs’ preprocessing chain [80]

Recently, Tan and Triggs developed a very effective preprocessing chain for
face images and obtained excellent results using LBP-based face recognition for
the FRGC database [80]. Since then, many others have adopted their preprocess-
ing chain for applications dealing with severe illumination variations. Figure 4.9
shows an example of gallery and probe images from the FRGC database and the
corresponding filtered images with the preprocessing method.

Chan et al. [12] considered multi-scale LBPs and derived new face descriptor
from Linear Discriminant Analysis (LDA) of multi-scale local binary pattern his-
tograms. The face image is first partitioned into several non-overlapping regions.
In each region, multi-scale uniform LBP histograms are extracted and concatenated
into a regional feature. The features are then projected on the LDA space to be used
as a discriminative facial descriptor. The method was tested in face identification
on the standard FERET database and in face verification on the XM2VTS database
with very promising results.

Zhang et al. [95] considered the LBP methodology for face recognition and
used AdaBoost learning algorithm for selecting an optimal set of local regions and
their weights. This yielded to a smaller feature vector than that used in the original
LBP approach [1]. However, no significant performance enhancement was obtained.
Later, Huang et al. [36] proposed a variant of AdaBoost called JSBoost for selecting
the optimal set of LBP features for face recognition.

In order to deal with strong illumination variations, Li et al. developed a very
successful system combining near infrared (NIR) imaging with local binary pattern
features and AdaBoost learning [49]. The invariance of LBP with respect to mono-
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tonic gray level changes makes the features extracted from NIR images illumination
invariant.

In [70], Rodriguez and Marcel proposed an approach based on adapted, client-
specific LBP histograms for the face verification task. The method considers local
histograms as probability distributions and computes a log-likelihood ratio instead
of χ2 similarity. A generic face model is considered as a collection of LBP his-
tograms. Then, a client-specific model is obtained by an adaptation technique from
the generic model under a probabilistic framework. The reported experimental re-
sults show that the proposed method yields good performance on two benchmark
databases (XM2VTS and BANCA). Later, Ahonen and Pietikäinen [3] have further
enhanced the face verification performance on the BANCA database by developing
a novel method for estimating the local distributions of LBP labels. The method is
based on kernel density estimation in xy-space, and it provides much better spatial
accuracy than the block-based method of Rodriguez and Marcel [70].

4.3.4 LBP in Other Face-Related Problems

The LBP approach has also been adopted to several other face analysis tasks such
as facial expression recognition [23, 74], gender recognition [78], age classifica-
tion [86], face detection [30, 71, 91], iris recognition [79], head pose estimation [54]
and 3D face recognition [48]. For instance, LBP is used in [35] with Active Shape
Model (ASM) for localizing and representing facial key points since an accurate
localization of such points of the face is crucial to many face analysis and synthesis
problems. The local appearance of the key points in the facial images are modeled
with an Extended version of Local Binary Patterns (ELBP). ELBP was proposed in
order to encode not only the first derivation information of facial images but also the
velocity of local variations. The experimental analysis showed that the combination
ASM-ELBP enhances the face alignment accuracy compared to the original ASM
method.

In [30], the authors devised another LBP based representation which is suitable
for low-resolution images and has a short feature vector needed for fast process-
ing. A specific aspect of this representation is the use of overlapping regions and a
4-neighborhood LBP operator (LBP4,1) to avoid statistical unreliability due to long
histograms computed over small regions. Additionally, the holistic description of a
face was enhanced by including the global LBP histogram computed over the whole
face image. The proposed representation performed well in the face detection prob-
lem.

Spatiotemporal LBP descriptors, especially LBP-TOP, have been successfully
utilized in many video-based applications, for example, dynamic facial expression
recognition [100], visual speech recognition [102] and gender recognition from
videos [29]. They can effectively describe appearance, horizontal motion and verti-
cal motion from the video sequence. LBP-TOP based approach was also extended
to include multiresolution features which are computed from different sized blocks,
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Fig. 4.10 Selected 15 slices for different facial expression pairs

different neighboring samplings and different sampling scales, and utilize AdaBoost
to select the slice features for all the expression classes or every class pair, to im-
prove the performance with short feature vectors. After that, on the basis of selected
slices, the location and feature types of most discriminative features for every class
pair are considered. Figure 4.10 shows the selected features for two expression pairs.
They are different and specific depending on the expressions.

4.4 Gabor Features

4.4.1 Introduction

Methods using Gabor features have been particularly successful in biometrics. For
example, Daugman’s iris code [18] is The Method for iris recognition, Gabor fea-
tures were used in the two best methods in the ICPR 2004 face recognition con-
test [57] and they are among the top performers in fingerprint matching [38], and
so on. It is interesting, why feature extraction based on the Gabor’s principle of
simultaneous localization in the frequency and spatial domains [25], is so success-
ful in many applications of computer vision and image processing. The same prin-
ciple was independently found as an intuitive requirement for a “general picture
processing operator” by Granlund [28], and later rigorously defined in 2D by Daug-
man [16].

As the well-known result in face recognition, Lades et al. developed a Gabor
based system using dynamic link architecture (DLA) framework which recognizes
faces by extracting a set of features (“Gabor jet”) at each node of a rectangular grid
over the face image [44]. Later, Wiskott et al. extended the approach and devel-
oped the well-known Gabor wavelet-based elastic bunch graph matching (EBGM)
method to label and recognize faces [89]. In the EBGM algorithm, faces are rep-
resented as graphs with nodes positioned at fiducial points (such as the eyes and
the tip of the nose) and edges labeled with distance vectors. Each node contains a
set of Gabor wavelet coefficients, known as a jet. Thus, the geometry of the face is
encoded by the edges while the local appearance is encoded by the jets. The iden-
tification of a face consists of determining among the constructed graphs the one
which maximizes the graph similarity function.
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In this section, we first explain the main properties of Gabor filters, then describe
how image features can be constructed from filter responses, and finally, demon-
strate how these features can accurately and efficiently represent and detect facial
features. Note that, similarly to LBP, Gabor filters can be used to either detect face
parts or whole face for recognition. In the previous sections, we explained the use
of LBP for face appearance description. For completeness, we focus below on the
use of Gabor filters for representing and detecting facial landmarks.

4.4.2 Gabor Filter

Gabor filter is Gabor function changed into the linear filter form, that is, a signal or
an image can be convolved with the filter to produce a “response image”. This pro-
cess is similar to edge detection. Gabor features are formed by combining responses
of several filters from a single or multiple spatial locations. Gabor function provides
the minimal joint-uncertainty�t ×�f simultaneously in the time (spatial) and fre-
quency domains. In 1946, Dennis Gabor proved that: “The signal which occupies
the minimum area�t�f = 1

2 is the modulation product of a harmonic oscillation(∗)
of any frequency with pulse of the form of a probability function(∗∗)” [25]

ψ(t)= e−α2(t−t0)2
︸ ︷︷ ︸

(∗∗)
ej2πf0t+φ
︸ ︷︷ ︸

(∗)
. (4.6)

In (4.6), α is the sharpness (time duration and bandwidth) of the Gaussian, t0 is
the time shift defining the time location of the Gaussian, f0 is the frequency of
the harmonic oscillations (frequency location), and φ denotes the phase shift of
the oscillation. The Gabor elementary function in (4.6) has a Fourier spectrum of
analytical form

Ψ (f )=
√
π

α2
e−(

π
α
)2(f−f0)

2
e−j2πt0(f−f0)+φ. (4.7)

Two important findings can be seen in (4.6) and (4.7): Gabor function, or more
precisely its magnitude, has the Gaussian form in the time domain and frequency
domain; The Gaussian is located at t0 in time and f0 in frequency; If you increase
the bandwidth α, the function will shrink in time (more accurate), but stretch in
frequency (more inaccurate). These are the properties which help understand Gabor
filter as a linear operator operating in time and frequency simultaneously. For the
linear filter form, the function is typically simplified by centering it to origin (t0 = 0)
and removing the phase shift (φ = 0).

Gabor’s original idea was to synthesize signals using a set of these elementary
functions. That research direction has lead to the theory of Gabor expansion (Ga-
bor transform) [8] and more generally to the Gabor frame theory [22]. Feature ex-
traction, however, is signal analysis. The development of the 2D Gabor elementary
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functions began from Granlund in 1978, when he defined some fundamental prop-
erties and proposed the form of a general picture processing operator. The general
picture processing operator had a form of the Gabor elementary function in two di-
mensions and it was derived directly from the needs of the image processing without
a connection to Gabor’s work [28]. It is noteworthy that Granlund addressed many
properties, such as the octave spacing of the frequencies, that were reinvented later
for the Gabor filters. Despite the original contribution of Granlund the most referred
works are those conducted by Daugman [16, 17]. Daugman was the first who exclu-
sively derived the uncertainty principle in two dimensions and showed the similarity
between a structure based on the 2D Gabor functions and the organization and the
characteristics of the mammalian visual system. Again, several simplifications are
justifiable [39] and 2D Gabor function can be defined as

ψ(x, y)= e−(α2x′2+β2y′2)ej2πf0x
′
,

x′ = x cos θ + y sin θ,

y′ = −x sin θ + y cos θ, (4.8)

where the new parameters are β for sharpness of the second Gaussian axis and
θ for its orientation. In practice, the sharpness is connected to the frequency in
order to make filters self-similar (Gabor wavelets) [39]. This is achieved by setting
α = |f0|/γ and β = |f0|/η and by normalizing the filter. Finally, the 2D Gabor filter
in the spatial domain is

ψ(x, y)= f 2

πγ η
e
−( f 2

γ 2 x
′2+ f 2

η2 y
′2)
ej2πf x′

,

x′ = x cos θ + y sin θ,

y′ = −x sin θ + y cos θ, (4.9)

where f is the central frequency of the filter, θ the rotation angle of the Gaussian
major axis and the plane wave, γ the sharpness along the major axis, and η the
sharpness along the minor axis (perpendicular to the wave). In the given form, the
aspect ratio of the Gaussian is η/γ . The normalized 2D Gabor filter function has an
analytical form in the frequency domain

Ψ (u, v)= e−
π2

f 2 (γ
2(u′−f )2+η2v′2)

,

u′ = u cos θ + v sin θ,

v′ = −u sin θ + v cos θ. (4.10)

The effects of the Gabor filter parameters, interpretable via the Fourier similarity
theorem, are demonstrated in Fig. 4.11.
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4.4.3 Constructing Gabor Features

Gabor features are constructed by convolution of an input image ξ(x, y) with the
filter in (4.9)

rξ (x, y;f, θ) = ψ(x, y;f, θ) ∗ ξ(x, y)

=
∫ ∫ ∞

−∞
ψ(x − xτ , y − yτ ;f, θ)ξ(xτ , yτ ) dxτ dyτ . (4.11)

The convolution produces a response image rξ of the same size. Only a single filter
rarely succeeds but the response images are computed for a “bank” of filters tuned
on various frequencies and orientations. The frequencies are typically drawn from
the logarithmic scale similar to wavelets [15]:

fk = c−kfmax, for k = 0, . . . ,m− 1 (4.12)

where fmax is the maximum frequency (the smallest scale) and c is the frequency
scaling factor. Some useful values for c include c= 2 for octave spacing and c= √

2
for half-octave spacing. The filter orientations are spaced uniformly

θk = k2π

n
, k = {0, . . . , n− 1}. (4.13)

For real signals the responses on [π,2π[ are complex conjugates of responses on
[0,π[ and therefore only the responses for the half plane are needed:

θk = kπ

n
, k = {0, . . . , n− 1}. (4.14)

For a bank of Gabor filters, the responses computed at a single location (x0, y0)

with the parameters drawn from (4.12) and (4.14) a feature matrix G can be con-
structed as

G =

⎛

⎜
⎜
⎜
⎝

r(x0, y0;f0, θ0) r(x0, y0;f0, θ1) . . . r(x0, y0;f0, θn−1)

r(x0, y0;f1, θ0) r(x0, y0;f1, θ1) . . . r(x0, y0;f1, θn−1)
...

...
. . .

...

r(x0, y0;fm−1, θ0) r(x0, y0;fm−1, θ1) . . . r(x0, y0;fm−1, θn−1)

⎞

⎟
⎟
⎟
⎠
.

(4.15)
In (4.15) the columns denote responses over different orientations and rows over dif-
ferent frequencies (scales). This structure is called as “simple Gabor feature space”
formally defined in [43], later revised in [39] and utilized in face detection in [32].
A significant simplification made in the proposed feature space is the use of only
one spatial location (x′, y′) to represent an object. The assumption is justified if the
objects are simple or if they are distinguishable from each other in the feature space.
This is not the case with, for example, the human face, but seems to hold between
salient sub-parts, such as nostrils, eyes, mouth corners, etc. The filters in one loca-
tion tuned to various frequencies and orientations span a sub-space whose accuracy
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Fig. 4.12 Reconstruction from responses at 10 different locations (four orientations and five fre-
quencies): a original; b reconstruction

decreases from the filter origin. This is demonstrated in Fig. 4.12 where an original
face is reconstructed using filter responses from 10 locations.

Operations for rotation and scale invariant searches of objects can be defined as
a column-wise circular shift of the response matrix corresponding to the rotation
of the object around the location (x0, y0) and a row-wise shift corresponding to the
scaling of an object by a factor c [43]. An illumination invariance can be achieved
by normalizing the feature matrix [43].

4.4.4 Learning Facial Features

In principle, Gabor features can be used similarly to LBPs or any other local fea-
tures. The filter responses are computed for various frequencies and orientations,
and a descriptor formed from the responses inside one or multiple fixed-size win-
dows as illustrated in Fig. 4.6. For example, Zou et al. [103] proposed a face recog-
nition method using such region descriptor and reported state-of-the-art results for
the FERET database: fb: 99.5%, fc: 99.5%, dup I: 85.0% and dup II: 79.5%. Ga-
bor face descriptor is easy to implement, but for completeness, in this section we
concentrate on local facial features and utilize the simple feature matrix to represent
and learn them.

We assume an annotated training set of face images. The annotations are, for
example, the centroids of selected facial landmarks (see Fig. 4.12(a)). Any classi-
fier or pattern recognition method can be used to learn the facial representations
from extracted Gabor features. A completely statistical approach, however, possess
superior properties as compared to other methods [37]: the decision making has an
interpretable basis from which the most probable option can be chosen and a within-
class comparison can be performed using statistical hypothesis testing [66]. In the
statistical approaches, a class is typically represented in terms of a class conditional
probability density function (pdf) over feature space. It should be noted, that finding
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a proper pdf estimate has a crucial impact on the success of the facial feature de-
tection. Typically, the form of the pdf’s is somehow restricted and the estimation is
reduced to a problem of fitting the restricted model to the observed features. Often
simple models such as a single Gaussian distribution (normal distributed random
variable) can efficiently represent features but a more general model, such as a fi-
nite mixture model, must be used to approximate more complex pdf’s. We adopt the
method in [37] where Gaussian mixture models represent facial feature conditional
pdf’s given the Gabor feature matrix.

The multiresolution Gabor feature in a single location can be converted from the
matrix in (4.15) to a feature vector

g = [r(x0, y0;f0, θ0) r(x0, y0;f0, θ1) . . . r(x0, y0;fm−1, θn−1)
]
. (4.16)

Since the feature vector is complex valued the complex Gaussian distribution func-
tion needs to be used,

N C(x;μ,Σ)= 1

πD|Σ | exp
[−(x − μ)∗Σ−1(x − μ)

]
, (4.17)

where Σ denotes the covariance matrix. It should be noted that the pure complex
form of the Gaussian in (4.17) provides computational stability in the parameter
estimation as compared to a concatenation of real and imaginary parts to two real
numbers as the dimensionality of the problem doubles in the latter case [66]. Now,
a Gaussian mixture model (GMM) probability density function can be defined as a
weighted sum of Gaussians

p(x; θ)=
C∑

c=1

αcN
C(x;μc,Σc), (4.18)

where αc is the weight of the cth component. The weight can be interpreted as a
priori probability that a value of the random variable is generated by the cth source,
and thus, 0 ≤ αc ≤ 1 and

∑C
c=1 αc = 1. The Gaussian mixture model probability

density function can be completely defined by the parameter list

θ = {α1,μ1,Σ1, . . . , αC,μC,ΣC}. (4.19)

The main question remains how the parameters in (4.19) can be estimated from
the given training data. The most popular estimation method is the expectation max-
imization (EM) algorithm, but the EM algorithm requires knowledge of the number
of Gaussians, C, as an input parameter. The number is often unknown and this is a
strong motivation to apply unsupervised methods, such as that of Figueiredo–Jain
(FJ) [24] or the greedy EM algorithm [84]. Of the two unsupervised methods, the
Figueiredo–Jain method provides more accurate results and its complex extension
can be directly applied to pdf’s of the complex feature vectors in (4.16) [66].

The probability distribution values, likelihoods, can be directly used to find the
best or rank facial feature candidates [66]. It is even possible to reduce the search
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Fig. 4.13 Example of using density quantile of pdf values: a Pdf surface for the left nostril class;
b Pdf values belonging to 0.5 density quantile; c Pdf values belonging to 0.05 density quantile [37]

Algorithm 4.1: Train facial feature classifier
1: for all Training images do
2: Align and normalize image to represent an object in a standard pose
3: Extract multiresolution Gabor features at given locations
4: Normalize the features
5: Store the features to the sample matrix P and their corresponding class

labels to the target vector T
6: end for
7: With samples in P estimate class conditional pdf’s for each class using

Gaussian mixture models and FJ algorithm

space considerably by discarding image features beyond a requested score level,
that is, density quantile [66]. In Fig. 4.13, the use of density quantile for reducing
the search space is demonstrated; it is clear that the spatial area corresponding to the
0.05 (0.95 confidence) density quantile contains the correct image feature.

4.4.5 Detecting Facial Features

A supervised learning algorithm to extract simple Gabor features (multiresolution
Gabor features) and to estimate the class conditional pdf’s for the facial features
is presented in Algorithm 4.1. Matlab functionality for efficient computation of the
multiresolution Gabor features [76] and for the Gaussian mixture models and the FJ
algorithm are publicly available [26]. In Algorithm 4.2, the main steps to extract the
features from an image are shown.

Experiments Using the XM2VTS Face Database XM2VTS facial image
database is a publicly available database for benchmarking face detection and recog-
nition methods [58]. The frontal part of the database contains 600 training images
and 560 test images of size 720 ×576 (width × height) pixels. For facial images ten
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Algorithm 4.2: Extract K best face features of each class from an image I
1: Compute multiresolution Gabor features G(x,y;fm, θn) for the whole image
I (x, y)

2: for all Scale shifts do
3: for all Rotation shifts do
4: Shift Gabor features
5: Normalize Gabor features
6: Calculate confidence scores (pdf values) for all classes and for all (x, y)
7: Update feature class confidence at each location
8: end for
9: end for

10: Sort the features by their score for each class
11: Return the K best features of each facial feature class

specific regions (see Fig. 4.12(a)) have been shown to have favorable properties to
act as keypoints [32]. A normalized distance between the eyes, 1.0, will be used as
measure of image feature detection accuracy. The distance measure is demonstrated
in Fig. 4.14(a).

Gabor parameters were experimentally selected by using a cross-validation pro-
cedure over the training and evaluation sets in the database: n= 4, m= 6, k = √

3
and fhigh = 1/40. Image features were extracted in a ranked order and a keypoint
was considered to be correctly extracted if it was within a pre-set pixel distance limit
from the correct location. Results with XM2VTS are presented in Fig. 4.14(b). The
distances are scale normalized, so that the distance between centers of the eyes is
1.0 (see Fig. 4.14(a) for a demonstration). On average, 4 correct image features were
included in the first 10 image features within distance limit 0.05, but as the number
of features was increased to 100: over 9 for 0.05 and almost all features found for
0.10 and 0.20. It should be noted that accuracies of 0.10 and 0.20 are still very good
for face registration and recognition. Increasing the number of image features over
100 (10 per class) did not improve the results anymore, but relaxing the distance
limit to 0.10 almost perfect result were reached with only 10 first image features
from each class. Typical detection results are demonstrated in Figs. 4.14(c)–(e).

Methods for accurate face and facial feature detection and localization based
on the described Gabor representations have been proposed and reported to pro-
duce state-of-the-art detection accuracy for more difficult and realistic data sets
(XM2VTS/non-frontal, BANCA and BioID) [32, 40].

4.5 Discussions on Local Features

A drawback of the LBP method, as well as of all local descriptors that apply vector
quantization, is that they are not robust in the sense that a small change in the input
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Fig. 4.14 a Demonstration of accuracy distance measure; b Performance for facial feature detec-
tion in XM2VTS test images; c, d, e Examples of extracted features (left eye center: blue, right
eye outer corner: green, left nostril: red, right mouth corner: cyan, 5 best feature for each landmark
numbered from 1 to 5) [37]

image would always cause a small change in the output. LBP may not work prop-
erly for noisy images or on flat image areas of constant gray level. Many variants
of LBP have been proposed to improve its robustness. For instance, Tan and Triggs
proposed a three-level operator called local ternary patterns for example, to deal
with problems on flat image areas [80]. Liao et al. [52] introduced dominant local
binary patterns which make use of the most frequently occurred patterns of LBP to
improve the recognition accuracy compared to the original uniform patterns. Raja
and Gong proposed sparse multiscale local binary patterns to better exploit the dis-
criminative capacity of multiscale features available [69]. Inspired by LBP, higher
order local derivative patterns (LDP) were proposed by Zhang et al., with applica-
tions in face recognition [98].

LBP has also inspired the development of new effective local face descriptors,
such as the Weber Law Descriptor (WLD) containing differential excitation and ori-
entation components [13] and the blur-invariant Local Phase Quantization (LPQ)
descriptor [65]. The LPQ descriptor has received wide interest in blur-invariant face
recognition [5]. LPQ is based on quantizing the Fourier transform phase in local
neighborhoods. Similarly to the widely used LBP based face description, histograms
of LPQ labels computed within local regions are also adopted as a face descrip-
tor. The experiments showed that such LPQ descriptors are highly discriminative
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and produce very promising face recognition results, outperforming LBP both with
blurred and sharp images on CMU PIE and FRGC 1.0.4 datasets.

A current trend in the development of new effective local face image descriptors
is to combine the strengths of complementary descriptors. From the beginning, the
LBP operator was designed as a complementary measure of local image contrast.
Applying LBP to Gabor-filtered face images, or using LBP and Gabor methods
jointly, have provided excellent results in face recognition [81, 96]. For instance,
Zhang et al. [96] proposed the extraction of LBP features from images obtained by
filtering a facial image with 40 Gabor filters of different scales and orientations. Ex-
cellent results have been obtained on the all FERET sets. A downside of the method
lies in the high dimensionality of the feature vector (LBP histogram) which is calcu-
lated from 40 Gabor images derived from each single original image. To overcome
this problem of large feature dimensions, Shan et al. [73] presented a new exten-
sion using Fisher Discriminant Analysis (FDA), instead of the χ2 (Chi-square), and
histogram intersection, which have been previously used in [96]. The authors con-
structed an ensemble of piecewise FDA classifiers, each of which is built based
one segment of the high-dimensional LBP histograms. Impressive results were re-
ported on the FERET database. Other works have also successfully exploited the
complementary of Gabor filters and LBP features by fusing the two set of features
e.g. for age classification [86]. Combining ideas from Haar and LBP features have
also given excellent results in accurate and illumination invariant face detection [71,
91].

Features based on Gabor filters are very versatile. By post-processing they can
be transformed, for example, to binary descriptors of texture similar to LBPs. For
example, in the Daugman’s iris code the response phase is quantized to two bits
(four quadratures in the complex plane) [18]. The Daugman’s descriptor is very
discriminative and its histograms were used in face recognition in [97]. Utilization
of the phase information is important for discrimination, but many other efficient
post-processing methods exist in the literature and they are used in human visual
system oriented recognition methods [72]. Another important property of Gabor
filters is that the original signal can be reconstructed. This property was employed
in this chapter where we introduced the efficient facial feature descriptor based on
Gabor features at a single location. Recently, the importance of phase information
have been noticed and very good recognition results reported for features based
on Gabor phase [96]. It is important to notice that the complex-valued response,
including both magnitude and phase, is the most natural representation, and should
be used in methods based on Gabor filters.

4.6 Conclusions

Finding efficient facial or facial feature representations is a key issue in develop-
ing robust face recognition systems. Many methods have been proposed for this
purpose. Local feature based methods seem to be more robust against variations in
pose or illumination than holistic methods. Especially methods based on Gabor filter
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responses and local binary patterns have been particularly successful in face image
processing.
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Chapter 5
Face Alignment Models

Phil Tresadern, Tim Cootes, Chris Taylor, and Vladimir Petrović

5.1 Introduction

In building models of facial appearance, we adopt a statistical approach that learns
the ways in which the shape and texture of the face vary across a range of images.
We rely on obtaining a suitably large and representative training set of images of
faces, each of which is annotated with a set of feature points that define correspon-
dences across the set. The positions of the feature points also define the shape of
the face, and are analysed to learn the ways in which the shape can vary. The pat-
terns of intensities are analysed in a similar way to learn how the texture can vary.
The result is a model which is capable of synthesising any of the training images
and generalising from them, but is specific enough that only face-like images are
generated.

To build a statistical appearance model, we require a set of training images that
covers the types of variation we want the model to represent. For instance, if we
are only interested in faces with neutral expressions, we need only include neutral
expressions in the model. If, however, we want to synthesise and recognise a range
of expressions, the training set should include images of people smiling, frowning,
winking and so on. Ideally, the faces in the training set should be of at least as high
a resolution as those in the images we wish to synthesise or interpret.

5.1.1 Statistical Models of Shape

To define a shape model, we first annotate each face with a fixed number of points
that define the key facial features (and their correspondences across the training set)
and represent the shape of the face in the image. Typically, we place points around
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Fig. 5.1 Examples of 68
points defining facial features
on two frontal images

the main facial features (eyes, nose, mouth and eye-brows) together with points that
define the boundary of the face (Fig. 5.1). The more points we use, the more subtle
the variations in shape that we can represent.

If we annotate the face with n feature points, {(xi, yi)}, then we can represent the
geometry of the face with a 2n element vector,

x = (x1, . . . , xn, y1, . . . , yn)
T, (5.1)

such that N training images provide N training vectors xi . The shape of the face
can then be defined as that property of the configuration of points which is invariant
under (that is, not explained by) some global transformation. In other words, if St(x)
applies a transformation defined by parameters t to the points x, the configurations
of points defined by x and St(x) are considered to have the same shape. Typically,
we use either the similarity transformation or the affine transformation where a 2D
similarity has four parameters (x- and y-translation, rotation and scaling) and a 2D
affine transformations has six (x- and y-translation, rotation, scaling, aspect ratio
and skew).

Given a set of shapes as training data, we can then apply formal statistical tech-
niques [23] to analyse their variation and synthesise new shapes that are similar.
Before we perform statistical analysis on these training vectors, however, it is im-
portant that we first remove any differences that are attributable to the global trans-
formation, St(x), leaving only genuine differences in shape (that is, we must align
the shapes into a common coordinate frame).

5.1.1.1 Aligning Sets of Shapes

Of the various methods of aligning shapes into a common coordinate frame, the
most popular is Procrustes Analysis [27] that finds the parameters, t, that transform
each shape in the set, xi , so that it is aligned with a mean shape, x̄, in the sense that
minimises their sum of squared distances, D =∑i |S(xi ) − x̄|2. Though we can
solve this analytically for a set of shapes, in practice we use a simple and effective
iterative approach (Algorithm 5.1) to converge on a solution. At each iteration, we
ensure that this measure is well defined by aligning the mean shape to the coordinate
frame such that it is centred at the origin, has unit scale and some fixed but arbitrary
orientation.
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Algorithm 5.1: Aligning a set of shapes
1: Translate each example so that its centre of gravity is at the origin.
2: Choose one example as an initial estimate of the mean shape, x̄, and scale

so that |x̄| = 1.
3: Record this first estimate as x̄0 to define the default reference frame.
4: repeat
5: Align each shape with the current estimate of the mean shape.
6: Re-estimate mean from aligned shapes.
7: Apply constraints on the current estimate of the mean by aligning it with

x̄0 and scaling so that |x̄| = 1.
8: until converged (that is, the change in the mean since the previous iteration

is sufficiently small).

5.1.1.2 Linear Models of Shape Variation

We now have N training vectors, xi , each with n points in d dimensions (usually
d = 2 or d = 3) that are aligned to a common coordinate frame. By treating these
vectors as points in nd-dimensional space and modelling their distribution, we can
generate new examples that are similar to those in the original training set (that is,
sample from the distribution) and examine new shapes to decide whether they are
plausible examples (that is, evaluate a sample’s probability).

Not every nd-dimensional vector forms a face, however, and the set of valid face
shapes typically lies on a manifold that can be described by k < nd underlying
model parameters, b. By computing a parameterised model of the form x =M(b),
we can approximate the distribution over shape, p(x), with the distribution over
model parameters, p(b), and therefore generate new shapes by sampling from p(b)
and applying the model, or evaluate a shape’s probability by evaluating the proba-
bility of its corresponding parameters, p(M−1(x)). The simplest approximation we
can make to the manifold is a linear subspace that passes through the mean shape
(equivalent to assuming a Gaussian distribution over both x and b). An effective
approach to estimating the subspace parameters is to apply Principal Component
Analysis (PCA) to the training vectors, xi (Algorithm 5.2). This computes the di-
rections of greatest variance in nd-dimensional space, of which we keep only the
k most ‘significant’. Each training example can then be described by its k < nd
projections onto these directions, reducing the effective dimensionality of the data.

We can then approximate any example shape from the training set, x using

x ≈ x̄ + Psbs (5.4)

where Ps = (φ1|φ2| . . . |φk) contains the eigenvectors corresponding to the k largest
eigenvalues and bs is a k-dimensional vector given by

bs = (PT
s Ps
)−1PT

s (x − x̄)= PT
s (x − x̄) (5.5)
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Algorithm 5.2: Principal component analysis
1: Compute the mean of the data,

x̄ = 1

N

N∑

i=1

xi . (5.2)

2: Compute the covariance of the data,

S = 1

N − 1

N∑

i=1

(xi − x̄)(xi − x̄)T. (5.3)

3: Compute the orthonormal eigenvectors, φj , and their corresponding eigen-
values, λj , of S (sorted such that λj ≥ λj+1). Efficient methods of com-
puting the eigenvectors and eigenvalues exist for the case in which there
are fewer samples than dimensions in the vectors [11].

Fig. 5.2 Two modes of a face shape model (varied by ±2 s.d. from the mean). The first shape
mode corresponds mostly to 3D head rotation whereas the second captures facial expression

where PT
s Ps = I because the eigenvectors are orthonormal. The vector bs therefore

defines a set of parameters of a deformable shape model and by varying the elements
of bs we can vary the generated shape, x, via (5.4).

Given a shape in the model frame, x =M(b), we can then generate the corre-
sponding shape in the image frame, X, by applying a suitable transformation such
that X = St(x). Typically St will be a similarity transformation described by a scal-
ing, s, an in-plane rotation, θ , and a translation, (tx, ty). By representing the scaling
and rotation jointly as (sx, sy), where sx = (s cos θ − 1) and sy = s sin θ , we ensure
that the pose parameter vector, t = (sx, sy, tx, ty)T, is zero for the identity transfor-
mation and that St(x) is linear in the pose parameters.

Due to the ordering of the eigenvalues, λj , the corresponding modes of shape
variation are sorted in descending order of ‘importance’. For example, a model built
from examples of a single individual with different viewpoints and expressions will
often select 3D rotation of the head (that causes a large change in the projected
shape) as the most significant mode, followed by expression (Fig. 5.2).
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5.1.1.3 Choosing the Number of Shape Modes

The number of modes, k, that we keep determines how much meaningful shape
variation (and how much meaningless noise) is represented by the model, and should
therefore be chosen with care. A simple approach is to choose the smallest k that
explains a given proportion (e.g., 98%) of the total variance exhibited in the training
set, VT =∑λj , where each eigenvalue λj gives the variance of the data about the
mean in the direction of the j th eigenvector. More specifically, it is normal to choose
the smallest k that satisfies

k∑

j=1

λj ≥ fv · VT (5.6)

where fv defines the proportion of VT that we want to explain (e.g., fv = 0.98).
Alternatively, we could build a sequence of models with increasing k and choose
the smallest model that approximates all training examples to within a given accu-
racy (e.g., at most one pixel of error for any feature point). Performing this test in
a miss-one-out manner—testing each example against models built from all other
examples—gives us further confidence in the chosen k.

5.1.1.4 Fitting the Model to New Points

Suppose now we wish to find the best pose and shape parameters to align a model
instance x to a new set of image points, X′. Minimising the sum of square distances
between corresponding model and image points is equivalent to minimising the ex-
pression

Epts = ∣∣X′ − St(x̄ + Psbs)
∣
∣2 (5.7)

or, more generally,

Epts = (X′ − St(x̄ + Psbs)
)T · Wpts · (X′ − St(x̄ + Psbs)

)
(5.8)

where Wpts is a diagonal matrix that applies a different weight for each point. If the
allowed global transformation St(·) is more complex than a simple translation then
this is a non-linear equation with no analytic solution. A good approximation can
be found rapidly, however, by using a two-stage iterative approach (Algorithm 5.3)
where each step solves a linear equation for common choices of transformation
(e.g., similarity or affine) [30].

If the weights in Wpts relate to the uncertainty in the estimates of positions of
target points, X′, then Epts can be related to the log likelihood. Adding a term rep-
resenting the prior distribution on the shape parameters, p(bs), then gives the log
posterior,

E′
pts =Epts − 2 logp(bs). (5.9)
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Algorithm 5.3: Shape model fitting
1: repeat
2: Solve for the pose parameters, t, assuming a fixed shape, bs .
3: Solve for the shape parameters, bs , assuming a fixed pose, t.
4: until convergence.

If the training shapes, {xi}, have a multivariate Gaussian distributed then the
parameters, b, will have an axis-aligned Gaussian distribution, p(b) = N(0,Λ),
where Λ= diag(λ1, . . . , λk) such that

logp(bs)∝
k∑

j=1

b2
j /λj + const. (5.10)

This prior, however, biases shape parameters toward zero which may be unjusti-
fied. Therefore, a common approach is to apply a uniform elliptical prior over shape
parameters such that

logp(bs)=
{

const if bTΛ−1b< τ,
∞ otherwise

(5.11)

where a suitable limit can be estimated from the data. In this case, maximising the
posterior amounts to a linear projection (giving the maximum likelihood solution),
followed by truncation of the corresponding shape parameters to lie within the el-
liptical bounds.

5.1.1.5 Further Reading

Our experiments on 2D images suggest that a Gaussian distribution over shape pa-
rameters (implying a linear subspace of face shapes) is a good approximation as long
as the training set contains only modest viewpoint variation. Nonlinear changes in
shape such as introduced by large viewpoint variation [15], result in a linear sub-
space model that captures all of the required variation but in doing so also permits
invalid shapes that lie off the nonlinear manifold [43].

To account explicitly for 3D head rotation (or viewpoint change), several studies
have computed a 3D linear shape model and fitted it to new image data under per-
spective [5, 61] or orthogonal [43] projection. These approaches separate all rigid
movement of the head from nonrigid shape deformation while maintaining some
linearity for efficient computation (see Chap. 6 for more details on explicit 3D mod-
els).

Other studies avoid modelling nonlinearities explicitly, instead opting to use
methods that estimate the parameters of the nonlinear manifold directly. Early ex-
amples outside of the face domain include polynomial regression [54] and mixture
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models [8] whereas later studies applied nonlinear PCA [24], Kernel PCA [46], the
Gaussian Process Latent Variable Model [32] and tensor-based models [36] to the
face alignment problem.

5.1.2 Statistical Models of Texture

Though the shape of a face may give a weak indication of identity, the texture of
the face provides a far stronger cue for recognition. We therefore apply similar tech-
niques to those used to build a shape model in order to build a model of texture,
given a set of training images. Fitting the texture model to new image data then
summarising the properties of the underlying face (including its identity) through
the texture model parameters.

5.1.2.1 Aligning Sets of Textures

Given a set of training images of faces that are coarsely-aligned (e.g., with respect
to similarity transformations only), it has been shown that a linear subspace-based
face model [34] provides a useful representation for recognition [58]. However, this
coarse alignment does not compensate for nonrigid variation in shape due to iden-
tity, pose or expression. As a result, corresponding pixels over the set of training
images actually originate from different points on the face (or possibly even the
background) and spurious texture variation creeps into the model, reducing recog-
nition performance [19].

To address this problem, we use the correspondences between facial features
(e.g., eyes, nose and mouth) over the set of labelled training images to define an
approximate correspondence between the pixels in the underlying image [4, 18]. In
particular, we apply a continuous deformation—such as an interpolating spline or
a piece-wise affine warp using a triangulation of the region—to warp each training
image so that its feature points match a reference shape (typically the mean shape).
The intensity information is then sampled from the shape-normalised image over
the region covered by the mean shape (Fig. 5.3) to form a texture vector, gim. Since
gim is defined in the normalised shape frame, it has a fixed number of pixels, npixels,
that is independent of the size of the object in the target image.

This nonlinear sampling (Algorithm 5.4) applies a geometric alignment of the
textures, ensuring that corresponding elements over the set of texture vectors repre-
sent corresponding points on the face so that computed image statistics are mean-
ingful. As in the case of the shape model, however, we want our texture model to
represent only those changes that cannot be explained by a global transformation
(e.g., due to changes in brightness and contrast). We therefore apply a photomet-
ric alignment of the texture samples before computing the image statistics that will
define our texture model.
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Fig. 5.3 Example of face
warped to the mean shape.
Although the main shape
variations due to smiling have
been removed, there is
considerable texture
difference from a purely
neutral face

Algorithm 5.4: Texture sampling
1: Precompute the positions of the sample pixels (typically all pixels in the

region of interest) in the model reference frame, (xs,i , ys,i).
2: Construct a warping function,WX(x, y)which maps the points of the mean

shape onto the target points, X.
3: For each element i in gim sample, the target image at WX(xs,i , ys,i) using

interpolation if appropriate.

More specifically, we express a texture in the image frame as a 1D affine trans-
formation, Tu(·), of the corresponding model texture, g, such that

gim = Tu(g)= (1 + u1) · g + u2 · 1 (5.12)

where u = (u1, u2)
T is a vector of parameters corresponding to contrast and bright-

ness, and u = 0 gives the identity transformation. Unlike shape normalisation, this
transformation is linear and we can find a closed-form solution for parameters to
give the sampled vector, gs , zero sum and unit variance is the number of elements in
the vectors. The normalised texture vector in the model frame is then given by the
inverse transformation,:

u2 = (gim · 1)/npixels, (5.13)

1 + u1 = |gim|2/npixels − u2
2 (5.14)

where npixels is the number of elements in the vectors. The normalised texture vector
in the model frame is then given by the inverse transformation, gs = T −1

u (gim):

gs = (gim − u2 · 1)/(1 + u1). (5.15)

For colour images, each plane can be normalised separately though we have
found that grey-scale models are able to generalise to unseen images more effec-
tively than colour models.
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Fig. 5.4 Four modes of a face texture model built from 400 images (including neutral, smiling,
frowning and surprised expressions) of 100 different individuals with around 20 000 pixels per
example. Texture parameters have been varied by ±2 standard deviations from the mean

5.1.2.2 Linear Models of Texture Variation

Once we have compensated for the effects of brightness and contrast, we apply PCA
to the set of normalised texture vectors to obtain a linear subspace model of texture,

g ≈ ḡ + Pgbg, (5.16)

where ḡ is the mean texture over the training set, Pg is a set of orthogonal modes of
texture variation and bg is a vector of texture parameters. We can then generate a
variety of plausible, shape-normalised face textures (Fig. 5.4) by varying bg within
limits learnt from the training set. Brightness and contrast variation can then be
added by varying u and applying (5.12):

gim = (1 + u1) · (ḡ + Pgbg)+ u2 · 1. (5.17)

5.1.2.3 Choosing the Number of Texture Modes

As with the shape model, the simplest means of choosing the number of texture
modes is to keep the smallest number of modes needed to capture a fixed proportion
(e.g., 98%) of the total texture variation in the training set. Since the number of
elements in the texture vector is typically much higher than in a shape vector, the
texture model usually needs many more modes than the shape model to capture
the same proportion of variance—278 modes were needed to capture 98% of the
variance in our example (Fig. 5.4).
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Algorithm 5.5: Fitting a texture model to new data
1: Compute the global transformation parameters, u, using (5.13) and (5.14).
2: Compute the texture model parameters, bg = PT

g (T
−1

u (gim)− ḡ).

5.1.2.4 Fitting the Model to New Textures

Like the shape model, fitting the texture model to new data proceeds in a two-step
algorithm (Algorithm 5.5) and the model fitting to gim is then given by (5.17). Un-
like when fitting a shape model, however, no iteration is required for the texture
model.

5.1.2.5 Further Reading

Though raw image intensities (or colour values) are adequate for most applications,
modelling local image gradients may offer improved performance since gradients
yield more information, are less sensitive to lighting and seem to favour edges over
flat regions. If we compute local image gradients (gx, gy) via a straightforward lin-
ear transformation of the intensities, however, the subsequent Principal Component
Analysis effectively reverses this transformation such that the basis images are al-
most identical to those obtained from raw intensities (apart from some boundary
effects).

Instead, robust matching was demonstrated using a non-linearly normalised gra-
dient at each pixel [10]: (g′

x, g
′
y) = (gx, gy)/(g + g0) where g is the magnitude

of the gradient, and g0 is the mean gradient magnitude over a region. Other ap-
proaches have demonstrated improved performance by combining multiple feature
bands such as intensity, hue and edge information [56], by including features de-
rived from measures of ‘cornerness’ [53] and by learning filters that give smooth
error surfaces [35].

Like shapes, textures also lie on a low-dimensional, nonlinear manifold embed-
ded in the high-dimensional texture space [40]. As a result, linear methods such
as PCA often cannot capture sufficient variance in the training set without also
permitting invalid textures. If the training set is such that this becomes a problem
(e.g., when significant viewpoint variation is present), multilinear [60] and nonlin-
ear methods such as Locally Linear Embedding [47], IsoMap [57] and Laplacian
Eigenmaps [3] may be useful (though probabilistic interpretation of such methods
is nontrivial).

5.1.3 Combined Models of Appearance

The shape and texture of any example in a normalised frame can thus be summarised
by the parameter vectors, bs and bg , and though shape and texture may be consid-
ered independently [33], this can miss informative correlations between shape and
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Fig. 5.5 Four modes of combined shape and texture model built from the same 400 face images
as the texture-only model (Fig. 5.4). Combined parameters were varied by ±2 standard deviations
from the mean

texture variations (e.g., square jaws correlating with facial hair). We therefore model
these correlations by concatenating shape and texture parameter vectors into a single
vector,

b =
(

Wsbs
bg

)

=
(

WsPT
s (x − x̄)

PT
g (g − ḡ)

)

, (5.18)

where Ws is a diagonal matrix of weights for each shape parameter, that accounts
for the difference in units between the shape and texture models (see Sect. 5.1.3.1).
We then apply a PCA on these combined vectors to give a model

b ≈ Pcc =
(

Pcs
Pcg

)

c (5.19)

where Pc are the eigenvectors and c is a vector of appearance parameters (with
zero-mean by construction) that jointly controls both the shape and texture of the
model. Note that the linear nature of the model allows us to express the shape and
grey-levels directly as functions of c

x = x̄ + Qsc where Qs = PsW−1
s Pcs, (5.20)

g = ḡ + Qgc where Qg = PgPcg. (5.21)

An example image can then be synthesised for a given c by generating the shape-
free, grey-level image from the vector g and warping it using the control points de-
scribed by x to give images that combine variations due to identity, lighting, view-
point and expression (Fig. 5.5).
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5.1.3.1 Choosing Shape Parameter Weights

In the combined model, the elements of bs have units of distance whereas those of
bg have units of intensity. As a result, applying unweighted PCA to the concatenated
parameter vectors may incorrectly place greater emphasis on capturing variation in
one more than the other. To address this problem, we first scale the shape parameters
via the weighting matrix, Ws , so that the units of bs and bg are comparable.

A simple approach to choosing Ws is to set Ws = rI where r2 is the ratio of
the total intensity variation to the total shape variation in the normalised frames.
A more systematic approach is to measure the effect of varying bs on the sample g
by displacing each element of bs from its optimum value for each training example
and sampling the image given the displaced shape; the RMS change in g per unit
change in shape parameter bs gives the weight ws to be applied to that parameter
in (5.18). In practice, however, we have found that synthesis and search algorithms
are relatively insensitive to the choice of Ws .

5.1.3.2 Separating Sources of Variability

In many applications, some sources of appearance variation are more useful than
others. In face recognition, for example, variations due to identity are essential
whereas variations due to other sources (e.g., expression) are a nuisance whose ef-
fects we want to minimise. Since the combined appearance model mixes these two
sources, each element of the parameter vector encodes both between- and within-
identity variation. The sources can, however, be separated by splitting the subspace
defined by Pc into two orthogonal subspaces,

c = Pbcb + Pwcw, (5.22)

where Pb and cb encode between-identity variation, and Pw and cw encode within-
identity variation [24].

Computing the within-identity subspace is straightforward if we know the iden-
tity of the person in every training image—the columns of Pw are the eigenvectors
of the covariance matrix computed using the deviation of each c from the mean
appearance vector for the same identity. Varying cw then indirectly changes c and
thus the appearance of the face but only in ways that a specific individual’s face can
change, such as expression (Fig. 5.6, top).

The orthogonal subspace, Pb , that represents between-identity variation can then
be computed by subtracting the within-identity variation, PwPT

wc, and doing PCA
over the resulting appearance parameter vectors. Alternatively, the between-class
covariance matrix can be computed using the set of identity-specific means, though
the mean is not guaranteed to be free of corruption by some non-neutral expres-
sion or head pose (Fig. 5.6, bottom). Iterative methods have also shown success in
separating different sources of variability [16].

In contrast, tensor-based methods keep sources of variability separate at all times
by building a multilinear model of texture variation [36, 60]. These methods, how-
ever, have strict requirements in terms of training data—namely, every combination
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Fig. 5.6 (Top) Two within-identity modes of individual face variation; (bottom) two between-
identity modes of variation between individuals. Some residual variation in expression is present
due to not every mean face being completely neutral

of variation must be present in the training set (that is, every expression at every
pose for every identity).

5.2 Active Shape Models (ASMs)

Once we have built a statistical shape model from labelled training images, we need
a method of matching the model to an unseen image of the face so that we can
interpret the underlying properties of the image. One method, known as the Active
Shape Model (ASM) [11], does this by alternating between locally searching for
features to maximise a ‘goodness of fit’ measure and regularising the located shape
to filter out spurious local matches caused by noisy data.

5.2.1 Goodness of Fit

Given a set of shape parameter values, bs , and pose parameters, t, we can define the
shape of the object in the image frame. If we also define a measure of how well given
parameters explain the observed image data, we can find ‘better’ parameter values
by searching in a local region around each feature point to find alternative feature
locations that match the model more closely. In general, we can model appearance
with a 2D patch centred at the feature location and search a 2D region of interest
around the current estimate for better matches (see Sect. 5.2.5).
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Fig. 5.7 At each model
point, we sample along a
profile normal to the
boundary

In the specific case of the Active Shape Model [11], however, we reduce compu-
tational demands by looking along 1D linear profiles that pass through each model
point and are normal to the model boundary (Fig. 5.7). If we assume that the model
boundary corresponds to an edge, the strongest edge along the profile suggests a
new location for the model point. Model points, however, are not always found on
the strongest edge in the locality—they may instead be associated with a weaker
secondary edge or some other image structure—and so instead we learn from the
training set what to look for in the target image.

One popular method is to build a statistical model of the grey-level structure
along the profile, normal to the boundary in the training set. Suppose for a given
point we sample along a profile k pixels either side of the model point in the ith
training image. We then have 2k + 1 samples which can be put in a vector gi . To
avoid the effects of a constant offset in the intensities (that is, differences in bright-
ness), we sample the derivative along the profile rather than the absolute grey-level
values. We similarly compensate for changes in contrast by dividing through by the
sum of absolute element values such that

gi → 1
∑
j |gij |gi . (5.23)

We repeat this for every training image to get a set of normalised samples, {gi},
whose distribution we can then model. If we assume that these profile samples have
a multivariate Gaussian distribution, for example, we can build a statistical model of
the grey-level profiles by computing their mean, ḡ, and covariance, Sg . The quality
of fit of a new sample, gs , to the model is then given by the Mahalanobis distance
of the sample from the model mean,

f (gs)= (gs − ḡ)TS−1
g (gs − ḡ), (5.24)

and is related to the negative log of the probability that gs is drawn from the learned
distribution such that minimising f (gs) is equivalent to finding the maximum like-
lihood solution.

In practice, when performing a local search for a given feature point we first
sample a profile of m > k pixels either side of the current estimate. We then test
the quality of fit of the corresponding grey-level model to each of the 2(m− k)+ 1
possible positions along the sample and choose the one which gives the best match
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Fig. 5.8 Search along
sampled profile to find best fit
of grey-level model

Algorithm 5.6: Active Shape Model (ASM) fitting
1: repeat
2: Examine a region of the image around each point, Xi , to find the best

nearby match, X′
i (see Sect. 5.2.1).

3: Update the parameters (t,bs) to fit the shape model to the newly found
local matches X′ (see Sect. 5.1.1.4).

4: until converged (that is, change in regularised estimate is sufficiently
small).

(as shown in Fig. 5.8) that is, the lowest value of f (gs). Repeating this for each
feature point gives a new estimate for the shape of the face.

5.2.2 Iterative Model Refinement

Local searches on their own, however, are prone to spurious matches due to noisy
data and unmodelled image properties. To ensure that the estimated shape agrees
with the statistical model learned from training data (see Sect. 5.1.1), we regularise
our solution by fitting the shape model to the local matches. Hopefully, this regu-
larised estimate is closer to the true solution such that repeating the search-regularise
cycle gives progressively better estimates (Algorithm 5.6). Since each point also has
a quality of match score, given by (5.24), these scores can be used to weight points
differently during model fitting, as in (5.8), according to our belief in their reliabil-
ity [30].

5.2.3 Multi-Resolution Active Shape Models

To avoid local minima when searching the image, it is useful to smooth the er-
ror function in early stages and reduce the level of smoothing gradually with each
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Fig. 5.9 Successful search for a face using the Active Shape Model

Fig. 5.10 Failure of the
Active Shape Model to
localise a face where the
search profiles are not long
enough to locate the edges of
face

iteration. In practice, we apply this smoothing by implementing the ASM in a multi-
resolution framework using a Gaussian image pyramid. This involves first searching
for the object in a coarse image, then refining the shape in a series of progressively
finer resolution images. Not only is this more robust to local minima but also more
efficient, since less complex models can be used at the coarse levels of the pyramid.

5.2.4 Examples of ASM Search

In one example of an ASM search to locate the features of a face (Fig. 5.9), we
place the model instance near the centre of the image and perform a coarse to fine
search, starting on the 3rd level of a Gaussian pyramid (1/8 the resolution in x and
y compared to the original image). In the first few iterations, large improvements
are made that get the position and scale roughly correct. As the search progresses,
however, more subtle adjustments to the shape are made using the finer resolution
images. After 18 iterations (with at most 10 iterations per pyramid level), the process
has converged and gives a good match to the target image.

In another example, the ASM fails to localise the face (Fig. 5.10). This is most
likely due to the initialisation being too far from the true solution such that the
correct feature positions are beyond the scope of the local search and the process
falls into a local minimum.
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5.2.5 Further Reading

The Active Shape Model can be viewed as a specific example of a ‘constrained
local model’ (CLM)—a class of algorithms that perform a local search for each
feature (based on an independent set of learned texture models) then fit a learned
shape model to the set of local matches. Addressing susceptibility to local minima,
however, has been a driving force for various modifications to the match metric and
search algorithm.

Although profile gradients have proven to be effective for local search, discrim-
inative models of profile intensity can distinguish between correct and incorrect
matches and improve performance further [59]. Better still, using 2D patches instead
of 1D profiles makes the model even more discriminative [44], based on measures
such as normalised correlation [21], boosted classification [20] or mixtures of linear
experts [50] to define a match score. Where to look for potential matches is usually
defined by hand (e.g., a rectangular or elliptical grid) but may also be learned from
training data [38].

Once a response surface (that is, the set of match scores for all candidate loca-
tions) has been computed for each point, the ASM naïvely picks the best match for
each point before projecting the set of matches back onto the subspace of permitted
shapes. Effectively, this approximates each response surface by a Gaussian likeli-
hood function with diagonal covariance; by including off-diagonal terms, we can
model directional uncertainty and can further improve performance [41, 45]. If the
response surface is not approximated by a parametric function, or is approximated
by a complex function such as a mixture of Gaussians [28] or nonparametric kernel
density estimate [51], the match function may be optimised using iterative methods
such as gradient-free optimisers such as the Nelder–Mead Simplex method [21] or
mean-shift [51].

When using a PCA model of shape, each feature imposes constraints on ev-
ery other feature such that computational limitations force us to select the match
for each point independently of all other points. By assuming conditional indepen-
dence between features, however, we can reduce the complexity of the graph and
use Markov Random Field methods at little or no cost in efficiency [37]. Simplify-
ing the graph in this way allows us to consider multiple candidates for each feature
point and therefore increase robustness by avoiding local minima due to spurious
matches that do not agree with the possible matches for other feature points. When
choosing which dependencies to eliminate, trees [25] and k-fans [17] are popular
due to their simplicity though more effective graph structures may be learned from
training data [29].

5.3 Active Appearance Models (AAMs)

One criticism of the approaches related to the ASM is that they use only sparse
local information around the points of interest. In addition, they often treat the in-
formation at each point as independent which is rarely the case. These criticisms
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Algorithm 5.7: Image residual computation
1: Use (5.21) to compute the shape, x, and texture, gm, in the normalised

reference frame.
2: Compute the shape in the image frame by applying X = St(x).
3: Sample the target image in the region defined by X to get gim (see

Sect. 5.1.2.1).
4: Normalise the sampled texture with respect to brightness and contrast us-

ing gs = T −1
u (gim).

5: Compute the residual, r(p)= gs − gm.

are largely addressed by the following approach—dubbed the Active Appearance
Model (AAM) [14]—that uses a combined model of appearance (Sect. 5.1.3) for
image interpretation via the interpretation through synthesis paradigm: if we can
find appearance model parameters which synthesise a face very similar to that in the
target image, those parameters summarise the shape and texture of the face and can
therefore be used directly for interpretation. In contrast to the Active Shape Model,
the Active Appearance Model directly predicts incremental updates to appearance
parameters from image residuals rather than performing a local search, making the
method very efficient.

5.3.1 Goodness of Fit

Given combined appearance model parameters, c, a set of pose parameters, t, and
a set of texture normalisation parameters, u, we can concatenate the parameters
into a single vector, p = (cT|tT|uT)T, synthesise a new face image and compute
the residual, r(p)= gs − gm, with respect to the observed data. We then assess the
quality of the synthesis (Algorithm 5.7) by some function of r(p), such as the sum
of squared error,

Esse(p)=
∣
∣r(p)

∣
∣2 = r(p)Tr(p), (5.25)

as used in our examples. Like the ASM, we also can make assumptions about the
distributions of residuals to estimate p(r | p) and place the matching in a Bayesian
framework [9].

5.3.2 Updating Model Parameters

Given one estimate of the parameters, p = p∗ + δp (where δp is our displacement
from the true solution, p∗), and the corresponding residual, r(p), we then want to
modify the parameters by δp to minimise |r(p − δp)|2. Though we could do this
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via gradient descent [33], the AAM instead assumes that δp can be predicted lin-
early from the residual vector such that δp = Rr(p). In this section, we present
two approaches to learning the matrix R from training data that consists of ran-
dom parameter displacements, {δp} (stored in the columns of a matrix, C), and the
corresponding residuals, {r(p∗+δp)} (stored in the columns of a matrix, V).

Since we want the model to be independent of the background in the training
images, perturbed texture samples that include pixels from the background must
be accounted for when building the model. One approach is to remove background
pixels from the update model though we use the simpler alternative of setting back-
ground pixels to some random value.

5.3.2.1 Estimating R via Linear Regression

Given parameter displacements, C, and the corresponding image residuals, V, a
linear update relationship gives

C = RV ⇒ R = CV† (5.26)

where V† is the pseudo-inverse of V [12].
Unless, however, there are more displacements than pixels modelled (a rare oc-

currence) the model will overfit to the training data. To address this problem, ap-
plying PCA to reduce the dimensionality of the residuals (and effectively increase
sampling density) before performing the regression has been shown to reduce over-
fitting and improve performance [31]. Alternatively, rather than projecting onto a
lower dimensional subspace that maximises the variance of the projected inputs
(that is, image residuals), Canonical Component Analysis (CCA) improves perfor-
mance further [22] by computing subspaces for both inputs and outputs (that is,
parameter displacements) that maximises the correlation between their respective
projections.

5.3.2.2 Estimating R via Gauss–Newton Approximation

An alternative way to avoid overfitting is suggested by the first order Taylor expan-
sion,

r(p − δp)= r(p)− ∂r
∂p
δp, (5.27)

where the ij th element of the matrix ∂r
∂p is dri

dpj
such that |r(p − δp)|2 is minimised

with respect to δp by the RMS solution,

δp = Rr(p) where R =
(
∂r
∂p

T ∂r
∂p

)−1
∂r
∂p

T

. (5.28)
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In a standard optimisation scheme, we would recalculate ∂r
∂p at every step—

a computationally expensive operation. Since it is being computed in a normalised
reference frame, however, we assume that it is approximately fixed and can be pre-
computed from the training set [14]. In practice, we express (5.27) in terms of the
training data, C and V, to give

∂r
∂p

= arg min
J

‖V − JC‖2
F ⇒ ∂r

∂p
= VC† (5.29)

where ‖·‖F denotes the Frobenius norm. This Gauss–Newton approximation is pop-
ular because computing the pseudoinverse C† is usually quicker and more robust
than computing V† due to their relative sizes. We then precompute R via (5.28) and
use it in all subsequent image searches. To ensure a reliable estimate, we measure
residuals at displacements of differing magnitudes (typically up to 0.5 standard de-
viations of each parameter) and combine them by smoothing with a Gaussian kernel.
Qualitatively, computing the update via a Gauss-Newton approximation should be
more stable, has a clearer mathematical interpretation and allows extra constraints
to be incorporated easily [9]. Quantitatively, however, tests comparing the differ-
ent approaches [7] have shown that using linear regression gives better localisation
performance.

5.3.3 Iterative Model Refinement

Given an initial estimation of the model parameters, c, the pose, t, and the texture
transformation, u, we repeatedly apply (5.28) to update model parameters based on
the measured residual, r, giving estimates that get progressively closer to the true
solution (Algorithm 5.8).

When we update the parameter vector p = (cT|tT|uT)T, the simplest approach is
to subtract a the predicted displacement δp = (δcT|δtT|δuT)T such that p → p− δp.
The update step, however, estimates corrections in the model frame which must then
be projected into the image frame using the current pose and texture transformations.
Strictly speaking, therefore, we should update the parameters controlling the pose,
t, and texture transformation, u, by composing the resulting transformations (during
both training and image search). In other words, we should compute pose param-
eters t′ such that St′(x)= St(Sδt(x)) and new texture transformation parameters u′
such that Tu′(g)= Tu(Tδu(g)) where updates are applied in the model frame before
transforming to the image frame.

5.3.4 Multi-Resolution Active Appearance Models

As in the Active Shape Model, we estimate the appearance models and update ma-
trices at a range of image resolutions using a Gaussian image pyramid. We can then
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Algorithm 5.8: Active Appearance Model (AAM) fitting
1: Calculate the image points, X, and model frame texture, gm.
2: Sample the image to get gim
3: Normalise with respect to brightness and contrast using gs = T −1

u (gim).
4: Compute the residual, r = gs − gm, and corresponding error, Esse = |r|2.
5: repeat
6: Predict the displacement from the true model parameters, δp = Rr(p).
7: Set k = 1.
8: repeat
9: Compute the updated model parameters, p′ = p − k·δp. STATE Cal-

culate the new points, X′, and model frame texture, g′
m.

10: Sample the image at the new points to get g′
im

11: Normalise with respect to brightness and contrast using g′
s =

T −1
u′ (g′

im).
12: Calculate a new residual vector, r′ = g′

s − g′
m, and corresponding er-

ror, E′
sse = |r′|2.

13: Set k = k/2
14: until E′

sse <Esse
15: Set p = p′, r = r′ and Esse =E′

sse.
16: until converged (Esse < threshold) or maximum number of iterations ex-

ceeded

use a multi-resolution search algorithm in which we start at a coarse resolution and
iterate to convergence at each level before projecting the current solution to the next
level of the model [33]. This is more efficient and can converge to the correct so-
lution from further away than search at a single resolution. Computationally, the
complexity of the AAM at a given level is O(nmodes · npixels) since each iteration
samples npixels points from the image then multiplies by a nmodes × npixel matrix.

5.3.5 Examples of AAM Search

When using an AAM to localise a face in a previously unseen image, the algorithm
typically requires fewer than 20 iterations to converge to a faithful reproduction of
the face (Fig. 5.11). Like the ASM, however, the AAM is prone to local minima if
started too far from the true solution (Fig. 5.12).
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Fig. 5.11 Search using the Active Appearance Model on faces not in the training set, showing
evolution of the shape and the final image reconstruction. Initial iterations are performed using a
low resolution model and resolution increases as the search progresses

Fig. 5.12 Example of AAM search failure where the initialisation was too far from true position.
The model has matched the eye and eyebrow to the wrong side of the face, and attempted to explain
the dark background by shading one side of the reconstructed face

5.3.6 Alternative Strategies

Following the Active Appearance Model, a variety of related approaches to match-
ing models of shape and texture have been suggested. Here, we summarise some of
the key contributions.
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5.3.6.1 Shape AAM

Though combining shape and appearance parameters has its uses in capturing cor-
relations, treating the parameters separately can have computational benefits. Con-
sider the case where we use the residuals to update only the pose, t, and shape model
parameters, bs , such that

δt = Rtr and δbs = Rsr, (5.30)

where the model texture, gm, is now simply the projection of the normalised sample,
gs , onto the texture subspace (since shape and texture are treated independently). In
this case,

δbs = Rs
(
gs − (ḡ + PgPT

g (gs − ḡ)
))

(5.31)

= Rs
((

I − PgPT
g

)
(gs − ḡ)

)
(5.32)

= R′
sgs − g0 (5.33)

where R′
s = Rs(I − PgPT

g ) and g0 = Rs(I − PgPT
g )ḡ can be precomputed such that

the texture model is required only to compute the texture error for the purposes of
detecting convergence. Using a fixed number of iterations or changes in the shape
parameters, however, dispenses with the texture model altogether and results in a
much faster (though less accurate) algorithm. If required, a combined model of
shape and texture can be used to apply post hoc constraints to the relative shape and
texture parameter vectors by projecting them into the combined appearance space.
This approach, known as the ‘Shape AAM’ [13], is closely related to the ‘Active
Blob’ method [52] that uses an elastic deformation model rather than a statistical
model of shape.

5.3.6.2 Compositional Approach

As noted earlier (Sect. 5.3.3), pose and texture transformation parameters should be
updated via composition (rather than addition) and it can be shown that there are
benefits from updating shape parameters in the same way [42]. If we consider (5.4)
as a parameterised transformation of the mean shape, x = Ub(x̄), then we need to
find parameters, b′, such that Ub′(x̄)= Ub(Uδb(x̄)), for example by approximating
the transformation with a thin-plate spline (Algorithm 5.9). Using the inverse com-
positional image alignment algorithm [1] improves efficiency further by specifying
Jacobians and Hessians as functions of template images (rather than sampled im-
ages) such that they can be precomputed, thus saving computation at run-time. Also
decoupling shape from texture for efficiency, the resulting inverse compositional
AAM [42] has demonstrated model fitting at speeds of up to 200 frames per second.
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Algorithm 5.9: Compositional AAM fitting with a Thin Plate Spline [6]
1: Compute the thin plate spline, Ttps(.), that maps the points x̄ to x
2: Compute the modified mean points, xδ = x̄ + Psδ
3: Apply the transformation, x′ = Ttps(xδ)
4: Find the shape parameters which best match, b′

s = PT
s (x

′ − x̄)

5.3.7 Further Reading

Since their introduction, Active Appearance Models have spawned many vari-
ants [26] and also demonstrated considerable success in medical image analysis (for
which, software is publicly available [55]). In addition to the two variants already
described (Sect. 5.3.6), other modifications include methods for expressing the up-
date matrix, R, as a function of the current residual for improved convergence [2]
and sequential implementations that tune the training data to match the expected
error distribution [49].

Predicting parameter updates via nonlinear regression has also been proposed,
where boosting a number of weak regressors is currently popular [48, 63]. Using
gradient descent-based algorithms to minimise an error metric learned from training
data has also shown promise [39], as has selecting updates via a pairwise compari-
son of two potential candidates [62].

5.4 Conclusions

In this chapter, we have described powerful statistical models of the shape and tex-
ture of faces that are capable of synthesising a wide range of convincing face images.
Algorithms such as the Active Shape Model (ASM) and Active Appearance Model
(AAM) rapidly fit these appearance models to unseen image data such that the pa-
rameters capture the underlying properties of the face, isolating those sources of
variation that are essential to face recognition (that is, identity) from those that are
not (e.g., expression).

One weakness of both the ASM and AAM (and their variations) is that they
are local optimisation techniques and tend to fall into local minima if initialisa-
tion is poor. Where independent estimates of feature point positions are available
(e.g., from an eye tracker) these can be incorporated into the matching schemes and
lead to more reliable matching [9].

These approaches also rely on an annotated corpus of training data and therefore
can only deal effectively with certain types of variation in appearance. For example,
person-specific variation that cannot be corresponded (e.g., wrinkles on the forehead
or the appearance of moles) tends to get blurred out by the averaging process inher-
ent in the modelling. This suggests that these methods may be improved by adding
further layers of information to the model in order to represent individual differences
which are poorly represented as a result of pooling in the current models.
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Open questions (some of which are currently under investigation) include:

• How do we obtain accurate correspondences across the training set?
• What is the optimal choice of model size and number of model modes?
• How should image structure be represented?
• What is the best method of matching the model to the image?
• How do we avoid local minima in the error surface?
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6.1 Introduction

Our approach is based on an analysis by synthesis framework. In this framework, an
input image is analyzed by searching for the parameters of a generative model such
that the generated image is as similar as possible to the input image. The parameters
are then used for high-level tasks such as identification.

To be applicable to all input face images, a good model must be able to generate
all possible face images. Face images vary widely with respect to the imaging con-
ditions (illumination and the position of the camera relative to the face, called pose)
and with respect to the identity and the expression of the face. A generative model
must not only allow for these variations but must also separate the sources of varia-
tion such that e.g. the identity can be determined regardless of pose, illumination or
expression.

In this chapter, we present the Morphable Model, a three-dimensional (3D) rep-
resentation that enables the accurate modeling of any illumination and pose as well
as the separation of these variations from the rest (identity and expression). The
Morphable Model is a generative model consisting of a linear 3D shape and appear-
ance model plus an imaging model, which maps the 3D surface onto an image. The
3D shape and appearance are modeled by taking linear combinations of a training
set of example faces. We show that linear combinations yield a realistic face only
if the set of example faces is in correspondence. A good generative model should
accurately distinguish faces from nonfaces. This is encoded in the probability dis-
tribution over the model parameters, which assigns a high probability to faces and a
low probability to nonfaces. The distribution is learned together with the shape and
appearance space from the training data.

Based on these principles, we detail the construction of a 3D Morphable Face
Model in Sect. 6.2. The main step of model construction is to build the correspon-
dences of a set of 3D face scans. Such models have become a well-established tech-
nology which is able to perform various tasks, not only face recognition, but also
face image analysis [6] (e.g., estimating the 3D shape from a single photograph), ex-
pression transfer from one photograph to another [10, 46], animation of faces [10],
training of feature detectors [22, 24], and stimuli generation for psychological ex-
periments [29] to name a few. The power of these models comes at the cost of an
expensive and tedious construction process, which has led the scientific community
often to focus on more easily constructed but less powerful models. Recently, a com-
plete 3D Morphable Face Model built from 3D face scans, the Basel Face Model
(BFM), was made available to the public (faces.cs.unibas.ch) [34]. An alternative
approach to construct a 3D Morphable Model is to generate the model directly from
a video sequence [12] using nonrigid structure from motion. While this requires far
less manual intervention, it also results in a less detailed and inaccurate model.

With a good generative face model, we are half the way to a face recognition
system. The remaining part of the system is the face analysis algorithm (the fitting
algorithm). The fitting algorithm finds the parameters of the model that generate an
image which is as close as possible to the input image. In this chapter, we focus
on fitting the model to a single image. We detail two fitting algorithms in Sect. 6.4.

http://faces.cs.unibas.ch
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Based on these two fitting algorithms, identification results are presented in Sect. 6.5
for face images varying in illumination and pose, as well as for 3D face scans. The
fitting methods presented here are energy minimization methods, a different class
of fitting methods are regression based, and try to learn a correspondence between
appearance and model coefficients. For 2D Models, [20] proposed to learn a linear
regression mapping the residual between a current estimate and the final fit, and [27]
proposed to use a support vector regression on Haar features of the image to directly
predict 6 coefficients of a 2D mouth model from 12 Haar features of mouth images.

6.1.1 Three-Dimensional Representation

Each individual face can generate a variety of images when seen from different
viewpoints, under different illumination and with different expressions. This huge
diversity of face images makes their analysis difficult. In addition to the general
differences between individual faces, the appearance variations in images of a single
faces can be separated into the following four sources.

• Pose changes can result in dramatic changes in images. Due to self-occlusions
different parts of the object become visible or invisible. Additionally, the parts
seen in two views change their spatial configuration relative to each other.

• Illumination changes influence the appearance of a face even if the pose of the
face is fixed. The distribution of light sources around a face changes the bright-
ness distribution in the image, the locations of attached shadows, and specular
reflections. Additionally, cast shadows can generate prominent contours in facial
images.

• Facial expressions are another source of variations in images. Only a few facial
landmarks that are directly coupled with the bony structure of the skull, such as
the corners of the eye or the position of the earlobes, are constant in a face. Most
other features can change their spatial configuration or position via articulation
of the jaw or muscle action (e.g., moving eyebrows, lips, or cheeks).

• On a longer timescale faces change because of aging, change of hairstyle, and the
use of makeup or accessories.

The isolation and explicit description of these sources of variations must be the
ultimate goal of a face analysis system. For example, it is desirable that the parame-
ters that code the identity of a person are not perturbed by a modification of pose. In
an analysis by synthesis framework, this implies that the face model must account
for each of these variations independently by explicit parameters.

We need a generative model which is a concise description of the observed phe-
nomena. The image of a face is generated according to the laws of physics which
describe the interaction of light with the face surface and the camera. The parameters
for pose and illumination can therefore be described most concisely when modeling
the face as a 3D surface. A concise description of the variability of human faces on
the other hand can not be derived from physics. We therefore describe the variations
in 3D shape and albedo of human faces with parameters learned from examples.
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6.1.2 Correspondence-Based Representation

Early face recognition techniques used a purely appearance-based representation
for face analysis. In an appearance based representation such as eigenfaces [40, 43]
and their generalized version from [33], it is assumed that face images behave like a
vector space, that is, the result of linearly combining face images yields a new face
image. These techniques have been demonstrated to be successful when applied
to images of a set of very different objects, or when the viewpoint and lighting
conditions are close to constant and the image resolution is relatively low. These
limitations come from the wrong assumption that face images form a vector space.
We illustrate this in Fig. 6.1 by showing that already the mean of two face images
has double edges and is no longer a face. Even though face images do not form a
vector space, faces do form a vector space when using the correct representation.
The artifacts visible in the averaged face in Fig. 6.1 come from the fact that pixels
from different positions on the two faces, have been combined to generate the new
pixel value. In an image, face shape and appearance are mixed. If one separates
the face shape and the face appearance by establishing correspondence between the
input images, then the faces can be linearly combined, see Fig. 6.1 lower right.

Separating face shape and face appearance means that one chooses an underlying
parametrization of a face (the face domain), independently from the images. The
shape of a face in an image is then expressed as the correspondence between the
face domain and the image, and the appearance of a face by the image mapped back
into the face domain. Within the face domain, the color and shape of different faces
can be linearly combined to yield new faces. In addition, one also separates the
shape into a local deformation and a camera model, which positions the face inside
the target image. When discretizing the face domain, we can express face shape and
appearance by a vectors of shape displacements and color. The combination of the
shape and appearance vector spaces is called face subspace.

A separation of shape and appearance—also called an object center representa-
tion—has been proposed by multiple authors [5, 15, 23, 28, 45]; for a review see
Beymer and Poggio [4]. It should be noted that some of these approaches do not
use the correspondence between points which are actually corresponding on the un-
derlying faces: The methods using 2D face models, for example, Lanitis et al. [28],
often put into correspondence the 2D occluding contour, which corresponds to dif-
ferent positions on the face depending on the pose. In contrast, our approach uses
the 3D shape of faces as the face domain and establishes the true correspondences
between the underlying faces.

6.1.3 Face Statistics

In the previous section, we explained that correspondences enable the generation of
new faces as a linear combination of training faces. However, the coefficients of the
linear combination do not have a uniform distribution. This distribution is learned
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Fig. 6.1 Computing the
average of two face images
using different image
representations. No
correspondence information
is used (top right) and using
correspondence (bottom
right)

from example faces using the currently widely accepted assumption that the face
subspace is Gaussian. Under this assumption, PCA is used to learn a probability
model of faces that is used as prior probability at the analysis step (see Sect. 6.4.1).
More details about the face statistics of our model are given in Sects. 6.2.3 and 6.2.4.

6.2 3D Morphable Model Construction

The construction of a 3D Morphable Model requires a set of example 3D face scans
with a large variety. The results presented in this section were obtained with a Mor-
phable Model constructed with 200 scans (100 female and 100 male), most of them
Europeans. This Morphable Model has been made publicly available (Basel Face
Model: faces.cs.unibas.ch [34]) and can be freely used for noncommercial purposes.
The constructions are performed in three steps: First, the scans are preprocessed.
This semiautomatic step aims to remove the scanning artifacts and to select the part
of the head that is to be modeled (from one ear to the other and from the neck to
the forehead). In the second step, the correspondences are computed between each
of the scans and a reference face mesh (see Fig. 6.2 for an example). The registered
faces scans are then aligned using Generalized Procrustes Analysis such that they
do not contain a global rigid transformation. Then a principal component analysis
is performed to estimate the statistics of the 3D shape and color of the faces.

6.2.1 3D Face Scanning

For 3D face scanning it is important to have not only high accuracy but also a short
acquisition time, such that the scans are not disrupted by involuntary motions, and
the scanning of facial expressions is possible. We decided to use a coded light sys-
tem (Fig. 6.3) because of its high accuracy and short acquisition time (∼1 s) com-
pared to laser scanners (∼15 s as used in [6]).

The system captures the face shape from ear to ear (Fig. 6.2, left) and takes three
color photographs. The 3D shape of the eyes and hair cannot be captured with our
system, due to their reflection properties.

http://faces.cs.unibas.ch
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Fig. 6.2 The registration of
the original scan (left)
establishes a common
parametrization and fills in
missing data (right)

Fig. 6.3 3D face scanning device developed by ABW-3D. The system consists of two structured
light projectors, three gray level cameras for the shape, three 8 mega pixel SLR cameras and three
studio flash lights
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6.2.2 Registration

To establish correspondence, there exist two different approaches: mesh-based algo-
rithms and algorithms modeling the continuous surface using variational techniques.
Variational methods are mostly used in medical image analysis (e.g., [17, 25, 30])
where the input is typically already a voxelized volume. For 3D face surfaces, mesh-
based algorithms are mostly used (e.g., [1, 3]). Here, we use a nonrigid ICP method
similar to [1], that is applied in the 3D domain on triangulated meshes. It progres-
sively deforms a template towards the measured surface. The correlated correspon-
dence algorithm [3] is a very different approach to range scan registrations that is
applicable to both faces and bodies.

The nonrigid ICP algorithm works as follows: First, for each vertex of the tem-
plate a corresponding target point in the scanned surface is determined. This is done
by searching for the point in the scan which is closest to the vertex of the deformed
template, has a compatible normal and does not lie on the border of the scan. The
template is then deformed such that the distance between the deformed template
and the correspondence points is minimized subject to a regularization which pro-
hibits strong deformations, bringing the template closer to the surface. We use a
regularization which minimizes the second derivative of the deformation measured
along the template surface. By starting with a strong regularization, we first recover
the global deformations. The regularization is then lowered, allowing progressively
more local deformations.

The steps of the algorithm are as follows:

Algorithm 6.1: Nonrigid ICP registration

for θ ← θ1 > · · ·> θN do
repeat

Find candidate correspondences by searching for the closest point with1

a compatible normal for each model vertex.
Weight the correspondences by their distance using a robust estimator.2

Find a deformation regularized by θ , which minimizes the distance to3

the correspondence points.
until median change in vertex positions < threshold.

The template shape is created in a bootstrapping process, starting with a man-
ually created head model with an optimized mesh using discrete conformal map-
pings [26]. It is first registered to the target scans, then the average over all registra-
tions is used as a new template. This process is iterated a few times involving fur-
ther manual corrections to achieve a good template shape. The template defines the
parametrization of the model and it is used to fill in holes in the measurement. Wher-
ever no correspondences are found, the deformation is extended smoothly along the
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template surface by the regularization. This fills in unknown regions with the de-
formed template shape.

The regularization uses a discrete approximation of the second derivative of the
deformation field, which is calculated by finite differencing between groups of three
neighboring vertices. The cost function in [1] uses first order finite differences, and
can be adapted in a straightforward way to second order finite differences.

The scanner produces four partially overlapping measurements (shells) of the
target surface (Fig. 6.3), which have to be blended. This blending is done during
registration by determining the closest point as a weighted average of the closest
points of all shells. The weighting is performed with a reliability value computed
from the distance between the scan border and the angle between surface normal
and camera direction.

The registration method so far is purely shape based, but we have included addi-
tional cues from our scanning system. Some face features like the outline of the lips
and the eyebrows are purely texture based, and do not have corresponding shape
variations. To align these features in the model, we semi-automatically label the
outlines of the lips, eyes and eyebrows in the texture photographs, and constrain the
corresponding vertices of the deformed template to lie in the extrusion surfaces de-
fined by the back-projection of these lines. Additionally, as the shape of the ears is
not correctly measured by the scanner, we mark the outline of the ears in the images
to get at least the overall shape of the ears right.

To initialize the registration, some landmarks are used. The weighting of the
landmark term is reduced to zero during the optimization, as these points cannot
be marked as accurately as the line landmarks. In a preprocessing step, the scanned
data is smoothed using mean curvature flow [16] on the depth images.

Since the shape of the eyeballs is not correctly measured by the scanner, we re-
place them by spheres fit to the vertices of the eyes. This is done after the registration
in a post-processing step.

The projection of each pixel of the high resolution texture photos onto the ge-
ometry is calculated, resulting in three overlapping texture maps. These are blended
based on the distance from the visible boundaries and the orientation of the nor-
mal relative to the viewing direction. Hair is manually removed from the resulting
texture, and the missing data is filled in by a diffusion process.

6.2.3 PCA Subspace

Section 6.1.2 introduced the idea of a face subspace, wherein all faces are con-
structable by a generative model lie. We now detail the construction of the face
subspace for a 3D Morphable Model. The face subspace is constructed by putting
a set of M example 3D face scans into correspondence with a reference face. This
introduces a consistent labeling of all Nv 3D vertices across all the scans: each reg-
istered face is represented by a triangular mesh with Nv = 53 490 vertices. Each
vertex j consists of a 3D point (xj , yj , zj )T ∈ R

3 with an associated per vertex
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Fig. 6.4 The mean together with the first three principle components of the shape (left) and texture
(right) PCA model. Shown is the mean shape resp. texture plus/minus five standard deviations σ

color (rj , gj , bj )T ∈ R
3. Due to the correspondence, the mesh topology is the same

for each face. These 3D meshes are a discretization of the continuous underlying
face domain. Each shape or texture can be represented as a 3 ×Nv matrix

S =
⎛

⎝
x1 x2 · · · xNv
y1 y2 · · · yNv
z1 z2 · · · zNv

⎞

⎠ , T =
⎛

⎝
r1 r2 · · · rNv
g1 g2 · · · gNv
b1 b2 · · · bNv

⎞

⎠ . (6.1)

We can now take linear combinations of the M example faces to produce new
faces corresponding to new individuals.

S =
M∑

i=1

αi · Si , T =
M∑

i=1

βi · Ti . (6.2)

While these linear combinations do contain all new faces, they also contain non
faces. All convex combinations of faces (

∑
αi = 1, αi ∈ [0,1]) are again faces, and

also vectors close to the convex area spanned by the examples are faces, but points
far away from the convex area correspond to shapes which are very unlikely faces.
When for example setting all but one coefficient to 100, we get a face which is 100
times as big as the example face. It is very unlikely that we will encounter such a
face in the real world. This argument shows, that each coefficient vector needs an
assigned probability of describing a face. We model this probability by a Gaussian
distribution with a block diagonal matrix, which assumes that shape and texture
are decorrelated. Assuming a Gaussian allows us to approximate the face subspace
with a smaller set of orthogonal basis vectors, which are computed with Principal
Component Analysis (PCA) from the training examples.

Principal component analysis (PCA) is a statistical tool that transforms the space
such that the covariance matrix is diagonal (i.e., it decorrelates the data). We de-
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scribe the application of PCA to shapes; its application to textures is straightfor-
ward. The resulting model is shown in Fig. 6.4. After subtracting their average, S,
the exemplars are arranged in a data matrix A and the eigenvectors of its covariance
matrix C are computed using the singular value decomposition [37] of A.

S = 1

M

M∑

i=1

Si , ai = vec
(
Si − S

)
, A = (a1,a2, . . . ,aM)= UWVT,

C = 1

M
AAT = 1

M
UW2UT.

(6.3)

The component vec(S) vectorizes S by stacking its columns. The M columns of
the orthogonal matrix U are the eigenvectors of the covariance matrix C, and σ 2

i =
λ2
i

M
are its eigenvalues, where the λi are the elements of the diagonal matrix W,

arranged in decreasing order. Let us denote U·,i , the column i of U, and the principal
component i, reshaped into a 3 ×Nv matrix, by Si = U(3)·,i . The notation a(n)m×1 [31]
folds the m× 1 vector a into an n× (m/n) matrix.

Now, instead of describing a novel shape and texture as a linear combination of
examples, as in (6.2), we express them as a linear combination of NS shape and NT
texture principal components.

S = S +
NS∑

i=1

αi · Si , T = T +
NT∑

i=1

βi · Ti . (6.4)

The advantage of this formulation is that the probabilities associated with a shape
and texture are readily available.

p(S)∝ e
− 1

2

∑
i

α2
i

σ2
S,i , p(T)∝ e

− 1
2

∑
i

β2
i

σ2
T ,i . (6.5)

6.2.4 Regularized Morphable Model

The correspondence estimation, detailed in Sect. 6.2.2, may, for some scans, be
wrong in some regions. In this section, we present a scheme aiming to improve the
correspondence by regularizing it using statistics derived from scans that do not
present correspondence errors. This is achieved by modifying the model construc-
tion: probabilistic PCA [42] is used instead of PCA, which regularizes the model by
allowing the exemplars to be noisy.

6.2.4.1 Probabilistic PCA

Instead of assuming a linear model for the shape, as in the previous section, we
assume a linear Gaussian model

vec S = vec S + CS · α + ε (6.6)
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where CS , whose columns are the regularized shape principal components, has di-
mensions 3Nv ×NS , and the shape coefficients α and the noise ε have a Gaussian
distribution with zero mean and covariance I and σ 2I, respectively.

Tipping and Bishop [42] use the EM algorithm [18] to iteratively estimate CS
and the projection of the example vectors to the model, K = [α1 α2 . . . αM ]. The
algorithm starts with CS = A; and then at each iteration it computes a new estimate
of the shape coefficients K (expectation step, or e-step) and of the regularized princi-
pal components CS (maximization step, or m-step). The coefficients of the example
shapes, the unobserved variables, are estimated at the e-step.

K = B−1CT
SA with B = CT

SCS + σ 2I. (6.7)

This is the maximum a posteriori estimator of K; that is, the expected value of K
given the posterior distribution p(α | CS). At the m-step, the model is estimated by
computing the CS , which maximizes the likelihood of the data, given the current
estimate of K and B.

CS = A · KT · (σ 2 ·M · B−1 + K · KT)−1
. (6.8)

These two steps are iterated in sequence until the algorithm is judged to have con-
verged. In the original algorithm, the value of σ 2 is also estimated at the m-step
as

σ 2 = 1

3Nv ·M tr
(
AAT − CsKAT) (6.9)

but in our case, withM � 3Nv , this would yield an estimated value of zero. There-
fore, we prefer to estimate σ 2 by replacing A and K in (6.9) with a data matrix of
test vectors (vectors not used in estimating Cs ) and its corresponding coefficients
matrix obtained via (6.7). If a test set is not available, we can still get an estimate of
σ 2 by cross validation.

6.2.5 Segmented Morphable Model

Our Morphable Model is derived from statistics computed on 200 example faces.
As a result, the dimensions of the shape and texture spaces, NS and NT , are limited
to 199. This might not be enough to account for the rich variations of individualities
present in humankind. Naturally, one way to augment the dimension of the face
subspace would be to use 3D scans of more persons but they are not available.
Hence we resort to another scheme: We segment the face into four regions (nose,
eyes, mouth, and the rest) and use a separate set of shape and texture coefficients to
code them [6]. This method multiplies by four the dimensionality of the Morphable
Model and results in an increased flexibility. However, this process must be taken
with care, since a segmented model looses the correlation between the segments.
More formally, segmenting is the same as assuming zero covariance between the
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segments. The fitting results in Sect. 6.4 and the identification results in Sect. 6.5
are based on a segmented Morphable Model with NS =NT = 100 for all segments.
In the rest of the chapter, we denote the shape and texture parameters by α and β

when they can be used interchangeably for the global and the segmented parts of
the model. When we want to distinguish them, we use, for the shape parameters,
αg for the global model (full face) and αs1 to αs4 for the segmented parts (the same
notation is used for the texture parameters).

6.2.6 Identity/Expression Separated 3D Morphable Model

The 3D Morphable Model separates shape and albedo parameters from pose and
lighting, which makes pose and lighting-invariant recognition possible. The same
idea can be used for expression-invariant face recognition from 3D shape [2] (see
Sect. 6.5.5).

For these experiments, an identity/expression separated 3D Morphable Model
[10] built from 270 subjects was used. It was built from one neutral expression face
scan per identity and 135 expression scans of a subset of the subjects. The identity
model was built from the 270 neutral expression scans as in Sect. 6.2.3.

Additionally, for each of the 135 expression scans, we calculated an expression
vector as the difference between the expression scan and the corresponding neutral
scan of that subject. This data is already mode-centered, if we regard the neutral
expression as the natural mode of expression data. On these offset vectors again
PCA was applied to get NE expression components SiE and expression coefficients
α′
i , such that the complete expression model is

S = S +
NS∑

i=1

αi · Si +
NE∑

i=1

α′
i · SiE. (6.10)

This model assumes, that it is possible to transfer the expression deformation from
one face to another. Even if this should not be strictly true, which is what authors
using for example, tensor based models [46] assume, it is a good enough assumption
to make the method invariant to expressions. And a big advantage of this indepen-
dence assumption is that we can train on far less data than in a tensor framework,
because we do not need the full Cartesian product of expressions and identities. In
fact we have not even had any expression scan available for most of the training
subjects, but were able to learn useful statistics from the available scans.

We perform identification by fitting the model from (6.10), to new scans, taking
the Gaussian prior over the identity and expression coefficients into account. The
maximum likelihood coefficients given a new observation are unique, even if the
shape and expression basis are not linearly independent.

We use the registered scans and a mirrored version of each registered scan to
increase the variability of the model. This allows us to calculate a model with more
than 175 neutral coefficients.



6 Morphable Models of Faces 149

6.3 Morphable Model to Synthesize Images

One part of the analysis by synthesis loop is the synthesis (i.e., the generation of
accurate face images viewed from any pose and illuminated under any condition).
This process is explained in this section.

6.3.1 Shape Projection

To render the image of a face, the 3D shape must be projected to the 2D image
frame. This is performed in two steps. First, a 3D rotation and translation (i.e., a
rigid transformation) maps the object-centered coordinates, S, to a position relative
to the camera.

W = RγRθRφS + tw11×Nv . (6.11)

The angles φ and θ control in-depth rotations around the vertical and horizontal axis,
and γ defines a rotation around the camera axis; tw is a 3D translation. A projection
then maps a vertex k to the image plane in (xj , yj ). We typically use one of two
projections, either the perspective or the weak perspective projection.

Perspective:

⎧
⎨

⎩

xj = tx + f W1,j
W3,j

,

yj = ty + f W2,j
W3,j

,
Weak perspective:

{
xj = tx + fW1,j ,

yj = ty + fW2,j ,

(6.12)
where f is the focal length of the camera, which is located in the origin; and (tx, ty)
defines the image-plane position of the optical axis.

6.3.2 Illumination and Color Transformation

6.3.2.1 Ambient and Directed Light

We simulate the illumination of a face using an ambient light and a directed light.
The effects of the illumination are obtained using the standard Phong model, which
approximately describes the diffuse and specular reflection on a surface [21]; see [7]
for further details. The parameters of this model are the intensity of the ambient light
(Lr,amb, Lg,amb, Lb,amb), the intensity of the directed light (Lr,dir, Lg,dir, Lb,dir), its
direction (θl and φl), the specular reflectance of human skin (ks ), and the angular
distribution of the specular reflections of human skin (ν).

6.3.2.2 Color Transformation

Input images may vary a lot with respect to the overall tone of color. To be able to
handle a variety of color images as well as gray level images and even paintings, we
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apply gains gr, gg, gb, offsets or, og, ob, and a color contrast c to each channel [6].
This is a linear transformation that multiplies the RGB color of a vertex (after it has
been illuminated) by the matrix M and adds the vector o = [or , og, ob]T, where

M(c, gr , gg, gb)=
⎛

⎝
gr 0 0
0 gg 0
0 0 gb

⎞

⎠ ·
⎡

⎣I + (1 − c)
⎛

⎝
0.3 0.59 0.11
0.3 0.59 0.11
0.3 0.59 0.11

⎞

⎠

⎤

⎦ . (6.13)

For brevity, the illumination and color transformation parameters are regrouped
in the vector ι. Hence, the illuminated texture depends on the coefficients of the
linear combination regrouped in β , on the light parameters ι, and on α and ρ used
to compute the normals and the viewing direction of the vertices required for the
Phong illumination model. Similarly to the shape, we denote the color of a vertex i
by the vector ti (θ), where θ denotes the ensemble of model parameters.

Using the Morphable Model framework, the image of the face of any individual
seen from any angle and illuminated from any direction can be obtained from the
shape parameters αi , the texture parameters βi , the shape projection parameters, and
the illumination parameters by

I
(
xi(θ), yi(θ)

)= ti (θ). (6.14)

where xi and yi are computed by (6.12).
In a nutshell, the prior models accounting for the variations of the face image

are devised as follows: Gaussian probability models for the registered 3D shape and
albedo, a Phong reflectance model, a single directed light source for the illumination
model, and rigid pose variations.

6.4 Image Analysis with a 3D Morphable Model

In the analysis by synthesis framework, an algorithm seeks the parameters of the
model that render a face as close to the input image as possible. These parame-
ters explain the image and can be used for high-level tasks such as identification.
This algorithm is called a fitting algorithm. It is characterized by the following four
features.

• Efficient: The computational load allowed for the fitting algorithm is clearly de-
pendent on the applications. Security applications, for instance, require fast algo-
rithms (i.e., near real time).

• Robust (against non-Gaussian noise): The assumption of normality of the differ-
ence between the image synthesized by the model and the input image is generally
violated owing to the presence of accessories or artifacts (glasses, hair, specular
highlight).

• Accurate: The accuracy of the reconstruction must be sufficient to allow the sub-
sequent use of the reconstructed parameters.
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Fig. 6.5 Initialization: Seven landmarks for front and side views and eight for the profile view are
manually labeled for each input image

• Automatic: The fitting should require as little human intervention as possible, op-
timally with no initialization. For frontal images, the process has been completely
automated in [13].

An algorithm capable of any of the four aforementioned features is difficult to set
up. An algorithm capable of all four features is the holy grail of model-based com-
puter vision. In this chapter, we present two fitting algorithms. The first one, called
stochastic newton optimization (SNO) is accurate but computationally expensive: a
fitting takes 4.5 minutes on a 2 GHz Pentium IV. SNO is detailed elsewhere [7].

Romdhani and Vetter [39] improved the fitting by using a cost function that, as
well as the pixel intensity, uses various image features such as the edges or the
location of the specular highlights. The overall cost function obtained is smoother
and, hence, a stochastic optimization algorithm is not needed to avoid the local
minima problem. This leads to the Multi-Features Fitting (MFF) algorithm that has
a wider radius of convergence and a higher level of precision.

In Sect. 6.5, we compare identification results for both algorithms. Both, the SNO
and the MMF fitter uses the MPI Morphable Model detailed in [6]. Additionally, we
show results obtained with the MMF fitter and the BFM (see Sect. 6.2).

As initialization, the algorithms require the correspondences between some of the
model vertices (typically eight) and the input image. In the experiments shown here,
these correspondences are set manually, while we expect that these points could also
be found manually using methods such as [22, 24]. The landmark points are required
to obtain a good initial condition for the iterative algorithm. The 2D positions in the
image of these Nl points are set in the matrix L2×Nl . They are in correspondence
with the vertex indices set in the vector vNl×1. The positions of these landmarks for
three views are shown in Fig. 6.5.

6.4.1 Maximum a Posteriori Estimation of the Parameters

Both algorithms presented aim to find the model parameters α,ρ,β, ι that ex-
plain an input image. To increase the robustness of the algorithms, these parame-
ters are estimated by a maximum a posteriori (MAP) estimator, which maximizes
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p(α,ρ,β, ι | Iinput,L) [6]. Applying the Bayes rule and neglecting the dependence
between parameters yield

p(α,β,ρ, ι | Iinput,L)∝ p(Iinput | α,β,ρ, ι) ·p(L | α,ρ) ·p(α) ·p(β) ·p(ρ) ·p(ι).
(6.15)

The expression of the priors p(α) and p(β), is given by (6.5). For each shape pro-
jection and illumination parameter, we assume a Gaussian probability distribution
with mean ρi and ιi and variance σ 2

ρ,i and σ 2
ι,i . These values are set manually.

Assuming that the x and y coordinates of the landmark points are independent
and that they have the same Gaussian distribution with variance σ 2

L, we arrive at the
energy

EL = −2 logp(L | α,ρ)= 1

σ 2
L

Nl∑

j

∥
∥
∥
∥L·,j −

(
xvj
yvj

)∥
∥
∥
∥

2

. (6.16)

6.4.2 Stochastic Newton Optimization

The likelihood of the input image given the model parameters is expressed in the
image frame. Assuming that all the pixels are independent and that they have the
same Gaussian distribution with variance σ 2

I , gives:

EI = −2 logp(Iinput | α,β,ρ, ι)= 1

σ 2
I

∑

x,y

∥
∥Iinput(x, y)− I(x, y;α,β,ρ, ι)∥∥2

.

(6.17)
The sum is carried out over the pixels that are projected from the vertices inΩ(α,ρ).
For each pixel location, the norm is computed over the three color channels. The
overall energy to be minimized is then:

E = 1

σ 2
I

EI + 1

σ 2
L

EL +
∑

i

α2
i

σ 2
S,i

+
∑

i

β2
i

σ 2
T ,i

+
∑

i

(ρi − ρi)2
σ 2

ρ,i

+
∑

i

(ιi − ιi)2
σ 2

ι,i

.

(6.18)
This log-likelihood is iteratively minimized by performing a Taylor expansion up
to the second order (i.e., approximating the log-likelihood by a quadratic function)
and computing the update that minimizes the quadratic approximation. The update
is added to the current parameter to obtain the new parameters.

We use a stochastic minimization to decrease the odds of getting trapped in a
local minima and to decrease the computational time: Instead of computing EI and
its derivatives on all pixels of Ψ (α,ρ), it is computed only on a subset of 40 pix-
els thereof. These pixels are randomly chosen at each iteration. The first derivatives
are computed analytically using the chain rule. The Hessian is approximated by a
diagonal matrix computed by numeric differentiation every 1000 iterations. This
algorithm was further detailed by Blanz and Vetter [7]. The SNO algorithm is ex-
tremely accurate (see the experiments in Sect. 6.5).
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Fig. 6.6 Stochastic Newton optimization fitting results: Three-dimensional reconstruction from
CMU-PIE images using the SNO fitting algorithm using the MPI model. Top: originals. Middle:
reconstructions rendered into original. Bottom: novel views. The pictures shown here are difficult
to fit due to harsh illumination, profile views, or eyeglasses. Illumination in the third image is not
fully recovered, so part of the reflections are attributed to texture

6.4.2.1 Fitting Results

Several fitting results and reconstructions are shown in Fig. 6.6. They were ob-
tained with the SNO algorithm and the MPI model on some of the PIE images (see
Sect. 13.5.4 of Chap. 13). These images are illuminated with ambient light and one
directed light source. The algorithm was initialized with seven or eight landmark
points (depending on the pose of the input image) (Fig. 6.5). In the third column,
the separation between the albedo of the face and the illumination is not optimal:
part of the specular reflections were attributed to the texture by the algorithm. This
may be due to shortcomings of the Phong illumination model for reflections at graz-
ing angles or to a prior probability inappropriate for this illumination condition.
(The prior probabilities of the illumination and rigid parameters, σ 2

ρ,i and σ 2
ι,i , are

kept constant for fitting the 4488 PIE images.)

6.4.3 Multiple Feature Fitting

In [39], an improvement over the SNO algorithm is proposed. It is based on the as-
sumption that the prior by the texture and shape PCA models are not strong enough
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to obtain an accurate estimate of the 3D shape when only a few manually set anchor
points are used as input. This is because the cost function to be minimized is highly
nonconvex and exhibits many local minima. In fact, the shape model requires the
correspondence between the input image and the reference frame to be found for
every visible vertices. Using only facial color information to recover, the correspon-
dence is not optimal and may be trapped in regions that present similar intensity
variations (eyes/eyebrows, for instance). This is why, we use not only the pixel in-
tensities but also other features of the input image to obtain a more accurate estimate
of the correspondence and, as a result, of the 3-D shape. One example of such a fea-
ture is the edges. Other features that improve the shape and texture estimate are the
specular highlights and the texture constraints. The specular highlight feature uses
the specular highlight location, detected on the input image, to refine the normals
and, thereby, the 3-D shape of the vertices affected. The texture constraint enforces
that the estimated texture lies within a specific range (typically [0,255]), which
improves the illumination estimate. The overall resulting cost function is smoother
and easier to minimize, making the system more robust and reliable. A question
raised by this problem is how to fuse the different image cues to form the optimal
parameter estimate. We chose a Bayesian framework and maximize the posterior
probability of the parameters given the image and its features.

This analysis algorithm, called the Multiple Feature Fitting algorithm, is briefly
outlined here; a more detailed explanation is provided in [38, 39]. It is demonstrated
that, if the features (pixel intensities, edges, and specular highlights) are indepen-
dent and extracted from the input image by a deterministic algorithm, then the over-
all cost function is a linear combination of the cost function of each feature taken
separately

min
θ
τ IEI + τEEE + τSES + τPEP + τTET (6.19)

where EI denotes the pixel intensity feature (6.17), EP = ∑NS
i=1(α

2
i /σ

2
S,i) +

∑NT
i=1(β

2
i /σT ,i)

2 denotes the prior feature and EE,ES and ET denote, respectively,
the edge, specular highlights, and texture constraints cost functions. The τ ’s are
weighting parameters. A detailed explanation of these cost functions is provided
in [39]. The overall cost function is minimized using a Levenberg–Marquardt opti-
mization algorithm.

The image edges provide information about the 2-D shape independent of the
texture and of the illumination. Hence, the cost function used to fit the edge fea-
tures provides a more direct constraint on the correspondences and on the shape and
pose parameters. The edge feature is useful to recover the correspondences of spe-
cific facial characteristics (eyes, eyebrows, mouth, nose). On the other hand, it does
not carry much depth information. So it is beneficial to use the edge and intensity
features in combination. The specular highlights are easy to detect: the pixels with
a specular highlight saturate. Additionally, they give a direct relationship between
the 3-D geometry of the surface at these points, the camera direction, and the light
direction: a point on a specular highlight has a normal that has the direction of the
bisector of the angle formed by the light source direction and the camera direction.
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Hence, the specular highlight cost function is used to refine the shape estimate for
the vertices that are projected onto specular highlights of the input image.

In order to accurately estimate the 3-D shape, it is necessary to recover the tex-
ture, the light direction, and its intensity. To separate the contribution of the tex-
ture from light in a pixel intensity value, a Gaussian texture prior model is used
(see (6.5)). However, it appears that this prior model is not restrictive enough and is
able to instantiate invalid textures (negative and overflowing color values). To con-
strain the texture model and to improve the separation of light source strength from
albedo, we introduce a feature that constrains the range of valid albedo values.

6.5 Experimental Evaluation

We evaluated the 3D Morphable Model and the fitting algorithms on two applica-
tions: identification and verification. In the identification task, an image of an un-
known person is provided to our system. The unknown face image is then compared
to a database of known people, called the gallery set. The ensemble of unknown im-
ages is called the probe set. In the identification task, it is assumed that the individual
in the unknown image is in the gallery. In a verification task, the individual in the un-
known image claims an identity. The system must then accept or reject the claimed
identity. Verification performance is characterized by two statistics: The verification
rate is the rate at which legitimate users are granted access. The false alarm rate is
the rate at which impostors are granted access. See Sect. 14.1 of Chap. 14 for more
detailed explanations of these two tasks.

We evaluated our approach on three data sets. Set 1: a portion of the FERET data
set containing images with various poses. In the FERET nomenclature, these images
correspond to the series ba through bk. We omitted the images bj as the subjects
present an expression that is not accounted for by our 3D Morphable Model. This
data set includes 194 individuals across nine poses at constant lighting condition
except for the series bk, which used a frontal view at another illumination condition
than the rest of the images. Set 2: a portion of the CMU–PIE data set including
images of 68 individuals at a neutral expression viewed from 13 different angles at
ambient light. Set 2: a portion of the CMU–PIE data set containing images of the
same 68 individuals at three poses (frontal, side, and profile) and illuminated by 21
different directions and by ambient light only. Among the 68 individuals in Set 2, a
total of 28 wear glasses, which are not modeled and could decrease the accuracy of
the fitting. None of the individuals present in these three sets was used to construct
the 3D Morphable Model. These sets cover a large ethnic variety, not present in the
set of 3D scans used to build the model. Refer to Chap. 13 for a formal description
of the FERET and PIE set of images.

Identification and verification are performed by fitting an input face image to
the 3D Morphable Model, thereby extracting its identity parameters, α and β . Then
recognition tasks are achieved by comparing the identity parameters of the input
image with those of the gallery images. We defined the identity parameters of a face
image, denoted by the vector c, by stacking the shape and texture parameters of the
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global and segmented models (see Sect. 6.2.5) and rescaling them by their standard
deviations.

c =
[
α
g

1

σS,1
, . . . ,

α
g

99

σS,99
,
β
g

1

σT,1
, . . . ,

β
g

99

σT,99
,
α
s1
1

σS,1
, . . . ,

α
s1
99

σS,99
, . . . ,

β
s4
99

σT,99

]T

. (6.20)

We defined two distance measures to compare two identity parameters c1 and c2.
The first measure, dA, is based on the angle between the two vectors (it can also be
seen as a normalized correlation), and is insensitive to the norm of both vectors. This
is favorable for recognition tasks, as increasing the norm of c produces a caricature
(see Sect. 6.2.4) which does not modify the perceived identity. The second distance
[7], dW , is based on discriminant analysis [19] and favors directions where identity
variations occur. Denoting by CW the pooled within-class covariance matrix, these
two distances are defined by:

dA = cT
1 · c2

√
(cT

1 · c1)(cT
2 · c2)

and dW = cT
1 · CW · c2

√
(cT

1 · CW · c1)(cT
2 · CW · c2)

(6.21)

Results on Sets 1 and 3 use the distance dW with, for Set 1, a within-class covariance
matrix learned on Set 2, and vice versa.

6.5.1 Pose Variation

In this section, we present identification and verification results for images of faces
that vary in pose. Table 6.1 compares percentages of correct rank 1 identification
obtained with the SNO and MFF fitting algorithm on Set 1 (FERET). Table 6.2
shows more details for the SNO fitting. The 10 poses were used to constitute gallery
sets. The results are detailed for each probe pose. The results for the front view
gallery (here in bold) were first reported in [7]. The first plot of Fig. 6.7 shows the
ROC for a verification task for the front view gallery and the nine other poses in the
probe set. The verification rate for a false alarm rate of 1% is 87.9%.

6.5.2 Pose and Illumination Variations

In this section, we investigate the performance of our method in the presence of
combined pose and illumination variations. The SNO and the MMF algorithm was
applied to the images of Set 2, CMU–PIE images of 68 individuals varying with
respect to three poses, 21 directed light and ambient light conditions. Table 6.3
presents the rank 1 identification performance averaged over all lighting conditions
for front, side, and profile view galleries. Illumination 13 was selected for the gal-
leries. The second plot of Fig. 6.7 shows the ROC for a verification using as gallery
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Table 6.1 Rank 1 identification results obtained on Set 1 (subset of the FERET database) for the
SNO or MFF, resp. with the MPI or BFM, resp

Probe view Pose Φ Identification rate

SNO, MPI [7] MFF, MPI [38] MFF, BFM [34]

bb 38.9◦ 96.4% 92.7% 97.4%

bc 27.4◦ 99.0% 99.5% 99.5%

bd 18.9◦ 99.5% 99.5% 100.0%

be 11.2◦ Gallery

ba 1.1◦ 100.0% 96.9% 99.0%

bf −7.1◦ 97.4% 99.5% 99.5%

bg −16.3◦ 96.4% 95.8% 97.9%

bh −26.5◦ 95.9% 89.6% 94.8%

bi −37.9◦ 91.2% 77.1% 83.0%

bk 0.1◦ 94.3% 80.7% 90.7%

Mean 96.7% 92.4% 95.8%

Table 6.2 SNO identification performances on Set 1 (subset of the FERET database)

Performance (%) by probe view

Parameter bi bh bg bf ba be bd bc bb bk Mean

φ −37.9◦ −26.5◦ −16.3◦ −7.1◦ 1.1◦ 11.2◦ 18.9◦ 27.4◦ 38.9◦ 0.1◦

Gallery view

bi – 98.5 94.8 87.6 85.6 87.1 87.1 84.0 77.3 76.8 86.5

bh 99.5 – 97.4 95.9 91.8 95.9 94.8 92.3 83.0 86.1 93.0

bg 97.9 99.0 – 99.0 95.4 96.9 96.9 91.2 81.4 89.2 94.1

bf 95.9 99.5 99.5 – 97.9 96.9 99.0 94.8 88.1 95.4 96.3

ba 90.7 95.4 96.4 97.4 – 99.5 96.9 95.4 94.8 96.9 95.9

be 91.2 95.9 96.4 97.4 100.0 – 99.5 99.0 96.4 94.3 96.7

bd 88.7 97.9 96.9 99.0 97.9 99.5 – 99.5 98.5 92.3 96.7

bc 87.1 90.7 91.2 94.3 96.4 99.0 99.5 – 99.0 87.6 93.9

bb 78.9 80.4 77.8 80.9 87.6 94.3 94.8 99.0 – 74.7 85.4

bk 83.0 88.1 92.3 95.4 96.9 94.3 93.8 88.7 79.4 – 90.2

The overall mean of the table is 92.9%. φ is the average estimated azimuth pose angle of the face.
Ground truth for φ is not available. Condition bk has different illumination than the others. The
row in bold is the front view gallery (condition ba)

a side view illuminated by light 13 and using all other images of the set as probes.
The verification rate for a 1% false alarm rate was 77.5%. These results were first
reported by Blanz and Vetter [7].
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Table 6.3 Mean percentage of correct identification obtained after a SNO or MMF fitting, resp.
on Set 2, averaged over all lighting conditions for front, side, and profile view galleries SNO [7]

Gallery view Performance (%) by probe view Mean

Front Side Profile

Front 99.8% (97.1–100) 97.8% (82.4–100) 79.5% (39.7–94.1) 92.3%

Side 99.5% (94.1–100) 99.9% (98.5–100) 85.7% (42.6–98.5) 95.0%

Profile 83.0% (72.1–94.1) 86.2% (61.8–95.6) 98.3% (83.8–100) 89.0%

Mean 92.1%

MMF (with MPI model) [38]

Gallery view Performance (%) by probe view Mean

Front Side Profile

Front 99.9% (98.5–100.0) 98.4% (91.0–100.0)% 75.6% (38.8–94.0) 91.3%

Side 96.4% (89.6–100.0) 99.3% (97.0–100.0) 83.7% (52.2–100.0) 93.1%

Profile 76.3% (64.2–91.0) 86.0% (67.2–98.5) 89.4% (64.2–98.5) 83.9%

MFF (with BFM) [34]

Gallery view Performance (%) by probe view Mean

Front Side Profile

Front 98.9% 96.1% 75.7% 90.2%

Side 96.9% 99.9% 87.8% 94.9%

Profile 79.0% 89.0% 98.3% 88.8%

Mean 91.6% 95.0% 87.3% 91.3%

Numbers in parenthesis are percentages for the worst and best illumination within each probe set

6.5.3 Identification Confidence

In this section, we present an automated technique for assessing the quality of the
fitting in terms of a fitting score (FS). We show that the fitting score is correlated
with identification performance and hence, may be used as an identification confi-
dence measure. This method was first presented by Blanz et al. [9].

A fitting score can be derived from the image error and from the model coeffi-
cients of each fitted segment from the average.

FS = f
(
EI

Nvv
,αg,βg,αs1,βs1, . . . ,βs4

)

. (6.22)

Although the FS can be derived by a Bayesian method, we learned it using a support
vector machine (SVM) (see Vapnik [44] for a general description of SVM and Blanz
et al. [9] for details about FS learning).
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Fig. 6.7 Receiver operator characteristic for a verification task obtained with the SNO algorithms
on different sets of images

Fig. 6.8 Identification results
as a function of the fitting
score

Figure 6.8 shows the identification results for the PIE images varying in illumi-
nation across three poses, with respect to the FS for a gallery of side views. FS> 0
denotes good fittings and FS < 0 poor ones. We divided the probe images into eight
bins of different FS and computed the percentage of correct rank 1 identification for
each of these bins. There is a strong correlation between the FS and identification
performance, indicating that the FS is a good measure of identification confidence.
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6.5.4 Virtual Views as an Aid to Standard Face Recognition
Algorithms

The face recognition vendor test (FRVT) 2002 [35] was an independently adminis-
tered assessment, conducted by the U.S. government of the performance of com-
mercially available automatic face recognition systems. The test is described in
Sect. 14.2 of Chap. 14. It was realized that identification of face images signifi-
cantly drops if the probe image is nonfrontal. This is a common scenario, because
the gallery images are typically taken in a controlled situation, while the probe im-
age might only be a snapshot by a surveillance camera. As there are far fewer probe
images than gallery images, it is feasible to invest preprocessing time into the probe
image, while a preprocessing of the huge gallery set would be too expensive. Hence,
one of the questions addressed by FRVT02 is this: Do identification performances
of nonfrontal face images improve if the pose of the probe is normalized by our
3D Morphable Model? To answer this question, we normalized the pose of a series
of images [8] which were then used with the top performing face recognition sys-
tems. Normalizing the pose means to fit an input image where the face is nonfrontal,
thereby estimating its 3D structure, and to synthesize an image with a frontal view
of the estimated face. Examples of pose-normalized images are shown in Fig. 6.9.
As neither the hair nor the shoulders are modeled, the synthetic images are rendered
into a standard frontal face image of one person. This normalization is performed
by the following steps.

1. Manually define up to 11 landmark points on the input image to ensure optimal
quality of the fitting.

2. Run the SNO fitting algorithm described in Sect. 6.4.2 yielding a 3D estimation
of the face in the input image.

3. Render the 3D face in front of the standard image using the rigid parameters (po-
sition, orientation, and size) and illumination parameters of the standard image.
These parameters were estimated by fitting the standard face image.

4. Draw the hair of the standard face in front of the forehead of the synthetic image.
This makes the transition between the standard image and the synthetic image
smoother.

The normalization was applied to images of 87 individuals at five poses (frontal,
two side views, one up view, and a down view). Identifications were performed by
the 10 participants to FRVT02 (see pages 31 and 32 of Phillips et al. [35]) using
the frontal view images as gallery and nine probe sets: four probe sets with images
of nonfrontal views, four probe sets with the normalized images of the nonfrontal
views and one probe set with our preprocessing normalization applied to the front
images. The comparison of performances between the normalized images (called
morph images) and the raw images is presented on Fig. 6.10 for a verification ex-
periment (the hit rate is plotted for a false alarm rate of 1%).

The frontal morph probe set provides a baseline for how the normalization affects
an identification system. In the frontal morph probe set, the normalization is applied
to the gallery images. The results on this probe set are shown on the first column



6 Morphable Models of Faces 161

Fig. 6.9 From the original images (top row), we recover the 3D shape (middle row), by SNO
fitting. Mapping the texture of visible face regions on the surface and rendering it into a standard
background, which is a face image we selected, produces virtual front views (bottom row). Note
that the frontal-to-frontal mapping, which served as a baseline test, involves hairstyle replacement
(bottom row, center)

of Fig. 6.10. The verification rates would be 1.0, if a system were insensitive to
the artifacts introduced by the Morphable Model and did not rely on the person’s
hairstyle, collar, or other details that are exchanged by the normalization (which
are, of course, no reliable features by which to identify one person). The sensitivity
to the Morphable Model of the 10 participants ranges from 0.98 down to 0.45. The
overall results showed that, with the exception of Iconquest, Morphable Models
significantly improved (and usually doubled) performance.

If there is also pose or illumination variation in the gallery, and enough resources
are available then an identification directly in the normalized 3D Morphable Model
space as proposed in [7].

6.5.5 Face Identification on 3D Scans

In this section, we describe an expression-invariant method for face recognition by
fitting an identity/expression separated 3D Morphable Model (see Sect. 6.2.6) to
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Fig. 6.10 The effect of the original images versus normalized images using the 3D Morphable
Models. The verification rate at a false alarm rate of 1% is plotted. (Courtesy of Jonathon Phillips)

shape data and normalize the resulting face by removing the pose and expression
components. The results were first published in [2]. The expression model greatly
improves recognition and retrieval rates in the uncooperative setting, while achiev-
ing recognition rates on par with the best recognition algorithms in the face recogni-
tion great vendor test. The fitting is performed with a robust nonrigid ICP algorithm
(a variant of [1]). See Fig. 6.11 for an example of expression normalization. The
expression and pose normalized data allow efficient and effective recognition.

A 3D MM has been fitted to range data before and the results were even evaluated
on part of the UND database [11]. The approach used here differs from [11] in the
fitting method employed, and in the use of an expression model to improve face
recognition. Additionally, our method is fully automatic, needing only a single easy
to detect directed landmark, while [11] needed manually selected landmarks.

We evaluated the system on two databases with and without the expression
model. We used the GavabDB [32] database and the UND [14] database. For both
databases, only the shape information was used. The GavabDB database contains
427 scans, with seven scans per ID, three neutral and four expressions. The expres-
sions in this dataset vary considerably, including sticking out the tongue and strong
facial distortions. Additionally it has strong artifacts due to facial hair, motion and
the bad scanner quality. This dataset is typical for a noncooperative environment.
The UND database was used in the face recognition grand challenge [36] and con-
sists of 953 scans, with one to eight scans per ID. It is of better quality and contains
only slight expression variations. It represents a cooperative scenario.

The fitting was initialized by detecting the nose, and assuming that the face is
upright and looking along the z-axis. The nose was detected with the method of [41].
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Fig. 6.11 Expression
normalization for two scans
of the same individual. The
robust fitting gives a good
estimate (b) of the true face
surface given the noisy
measurement (a). It fills in
holes and removes artifacts
using prior knowledge from
the face model. The pose and
expression normalized
faces (c) are used for face
recognition

The GavabDB database has the scans already aligned and the tip of the nose is
at the origin. We used this information for the GavabDB experiments. The same
regularization parameters were used for all experiments, even though the GavabDB
data is more noisy than the UND data. The parameters were set manually based on a
few scans from the GavabDB database. We used 250 principal identity components
and 60 expression components for all experiments.

In the experiments, the distances between all scans were calculated, and we mea-
sured recognition and retrieval rates by treating every scan once as the probe and all
other scans as the gallery. Both databases were used independently.

6.5.5.1 Results

As expected, the two datasets behave differently because of the presence of expres-
sions in the examples. We first describe the results for the cooperative and then for
the uncooperative setting.

UND For the UND database, we have good recognition rates with the neutral
model. The mean cumulative normalized gain curve in Fig. 6.12 shows for vary-
ing retrieval depth the number of correctly retrieved scans divided by the maximal
number of scans that could be retrieved at this level. From this it can be seen that the
first match is always the correct match, if there is any match in the database. But for
some probes no example is in the gallery. Therefore for face recognition we have to
threshold the maximum allowed distance to be able to reject impostors. Varying the
distance threshold leads to varying false acceptance rates (FAR) and false rejection
rates (FRR), which are shown in Fig. 6.13. Even though we have been tuning the
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Fig. 6.12 For the expression
dataset the retrieval rate is
improved by including the
expression model, while for
the neutral expression dataset
the performance does not
decrease. Plotted is the mean
normalized cumulative gain,
which is the number of
retrieved correct answers
divided by the number of
possible correct answers.
Note also the different scales
of the MNCG curves for the
two datasets. Our approach
has a high accuracy on the
neutral (UND) dataset

model to the GavabDB dataset and not the UND dataset our recognition rates at
any FAR rate are as good or better than the best results from the face recognition
vendor test. This shows, that our basic face recognition method without expression
modeling gives convincing results. Now we analyze how the expression modeling
impacts recognition results on this expression-less database. If face and expression
space are not independent, then adding invariance towards expressions should make
the recognition rates decrease. In fact, while we find no significant increase in recog-
nition and retrieval rates, the results are also not worse when including expression
variance. Let us now turn towards the expression database, where we expect to see
an increase in recognition rate due to the expression model.

GavabDB The recognition rates on the GavabDB without expression model are
not quite as good as for the expression-less UND dataset, so here we hope to find
some improvement by using expression normalization. And indeed, the closest point
recognition rate with only the neutral model is 98.1% which can be improved to
99.7% by adding the expression model. Also the FAR/FRR values decrease consid-
erably. The largest improvement can be seen in retrieval performance, displayed in
the precision recall curves in Fig. 6.14 and mean cumulative normalized gain curves
in Fig. 6.12. This is because there are multiple examples in the gallery, so finding a
single match is relatively easy. But retrieving all examples from the database, even
those with strong expressions, is only made possible by the expression model.

6.6 Conclusions

We have shown that 3D Morphable Models can be one way to approach challeng-
ing real world identification problems. They address in a natural way such difficult
problems as combined variations of pose and illumination. Morphable Models can
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Fig. 6.13 Impostor detection is reliable, as the minimum distance to a match is smaller than the
minimum distance to a nonmatch. Note the vast increase in recognition performance with the ex-
pression model on the expression database, and the fact that the recognition rate is not decreasing
on the neutral database, even though we added expression invariance. Already for 0.5% false ac-
ceptance rate, we can operate at 0% false rejection rate. false acceptance rate with less than 4%
false rejection rate, or less than 0.5% FAR with less than 0.5% FRR

Fig. 6.14 Use of the expression model improves retrieval performance. Plotted are precision and
recall for different retrieval depths. The lower precision of the UND database is due to the fact
that some queries have no correct answers. For the UND database, we achieve total recall when
querying nine answers, while the maximal number of scans per individual is eight, while for the
GavabDB database the expression model gives a strong improvement in recall rate but full recall
can not be achieved
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be extended, in a straightforward way, to cope with other sources of variation such
as facial expression or age.

Our focus was mainly centered on improving the fitting algorithms with respect
to accuracy and efficiency. We also investigated several methods for estimating
identity from model coefficients. However, a more thorough understanding of the
relation between these coefficients and identity might still improve recognition per-
formance. The separation of identity from other attributes could be improved, for
instance, by using other features made available by the fitting, such as the texture
extracted from the image (after correspondences are recovered by model fitting).
Improving this separation might even be more crucial when facial expression or age
variation are added to the model.

To model fine and identity-related details such as freckles, birthmarks, and wrin-
kles, it might be helpful to extend our current framework for representing texture.
Indeed, linear combination of textures is a rather simplifying choice. Hence improv-
ing the texture model is subject to future research.

Currently our approach is clearly limited by its computational load. However,
this disadvantage will evaporate with time as computers increase their clock speed.
Adding an automatic landmark detection will enable 3D Morphable Models to com-
pete with state of the art commercial systems such as those that took part in the Face
Recognition Vendor Test 2002 [35]. For frontal images, 3D Morphable Model fitting
has been completely automated in [13].
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Chapter 7
Illumination Modeling for Face Recognition

Ronen Basri and David Jacobs

7.1 Introduction

Changes in lighting can produce large variability in the appearance of faces, as il-
lustrated in Fig. 7.1. Characterizing this variability is fundamental to understanding
how to account for the effects of lighting on face recognition. In this chapter, we
will discuss solutions to a problem: Given (1) a three-dimensional description of a
face, its pose, and its reflectance properties, and (2) a 2D query image, how can we
efficiently determine whether lighting conditions exist that can cause this model to
produce the query image? We describe methods that solve this problem by produc-
ing simple, linear representations of the set of all images a face can produce under
all lighting conditions. These results can be directly used in face recognition sys-
tems that capture 3D models of all individuals to be recognized. They also have the
potential to be used in recognition systems that compare strictly 2D images but that
do so using generic knowledge of 3D face shapes.

One way to measure the difficulties presented by lighting, or any variability, is
the number of degrees of freedom needed to describe it. For example, the pose of
a face relative to the camera has six degrees of freedom—three rotations and three
translations. Facial expression has a few tens of degrees of freedom if one considers
the number of muscles that may contract to change expression. To describe the light
that strikes a face, we must describe the intensity of light hitting each point on
the face from each direction. That is, light is a function of position and direction,
meaning that light has an infinite number of degrees of freedom. In this chapter,
however, we will show that effective systems can account for the effects of lighting
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Fig. 7.1 Same face under
different lighting conditions

using fewer than 10 degrees of freedom. This can have considerable impact on the
speed and accuracy of recognition systems.

Support for low-dimensional models is both empirical and theoretical. Principal
component analysis (PCA) on images of a face obtained under various lighting con-
ditions shows that this image set is well approximated by a low-dimensional, linear
subspace of the space of all images (see, e.g., [19]). Experimentation shows that al-
gorithms that take advantage of this observation can achieve high performance, for
example, [17, 21].

In addition, we describe theoretical results that, with some simplified assump-
tions, prove the validity of low-dimensional, linear approximations to the set of
images produced by a face. For these results, we assume that light sources are dis-
tant from the face, but we do allow arbitrary combinations of point sources (e.g., the
Sun) and diffuse sources (e.g., the sky). We also consider only diffuse components
of reflectance, modeled as Lambertian reflectance, and we ignore the effects of cast
shadows, such as those produced by the nose. We do, however, model the effects of
attached shadows, as when one side of a head faces away from a light. Theoretical
predictions from these models provide a good fit to empirical observations and pro-
duce useful recognition systems. This suggests that the approximations made cap-
ture the most significant effects of lighting on facial appearance. Theoretical models
are valuable not only because they provide insight into the role of lighting in face
recognition, but also because they lead to analytically derived, low-dimensional, lin-
ear representations of the effects of lighting on facial appearance, which in turn can
lead to more efficient algorithms.

An alternate stream of work attempts to compensate for lighting effects without
the use of 3D face models. This work directly matches 2D images using representa-
tions of images that are found to be insensitive to lighting variations. These include
image gradients [12], Gabor jets [29], the direction of image gradients [13, 24],
and projections to subspaces derived from linear discriminants [8]. A large num-
ber of these methods are surveyed in [50]. These methods are certainly of interest,
especially for applications in which 3D face models are not available. However,
methods based on 3D models may be more powerful, as they have the potential to
compensate completely for lighting changes, whereas 2D methods cannot achieve
such invariance [1, 13, 35]. Another approach of interest, the Morphable Model, is
to use general 3D knowledge of faces to improve methods of image comparison.
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7.2 Background on Reflectance and Lighting

Throughout this chapter, we consider only distant light sources. By a distant light
source, we mean that it is valid to make the approximation that a light shines on
each point in the scene from the same angle and with the same intensity (this also
rules out, for example, slide projectors).

We consider two lighting conditions. A point source is described by a single
direction, represented by the unit vector ul , and intensity, l. These factors can be
combined into a vector with three components, l̄ = lul . Lighting may also come
from multiple sources, including diffuse sources such as the sky. In that case we can
describe the intensity of the light as a function of its direction, �(ul), which does not
depend on the position in the scene. Light, then, can be thought of as a nonnegative
function on the surface of a sphere. This allows us to represent scenes in which light
comes from multiple sources, such as a room with a few lamps, and also to represent
light that comes from extended sources, such as light from the sky, or light reflected
off a wall.

Most of the analysis in this chapter accounts for attached shadows, which occur
when a point in the scene faces away from a light source. That is, if a scene point
has a surface normal vr , and light comes from the direction ul , when ul · vr < 0
none of the light strikes the surface. We also discuss methods of handling cast shad-
ows, which occur when one part of a face blocks the light from reaching another
part of the face. Cast shadows have been treated by methods based on rendering a
model to simulate shadows [18], whereas attached shadows can be accounted for
with analytically derived linear subspaces.

Building truly accurate models of the way the face reflects light is a complex
task. This is in part because skin is not homogeneous; light striking the face may be
reflected by oils or water on the skin, by melanin in the epidermis, or by hemoglobin
in the dermis, below the epidermis (see, for example, [2, 3, 33], which discuss these
effects and build models of skin reflectance; see also Chap. 6). Based on empirical
measurements of skin, Marschner et al. [32] state: “The BRDF itself is quite un-
usual; at small incidence angles it is almost Lambertian, but at higher angles strong
forward scattering emerges.” Furthermore, light entering the skin at one point may
scatter below the surface of the skin, and exit from another point. This phenomenon,
known as subsurface scattering, cannot be modeled by a bidirectional reflectance
function (BRDF), which assumes that light leaves a surface from the point that it
strikes it. Jensen et al. [25] presented one model of subsurface scattering.

For purposes of realistic computer graphics, this complexity must be confronted
in some way. For example, Borshukov and Lewis [11] reported that in The Matrix
Reloaded, they began by modeling face reflectance using a Lambertian diffuse com-
ponent and a modified Phong model to account for a Fresnel-like effect. “As produc-
tion progressed, it became increasingly clear that realistic skin rendering couldn’t
be achieved without subsurface scattering simulations.”

However, simpler models may be adequate for face recognition. They also lead
to much simpler, more efficient algorithms. This suggests that even if one wishes to
model face reflectance more accurately, simple models may provide useful, approx-
imate algorithms that can initialize more complex ones. In this chapter, we discuss
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analytically derived representation of the images produced by a convex, Lambertian
object illuminated by distant light sources. We restrict ourselves to convex objects
so we can ignore the effect of shadows cast by one part of the object on another part
of it. We assume that the surface of the object reflects light according to Lambert’s
law [30], which states that materials absorb light and reflect it uniformly in all di-
rections. The only parameter of this model is the albedo at each point on the object,
which describes the fraction of the light reflected at that point.

Specifically, according to Lambert’s law, if a light ray of intensity l coming from
the direction ul reaches a surface point with albedo ρ and normal direction vr , the
intensity i reflected by the point due to this light is given by

i = l(ul)ρmax(ul · vr ,0). (7.1)

If we fix the lighting and ignore ρ for now, the reflected light is a function of the
surface normal alone. We write this function as r(θr , φr), or r(vr ). If light reaches
a point from a multitude of directions, the light reflected by the point would be the
integral over the contribution for each direction. If we denote k(u ·v)= max(u ·v,0),
we can write:

r(vr )=
∫

S2
k(ul · vr)�(ul) dul (7.2)

where
∫
S2 denotes integration over the surface of the sphere.

7.3 PCA Based Linear Lighting Models

We can consider a face image as a point in a high-dimensional space by treating each
pixel as a dimension. Then one can use PCA to determine how well one can approx-
imate a set of face images using a low-dimensional, linear subspace. PCA was first
applied to images of faces by Sirovitch and Kirby [44], and used for face recognition
by Turk and Pentland [45]. Hallinan [19] used PCA to study the set of images that a
single face in a fixed pose produces when illuminated by a floodlight placed in var-
ious positions. He found that a five- or six-dimensional subspace accurately models
this set of images. Epstein et al. [14] and Yuille et al. [47] described experiments
on a wide range of objects that indicate that images of Lambertian objects can be
approximated by a linear subspace of between three and seven dimensions. Specif-
ically, the set of images of a basketball were approximated to 94.4% by a 3D space
and to 99.1% by a 7D space, whereas the images of a face were approximated to
90.2% by a 3D space and to 95.3% by a 7D space. This work suggests that lighting
variation has a low-dimensional effect on face images, although it does not make
clear the exact reasons for it.

Because of this low-dimensionality, linear representations based on PCA can
be used to compensate for lighting variation. Georghiades et al. [18] used a 3D
model of a face to render images with attached or with cast shadows. PCA is used to
compress these images to a low-dimensional subspace, in which they are compared
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to new images (also using nonnegative lighting constraints we discuss in Sect. 7.5).
One issue raised by this approach is that the linear subspace produced depends on
the face’s pose. Computing this on-line, when pose is determined, is potentially
expensive. Georghiades et al. [17] attacked this problem by sampling pose space
and generating a linear subspace for each pose. Ishiyama and Sakamoto [21] instead
generated a linear subspace in a model-based coordinate system, so this subspace
can be transformed in 3D as the pose varies.

7.4 Linear Lighting Models without Shadows

The empirical study of the space occupied by the images of various real objects was
to some degree motivated by a previous result that showed that Lambertian objects,
in the absence of all shadows, produce a set of images that form a three-dimensional
linear subspace [34, 40]. To see this, consider a Lambertian object illuminated by
a point source described by the vector l̄. Let pi denote a point on the object, let ni
be a unit vector describing the surface normal at pi , let ρi denote the albedo at pi ,
and define n̄i = ρini . In the absence of attached shadows, Lambertian reflectance

is described by l̄ Tn̄i . If we combine all of an object’s surface normals into a single
matrix N , so the ith column of N is n̄i , the entire image is described by I = l̄ TN .
This implies that any image is a linear combination of the three rows of N . These
are three vectors consisting of the x, y, and z components of the object’s surface
normals, scaled by albedo. Consequently, all images of an object lie in a three-
dimensional space spanned by these three vectors. Note that if we have multiple

light sources, l̄1 . . . l̄d , we have

I =
∑

i

(
l̄iN
)=

(
∑

i

l̄i

)

N (7.3)

so this image, too, lies in this three-dimensional subspace. Belhumeur et al. [8]
reported face recognition experiments using this 3D linear subspace. They found
that this approach partially compensates for lighting variation, but not as well as
methods that account for shadows.

Hayakawa [20] used factorization to build 3D models using this linear repre-
sentation. Koenderink and van Doorn [28] augmented this space to account for an
additional, perfect diffuse component. When in addition to a point source there is
also an ambient light, �(ul), which is constant as a function of direction, and we
ignore cast shadows, it has the effect of adding the albedo at each point, scaled by a
constant to the image. This leads to a set of images that occupy a four-dimensional
linear subspace.
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7.5 Nonlinear Models with Attached Shadows

Belhumeur and Kriegman [9] conducted an analytic study of the images an object
produces when shadows are present. First, they pointed out that for arbitrary illu-
mination, scene geometry, and reflectance properties, the set of images produced by
an object forms a convex cone in image space. It is a cone because the intensity of
lighting can be scaled by any positive value, creating an image scaled by the same
positive value. It is convex because two lighting conditions that create two images
can always be added together to produce a new lighting condition that creates an
image that is the sum of the original two images. They call this set of images the
illumination cone.

Then they showed that for a convex, Lambertian object in which there are at-
tached shadows but no cast shadows the dimensionality of the illumination cone is
O(n2) where n is the number of distinct surface normals visible on the object. For
an object such as a sphere, in which every pixel is produced by a different surface
normal, the illumination cone has volume in image space. This proves that the im-
ages of even a simple object do not lie in a low-dimensional linear subspace. They
noted, however, that simulations indicate that the illumination cone is “thin”; that
is, it lies near a low-dimensional image space, which is consistent with the experi-
ments described in Sect. 7.3. They further showed how to construct the cone using
the representation of Shashua [40]. Given three images obtained with lighting that
produces no attached or cast shadows, they constructed a 3D linear representation,
clipped all negative intensities at zero, and took convex combinations of the result-
ing images.

Georghiades and colleagues [17, 18] presented several algorithms that use the
illumination cone for face recognition. The cone can be represented by sampling
its extremal rays; this corresponds to rendering the face under a large number of
point light sources. An image may be compared to a known face by measuring
its distance to the illumination cone, which they showed can be computed using
nonnegative least-squares algorithms. This is a convex optimization guaranteed to
find a global minimum, but it is slow when applied to a high-dimensional image
space. Therefore, they suggested running the algorithm after projecting the query
image and the extremal rays to a lower-dimensional subspace using PCA.

Also of interest is the approach of Blicher and Roy [10], which buckets nearby
surface normals, and renders a model based on the average intensity of image pixels
that have been matched to normals within a bucket. This method assumes that simi-
lar normals produce similar intensities (after the intensity is divided by the albedo),
so it is suitable for handling attached shadows. It is also extremely fast.

7.6 Spherical Harmonic Representations

The empirical evidence showing that for many common objects the illumination
cone is “thin” even in the presence of attached shadows has remained unexplained
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until recently, when Basri and Jacobs [4, 6], and in parallel Ramamoorthi and Hanra-
han [38], analyzed the illumination cone in terms of spherical harmonics. This anal-
ysis showed that, when we account for attached shadows, the images of a convex
Lambertian object can be approximated to high accuracy using nine (or even fewer)
basis images. In addition, this analysis provides explicit expressions for the basis
images. These expressions can be used to construct efficient recognition algorithms
that handle faces under arbitrary lighting. At the same time these expressions can
be used to construct new shape reconstruction algorithms that work under unknown
combinations of point and extended light sources. We next review this analysis. Our
discussion is based primarily on the work of Basri and Jacobs [6].

7.6.1 Spherical Harmonics and the Funk–Hecke Theorem

The key to producing linear lighting models that account for attached shadows lies
in noting that (7.2), which describes how lighting is transformed to reflectance, is
analogous to a convolution on the surface of a sphere. For every surface normal
vr , reflectance is determined by integrating the light coming from all directions
weighted by the kernel k(ul · vr)= max(ul · vr ,0). For every vr this kernel is just a
rotated version of the same function, which contains the positive portion of a cosine
function. We denote the (unrotated) function k(ul) (defined by fixing vr at the north
pole) and refer to it as the half-cosine function. Note that on the sphere convolution
is well defined only when the kernel is rotationally symmetrical about the north
pole, which indeed is the case for this kernel.

Just as the Fourier basis is convenient for examining the results of convolutions
in the plane, similar tools exist for understanding the results of the analog of con-
volutions on the sphere. We now introduce these tools, and use them to show that
when producing reflectance, k acts as a low-pass filter.

The surface spherical harmonics are a set of functions that form an orthonor-
mal basis for the set of all functions on the surface of the sphere. We denote these
functions by Ynm, with n= 0,1,2, . . . and −n≤m≤ n:

Ynm(θ,φ)=
√
(2n+ 1)

4π

(n− |m|)!
(n+ |m|)!Pn|m|(cos θ)eimφ (7.4)

where Pnm represents the associated Legendre functions, defined as

Pnm(z)= (1 − z2)m/2

2nn!
dn+m

dzn+m
(
z2 − 1

)n
. (7.5)

We say that Ynm is an nth order harmonic.
It is sometimes convenient to parameterize Ynm as a function of space coordinates

(x, y, z) rather than angles. The spherical harmonics, written Ynm(x, y, z), then be-
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come polynomials of degree n in (x, y, z). The first nine harmonics then become

Y00 = 1√
4π
, Y10 =

√
3

4π
z,

Y e
11 =

√
3

4π
x, Y o

11 =
√

3

4π
y,

Y20 = 1

2

√
5

4π

(
3z2 − 1

)
, Y e

21 = 3

√
5

12π
xz,

Y o
21 = 3

√
5

12π
yz, Y e

22 = 3

2

√
5

12π

(
x2 − y2),

Y o
22 = 3

√
5

12π
xy,

(7.6)

where the superscripts e and o denote the even and odd components of the har-
monics, respectively (so Ynm = Y e

n|m| ± iY o
n|m|, according to the sign of m; in fact

the even and odd versions of the harmonics are more convenient to use in practice
because the reflectance function is real).

Because the spherical harmonics form an orthonormal basis, any piecewise con-
tinuous function, f , on the surface of the sphere can be written as a linear combina-
tion of an infinite series of harmonics. Specifically, for any f ,

f (u)=
∞∑

n=0

n∑

m=−n
fnmYnm(u) (7.7)

where fnm is a scalar value, computed as

fnm =
∫

S2
f (u)Y ∗

nm(u)du (7.8)

and Y ∗
nm(u) denotes the complex conjugate of Ynm(u).

Rotating a function f results in a phase shift. Define for every n the n’th order
amplitude of f as

An
def=
√
√
√
√ 1

2n+ 1

n∑

m=−n
f 2
nm. (7.9)

Then rotating f does not change the amplitude of a particular order. It may shuffle
values of the coefficients, fnm, for a particular order, but it does not shift energy
between harmonics of different orders.

Both the lighting function, �, and the Lambertian kernel, k, can be written as
sums of spherical harmonics. Denote by

�=
∞∑

n=0

n∑

m=−n
lnmYnm (7.10)
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the harmonic expansion of �, and by

k(u)=
∞∑

n=0

knYn0. (7.11)

Note that, because k(u) is circularly symmetrical about the north pole, only the
zonal harmonics participate in this expansion, and

∫

S2
k(u)Y ∗

nm(u)du= 0, m �= 0. (7.12)

Spherical harmonics are useful for understanding the effect of convolution by k
because of the Funk–Hecke theorem, which is analogous to the convolution theo-
rem. Loosely speaking, the theorem states that we can expand � and k in terms of
spherical harmonics, and then convolving them is equivalent to multiplication of the
coefficients of this expansion (see Basri and Jacobs [6] for details).

Following the Funk–Hecke theorem, the harmonic expansion of the reflectance
function, r , can be written as:

r = k ∗ �=
∞∑

n=0

n∑

m=−n

(√
4π

2n+ 1
knlnm

)

Ynm. (7.13)

7.6.2 Properties of the Convolution Kernel

The Funk–Hecke theorem implies that when producing the reflectance function, r ,
the amplitude of the light, �, at every order n is scaled by a factor that depends only
on the convolution kernel, k. We can use this to infer analytically what frequencies
dominate r . To achieve this, we treat � as a signal and k as a filter and ask how the
amplitudes of � change as it passes through the filter.

The harmonic expansion of the Lambertian kernel (7.11) can be derived [6] yield-
ing

kn =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

√
π

2 n= 0,
√
π
3 n= 1,

(−1)
n
2 +1

√
(2n+1)π

2n(n−1)(n+2)

(
n
n
2

)
n≥ 2, even,

0 n≥ 2, odd.

(7.14)



178 R. Basri and D. Jacobs

Fig. 7.2 From left to right: the first 11 coefficients of the Lambertian kernel; the relative energy
captured by each of the coefficients; and the cumulative energy

The first few coefficients, for example, are

k0 =
√
π

2
≈ 0.8862, k1 =

√
π

3
≈ 1.0233,

k2 =
√

5π

8
≈ 0.4954, k4 = −

√
π

16
≈ −0.1108,

k6 =
√

13π

128
≈ 0.0499, k8 =

√
17π

256
≈ −0.0285

(7.15)

(k3 = k5 = k7 = 0), |kn| approaches zero as O(n−2). A graphic representation of
the coefficients may be seen in Fig. 7.2.

The energy captured by every harmonic term is measured commonly by the
square of its respective coefficient divided by the total squared energy of the trans-
formed function. The total squared energy in the half cosine function is given by

∫ 2π

0

∫ π

0
k2(θ) sin θ dθ dφ = 2π

∫ π
2

0
cos2 θ sin θ dθ = 2π

3
. (7.16)

(Here, we simplify our computation by integrating over θ and φ rather than u.
The sin θ factor is needed to account for the varying length of the latitude over the
sphere.) Figure 7.2 shows the relative energy captured by each of the first several
coefficients. It can be seen that the kernel is dominated by the first three coefficients.
Thus, a second-order approximation already accounts for (π4 + π

3 + 5π
64 )/

2π
3 ≈

99.22% of the energy. With this approximation, the half cosine function can be
written as:

k(θ)≈ 3

32
+ 1

2
cos θ + 15

32
cos2 θ. (7.17)

The quality of the approximation improves somewhat with the addition of the fourth
order term (99.81%) and deteriorates to 87.5% when a first order approximation is
used. Figure 7.3 shows a one-dimensional slice of the Lambertian kernel and its
various approximations.
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Fig. 7.3 A slice of the Lambertian kernel (solid line) and its approximations (dashed line) of first
(left), second (middle), and fourth (right) order

7.6.3 Approximating the Reflectance Function

Because the Lambertian kernel, k, acts as a low-pass filter, the high frequency com-
ponents of the lighting have little effect on the reflectance function. This implies
that we can approximate the reflectance function that occurs under any lighting con-
ditions using only low-order spherical harmonics. In this section, we show that this
leads to an approximation that is always quite accurate.

We achieve a low-dimensional approximation to the reflectance function by trun-
cating the sum in (7.13). That is, we have:

r = k ∗ �≈
N∑

n=0

n∑

m=−n

(√
4π

2n+ 1
knlnm

)

Ynm (7.18)

for some choice of order N . This means considering only the effects of the low
order components of the lighting on the reflectance function. Intuitively, we know
that because kn is small for large n, this approximation should be good. However,
the accuracy of the approximation also depends on lnm, the harmonic expansion of
the lighting.

To evaluate the quality of the approximation, consider first, as an example, light-
ing, � = δ, generated by a unit directional (distant point) source at the z direction
(θ = φ = 0). In this case the lighting is simply a delta function whose peak is at the
north pole (θ = φ = 0). It can be readily shown that

r(v)= k ∗ δ = k(v). (7.19)

If the sphere is illuminated by a single directional source in a direction other than
the z direction, the reflectance obtained would be identical to the kernel but shifted
in phase. Shifting the phase of a function distributes its energy between the harmon-
ics of the same order n (varying m), but the overall energy in each n is maintained.
The quality of the approximation therefore remains the same, but now for an N th
order approximation we need to use all the harmonics with n ≤ N for all m. Re-
call that there are 2n + 1 harmonics in every order n. Consequently, a first-order
approximation requires four harmonics. A second-order approximation adds five
more harmonics, yielding a 9D space. The third-order harmonics are eliminated by
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the kernel, so they do not need to be included. Finally, a fourth order approximation
adds nine more harmonics, yielding an 18D space.

We have seen that the energy captured by the first few coefficients ki (1 ≤ i ≤N )
directly indicates the accuracy of the approximation of the reflectance function when
the light consists of a single point source. Other light configurations may lead to
different accuracy. Better approximations are obtained when the light includes en-
hanced diffuse components of low frequency. Worse approximations are anticipated
if the light includes mainly high frequency patterns.

However, even if the light includes mostly high frequency patterns the accuracy
of the approximation is still high. This is a consequence of the nonnegativity of
light. A lower bound on the accuracy of the approximation for any light function is
given by

k2
0

2π
3 −∑N

n=1 k
2
n

. (7.20)

(Proof appears in Basri and Jacobs [6].)
It can be shown that using a second order approximation (involving nine harmon-

ics) the accuracy of the approximation for any light function exceeds 97.96%. With a
fourth order approximation (involving 18 harmonics) the accuracy exceeds 99.48%.
Note that the bound computed in (7.20) is not tight, as the case that all the higher
order terms are saturated yields a function with negative values. Consequently, the
worst case accuracy may even be higher than the bound.

7.6.4 Generating Harmonic Reflectances

Constructing a basis to the space that approximates the reflectance functions is
straightforward: We can simply use the low order harmonics as a basis (see (7.18)).
However, in many cases we want a basis vector for the nm component of the re-
flectances to indicate the reflectance produced by a corresponding basis vector de-
scribing the lighting, Ynm. This makes it easy for us to relate reflectances and light-
ing, which is important when we want to enforce the constraint that the reflectances
arise from nonnegative lighting (see Sect. 7.7.1). We call these reflectances har-
monic reflectances and denote them by rnm. Using the Funk–Hecke theorem, rnm is
given by

rnm = k ∗ Ynm =
(√

4π

2n+ 1
kn

)

Ynm. (7.21)

Then, following (7.18),

r = k ∗ �≈
N∑

n=0

n∑

m=−n
lnmrnm. (7.22)
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The first few harmonic reflectances are given by

r00 = πY00, r1m = 2π

3
Y1m, r2m = π

4
Y2m,

r4m = π

24
Y4m, r6m = π

64
Y6m, r8m = π

128
Y8m

(7.23)

for −n≤m≤ n (and r3m = r5m = r7m = 0).

7.6.5 From Reflectances to Images

Up to this point, we have analyzed the reflectance functions obtained by illuminat-
ing a unit albedo sphere by arbitrary light. Our objective is to use this analysis to
represent efficiently the set of images of objects seen under varying illumination. An
image of an object under certain illumination conditions can be constructed from the
respective reflectance function in a simple way: Each point of the object inherits its
intensity from the point on the sphere whose normal is the same. This intensity is
further scaled by its albedo.

We can write this explicitly as follows. Let pi denote the ith object point. Let
ni denote the surface normal at pi , and let ρi denote the albedo of pi . Let the
illumination be expanded with the coefficients lnm (7.10). Then the image, Ii of pi
is

Ii = ρir(ni) (7.24)

where

r(ni)=
∞∑

n=0

n∑

m=−n
lnmrnm(ni). (7.25)

Then any image is a linear combination of harmonic images, bnm, of the form

bnm(pi)= ρirnm(ni) (7.26)

with

Ii =
∞∑

n=0

n∑

m=−n
lnmbnm(pi). (7.27)

Figure 7.4 shows the first nine harmonic images derived from a 3D model of a face.
We now discuss how the accuracy of our low dimensional linear approximation

to a model’s images can be affected by the mapping from the reflectance function
to images. The accuracy of our low dimensional linear approximation can vary ac-
cording to the shape and albedos of the object. Each shape is characterized by a
different distribution of surface normals, and this distribution may significantly dif-
fer from the distribution of normals on the sphere. Viewing direction also affects



182 R. Basri and D. Jacobs

Fig. 7.4 First nine harmonic images for a model of a face. The top row contains the zeroth har-
monic (left) and the three first order harmonic images (right). The second row shows the images
derived from the second harmonics. Negative values are shown in black, positive values in white

this distribution, as all normals facing away from the viewer are not visible in the
image. Albedo further affects the accuracy of our low dimensional approximation,
as it may scale each pixel by a different amount. In the worst case, this can make
our approximation arbitrarily poor. For many objects, it is possible to illuminate the
object by lighting configurations that produce images for which low order harmonic
representations provide a poor approximation.

However, generally, things are not so bad. In general, occlusion renders an ar-
bitrary half of the normals on the unit sphere invisible. Albedo variations and cur-
vature emphasize some normals and deemphasize others. In general, though, the
normals whose reflectances are poorly approximated are not emphasized more than
any other reflectances, and we can expect our approximation of reflectances on the
entire unit sphere to be about as good over those pixels that produce the intensities
visible in the image.

The following argument shows that the lower bound on the accuracy of a har-
monic approximation to the reflectance function also provides a lower bound on the
average accuracy of the harmonic approximation for any convex object. (This result
was derived by Frolova et al. [15].) We assume that lighting is equally likely from
all directions. Given an object, we can construct a matrix M whose columns con-
tain the images obtained by illuminating the object by a single point source, for all
possible source directions. (Of course there are infinitely many such directions, but
we can sample them to any desired accuracy.) The average accuracy of a low rank
representation of the images of the object then is determined by

min
M∗

‖M∗ −M‖2

‖M‖2
(7.28)

where M∗ is low rank, and ‖.‖ denotes the Frobenius Norm of a matrix. Now con-
sider the rows of M . Each row represents the reflectance of a single surface point
under all point sources. Such reflectances are identical to the reflectances of a sphere
with uniform albedo under a single point source. (To see this, simply let the sur-
face normal and the lighting directions change roles.) We know that under a point
source the reflectance function can be approximated by a combination of the first
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nine harmonics to 99.22%. Because by this argument every row of M can be ap-
proximated to the same accuracy, there exists a rank nine matrix M∗ that approxi-
mates M to 99.22%. This argument can be applied to convex objects of any shape.
Thus, on average, nine harmonic images approximate the images of an object by
at least 99.22%, and likewise four harmonic images approximate the images of an
object by at least 87.5%. Note that this approximation can even be improved some-
what by selecting optimal coefficients to better fit the images of the object. Indeed,
simulations indicate that optimal selection of the coefficients often increases the ac-
curacy of the second order approximation up to 99.5% and that of the first order
approximation to about 95%.

Ramamoorthi [37] further derived expressions to calculate the accuracies ob-
tained with spherical harmonics for orders less than nine. His analysis, in fact,
demonstrates that generically the spherical harmonics of the same order are not
equally significant. The reason is that the basis images of an object are not generally
orthogonal, and in some cases are quite similar. For example, if the z components of
the surface normals of an object do not vary much, some of the harmonic images are
quite similar, such as b00 = ρ versus b10 = ρz. Ramamoorthi’s calculations show a
good fit (with a slight overshoot) to the empirical results. With his derivations, the
accuracy obtained for a 3D representation of a human face is 92% (in contrast to
90.2% in empirical studies) and for 7D 99% (in contrast to 95.3%). The somewhat
lower accuracies obtained in empirical studies may be attributed to the presence of
specularities, cast shadows, and noisy measurements.

Finally, it is interesting to compare the basis images determined by our spherical
harmonic representation with the basis images derived for the case of no shadows.
As mentioned in Sect. 7.4, Shashua [40] and Moses [34] pointed out that in the ab-
sence of attached shadows every possible image of an object is a linear combination
of the x, y, and z components of the surface normals scaled by the albedo. They
therefore proposed using these three components to produce a 3D linear subspace
to represent a model’s images. Interestingly, these three vectors are identical, up
to a scale factor, to the basis images produced by the first-order harmonics in our
method.

We can therefore interpret Shashua’s method as also making an analytic approx-
imation to a model’s images using low-order harmonics. However, our previous
analysis tells us that the images of the first harmonic account for only 50% of the
energy passed by the half-cosine kernel. Furthermore, in the worst case it is pos-
sible for the lighting to contain no component in the first harmonic. Most notably,
Shashua’s method does not make use of the zeroth harmonic (commonly referred
to as the DC component). These are the images produced by a perfectly diffuse
light source. Nonnegative lighting must always have a significant DC component.
We noted in Sect. 7.4 that Koenderink and van Doorn [28] suggested augmenting
Shashua’s method with this diffuse component. This results in a linear method that
uses the four most significant harmonic basis images, although Koenderink and van
Doorn proposed it as apparently a heuristic suggestion, without analysis or reference
to a harmonic representation of lighting.
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7.7 Applications

We have developed an analytic description of the linear subspace that lies near the
set of images an object can produce. We now show how to use this description in
various tasks, including object recognition and shape reconstruction. We begin by
describing methods for recognizing faces under different illuminations and poses.
Later, we briefly describe reconstruction algorithms for stationary and moving ob-
jects.

7.7.1 Recognition

In a typical recognition problem, the 3D shape and reflectance properties (including
surface normals and albedos) of faces may be available. The task then is, given
an image of a face seen under unknown pose and illumination, to recognize the
individual. Our spherical harmonic representation enables us to perform this task
while accounting for complicated, unknown lighting that includes combinations of
point and extended sources. Below, we assume that the pose of the object is already
known but that its identity and lighting conditions are not. For example, we may
wish to identify a face that is known to be facing the camera; or we may assume that
either a human or an automatic system has identified features, such as the eyes and
the tip of the nose, that allow us to determine the pose for each face in the database,
but that the database is too large to allow a human to select the best match.

Recognition proceeds by comparing a new query image to each model in turn.
To compare to a model, we compute the distance between the query image and the
nearest image the model can produce. We present two classes of algorithms that vary
in their representation of a model’s images. The linear subspace can be used directly
for recognition, or we can restrict ourselves to a subset of the linear subspace that
corresponds to physically realizable lighting conditions.

We stress the advantages we gain by having an analytic description of the sub-
space available, in contrast to previous methods in which PCA could be used to
derive a subspace from a sample of an object’s images. One advantage of an ana-
lytic description is that we know it provides an accurate representation of an object’s
possible images, not subject to the vagaries of a particular sample of images. A sec-
ond advantage is efficiency; we can produce a description of this subspace much
more rapidly than PCA would allow. The importance of this advantage depends on
the type of recognition problem we tackle. In particular, we are interested in recog-
nition problems in which the position of an object is not known in advance but
can be computed at run-time using feature correspondences. In this case, the linear
subspace must also be computed at run-time, and the cost of doing this is important.

7.7.1.1 Linear Methods

The most straightforward way to use our prior results for recognition is to compare a
novel image to the linear subspace of images that correspond to a model, as derived
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by our harmonic representation. To do this, we produce the harmonic basis images of
each model, as described in Sect. 7.6.5. Given an image I we seek the distance from
I to the space spanned by the basis images. Let B denote the basis images. Then
we seek a vector a that minimizes ‖Ba − I‖. B is p× r , p is the number of points
in the image, and r is the number of basis images used. As discussed above, nine is
a natural value to use for r , but r = 4 provides greater efficiency and r = 18 offers
even better potential accuracy. Every column of B contains one harmonic image
bnm. These images form a basis for the linear subspace, though not an orthonormal
one. Hence we apply a QR decomposition to B to obtain such a basis. We compute
Q, a p×r matrix with orthonormal columns, andR, an r×r matrix so thatQR = B
and QTQ is an r × r identity matrix. Then Q is an orthonormal basis for B , and
QTQI is the projection of I into the space spanned by B . We can then compute the
distance from the image, I , and the space spanned by B as ‖QQTI − I‖. The cost
of the QR decomposition is O(pr2), assuming p� r .

The use of an analytically derived basis can have a substantial effect on the speed
of the recognition process. In previous work Georghiades et al. [17] performed
recognition by rendering the images of an object under many possible lightings
and finding an 11D subspace that approximates these images. With our method this
expensive rendering step is unnecessary. When s sampled images are used (typi-
cally s� r), with s� p PCA requires O(ps2). Also, in MATLAB, PCA of a thin,
rectangular matrix seems to take exactly twice as long as its QR decomposition.
Therefore, in practice, PCA on the matrix constructed by Georghiades et al. would
take about 150 times as long as using our method to build a 9D linear approximation
to a model’s images. (This is for s = 100 and r = 9. One might expect p to be about
10 000, but this does not affect the relative costs of the methods.) This may not be
significant if pose is known ahead of time and this computation takes place off line.
When pose is computed at run time, however, the advantages of our method can
become significant.

7.7.1.2 Enforcing Nonnegative Light

When we take arbitrary linear combinations of the harmonic basis images, we may
obtain images that are not physically realizable. This is because the corresponding
linear combination of the harmonics representing lighting may contain negative val-
ues. That is, rendering these images may require negative “light,” which of course
is physically impossible. In this section, we show how to use the basis images while
enforcing the constraint of nonnegative light.

When we use a 9D approximation to an object’s images, we can efficiently en-
force the nonnegative lighting constraint in a manner similar to that proposed by
Belhumeur and Kriegman [9], after projecting everything into the appropriate 9D
linear subspace. Specifically, we approximate any arbitrary lighting function as a
nonnegative combination of a fixed set of directional light sources. We solve for the
best such approximation by fitting to the query image a nonnegative combination of
images each produced by a single, directional source.
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We can do this efficiently using the 9D subspace that represents an object’s im-
ages. We project into this subspace a large number of images of the object, in which
each image is produced by a single directional light source. Such a light source is
represented as a delta function; we can derive the representation of the resulting
image in the harmonic basis simply by taking the harmonic transform of the delta
function that represents the lighting. Then we can also project a query image into
this 9D subspace and find the nonnegative linear combination of directionally lit im-
ages that best approximate the query image. Finding the nonnegative combination
of vectors that best fit a new vector is a standard, convex optimization problem. We
can solve it efficiently because we have projected all the images into a space that is
only 9D.

Note that this method is similar to that presented in Georghiades et al. [18]. The
primary difference is that we work in a low dimensional space constructed for each
model using its harmonic basis images. Georghiades et al. performed a similar com-
putation after projecting all images into a 100-dimensional space constructed using
PCA on images rendered from models in a 10-model database. Also, we do not
need to explicitly render images using a point source and project them into a low-
dimensional space. In our representation, the projection of these images is given in
closed form by the spherical harmonics.

A further simplification can be obtained if the set of images of an object is ap-
proximated only up to first order. Four harmonics are required in this case. One is
the DC component, representing the appearance of the object under uniform am-
bient light, and three are the basis images also used by Shashua. In this case, we
can reduce the resulting optimization problem to one of finding the roots of a sixth
degree polynomial in a single variable, which is extremely efficient. Further details
of both methods can be found elsewhere [6].

The approach of enforcing nonnegative lighting for 9 harmonics relies on repre-
senting lighting as the nonnegative sum of a large number of delta functions. In this
way, the nonnegativity of the lighting follows from the nonnegativity of the coeffi-
cients of the delta functions. However, in recent work, Shirdhonkar and Jacobs [41]
have shown that nonnegativity can be enforced when representing lighting using low
frequency spherical harmonics. To do this, one must be able to determine whether
a set of low frequency spherical harmonics are consistent with a nonnegative func-
tion; that is, could one add higher frequency harmonics to make the complete func-
tion nonnegative. By extending Szego’s eigenvalue distribution theorem to spherical
harmonics, Shirdhonkar and Jacobs show that a matrix constructed using the coef-
ficients of low frequency lighting, represented as spherical harmonics, must be pos-
itive semi-definite in order for these harmonics to be consistent with non-negative
lighting. This allows them to compute the low frequency lighting that best matches
a 3D model to an image by solving a semi-definite programming problem. This
leads to solutions that are more accurate and efficient than previous methods that
represent lighting using delta functions.
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7.7.1.3 Specularity

Other work has built on this spherical harmonic representation to account for non-
Lambertian reflectance [36]. The method first computes Lambertian reflectance,
which constrains the possible location of a dominant compact source of light. Then
it extracts highlight candidates as pixels that are brighter than we can predict from
Lambertian reflectance. Next, we determine which of these candidates is consistent
with a known 3D object. A general model of specular reflectance is used that im-
plies that the surface normals of specular points obtained by thresholding intensity
form a disk on the Gaussian sphere. Therefore, the method proceeds by selecting
candidate specularities consistent with such a disk. It maps each candidate specular-
ity to the point on the sphere having the same surface normal. Next, a plane is found
that separates the specular pixels from the other pixels with a minimal number of
misclassifications. The presence of specular reflections that are consistent with the
object’s known 3D structure then serves as a cue that the model and image match.

This method has succeeded in recognizing shiny objects, such as pottery. How-
ever, informal face recognition experiments with this method, using the data set de-
scribed in the next section, have not shown significant improvements. Our sense is
that most of our recognition errors are due to misalignments in pose, and that when
a good alignment is found between a 3D model and image a Lambertian model is
sufficient to produce good performance on a data set of 42 individuals.

In other work, Georghiades [16] augmented the recognition approach of Georghi-
ades et al. [17] to include specular reflectance. After initialization using a Lamber-
tian model, the position of a single light source and parameters of the Torrance-
Sparrow model of specular reflectance are optimized to fit a 3D model of an indi-
vidual. Face recognition experiments with a data set of 10 individuals show that this
produces a reduction in overall errors from 2.96% to 2.47%. It seems probable that
experiments with data sets containing large numbers of individuals are needed to
truly gauge the value of methods that account for specular reflectance.

7.7.1.4 Experiments

We have experimented with these recognition methods using a database of faces
collected at NEC in Japan. The database contains models of 42 faces, each including
the 3D shape of the face (acquired using a structured light system) and estimates of
the albedos in the red, green, and blue color channels. As query images, we use 42
images each of 10 individuals taken across seven poses and six lighting conditions
(shown in Fig. 7.5). In our experiment, each of the query images is compared to
each of the 42 models, and then the best matching model is selected.

In all methods, we first obtain a 3D alignment between the model and the image
using the algorithm of Blicher and Roy [10]. In brief, a dozen or fewer features on
the faces were identified by hand, and then a 3D rigid transformation was found to
align the 3D features with the corresponding 2D image features.

In all methods, we only pay attention to image pixels that have been matched
to some point in the 3D model of the face. We also ignore image pixels that are
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Fig. 7.5 Test images used in the experiments

of maximum intensity, as they may be saturated and provide misleading values.
Finally, we subsample both the model and the image, replacing each m×m square
with its average values. Preliminary experiments indicate that we can subsample
quite a bit without significantly reducing accuracy. In the experiments below, we
ran all algorithms subsampling with 16 × 16 squares, while the original images
were 640 × 480.

Our methods produce coefficients that tell us how to combine the harmonic im-
ages linearly to produce the rendered image. These coefficients were computed on
the sampled image but then applied to harmonic images of the full, unsampled im-
age. This process was repeated separately for each color channel. Then a model
was compared to the image by taking the root mean squared error derived from the
distance between the rendered face model and all corresponding pixels in the image.

Figure 7.6 shows performance curves for three recognition methods: the 9D lin-
ear method and the methods that enforce positive lighting in 9D and 4D. The curves
show the fraction of query images for which the correct model is classified among
the top k, as k varies from 1 to 40. The 4D positive lighting method performs signif-
icantly less well than the others, getting the correct answer about 60% of the time.
However, it is much faster and seems to be quite effective under simpler pose and
lighting conditions. The 9D linear method and 9D positive lighting method each
pick the correct model first 86% of the time. With this data set, the difference be-
tween these two algorithms is quite small compared to other sources of error. Such
errors may include limitations in our model for handling cast shadows and specu-
larities, but they also include errors in the model building and pose determination
processes. In fact, on examining our results, we found that one pose (for one person)
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Fig. 7.6 Performance curves
for our recognition methods.
The vertical axis shows the
percentage of times the
correct model was found
among the k best matching
models; the horizontal axis
shows k

was grossly wrong because a human operator selected feature points in the wrong
order. We eliminated from our results the six images (under six lighting conditions)
that used this pose.

7.7.2 Modeling

The recognition methods described in the previous section require detailed 3D mod-
els of faces, as well as their albedos. Such models can be acquired in various ways.
For example, in the experiments described above we used a laser scanner to re-
cover the 3D shape of a face, and we estimated the albedos from an image taken
under ambient lighting (which was approximated by averaging several images of a
face). As an alternative, it is possible to recover the shape of a face from images
illuminated by structured light or by using stereo reconstruction, although stereo
algorithms may give somewhat inaccurate reconstructions for nontextured surfaces.
Finally, other studies have developed reconstruction methods that use the harmonic
formulation to recover both the shape and the albedo of an object simultaneously. In
the remainder of this section, we briefly describe three such methods. We first de-
scribe how to recover the shape of an object when the input images are obtained with
a stationary object illuminated by variable lighting, a problem commonly referred
to as “photometric stereo.” Later, we discuss an approach for shape recovery of a
moving object. We conclude with an approach that can recover the shape of faces
from single images by exploiting prior knowledge of the generic shape of faces.

7.7.2.1 Photometric Stereo

In photometric stereo, we are given a collection of images of a stationary object
under varying illumination. Our objective is to recover the 3D shape of the object
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and its reflectance properties, which for a Lambertian object include the albedo
at every surface point. Previous approaches to photometric stereo under unknown
lighting generally assume that in every image the object is illuminated by a domi-
nant point source for example, [20, 28, 47]. However, by using spherical harmonic
representations it is possible to reconstruct the shape and albedo of an object under
unknown lighting configurations that include arbitrary collections of point and ex-
tended sources. In this section, we summarize this work, which is described in more
detail elsewhere [5, 7].

We begin by stacking the input images into a matrix M of size f × p, in which
every input image of p pixels occupies a single row, and f denotes the number of
images in our collection. The low dimensional harmonic approximation then implies
that there exist two matrices, L and S, of sizes f × r and r × p respectively, that
satisfy

M ≈ LS (7.29)

where L represents the lighting coefficients, S is the harmonic basis, and r is the
dimension used in the approximation (usually 4 or 9). If indeed we can recover L
and S, obtaining the surface normals and albedos of the shape is straightforward
using (7.23) and (7.26).

We can attempt to recover L and S using singular value decomposition (SVD).
This produces a factorization of M into two matrices L̃ and S̃, which are related
to the correct lighting and shape matrices by an unknown, arbitrary r × r ambigu-
ity matrix A. We can try to reduce this ambiguity. Consider the case that we use
a first-order harmonic approximation (r = 4). Omitting unnecessary scale factors,
the zero-order harmonic contains the albedo at every point, and the three first-order
harmonics contain the surface normal scaled by the albedo. For a given point we can
write these four components in a vector: p = (ρ,ρnx,ρny,ρnz)T. Then p should
satisfy pTJp = 0, where J = diag{−1,1,1,1}. Enforcing this constraint reduces
the ambiguity matrix from 16 degrees of freedom to just 7. Further resolution of the
ambiguity matrix requires additional constraints, which can be obtained by specify-
ing a few surface normals or by enforcing integrability.

A similar technique can be applied in the case of a second order harmonic ap-
proximation (r = 9). In this case, there are many more constraints on the nine basis
vectors, and they can be satisfied by applying an iterative procedure. Using the nine
harmonics, the surface normals can be recovered up to a rotation, and further con-
straints are required to resolve the remaining ambiguity.

An application of these photometric stereo methods is demonstrated in Fig. 7.7.
A collection of 32 images of a statue of a face illuminated by two point sources in
each image were used to reconstruct the 3D shape of the statue. (The images were
simulated by averaging pairs of images obtained with single light sources taken by
researchers at Yale.) Saturated pixels were removed from the images and filled in us-
ing Wiberg’s algorithm [46]; see also [23, 42]. We resolved the remaining ambiguity
by matching some points in the scene with hand-chosen surface normals.

Photometric stereo is one way to produce a 3D model for face recognition. An
alternative approach is to determine a discrete set of lighting directions that pro-
duce a set of images that span the 9D set of harmonic images of an object. In this
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Fig. 7.7 Left: three images of a bust illuminated each by two point sources. Right: the surface
produced by the 4D method (a mesh, and painted with albedo). From Basri, Jacobs, and Kemel-
macher [7], © 2007 Springer, with permission

way, the harmonic basis can be constructed directly from images, without building
a 3D model. This problem was addressed by Lee et al. [31] and by Sato et al. [39].
Other approaches use harmonic representations to cluster the images of a face under
varying illumination [22] or determine the harmonic images of a face from just one
image using a statistical model derived from a set of 3D models of other faces [49].

7.7.2.2 Objects in Motion

Photometric stereo methods require a still object while the lighting varies. For faces,
this requires a cooperative subject and controlled lighting. An alternative approach
is to use video of a moving face. Such an approach, presented by Simakov et al. [43],
is briefly described below.

We assume that the motion of a face is known, for example, by tracking a few
feature points such as the eyes and the tips of the mouth. Thus, we know the epipolar
constraints between the images and (in case the cameras are calibrated) also the
mapping from 3D to each of the images. To obtain a dense shape reconstruction, we
need to find correspondences between points in all images. Unlike stereo, in which
we can expect corresponding points to maintain approximately the same intensity,
in the case of a moving object we expect points to change their intensity as they turn
away from or toward light sources.

We therefore adopt the following strategy. For every point in 3D, we associate a
“correspondence measure,” which indicates if its projections in all the images could
come from the same surface point. To this end, we collect all the projections and
compute the residual of the following set of equations.

Ij = ρlTRjY (n). (7.30)

In this equation, 1 ≤ j ≤ f , f is the number of images, Ij denotes the intensity of
the projection of the 3D point in the j th image, ρ is the unknown albedo, l denotes
the unknown lighting coefficients, Rj denotes the rotation of the object in the j th
image, and Y(n) denotes the spherical harmonics evaluated for the unknown surface
normal. Thus, to compute the residual we need to find l and n that minimize the
difference between the two sides of this equation. (Note that for a single 3D point ρ
and l can be combined to produce a single vector.)
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Once we have computed the correspondence measure for each 3D point, we can
incorporate the measure in any stereo algorithm to extract the surface that minimizes
the measure, possibly subject to some smoothness constraints.

The algorithm of Simakov et al. [43] described above assumes that the motion
between the images is known. Zhang et al. [48] proposed an iterative algorithm that
simultaneously recovers the motion assuming infinitesimal motion between images
and modeling reflectance using a first order harmonic approximation.

7.7.2.3 Reconstruction with Shape Prior

While the previous methods utilize collections of images to achieve 3D reconstruc-
tion, it is of interest to explore methods that can recover the shape of faces from just
a single image. Recently, Kemelmacher–Shlizerman and Basri [26, 27] proposed
such an approach that exploits prior knowledge of the rough shape of faces to make
the problem of single view reconstruction well-posed.

The algorithm obtains as input an image of a face to be reconstructed along with
a 3D model (shape and albedo) of some different face. Such a model can depict an
individual whose 3D shape is available, or an “averaged” model of a collection of
faces. The algorithm then attempts to reconstruct the shape of the face in the input
image essentially by solving a shape from shading (SFS) problem. However, while
SFS is ill-posed and its solution requires knowledge of the lighting conditions, the
reflectance properties (albedo) of the object to be reconstructed, and boundary con-
ditions (i.e., depth values at extremal points), this algorithm estimates their values
by exploiting the similarity of the input model to the desired shape.

Specifically, Kemelmacher–Shlizerman and Basri seek a solution to the follow-
ing optimization problem:

min
l,ρ,z

∫

Ω

(
I − ρl TY(n)

)2 + (λ1Δ
2
z + λ2Δ

2
ρ

)
dx dy. (7.31)

In this expression, I (x, y) is the input image (x, y ∈Ω), l represents the unknown
lighting conditions, ρ(x, y) the unknown albedo, z(x, y) the unknown depth, and
Y(n) the spherical harmonic basis derived from z. The first term therefore is a data
term fitting the desired reconstruction to the image. For the second term, λ1 and λ2
are preset constants and we define Δz(x, y) and Δρ(x, y) to represent respectively,
the (smoothed) difference in shape and albedo between the desired shape and the
input model. The role of this regularization term is to keep those differences small.
Figure 7.8 shows a reconstruction obtained with this method.

7.8 Conclusions

Lighting can be arbitrarily complex, but in many cases its effect is not. When objects
are Lambertian, we show that a simple, 9D linear subspace can capture the set of
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Fig. 7.8 Single view reconstruction. The figure shows two triplets of images; each includes an
input image, 3D reconstruction (output), and the input image overlayed on the reconstruction. The
reference shape used in these runs is shown on the right. Notice that veridical shape is recovered
despite change in expression relative to the reference shape. From Kemelmacher–Shlizerman and
Basri [27], © 2010 IEEE, with permission

images they produce. This explains prior empirical results. It also gives us a new
and effective way to understand the effects of Lambertian reflectance as that of a
low-pass filter on lighting.

Moreover, we show that this 9D space can be directly computed from a model,
as low-degree polynomial functions of its scaled surface normals. This description
allows us to produce efficient recognition algorithms in which we know we are
using an accurate approximation of the model’s images. In addition, we can use the
harmonic formulation to develop reconstruction algorithms to recover the 3D shape
and albedos of an object. We evaluate the effectiveness of our recognition algorithms
using a database of models and images of real faces.
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Chapter 8
Face Recognition Across Pose and Illumination

Ralph Gross, Simon Baker, Iain Matthews, and Takeo Kanade

8.1 Introduction

The most recent evaluation of commercial face recognition systems shows the level
of performance for face verification of the best systems to be on par with finger-
print recognizers for frontal, uniformly illuminated faces [38]. Recognizing faces
reliably across changes in pose and illumination has proved to be a much more dif-
ficult problem [9, 24, 38]. Although most research has so far focused on frontal face
recognition, there is a sizable body of work on pose invariant face recognition and
illumination invariant face recognition. However, face recognition across pose and
illumination has received little attention.

8.1.1 Multiview Face Recognition and Face Recognition Across
Pose

Approaches addressing pose variation can be classified into two categories depend-
ing on the type of gallery images they use. Multiview face recognition is a direct
extension of frontal face recognition in which the algorithms require gallery images
of every subject at every pose. In face recognition across pose, we are concerned
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with the problem of building algorithms to recognize a face from a novel viewpoint
(i.e., a viewpoint from which it has not previously been seen). In both categories,
we furthermore distinguish between model-based and appearance-based algorithms.
Model-based algorithms use an explicit two-dimensional (2D) [12] or 3D [10, 15]
model of the face, whereas appearance-based methods directly use image pixels or
features derived from image pixels [36].

One of the earliest appearance-based multiview algorithms was described by
Beymer [6]. After a pose estimation step, the algorithm geometrically aligns the
probe images to candidate poses of the gallery subjects using the automatically
determined locations of three feature points. This alignment is then refined using
optical flow. Recognition is performed by computing normalized correlation scores.
Good recognition results are reported on a database of 62 subjects imaged in a num-
ber of poses ranging from −30° to +30° (yaw) and from −20° to +20° (pitch).
However, the probe and gallery poses are similar. Pentland et al. [37] extended the
popular eigenface approach of Turk and Pentland [47] to handle multiple views.
The authors compare the performance of a parametric eigenspace (computed us-
ing all views from all subjects) with view-based eigenspaces (separate eigenspaces
for each view). In experiments on a database of 21 people recorded in nine evenly
spaced views from −90° to +90°, view-based eigenspaces outperformed the para-
metric eigenspace by a small margin.

A number of 2D model-based algorithms have been proposed for face tracking
through large pose changes. In one study [13], separate active appearance models
were trained for profile, half-profile, and frontal views, with models for opposing
views created by simple reflection. Using a heuristic for switching between models,
the system was able to track faces through wide angle changes. It has been shown
that linear models are able to deal with considerable pose variation so long as all
the modeled features remained visible [32]. A different way of dealing with larger
pose variations is then to introduce nonlinearities into the model. Romdhani et al.
extended active shape models [41] and active appearance models [42] using a kernel
PCA to model shape and texture nonlinearities across views. In both cases, models
were successfully fit to face images across a full 180° rotation. However, no face
recognition experiments were performed.

In many face recognition scenarios, the pose of the probe and gallery images are
different. For example, the gallery image might be a frontal “mug shot,” and the
probe image might be a three-quarter view captured from a camera in the corner of
a room. The number of gallery and probe images can also vary. For example, the
gallery might consist of a pair of images for each subject, a frontal mug shot and
full profile view (like the images typically captured by police departments). The
probe might be a similar pair of images, a single three-quarter view, or even a col-
lection of views from random poses. In these scenarios, multiview face recognition
algorithms cannot be used. Early work on face recognition across pose was based
on the idea of linear object classes [48]. The underlying assumption is that the 3D
shape of an object (and 2D projections of 3D objects) can be represented by a linear
combination of prototypical objects. It follows that a rotated view of the object is a
linear combination of the rotated views of the prototype objects. Using this idea the
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authors were able to synthesize rotated views of face images from a single-example
view. This algorithm has been used to create virtual views from a single input im-
age for use in a multiview face recognition system [7]. Lando and Edelman used
a comparable example-based technique to generalize to new poses from a single
view [31].

A completely different approach to face recognition across pose is based on the
work of Murase and Nayar [36]. They showed that different views of a rigid object
projected into an eigenspace fall on a 2D manifold. Using a model of the manifold
they could recognize objects from arbitrary views. In a similar manner Graham and
Allison observed that a densely sampled image sequence of a rotating head forms
a characteristic eigensignature when projected into an eigenspace [19]. They use
radial basis function networks to generate eigensignatures based on a single view
input. Recognition is then performed by distance computation between the projec-
tion of a probe image into eigenspace and the eigensignatures created from gallery
views. Good generalization is observed from half-profile training views. However,
recognition rates for tests across wide pose variations (e.g., frontal gallery and pro-
file probe) are weak.

One of the early model-based approaches for face recognition is based on elastic
bunch graph matching [49]. Facial landmarks are encoded with sets of complex
Gabor wavelet coefficients called jets. A face is then represented with a graph where
the various jets form the nodes. Based on a small number of hand-labeled examples,
graphs for new images are generated automatically. The similarity between a probe
graph and the gallery graphs is determined as average over the similarities between
pairs of corresponding jets. Correspondences between nodes in different poses is
established manually. Good recognition results are reported on frontal faces in the
FERET evaluation [39]. Recognition accuracies decrease drastically, though, for
matching half profile images with either frontal or full profile views. For the same
framework, a method for transforming jets across pose has been introduced [35]. In
limited experiments, the authors show improved recognition rates over the original
representation.

8.1.2 Illumination Invariant Face Recognition

In addition to face pose, illumination is the next most significant factor affecting
the appearance of faces. Ambient lighting changes greatly within and between days
and among indoor and outdoor environments. Due to the 3D structure of face, a
direct lighting source can cast strong shadows that accentuate or diminish certain
facial features. It has been shown experimentally [2] and theoretically for systems
based on principal component analysis (PCA) [50] that differences in appearance
induced by illumination are larger than differences between individuals. Because
dealing with illumination variation is a central topic in computer vision, numerous
approaches for illumination invariant face recognition have been proposed.

Early work in illumination invariant face recognition focused on image repre-
sentations that are mostly insensitive to changes in illumination. In one study [2],
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various image representations and distance measures were evaluated on a tightly
controlled face database that varied the face pose, illumination, and expression. The
image representations include edge maps, 2D Gabor-like filters, first and second
derivatives of the gray-level image, and the logarithmic transformations of the inten-
sity image along with these representations. However, none of the image representa-
tions was found to be sufficient by itself to overcome variations due to illumination
changes. In more recent work, it was shown that the ratio of two images from the
same object is simpler than the ratio of images from different objects [27]. In lim-
ited experiments, this method outperformed both correlation and PCA but did not
perform as well as the illumination cone method described below. A related line of
work attempted to extract the object’s surface reflectance as an illumination invari-
ant description of the object [25, 30]. We discuss the most recent algorithm in this
area in more detail in Sect. 8.4.2. Sashua and Riklin-Raviv [44] proposed a different
illumination invariant image representation, the quotient image. Computed from a
small set of example images, the quotient image can be used to re-render an object
of the same class under a different illumination condition. In limited recognition
experiments the method outperforms PCA.

A different approach to the problem is based on the observation that the images
of a Lambertian surface, taken from a fixed viewpoint but under varying illumina-
tion, lie in a 3D linear subspace of the image space [43]. A number of appearance-
based methods exploit this fact to model the variability of faces under changing
illumination. Belhumeur et al. [4] extended the eigenface algorithm of Turk and
Pentland [47] to fisherfaces by employing a classifier based on Fisher’s linear dis-
criminant analysis. In experiments on a face database with strong variations in il-
lumination, fisherfaces outperform eigenfaces by a wide margin. Further work in
the area by Belhumeur and Kriegman showed that the set of images of an object
in fixed pose but under varying illumination forms a convex cone in the space of
images [5]. The illumination cones of human faces can be approximated well by
low-dimensional linear subspaces [16]. An algorithm based on this method out-
performs both eigenfaces and fisherfaces. More recently, Basri and Jacobs showed
that the illumination cone of a convex Lambertian surface can be approximated by
a nine-dimensional linear subspace [3]. In limited experiments, good recognition
rates across illumination conditions are reported.

Common to all these appearance-based methods is the need for training images
of database subjects under a number of different illumination conditions. An algo-
rithm proposed by Sim and Kanade overcomes this restriction [45]. They used a
statistical shape-from-shading model to recover the face shape from a single image
and synthesize the face under a new illumination. Using this method, they generated
images of the gallery subjects under many different illumination conditions to serve
as gallery images in a recognizer based on PCA. High recognition rates are reported
on the illumination subset of the CMU PIE database [46].
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8.1.3 Algorithms for Face Recognition Across Pose and
Illumination

A number of appearance and model-based algorithms have been proposed to ad-
dress the problems of face recognition across pose and illumination simultaneously.
In one study [17], a variant of photometric stereo was used to recover the shape
and albedo of a face based on seven images of the subject seen in a fixed pose. In
combination with the illumination cone representation introduced in [5], the authors
can synthesize faces in novel pose and illumination conditions. In tests on 4050 im-
ages from the Yale Face Database B, the method performed almost without error.
In another study [11], a morphable model of 3D faces was introduced. The model
was created using a database of Cyberware laser scans of 200 subjects. Following
an analysis-by-synthesis paradigm, the algorithm automatically recovers face pose
and illumination from a single image. For initialization, the algorithm requires the
manual localization of seven facial feature points. After fitting the model to a new
image, the extracted model parameters describing the face shape and texture are
used for recognition. The authors reported excellent recognition rates on both the
FERET [39] and CMU PIE [46] databases. Once fit, the model could also be used
to synthesize an image of the subject under new conditions. This method was used
in the most recent face recognition vendor test to create frontal view images from
rotated views [38]. For 9 of 10 face recognition systems tested, accuracies on the
synthesized frontal views were significantly higher than on the original images.

8.2 Eigen Light-Fields

We propose an appearance-based algorithm for face recognition across pose. Our
algorithm can use any number of gallery images captured at arbitrary poses and
any number of probe images also captured with arbitrary poses. A minimum of
one gallery and one probe image are needed, but if more images are available the
performance of our algorithm generally improves.

Our algorithm operates by estimating (a representation of) the light-field [34] of
the subject’s head. First, generic training data are used to compute an eigenspace
of head light-fields, similar to the construction of eigenfaces [47]. Light-fields are
simply used rather than images. Given a collection of gallery or probe images, the
projection into the eigenspace is performed by setting up a least-squares problem
and solving for the projection coefficients similar to approaches used to deal with
occlusions in the eigenspace approach [8, 33]. This simple linear algorithm can be
applied to any number of images captured from any poses. Finally, matching is
performed by comparing the probe and gallery eigen light-fields.
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Fig. 8.1 The object is conceptually placed within a circle. The angle to the viewpoint v around the
circle is measured by the angle θ , and the direction the viewing ray makes with the radius of the
circle is denoted φ. For each pair of angles θ and φ, the radiance of light reaching the viewpoint
from the object is then denoted by L(θ,φ), the light-field. Although the light-field of a 3D object is
actually 4D, we continue to use the 2D notation of this figure in this chapter for ease of explanation

8.2.1 Light-Fields Theory

8.2.1.1 Object Light-Fields

The plenoptic function [1] or light-field [34] is a function that specifies the radiance
of light in free space. It is a 5D function of position (3D) and orientation (2D).
In addition, it is also sometimes modeled as a function of time, wavelength, and
polarization, depending on the application in mind. In 2D, the light-field of a 2D
object is actually 2D rather than the 3D that might be expected. See Fig. 8.1 for an
illustration.

8.2.1.2 Eigen Light-Fields

Suppose we are given a collection of light-fields Li(θ,φ) of objects Oi (here faces
of different subjects) where i = 1, . . . ,N . See Fig. 8.1 for the definition of this
notation. If we perform an eigendecomposition of these vectors using PCA, we ob-
tain d ≤ N eigen light-fields Ei(θ,φ) where i = 1, . . . , d . Then, assuming that the
eigenspace of light-fields is a good representation of the set of light-fields under
consideration, we can approximate any light-field L(θ,φ) as

L(θ,φ)≈
d∑

i=1

λiEi(θ,φ) (8.1)

where λi = 〈L(θ,φ),Ei(θ,φ)〉 is the inner (or dot) product between L(θ,φ) and
Ei(θ,φ). This decomposition is analogous to that used for face and object recogni-
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tion [36, 47]. The mean light-field could also be estimated and subtracted from all
of the light-fields.

Capturing the complete light-field of an object is a difficult task, primarily be-
cause it requires a huge number of images [18, 34]. In most object recognition sce-
narios, it is unreasonable to expect more than a few images of the object (often just
one). However, any image of the object corresponds to a curve (for 3D objects, a
surface) in the light-field. One way to look at this curve is as a highly occluded light-
field; only a small part of the light-field is visible. Can the eigen coefficients λi be es-
timated from this highly occluded view? Although this may seem hopeless, consider
that light-fields are highly redundant, especially for objects with simple reflectance
properties such as Lambertian. An algorithm has been presented [33] to solve for the
unknown λi for eigen images. A similar algorithm was implicitly used by Black and
Jepson [8]. Rather than using the inner product λi = 〈L(θ,φ),Ei(θ,φ)〉, Leonardis
and Bischof [33] solved for λi as the least-squares solution of

L(θ,φ)−
d∑

i=1

λiEi(θ,φ)= 0 (8.2)

where there is one such equation for each pair of θ and φ that are unoccluded
in L(θ,φ). Assuming that L(θ,φ) lies completely within the eigenspace and that
enough pixels are unoccluded, the solution of (8.2) is exactly the same as that
obtained using the inner product [21]. Because there are d unknowns (λ1 . . . λd )
in (8.2), at least d unoccluded light-field pixels are needed to overconstrain the prob-
lem, but more may be required owing to linear dependencies between the equations.
In practice, two to three times as many equations as unknowns are typically required
to get a reasonable solution [33]. Given an image I (m,n), the following is then an
algorithm for estimating the eigen light-field coefficients λi .

1. For each pixel (m,n) in I (m,n), compute the corresponding light-field angles
θm,n and φm,n. (This step assumes that the camera intrinsics are known, as well
as the relative orientation of the camera to the object.)

2. Find the least-squares solution (for λ1 . . . λd ) to the set of equations

I (m,n)−
d∑

i=1

λiEi(θm,n,φm,n)= 0 (8.3)

where m and n range over their allowed values. (In general, the eigen light-fields
Ei need to be interpolated to estimate Ei(θm,n,φm,n). Also, all of the equations
for which the pixel I (m,n) does not image the object should be excluded from
the computation.)

Although we have described this algorithm for a single image I (m,n), any num-
ber of images can obviously be used (so long as the camera intrinsics and relative
orientation to the object are known for each image). The extra pixels from the other
images are simply added in as additional constraints on the unknown coefficients
λi in (8.3). The algorithm can be used to estimate a light-field from a collection of
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Fig. 8.2 Our eigen light-field estimation algorithm for rerendering a face across pose. The algo-
rithm is given the left-most (frontal) image as input from which it estimates the eigen light-field
and then creates the rotated view shown in the middle. For comparison, the original rotated view
is shown in the right-most column. In the figure, we show one of the better results (top) and one of
the worst (bottom). Although in both cases the output looks like a face, the identity is altered in the
second case

images. Once the light-field has been estimated, it can then be used to render new
images of the same object under different poses. (See Vetter and Poggio [48] for
a related algorithm.) We have shown [21] that the algorithm correctly rerenders a
given object assuming a Lambertian reflectance model. The extent to which these
assumptions are valid are illustrated in Fig. 8.2, where we present the results of us-
ing our algorithm to rerender faces across pose. In each case, the algorithm received
the left-most (frontal) image as input and created the rotated view in the middle.
For comparison, the original rotated view is included as the right-most image. The
rerendered image for the first subject is similar to the original. Although the image
created for the second subject still shows a face in the correct pose, the identity of
the subject is not as accurately recreated. We conclude that overall our algorithm
works fairly well but that more training data are needed so the eigen light-field of
faces can more accurately represent any given face light-field.

8.2.2 Application to Face Recognition Across Pose

The eigen light-field estimation algorithm described above is somewhat abstract.
To be able to use it for face recognition across pose, we need to do the following
things.

Vectorization: The input to a face recognition algorithm consists of a collection
of images (possibly just one) captured from a variety of poses. The eigen light-
field estimation Algorithm operates on light-field vectors (light-fields represented
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as vectors). Vectorization consists of converting the input images into a light-field
vector (with missing elements, as appropriate.)

Classification: Given the eigen coefficients a1 . . . ad for a collection of gallery faces
and for a probe face, we need to classify which gallery face is the most likely
match.

Selecting training and testing sets: To evaluate our algorithm, we have to divide the
database used into (disjoint) subsets for training and testing.

We now describe each of these tasks in turn.

8.2.2.1 Vectorization by Normalization

Vectorization is the process of converting a collection of images of a face into a
light-field vector. Before we can do this we first have to decide how to discretize the
light-field into pixels. Perhaps the most natural way to do this is to uniformly sample
the light-field angles (θ and φ in the 2D case of Fig. 8.1). This is not the only way to
discretize the light-field. Any sampling, uniform or nonuniform, could be used. All
that is needed is a way to specify what is the allowed set of light-field pixels. For
each such pixel, there is a corresponding index in the light-field vector; that is, if the
light-field is sampled at K pixels, the light-field vectors are K dimensional vectors.

We specify the set of light-field pixels in the following manner. We assume that
there are only a finite set of poses 1,2, . . . ,P in which the face can occur. Each face
image is first classified into the nearest pose. (Although this assumption is clearly an
approximation, its validity is demonstrated by the empirical results in Sect. 8.2.3. In
both the FERET [39] and PIE [46] databases, there is considerable variation in the
pose of the faces. Although the subjects are asked to place their face in a fixed pose,
they rarely do this perfectly. Both databases therefore contain considerable variation
away from the finite set of poses. Our algorithm performs well on both databases,
so the approximation of classifying faces into a finite set of poses is validated.)

Each pose i = 1, . . . ,P is then allocated a fixed number of pixels Ki . The total
number of pixels in a light-field vector is thereforeK =∑P

i=1Ki . If we have images
from poses 3 and 7, for example, we knowK3 +K7 of theK pixels in the light-field
vector. The remaining K −K3 −K7 are unknown, missing data. This vectorization
process is illustrated in Fig. 8.3.

We still need to specify how to sample the Ki pixels of a face in pose i. This
process is analogous to that needed in appearance-based object recognition and is
usually performed by “normalization.” In eigenfaces [47], the standard approach is
to find the positions of several canonical points, typically the eyes and the nose, and
to warp the input image onto a coordinate frame where these points are in fixed lo-
cations. The resulting image is then masked. To generalize eigenface normalization
to eigen light-fields, we just need to define such a normalization for each pose.

We report results using two different normalizations. The first is a simple one
based on the location of the eyes and the nose. Just as in eigenfaces, we assume
that the eye and nose locations are known, warp the face into a coordinate frame
in which these canonical points are in a fixed location, and finally crop the image
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Fig. 8.3 Vectorization by normalization. Vectorization is the process of converting a set of images
of a face into a light-field vector. Vectorization is performed by first classifying each input image
into one of a finite number of poses. For each pose, normalization is then applied to convert the
image into a subvector of the light-field vector. If poses are missing, the corresponding part of the
light-field vector is missing

with a (pose-dependent) mask to yield the Ki pixels. For this simple three-point
normalization, the resulting masked images vary in size between 7200 and 12 600
pixels, depending on the pose.

The second normalization is more complex and is motivated by the success of ac-
tive appearance models (AAMs) [12]. This normalization is based on the location of
a large number (39–54 depending on the pose) of points on the face. These canoni-
cal points are triangulated and the image warped with a piecewise affine warp onto a
coordinate frame in which the canonical points are in fixed locations. The resulting
masked images for this multipoint normalization vary in size between 20 800 and
36 000 pixels. Although currently the multipoint normalization is performed using
hand-marked points, it could be performed by fitting an AAM [12] and then using
the implied canonical point locations.

8.2.2.2 Classification Using Nearest Neighbor

The eigen light-field estimation algorithm outputs a vector of eigen coefficients
(a1, . . . , ad). Given a set of gallery faces, we obtain a corresponding set of vec-
tors (aid

1 , . . . , a
id
d ), where id is an index over the set of gallery faces. Similarly, given

a probe face, we obtain a vector (a1, . . . , ad) of eigen coefficients for that face.
To complete the face recognition algorithm, we need an algorithm that classifies
(a1, . . . , ad) with the index id, which is the most likely match. Many classification
algorithms could be used for this task. For simplicity, we use the nearest-neighbor
algorithm, that classifies the vector (a1, . . . , ad) with the index.

arg min
id

dist
(
(a1, . . . , ad),

(
aid

1 , . . . , a
id
d

))= arg min
id

d∑

i=1

(
ai − aid

i

)2
. (8.4)



8 Face Recognition Across Pose and Illumination 207

All of the results reported in this chapter use the Euclidean distance in (8.4). Alter-
native distance functions, such as the Mahalanobis distance, could be used instead
if so desired.

8.2.2.3 Selecting the Gallery, Probe, and Generic Training Data

In each of our experiments, we divided the database into three disjoint subsets:

Generic training data: Many face recognition algorithms such as eigenfaces, and
including our algorithm, require “generic training data” to build a generic face
model. In eigenfaces, for example, generic training data are needed to compute the
eigenspace. Similarly, in our algorithm, generic data are needed to construct the
eigen light-field.

Gallery: The gallery is the set of reference images of the people to be recognized
(i.e., the images given to the algorithm as examples of each person who might need
to be recognized).

Probe: The probe set contains the “test” images (i.e., the images to be presented to
the system to be classified with the identity of the person in the image).

The division into these three subsets is performed as follows. First, we randomly
select half of the subjects as the generic training data. The images of the remaining
subjects are used for the gallery and probe. There is therefore never any overlap
between the generic training data and the gallery and probe.

After the generic training data have been removed, the remainder of the databases
are divided into probe and gallery sets based on the pose of the images. For example,
we might set the gallery to be the frontal images and the probe set to be the left
profiles. In this case, we evaluate how well our algorithm is able to recognize people
from their profiles given that the algorithm has seen them only from the front. In
the experiments described below we choose the gallery and probe poses in various
ways. The gallery and probe are always disjoint unless otherwise noted.

8.2.3 Experimental Results

8.2.3.1 Databases

We used two databases in our face recognition across pose experiments, the
CMU Pose, Illumination, and Expression (PIE) database [46] and the FERET
database [39]. Each of these databases contains substantial pose variation. In the
pose subset of the CMU PIE database (Fig. 8.4), the 68 subjects are imaged simul-
taneously under 13 poses totaling 884 images. In the FERET database, the subjects
are imaged nonsimultaneously in nine poses. We used 200 subjects from the FERET
pose subset, giving 1800 images in total. If not stated otherwise, we used half of the
available subjects for training of the generic eigenspace (34 subjects for PIE, 100
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Fig. 8.4 Pose variation in the PIE database. The pose varies from full left profile (c34) to full
frontal (c27) and to full right profile (c22). Approximate pose angles are shown below the camera
numbers

subjects for FERET) and the remaining subjects for testing. In all experiments (if
not stated otherwise), we retain a number of eigenvectors sufficient to explain 95%
of the variance in the input data.

8.2.3.2 Comparison with Other Algorithms

We compared our algorithm with eigenfaces [47] and FaceIt, the commercial face
recognition system from Identix (formerly Visionics).1

We first performed a comparison using the PIE database. After randomly select-
ing the generic training data, we selected the gallery pose as one of the 13 PIE poses
and the probe pose as any other of the remaining 12 PIE poses. For each disjoint
pair of gallery and probe poses, we computed the average recognition rate over all
subjects in the probe and gallery sets. The details of the results are shown in Fig. 8.5
and are summarized in Table 8.1.

In Fig. 8.5, we plotted 13 × 13 “confusion matrices” of the results. The row de-
notes the pose of the gallery, the column the pose of the probe, and the displayed
intensity the average recognition rate. A lighter color denotes a higher recognition
rate. (On the diagonals, the gallery and probe images are the same so all three algo-
rithms obtain a 100% recognition rate.)

Eigen light-fields performed far better than the other algorithms, as witnessed by
the lighter color of Fig. 8.5a, b compared to Fig. 8.5c, d. Note how eigen light-fields
was far better able to generalize across wide variations in pose, and in particular to
and from near-profile views.

Table 8.1 includes the average recognition rate computed over all disjoint gallery-
probe poses. As can be seen, eigen light-fields outperformed both the standard
eigenfaces algorithm and the commercial FaceIt system.

We next performed a similar comparison using the FERET database [39]. Just as
with the PIE database, we selected the gallery pose as one of the nine FERET poses
and the probe pose as any other of the remaining eight FERET poses. For each dis-
joint pair of gallery and probe poses, we computed the average recognition rate over

1Version 2.5.0.17 of the FaceIt recognition engine was used in the experiments.
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Fig. 8.5 Comparison with FaceIt and eigenfaces for face recognition across pose on the CMU
PIE [46] database. For each pair of gallery and probe poses, we plotted the color-coded average
recognition rate. The row denotes the pose of the gallery and the column the pose of the probe.
The fact that the images in (a) and (b) are lighter in color than those in (c) and (d) implies that our
algorithm performs better

Table 8.1 Comparison of eigen light-fields with FaceIt and eigenfaces for face recognition across
pose on the CMU PIE database. The table contains the average recognition rate computed across
all disjoint pairs of gallery and probe poses; it summarizes the average performance in Fig. 8.5

Algorithm Average recognition accuracy (%)

Eigenfaces 16.6

FaceIt 24.3

Eigen light-fields

Three-point norm 52.5

Multipoint norm 66.3

all subjects in the probe and gallery sets, and then averaged the results. The results
are similar to those for the PIE database and are summarized in Table 8.2. Again,
eigen light-fields performed significantly better than either FaceIt or eigenfaces.
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Table 8.2 Comparison of eigen light-fields with FaceIt and eigenfaces for face recognition across
pose on the FERET database. The table contains the average recognition rate computed across all
disjoint pairs of gallery and probe poses. Again, eigen light-fields outperforms both eigenfaces and
FaceIt

Algorithm Average recognition accuracy (%)

Eigenfaces 39.4

FaceIt 59.3

Eigen light-fields three-point normalization 75.0

Overall, the performance improvement of eigen light-fields over the other two
algorithms is more significant on the PIE database than on the FERET database.
This is because the PIE database contains more variation in pose than the FERET
database. For more evaluation results, see Gross et al. [23].

8.3 Bayesian Face Subregions

Owing to the complicated 3D nature of the face, differences exist in how the appear-
ance of various face regions change for different face poses. If, for example, a head
rotates from a frontal to a right profile position, the appearance of the mostly fea-
tureless cheek region only changes little (if we ignore the influence of illumination),
while other regions such as the left eye disappear, and the nose looks vastly differ-
ent. Our algorithm models the appearance changes of the different face regions in
a probabilistic framework [28]. Using probability distributions for similarity values
of face subregions; we compute the likelihood of probe and gallery images coming
from the same subject. For training and testing of our algorithm we use the CMU
PIE database [46].

8.3.1 Face Subregions and Feature Representation

Using the hand-marked locations of both eyes and the midpoint of the mouth, we
warp the input face images into a common coordinate frame in which the landmark
points are in a fixed location and crop the face region to a standard 128 × 128
pixel size. Each image I in the database is labeled with the identity i and pose
φ of the face in the image: I = (i, φ), i ∈ {1, . . . ,68}, φ ∈ {1, . . . ,13}. As shown
in Fig. 8.6, a 7 × 3 lattice is placed on the normalized faces, and 9 × 15 pixel
subregions are extracted around every lattice point. The intensity values in each of
the 21 subregions are normalized to have zero mean and unit variance.

As the similarity measure between subregions, we use SSD (sum of squared dif-
ference) values sj between corresponding regions j for all image pairs. Because
we compute the SSD after image normalization, it effectively contains the same
information as normalized correlation.
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Fig. 8.6 Face subregions for two poses of the CMU PIE database. Each face in the database
is warped into a normalized coordinate frame using the hand-labeled locations of both eyes and
the midpoint of the mouth. A 7 × 3 lattice is placed on the normalized face, and 9 × 15 pixel
subregions are extracted around every lattice point, resulting in a total of 21 subregions

8.3.2 Modeling Local Appearance Change Across Pose

For probe image Ii,p = (i, φp) with unknown identity i, we compute the probability
that Ii,p is coming from the same subject k as gallery image Ik,g for each face
subregion j, j ∈ {1, . . . ,21}. Using Bayes’ rule, we write:

P(i = k | sj , φp,φg)

= P(sj | i = k,φp,φg)P (i = k)
P (sj | i = k,φp,φg)P (i = k)+ P(sj | i �= k,φp,φg)P (i �= k) . (8.5)

We assume the conditional probabilities P(sj |i = k,φp,φg) and P(sj |i �= k,φp,φg)
to be Gaussian distributed and learn the parameters from data. Figure 8.7 shows his-
tograms of similarity values for the right eye region. The examples in Fig. 8.7 show
that the discriminative power of the right eye region diminishes as the probe pose
changes from almost frontal (Fig. 8.7a) to right profile (Fig. 8.7c).

It is reasonable to assume that the pose of each gallery image is known. However,
because the pose φp of the probe images is in general not known, we marginalize
over it. We can then compute the conditional densities for similarity value sj as

P(sj | i = k,φg)=
∑

p

P (φp)P (sj | i = k,φp,φg)

and

P(sj | i �= k,φg)=
∑

p

P (φp)P (sj | i �= k,φp,φg).

If no other knowledge about the probe pose is given, the pose prior P(φp) is
assumed to be uniformly distributed. Similar to the posterior probability defined
in (8.5), we compute the probability of the unknown probe image coming from the
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Fig. 8.7 Histograms of similarity values sj for the right eye region across multiple poses. The
distribution of similarity values for identical gallery and probe subjects are shown with solid curves,
the distributions for different gallery and probe subjects are shown with dashed curves

same subject (given similarity value sj and gallery pose φg) as

P(i = k | sj , φg)= P(sj | i = k,φg)P (i = k)
P (sj | i = k,φg)P (i = k)+ P(sj | i �= k,φg)P (i �= k) . (8.6)

To decide on the most likely identity of an unknown probe image Ii,p = (i, φp),
we compute match probabilities between Ii,p and all gallery images for all face
subregions using (8.5) or (8.6). We currently do not model dependencies between
subregions, so we simply combine the different probabilities using the sum rule [29]
and choose the identity of the gallery image with the highest score as the recognition
result.

8.3.3 Experimental Results

We used half of the 68 subjects in the CMU PIE database for training of the models
described in Sect. 8.3.2. The remaining 34 subjects are used for testing. The images
of all 68 subjects are used in the gallery. We compare our algorithm to eigenfaces
[47] and the commercial FaceIt system.

8.3.3.1 Experiment 1: Unknown Probe Pose

For the first experiment, we assume the pose of the probe images to be unknown.
We therefore must use (8.6) to compute the posterior probability that probe and
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Fig. 8.8 Recognition
accuracies for our algorithm
(labeled BFS), eigenfaces,
and FaceIt for frontal gallery
images and unknown probe
poses. Our algorithm clearly
outperforms both eigenfaces
and FaceIt

gallery images come from the same subject. We assume P(φp) to be uniformly dis-
tributed, that is, P(φp)= 1

13 . Figure 8.8 compares the recognition accuracies of our
algorithm with eigenfaces and FaceIt for frontal gallery images. Our system clearly
outperforms both eigenfaces and FaceIt. Our algorithm shows good performance up
until 45° head rotation between probe and gallery image (poses 02 and 31). The
performance of eigenfaces and FaceIt already drops at 15° and 30° rotation, respec-
tively.

8.3.3.2 Experiment 2: Known Probe Pose

In the case of known probe pose, we can use (8.5) to compute the probability that
probe and gallery images come from the same subject. Figure 8.9 compares the
recognition accuracies of our algorithm for frontal gallery images for known and
unknown probe poses. Only small differences in performances are visible.

Figure 8.10 shows recognition accuracies for all three algorithms for all possi-
ble combinations of gallery and probe poses. The area around the diagonal in which
good performance is achieved is much wider for our algorithm than for either eigen-
faces or FaceIt. We therefore conclude that our algorithm generalizes much better
across pose than either eigenfaces or FaceIt.

8.4 Face Recognition Across Pose and Illumination

Because appearance-based methods use image intensities directly, they are inher-
ently sensitive to variations in illumination. Drastic changes in illumination such
as between indoor and outdoor scenes therefore cause significant problems for
appearance-based face recognition algorithms [24, 38]. In this section, we describe
two ways to handle illumination variations in facial imagery. The first algorithm
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Fig. 8.9 Comparison of
recognition accuracies of our
algorithm for frontal gallery
images for known and
unknown probe poses. Only
small differences are visible

extracts illumination invariant subspaces by extending the previously introduced
eigen light-fields to Fisher light-fields [22], mirroring the step from eigenfaces [47]
to fisherfaces [4]. The second approach combines Bayesian face subregions with an
image preprocessing algorithm that removes illumination variation prior to recogni-
tion [20]. In both cases, we demonstrate results for face recognition across pose and
illumination.

8.4.1 Fisher Light-Fields

Suppose we are given a set of light-fields Li,j (θ,φ), i = 1, . . . ,N, j = 1, . . . ,M
where each of N objects Oi is imaged under M different illumination conditions.
We could proceed as described in Sect. 8.2.1.2 and perform PCA on the whole
set of N ×M light-fields. An alternative approach is Fisher’s linear discriminant
(FLD) [14], also known as linear discriminant analysis (LDA) [51], which uses the
available class information to compute a projection better suited for discrimination
tasks. Analogous to the algorithm described in Sect. 8.2.1.2, we now find the least-
squares solution to the set of equations

L(θ,φ)−
m∑

i=1

λiWi(θ,φ)= 0 (8.7)

where Wi, i = 1, . . . ,m are the generalized eigenvectors computed by LDA.

8.4.1.1 Experimental Results

For our face recognition across pose and illumination experiments, we used the pose
and illumination subset of the CMU PIE database [46]. In this subset, 68 subjects
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Table 8.3 Performance of eigen light-fields and Fisher light-fields with FaceIt on three face recog-
nition across pose and illumination scenarios. In all three cases, eigen light-fields and Fisher light-
fields outperformed FaceIt by a large margin

Conditions Eigen light-fields Fisher light-fields FaceIt

Same pose, different illumination – 81.1% 41.6%

Different pose, same illumination 72.9% – 25.8%

Different pose, different illumination – 36.0% 18.1%

are imaged under 13 poses and 21 illumination conditions. Many of the illumination
directions introduce fairly subtle variations in appearance, so we selected 12 of the
21 illumination conditions that span the set widely. In total, we used 68×13×12 =
10 608 images in the experiments.

We randomly selected 34 subjects of the PIE database for the generic training
data and then removed the data from the experiments (see Sect. 8.2.2.3). There were
then a variety of ways to select the gallery and probe images from the remaining
data.

Same pose, different illumination: The gallery and probe poses are the same. The
gallery and probe illuminations are different. This scenario is like traditional face
recognition across illumination but is performed separately for each pose.

Different pose, same illumination: The gallery and probe poses are different. The
gallery and probe illuminations are the same. This scenario is like traditional face
recognition across pose but is performed separately for each possible illumination.

Different pose, different illumination: Both the pose and illumination of the probe
and gallery are different. This is the most difficult and most general scenario.

We compared our algorithms with FaceIt under these three scenarios. In all cases
we generated every possible test scenario and then averaged the results. For “same
pose, different illumination,” for example, we consider every possible pose. We gen-
erated every pair of disjoint probe and gallery illumination conditions. We then
computed the average recognition rate for each such case. We averaged over ev-
ery pose and every pair of distinct illumination conditions. The results are included
in Table 8.3. For “same-pose, different illumination,” the task is essentially face
recognition across illumination separately for each pose. In this case, it makes lit-
tle sense to try eigen light-fields because we know how poorly eigenfaces performs
with illumination variation. Fisher light-fields becomes fisherfaces for each pose,
which empirically we found outperforms FaceIt. Example illumination “confusion
matrices” are included for two poses in Fig. 8.11.

For “different pose, same illumination,” the task reduces to face recognition
across pose but for a variety of illumination conditions. In this case there is no intr-
aclass variation, so it makes little sense to apply Fisher light-fields. This experiment
is the same as Experiment 1 in Sect. 8.2.3 but the results are averaged over every
possible illumination condition. As we found for Experiment 1, eigen light-fields
outperforms FaceIt by a large amount.
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Fig. 8.11 Example “confusion matrices” for the “same-pose, different illumination” task. For a
given pose, and a pair of distinct probe and gallery illumination conditions, we color-code the
average recognition rate. The superior performance of Fisher light-fields is witnessed by the lighter
color of (a–b) over (c–d)

Finally, in the “different pose, different illumination” task both algorithms per-
form fairly poorly. However, the task is difficult. If the pose and illumination are
both extreme, almost none of the face is visible. Because this case might occur in
either the probe or the gallery, the chance that such a difficult case occurs is large.
Although more work is needed on this task, note that Fisher light-fields still outper-
forms FaceIt by a large amount.

8.4.2 Illumination Invariant Bayesian Face Subregions

In general, an image I (x, y) is regarded as product I (x, y)=R(x, y)L(x, y), where
R(x, y) is the reflectance and L(x, y) is the illuminance at each point (x, y) [26].
Computing the reflectance and the illuminance fields from real images is, in general,
an ill-posed problem. Our approach uses two widely accepted assumptions about
human vision to solve the problem: (1) human vision is mostly sensitive to scene
reflectance and mostly insensitive to the illumination conditions; and (2) human
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Fig. 8.12 Result of removing illumination variations with our algorithm for a set of images from
the PIE database

vision responds to local changes in contrast rather than to global brightness levels.
Our algorithm computes an estimate of L(x, y) such that when it divides I (x, y) it
produces R(x, y) in which the local contrast is appropriately enhanced. We find a
solution for L(x, y) by minimizing

J (L)=
∫ ∫

Ω

ρ(x, y)(L− I )2 dx dy + λ
∫ ∫

Ω

(
L2
x +L2

y

)
dx dy. (8.8)

Here, Ω refers to the image. The parameter λ controls the relative importance
of the two terms. The space varying permeability weight ρ(x, y) controls the
anisotropic nature of the smoothing constraint. See Gross and Brajovic [20] for
details. Figure 8.12 shows examples from the CMU PIE database before and after
processing with our algorithm. We used this algorithm to normalize the images of
the combined pose and illumination subset of the PIE database. Figure 8.13 com-
pares the recognition accuracies of the Bayesian face subregions algorithm for orig-
inal and normalized images using gallery images with frontal pose and illumination.
The algorithm achieved better performance on normalized images across all probe
poses. Overall the average recognition accuracy improved from 37.3% to 44%.

8.5 Conclusions

One of the most successful and well studied approaches to object recognition is the
appearance-based approach. The defining characteristic of appearance-based algo-
rithms is that they directly use the pixel intensity values in an image of the object
as the features on which to base the recognition decision. In this chapter, we de-
scribed an appearance-based method for face recognition across pose based on an
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Fig. 8.13 Recognition
accuracies of the Bayesian
face subregions algorithm on
original and normalized
images using gallery images
with frontal pose and
illumination. For each probe
pose, the accuracy is
determined by averaging the
results for all 21 illumination
conditions. The algorithm
achieves better performance
on normalized images across
all probe poses. The probe
pose is assumed to be known

algorithm to estimate the eigen light-field from a collection of images. Unlike previ-
ous appearance-based methods, our algorithm can use any number of gallery images
captured from arbitrary poses and any number of probe images also captured from
arbitrary poses. The gallery and probe poses do not need to overlap. We showed that
our algorithm can reliably recognize faces across pose and also take advantage of the
additional information contained in widely separated views to improve recognition
performance if more than one gallery or probe image is available.

In eigen light-fields, all face pixels are treated equally. However, differences ex-
ist in how the appearance of various face regions change across face poses. We
described a second algorithm, Bayesian face subregions, which derives a model
for these differences and successfully employs it for face recognition across pose.
Finally, we demonstrated how to extend both algorithms toward face recognition
across both pose and illumination. Note, however, that for this task recognition ac-
curacies are significantly lower, suggesting that there still is room for improvement.
For example, the model-based approach of Romdhani et al. [40] achieved better
results across pose on the PIE database than the appearance-based algorithms de-
scribed here.
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Chapter 9
Skin Color in Face Analysis

J. Birgitta Martinkauppi, Abdenour Hadid, and Matti Pietikäinen

9.1 Introduction

Color is a common feature used in machine vision applications. As a cue, it offers
several advantages: easy to understand and use. Implementations can be made com-
putationally fast and efficient, thus providing a low level cue. Under stable and uni-
form illumination, color cue remains robust against geometrical changes. Its ability
to separate the targets from background depends on the color dissimilarity between
targets and background. In some scenes, the color itself is enough for object detec-
tion.

The main difficulty in using color in machine vision applications is that the cam-
eras are not able to distinguish changes of surface colors from color shifts caused
by varying illumination spectra. Thus, color is sensitive to changes in illumination
which are common under uncontrolled environments. The changes can be due to
varying light level, for example, shadowing, varying light color due to changes
in spectral power distribution (like daylight and fluorescent light source), or both.
Cameras and their settings may produce different appearances which are different
from the perception of human vision system.

Several strategies have been employed to reduce the illumination sensitivity. In
one strategy, the color information is separated into two components, color inten-
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sity and color chromaticity. Use of color chromaticity component reduces the effect
of varying light levels. To cancel the effect of illumination color and thus differ-
ent spectral power distributions, numerous color constancy algorithms have been
suggested, but their success has been limited [6]. A different strategy to these is
to tolerate or adapt the model to the illumination changes. This strategy can pro-
duce promising results even under drastic variations in target colors as shown in this
chapter for facial recognition.

It is often preferable to get rid as much as possible of the dependencies on lighting
intensity. The perfect case would be to also cancel-out the effect of the illuminant
color (by defining a color representation which is only a function of the surface re-
flectance) but, thus far this has not been achieved in machine vision. The human
visual system is superior in this sense, since human visual perception in which the
color is perceived by the eye depends quite significantly on surface reflectance, al-
though the light reaching the eye is a function of surface reflectance, illuminant
color and lighting intensity.

For face detection, color has been an intriguing and popular cue. It is often used
as a preprocessing step to select regions of interests for further, more computation-
ally demanding processing. For instance, with the appearance-based face detection,
an exhaustive scan (at different locations and scales) of the images is conducted
when searching for the faces [54]. However, when the color cue is available, one
can reduce the search regions by pre-processing the images and selecting the skin-
like areas only.

This chapter deals with the role of color in facial image analysis such as face
detection and recognition. First, we introduce the use of color information in the
field of facial image analysis in particular (Sect. 9.2). Then, in Sect. 9.3, we give
an introduction to color formation and discuss the effect of illumination on color
appearance, and its consequences. The skin data can come from different sources
like real faces, photos or print. Separating the sources of skin data is presented in
Sect. 9.4, and skin color modeling is discussed in Sect. 9.5. Section 9.6 reviews the
use of color in face detection, while the contribution of color to face recognition is
covered in Sect. 9.7. Finally, conclusions are drawn in Sect. 9.8.

9.2 Color Cue and Facial Image Analysis

The properties of the face pattern pose a very difficult problem for facial image
analysis: a face is a dynamic and nonrigid object which is difficult to handle. Its ap-
pearance varies due to changes in pose, expressions, illuminations and other factors
such as age and make-up. As a consequence, most of the facial analysis tasks gener-
ally involve heavy computations due to the complexity of facial patterns. Therefore,
one may need some additional cues, such as color or motion, in order to assist and
accelerate the analysis. These additional cues also offer an indication of the relia-
bility of the face analysis results: the more the cues support the analysis, the more
one can be confident about the results. For instance, with the appearance-based face
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Fig. 9.1 A general block diagram of face analysis which shows different phases of facial image
analysis

detection an exhaustive scan (at different locations and scales) of the images is con-
ducted when searching the faces [54]. However, when the color cue is available, one
can reduce the search regions by pre-processing the images and selecting only the
skin-like areas. Therefore, it is not surprising that the color of skin has been com-
monly used to assist face detection. Also, in face recognition, it has been argued
that color does play a role under degraded conditions by facilitating low-level facial
image analysis such as better estimations of the boundaries, shapes and sizes of fa-
cial features [56]. As mentioned above, among the advantages of using color is the
computational efficiency and robustness against some geometric changes such as
scaling and rotation, when the scene is observed under a uniform illumination field.
However, the main limitation with the use of color lies in its sensitivity to illumina-
tion changes (especially changes in the chromaticity of the illuminant source which
are difficult to cancel-out).

Let us consider the general block diagram of face analysis, shown in Fig. 9.1.
The color cue is involved at different stages [36]. In the first stage, the color images
(or video sequences) are acquired and preprocessed. The preprocessing may include
gamma correction, color space transformation, and so on. It is often preferable to
get rid as much as possible of the dependencies on lighting intensity.

Among the different stages shown in Fig. 9.1, the use of color in face detection is
probably the most obvious. It is generally used to select the skin-like color regions.
Then, simple refining procedures can be launched to discriminate the faces from
other skin-like regions such as hands, wood, etc. Thus, much faster face detectors
are generally obtained when the color cue is considered.

Using the fact that some facial features, such as eyes, are darker than their sur-
rounding regions, holes should then appear in the face area when labeling the skin
pixels. Such observation is commonly exploited when detecting facial features in
color images [10, 15, 54].

Does color information contribute to face recognition? The answer to this ques-
tion is not obvious, although some studies have suggested that color does play a role
in face recognition as well, and this contribution becomes evident when the shape
cues are degraded [56]. Section 9.7 discusses this issue.
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9.3 Color Appearance for Color Cameras

9.3.1 Color Image Formation and Illumination

Color cameras reproduce the scene with three components which are typically red
(R), green (G) and blue (B). The components are named after the spectral range
over which the response was integrated. An example of color camera filters is shown
in Fig. 9.2. The spectral filters typically operate in the visible wavelength spectrum
range, that is, 400 nm–700 nm. Of course, different filter selections affect the ob-
tainable descriptor set and most likely produce different values for the same input.

The descriptors themselves are obtained by filtering the color signal C(λ) with
suitable spectral filters and integration over the filtered signal. The color signal is
a spectral distribution of electromagnetic radiation, which is the light from an illu-
mination source, light reflected from a surface or a combination of these. This is
similar to calculation of human vision responses (see, e.g., [50]).

The following simple model represents camera output with white balancing:

D =
∫
ηD(λ)Ip(λ)S(λ)dλ∫
ηD(λ)Ic(λ)dλ

, (9.1)

where D is R,G or B response, λ is the wavelength, p is prevailing (illumination)
and c is calibration (illumination), η is the spectral responsivity of a spectral filter, I
is the spectral power distribution of the light (SPD), and S is the spectral reflectance
of the surface. The nominator of (9.1) alone describes image formation as a sum of
the camera sensitivity, the illumination SPD and the reflectance over the wavelength
range. Thus, for each pixel, the output value depends on the illumination, reflectance
and camera sensitivity. This is a very simplified presentation of the formation but
can be used as a basic theoretical estimation of the camera response to the input
light. The denominator models the white balance. White balance means adjusting
gains of camera so that the cameras response for white (or very bright gray) is equal
in every channels. For example, the response of a white is adjusted to (255, 255,
255).

Equation (9.1) can be used to simulate the effect of illumination. When the pre-
vailing and calibration illumination are the same, then the output image is called as
a canonical or calibrated image and colors are canonical colors. This is described
in more detail in Sect. 9.3.2. The prevailing and calibration illumination can also be
different, and the output image in this case is called non-canonical image. The mod-
eling is, however, more problematic. The problem of normalization can be demon-
strated theoretically [32]. Let us assume that the prevailing illumination is originally
Inp and its normalization factor is the constant factor fp , and the calibration illumi-
nation is in the unnormalized format Inc, which is normalized by the factor constant
fc. For example, if we insert these variables into (9.1), we can derive the following
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Fig. 9.2 Spectral
responsivity curves of a Sony
camera, originally obtained
from a graph provided by the
manufacturer

format:

R =
∫
ηR(λ)Ip(λ)S(λ)dλ∫
ηR(λ)Ic(λ) dλ

=
∫
ηR(λ)

Inp(λ)

fp
S(λ)dλ

∫
ηR(λ)

Inc(λ)
fc

dλ
= fc

fp

∫
ηR(λ)Inp(λ)S(λ)dλ∫
ηR(λ)Inc(λ) dλ

.

(9.2)
The ratio fc/fp is 1 only when the illumination conditions are the same. Different
choices for normalization methods may produce different results [32].

9.3.2 The Effect of White Balancing

The effect of white balancing on the perceived images and colors is examined in
more details in this chapter. White balancing is one of the important factors affecting
image quality. The white balancing factor depends on the illumination. Many digital
images have been taken under canonical conditions or very near to them to avoid
distortions in colors. The color distortions are easily noticed and taken as annoying
artifacts. This is especially true for certain colors which humans remember very
well; thus, they are referred to as memory colors. One of these memory colors is,
quite naturally, skin tone.

Humans are very sensitive to any distortion in skin tones [12, 25], thus, it is not
so surprising that these have been investigated a lot. Skin tones refer here to the
correct or acceptable colors for skin as perceived by a human. Skin colors refers to
all those RGBs which a camera can perceive as skin under different illuminations.
Note that human and cameras can perceive skin color differently.

In cameras, white balancing can be done automatically or manually. In manual
selection, the user selects the best option for the prevailing illumination, while auto-
matic option provides settings from a program. However, it is not always possible to
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Fig. 9.3 The face is illuminated by the nonuniform illumination field and the white balancing
partially fails. The color appearance of the face varies at different parts of the light field

select or compute proper white balancing factors. This is especially true under vary-
ing, nonuniform illumination, which can cause more drastic color changes. For ex-
ample, it is common to have more than one light source on a scene. If these sources
with different SPDs shine over an object, it is not possible to conduct the correct
white balancing for the whole image. This is demonstrated in Fig. 9.3. The face
is imaged under a nonuniform illumination field. The camera was balanced under
the light of fluorescent lamps on the ceiling and thus the part of the face under only
fluorescent illumination field appears in skin tones. However, the daylight from win-
dows causes a bluish color shift on the right side of the face image. The colors are
distorted because the white balancing fails partially. The distortion between these
two sides varies to a different degree as a function of illumination field. The nonuni-
form illumination fields are encountered commonly, but they are rarely considered
in face detection or recognition applications.

Of course, one can apply some color correction techniques to improve the quality.
For example, Do et al. used sclera region of the eye to estimate illumination color
and then apply skin detection [4]. Even a nonuniform illumination field is possible
to correct if the light colors are given by the user [16]. However, the failure in white
balancing may cause information loss, which is generally very difficult to correct
properly.

9.3.2.1 Canonical Images and Colors

Even though an image is taken under canonical condition, it does not guarantee that
the objects appear in the same colors under different canonical illumination. White,
grays and black do appear at least in most of the cases very similarly under different
light sources, but of course there are some limitations. It is not possible even in the-
ory to perceive all RGB components for a gray object if the prevailing illumination
does not have spectral output in components’ spectral range. The ideal camera RGB
responses for white in canonical case should have equal RGB values even under
different light sources, given that the sources are not very extreme. Cameras do re-
produce a white surface quite well over a range of light sources, but of course there
is a physical limitation due to gain control, for example.

If a camera has linear response over a certain input signal range, then those grays
falling the range will be reproduced in gray colors if the color signal from scene falls
into the input range. The grays here refer to those objects whose spectra is constant
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Fig. 9.4 Skin complexions of three skin groups: pale, yellowish, and dark. Their reflectances are
smooth and similar, mainly separated by their levels. Measured skin reflectances are available, for
example, in the Physics-based face database [31]

over the wavelength range, but the value of this constant is smaller than the max-
imum value (“white”). When the spectra is not constant over the range, the effect
of illumination cannot be canceled out from the reproduced RGB values. Thus, the
object colors will be affected to a different degree between different light sources.
Therefore, a camera can reproduce only the achromatic colors similarly under dif-
ferent light sources assuming that the camera is white balanced to the prevailing
light sources. This means that skin can have different colors under images taken
with different conditions.

The reproduction differences can be demonstrated very easily. First, the objects
need to be selected, and, in this case, three skin complexions (pale, yellowish and
dark) are used. The spectral reflectances for the complexions are shown in Fig. 9.4.
The reflectances are smooth and similar. They are separated mainly by their level,
but not their shape [8, 17, 51], which suggests the similar reproduction in color.
Due to this, skin spectra can be reconstructed at high quality using only three ba-
sis vectors [18, 38]. The similarity is due to the colorants (melanin, carotene, and
hemoglobin) determining the reflectance [5]. As a natural object, skin has not uni-
form coloration.

Using (9.1), the RGB values for skin are calculated using the Sony camera’s
responses. The RGB values are then converted into NCC chromaticity. These the-
oretical skin chromaticities are displayed in Fig. 9.5. The canonical skin values are
dissimilar under different illuminations even in an ideal case.

Cameras produce even bigger variations in skin colors: Fig. 9.6 shows skin chro-
maticities for a Sony camera taken under the same light sources as the ones used
in simulation (Horizon 2300 K or light at sunset/sunrise), Incandescent A 2856 K,
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Fig. 9.5 Canonical skin
tones were obtained by
converting the theoretical skin
RGBs to Normalized Color
Coordinate (NCC) space

Fig. 9.6 The skin tone appearance difference can be clearly observed in the four images taken
with the Sony camera (see Fig. 9.2). From the selected area marked with a box the RGB values
were taken and converted to NCC color space. As shown in the graph below the images, the areas
of canonical chromaticities more or less overlap

fluorescent lamp TL84, and daylight D65 6500 K. The overlap between loci is sig-
nificant. Note that the locus obtained using Horizon light covers a bigger area than
for other light sources. This might be due to unsuccessful white balancing.
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Fig. 9.7 The color appearance shift is apparent in (a) and (b). The color temperature of the light
sources increases from left to right. The arrow indicates the change in the color of the light. The
limited dynamic response range causes distortion in color: pixels can saturate to a maximum value
(the rightmost image at the upper row) or be under-exposed to zero (the leftmost image at the lower
row)

9.3.2.2 Non-canonical Images and Colors

If images are not taken under the illumination used in camera calibration, the colors
are distorted even more. The distortion will appear as a shift in colors, as can be seen
in Fig. 9.7 which displays images taken under four different light sources while the
camera is calibrated to one of them. In the upper image series, the camera was
calibrated to the light source Horizon (first image on the left) and after light source
was changed to incandescent A, TL84 and daylight, respectively. In the lower image
series, the camera was calibrated to daylight (first image on the right) and then
images were taken under TL84, A and Horizon.

The skin color tends to shift in the direction of illumination color change. More
reddish prevailing illumination causes color shift towards red, while more bluish one
adds blue components. Of course, a light source with strong spikes in spectra can
cause additional distortions for certain colors. Since cameras have limited dynamic
response ranges, the colors can be distorted also due to saturation or under-exposure.
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Fig. 9.8 The skin NCC chromaticities were simulated using the data of the Sony camera (see
Fig. 9.2) and the skin reflectances from Fig. 9.4. a shows the possible skin chromaticities when
the camera was calibrated to a Planckian of 3000 K and b when the calibration illumination was
a Planckian of 6000 K. The chromaticity range depends on the calibration illumination and the
possible color temperature range of prevailing illuminations

Manual or automatic brightness control in the camera can alleviate this problem, but
manual operation tends to be tedious and automatic control might cause problems
by itself.

Figure 9.8 shows simulated skin chromaticities using only one calibration. The
chromaticity range obtained depends on the calibration light and the color temper-
ature range of the prevailing illumination. The possible range of skin colors (lo-
cus [44]) is affected by the amount of calibrations. Figure 9.8 shows that different
white balancing illuminants have dissimilar ranges of possible skin chromaticities
and produce separate skin locus. When the loci of all different calibrations are gath-
ered together, a bigger locus is obtained, as shown in Fig. 9.9. Of course, the illumi-
nation range as well as different camera settings affect the locus size.

9.4 Separating Sources of Skin Data

Many materials, like inks and dyes, are used to imitate the appearance of skin. Some
studies have been already done to examine how well the imitation works and how
the real skin can be separated from imitation.

The skin data can come from different sources like real faces, photos or print [37].
The source cannot often be determined from normal RGB data, so spectral data is
needed. An interesting spectral data region is near infrared. Figure 9.10 shows near
infrared spectra for real faces, facial skin from photos and facial skin from a print of
three different skin complexions. The spectra from photos and prints, which are flat,
are clearly different from that of real faces. Thus simple ratio between two channels
can be used to separate real skin from other sources. The level difference in real
spectra between different complexions start to diminish as a degree of wavelength.
Skin complexion groups are separable in print spectra, but not in photo spectra.
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Fig. 9.9 The skin locus
formed with all prevailing
illumination/white balancing
combinations

Fig. 9.10 Near infrared skin spectra from real faces (left), photos (middle) and paper (right)

The skin color appearance for mannequins is also sought after, but it clearly is
different from real skin [1]. Kim et al. [24] have studied the differences between
masked fake faces and real skin. They concluded that wavelengths of 685 nm and
850 nm can be used to discriminate them.

9.5 Modeling Skin Colors

Skin color model is a description of possible skin tones. To create such a model, one
has to first select the color space in which the model is formed, then the mathemat-
ical model to describe the possible skin colors, and finally, the data upon which the
model is defined. The performance of the model depends on all these factors and is
a trade-off between generality of the model and accuracy for a certain image.

Skin detection methods have been compared in several studies using different
data [22, 35, 46]. The studies disagree, which might be because the optimality of
the model depends on its purpose, data, material and modeling parameters.
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9.5.1 Behavior of Skin Complexions at Different Color Spaces
Under Varying Illumination

Color space in which skin data is processed, has also an effect on detection. Not all
color spaces are equal: they can map RGB values differently, which can be used to
separate certain colors. Even a mixture of color spaces can be used like in [47], at
least for canonical or nearly canonical images.

As mentioned earlier, a color space conversion does not remove chromaticity
shifts due to illumination or effects caused by noise. In fact, noise can be detri-
mental for low RGB values or near thresholds. The brightness control or lack of
it can have a strong effect on the possible skin chromaticities. If there is no auto-
matic brightness or gain controller, it is possible for one channel to have low values
or even underclipping. Therefore, the skin colors have been studied under varying
illuminations [34].

RGB coordinates are device-oriented, but they can be converted into human
vision oriented spaces like XYZ or CIE Lab. A correct conversion requires an
illumination-dependent transform matrix, including also the effect of device char-
acteristics. Of course, there exist general transforms matrices. None of the matrix
transforms reduce the effect of changing light since it has already affected RGBs.

The more device oriented color spaces can be classified, based on the conversion
method, into two groups: those using linear transforms from RGB and those ob-
tained via non-linear transforms. For example, linear transform based color spaces
are: I1I2I3, YES, YIQ, YUV, YCrCb (Rec. 601–5 and 709). Among the nonlinear
transforms are: NCC rgb, modified rgb, natural logarithm ln-chromaticity, P1P2,
l1l2l3, ratios between channels (G/R, B/R, and B/G), HSV, HSL, modified ab, TLS
and Yuv.

Overlap between different skin complexions vary in color spaces. In [34], the
overlaps between two complexions (pale and yellowish) were compared in different
color spaces and across different cameras: the overlaps between them were reason-
ably high in all color spaces (ranging from 50–75 percent) when using different
canonical images. When using both canonical and uncanonical images, the overlap
still increased due to the fact that more colors fall into the region. However, when
comparing skin data from different cameras, the overlaps between skin RGBs were
smaller and dependent on the cameras used in comparison. Therefore, one can argue
that color spaces and cameras used do have an effect on skin detection and thus for
face recognition.

9.5.2 Color Spaces for Skin

Several color spaces have been suggested for general skin color modeling, but thus
far, none of them has been shown to be superior to the other. The list of compar-
ison studies for color spaces can be found, for example, in [33] or [22]. However,
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it seems that those spaces in which intensity is not separated so clearly from chro-
maticity are similar to RGB. The separation can be evaluated using linear or lin-
earized RGB data: RGB is transformed into color space using substitution R→ cR,
G→ cG, and B→ cB , in which c describes a uniform change in the intensity lev-
els. If the factor c does not cancel out for chromaticity descriptors, the separation is
incomplete.

Normalized color coordinates (NCC) are quite often used in modeling, and they
separates the intensity and chromaticity. To avoid the intensity changes, only the
chromaticity coordinates are used. In [46], different color spaces are compared in
terms of efficiency and transferability of the model. The performance of NCC and
CIE xy was superior to several other skin color models. It was also shown in [55]
that NCC has a good discrimination power. More details of color spaces for skin
detection can be found in [33] or [22].

A color can be uniquely defined in by its intensity and two chromaticity coordi-
nates since r + g + b = 1. The chromaticity coordinates for NCC color space are
defined as

r = R

R +G+B , (9.3)

g = G

R +G+B . (9.4)

The intensity is canceled from chromaticity coordinates since they are calculated
by dividing the descriptor value of the channel by the sum of all descriptor values
(intensity) at that pixel.

The modeling can be done using only the chromaticity coordinates to reduce the
effect of illumination intensity changes, which are common in videos and images.
Some models do include intensity (like in [14]), but more data is needed to construct
the model and computational costs are increased due to a third component.

9.5.3 Skin Color Model and Illumination

Section 9.3 showed that illumination affects skin color both in canonical and un-
canonical images. What is more, this dependency is camera-specific: the camera
sensors and internal image preprocessing of the camera affect the color production
and thus on the end results (see Fig. 9.11). Therefore, creating a universal model is
difficult.

Many face detection algorithms assume that the images are taken under canonical
or near canonical conditions. For many data sets, this is true. An example of this kind
of image data set is a set of personal photos.

When the illumination varies, the previous approaches have a high risk of fail-
ure. Of course, the images can be subjected to color correction or color constancy
algorithm, but sometimes this can lead even more serious color distortions [35].
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Fig. 9.11 The camera and its properties determine the skin locus, as indicated by the loci of four
cameras. However, some regions are common to all, most notable the region of skin tones

Color correction based approach has been suggested, for example, by Hsu et
al. [15]: the colors in image are corrected so that the skin would appear in skin
tones and after this segment the image using skin color model. The color correction
is based on a pixel with a high brightness value which are assumed to belong to
a white object. These pixels are used to calculate correction coefficient which are
applied to the image. This approach can fail for many reasons like data loss due to
saturation, or if a pixel with high brightness belongs to a nonwhite object. The latter
case is demonstrated in Fig. 9.12.

For a more general skin model, one should use the knowledge of illumination
changes, calibration and camera settings like in the skin locus-based approach [43].
The drawback of this model is that it is not so specific as canonical models—more
color tones are included. Thus, more nonskin objects will be considered skin candi-
dates. Since color itself is rarely enough to determine whether the target is skin or
not, the face candidates are in case subjected for further processing.

9.5.4 Mathematical Models for Skin Color

The model for skin color can be either a mathematically defined area in color space
or a statistical approach in which a probability to belong skin is attached to color
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Fig. 9.12 The upper row displays the color segmentation results using Hsu et al. model [15]
without the color correction part. The lower row shows the segmentation with their color correction
method. The color correction fails because the yellow curtains have the highest brightness values
and is assumed to be a white object

tones. The model may be fixed or adaptive, and in the latter case, the update depends
whether it is applied on single images or video frames. A more detailed review can
be found, for example, in [33] or [22].

The area based approach uses a spatial constraint in the color space to define
possible skin areas. The shape of the constraint can be simple thresholds like in [3]
or a more complex shaped function like in [15]. Generally no thresholding is done,
since the colors that fall inside the area are considered skin. These models often
assume that skin has or can be corrected to have skin tone appearance. An exception
is the skin locus in which the illumination changes are included in the model.

It is possible to adapt the model even for single images (e.g., [3, 26, 45]) although
the successfulness depends on the validity of assumptions behind the adaptation cri-
teria. The adaptation schema generally use a general skin model obtained from a
representative image set and after that fine-tune into an image specific model. For
example, in Cho et al. [3], the fine-tuning phase assumes that the skin color his-
togram is unimodal and skin color occurs mainly on real skin areas. This approach
can fail if the image has dominant skin-colored, nonfacial object or the histogram is
not unimodal.

The challenge of the probability-based approach is to be able to reliably find the
probability distribution of skin colors. This requires collecting a representative data
set of images for forming the model. An example of a statistical model is the one
presented by Jones and Rehg [21]. They calculate the histogram and Gaussian mod-
els using over 1 billion labeled pixels. Many other statistical models like SOM or
neural networks has been suggested and a review of them can be found, for exam-
ple, in [33] or [22]. In addition to the statistical model, one has to determine the
threshold limit for separating the skin from nonskin. It is difficult to automatically
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Fig. 9.13 Two consecutive frames are taken from a video sequence (the first and second image
from the left). The facial skin areas of the frames are manually extracted and their skin RGB values
are then converted to the NCC chromaticity space. The chromaticities from these two frames are
marked with different colors in the right image. As can be observed from the rightmost image, the
chromaticities overlap significantly

find the threshold value because the probability model found may not be valid for
all images.

9.5.4.1 Video Sequences

The processing of video sequences is similar to that of single, independent images.
Thus, the skin detection presented earlier can also be used for videos. The fixed
skin color models are suitable for videos in which changes in illumination are min-
imal. Generally, this is not the case and the skin color models need to be updated.
The model adaptation relies often on the dependencies between consecutive frames,
which is true for many videos: The consecutive frames often exhibit sequential de-
pendency. This can be observed in Fig. 9.13: the overlap between the chromaticities
from two consecutive frames is significant.

If the illumination changes between images are slow (no abrupt, drastic ob-
ject color changes) or the person moves in a nonuniform illumination field slowly
enough, the skin color model can adapt to the color changes. This required some
constraint for selecting the pixels used in the model update. Three different adap-
tive schemes have been suggested: two of them use spatial constraints [39, 57] (see
Fig. 9.14) and one skin locus [35]. The basic idea is the same: to use some constraint
to select the pixels for model updating. The spatial constraints use different ideas to
select candidate pixels from a located face: the method of Raja et al. [39] updates the
skin color model using pixels inside the localized face area. The pixels are selected
from an area which is 1/3 of the localization area and 1/3 from the localization
boundaries. Yoo and Oh [57] argued that the localization should resemble the shape
of the object (face) and they used all pixels inside the elliptical face localization.
The skin locus can be used in two ways: either the whole locus or partial locus is
used to select skin colored pixels from the localized face and its near surroundings.
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Fig. 9.14 Spatial constraints
suggested for adaptive skin
color modeling: the left image
shows the method suggested
by Raja et al. [39]. The outer
box indicates the localized
face while the pixels inside
the inner box are used for
model updating. The image
on the right shows elliptical
constraint by Yoo and Oh [57]

There are many possible methods for updating the skin color model, but perhaps
a common method is the moving average, as presented in (9.5):

M̌ = (1 − α) ∗Mt + α ∗Mt−1

max((1 − α) ∗Mt + α ∗Mt−1)
, (9.5)

where M̌ is a new, refreshed model,M is the model, t is the frame number and α is a
weighting factor. Quite often, the weighting factor is set to 0.5 to get equal emphasis
on the skin color model of current and previous frames. The moving average method
provides a smooth transition between models from different frames. It also reduces
the effect of noise, which can change pixel color without any variation in external
factors and thus be detrimental to the models.

However, the spatial constraint models have been shown to be very sensitive
to localization errors, therefore, they can easily adapt to nonskin objects [35]. The
failure due to these constraints can happen even under a fairly moderate illumination
change. In Fig. 9.15, Raja et al.’s method has failed while tracking a face on a video
sequence and the skin color model is adapted to nonskin colored target, as shown in
this image.

The constraint suggested by Raja et al. easily fails under a nonuniform illumi-
nation field change, as demonstrated in Fig. 9.16. The model is updated using the
pixel inside the localization and therefore, it can adapt only to global illumination
changes, but not to the nonuniform illumination field variation.

The correct localization of face is not so sensitive for a skin locus based approach
since the nonskin colored pixels can be filtered out. Large skin colored objects con-
nected to the face are problematic and cues other than color are needed to solve
this.

9.6 Color Cue for Face Detection

As mentioned above, color is a useful cue for face detection as it can greatly reduce
the search area by selecting only the skin-like regions. However, it is obvious that
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Fig. 9.15 The face tracking based on Raja et al.’s method failed and adapted to a nonfacial target.
The left image displays the “localized face”. The right image shows the pixels selected by the
current skin color model. The red box shows the pixels used for refreshing the model

Fig. 9.16 The constraint suggested by Raja et al.’s selects a nonpresentative set of skin pixels

the use of skin color only is not enough to distinguish between faces and other
objects with a skin-like appearance (such as hands, wood, etc.). Therefore, other
procedures are needed to verify whether the selected regions are (or contain) faces or
not. Depending on the robustness of the skin model and changes in the illumination
conditions, one can notice two cases:

• Case #1: The initial skin color detection step produces consistently reliable re-
sults. The skin color model is valid for the illumination conditions, the camera
and its settings. The skin color model can be designed either for stable, controlled
illumination (typical case) or for variable illumination (skin locus). In such cases,
it is generally enough to consider each connected resultant component from the
skin detection as a face candidate. Then, one can verify the “faceness” of the
candidate by simple and fast heuristics.

• Case #2: The initial skin color detection step produces unsatisfactory results or
even fails. In this case, the skin color model does not correspond to the prevailing
illumination, used camera or settings of the camera. One can hope that the results
would indicate the locations of the faces, but their size estimation is too unreli-
able. Therefore, a different method for face detection (either an appearance-based
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or feature-based one) should be used when searching for the faces in and around
the detected skin regions.

In both cases, the use of color accelerates the detection process. In the following,
we review some methods based on color information for detecting faces. Most of
the color-based face detectors start by determining the skin pixels which are then
grouped using connected component analysis. Then, for each connected compo-
nent, the best fit ellipse is computed using geometric moments, for example. The
skin components which verify some shape and size constraints are selected as face
candidates. Finally, features (such as eyes and mouth) are searched for inside each
face candidate based on the observation that holes inside the face candidate are due
to these features being different from skin color. Therefore, most of the color-based
face detection methods mainly differ in the selection of the color space and the de-
sign of the skin model. In this context, as seen in Sect. 9.5, many methods for skin
modeling in different color spaces have been proposed. For comparison studies, re-
fer to [35, 46] and [34].

Among the works using color for face detection is Hsu et al.’s system which con-
sists of two major modules: (1) face localization for finding face candidates, and
(2) facial feature detection for verifying detected face candidates [15]. For finding
the face candidates, the skin tone pixels are labeled using an elliptical skin model
in the YCbCr color space, after applying a lighting compensation technique. The
detected skin tone pixels are iteratively segmented using local color variance into
connected components which are then grouped into face candidates. Then, the fa-
cial feature detection module constructs eye, mouth and face boundary maps to ver-
ify the face candidates. Good detection results have been reported on several test
images. However, no comparative study has been made thus far.

In [7], Garcia and Tziritas presented another approach for detecting faces in color
images. First, color clustering and filtering using approximations of the YCbCr and
HSV skin color subspaces are applied to the original image, providing quantized
skin color regions. Then a merging stage is iteratively performed on the set of ho-
mogeneous skin color regions in the color quantized image, in order to provide a set
of face candidates. Finally, constraints related to shape and size of faces are applied,
and face intensity texture is analyzed by performing a wavelet packet decomposi-
tion on each face area candidate in order to detect human faces. The authors have
reported a detection rate of 94.23% and a false dismissal rate of 5.76% on a data set
of 100 images containing 104 faces. Though the method can handle nonconstrained
scene conditions, such as the presence of a complex background and uncontrolled
illumination, its main drawback lies on that fact that it is computationally expensive
due to its complicated segmentation algorithm and time-consuming wavelet packet
analysis.

Sobottka and Pitas presented a method for face localization and facial feature ex-
traction using shape and color [42]. First, color segmentation in HSV space is per-
formed to locate skin-like regions. After facial feature extraction, connected com-
ponent analysis and best fit ellipse calculation, a set of face candidates are obtained.
To verify the “faceness” of each candidate, a set of eleven lowest-order-geometric



242 J.B. Martinkauppi et al.

Fig. 9.17 Examples of face detection results using the color-based face detector in [10]

moments is computed and used as inputs to a neural network. The authors reported
a detection rate of 85% on a test set of 100 images.

In [11], Haiyuan et al. presented a different approach for detecting faces in color
images. Instead of searching for facial features to verify the face candidates, the
authors modeled the face pattern as a composition of a skin part and a hair part.
They made two fuzzy models to describe the skin color and hair color in CIE XYZ
color space. The two models are used to extract the skin color regions and the hair
color regions which are compared with the prebuilt head-shape models by using a
fuzzy theory based pattern-matching method to detect the faces.

In [10], Hadid et al. presented an efficient color-based face detector, using the
skin locus model to extract skin-like region candidates, and then performing the se-
lection by simple yet efficient refining stages. After ellipse fitting and orientation
normalization, a set of criteria (face symmetry, presence of some facial features,
variance of pixel intensities and connected component arrangement) are evaluated
to keep only facial regions. The refining stages are organized in a cascade to achieve
high accuracy and to keep the system fast. The system was able to detect faces and
deal with different conditions (size, orientation, illumination and complex back-
ground). Figure 9.17 shows some detection examples performed by the system un-
der different conditions.

Several other approaches using color information for detecting and tracking faces
and facial features in still images and video sequences have been proposed [13, 54].
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Fig. 9.18 Examples of face detection results using the color-based face detector in [9]

It appears that most of the methods have not been tested under practical illumination
changes (usually only mild changes are considered), which makes them belonging
to the first category (Case #1) described above.

More recently, to detect faces in natural and unconstrained environments, Hadid
and Pietikänen [9] proposed an approach which considers the fact that color is a very
powerful and useful cue for face detection, but unfortunately, it may also produce
unsatisfactory results or even fail. The proposed approach consists of first prepro-
cessing the images to find the potential skin regions, avoiding thus scanning the
whole image when searching for faces, and then performing an exhaustive search
in and around the detected skin regions. The exhaustive search is performed using
a two-stage SVM based approach, exploiting the discrimination power of the Lo-
cal Binary Patterns (LBP) features. The obtained results are interesting in the sense
that the proposed approach inherits the speed from the color-based methods and
the efficiency from the gray scale-based ones. Some detection results are shown in
Fig. 9.18.

One problem of color-based face detectors lies in the fact that they are gener-
ally camera specific. Most of the methods have reported their results on specific and
limited data sets and this fact does not facilitate performing a comparative analy-
sis between the methods. Among the attempts to define a standard protocol and a
common database for testing color-based face detector is the work of Sharma and
Reilly [41].

Currently, most methods for face detection rely only on gray scale information
even when color images are available. Generally these methods scan the images at
all possible locations and scales and then classify the sub-windows either as face or
nonface, yielding in more robust but also computationally more expensive process-
ing methods, especially with large-sized images. Among robust approaches based
only on gray scale information is Viola and Jones’s approach [49]. The approach
uses Haar-like features and AdaBoost as a fast training algorithm. AdaBoost is used
to select the most prominent features among a large number of extracted features and
construct a strong classifier from boosting a set of weak classifiers. Such systems
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generally run in real-time for small-sized images (e.g., 240 × 320 pixels), but tend
to be slow for larger images. Including other cues such color or motion information
may thus be very useful for speeding-up the detection process.

9.7 Color Cue for Face Recognition

The role of color information in the recognition of nonface objects has been the
subject of much debate. However, there has only been a small amount of work which
examines its contribution to face recognition. Most of the work has only focused on
the luminance structure of the face, thus ignoring color cues, due to several reasons.

The first reason lies in the lack of evidence from human perception studies about
the role of color in face recognition. Indeed, a notable study in this regard was done
in [23], in which the authors found that the observers were able to quite normally
process even those faces that had been subjected to hue-reversals. Color seemed to
contribute no significant recognition advantages beyond the luminance information.
In another piece of work [56], it is explained that the possible reason for a lack
of observed color contribution in these studies is the availability of strong shape
cues which make the contribution of color not very evident. The authors then in-
vestigated the role of color by designing experiments in which the shape cues were
progressively degraded. They concluded that the luminance structure of the face
is undoubtedly of great significance for recognition, but that color cues are not en-
tirely discarded by the face recognition process. They suggested that color does play
a role under degraded conditions by facilitating low-level facial image analysis such
as better estimations of the boundaries, shape and sizes of facial features [56].

A second possible reason for a lack of work on color-based face recognition re-
lates to the difficulties of associating illumination with white balancing of cameras.
Indeed, as discussed in Sect. 9.3, illumination is still a challenging problem in auto-
matic face recognition, therefore, there is no need to further complicate the task.

A third possible reason for ignoring color cues in the development of automatic
recognition systems is the lack of color image databases1 available for the testing of
the proposed algorithms, in addition to the unwillingness to develop methods which
cannot be used with the already existing monochrome databases and applications.

However, the few attempts to use color in automatic face recognition includes
the work conducted by Torres et al. [48] who extended the eigenface approach to
color by computing the principal components from each color component indepen-
dently in three different color spaces (RGB, YUV and HSV). The final classification
is achieved using a weighted sum of the Mahalanobis distances computed for each
color component. In their experiments using one small database (59 images), the au-
thors noticed performance improvements for the recognition rates when using YUV
(88.14%) and HSV (88.14%) color spaces, while a RGB color space provided the

1Note that recently some color image databases have finally been collected (e.g., the color FERET
database and the FRGC version 2 database).
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same results (84.75%) when using R,G or B separately and exactly the same results
as using the luminance Y only. Therefore, they concluded that color is important for
face recognition. However, the experiments are very limited, as only one small face
database is used and the simple eigenface approach is tested.

In another piece of work that deals with color for face recognition [20], it has
been argued that a performance enhancement could be obtained if a suitable conver-
sion from color images to a monochromatic form would be adopted. The authors de-
rived a transformation from color to gray-scale images using three different methods
(PCA, linear regression and genetic algorithms). They compared their results with
those obtained after converting the color images to a monochromatic form by using
a simple transformation I = R+G+B

3 , and they noticed a performance enhancement
of 4% to 14% using a database of 280 images. However, the database considered in
the experiments is rather small, thus, one should test the generalization performance
of the proposed transformation on a larger set of images from different sources.

In [40], Rajapakse et al. considered an approach based on Nonnegative Matrix
Factorization (NMF) and compared the face recognition results using color and gray
scale images. On a test set of 100 face images, the authors have claimed a perfor-
mance enhancement when using also color information for recognition.

In [19], Jones has attempted to extend the Gabor-based approach for face recog-
nition to color images by defining the concept of quaternions (four component hy-
percomplex numbers). On a relatively limited set of experiments, the author has
reported a performance enhancement on the order of 3% to 17% when using the
proposed quaternion Gabor-based approach instead of the conventional monochro-
matic Gabor-based method.

Very recently, color face recognition has been revisited by many researchers, with
an aim to discover the efficient use of color for boosting the face recognition per-
formance. For instance, inspired by the psychophysical studies indicating that color
does play a role in recognizing faces under degraded conditions, Choi et al. [58]
carried out extensive experiments and studied the effect of color information on the
recognition of low-resolution face images (e.g., less than 20 × 20 pixels). By com-
paring the performance of grayscale and color features, the results showed that color
information can significantly improve the recognition performance.

Yang et al. [55] compared the discriminative power of several color spaces for
face recognition and found out that different color spaces display different dis-
criminating power. Experiments on a large scale face recognition grand challenge
(FRGC) problem also revealed that the RGB and XYZ color spaces are weaker than
the I1I2I3, YUV, YIQ color spaces for face recognition. The authors proposed then
color space normalization techniques for enhancing the discriminative power of dif-
ferent color spaces.

For color based face verification, Chan et al. [2] proposed a discriminative de-
scriptor encoding the color information of the face images. The descriptor is formed
by projecting the local face image acquired by multispectral LBP operators, into
LDA space. The overall similarity score is obtained by fusing local similarity scores
of the regional descriptors. The method has been tested on the XM2VTS and FRGC
2.0 databases with very promising results.
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Liu and his colleagues extensively investigated the problem of color face recog-
nition and reported very good results on FRGC database (Version 2 Experi-
ment 4) [27–30, 52, 53]. For instance, in [27], the authors first derived new (uncor-
related, independent and discriminating) color spaces from the RGB color space by
means of linear transformations. Then, vectors are formed in these color spaces by
concatenating their component images to form augmented pattern vectors, whose
dimensionality is reduced by PCA. Finally, an enhanced Fisher model (EFM) is
used for recognition. The obtained results are better than those of methods using
grayscale or RGB color images. In [29], the authors considered a hybrid color space
by combining the R component image of the RGB color space and the chromatic
components I and Q of the YIQ color space. Experiments on the Face Recog-
nition Grand Challenge (FRGC) version 2 Experiment 4 showed the hybrid color
space significantly improves face recognition performance due to the complemen-
tary characteristics of its component images. Since most of the experiments con-
ducted by Liu and his team were mainly using the FRGC database, it is of interest
to see how well the proposed methods generalize to other databases and settings.

9.8 Conclusions

Color is a useful cue in facial image analysis. Its use for skin segmentation and face
detection is probably the most obvious, while its contribution to face recognition is
not very clear. The first important issues when planning the use of color in facial
image analysis are the selection of a color space and the design of a skin model.
Several approaches have been proposed for these purposes, but unfortunately, there
is no optimal choice. The choice made depends on the requirement of the application
and also on the environment (illumination conditions, camera calibration, etc.).

Once a skin model has been defined, the contribution of color to face detection,
not surprisingly, plays an important role in pre-processing the images and in the
selection of the skin-like areas. Then, other refining stages can also be launched
in order to find faces among skin-like regions. Color-based face detectors could be
significantly much faster than other detectors which are based solely on gray-scale
information, especially with large-sized images.

In relation to the contribution of color to face recognition, the issue is still un-
der debate and among the open questions are: is color information useful for face
recognition at all? If yes, how the three different spectral channels of face images
should be combined to take advantages of the color information? What is the opti-
mal color space which provides the highest discriminative power, etc.? The current
results suggest that color cue has not yet shown its full potential and need further
investigation. Therefore, it perhaps makes sense for current automatic face recogni-
tion systems not to rely on color for recognition because its contribution is not well
established yet.
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Chapter 10
Face Aging Modeling

Unsang Park and Anil K. Jain

10.1 Introduction

Face recognition accuracy is typically limited by the large intra-class variations
caused by factors such as pose, lighting, expression, and age [16]. Therefore, most of
the current work on face recognition is focused on compensating for the variations
that degrade face recognition performance. However, facial aging has not received
adequate attention compared to other sources of variations such as pose, lighting,
and expression.

Facial aging is a complex process that affects both the shape and texture (e.g.,
skin tone or wrinkles) of a face. The aging process appears in different manifes-
tations in different age groups, gender and ethnicity. While facial aging is mostly
represented by the facial growth in younger age groups (e.g., below 18 years of
age), it is mostly represented by relatively large texture changes and minor shape
changes (e.g., due to the change of weight or stiffness of skin) in older age groups
(e.g., over 18 years of age). Therefore, an age invariant face recognition scheme
needs to be able to compensate for both types of aging process.

Some of the face recognition applications where age invariance or correction is
required include (i) identifying missing children, (ii) screening for watch list, and
(iii) multiple enrollment detection problems. These three scenarios have two com-
mon characteristics: (i) a significant age difference exists between probe and gallery
images (images obtained at verification and enrollment stages, respectively) and
(ii) an inability to obtain a user’s face image to update the template (gallery). Identi-
fying missing children is one of the most apparent applications where age compen-
sation is needed to improve the recognition performance. In screening applications,
aging is a major source of difficulty in identifying suspects in a watch list. Repeat
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offenders commit crimes at different time periods in their lives, often starting as a
juvenile and continuing throughout their lives. It is not unusual to encounter a time
lapse of ten to twenty years between the first (enrollment) and subsequent (verifica-
tion) arrests. Multiple enrollment detection for issuing government documents such
as driver licenses and passports is a major problem that various government and law
enforcement agencies face in the facial databases that they maintain. Face or some
other types of biometric traits (e.g., fingerprint or iris) are the only ways to reliably
detect multiple enrollments.

Ling et al. [10] studied how age differences affect the face recognition perfor-
mance in a real passport photo verification task. Their results show that the aging
process does increase the recognition difficulty, but it does not surpass the chal-
lenges posed due to change in illumination or expression. Studies on face verifica-
tion across age progression [19] have shown that: (i) simulation of shape and texture
variations caused by aging is a challenging task, as factors like life style and envi-
ronment also contribute to facial changes in addition to biological factors, (ii) the
aging effects can be best understood using 3D scans of human head, and (iii) the
available databases to study facial aging are not only small but also contain un-
controlled external and internal variations (e.g., pose, illumination, expression, and
occlusion). It is due to these reasons that the effect of aging in facial recognition
has not been as extensively investigated as other factors that lead to large intra-class
variations in facial appearance.

Some biological and cognitive studies on face aging process have also been con-
ducted, see [18, 25]. These studies have shown that cardioidal strain is a major fac-
tor in the aging of facial outlines. Such results have also been used in psychological
studies, for example, by introducing aging as caricatures generated by controlling
3D model parameters [12]. Patterson et al. [15] compared automatic aging simu-
lation results with forensic sketches and showed that further studies in aging are
needed to improve face recognition techniques. A few seminal studies [20, 24] have
demonstrated the feasibility of improving face recognition accuracy by simulated
aging. There has also been some work done in the related area of age estimation
using statistical models, for example, [8, 9]. Geng et al. [7] learn a subspace of ag-
ing pattern based on the assumption that similar faces age in similar ways. Their
face representation is composed of face texture and the 2D shape represented by
the coordinates of the feature points as in the Active Appearance Models. Com-
puter graphics community has also shown facial aging modeling methods in 3D do-
main [22], but the effectiveness of the aging model was not evaluated by conducting
a face recognition test.

Table 10.1 gives a brief comparison of various methods for modeling aging pro-
posed in the literature. The performance of these models is evaluated in terms of
the improvement in the identification accuracy. When multiple accuracies were re-
ported in any of the studies under the same experimental setup (e.g., due to different
choice of probe and gallery), their average value is listed in Table 10.1; when mul-
tiple accuracies are reported under different approaches, the best performance is
reported. The identification accuracies of various studies in Table 10.1 cannot be
directly compared due to the differences in the database, the number of subjects
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Table 10.1 A comparison of various face aging models [13]

Approach Face matcher Database
(#subjects,
#images)
in probe
and gallery

Rank-1
identification
accuracy (%)

Original
image

After
aging
model

Ramanathan et
al. (2006) [20]

Shape growth
modeling up to age 18

PCA Private database
(109,109)

8.0 15.0

Lanitis et al.
(2002) [8]

Build an aging
function in terms of
PCA coefficients of
shape and texture

Mahalanobis
distance, PCA

Private database
(12,85)

57.0 68.5

Geng et al.
(2007) [7]

Learn aging pattern on
concatenated PCA
coefficients of shape
and texture across a
series of ages

Mahalanobis
distance, PCA

FG-NET* (10,10) 14.4 38.1

Wang et al.
(2006) [26]

Build an aging
function in terms of
PCA coefficients of
shape and texture

PCA Private database
(NA, 2000)

52.0 63.0

Patterson et al.
(2006) [14]

Build an aging
function in terms of
PCA coefficients of
shape and texture

PCA MORPH+ (9,36) 11.0 33.0

Park et al. [13] Learn aging pattern
based on PCA
coefficients in
separated 3D shape
and texture given 2D
database

FaceVACS FG-NET** (82,82) 26.4 37.4

MORPH-Album1++

(612,612)
57.8 66.4

BROWNS
(4,4)—probe
(100,100)—gallery

15.6 28.1

*Used only a very small subset of the FG-NET database that contains a total of 82 subjects
+Used only a very small subset of the MORPH database that contains a total of 625 subjects
**Used all the subjects in FG-NET
++Used all the subjects in MORPH-Album1 which have multiple images

and the underlying face recognition method used for evaluation. Usually, the larger
the number of subjects and the larger the database variations in terms of age, pose,
lighting and expression, the smaller the recognition performance improvement by
an aging model. The identification accuracy for each approach in Table 10.1 be-
fore aging simulation indicates the difficulty of the experimental setup for the face
recognition test as well as the limitations of the face matcher.

Compared with other published approaches, the aging model proposed by Park
et al. [13] has the following features.
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• 3D aging modeling: Includes a pose correction stage and a more realistic model
of the aging pattern in the 3D domain. Considering that the aging is a 3D process,
3D modeling is better suited to capture the aging patterns. Their method is the
only viable alternative to building a 3D aging model directly, as no 3D aging
database is currently available. Scanned 3D face data rather than reconstructed is
used in [22], but they were not collected for aging modeling and hence, do not
contain as much aging information as the 2D facial aging database.

• Separate modeling of shape and texture changes: Three different modeling meth-
ods, namely, shape modeling only, separate shape and texture modeling and com-
bined shape and texture modeling (e.g., applying 2nd level PCA to remove the
correlation between shape and texture after concatenating the two types of fea-
ture vectors) were compared. It has been shown that the separate modeling is
better than combined modeling method, given the FG-NET database as the train-
ing data.

• Evaluation using a state-of-the-art commercial face matcher, FaceVACS: A state-
of-the-art face matcher, FaceVACS from Cognitec [4] has been used to evaluate
the aging model. Their method can thus be useful in practical applications requir-
ing an age correction process. Even though their method has been evaluated only
on one particular face matcher, it can be used directly in conjunction with any
other 2D face matcher.

• Diverse Databases: FG-NET has been used for aging modeling and the aging
model has been evaluated on three different databases: FG-NET (in a leave-one-
person-out fashion), MORPH, and BROWNS. Substantial performance improve-
ments have been observed on all three databases.

The rest of this Chapter is organized as follows: Sect. 10.2 introduces the prepro-
cessing step of converting 2D images to 3D models, Sect. 10.3 describes the aging
model, Sect. 10.4 presents the aging simulation methods using the aging model, and
Sect. 10.5 provides experimental results and discussions. Section 10.6 summarizes
the conclusions and lists some directions for future work.

10.2 Preprocessing

Park et el. propose to use a set of 3D face images to learn the model for recognition,
because the true craniofacial aging model [18] can be appropriately formulated only
in 3D. However, since only 2D aging databases are available, it is necessary to first
convert these 2D face images into 3D. Major notations that are used in the following
sections are defined first.

• Smm = {Smm,1, Smm,2, . . . , Smm,nmm}: a set of 3D face models used in construct-
ing the reduced morphable model. nmm is the number of 3D face models.

• Sα : reduced morphable model represented with the model parameter α.

• Sj2d,i = {x1, y1, . . . , xn2d , yn2d }: 2D facial feature points for the ith subject at age
j . n2d is the number of points in 2D.
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• Sji = {x1, y1, z1, . . . , xn3d , yn3d , zn3d }: 3D feature points for the ith subject at age
j . n3d is the number of points in 3D.

• Tji : facial texture for the ith subject at age j .

• sji : reduced shape of Sji after applying PCA on Sji .

• tji : reduced texture of Tji after applying PCA on Tji .

• Vs : top Ls principle components of Sji .

• Vt : top Lt principle components of Tji .

• Sjws : synthesized 3D facial feature points at age j represented with weight ws .

• Tjwt : synthesized texture at age j represented with weight wt .
• nmm = 100, n2d = 68, n3d = 81, Ls = 20, and Lt = 180.

In the following subsections, Sj2d,i is first transformed to Sji using the reduced
morphable model Sα . Then, 3D shape aging pattern space {Sws } and texture aging

pattern space {Twt } are constructed using Sji and Tji .

10.2.1 2D Facial Feature Point Detection

Manually marked feature points are used in aging model construction. However,
in the test stage the feature points need to be detected automatically. The feature
points on 2D face images are detected using the conventional Active Appearance
Model (AAM) [3, 23]. AAM models for the three databases are trained separately,
the details of which are given below.

10.2.1.1 FG-NET

Face images in the FG-NET database have already been (manually) marked by the
database provider with 68 feature points. These feature points are used to build the
aging model. Feature points are also automatically detected and the face recogni-
tion performance based on manual and automatic feature point detection methods
are compared. The training and feature point detection are conducted in a cross-
validation fashion.

10.2.1.2 MORPH

Unlike the FG-NET database, a majority of face images in the MORPH database
belong to African-Americans. These images are not well represented by the AAM
model trained on the FG-NET database due to the differences in the cranial structure
between the Caucasian and African-American populations. Therefore, a subset of
images (80) in the MORPH database are labeled as a training set for the automatic
feature point detector in the MORPH database.
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10.2.1.3 BROWNS

The entire FG-NET database is used to train the AAM model for detecting feature
points on images in the BROWNS database.

10.2.2 3D Model Fitting

A simplified deformable model based on Blanz and Vetter’s model [2] is used as a
generic 3D face model. For efficiency, the number of vertices in the 3D morphable
model is drastically reduced to 81, 68 of which correspond to salient features present
in the FG-NET database, while the other 13 delineate the forehead region. Follow-
ing [2], PCA was performed on the simplified shape sample set, {Smm}. The mean
shape Smm, the eigenvalues λl’s, and unit eigenvectors Wl’s of the shape covariance
matrix are obtained. Only the top L (= 30) eigenvectors are used, again for effi-
ciency and stability of the subsequent fitting algorithm performed on the possibly
very noisy dataset. A 3D face shape can then be represented using the eigenvectors
as

Sα = Smm +
L∑

l=1

αlWl , (10.1)

where the parameter α = [αl] controls the shape, and the covariance of α’s is the
diagonal matrix with λi as the diagonal elements. A description is given below on
how to transform the given 2D feature points Sj2d,i to the corresponding 3D points

Sji using the reduced morphable model Sα .
Let E(·) be the overall error in fitting the 3D model of one face to its correspond-

ing 2D feature points, where

E
(
P,R, t, a, {αl}Ll=1

)= ∥∥Sji,2d − TP,R,t,a(Sα)
∥
∥2
. (10.2)

Here, T(·) represents a transformation operator performing a sequence of opera-
tions, that is, rotation, translation, scaling, projection, and selecting n2d points out
of n3d that have correspondences. To simplify the procedure, an orthogonal projec-
tion P is used.

In practice, the 2D feature points that are either manually labeled or automati-
cally generated by AAM are noisy, which means overfitting these feature points may
produce undesirable 3D shapes. This issue is addressed by introducing a Tikhonov
regularization term to control the Mahalanobis distance of the shape from the mean
shape. Let σ be the empirically estimated standard deviation of the energy E in-
duced by the noise in the location of the 2D feature points. The regularized energy
is defined as

E′ =E/σ 2 +
L∑

l=1

α2
l /λl. (10.3)
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Fig. 10.1 3D model fitting process using the reduced morphable model [13]

Fig. 10.2 Four example images with manually labeled 68 points (blue) and the automatically
recovered 13 points (red) for the forehead region [13]

To minimize the energy term defined in (10.3), all the αl’s are initialized to 0,
the rotation matrix R is set to the identity matrix and translation vector t is set to 0,
and the scaling factor a is set to match the overall size of the 2D and 3D shapes.
Then, R, T, and α are iteratively updated until convergence. There are multiple
ways to find the optimal pose given the current α. In these tests, it was found that
first estimating the best 2×3 affine transformation followed by a QR decomposition
to get the rotation works better than running a quaternion based optimization using
Rodriguez’s formula [17]. Note that tz is fixed to 0, as an orthogonal projection is
used.

Figure 10.1 illustrates the 3D model fitting process to acquire the 3D shape. The
associated texture is then retrieved by warping the 2D image. Figure 10.2 shows the
manually labeled 68 points and automatically recovered 13 points that delineate the
forehead region.
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10.3 Aging Pattern Modeling

Following [7], the aging pattern is defined as an array of face models from a single
subject indexed by the age. This model construction differs from [7] mainly in that
the shape and texture are separately modeled at different ages using the shape (ag-
ing) pattern space and the texture (aging) pattern space, respectively, because the 3D
shape and the texture images are less correlated than the 2D shape and texture that
they used in [7]. The two pattern spaces as well as the adjustment of the 3D shape
are described below.

10.3.1 Shape Aging Pattern

Shape pattern space captures the variations in the internal shape changes and the size
of the face. The pose corrected 3D models obtained from the pre-processing phase
are used for constructing the shape pattern space. Under age 19, the key effects of
aging are driven by the increase of the cranial size, while at later ages the facial
growth in height and width is very small [1]. To incorporate the growth pattern of
the cranium for ages under 19, the overall size of 3D shape is rescaled according to
the average anthropometric head width found in [5].

PCA is applied over all the 3D shapes, Sji in the database irrespective of age j

and subject i. All the mean subtracted Sji are projected on to the subspace spanned

by the columns of Vs to obtain sji as

sji = VT
s
(
Sji − S

)
, (10.4)

which is an Ls × 1 vector.
Assuming that there are n subjects at m ages, the basis of the shape pattern space

is then assembled as an m × n matrix with vector entries (or alternatively as an
m × n × Ls tensor), where the j th row corresponds to age j and the ith column
corresponds to subject i, and the entry at (j, i) is sji . The shape pattern basis is

initialized with the projected shapes sji from the face database (as shown in the third
column of Fig. 10.3). Then, missing values are filled using the available values along
the same column (i.e., for the same subject). Three different methods are tested
for the filling process: linear, Radial Basis Function (RBF), and a variant of RBF
(v-RBF). Given available ages ai and the corresponding shape feature vectors si , a
missing feature value sx at age ax can be estimated by sx = l1 × s1 + l2 × s2 in linear
interpolation, where s1 and s2 are shape feature vectors corresponding to the ages a1
and a2 that are closest from ax , and l1 and l2 are weights inversely proportional to
the distance from ax to a1 and a2. In the v-RBF process, each feature is replaced by
a weighted sum of all available features as sx =∑i φ(ax − ai)si/(∑φ(ax − ai)),
where φ(.) is a RBF function defined by a Gaussian function. In the RBF method,
the mapping function from age to the shape feature vector is calculated by sx =
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Fig. 10.3 3D aging model construction [13]

∑
i riφ(ax − ai)/(∑φ(ax − ai)) for each available age and feature vector ai and

si , where ri ’s are estimated based on the known scattered data. Any missing feature
vector sx at age x can thus be obtained.

The shape aging pattern space is defined as the space containing all the linear
combinations of the patterns of the following type (expressed in PCA basis):

sjws = sj +
n∑

i=1

(
sji − sj

)
ws,i, 0 ≤ j ≤m− 1. (10.5)

Note that the weight ws in the linear combination above is not unique for the same
aging pattern. The regularization term can be used in the aging simulation described
below to resolve this issue. Given a complete shape pattern space, mean shape S and
the transformation matrix Vs, the shape aging model with weight ws is defined as

Sjws = S + Vssjws , 0 ≤ j ≤m− 1. (10.6)

10.3.2 Texture Aging Pattern

The texture pattern T ji for subject i at age j is obtained by mapping the original
face image to frontal projection of the mean shape S followed by a column-wise
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concatenation of the image pixels. After applying PCA on T ji , the transformation

matrix Vt and the projected texture tji are calculated. The same filling procedure is
used as in the shape pattern space to construct the complete basis for the texture
pattern space using tji . A new texture Tjwt can be similarly obtained, given an age j
and a set of weights wt as

tjwt = tj +
n∑

i=1

(
tji − tj

)
wt,i , 0 ≤ j ≤m− 1, (10.7)

Tjwt = T + Vttjwt , 0 ≤ j ≤m− 1. (10.8)

Figure 10.3 illustrates the aging model construction process for both shape and
texture pattern spaces.

10.3.3 Separate and Combined Shape & Texture Modeling

Given sji and tji , they can be used directly for the aging modeling or another step

of PCA on the new concatenated feature vector Cji = [sjT

i t
jT

i ]T can be applied.

Applying PCA on Cji will generate a set of new Eigen vectors, cji [3]. The modeling

using sji and tji is called as “separate shape and texture modeling” and cji as a
“combined shape and texture modeling.”

10.4 Aging Simulation

Given a face image of a subject at a certain age, aging simulation involves the con-
struction of the face image of that subject adjusted to a different age. Given a 2D
image at age x, the 3D shape, Sxnew and the texture T xnew are first produced by fol-
lowing the preprocessing step described in Sect. 10.2, and then they are projected to
the reduced spaces to get sxnew and txnew. Given a reduced 3D shape sxnew at age x, a
weighting vector, ws , that generates the closest possible weighted sum of the shapes
at age x, can be obtained as:

ŵs = argmin
c−≤ws≤c+

∥
∥sxnew − sxws

∥
∥2 + rs‖ws‖2, (10.9)

where rs is the weight of a regularizer to handle the cases when multiple solutions
are obtained or when the linear system used to obtain the solution has a large condi-
tion number. Each element of weight vector, ws,i is constrained within [c−, c+] to
avoid strong domination by a few shape basis vectors.
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Fig. 10.4 Aging simulation from age x to y [13]

Given ŵs , age adjusted shape can be obtained at age y by carrying ŵs over to
the shapes at age y and transforming the shape descriptor back to the original shape
space as

S
y
new = Sy

ŵs
= S + Vss

y

ŵs
. (10.10)

The texture simulation process is similarly performed by first estimating ŵt as

ŵt = argmin
c−≤wt≤c+

∥
∥txnew − txwt

∥
∥2 + rt‖wt‖2, (10.11)

and then, propagating the ŵt to the target age y followed by the back projection to
get

T
y
new = Ty

ŵt
= T + Vtt

y

ŵt
. (10.12)

The aging simulation process is illustrated in Fig. 10.4. Figure 10.5 shows an
example of aging simulated face images from a subject at age 2 in the FG-NET
database. Figure 10.6 exhibits the example input images, feature point detection,
pose-corrected and age-simulated images from a subject in the MORPH database.
The pseudocodes of shape aging pattern space construction and simulation are given
in Algorithms 10.1, 10.2, 10.3, and 10.4.
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Fig. 10.5 An example aging simulation in the FG-NET database [13]

10.5 Experimental Results

10.5.1 Database

There are two well known public domain databases to evaluate facial aging models:
FG-NET [6] and MORPH [21]. The FG-NET database contains 1002 face images of
82 subjects (∼12 images/subject) at different ages, with the minimum age being 0
(<12 months) and the maximum age being 69. There are two separate databases in
MORPH: Album1 and Album2. MORPH-Album1 contains 1690 images from 625
different subjects (∼2.7 images/subject). MORPH-Album2 contains 15 204 images
from 4039 different subjects (∼3.8 images/subject). Another source of facial aging
data can be found in the book by Nixon and Galassi [11]. This is a collection of
pictures of four sisters taken every year over a period of 33 years from 1975 to 2007.
A new database, called, “BROWNS” are constructed by scanning 132 pictures of the
four subjects (33 per subject) from the book to evaluate the aging model. Since it is
desirable to have as many subjects and as many images at different ages per subject
as possible, the FG-NET database is more useful for aging modeling than MORPH
or BROWNS. The age separation observed in MORPH-Album1 is in the range 0–30
and that in MORPH-Album2 is less than 5. Therefore, MORPH-Album1 is more
useful in evaluating the aging model than MORPH-Album2. A subset of MORPH-
Album1, 1655 images of all the 612 subjects whose images at different ages are
available, is used for the experiments. The complete FG-NET database has been



10 Face Aging Modeling 263

Fig. 10.6 Example aging simulation process in the MORPH database [13]

used for model construction and then it is evaluated on FG-NET (in a leave-one-
person-out fashion), MORPH-Album1 and BROWNS. Figure 10.7 shows multiple
sample images of one subject from each of the three databases. The number of
subjects, number of images, and number of images at different ages per subject for
the three databases used in the aging study [13] are summarized in Table 10.2.
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Algorithm 10.1: 3D SHAPE AGING PATTERN CONSTRUCTION()

Input: S2d = {S0
1,2d , . . . , S

j

i,2d , . . . , S
m−1
n,2d }

Output: sji , i = 1, . . . , n, j = 0, . . . ,m− 1
i← 1, j ← 0
while i <= n& j =<m− 1

do

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if Sji,2d is available

k← 1,E← fitting error between Sji,2d and Sα
while k < τ &E < θ

do

⎧
⎨

⎩

update pose (a,R, t) (3D model parameters, α, fixed)
update 3D model parameters (pose fixed)
k← k + 1, update E

S
j
i ← Sα

Calculate eigenvalue λs and eigenvector and Vs from Sji − S̄
i← 1, j ← 0
while i <= n& j <=m− 1

do

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

if Sji is available
s
j
i ← VT(S

j
i − S̄)

Fill (i, j)-th shape pattern by sji
else Fill(i, j)-th shape pattern space, using interpolation along the column

Algorithm 10.2: TEXTURE AGING PATTERN CONSTRUCTION()

Input: S = {S0
1 , . . . , S

j
i , . . . , S

m−1
n }, T = {T 0

1 , . . . , T
j
i , . . . , T

m−1
n },

Pose = {P 1
1 , . . . ,P

j
i , . . . ,P

m
n }

Output: tji , i = 1, . . . , n, j = 0, . . . ,m− 1
Construct mean shape S̄
i← 1, j ← 0
while i <= n& j <=m− 1

do

{
if T ji,2d is available

Warp texture T ji from Sji with pose P ji to S̄

Calculate eigenvalue λt and eigenvector Vt from (T ji − T̄ )
i← 1, j ← 0
while i <= n& j <=m− 1

do

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

if T ji is available
t
j
i ← VT(T

j
i − T̄ )

Fill (i, j)-th texture pattern by tji
else Fill(i, j)-th texture pattern space, using interpolation along
the column



10 Face Aging Modeling 265

Algorithm 10.3: AGE SIMULATION FOR SHAPE()

Input: s = {s0
1 , . . . , s

m−1
n }, Sxnew

Output: Synew
Estimate ws by (10.9)
Calculate Synew by (10.10)

Algorithm 10.4: AGE SIMULATION FOR TEXTURE()

Input: t = {t01 , . . . , tm−1
n }, T xnew

Output: T ynew
Estimate wt by (10.11)
Calculate T ynew by (10.12)

Fig. 10.7 Example images in a FG-NET and b MORPH databases. Multiple images of one subject
in each of the three databases are shown at different ages. The age value is given below each image

10.5.2 Face Recognition Tests

The performance of the aging model is evaluated by comparing the face recognition
accuracy of a state-of-the-art matcher before and after aging simulation. The probe
set, P = {px1

1 , . . . , p
xn
n }, is constructed by selecting one image pxii for each subject

i at age xi in each database, i ∈ {1, . . . , n}, xi ∈ {0, . . . ,69}. The gallery set G =
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Table 10.2 Databases used in aging modeling [13]

Database #subjects #images Average #images per subject

FG-NET 82 1002 12

MORPH Album1 625 1690 2.7

Album2 4039 15 204 3.8

BROWNS 4 132 33

Table 10.3 Probe and gallery data used in face recognition tests [13]

Database Probe Gallery

#images #subjects Age group #images #subjects Age group

FG-NET 82 82 {0,5, . . . ,30} 82 82 x* + {5,10, . . . ,30}
MORPH 612 612 {15,20, . . . ,30} 612 612 x + {5,10, . . . ,30}
BROWNS 4 4 {15,20, . . . ,30} 100 100 x + {5,10, . . . ,30}
*x is the age of the probe group

{gy1
1 , . . . , g

yn
n } is similarly constructed. A number of different probe and gallery age

groups are also constructed from the three databases to demonstrate the model’s
effectiveness in different periods of the aging process.

Aging simulation is performed in both aging and de-aging directions for each
subject i in the probe and each subject j in the gallery as (xi → yj ) and (yj → xi ).
Table 10.3 summarizes the probe and gallery data sets used in the face recognition
test [13].

Let P , Pf and Pa denote the probe, the pose-corrected probe, and the age-
adjusted probe set, respectively. Let G, Gf and Ga denote the gallery, the pose-
corrected gallery, and age-adjusted gallery set, respectively. All age-adjusted images
are generated (in a leave-one-person-out fashion for FG-NET) using the shape and
texture pattern space. The face recognition test is performed on the following probe–
gallery pairs: P –G, P –Gf , Pf –G, Pf –Gf , Pa–Gf and Pf –Ga . The identification
rate for the probe–gallery pair P –G is the performance on original images without
applying any aging model. The accuracy obtained by fusion of P –G, P –Gf , Pf –G
and Pf –Gf matchings is regarded as the performance after pose correction. The
accuracy obtained by fusion of all the pairs P –G, P –Gf , Pf –G, Pf –Gf , Pa–Gf
and Pf –Ga represents the performance after aging simulation. A simple score-sum
based fusion is used in all the experiments.

10.5.3 Effects of Different Cropping Methods

The performance of the face recognition system is evaluated with different face
cropping methods. An illustration of the cropping results obtained by different ap-
proaches is shown in Fig. 10.8. The first column shows the input face image and
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Fig. 10.8 Example images showing different face cropping methods: a original, b no-forehead
and no pose correction, c no pose correction with forehead, d pose correction with forehead [13]

the second column shows the cropped face obtained using the 68 feature points pro-
vided in the FG-NET database without pose correction. The third column shows
the cropped face obtained with the additional 13 points (total 81 feature points) for
forehead inclusion without any pose correction. The last column shows the cropping
obtained by the 81 feature points, with pose correction.

Figure 10.9(a) shows the face recognition performance on FG-NET using only
shape modeling based on different face cropping methods and feature point detec-
tion methods. Face images with pose correction that include the forehead show the
best performance. This result shows that the forehead does influence the face recog-
nition performance, although it has been a common practice to remove the fore-
head in AAM based feature point detection and subsequent face modeling [3, 8, 26].
Therefore, the aging simulation is evaluated with the model that contains the fore-
head region with pose correction.

Note that, the performance difference between nonfrontal and frontal pose is as
expected, and that the performance using automatically detected feature points is
lower than that of manually labeled feature points. However, the performance with
automatic feature point detection is still better than that of matching original images
before applying the aging modeling.
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Fig. 10.9 Cumulative Match
Characteristic (CMC) curves
with different methods of face
cropping and shape & texture
modeling [13]

10.5.4 Effects of Different Strategies in Employing Shape and
Texture

Most of the existing face aging modeling techniques use either only shape or
a combination of shape and texture [7, 8, 14, 20, 26]. Park et el. have tested the
aging model with shape only, separate shape and texture, and combined shape and
texture modeling. In the test of the combined scheme, shape and the texture are con-
catenated and a second stage of principle component analysis is applied to remove
the possible correlation between shape and texture as in the AAM face modeling
technique.
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Figure 10.9(b) shows the face recognition performance of different approaches
to shape and texture modeling. Consistent performance drop has been observed in
face recognition performance when the texture is used together with the shape. The
best performance is observed by combining shape modeling and shape + texture
modeling using score level fusion. When simulating the texture, the aging simulated
texture and the original texture have been blended with equal weights. Unlike shape,
texture is a higher dimensional vector that can easily deviate from its original iden-
tity after the aging simulation. Even though performing aging simulation on texture
produces more realistic face images, it can easily lose the original face-based iden-
tity information. The blending process with the original texture reduces the devia-
tion and generates better recognition performance. In Fig. 10.9(b), shape + texture
modeling represent separate modeling of shape and texture, shape + texture × 0.5
represents the same procedure but with the blending of the simulated texture with
the original texture. The fusion of shape and shape + texture × 0.5 strategy is used
for the following aging modeling experiments.

10.5.5 Effects of Different Filling Methods in Model Construction

Park et el. tried a few different methods of filling missing values in aging pattern
space construction (see Sect. 10.3.1): linear, v-RBF, and RBF. The rank-one accura-
cies are obtained as 36.12%, 35.19%, and 36.35% in shape+ texture×0.5 modeling
method for linear, v-RBF, and RBF methods, respectively. The linear interpolation
method is used in the rest of the experiments for the following reasons: (i) perfor-
mance difference is minor, (ii) linear interpolation is computationally efficient, and
(iii) the calculation of RBF based mapping function can be ill-posed.

Figure 10.10 provides the Cumulative Match Characteristic (CMC) curves with
original, pose-corrected and aging simulated images in FG-NET, MORPH and
BROWNS, respectively. It can be seen that there are significant performance im-
provement after aging modeling and simulation in all the three databases. The
amount of improvement due to aging simulation is more or less similar with those of
other studies as shown in Table 10.1. However, Park et el. used FaceVACS, a state-
of-the-art face matcher, which is known to be more robust against internal and ex-
ternal facial variations (e.g., pose, lighting, expression, etc.) than simple PCA based
matchers. They argued that the performance gain using FaceVACS is more realistic
than that of a PCA matcher reported in other studies. Further, unlike other studies,
they have used the entire FG-NET and MORPH-Album1 in the experiments. An-
other unique attribute of their studies is that the model is built on FG-NET and then
evaluated on independent databases MORPH and BROWNS.

Figure 10.11 presents the rank-one identification accuracy for each of the 42
different age pair groups of probe and gallery in the FG-NET database. The aging
process can be separated as growth and development (age ≤ 18) and adult aging
process (age > 18). The face recognition performance is somewhat lower in the
growth process where more changes occur in the facial appearance. However, the
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Fig. 10.12 Example matching results before and after aging simulation for seven different sub-
jects: a probe, b pose-corrected probe, c age-adjusted probe, d pose-corrected gallery, and e gallery.
The ages in each (probe, gallery) pair are (0,18), (0,9), (4,14), (3,20), (30,49), (0,7) and
(23,31), respectively, from the top to the bottom row [13]

aging process provides performance improvements in both of the age groups, ≤18
and >18. The average recognition results for age groups ≤18 are improved from
17.3% to 24.8% and those for age groups >18 are improved from 38.5% to 54.2%.

Matching results for seven subjects in FG-NET are demonstrated in Fig. 10.12.
The face recognition fails without aging simulation for all these subjects but suc-
ceeds with aging simulations for the first five of the seven subjects. The aging sim-
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ulation fails to provide correct matchings for the last two subjects, possibly due to
poor texture quality (for the sixth subject) or large pose and illumination variation
(for the seventh subject).

The aging model construction takes about 44 s. The aging model is constructed
off-line, therefore its computation time is not a major concern. In the recognition
stage, the entire process, including feature points detection, aging simulation, en-
rollment and matching takes about 12 s per probe image. Note that the gallery im-
ages are preprocessed off-line. All computation times are measured on a Pentium 4,
3.2 GHz, 3 G-Byte RAM machine.

10.6 Conclusions

A 3D facial aging model and simulation method for age-invariant face recognition
has been described. It is shown that extension of shape modeling from 2D to 3D
domain gives additional capability of compensating for pose and, potentially, light-
ing variations. Moreover, the use of 3D model appears to provide a more powerful
modeling capability than 2D age modeling because the changes in human face con-
figuration occur primarily in 3D domain. The aging model has been evaluated using
a state-of-the-art commercial face recognition engine (FaceVACS). Face recogni-
tion performances have been improved on three different publicly available aging
databases. It is shown that the method is capable of handling both growth and de-
velopmental adult face aging effects.

Exploring different (nonlinear) methods for building aging pattern space, given
noisy 2D or 3D shape and texture data, with cross validation of the aging pattern
space and aging simulation results in terms of face recognition performance can
further improve simulated aging. Age estimation is crucial if a fully automatic age
invariant face recognition system is needed.
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Chapter 11
Face Detection

Stan Z. Li and Jianxin Wu

11.1 Introduction

Face detection is the first step in automated face recognition. Its reliability has a ma-
jor influence on the performance and usability of the entire face recognition system.
Given a single image or a video, an ideal face detector should be able to identify and
locate all the present faces regardless of their position, scale, orientation, age, and
expression. Furthermore, the detection should be done irrespectively of extraneous
illumination conditions and the image and video content.

Face detection can be performed based on several cues: skin color (for faces
in color images and videos), motion (for faces in videos), facial/head shape, facial
appearance, or a combination of these parameters. Most successful face detection
algorithms are appearance-based without using other cues. The processing is done
as follows: An input image is scanned at all possible locations and scales by a sub-
window. Face detection is posed as classifying the pattern in the subwindow as
either face or nonface. The face/nonface classifier is learned from face and nonface
training examples using statistical learning methods.

This chapter presents appearance-based and learning-based methods.1 It will
highlight AdaBoost-based methods because so far they are the most successful ones
in terms of detection accuracy and speed. Effective postprocessing methods are also
described. Experimental results are provided.

1The reader is referred to a review article [50] for other earlier face detection methods.
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Fig. 11.1 Face (top) and nonface (bottom) examples

11.2 Appearance and Learning-Based Approaches

With appearance-based methods, face detection is treated as a problem of classi-
fying each scanned subwindow as one of two classes (that is, face and nonface).
Appearance-based methods avoid difficulties in modeling 3D structures of faces
by considering possible face appearances under various conditions. A face/nonface
classifier may be learned from a training set composed of face examples taken un-
der possible conditions as would be seen in the running stage and nonface examples
as well (see Fig. 11.1 for a random sample of 10 face and 10 nonface subwindow
images). Building such a classifier is possible because pixels on a face are highly
correlated, whereas those in a nonface subwindow present much less regularity.

However, large variations brought about by changes in facial appearance, light-
ing, and expression make the face manifold or face/nonface boundaries highly com-
plex [4, 37, 40]. Changes in facial view (head pose) further complicate the situation.
A nonlinear classifier is needed to deal with the complicated situation. The speed is
also an important issue for realtime performance.

Great research effort has been made for constructing complex yet fast classi-
fiers and much progress has been achieved since 1990s. Turk and Pentland [41]
describe a detection system based on principal component analysis (PCA) subspace
or eigenface representation. Whereas only likelihood in the PCA subspace is con-
sidered in the basic PCA method, Moghaddam and Pentland [23] also consider the
likelihood in the orthogonal complement subspace; using that system, the likeli-
hood in the image space (the union of the two subspaces) is modeled as the product
of the two likelihood estimates, which provide a more accurate likelihood estimate
for the detection. Sung and Poggio [38] first partition the image space into several
face and nonface clusters and then further decompose each cluster into the PCA
and null subspaces. The Bayesian estimation is then applied to obtain useful sta-
tistical features. The system of Rowley et al.’s [31] uses retinally connected neu-
ral networks. Through a sliding window, the input image is examined after going
through an extensive preprocessing stage. Osuna et al. [24] train a nonlinear support
vector machine to classify face and nonface patterns, and Yang et al. [51] use the
SNoW (Sparse Network of Winnows) learning architecture for face detection. In
these systems, a bootstrap algorithm is used iteratively to collect meaningful non-
face examples from images that do not contain any faces for retraining the detector.
Schneiderman and Kanade [34] use multiresolution information for different levels
of wavelet transform. A nonlinear classifier is constructed using statistics of prod-
ucts of histograms computed from face and nonface examples. The system of five
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view detectors takes about 1 minute to detect faces for a 320 × 240 image over
only four octaves of candidate size [34]. The speed is later improved in [35] to five
seconds for an image of size 240 × 256 using a Pentium II at 450 MHz.

Recent progresses in face detection mostly are made within the cascade detec-
tor framework proposed by Viola and Jones [43, 45], which provides fast and ro-
bust face detection system. Three major components contribute to the cascade face
detector: an over-complete set of local features that can be evaluated quickly, an
AdaBoost based method to build strong nonlinear classifiers from the weak local
features, and a cascade detector architecture that leads to realtime detection speed.

An over-complete set of rectangle features, which are simple scalar Haar wavelet-
like features, are shown to be effective in distinguishing faces from nonfaces. Viola
and Jones make use of several techniques [7, 36] for effective computation of a
large number of such features under varying scale and location, which is important
for realtime performance. A single Haar-like feature, however, is far from enough
to build a powerful nonlinear classifier. The AdaBoost algorithm is used to solve
the following three fundamental problems: (1) selecting effective features from a
large feature set; (2) constructing weak classifiers, each of which is based on one
of the selected features; and (3) boosting the weak classifiers to construct a strong
classifier. Moreover, the simple-to-complex cascade of classifiers makes the com-
putation even more efficient, which follows the principles of pattern rejection [3, 8]
and coarse-to-fine search [2, 10]. Their system is the first realtime frontal-view face
detector, and it runs at about 15 frames per second on a 384 × 288 image [45].

Various improvements have been proposed for the cascade detector, including
reducing the training and testing time, and achieving higher detection accuracies.
Extensions of the simple Haar-like feature set have been proposed to introduce more
complex local features (for example, in [14, 21, 27]). The original cascade detec-
tor takes weeks of training time [45]. More local features lead to higher detection
accuracies, but also incur even higher time and storage requirements. A strategy is
introduced by Wu et al. in [47] that reduces the training time to a few hours by using
a precomputation strategy. The speedup of [47] is achieved by reducing the training
time of weak classifiers. An alternative strategy by Pham and Cham [27] uses one
dimensional Gaussian distributions to model faces and nonfaces for a single feature,
and saves more than half of the training time compared to [47].

Variants of the discrete AdaBoost algorithm used in [45] have been shown to
improve the trained nonlinear classifiers, for example, using real-valued variants of
AdaBoost [21]. Face detection poses an asymmetric learning problem, because we
usually have only thousands of face training examples, but billions of nonfaces. It
is important to specifically deal with this asymmetric learning goal. Asymmetric
boosting [44] and linear asymmetric classifier (LAC) [47] are two examples that
achieve higher detection performances using asymmetric learning methods.

The cascade structure has been altered for faster detection speed. Instead of eval-
uating all the weak classifiers in a strong classifier, the strong classifier can make
a decision prematurely (evaluating only a subset of weak classifiers), for example,
in the soft cascade method [5]. This “multi-exit” strategy [28, 49] usually leads to
higher detection performance besides reducing testing time.
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The ability to deal with nonfrontal faces is important for many real applica-
tions because approximately 75% of the faces in home photos are nonfrontal [16].
A reasonable treatment for the multiview face detection problem is the view-based
method [26], in which several face models are built, each describing faces in a cer-
tain view range. This way, explicit 3D face modeling is avoided. Feraud et al. [9]
adopt the view-based representation for face detection and use an array of five de-
tectors, with each detector responsible for one facial view. Wiskott et al. [46] build
elastic bunch graph templates for multiview face detection and recognition. Huang
et al. [13] use SVMs to estimate the facial pose. The algorithm of Schneiderman and
Kanade [34] consists of an array of five face detectors in the view-based framework.

Li et al. [17–19] present a multiview face detection system. A new boosting al-
gorithm, called FloatBoost, is proposed to incorporate Floating Search [29] into
AdaBoost (RealBoost). An extended Haar feature set is proposed for dealing with
out-of-plane (left-right) rotation. A modified cascade detector (following the coarse-
to-fine and simple-to-complex principle) is designed for the fast detection of multi-
view faces. This work leads to the first realtime multiview face detection system. It
runs at 200 ms per image (320 × 240 pixels) on a Pentium-III CPU of 700 MHz.

Huang et al. [14] presents a similar solution that detects full-range in-plane and
out-of-plane rotated faces. The main contributions of [14] include a manually de-
signed new cascade architecture, a new set of local features called granular features,
and a new multi-class boosting learning algorithm called Vector Boosting.

Given that the cascade detector based on boosting learning methods has achieved
the best performance to date in terms of both accuracy and speed, our presentation
in the following sections focuses on this thread of research efforts. Strategies are
also described for efficient detection of multiview faces.

11.3 AdaBoost-Based Methods

For AdaBoost learning, a complex nonlinear strong classifier HM(x) is constructed
as a linear combination of M simpler, easily constructible weak classifiers in the
following form [11]

HM(x)=
M∑

m=1

αmhm(x) (11.1)

where x is a pattern to be classified, hm(x) are the M weak classifiers, αm ≥ 0 are
the combining coefficients in R. In the discrete version, hm(x) takes a discrete value
in {−1,+1}, whereas in the real-valued version, the output of hm(x) is a number
in R. HM(x) is real-valued, but the prediction of class label for x is obtained as
ŷ(x)= sign[HM(x)].

The AdaBoost learning procedure is aimed at learning a sequence of best weak
classifiers hm(x) and the best combining weights αm. A set of N labeled training
examples {(x1, y1), . . . , (xN , yN)} is assumed available, where yi ∈ {+1,−1} is the
class label for the example xi ∈ R

n. A distribution [w1, . . . ,wN ] of the training
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Fig. 11.2 Four types of
rectangular Haar wavelet-like
features. A feature is a scalar
calculated by summing up the
pixels in the white region and
subtracting those in the dark
region

examples, where wi is associated with a training example (xi, yi), is computed and
updated during the learning to represent the distribution of the training examples.
After iterationm, harder-to-classify examples (xi, yi) are given larger weightsw(m)i ,
so that at iteration m + 1, more emphasis is placed on these examples. AdaBoost
assumes that a procedure is available for learning a weak classifier hm(x) from the
training examples, given the distribution [w(m)i ].

In Viola and Jones’s face detection work [43, 45],2 a weak classifier hm(x) ∈
{−1,+1} is obtained by thresholding on a scalar feature zk(x) ∈ R selected from
an overcomplete set of Haar wavelet-like features [25, 39]. In the real-valued ver-
sions of AdaBoost, such as RealBoost and LogitBoost, a real-valued weak classifier
hm(x) ∈ R can also be constructed from zk(x) ∈ R [19, 21, 33]. The following dis-
cusses how to generate candidate weak classifiers.

11.3.1 Local Features

Viola and Jones propose four basic types of scalar features for face detection
[25, 45], as shown in Fig. 11.2. Such a block feature is located in a subregion of
a subwindow and varies in shape (aspect ratio), size, and location inside the sub-
window. For a subwindow of size 20×20, there can be tens of thousands of such
features for varying shapes, sizes and locations. Feature k, taking a scalar value
zk(x) ∈ R, can be considered a transform from the n-dimensional space (n= 400 if
a face example x is of size 20×20) to the real line. These scalar numbers form an
overcomplete feature set for the intrinsically low-dimensional face pattern.

One Haar-like feature can be viewed as a mask consisting of three values: 1 for
those pixels in the white region of the feature, −1 for those dark region pixels in the
feature, and 0 for those pixels outside of the feature region. The mask is of the same
size as the subwindow. If we stack pixels of a subwindow into a vector x, and stack
the mask associated with a feature into a vector m, this particular feature will have
feature value mTx.

2Viola and Jones [43, 45] used hm(x) ∈ {0,1}. Our notation is slightly different from but equivalent
to theirs.
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Fig. 11.3 The sum of the pixels within rectangle D can be computed with four array references.
The value of the integral image at location 1 is the sum of the pixels in rectangle A. The value at
location 2 is A+B , at location 3 is A+C, and at location 4 is A+B+C+D. The sum within D
can be computed as (4 + 1)− (2 + 3). From Viola and Jones [43], © 2001 IEEE, with permission

These Haar-like features are interesting for two reasons: (1) powerful face/non-
face classifiers can be constructed based on these features (see later); and (2) they
can be computed efficiently [36] using the summed-area table [7] or integral im-
age [43] technique.

The integral image II(x, y) at location x, y contains the sum of the pixels above
and to the left of x, y, defined as [43]

II(x, y)=
∑

x′≤x,y′≤y
I(x, y). (11.2)

The image can be computed in one pass over the original image using the following
pair of recurrences

S(x, y) = S(x, y − 1)+ I(x, y), (11.3)

II(x, y) = II(x − 1, y)+ S(x, y), (11.4)

where S(x, y) is the cumulative row sum, S(x,−1) = 0 and II(−1, y) = 0. Using
the integral image, any rectangular sum can be computed in four array references,
as illustrated in Fig. 11.3. The use of integral images leads to enormous savings in
computation for features at varying locations and scales.

With the integral images, the intensity variation within a rectangle D of any size
and any location can be computed efficiently; for example VD = √

V ∗ V where
V = (4+1)− (2+3) is the sum withinD, and a simple intensity normalization can
be done by dividing all the pixel values in the subwindow by the variation.

Equation (11.4) shows that the feature valuemTx can be evaluated extremely fast
when the rectangular structures in the mask m is utilized. Recently, extended sets
of Haar-like features have been proposed for improving detection accuracy [27],
dealing with out-of-plane head rotation [14, 19] and for in-plane head rotation [14,
21]. The extended features are carefully designed such that special structures exist
in their corresponding masks, thus the feature values can be computed quickly using
ideas similar to (11.4).
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Fig. 11.4 One example
granular feature

Fig. 11.5 Illustration of LBP (a) and MB-LBP (b)

Figure 11.4 shows an example of the granular features used in [14]. The masks
corresponding to granular features have this special structure: most of the mask
values are 0, while a few nonoverlapping square subregions in the mask have values
of all +1 (or all −1). The square subregions are confined to be of size 1 × 1, 2 × 2,
4 × 4, or 8 × 8, so that the integral image trick can be used to quickly compute
granular features.

The subwindow in Fig. 11.4 is of size 20 × 20, thus a feature is equivalent to a
20×20 mask, in which the gray pixels correspond to the value 0, the 8×8 subregion
correspond to the value +1 in the mask, and the two 4 × 4 subregions correspond to
the value −1. By precomputing three integral images for size 2, 4, and 8 subregions
correspondingly, the granular feature values can be quickly computed.

Recently other local features are also proposed for usage in face detection, among
which the local binary pattern feature (LBP) has exhibited promising results.3 As
illustrated in Fig. 11.5(a), the original LBP operator compares a pixel with its 8
neighbors, generating a single bit ‘1’ if the neighboring pixel has higher intensity
values (and a bit ‘0’ if otherwise). The LBP value is then a combination of these
8 bits. The multi-block LBP (MB-LBP) generalize LBP by comparing the average

3The modified Census Transform feature [15] is also used for face detection, and is very similar to
LBP.
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intensity of pixels within a region instead of comparing single pixel intensities (il-
lustrated in Fig. 11.5(b)).

MB-LBP is used in [20] and [52] for face detection and recognition, which shows
that MB-LBP can produced improved performance than Haar-like features in face
detection. The MB-LBP features can also be computed efficiently using integral
images [20].

11.3.2 Learning Weak Classifiers

As mentioned earlier, the AdaBoost learning procedure is aimed at learning a se-
quence of weak classifiers hm(x) and the combining weights αm in (11.1). It solves
the following three fundamental problems: (1) learning effective features from a
large feature set; (2) constructing weak classifiers, each of which is based on one
of the selected features; and (3) boosting the weak classifiers to construct a strong
classifier.

AdaBoost assumes that a “weak learner’ procedure is available. The task of the
procedure is to select the most significant feature from a set of candidate features,
given the current strong classifier learned thus far, and then construct the best weak
classifier and combine it into the existing strong classifier. Here, the “significance”
is with respect to some given criterion (see below).

In the case of discrete AdaBoost, the simplest type of weak classifiers is a
“stump.” A stump is a single-node decision tree. When the feature is real-valued,
a stump may be constructed by thresholding the value of the selected feature at a
certain threshold value; when the feature is discrete-valued, it may be obtained ac-
cording to the discrete label of the feature. A more general decision tree (with more
than one node) composed of several stumps leads to a more sophisticated weak
classifier.

For discrete AdaBoost, a stump may be constructed in the following way. As-
sume that we have constructed M − 1 weak classifiers {hm(x)|m= 1, . . . ,M − 1}
and we want to construct hM(x). The stump hM(x) ∈ {−1,+1} is determined by
comparing the selected feature zk∗(x) with a threshold τk∗ as follows

hM(x)=
{+1 if zk∗ > τk∗ ,
−1 otherwise.

(11.5)

In this form, hM(x) is determined by two parameters: the type of the scalar fea-
ture zk∗ and the threshold τk∗ . The two may be determined by some criterion, for
example, (1) the minimum weighted classification error, or (2) the lowest false alarm
rate given a certain detection rate.

Supposing we want to minimize the weighted classification error with real-valued
features, then we can choose a threshold τk ∈ R for each feature zk to minimize the
corresponding weighted error made by the stump with this feature; we then choose
the best feature zk∗ among all k that achieves the lowest weighted error.
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0. (Input)
(1) Training examples Z = {(x1, y1), . . . , (xN , yN )}, and example weights (w1, . . . ,wN),

where N = a + b; of which a examples have yi = +1 and b examples have yi = −1.
(2) The mask m corresponds to a feature.

1. (Initialization)
Compute the feature values, v1, . . . , vN , where vi =mTxi .
Sort the feature values as vi1 ≤ · · · ≤ viN , such that (i1, . . . , iN ) is a permutation of
(1, . . . ,N).
ε⇐∑

yi=−1wi
2. (Updates)

For k = 1, . . . ,N :
if yik = −1 then

ε⇐ ε−wik , εi ⇐ ε

else
ε⇐ ε+wik , εi ⇐ ε

3. (Output)
k = arg min1≤i≤N εi .
Optimal threshold τ ∗: τ ∗ =mTτik .

Fig. 11.6 Finding the optimal threshold of a weak classifier

Wu et al. show in [47] that onlyN+1 possible τk values need to be evaluated, and
evaluating each τk is only O(1) if we sort the feature values for zk beforehand. This
method to find the optimal threshold of a weak classifier is illustrated in Fig. 11.6.

Suppose the features are sorted in the order vi1 ≤ · · · ≤ viN , and τk1 and τk2

satisfy that vij < τk1 , τk2 < vij+1 , then setting the threshold to either τk1 or τk2 will
result in the same weighted error. Thus, in Fig. 11.6 only the feature values (plus
−∞) are considered as possible thresholds. Given the weighted error at τk = vij , a
simple update is sufficient to compute the error when τk = vij+1 , because at most
one example has changed its classification result.

Most of the computations in Fig. 11.6 is spent in the initialization part. One
important observation in [47] is that the feature values need to be computed and
sorted only once, because they do not change during the AdaBoost process even
though the weights w change at each iteration. By storing the sorted feature values
for all features in a table, the AdaBoost training time is reduced from weeks ([45])
to hours ([47]).

More features usually lead to higher detection accuracy [27]. However, it also
means that the table of sorted feature values may be too large to be stored in the
main memory. Pham and Cham construct weak classifiers using the mean and stan-
dard deviation of feature values. Given a feature, its associated mask m, and the
AdaBoost weights w(M−1), the average feature value is

∑
i w

(M−1)
i mTxi , where xi

is a set of training examples.
The integral image trick can be used to accelerate the computation of the mean

feature value and standard deviation, that is, providing a way to utilize the structures
in the mask m and computes mTx quickly. Let x be an image subwindow in the
stacked vector form and y be the corresponding integral image, it is clear from (11.2)
that the transformation that generates y from x is linear, that is, there exists a square
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matrix B such that y = Bx, and mTx = mTB−1y. The average feature value is
then [27]

∑

i

w
(M−1)
i mTxi =mTB−1

(
∑

i

w
(M−1)
i yi

)

. (11.6)

In (11.6), the weighted average integral image
∑
i w

(M−1)
i yi can be computed in lin-

ear time, and the transformed mask mTB−1 is sparse because of the structure in the
mask m. Thus, the average feature value can be computed very quickly. Similarly,
the (weighted) standard deviation can be quickly computed, too.

The faces are then modeled as a one-dimensional Gaussian distribution
N(μ+, σ 2+), where μ+ and σ+ are computed from face examples. Nonfaces are
modeled by N(μ−, σ 2−) similarly. The best threshold that separate two 1-d Gaus-
sians can then be solved in a closed form.

This method is faster than examining all possible τk values, and has a much
smaller storage requirement [27]. It is reported in [27] that the training speed is
about two times faster than the algorithm presented in Fig. 11.6. This method has
much less storage requirements and thus can train a strong classifier with more local
features.

A decision stump is simple but may not fully utilize the information contained
in a feature. A more complex weak classifier can be constructed by using piece-
wise decision functions [14, 22]: dividing the range of feature values into k non-
overlapping cells, and learn a decision function (for example, a decision stump) for
every cell. Piece-wise decision functions take longer training time but usually have
higher discrimination power than simple decision stumps.

Supposing that we want to achieve the lowest false alarm rate given a certain
detection rate, we can set a threshold τk for each zk so a specified detection rate
(with respect to w(M−1)) is achieved by hM(x) corresponding to a pair (zk, τk).
Given this, the false alarm rate (also with respect to w(M−1)) due to this new hM(x)
can be calculated. The best pair (zk∗ , τk∗) and hence hM(x) is the one that minimizes
the false alarm rate.

There is still another parameter that can be tuned to balance between the detec-
tion rate and the false alarm rate: The class label prediction ŷ(x)= sign[HM(x)] is
obtained by thresholding the strong classifierHM(x) at the default threshold value 0.
However, it can be done as ŷ(x)= sign[HM(x)−TM ] with another value TM , which
can be tuned for the balance.

The form of (11.5) is for Discrete AdaBoost. In the case of real-valued versions
of AdaBoost, such as RealBoost and LogitBoost, a weak classifier should be real-
valued or output the class label with a probability value. For the real-value type, a
weak classifier may be constructed as the log-likelihood ratio computed from the
histograms of the feature value for the two classes. (See the literature for more
details [17–19].) For the latter, it may be a decision stump or tree with probability
values attached to the leaves [21].
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11.3.3 Learning Strong Classifiers Using AdaBoost

AdaBoost learns a sequence of weak classifiers hm and boosts them into a strong
one HM effectively by minimizing the upper bound on classification error achieved
by HM . The bound can be derived as the following exponential loss function [32]

J (HM)=
∑

i

e−yiHM(xi ) =
∑

i

e−yi
∑M
m=1 αmhm(x) (11.7)

where i is the index for training examples. AdaBoost constructs hm(x) (m =
1, . . . ,M) by stagewise minimization of (11.7). Given the current HM−1(x) =∑M−1
m=1 αmhm(x), and the newly learned weak classifier hM , the best combining

coefficient αM for the new strong classifier HM(x)=HM−1(x)+ αMhM(x) mini-
mizes the cost

αM = arg min
α
J
(
HM−1(x)+ αmhM(x)

)
. (11.8)

The minimizer is

αM = log
1 − εM
εM

(11.9)

where εM is the weighted error rate

εM =
∑

i

w
(M−1)
i 1

[
sign

(
HM(xi)

) �= yi
]

(11.10)

where 1[C] is 1 if C is true but 0 otherwise.
Each example is reweighted after an iteration that is, w(M−1)

i is updated accord-
ing to the classification performance of HM :

w
(M)
i = w(M−1)

i exp
(−yiαMhM(xi)

)

= exp
(−yiHM(xi)

)
(11.11)

which is used for calculating the weighted error or another cost for training the weak
classifier in the next round. This way, a more difficult example is associated with a
larger weight so it is emphasized more in the next round of learning. The algorithm
is summarized in Fig. 11.7.

11.3.4 Alternative Feature Selection Methods

In boosting based methods (cf. Fig. 11.7), the weak classifiers hM and their related
weights αM are determined simultaneously: hM is chosen to minimize certain ob-
jective value (for example, weighted error rate of the feature) and αM is a function
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0. (Input)
(1) Training examples Z = {(x1, y1), . . . , (xN , yN )},

where N = a + b; of which a examples have yi = +1 and b examples have yi = −1.
(2) The number M of weak classifiers to be combined.

1. (Initialization)
w
(0)
i = 1

2a for those examples with yi = +1 or w(0)i = 1
2b for those examples with yi = −1.

2. (Forward inclusion)
For m= 1, . . . ,M :

(1) Choose optimal hm to minimize the weighted error.
(2) Choose αm according to (11.9).
(3) Update w(m)i ←w

(m)
i exp[−yiαmhm(xi)] and normalize to

∑
i w

(m)
i = 1.

3. (Output)
Classification function: HM(x) as in (11.1).
Class label prediction: ŷ(x)= sign[HM(x)].

Fig. 11.7 AdaBoost learning algorithm

of the objective value. Wu et al. [47] show that if these tasks (learning hM and set-
ting αM ) are decoupled into two sequential steps, a more accurate strong classifier
HM can be obtained.

Different methods can be used to select features and train weak classifiers. Be-
sides AdaBoost and other boosting variants, [47] showed that a greedy Forward
Feature Selection (FFS) method can successfully select a subset of features from a
large feature pool and learn corresponding weak classifiers. In boosting methods,
a feature is selected if its corresponding weak classifier has minimum weighted er-
ror rate. FFS uses a different selection criterion that is directly related to the strong
classifier’s performance. In FFS, if a partial strong classifier HM−1 is already con-
structed, a feature hM∗ is selected in iteration M only if it leads to highest strong
classifier accuracy, that is, HM−1 ∪ hM∗ has the highest accuracy among all possi-
ble hM . FFS uses majority vote (that is, αi = 1 for all i). A table of feature values
are stored to ensure fast weak classifier training. FFS trains faster than the Ad-
aBoost method, and achieves comparable but slightly lower detection accuracy than
AdaBoost.

In fact, it is shown that AdaBoost is a sequential forward search procedure using
the greedy selection strategy to minimize a certain margin on the training set [32].
Conceptually, FFS and AdaBoost shares the greedy feature selection idea, although
different objective functions are used to guide the greedy search procedures.

A crucial heuristic assumption used in such a sequential forward search proce-
dure is the monotonicity (that is, that addition of a new weak classifier to the current
set does not decrease the value of the performance criterion). The premise offered
by the sequential procedure in AdaBoost or FFS breaks down when this assumption
is violated. Floating Search [29] is a sequential feature selection procedure with
backtracking, aimed to deal with nonmonotonic criterion functions for feature se-
lection. The sequential forward floating search (SFFS) methods [29] adds or deletes
a single (�= 1) feature and then backtracks r steps, where r depends on the current
situation.
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0. (Input)
(1) Training examples Z = {(x1, y1), . . . , (xN,yN )},

where N = a + b; of which a examples have yi = +1 and b examples have yi = −1.
(2) The maximum number Mmax of weak classifiers.
(3) The cost function J (HM), and the maximum acceptable cost J ∗.

1. (Initialization)
(1) w(0)i = 1

2a for those examples with yi = +1 or w(0)i = 1
2b for those examples

with yi = −1.
(2) Jmin

m =max-value (for m= 1, . . . ,Mmax), M = 0, H0 = {}.
2. (Forward inclusion)

(1) M ←M + 1.
(2) Learn hM and αM .
(3) Update w(M)i ←w

(M−1)
i exp[−yiαMhM(xi)], normalize to

∑
i w

(M)
i = 1.

(4) HM = HM−1 ∪ {hM };
If Jmin

M > J(HM), then Jmin
M = J (HM).

3. (Conditional exclusion)
(1) h′ = arg minh∈HM

J (HM − h).
(2) If J (HM − h′) < Jmin

M−1, then
(a) HM−1 = HM − h′.

Jmin
M−1 = J (HM − h′); M =M − 1.

(b) If h′ = hm′ , then

recalculate w(j)i and hj for j =m′, . . . ,M .
(c) Go to 3.(1).

(3) Else
(a) If M =Mmax or J (HM) < J

∗, then go to 4.
(b) Go to 2.(1).

4. (Output)
Classification function: HM(x) as in (11.1).
Class label prediction: ŷ(x)= sign[HM(x)].

Fig. 11.8 FloatBoost algorithm

The FloatBoost Learning procedure is shown in Fig. 11.8. It is composed of sev-
eral parts: the training input, initialization, forward inclusion, conditional exclusion,
and output. In step 2 (forward inclusion), the currently most significant weak classi-
fiers are added one at a time, which is the same as in AdaBoost. In step 3 (conditional
exclusion), FloatBoost removes the least significant weak classifier from the set HM

of current weak classifiers, subject to the condition that the removal leads to a lower
cost than Jmin

M−1. Supposing that the weak classifier removed was the m′th in HM ,
then hm′ , . . . , hM−1 and the αm’s must be relearned. These steps are repeated until
no more removals can be done.

11.3.5 Asymmetric Learning Methods

The face detection (and other object detection) problem is a rare-event detection
problem [47], in the sense that the face (or target object) only occupies a small
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number of subwindows while the nonface (or nonobject) subwindows are on the
order of millions even in a small-sized image. This asymmetric nature of the classi-
fier learning problem is long recognized and methods have been proposed to build
a strong classifier that takes into account the asymmetry property.

Viola and Jones proposed the AsymBoost method [44], which is a modification
of the AdaBoost algorithm. The essence of AsymBoost is to focus more on positive
examples by changing the weight update rule (11.11) to

w
(M)
i = C exp

(−yiHM(xi)
)
, (11.12)

where C = (
√
K)(1/T ) if yi > 0 and C = (

√
K)(−1/T ) if yi < 0, and K > 1 is

a parameter that measures that level of asymmetry. We assume that the boosting
learning procedure will repeat T rounds. In the T rounds of AdaBoost algorithm,
positive examples are continuously assigned higher weights than negative examples.

Wu et al. propose another asymmetric learning method. Wu et al. [47] shows that
it is advantageous to adjust the values of αi after the features are selected, according
to the cascade detection framework. Assuming the false alarm rate of all strong
classifiers in a cascade is 0.5, a 20-node cascade will have a 10−6 false alarm rate
if we assume the strong classifiers reject nonfaces independent to each other. Thus,
Wu et al. propose the following learning goal for the strong classifiers in a cascade:
“for every node, design a classifier with very high (e.g. 99.9%) detection rate and
only moderate (e.g., 50%) false positive rate.” Linear Asymmetric Classifier (LAC)
is designed to find the α that achieve this goal.

Given weak classifiers h1, h2, . . . , hM , an example x is mapped to a vector of
responses h(x)= (h1(x), h2(x), . . . , hM(x)). LAC computes the distributions of the
vector h(x): μ+ and Σ+ are mean and covariance matrix of h(x) when x is the set
of faces. Similarly, μ− andΣ− are the mean and covariance matrix computed using
nonfaces. It is showed in [47] that the following LAC solution vector α∗ ∈ R

M is
globally optimal for the cascade learning goal under certain reasonable assumptions:

α∗ =Σ−1+ (μ+ −μ−). (11.13)

Another way to set the α vector is to use the Fisher’s Discriminant Analysis (FDA).
Experiments in [47] show that using LAC or FDA to set the α vector consistently
improve cascade detection accuracy, no matter the weak classifiers are selected and
trained using AdaBoost or FFS.

11.3.6 Cascade of Strong Classifiers

A boosted strong classifier effectively eliminates a large portion of nonface subwin-
dows while maintaining a high detection rate. Nonetheless, a single strong classifier
may not meet the requirement of an extremely low false alarm rate (for example,
10−6 or even lower). A solution is to arbitrate between several detectors (strong
classifier) [31], for example, using the “AND” operation.
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Fig. 11.9 A cascade of n strong classifiers (SC). The input is a subwindow x. It is sent to the
next SC for further classification only if it has passed all the previous SCs as the face (F) pattern;
otherwise it exits as nonface (N). x is finally considered to be a face when it passes all the n SCs

Viola and Jones [43, 45] further extend this idea by training a cascade consist-
ing of a cascade of strong classifiers, as illustrated in Fig. 11.9. A strong classifier
is trained using bootstrapped nonface examples that pass through the previously
trained cascade. Usually, 10 to 20 strong classifiers are cascaded. For face detec-
tion, subwindows that fail to pass a strong classifier are not further processed by the
subsequent strong classifiers. This strategy can significantly speed up the detection
and reduce false alarms, with a little sacrifice of the detection rate.

Various improvements have also been proposed to the cascade structure. Xiao
et al. argue that historical information is useful during the cascade training [48],
that is, we should not ignore the information contained in the strong classifiers
SC1, . . . ,SCM−1 when we train the M-th strong classifier SCM (which is the prac-
tice in Fig. 11.7). The Boosting Chain framework is proposed in [48] to incorporate
such historical information: the strong classifier SCM−1 is treated as the first “weak
classifier” in SCM . This modification to the cascade framework reduces the number
of required weak classifiers and increases detection accuracy [6, 48].

Another attempt to modify the cascade framework is the soft cascade method [5]
or similar ideas [28, 49]. Soft cascade is an extreme cascade structure: a “mono-
lithic” strong classifier composed of multiple weak classifiers, much similar to the
strong classifier in the cascade framework. Let c1(x), . . . , cT (x) be the weak classi-
fiers that form a soft cascade:

HT (x)=
T∑

i=1

ci(x). (11.14)

A soft cascade associates a rejection threshold rt for every partial strong classifier
Ht(x) =∑t

i=1 ci(x). If Ht(x) < rt , the input subwindow x is rejected as nonface
and the weak classifiers ct+1, . . . , cT are not evaluated. In other words, a soft cas-
cade is similar to a cascade structure that requires only 1 weak classifier per node.
However, since historical information is preserved in Ht , soft cascades achieves
high detection performances.

After the weak classifiers c1, . . . , cT are trained, the soft cascade method rear-
ranges the order of these weak classifiers. This step is carried out using a separate
set of validation examples. An optimal ordering of weak classifiers and rejection
thresholds rt are chosen to minimize both the detection errors and testing time com-
putational costs [5].

Similar ideas are proposed to improve the original cascade framework in [6].
Suppose that a cascade consists of strong classifiers SC1, . . . ,SCM , where SCi is
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trained using the AdaBoost method. By adjusting the threshold of the strong classi-
fier, we can get different strong classifier performance in terms of false alarm rates
and detection rates. This threshold is usually determined manually by setting a fixed
goal for either detection or false alarm rate, which not necessarily leads to optimal
cascade detection performance. Brubaker et al. proposed a “two-point” algorithm
to automatically find optimal thresholds of strong classifiers. The two-point algo-
rithm uses less weak classifiers than fixed goal AdaBoost (and thus faster detection
speed), and achieves higher detection performances.

11.4 Dealing with Head Rotations

Multiview face detection should be able to detect nonfrontal faces. Face detection
methods usually handle two major types of head rotation: (1) out-of-plane (left-
right) rotation; (2) in-plane rotation.

Rowley et al. [30] propose to use two neural network classifiers for detection of
frontal faces subject to in-plane rotation. The first is the router network, trained to
estimate the orientation of an assumed face in the subwindow, though the window
may contain a nonface pattern. The inputs to the network are the intensity values
in a preprocessed 20 × 20 subwindow. The angle of rotation is represented by an
array of 36 output units, in which each unit represents an angular range. With the
orientation estimate, the subwindow is derotated to make the potential face upright.
The second neural network is a normal frontal, upright face detector.

Within the cascade detector framework, detector-pyramids have been proposed
to detect and merge faces in different poses and have achieved the state-of-the-art
detection performance.

11.4.1 Hierarchical Organization of Multi-view Faces

The Width-First-Search structure (Fig. 11.10) by Huang et al. in [14] handles in-
plane and out-of-plane rotations simultaneously. Huang et al. [14] manually divides
the face range into 15 different poses, and arranges such poses in a four level tree
structure. The top level tree node includes all face poses. The second level contains
3 nodes, which correspond to left profile, frontal, and right profile faces. The third
level further refines to 5 nodes, where left and right profile faces are split into 2
different nodes based on the out-of-plane rotation angle. The first 3 levels handle
out-of-plane rotations. Each node in the third level is split to 3 nodes in the final
level, handling different in-plane rotation angles.

The tree structure in [14] handles out-of-plane rotation in Θ = [−90◦,+90◦]
and in-plane rotation in Φ2 = [−45◦,+45◦]. The full in-plane rotation range Φ =
[−180◦,+180◦] is covered by rotating the features 90°, 180°, and 270°. It is noticed
that for these specific rotation angles, rotating the features is equivalent to rotate the
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Fig. 11.10 Illustration of the structure for detecting multi-view faces. From Huang et al. [14],
© 2007 IEEE, with permission

Fig. 11.11 Out-of-plane view partition. Out-of-plane head rotation (row 1), the facial view labels
(row 2), and the coarse-to-fine view partitions at the three levels of the detector-pyramid (rows 3
to 5)

mask m associated with a feature by a corresponding angle. Rotating features is
more efficient than rotating images.

A similar hierarchy is used by Li et al. [17, 19] to handle out-of-plane rotation in
[−90◦,+90◦], shown in Fig. 11.11. It is worth noting that the face-pose hierarchy
in Fig. 11.11 does not handle in-plane rotations. The leaf detectors are designed
to handle in-plane rotations in the range [−15◦,+15◦]. The full in-plane rotation
in Φ = [−45◦,+45◦] is dealt with by also applying the detector-pyramid on the
rotated test images (±30◦).

11.4.2 From Face-Pose Hierarchy to Detector-Pyramid

A detector-pyramid that detects multi-view faces can be derived directly from the
face-pose hierarchy. Every node in Fig. 11.10 corresponds to a strong classifier. For
example, the root node determines whether a subwindows contains a left profile,
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Table 11.1 Desired vectors
for different face poses and
non-faces in Vector Boosting
training

Cases Desired output vector

Left profile face (1,0,0,0)

Frontal face (0,1,0,0)

Right profile face (0,0,1,0)

Nonfaces (−1,0,0,0), (0,−1,0,0), (0,0,−1,0)

Fig. 11.12 Merging from different channels. From left to right: Outputs of frontal, left, and right
view channels and the final result after the merge

frontal, or right profile face. It is important to note that multiple children nodes of
the same parent node can be activated simultaneously (that is, a width-first-search of
a tree structure). Huang et al. made this choice based on the following argument: dif-
ferent face poses are jointly competing with nonfaces, and the discrimination among
them is less important (except in the final level). This hypothesis requires nodes in
the top 3 levels to be multi-class classifiers, and a Vector Boosting algorithm is
proposed in [14] to satisfy this special requirement.

For example, a partial profile face with a 45° out-of-plane rotation angle can
be detected by both the right profile face node and the frontal face node in the
second layer. In order to achieve higher detection accuracy, it is reasonable to further
examine the two sub-trees rooted at both nodes. In the Vector Boosting classifier for
the root node, the desired output is a vector and the desired vectors for different
cases are summarized in Table 11.1.

At the final level, the single node with the highest confidence is chosen as the
detected face pose. In order to get a classifier with very low false alarm rate, the
classifier in the leaf node of the width-first-search tree in [14] is in fact a cascade
detector.

Figure 11.11 leads to another detector pyramid. Instead of using a multi-class
boosting algorithm that generates a vector output, [17] uses k binary RealBoost
strong classifiers if a node has k children nodes. Multiple children of a node can be
activated (that is, further examining the subtree rooted at a child node) if more than
one binary RealBoost classifiers output positively. At the final level, multiple leaf
nodes (corresponding to different face poses) can be active for one subwindow. Dif-
ferent from [14], faces detected by the seven channels at the final level of Fig. 11.11
are merged to obtain the final result. This is illustrated in Fig. 11.12.
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Fig. 11.13 Merging multiple detections

11.5 Postprocessing

A single face in an image may be detected several times at close locations or on
multiple scales. False alarms may also occur but usually with less consistency than
multiple face detections. The number of multiple detections in a neighborhood of
a location can be used as an effective indication for the existence of a face at that
location. This assumption leads to a heuristic for resolving the ambiguity caused by
multiple detections and eliminating many false detections. A detection is confirmed
if the number of multiple detections is greater than a given value; and given the
confirmation, multiple detections are merged into a consistent one. This is practiced
in most face detection systems [31, 38]. Figure 11.13 gives an illustration. The im-
age on the left shows a typical output of initial detection, where the face is detected
four times with four false alarms on the cloth. On the right is the final result af-
ter merging. After the postprocessing, multiple detections are merged into a single
face and the false alarms are eliminated. Figures 11.14 and 11.15 show some typical
frontal and multiview face detection examples; the multiview face images are from
the Carnegie Mellon University (CMU) face database [42].

11.6 Performance Evaluation

The result of face detection from an image is affected by the two basic compo-
nents: the face/nonface classifier and the postprocessing (merger). To understand
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Fig. 11.14 Results of frontal face detection

how the system works, it is recommended that the two components be evaluated
separately [1], with two types of test data. The first consists of face icons of a fixed
size (as are used for training). This process aims to evaluate the performance of the
face/nonface classifier (preprocessing included), without being affected by merging.
The second type of test data consists of normal images. In this case, the face detec-
tion results are affected by both trained classifier and merging; the overall system
performance is evaluated.

11.6.1 Performance Measures

The face detection performance is primarily measured by two rates: the correct de-
tection rate (which is 1 minus the miss rate) and the false alarm rate. The perfor-
mance can be observed by plotting on the receiver operating characteristic (ROC)
curves.

The false alarm rate is computed as the percentage of the subwindows that are
nonfaces but wrongly classified as faces. However, the number of false detections
(remaining after merging multiple detections) is a better suited metric because it
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Fig. 11.15 Results of multiview face detection

reflects the effect of postprocessing and directly links to the final output of a face
detection system. Although the false alarm rate is usually positively correlated with
the number of false detections, recently more authors are reporting number of false
detections (after postprocessing) in the X-axis of the ROC curves. Figure 11.16
shows several examples of the ROC curves, including four recent methods evaluated
on the benchmark MIT-CMU frontal face dataset [42].

An ideal face detection system should have a detection rate of 100%, with a
false alarm rate of 0, though none of the current systems can achieve this generally.
In practical systems, increasing the detection rate is usually accompanied by an
increase in the false alarm rate. In the case where a confidence function is used to
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Fig. 11.16 Typical ROC
curve for face detection on
the MIT-CMU frontal face
dataset. The algorithms
include the AdaBoost
implementation in [6], the
2-point algorithm [6],
FloatBoost [17], and
AsymBoost + FDA [47]

distinguish between the face and nonface subwindows, with the high output value
indicating the detection of face and low value nonface, a trade-off between the two
rates can be made by adjusting the decisional threshold. In the case of the AdaBoost
learning method, the threshold for (11.1) is learned from the training face icons
and bootstrapped nonface icons, so a specified rate (usually the false alarm rate) is
under control for the training set. Remember that performance numbers of a system
are always with respect to the data sets used; two algorithms or systems cannot be
compared directly unless the same data sets are used.

11.6.2 Comparison of Cascade-Based Detectors

As the cascade-based methods (with local features) have so far provided the best
face detection solutions in terms of the statistical rates and the speed, the following
provides a comparative evaluation on different boosting algorithms (DAB: discrete
AdaBoost; RAB: real AdaBoost; and GAB: gentle AdaBoost), different training sets
preparations, and different weak classifiers. The results provide empirical references
for face detection engineers.

• Boosting Algorithms. Three 20-stage cascade classifiers were trained with DAB,
RAB, and GAB using the Haar-like feature set of Viola and Jones [43, 45] and
stumps as the weak classifiers. It is reported that GAB outperformed the other two
boosting algorithms [21]. Also, a smaller rescaling factor for scanning images was
beneficial for a high detection rate.

• Weak Classifiers. Stumps are the simplest tree type of weak classifiers (WCs)
that can be used in discrete AdaBoost. A stump is a single-node tree that does not
allow learning dependence between features. In general, n split nodes are needed
to model dependence between n− 1 variables. It is reported in [6] that using a
decision tree as weak classifier, the cascade achieves up to 15% higher detection
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Table 11.2 Average number
of features evaluated per
nonface subwindow of size
20 × 20 (reproduced from
Lienhart et al. [21])

Number of splits

AdaBoost type 1 2 3 4

DAB 45.09 44.43 31.86 44.86

GAB 30.99 36.03 28.58 35.40

RAB 26.28 33.16 26.73 35.71

rate with the same number of false detections. Other complex weak classifier (for
example, piece-wise decision functions) can also increase detection performance.

• Detection Speed. Table 11.2 compares the CART tree weak classifiers of varying
number of nodes in terms of the effectiveness of rejecting nonface subwindows.
RAB is the most effective. It is also reported in [6] that RAB has the fastest
detection speed. Reusing historical information [48] is confirmed to be effective
in reducing testing time by [6].

• Haar-like and Other Local Features. The experiments in [21] and other works
(for example, [14, 27]) suggest that whereas the larger Haar-like feature set makes
it more complex in both time and memory in the boosting learning phase, gain is
obtained in the detection phase. Using approximately the same training time, [27]
(with 295 920 local features) reported about 5% lower false alarms than the
method in Fig. 11.6 (with 40 000 local features). Other local features such as
MB-LBP also exhibits excellent detection results [52].

• Subwindow Size. Different subwindow sizes, ranging from 16×16 up to 32×32,
have been used on face detection. The experiments [21] show that a subwindow
size of 20 × 20 achieves the highest detection rate at an absolute number of false
alarms between 5 and 100 on the CMU test set of frontal faces. A subwindow
size of 24 × 24 worked better for false alarms fewer than five.

11.7 Conclusions

Face detection is the first step in automated face recognition and has applications in
biometrics and multimedia management. Owing to the complexity of the face and
nonface manifolds, highly accurate face detection with a high detection rate and low
false alarm rate has been challenging. Now this difficult problem has almost been
solved to meet the minimum requirements of most practical applications, because
of the advances in face recognition research and machine learning.

Boosting-based face detection methods [14, 17, 19, 21, 43, 45, 47] have been the
most effective of all those developed so far. In terms of detection and false alarm
rates, they are comparable to the neural network method of Rowley et al. [31], but
are several times faster.

Regarding the boosting based approach, the following conclusions can be drawn
in terms of feature sets, boosting algorithms, weak classifiers, subwindow sizes, and
training set sizes according to reported studies [14, 17, 19, 21, 43, 45, 47]:



300 S.Z. Li and J. Wu

• An over-complete set of Haar-like features are effective for face detection. The
use of the integral image method makes computation of these features efficient
and achieves scale invariance. Extended Haar-like features help detect nonfrontal
faces.

• AdaBoost learning can select best subset from a large feature set and construct a
powerful nonlinear classifier.

• The cascade structure significantly improves the detection speed and effectively
reduces false alarms, with a little sacrifice of the detection rate.

• Selecting the weak classifiers and learning the weights that combine those weak
classifiers can be decoupled.

• Alternative feature selection methods can be used to reduce training time (for
example, FFS), or to achieve lower error rate or detection time (for example,
FloatBoost).

• Asymmetry needs to be taken care of in learning classifiers for face detection.
Weights that are specifically learned to satisfy learning goals in the cascade
framework (for example, using LAC) improve detection accuracy.

• Less aggressive versions of AdaBoost, such as GentleBoost and LogitBoost, may
be preferable to discrete and real AdaBoost in dealing with training data contain-
ing outliers [12].

• Representationally, more complex weak classifiers such as small CART trees can
model second-order and/or third-order dependencies, and may be beneficial for
the nonlinear task of face detection.

Although face detection technology is now sufficiently mature to meet the mini-
mum requirements of many practical applications, much work is still needed before
automatic face detection can achieve performance comparable to the human per-
formance. The Haar + AdaBoost approach is effective and efficient. However, the
current approach has almost reached its power limit. Within such a framework, im-
provements may be possible by designing additional sets of features that are com-
plementary to the existing ones and adopting more advanced learning techniques,
which could lead to more complex classifiers while avoiding the overfitting prob-
lem.
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Chapter 12
Facial Landmark Localization

Xiaoqing Ding and Liting Wang

12.1 Introduction

Face detection and recognition is a vibrant area of biometrics with active research
and commercial efforts over the last 20 years. The task of face detection is to search
faces in images, reporting their positions by a bounding box. Recent studies [19, 31]
have shown that face detection has already been a state-of-the-art technology in
both accuracy and speed. However, face detection is not sufficient to acquire facial
landmarks, for example, eye contours, mouth corners, nose, eyebrows, etc. This is
therefore the task of facial landmark localization which aims to find the accurate
positions of the facial feature points as illustrated in Fig. 12.1. It is a fundamen-
tal and significant work in face-related areas, for example, face recognition, face
cartoon/sketch, face pose estimate, model-based face tracking, eye/mouth motion
analysis, 3D face reconstruction, etc.

There is a wide variety of works related to facial landmark localization. The
early researches extract facial landmarks without a global model. Facial landmarks,
such as the eye corners and centers, the mouth corners and center, the nose corners,
chin and cheek borders are located based on geometrical knowledge. The first step
consists of the establishment of a rectangular search region for the mouth and a
rectangular search region for the eyes. The borders are extracted by applying corner
detection algorithm such as SUSAN border extraction algorithm [17]. Such methods
are fast, however, they could not deal with faces of large variation in appearance due
to pose, rotation, illumination and background changes.
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Fig. 12.1 Facial landmark localization

Different with the earlier model-independent algorithm, some researches focus
on model-dependent algorithm. Hsu and Jain [18] propose an approach which rep-
resents human faces semantically via facial components such as eyes, mouth, face
outline, and the hair outline. Each facial component is encoded by a closed (or open)
snake that is drawn from a 3D generic face model. The face shape model here is not
based on statistical learning and it still could not deal with faces of large variation
in appearance due to pose, rotation, illumination and background changes.

With the prominent successful research of Active Shape Model (ASM) [7, 9,
3, 8] and Active Appearance Model (AAM) [4–6, 10–13], face shape is well mod-
eled as a linear combination of principal modes (major eigenvectors) learned from
the training face shapes. By learning statistical distribution of shapes and textures
from training database, a deformable shape model is built. The boundary of objects
with similar shapes to those in the training set could be extracted by fitting this de-
formable model to images. Depending on the different tasks, ASM and AAM can
be built in different ways. On one hand, we might construct a person specific ASM
or AAM across pose, illumination, and expression. Such a person-specific model
might be useful for interactive user interface applications including head pose esti-
mation, gaze estimation etc. On the other hand, we might construct ASM or AAM
to fit any face, including faces unseen in training set. Evidence suggests that the
performance of the person-specific facial landmark localization is substantially bet-
ter than the performance of generic facial landmark localization. As indicated in
[15], Gross’s experimental results confirm that generic facial landmark localization
is far harder than person-specific facial landmark localization and the performance
degrades quickly when fitting to images which are unseen in the training set.

In recent years, there are several improved research works based on the frame-
work of AAM. Papandreou and Maragos [27] introduce two enhancements to
inverse-compositional AAM matching algorithms in order to overcome the limita-
tion when inverse-compositional AAM matching algorithms are used in conjunction
with models exhibiting significant appearance variation, such as AAMs trained on
multiple-subject human face images. Liu Xiaoming [25, 26] proposes a discrimina-
tive framework to greatly improve the robustness, accuracy and efficiency of face
alignment for unseen data. Liebelt et al. [24] develop an iterative multi-level algo-
rithm that combines AAM fitting and robust 3D shape alignment. Xiao et al. [33]
also develop the research work of combining 2D AAM and 3D Morphable Model
(3DMM). Hamsici and Martinez [16] derive a new approach carries the advantages
of AAM and 3DMM that can model nonlinear changes in examples without the
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need of a pre-alignment step. Lee and Kim [21] propose a tensor-based AAM that
can handle a variety of subjects, poses, expressions, and illuminations in the ten-
sor algebra framework. They reported Tensor-based AAM reduced the fitting error
of the conventional AAM by about two pixels and the computation time by about
0.6 second.

There are also several improved research works based on the framework of ASM.
Tu et al. [30] propose a hierarchical CONDENSATION framework to estimate the
face configuration parameter under the framework of ASM. Jiao et al. [20] present a
W-ASM, in which Gabor wavelet features are used for modeling local image struc-
ture. Zhang and Ai [34] propose an Adaboost discriminative framework which im-
proves the accuracy, efficiency, and robustness of ASM. The same research works
are also carried on by Li and Ito [23] who describe a modeling method by using
AdaBoosted histogram classifiers. Brunet et al. [2] define a new criterion to select
landmarks that have good generalization properties. Vogler et al. [32] combine the
ASM with 3D deformable model which governs the overall shape, orientation and
location.

In the following, we will introduce a coarse-to-fine facial landmark localization
algorithm which uses discriminant learning to remedy the generalization problems
based on the framework of Active Shape Model.

12.2 Framework for Landmark Localization

This facial landmark localization framework consists of training and locating pro-
cedures, as illustrated in Fig. 12.2.

The training procedure is building a face deformable model via shape model-
ing and local appearance modeling. This procedure needs a great amount of hand
labeled data. The locating procedure consists of firstly the face detection, the eye
localization and then the facial landmark localization based on the face deformable
model. In the eye localization procedure, we will introduce a robust and precise eye
localization method, and then adopt this method to precisely locate the eye position.
The eye localization method is real-time. In the facial landmark localization pro-
cedure, a random forest embedded active shape model is adopted. In the following
paragraphs, they will be presented and discussed in detail.

12.3 Eye Localization

The eye localization is a crucial step towards automatic face recognition and facial
landmark localization due to the fact that these face related applications need to
normalize faces, measure the relative positions or extract features according to eye
positions. Like other problems of object detection under complex scene such as
face detection, car detection, eye patterns also have large variation in appearance
due to various factors, such as size, pose, rotation, the closure and opening of eyes,
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Fig. 12.2 Facial landmark localization processing framework

illumination conditions, the reflection of glasses and the occlusion by hairs etc. Even
having found the positions of faces grossly, robustly and precisely locating the eye’s
center is still a challenging task. A variety of eye detection and tracking algorithms
have been proposed in recent years, but most of them can only deal with part of
these variations or be feasible under some constraints. We have devised a novel
approach for precisely locating eyes in face areas under a probabilistic framework.
The experimental results demonstrate that our eye localization method can robustly
cope with different eye variations and achieve higher detection rate on diverse test
sets.

The block diagram of the proposed method is shown in Fig. 12.3. When a rough
face region is presented to the system, mean projection function and variance pro-
jection function [14] are adopted for determining the midline between the left and
right eye. Then in the two areas, the appearance-based eye detector is used to find
eye candidates separately. All the eye candidates are subsampled according to their
probabilities. The remaining left and right eye candidates are paired. All the pos-
sible eye pairs are classified by an appearance-based eye-pair classifier. The most
probable eye pairs are taken as the locations of left and right eyes.

12.3.1 Midline of Eyes

For an upright frontal face, the vertical midline between left and right eye is near
the bridge of nose. According to the observations that the change of gray intensity
on eye area is more obvious than bridge of nose and the eye area is often darker
than the bridge of nose, vertical mean and variance projection function [14] are
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Fig. 12.3 Flowchart of the precise eye localization method under probabilistic framework

used. Suppose I (x, y) is the intensity of a pixel at location (x, y), the vertical mean
projection function MPFv(x) and vertical variance projection function VPFv(x) of
I (x, y) in intervals [y1, y2] can be defined respectively, as:

MPFv(x)= 1

y2 − y1

y2∑

y=y1

I (x, y) (12.1)

VPFv(x)=
√
√
√
√ 1

y2 − y1

y2∑

y=y1

[
I (x, y)− MPFv(x)

]2
(12.2)

Applying the two functions to upper half of a face region, an obvious response
around the bridge of nose will be obtained (Fig. 12.3b). So the position of vertical
midline separating the left eye from right eye can be estimated. An appearance-
based eye detector will be applied in the two areas separately.

12.3.2 Eye Candidate Detection

We used standard AdaBoost training methods combined with Viola and Jones’s cas-
cade approach to build appearance based eye detector. The cascade structure enables
the detector to rule out most of the face areas as eye with a few tests and allows com-
putational resources to be concentrated on the more challenging parts of the images.
The features used in AdaBoost training process are Haar basis vectors [31] as ele-
mentary features. For an eye sample with size of 24 × 12, there are about 40 000
features in total. There are in total 6800 eye samples in the positive training set,
some of which can be seen in Fig. 12.4. All the eye samples are cropped from faces
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Fig. 12.4 Positive training examples for AdaBoost

with the eye center being the center of the example. The negative examples are ob-
tained by a bootstrap process [28]. All the samples are processed with gray scale
normalization and size normalization to 24 × 12 pixels. In this step, we avoid mak-
ing premature decisions about the precise location of an eye. By contrast, we just
exclude most background and give all the candidates with the probabilities at the
expense of some false positives. The face regions most easily confused with eyes
are eyebrows, thick frames of glasses, etc. In Fig. 12.3c, the center of every detected
candidate is denoted by a dot in the face area.

12.3.3 Eye Candidate Subsampling

Because the local appearance of eyes is not nearly as distinctive as that of the whole
face, some spurious eyes such as eyebrows, spectacle frames would be found, and
true eyes would be located in different scales and near positions (in Fig. 12.3d).
If all the candidates were considered in the next step, the processing time would
be too long (e.g., for 40 left eye candidates and 40 right eye candidates, we have
1600 eye pairs in next step). To merge the candidates in a neighborhood, we sub-
sample candidates with a factor of N in horizontal and vertical direction according
to the probabilities (as shown in Fig. 12.3d). N is adjusted according to the face
width. After the subsampling step, the number of eye pairs is reduced to 1/3 or less
of the original amount.
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12.3.4 Eye-Pair Classification

To exclude spurious and inaccurate eye candidates, we build an eye-pair classifier in
a similar way constructing the eye detector described above. Each eye-pair sample
includes the bounding rectangle around the left and right eyes with a small amount
of space above and below the eyes, some of which can be seen in Fig. 12.4.

Negative eye-pair examples are collected also using bootstrap method. All the
samples are normalized to 25 × 15 pixels. In the test stage, for every pair of can-
didates in our list we figure out all possible pairings such that a priori information
on inter ocular distances is satisfied. Then we use the affine warp to normalize the
pair’s region so that its left and right eye center positions line up with the left and
right eye center positions of training data. The probability of the pairing constituting
a true eye-pair is estimated. The average position of the 3 most probable eye-pairs’
eye-center is considered as the precise position of the eye center of the face.

12.4 Random Forest Embedded ASM

With the prominent successful research of ASM and AAM, face shape is well mod-
eled as a linear combination of principal modes (major eigenvectors) learned from
the training face shapes. Here, we define shape as a series of coordinates of facial
feature points. Facial landmark localization, thus, can be solved under the frame-
work of ASM. Both the methods consist of three steps, shape modeling, distance
measurement and global optimization. The facial landmark localization method is
described as fitting the 2D face model to the novel face image. 2D face model is a
deformable model based on random forest embedded key point recognition under
the framework of ASM. We name our 2D face model as Random Forest Embed-
ded Active Shape Model (RFE-ASM). The novelty is that this method embeds the
discriminant learning into ASM. In our method, the 2D face model is represented
by 88 landmarks; therefore, it can describe eyes, eyebrows, nose, mouth and cheek.
Each landmark is accurately recognized by a fast classifier, which is trained from
the appearance around this landmark. The proposed 2D face model embedding dis-
criminant learning is illustrated in Fig. 12.5. Our facial landmark localization using
RFE-ASM is presented in the following. Firstly, face shape is modeled and the fit-
ting problem is defined as an optimization problem; then, distance between shape
fitting results and the novel face image should be measured; finally, best fit should
be optimized and facial landmark localization is performed by optimizing all the
defined 88 facial feature points.

12.4.1 Shape Modeling

We define shape as a series of coordinates of facial feature points as:

Xi = [xi1, yi1, xi2, yi2 · · ·xij , yij · · ·xi88, yi88]T. (12.3)
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Fig. 12.5 2D face model embedding discriminant learning

Fig. 12.6 2D shape modeling

It is the sequence of hand-labeled 88 points in the image lattice. We manually
label 88 points for each face image in the training set. The manually labeled face
images are used to train the face model. With the trained model, we can automat-
ically locate 88 facial feature points of the face images which are unseen in the
training set. 2D face shape is firstly normalized (center, scale, angle) and then well
modeled as a linear combination of principal modes (major eigenvectors) learned
from the training face shapes as illustrated in Fig. 12.6.

Principal component analysis (PCA) is used to represent the normalized shape as
a vector b in the low-dimensional shape eigenspace spanned by k principal modes
(major eigenvectors) learned from the training shapes. A new shape X could be
linearly obtained from shape eigenspace P with shape parameter vector b, and
then transformed by center, scale and angle, presented by geometry parameter a
as shown in:

X = Ta(X̄+ Pb), (12.4)

a = (Xt , Yt , s, θ), (12.5)
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Ta

(
x

y

)

=
(
Xt
Yt

)

+
(
s cos θ −s sin θ
s sin θ s cos θ

)(
x

y

)

. (12.6)

s is scale factor, θ is angle factor, and Xt , Yt are horizontal and vertical shift vari-
ables. 2D face modeling builds 2D face deformable model based on a large training
set. Such 2D face model needs two parameters (geometry parameter a and shape
parameter b) to present a face shape. Facial landmark localization algorithm is thus
defined as the method to find the best geometry parameter a and shape parameter b
for a novel face image.

12.4.2 Distance Measurement

In conventional ASM, local image features around each landmark are modeled as
the first derivatives of the sampled profiles perpendicular to the landmark contour.
However, this approach ignores the difference between landmarks and their nearby
backgrounds. This study proposes to add key point recognition into ASM by embed-
ding discriminant learning as illustrated in Fig. 12.5. Each landmark is accurately
recognized by a fast classifier, which is trained from the appearance around this
landmark. Several classification algorithms, such as SVM or neural networks, could
have been chosen. Among those, Lepetit and Fua [22] have found random forest
to be eminently suitable because it is robust and fast, while remaining reasonably
easy to train. The proposed method is under the framework of ASM with embedded
random forest learning, so called RFE-ASM.

Random forest classifier is trained to recognize each landmark. The samples are
collected on a large training set. All the samples are cropped from faces (the dis-
tance between the center of the left eye and the center of the right eye is normalized
into 60 pixels). Positive samples are the 32 × 32 image patches of all the training
images with the center at the ground-truth landmark position. While negative sam-
ples are the 32 × 32 image patches of all the training images with the center inside
the 40 × 40, but outside the 5 × 5 region from the ground-truth landmark position.
As illustrated in Fig. 12.7, we take an example of the left mouth corner point. To
find the left mouth corner point accurately, we train one random forest classifier for
this landmark. All the samples are cropped from face images.

Random forest is a classifier combination method. A random forest consists of
N binary trees. Each node of a binary tree is a weak classifier. The structure of
random forest combines all the weak classifiers into a strong classifier. The output
of random forest classifier is the voting of each binary tree. Figure 12.8 depicts a
random forest. It consists of N decision trees. Each decision tree is trained by a
completely random approach. For each decision tree, Tn, the samples are selected
randomly from the training sample pool. It is a subset of all the training samples.
After N trees are trained, the final decision combines all the outputs of T1 T2 . . . TN
by considering the average of all N outputs. Figure 12.9 depicts a generic tree. Each
node contains a simple comparison of the intensity in a pair of points that split the
space of image patches to be classified. The training step aims to get an estimate
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Fig. 12.7 To train one random forest for left mouth corner point, this figure shows an example of
positive and negative sample collection

Fig. 12.8 Random forest combines the outputs of all decision trees as a classifier fusion method

Fig. 12.9 A generic binary
tree in random forest: each
node contains a simple
comparison of the intensity in
a pair of points that split the
space of image patches to be
classified

based on training data of the posterior distribution over the classes in each leaf (the
end node of a binary tree, which does not have child nodes).
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In this training case, a random forest consists of multiple binary trees so that each
tree yields a different partition of the space of image patches. Each node of a binary
tree stores the best point pair, which is the weak classifier. The weak classifier is the
comparison of intensity in a pair of points as in:

h =
{

1 if I (p1)≥ I (p2),

0 otherwise.
(12.7)

Each node chooses the best point pair as the best weak classifier and the random
forest combines the results of each weak classifier to a strong classifier as

F̂ (p) = arg max
c

pc(p) (12.8)

= arg max
c

(1/N)
∑

n=1...N

pn,p
(
f (p)= c) (12.9)

where N is the total number of binary trees and n specifies one binary tree; p is the
image patch to be classified; c is the label of class such that when c = 0, the image
patch does not belong to the landmark and when c = 1, the image patch belongs to
the landmark; pn,p is the probability classified by the nth binary tree that the image
patch p belongs to the landmark.

By dropping the image patch down the tree and performing a determined point
pair comparison at each node, the image patch is sent to one side or the other (each
node of a binary tree has two splits). When it reaches a leaf, it is assigned prob-
abilities of belonging to a class depending on the distribution stored in the leaf.
Responses of all the binary trees are combined during classification to achieve a
better recognition rate than a single tree could. The distance of the novel face image
and the 2D face model is thus measured by the output of random forest classifiers.
The point that is more similar to the landmark will get a bigger random forest output
probability.

12.4.3 Global Optimization

Facial landmark localization aims to find the best fit of the 88 points in the novel
face image with the 2D face model. A new shape X could be obtained with geome-
try parameter a and shape parameter vector b. For each landmark, a random forest
classifier gives the result measuring the distance of one point belonging to the land-
mark. 2D face shape consists of 88 facial feature points; therefore, all random forest
results should be embedded into the global optimization. The global optimization
objective function proposed is:

(
â, b̂

)= arg min
a,b

(
(
Y − Ta(X̄+ Pb))TW (Y − Ta(X̄+ Pb))+ k

t∑

j=1

b2
j /σ

2
j

)

(12.10)
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where W is the output of random forest classifier and is embedded into the global
optimization objective function to weigh 88 facial points. The shape parameter vec-
tor b is restricted to the vector space spanned by the training database.

The optimization includes the following steps:

1. Initialization: a is initialized according to face detection bounding box and two
eyes positions. PCA shape parameter b is initialized to 0.

2. Finding new shape candidate: Y ←− Ŷ Random Forest output in the nearby loca-
tion of the last Y .

3. a←− â. â = mina((Y − Ta(X̄+ Pb))TW(Y − Ta(X̄+ Pb))).
4. b←− b̂. b̂= minb((Y − Ta(X̄+ Pb))TW(Y − Ta(X̄+ Pb)))+ k ·∑t

j=1 b
2
j /σ

2
j .

5. If ‖â − a‖ + ‖b̂− b‖< ε, stop. else, go to 2.

12.5 Experiments

12.5.1 Eye Localization

The training set is drawn from FERET, ARData, Bern, BioID, ORL, OCRFace
database, and a total of 6800 eyes and 18 000 eye-pairs are cropped and normalized
for training. The experimental test set consists of Yale (15 persons, 165 images),
AeroInfo Face (165 persons, 3740 images), Police Face (30 persons, 448 images),
and a total of 4353 faces are involved in the evaluation of localization performance
and the influence of eye locations on face recognition. In the training databases,
FERET, ARData, BioID, Bern, ORL are open databases, and OCRFace, built by
our lab, consists of 1448 face images with different views, expressions and glasses.
Among the test databases, Yale is an open database, which features extremely un-
balanced lightening and thick glasses; Police Face, provided by the First Research
Institute of Ministry of Public Security of China, features strong glaring of glasses
and large pose variation; AeroInfo, provided by the Aerospace Information Co. Ltd.
of China, features a large variety of illumination, expression, pose, face size, and
complex background. The three test sets are from diverse sources to cover different
eye variations in view angles, sizes, illumination, and glasses. Experiments based
on such diverse sets should be able to test the generalization performance of our eye
localization algorithm.

To evaluate the precision of eye localization, a scale independent localization cri-
terion [29] is used. This relative error measure compares the automatic localization
result with the manually marked locations of each eye. Let Cl and Cr be the manu-
ally extracted left and right eye positions, C′

l and C′
r be the detected positions, dl be

the Euclidean distance between C′
l and Cl , dr be the Euclidean distance between C′

r

and Cr , dlr be the Euclidean distance between the ground truth eye centers. Then
the relative error of this detection is defined as follows:

err = max(dl, dr )

dlr
. (12.11)
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Fig. 12.10 Cumulative
distribution of localization
errors of three methods on
test set

Three different eye localization methods are implemented and evaluated on the
test set. Method 1: The proposed algorithm in this chapter. Method 2: Similar to the
method proposed in [1]. After grossly locating the face area and determining the
midline between left and right eye, connected components analysis and projection
analysis are applied to the two areas separately to locate the eye center position.
Method 3: Different from Method 1 only in that the step, subsampling eye candi-
dates, is omitted.

The cumulative distribution function of localization error of three methods is
shown in Fig. 12.10. From the figure, we can see that method 1 and method 3
achieve similar performance and about 99.1% of the test samples are with local-
ization error below 0.20. Both are superior to method 2. But method 1 is 2–3 times
faster than method 3. So the subsampling step does not degrade the location preci-
sion, but enhances the localization speed. The average processing time per face of
method 1 on a PIV2.4 GHz PC system is 60 ms without special code optimization.
In Fig. 12.11, we offer some examples out of the test sets for visual examination.
The system appears to be robust to the presence of unbalanced illumination, eye-
glasses, partial occlusion and even significant pose changes. This generalization
ability is likely a consequence of the combination of local appearance and global
appearance under probabilistic framework. Specially, in local appearance, the illu-
mination influence can be effectively removed through local gray scale normaliza-
tion; in global appearance, the influence caused by face rotation in image plane can
be effectively removed through the aligning. We also compared method 1 with other
newly published systems. In paper [35], the detection was considered to be correct if
err< 0.25. Their detection performance on JAFFE database was 97.18%. We eval-
uate method 1 on JAFFE under the same test protocol. The detection rate of our
method is 98.6% if err< 0.10, and the detection rate is 100% if err< 0.12.

12.5.2 Random Forest Embedded ASM

In order to verify our algorithm, experiments have been conducted on a large data
set consisting of 3244 images from four databases for training. We collect and con-
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Fig. 12.11 Some eye localization results from test sets

struct the THFaceID database including 334 male and female aging from young to
old with various facial expressions. The Yale database, FRGC database and JAFFE
database are all publicly available. The Yale database includes illumination changes
and facial expression changes; The FRGC database also includes facial expres-
sion and illumination changes under controlled and uncontrolled situations; The
JAFFE database includes expression changes. All the 3244 images are manually la-
beled with 88 points as the ground truth landmarks. Test set 1 is constructed by the
THFaceID database including 200 persons, totally 600 images. Test set 2 is IMM
database. This method automatically detects faces and locates eye positions. The eye
localization is used as the initialization for parameter optimization procedure. After
initialization, the faces are aligned by the generic face deformable model trained
before. The accuracy is measured by

e=
88∑

i=1

‖Pa − Pm‖2/(88 · de). (12.12)

We call it the relative error e, which is the point to point error between the face
alignment results Pa and manually labeled ground-truth Pm when the distance of
left and right eye de is normalized to 60 pixels.
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Table 12.1 Relative error of the algorithm

Number of random trees Relative error on our database Relative error on IMM database

1 6.79 7.28

5 3.84 4.41

10 3.76 4.28

30 3.76 4.23

50 3.77 4.27

80 3.82 4.30

100 3.82 4.27

Table 12.2 Speed of the algorithm

Number of random trees Speed (ms) Computer configuration

1 24 Intel Core2, 2.66 GHz, 3.25G RAM

5 30

10 37

30 69

50 102

80 150

100 184

Fig. 12.12 Results of facial landmark localization towards video sequences

Table 12.1 shows the test results on Test set 1 and 2. Table 12.2 shows the speed
of the algorithm. Figure 12.12 shows facial landmark localization algorithm towards
video sequences.
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Table 12.3 Face recognition results in different facial landmark localization results

Number of random trees PCA dimension after reduction Recognition rate (%)

10 500 63.7

20 500 64.9

30 600 65.1

40 500 64.3

50 600 63.7

60 500 63.8

80 500 64.0

100 600 63.6

In order to make sure what precision will make facial landmark localization
meaningful in applications, the face recognition experiment on FRGC-V2 database
is carried on. This experiment shows the relation of facial landmark localization’s
precision and face recognition rate. Gabor features are extracted at each facial land-
mark and put together as the whole feature vector. The training samples are 222 in-
dividuals from FRGC-V2 database, each individual has 10 images. The testing sam-
ples are 466 individuals from FRGC-V2 database, each individual has one image as
face template. 466 individuals has totally 8014 images for testing. After feature ex-
traction, PCA is used as the dimension reduction, LDA is used as the discriminant
learning, and normalized correlation classifier is used. In addition, this experiment
does not do illumination preprocessing. The face recognition results are listed in
Table 12.3.

12.6 Conclusions

We have presented a facial landmark localization algorithm. Incorporating random
forest classifier into ASM, this method works well when fitting to images which are
unseen in the training set. Moreover, it runs in real time.

Face Recognition Vendor Test 2006 has shown that face recognition can achieve
high accuracy under controlled conditions, for example, when the testing face sam-
ples are frontal. However, when face pose changes largely, the performance of ex-
isting methods drop drastically. The same difficulties are found in the literature of
facial landmark localization. A reasonable way to improve multi-view facial land-
mark localization is to use 3D face morphable model. With the development of our
further research, our studies will focus on fast and robust facial landmark localiza-
tion algorithm by combining 2D deformable model with 3D morphable model.
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Chapter 13
Face Tracking and Recognition in Video

Rama Chellappa, Ming Du, Pavan Turaga, and Shaohua Kevin Zhou

13.1 Introduction

Faces are expressive three dimensional objects. Information useful for recognition
tasks can be found both in the geometry and texture of the face and also facial
motion. While geometry and texture together determine the ‘appearance’ of the face,
motion encodes behavioral cues such as idiosyncratic head movements and gestures
which can potentially aid in recognition tasks. Traditional face recognition systems
have relied on a gallery of still images for learning and a probe of still images for
recognition. While the advantage of using motion information in face videos has
been widely recognized, computational models for video based face recognition
have only recently gained attention.

In this chapter, we consider applications where one is presented with a video
sequence—either in a single camera setting or a multi-camera setting—and the goal
is to recognize the person in the video. The gallery could consist of either still-
images or could be videos themselves.

Video is a rich source of information in that it can lead to potentially better rep-
resentations by offering more views of the face. Further, the role of facial motion
for face perception has been well documented. Psychophysical studies [26] have
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found evidence that when both structure and dynamics information is available, hu-
mans tend to rely more on dynamics under nonoptimal viewing conditions (such
as low spatial resolution, harsh illumination conditions etc.). Dynamics also aids in
recognition of familiar faces [31]. If one were to ignore temporal dependencies, a
video sequence can be considered as a collection of still images; so still-image-based
recognition algorithms can always be applied. The properties of video sequences
that can be exploited are (1) temporal correlations, (2) idiosyncratic dynamic infor-
mation, and (3) availability of multiple views. Video thus proves useful in various
tasks—it can be used to generate better appearance models, mitigate effects of non-
cooperative viewing conditions, localize a face using motion, model facial behavior
for improved recognition, generate better models of face shape from multiple views,
etc.

The rest of the chapter is organized as follows. In Sect. 13.2, we describe the
utility of videos in enhancing performance of image-based recognition tasks. In
Sect. 13.3, we discuss a joint tracking-recognition framework that allows for using
the motion information in a video to better localize and identify the person in the
video using still galleries. In Sect. 13.4, we discuss how to jointly capture facial
appearance and dynamics to obtain a parametric representation for video-to-video
recognition. In Sect. 13.5, we discuss recognition in multi-camera networks where
the probe and gallery both consist of multi-camera videos. Finally in Sect. 13.6, we
present concluding remarks and directions for future research.

13.2 Utility of Video

Frame-Based Fusion An immediate possible utilization of temporal information
for video-based face recognition is to fuse the results obtained by a 2D face recogni-
tion algorithm on each frame of the sequence. The video sequence can be seen as an
unordered set of images to be used for both training and testing phases. During test-
ing one can use the sequence as a set of probes, each of them providing a decision
regarding the identity of the person. Appropriate fusion techniques can then be ap-
plied to provide the final identity. Perhaps the most frequently used fusion strategy
in this case is majority voting [24, 34].

In [28], Park et al. adopt three matchers for frame-level face recognition: Face-
VACS, PCA and correlation. They use the sum rule (with min-max normalization)
to fuse results obtained from the three matchers and the maximum rule to fuse re-
sults of individual frames. In [21], the concept of identity surface is proposed to
represent the hyper-surface formed by projecting face patterns of an individual to
the feature vector space parameterized with respect to pose. This surface is learned
from gallery videos. In testing stage, model trajectories are synthesized on the iden-
tity surfaces of enrolled subjects after the pose parameters of probe video have been
estimated. Every point on the trajectory corresponds to a frame of the video and
trajectory distance is defined as a weighted sum of point-wise distances. The model
trajectory that yields minimum distance to the probe video’s trajectory gives the final
identification result. Based on the result that images live approximately in a bilinear
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space of motion and illumination variables, Xu et al. estimate these parameters for
each frame of a probe video sequence with a registered 3D generic face model [38].
They then replace the generic model with a person-specific model of each subject
in the gallery to synthesize video sequences with the estimated illumination and
motion parameters. Frame-wise comparison is conducted between the synthesized
videos and the probe video. A synthesized video is considered as a winner if one
of its frames yield the smallest distance across all frames and all the subjects in the
gallery.

Ensemble Matching Without recourse to modeling temporal dynamics, one can
consider a video as an ensemble of images. Recent methods have focused on utiliz-
ing image-ensembles for object and face recognition [4, 15, 17, 41]. For example, it
was shown by Jacobs et al. that the illumination cone of a convex Lambertian surface
can be approximated by a 9-dimensional linear subspace [5]. Motivated by this, the
set of face images of the same person under varying illumination conditions is fre-
quently modeled as a linear subspace of 9-dimensions [19]. In such applications, an
object ‘category’ consists of image-sets of several ‘instances’. A common approach
in such applications is to approximate the image-space of a single face/object un-
der these variations as a linear subspace [14, 15]. A simplistic model for object
appearance variations is then a mixture of subspaces. In [41], Zhou and Chellappa
study the problem of measuring similarity between two ensembles by projecting the
data into a Reproducing Kernel Hilbert Space (RKHS). The ensemble distance is
then characterized as the probabilistic distance (Chernoff distance, Bhattacharyya
distance, Kullback–Leibler (KL) divergence etc.) in RKHS.

Appearance Modeling Most face recognition approaches rely on a model of
appearance for each individual subject. The simplest appearance model is a static
image of the person. Such appearance models are rather limited in utility in video-
based face recognition tasks where subjects may be imaged under varying view-
points, illuminations, expressions etc. Thus, instead of using a static image as an
appearance model, a sufficiently long video which encompasses several variations
in facial appearance can lend itself to building more robust appearance models. Sev-
eral methods have been proposed for extracting more descriptive appearance models
from videos. For example, a facial video is considered as a sequence of images sam-
pled from an ‘appearance manifold’ in [20]. In principle, the appearance manifold
of a subject contains all possible appearances of the subject. In practice, the appear-
ance manifold for each person is estimated from training data of videos. For ease of
estimation, the appearance manifold is considered to be a collection of affine sub-
spaces, where each subspace encodes a set of similar appearances of the subject.
Temporal variations of appearances in a given video sequence are then modeled as
transitions between the appearance subspaces. This method is robust to large ap-
pearance changes if sufficient 3D view variations and illumination variations are
available in the training set. Further, the tracking problem can be integrated into this
framework by searching for a bounding-box on the test image that minimizes the
distance of the cropped region to the learnt appearance manifold.
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In a related work, [3] represents the appearance variations due to shape and illu-
mination on human faces, using the assumption that the ‘shape-illumination mani-
fold’ of all possible illuminations and head poses is generic for human faces. This
means that the shape-illumination manifold can be estimated using a set of subjects
exclusive of the test set. They show that the effects of face shape and illumination
can be learnt using Probabilistic PCA from a small, unlabeled set of video sequences
of faces in randomly varying lighting conditions. Given a novel sequence, the learnt
model is used to decompose the face appearance manifold into albedo and shape-
illumination manifolds, producing the classification decision using robust likelihood
estimation.

13.3 Still Gallery vs. Video Probes

Following Phillips et al. [29], we define a still-to-video scenario as follows. The
gallery consists of still facial templates, and the probe set consists of video se-
quences containing the facial region. Though significant research has been con-
ducted on still-to-still recognition, research efforts on still-to-video recognition are
relatively fewer owing to the following challenges [40] in typical surveillance ap-
plications: poor video quality, significant illumination and pose variations, and low
image resolution. Most existing video-based recognition systems [9, 40] attempt the
following: The face is first detected and then tracked over time. Only when a frame
satisfying certain criteria (size, pose) is acquired, recognition is performed using
still-to-still recognition technique. For this, the face part is cropped from the frame
and transformed or registered using appropriate transformations. This tracking-then-
recognition approach attempts to resolve uncertainties in tracking and recognition
sequentially and separately and requires a criterion for selecting good frames and
estimation of parameters for registration. Also, still-to-still recognition does not ef-
fectively exploit temporal information.

We will assume that a certain feature representation for spatio-temporal patterns
of moving faces has been made. We will also assume that there exists a set of hid-
den parameters, constituting the state vector, which govern how the spatio-temporal
patterns evolve in time. The state vector encodes information such as motion pa-
rameters which can be used for tracking and identity parameters that can be used
for recognition. Given a set of features, we need inference algorithms for estimating
these hidden parameters. The three basic components of the model are the follow-
ing.

• A motion equation governing the kinematic behavior of the tracking motion vec-
tor

• An identity equation governing the temporal evolution of the identity variable
• An observation equation establishing a link between the motion vector and the

identity variable

We denote the gallery as I = {I1, I2, . . . , IN }, indexed by the identity variable n,
which lies in a finite sample space N = {1,2, . . . ,N}. And we denote the identity,



13 Face Tracking and Recognition in Video 327

motion vector, and the observation at time t as nt , θt and zt , respectively. Using
the Sequential Importance Sampling (SIS) [12, 18, 22] technique, the joint posterior
distribution of the motion vector and the identity variable [i.e., p(nt , θt | z0:t )] is
estimated at each time instant and then propagated to the next time instant governed
by motion and identity equations. The marginal distribution of the identity variable
[i.e., p(nt | z0:t )] is estimated to provide the recognition result.

The recognition model consists of the following components.

• Motion equation
In its most general form, the motion model can be written as

θt = g(θt−1, ut ); t ≥ 1 (13.1)

where ut is noise in the motion model, whose distribution determines the mo-
tion state transition probability p(θt | θt−1). The function g(., .) characterizes the
evolving motion, and it could be a function learned offline or given a priori. One
of the simplest choices is an additive function (i.e., θt = θt−1 + ut ), which leads
to a first-order Markov chain.

The choice of θt is dependent on the application. Affine motion parameters
are often used when there is no significant pose variation available in the video
sequence. However, if a three-dimensional (3D) face model is used, 3D motion
parameters should be used accordingly.

• Identity equation
Assuming that the identity does not change as time proceeds, we have

nt = nt−1; t ≥ 1. (13.2)

In practice, one may assume a small transition probability between identity vari-
ables to increase the robustness.

• Observation equation
By assuming that the transformed observation is a noise-corrupted version of
some still template in the gallery, the observation equation can be written as

Tθt {zt } = Int + vt ; t ≥ 1 (13.3)

where vt is observation noise at time t , whose distribution determines the obser-
vation likelihood p(zt | nt , θt ), and Tθt {zt } is a transformed version of the ob-
servation zt . This transformation could be geometric, photometric, or both. How-
ever, when confronting difficult scenarios, one should use a more sophisticated
likelihood function as discussed in [43].

• Statistical independence
We assume statistical independence between all noise variables ut and vt .

• Prior distribution
The prior distribution p(n0 | z0) is assumed to be uniform.

p(n0 | z0)= 1

N
; n0 = 1,2, . . . ,N. (13.4)
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In our experiments, p(θ0|z0) is assumed to be Gaussian: its mean comes from an
initial detector or manual input and its covariance matrix is manually specified.

Using an overall state vector xt = (nt , θt ), (13.1) and (13.2) can be combined into
one state equation (in a normal sense) that is completely described by the overall
state transition probability

p(xt | xt−1)= p(nt | nt−1)p(θt | θt−1). (13.5)

Given this model, our goal is to compute the posterior probability p(nt | z0:t ).
It is in fact a probability mass function (PMF), as nt only takes values from
N = {1,2, . . . ,N}, as well as a marginal probability of p(nt , θt | z0:t ), which is
a mixed distribution. Therefore, the problem is reduced to computing the posterior
probability.

13.3.1 Posterior Probability of Identity Variable

The evolution of the posterior probability p(nt | z0:t ) as time proceeds is interesting
to study, as the identity variable does not change by assumption [i.e., p(nt | nt−1)=
δ(nt − nt−1), where δ(.) is a discrete impulse function at zero, that is, δ(x) = 1 if
x = 0; otherwise δ(x)= 0]. Using time recursion, Markov properties, and statistical
independence embedded in the model, one can derive the following expressions:

p(n0:t , θ0:t | z0:t )

= p(n0:t−1, θ0:t−1 | z0:t−1)
p(zt | nt , θt )p(nt | nt−1)p(θt | θt−1)

p(zt | z0:t−1)

= p(n0, θ0 | z0)

t∏

i=1

p(zi | ni, θi)p(ni | ni−1)p(θi | θi−1)

p(zi | z0:i−1)

= p(n0 | z0)p(θ0 | z0)

t∏

i=1

p(zi | ni, θi)δ(ni − ni−1)p(θi | θi−1)

p(zi | z0:i−1)
. (13.6)

Therefore, by marginalizing over θ0:t and n0:t−1, we obtain the marginal posterior
distribution for the identity j .

p(nt = j | z0:t ) = p(n0 = j | z0)

∫

θ0

· · ·
∫

θt

p(θ0 | z0)

×
t∏

i=1

p(zi | j, θi)p(θi | θi−1)

p(zi | z0:i−1)
dθt · · · dθ0. (13.7)

Thus, p(nt = j | z0:t ) is determined by the prior distribution p(n0 = j | z0) and the
product of the likelihood functions

∏t
i=1 p(zi | j, θi). If a uniform prior is assumed,

then
∏t
i=1 p(zi | j, θi) is the only determining factor.
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13.3.2 Sequential Importance Sampling Algorithm

Consider a general time series state space model fully determined by (1) the overall
state transition probability p(xt | xt−1); (2) the observation likelihood p(zt | xt ); and
(3) prior probability p(x0) and statistical independence among all noise variables.
We wish to compute the posterior probability p(xt | z0:t ).

If the model is linear with Gaussian noise, it is analytically solvable by a Kalman
filter, which essentially propagates the mean and variance of a Gaussian distribution
over time. For nonlinear and non-Gaussian cases, an extended Kalman filter and its
variants have been used to arrive at an approximate analytic solution [2]. Recently,
the SIS technique, a special case of the Monte Carlo method [12, 18, 22] has been
used to provide a numerical solution and propagate an arbitrary distribution over
time.

The essence of the Monte Carlo method is to represent an arbitrary probability
distribution π(x) closely by a set of discrete samples. It is ideal to draw i.i.d. sam-
ples {x(m)}Mm=1 from π(x). However, it is often difficult to implement, especially
for nontrivial distributions. Instead, a set of samples {x(m)}Mm=1 is drawn from an
importance function g(x); then a weight

w(m) = π(x(m))/g(x(m)) (13.8)

is assigned to each sample. This technique is called importance sampling. It can
be shown [22] that the importance sample set S = {(x(m),w(m))}Mm=1 is properly
weighted to the target distribution π(x). To accommodate a video, importance sam-
pling is used in a sequential fashion, which leads to SIS. SIS propagates St−1 ac-
cording to the sequential importance function, say g(xt | xt−1), and calculates the
weight using

wt =wt−1p(zt | xt )p(xt | xt−1)/g(xt | xt−1). (13.9)

In the CONDENSATION algorithm, g(xt | xt−1) is taken to be p(xt | xt−1) and (13.9)
becomes

wt =wt−1p(zt | xt ). (13.10)

In fact, (13.10) is implemented by first resampling the sample set St−1 according to
wt−1 and then updating the weight wt using p(zt | xt ). For a complete description
of the SIS method, refer to Doucet et al. [12] and Liu and Chen [22].

In the context of video-based face recognition, the posterior probability p(nt , θt |
z0:t ) is represented by a set of indexed and weighted samples

St =
{(
n
(m)
t , θ

(m)
t ,w

(m)
t

)}M
m=1 (13.11)

with nt as the above index. We can sum the weights of the samples belonging to
the same index nt to obtain a proper sample set {nt , βnt }Nnt=1 with respect to the
posterior PMF p(nt |z0:t ). Straightforward implementation of the CONDENSATION

algorithm for simultaneous tracking and recognition is not efficient in terms of its
computational load. We refer the reader to [42] for a more detailed treatment of this
issue.
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13.3.3 Experimental Results

In this section, we describe the still-to-video scenarios used in our experiments and
model choices, followed by a discussion of results. Two databases are used in the
still-to-video experiments.

Database-0 was collected outside a building. We mounted a video camera on a
tripod and requested subjects to walk straight toward the camera to simulate typi-
cal scenarios for visual surveillance. Database-0 includes one face gallery and one
probe set. The probe contains 12 videos, one for each individual.

In Database-1, we have video sequences with subjects walking in a slant path
toward the camera. There are 30 subjects, each having one face template. The face
gallery is shown in Fig. 13.1. The probe contains 30 video sequences, one for each
subject. Figure 13.1 shows some frames extracted from one probe video. As far
as imaging conditions are concerned, the gallery is quite different from the probe,
especially in terms of lighting. This is similar to the “FC” test protocol of the FERET
test [29]. These images/videos were collected as part of the HumanID project by the
National Institute of Standards and Technology and University of South Florida
researchers.

13.3.3.1 Results for Database-0

We now consider affine transformation. Specifically, the motion is characterized
by θ = (a1, a2, a3, a4, tx, ty), where {a1, a2, a3, a4} are deformation parameters and
{tx, ty} are 2D translation parameters. It is a reasonable approximation because there
is no significant out-of-plane motion as the subjects walk toward the camera. Re-
garding the photometric transformation, only the zero-mean-unit-variance operation
is performed to compensate partially for contrast variations. The complete transfor-
mation Tθ {z} is processed as follows. Affine transform z using {a1, a2, a3, a4}, crop
out the interested region at position {tx, ty} with the same size as the still template
in the gallery, and perform the zero-mean-unit-variance operation.

A time-invariant first-order Markov Gaussian model with constant velocity is
used for modeling motion transition. Given that the subject is walking toward the
camera, the scale increases with time. However, under perspective projection, this
increase is no longer linear, causing the constant-velocity model to be not optimal.
However, experimental results show that so long as the samples of θ can cover the
motion, this model is sufficient.

The likelihood measurement is simply set as a “truncated” Laplacian:

p1(zt | nt , θt )= L
(∥
∥Tθt {zt } − Int

∥
∥;σ1, τ1

)
(13.12)

where ‖.‖ is sum of absolute distance, σ1 and λ1 are manually specified, and

L(x;σ, τ)=
{
σ−1 exp(−x/σ) if x ≤ τσ,
σ−1 exp(−τ) otherwise.

(13.13)
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Fig. 13.1 Database-1. First row: the face gallery with image size of 30 × 26. Second and third
rows: four frames in one probe video with image size of 720 × 480; the actual face size ranged
from approximately 20 × 20 in the first frame to 60 × 60 in the last frame. Note the significant
illumination variations between the probe and the gallery

Gaussian distribution is widely used as a noise model, accounting for sensor noise
and digitization noise among others. However, given the observation equation: vt =
Tθt {zt } − Int , the dominant part of vt becomes the high-frequency residual if θt is
not proper; and it is well known that the high-frequency residual of natural images is
more Laplacian-like. The “truncated” Laplacian is used to give a “surviving” chance
for samples to accommodate abrupt motion changes.

Table 13.1 summarizes the average recognition performance and computa-
tional time of the CONDENSATION and the proposed algorithm when applied to
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Table 13.1 Recognition performance of algorithms when applied to Database-0

Algorithm CONDENSATION Proposed

Recognition rate within top one match 100% 100%

Time per frame 7 seconds 0.5 seconds

Table 13.2 Performances of algorithms when applied to Database-1

Case Case 1 Case 2 Case 3 Case 4 Case 5

Tracking accuracy 83% 87% 93% 100% NA

Recognition within top 1 match 13% NA 83% 93% 57%

Recognition within top 3 matches 43% NA 97% 100% 83%

Database-0. Both algorithms achieved 100% recognition rate with top match. How-
ever, the proposed algorithm is more than 10 times faster than the CONDENSATION

algorithm.

13.3.3.2 Results on Database-1

Case 1: Tracking and Recognition Using Laplacian Density We first inves-
tigate the performance using the same setting as described in Sect. 13.3.3.1. Ta-
ble 13.2 shows that the recognition rate is poor: only 13% are correctly identified
using the top match. The main reason is that the “truncated” Laplacian density is
not able to capture the appearance difference between the probe and the gallery, in-
dicating a need for more effective appearance modeling. Nevertheless, the tracking
accuracy is reasonable, with 83% successfully tracked because we are using multi-
ple face templates in the gallery to track the specific face in the probe video. After
all, faces in both the gallery and the probe belong to the same class of human face,
and it seems that the appearance change is within the class range.

Case 2: Pure Tracking Using Laplacian Density In Case 2, we measure the
appearance change within the probe video as well as the noise in the background.
To this end, we introduce a dummy template T0, a cut version in the first frame of
the video. Define the observation likelihood for tracking as

q(zt | θt )= L
(∥
∥Tθt {zt } − T0

∥
∥;σ2, τ2

)
(13.14)

where σ2 and τ2 are set manually. The other setting, such as motion parameter and
model, is the same as in Case 1. We still can run the CONDENSATION algorithm to
perform pure tracking. Table 13.2 shows that 87% are successfully tracked by this
simple tracking model, which implies that the appearance within the video remains
similar.
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Case 3: Tracking and Recognition Using Probabilistic Subspace Density As
mentioned in Case 1, we need a new appearance model to improve the recogni-
tion accuracy. Of the many approaches suggested in the literature, we decided to
use the approach suggested by Moghaddam et al. [25] because of its computational
efficiency and high recognition accuracy. However, here we model only the intrap-
ersonal variations.

We need at least two facial images for one identity to construct the intrapersonal
space (IPS). Apart from the available gallery, we crop out the second image from
the video ensuring no overlap with the frames actually used in probe videos.

We then fit a probabilistic subspace density on top of the IPS. It proceeds as
follows: A regular PCA is performed for the IPS. Suppose the eigensystem for the
IPS is {(λi, ei)}di=1, where d is the number of pixels and λ1 ≥ · · · ≥ λd . Only top
r principal components corresponding to top r eigenvalues are then kept while the
residual components are considered isotropic. The density is written as follows

Q(x)=
{

exp(− 1
2

∑r
i=1

y2
i

λi
)

(2π)r/2
∏r
i=1 λ

1/2
i

}{
exp(− ε2

2ρ )

(2πρ)(d−r)/2

}

(13.15)

where the principal components yi , the reconstruction error ε2, and the isotropic
noise variance ρ are defined as

yi = eT
i x, ε2 = ‖x‖2 −

r∑

i=1

y2
i , ρ = (d − r)−1

d∑

i=r+1

λi. (13.16)

It is easy to write the likelihood as follows:

p2(zt | nt , θt )= QIPS(Tθt {zt } − Int ). (13.17)

Table 13.2 lists the performance using this new likelihood measurement. It turns
out that the performance is significantly better than in Case 1, with 93% tracked
successfully and 83% correctly recognized within the top match. If we consider the
top three matches, 97% are correctly identified.

Case 4: Tracking and Recognition Using Combined Density In Case 2, we
studied appearance changes within a video sequence. In Case 3, we studied the
appearance change between the gallery and the probe. In Case 4, we attempt to take
advantage of both cases by introducing a combined likelihood defined as follows.

p3(zt | nt , θt )= p2(zt | nt , θt )q(zt | θt ). (13.18)

Again, all other settings are the same as in Case 1. We now obtain the best perfor-
mance so far: no tracking error, 93% are correctly recognized as the first match, and
no error in recognition when the top three matches are considered.
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Case 5: Still-to-Still Face Recognition We also performed an experiment for
still-to-still face recognition. We selected the probe video frames with the best
frontal face view (i.e., biggest frontal view) and cropped out the facial region by
normalizing with respect to the eye coordinates manually specified. It turns out that
the recognition result is 57% correct for the top match and 83% for the top three
matches. Clearly, Case 4 is the best among all.

13.4 Video Gallery vs. Video Probes

Here we describe a parametric model for appearance and dynamics to understand the
manifold structures of these models, which are then used to devise joint appearance
and dynamic based recognition algorithms.

13.4.1 Parametric Model for Appearance and Dynamic Variations

A wide variety of spatio-temporal data have often been modeled as realizations
of dynamical models. Examples include dynamic textures [11], human joint an-
gle trajectories [6] and silhouettes [37]. A well-known dynamical model for such
time-series data is the autoregressive and moving average (ARMA) model. Linear
dynamical systems represent a class of parametric models for time-series. A wide
variety of time series data such as dynamic textures, human joint angle trajecto-
ries, shape sequences, video based face recognition etc., are frequently modeled as
autoregressive and moving average (ARMA) models [1, 6, 11, 37]. Let f (t) be a
sequence of features extracted from a video indexed by time t . The ARMA model
parametrizes the evolution of the features f (t) using the following equations:

f (t)= Cz(t)+w(t) w(t)∼N(0,R), (13.19)

z(t + 1)=Az(t)+ v(t) v(t)∼N(0,Q) (13.20)

where, z ∈ R
d is the hidden state vector, A ∈ R

d×d the transition matrix and C ∈
R
p×d the measurement matrix. f ∈ R

p represents the observed features while w
and v are noise components modeled as normal with 0 mean and covariances R ∈
R
p×p and Q ∈ R

d×d , respectively.
For high-dimensional time-series data (dynamic textures etc), the most common

approach is to first learn a lower-dimensional embedding of the observations via
PCA, and learn temporal dynamics in the lower-dimensional space. Closed form
solutions for learning the model parameters (A,C) from the feature sequence (f1:T )
have been proposed by [11, 27] and are widely used in the computer vision com-
munity. Let observations f (1), f (2), . . . , f (τ ), represent the features for the time
indices 1,2, . . . , τ . Let [f (1), f (2), . . . , f (τ )] = UΣV T be the singular value de-
composition of the data. Then Ĉ = U , Â = ΣV TD1V (V

TD2V )
−1Σ−1, where

D1 = [00; Iτ−1 0] and D2 = [Iτ−10;00].
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The model parameters (A,C) do not lie in a vector space. The transition ma-
trix A is only constrained to be stable with eigenvalues inside the unit circle. The
observation matrix C is constrained to be an orthonormal matrix. For comparison
of models, the most commonly used distance metric is based on subspace angles
between column-spaces of the observability matrices [10]. For the ARMA model
of (13.20), starting from an initial condition z(0), it can be shown that the expected
observation sequence is given by

E

⎡

⎢
⎢
⎢
⎢
⎣

f (0)
f (1)
f (2)
.

.

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

C

CA

CA2

.

.

⎤

⎥
⎥
⎥
⎥
⎦
z(0)=O∞(M)z(0). (13.21)

Thus, the expected observation sequence generated by a time-invariant model
M = (A,C) lies in the column space of the extended observability matrix given by

OT∞ = [CT, (CA)T,
(
CA2)T, . . . ,

(
CAn

)T
, . . .
]
. (13.22)

In experimental implementations, we approximate the extended observability
matrix by the finite observability matrix as is commonly done [33]

OT
m = [CT, (CA)T,

(
CA2)T, . . . ,

(
CAm−1)T]. (13.23)

The size of this matrix ismp×d . The column space of this matrix is a d-dimensional
subspace of R

mp , where d is the dimension of the state-space z in (13.20). d is
typically of the order of 5–10.

Thus, given a database of videos, we estimate the model parameters as described
above for each video. The finite observability matrix is computed as in (13.23). To
represent the subspace spanned by the columns of this matrix, we store an orthonor-
mal basis computed by Gram-Schmidt orthonormalization. Since, a subspace is a
point on a Grassmann manifold [35, 36], a linear dynamical system can be alter-
nately identified as a point on the Grassmann manifold corresponding to the column
space of the observability matrix. The goal now is to devise methods for classifica-
tion and recognition using these model parameters. Given a set of videos for a given
class, we would like to compute a parametric or non-parametric class-conditional
density. Then, the maximum likelihood classification for each test instance can be
performed using these class conditional distributions. To enable these, we need to
understand the geometry of the Grassmann manifold.

13.4.2 The Manifold Structure of Subspaces

The set of all d-dimensional linear subspaces of R
n is called the Grassmann man-

ifold which will be denoted as Gn,d . The set of all n × d orthonormal matrices is
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called the Stiefel manifold and shall be denoted as Sn,d . As discussed in the appli-
cations above, we are interested in computing statistical models over the Grassmann
manifold. Let U1,U2, . . . ,Uk be some previously estimated points on Sn,d and we
seek their sample mean, an average, for defining a probability model on Sn,d . Re-
call that these Uis are tall, orthogonal matrices. It is easy to see that the Euclidean
sample mean 1

k

∑k
i=1Ui is not a valid operation, because the resultant mean does

not have the property of orthonormality. This is because Sn,d is not a vector space.
Similarly, many of the standard tools in estimation and modeling theory do not di-
rectly apply to such spaces but can be adapted by accounting for the underlying
nonlinear geometry.

A subspace is stored as an orthonormal matrix which forms a basis for the sub-
space. As mentioned earlier, orthonormal matrices are points on the Stiefel mani-
fold. However, since the choice of basis for a subspace is not unique, any notion
of distance and statistics should be invariant to this choice. This requires us to in-
terpret each point on the Grassmann manifold as an equivalence of points on the
Stiefel manifold, where all orthonormal matrices that span the same subspace are
considered equivalent. This interpretation is more formally described as a quotient
interpretation that is, the Grassmann manifold is considered a quotient space of the
Stiefel manifold. Quotient interpretations allow us to extend the results of the base
manifold such as tangent spaces, geodesics etc to the new quotient manifold. In our
case, it turns out that the Stiefel manifold itself can be interpreted as a quotient of a
more basic manifold—the special orthogonal group SO(n). A quotient of Stiefel is
thus a quotient of SO(n) as well.

A point U on Sn,d is represented as a tall-thin n× d orthonormal matrix. The
corresponding equivalence class of n × d matrices [U ] = UR, for R ∈ GL(d) is
called the Procrustes representation of the Stiefel manifold. Thus, to compare two
points in Gn,d , we simply compare the smallest squared distance between the cor-
responding equivalence classes on the Stiefel manifold according to the Procrustes
representation. Given matrices U1 and U2 on Sn,d , the smallest squared Euclidean
distance between the corresponding equivalence classes is given by

d2
Procrust

([U1], [U2]
) = min

R
tr(U1 −U2R)

T(U1 −U2R) (13.24)

= min
R

tr
(
RTR− 2UT

1 U2R + Ik
)
. (13.25)

When R varies over the orthogonal group O(d), the minimum is attained at
R = H1H

T
2 = A(ATA)−1/2, where A = H1DH

T
2 is the singular value decompo-

sition of A. We refer the reader to [8] for proofs and alternate cases. Given several
examples from a class (U1,U2, . . . ,Un) on the manifold, the class conditional den-
sity can be estimated using an appropriate kernel function. We first assume that an
appropriate choice of a divergence on the manifold has been made such as the one
above. For the Procrustes measure, the density estimate is given by [8] as

f̂ (U ;M)= 1

n
C(M)

n∑

i=1

K
[
M−1/2(Ik −UT

i UU
TUi
)
M−1/2] (13.26)
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whereK(T ) is the kernel function,M is a d×d positive definite matrix which plays
the role of the kernel width or a smoothing parameter. C(M) is a normalizing factor
chosen so that the estimated density integrates to unity. The matrix valued kernel
function K(T ) can be chosen in several ways. We have used K(T )= exp(−tr(T ))
in all the experiments reported in this chapter. In this non-parametric method for
density estimation, the choice of kernel width M becomes important. Thus, though
this is a non-iterative procedure, the optimal choice of the kernel width can have
a large impact on the final results. In general, there is no standard way to choose
this parameter except for cross-validation. In the experiments reported here, we use
M = I , the d × d identity matrix.

In addition to such nonparametric methods, there are principled methods to de-
vise parametric densities on manifolds. Here, we simply refer the reader to [36]
for mathematical details. In brief, using the tangent structure of the manifold, it is
possible to define the well-known parametric densities such as multi-variate Gaus-
sian, mixture-of-Gaussians etc., on the tangent spaces and wrap them back to the
manifold. Densities defined in such a manner are called ‘wrapped’-densities. In the
experiments section, we use a wrapped-Gaussian to model class-condition densities
on the Grassmann manifold. This is compared to the simpler nonparametric method
described above.

13.4.3 Video-Based Face Recognition Experiments

We performed a recognition experiment on the NIST’s Multiple Biometric Grand
Challenge (MBGC) dataset. The MBGC Video Challenge dataset consists of a large
number of subjects walking towards a camera in a variety of illumination conditions.
Face regions are manually tracked and a sequence of cropped images is obtained.
There were a total of 143 subjects with the number of videos per subject ranging
from 1 to 5. In our experiments, we took subsets of the dataset which contained at
least 2 sequences per person denoted as S2, at least 3 sequences per person denoted
as S3 etc. Each of the face-images was first preprocessed to zero-mean and unity
variance. In each of these subsets, we performed a leave-one-out testing. The results
of the leave one out testing are shown in Table 13.3. Also reported are the total
number of distinct subjects and the total number of video sequences in each of the
subsets. In the comparisons, we show results using the ‘arc-length’ metric between
subspaces [13]. This metric computes the subspace angles between two subspaces
and takes the Frobenius norm of the angles as a distance measure [13]. We also
show comparisons with the Procrustes measure, the Kernel density estimate with
M = I and a parametric wrapped Gaussian density on the manifold. The wrapped
Gaussian is estimated on the tangent-plane centered at the mean-point of the dataset.
The mean, more formally defined as the Karcher mean, is defined as the point that
minimizes the sum of squared geodesic distances to all other points. The tangent-
plane being a vector space allows the use of multi-variate statistics to define class-
conditional densities. We refer the reader to [36] for mathematical details.
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Table 13.3 Comparison of video based face recognition approaches using (a) Subspace Angles
+ Arc-length metric, (b) Procrustes Distance, (c) kernel density, (d) Wrapped Normal on Tangent
Plane

Subset Distinct
Subjects

Total Se-
quences

Arc-length
Metric

Procrustes
Metric

Kernel
density

Wrapped
Normal

S2 143 395 38.48 43.79 39.74 63.79

S3 55 219 48.85 53.88 50.22 74.88

S4 54 216 48.61 53.70 50.46 75

Avg. 45.31% 50.45% 46.80% 71.22%

As can be seen, statistical methods outperform nearest-neighbor based ap-
proaches. As one would expect, the results improve when more examples per class
are available. Since the optimal kernel-width is not known in advance, this might
explain the relatively poor performance of the kernel density method. More exam-
ples of statistical inference on the Grassmann manifold for image and video-based
recognition can be found in [35].

13.5 Face Recognition in Camera Network

Video-based face recognition algorithms exploit information temporally across the
video sequence to improve recognition performance. With camera networks, we
can capture multi-view videos which allow us to further integrate information spa-
tially across view angles. It is worth noting that this is different from traditional
face recognition of single-camera videos in which various face poses exhibit. In
that case, one usually needs to model the dynamics of pose changes in the training
phase and estimate pose in the testing phase. For example, in [20], Lee et al. train
a representation for the face appearance manifold. The manifold consists of locally
linear subspaces for different poses. A transition probability matrix is also trained
to characterize the temporal dynamics for this representation. In [23], the dynamics
are encoded in the learned Hidden Markov Models (HMMs). The mean observa-
tions of hidden states are shown to represent facial images at various poses. These
approaches are designed to work with a single camera.

On the other hand, in camera network deployments there are multiple images of
the face in different poses at a given time instant. These images could include a mix
of frontal and nonfrontal images of the face, or, in some cases, a mix of nonfrontal
images (see Fig. 13.2). Videos captured in such a mode have natural advantages in
providing persistent sensing over a large area and stronger cues for handling pose
variations. Nonetheless, if we do not leverage the collaboration among cameras, the
power of multi-view data over single-views cannot be fully exploited. For example,
if we extend the single-view video-based methods, such as [20] and [23], to a camera
network, they have to function in such a mode that cameras do not collaborate with
each other except at the final fusion stage.
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Fig. 13.2 Images acquired
by a multi-camera network.
Each column corresponds to a
different camera, and each
row corresponds to a different
time instant and subject. Note
that, under unconstrained
acquisition, it is entirely
possible that none of the
images are frontal in spite of
using five cameras to observe
the subject [32]

In general, there are some principles one should follow in developing a video-
based face recognition algorithm for camera networks: First, the method should be
able to collaboratively utilize information collected by multiple cameras and arrive
at a multi-view representation from it, as opposed to perform recognition for each
view individually and then fusing the result. Second, the method should be able to
tackle pose variations effectively, as this is the major concern of a multi-view face
recognition system. Third, the method should work on data whose acquisition con-
ditions are as close to practical surveillance situations as possible. These conditions
include: reasonable distance between subject and cameras, relatively low resolution
in the face region, uncontrolled pose variations, uncontrolled subject motion, and
possible interruptions in acquisition (say, the subject moves out of the field of view
of a camera) etc.

Next, we will introduce a video-based face tracking and recognition framework
following these principles. The system first tracks a subject’s head from multi-
view videos and back-projects textures to a spherical head-model. Then a rotation-
invariant feature based on spherical harmonic (SH) transform is constructed from
the texture maps. Finally, video-based recognition is achieved through measurement
of ensemble similarity.

13.5.1 Face Tracking from Multi-view Videos

The tracker is set in a Sequential Importance Resampling (SIR) (particle filtering)
framework, which can be broken down into a description of its state space, the state
transition model and the observation model. To fully describe the position and pose
of a 3D object, we usually need a 6-D representation (R3 × SO(3)), where the 3-D
real vector space is used to represent the object’s location, and the special orthogonal
group SO(3) is used to represent the object’s rotation. In our work, we model the
human head as a sphere and perform pose-robust recognition. This enables us to
explore in 3-D state space S = R

3. Each state vector s = [x, y, z] represents the 3-D
position of a sphere’s center, disregarding the orientation. The radius of the sphere
is assumed to be known through an initialization step. The low dimensionality of
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the state space contributes to the reliability of the tracker, since for SIR, even a large
number of particles will necessarily be sparse in high dimensional space.

The state transition model P(st | st−1) is set as a Gaussian distribution N (st |
st−1, σ

2I). We have found that the tracking result is relatively insensitive to the
specific value of σ and fixed it at 50 mm (our external camera calibration is metric).
The observations for the filter are histograms extracted from the multi-view video
frames I jt , where j is the camera index and t is the frame index. Histogram features
are invariant to rotations and thus fit the circumstance of reduced state space. To
adopt this feature, we need to back-project I jt onto the spherical head model and
establish the histogram over the texture map. The observation likelihood is modeled
as follows:

P
(
Ot | s(i)t

)= P (I 1
t , I

2
t , . . . , I

K
t | s(i)t

)∝ 1 −D(H(Mt,i),Htemplate
)
, (13.27)

where s(i)t is the ith particle at the t th frame; H(Mt,i) is the histogram of the texture
map built from the particle s(i)t ; Htemplate is the histogram of template texture map.
The template texture map is computed after initializing the head position in the
first frame, then updated by back-projecting the head region in the image, which
is fixed by the maximum a posteriori (MAP) estimate onto the sphere model. The
D(H1,H2) function calculates the Bhattacharyya distance between two normalized
histograms.

We now describe the procedure for obtaining texture map on the surface of the
head model. First, we uniformly sample the spherical surface. Then for the j th cam-
era, the world coordinates of sample points [xn, yn, zn], n = 1,2, . . . ,N are trans-

formed into coordinates in that camera’s reference frame [xCjn , yCjn , zCjn ] to deter-
mine their visibility in that camera’s view. Only unoccluded points (i.e., those satis-

fying z
Cj
n ≤ zCj0 , where z

Cj
0 is the distance from the head center to the j th camera

center) are projected onto the image plane. By relating these model surface points

[xn, yn, zn] to the pixels at their projected image coordinates I (x
Pj
n , y

Pj
n ), we build

the texture map Mj of the visible hemisphere for the j th camera view. This con-
tinues until we have transformed the texture maps obtained from all camera views
to the spherical model. Points in the overlapped region are fused using a weight-
ing strategy, based on representing the texture map of the j th camera view as a
function of locations of surface points Mj(x, y, z). We assign the function value at
point [xn, yn, zn] a weight Wn,j , according to the point’s proximity to the projec-
tion center. This is based on the fact that, on the rim of a sphere, a large number
of surface points tend to project to the same pixel, so image pixels corresponding
to those points are not suitable for back-projection. The intensity value at the point
[xn, yn, zn] of the resulting texture map will be:

M(xn, yn, zn)=Mjmax(xn, yn, zn), (13.28)

where

jmax = arg maxWn,j , j = 1,2, . . . ,K. (13.29)
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Fig. 13.3 Feature extraction. We first obtain the texture map of the human head on the surface of
a spherical model through back projection of multi-view images captured by the camera network,
then represent it with spherical harmonics

The texture mapping and back-projection processes are illustrated in the left part of
Fig. 13.3.

Figure 13.4 shows an example of our pose-free tracking result for a multi-view
video sequence. The video sequence has 500 frames. The tracker is able to stably
track all the frames without failure, despite the considerably abrupt motions and
the frequent occurrences of rotation, translation and scaling of the human head as
shown. Sometimes the subject’s head is outside the field-of-view of certain cam-
eras. Though subjects usually do not undergo such extreme motion in real-world
surveillance videos, this example clearly illustrates the reliability of our tracking
algorithm. In our experiments, the tracker handles all the captured videos without
difficulty. The occasionally observed inaccuracies in bounding circles are mostly
due to the difference between sphere and the exact shapes of human heads. Success-
ful tracking enables the subsequent recognition task.

13.5.2 Pose-Free Feature Based on Spherical Harmonics

In this section, we describe the procedure for extracting a rotation-invariant feature
from the texture map obtained in Sect. 13.5.1. The process is illustrated in Fig. 13.3.
According to the Spherical Harmonics (SH) theory, SHs form a set of orthonormal
basis functions over the unit sphere, and can be used to linearly expand any square-
integrable function on S2. SH representation has been used for matching 3D shapes
[16] due to its properties related to the rotation group. In the vision community,
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Fig. 13.4 Sample tracking results for a multi-view video sequence. 5 views are shown here. Each
row of images is captured by the same camera. Each column of images corresponds to the same
time-instant

following the work of Basri and Jacobs [5], researchers have used SH to understand
the impact of illumination variations in face recognition [30, 39].

The general SH representation is used to analyze complex functions (For de-
scription of general SH, please refer to [5] or [30]). However, the spherical function
determined by the texture map are real functions, and thus we consider real spherical
harmonics (or Tesseral SH):

Yml (θ,φ)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Yl0 if m= 0,

1√
2
(Ylm + (−1)mYl,−m) if m> 0,

1√
2i
(Yl,−m − (−1)mYlm) if m< 0

(13.30)
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where Ylm(·, ·) denotes the general SH basis function of degree l ≥ 0 and orderm in
(−l,−l + 1, . . . , l − 1, l). Note that here we are using the spherical coordinate sys-
tem. θ ∈ (0,π) and φ ∈ (0,2π) are the zenith angle and azimuth angle, respectively.
The Real SHs are also orthonormal and they share most of the major properties of
the general Spherical Harmonics. From now on, the word “Spherical Harmonics”
shall refer only to the Real SHs. As in Fourier expansion, the SH expansion coeffi-
cients f ml of function f (θ,φ) can be computed as:

f ml =
∫

θ

∫

φ

f (θ,φ)Yml (θ,φ)dθ dφ. (13.31)

The expansion coefficients have a very important property which is directly related
to our ‘pose-free’ face recognition application:

Proposition If two functions defined on S2: f (θ,φ) and g(θ,φ) are related by a
rotation R ∈ SO(3), that is, g(θ,φ) = R(f (θ,φ)), and their SH expansion coef-
ficients are f ml and gml (l = 0,1, . . . and m = −l . . . l), respectively, the following
relationship exists:

gml =
l∑

m′=−l
Dlmm′f m

′
l (13.32)

and the Dl
mm′s satisfy:

l∑

m′=−l

(
Dlmm′

)2 = 1. (13.33)

In other words, after rotation, the SH expansion coefficients at a certain degree
l are actually linear combinations of those before the rotation, and coefficients at
different degrees do not affect each other. This proposition is a direct result of the
following lemma [7, 16]:

Lemma Denote El the subspace spanned by Yml (θ,φ), m= −l . . . l, then El is an
irreducible representation for the rotation group SO(3).

Thus, given a texture map f (θ,φ) and its corresponding SH coefficient {fml , l =
0,1, . . . ,m = −l, . . . , l}, we can formulate the energy vector associated with
f (θ,φ) as ef = (‖f0‖2,‖f1‖2,‖fl‖2, . . .), where fl is the vector of all fml at de-
gree l. Equation (13.33) guarantees that ef keeps unchanged when the texture map
is rotated, and this enables pose-robust face recognition. We refer to ef as the SH
Energy feature. Note that this is different from the energy feature defined in [16].
In practice, we further normalize the SH energy feature with regard to total energy.
This is the same as assuming that all the texture maps have the same total energy,
and somehow function as an illumination-normalized signature. Although this also
means that skin color information is not used for recognition, it proves to work very
well in experiments.
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Fig. 13.5 Comparison of the reconstruction qualities of head/face texture map with different num-
ber of spherical harmonic coefficients. The images from left to right are: the original 3D head/face
texture map, the texture map reconstructed from 40-degree, 30-degree and 20-degree SH coeffi-
cients, respectively [32]

The remaining issue concerns with obtaining a suitable band-limited approxima-
tion with SH for our application. In Fig. 13.5, we show a 3D head texture map and
its reconstructed version with 20, 30 and 40 degree SH transform, respectively. The
ratio of computation time for the 3 cases is roughly 1:5:21. (The exact time varies
with configuration of the computer, for example, on a PC with Xeon 2.13 GHz CPU,
it takes roughly 1.2 seconds to do a 20 degree SH transform for 18 050 points.) We
have observed that the 30-degree transform achieves the best balance between ap-
proximation precision and computational cost.

13.5.3 Measure Ensemble Similarity

Given two multi-view video sequences withm and n frames (Every “frame” is actu-
ally a group of images, each captured by a camera in the network.), respectively, we
generate 2 ensembles of feature vectors, respectively. They may contain different
number of vectors. To achieve video-level recognition, we are interested in measur-
ing the similarity between these two sets of vectors. Now, we calculate the ensemble
similarity as the limiting Bhattacharyya distance in RKHS following [41]. In experi-
ments, we measure the ensemble similarity between feature vectors of a probe video
and those of all the gallery videos. The gallery video with the shortest distance to
the probe is considered as the best match. For detailed derivations and explanation
of limiting Bhattacharyya distance in the RKHS, please refer to [41].

13.5.4 Experiments

Most existing “multi-view” still or video face databases, such as PIE, Yale-B, the
oriental face data, M2VTS etc., target recognition-across-pose algorithms, so they
are not applicable to our multi-view to multi-view matching algorithm. The data
we used in this work are multi-view video sequences captured with 4 or 5 video
cameras in an indoor environment, collected at 3 different sessions: one for building
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Fig. 13.6 Example of gallery and probe video frames. Images on the top are gallery frames, and
those on the bottom are probe frames of the same subjects. Many subjects look differently in gallery
and probe

a gallery and the other two for constructing probes. To test the robustness of our
recognition algorithm, we arranged the second session to be one week after the
first one, and the third 6 months after the second. The appearance of some subjects
change significantly between the sessions. The database enrolls 25 subjects. Each
subject has 1 gallery video and most subjects have 2 probe videos. Each video is
100 to 200 frames in length. Since each video sequence is captured with multiple
cameras, it is equivalent to 4 or 5 videos in the single camera case. Figure 13.6
shows some example frames from gallery and probe video sequences. This data set
poses great challenges to multi-view face recognition algorithms.

13.5.4.1 Feature Comparison

We associate 5 different kinds of features with different classifiers to compare their
performance in image-based face recognition systems. By “image-based face recog-
nition” we mean that each frame is treated as gallery or probe individually and no
video-level fusion of results is performed. As a result, the recognition rate is com-
puted by counting the number of correctly classified frames, not videos. The inputs
to all these face recognition systems are based on the same tracking results. For any
system based on feature of raw image intensity value, we use only the head region
that is cropped by a circular mask as provided by the tracking result. All the head
images are scaled to 30 × 30. For the PCA features, Eigenvectors that preserve the
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Table 13.4 Comparison of recognition performance

Feature NN KDE SVM-Linear SVM-RBF

Intensity PCA 49.7% 39.0% 49.2% 57.8%

Intensity LDA 50.5% 27.2% 33.1% 40.7%

SH PCA 33.6% 30.9% 31.2% 44.2%

SH Energy 55.3% 47.9% 50.3% 67.1%

Normalized SH Energy 60.8% 64.7% 78.2% 86.0%

Table 13.5 KL divergence of in-class and between-class distances for different features

Intensity Intensity + PCA SH + PCA SH Energy Normalized SH Energy

0.1454 0.1619 0.2843 0.1731 1.1408

top 95% energy are kept. For the SH-based feature, we perform a 30-degree SH
transform. Here, we would like to emphasize that since both gallery and probe are
captured when subjects are performing free motion, the poses exhibited in images
of any view are arbitrary and keep changing. This is significantly different from the
settings of most existing multi-view face databases. The results are shown in Ta-
ble 13.4. As we can see, the performance of the proposed feature exceeds that of
other features by a large margin in all cases. Note that we do not fuse the results of
different views for non-SH-based features.

To quantitatively verify the proposed feature’s discrimination power, we then
conducted the following experiment. We calculate distances for each unordered pair
of feature vectors {xi, xj } in the gallery. If {xi, xj } belongs to the same subject,
then the distance is categorized as being in-class. Otherwise, the distance is catego-
rized as being between-class. We approximate the distribution of the two kinds of
distances as histograms.

Intuitively, if a feature has good discrimination power, then the in-class distances
evaluated using that feature tends to take smaller values compared to the between-
class distances. If the two distributions mix together, then this feature is not good
for classification. We use the symmetric KL divergence KL(p‖q) + KL(q‖p) to
evaluate the difference between the two distributions. We summarize the values of
KL divergence for the 5 features in Table 13.5 and plot the distributions in Fig. 13.7.
As clearly shown, the in-class distances for normalized SH energy feature are con-
centrated in the low value bins, while the between-class ones tend to have higher
values, and their modes are obviously separated from each other. For all other fea-
tures, the between-class distances do not show a clear trend of being larger than the
in-class ones, and their distributions are just mixed. The symmetric KL-divergence
also suggests the same.
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13.5.4.2 Video-Based Recognition

In this experiment, we compare the performance of 4 video-level recognition sys-
tems: (1) Ensemble-similarity-based algorithm as proposed in [41] for cropped face
images. The head images in a video are automatically cropped by a circular mask as
provided by the tracking results and scaled to 30 by 30. Then we calculate the lim-
iting Bhattacharyya distance between gallery and probe videos in RKHS for recog-
nition. The kernel is RBF. If a video has n frames and it is captured by k cameras,
then there are k × n head (face) images in the ensemble. (2) View-selection-based
algorithm. We first train a PCA subspace for frontal-view face. The training images
are a subset of the Yale B database and are scaled to 30 by 30. We then use this
subspace to pick frontal-view face images from our gallery videos. We construct
a frontal-view face PCA subspace for each individual. For every frame of a probe
video, we first compute the “frontalness” of the subject’s face in each view accord-
ing to its distance to the general PCA model. The view which best matches the
model is selected and fitted to the individual PCA subspaces of all the subjects. Af-
ter classification of all the frames has been finished, recognition result for the video
is obtained through majority voting. (3) video-based face recognition algorithm us-
ing probabilistic appearance manifold as proposed in [20]. We use 8 planes for local
manifold model and set the probability of remaining the same pose to be 0.7 in the
pose transition probability matrix. We first use this algorithm to process each view
of a probe video. To fuse results of different views we use majority voting. If there
is a tie in views’ voting, we pick the one with smaller Hausdorff distance as the
winner. (4) Normalized SH energy feature + ensemble similarity. This algorithm is
as described in Sect. 13.5.2 and Sect. 13.5.3.

We plot the cumulative recognition rate curve in Fig. 13.8. Note that the numbers
shown here should not be compared with those in the previous image-based recog-
nition experiment to draw misleading conclusions, as these two sets of recognition
rates are not convertible to each other. The view-selection method heavily relies on
the availability of frontal-view face images, however, in the camera network case,
the frontal pose may not appear in any view of the cameras. As a result, it does not
perform well in this multi-view to multi-view matching experiment. Rather than the
ad-hoc majority voting fusion scheme adopted by the view-selection algorithm, the
manifold-based algorithm and the image-ensemble-based algorithm use more rea-
sonable strategies to combine classification results of individual frames. Moreover,
they both have certain ability to handle pose variations, especially the manifold-
based one. However, because they are designed to work with a single camera, they
are single-view in nature. Repeating these algorithms for each view does not fully
utilize the multi-view information. On the other hand, the proposed method is multi-
view in nature and is based on a pose-free feature, so it performs noticeably better
than the other 3 algorithms in this experiment.
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Fig. 13.8 Cumulative
recognition rate of the 4
video-based face recognition
algorithms

13.6 Conclusions

Video offers several advantages for face recognition, in terms of motion informa-
tion and availability of more views. We reviewed several techniques that exploit
video by either fusing information on a per-frame basis, considering them as image-
ensembles, or by learning better appearance models. However, the availability of
video opens interesting questions of how to exploit the temporal correlation for bet-
ter tracking of faces, how to exploit behavioral cues available from video, and how
to fuse the multiple views afforded by a camera network. Also, algorithms need to be
derived that allow for matching a probe video to a still or video gallery. We showed
applications involving such scenarios and discussed the issues involved in design-
ing algorithms for such scenarios. There are several future research directions that
are promising. While there are several studies that suggest that humans can recog-
nize faces in non-cooperative conditions [26]—poor resolution, bad lighting etc.—if
motion and dynamic information is available. This capability has been difficult to
describe mathematically and replicate in an algorithm. If this phenomenon can be
modeled mathematically, it could lead to more accurate surveillance and biometric
systems. The role of familiarity in face recognition and the role that motion plays
in recognition of familiar faces, while well known in psychology and neuroscience
literature [31], is yet another avenue that has been challenging to model mathemat-
ically and replicate algorithmically.
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Chapter 14
Face Recognition at a Distance

Frederick W. Wheeler, Xiaoming Liu, and Peter H. Tu

14.1 Introduction

Face recognition, and biometric recognition in general, have made great advances
in the past decade. Still, the vast majority of practical biometric recognition appli-
cations involve cooperative subjects at close range. Face Recognition at a Distance
(FRAD) has grown out of the desire to automatically recognize people out in the
open, and without their direct cooperation. The face is the most viable biometric
for recognition at a distance. It is both openly visible and readily imaged from a
distance. For security or covert applications, facial imaging can be achieved without
the knowledge of the subject. There is great interest in iris at a distance, however
it is doubtful that iris will outperform face with comparable system complexity and
cost. Gait information can also be acquired over large distances, but face will likely
continue to be a more discriminating identifier.

In this chapter, we will review the primary driving applications for FRAD and
the challenges still faced. We will discuss potential solutions to these challenges and
review relevant research literature. Finally, we will present a few specific activities
to advance FRAD capabilities and discuss expected future trends. For the most part,
we will focus our attention on issues that are unique to FRAD. Some of the main
challenges of FRAD are shared by many other face recognition applications, and
are thoroughly covered in other dedicated chapters of this book.

Distance itself is not really the fundamental motivating factor for FRAD. The
real motivation is to work over large coverage areas without subject cooperation.
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Fig. 14.1 On the left, a face recognition at a distance application showing tracked and identified
subjects in wide field-of-view video (upper left), high-resolution narrow field-of-view video from
an automatically controlled PTZ camera (bottom), and a detected and recognized facial image
(upper right). On the right, some of the facial images captured by the system over a few minutes,
selected to show the variation in facial image quality

The nature of the activity of subjects and the size of the coverage area can vary
considerably with the application and this impacts the degree of difficulty. Subjects
may be sparse and standing or walking along predictable trajectories, or they may be
crowded, moving in a chaotic manner, and occluding each other. The coverage area
may range from a few square meters at a doorway or choke point, to a transportation
terminal, building perimeter, city block, or beyond. Practical solutions do involve
image capture from a distance, but the field might be more accurately called face
recognition of noncooperative subjects over a wide area. Figure 14.1 shows a FRAD
system operating in a parking lot. There are two primary difficulties faced by FRAD.
First, acquiring facial images from a distance. Second, recognizing the person in
spite of imperfections in the captured data.

There are a wide variety of commercial, security, defense and marketing appli-
cations of FRAD. Some of the most important potential applications include:

• Access control: Unlock doors when cleared persons approach.
• Watch-list recognition: Raise an alert when a person of interest, such as a known

terrorist, local offender or disgruntled ex-employee is detected in the vicinity.
• White-list recognition: Raise an alert whenever a person not cleared for the area

is detected.
• Rerecognition: Recognize people recently imaged by a nearby camera for auto-

matic surveillance with long-range persistent tracking.
• Event logging: For each person entering a region, catalog the best facial image.
• Marketing: Understand long-term store customer activities and behavior.

The Handbook of Remote Biometrics [53] also contains chapters on FRAD. The
focus in that book is somewhat complementary, covering system issues and a more
detailed look at illumination levels, optics and image sensors for face imaging at
distances up to the 100–300 m range and beyond with both theoretical analysis and
practical design advice.
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14.1.1 Primary Challenges

In the ideal imaging conditions for 2D face recognition, the subject is illuminated in
a uniform manner, is facing a color camera with a neutral expression and the image
has a resolution with 200 or more pixels eye-to-eye. These conditions are easily
achieved with a cooperative subject at close range.

With FRAD, the subject is by definition not at close range, but perhaps more
importantly, the level of cooperation is reduced. Applications of FRAD for cooper-
ative subjects are at best unusual and rare. In typical FRAD applications, subjects
are not cooperative, and this is the scenario that is assumed in most research work
on FRAD. Noncooperative subjects may be either unaware that facial images are
being collected, or aware but unconcerned, perhaps due to acclimation. That is, they
are neither actively cooperating with the system, nor trying to evade the system.

A much more challenging situation occurs when subjects are actively evasive.
A subject may attempt to evade face capture and recognition by obscuring their
face with a hat, glasses or other adornments, or by deliberately looking away from
cameras or downward. In such situations it might still be beneficial for a system to
automatically determine that the subject is evasive.

In a sense, FRAD is not a specific core technology or basic research problem.
It can be viewed as an application and a system design problem. Some of the chal-
lenges in that design are specific to FRAD, but many are broader face recognition
challenges that are discussed and addressed throughout this book. The main chal-
lenges of FRAD are concerned with the capture of facial images that have the best
quality possibly, and with processing and face recognition that is robust to the re-
maining imperfections. These challenges can be organized into a few categories,
which we discuss below.

The first challenge of FRAD is simply acquiring facial images for subjects who
may be 10–30 m or more away from the sensor. Some of the optics issues to con-
sider are lens parameters, exposure time, and the effect on the image when any
compromise is made.

14.1.2 Optics and Light Intensity

As subject distance increases, a primary issue is the selection or adjustment of the
camera lens to maintain field of view and image intensity. As the distance from
the camera to the subject is increased the focal length of the camera lens must be
increased proportionally if we are to maintain the same field of view, or image sam-
pling resolution. That is, if the subject distance is doubled, then the focal length, F ,
must be doubled to maintain a facial image size of, say, 200 pixels eye-to-eye.

The light intensity a lens delivers to the image sensor is proportional to the
f-number. The f-number, N , of a lens is the focal length divided by the diameter
of the entrance pupil,D, or N = F/D. To maintain image brightness, and thus con-
trast and signal to noise ratio, the f-number must be maintained. So, if the subject



356 F.W. Wheeler et al.

distance is doubled and the focal length is doubled, then the f-number of that partic-
ular lens must be maintained by doubling the pupil diameter. Of course, an image
sensor with greater sensitivity may also be used to compensate for a reduction in
light intensity from the lens.

If the pupil diameter for a lens is already restricted with an adjustable aperture
stop, then increasing the pupil diameter to maintain the f-number is simply a matter
of adjusting that setting. Adjustments to the pupil diameter are usually described
in terms of the resulting f-number, and are typically called f-stops. The f-stops are
defined as the f-number at the image when the lens is focused at infinity or very far
away.

However, as subject distance is increased, eventually an adjustable aperture will
be fully open and the pupil aperture will be limited by the size of the lens itself.
So, imaging faces well at larger distances generally requires larger lenses, which
have larger glass elements, are heavier and more expensive. Another drawback to
increasing the diameter of the lens is a reduction in depth of field (DOF), the range
over which objects are well focused. However, DOF is inherently larger at larger
object distances, so this is often less of a concern for FRAD.

14.1.3 Exposure Time and Blur

There are a number of different types of image distortion that can be of concern
when capturing faces at a distance. If an appropriate lens is selected, then a facial
image captured at a distance can be as bright as an image captured at close range.
However, this is not always the situation. Lenses with large diameters are expensive
or simply may not be in place. When the lens does not have a low enough f-number
(large enough aperture relative to the focal length), the amount of light reaching the
image sensor will be too low and the image SNR will be reduced. If the image is
amplified to compensate, sensor noise will be amplified as well and the resulting
image will be noisy. Without amplification, the image will be dark.

If the light intensity at the sensor is too low, the exposure time for each image
can be increased to compensate. However, this introduces a trade-off with motion
blur. The subjects being imaged are generally in motion. If the exposure time is long
enough that the motion of the subjects is significant during the exposure, then some
degree of blurring will occur.

FRAD systems often utilize active pan-tilt camera control. Mechanical vibration
of the camera can be significant in such systems and is another source of blur. At
very long distances, atmospheric distortion and haze can also contribute to image
distortion.

14.1.4 Image Resolution

In FRAD applications that lack an optimal optical system to provide an ideal image
to the sensor, resolution of the resulting facial image can be low. In some cases,
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it may be desired to recognize people in video from a stationary camera where
facial image resolution is low due to subject distance. An active camera system with
automatic pan, tilt and zoom may simply reach its capture distance limit, but one
may still want to recognize people at greater distances. No matter how the optical
system is designed, there is always some further desired subject distance and in
these cases facial image resolution will be reduced. Facial recognition systems that
deal with low-resolution facial images are certainly desirable.

14.1.5 Pose, Illumination and Expression

The Pose, Illumination and Expression (PIE) challenges are not unique to FRAD.
There are many other face recognition applications that share these challenges. The
PIE challenges are, however, somewhat customized and more pronounced in FRAD.

In many FRAD applications, it is desirable to mount cameras well above people’s
heads, as is done for most ordinary security cameras. This allows for the imaging
of people’s faces over a wider area with less occlusion. A disadvantage is that the
viewing angle of faces has a slight downward tilt, often called the “surveillance
perspective.”

The pan angle (left-right) of faces in FRAD applications can in the worst cases
be completely arbitrary. In open areas where there are no regular travel directions,
this will be the case. Corridors and choke points are more favorable situations, gen-
erally limiting the directions in which people are facing. People tend to face the
direction of their travel. When faces can be oriented in many directions, the use of
a distributed set of active pan-tilt-zoom cameras can help [25]. Still, the variation of
facial capture pan angle can be high.

There is some hope for this inherent pose problem with FRAD, and it is obser-
vation time. A wide-area active camera system may be able to observe and track a
walking subject for 5–10 seconds or more. A stationary or loitering person may be
observed for a much longer period of time. A persistent active face capture system,
may eventually opportunistically capture a facial image of any particular subject
with a nearly straight-on pose angle.

Most FRAD applications are deployed outdoors with illumination conditions that
are perhaps the most challenging. Illumination is typically from sunlight or dis-
tributed light fixtures. The direction and intensity of the sunlight will change with
the time of day, the weather and the seasons. Over the capture region there may be
large objects such as trees and buildings that both block and reflect light, and alter
the color of ambient light, increasing the variation of illumination over the area.

Subjects who are not trying to evade the system and who are not engaged in
conversation will for the most part have a neutral expression. Of the PIE set of
challenges, the expression issue is generally less of a concern for FRAD.
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14.1.6 Approaches

There are two basic approaches to FRAD: high-definition stationary cameras, and
active camera systems. FRAD generally means face recognition not simply at a
distance, but over a wide area. Unfortunately, a wide camera viewing area that cap-
tures the entire coverage area results in low image resolution. Conversely, a highly
zoomed camera that yields high-resolution facial images has a narrow field of view.

14.1.6.1 High-Definition Stationary Camera

If a FRAD capture sensor is to operate over a 20 m wide area with a single camera
and we require 100 pixels across captured faces, then we would need a camera with
about 15 000 pixels of horizontal resolution. Assuming an ordinary sensor aspect
ratio, this is a 125 megapixel sensor and not currently practical. If we were to use a
high-definition 1080 by 1920 pixel camera to image the full 20 m wide area, a face
would be imaged with a resolution of about 13 by 7 pixels.

If the coverage region is not too large, say 2 m across, then a single stationary
high-definition 1080 by 1920 camera could image faces in the region with about
100 pixels eye-to-eye. This is not very high resolution for face recognition, but may
be sufficient for verification or low-risk applications. If the desired coverage area
grows, and stationary cameras are still used, then the camera resolution would have
to increase, or multiple cameras would be required.

14.1.6.2 Active-Vision Systems

FRAD is more often addressed with a multi-camera system where one or more Wide
field Of view (WFOV) cameras view a large area with low-resolution and one or
more Narrow Field Of View (NFOV) cameras are actively controlled to image faces
with high resolution using pan, tilt and zoom (PTZ) commands. Through the use of
face detection or person detection, and possibly tracking, the location of people is
determined from the WFOV video. The NFOV are targeted to detected or tracked
people through pan and tilt control, and possibly also adaptive zoom control. The
WFOV and NFOV cameras are sometimes called the master and slave cameras, and
NFOV cameras are often simply called PTZ cameras.

This is also often described as a “foveated imaging” or “focus-of-attention” ap-
proach and it somewhat mimics the human visual system, where a wide angular
range is monitored with relatively low resolution and the eyes are actively directed
toward areas of interest for more detailed resolution. This is especially the case when
the WFOV and NFOV cameras are co-located.

What we describe here is a prototypical approach. There are of course many pos-
sible modifications and improvements. A single camera may be used with a system
that enables switching between WFOV and NFOV lenses, with the additional chal-
lenge that wide-field video coverage will not be continuous. A low-zoom WFOV
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camera may not be stationary, but could instead pan and tilt with a high-zoom NFOV
camera, more like the human eye or a finderscope. Instead of using a WFOV cam-
era, a single NFOV camera could continuously scan a wide area by following a pan
and tilt angle pattern. One could use many WFOV cameras and many NFOV cam-
eras in a single cooperative network. Clearly, there are many options for improving
upon the prototypical approach, with various advantages and disadvantages.

When multiple subjects are present a multi-camera system must decide some-
how how to schedule its NFOV camera or cameras. It needs to determine when to
point the camera at each subject. There has been considerable research effort put
into this NFOV resource allocation and scheduling problem, which becomes more
complicated as more NFOV cameras are utilized. Some of the factors that a schedul-
ing algorithm may account for include: which subjects are facing one of the NFOV
cameras, the number of times each subject’s face has been captured thus far, the
quality and resolution of those images, the direction of travel and speed of each
subject, and perhaps the specific location of each subject. An NFOV target schedul-
ing algorithm accounts for some desired set of factors such as these and determines
when and where to direct the NFOV cameras using their pan, tilt and zoom controls.

14.1.7 Literature Review

14.1.7.1 Databases

Most test databases for face recognition contain images or video captured at close
range with cooperative subjects. They are thus best suited for training and testing
face recognition for access control applications. However, there are a few datasets
that are more suitable for face recognition at a distance development and evaluation.

The database collected at the University of Texas at Dallas (UTD) for the DARPA
Human ID program [40] includes close-up still images and video of subjects and
also video of persons walking toward a still camera from distances of up to 13.6 m
and video of persons talking and gesturing from approximately 8 m. The collection
was performed indoors, but in a large open area with one wall made entirely of glass,
approximating outdoor lighting conditions. A fairly low zoom factor was used in this
collection.

Yao et al. [58] describe the University of Tennessee, Knoxville Long Range High
Magnification (UTK-LRHM) face database of moderately cooperative subjects at
distances between 10 m and 20 m indoors, and extremely long distances between
50 m and 300 m outdoors. Indoor zoom factors are between 3 and 20, and outdoor
zoom factors range up to 284. Imaging at such extremes can result in distortion
due to air temperature and pressure gradients, and the optical system used exhibits
additional blur at such magnifications.

The NIST Multiple Biometric Grand Challenge (MBGC) is focused on face and
iris recognition with both still images and video and has sponsored a series of chal-
lenge problems. In support of the unconstrained face recognition challenges, this
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program has collected high-definition and standard definition outdoor video of sub-
jects walking toward the camera and standing at ranges of up to about 10 m. Since
subjects were walking toward the camera, frontal views of their faces were usu-
ally visible. MBGC is also making use of the DARPA Human ID data described
above [39].

It is important to remember that as distance increases, people also have increased
difficulty in recognizing faces. Face recognition results from Pittsburgh Pattern
Recognition on MBGC uncontrolled video datasets (of the subjects walking toward
the camera) are comparable to and in some cases superior to face recognition results
by humans on the same data [39].

Each of these databases captures images or video with stationary cameras. FRAD
sensors are generally real-time actively controlled camera systems. Such hardware
systems are difficult to test offline. The evaluation of active camera systems with
shared or standardized datasets is not feasible because real-time software and hard-
ware integration aspects are not modeled. Components of these systems, such as
face detection, person detection, tracking and face recognition itself can be tested in
isolation on appropriate shared datasets. But interactions between the software and
hardware components can only be fully tested on live action scenes. Virtual envi-
ronments can also be used to test many aspects of an active-vision system [43–45]
(Sect. 14.1.7.3).

14.1.7.2 Active-Vision Systems

There have been a great many innovations and systems developed for wide-area
person detection and tracking to control NFOV cameras to capture facial images at
a distance. We review a selected group of publications in this section, in approximate
chronological order. A few of the systems described here couple face capture to face
recognition. All are motivated by this possibility.

In some very early work in this area, Stillman et al. [52] developed an active
camera system for person identification using two WFOV cameras and two NFOV
cameras. This real-time system worked under some restricted conditions, but over a
range of several meters, detected people based on skin color, triangulated 3D loca-
tions, and pointed NFOV cameras at faces. A commercial face recognition system
then identified the individuals. Interestingly, the motivation for this effort, at its time
in history, was to make an intelligent computing environment more aware of people
present in order to improve the interaction. No mention is made of security.

Greiffenhagen et al. [21] describe a dual camera face capture system where the
WFOV camera is an overhead omnidirectional camera and the NFOV has pan, tilt
and zoom control. The authors use a systematic engineering methodology in the
design of this real-time system, and perform a careful statistical characterization of
components of the system so that measurement uncertainty can be carried through
and a face capture probability of 0.99 can be guaranteed. While face recognition was
not applied to the captured images, they are of sufficient quality for recognition. The
system handles multiple subjects as long as the probability of occlusion is small.
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Zhou et al. [64] have developed their Distant Human Identification (DHID) sys-
tem to collect biometric information of humans at a distance, for face recognition
and gait. A single WFOV camera has a 60° field of view and enables tracking of per-
sons out to a distance of 50 m. A combination of background subtraction, temporal
differencing, optical flow and color-based blob detection is used for person detec-
tion and tracking. The system aims to capture short zoomed-in video sequences for
gait recognition and relatively high-resolution facial images. Person detections from
the WFOV video are used to target the NFOV camera initially, and then the NFOV
tracks the subject based only on the NFOV video data.

Marchesotti et al. [34] have also developed a two-camera face capture at a dis-
tance system. Persons are detected and tracked using a blob detector in the WFOV
video, and an NFOV camera is panned and tilted to acquire short video clips of
subject faces.

A face cataloger system has been developed and described by Hampapur et
al. [22]. This system uses two widely separated WFOV cameras with overlapping
views of a 20 ft. by 19 ft. lab space. To detect persons, a 2D multi-blob tracker
is applied to the video from each WFOV camera and these outputs are combined
by a 3D multi-blob tracker to determine 3D head locations in a calibrated common
coordinate system. An active camera manager then directs the two pan-tilt NFOV
cameras to capture facial images. In this system, a more aggressive zoom factor is
used when subjects are moving more slowly. The authors experimentally demon-
strate a trade-off between NFOV zoom and the probability of successfully capturing
a facial image. When the NFOV zoom factor is higher, the required pointing accu-
racy is greater, so there is a higher likelihood of missing the subject. This would
be a general trend with all active camera systems. Later work described by Senior
et al. [51] simplified and advanced the calibration procedure and was demonstrated
outdoors.

Bagdanov et al. [2] have developed a method for capturing facial images over a
wide area with a single active pan-tilt camera. In this approach, reinforcement learn-
ing is employed to discover the camera control actions that maximize the chance of
acquiring a frontal face image given the current appearance of object motion as seen
from the camera in its home position. Essentially, the system monitors object mo-
tion with the camera in its home position and over time learns if, when and where to
zoom in for a facial image. A frontal face detector applied after each attempt guides
the learning. Some benefits are that this approach uses a single camera and requires
no camera calibration.

Prince [41, 42], Elder [19] et al. have developed a system that addresses collec-
tion and pose challenges. They make use of a foveated sensor using a stationary
camera with a 135° field of view and a foveal camera with a 13° field of view. Faces
are detected via the stationary camera video using motion detection, background
modeling and skin detection. A pan and tilt controller directs the foveal camera to
detected faces. Since the system detects people based on face detection it naturally
handles partially occluded and stationary people.

Davis et al. [16, 17] have developed methods to automatically scan a wide area
and detect persons with a single PTZ camera. Their approach detects human behav-
ior and learns the frequency with which humans appear across the entire coverage
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Fig. 14.2 Multi-camera person tracking with crowding (above) and person tracking and active
NFOV face capture (below) (© 2009 IEEE, used with permission [61])

region so that scanning is done efficiently. Such a strategy might be used to create
a one-camera active face capture system, or to greatly increase the coverage area if
used as a WFOV camera.

Krahnstoever et al. [25] have developed a face capture at a distance framework
and prototype system. Four fixed cameras with overlapping viewpoints are used to
pervasively track multiple subjects in a 10 m by 30 m region. Tracking is done in a
real-world coordinate frame, which drives the targeting and control of four separate
PTZ cameras that surround the monitored region. The PTZ cameras are scheduled
and controlled to capture high-resolution facial images, which are then associated
with tracker IDs. An optimization procedure schedules target assignments for the
PTZ cameras with the goal of maximizing the number of facial images captured
while maximizing facial image quality. This calculation is based on the apparent
subject pose angle and distance. This opportunistic strategy tends to capture facial
images when subjects are facing one of the PTZ cameras.

Bellotto et al. [5] describe an architecture for active multi-camera surveillance
and face capture where trackers associated with each camera, and high-level rea-
soning algorithms communicate via an SQL database. Information from persons de-
tected by WFOV trackers can be used to assign actively controlled NFOV cameras
to particular subjects. Once NFOV cameras are viewing a face, the face is tracked
and the NFOV camera follows the face with a velocity control system.

In Yu et al. [61], the authors have used this system [25] to monitor groups of peo-
ple over time, associate an identity with each tracked person and record the degree
of close interaction between identified individuals. Figure 14.2 shows person track-
ing and face capture from this system. This allows for the construction of a social



14 Face Recognition at a Distance 363

network that captures the interactions, relationships and leadership structure of the
subjects under surveillance.

14.1.7.3 NFOV Resource Allocation

Face capture with active cameras is faced with the problem of resource allocation.
Given a limited number of NFOV cameras and a large number of potential targets,
it becomes necessary to predict feasible periods of time in the future, during which
a target could be captured by a NFOV camera at the desired resolution and pose,
followed by scheduling the NFOV cameras based on these feasible temporal win-
dows. Lim et al. [27, 28] address the former problem by constructing what is known
as a “Task Visibility Interval” that encapsulates the required information. For the
latter, these authors then utilize these “Task Visibility Intervals” to schedule NFOV
camera assignments.

Bimbo and Pernici [6] have addressed the NFOV scheduling problem for captur-
ing face images with an active camera network. They formulate the problem as a
Kinetic Traveling Salesman Problem (KTSP) to determine how to acquire as many
targets as possible.

A variety of NFOV scheduling policies have been developed and evaluated by
Costello et al. [15] as well.

Qureshi and Terzopoulos [43–45] have developed an extensive virtual envi-
ronment simulator for a large train station with behaviorally realistic autonomous
pedestrians who move about without colliding, and carry out tasks such as waiting
in line, buying tickets, purchasing food and drinks, waiting for trains and proceeding
to the concourse area. The video-rendering engine handles occlusions, and models
camera jitter and imperfect color response. The purpose is to develop and test active
camera control and scheduling systems with many WFOV cameras and many NFOV
cameras on a scale where real-world experiments would be prohibitively expensive.
With such a simulator, visual appearance will never be perfect. However, this sys-
tem allows the setup and evaluation of person tracking tasks and camera scheduling
algorithms with dozens of subjects and cameras over a very large area with perfect
ground truth. Then, the exact same scenario can be executed again with a change in
any algorithm or aspect of the camera set-up.

14.1.7.4 Very Long Distances

Yao et al. [58, 60] have explored face recognition at considerable distances, using
their UTK-LRHM face database. For indoor data, with a gallery of 55 persons and
a commercial face recognition system, they show a decline in recognition rate from
65.5% to 47.3% as the zoom factor goes from 1 to 20 and the subject distance is
increased to maintain an eye-to-eye image resolution of 60 pixels. It is also shown
that the recognition rate at a zoom factor of 20 can be raised back up to 65.5% with
wavelet-based deblurring.



364 F.W. Wheeler et al.

Yao et al. [59, 60] have used a super-resolution approach based on frequency
domain registration and cubic-spline interpolation on facial images from the UTK-
LRHM face database [58] and found considerable benefit in some circumstances.
Super-resolution seems most effective when facial images begin at a low-resolution.
For facial images with about 35 pixels eye-to-eye, super-resolution increased the
recognition rate from 10% to 30% with a 55-person gallery. Super-resolution fol-
lowed by unsharp masking further increased recognition rate to 38% and yielded a
cumulative match characteristic performance almost as high as when optical zoom
alone was used to double the facial image resolution.

14.1.7.5 3D Imaging

Most 3D face capture systems use the stereo or structured light approach [9]. Stereo
capture systems use two cameras with a known geometric relationship. The dis-
tance to feature points detected in each camera’s image is then found via trian-
gulation. Structured light systems use a light projector and a camera, also with a
known geometric relationship. The light pattern is detected in the camera’s image
and 3D points are determined. Each system is characterized by a baseline distance,
between the stereo cameras or between the light projector and camera. With either
approach, the accuracy of the triangulated 3D data degrades with subject distance
if the baseline distance is held constant. To maintain 3D reconstruction accuracy
as subject distance increases, the baseline distance must be increased proportion-
ally. This prohibits a physically compact system and is a fundamental challenge to
3D face capture at a distance with these methods. However, there are some newer
systems under development that are overcoming the baseline challenge for 3D face
capture at a distance. Below we review a few 3D face capture systems designed to
operate at large distances.

Medioni et al. [35–37] have addressed FRAD for noncooperative individuals
with a single camera approach and 3D face reconstruction. They propose a system
where an ultra-high resolution 3048 by 4560 pixel camera is used by switching read-
out modes. Bandwidth limitations generally prevent the readout of the full resolution
of such cameras at 30 Hz. However, full-frame low-resolution fast-frame-rate read-
outs can be used for person detection and tracking and partial-frame high-resolution
readouts can be used to acquire a series of facial images of a detected and tracked
person. Person detection is accomplished without background modeling, using an
edgelet feature-based detector. This work emphasizes the 3D reconstruction of faces
with 100 pixels eye-to-eye using shape from motion on data acquired with a proto-
type of the envisioned system. 3D reconstructions are performed at distances of up
to 9 m. Though current experiments show 2D face recognition outperforming 3D,
the information may be fused, or the 3D data may enable pose correction.

Rara et al. [46, 47] acquire 3D facial shape information at distances up to 33 m
using a stereo camera pair with a baseline of 1.76 m. An Active Appearance Model
localizes facial landmarks from each view and triangulation yields 3D landmark po-
sitions. The authors can achieve a 100% recognition rate at 15 m, though the gallery
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size is 30 subjects and the collection environment is cooperative and controlled. It
is noted that depth information at such long distances with this modest baseline can
be quite noisy and may not significantly contribute to recognition accuracy.

Redman et al. [48] and colleagues at Lockheed Martin Coherent Technologies
have developed a 3D face imaging system for biometrics using Fourier Transform
Profilometry. This involves projecting a sinusoidal fringe pattern onto the subject’s
face using short eye-safe laser bursts and imaging the illuminated subject with a
camera that is offset laterally from the light source. Fourier domain processing of
the image can recover a detailed 3D image. In a sense, this falls into the class of
structured light approaches, but with a small baseline requirement. A current test
system is reported to capture a 3D facial image at 20 m subject distance with a range
error standard deviation of about 0.5 mm and a baseline distance of only 1.1 m.

Redman et al. [49] have also developed 3D face imaging systems based on dig-
ital holography, with both multiple-source and multiple wavelength configurations.
With multiple-wavelength holography, a subject is imaged two or more times, each
time illuminated with a laser tuned to a different wavelength, in the vicinity of
1617 nm for this system. The laser illumination is split to create a reference beam,
which is mixed with the received beam. The interference between these beams is
the hologram that is imaged by the sensor. The holograms at each wavelength are
processed to generate the 3D image. The multi-wavelength holographic system has
been shown to capture a 3D facial image at a 100 m subject distance with a range
error of about 1–2 mm, though this has been performed in a lab setting and not with
live subjects. With this approach there is zero baseline distance. The only depen-
dence of accuracy on subject distance is atmospheric transmission loss.

Andersen et al. [1] have also developed a 3D laser radar and applied it to 3D
facial image capture. This approach uses a time-of-flight strategy to range measure-
ment, with a rapidly pulsed (32.4 kHz) green nD:YAG laser and precisely timed
camera shutter. 50–100 reflectivity images are captured and processed to produce a
3D image. This system has been used to capture 3D facial images at distances up to
485 m. Each 3D image capture takes a few seconds. Though at this stage not many
samples have been collected, the RMS range error is about 2 mm at 100 m sub-
ject distance and about 5 mm at 485 m subject distance. Atmospheric turbulence,
vibrations and system errors are the factors that limit the range of this system.

The Fourier Transform Profilometry and Digital Holography approaches operate
at large distance, but do not naturally handle a large capture region. Coupled with a
WFOV video camera and person detection and tracking system, these systems could
be used to capture 3D facial images over a wide area.

14.1.7.6 Face and Gait Fusion

For recognition at a distance, face and gait are a natural pair. In most situations, a
sensor used for FRAD will also be acquiring video suitable for gait analysis. Liu et
al. [31] exploit this and develop fusion algorithms to show a significant improvement
in verification performance by using multi-modal fusion gait and face recognition
with facial images collected outdoors at a modest standoff distance.
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Fig. 14.3 The Biometric Surveillance System, a portable test and demonstration system on a
wheeled cart with two raised camera nodes (left), and a close-up view of one node (right)

Zhou et al. [62, 63] have recognized that the best gait information comes from
profile views, and have thus focused on fusing gait information with profile facial
images. In initial work [62], face recognition was done using curvature features
of just the face profile. Later efforts [63] use the whole side-view of the face and
also enhanced the resolution of the side-view using multi-frame super-resolution,
motivated to use all available information. For 45 subjects imaged at a distance of
10 ft, the best recognition rates are 73.3% for single-frame face, 91.1% for multi-
frame enhanced face, 93.3% for gait, and 97.8% for fused face and gait. Facial
profile super-resolution gives a considerable improvement, as does fusion.

14.2 Face Capture at a Distance

GE Global Research and Lockheed Martin have developed a FRAD system called
the Biometric Surveillance System [56]. The system features reliable ground-plane
tracking of subjects, predictive targeting, a target priority scoring system, inter-
faces to multiple commercial face recognition systems, many configurable oper-
ating modes, an auto-enrollment mechanism, and network-based sharing of auto-
enrollment data for re-identification. Information about tracking, target scoring, tar-
get selection, target status, attempted recognition, successful recognition, and en-
rollments are displayed in a highly animated user interface (Fig. 14.1 on page 354).

The system uses one or more networked nodes where each node has a co-located
WFOV and NFOV camera (Fig. 14.3). Each camera is a Sony EVI-HD1, which
features several video resolution and format modes and integrated pan, tilt, zoom
and focus, all controllable via a VISCA™ serial interface. The WFOV camera is
operated in NTSC video mode, producing 640 by 480 video frames at 30 Hz. The
pan, tilt and zoom settings of the WFOV camera are held fixed. The NFOV camera
is configured for 1280 by 720 resolution video at 30 Hz, and its pan, tilt and zoom
setting are actively controlled. Matrox® frame grabbers are used to transfer video
streams to a high-end but standard workstation.
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Fig. 14.4 System diagram showing main computational components of the Biometric Surveillance
System

A system diagram is shown in Fig. 14.4. The stationary WFOV camera is used to
detect and track people in its field of view. The WFOV camera is calibrated to deter-
mine its internal and external parameters, which include the focal length, principal
point, location, and orientation. This defines a mapping between real-world metric
coordinates and the WFOV camera image. Since the camera is stationary, a back-
ground subtraction approach is used for moving object detection. The variation of
each color component of each pixel is learned and adapted using a non-parametric
distribution. Grayscale imagery may be used as well, but color increases detection
rate. Whenever a pixel does not match this model, it is declared a foreground pixel.
From the camera calibration information and the assumption that people are walk-
ing upright on the ground plane, feasible sizes and locations of persons within the
image plane are established. Blobs of foreground pixels that conform to these feasi-
ble sizes are detected persons. A ground-plane tracker based on an extended Kalman
filter is applied to detected persons [7, 24]. The use of the Kalman filter makes the
tracker robust to intermittent occlusions and provides the velocity, travel direction
and predicted locations of subjects [54].

The automatically controlled NFOV camera is also calibrated with respect to the
real-world coordinate system, when it is in its home position with its pan and tilt
angles at 0° and its zoom factor set to 1. Further calibration of the NFOV camera
determines how pan, tilt and zoom settings affect its field of view. An important part
of this calibration is the camera’s zoom point, or the pixel location that always points
to the same real-world point as the zoom factor is changed. The zoom point is not
necessarily the exact center of the image, and even a small offset can affect targeting
accuracy when a high zoom is used for distant subjects. Effectively, this collective
calibration data allows for the specification of a region in the WFOV image, and
determines the pan, tilt and zoom settings to make that region the full image for the
NFOV camera.
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Table 14.1 The factor and
clipping range used for each
parameter to score targets

Parameter Factor Clipping Range

Direction cosine 10 [−8,8]
Speed (m/s) 10 [0,20]
Capture attempts −2 [−5,0]
Face captures −1 [−5,0]
Times recognized −5 [−15,0]

14.2.1 Target Selection

When multiple persons are present, the system must determine which subject to tar-
get for high-resolution face capture. From the WFOV person tracker, it is straight-
forward to determine the distance to a subject, the degree to which a subject is facing
(or at least moving toward) the cameras, and the speed of the subject. Further, be-
cause the person tracker is generally quite reliable, a record can be kept for each
tracked subject. This subject record includes the number of times we have targeted
the subject, the number of times we have successfully captured a facial image and
the number of times the subject has been successfully identified by the face recog-
nition algorithm. All of this information is used by the target selection mechanism.

Detected and tracked persons are selected for high-resolution facial capture based
on a priority scoring mechanism. A score is produced for each tracked subject, and
the subject with the highest score is selected as the next target. Several parameters
are used in the scoring process, and for each parameter, a multiplicative factor is
applied and the result is clipped to a certain range. For example, the subject’s speed
in m/s is multiplied by the factor 10.0, clipped to the range [0,20] and added to
the score. Table 14.1 shows the complete set of parameters and factors currently in
use, though not yet optimized. The direction cosine parameter is the cosine of the
angle between the subject’s direction of travel and the line from the subject to the
NFOV camera. This parameter indicates the degree to which the subject is facing
the NFOV camera. The net overall effect of this process is to favor subjects moving
more quickly toward the cameras who have not yet been satisfactorily imaged. In
practice, a target selection strategy like this causes the system to move from subject
to subject, with a tendency to target subjects from which we are most likely to get
new and useful facial images.

When a subject is selected, the system uses the Kalman filter tracker to predict the
location of the subject’s face at a specific target time about 0.5–1.0 s in the future.
The NFOV camera will point to this location and hold until the target time has
passed. This gives the camera time to complete the pan and tilt change, and time for
vibration to settle. Facial images are captured when the subject moves through the
narrow field-of-view as predicted. We have already discussed the trade-off between
zoom factor and probability of successfully capturing a facial image. This system
uses an adaptive approach. If there have been no face captures for the subject, then
the initial face resolution goal will be a modest 30 pixels eye-to-eye. However, each
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time a facial image is successfully captured at a particular resolution, the resolution
goal is increased by 20%. Each subject tends to be targeted and imaged many times
by the system, so the facial image resolution goal rapidly increases. For a particular
target, this resolution goal and the subject distance determines the zoom factor of
the NFOV camera. The subject distance is also used to set the focus distance of the
NFOV camera.

14.2.2 Recognition

The NFOV video is processed on a per-frame basis. In each frame, the Pittsburgh
Pattern Recognition FT SDK is utilized to detect faces. If there is more than one
detection, we use only the most central face in the image, since it is more likely to be
the face of the targeted subject. A detected face is cropped from the full frame image
and passed to the face recognition manager. The target scheduler is also informed
of the face capture, so the subject record can be updated.

When the face recognition manager receives a new facial image, a facial image
capture record is created and the image is stored. Facial images can be captured
by the system at up to about 20 Hz, but face recognition generally takes 0.5–2 s
per image, depending on the algorithm. Recognition cannot keep up with capture,
so the face recognition algorithm is operated asynchronously. The system can be
interfaced to Cognitec FaceVACS®, Identix FaceIt®, Pittsburgh Pattern Recognition
FTR, or an internal research face recognition system. In a processing loop, the face
recognizer is repeatedly applied to the most recently captured facial image not yet
processed, and results are stored in the facial image capture record. Face recognition
can use a stored gallery of images, manual enrollments, automatic enrollments or
any combination.

The face recognition manager queries the target scheduler to determine which
tracker subject ID a facial image came from, based on the capture time of the image.
With this information, subject records are created, keyed by the tracker ID number,
and the facial image capture records are associated with them.

The auto-enrollment feature of this system makes use of these subject records.
This is a highly configurable rule-based process. A typical rule is that a subject is an
auto-enroll candidate if one face capture has a quality score exceeding a threshold,
one face capture has a face detection threshold exceeding a threshold, recognition
has been attempted at least 4 times and has never succeeded, and the most recent
face capture was at least 4 seconds ago. If a subject is an auto-enroll candidate,
the facial image with the highest quality score is selected and enrolled in the face
recognition gallery, possibly after an optional user confirmation.

In indoor and outdoor trials, the capabilities of the system have been evalu-
ated [56]. Test subjects walked in the vicinity of the system in an area where up
to about 8 other nonsubjects were also walking in view. An operator recorded the
subject distance at the first person detection, first face capture and first successful
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Fig. 14.5 Diagram of the AAM enhancement scheme (© 2006 Xiaoming Liu, et al., used with
permission [33])

face recognition with a gallery of 262 subjects. In this experiment, the mean dis-
tance to initial person detection was 37 m, the mean distance to initial facial image
capture was 34 m and the mean distance to recognition was 17 m.

14.3 Low-Resolution Facial Model Fitting

Face alignment is a process of overlaying a deformable template on a face image
to obtain the locations of facial features. Being an active research topic for over
two decades [12], face alignment has many applications, such as face recognition,
expression analysis, face tracking and animation, etc. Within the considerable prior
work on face alignment, Active Appearance Models (AAMs) [14] have been one
of the most popular approaches. However, the majority of existing work focuses
on fitting the AAM to facial images with moderate to high quality [26, 29, 30, 57].
With the popularity of surveillance cameras and greater needs for FRAD, methods to
effectively fit an AAM to low-resolution facial images are of increasing importance.
This section addresses this particular problem and presents our solutions for it.

Little work has been done in fitting AAMs to low-resolution images. Cootes
et al. [13] proposed a multi-resolution Active Shape Model. Dedeoglu et al. [18]
proposed integrating the image formulation process into the AAM fitting scheme.
During the fitting, both image formulation parameters and model parameters are es-
timated in a united framework. The authors also showed the improvement of their
method compared to fitting with a single high-resolution AAM. We will show that
as an alternative fitting strategy, a multi-resolution AAM has far better fitting per-
formance than a high-resolution AAM.

14.3.1 Face Model Enhancement

One requirement for AAM training is to manually position the facial landmarks for
all training images. This is a time-consuming and error-prone operation, which cer-
tainly affects face modeling. To tackle the problem of labeling error, we develop an
AAM enhancement scheme (see Fig. 14.5). Starting with a set of training images
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Fig. 14.6 The 6th and 7th shape basis and the 1st and 4th appearance basis before (left) and after
enhancement (right). After enhancement, more symmetric shape variation is observed, and certain
facial areas appear sharper (© 2006 Xiaoming Liu, et al., used with permission [33])

and manual labels, an AAM is trained using the above method. Then the AAM is
fit to the same training images using the Simultaneous Inverse Compositional (SIC)
algorithm, where the manual labels are used as the initial location for fitting. This fit-
ting yields new landmark positions for the training images. This process is iterated.
This new landmark set is used for face modeling again, followed by model fitting
using the new AAM. The iteration continues until there is no significant difference
between the landmark locations of the consecutive iterations. In the face modeling
of each iteration, the basis vectors for both the appearance and shape models are
chosen such that 98% and 99% of the energy are preserved, respectively.

With the refined landmark locations, the resulting AAM is improved as well. As
shown in Fig. 14.6, the variation of landmarks around the outer boundary of the
cheek becomes more symmetric after enhancement. Also, certain facial areas, such
as the left eye boundary of the 1st appearance basis and the lips of 4th appearance
basis, are visually sharper after enhancement, because the training images are better
aligned thanks to improved landmark location accuracy.

Another benefit of this enhancement is improved compactness of the face model.
In our experiments, the numbers of appearance and shape basis vectors reduce from
220 and 50 to 173 and 14, respectively. There are at least two benefits of a more com-
pact AAM. One is that fewer shape and appearance parameters need to be estimated
during model fitting. Thus the minimization process is less likely to become trapped
in a local minimum, and fitting robustness is improved. The other is that model fit-
ting can be performed faster because the computation cost directly depends on the
dimensionality of the shape and appearance models.

14.3.2 Multi-Resolution AAM

The traditional AAM algorithm makes no distinction with respect to the resolution
of the test images being fit. Normally the AAM is trained using the full resolution
of the training images, which is called a high-resolution AAM. When fitting a high-
resolution AAM to a low-resolution image, an up-sampling step is involved in inter-
polating the observed image and generating a warped input image, I (W(x;P)). This
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Fig. 14.7 The appearance models of a multi-res AAM: Each column shows the mean and first 3
basis vectors at relative resolutions 1/2, 1/4, 1/8, 1/12 and 1/16 respectively (© 2006 Xiaoming
Liu, et al., used with permission [33])

can cause problems because a high-resolution AAM has high frequency components
that a low-resolution image does not contain. Thus, even with perfect estimation of
the model parameters, the warped image will always have high frequency residual
with respect to the high-resolution model instance, which, at a certain point, will
overwhelm the residual due to the model parameter errors. Hence, fitting becomes
problematic.

The basic idea of applying multi-resolution modeling to AAM is straightforward.
Given a set of facial images, we down-sample them into low-resolution images at
multiple scales. We then train an AAM using the down-sampled images at each res-
olution. We call the pyramid of AAMs a multi-res AAM. For example, Fig. 14.7
shows the appearance models of a multi-res AAM at relative resolutions 1/2, 1/4,
1/8, 1/12 and 1/16. Comparing the AAMs at different resolutions, we can see that
the AAMs at lower resolutions have more blurring than the AAMs at higher reso-
lutions. Also, the AAMs at lower resolutions have fewer appearance basis vectors
compared to the AAMs at higher resolutions, which will benefit the fitting. The
landmarks used for training the AAM for the highest resolution are obtained us-
ing the enhancement scheme above. The mean shapes of a multi-res AAM differ
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Fig. 14.8 The convergence rate of fitting using an AAM trained from manual labels, and AAM
after enhancement iteration number 1, 4, 7, 10 and 13. The brightness of the block is propor-
tional to the convergence rate. Continuing improvement of fitting performance is observed as the
enhancement process progresses (© 2006 Xiaoming Liu, et al., used with permission [33])

only by a scaling factor, while the shape basis vectors from different scales of the
multiple-resolution AAM are exactly the same.

14.3.3 Experiments

Our experiments are conducted on a subset of the ND1 face database [10], which
contains 534 images from 200 subjects. Regarding the fitting performance measure-
ment, we use the convergence rate (CR) with respect to different levels of perturba-
tion on the initial landmark locations. The fitting is converged if the average mean
squared error between the estimated landmarks and the ground-truth is less than a
threshold. Given the true landmarks of one image, we randomly deviate each land-
mark within a rectangular area up to a certain range, and the projection of the per-
turbed landmarks in the shape model is used as the initial shape parameters. Three
different perturbation ranges, R, are used: 0, 1/16, and 1/8 of the facial height.

Another varying factor is the number of images/subjects in the training set. When
multiple images of one subject are used for training an AAM, the resulting AAM is
considered as a person-specific AAM. When the number of subjects in the training
set is large, the resultant AAM is a generic AAM. The more subjects used, the
more generic the AAM is. Using the ND1 database, we test the modeling with three
different population sizes, where the numbers of images are 21, 124, 534, and the
corresponding numbers of subjects are 5, 25, 200, respectively.

Figure 14.8 shows the CR of AAM fitting after a varying number of model en-
hancement iterations. The leftmost plot shows the CR using an AAM trained from
manual labels only, with varying population size and perturbation window size.
Each element represents the CR, which is computed using the same training set
as test images. There are some non-converged cases when more generic models
are used with a larger perturbation window size. The rest of the plots show the CR
using the AAM trained after 1, 4, 7, 10 and 13 iterations of the enhancement algo-
rithm. Continuing improvement of fitting performance is observed with additional
enhancement iterations. After the model enhancement is completed, the fitting pro-
cess converges for all testing cases, no matter how generic the model or how large
the perturbation of the initialization.

The second experiment is to test the fitting performance of a multi-res AAM on
images with different resolutions. The same dataset and test scheme are used as in
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Fig. 14.9 The convergence rate of fitting a multi-res AAM trained with manual labels (left) and
enhanced landmarks (right) to images with different resolution. Each 3 by 3 block has the same
axes as in Fig. 14.8 (© 2006 Xiaoming Liu, et al., used with permission [33])

Fig. 14.10 Fitting a multi-res AAM to an outdoor surveillance video: One sample frame with
zoom in facial area (left) and six zoom in frames overlaid with fitting results (right), (© 2006
Xiaoming Liu, et al., used with permission [33])

the previous experiment, except that the different resolutions of down-sampled train-
ing images are also used as test images for fitting. Model fitting is conducted with
all combinations of AAM resolution and image resolution, where the model resolu-
tion no less than the image resolution. As shown in Fig. 14.9, the AAM trained with
enhanced landmarks performs much better than the AAM trained from manual la-
bels. Also, for low-resolution images, the best fitting performance is obtained when
the model resolution is slightly higher than the facial image resolution, which is far
better than fitting using the AAM with the highest model resolution. This shows that
the additional appearance detail in the higher resolution AAM seems to confuse the
minimization process and results in degraded fitting performance.

The last experiment is model fitting on a surveillance video captured using a PTZ
camera positioned about 20 m from the subject. Sample fitting results using a multi-
res AAM are shown in Fig. 14.10. Although the frame size is 480 by 640 pixels,
the facial area is not only at a low resolution, but also suffers from strong blurring,
specular, and interlacing effects, which makes fitting a very challenging task. Our
multi-res AAM continuously fits around 100 frames and provides reasonable results.
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However, the high-resolution AAM only successfully fits the first 4 frames in this
sequence.

14.4 Facial Image Super-Resolution

In situations where lack of image resolution is an impediment to recognition, multi-
frame image super-resolution can be a differentiator that makes FRAD possible. In
typical FRAD systems facial images are captured with a video camera, and many
images of the face are recorded over a short period of time. While conventional face
recognition systems operate on a single image, it is desirable to improve recognition
performance by using all available image data. There are a few approaches that
may be taken. In this section we will describe our super-resolution approach [55],
Chap. 13 covers the direct use of video for recognition, and multi-sample fusion [50]
is another viable approach.

Super-resolution is the process of producing one high-resolution image from
multiple low-resolution images of the same object or scene [8, 11, 32]. Resolu-
tion improvement can come from dealiasing, deblurring and noise reduction. A key
aspect of super-resolution processing is the exploitation of the fact that the object or
camera moves between video frames, so that image pixels in different frames have
sub-pixel offsets and thus contain new information.

In this section, we describe a method for the super-resolution of faces from video.
Super-resolution algorithms generally have two parts: frame-to-frame registration,
and the super-resolution image processing itself. In our method, registration is ac-
complished with an Active Appearance Model (AAM) designed specifically for the
shape of the face and its motion [33]. To solve for the super-resolved image, we de-
fine and optimize a cost function with an L1 data fidelity component and a Bilateral
Total Variation (BTV) regularization term, as described by Farsiu [20].

Most image super-resolution algorithms use a parameterized whole-image trans-
formation for registration, such as a homography or rigid translation [23]. This is
suitable when the scene is planar or the perspective distortion due to depth and
camera motion is insignificant. Facial images have been super-resolved quite dra-
matically by Baker and Kanade [4], but the motion model used is translation-only
and does not account for 3D face shape, effectively assuming that the subject is al-
ways facing the camera. To deal with the nonrigid motion of moving faces, optical
flow has been used for the registration step [3]. While optical flow certainly can
track facial motion, it is computationally complex and its generality brings the risk
of overfitting. The super-resolution approach by Mortazavian et al. [38], like that
described here, also uses a facial model fitting approach for registration.

14.4.1 Registration and Super-Resolution

Given video of a subject we fit an AAM [33] to the face in each frame. The AAM
defines 33 landmark positions that are the vertices of 49 triangles over the face as
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Fig. 14.11 Faces from 8 video frames showing the fitted AAM shape model. The fitted AAM
will allow frame-to-frame registration even as the face rotates (© 2009 IEEE, used with permis-
sion [55])

seen in Fig. 14.11. The registration of the face between any two frames is then
a piecewise affine transformation, with an affine transformation for each triangle
defined by the corresponding vertices. A set of about N = 10 consecutive frames
are combined to produce the super-resolved image.

We will describe the super-resolution algorithm using linear algebra notation, as
if each image has its pixel values in a single vector. The computation is actually
carried out with operations on 2D pixel arrays. The super-resolution process uses
an image formation model relating each of the input frames Yi , to an unknown
super-resolution image, X, with twice the pixel resolution. The image formation
process accounts for the face motion, camera blur and detector sampling. For each
input frame, Fi is the registration operator that warps X to be aligned with Yi , but at
twice the resolution. The camera blur operator,H , applies the Point Spread Function
(PSF). For most installed surveillance cameras it is difficult to determine the true
PSF, so we assume a Gaussian shaped PSF with hand selected width, σ . Finally,
the sampling operation of the detector is represented by the sparse matrix D that
extracts every other pixel in each dimension, yielding an image that should match
our real observed image. If we let Vi represent additive pixel intensity noise, the
complete linear image formation process is then,

Yi =DHFiX+ Vi.
This is the forward model of our observed low-resolution images Yi given the un-
known high-resolution image X. Our goal is to solve the inverse problem to re-
cover X.

The super-resolved image X is produced by optimizing a cost function that is
the L1 norm of the difference between the model of the observations and the actual
observations, plus a regularization term, Ψ (X),

X̂ = argminX

[
N∑

i=1

‖DHFiX− Yi‖1 + λΨ (X)
]

.

The L1 norm is used in the data fidelity portion of the cost function for robustness
against incorrect modeling assumptions and registration errors. For the regulariza-
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tion term, we use Bilateral Total Variation (BTV) [20],

Ψ (X)=
P∑

l=−P

P∑

m=−P
α|m|+|l|∥∥X− SlxSmy X

∥
∥

1.

Here Slx and Smy are operators that shift the image in the x and y direction by l
and m pixels. With BTV, the neighborhood over which absolute pixel difference
constraints are applied can be larger (with P > 1) than for Total Variation (TV). The
size of the neighborhood is controlled by parameter P and the constraint strength
decay is controlled by α ∈ (0,1). L1-based regularization methods such as BTV or
TV are selected to preserve edges. By contrast, L2-based Tikhonov regularization
is effectively a smoothness constraint, which is counter to our goal of increased
resolution.

To solve for the super-resolution image, X is first initialized using straightfor-
ward warping and averaging. A steepest descent search using the analytic gradient
of the cost function is used [55]. With the original frames normalized to a pixel range
of [0,1], we have found that setting the regularization strength parameter λ to 0.025
gives the best visual results and we use that value for the experiments presented
here.

14.4.2 Results

Figure 14.12 shows sample super-resolution results, including: (a) the face from
the original video frame; (b) that single frame restored with a Wiener filter; and
(c) the result of multi-frame super-resolution using N = 10 consecutive frames.
The increase in sharpness and clarity is visually apparent. In another experiment
with a gallery of 700 images from unique subjects, we tested 138 facial video clips
collected from three individuals with surveillance cameras that had an eye-to-eye
distance ranging from 17 to 48 pixels. With this challenging data collected at about
10 m, super-resolution processing instead of using just single frames increased the
rank-1 recognition rate from 50% to 56%.

14.5 Conclusions

Face recognition at a distance is a challenging problem with a large number of ben-
eficial applications. We have reviewed the primary challenges, approaches and re-
search literature on this topic, and we have described some specific work that we
have carried out to create a prototype FRAD system, fit alignment models to faces
at very low resolutions and super-resolve facial images. Still, there are a great many
open issues that may lead to enhanced functionality or new applications. We con-
clude this chapter by highlighting a number of these potential future avenues of
research.
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Fig. 14.12 Example original video frames, Wiener filter results, and super-resolution results with
enlarged views of the left eye. In the Wiener filter results, artifacts in the face region are primarily
due to enhancement of interlacing artifacts. Some ringing due to circular convolution is present,
but only near the image edges. The increased resolution and clarity in the super-resolution results
is clearly visible (© 2009 IEEE, used with permission [55])

Commercially available face recognition systems are typically designed and
trained for access control applications with high-quality facial images. The need
for facial recognition algorithms that work well under FRAD imaging conditions
is well understood, and this is an active research area. It will be key to understand
which facial features are present and absent in facial images collected at a distance
so that recognition algorithms can focus on those that remain. If face recognition can
be performed fast enough, then immediate recognition results, or even face quality
analysis can be utilized more actively for NFOV resource allocation and active cap-
ture control loops. The use of incremental fusion of face recognition results during
rapid video capture of faces may also make active capture systems more efficient.

One of the challenges of FRAD is subject pose. Strategies to attract the attention
of subjects to certain locations near cameras may help this issue in some situations.
In all of the active vision systems, we have discussed both the WFOV and NFOV
cameras are stationary. The use of cameras on movable platforms, such as guide
wires or robots could enable much more effective facial image collection and open
a new surveillance and biometric identification paradigm.
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Chapter 15
Face Recognition Using Near Infrared Images

Stan Z. Li and Dong Yi

15.1 Introduction

Face recognition should be based on intrinsic factors of the face, such as, the 3D
shape and the albedo of the facial surface. Extrinsic factors that include illumina-
tion, eyeglasses, and hairstyle, are irrelevant to biometric identity, and hence their
influence should be minimized. Out of all these factors, variation in illumination is
a major challenge and needs to be tackled first.

Conventional visual (VIS) image based face recognition systems, academic and
commercial, are compromised in accuracy by changes in environmental illumina-
tion, even for cooperative user applications in an indoor environment. In an in-depth
study on influence of illumination changes on face recognition [1], Adini et al. ex-
amined several distance measures and local image operators, including Gabor fil-
ters, local directive filters, and edge maps, which were considered to be relatively
insensitive to illumination changes for face recognition. Several conclusions were
made: (i) lighting conditions, and especially light angle, drastically change the ap-
pearance of a face; (ii) when comparing unprocessed images, the changes between
images of a person under different illumination conditions are larger than those be-
tween images of two persons under the same illumination; (iii) all the local filters
under study, are not capable overcoming variations due to changes in illumination
direction. The influence of illumination is also shown in evaluations such as Face
Recognition Vendor Test [17].

Near infrared (NIR) based face recognition [11–14], as opposed to the conven-
tional visible light (VIS) based methods, is an effective approach for overcoming
the impact of illumination changes on face recognition. It uses a special purpose
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imaging device to capture front-lighted NIR face images [3–5], normalizing the
illumination direction. Using a proper face feature representation, such as Local
Binary Pattern (LBP) [2, 9, 18], variation in the illumination strength is also over-
come. These lead to a complete illumination-invariant face representation. Problems
caused by uncontrolled environmental illumination are minimized thereby, and dif-
ficulties in building the face matching engine are alleviated. The NIR approach usu-
ally achieves significantly higher performance than the VIS approach for coopera-
tive user application scenarios in uncontrolled illumination environment. NIR face
recognition products and integrated systems have been in the market and are used
in many applications (refer to Chap. 1).

In this chapter, we introduce the NIR face recognition approach, describe the
design of active NIR face imaging system, illustrate how to derive from NIR face
image an illumination invariant face representation, and provide a learning based
method for face feature selection and classification. Experiments are presented.

15.2 Active NIR Imaging System

The key aspect in the NIR face recognition approach is a special purpose NIR im-
age capture hardware system [14]. Its goal is to overcome the problem arising from
uncontrolled environmental light and produce face images of a good illumination
condition for face recognition. Good illumination means (i) that the lighting to the
face is from the frontal direction and (ii) that the face image has suitable pixel in-
tensities.

To achieve illumination from the frontal direction, active NIR illuminators, for
example, space light-emitting diodes (LEDs) around the camera lens, are used to
illuminate the face from the front such that front-lighted NIR face images are ac-
quired. This is similar to a camera with a flash light but the NIR lights work in the
invisible spectrum of NIR, being nonintrusive to human eyes.

The following are the main requirements for the NIR imaging system:

1. The active NIR lights should be nonintrusive to human eyes.
2. The direction of the NIR lighting to the face should be fixed.
3. The active NIR light signals arriving at the camera sensor should override the

signals from other light sources in the environment.

Here, the NIR lights mean the active NIR lights from the NIR imaging system,
excluding NIR components in the environment such as sunlight and light bulbs.

This selective capture (of NIR light from the imaging system) can be achieved
by the following methods:

1. Choose illuminators such as LEDs in an invisible spectrum. While a 850 nm
LED light looks a dim dark red, 940 nm is entirely invisible.

2. Mount the NIR LEDs around the camera lens so as to illuminate from the frontal
direction.
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Fig. 15.1 An active NIR imaging device and the face

Fig. 15.2 Color images (top) captured by a color camera versus NIR images (bottom) captured
by an NIR imaging system. While unfavorable lighting is obvious in the color face images, it is
almost unseen in the NIR face images

3. Choose the NIR LEDs to be powerful enough to override environmental light
sources that may affect the system. The most favorable or least challenging en-
vironment is when there is total darkness and the least favorable or most chal-
lenging is sunlight in summer. A short camera exposure should be used to avoid
over-exposure when the LED power is high.

4. Use an optical filter to minimize lights from the environment. One option is
to use a long pass filter that filters out visible components of environmental
lights. A better but more expensive option, is to use a narrow band pass filter
that matches the wavelength of the chosen active LEDs.

Figure 15.1 illustrates a hardware device and its positional relationship with the
face. The device consists of 18 NIR LEDs, an NIR camera, a VIS color camera, and
the casing. The NIR LEDs and the NIR camera are for NIR face image acquisition.
The hardware and the face are relatively positioned in such a way that the lighting
is frontal and the NIR rays provide nearly homogeneous illumination on the face,
which is an excellent illumination condition for face recognition. The VIS image
may be used for visual feedback and human computer interaction (HCI). The imag-
ing device works at a rate of 30 frames per second with the USB 2.0 protocol for
640 × 480 images.

Figure 15.2 depicts images of a face illuminated by NIR LED lights from the
front, a lamp aside and environmental lights. We can see the following: (i) the light-
ing conditions are likely to cause problems for face recognition with the color im-
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ages; (ii) the NIR images, with the visible light composition cut off by the filter, are
mostly frontal-lighted (by the NIR lights), with minimum influence from the side
lighting. Based on the two set of images that were obtained the following observa-
tions can be made.

In outdoor environments, the sunlight contains very a strong NIR component,
much stronger than what can be overridden by the NIR imaging system described
above. The NIR imaging hardware must be enhanced to overcome the influence
from the sunlight. The key factor is the ratio between the power of the controlled
active NIR illumination and the power from other light sources (recorded by the
image sensor).

One solution for such an enhanced NIR imaging system is provided in [21].
The system uses a powerful NIR illumination flash and synchronizes it with image
sensor exposure. The main points of the enhanced imaging system are summarized
as follows:

1. Use a powerful NIR illuminator, such as a narrow band NIR laser generator.
2. Set very short imaging exposure time, for example, 50 μs.
3. Synchronize the time of NIR flash output to the exposure window of sensor.
4. Use a narrow band-pass optical filter that matches the wavelength of the chosen

active NIR flash.

The enhanced NIR imaging (ENIR) system may include an additional process-
ing step to further reduce the influence from strong and uncontrolled lights in the
environment. This is done by taking difference of two successive frames. The first
frame is captured by illuminating the subject’s face with an active light source and
the second is captured after turning this light source off. The second frame is used
to represent the face subject under ambient static lights. The difference operation is
performed to reduce or eliminate the strong NIR component in the ambient light or
sunlight [10], and thus output an image of the face illuminated by the active NIR
lighting in the frontal direction. As a result, this ENIR imaging system not only pro-
vides appropriate active frontal lighting but also minimizes ambient light as well as
outdoor sunlight.

Figure 15.3 shows some images captured when the active light source on/off and
the finally output of the ENIR camera under the sunlight. From Fig. 15.3(c), we
can see that ENIR imaging hardware can work properly under the sunlight. Fig-
ure 15.10 shows face images captured by the ENIR imaging system in the sunlight.
It demonstrates the effect of reducing NIR component from sunlight.

15.3 Illumination Invariant Face Representation

In this section, we first provide an analysis using a Lambertian surface imaging
model to show that the NIR images contain the most relevant, intrinsic informa-
tion about a face, subject only to a multiplying constant or a monotonic transform
due to lighting intensity changes. We then present an Local Binary Pattern (LBP)
based representation to amend the degree of freedom of the monotonic transform to
achieve an illumination invariant representation for face recognition applications.
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Fig. 15.3 From left to right: a Face image in mixture of sunlight and active NIR light; b face
image in sunlight only, c image difference (a)–(b)

15.3.1 Modeling of Active NIR Images

According to the Lambertian model, an image I (x, y) under a point light source is
formed according to the following criterion:

I (x, y)= ρ(x, y)n(x, y)s (15.1)

where, ρ(x, y) is the albedo of the facial surface material at point (x, y), n =
(nx, ny, nz) is the surface normal (a unit row vector) in 3D space, and s = (sx, sy, sz)
is the lighting direction (a column vector, with magnitude). Albedo ρ(x, y) reflects
the photometric properties of facial skin and hairs. n(x, y) is the geometric shape of
the face. The most important factor that affects the face recognition performance is
the direction of the incident lighting relative to the face surface normal. The prod-
uct of ρ(x, y) and n(x, y) is the intrinsic property of the face at a fixed pose and
is the only factor needed for face detection and recognition. Therefore, s is the ex-
trinsic property that should be removed. Assume s = κs0, where κ is a multiplying
constant that is introduced to account for possible changes in the strength of the
lighting caused by changes in the distance between the face and the LED lights, and
s0 = (s0

x , s
0
y , s

0
z ) is a unit column vector of the lighting direction. Let θ(x, y) be the

incident angle between the lighting and the face surface normal at point (x, y), then
cos θ(x, y)= n(x, y)s0. Equation (15.1) can be expressed as

I (x, y)= κρ(x, y) cos θ(x, y). (15.2)

A less restrictive modeling of constant κ would be to use a monotonic transform
instead of a constant. It’s evident we see that the face image ρ(x, y) cos θ(x, y)
changes as the lighting direction changes, given albedo ρ(x, y) and 3D shape
n(x, y) fixed. The present hardware design is aimed at preserving the intrinsic prop-
erty while minimizing variation due to the extrinsic factor of environmental lights.
When the active NIR lighting is from the (nearly) frontal direction (see Fig. 15.1),
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Fig. 15.4 LBP code for
3 × 3 window

that is, s0 = (0,0,1), the image can be approximated by

I (x, y)= κρ(x, y)nz(x, y), (15.3)

where, nz(x, y) is the z component of the surface normal that can be acquired by
a range imaging system. An active NIR image I (x, y) combines information about
both surface normal component nz(x, y) and albedo map ρ(x, y) and, therefore,
provides the required intrinsic property about a face for face recognition.

15.3.2 Compensation for Monotonic Transform

Given a face, the constant κ is the only factor affecting the intensity of the face im-
age. This monotonic transform in intensity could be calibrated by histogram equal-
ization, histogram specification, or some monotonic transform invariant features.

The degree of freedom in κ or in a monotonic transform can be compensated
by using LBP features to achieve an illumination invariant representation of faces.
The basic form of the LBP operator is illustrated in Fig. 15.4. The binary bits de-
scribing a local 3 × 3 sub-window are generated by thresholding the 8 pixels in the
surrounding locations by the gray value of its center; the feature vector is formed by
concatenating the thresholded binary bits in an anticlockwise manner. There are a
total of 256 possible values and, hence, 256 LBP patterns denoted by such an LBP
code; each value represents a type of LBP local pattern. Such a basic form of LBP
can be extended to multi-scale LBP, LBP(P,R), where R is the radius of the circle
surrounding the center and P is the number of pixels on the circle. An LBP (P,R)
string is called uniform, denoted by LBPu2

(P,R), if the neighboring bits (the circular
sense) contain at most two bitwise transitions from 0 to 1 or vice versa (see [18] for
details).

From the analysis, we see that the NIR imaging and LBP features together lead
to an illumination invariant representation of faces. In other words, applying the
LBP operator to an active NIR image generates illumination invariant features for
faces. The illumination invariant face representation provides great advantages for
face recognition in varying illumination.

An LBP-based face matching method is described in [2, 9]. In this method,
the image is divided into 7 × 7 = 49 blocks. An LBP histogram is calculated for
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each block. A χ2 distance is calculated between two histograms for matching and
a weighted sum of the χ2 distance is then used for matching between two face im-
ages. The method is shown to achieve very good results on the FERET database.
However, such a method still lacks optimality in terms of the block division and the
weights.

Recently, several LBP variants are proposed for face recognition, such as Multi-
scale Block LBP (MB-LBP) [15], Local Ternary Pattern (LTP) [19] and so on. These
features are also robust to intensity monotonic changes and can be used in NIR face
recognition.

The following describes a procedure for extracting LBP histogram features:

1. Computing Base LBP Features

• Computing LBPu2
8,1 codes for every pixel location in the image.

2. LBP Code Histogramming

• A histogram of the base LBP codes is computed over a local region centered
at each pixel, each histogram bin being the number of occurrences of the cor-
responding LBP code in the local region. There are 59 bins for LBPu2

8,1.
• An LBP histogram is considered as a set of 59 individual features.

3. Gathering LBP Histograms

• For a face image of size W ×H , with the interior area of size W ′ ×H ′, the
total number of LBP histogram features isD =W ′ ×H ′ ×59 (number of valid
pixel locations times the number of LBP histogram bins).

For example, if W × H = 120 × 142 and a local region for histogramming is a
rectangle of size 16 × 20, the interior area is of size W ′ ×H ′ = 104 × 122 pixels.
Then there are a total of 104 × 122 × 59 = 748 592 elements in the LBP histogram
feature pool.

15.4 NIR Face Classification

Of the large number of LBP histogram features present in a feature pool. Some are
useful for face recognition, some are not so useful, and some may be contradictory.
They must be selected or weighted to achieve the best performance. In this sec-
tion, we present an AdaBoost [7, 20] based learning method for selecting best LBP
features and constructing a face classifier.

Given a training set of LBP features of faces subject to image noise, slight pose
changes, and alignment errors, the learning method finds a good set of discrimina-
tive features among a large number of candidates and then build a strong classifier
based on the selected features. Once trained, the classifier is able to recognize faces
without having to be retrained when a new individual client is added.
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15.4.1 AdaBoost Based Feature Selection

As an AdaBoost procedure essentially learns a two-class classifier, we convert the
multi-class problem into a two-class problem using the idea of intra- and extra-
class differences [16]. Two face examples are considered as intra-class if they are
of the same person, or extra-class, otherwise. However, in terms of facial features,
the difference data are derived between samples in the features rather than in the
original image space, that is, a difference is taken between the facial features (for
example, LBP histograms) of two face examples. In this manner, a training set of
positive (intra-class) and negative (extra-class) training examples can be obtained
for the learning procedure.

Assume that a training set of N examples is given as positive and negative
classes, S = (x1, y1), (x2, y2), . . . , (xN , yN) where xi is a training example (the dif-
ference between two feature vectors) and yi ∈ {+1,−1} is the class label. The Ad-
aBoost procedure can be used to learn a set of best T features stagewise and thereby
constructs a sequence of T weak classifiers, ht (x) ∈ {+1,−1}, and linearly combine
the weak classifiers in an optimal way into a stronger classifier,

H(x)= sign

(
T∑

t=1

αtht (x)

)

, (15.4)

where αt ∈ R are the combining weights. The AdaBoost learning procedure is orig-
inally aimed at deriving αt and ht (x) so that an upper error bound is minimized [7].
The reader is referred to [7, 20] for AdaBoost learning.

AdaBoost assumes that a procedure is available for learning a weak classifier
ht (x) from the training examples weighted by the current distribution wt . We use a
weak classifier based on a single scalar feature, that is, an LBP histogram bin value.
Therefore, when AdaBoost constructs a ht (x), it need to select a good feature for it.
In this way, AdaBoost can provide a good subset of features.

In the test phase, the learned H(x) can be used to classify face images. The dif-
ference is calculated between the selected features of the two face images. A weak
decision ht can be made in terms of each selected feature. The weak decisions are
linearly combined with the weights αt to give the predict value H(x). The final de-
cision can be made by comparing H(x) with a threshold value. If greater, the two
face images are considered as belonging to the same person (intra-class), otherwise,
they are belonging to different persons (inter-class). Moreover, a cascade of Ad-
aBoost classifiers [20] can be constructed to cope with complex distributions of two
classes.

15.4.2 LDA Classifier

LDA reduces the dimensionality by linearly projecting the original feature vector
in high dimensional space to a lower dimensional subspace such that the ratio of
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within-class scatter over between-class scatter is minimized. This minimized the
classification error when the distributions of the class data are Gaussian [8]. The
high dimensional data may be preprocessed using the PCA transform to make the
within-class scatter matrix nonsingular, before LDA is applied. The basis images
of such a combined projection P of PCA and LDA is called Fisherfaces [6]. More
advanced forms of LDA, such as direct LDA or regularized LDA, could be used to
obtain P. The input of LDA, in our context, is the space of selected features.

Given two input vectors x1 and x2 in the space of selected features, their LDA
projections are calculated as v1 = Px1 and v2 = Px2 and the following cosine score
(or called “cosine distance” in some of the literature) is used for the matching:

H(v1,v2)= (v1 · v2)/‖v1‖‖v2‖. (15.5)

In the test phase, the projections v1 and v2 are computed from two input vectors x1

and x2, the other for the input face image and one for an enrolled face image. By
comparing the score H(v1,v2) with a threshold, a decision can be made whether x1

and x2 belong to the same person.

15.5 Experiments

In this section, results with the NIR face recognition system of [14] are presented
to illustrate the advantages of the NIR face recognition method. Performances of
LBP + AdaBoost and LBP + LDA NIR face matching engines are compared with
several existing baseline and face matching engines. Case studies regarding effects
of eyeglasses, time lapse, and weak illumination are reported. Finally, results on a
data set collected under sunlight in an outdoor environment are presented to demon-
strate the performance of ENIR system [21].

15.5.1 Basic Evaluation

In the training phase, the training set of positive examples were derived from intra-
class pairs of LBP histogram features, the negative set from extra-class pairs, each
example being a 748 592 dimensional vector. There were 104 face images of about
1000 persons, 10 images each person, all Chinese. A training set of about 45 × 103

positive and 5 × 107 negative examples were collected from the training images.
A cascade of 5 strong classifiers were trained, with about 1500 weak classifiers.
The ROC curves for the training set are shown on the top of Fig. 15.5, where the
FAR is reduced to below 10−7 with an accuracy of 94.4%.

A technology evaluation was done with a test set of 3237 images. The test set
contained 35 persons, with 80 to 100 images per person. None of the test images
were in the training set. This generated 149 217 intra-class (positive) and 5 088 249
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Fig. 15.5 Top: ROC curve of LBP + AdaBoost method for face verification on the training set.
Bottom: ROC curves for various compared methods

extra-class (negative) pairs. Several other methods were included in the evalua-
tion (for comparison), using the same set of training and test images. They were:
(i) PCA on the NIR images (with Mahalanobis distance), (ii) LDA on the NIR im-
ages (with cosine distance), (iii) the LBP + LDA method, (iv) the original LBP
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Fig. 15.6 Top: Images captured under controlled illumination (row 1) and under weak light con-
ditions (row 2), each column belonging to the same person. Bottom: LBP + AdaBoost matching
scores

method developed by Ahonen et al. [2] and Hadid et al. [9] (χ2 distances between
LBP histograms in 7 × 7 image blocks) with three operators: LBPu2

(8,1), LBPu2
(8,2)

and LBPu2
(16,2). On the bottom of Fig. 15.5 shows the ROC curves derived from the

scores for the intra- and extra-class pairs. By the VR values at FAR = 0.1%, the
compared methods can be ranked in order of decreasing VR as: LBP + AdaBoost
(VR = 91.8%), LBP + LDA (69.9%), LBPu2

(8,2) (65.29%), LBPu2
(16,2) (65.29%),

Image + LDA (62.4%), LBPu2
(8,1) (60.7%), and Image + PCA (32.0%). See later

for explanations of the “LBP + AdaBoost (eyeglass test)” and “LBP + AdaBoost
(one year lapse)” curves.

15.5.2 Weak Illumination

Figures 15.6 and 15.7 present case studies to compare performance of visible light
(VIS) and NIR image based face matching methods under weak illumination. The
LBP + AdaBoost classifier for VIS images was trained using VIS images, whereas
the one for NIR images was the one using for other tests. In the tables, the di-
agonal entries (in bold font) are for the intra-class pairs between controlled and
weak illumination. For the VIS case, the mean and variance are 0.4970 and 0.0201
for intra-class pairs, and 0.4747 and 0.0154 for extra-class pairs. There are several
cases of mismatch because the intra-class scores are not necessarily higher than the
extra-class ones. In contrast, the NIR solution well separates the two classes, with
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Fig. 15.7 Top: Images captured under controlled illumination (row 1) and under weak light con-
ditions (row 2), each column belonging to the same person. Bottom: LBP + AdaBoost matching
scores

the mean and variance of 0.6675 and 0.0377 for intra-class pairs, and 0.3492 and
0.0403 for extra-class pairs, and correctly matches all the pairs.

15.5.3 Eyeglasses

This section presents a case analysis of influence of eye glasses on face matching,
as shown by the images, and the score table in Fig. 15.8. In the tables, the diago-
nal entries (in bold font) are for the intra-class pairs without and with glasses (that
is, between the two images in the same column); the lower triangle entries for the
extra-class no-glass pairs (that is, between two different images in the first row);
and the upper triangle for the extra-class glass pairs (that is, between two differ-
ent images in the second row). The mean and variance of correlations (not shown
here due to page limit) are 0.9306 and 0.0419 for intra-class pairs, and 0.7985 and
0.0761 for extra-class pairs of either wearing no glasses or wearing glasses. Com-
pared with correlation, LBP+AdaBoost matching engine can well separate between
the two classes—the intra-class scores are consistently higher than those of extra-
class scores.

Statistics were also obtained using 1500 images of 30 subjects, 50 images per
subject of which 25 are with glasses and 25 without. The no-eyeglass images were
used as the gallery set and the eyeglass images as the probe set. The ROC curve is
labeled “LBP+AdaBoost (eyeglass test)” in the bottom of Fig. 15.5 (the portion for
FAR smaller than 10−5 is unavailable because of the limited data points). At FAR =
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Fig. 15.8 Analysis on effects of glasses. Top: Images without glasses (row 1) and with glasses
(row 2), each column belonging to the same person. Bottom: LBP + AdaBoost matching scores

0.1%, the VR was 87.1%, as opposed to 91.8% of the “LBP + AdaBoost” curve for
the no-eyeglasses vs. no-eyeglasses and eyeglasses vs. eyeglasses comparisons.

15.5.4 Time Lapse

Tests were performed to evaluate effect of time lapse on NIR face recognition. Fig-
ure 15.9 presents a case analysis of time lapse effect on the matching scores. The
NIR images of 7 individuals were acquired in Spring 2005 and Spring 2006, re-
spectively. The table shows the matching scores produced by the LBP + AdaBoost
classifier trained on active NIR images. The mean and variance of the scores are
0.6421 and 0.0198 for intra-class pairs (in bold font), and 0.3045 and 0.0462 for
extra-class pairs. The LBP + AdaBoost matching engine well separates between the
two classes, the intra-class scores are consistently higher than the extra-class ones.

Statistics were also obtained using 750 images of 30 persons, 25 images per
person; of the 25 images, 10 were captured one year ago and used as the gallery
set, and 15 were current images used as the probe set. The ROC curve is labeled
“LBP + AdaBoost (one year lapse)” in the bottom of Fig. 15.5 (the portion for FAR
smaller than 10−4 is unavailable because of the limited data points). At FAR =
0.1%, the VR was 83.24%, as opposed to 91.8% for images of no significant time
lapse (the “LBP + AdaBoost” curve).
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Fig. 15.9 Analysis on effects of time lapse. Top: NIR face images of spring 2005 (row 1) and
spring 2006 (row 2), each column belonging to the same person. Bottom: LBP + AdaBoost match-
ing scores where Y05 and Y06 denote Spring 2005 and Spring 2006, respectively

15.5.5 Outdoor Environment

These following case studies were performed to evaluate the robustness of ENIR
[21] system in an outdoor environment and compare its performance to VIS and
NIR systems. To this end, a independent test set containing 20 persons is collected
under the following lighting conditions:

1. Normal indoor frontal lighting
2. Strong indoor frontal lighting
3. Strong indoor non-frontal lighting
4. Outdoor frontal sunlight
5. Outdoor side sunlight
6. Outdoor back sunlight

where the strong indoor lighting is provided by a 1000 W tungsten-halogen lamp
with a color temperature of 2500–3000 K. While capturing face images, the lamp is
placed at 3.5–4 m away from the subject. The lamp contains a wide range of NIR
compositions and can be use to simulate sunlight in an indoor environment.

The VIS and NIR cameras are saturated easily by sunlight, and hence the test set
does not include VIS and NIR images outdoor. The number of VIS and NIR face
images in the set are 4 (indoor conditions) ×20 (person) ×10 (images/person)=
800. The number of ENIR face images is 800+3 (outdoor conditions) ×20 (person)
×10 (images/person)= 1400. The resolution of VIS, NIR and ENIR images are all
640 × 480.
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Fig. 15.10 Face images in the outdoor test set. Rows 1–3: VIS, NIR and ENIR images under 3
indoor lighting conditions. Row 4: ENIR images captured outdoors

Figure 15.10 shows some face images in the test set. We can see that VIS face
images are unstable to the direction and strength of the strong lighting, NIR images
are less unstable, and ENIR images are the most stable ones under various lighting
conditions.
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In the experiments, the face images under normal indoor frontal lighting are used
as gallery and the other images are used as probe. Two protocols are used to compare
the three imaging systems:

1. For indoor images: comparing ROCs of all the 3 systems.
2. For outdoor images: evaluating ROC of the ENIR system only, while the other

systems could not function to a satisfactory extent.

Figure 15.11 shows the ROC curves for all experiments, in which the ENIR
system is the most stable one under all lighting conditions. In Fig. 15.11(a), the
performance of VIS and NIR systems dropped significantly under strong frontal
halogen lamp light, whereas the ENIR system still has relatively high verification
rate (VR = 69% when FAR = 0.001 and VR = 85% when FAR = 0.01). Similar
trend is also shown in Fig. 15.11(b). Figure 15.11(c) shows the results of the ENIR
system under outdoor sunlight in three different directions. The highest verification
rate is VR = 50%@FAR = 0.001 and VR = 69%@FAR = 0.01 when the sunlight
is from the subjects’ back direction. From the above figures, we can see the perfor-
mance under frontal lighting is always worse when compared to nonfrontal lighting.
A possible explanation is that human eyes are easily disturbed by the frontal light-
ing, and this can cause a significant change in facial expression, which is another
challenging problem in face recognition.

15.6 Conclusions

We have presented an effective solution for overcoming the problems caused by
illumination variation that severely affects the performance of face recognition sys-
tems. The solution consists of active NIR imaging hardware, more efficient algo-
rithms, and a novel system design. An illumination invariant face representation is
obtained by extracting LBP features from NIR images. The AdaBoost procedure
is used to learn a powerful face recognition engine based on the invariant repre-
sentation. Highly accurate and fast face recognition systems can be built thereby.
Extensive experiments show the robustness of the present solution in terms of im-
age properties, illumination changes, ethnic groups, and advantages over existing
methods. An enhanced solution, using a newly developed ENIR imaging device,
is presented to deal with strong NIR composition in ambient light such as in the
sunlight. The results show that the ENIR system performed significantly better than
the VIS and NIR systems in adverse illumination environment. This approach re-
sults in face recognition products that perform well for 1-to-many identification for
cooperative user applications.
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Fig. 15.11 ROC curves of
NIR, VIS and ENIR systems
on the outdoor test set
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Chapter 16
Multispectral Face Imaging and Analysis

Andreas Koschan, Yi Yao, Hong Chang, and Mongi Abidi

16.1 Introduction

This chapter addresses the advantages of using multispectral narrow-band images
for face recognition, as opposed to conventional broad-band images obtained by
color or monochrome cameras (see also the chapter for a discussion of color in
face analysis). Narrow-band images are by definition taken over a very small range
of wavelengths, while broad-band images average the information obtained over a
wide range of wavelengths. There are two primary reasons for employing multi-
spectral imaging for face recognition.

First, we believe that there is distinctive facial information contained in certain
narrow spectral bands which can be acknowledged and employed to enhance face
recognition performance in comparison to broad-band color or black and white im-
ages. Broad-band imaging has the potential to degrade this information that is em-
bedded in the narrow-band image due to the integration process over a wide range
of wavelengths during the formation of the image.

Second, multispectral images can separate the illumination information from the
reflectance of objects, so that we can use this illumination information to normalize
the images. In contrast, it is nearly impossible to separate and employ the illumina-
tion distribution information from broad-band images. To verify the effectiveness of
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multispectral images for improving face recognition, two sequential procedures are
taken into account: first, multispectral face image acquisition and second, spectral
band selection.

To reduce information redundancy among multispectral images, complexity-
guided distance-based band selection is introduced which uses a model selection
criterion for an automatic selection. This selection can simplify the imaging process
by reducing the number of multispectral images to be taken under a given illumi-
nation. In other words, the goal is to identify a small set of optimal multispectral
bands to be taken under a given illumination as opposed to acquiring a large set of
multispectral bands over the entire visible spectrum.

The performance of selected bands outperforms the conventional images by
up to 15%. From the significant performance improvement via complexity-guided
distance-based band selection, we conclude that specific facial information carried
in certain narrow-band spectral images can enhance face recognition performance
compared to broad-band images. In addition, the algorithm is equally useful and
successful in a wide variety of recognition schemes.

16.2 Multispectral Imaging

Multispectral imaging is a technique that provides images of a scene at multiple
wavelengths and can generate precise optical spectra at every pixel. A multispectral
image is a collection of several monochrome images of the same scene, each of them
taken with additional receptors sensitive to other frequencies of the visible light,
or to frequencies beyond visible light, like the infrared region of electromagnetic
continuum. Each image is referred to as a band or a channel. Multispectral imaging
produces a three-dimensional image cube with two spatial dimensions (horizontal
and vertical) and one spectral dimension. The spectral dimension contains spectral
information for each pixel on the multispectral cube. A multispectral image can be
represented as

C(x, y)= (μ1(x, y),μ2(x, y), . . . ,μNB (x, y)
)T
(μ1,μ2, . . . ,μNB )

T. (16.1)

The signal strength uk(x, y) of a camera sensor in a certain wavelength range, λmin
to λmax, can be represented as

uk(x, y)=
∫ λmax

λmin

R(x, y,λ)L(x, y,λ)Sk(x, y,λ) dλ, (16.2)

with k = 1, . . . ,NB , where NB = 1 for monochromatic images and NB = 3 for
three-channel color images. The parameters (x, y) indicate the pixel location in the
image. R(x, y,λ) is the spectral surface reflectance of the object, L(x, y,λ) is the
spectral distribution of the illumination, and Sk(x, y,λ) is the spectral sensitivity of
the camera corresponding to channel k. The entire possible integration wavelength
range can be in the visible spectrum, 400–720 nm, or in addition may include in-
frared spectrum depending on the camera design.
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While a monochrome image,NB = 1, has only one band, which is represented as
a gray-value image, a multispectral image consists of at least three bands, NB ≥ 3.
Thus, the image value of a pixel in a multispectral image is represented by vectors
with NB components, as opposed to scalar image values representing pixels in a
monochrome image. Although a color image with three bands constitutes in theory
the simplest form of a multispectral image, the term is more commonly used for
images with more than three bands. One example would be a four-band image using
the three RGB bands and an additional band beyond the visible spectrum, like in
the infrared (IR). Satellites usually take several images from frequency bands in the
visible and nonvisible range. No common agreement exists yet on the definition of
the term hyperspectral image. However, the term is commonly used for images with
more than a hundred bands, NB > 100. While multi in multispectral means many
spectral bands, the hyper in hyperspectral means over as in more than many and
refers to the large number of measured wavelength bands.

Multispectral imaging can enhance and expand the capability of detecting mate-
rials as well as the spatial distributions. For example, spin-offs from NASA’s multi-
and hyperspectral imaging remote sensing technology, developed for earth resources
monitoring, are techniques that combine and integrate spectral with spatial methods.
Such techniques are finding use, for example, in medicine, agriculture, manufactur-
ing, and forensics, to mention a few. Multispectral or hyperspectral sensors collect
the electromagnetic spectrum at dozens or hundreds of wavelength ranges in the
visible and near infrared spectra. Spectral resolution of a multispectral sensor is
higher and is defined as a measure of the narrowest spectral wavelength that can
be resolved by a sensor. Due to hardware limitations (most of the color cameras
are RGB cameras) all the spectral information is converted to RGB triplets during
image acquisition. It is a projection from an infinite-dimensional color space to a
three-dimensional space, or many-to-one projection, which results in colors with
different spectral distributions giving the same RGB response. Colors with the same
tristimulus data but with different power distributions are called metameric colors.

The compromise between tristimulus data collection and spectrographic infor-
mation is the employment of multiple (more than three) color filters with narrow
bandwidth mounted either between the lens and the sensor of the camera or in front
of the camera lens. The most common procedure is to place the filters in front of the
camera lens. Such an apparatus allows to obtain spatial information about the im-
aged scene at high spectral resolution. The collection and processing of 2D images
of the same scene under many spectral (often narrow band-pass) filters, particularly
in the visible range, is often referred to as multispectral imaging.

16.2.1 Multispectral Imaging Using Rotating Wheels

In recent years, modern spectral image capture systems tend to rely on combinations
of CCD cameras with various types of narrow or broad band filters. The images are
then processed using common high-capacity computers with software developed to



404 A. Koschan et al.

Fig. 16.1 Multispectral
imaging systems. a Camera
with rotating wheel and
b camera with electronically
tunable filter in front of lens

properly treat the spectral data. Therefore, capturing multispectral images can be ac-
complished by swapping narrow band-pass glass filters in front of the camera lens.
It is common for such filters to be mounted in a filter wheel. Nowadays, color filters
with minimum bandwidth of approximately 10 nm are available off-the-shelf. Dif-
ferent filters and combinations were proposed for different applications. Figure 16.1
illustrates the principle of mounting a filter wheel in front of the camera lens.

Ohta et al. [33] used a film-based system for multispectral image capture. Their
system used a mechanical rotating filter wheel with eight gelatin filters to image
rigid objects. Only rays within a small wavelength band experience constructive in-
terference and pass through the interference filters. In such use, interference filters
offer a large aperture, large field of view, and good optical quality. Tominaga pro-
posed a camera system with six color filters [45], which had six spectral channels
of the color filters’ fixed wavelength bands.

Fixed-filter systems have intrinsic restrictions: (1) the selection of color filters
and the number of filters are limited; (2) filters with a narrow band-pass are difficult
to build; (3) moving parts are necessary to select the filters since it is a mechanical
system. Due to the latter restriction, time on the order of seconds can be required
to step filters in a preset sequence and vibrations of the imaging system may occur.
These systems are commonly employed for multispectral imaging of rigid objects
where image acquisition time can be long.

16.2.2 Multispectral Imaging Using Electronically Tunable Filters

A faster and more flexible way of multispectral imaging involves electronically tun-
able filters (ETFs). A tunable filter is a device whose spectral transmission can be
electronically controlled through the application of voltage or acoustic signals. In
addition, the large aperture and imaging capability of these devices represent a dis-
tinct advantage over conventional dispersive spectral analysis techniques. Unlike
conventional filter wheels, there are no moving parts and no discontinuity in the
spectral transmission range, thus providing finer spectral sampling, and rapid and
random switching between color bands. Also, ETFs are light weight, making them
attractive for airborne or remote sensor platforms.

Electronically tunable filters offer the fastest, most accurate and flexible color fil-
tering techniques that are currently available. The majority of ETFs can be classified
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under three operational categories: (1) Acousto-Optical Filters based on diffraction,
(2) Fabry–Perot Filters based on optical interference, and (3) Liquid Crystal Filters
based on birefringence. Although each of the three types of ETFs is based on dif-
ferent principles of optics, each of them is successful in selecting individual band
pass over a continuum of spectral ranges with high speed and accuracy. Figure 16.1
shows two different designs of multispectral imaging systems: (a) a camera with a
rotating wheel and (b) a camera with an electronically tunable filter in front of the
lens.

The operation of the Acousto-Optic tunable filter (AOTF) is based on the in-
teraction of electromagnetic and acoustic waves. The main module of an AOTF is
an optically transparent crystal that possesses a certain combination of optical and
acoustic properties. While the incoming light falls on the crystal, a radio-frequency
acoustic wave is sent to the crystal simultaneously. It is used in creating a refrac-
tive index wave within the crystal. The incident beam when passing through the
refractive index wave breaks into its component wavelengths. In the end, a single
wavelength of light is selected for transmission. Proper design makes one of these
wavelengths much more prominent and that becomes the output color of the fil-
ter. The wavelength of the filtered light is selected by changing the frequency of
the acoustic wave. AOTFs are lightweight and very fast spectral filtering devices.
One disadvantage of such devices is the requirement that the incident light be colli-
mated [16].

Another category of electronically tunable filters applies the principle of optic
interference. A Fabry–Perot cavity is the basic component consisting of two par-
allel planar surfaces, whose inner face is coated with partially transparent films
of high reflectivity, enclosing a rectangular volume of air or some dielectric ma-
terial. Light enters through one of the partially transparent mirrors and is multiply
reflected within the cavity. The multiply transmitted rays interact with each other,
creating optical interference effects, which result in the transmission, through the
opposite semitransparent mirror, of only one particular wavelength and its harmon-
ics. To block the unwanted harmonics, often two cavities in a row are employed,
constituting a dual tunable Fabry–Perot (DTFP) device [39]. Electro-optic Fabry–
Perot (EOFP) devices adjust the bandpass spectrum by varying the refractive index
of the cavity through the application of electric potential. Recently, liquid crystals
(LCFP) are employed as cavity medium. On average, single-cavity ETFs can select
the output wavelength out of an input range that is no larger than 100 nm wide.
Thus, a cascade of Fabry–Perot cavities is needed in order to have an EOFP that can
analyze the entire visible spectrum. Such designs are more costly and have a lower
transmission rate (20–50% instead of 90% for a single cavity [39]).

Recently, the Applied Spectral Imaging SpectraCube has been introduced, which
is an interferometry-based portable digital camera. This camera is based on the idea
that if interference of the color signal is created and measured, the spectrum of
the original signal can be recovered applying the inverse Fourier transform. With
this device, a full 2D array of spectra is captured at once and, unlike filter-based
systems, a single exposure is acquired. The spectral resolution of this device can
be set higher than most filter-based systems (e.g., about 4 nm), but it also comes
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Fig. 16.2 Principle design of
a Liquid Crystal Tunable
Filter element (after [14])

at a high expense. Moreover, the single-image acquisition time ranges from 30 to
150 seconds (depending on spatial and spectral resolution and aperture) [13].

The third and most commonly used category of filter devices is liquid crystal
tunable filters (LCTFs), which use electrically controlled liquid crystal elements to
select a specific visible wavelength of light for transmission through the filter at
the rejection of all others. A typical LCTF is built using a stack of polarizers and
tunable retardation (birefringent) liquid crystal plates (cp. Fig. 16.2). The LCTF is
polarization sensitive. Switching speed is limited by relaxation time of the crystal
and is of the order of ∼50 ms. Special devices can be designed for fast switching
(∼5 ms) through a short sequence of wavelengths. Spectral resolution, or band pass,
of the LCTF is typically of the order of several nm, although a narrower band pass
can also be constructed [14].

For a multispectral imaging system employing a LCTF, the camera response
uλk corresponding to band k centered at wavelength λk within the range, λk,min

to λk,max, can be represented as (compare (16.2))

uλk =
∫ λk,max

λk,min

Rλk (λ)Lλk (λ)Sλk (λ)Tλk (λ) dλ (16.3)

for k = 1,2, . . . ,NB where k indicates the kth spectral band, NB is the total number
of bands, and Tλk is the spectral transmittance of the LCTF. (x, y) is omitted for
simplicity. Rλk is the spectral surface reflectance of the object (here the face), Lλk
is the spectral distribution of the illumination, and Sλk is the spectral sensitivity of
the camera corresponding to band k. the imaging process is illustrated in Fig. 16.3.

Nowadays, a considerable variety of Liquid Crystal Tunable Filters, Acousto-
Optic Tunable Filters, and Electro-Optic Fabry–Perot is available in the market.
Most of them have comparable performance characteristics. Table 16.1 lists typical
characteristics of ETFs (after [39]).

Spectroradiometers are a precise alternative to filter-based systems. After light
passes through the shutter, it is directed to a concave diffraction grating that breaks
up the signal into a photosensitive array and focuses the diffracted signal onto a
photosensitive array. These devices have a very high spectral resolution, precision,
and stability [13]. Nevertheless, one disadvantage of spectroradiometers is that they
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Fig. 16.3 The camera
response is the result of
integration of all the factors
involved, including the
spectral distribution of
illumination, reflectance of
the object, the transmittance
of the filter, and the spectral
response of the camera

Table 16.1 Typical tunable filter characteristics (after [39])

Attributes AOTF EOFP LCTF

Operating spectral range 200–5000 nm 400–1550 nm 400–1800 nm

Max width of tunable range 700 nm (vis + NIR) 100 nm 450 nm (vis + NIR)

3900 nm (MIR) 950 nm (MIR)

Min. output bandwidth 0.4 nm 0.05 nm 5 nm

Max. output bandwidth 50 nm 30 nm 10 nm

Mean error in central
wavelength

1 nm (varies with l) 1 nm (varies with l) 0.5 nm

Average transmission rate 98% 20–50% 20–50%

Transmission rate over
wavelength

constant increases with
wavelength

increases with
wavelength

Out of band transmission 0.05–0.1% 0.5–1% 0.01–0.05%

Tunability time ∼15–30 ms ∼40 ms (LCFP) ∼50 ms

∼4 ms (DTFP)

Incident light limitations requires collimated light none none

measure only single points. Therefore, it is nearly impossible to use them to capture
a full scene.

Multispectral imaging systems with electronically tunable filters have been used
by several research groups [17, 20, 21, 34, 35, 40, 45]. The Munsell Color Sci-
ence Laboratory initiated efforts with multispectral images using a LCTF over the
visible spectrum, especially for high resolution art portrait reconstruction [20, 21].
They also acquired the Lippmann2000 database [40] that contains spectral images
of several objects including faces from 4 Caucasians and 3 East-Asians. This data
was acquired by a film camera with approximately 15 to 25 second lapses between
exposures and 16 exposures for each person, under flash lighting.

Pan et al. [34, 35] acquired spectral images over the near infrared spectrum (700–
1000 nm) and demonstrated that spectral images of faces acquired in the near in-
frared range can be used to recognize individuals. Until now, not much research has
been done using multispectral imaging in the visible domain to address the problem
of face recognition, especially with respect to changes in illumination conditions.
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The multispectral databases mentioned above either have very few data records or
are not in the visible spectrum. In addition, these datasets were not compared with
conventional face images by recognition engines.

16.2.3 Multispectral Band Selection

When a large amount of multispectral data has to be analyzed, it is very de-
sirable to reduce the initial information without losing classification accuracy
to a significant degree. This reduction can be achieved by two methodologies:
feature extraction [4, 11, 12, 18, 23, 24, 29–31, 36, 41, 42, 44] or band selection
[6, 26–28, 38, 43, 46].

In feature extraction, a new and reduced data set representing the transformed
initial information is obtained, whereas in band selection a subset of relevant data
from the original bands is chosen. Compared to feature extraction, band-selection
methods identify a subset of the original spectral bands that contains most of the
characteristics. Selecting a subset of relevant bands from the original set allows the
process of image acquisition to be reduced to a certain number of bands instead of
dealing with the entire set of data and, therefore, simplifying image acquisition and
analysis.

Feature extraction transfers the data into a lower dimensional space. Features
are extracted from the original spectral bands to construct a lower-dimension fea-
ture space. Thereby the original data are transformed into the destination feature
space through projections such as Projection Pursuit (PP) [31], Principal Compo-
nent Analysis (PCA) [12], locally linear embedding [41], Isomap [44] and subspace
theory [18, 36, 42], wavelet transform [4, 23], and Independent Component Analysis
(ICA) [11, 30]. These projections preserve most desired information but change the
physical meaning of each spectral band. These methods rank the influence of each
single spectral band on the new lower dimensional space. Bands with the highest in-
fluence are considered to include more information and are therefore selected [1, 7].
It is nearly impossible to predict the best dimension required for dimension reduc-
tion without significant loss of information. In addition, the data is transformed and
no longer exists as original data. Some crucial and critical information may have
been compromised and distorted.

The goal of band selection is to minimize information loss from the information
preservation point of view. Mutual information is a good candidate for band selec-
tion as a measure of independence between random variables. For example, Sotoca
et al. [43] used conditional entropy as an approximation of mutual information to
measure the independent information carried by one band given a sub-band set. Peng
et al. [38] argued that maximizing the relevance between each individual band and
the class is equivalent to the maximum dependency criterion if one band is selected
at a time. Their method needs samples from inside the class, as well as outside of the
class, to evaluate the relevance of each individual band with the class. Thus, it is not
applicable if no samples outside the class are available. Basically, the method em-
ploys an unsupervised band selection criterion to obtain the relevant spectral bands
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from a set of sample images, while minimizing the dependent information between
spectral bands and maximizing the conditional entropies of the selected bands [43].

In general, the problem of subset selection using numerical techniques for model
selection requires two components: a search algorithm and an evaluation criterion.

First, an algorithm is needed for the efficient search of the solution space, such as
greedy and genetic algorithms. Exhaustive search [25] over the entire feature data
set and the branch-and-bound algorithm [5] has rarely been used in the analysis of
high-dimension data due to the computational costs even though they lead to an opti-
mal solution. Heuristic search methods such as hill climbing, backward elimination,
forward selection, and stepwise selection are commonly used.

Second, a criterion or measure is needed for the comparison and evaluation of
competing models to guide the search. The criterion can be based on human percep-
tion, which makes it hardware dependent, participant dependent, quite subjective,
and also time consuming. Other criteria mentioned in the literature include first or
second spectral derivatives [1]. Entropy is interpreted as a measure of stability of
each individual wavelength band. Low entropy values correspond to low uncertain-
ties and thus bands with small entropy are considered good feature bands. Bassett
and Shen [2] used entropy to measure the difference between different classes.

Commonly, researchers apply band selection with the consideration of classifi-
cation outputs. In [1], the issue of hyperspectral bands and method selection using
unsupervised and supervised methods driven by classification accuracy and compu-
tational cost is addressed. Their formulation is more general by optimizing over sev-
eral methods and the combinations of supervised and unsupervised methods eval-
uations. One goal of band selection is to identify a reflectance feature that remains
invariant when the viewing conditions change. Wang and Angelopoulou [47] pro-
pose a technique for extracting color information that is invariant to geometry and
incident illumination. They examine the rate of change in reflected intensity with
respect to wavelength over the visible part of the electromagnetic spectrum. For dif-
fuse surfaces the only factor that contributes to variations over the wavelength is the
albedo of the surface independent of the particular model of reflectance.

16.3 The IRIS-M3 Face Database

A multispectral and multi-illuminant face database was acquired at the IRIS Lab to
support research in multispectral image analysis for face recognition. The database
includes indoor and outdoor images taken under controlled and uncontrolled illu-
mination situations. During image acquisition a liquid crystal tunable filter in the
visible spectrum was used, which provided narrow band filters at different wave-
lengths between 400 nm and 720 nm. The multispectral face database has note-
worthy characteristics. It is the first database with registered images in the visible,
multispectral and thermal modalities, coupled with spectral distributions of the illu-
mination sources used during acquisition. Participants were imaged under various
illumination conditions such as halogen light, fluorescent light and day light. An-
other interesting feature is the large number of multispectral bands available in the
database with 25 bands per participant and a total of 82 participants.
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Fig. 16.4 a The all-inclusive multimodal and multispectral mobile imaging system, b lateral view
of the multimodal imaging system, and c the multispectral imaging components (from [10])

Fig. 16.5 Narrow-band
transmittances of the LCTF
from 400 nm to 720 nm with
10 nm increments

The multispectral imaging system shown in Fig. 16.4 is integrated on a transla-
tional platform to acquire well-aligned face images in a short period of time. This
allows the participants to maintain their expression and pose. The mobile imaging
system shown in Fig. 16.4(a) consists of a multispectral imaging module, a digi-
tal RGB camera, a near infrared camera, a spectrometer, a frame grabber and an
onboard computer. Figure 16.4(b) shows the lateral view of the multimodal imag-
ing system. The multispectral imaging components shown in Fig. 16.4(c), consist
of a Sony XC-75 monochrome camera and a VariSpec liquid crystal tunable filter,
which can electronically tune a narrow band filter centered at various wavelengths
in visible spectrum. The LCTF provides narrowband filters with a full width-at-
half-maximum bandwidth of 7 nm. A maximum of 331 narrow-band multispec-
tral images can be acquired by continuously tuning the LCTF. The aperture of the
LCTF is 35 mm and the field of view is ±7°. A wide angle lens is mounted on the
monochrome camera (Sony XC-75) and this is coupled with the LCTF through a
hardware interconnection. The camera auto-gain is set to 0 dB in order to acquire
raw data. The black current of the Sony XC-75 is measured by covering the lens
and reading the pixel values of black images. After averaging, the typical black cur-
rent is 4 to 5 values out of 256. The transmittance of the used LCTF is different at
different wavelengths as shown in Fig. 16.5.
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Fig. 16.6 Three illumination setups, a quadruple halogen lights with a pair on each side, b a pair
of fluorescent light panels, and c daylight with side illumination (from [10])

Three datasets were acquired with three different illumination scenarios: halo-
gen light, fluorescent light and daylight. The three illumination setups are shown in
Fig. 16.6. The quadruple halogen lights with a pair on each side of the participant
are shown in Fig. 16.6(a). The second illumination setup was a pair of fluorescent
light panels (fluorescent-1) shown in Fig. 16.6(b). We assume that the indoor il-
luminations, halogen light and fluorescent light, are homogeneously distributed on
the face and have stable spectral power when they are lit. The daylight face data
was acquired with side illumination due to the fact that many participants were un-
able to maintain pose or expression with bright sun light shining directly into their
eyes. We grouped the outdoor data acquisition into 8 different sessions according
to weather conditions and acquisition time. The weather conditions ranged from
sunny to cloudy and the passing clouds caused rapid changes in lighting conditions.
An outdoor data acquisition setup with side illumination is shown in Fig. 16.6(c).
For comparison an additional set of images was acquired with a Canon A80 under
another type of fluorescent light (fluorescent-2). The illuminations are characterized
during the database collection via the use of a light meter and a spectrometer. An
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Fig. 16.7 Normalized spectral power distribution of a halogen light b fluorescent light, c day light,
and d another fluorescent light (from [10])

EasyView30 light meter was used to measure the illuminance and an Ocean Optics
USB2000 Spectrometer was used to measure the irradiance of the illuminant.

The spectral power distributions (SPDs) of four different illuminants used during
the data acquisition process are shown in Fig. 16.7. The SPD of halogen light (a) is
very smooth and the peak is at the orange part of the spectrum. The SPD of the
fluorescent light panel (b) is spiky at certain wavelengths. The day light depicted
in Fig. 16.7(c) tends to have more green and blue components in comparison to
the other two illuminants. A second fluorescent light was used during the image
acquisition process which has a different SPD than the first fluorescent light (see
Fig. 16.7(d)).

There are a total of 82 participants of different ethnic groups, ages, facial hair
characteristics, and genders in the database with 2624 face images. The correspond-
ing illumination information for each image is recorded using the spectrometer. The
image resolution is 640 by 480 pixels and the eye-to-eye distance is about 120 pix-
els. The database was collected in 11 sessions between August 2005 and May 2006
with some participants being photographed multiple times. Figure 16.8 shows sam-
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Fig. 16.8 Sample images in a data record in the IRIS-M3 database; a side illumination under
daylight, b band 640 nm multispectral image under daylight, c band 720 nm spectral image under
daylight, d under indoor halogen light, e band 640 nm spectral image under indoor halogen light,
f band 720 nm spectral image under indoor halogen light, g under fluorescent with slightly facing
her left, h under fluorescent with glasses, and i under another fluorescent light (from [10])

ples from one data record in the IRIS-M3 database with variations in lighting con-
ditions and elapsed time. The database contains 76% males and 24% females; the
ethnic diversity was defined as a collection of 57% Caucasian, 23% Asian (Chinese,
Japanese, Korean and similar ethnicity), 12% Asian Indian, and 8% of African De-
scent. Figure 16.9 illustrates by example the demographics of the database including
different ethnicities, age groups, facial hair characteristics, and genders.

16.4 Complexity-Guided Distance-Based Band Selection

In this section, a complexity-guided distance-based band selection method is in-
troduced as a key step in multispectral image processing aimed at improved face
recognition. Let the total number of multispectral bands be NB and λk denotes
the central wavelength of the kth band. The complete set of multispectral bands
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Fig. 16.9 Examples of 6 subjects, a male Asian under fluorescent light, b female Caucasian under
fluorescent light, c male Caucasian under fluorescent light, d female of African Descent under fluo-
rescent light, e male Asian Indian under daylight, f female Asian under daylight, g male Caucasian
under daylight and h female of African Descent under daylight (from [10])

is B = {λk | k = 1, . . . ,NB}. The proposed method automatically searches for an
optimal subset Bopt ⊆ B such that the fused images from Bopt can outperform
conventional broad-band images. To achieve such a goal, the proposed method ex-
plores a divergence based distance measure and defines a new redundancy measure
to quantitatively describe the correlation among multiple spectral bands. The prob-
abilistic distance measure insures that the selected subset is sufficient for improving
recognition rate whereas the redundancy measure insures that the subset is necessary
with a minimum number of selected bands.

First, let us define the genuine and imposter sets of each spectral band. In multi-
spectral face recognition, a gallery consists of a set of samples {g1, . . . , gN }, where
N is the total number of subjects in the gallery. When a probe image pkj collected
at the kth spectral band is presented to a system, it is compared with all the samples
in the gallery. The comparison between a probe pkj and each gallery sample gi pro-

duces a similarity score Skij . These similarity scores can be divided into two groups
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for each spectral band, referred to as the genuine Gk and imposter Ik sets. The
genuine and imposter sets are defined as: Gk = {Skij | i = j} and Ik = {Skij | i �= j},
respectively. In other words, the genuine set contains the similarity scores with probe
and gallery images from the same subject whereas the imposter set consists of sim-
ilarity scores with the probe and gallery images from different subjects.

Given the genuine and imposter sets of the multiple spectral bands, we first es-
timate the distributions or equivalently the probability density functions (PDFs) of
their respective similarity scores, p̂G,k(x) and p̂I,k(x), and then compute the dis-
tance between these two PDFs producing a distance measure Qk for each spectral
band. In the algorithm proposed in [8, 9], the Nopt spectral bands with the highest
Qk values are selected. Two drawbacks are observed. Firstly, the number of bands
Nopt is user specified, which cannot be optimized automatically. Secondly, bands
with the highest Nopt distance measures are selected disregarding the latent redun-
dancy among these bands. In this chapter, we investigate appropriate approaches
to select a subset with minimum redundancy and to automatically determine the
optimal number of sub-bands.

In [8, 9], it has been demonstrated that an important criterion of selecting the ap-
propriate spectral bands is the separation between the similarity scores of the gen-
uine and imposter set. Therefore, we obtain a set of ordered sub-bands according
to the distance measure: B = {λki | i = 1, . . . ,NB} withQki ≥Qki+1 , which means
that the first and last sub-bands in B have the highest and lowest distance measures,
respectively. We start with the spectral band that yields the highest distance mea-
sure λk1 : B1 = {λk1}. The questions are how to select the next band that brings in
the most information and when to stop the selection process. These two questions
correspond to the problems of selecting the optimal subset and deriving the opti-
mal number of sub-bands. To answer these two questions, we define a quantitative
measure that describes the redundancy among bands.

At themth iteration and given the current selected subset Bm, we obtain the set of
candidate sub-bands: B = B − Bm. According to the order of the sub-bands in B,
we add one sub-band λki into Bm: Bm,ki = Bm∪{λki } and evaluate the redundancy
measure of the augmented set: R(Bm,ki ). We increase i if the redundancy measure
decreases and stop if the redundancy measure begins to increase or all the candidate
sub-bands in B have been examined. IfR(Bm,ki ) < R(Bm), the newly elected band
λki is added to Bm forming a new band set Bm+1 = Bm,ki and the process iterates.
Otherwise, output the current Bopt = Bm as the optimal subset. Algorithm 16.1
describes the detailed steps of the proposed band selection algorithm.

In the election process at each iteration, we start from the sub-band with the high-
est distance measure in the candidate set and search for the appropriate sub-band
according to the descending order of the distance measure. The search is stopped
once the redundancy measure of the augmented set begins to increase. In so doing,
we are able to locate the sub-band that produces a relatively high distance measure
and a relatively low redundancy measure simultaneously.

In the following sections, we will describe the major steps in the proposed algo-
rithm, namely PDF estimation, distance measure computation, and the definition of
the redundancy measure.
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Algorithm 16.1: Multispectral band selection

Input: Gk , Ik
Compute PDFs of the genuine and imposter sets, p̂G,k(x) and p̂I,k(x)
Compute the probabilistic distance measure Qk between p̂G,k(x) and
p̂I,k(x)

Obtain B = {λki | i = 1, . . . ,NB} with Qki ≥Qki+1

Initialize R(")= ∞, Bo =", B1 = {λk1}, and m= 1
while R(Bm) < R(Bm−1) do

Initialize i = 2
Obtain B = B − Bm

Obtain Bm,k1 = Bm ∪ {λk1} and Bm,k2 = Bm ∪ {λk2} with λk1, λk2 ∈ B
Compute R(Bm,k1) and R(Bm,k2)

while R(Bm,ki ) < R(Bm,ki−1) do
Obtain Bm,ki+1 = Bm ∪ {λki+1} with λki+1 ∈ B
Compute R(Bm,ki+1)

Increase i by one
end while
Add λki−1 to Bm: Bm+1 = Bm ∪ {λki−1}
Increase m by one

end while
Output: Bopt = Bm−1

16.4.1 Kernel Density Estimation

Kernel density estimation (KDE) is used to obtain the probability density function
because the underlying density can be estimated without assuming a particular form
or structure [37]. Formally, kernel estimators smooth out the contribution of each
observed data point over a local neighborhood of that data point. LettingK() denote
the Kernel function and h its smoothing parameter/bandwidth, the estimated density
at any point x is given by [48]:

p̂(x)= 1

Nh

N∑

i=1

K

(
x − xi
h

)

. (16.4)

Recall that N is the total number of subjects in the gallery and that Skij denotes
the similarity score between the gallery sample of the ith subject and the probe of
the j th subject collected from the kth spectral band. From the similarity scores of
various subjects, the distributions of the genuine and imposter sets, p̂G,k(x) and
p̂I,k(x), are estimated using KDE:

p̂G,k(x) = 1

NhG,k

N∑

i=1

K

(
x − Skii
hG,k

)

, (16.5)
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p̂I,k(x) = 1

N(N − 1)hI,k

N∑

i=1

N∑

j=1,j �=i
K

(
x − Skij
hI,k

)

. (16.6)

The bandwidth parameter controls the smoothness of the density estimation and
determines the trade-off between the bias and variance. Often h is chosen as to
minimize the Asymptotic Mean Integrated Square Error (AMISE) [32]:

hAMISE =
[

ρ(K)

Nμ(K)2σ(p′)

]1/3

(16.7)

where ρ(K) = 2
∫∞
−∞ xK(x)KI (x) dx, μ(K) = ∫∞

−∞ x
2K(x)dx, and σ(p′) =

∫∞
−∞ p

′(x)2 dx with KI (x)=
∫ x
−∞K(x)dx.

16.4.2 Probabilistic Distance Measure

Probabilistic distance measures are used here to measure the similarity between
the genuine and imposter sets. Probabilistic distance measures have been used in
many research areas such as probability and statistics, pattern recognition, infor-
mation theory, communication, and so on. Here, the symmetric Kullback–Leibler
divergence, referred to as the Jeffrey divergence, [22], is used:

Qk =
∫
[
p̂G,k(x)− p̂I,k(x)

]
log
p̂G,k(x)

p̂I,k(x)
dx. (16.8)

16.4.3 Redundancy Measure

The redundancy measure is derived in the framework of multivariate model selection
with penalty on correlation between sub-bands. The core process is a multivariate
kernel estimation on the similarity scores of the genuine sets and the evaluation of
redundancy based on information complexity.

In the previous section, the PDFs, p̂G,k(x) and p̂I,k(x), of the kth sub-band are
estimated independently of other sub-bands. To incorporate the correlation between
sub-bands, we employ multivariate KDE. Given the set Bm, the dimension of the
multivariate KDE is the number of sub-bands under consideration, Nk = |Bm|. Let
s denote the multivariate vector and si represent the ith data point where si = [Skii]
with λk ∈ Bm. The multivariate KDE is given by:

p̂(x)= 1

N(2π)Nk/2
|H |−1/2

N∑

i=1

K
[
(x − si )H−1(x − si )

]
. (16.9)
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If the sub-bands in Bm are independent, the multivariate KDE reduces to:

p̂(x)= 1

N

N∑

i=1

[
Nk∏

k=1

1

hk
K

(
xk − Skii
hk

)]

. (16.10)

To evaluate whether the above independent assumption fits the data, we borrow the
information complexity (ICOMP) criterion proposed by Bozdogan [3]. The ICOMP
criterion is chosen since it has the following advantages. Firstly, it allows the mea-
surement of dependency between the random variables. Secondly, it establishes and
provides a trade-off between the fit and the interaction between the parameter esti-
mates and the residuals of a model via the measure of complexity of their respective
covariances. The redundancy measure based on the ICOMP is given by:

R(Bm)= −2 logL(s1, . . . , sN | hk)+ 2C1F
(
Σ̂
)
, (16.11)

where Σ̂ denotes the estimated covariance matrix. The first term in the above equa-
tion evaluates the fitting error whereas the second term considers the complexity of
the estimated covariance matrix, which indicates the correlation among variables.
The fitting error term is given by:

−2 logL(s1, . . . , sN | hk)=
N∑

i=1

log p̂−i (si ), (16.12)

where p̂−i (x) is the leave-one-out estimator:

p̂−i (x)= 1

N − 1

N∑

j=1,j �=i

[
Nk∏

k=1

1

hk
K

(
xk − Skjj
hk

)]

. (16.13)

The C1F (Σ̂) is the second order equivalent measure of the complexity of the C1
measure:

C1F
(
Σ̂
)= s

4

C1(Σ̂)

(tr(Σ̂)/s)2
, (16.14)

where the information complexity C1 is defined as:

C1
(
Σ̂
)= s

2
log

[
tr(Σ̂)

s

]

− 1

2
log
∣
∣Σ̂
∣
∣ (16.15)

and s = rank(Σ̂). The estimated covariance matrix is computed by:

Σ̂ = F̂−1R̂F̂−1, (16.16)

where F̂−1 is the inverse Fisher information estimation and R̂ is the estimated outer-
product form of the Fisher information.
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16.5 Experimental Results

In order to demonstrate the effectiveness of the band selection algorithm, six sets
of experiments are designed, including simulated and real data. The experimental
results demonstrate that face recognition rate can be substantially improved over that
of the conventional broad-band images for both indoor and outdoor environments.
In addition, a simplified multispectral face imaging system can be engineered with
reduced acquisition and processing time.

16.5.1 Simulated Data

In this section, the performance of the proposed band selection algorithms is studied
via simulated data. Simulated data sets are deliberately included for experimenta-
tion with controlled parameters, where one can quantitatively compare the results
with the known groundtruth values. As mentioned previously, the input parameters
to the proposed algorithm are sets of genuine Gk and imposter Ik similarity scores.
To achieve a close resemblance to the real data, similarity scores are computed by
the Identix’s FaceIt [19] recognition engine based on the IRIS-M3 face database
and their distributions are studied, which leads to the following main observations.
(1) The distributions of the similarity scores of the imposter sets collected at dif-
ferent spectral locations share a similar distribution, which can be modeled as a
Gaussian with zero mean and unit variance. (2) The distributions of the similarity
scores of genuine sets resemble a Gaussian with comparable variances but differ-
ent means. (3) The correlation between two sub-bands decreases with respect to the
increase in the spectral distance between the sub-bands.

Based on these observations, the simulated data is designed as follows. The cen-
ter wavelength of simulated sub-spectral bands are distributed uniformly in a spec-
tral range of 480 nm to 720 nm with a 10 nm increment. The similarity scores of the
imposter sets for all sub-bands are drawn from a Gaussian with zero mean and unit
variance. In a Matlab implementation, this is done by calling the function randn()
with default settings. Considering the correlation of the genuine similarity scores
among sub-bands, the scores are drawn from a multivariate Gaussian. Its mean and
covariance values determine the system’s behavior and are the controlled parame-
ters in the simulated experiments. The specific mean and covariance values used in
the experiments will be given in the discussions regarding the experimental results.
Once the mean and covariance values are designed, 500 samples are drawn from
the multivariate Gaussian for each set. In a Matlab implementation, this is done by
calling the function mvnrnd() with given mean and covariance.

The mean and covariance values of the simulated data for the first experiment
are shown in Fig. 16.10(a). The data is designed such that the optimal number of
bands is three and they are 720 nm, 630 nm, and 550 nm, depicted as the local
peaks in Fig. 16.10(a). Multiple peaks are deliberately introduced in the design of
this experiment to test the ability of the proposed algorithm in picking up the correct
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Fig. 16.10 a The mean and
covariance of the simulated
data. The correlation values
are shown for bands 480 nm,
580 nm, and 680 nm. The
correlation with a given band
decreases linearly as the
wavelength of the sub-band
moves away from the center
wavelength of the given band.
b Normalized distance
measure values for 25 bands
with three local peaks.
c Redundancy measures for
different number of bands
with three bands having the
minimal value

number of optimal bands. In addition, the correlation of these data sets is designed
such that these peaks are uncorrelated, resulting in an optimal number of sub-bands
of three. The computed distance values are shown in Fig. 16.10(b), where we ob-
serve three peaks, which agrees with the actual optimal bands. This verifies the
ability of the proposed algorithm in correctly locating the potential optimal bands.
Figure 16.10(c) shows the redundancy measure with a minimum value at three, sug-
gesting that the three peaks are sufficient to represent the remaining sub-bands. This
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agrees with the structure of the simulated data and verifies the ability of the pro-
posed algorithm in not only locating the optimal bands but also selecting the correct
number of bands to form a sufficient and necessary subset.

Although, by design, bands 710 nm and 700 nm produce higher distance mea-
sures, they are highly correlated with band 720 nm. Therefore, they are excluded
from the optimal subset selected via the newly proposed redundancy measure. In
comparison, the band ranking algorithm described in [8, 9] selects 700 nm, 710 nm,
and 720 nm ifNopt = 3 is given. The more informative bands 550 nm and 630 nm are
not selected. The proposed algorithm selects the optimal bands and decides the num-
ber of bands with consideration of both distance values and the correlation among
the bands.

In the second experiment, the correlation among spectral bands is increased,
as shown in Fig. 16.11(a). With the increased correlation, we expect to see a de-
creased number of selected sub-bands. Figure 16.11(b) shows the distance measure
values from these 25 bands, and the corresponding redundancy measure is given
in Fig. 16.11(c). Disregarding the four peaks illustrated in Fig. 16.11(b), only two
sub-bands 710 nm and 530 nm are selected primarily because of the increased cor-
relation among sub-bands.

The experimental results based on simulated data clearly illustrate the power of
the proposed selection process. Instead of simply ranking multiple spectral bands
according to their probabilistic distance measure, the proposed algorithm can adap-
tively and automatically select the most representative and informative bands ac-
cording to the recognition capacity of the bands and their correlations.

16.5.2 Real Data

That selecting the optimal spectral bands from a series of multispectral images un-
der given illuminations improves face recognition performance can be shown in the
following experiments with real data. Four experiments are designed to investigate
the recognition performances of fused images from the selected band/bands in com-
parison with conventional broad-band images. In real world situations, face images
are frequently acquired under different lighting conditions and compared with the
database images. It is reasonable and important to study the situation that the illu-
minations for gallery and probe images are different. The IRIS-M3 face database is
used because it contains gallery and probe images collected under various illumina-
tions. According to the available lighting sources in the IRIS-M3 face database, the
following four sets of experiments were conducted with the gallery and probe sets
collected from different illuminations. Table 16.2 lists the experimental conditions.

In these experiments, similarity scores are obtained via Identix’s FaceIt [19],
a well-known recognition engine. Jeffrey divergence values are normalized between
0 and 1 for clear illustration. If more than two bands are selected, for example, Haar
wavelet-based pixel-level fusion [15], can be applied for the fusion of images from
the selected sub-bands. Given the registered narrow-band images from the selected
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Fig. 16.11 a The mean and
covariance of the simulated
data. The correlation values
are shown for bands 480 nm,
580 nm, and 680 nm. Spectral
bands are highly correlated.
b Normalized distance
measure values for 25 bands
with four local peaks.
c Redundancy measures for
different number of bands
with two bands having the
minimal value

spectral range, two-dimensional discrete wavelet decomposition is performed on
each image to obtain the wavelet approximation coefficients and detail coefficients.
The coefficients in inverse wavelet transform for fused image are obtained by choos-
ing the maximum among each type of coefficients. The two-dimensional discrete
wavelet inverse transform is then performed to construct the fused image.

In addition to the rank-one recognition rate, a numerical measure is used to eval-
uate the recognition performance. To enable quantitative comparison of the over-
all performances at different ranks, a mapping operation projecting the multi-index
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Table 16.2 Experimental conditions including the description of the gallery lighting, probe light-
ing, spectral range, and the number of sub-bands

Gallery Probe

Illumination Spectral range Increment Num. of bands

Experiment 1 Fluorescent Halogen 480 nm–720 nm 10 nm 25

Experiment 2 Day light Halogen 480 nm–720 nm 10 nm 25

Experiment 3 Fluorescent Day light 480 nm–720 nm 20 nm 13

Experiment 4 Halogen Day light 480 nm–720 nm 20 nm 13

CMC curve to a single number, CMCM, is defined as:

CMCM =
N∑

r=1

Cr

rN
, (16.17)

where r represents the rank number, and Cr denotes the number of probe images
that can be correctly identified at and below rank r . Recall that N denotes the total
number of subjects in the gallery. The factor 1/r can be viewed as a weight, which
decreases monotonously as r increases. As a result, the rank-one recognition rate is
dominant and contributes the most to the value of CMCM. A better face recognition
performance is indicated by a higher CMCM value, which varies between 0 and 1.

In Fig. 16.12, the normalized probability distance is given whereas the redun-
dancy measure via ICOMP calculation of each possible number of selected bands
is given in Fig. 16.13. For all experiments, the proposed algorithm selected one
band. The selected bands are 610 nm, 610 nm, 720 nm, and 720 nm for the four
experiments, respectively. The reason why only one band is selected lies in the fact
that the correlation among all the bands is relatively high. To validate the selection
results, face recognition performances including the rank-one recognition rate and
CMCM values of the selected bands are tested and given in Table 16.3 in com-
parison with those of the conventional broad-band images. The images from a sin-
gle selected band outperform the conventional broad-band monochromatic images.
Taking Experiment 1 as an example, the recognition performance is improved by
relatively 9.7%((97.14 − 88.56)/88.56 × 100% = 9.7%) of rank-one rate and by
4.5%((98.57 − 94.28)/94.28 × 100% = 4.5%) of the CMCM value.

Table 16.3 also lists the performance comparison between the proposed algo-
rithm and the reference algorithm developed in [8, 9]. For Experiment 2 and 4,
the images from a single band selected by the proposed algorithm outperform the
fused images from three selected bands via the reference algorithm. For the other
two experiments (Experiment 1 and 3), their performances are comparable. Note
that image fusion helps to reduce image noise, which may also lead to improved
recognition performance. This explains the observed comparable performance in
Experiments 1 and 3. Therefore, we could conclude that the proposed algorithm is
capable of identifying the most concise subset with the most informative spectral
bands.
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Fig. 16.12 Normalized
distance measures for
multiple spectral bands:
a Experiment 1,
b Experiment 2,
c Experiment 3, and
d Experiment 4
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Fig. 16.13 Redundancy
measure for different number
of selected sub-bands:
a Experiment 1,
b Experiment 2,
c Experiment 3, and
d Experiment 4
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Table 16.3 Rank-one and CMCM recognition rates of the monochromatic conventional broad-
band image, the fused narrow-band images via the reference algorithm [8, 9], and the selected
narrow-band images via the proposed algorithm

The proposed
algorithm

Broad-band Improvement Reference [8, 9] Improvement

Experiment 1

Rank-one 97.14 88.56 9.7 97.14 0.0

CMCM 98.57 94.28 4.5 98.57 0.0

Experiment 2

Rank-one 65.17 57.15 15.0 62.86 3.7

CMCM 74.06 70.20 5.5 72.11 2.7

Experiment 3

Rank-one 97.14 94.28 3.0 97.14 0.0

CMCM 97.57 95.36 3.4 98.57 −1.0

Experiment 4

Rank-one 54.29 48.57 11.8 48.57 11.8

CMCM 64.79 57.28 13.1 60.84 6.5

16.6 Conclusions

In this chapter, the fundamentals of multispectral imaging and its applications to
face recognition were introduced. Variation in illumination dramatically degrades
face recognition performance. Narrow-band sub-spectral images were used instead
of conventional broad-band images to improve recognition performance. A spectral
band selection algorithm was developed to choose the optimal band images under
given illumination conditions. From the experiments, the spectral bands of 610 nm
and 720 nm are the optimal choice for probes under indoor halogen light and vary-
ing daylight, respectively. The selected optimal spectral bands are consistent with
those specified by physics analysis with known system configuration and illumina-
tion characteristics and result in a 3%–15% improvement in face recognition rate
in comparison with that of conventional broad-band images. In addition, the opti-
mal set ensures a minimum amount of acquisition and processing time for fast face
recognition by selecting the most informative and independent sub-bands.
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Chapter 17
Face Recognition Using 3D Images

I.A. Kakadiaris, G. Passalis, G. Toderici, E. Efraty, P. Perakis, D. Chu,
S. Shah, and T. Theoharis

17.1 Introduction

Our face is our password—face recognition promises to revolutionize the way we
identify individuals in a nonintrusive and convenient manner. Even though research
in face recognition has spanned over nearly three decades, only 2D systems, with
limited adoption to practical applications, have been developed so far. The primary
reason behind this is the low accuracy of 2D face recognition systems in the pres-
ence of: (i) pose variations between the gallery and probe datasets, (ii) variations in
lighting, and (iii) variations in the presence of expressions and/or accessories. The
above conditions generally arise when noncooperative subjects are involved, which
is the very case that demands accurate recognition.

Face recognition using 3D images was introduced in order to overcome these
challenges. It was partly made possible by significant advances in 3D scanner tech-
nology. However, even 3D face recognition has faced significant challenges which
have hindered its adoption for practical applications. The main problem of 3D face
recognition is the high cost and fragility of 3D scanners. Over the last seven years,
our research team has focused on exploring the usefulness of 3D data and the devel-
opment of models for face recognition (under the general name URxD).

In this chapter, we present advances that aid in overcoming the challenges en-
countered in 3D face recognition. First, we present a fully automatic 3D face recog-
nition system, UR3D, which has been proven to be robust under variations in ex-
pressions. The fundamental idea of this system is the description of facial data us-
ing an Annotated Face Model (AFM). The AFM is fitted to the facial scan using
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a subdivision-based deformable model framework. The deformed model captures
the details of an individual’s face and represents this 3D geometry information in
an efficient 2D representation by utilizing the model’s parametrization. This repre-
sentation is analyzed in the wavelet domain and the associated wavelet coefficients
define the metadata that are used for comparing the different subjects. These meta-
data are both compact and descriptive. This approach that involves geometric mod-
eling of the human face allows greater flexibility, better understanding of the face
recognition issues, and requires no training.

Second, we demonstrate how pose variations are handled in 3D face recogni-
tion. The 3D scanners that are used to obtain facial data are usually nonimmersive
which means that only a partial 3D scan of the human face is obtained, particularly
so in noncooperative, practical conditions. Thus, there are often missing data of the
frontal part of the face. This can be overcome by identifying a number of landmarks
on each 3D facial scan thereby allowing correct registration with the AFM, indepen-
dent of the original pose of the face. For nonfrontal scans, missing data can be added
by exploiting facial symmetry, assuming that at least half of the face is visible. This
is achieved by improving the subdivision-based deformable model framework to
allow symmetric fitting. Symmetric fitting alleviates the missing data problem and
facilitates the creation of geometry images that are pose invariant. Another alterna-
tive to tackle the missing data problem is to attempt recognition based on the facial
profile; this approach is particularly useful in recognizing car drivers from side view
images. In this approach, the gallery includes facial profile information under differ-
ent poses, collected from subjects during enrollment. These profiles are generated
by projecting the subjects’ 3D face data. Probe profiles are extracted from the input
images and compared to the gallery profiles.

Finally, we demonstrate how the problems related to the cost of 3D scanners
can be mitigated through hybrid systems. Such systems employ 3D scanners for
the enrollment of subjects, which can take place in a few specialized locations, and
2D cameras at points of authentication, which can be multiple and dispersed. It is
practical to adopt this approach if hybrid systems can improve the accuracy of a 2D
system. During enrollment, 2D+3D data (2D texture and 3D shape) are used to build
subject-specific annotated 3D models. To achieve this, an AFM is fitted to the raw
2D+3D data using a subdivision-based deformable framework. A geometry image
representation is then extracted using the parametrization of the model. During the
verification phase, a single 2D image is used as the input to map the subject-specific
3D AFM. Given the pose in the 2D image, an Analytical Skin Reflectance Model
(ASRM) is then applied to the gallery AFM to transfer the lighting from the probe
to the texture in the gallery. The matching score is computed using the relit gallery
texture and the probe texture. This hybrid method surpasses the accuracy of 2D face
recognition system in difficult datasets.
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17.1.1 3D Face Recognition

In recent years, several 3D face recognition approaches have been proposed that
offer increased accuracy and resilience to pose and illumination variations when
compared to 2D approaches. The limitations of 2D approaches were highlighted in
the Face Recognition Vendor Test 2002 study. However, the advantages of 3D face
recognition were not evident since most 3D approaches had not been extensively
validated due to the non-availability of 3D databases. This is evident in the surveys
of the 3D face recognition field given by Bowyer et al. [8], Chang et al. [13] and
Scheenstra et al. [57]. To address this issue, NIST introduced the Face Recognition
Grand Challenge and Face Recognition Vendor Test 2006 [21] and released two
publicly available multimodal (3D and 2D) databases, FRGC v1 and FRGC v2.

On FRGC v1, a database that contains over 900 frontal scans without any facial
expressions, Pan et al. [46] reported 95% rank-one recognition rate using a PCA
approach, while Russ et al. [56] reported a 98% verification rate. Our approach
achieved a 99% rank-one recognition rate [29].

On FRGC v2, a database that contains over 4000 frontal scans with various facial
expressions, Chang et al. [11, 12] examined the effects of facial expressions using
two different 3D recognition algorithms. They reported a 92% rank-one recognition
rate. The same rank-one recognition rate (92%) was also reported by Lu et al. [40].
In their approach, a Thin Plate Spline (TPS) was used to learn expression deforma-
tion from a control group of neutral and non-neutral scans. Husken et al. [28] pre-
sented a multimodal approach that uses hierarchical graph matching (HGM). They
extended their HGM approach from 2D to 3D but the reported 3D performance was
poorer than the 2D equivalent. The fusion of the two approaches, however, pro-
vided competitive results, a 96.8% verification rate at 0.001 False Acceptance Rate
(FAR), compared to 86.9% when using the 3D only. Al-Osaimi et al. [1] used a
PCA subspace, referred to as the expression deformation model, to analyze facial
deformations from 3D data. They reported an average (over ROC I, II and III exper-
iments) verification rate of 94.2% at 0.001 FAR. Maurer et al. [43] also presented a
multimodal approach tested on the FRGC v2 database, and reported a 87% verifi-
cation rate at 0.01 FAR. In our initial work on this database [49], we analyzed the
behavior of our approach in the presence of facial expressions. The improvements
presented in our subsequent work [30] allowed us to overcome the shortcomings of
this approach. Our method, using only 3D data, achieved 97% rank-one recognition
and an average (over ROC I, II and III experiments) verification rate of 97.1% at
0.001 FAR.

17.1.2 3D Face Recognition from Partial Scans: UR3D-PS

Even though the majority of the 3D face recognition approaches focus on full frontal
scans, there are several approaches that focus on partial scans (that are prone to miss-
ing data). Lu et al. [38, 39, 41], in a series of studies, presented methods to locate
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the positions of the corners of the eyes and mouth, and the tips of the nose and
chin, based on a fusion scheme of shape index on range maps and the “cornerness”
response on intensity maps. They also developed a heuristic method based on cross-
profile analysis to locate the nose tip more robustly. Candidate landmark points were
filtered out using a static (nondeformable) statistical model of landmark positions.
Although they report a 90% rank-one matching accuracy in an identification exper-
iment, no claims where made with respect to the effects of pose variations.

Dibeklioglu et al. [17, 18] introduced a nose tip localization and segmentation
method using curvature-based heuristic analysis to enable pose correction in a face
recognition system that allows identification under significant pose variations. How-
ever, their system cannot handle facial scans with yaw rotations greater than 45°.
Additionally, even though the Bosphorus database that was used consisted of 3396
facial scans, the date were obtained from only 81 subjects.

Blanz et al. [5, 6] presented an approach in which a 3D Morphable Model was
fitted on 3D facial scans, which is a well-established approach for producing 3D syn-
thetic faces from scanned data. However, face recognition testing was validated on
the FRGC database that consists of frontal facial scans, and on the FERET database
that contains faces under pose variations which do not exceed 40°. Bronstein et
al. [10] presented a face recognition method that is capable of handling missing
data. This was an extension of their previous approach [9] where they deformed the
face by embedding it into a multi-dimensional space. Such an approach preserves
only the intrinsic geometries of face. Since facial expressions are mainly extrinsic
geometries, the result is an expression invariant representation (canonical form) of
the face. They reported high recognition rates, but on a limited database of 30 sub-
jects. Also, the database did not contain side scans. Furthermore, the scans that con-
tained missing data were derived synthetically by randomly removing certain areas
from frontal scans. In Nair and Cavallaro’s [45] work on partial 3D face matching,
the face was divided into areas and only certain areas were used for registration and
matching. This approach was based on an assumption that the areas of missing data
can be excluded. Using a database of 61 subjects, they showed that using parts of
the face rather than the whole face, yields higher recognition rates. This approach,
as well as their subsequent work on 3D landmark detection, cannot be applied to
missing data resulting from pose self-occlusion, especially when holes exist around
the nose region. Lin et al. [36] introduced a coupled 2D and 3D feature extraction
method to determine the positions of eye sockets using curvature analysis. The nose
tip was considered as the extreme vertex along the normal direction of eye sockets.
The method was used in an automatic 3D face authentication system but was tested
on only 27 datasets with various poses and expressions. Mian et al. [44] introduced
a heuristic method for nose tip detection and used it in a face recognition system.
The method is based on a geometric analysis of the nose ridge contour projected on
the x–y plane. It is used as a preprocessing step to crop and pose correct the facial
data. Even though it allows up to 90° roll variation, this approach requires yaw and
pitch variation less than 15°, thus limiting the applicability to near frontal scans.
Perakis et al. [50] presented methods for detecting facial landmarks and used them
to match partial facial data. Local shape and curvature analysis were used to locate
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candidate landmark points (eye inner and outer corners, mouth corners, and nose
and chin tips). The points were identified and labeled by matching them with a sta-
tistical facial landmark model. The method addresses the problem of extreme yaw
rotations and missing facial areas, and its face recognition accuracy was validated
against the FRGC v2 and UND Ear databases.

17.1.3 3D-aided 2D Face Recognition

The literature in 3D and 2D+3D Face Recognition has rapidly increased in recent
years. An excellent survey was presented by Bowyer et al. [8]. The approach pro-
posed by Riccio and Dugelay [55] uses geometric invariants on the face to establish
a correspondence between the 3D gallery face and the 2D probe. Some of the in-
variants were manually selected. This algorithm does not use the texture information
registered with the 3D data from the scanner, and hence, does not take full advan-
tage of the input data. Blanz and Vetter [5] employed a morphable model technique
to acquire the geometry and texture of faces from 2D images. Wang et al. [67]
used a spherical harmonic representation [2] with the morphable model for 2D face
recognition. Toderici et al. [61] proposed a method referred to as UR2D that uses
2D+3D data to build a 3D subject-specific model for the gallery. In contrast, Wang’s
method uses a 2D image to build a 3D model for the gallery based on a 3D statistical
morphable model. Yin and Yourst [69] used frontal and profile 2D images to con-
struct 3D shape models. In comparison to these methods, the UR2D method is able
to more accurately model the subject identity as it uses both 2D and 3D informa-
tion. Smith and Hancock [58] presented an approach for albedo estimation from 2D
images also based on a 3D morphable model. The normals of the fitted model were
then used for the computation of shading, assuming a Lambertian reflectance model.
Biswas et al. [3] proposed a method for albedo estimation for face recognition us-
ing two-dimensional images. However, their approach was based on the assumption
that the image does not contain shadows, and does not handle specular light. The
relighting approach of Lee et al. [34], also suffers from the self-shadowing problem.
Tsalakanidou [62] proposed a relighting method designed for face recognition but
this approach produced images with poorer visual quality when compared to more
generic methods, especially when specular highlights over-saturate the images.

17.1.4 3D-aided Profile Recognition

The use of face profile for identification had attracted research interest even before
the arrival of the associated computer technologies [22]. The methods for recogni-
tion using the profile curve can be classified into one of two categories: landmark-
based methods [27, 32, 37, 68] or global methods [23, 31, 47, 70]. Landmark-based
methods rely on the attributes associated with a set of fiducial points, and recogni-
tion uses similarity metrics based on those attributes. Global methods consider each
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profile as a geometric object and introduce a similarity metric between homoge-
neous objects: all regions of a profile are treated equally.

Harmon et al. [27] defined 17 fiducial points; after aligning two profiles based
on the selected landmarks, the matching was achieved by measuring the Euclidean
distance of the feature vectors derived from the outlines. A 96% recognition rate
was reported. Wu et al. [68] used a B-spline to locate six landmarks and extracted
24 features from the resulting segments. Liposcak and Loncaric [37] used scale-
space filtering to locate 12 landmarks and extracted 21 distances based on those
landmarks. The Euclidean distance between the vectors of features was used for the
identification.

Bhanu and Zhou [70] proposed curvature-based matching using a dynamic warp-
ing algorithm. They reported a recognition rate of almost 90% on the University
of Bern Database that consisted of 30 subjects. Gao and Leung [24] introduced a
method to encode profiles as attributed strings and developed an algorithm for at-
tributed string matching. They reported nearly 100% recognition rate on the Bern
database. Pan et al. [47] proposed a method that uses metrics for the comparison of
probability density functions on properly rotated and normalized profile curves. Gao
et al. [23, 25] proposed new formulations of the Hausdorff distance. Initially, their
method was extended to match two sets of lines, while later, it was based on weight-
ing points by their significance. In both cases, they applied their distance metric to
measure the similarity of face profiles.

All these methods were designed for standard profiles only and use 2D images as
gallery. Kakadiaris et al. [31] introduced the use of a 3D face model for the genera-
tion of profiles under different poses for the gallery. Modified directional Hausdorff
distance of the probe profile to the gallery profile was used for identification. In ad-
dition, four different profiles under various rotation angles were used to introduce
robustness to pose.

An important step in the implementation of a fully automatic system suitable for
unconstrained scenarios is developing an accurate profile extractor. The majority of
profile-based identification approaches do not sufficiently address this issue: instead
they use manual extraction [31, 47] or very basic thresholding methods based on
the assumption of indoor controlled illumination and a uniform background [7, 37,
70]. More efficient methods have been applied for near-frontal face extraction and
feature localization. Among the most powerful are the methods based on the Ac-
tive Shape Model (ASM), originally proposed by Cootes et al. [15]. These methods
are based on recovering parameters of a statistical shape model, when a local mini-
mum of the matching energy is found based on a search in local neighborhoods of
the shape points. During the last decade, numerous modifications for the ASM have
been proposed [26, 42]. The ultimate goal for most of these algorithms is alignment,
therefore the shape is mostly defined by sparse set of common face landmarks vis-
ible on the frontal view, enforced by only a few additional points. For the contour
extraction task, points should be densely sampled in order to approximate the curve
accurately. Another known shortcoming of the ASM approach is the sensitivity to
initialization, which is especially critical for ridge-like shapes.
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Fig. 17.1 Overview of the UR3D 3D face recognition method

17.2 3D Face Recognition: UR3D

The UR3D 3D face recognition method is reviewed in this section [30]. It is a purely
geometric approach as it does not require any statistical training. The AFM is de-
formed to capture the shape of the face of each subject. This approach represents
the 3D information in an efficient 2D structure by utilizing the AFM’s UV param-
eterization. This structure is subsequently analyzed in the wavelet domain and the
spectral coefficients define the final metadata that are used for comparison among
different subjects.

This method has the following steps (Fig. 17.1):

1. Acquisition: Raw 3D data are acquired from the sensor and converted to a polyg-
onal representation using sensor-dependent preprocessing.

2. Registration: The data are registered to the AFM using a two-phase approach.
3. Deformable Model Fitting: The AFM is fitted to the data using a subdivision-

based deformable model framework.
4. Geometry Image Analysis: Geometry and normal map images are derived from

the fitted AFM and wavelet analysis is applied to extract a reduced coefficient set
as metadata (Fig. 17.2).

A detailed explanation of each step can be found at [30].
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Fig. 17.2 From left to right: Facial scan → Fitted AFM → Extracted geometry image → Com-
puted normal image

Fig. 17.3 Interpose matching using the proposed method (left to right): Opposite side facial scans
with extensive missing data, Annotated Face Model (AFM), resulting fitted AFM of each scan
(facial symmetry used), extracted geometry images

17.3 3D Face Recognition for Partial Scans: UR3D-PS

UR3D is focused on 3D frontal facial scans and does not handle extensive missing
data. In this section, the focus is shifted to 3D partial scans with missing data (such
as side facial scans with large yaw rotations). The goal is to handle both frontal and
side scans seamlessly thus producing a biometric signature that is pose invariant and
hence, making the method more suitable for real-world applications.

The main idea of the proposed method is presented in Fig. 17.3. It allows match-
ing among interpose facial scans and solves the missing data problem by using facial
symmetry. To this end, a registration step is added that uses an automated 3D land-
mark detector to increase the resiliency of the registration process to large yaw rota-
tions (common in side facial scans). Additionally, the subdivision-based deformable
model framework is extended to allow symmetric fitting. Symmetric fitting allevi-
ates the missing data problem as it derives geometry images from the AFM that
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Fig. 17.4 Depiction of:
a landmark model as a 3D
object; and b landmark model
overlaid on a facial scan

are pose invariant. Compared to the method presented in the previous section all
other steps, except the registration and fitting step, remain unchanged. However, to
make interpose matching more accurate, frontal facial scans are handled as a pair of
independent side facial scans (left and right).

17.3.1 3D Landmark Detection

The proposed method (UR3D-PS) employs an improved version of the 3D landmark
detection algorithm presented in [51]. Candidate interest points are extracted from
the facial scans and are subsequently identified and labeled as landmarks by using a
Facial Landmark Model (FLM). A set of 8 anatomical landmarks is used: right eye
outer corner (l1), right eye inner corner (l2), left eye inner corner (l3), left eye outer
corner (l4), nose tip (l5), mouth right corner (l6), mouth left corner (l7) and chin tip
(l8) (Fig. 17.4). Note that at least five of these landmarks are always visible on side
facial scans. The model with the entire set of eight landmarks will be referred to as
FLM8 while the models with the reduced sets of five landmarks (left and right) will
be referred to as FLM5L and FLM5R, respectively.

To create each FLM a mean shape is computed from a manually annotated
training set. One hundred and fifty frontal facial scans with neutral expressions
are randomly chosen from the FRGC v2 database as the training set. Procrustes
Analysis [14, 19, 59] procedure is used to align the landmarks shape and calculate
the mean shape. Subsequently, the variations of each FLM are analyzed by apply-
ing Principal Component Analysis (PCA) to the aligned landmark shapes. Aligned
shape vectors form a distribution in the nd dimensional shape space, where n is
the number of landmarks and d the dimension of each landmark. As described by
Cootes et al. [16, 59], we can decompose this distribution and select the most sig-
nificant eigenvectors of the eigenspace (principal components). We incorporated 15
eigenvalues (out of 24) in FLM8, which represent 99% of total shape variations of
the frontal landmark shapes. Similarly, we incorporated 7 eigenvalues (out of 15) in
FLM5L and FLM5R, which represent 99% of total shape variations of the left and
right side landmark shapes.

The FLMs are used to detect landmarks in each facial scan as follows (depicted
in Fig. 17.5):



438 I.A. Kakadiaris et al.

Fig. 17.5 Results of landmark detection and selection process: a shape indexes maxima and min-
ima; b spin image classification; c extracted best landmark sets; and d resulting landmarks

• Extract candidate landmarks by using the Shape Index map. After computing
shape index values on a 3D facial scan, mapping to 2D space is performed to cre-
ate the shape index map. Local maxima (Caps) are candidate landmarks for nose
tips and chin tips and local minima (Cups) for eye corners and mouth corners.
The most significant subset of points for each group (Caps and Cups) is retained.

• Classify candidate landmarks by using Spin Image templates. Candidate land-
marks from the previous step are classified and filtered according to their rele-
vance with five Spin Image templates. The similarity between two spin image
grids P and Q is expressed by the normalized linear correlation coefficient:

S(P,Q)= N
∑
piqi −∑pi

∑
qi

√
[N∑p2

i − (∑pi)2][N∑q2
i − (∑qi)2]

where pi , qi denotes each of the N elements of spin image grids P and Q, re-
spectively.

• Label Landmarks. Using the classified candidate landmarks, feasible combina-
tions of five landmarks are created. Subsequently, the rigid transformation that
best aligns these combinations with the corresponding FLMs is computed. If the
result is not consistent with FLM5L or FLM5R then the combination is filtered
out. If it is consistent, the landmarks are labeled by the corresponding FLM and
the combination is considered a possible solution. Possible solutions also include
combinations of eight landmarks that are created from fusing two combinations
of five landmarks (FLM5L and FLM5R) and are consistent with FLM8.

• Select Final Solution. The optimal solution (landmark combination) for each of
the FLM5R, FLM5R and FLM8 is selected based on the distance from the mean
shape of the corresponding FLM. To select the final solution the three optimal
landmark combinations are compared using a normalized Procustes Distance that
takes into consideration the shape space dimensions.
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Fig. 17.6 AFM (gray) and facial scans (color coding: red means low registration error, blue means
high registration error) superposed after registration (the scans): a frontal scan; b 45° left side scan;
and c 60° right side scan

17.3.2 Partial Registration

Side facial scans with missing data cannot be registered robustly using the registra-
tion module of UR3D. To compute a rough but robust registration between the AFM
and frontal or side facial scans (Fig. 17.6), the detected 3D landmarks are used. The
Procrustes distance between a set of landmark points x on the scan and the corre-
sponding landmark points x0 on the AFM is minimized in an iterative approach. If
T translates x so that its centroid is at the origin (0,0,0), T0 translates x0 so that
its centroid is at the origin (0,0,0), and R is an optimal rotation that minimizes the
Procrustes distance of x to the reference shape x0, then, the final transformation to
register a facial scan with vertices vi to the AFM is:

v′
i = T−1

0 · R · T · vi

and pose is estimated from R. The landmark set detected on a facial scan (frontal,
right or left) determines which of the FLM8, FLM5R and FLM5L will be used.
However, in practice when a frontal scan is detected, we do not use the FLM8, but
we consider it as a pair of side scans (and compute two independent registrations
using FLM5R and FLM5L).

To fine-tune the registration we use Simulated Annealing. Note that for side
scans, only one half of the model’s z-buffer is used in the objective function. The
other half is excluded as it would have been registered with areas that may contain
missing data. The landmark detection algorithm effectively substitutes the ICP in
the registration process. Therefore, the Simulated Annealing algorithm is only al-
lowed to produce limited translations and rotations and cannot alleviate registration
errors caused by erroneous landmark detection.

17.3.3 Symmetric Deformable Model Fitting

We have modified the fitting module of UR3D to incorporate the notion of symmet-
ric fitting in order to handle missing data. The framework can now handle the left
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and right sides of the AFM independently. The idea is to use the facial symmetry to
avoid the computation of the external forces on areas of possible missing data. The
internal forces are not affected and remain unmodified to ensure the continuity of
the fitted surface. As a result, when fitting the AFM to facial scans classified as left
side (from the previous step), the external forces are computed on the left side of the
AFM and mirrored to the right side (and vice versa for right side scans). Therefore,
for each frontal scan, two fitted AFMs are computed: one that has the left side mir-
rored to the right and another that has the right side mirrored to the left. The method
derives geometry and normal images from the deformed AFMs as described in the
previous section.

17.4 3D-aided Profile Recognition: URxD-PV

Until recently, research in profile-based recognition was based on comparison of
standard profiles—the contours of side view images with yaw very close to −90°.
Research in 3D–3D face recognition has indicated that the profile information con-
tains highly discriminative information [35, 48, 69], where the term “profile” is
often associated with the facial area along the symmetry axis of the 3D face model.
However, neither approach is capable of accurate modeling of a silhouetted face
profile, as observed in a 2D image because (i) the face is not perfectly symmetric,
(ii) the face is almost never at yaw equal to −90° with respect to the sensor, and
(iii) if the distance between camera and object is not sufficiently large, perspective
projection needs to be considered (based on imaging sensor parameters). Note that,
in this paper, the term “profile” always indicates the silhouette of nearly side view
head images for clarity of presentation.

The central idea of our approach is the use 3D face models to explore the feature
space of a profile under various rotations. An accurate 3D model embeds informa-
tion about possible profile shapes in the probe 2D images, which allows flexibility
and control over the training data. We suggest that sufficient sampling in the pose
space, which corresponds to nearly side-view face images, provides robustness for
a recognition task. Specifically, we propose to generate various profiles using rota-
tions of a 3D face model. The profiles are used to train a classifier for profile-based
identification. Two different types of profiles are employed in our system: (i) 3D
profiles—those generated synthetically through 3D face models to be used as train-
ing data, and (ii) 2D profiles—those extracted from 2D images of side-view faces.

The schematic illustration of the profile-based face recognition system is de-
picted in Fig. 17.7 and includes Enrollment and Identification phases. The algorith-
mic solutions for the entire 3D-aided profile-based recognition framework including
profile modeling, landmark detection, shape extraction, and classification are pro-
vided in [20].

In our approach, we treat the profile as an open curve C , it may be described by
a pair of arc-length parameterized 1D functions YC (l) and XC (l), where l ∈ [0,1].
A set of k landmarks is defined by their coordinates on a parametric curve: {0 =
ν1 < · · ·< νk = 1}. The set contains both anatomical landmarks (e.g., “chin”) and
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Fig. 17.7 Enrollment and identification phases of the proposed integrated profile-based face
recognition system

Fig. 17.8 Propagation of profile search. Depiction of a initial profile; b after two iterations; c after
5 iterations; and d final result

pseudo-landmarks (e.g., “middle of the nose”). We approximate functions YC (l)

and XC (l) by a finite set of points and obtain an equivalent n-points shape model
as follows:

v = [x1, y1, x2, y2, . . . , xn, yn]T ∈ R
2n. (17.1)

The positions of the points are obtained through uniform arc-length sampling of
the curve between a predefined subset of the landmarks. The sampling pattern is
consistent for all profiles and, therefore, the coordinates of these landmarks always
preserve their indices.

17.4.1 Profile Extraction from 2D Images

The profile extraction is based on the Active Shape Model paradigm developed by
Cootes et al. [15]. It uses an iterative approach to gradually improve the fit of a
given instance of the n-point shape to an image. Figure 17.8 depicts the shape prop-
agation of the extractor. In the classical ASM framework, a manually labeled set of
training images is needed. This dataset is used for the construction of the statistical
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shape model, also known as Point Distribution Model (PDM). The same dataset is
employed to design the features to guide the local search, typically by computing a
pixel’s likelihood belonging to a shape. In our case, no such labeled training set is
available. Therefore, the main difference of our ASM framework from the classical
approach is the fact that we only use available 3D shape information to guide the
search of 2D profiles in the images and the local search is guided by features derived
from color segmentation and edge detection operators.

17.4.2 Identification

During the identification phase, the matching scores between the probe profile and
every profile in the gallery are computed. The decision is made according to the
nearest neighbor rule. We propose to employ a modified Hausdorff distance as the
matching score. For two finite point sets M = {m1, . . . ,mn} and T = {t1, . . . , tn}
with associated weights {wM

1 , . . . ,wM
n } and {wT

1 , . . . ,w
T
n }, the distance is de-

fined as:

1

n
max

(

hM
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where M and T are probe and gallery n-point shapes and hM and hT are nor-
malization factors of the distance between predefined landmarks to eliminate scale
influence. The set of weights for a probe profile reflects the accuracy of a shape ex-
tractor (all equal 1 for manually extracted profiles). The set of weights for a gallery
profile reflects prior knowledge about the discriminative properties of the various
regions.

A single face profile is a weak biometric, primarily because of pose uncertainty
and inaccuracies in the acquisition and extraction stages. If the sequence of frames is
available, we can compensate for these uncertainties by fusing the results of recog-
nition from multiple frames. Our assumption is that, by using video frames acquired
at a low frame rate, we will be able to accumulate evidence from more poses.

17.4.3 Integration

The complete framework of the automatic profile-based profile recognition system
is illustrated in Fig. 17.9. During the Enrollment phase (E) the raw data from each
subject is converted to metadata and stored in the database as follows:

E1. Acquire a facial shape with a 3D scanner and convert it to a polygonal mesh
representation.

E2. Align and fit the 3D data to a common reference model.
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Fig. 17.9 The components of an integrated 3D-aided profile recognition system (URxD-PV)

E3. Generate multiple synthetic profiles by sampling a predefined range of rotation
angles and locate a set of anatomical landmarks on them.

E4. Derive a set of features based on the profile geometry and landmark locations
from profiles and store them as metadata to be used in the identification phase.

During the Identification phase (I), the profile is extracted from a 2D image, and
its metadata is matched with the gallery metadata as follows:

I1. Acquire an image and compute a tight region of interest (ROI) that contains the
face.

I2. Compute a set of features for each pixel in the ROI, which will be used to guide
the shape extraction procedure.

I3. Extract the profile shape using the modified Active Shape Model.
I4. Extract features (varies depending on classifier) from the profile shape.
I5. Match/Classify the features.

17.5 3D-aided 2D Face Recognition: UR2D

We have developed a 3D-aided 2D face Recognition system (UR2D). Table 17.1
summarizes the different choices for the different modules in that UR2D system.

17.5.1 3D + 2D Enrollment

The UR2D enrollment method employs the Annotated Face Model (AFM) proposed
by Kakadiaris et al. [30] to generate geometry images (regularly sampled 2D images
with three channels) which encode geometric information (x, y and z components of
a vertex in R3). There are seven channels for the geometry images—three channels
for representing the actual geometry of the face, three for representing the texture
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Table 17.1 Variations of the UR2D system

Method name Gallery
Data

Probe
Data

Geometry
Image

Relighted Distance
metric

Score
Normalization

UR3D 3D 3D X CWSSIM MAD

UR2D-V-1 3D + 2D 2D X X GS E

UR2D-V-2 3D + 2D 2D X X CWSSIM E

UR2D-V-3 3D + 2D 2D X CWSSIM E

L1 2D 2D

UR2D-V-4 2D 2D GS E

Algorithm 17.1: Enrollment with 3D data
Input: 3D facial mesh, 2D facial image, subject ID.

1. Preprocess the 3D facial mesh.
2. Register AFM to the 3D facial mesh.
3. Fit AFM to 3D facial mesh.
4. Lift texture from the 2D facial image based on the fitted AFM.
5. Compute visibility map.
6. Store the fitted AFM, texture and visibility map in the gallery as metadata

for subject ID.

information, and one for the visibility map. For practical purposes, all experiments
use a resolution of 256 × 256.

Specifically, the algorithm first fits the AFM to the input 3D data [30]. Once the
fitting is complete, the AFM is represented as a geometry image. For each vertex in
the geometry image, the algorithm computes the closest point on the data. The texel
corresponding to this point in the data is used to create the corresponding texture im-
age for the fitted AFM. Additionally, a visibility map is computed (Algorithm 17.1).
If the closest point on the data does not have a valid texel assigned (i.e., if the 3D
point was not visible to the 2D image sensor), the value one (1) is assigned to the
corresponding location in the visibility map. Otherwise, it is assigned a value of
zero. The enrollment pipeline is depicted in Fig. 17.10.

17.5.2 2D Authentication

In the authentication stage (Algorithm 17.2), the input is a 2D image. Seven fiducial
landmarks (two eye inner corners, two eye outer corners, nose tip, and two nose
corners) are detected using PittPatt [54]. Once the pose is estimated (using these
landmarks and their corresponding locations on the AFM), the texture is mapped
onto the AFM (Fig. 17.11). An analytical skin reflectance model (described in the
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Fig. 17.10 Depiction of the enrollment procedure for the UR2D algorithm. The first column lists
the input data while the second column list the fitted AFM with texture on the top and without
texture on the bottom

Algorithm 17.2: Authentication with 2D data
Input: 2D facial image and claimed subject ID.

1. Retrieve “claimed ID” AFM from the gallery.
2. Locate the seven landmarks on the 2D facial image.
3. Register the AFM to the 2D facial image using the corresponding land-

marks (Fig. 17.11).
4. Compute the visibility map.
5. Bidirectionally relight the enrollment 2D facial texture to match the probe

2D facial texture.
6. Compute the CWSSIM and GS scores between the relit texture and the

probe texture.
7. Threshold the score to make an ACCEPT/REJECT decision.

next section) is used to bidirectionally relight the gallery texture using the stored
AFM mesh, in order to match the illumination of the probe texture (Fig. 17.12).

17.5.3 Skin Reflectance Model

In the case when test data is of sufficient resolution, a bidirectional surface scat-
tering reflection distribution function (BSSRDF) should be used to model the skin
reflectance. However, in most recognition systems, we deal with data of rather low
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Fig. 17.11 Converting raw 2D images to textures in the geometry image space: Raw 2D image →
Fitted AFM of the same subject registered and superimposed over the image → Image converted
to texture in geometry image space. The conversion is done by matching a set of landmarks on the
AFM and on the 2D image

Fig. 17.12 The authentication phase of the 3D-aided 2D face recognition system

resolutions, thus, it is safe to employ a hybrid bidirectional reflectance distribution
function (BRDF) to model skin reflectance. The ASRM uses the Lambertian BRDF
to model the diffuse component and the Phong BRDF to model the specular com-
ponent. The Lambertian BRDF is the simplest, most widely used, physics-based
model for diffuse reflectance. The model assumes that the surface is equally bright
from all directions. The intensity of the light at a surface point is proportional to the
angle between the surface normal and the incident light directions (denoted as θ )
Id = E cos θ , where E is the intensity of the light source. The Lambertian BRDF
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Fig. 17.13 Optimization for relighting (textures are in geometry image space): a M ′
T : texture of

subject A; bMT : texture of subject B; c texture difference between subjects (before optimization);
d texture difference between subjects (after optimization); e subject A with illumination of subject
B (I ′

s + (I ′
d + I ′

a)
MT−Is
Id+Ia )

does not take into account the specular reflections caused by the oily layer of the
skin. The BRDF proposed by Phong [53] can be used to accommodate for this. The
intensity of the specular reflection at a surface point is Is = E cosn φ, where φ is
the angle between the view vector and the reflected light and n is a parameter that
controls the size of the highlight. Note that each facial area has different specular
properties, therefore the use of a specular map based on the annotation of the AFM
is required [30].

17.5.4 Bidirectional Relighting

The illumination parameters and the ASRM can be optimized in two different ways:
estimating the albedo [4, 60] and transferring illumination (relighting). In both
cases, the UR2D algorithm represents the texture in the AFM’s UV space.

Generally, the texture MT is the result of the lighting applied on the unknown
albedoMA and is given by:MT = Is+ (Id + Ia) ·MA, where Ia is the ambient com-
ponent, Id the diffuse component and Is the specular component (assuming white
specular highlights). Solving this equation for the albedo yields: MA = MT−Is

Id+Ia .
However, for many practical applications, the albedo itself is not required, and is
used only as an intermediate step for relighting. Thus, when possible, the user should
use bidirectional relighting without first estimating the albedo. This means that the
optimization directly estimates the parameters for two lights (one that removes the
illumination from the gallery image and one that adds the illumination from the
probe image). The goal is to match the illumination conditions of a gallery texture
to that of a probe texture. The following metric is minimized:

D =
∣
∣
∣
∣M

′
T − I ′

s − (I ′
d + I ′

a

)MT − Is
Id + Ia

∣
∣
∣
∣, (17.2)

where Ia , Id , and Is are the parameters of the light illuminating the gallery; I ′
a , I ′

d

and I ′
s are the parameters of the second light illuminating the probe, while M ′

T is
the target texture. This process is depicted in Fig. 17.13. The relighting method is
bidirectional, meaning that probe and gallery textures can be interchanged.
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Fig. 17.14 Facial scans with various expressions for a subject from the FRGC v2 database

Table 17.2 Verification rates
of our method at 0.001 FAR
using different transforms on
the FRGC v2 database

ROC I ROC II ROC III

Fusion 97.3% 97.2% 97.0%

Haar 97.1% 96.8% 96.7%

Pyramid 95.2% 94.7% 94.1%

To improve the performance under low lighting conditions, instead of computing
the difference in the RGB color space, a Hue-Saturation-Intensity (HSI) model can
be used with the intensity weighed twice the amount of hue and saturation.

The equations above describe an ASRM for a single point light and the objective
function to be minimized. The ASRM can be implemented as a Cg shader to greatly
speed up the relighting process. For self-shadowing the shadow mapping technique
can be used [60]. To model multiple point lights, the contribution of each light’s
ASRM must be summed. A full implementation of the ASRM on consumer level
graphics hardware is able to bidirectionally relight a texture to a target within, on
average, five seconds. Distance metrics and normalization methods are discussed in
detail at [61].

17.6 Experimental Results

17.6.1 3D Face Recognition

For validation purposes, we have used the FRGC v2 [52] database, containing 4007
3D frontal facial scans of 466 persons. Figure 17.14 shows some examples of 3D
facial scans from this database.

The performance is measured under a verification scenario. In order to pro-
duce comparable results, we use the three masks provided along with the FRGC
v2 database. These masks, referred to as ROC I, ROC II and ROC III, are of in-
creasing difficulty, respectively. The verification rates of our method at 0.001 False
Acceptance Rate (FAR) are presented in the Table 17.2 [30]. The results are also
presented using Receiver Operating Characteristic (ROC) curves (Fig. 17.15). The
verification rate is measured for each wavelet transform separately, as well as for
their weighted fusion. The average verification rate (over ROC I, II and III) was
97.16% for the fusion of the two transforms, 96.86% for the Haar transform and



17 Face Recognition Using 3D Images 449

Fig. 17.15 Performance of the proposed method using the Haar and Pyramid transforms as well
as their fusion on the FRGC v2 database. Results reported using: a ROC I, b ROC II, and c ROC III

94.66% for the Pyramid transform. Even though the Pyramid transform is computa-
tionally more expensive it is outperformed by the simpler Haar wavelet transform.
However, the fusion of the two transforms offers more descriptive power, yielding
higher scores especially in the more difficult experiments (ROC II and ROC III).

17.6.2 3D Face Recognition for Partial Scans

For interpose validation experiments, we combined the frontal facial scans of the
FRGC v2 database with side facial scans of the UND Ear Database [63], collections
F and G (Fig. 17.16). This database (which was created for ear recognition purposes)
contains left and right side scans with yaw rotations of 45°, 60° and 90°. Note that
for the purposes of our method, these side scans are considered partial frontal scans
with extensive missing data. We use only the 45° side scans (118 subjects, 118 left
and 118 right) and the 60° side scans (87 subjects, 87 left and 87 right). These data
define two collections, referred to as UND45LR and UND60LR, respectively. For
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Fig. 17.16 Left and right
side facial scans from the
UND Ear Database

Table 17.3 Rank-one
recognition rate of our
method for matching partial
scans

Rank-one Rate

UND45LR 86.4%

UND60LR 81.6%

UND00LR 76.8%

Fig. 17.17 a CMC graphs for matching left (gallery) with right (probe) side scans using
UND45LR, UND60LR and the combination of the two; b CMC graphs for matching frontal
(gallery) with left, right and both (probe) side scans using UND00LR

each collection, the left side scan of a subject is considered gallery and the right is
considered probe. A third collection, referred to as UND00LR, is defined as follows:
the gallery set has one frontal scan for each of the 466 subjects of FRGC v2 while
the probe set has a left and right 45° side scan from 39 subjects and a left and right
60° side scan from 32 subjects. Only subjects present in the gallery set were allowed
in the probe set.

We evaluated the performance of our method under an identification scenario
using partial scans of arbitrary sides for the gallery and probe sets. Our method can
match any combination of left, right or frontal facial scans with the use of facial
symmetry. For each of the three collections, the rank-one recognition rates are given
in the Table 17.3 while the Cumulative Match Characteristic (CMC) graphs are
depicted in Fig. 17.17.

In the cases of UND45LR and UND60LR, for each subject, the gallery set con-
tains a single left side scan while the probe set contains a single right side scan.
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Therefore facial symmetry is always used to perform identification. As expected,
the 60° side scans yielded lower results as they are considered more challenging
compared to the 45° side scans (see Fig. 17.17(a)). In the case of UND00LR, the
gallery set contains a frontal scan for each subject, while the probe set contains left
and right side scans. This scenario is very common when the enrollment of subjects
is controlled but the identification is uncontrolled. In Fig. 17.17(b) the CMC graph
is given (UND00LR’s probe set is also split in left-only and right-only subsets).
Compared to UND45LR and UND60LR, there is a decrease in the performance
of our method in UND00LR. One could argue that since the gallery set consists
of frontal scans (that do not suffer from missing data), the system should perform
better. However, UND00LR has the largest gallery set (it includes all of the 466
subjects found in the FRGC v2 database) making it the most challenging database
in our experiments with partial scans.

17.6.3 3D-aided Profile Recognition

In our experiments, we employ data from the face collection from the University of
Houston [66] that contains 3D data that was acquired with a 2-pod 3dMD™ system
and side-view 2D images. The acquisition environment includes both controlled
(indoor, stable background) and uncontrolled (driver) scenarios. The contents of the
probe cohorts P1a and P1b are single side-view images of the driver in standard and
arbitrary non-standard poses, corresponding to the gallery of 50 subjects. The probe
cohorts P2a and P2b are video sequences of 100 frames each, from the same scene
in visual and infrared spectrum, respectively. Each sequence corresponds to one of
30 subjects in the gallery.

In the first experiment, we validate recognition performance of the system on the
single-frame and the multi-frame cohorts. The CMC curves for each type of pose
for the single-frame cohort are depicted in Fig. 17.18(a). The results depicted in
Fig. 17.18(b) are assessing the performance of profile recognition on visual spec-
trum and infrared sequences.

We observe that recognition is higher for the nearly standard profiles (rank-1
recognition rate is 96%), than for nonstandard profiles (78%). This effect may be
attributed to the fact that standard profiles contain more discriminative information.
The drop in performance for the infrared sequence (89%) with comparison to visual
spectrum sequence (97%) is attributed to the fact that it corresponds to smaller face
size (about 500 pixels for P2a and only 140 pixels for P2b).

For the gallery profile sampling, we consider angles in the range [−110°,−70°]
for yaw and [−25°,25°] for roll. We do not create profiles for different pitch an-
gles because they correspond to only the in-plane rotations and do not influence
the geometry of the profile. The resolution of sampling is 5°. To demonstrate the
sensitivity of the algorithm to the predefined range of gallery sampling angles, we
compare recognition results based on the original gallery to the results based on
wider or narrower ranges, where each range is reduced by 5° from each side. The
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Fig. 17.18 Recognition results on side-view single-frame and multi-frame images: a performance
on single-frame cohorts, and b performance on multi-frame cohorts

outcome of this comparison is depicted in Figs. 17.19(a, b) separately for standard
and nonstandard poses. In a similar manner, Figs. 17.19(c, d) depict the influences
of angular sampling density on recognition by comparison of the current sampling
density of 5° to the alternative sparser sampling densities of 10° and 20°. These ex-
periments were applied on P1a and P1b cohorts to examine the influence on standard
and nonstandard poses.

The results show a clear tendency for the widely sampled pose domain to be
more robust on non-standard poses. For instance, rank-1 recognition is 78% for
wide region (current settings), 76% for slightly narrower region and only 56% for
the sampling region with 10° reduced from each side. On the other hand, narrow
sampled pose domain regions will slightly outperform if we consider only nearly
standard poses. For instance, sampling in the narrow region results in 98% rank-1
recognition as compared to 96% recognition for other settings (wide and moderate).
However, even in this case, sampling only a single point corresponding to standard
pose (ultra-narrow) is worse than other options and results in 92% rank-1 recog-
nition for nearly standard poses and only 56% for nonstandard poses. Unlike the
area of sampling region, the frequency of sampling has less influence on the perfor-
mance.

17.6.4 3D-aided 2D Face Recognition

Database UHDB11 [64] The UHDB11 database was created to analyze the im-
pact of the variation in both pose and lighting. The database contains acquisitions
from 23 subjects under six illumination conditions. For each illumination condition,
the subject is asked to face four different points inside the room. This generated
rotations on the Y axis. For each rotation on Y, three images are acquired with rota-
tions on the Z axis (assuming that the Z axis goes from the back of the head to the
nose, and that the Y axis is the vertical axis through the subject’s head). Thus, each
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Fig. 17.19 Recognition results using various sampling domains: a, c cohort P1a (nearly standard
poses), and b, d cohort P1b (nonstandard poses)

subject is acquired under six illumination conditions, four Y rotations, and three Z
rotations. For each acquisition, the subject 3D mesh is also acquired concurrently.
Figure 17.20(a) depicts the variation in pose and illumination for one of the subjects
from UHDB11. There are 23 subjects, resulting in 23 gallery datasets (3D plus 2D)
and 1,602 probe datasets (2D only).

Database UHDB12 [65] The 3D data were captured using a 3dMD™ two-pod
optical scanner, while the 2D data were captured using a commercial Canon™
DSLR camera. The system has six diffuse lights that allow the variation of the light-
ing conditions. For each subject, there is a single 3D scan (and the associated 2D
texture) that is used as a gallery dataset and several 2D images that are used as probe
datasets. Each 2D image is acquired under one of the six possible lighting conditions
depicted in Fig. 17.20(b). There are 26 subjects, resulting in 26 gallery datasets (3D
plus 2D) and 800 probe datasets (2D only).

Authentication We performed a variety of authentication experiments. We eval-
uated both relighting and unlighting. In case of unlighting, both gallery and probe
images were unlit (thus, becoming albedos). In the case of relighting, the gallery
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Fig. 17.20 Examples images from database UHDB11 and database UHDB12 with variation of
lighting and pose

Fig. 17.21 ROC curve on
authentication experiment on
UHDB12 (varying
illumination)

image was relit according to the probe image. The results for UHDB12 (using the
UR2D algorithm, the CWSSIM metric and Z-normalization) are summarized us-
ing a Receiver Operating Characteristic (ROC) curve (Fig. 17.21). Note that face
recognition benefits more from relit images than from unlit images. It achieves a
10% higher authentication rate at 10−3 False Accept Rate (FAR) than unlighting.
The performance using the raw texture is also included as a baseline. Even though
these results depend on the UHDB12 and the distance metric that was used, they
indicate clearly that relighting is more suitable for face recognition than unlighting.
The reason behind this is that any unlighting method produces an albedo for which
the ground truth is not known; Therefore, the optimization procedure is more prone
to errors.

UHDB11 was employed to assess the robustness of the 3D-aided 2D face recog-
nition approach with respect to both lighting and pose variation. Figure 17.22 de-
picts the ROC curve for UHDB11 for four different methods: (i) 3D-3D: Using the
UR3D algorithm where both the gallery and probe are 3D datasets (shape only no
texture) [30]; (ii) 2D-3D(BR_GI, GS): The UR2D algorithm using bidirectionally
relit images, GS distance metric, and E-normalization; (iii) 2D-3D(BR_GI, CWS-
SIM): The UR2D algorithm using bidirectionally relit images, CWSSIM distance
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Fig. 17.22 ROC curve for an
authentication experiment
using data from UHDB11
(varying illumination and
pose). Note that the Equal
Error Rate which the
3D-aided 2D face recognition
algorithm achieves is half that
of the leading commercial
product available at this time

Fig. 17.23 Identification
performance of the 3D-aided
2D face recognition approach
versus the performance of a
leading commercial 2D face
recognition product

metric, and E-normalization; (iv) 2D-3D(GI, GS): The UR2D algorithm using raw
texture from the geometry images, GS distance metric, and E-normalization; (v) 2D-
2D(2D Raw, GS): Computing the GS distance metric for the raw 2D data, and E-
normalization; (vi) L1(2D Raw, GS): Results from the L1 IdentityToolsSDK [33].
Note that the UR2D algorithm(BR_GS, GS) outperforms one of the best commer-
cial products.

2D-3D Identification Experiment The UHDB11 database is also used in an
identification experiment. The results are provided in a Cumulative Matching Char-
acteristic (CMC) curve on 23 subjects of UHDB11 (Fig. 17.23). From these results
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it is evident that the UR2D algorithm outperforms the commercial 2D-only product
throughout the entire CMC curve.

17.7 Conclusions

While the price of commercial 3D systems is dropping, to tap into the wealth of
2D sensors that are already economically available, we would need to employ a
3D-aided 2D recognition technique. These 3D-aided 2D recognition methods can
provide promising results without the need for an expensive 3D sensor at the au-
thentication site. The effectiveness of these methods with relighting process have
been demonstrated and it has been proven to provide robust face recognition under
varying pose and lighting condition.
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Chapter 18
Facial Action Tracking

Jörgen Ahlberg and Igor S. Pandzic

18.1 Introduction

The problem of facial action tracking has been a subject of intensive research in the
last decade. Mostly, this has been with such applications in mind as face animation,
facial expression analysis, and human-computer interfaces. In order to create a face
animation from video, that is, to capture the facial action (facial motion, facial ex-
pression) in a video stream, and then animate a face model (depicting the same or
another face), a number of steps have to be performed. Naturally, the face has to
be detected, and then some kind of model has to be fitted to the face. This can be
done by aligning and deforming a 2D or 3D model to the image, or by localizing a
number of facial landmarks. Commonly, these two are combined. The result must in
either case be expressed as a set of parameters that the face model in the receiving
end (the face model to be animated) can interpret.

Depending on the application, the model and its parameterization can be simple
(e.g., just an oval shape) or complex (e.g., thousands of polygons in layers simulat-
ing bone and layers of skin and muscles). We usually wish to control appearance,
structure, and motion of the model with a small number of parameters, chosen so as
to best represent the variability likely to occur in the application. We discriminate
here between rigid face/head tracking and tracking of facial action. The former is
typically employed to robustly track the faces under large pose variations, using a
rigid face/head model (that can be quite non-face specific, e.g., a cylinder). The lat-
ter here refers to tracking of facial action and facial features, such as lip and eyebrow
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motion. The treatment in this chapter is limited to tracking of facial action (which,
by necessity, includes the head tracking).

The parameterization can be dependent or independent on the model. Examples
of model independent parameterizations are MPEG-4 Face Animation Parameters
(see Sect. 18.2.3) and FACS Action Units (see Sect. 18.2.2). These parameteriza-
tions can be implemented on virtually any face model, but leaves freedom to the
model and its implementation regarding the final result of the animation. If the trans-
mitting side wants to have full control of the result, more dense parameterizations
(controlling the motion of every vertex in the receiving face model) are used. Such
parameterizations can be implemented by MPEG-4 Facial Animation Tables (FAT),
morph target coefficients, or simply by transmitting all vertex coordinates at each
time step.

Then, the face and its landmark/features/deformations must be tracked through
an image (video) sequence. Tracking of faces has received significant attention for
quite some time but is still not a completely solved problem.

18.1.1 Previous Work

A plethora of face trackers are available in the literatures, and only a few of them can
be mentioned here. They differ in how they model the face, how they track changes
from one frame to the next, if and how changes in illumination and structure are
handled, if they are susceptible to drift, and if real-time performance is possible.
The presentation here is limited to monocular systems (in contrast to stereo-vision)
and 3D tracking.

18.1.1.1 Rigid Face/Head Tracking

Malciu and Prêteux [36] used an ellipsoidal (alternatively an ad hoc Fourier synthe-
sized) textured wireframe model and minimized the registration error and/or used
the optical flow to estimate the 3D pose. LaCascia et al. [31] used a cylindrical face
model with a parameterized texture being a linear combination of texture warping
templates and orthogonal illumination templates. The 3D head pose was derived by
registering the texture map captured from the new frame with the model texture.
Stable tracking was achieved via regularized, weighted least-squares minimization
of the registration error.

Basu et al. [7] used the Structure from Motion algorithm by Azerbayejani and
Pentland [6] for 3D head tracking, refined and extended by Jebara and Pentland [26]
and Ström [56] (see below). Later rigid head trackers include notably the works by
Xiao et al. [64] and Morency et al. [40].
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18.1.1.2 Facial Action Tracking

In the 1990s, there were many approaches to non-rigid face tracking. Li et al. [33]
estimated face motion in a simple 3D model by a combination of prediction
and a model-based least-squares solution to the optical flow constraint equation.
A render-feedback loop was used to combat drift. Eisert and Girod [16] determined
a set of animation parameters based on the MPEG-4 Facial Animation standard
(see Sect. 18.2.3) from two successive video frames using a hierarchical optical
flow based method. Tao et al. [58] derived the 3D head pose from 2D-to-3D feature
correspondences. The tracking of nonrigid facial features such as the eyebrows and
the mouth was achieved via a probabilistic network approach. Pighin et al. [50] de-
rived the face position (rigid motion) and facial expression (nonrigid motion) using
a continuous optimization technique. The face model was based on a set of 3D face
models.

In this century, DeCarlo and Metaxas [11] used a sophisticated face model pa-
rameterized in a set of deformations. Rigid and nonrigid motion was tracked by
integrating optical flow constraints and edge-based forces, thereby preventing drift.
Wiles et al. [63] tracked a set of hyperpatches (i.e., representations of surface patches
invariant to motion and changing lighting).

Gokturk et al. [22] developed a two-stage approach for 3D tracking of pose and
deformations. The first stage learns the possible deformations of 3D faces by track-
ing stereo data. The second stage simultaneously tracks the pose and deformation
of the face in the monocular image sequence using an optical flow formulation as-
sociated with the tracked features. A simple face model using 19 feature points was
utilized.

As mentioned, Ström [56] used an Extended Kalman Filter (EKF) and Structure
from Motion to follow the 3D rigid motion of the head. Ingemars and Ahlberg
extended the tracker to include facial action [24]. Ingemars and Ahlberg combined
two sparse texture models, based on the first frame and (dynamically) on the pre-
vious frame respectively, in order to get accurate tracking and no drift. Lefèvre
and Odobez used a similar idea, but separated the texture models more, and used
Nelder–Mead optimization [42] instead of an EKF (see Sect. 18.4).

As follow-ups to the introduction of Active Appearance Models, there were sev-
eral appearance-based tracking approaches. Ahlberg and Forchheimer [4, 5] rep-
resented the face using a deformable wireframe model with a statistical texture.
A simplified Active Appearance Model was used to minimize the registration er-
ror. Because the model allows deformation, rigid and non-rigid motions are tracked.
Dornaika and Ahlberg [12, 14] extended the tracker with a step based on random
sampling and consensus to improve the rigid 3D pose estimation. Fanelli and Fratar-
cangeli [18] followed the same basic strategy, but exploited the Inverse Composi-
tional Algorithm by Matthews and Baker [37]. Zhou et al. [65] and Dornaika and
Davoine [15] combined appearance models with a particle filter for improved 3D
pose estimation.
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18.1.2 Outline

This chapter explains the basics of parametric face models used for face and facial
action tracking as well as fundamental strategies and methodologies for tracking.
A few tracking algorithms serving as pedagogical examples are described in more
detail. The chapter is organized as follows: In Sect. 18.2 parametric face modeling
is described. Various strategies for tracking are discussed in Sect. 18.3, and a few
tracker examples are described in Sects. 18.4–18.6. In Sect. 18.6.3 some examples
of commercially available tracking systems are give.

18.2 Parametric Face Modeling

There are many ways to parameterize and model the appearance and behavior of
the human face. The choice depends on, among other things, the application, the
available resources, and the display device. Statistical models for analyzing and
synthesizing facial images provide a way to model the 2D appearance of a face.
Here, other modeling techniques for different purposes are mentioned as well.

What all models have in common is that a compact representation (few parame-
ters) describing a wide variety of facial images is desirable. The parameter sets can
vary considerably depending on the variability being modeled. The many kinds of
variability being modeled/parameterized include the following.

• Three-dimensional motion and pose—the dynamic, 3D position and rotation of
the head. Nonrigid face/head tracking involves estimating these parameters for
each frame in the video sequence.

• Facial action—facial feature motion such as lip and eyebrow motion. Estimated
by nonrigid tracking.

• Shape and feature configuration—the shape of the head, face and the facial fea-
tures (e.g., mouth, eyes). This could be estimated by some alignment or facial
landmark localization methods.

• Illumination—the variability in appearance due to different lighting conditions.
• Texture and color—the image pattern describing the skin.
• Expression—muscular synthesis of emotions making the face look, for example,

happy or sad.

For a head tracker, the purpose is typically to extract the 3D motion parameters
and be invariant to all other parameters. Whereas, for example, a user interface being
sensitive to the mood of the user would need a model extracting the expression
parameters, and a recognition system should typically be invariant to all but the
shape and texture parameters.
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18.2.1 Eigenfaces

Statistical texture models in the form of eigenfaces [30, 53, 60] have been popular
for facial image analysis. The basic idea is that a training set of facial images are
collected and registered, each image is reshaped into a vector, and a principal com-
ponent analysis (PCA) is performed on the training set. The principal components
are called eigenfaces. A facial image (in vector form), x, can then be approximated
by a linear combination, x̂, of these eigenfaces, that is,

x ≈ x̂ = x̄ + Φxξ, (18.1)

where x̄ is the average of the training set, Φx = (φ1|φ2| . . . |φt ) contains the eigen-
faces, and ξ is a vector of weights or eigenface parameters. The parameters mini-
mizing ‖x − x̂‖2 are given by

ξ = ΦT
x (x − x̄). (18.2)

Commonly, some kind of image normalization is performed prior to eigenface com-
putation.

The space spanned by the eigenfaces is called the face subspace. Unfortunately,
the manifold of facial images has a highly nonlinear structure and is thus not well
modeled by a linear subspace. Linear and nonlinear techniques are available in the
literature and often used for face recognition. For face tracking, it has been more
popular to linearize the face manifold by warping the facial images to a standard
pose and/or shape, thereby creating shape-free [10], geometrically normalized [55],
or shape-normalized images and eigenfaces (texture templates, texture modes) that
can be warped to any face shape or texture-mapped onto a wireframe face model.

18.2.2 Facial Action Coding System

During the 1960s and 1970s, a system for parameterizing minimal facial actions
was developed by psychologists trying to analyze facial expressions. The system
was called the Facial Action Coding System (FACS) [17] and describes each facial
expression as a combination of around 50 Action Units (AUs). Each AU represents
the activation of one facial muscle.

The FACS has been a popular tool not only for psychology studies but also for
computerized facial modeling (an example is given in Sect. 18.2.5). There are also
other models available in the literatures, for example, Park and Waters [49] de-
scribed modeling skin and muscles in detail, which falls outside the scope of this
chapter.
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Fig. 18.1 Face Animation
Parameter Units (FAPU)

18.2.3 MPEG-4 Facial Animation

MPEG-4, since 1999 an international standard for coding and representation of au-
diovisual objects, contains definitions of face model parameters [41, 47].

There are two sets of parameters: Facial Definition Parameters (FDPs), which
describe the static appearance of the head, and Facial Animation Parameters (FAPs),
which describe the dynamics.

MPEG-4 defines 66 low-level FAPs and two high-level FAPs. The low-level
FAPs are based on the study of minimal facial actions and are closely related to
muscle actions. They represent a complete set of basic facial actions, and therefore
allow the representation of most natural facial expressions. Exaggerated values per-
mit the definition of actions that are normally not possible for humans, but could be
desirable for cartoon-like characters.

All low-level FAPs are expressed in terms of the Face Animation Parameter Units
(FAPUs), illustrated in Fig. 18.1. These units are defined in order to allow interpreta-
tion of the FAPs on any face model in a consistent way, producing reasonable results
in terms of expression and speech pronunciation. They correspond to distances be-
tween key facial features and are defined in terms of distances between the MPEG-4
facial Feature Points (FPs, see Fig. 18.2). For each FAP it is defined on which FP it
acts, in which direction it moves, and which FAPU is used as the unit for its move-
ment. For example, FAP no. 3, open_jaw, moves the Feature Point 2.1 (bottom of
the chin) downwards and is expressed in MNS (mouth-nose separation) units. The
MNS unit is defined as the distance between the nose and the mouth (see Fig. 18.1)
divided by 1024. Therefore, in this example, a value of 512 for the FAP no. 3 means
that the bottom of the chin moves down by half of the mouth-nose separation. The
division by 1024 is introduced in order to have the units sufficiently small that FAPs
can be represented in integer numbers.

The two high-level FAPs are expression and viseme. expression can
contain two out of a predefined list of six basic expressions: joy, sadness, anger, fear,
disgust and surprise. Intensity values allow to blend the two expressions. Similarly,
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Fig. 18.2 Facial Feature Points (FP)
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viseme can contain two out of a predefined list of 14 visemes, and a blending
factor to blend between them.

The neutral position of the face (when all FAPs are 0) is defined as follows:

• The coordinate system is right-handed; head axes are parallel to the world axes.
• Gaze is in the direction of Z axis.
• All face muscles are relaxed.
• Eyelids are tangent to the iris.
• The pupil is one third of IRISD0.
• Lips are in contact—the line of the lips is horizontal and at the same height of lip

corners.
• The mouth is closed and the upper teeth touch the lower ones.
• The tongue is flat, horizontal with the tip of tongue touching the boundary be-

tween upper and lower teeth (feature point 6.1 touching 9.11, see Fig. 18.2).

All FAPs are expressed as displacements from the positions defined in the neutral
face.

The FDPs describe the static shape of the face by the 3D coordinates of each
feature point and the texture as an image with the corresponding texture coordinates.

18.2.4 Computer Graphics Models

When synthesizing faces using computer graphics (for user interfaces [25], web ap-
plications [45], computer games, or special effects in movies), the most common
model is a wireframe model or a polygonal mesh. The face is then described as a set
of vertices connected with lines forming polygons (usually triangles). The polygons
are shaded or texture-mapped, and illumination is added. The texture could be pa-
rameterized or fixed—in the latter case facial appearance is changed by moving the
vertices only. To achieve life-like animation of the face, a large number (thousands)
of vertices and polygons are commonly used. Each vertex can move in three dimen-
sions, so the model requires a large number of degrees of freedom. To reduce this
number, some kind of parameterization is needed.

A commonly adopted solution is to create a set of morph targets and blend be-
tween them. A morph target is a predefined set of vertex positions, where each
morph target represents, for example, a facial expression or a viseme. Thus, the
model shape is defined by the morph targets A and controlled by the parameter
vector α

g = Aα,
∑
αi = 1.

(18.3)

The 3N -dimensional vector g contains the 3D coordinates of the N vertices; the
columns of the 3N ×M-matrix A contain the M morph targets; and α contains the
M morph target coefficients. To limit the required computational complexity, most
αi values are usually zero.
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Morph targets are usually manually created by artists. This is a time consuming
process so automatic methods have been devised to copy a set of morph targets from
one face model to another [20, 43, 46].

To render the model on the screen, we need to find a correspondence from the
model coordinates to image pixels. The projection model (see Sect. 18.2.6), which
is not defined by the face model, defines a function P(·) that projects the vertices
on the image plane

(u, v)= P(x, y, z). (18.4)

The image coordinate system is typically defined over the range [−1,1] × [−1,1]
or [0,w− 1] × [0, h− 1], where (w,h) is the image dimensions in pixels.

To texturize the model, each vertex is associated with a (prestored) texture co-
ordinate (s, t) defined on the unit square. Using some interpolating scheme (e.g.,
piecewise affine transformations), we can find a correspondence from any point
(x, y, z) on the model surface to a point (s, t) in the texture image and a point (u, v)
in the rendered image. Texture mapping is executed by copying (interpolated) pixel
values from the texture It (s, t) to the rendered image of the model Im(u, v). We call
the coordinate transform Tu(·), and thus

Im(u, v)= Tu
[
It (s, t)

]
. (18.5)

While morphing is probably the most commonly used facial animation technique,
it is not the only one. Skinning, or bone-based animation, is the process of apply-
ing one or more transformation matrices, called bones, to the vertices of a polygon
mesh in order to obtain a smooth deformation, for example, when animating joints
such as elbow or shoulder. Each bone has a weight that determines its influence
on the vertex, and the final position of the vertex is the weighted sum of the re-
sults of all applied transformations. While the main purpose of skinning is typically
body animation, it has been applied very successfully to facial animation. Unlike
body animation, where the configuration of bones resembles the anatomical human
skeleton, for facial animation the bones rig is completely artificial and bears almost
no resemblance to human skull. Good starting references for skinning are [29, 39].
There are numerous other approaches to facial animation, ranging from ones based
on direct modeling of observed motion [48], to pseudo muscle models [35] and var-
ious degrees of physical simulation of bone, muscle and tissue dynamics [27, 59,
61].

More on computerized facial animation can be found in [47, 49]. Texture map-
ping is treated in [23].

18.2.5 Candide: A Simple Wireframe Face Model

Candide is a simple face model that has been a popular research tool for many
years. It was originally created by Rydfalk [52] and later extended by Welsh [62]
to cover the entire head (Candide-2) and by Ahlberg [2, 3] to correspond better to
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MPEG-4 facial animation (Candide-3). The simplicity of the model makes it a good
pedagogic example.

Candide is a wireframe model with 113 vertices connected by lines forming 184
triangular surfaces. The geometry (shape, structure) is determined by the 3D coordi-
nates of the vertices in a model-centered coordinate system (x, y, z). To modify the
geometry, Candide-1 and Candide-2 implement a set of Action Units from FACS.
Each AU is implemented as a list of vertex displacements, an Action Unit Vector
(AUV), describing the change in face geometry when the Action Unit is fully acti-
vated. The geometry is thus parameterized as

g(α)= ḡ + Φaα, 0 ≤ αi ≤ 1 (18.6)

where the resulting vector g contains the (x, y, z) coordinates of the vertices of the
model, ḡ is the standard shape of the model, and the columns of Φa are the AUVs.
The αi values are the Action Unit activation levels.

Candide-3 is parameterized slightly different than the previous versions, general-
izing the AUVs to animation modes (implementing AUs or FAPs) and adding shape
modes. The parameterization is

g(α,σ )= ḡ + Φaα + Φsσ. (18.7)

The difference between α and σ is that the shape parameters control the static
deformations that cause individuals to differ from each other. The animation param-
eters control the dynamic deformations due to facial action.

This kind of linear model is, in different variations, a common way to model
facial geometry. For example, PCA found a matrix that described 2D shape and an-
imation modes combined, Gokturk et al. [22] estimated 3D animation modes using
a stereo-vision system, and Caunce et al. [9] created a shape model from models
adapted to profile and frontal photos.

To change the pose, the model coordinates are rotated, scaled and translated so
that

g(α,σ,π)= sRg(α,σ )+ t (18.8)

where π contains the six pose/global motion parameters plus a scaling factor.

18.2.6 Projection Models

The function (u, v)= P(x, y, z), above, is a general projection model representing
the camera. There are various projection models from which to chose, each with a
set of parameters that may be known (calibrated camera) or unknown (uncalibrated
camera). In most applications, the camera is assumed to be at least partly calibrated.
We stress that only simple cases are treated here, neglecting such camera parame-
ters as skewness and rotation. For more details, consult a computer vision textbook
like [54].
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• The simplest projection model is the orthographic projection—basically just
throwing away the z-coordinate. Parameters are pixel size (au, av) and principal
point (cu, cv). The projection can be written

(
u

v

)

=
(
au 0 0 cu
0 av 0 cv

)
⎛

⎜
⎜
⎝

x

y

z

1

⎞

⎟
⎟
⎠ . (18.9)

• The most common camera model is the perspective projection, which can be
expressed as

{
(u′, v′,w′)= P(x, y, z,1)T,
(u, v)= (u′/w′, v′/w′) (18.10)

where

P =
⎛

⎝
au 0 0 cx
0 av 0 cy
0 0 1/f cz

⎞

⎠ , (18.11)

(cx, cy, cz) is the focus of expansion (FOE), and f is the focal length of the
camera; (au, av) determines the pixel size. Commonly, a simple expression for P
is obtained where (cx, cy, cz)= 0 and au = av = 1 are used. In this case, (18.10)
is simply

(u, v)=
(

f
x

z
,f
y

z

)

. (18.12)

• The weak perspective projection is an approximation of the perspective projection
suitable for an object where the internal depth variation is small compared to the
distance zref from the camera to the object.

(
u

v

)

=
(
au/zref 0 0 cx

0 av/zref 0 cy

)
⎛

⎜
⎜
⎝

x

y

z

1

⎞

⎟
⎟
⎠ . (18.13)

18.3 Tracking Strategies

A face tracking system estimates the rigid or non-rigid motion of a face through
a sequence of image frames. In the following, we discuss the two-frame situation,
where we have an estimation of the model parameters p̂k−1 in the old frame, and the
system should estimate the parameters p̂k in the new frame (i.e., how to transform
the model from the old frame to the new frame).

As mentioned in the introduction, we discuss only monocular tracking here, that
is, we disregard stereo vision systems.
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18.3.1 Motion-Based vs. Model-Based Tracking

Tracking systems can be said to be either motion-based or model-based, also re-
ferred to as feed-forward or feed-back motion estimation. A motion-based tracker
estimates the displacements of pixels (or blocks of pixels) from one frame to an-
other. The displacements might be estimated using optical flow methods (giving a
dense optical flow field), block-based motion estimation methods (giving a sparse
field but using less computational power), or motion estimation in a few image
patches only (giving a few motion vectors only but at very low computational cost).

The estimated motion field is used to compute the motion of the object model
using, for example, least-squares, Kalman filtering, or some optimization method.
The motion estimation in such a method is consequently dependent on the pixels in
two frames; the object model is used only for transforming the 2D motion vectors
to 3D object model motion. The problem with such methods is the drifting or the
long sequence motion problem. A tracker of this kind accumulates motion errors
and eventually loses track of the face. Examples of such trackers can be found in the
literature [7, 8, 51].

A model-based tracker, on the other hand, uses a model of the object’s appear-
ance and tries to change the object model’s pose (and possibly shape) parameters
to fit the new frame. The motion estimation is thus dependent on the object model
and the new frame—the old frame is not regarded except for constraining the search
space. Such a tracker does not suffer from drifting; instead, problems arise when the
model is not strong or flexible enough to cope with the situation in the new frame.
Trackers of this kind can be found in certain articles [5, 31, 33, 56]. Other track-
ers [11, 13, 22, 36] are motion-based but add various model-based constraints to
improve performance and combat drift.

18.3.2 Model-Based Tracking: First Frame Models vs. Pre-trained
Models

In general, the word model refers to any prior knowledge about the 3D structure, the
3D motion/dynamics, and the 2D facial appearance. One of the main issues when
designing a model-based tracker is the appearance model. An obvious approach is
to capture a reference image of the object from the first frame of the sequence. The
image could then be geometrically transformed according to the estimated motion
parameters, so one can compensate for changes in scale and rotation (and possibly
nonrigid motion). Because the image is captured, the appearance model is determin-
istic, object-specific, and (potentially) accurate. Thus, trackers of this kind can be
precise, and systems working in real time have been demonstrated [22, 32, 56, 63].

A drawback with such a first frame model is the lack of flexibility—it is difficult
to generalize from one sample only. This can cause problems with changing appear-
ance due to variations in illumination, facial expression, and other factors. Another
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drawback is that the initialization is critical; if the captured image was for some rea-
son not representative for the sequence (due to partial occlusion, facial expression,
or illumination) or simply not the correct image (i.e., if the object model was not
correctly aligned in the first frame) the tracker does not work well. Such problems
can usually be solved by manual interaction but may be hard to automate.

Note that the model could be renewed continuously (sometimes called an online
model), so the model always is based on the previous frame. In this way the prob-
lems with flexibility are reduced, but the tracker is then motion-based and might
drift.

Another property is that the tracker does not need to know what it is tracking.
This could be an advantage—the tracker can track different kinds of objects—or a
disadvantage. A relevant example is when the goal is to extract some higher level
information from a human face, such as facial expression or lip motion. In that case
we need a tracker that identifies and tracks specific facial features (e.g., lip contours
or feature points).

A different approach is a pre-trained model-based tracker. Here, the appearance
model relies on previously captured images combined with knowledge of which
parts or positions of the images correspond to the various facial features. When the
model is transformed to fit the new frame, we thus obtain information about the
estimated positions of those specific facial features.

The appearance model may be person specific or general. A specific model could,
for example, be trained on a database containing images of one person only, result-
ing in an accurate model for this person. It could cope, to some degree, with the
illumination and expression changes present in the database. A more general ap-
pearance model could be trained on a database containing many faces in different
illuminations and with different facial expressions. Such a model would have a bet-
ter chance to enable successful tracking of a previously unseen face in a new en-
vironment, whereas a specific appearance model presumably would result in better
performance on the person and environment for which it was trained. Trackers using
pre-trained models of appearance can be found in the literature [5, 31].

18.3.3 Appearance-Based vs. Feature-Based Tracking

An appearance-based or featureless or generative model-based tracker matches
a model of the entire facial appearance with the input image, trying to exploit all
available information in the model as well as the image. Generally, we can express
this as follows:

Assume a parametric generative face model and an input image I of a face from
which we want to estimate a set of parameters. The parameters to be extracted
should form a subset of parameter set controlling the model. Given a vector p withN
parameters, the face model can generate an image Im(p). The principle of analysis-
by-synthesis then states that the best estimates of the facial parameters are the ones
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minimizing the distance between the generated image and the input image

p∗ = arg min
p
δ
[
I, Im(p)

]
(18.14)

for some distance measure δ(·).
The problem of finding the optimal parameters is a high-dimensional (N dimen-

sions) search problem and thus of high computational complexity. By using clever
search heuristics, we can reduce the search time. The trackers described in [5, 31,
33, 36] are appearance-based.

A feature-based tracker, on the other hand, chooses a few facial features that are,
supposedly, easily and robustly tracked. Features such as color, specific points or
patches, and edges can be used. Typically, a tracker based on feature points tries to
estimate the 2D position of a set of points and from these points to compute the 3D
pose of the face. Feature-based trackers can be found in [11, 12, 26, 56, 63].

In the following sections, we describe three trackers found in the literature. They
represent the classes mentioned above.

18.4 Feature-Based Tracking Example

The tracker described in this section tracks a set of feature points in an image se-
quence and uses the 2D measurements to calculate the 3D structure and motion of
the face and the facial features. The tracker is based on the structure from motion
(SfM) algorithm by Azerbayejani and Pentland [6]. The (rigid) face tracker was
then developed by Jebara and Pentland [26] and further by Ström et al. [56, 57].
The tracker was later extended as to handle non-rigid motion, and thus track facial
action by Ingemars and Ahlberg [24].

With the terminology above, it is the first frame model-based and feature-based
tracker. We stress that the presentation here is somewhat simplified.

18.4.1 Face Model Parameterization

The head tracker designed by Jebara and Pentland [26] estimated a model as a set
of points with no surface. Ström et al. [57] extended the system to include a 3D
wireframe face model (Candide). A set of feature points are placed on the surface of
the model, not necessarily coinciding with the model vertices. The 3D face model
enables the system to predict the surface angle relative to the camera as well as
self-occlusion. Thus, the tracker can predict when some measurements should not
be trusted.
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18.4.1.1 Pose Parameterization

The pose in the kth frame is parameterized with three rotation angles (rx, ry, rz),
three translation parameters (tx, ty, tz), and the inverse focal length φ = 1/f of the
camera.1

Azerbayejani and Pentland [6] chose to use a perspective projection model where
the origin of the 3D coordinate system is placed in the center of the image plane
instead of at the focal point, that is, the FOE is set to (0,0,1) (see Sect. 18.2.6). This
projection model has several advantages; for example, there is only one unknown
parameter per feature point (as becomes apparent below).

Thus, the 2D (projected) screen coordinates are computed as
(
u

v

)

= 1

1 + zφ
(
x

y

)

. (18.15)

18.4.1.2 Structure Parameterization

The structure of the face is represented by the image coordinates (u0, v0) and the
depth values z0 of the feature points in the first frame. If the depths z0 are known,
the 3D coordinates of the feature points can be computed for the first frame as

(
x0
y0

)

= (1 + z0φ)

(
u0
v0

)

(18.16)

and for all following frames as
⎛

⎝
x

y

z

⎞

⎠= R

⎛
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y0
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⎞
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tx
ty
tz

⎞

⎠ (18.17)

where R is the rotation matrix created. For clarity of presentation, the frame indices
on all the parameters are omitted.

All put together, the model parameter vector is

p = (tx, ty, tz, rx, ry, rz, φ, z1, . . . , zN )
T (18.18)

where N is the number of feature points and rx, ry, rz are used to update R. Com-
bining (18.16), (18.17), and (18.15), we get a function from the parameter vector to
screen coordinates

(u1, v1, . . . , uN , vN)
T = hk(p). (18.19)

Note that the parameter vector hasN+7 degrees of freedom, and that we get 2N
values if we measure the image coordinates for each feature point. Thus, the problem
of estimating the parameter vector from image coordinates is overconstrained when
N > 7.

1In practice, the z-translation should be parameterized by ζ = tzφ instead of tz for stability reasons.
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18.4.2 Parameter Estimation Using an Extended Kalman Filters

A Kalman filter is used to estimate the dynamic changes of a state vector of which a
function can be observed. When the function is nonlinear, we must use an extended
Kalman filter (EKF). The literature on Kalman filtering is plentiful [21, 28, 54, 55],
so we only summarize the approach here.

In our case, the state vector is the model parameter vector p and we observe, for
each frame, the screen coordinates uk = hk(pk). Because we cannot measure the
screen coordinates exactly, measurement noise vk is added as well. We can summa-
rize the dynamics of the system as

{
pk+1 = fk(pk)+ wk, wk ∼N(0,Wk),

ûk = hk(pk)+ vk, vk ∼N(0,Vk) (18.20)

where fk(·) is the dynamics function, hk(·) is the measurement function, and w and
v are zero-mean Gaussian random variables with known covariances Wk and Vk .

The job for the EKF is to estimate the state vector pk given the measurement
vector ûk and the previous estimate p̂k−1. Choosing the trivial dynamics function
fk(pk)= pk , the state estimate is updated using

p̂k = p̂k−1 + Kk
[
ûk − hk(p̂k−1)

]
(18.21)

where Kk is the Kalman gain matrix. It is updated every time step depending on
fk(·), hk(·), Wk , and Vk . The covariances are given by initial assumptions or esti-
mated during the tracking.

18.4.3 Tracking Process

The tracker must be initialized, manually or by using a face detection algorithm.
The model reference texture is captured from the first frame, and feature points
are automatically extracted. To select feature points that could be reliably tracked,
points where the determinant of the Hessian

det(H)=
∣
∣
∣
∣
Ixx(x, y) Ixy(x, y)
Ixy(x, y) Iyy(x, y)

∣
∣
∣
∣ (18.22)

is large are used. The function cvGoodFeaturesToTrack in OpenCV [44] im-
plements a few variations. The determinant is weighted with the cosine of the angle
between the model surface normal and the camera direction. The number of fea-
ture points to select is limited only by the available computational power and the
real-time requirements.

The initial feature point depth values (z1, . . . , zN) are given by the 3D face
model. Then, for each frame, the model is rendered using the current model parame-
ters. Around each feature point, a small patch is extracted from the rendered image.
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Fig. 18.3 Patches from the rendered image (lower left) are matched with the incoming video. The
two-dimensional feature point positions are fed to the EKF, which estimates the pose information
needed to render the next model view. For clarity, only 4 of 24 patches are shown. Illustration
courtesy of J. Ström

The patches are matched with the new frame using a zero-mean normalized cross
correlation. The best match, with subpixel precision, for each feature point is col-
lected in the measurement vector ûk and fed into the EKF update equation (18.21).

Using the face model and the values from the normalized template matching,
the measurement noise covariance matrix can be estimated making the EKF rely on
some measurements more than others. Note that this also tells the EKF in which di-
rections in the image the measurements are reliable. For example, a feature point on
an edge (e.g., the mouth outline) can reliably be placed in the direction perpendicu-
lar to the edge but less reliably along the edge. The system is illustrated in Fig. 18.3.

18.4.4 Tracking of Facial Action

Ingemars and Ahlberg [24] extended the tracker to track facial action as well. A set
of states was added to the state vector corresponding to the animation parameters
of Candide-3. In order to be able to track these, there must be feature points within
the area that is influenced by each estimated animation parameter, and the number
of feature points must be higher. However, the automatic feature point selection can
still be used, since the observation function can be calculated online by interpolation
of the known observation functions of the face model vertices.

In order to be both accurate and to handle drift, the tracker combines feature point
patches from the first frame of the sequence with patches dynamically extracted
from the previous frame. Examples are shown in Fig. 18.4.
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Fig. 18.4 Tracking example, feature-based tracking. The leftmost image shows the automatically
extracted tracking points. Images courtesy of N. Ingemars

18.5 Appearance-Based Tracking Example

In this section, we describe a statistical model-based and appearance-based tracker
estimating the 3D pose and deformations of the face. It is based on the Active Ap-
pearance Models (AAMs) described in Chap. 5. The tracker was first presented by
Ahlberg [1], and was later improved in various ways as described in Sect. 18.5.4.

To use the AAM search algorithm, we must first decide on a geometry for the
face model, its parameterization of shape and texture, and how we use the model for
warping images. Here, we use the face model Candide-3 described in Sect. 18.2.5.

18.5.1 Face Model Parameterization

18.5.1.1 Geometry Parameterization

The geometry (structure) g(σ,α) of the Candide model is parameterized according
to (18.7). There are several techniques to estimate the shape parameters σ (e.g., an
AAM search or facial landmark localization method). When adapting a model to a
video sequence, the shape parameters should be changed only in the first frame(s)—
the head shape does not vary during a conversation—whereas the pose and anima-
tion parameters naturally change at each frame. Thus, during the tracking process
we can assume that σ is fixed (and known), and let the shape depend on α only

{
ḡσ = ḡ + Φsσ,

gσ (α)= ḡσ + Φaα.
(18.23)

18.5.1.2 Pose Parameterization

To perform global motion (i.e., pose change), we need six parameters plus a scaling
factor according to (18.8). Since the Candide model is defined only up to scale, we
can adopt the weak perspective projection and combine scale and z-translation in
one parameter. Thus, using the 3D translation vector t = (tx, ty, tz)T and the three
Euler angles for the rotation matrix R, our pose parameter vector is

π = (rx, ry, rz, , tx, ty, tz)T. (18.24)
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18.5.1.3 Texture Parameterization

We use a statistical model of the texture and control the texture with a small set of
texture parameters ξ . The model texture vector x̂ is generated according to (18.1)
(see Sect. 18.2.1). The synthesized texture vector x̂ has for each element a corre-
sponding (s, t) coordinate and is equivalent to the texture image It (s, t): the relation
is just lexicographic ordering, x̂ = L[It (s, t)]. It (s, t) is mapped on the wireframe
model to create the generated image Im(u, v) according to (18.5).

The entire appearance of the model can now be controlled using the parameters
(ξ,π,α,σ ). However, as we assume that the shape σ is fixed during the tracking
session, and the texture ξ depends on the other parameters, the parameter vector we
optimize below is

p = (πT, αT)T. (18.25)

18.5.2 Tracking Process

The tracker should find the optimal adaptation of the model to each frame in a
sequence as described in Sect. 18.3.3. That is, we wish to find the parameter vector
p∗
k that minimizes the distance between image Im generated by the model and each

frame Ik . Here, an iterative solution is presented, and as an initial value of p we use
p̂k−1 (i.e., the estimated parameter vector from the previous frame).

Instead of directly comparing the generated image Im(u, v) to the input image
Ik(u, v), we back-project the input image to the model’s parametric surface coordi-
nate system (s, t) using the inverse of the texture mapping transform Tu

Iu(p)(s, t)= T −1
u(p)

[
Ik(u, v)

]
, (18.26)

x(p)= L[Iu(p)(s, t)
]
. (18.27)

We then compare the normalized input image vector x(p) to the generated model
texture vector x̂(p). x̂(p) is generated in the face subspace as closely as possible to
x(p) (see (18.1)), and we compute a residual image r(p)= x(p)− x̂(p). The process
from input image to residual, is illustrated in Fig. 18.5.

As the distance measures according to (18.14), we use the squared norm of the
residual image

δ
(
Ik, Im(p)

)= ∥∥r(p)
∥
∥2
. (18.28)

From the residual image, we also compute the update vector

�p = −Ur(p) (18.29)

where U = ( δr
δp )

† is the precomputed active appearance update matrix (i.e., the

pseudo-inverse of the estimated gradient matrix δr
δp ). It is created by numeric dif-

ferentiation, systematically displacing each parameter and computing an average
over the training set.
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Fig. 18.5 Analysis-synthesis process. A good and a bad model adaptation. The more similar the
normalized image and its approximation is, the better the model adaptation is

We then compute the estimated new parameter vector as

p̂k = p +�p. (18.30)

In most cases, the model fitting is improved if the entire process is iterated a few
times.

18.5.3 Tracking Example

To illustrate, a video sequence of a previously unseen person was used and the
Candide-3 model was manually adapted to the first frame of the sequence by chang-
ing the pose parameters and the static shape parameters (recall that the shape pa-
rameter vector σ is assumed to be known). The model parameter vector p was then
iteratively optimized for each frame, as is shown in Fig. 18.6.

Note that this, quite simple, tracker needs some more development in order to
be robust to varying illumination, strong facial expressions, and large head motion.
Moreover, it is very much depending on the training data.
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Fig. 18.6 Tracking example, appearance-based tracking. Every tenth frame shown

18.5.4 Improvements

In 2002, Dornaika and Ahlberg [12, 13] introduced a feature/appearance-based
tracker. The head pose is estimated using a RANdom SAmpling Consensus
(RANSAC) technique [19] combined with a texture consistency measure to avoid
drifting. Once the 3D head pose π is estimated, the facial animation parameters α
can be estimated using the scheme described in Sect. 18.5.

In 2004, Matthews and Baker [37] proposed the Inverse Compositional Algo-
rithm which allows for an accurate and fast fitting, actually reversing the roles of
the input image and the template in the well-known, but slow, Lucas–Kanade Im-
age Alignment algorithm [34]. Supposing that the appearance will not change much
among different frames, it can be “projected out” from the search space. Fanelli and
Fratarvangeli [18] incorporated the Inverse Compositional Algorithm in an AAM-
based tracker to improve robustness.

Zhou et al. [65] and Dornaika and Davoine [15] combined appearance models
with a particle filter for improved 3D pose estimation.

18.6 Fused Trackers

18.6.1 Combining Motion- and Model-Based Tracking

In order to exploit the advantages of the various tracking strategies mentioned above,
modern state-of-the-art trackers often combine them. For example, Lefèvre and
Odobez [32] used the Candide model and two sets of feature points. The first set is
called the “trained set”, that is, a set of feature points trained from the first frame of
the video sequence. The second set is the “adaptive set”, that is continuously adapted
during tracking. Using only one of these sets (the first corresponding to first frame
model-based and the second to motion-based, according to the terminology used
here) results in a certain kinds of tracking failures. While tracking using the adap-
tive method (motion-based tracking) is more precise, it is also prone to drift. Lefèvre
and Odobez devised a hybrid method exploiting the advantages of both the adaptive
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Fig. 18.7 Face model alignment examples. Images courtesy of A. Caunce

and the trained method. Compared to the method by Ingemars and Ahlberg [24] de-
scribed above, Lefèvre and Odobez made a more thorough investigation of how to
exploit the two methods. Another major difference is the choice of methods for 3D
pose estimation from 2D measurements (EKF and Nelder–Mead downhill simplex
optimization [42], respectively). Notably, Lefèvre and Odobez demonstrated stable
tracking under varying lighting conditions.

18.6.2 Combining Appearance- and Feature-Based Tracking

Another recent development was published by Caunce et al. [9], combining the
feature-based and appearance-based approaches. In the tradition of the Manchester
group (where the AAMs originated), the work was started with thorough statistical
model-building of shape and texture of the face. Using profile and frontal photogra-
phies, a 3D shape model was adapted to each training subject and a PCA performed.
A set of texture patches were extracted from the mean texture, and used to adapt the
3D model to a new image in a two stage process. The first stage consists of the rigid
body adaptation (pose, translation) and the second step the facial shape (restrained
by the pretrained model). Moreover, a scale hierarchy was used.

Thus, this method is primarily aimed at facial landmark localization/face model
alignment, but is used (by Caunce et al.) for tracking of facial action as well by
letting the parameter estimated from the previous frame serving as the initial esti-
mation. Example results are shown in Fig. 18.7 using XM2VTSDB [38] imagery.

18.6.3 Commercially Available Trackers

Naturally, there are a number of commercial products providing head, face and facial
action tracking. Below, some of these are mentioned.
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One of the best commercial facial trackers was developed in the 1990s by a US
company called Eyematic. The company went bankrupt and the technology was
taken over by another company which subsequently sold it to Google.

The Australian company Seeing Machines is offering a face tracker API called
faceAPI that tracks head motion, lips and eyebrows.

Visage Technologies (Sweden) provides a statistical appearance-based tracker as
well as an feature-based tracker in an API called visage|SDK.

The Japanese company Omron developed a suite of face sensing technology
called OKAO Vision that includes face detection, tracking of the face, lips, eye-
brows and eyes, as well as estimation of attributes such as gender, ethnicity and
age.

Image Metrics (UK) provides high-end performance-based facial animation ser-
vice to film and game producers based on their in-house facial tracking algorithms.

Mova (US) uses a radically different idea in order to precisely capture high-
density facial surface data using phosphorescent makeup and fluorescent lights.

Other companies with face tracking products include Genemation (UK), OKI
(Japan), SeeStorm (Russia) and Visual Recognition (Netherlands). Face and facial
feature tracking is also used in end-user products such as Fix8 by Mobinex (US)
and the software bundled with certain Logitech webcams.

18.7 Conclusions

We have described some strategies for tracking and distinguished between model-
and motion-based tracking as well as between appearance- and feature-based track-
ing. Whereas motion-based trackers may suffer from drifting, model-based trackers
do not have that problem. Appearance- and feature-based trackers follow different
basic principles and have different characteristics.

Two trackers have been described, one feature-based and one appearance-based.
Both trackers are all model-based and thus do not suffer from drifting. Improve-
ments found in the literature are discussed for both trackers.

Trackers combining the described tracking strategies, presumably representing
the state-of-the-art, have been described, and commercially available tackers have
been briefly mentioned.
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Chapter 19
Facial Expression Recognition

Yingli Tian, Takeo Kanade, and Jeffrey F. Cohn

19.1 Introduction

Facial expressions are the facial changes in response to a person’s internal emo-
tional states, intentions, or social communications. Facial expression analysis has
been an active research topic for behavioral scientists since the work of Darwin in
1872 [21, 26, 29, 83]. Suwa et al. [90] presented an early attempt to automatically
analyze facial expressions by tracking the motion of 20 identified spots on an im-
age sequence in 1978. After that, much progress has been made to build computer
systems to help us understand and use this natural form of human communication
[5, 7, 8, 17, 23, 32, 43, 45, 57, 64, 77, 92, 95, 106–108, 110].

In this chapter, facial expression analysis refers to computer systems that attempt
to automatically analyze and recognize facial motions and facial feature changes
from visual information. Sometimes the facial expression analysis has been con-
fused with emotion analysis in the computer vision domain. For emotion analysis,
higher level knowledge is required. For example, although facial expressions can
convey emotion, they can also express intention, cognitive processes, physical ef-
fort, or other intra- or interpersonal meanings. Interpretation is aided by context,
body gesture, voice, individual differences, and cultural factors as well as by facial
configuration and timing [11, 79, 80]. Computer facial expression analysis systems
need to analyze the facial actions regardless of context, culture, gender, and so on.
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Fig. 19.1 Basic structure of
facial expression analysis
systems

The accomplishments in the related areas such as psychological studies, human
movement analysis, face detection, face tracking, and recognition make the auto-
matic facial expression analysis possible. Automatic facial expression analysis can
be applied in many areas such as emotion and paralinguistic communication, clin-
ical psychology, psychiatry, neurology, pain assessment, lie detection, intelligent
environments, and multimodal human computer interface (HCI).

19.2 Principles of Facial Expression Analysis

19.2.1 Basic Structure of Facial Expression Analysis Systems

Facial expression analysis includes both measurement of facial motion and recog-
nition of expression. The general approach to automatic facial expression analysis
(AFEA) consists of three steps (Fig. 19.1): face acquisition, facial data extraction
and representation, and facial expression recognition.

Face acquisition is a processing stage to automatically find the face region for
the input images or sequences. It can be a detector to detect face for each frame
or just detect face in the first frame and then track the face in the remainder of the
video sequence. To handle large head motion, the head finder, head tracking, and
pose estimation can be applied to a facial expression analysis system.

After the face is located, the next step is to extract and represent the facial
changes caused by facial expressions. In facial feature extraction for expression
analysis, there are mainly two types of approaches: geometric feature-based meth-
ods and appearance-based methods. The geometric facial features present the shape
and locations of facial components (including mouth, eyes, brows, nose, etc.). The
facial components or facial feature points are extracted to form a feature vector that
represents the face geometry. With appearance-based methods, image filters, such
as Gabor wavelets, are applied to either the whole-face or specific regions in a face
image to extract a feature vector. Depending on the different facial feature extrac-
tion methods, the effects of in-plane head rotation and different scales of the faces
can be eliminated by face normalization before the feature extraction or by feature
representation before the step of expression recognition.

Facial expression recognition is the last stage of AFEA systems. The facial
changes can be identified as facial action units or prototypic emotional expressions
(see Sect. 19.3.1 for definitions). Depending on whether the temporal information is
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Fig. 19.2 Emotion-specified facial expression (posed images from database [49]). 1, disgust;
2, fear; 3, joy; 4, surprise; 5, sadness; 6, anger

used, in this chapter we classify a recognition approach as frame-based or sequence-
based.

19.2.2 Organization of the Chapter

This chapter introduces recent advances in facial expression analysis. The first part
discusses general structure of AFEA systems. The second part describes the prob-
lem space for facial expression analysis. This space includes multiple dimensions:
level of description, individual differences in subjects, transitions among expres-
sions, intensity of facial expression, deliberate versus spontaneous expression, head
orientation and scene complexity, image acquisition and resolution, reliability of
ground truth, databases, and the relation to other facial behaviors or nonfacial be-
haviors. We note that most work to date has been confined to a relatively restricted
region of this space. The last part of this chapter is devoted to a description of more
specific approaches and the techniques used in recent advances. They include the
techniques for face acquisition, facial data extraction and representation, facial ex-
pression recognition, and multimodal expression analysis. The chapter concludes
with a discussion assessing the current status, future possibilities, and open ques-
tions about automatic facial expression analysis.

19.3 Problem Space for Facial Expression Analysis

19.3.1 Level of Description

With few exceptions [17, 23, 34, 95], most AFEA systems attempt to recognize a
small set of prototypic emotional expressions as shown in Fig. 19.2 (i.e., disgust,
fear, joy, surprise, sadness, anger). This practice may follow from the work of Dar-
win [21] and more recently Ekman and Friesen [27, 28] and Izard et al. [48] who
proposed that emotion-specified expressions have corresponding prototypic facial
expressions. In everyday life, however, such prototypic expressions occur relatively
infrequently. Instead, emotion more often is communicated by subtle changes in one
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Table 19.1 FACS action units (AU). AUs with “*” indicate that the criteria have changed for this
AU, that is, AU 25, 26, and 27 are now coded according to criteria of intensity (25A-E), and AU 41,
42, and 43 are now coded according to criteria of intensity

or a few discrete facial features, such as tightening of the lips in anger or obliquely
lowering the lip corners in sadness [12]. Change in isolated features, especially in
the area of the eyebrows or eyelids, is typical of paralinguistic displays; for instance,
raising the brows signals greeting [25]. To capture such subtlety of human emotion
and paralinguistic communication, automated recognition of fine-grained changes
in facial expression is needed. The facial action coding system (FACS: [29]) is a
human-observer-based system designed to detect subtle changes in facial features.
Viewing videotaped facial behavior in slow motion, trained observers can manually
FACS code all possible facial displays, which are referred to as action units and may
occur individually or in combinations.

FACS consists of 44 action units. Thirty are anatomically related to contraction
of a specific set of facial muscles (Table 19.1) [22]. The anatomic basis of the re-
maining 14 is unspecified (Table 19.2). These 14 are referred to in FACS as miscel-
laneous actions. Many action units may be coded as symmetrical or asymmetrical.
For action units that vary in intensity, a 5-point ordinal scale is used to measure the
degree of muscle contraction. Table 19.3 shows some examples of combinations of
FACS action units.
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Table 19.2 Miscellaneous
actions AU Description

8 Lips toward

19 Tongue show

21 Neck tighten

29 Jaw thrust

30 Jaw sideways

31 Jaw clench

32 Bite lip

33 Blow

34 Puff

35 Cheek suck

36 Tongue bulge

37 Lip wipe

38 Nostril dilate

39 Nostril compress

Table 19.3 Some examples of combination of FACS action units

Although Ekman and Friesen proposed that specific combinations of FACS ac-
tion units represent prototypic expressions of emotion, emotion-specified expres-
sions are not part of FACS; they are coded in separate systems, such as the emotional
facial action system (EMFACS) [41]. FACS itself is purely descriptive and includes
no inferential labels. By converting FACS codes to EMFACS or similar systems,
face images may be coded for emotion-specified expressions (e.g., joy or anger) as
well as for more molar categories of positive or negative emotion [65].
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19.3.2 Individual Differences in Subjects

Face shape, texture, color, and facial and scalp hair vary with sex, ethnic back-
ground, and age [33, 119]. Infants, for instance, have smoother, less textured skin
and often lack facial hair in the brows or scalp. The eye opening and contrast
between iris and sclera differ markedly between Asians and Northern Europeans,
which may affect the robustness of eye tracking and facial feature analysis more
generally. Beards, eyeglasses, or jewelry may obscure facial features. Such individ-
ual differences in appearance may have important consequences for face analysis.
Few attempts to study their influence exist. An exception was a study by Zlochower
et al. [119], who found that algorithms for optical flow and high-gradient component
detection that had been optimized for young adults performed less well when used
in infants. The reduced texture of infants’ skin, their increased fatty tissue, juvenile
facial conformation, and lack of transient furrows may all have contributed to the
differences observed in face analysis between infants and adults.

In addition to individual differences in appearance, there are individual differ-
ences in expressiveness, which refers to the degree of facial plasticity, morphology,
frequency of intense expression, and overall rate of expression. Individual differ-
ences in these characteristics are well established and are an important aspect of
individual identity [61] (these individual differences in expressiveness and in biases
for particular facial actions are sufficiently strong that they may be used as a bio-
metric to augment the accuracy of face recognition algorithms [19]). An extreme
example of variability in expressiveness occurs in individuals who have incurred
damage either to the facial nerve or central nervous system [75, 99]. To develop
algorithms that are robust to individual differences in facial features and behavior,
it is essential to include a large sample of varying ethnic background, age, and sex,
which includes people who have facial hair and wear jewelry or eyeglasses and both
normal and clinically impaired individuals.

19.3.3 Transitions Among Expressions

A simplifying assumption in facial expression analysis is that expressions are sin-
gular and begin and end with a neutral position. In reality, facial expression is more
complex, especially at the level of action units. Action units may occur in combi-
nations or show serial dependence. Transitions from action units or combination of
actions to another may involve no intervening neutral state. Parsing the stream of
behavior is an essential requirement of a robust facial analysis system, and training
data are needed that include dynamic combinations of action units, which may be
either additive or nonadditive.

As shown in Table 19.3, an example of an additive combination is smiling
(AU 12) with mouth open, which would be coded as AU 12 + 25, AU 12 + 26,
or AU 12 + 27 depending on the degree of lip parting and whether and how far the
mandible was lowered. In the case of AU 12 + 27, for instance, the facial analysis
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system would need to detect transitions among all three levels of mouth opening
while continuing to recognize AU 12, which may be simultaneously changing in
intensity.

Nonadditive combinations represent further complexity. Following usage in
speech science, we refer to these interactions as co-articulation effects. An example
is the combination AU 12+15, which often occurs during embarrassment. Although
AU 12 raises the cheeks and lip corners, its action on the lip corners is modified by
the downward action of AU 15. The resulting appearance change is highly depen-
dent on timing. The downward action of the lip corners may occur simultaneously
or sequentially. The latter appears to be more common [85]. To be comprehensive,
a database should include individual action units and both additive and nonaddi-
tive combinations, especially those that involve co-articulation effects. A classifier
trained only on single action units may perform poorly for combinations in which
co-articulation effects occur.

19.3.4 Intensity of Facial Expression

Facial actions can vary in intensity. Manual FACS coding, for instance, uses a 3- or
more recently a 5-point intensity scale to describe intensity variation of action units
(for psychometric data, see Sayette et al. [82]). Some related action units, moreover,
function as sets to represent intensity variation. In the eye region, action units 41,
42, and 43 or 45 can represent intensity variation from slightly drooped to closed
eyes. Several computer vision researchers proposed methods to represent intensity
variation automatically. Essa and Pentland [32] represented intensity variation in
smiling using optical flow. Kimura and Yachida [50] and Lien et al. [56] quantified
intensity variation in emotion-specified expression and in action units, respectively.
These authors did not, however, attempt the more challenging step of discriminat-
ing intensity variation within types of facial actions. Instead, they used intensity
measures for the more limited purpose of discriminating between different types of
facial actions. Tian et al. [94] compared manual and automatic coding of intensity
variation. Using Gabor features and an artificial neural network, they discriminated
intensity variation in eye closure as reliably as human coders did. Recently, Bartlett
and colleagues [5] investigated action unit intensity by analyzing facial expression
dynamics. They performed a correlation analysis to explicitly measure the relation-
ship between the output margin of the learned classifiers and expression intensity.
Yang et al. [111] converted the problem of intensity estimation to a ranking prob-
lem, which is modeled by the RankBoost. They employed the output ranking score
for intensity estimation. These findings suggest that it is feasible to automatically
recognize intensity variation within types of facial actions. Regardless of whether
investigators attempt to discriminate intensity variation within facial actions, it is
important that the range of variation be described adequately. Methods that work
for intense expressions may generalize poorly to ones of low intensity.
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19.3.5 Deliberate Versus Spontaneous Expression

Most face expression data have been collected by asking subjects to perform a se-
ries of expressions. These directed facial action tasks may differ in appearance and
timing from spontaneously occurring behavior [30]. Deliberate and spontaneous
facial behavior are mediated by separate motor pathways, the pyramidal and ex-
trapyramidal motor tracks, respectively [75]. As a consequence, fine-motor control
of deliberate facial actions is often inferior and less symmetrical than what occurs
spontaneously. Many people, for instance, are able to raise their outer brows sponta-
neously while leaving their inner brows at rest; few can perform this action voluntar-
ily. Spontaneous depression of the lip corners (AU 15) and raising and narrowing the
inner corners of the brow (AU 1 + 4) are common signs of sadness. Without train-
ing, few people can perform these actions deliberately, which incidentally is an aid
to lie detection [30]. Differences in the temporal organization of spontaneous and
deliberate facial actions are particularly important in that many pattern recognition
approaches, such as hidden Markov modeling, are highly dependent on the timing
of the appearance change. Unless a database includes both deliberate and sponta-
neous facial actions, it will likely prove inadequate for developing face expression
methods that are robust to these differences.

19.3.6 Head Orientation and Scene Complexity

Face orientation relative to the camera, the presence and actions of other people,
and background conditions may influence face analysis. In the face recognition
literature, face orientation has received deliberate attention. The FERET database
[76], for instance, includes both frontal and oblique views, and several specialized
databases have been collected to try to develop methods of face recognition that
are invariant to moderate change in face orientation [100]. In the face expression
literature, use of multiple perspectives is rare; and relatively less attention has been
focused on the problem of pose invariance. Most researchers assume that face ori-
entation is limited to in-plane variation [3] or that out-of-plane rotation is small
[57, 68, 77, 95]. In reality, large out-of-plane rotation in head position is common
and often accompanies change in expression. Kraut and Johnson [54] found that
smiling typically occurs while turning toward another person. Camras et al. [10]
showed that infant surprise expressions often occur as the infant pitches her head
back. To develop pose invariant methods of face expression analysis, image data
are needed in which facial expression changes in combination with significant non-
planar change in pose. Some efforts have been made to handle large out-of-plane
rotation in head position [5, 20, 97, 104].

Scene complexity, such as background and the presence of other people, poten-
tially influences accuracy of face detection, feature tracking, and expression recog-
nition. Most databases use image data in which the background is neutral or has a
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consistent pattern and only a single person is present in the scene. In natural envi-
ronments, multiple people interacting with each other are likely, and their effects
need to be understood. Unless this variation is represented in training data, it will be
difficult to develop and test algorithms that are robust to such variation.

19.3.7 Image Acquisition and Resolution

The image acquisition procedure includes several issues, such as the properties and
number of video cameras and digitizer, the size of the face image relative to total im-
age dimensions, and the ambient lighting. All of these factors may influence facial
expression analysis. Images acquired in low light or at coarse resolution can provide
less information about facial features. Similarly, when the face image size is small
relative to the total image size, less information is available. NTSC cameras record
images at 30 frames per second, The implications of down-sampling from this rate
are unknown. Many algorithms for optical flow assume that pixel displacement be-
tween adjacent frames is small. Unless they are tested at a range of sampling rates,
the robustness to sampling rate and resolution cannot be assessed.

Within an image sequence, changes in head position relative to the light source
and variation in ambient lighting have potentially significant effects on face expres-
sion analysis. A light source above the subject’s head causes shadows to fall below
the brows, which can obscure the eyes, especially for subjects with pronounced bone
structure or hair. Methods that work well in studio lighting may perform poorly in
more natural lighting (e.g., through an exterior window) when the angle of light-
ing changes across an image sequence. Most investigators use single-camera se-
tups, which is problematic when a frontal orientation is not required. With image
data from a single camera, out-of-plane rotation may be difficult to standardize. For
large out-of-plane rotation, multiple cameras may be required. Multiple camera se-
tups can support three dimensional (3D) modeling and in some cases ground truth
with which to assess the accuracy of image alignment. Pantic and Rothkrantz [70]
were the first to use two cameras mounted on a headphone-like device; one camera
is placed in front of the face and the other on the right side of the face. The cameras
are moving together with the head to eliminate the scale and orientation variance of
the acquired face images.

Image resolution is another concern. Professional grade PAL cameras, for in-
stance, provide very high resolution images. By contrast, security cameras provide
images that are seriously degraded. Although postprocessing may improve image
resolution, the degree of potential improvement is likely limited. Also the effects
of post processing for expression recognition are not known. Table 19.4 shows a
face at different resolutions. Most automated face processing tasks should be pos-
sible for a 69 × 93 pixel image. At 48 × 64 pixels the facial features such as the
corners of the eyes and the mouth become hard to detect. The facial expressions
may be recognized at 48 × 64 and are not recognized at 24 × 32 pixels. Algorithms
that work well at optimal resolutions of full face frontal images and studio lighting
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Table 19.4 A face at
different resolutions. All
images are enlarged to the
same size. At 48 × 64 pixels
the facial features such as the
corners of the eyes and the
mouth become hard to detect.
Facial expressions are not
recognized at 24 × 32
pixels [97]

can be expected to perform poorly when recording conditions are degraded or im-
ages are compressed. Without knowing the boundary conditions of face expression
algorithms, comparative performance is difficult to assess. Algorithms that appear
superior within one set of boundary conditions may perform more poorly across the
range of potential applications. Appropriate data with which these factors can be
tested are needed.

19.3.8 Reliability of Ground Truth

When training a system to recognize facial expression, the investigator assumes that
training and test data are accurately labeled. This assumption may or may not be
accurate. Asking subjects to perform a given action is no guarantee that they will.
To ensure internal validity, expression data must be manually coded, and the relia-
bility of the coding verified. Interobserver reliability can be improved by providing
rigorous training to observers and monitoring their performance. FACS coders must
pass a standardized test, which ensures (initially) uniform coding among interna-
tional laboratories. Monitoring is best achieved by having observers independently
code a portion of the same data. As a general rule, 15% to 20% of data should
be comparison-coded. To guard against drift in coding criteria [62], restandardiza-
tion is important. When assessing reliability, coefficient kappa [36] is preferable to
raw percentage of agreement, which may be inflated by the marginal frequencies
of codes. Kappa quantifies interobserver agreement after correcting for the level of
agreement expected by chance.

19.3.9 Databases

Because most investigators have used relatively limited data sets, the generalizabil-
ity of different approaches to facial expression analysis remains unknown. In most
data sets, only relatively global facial expressions (e.g., joy or anger) have been
considered, subjects have been few in number and homogeneous with respect to age
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and ethnic background, and recording conditions have been optimized. Approaches
to facial expression analysis that have been developed in this way may transfer
poorly to applications in which expressions, subjects, contexts, or image proper-
ties are more variable. In the absence of comparative tests on common data, the
relative strengths and weaknesses of different approaches are difficult to determine.
In the areas of face and speech recognition, comparative tests have proven valu-
able [76], and similar benefits would likely accrue in the study of facial expression
analysis. A large, representative test-bed is needed with which to evaluate different
approaches. We list several databases for facial expression analysis in Sect. 19.4.5.

19.3.10 Relation to Other Facial Behavior or Nonfacial Behavior

Facial expression is one of several channels of nonverbal communication. Contrac-
tion of the muscle zygomaticus major (AU 12), for instance, is often associated
with positive or happy vocalizations, and smiling tends to increase vocal fundamen-
tal frequency [16]. Also facial expressions often occur during conversations. Both
expressions and conversations can cause facial changes. Few research groups, how-
ever, have attempted to integrate gesture recognition broadly defined across multiple
channels of communication [44, 45]. An important question is whether there are ad-
vantages to early rather than late integration [38]. Databases containing multimodal
expressive behavior afford the opportunity for integrated approaches to analysis of
facial expression, prosody, gesture, and kinetic expression.

19.3.11 Summary and Ideal Facial Expression Analysis Systems

The problem space for facial expression includes multiple dimensions. An ideal fa-
cial expression analysis system has to address all these dimensions, and it outputs
accurate recognition results. In addition, the ideal facial expression analysis system
must perform automatically and in real-time for all stages (Fig. 19.1). So far, sev-
eral systems can recognize expressions in real time [53, 68, 97]. We summarize the
properties of an ideal facial expression analysis system in Table 19.5.

19.4 Recent Advances

For automatic facial expression analysis, Suwa et al. [90] presented an early attempt
in 1978 to analyze facial expressions by tracking the motion of 20 identified spots
on an image sequence. Considerable progress had been made since 1990 in related
technologies such as image analysis and pattern recognition that make AFEA possi-
ble. Samal and Iyengar [81] surveyed the early work (before 1990) about automatic
recognition and analysis of human face and facial expression. Two survey papers
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Table 19.5 Properties of an
ideal facial expression
analysis system

Robustness

Rb1 Deal with subjects of different age, gender, ethnicity

Rb2 Handle lighting changes

Rb3 Handle large head motion

Rb4 Handle occlusion

Rb5 Handle different image resolution

Rb6 Recognize all possible expressions

Rb7 Recognize expressions with different intensity

Rb8 Recognize asymmetrical expressions

Rb9 Recognize spontaneous expressions

Automatic process

Am1 Automatic face acquisition

Am2 Automatic facial feature extraction

Am3 Automatic expression recognition

Real-time process

Rt1 Real-time face acquisition

Rt2 Real-time facial feature extraction

Rt3 Real-time expression recognition

Autonomic Process

An1 Output recognition with confidence

An2 Adaptive to different level outputs based on input images

summarized the work (before year 1999) of facial expression analysis [35, 69]. Re-
cently, Zeng et al. [114] surveyed the work (before year 2007) for affect recognition
methods including audio, visual and spontaneous expressions. In this chapter, in-
stead of giving a comprehensive survey of facial expression analysis literature, we
explore the recent advances in facial expression analysis based on four problems:
(1) face acquisition, (2) facial feature extraction and representation, (3) facial ex-
pression recognition, and (4) multimodal expression analysis. In addition, we list
the public available databases for expression analysis.

Many efforts have been made for facial expression analysis [4, 5, 8, 13, 15, 18,
20, 23, 32, 34, 35, 37, 45, 58–60, 67, 69, 70, 87, 95, 96, 102, 104, 107, 110–115,
117]. Because most of the work are summarized in the survey papers [35, 69, 114],
here we focus on the recent research in automatic facial expression analysis which
tends to follow these directions:
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• Build more robust systems for face acquisition, facial data extraction and repre-
sentation, and facial expression recognition to handle head motion (in-plane and
out-of-plane), occlusion, lighting changes, and lower intensity of expressions

• Employ more facial features to recognize more expressions and to achieve a
higher recognition rate

• Recognize facial action units and their combinations rather than emotion-
specified expressions

• Recognize action units as they occur spontaneously
• Develop fully automatic and real-time AFEA systems
• Analyze emotion portrayals by combining multimodal features such as facial ex-

pression, vocal expression, gestures, and body movements

19.4.1 Face Acquisition

With few exceptions, most AFEA research attempts to recognize facial expressions
only from frontal-view or near frontal-view faces [51, 70]. Kleck and Mendolia [51]
first studied the decoding of profile versus full-face expressions of affect by using
three perspectives (a frontal face, a 90° right profile, and a 90° left profile). Forty-
eight decoders viewed the expressions from 64 subjects in one of the three facial
perspectives. They found that the frontal faces elicited higher intensity ratings than
profile views for negative expressions. The opposite was found for positive expres-
sions. Pantic and Rothkrantz [70] used dual-view facial images (a full-face and a 90°
right profile) which are acquired by two cameras mounted on the user’s head. They
did not compare the recognition results by using only the frontal view and the pro-
file. So far, it is unclear how many expressions can be recognized by side-view or
profile faces. Because the frontal-view face is not always available in real environ-
ments, the face acquisition methods should detect both frontal and nonfrontal view
faces in an arbitrary scene.

To handle out-of-plane head motion, face can be obtained by face detection, 2D
or 3D face tracking, or head pose detection. Nonfrontal view faces are warped or
normalized to frontal view for expression analysis.

19.4.1.1 Face Detection

Many face detection methods have been developed to detect faces in an arbitrary
scene [47, 55, 72, 78, 86, 89, 101]. Most of them can detect only frontal and near-
frontal views of faces. Heisele et al. [47] developed a component-based, trainable
system for detecting frontal and near-frontal views of faces in still gray images.
Rowley et al. [78] developed a neural network based system to detect frontal-view
face. Viola and Jones [101] developed a robust real-time face detector based on a
set of rectangle features.

To handle out-of-plane head motion, some researchers developed face detectors
to detect face from different views [55, 72, 86]. Pentland et al. [72] detected faces by
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using the view-based and modular eigenspace method. Their method runs real-time
and can handle varying head positions. Schneiderman and Kanade [86] proposed a
statistical method for 3D object detection that can reliably detect human faces with
out-of-plane rotation. They represent the statistics of both object appearance and
nonobject appearance using a product of histograms. Each histogram represents the
joint statistics of a subset of wavelet coefficients and their position on the object. Li
et al. [55] developed an AdaBoost-like approach to detect faces with multiple views.
A detail survey about face detection can be found in paper [109].

Some facial expression analysis systems use the face detector which developed
by Viola et al. [101] to detect face for each frame [37]. Some systems [18, 67,
94–96, 104] assume that the first frame of the sequence is frontal and expressionless.
They detect faces only in the first frame and then perform feature tracking or head
tracking for the remaining frames of the sequence.

19.4.1.2 Head Pose Estimation

In a real environment, out-of-plane head motion is common for facial expression
analysis. To handle the out-of-plane head motion, head pose estimation can be em-
ployed. The methods for estimating head pose can be classified as 3D model-based
methods [1, 91, 98, 104] and 2D image-based methods [9, 97, 103, 118].

3D Model-Based Method Many systems employ a 3D model based method to
estimate head pose [4, 5, 15, 18, 20, 67, 102, 104]. Bartlett et al. [4, 5] used a canoni-
cal wire-mesh face model to estimate face geometry and 3D pose from hand-labeled
feature points. In papers [15, 102], the authors used an explicit 3D wireframe face
model to track geometric facial features defined on the model [91]. The 3D model
is fitted to the first frame of the sequence by manually selecting landmark facial fea-
tures such as corners of the eyes and mouth. The generic face model, which consists
of 16 surface patches, is warped to fit the selected facial features. To estimate the
head motion and deformations of facial features, a two-step process is used. The
2D image motion is tracked using template matching between frames at different
resolutions. From the 2D motions of many points on the face model, the 3D head
motion then is estimated by solving an overdetermined system of equations of the
projective motions in the least-squares sense [15].

In paper [104], a cylindrical head model is used to automatically estimate the 6
degrees of freedom (dof) of head motion in realtime. An active appearance model
(AAM) method is used to automatically map the cylindrical head model to the face
region, which is detected by face detection [78], as the initial appearance template.
For any given frame, the template is the head image in the previous frame that is
projected onto the cylindrical model. Then the template is registered with the head
appearance in the given frame to recover the full motion of the head. They first use
the iteratively reweighted least squares technique [6] to deal with nonrigid motion
and occlusion. Second, they update the template dynamically in order to deal with
gradual changes in lighting and self-occlusion. This enables the system to work well
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Fig. 19.3 Example of 3D head tracking, including re-registration after losing the head

even when most of the face is occluded. Because head poses are recovered using
templates that are constantly updated and the pose estimated for the current frame
is used in estimating the pose in the next frame, errors would accumulate unless
otherwise prevented. To solve this problem, the system automatically selects and
stores one or more frames and associated head poses from the tracked images in the
sequence (usually including the initial frame and pose) as references. Whenever the
difference between the estimated head pose and that of a reference frame is less than
a preset threshold, the system rectifies the current pose estimate by re-registering this
frame with the reference. The reregistration prevents errors from accumulating and
enables the system to recover head pose when the head reappears after occlusion,
such as when the head moves momentarily out of the camera’s view. On-line tests
suggest that the system could work robustly for an indefinite period of time. It was
also quantitatively evaluated in image sequences that include maximum pitch and
yaw as large as 40 and 75 degrees, respectively. The precision of recovered motion
was evaluated with respect to the ground truth obtained by a precise position and
orientation measurement device with markers attached to the head and found to be
highly consistent (e.g., for maximum yaw of 75 degrees, absolute error averaged
3.86 degrees). An example of the 3D head tracking is shown in Fig. 19.3 including
reregistration after losing the head. More details can be found in paper [104].

2D Image-Based Method To handle the full range of head motion for expression
analysis, Tian et al. [97] detected the head instead of the face. The head detection
uses the smoothed silhouette of the foreground object as segmented using back-
ground subtraction and computing the negative curvature minima (NCM) points of
the silhouette. Other head detection techniques that use silhouettes can be found
elsewhere [42, 46].
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Table 19.6 Definitions and examples of the three head pose classes: frontal or near frontal view,
side view or profile, and others, such as back of the head or occluded faces. The expression analysis
process is applied to only the frontal and near-frontal view faces [9, 97]

After the head is located, the head image is converted to gray-scale, histogram-
equalized, and resized to the estimated resolution. Then a three-layer neural network
(NN) is employed to estimate the head pose. The inputs to the network are the pro-
cessed head image. The outputs are the three head poses: (1) frontal or near frontal
view, (2) side view or profile, (3) others, such as back of the head or occluded face
(Table 19.6). In the frontal or near frontal view, both eyes and lip corners are visible.
In the side view or profile, at least one eye or one corner of the mouth becomes self-
occluded because of the head. The expression analysis process is applied only to the
frontal and near-frontal view faces. Their system performs well even with very low
resolution of face images.

19.4.2 Facial Feature Extraction and Representation

After the face is obtained, the next step is to extract facial features. Two types of
features can be extracted: geometric features and appearance features. Geometric
features present the shape and locations of facial components (including mouth,
eyes, brows, and nose). The facial components or facial feature points are extracted
to form a feature vector that represents the face geometry. The appearance features
present the appearance (skin texture) changes of the face, such as wrinkles and fur-
rows. The appearance features can be extracted on either the whole-face or specific
regions in a face image.

To recognize facial expressions, an AEFA system can use geometric features
only [15, 20, 70], appearance features only [5, 37, 59], or hybrid features (both
geometric and appearance features) [23, 95, 96, 102]. The research shows that using
hybrid features can achieve better results for some expressions.

To remove the effects of variation in face scale, motion, lighting, and other fac-
tors, one can first align and normalize the face to a standard face (2D or 3D) manu-
ally or automatically [23, 37, 57, 102], and then obtain normalized feature measure-
ments by using a reference image (neutral face) [95].
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Fig. 19.4 Facial feature extraction for expression analysis [95]. a Multistate models for geometric
feature extraction. b Locations for calculating appearance features

19.4.2.1 Geometric Feature Extraction

As shown in Fig. 19.4, in order to detect and track changes of facial components in
near frontal face images, Tian et al. develop multi-state models to extract the geo-
metric facial features. A three-state lip model describes the lip state: open, closed,
tightly closed. A two-state model (open or closed) is used for each of the eyes.
Each brow and cheek has a one-state model. Some appearance features, such as na-
solabial furrows and crows-feet wrinkles (Fig. 19.5b), are represented explicitly by
using two states: present and absent. Given an image sequence, the region of the
face and approximate location of individual face features are detected automatically
in the initial frame [78]. The contours of the face features and components then
are adjusted manually in the initial frame. After the initialization, all face feature
changes are automatically detected and tracked in the image sequence. The system
groups 15 parameters for the upper face and 9 parameters for the lower face, which
describe shape, motion, and state of face components and furrows. To remove the
effects of variation in planar head motion and scale between image sequences in
face size, all parameters are computed as ratios of their current values to that in the
reference frame. Details of geometric feature extraction and representation can be
found in paper [95].

Automatic active appearance model (AAM) mapping can be employed to reduce
the manual preprocessing of the geometric feature initialization [66, 105]. Xiao et
al. [104] performed the 3D head tracking to handle large out-of plane head motion
(Sect. 19.4.1) and track nonrigid features. Once the head pose is recovered, the
face region is stabilized by transforming the image to a common orientation for
expression recognition [18, 67].

The systems in [15, 102] use an explicit 3D wireframe face model to track geo-
metric facial features defined on the model [91]. The 3D model is fitted to the first
frame of the sequence by manually selecting landmark facial features such as cor-
ners of the eyes and mouth. The generic face model, which consists of 16 surface
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Fig. 19.5 Example results of feature extraction [95]. a Permanent feature extraction (eyes, brows,
and mouth). b Transient feature extraction (crows-feet wrinkles, wrinkles at nasal root, and na-
solabial furrows)

Fig. 19.6 Example of feature extraction [102]. a Input video frame. b Snapshot of the geometric
tracking system. c Extracted texture map. d Selected facial regions for appearance feature extrac-
tion [102]

patches, is warped to fit the selected facial features. Figure 19.6b shows an example
of the geometric feature extraction of paper [102].

19.4.2.2 Appearance Feature Extraction

Gabor wavelets [22] are widely used to extract the facial appearance changes as a set
of multiscale and multiorientation coefficients. The Gabor filter may be applied to
specific locations on a face [59, 94, 96, 116] or to the whole face image [4, 23, 37].
Zhang et al. [116] was the first to compare two type of features to recognize ex-
pressions, the geometric positions of 34 fiducial points on a face and 612 Gabor
wavelet coefficients extracted from the face image at these 34 fiducial points. The
recognition rates for six emotion-specified expressions (e.g., joy and anger) were
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significantly higher for Gabor wavelet coefficients. Donato et al. [23] compared sev-
eral techniques for recognizing six single upper face AUs and six lower face AUs.
These techniques include optical flow, principal component analysis, independent
component analysis, local feature analysis, and Gabor wavelet representation. The
best performances were obtained using a Gabor wavelet representation and inde-
pendent component analysis. All of these systems [23, 116] used a manual step to
align each input image with a standard face image using the center of the eyes and
mouth.

Tian et al. [96] studied geometric features and Gabor coefficients to recognize
single AU and AU combinations. In their system, they used 480 Gabor coefficients
in the upper face for 20 locations and 432 Gabor coefficients in the lower face for
18 locations (Fig. 19.4). They found that Gabor wavelets work well for single AU
recognition for homogeneous subjects without head motion. However, for recog-
nition of AU combinations when image sequences include nonhomogeneous sub-
jects with small head motions, the recognition results are relatively poor if we use
only Gabor appearance features. Several factors may account for the difference.
First, the previous studies used homogeneous subjects. For instance, Zhang et al.
[116] included only Japanese and Donato et al. [23] included only Euro-Americans.
Tian et al. use Cohn–Kanade database which contains diverse subjects of Euro-
pean, African, and Asian ancestry. Second, the previous studies recognized emotion-
specified expressions or only single AUs. Tian et al. tested the Gabor-wavelet-based
method on both single AUs and AU combinations, including nonadditive combi-
nations in which the occurrence of one AU modifies another. Third, the previous
studies manually aligned and cropped face images. System [96] omitted this pre-
processing step. In summary, using Gabor wavelets alone, recognition is adequate
only for AU6, AU43, and AU0. Using geometric features alone, recognition is con-
sistently good and shows high AU recognition rates with the exception of AU7.
Combining both Gabor wavelet coefficients and geometric features, the recognition
performance increased for all AUs.

In system [4], 3D pose and face geometry is estimated from hand-labeled feature
points by using a canonical wire-mesh face model [73]. Once the 3D pose is esti-
mated, faces are rotated to the frontal view and warped to a canonical face geometry.
Then, the face images are automatically scaled and cropped to a standard face with a
fixed distance between the two eyes. Difference images are obtained by subtracting
a neutral expression face. They employed a family of Gabor wavelets at five spatial
frequencies and eight orientations to a different image. Instead of specific locations
on a face, they apply the Gabor filter to the whole face image. To provide robustness
to lighting conditions and to image shifts they employed a representation in which
the outputs of two Gabor filters in quadrature are squared and then summed. This
representation is known as Gabor energy filters and it models complex cells of the
primary visual cortex. Recently, Bartlett and her colleagues extend the system by
using fully automatic face and eye detection. For facial expression analysis, they
continue employ Gabor wavelets as appearance features [5].

Wen and Huang [102] use the ratio-image based method to extract appearance
features, which is independent of a person’s face albedo. To limit the effects of the
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noise in tracking and individual variation, they extracted the appearance features
in facial regions instead of points, and then used the weighted average as the final
feature for each region. Eleven regions were defined on the geometric-motion-free
texture map of the face (Fig. 19.6d). Gabor wavelets with two spatial frequency
and six orientations are used to calculate Gabor coefficients. A 12-dimension ap-
pearance feature vector is computed in each of the 11 selected regions by weighted
averaging of the Gabor coefficients. To track the face appearance variations, an ap-
pearance model (texture image) is trained using a Gaussian mixture model based on
exemplars. Then an online adaption algorithm is employed to progressively adapt
the appearance model to new conditions such as lighting changes or differences in
new individuals. See [102] for details.

19.4.3 Facial Expression Recognition

The last step of AFEA systems is to recognize facial expression based on the ex-
tracted features. Many classifiers have been applied to expression recognition such
as neural network (NN), support vector machines (SVM), linear discriminant analy-
sis (LDA), K-nearest neighbor, multinomial logistic ridge regression (MLR), hidden
Markov models (HMM), tree augmented naive Bayes, RankBoost, and others. Some
systems use only a rule-based classification based on the definition of the facial
actions. Here, we summarize the expression recognition methods to frame-based
and sequence-based expression recognition methods. The frame-based recognition
method uses only the current frame with or without a reference image (it is mainly a
neutral face image) to recognize the expressions of the frame. The sequence-based
recognition method uses the temporal information of the sequences to recognize the
expressions for one or more frames. Table 19.7 summarizes the recognition meth-
ods, recognition rates, recognition outputs, and the databases used in the most recent
systems. For the systems that used more classifiers, the best performance for person-
independent test has been selected.

Frame-Based Expression Recognition Frame-based expression recognition
does not use temporal information for the input images. It uses the information
of current input image with/without a reference frame. The input image can be a
static image or a frame of a sequence that is treated independently. Several methods
can be found in the literature for facial expression recognition such as neural net-
works [95, 96, 116], support vector machines [4, 37], linear discriminant analysis
[17], Bayesian network [15], and rule-based classifiers [70].

Tian et al. [96] employed a neural network-based recognizer to recognize FACS
AUs. They used three-layer neural networks with one hidden layer to recognize AUs
by a standard back-propagation method [78]. Separate networks are used for the up-
per and lower face. The inputs can be the normalized geometric features, the appear-
ance feature, or both. The outputs are the recognized AUs. The network is trained to
respond to the designated AUs whether they occur alone or in combination. When
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Table 19.7 FACS AU or expression recognition of recent advances. SVM, support vector ma-
chines; MLR, multinomial logistic ridge regression; HMM, hidden Markov models; BN, Bayesian
network; GMM, Gaussian mixture model; RegRankBoost, RankBoost with l1 regularization

Systems Recognition
methods

Recognition
rate

Recognized outputs Databases

[94–96] Neural network
(frame)

95.5% 16 single AUs and
their combinations

Ekman–Hager [31],
Cohn–Kanade [49]

[18, 67] Rule-based
(sequence)

100% Blink, nonblink Frank–Ekman [40]

57% Brow up, down,
and non-motion

[37] SVM + MLR
(frame)

91.5% 6 Basic expressions Cohn–Kanade [49]

[5] Adaboost + SVM
(sequence)

80.1% 20 facial actions Frank–Ekman [40]

[15] BN + HMM
(frame & sequence)

73.22% 6 Basic expressions Cohn–Kanade [49]

66.53% 6 Basic expressions UIUC–Chen [14]

[102] NN + GMM
(frame)

71% 6 Basic expressions Cohn–Kanade [49]

[111] RegRankBoost
(frame)

88% 6 Basic expressions Cohn–Kanade [49]

AUs occur in combination, multiple output nodes are excited. To our knowledge,
system of [96] was the first system to handle AU combinations. Although several
other systems tried to recognize AU combinations [17, 23, 57], they treated each
combination as if it were a separate AU. More than 7000 different AU combinations
have been observed [83], and a system that can handle AU combinations is more ef-
ficient. A overall recognition rate of 95.5% had been achieved for neutral expression
and 16 AUs whether they occurred individually or in combinations.

In [37], a two-stage classifier was employed to recognize neutral expression and
six emotion-specified expressions. First, SVMs were used for the pairwise classi-
fiers, that is, each SVM is trained to distinguish two emotions. Then they tested
several approaches, such as nearest neighbor, a simple voting scheme, and multino-
mial logistic ridge regression (MLR) to convert the representation produced by the
first stage into a probability distribution over six emotion-specified expressions and
neutral. The best performance at 91.5% was achieved by MLR.

Wen and Huang [102] also employed a two-stage classifier to recognize neutral
expression and six emotion-specified expressions. First, a neural network is used to
classify neutral and nonneutral-like [93]. Then Gaussian mixture models (GMMs)
were used for the remaining expressions. The overall average recognition rate was
71% for a people-independent test.

Yang et al. [111] employ RankBoost with l1 regularization for expression recog-
nition. They also estimate the intensity of expressions by using the output rank-
ing scores. For six emotion-specified expressions in Cohn–Kanade database, they
achieved 88% recognition rate.
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Sequence-Based Expression Recognition The sequence-based recognition
method uses the temporal information of the sequences to recognize the expres-
sions of one or more frames. To use the temporal information, the techniques such
as HMM [4, 15, 17, 57], recurrent neural networks [52, 77], and rule-based clas-
sifier [18] were employed in facial expression analysis. The systems of [4, 15, 18]
employed a sequence-based classifier. Note that the systems of [4] and [18] are
comparative studies for FACS AU recognition in spontaneously occurring behavior
by using the same database [40]. In that database, subjects were ethnically diverse,
AUs occurred during speech, and out-of-plane motion and occlusion from head mo-
tion and glasses were common. So far, only several systems tried to recognize AUs
or expression in spontaneously occurring behavior [4, 5, 18, 97].

The system [18] employed a rule-based classifier to recognize AUs of eye and
brow in spontaneously occurring behavior by using a number of frames in the se-
quence. The algorithm achieved an overall accuracy of 98% for three eye behav-
iors: blink (AU 45), flutter, and no blink (AU 0). Flutter is defined as two or more
rapidly repeating blinks (AU 45) with only partial eye opening (AU 41 or AU 42)
between them. 100% accuracy is achieved between blinks and non-blinks. Accuracy
across the three categories in the brow region (brow-up, brow-down, nonbrow mo-
tion) was 57%. The number of brow-down actions was too small for reliable point
estimates. Omitting brow-down from the analysis, recognition accuracy would in-
crease to 80%. Human FACS coders had similar difficulty with brow-down, agreeing
only about 50% in this database. The small number of occurrences was no doubt a
factor for FACS coders as well. The combination of occlusion from eyeglasses and
correlation of forward head pitch with brow-down complicated FACS coding.

System [4] first employed SVMs to recognize AUs by using Gabor representa-
tions. Then they used hidden Markov models (HMMs) to deal with AU dynamics.
HMMs were applied in two ways: (1) taking Gabor representations as input, and
(2) taking the outputs of SVM as input. When they use Gabor representations as in-
put to train HMMs, the Gabor coefficients were reduced to 100 dimensions per im-
age using PCA. Two HMMs, one for blinks and one for nonblinks were trained and
tested using leave-one-out cross-validation. A best performance of 95.7% recog-
nition rate was obtained using five states and three Gaussians. They achieved a
98.1% recognition rate for blink and non-blink using SVM outputs as input to train
HMMs for five states and three Gaussians. Accuracy across the three categories in
the brow region (brow-up, brow-down, nonbrow motion) was 70.1% (HMMs trained
on PCA-reduced Gabors) and 66.9% (HMMs trained on SVM outputs) respectively.
Omitting brow-down, the accuracy increases to 90.9% and 89.5%, respectively.

Cohen et al. [15] first evaluated Bayesian network (frame-based) classifiers such
as Gaussian naive Bayes (NB-Gaussian), Cauchy naive Bayes (NB-Cauchy), and
tree-augmented-naive Bayes (TAN), focusing on changes in distribution assump-
tions and feature dependency structures. They also proposed a new architecture
of HMMs to segment and recognize neutral and six emotion-specified expres-
sions from video sequences. For the person-independent test in the Cohn–Kanade
database [49], the best performance at recognition rate of 73.2% was achieved by
the TAN classifier. See details in Cohen et al. [15].
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Fig. 19.7 Example of the face and body feature extraction employed in the FABO system [45].
a Face features. b Body features—shoulder extraction procedure. Shoulder regions found and
marked on the neutral frame (first row), estimating the movement within the shoulder regions
using optical flow (second row)

19.4.4 Multimodal Expression Analysis

Facial expression is one of several modes of nonverbal communication. The mes-
sage value of various modes may differ depending on context and may be congruent
or discrepant with each other. Recently, several researchers integrated facial expres-
sion analysis with other modes such as gesture, prosody, and speech [20, 44, 45, 84].
Cohn et al. [20] investigated the relation between facial actions and vocal prosody
for depression detection. They achieved the same accuracy rate at 79% by using fa-
cial actions and vocal prosody respectively. No results are reported for combination.
Gunes and Piccardi [45] combined facial actions and body gestures for 9 expres-
sion recognition. They found that recognition from fused face and body modalities
performs better than that from the face or the body modality alone.

For facial feature extraction in [45], following frame-by-frame face detection,
a combination of appearance (e.g., wrinkles) and geometric features (e.g., feature
points) is extracted from the face videos. A reference frame with neutral expres-
sion is employed for feature comparison. For body feature extraction and tracking,
they detected and tracked head, shoulders and hands by using meanshift method
from the body videos. Figure 19.7 shows examples of the face and body feature
extraction in [45]. A total of 152 features for face modality and 170 features for
body modality were used for the detection of face and body temporal segments with
various classifiers including both frame-based and sequence-based methods. They
tested the system on FABO database [44] and achieved recognition rate at 35.22%
by only using face features and 76.87% by only using body features. The recogni-
tion rate increased to 85% with combination of both face and body features. More
details can be found at [45].
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Table 19.8 Summary of databases for facial expression analysis

Databases Images/
Videos

Subjects Expressions Neutral Spontaneous Multimodal 3D data

Cohn–Kanade
[49]

videos 210 basic
expressions

yes no frontal face no

single AUs 30° face

AU combina-
tions

30° face

FABO
[44]

videos 23 9 expressions yes no frontal face no

hand gestures upper body

JAFFE
[59]

images 10 6 basic
expressions

yes no frontal face no

MMI
[71]

images 19 single AUs yes no frontal face no

videos AU combina-
tions

profile face

RU-FACS
[5]

videos 100 AU combina-
tions

yes yes 4 face poses no

AU speech

BU-3DFE
[112]

static 100 6 basic
expressions

yes no face yes

BU-4DFE
[113]

dynamic 101 6 basic
expressions

yes no face yes

19.4.5 Databases for Facial Expression Analysis

Standard databases play important roles to train, evaluate, and compare different
methods and systems for facial expression analysis. There are some public available
databases (images or videos) of expression analysis for conducting comparative tests
[5, 24, 40, 44, 49, 59, 63, 71, 74, 88, 112, 113]. In this chapter, we summarize several
common used standard databases for facial expression analysis in Table 19.8.

Cohn–Kanade AU-Coded Face Expression Database (Cohn–Kanade) [49] is the
most commonly used comprehensive database in research on automated facial ex-
pression analysis. In Cohn–Kanade database, facial behavior was recorded for two
views of faces (frontal view and 30-degree view) in 210 adults between the ages
of 18 and 50 years. They were 69% female, 31% male, 81% Euro-American, 13%
Afro-American, and 6% other groups. In the database, 1917 image sequences from
frontal view videos for 182 subjects have been FACS coded for either target action
units or the entire sequence. Japanese Female Facial Expression (JAFFE) Database
[59] contains 213 images of 6 basic facial expressions and neutral posed by 10
Japanese female subjects. It is the first downloadable database for facial expres-
sion analysis. MMI Facial Expression Database (MMI) [71] contains more than
1500 samples of both static images and image sequences of faces from 19 subjects
in frontal and profile views displaying various facial expressions of emotion, sin-
gle AUs, and AU combinations. It also includes the identification of the temporal
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segments (onset, apex, offset) of shown AU and emotion facial displays. The Bi-
modal Face and Body Gesture Database (FABO) [44] contains image sequences
captured by two synchronized cameras (one for frontal view facial actions, and an-
other for frontal view upper body gestures as shown in Fig. 19.7) from 23 subjects.
The database is coded to neutral and nine general expressions (uncertainty, anger,
surprise, fear, anxiety, happiness, disgust, boredom, and sadness) based on facial
actions and body gestures. The RU-FACS Spontaneous Expression Database (RU-
FACS) [5] is a dataset of spontaneous facial behavior with rigorous FACS coding.
The dataset consists of 100 subjects participating in a ‘false opinion’ paradigm with
speech-related mouth movements and out-of-plane head rotations from four views
of face (frontal, left 45°, right 45°, and up about 22°). To date, image sequences from
frontal view of 33 subjects have been FACS-coded. The database is being prepared
for release. The Binghamton University 3D Facial Expression Database (BU-3DFE)
[112] contains 2500 3D facial expression models including neutral and 6 basic ex-
pressions from 100 subjects. Associated with each 3D expression model, there are
two corresponding facial texture images captured at two views (about +45° and
−45°). The BU-4DFE database [113] is extended from a static 3D space (BU-3DFE
database) to a dynamic 3D space at a video rate of 25 frames per second. BU-4DFE
database contains 606 3D facial expression sequences captured from 101 subjects.
Associated with each 3D expression sequence, there is a facial texture video with
high resolution of 1040 × 1329 pixels per frame.

19.5 Open Questions

Although many recent advances and successes in automatic facial expression analy-
sis have been achieved, as described in the previous sections, many questions remain
open, for which answers must be found. Some major points are considered here.

1. How do humans correctly recognize facial expressions?
Research on human perception and cognition has been conducted for many

years, but it is still unclear how humans recognize facial expressions. Which
types of parameters are used by humans and how are they processed? By com-
paring human and automatic facial expression recognition we may be able to
advance our understanding of each and discover new ways of improving auto-
matic facial expression recognition.

2. Is it always better to analyze finer levels of expression?
Although it is often assumed that more fine-grained recognition is preferable,

the answer depends on both the quality of the face images and the type of appli-
cation. Ideally, an AFEA system should recognize all action units and their com-
binations. In high quality images, this goal seems achievable; emotion-specified
expressions then can be identified based on emotion prototypes identified in the
psychology literature. For each emotion, prototypic action units have been iden-
tified. In lower quality image data, only a subset of action units and emotion-
specified expression may be recognized. Recognition of emotion-specified ex-
pressions directly may be needed. We seek systems that become “self aware”
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about the degree of recognition that is possible based on the information of given
images and adjust processing and outputs accordingly. Recognition from coarse-
to-fine, for example from emotion-specified expressions to subtle action units,
depends on image quality and the type of application. Indeed, for some pur-
poses, it may be sufficient that a system is able to distinguish between positive,
neutral, and negative expression, or recognize only a limited number of target ac-
tion units, such as brow lowering to signal confusion, cognitive effort, or negative
affect.

3. Is there any better way to code facial expressions for computer systems?
Almost all the existing works have focused on recognition of facial expres-

sion, either emotion-specified expressions or FACS coded action units. The
emotion-specified expressions describe expressions at a coarse level and are not
sufficient for some applications. Although the FACS was designed to detect sub-
tle changes in facial features, it is a human-observer-based system with only
limited ability to distinguish intensity variation. Intensity variation is scored at
an ordinal level; the interval level measurement is not defined and anchor points
may be subjective. Challenges remain in designing a computer-based facial ex-
pression coding system with more quantitative definitions.

4. How do we obtain reliable ground truth?
Whereas some approaches have used FACS, which is a criterion mea-

sure widely used in the psychology community for facial expression analysis,
most vision-based work uses emotion-specified expressions. A problem is that
emotion-specified expressions are not well defined. The same label may apply
to very different facial expressions, and different labels may refer to the same
expressions, which confounds system comparisons. Another problem is that the
reliability of labels typically is unknown. With few exceptions, investigators have
failed to report interobserver reliability and the validity of the facial expressions
they have analyzed. Often there is no way to know whether subjects actually
showed the target expression or whether two or more judges would agree that the
subject showed the target expression. At a minimum, investigators should make
explicit labeling criteria and report interobserver agreement for the labels. When
the dynamics of facial expression are of interest, temporal resolution should be
reported as well. Because intensity and duration measurements are critical, it is
important to include descriptive data on these features as well. Unless adequate
data about stimuli are reported, discrepancies across studies are difficult to inter-
pret. Such discrepancies could be due to algorithms or to errors in ground truth
determination.

5. How do we recognize facial expressions in real life?
Real-life facial expression analysis is much more difficult than the posed

actions studied predominantly to date. Head motion, low resolution input im-
ages, absence of a neutral face for comparison, and low intensity expressions are
among the factors that complicate facial expression analysis. Recent works in
3D modeling of spontaneous head motion and action unit recognition in sponta-
neous facial behavior are exciting developments. How elaborate a head model is
required to be in such work is as yet a research question. A cylindrical model
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is relatively robust and has proven effective as a part of blink detection sys-
tem [104], but highly parametric, generic, or even custom-fitted head models
may prove necessary for more complete action unit recognition.

Most works to date have used a single, passive camera. Although there are
clear advantages to approaches that require only a single passive camera or video
source, multiple cameras are feasible in a number of settings and can be expected
to provide improved accuracy. Active cameras can be used to acquire high res-
olution face images [46]. Also, the techniques of super-resolution can be used
to obtain higher resolution images from multiple low resolution images [2]. At
present, it is an open question how to recognize expressions in situations in which
a neutral face is unavailable, expressions are of low intensity, or other facial or
nonverbal behaviors, such as occlusion by the hands, are present.

6. How do we best use the temporal information?
Almost all works have emphasized recognition of discrete facial expressions,

regardless of being defined as emotion-specified expressions or action units. The
timing of facial actions may be as important as their configuration. Recent work
by our group has shown that intensity and duration of expression vary with con-
text and that the timing of these parameters is highly consistent with automatic
movement [85]. Related work suggests that spontaneous and deliberate facial
expressions may be discriminated in terms of timing parameters [19], which is
consistent with neuropsychological models [75] and may be important to lie de-
tection efforts. Attention to timing is also important in guiding the behavior of
computer avatars. Without veridical timing, believable avatars and ones that con-
vey intended emotions and communicative intents may be difficult to achieve.

7. How may we integrate facial expression analysis with other modalities?
Facial expression is one of several modes of nonverbal communication. The

message value of various modes may differ depending on context and may be
congruent or discrepant with each other. An interesting research topic is the in-
tegration of facial expression analysis with that of gesture, prosody, and speech.
Combining facial features with acoustic features would help to separate the ef-
fects of facial actions due to facial expression and those due to speech-related
movements. The combination of facial expression and speech can be used to
improve speech recognition and multimodal person identification [39].

19.6 Conclusions

Five recent trends in automatic facial expression analysis are (1) diversity of facial
features in an effort to increase the number of expressions that may be recognized;
(2) recognition of facial action units and their combinations rather than more global
and easily identified emotion-specified expressions; (3) more robust systems for face
acquisition, facial data extraction and representation, and facial expression recog-
nition to handle head motion (both in-plane and out-of-plane), occlusion, lighting
change, and low intensity expressions, all of which are common in spontaneous fa-
cial behavior in naturalistic environments; (4) fully automatic and real-time AFEA
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systems; and (5) combination of facial actions with other modes such as gesture,
prosody, and speech. All of these developments move AFEA toward real-life ap-
plications. Several databases that addresses most problems for deliberate facial ex-
pression analysis have been released to researchers to conduct comparative tests of
their methods. Databases with ground-truth labels, preferably both action units and
emotion-specified expressions, are needed for the next generation of systems, which
are intended for naturally occurring behavior (spontaneous and multimodal) in real-
life settings. Work in spontaneous facial expression analysis is just now emerging
and potentially will have significant impact across a range of theoretical and applied
topics.
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Chapter 20
Face Synthesis

Yang Wang, Zicheng Liu, and Baining Guo

20.1 Introduction

How to synthesize photorealistic images of human faces has been a fascinating yet
difficult problem in computer graphics. Here, the term “face synthesis” refers to
synthesis of still images as well as synthesis of facial animations. In general, it is
difficult to draw a clean line between the synthesis of still images and that of facial
animations. For example, the technique of synthesizing facial expression images can
be directly used for generating facial animations, and most of the facial animation
systems involve the synthesis of still images. In this chapter, we focus more on the
synthesis of still images and skip most of the aspects that mainly involve the motion
over time.

Face synthesis has many interesting applications. In the film industry, people
would like to create virtual human characters that are indistinguishable from the
real ones. In games, people have been trying to create human characters that are
interactive and realistic. There are commercially available products [18, 19] that
allow people to create realistic looking avatars that can be used in chat rooms, e-
mail, greeting cards, and teleconferencing. Many human-machine dialog systems
use realistic-looking human faces as visual representation of the computer agent
that interacts with the human user. Face synthesis techniques have also been used
for talking head compression in the video conferencing scenario.
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The techniques of face synthesis can be useful for face recognition too. Romd-
hani et al. [47, 48] used their three dimensional (3D) face modeling technique for
face recognition with different poses and lighting conditions. Qing et al. [44] used
the face relighting technique as proposed by Wen et al. [59] for face recognition
under a different lighting environment. Wang et al. [57] used the 3D spherical har-
monic morphable model (SHBMM), an integration of spherical harmonics into the
morphable model framework, for face recognition under arbitrary pose and illumi-
nation conditions. Many face analysis systems use an analysis-by-synthesis loop
where face synthesis techniques are part of the analysis framework.

In this chapter, we review recent advances on face synthesis including 3D face
modeling, face relighting, and facial expression synthesis.

20.2 Face Modeling

In the past a few years, there has been a lot of work on the reconstruction of face
models from images [12, 23, 27, 41, 47, 52, 67]. There are commercially available
software packages [18, 19] that allow a user to construct their personalized 3D face
models. In addition to its applications in games and entertainment, face modeling
techniques can also be used to help with face recognition tasks especially in han-
dling different head poses (see Romdhani et al. [48] and Chap. 10). Face modeling
techniques can be divided into three categories: face modeling from an image se-
quence, face modeling from two orthogonal views, and face modeling from a single
image. An image sequence is typically a video of someone’s head turning from one
side to the other. It contains a minimum of two views. The motion between each two
consecutive views is relatively small, so it is feasible to perform image matching.

20.2.1 Face Modeling from an Image Sequence

Given an image sequence, one common approach for face modeling typically con-
sists of three steps: image matching, structure from motion, and model fitting. First,
two or three relatively frontal views are selected, and some image matching algo-
rithms are used to compute point correspondences. The selection of frontal views
are usually done manually. Point correspondences are computed either by using
dense matching techniques such as optimal flow or feature-based corner match-
ing. Second, one needs to compute the head motion and the 3D structures of the
tracked points. Finally, a face model is fitted to the reconstructed 3D points. Peo-
ple have used different types of face model representations including parametric
surfaces [13], linear class face scans [5], and linear class deformation vectors [34].

Fua and Miccio [13, 14] computed dense matching using image correlations.
They then used a model-driven bundle adjustment technique to estimate the motions
and compute the 3D structures. The idea of the model-driven bundle adjustment is
to add a regularizer constraint to the traditional bundle adjustment formulation. The



20 Face Synthesis 523

constraint is that the reconstructed 3D points can be fit to a parametric face model.
Finally, they fit a parametric face model to the reconstructed 3D points. Their para-
metric face model contains a generic face mesh and a set of control points each con-
trolling a local area of the mesh. By adjusting the coefficients of the control points,
the mesh deforms in a linear fashion. Denote c1, c2, . . . , cm to be the coefficients of
the control points. Let R,T , s be the rotation, translation, and scaling parameters of
the head pose. Denote the mesh of the face as S = S(c1, c2, . . . , cm). Let T denote
the transformation operator, which is a function of R,T , s. The model fitting can be
formulated as a minimization problem

min
∑

i

Dist
[
Pi,T (S)

]
, (20.1)

where Pi is the reconstructed 3D points, and Dist(Pi,T (S)) is the distance from Pi
to the surface T (S).

This minimization problem can be solved using an iterative closest point ap-
proach. First, c1, . . . , cm are initialized and fixed. For each point Pi , find its closest
point Qi on the surface S. Then solve for the pose parameters R,T , s to minimize∑
i ‖Pi,T (Qi)‖ by using the quaternion-based technique [17]. The head pose pa-

rameters are then fixed. Because S is a linear function of c1, . . . , cm, (20.1) becomes
a linear system and can be solved through a least-square procedure. At the next it-
eration, the newly estimated c1, . . . , cm are fixed, and we solve for R,T , s again.

Liu et al. [32, 34] developed a face modeling system that allows an untrained
user with a personal computer and an ordinary video camera to create and instantly
animate his or her face model. The user first turns his or her head from one side
to the other. Then two frames pop up, and the user is required to mark five feature
points (two inner eye corners, two mouth corners, and the nose top) on each view.
After that, the system is completely automatic. Once the process finishes, his or
her constructed face model is displayed and animated. The authors used a feature-
based approach to find correspondences. It consists of three steps: (1) detecting
corners in each image; (2) matching corners between the two images; (3) detecting
false matches based on a robust estimation technique. The reader is referred to Liu
et al. [34] for details. Compared to the optical flow approach, the feature-based
approach is more robust to intensity and color variations.

After the matching is done, they used both the corner points from the image
matching and the five feature points clicked by the user to estimate the camera mo-
tion. Because of the matching errors for the corner points and the inaccuracy of the
user-clicked points, it is not robust to directly use these points for motion estima-
tion. Therefore they used the physical properties of the user-clicked feature points to
improve the robustness. They used the face symmetry property to reduce the num-
ber of unknowns and put reasonable bounds on the physical quantities (such as the
height of the nose). In this way, the algorithm becomes significantly more robust.
The algorithm’s details were described by Liu and Zhang [32].

For the model fitting, they used a linear class of face geometries as their model
space. A face was represented as a linear combination of a neutral face (Fig. 20.1)
and some number of face metrics, where a metric is a vector that linearly deforms
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Fig. 20.1 Neutral face

a face in certain way, such as to make the head wider, the nose bigger, and so on.
To be more precise, let us denote the face geometry by a vector S = (vT

1 , . . . ,v
T
n)

T,
where vi = (Xi, Yi,Zi)T (i = 1, . . . , n) are the vertices, and a metric by a vector
M = (δv1

T, . . . , δvnT)T, where δvi = (δXi, δYi, δZi)T. Given a neutral face S 0 =
(v0

1
T
, . . . ,v0

n

T
)T and a set of m metrics M j = (δvj1

T
, . . . , δvjn

T
)T, the linear space

of face geometries spanned by these metrics is

S = S 0 +
m∑

j=1

cjM
j subject to cj ∈ [lj , uj ] (20.2)

where cj represents the metric coefficients, and lj and uj are the valid range of cj .
The model fitting algorithm is similar to the approach by Fua and Miccio

[13, 14], described earlier in this section. The advantage of using a linear class of
face geometries is that it is guaranteed that every face in the space is a reasonable
face, and, furthermore, it has fine-grain control because some metrics are global
whereas others are only local. Even with a small number of 3D corner points that
are noisy, it is still able to generate a reasonable face model. Figure 20.2 shows
side-by-side comparisons of the original images with the reconstructed models for
various people.

Note that in both approaches just described the model fitting is separated from the
motion estimation. In other words, the resulting face model is not used to improve
the motion estimation.

During motion estimation, the algorithm by Liu et al. [34] used only general
physical properties about human faces. Even though Fua and Miccio [13, 14] used
face model during motion estimation, they used it only as a regularizer constraint.
The 3D model obtained with their model-driven bundle adjustment is in general
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Fig. 20.2 Side by side comparison of the original images with the reconstructed models of various
people

inaccurate, and they have to throw away the model and use an additional step to
recompute the 3D structure. The problem is that the camera motions are fixed on
the second step. It may happen that the camera motions are not accurate owing
to the inaccurate model at the first stage, so the structure computed at the second
stage may not be optimal either. What one needs is to optimize camera motion and
structure together.

Shan et al. [49] proposed an algorithm, called model-based bundle adjustment,
that combines the motion estimation and model fitting into a single formulation.
Their main idea was to directly use the model space as a search space. The model
parameters (metric coefficients) become the unknowns in their bundle adjustment
formulation. The variables for the 3D positions of the feature points, which are
unknowns in the traditional bundle adjustment, are eliminated. Because the number
of model parameters is in general much smaller than the isolated points, it results in
a smaller search space and better posed optimization system.
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Fig. 20.3 Face mesh comparison. Left: traditional bundle adjustment; Middle: ground truth; Right:
model-based bundle adjustment. (From Shan et al. [49], with permission)

Figure 20.3 shows the comparisons of the model-based bundle adjustment with
the traditional bundle adjustment. On the top are the front views, and on the bottom
are the side views. On each row, the one in the middle is the ground truth, on the
left is the result from the traditional bundle adjustment, and on the right is the re-
sult from the model-based bundle adjustment. By looking closely, we can see that
the result of the model-based bundle adjustment is much closer to the ground truth
mesh. For example, on the bottom row, the nose on the left mesh (traditional bundle
adjustment) is much taller than the nose in the middle (ground truth). The nose on
the right mesh (model-based bundle adjustment) is similar to the one in the middle.

20.2.2 Face Modeling from Two Orthogonal Views

A number of researchers have proposed that we create face models from two or-
thogonal views [1, 8, 20]: one frontal view and one side view. The frontal view
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provides the information relative to the horizontal and vertical axis, and the side
view provides depth information. The user needs to manually mark a number of
feature points on both images. The feature points are typically the points around the
face features, including eyebrows, eyes, nose, and mouth. Because of occlusions, the
number of feature points on the two views are in general different. The quality of
the face model depends on the number of feature points the user provides. The more
feature points, the better the model, but one needs to balance between the amount
of manual work required from the user and the quality of the model.

Because the algorithm is so simple to implement and there is no robustness issue,
this approach has been used in some commercially available systems [19]. Some
systems provide a semiautomatic interface for marking the feature points to reduce
the amount of the manual work. The disadvantage is that it is not convenient to
obtain two orthogonal views, and it requires quite a number of manual interventions
even with the semiautomatic interfaces.

20.2.3 Face Modeling from a Single Image

Blanz and Vetter [5] developed a system to create 3D face models from a single im-
age. They used both a database of face geometries and a database of face textures.
The geometry space is the linear combination of the example faces in the geometry
database. The texture space is the linear combination of the example texture images
in the image database. Given a face image, they search for the coefficients of the
geometry space and the coefficients of the texture space so the synthesized image
matches the input image. More details can be found in Chap. 10 and in their pa-
per [5]. One limitation of their current system is that it can only handle the faces
whose skin types are similar to the examples in the database. One could potentially
expand the image database to cover more varieties of skin types, but there would be
more parameters and it is not clear how it is going to affect the robustness of the
system.

Liu [31] developed a fully automatic system to construct 3D face models from
a single frontal image. They first used a face detection algorithm to find a face and
then a feature alignment algorithm to find face features. By assuming an orthogonal
projection, they fit a 3D face model by using the linear space of face geometries de-
scribed in Sect. 20.2.1. Given that there are existing face detection and feature align-
ment systems [28, 62], implementing this system is simple. The main drawback of
this system is that the depth of the reconstructed model is in general not accurate.
For small head rotations, however, the model is recognizable. Figure 20.4 shows
an example where the left is the input image and the right is the feature alignment
result. Figure 20.5 shows the different views of the reconstructed 3D model. Fig-
ure 20.6 shows the results of making expressions for the reconstructed face model.
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Fig. 20.4 Left: input image. Right: the result from image alignment. (From Liu [31], with permis-
sion)

Fig. 20.5 Views of the 3D model generated from the input image in Fig. 20.4. (From Liu [31],
with permission)

Fig. 20.6 Generating different expressions for the constructed face model. (From Liu [31], with
permission)
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20.3 Face Relighting

During the past several years, a lot of progress has been made on generat-
ing photo-realistic images of human faces under arbitrary lighting conditions
[21, 26, 50, 53, 57, 64]. One class of method is inverse rendering [9, 10, 15, 36,
38, 63]. By capturing the lighting environment and recovering surface reflectance
properties, one can generate photo-realistic rendering of objects including human
faces under new lighting conditions. To recover the surface reflectance properties,
one typically needs special setting and capturing equipment. Such systems are best
suited for studio-like applications.

20.3.1 Face Relighting Using Ratio Images

Riklin-Raviv and Shashua [46] proposed a ratio-image technique to map one per-
son’s lighting condition to a different person. Given a face under two different light-
ing conditions, and another face under the first lighting condition, they used the color
ratio (called the quotient image) to generate an image of the second face under the
second lighting condition. For any given point on the face, let ρ denote its albedo,
and n its normal. Let E(n) and E′(n) be the irradiances under the two lighting con-
ditions, respectively. Assuming a Lambertian reflectance model, the intensities of
this point under the two lighting conditions are I = ρE(n) and I ′ = ρE′(n). Given
a different face, let ρ1 be its albedo. Then its intensities on the two lighting condi-
tions are I1 = ρE(n), and I ′

1 = ρE′(n). Therefore, we have

I1

I
= I ′

1

I ′ . (20.3)

Thus,

I ′
1 = I ′ I1

I
. (20.4)

Equation (20.4) shows that one can obtain I ′
1 from I , I ′, and I1. If we have one

person’s images under all possible lighting conditions and the second person’s im-
age under one of the lighting conditions, we can use (20.4) to generate the second
person’s images under all the other lighting conditions.

In many applications, we do not know in which lighting condition the second
person’s image is. Riklin-Raviv and Shashua [46] proposed that we use a database of
images of different people under different lighting conditions. For any new person,
if its albedo is “covered by” (formally called “rational span”, see Riklin-Raviv and
Shashua [46] for details) the albedos of the people in the database, it is possible to
figure out in which lighting condition the new image was.



530 Y. Wang et al.

20.3.2 Face Relighting from a Single Image

Researchers have developed face relighting techniques that do not require a
database [21, 57, 59, 64]. Given a single image of a face, Wen et al. [59] first com-
puted a special radiance environment map assuming known face geometry. For any
point on the radiance environment map, its intensity is the irradiance at the normal
direction multiplied by the average albedo of the face. In other words, the special
radiance environment map is the irradiance map times a constant albedo. Zhang and
Samaras [64] and Jiang et al. [21] proposed statistical approaches to recover the
spherical harmonic basis images from the input image. A bootstrap step is required
to obtain the statistical texture and shape information of human faces. To estimate
the lighting, shape and albedo of a human face simultaneously from a single im-
age, Wang et al. [57] used the 3D spherical harmonic morphable model (SHBMM),
an integration of spherical harmonics into the morphable model framework. Thus,
any face under arbitrary pose and illumination conditions can be represented sim-
ply by three low dimensional vectors: shape parameters, spherical harmonic basis
parameters, and illumination coefficients. In this section, we describe the technique
proposed by Wen et al. [59] in more detail.

Given a single image of a face, Wen et al. [59] computed the special radiance
environment map using spherical harmonic basis functions [3, 45] . Accordingly, the
irradiance can be approximated as a linear combination of nine spherical harmonic
basis functions [3, 45].

E(n)≈
∑

l≤2,−l≤m≤l
ÂlLlmYlm(n). (20.5)

Wen et al. [59] also expanded the albedo function ρ(n) using spherical harmonics

ρ(n)= ρ00 +Ψ (n) (20.6)

where ρ00 is the constant component, and Ψ (n) contains other higher order compo-
nents.

From (20.5) and (20.6), we have

ρ(n)E(n)≈ ρ00

∑

l≤2,−l≤m≤l
ÂlLlmYlm(n)+Ψ (n)

∑

l≤2,−l≤m≤l
ÂlLlmYlm(n).

If we assume Ψ (n) does not have first four order (l = 1,2,3,4) components,
the second term of the righthand side in (20.7) contains components with orders
equal to or higher than 3 (see Wen et al. [59] for the explanation). Because of the
orthogonality of the spherical harmonic basis, the nine coefficients of order l ≤ 2
estimated from ρ(n)E(n)with a linear least-squares procedure are ρ00ÂlLlm, where
(l ≤ 2,−l ≤ m ≤ l). Therefore, we obtain the radiance environment map with a
reflectance coefficient equal to the average albedo of the surface.

Wen et al. [59] argued that human face skin approximately satisfies the above
assumption, that is, it does not contain low frequency components other than the
constant term.
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Fig. 20.7 Comparison of synthesized results and ground truth. The top row is the ground truth.
The bottom row is the synthesized result, where the middle image is the input. (From Wen et
al. [59], with permission)

By using a generic 3D face geometry, Wen et al. [59] set up the following system
of equations:

I (n)=
∑

l≤2,−l≤m≤l
xlmYlm(n). (20.7)

They used a linear least-squares procedure to solve the nine unknowns xlm, l ≤
2,−l ≤m≤ l, thus obtaining the special radiance environment map.

One interesting application is that one can relight the face image when the
environment rotates. For the purpose of explanation, let us imagine the face ro-
tates while the environment is static. Given a point on the face, its intensity is
If = ρE(n). The intensity of the corresponding point on the radiance environment
map is Is(n)= ρ̄E(n), where ρ̄ is the average albedo of the face. After rotation, de-
note n′ to be the new normal. The new intensity on the face is I ′

f = ρE(n). The in-
tensity on the radiance environment map corresponding to the n′ is Is(n′)= ρ̄E(n′).
Therefore,

I ′
f = If Is(n

′)
Is(n)

. (20.8)

The bottom row of Fig. 20.7 shows the relighting results. The input image is the
one in the middle. The images at the top are the ground truth. We can see that
the synthesized results match well with the ground truth images. There are some
small differences mainly on the first and last images due to specular reflections.
(According to Marschner et al. [37], human skin is almost Lambertian at small light
incidence angles and has strong non-Lambertian scattering at higher angles.)

Another application is that one can modify the estimated spherical harmonic co-
efficients to generate radiance environment maps under the modified lighting con-
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Fig. 20.8 Lighting editing by modifying the spherical harmonics coefficients of the radiance en-
vironment map. The left image in each pair is the input image and the right image is the result after
modifying the lighting. (From Wen et al. [59], with permission)

ditions. For each new radiance environment map, one can use the ratio-image tech-
nique (see (20.8)) to generate the face image under the new lighting condition. In
this way, one can modify the lighting conditions of the face. In addition to light-
ing editing, this can also be used to generate training data with different lighting
conditions for face detection or face recognition applications.

Figure 20.8 shows four examples of lighting editing by modifying the spherical
harmonics coefficients. For each example, the left image is the input image, and
the right image is the result after modifying the lighting. In example (a), lighting
is changed to attach shadow to the person’s left face. In example (b), the light on
the person’s right face is changed to be more reddish, and the light on her left face
becomes slightly more bluish. In (c), the bright sunlight move from the person’s left
face to his right face. In (d), we attach shadow to the person’s right face and change
the light color as well.

20.3.3 Application to Face Recognition Under Varying
Illumination

Qing et al. [44] used the face relighting technique as described in the previous sec-
tion for face recognition under different lighting environments. For any given face
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image under unknown illumination, they first applied the face relighting technique
to generate a new image of the face under canonical illumination. Canonical illumi-
nation is the constant component of the spherical harmonics, which can be obtained
by keeping only the constant coefficient (x00 in (20.7)) while setting the rest of the
coefficients to zero. The ratio-image technique of (20.8) is used to generate the new
image under canonical illumination.

Image matching is performed on the images under canonical illumination. Qing
et al. [44] performed face recognition experiments with the PIE database [51]. They
reported significant improvement of the recognition rate after using face relighting.
The reader is referred to their article [44] for detailed experimental results.

20.4 Facial Expression Synthesis

In the past several years, facial expression synthesis has been an active research
topic [7, 11, 24, 29, 35, 54, 56, 66]. Generally face expression synthesis techniques
can be divided into three categories: physically based facial expression synthe-
sis, morph-based facial expression synthesis, and expression mapping (also called
performance-driven animation).

20.4.1 Physically Based Facial Expression Synthesis

One of the early physically based approaches is the work by Badler and Platt [2],
who used a mass and spring model to simulate the skin. They introduced a set of
muscles. Each muscle is attached to a number of vertices of the skin mesh. When
the muscle contracts, it generates forces on the skin vertices, thereby deforming the
skin mesh. A user generates facial expressions by controlling the muscle actions.

Waters [58] introduced two types of muscles: linear and sphincter. The lips and
eye regions are better modeled by the sphincter muscles. To gain better control, they
defined an influence zone for each muscle so the influence of a muscle diminishes
as the vertices are farther away from the muscle attachment point.

Terzopoulos and Waters [55] extended Waters’ model by introducing a three-
layer facial tissue model. A fatty tissue layer is inserted between the muscle and the
skin, providing more fine grain control over the skin deformation. This model was
used by Lee et al. [25] to animate Cyberware scanned face meshes.

One problem with the physically based approaches is that it is difficult to generate
natural looking facial expressions. There are many subtle skin movement, such as
wrinkles and furrows, that are difficult to model with a mass-and-spring scheme.

20.4.2 Morph-Based Facial Expression Synthesis

Given a set of 2D or 3D expressions, one could blend these expressions to generate
new expressions. This technique is called morphing or interpolation. This technique



534 Y. Wang et al.

was first reported in Parke’s pioneer work [40]. Beier and Neely [4] developed a
feature-based image morphing technique to blend 2D images of facial expressions.
Bregler et al. [6] applied the morphing technique to mouth regions to generate lip-
synch animations.

Pighin et al. [42] used the morphing technique on both the 3D meshes and texture
images to generate 3D photorealistic facial expressions. They first used a multiview
stereo technique to construct a set of 3D facial expression examples for a given
person. Then they used the convex linear combination of the examples to generate
new facial expressions. To gain local control, they allowed the user to specify an
active region so the blending affects only the specified region. The advantage of this
technique is that it generates 3D photorealistic facial expressions. The disadvantage
is that the possible expressions this technique can generate is limited. The local
control mechanism greatly enlarges the expression space, but it puts burdens on the
user. The artifacts around the region boundaries may occur if the regions are not
selected properly. Joshi et al. [22] developed a technique to automatically divide
the face into subregions for local control. The region segmentation is based on the
analysis of motion patterns for a set of example expressions.

20.4.3 Expression Mapping

Expression mapping (also called performance-driven animation) has been a popular
technique for generating realistic facial expressions. This technique applies to both
2D and 3D cases. Given an image of a person’s neutral face and another image of the
same person’s face with an expression, the positions of the face features (e.g., eyes,
eyebrows, mouths) on both images are located either manually or through some
automatic method. The difference vector of the feature point positions is then added
to a new face’s feature positions to generate the new expression for that face through
geometry-controlled image warping (we call it geometric warping) [4, 30, 61]. In
the 3D case, the expressions are meshes, and the vertex positions are 3D vectors.
Instead of image warping, one needs a mesh deformation procedure to deform the
meshes based on the feature point motions [16].

Williams [60] developed a system to track the dots on a performer’s face and map
the motions to the target model. Litwinowicz and Williams [30] used this technique
to animate images of cats and other creatures.

Because of its simplicity, the expression mapping technique has been widely
used in practice. One great example is the FaceStation system developed by Eye-
matic [19]. The system automatically tracks a person’s facial features and maps his
or her expression to the 3D model on the screen. It works in real time without any
markers.

There has been much research done to improve the basic expression mapping
technique. Pighin et al. [42] parameterized each person’s expression space as a con-
vex combination of a few basis expressions and proposed mapping one person’s
expression coefficients to those of another person. It requires that the two people
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have the same number of basis expressions and that there is a correspondence be-
tween the two basis sets. This technique was extended by Pyun et al. [43]. Instead
of using convex combination, Pyun et al. [43] proposed to the use of radial basis
functions to parameterize the expression space.

Noh and Neumann [39] developed a technique to automatically find a corre-
spondence between two face meshes based on a small number of user-specified
correspondences. They also developed a new motion mapping technique. Instead of
directly mapping the vertex difference, this technique adjusts both the direction and
the magnitude of the motion vector based on the local geometries of the source and
target model.

20.4.3.1 Mapping Expression Details

Liu et al. [33] proposed a technique to map one person’s facial expression details
to a different person. Facial expression details are subtle changes in illumination
and appearance due to skin deformations. The expression details are important vi-
sual cues, but they are difficult to model and synthesize. Given a person’s neutral
face image and an expression image, Liu et al. [33] observed that the illumination
changes caused by the skin deformations can be extracted in a skin color indepen-
dent manner using an expression ratio image (ERI). The ERI can then be applied to
a different person’s face image to generate the correct illumination changes caused
by the skin deformation of that person’s face.

Let Ia be person A’s neutral face image, let I ′
a be A’s expression image. Given a

point on the face, let ρa be its albedo, and let n be its normal on the neutral face.
Let n′ be the normal when the face makes the expression. By assuming Lambertian
model, we have Ia = ρaE(n) and I ′

a = ρaE(n′). Taking the ratio, we have:

I ′
a

Ia
= E(n′)
E(n)

. (20.9)

Note that I
′
a

Ia
captures the illumination changes due to the changes in the surface

normals; furthermore, it is independent of A’s albedo. I
′
a

Ia
is called the expression

ratio image. Let Ib be person B’s neutral face image. Let ρb be its albedo. By as-
suming that B and A have similar surface normals on their corresponding points, we
have Ib = ρbE(n). Let I ′

b be the image of B making the same expression as A; then
I ′
b = ρbE(n′). Therefore,

I ′
b

Ib
= E(n′)
E(n)

(20.10)

and so

I ′
b = Ib I

′
a

Ia
. (20.11)

Therefore, we can compute I ′
b by multiplying Ib with the expression radio image.
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Fig. 20.9 Expression ratio image. Left: neutral face. Middle: expression face. Right: expression
Ratio image. The ratios of the RGB components are converted to colors for display purpose. (From
Liu et al. [33], with permission)

Fig. 20.10 Mapping a thinking expression. Left: neutral face. Middle: result from geometric warp-
ing. Right: result from ERI. (From Liu et al. [33], with permission)

Figure 20.9 shows a male subject’s thinking expression and the corresponding
ERI. Figure 20.10 shows the result of mapping the thinking expression to a female
subject. The image in the middle is the result of using traditional expression map-
ping. The image on the right is the result generated using the ERI technique. We can
see that the wrinkles due to skin deformations between the eyebrows are mapped
well to the female subject. The resulting expression is more convincing than the re-
sult from the traditional geometric warping. Figure 20.12 shows the result of map-
ping the smile expression (Fig. 20.11) to Mona Lisa. Figure 20.13 shows the result
of mapping the smile expression to two statues.

20.4.3.2 Geometry-Driven Expression Synthesis

One drawback of the ERI technique is that it requires the expression ratio image
from the performer. Zhang et al. [65] proposed a technique that requires only the fea-
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Fig. 20.11 Smile expression
used to map to other people’s
faces

Fig. 20.12 Mapping a smile to Mona Lisa’s face. Left: “neutral” face. Middle: result from geo-
metric warping. Right: result from ERI. (From Liu et al. [33], with permission)

Fig. 20.13 Mapping expressions to statues. a Left: original statue. Right: result from ERI. b Left:
another statue. Right: result from ERI. (From Liu et al. [33], with permission)
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Fig. 20.14 Geometry-driven expression synthesis system. (From Zhang et al. [65], with permis-
sion)

ture point motions from the performer, as for traditional expression mapping. One
first computes the desired feature point positions (geometry) for the target model,
as for traditional expression mapping. Based on the desired feature point positions,
the expression details for the target model are synthesized from examples.

Let Ei = (Gi, Ii), i = 0, . . . ,m, be the example expressions whereGi represents
the geometry and Ii is the texture image (assuming that all the texture images Ii are
pixel aligned). Let H(E0,E1, . . . ,Em) be the set of all possible convex combina-
tions of these examples. Then

H(E0,E1, . . . ,Em)=
{(

m∑

i=0

ciGi,

m∑

i=0

ciIi

)∣
∣
∣
∣
∣

m∑

i=0

ci = 1, ci ≥ 0, i = 0, . . . ,m

}

.

(20.12)
Note that each expression in the space H(E0,E1, . . . ,Em) has a geometric com-
ponent G =∑m

i=0 ciGi and a texture component I =∑m
i=0 ciIi . Because the ge-

ometric component is much easier to obtain than the texture component, Zhang et
al. [65] proposed using the geometric component to infer the texture component.
Given the geometric component G, one can project G to the convex hull spanned
by G0, . . . ,Gm and then use the resulting coefficients to composite the example
images and obtain the desired texture image.

To increase the space of all possible expressions, they proposed subdividing the
face into a number of subregions. For each subregion, they used the geometry as-
sociated with this subregion to compute the subregion texture image. The final ex-
pression is then obtained by blending these subregion images together. Figure 20.14
is an overview of their system. It consists of an offline processing unit and a run
time unit. The example images are processed offline only once. At run time, the
system takes as input the feature point positions of a new expression. For each sub-
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Fig. 20.15 a Feature points.
b Face region subdivision.
(From Zhang et al. [65], with
permission)

region, they solve the quadratic programming problem of (20.12) using the interior
point method. They then composite the example images in this subregion together
to obtain the subregion image. Finally, they blend the subregion images together to
produce the expression image.

Figure 20.15a shows the feature points they used by Zhang et al. [65]. Fig-
ure 20.15b shows the face region subdivision. From Fig. 20.15a, we can see that
the number of feature points used for their synthesis system is large. The reason is
that more feature points are better for the image alignment and for the quadratic pro-
gramming solver. The problem is that some feature points, such as those on the fore-
head, are quite difficult to obtain from the performer, and they are person-dependent.
Thus these feature points are not suited for expression mapping. To address this
problem, they developed a motion propagation technique to infer feature point mo-
tions from a subset. Their basic idea was to learn how the rest of the feature points
move from the examples. To have fine-grain control, they divided the face feature
points into hierarchies and performed hierarchical principal component analysis on
the example expressions.

There are three hierarchies. At hierarchy 0, they used a single feature point set
that controls the global movement of the entire face. There are four feature point
sets at hierarchy 1, each controlling the local movement of facial feature regions
(left eye region, right eye region, nose region, mouth region). Each feature point
set at hierarchy 2 controls details of the face regions, such as eyelid shape, lip line
shape, and so on. There are 16 feature point sets at hierarchy 2. Some facial feature
points belong to several sets at different hierarchies, and they are used as bridges
between global and local movement of the face, so the vertex movements can be
propagated from one hierarchy to another.

For each feature point set, Zhang et al. [65] computed the displacement of all
the vertices belonging to this feature set for each example expression. They then
performed principal component analysis on the vertex displacement vectors cor-
responding to the example expressions and generated a lower dimensional vector
space. The hierarchical principal component analysis results are then used to propa-
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gate vertex motions so that from the movement of a subset of feature points one can
infer the most reasonable movement for the rest of the feature points.

Let v1, v2, . . . , vn denote all the feature points on the face. Let δV denote the
displacement vector of all the feature points. For any given δV and a feature point
set F (the set of indexes of the feature points belonging to this feature point set),
let δV (F ) denote the subvector of those vertices that belong to F . Let Proj(δV,F )
denote the projection of δV (F ) into the subspace spanned by the principal compo-
nents corresponding to F . In other words, Proj(δV,F ) is the best approximation of
δV (F ) in the expression subspace. Given δV and Proj(δV,F ), let us say that δV is
updated by Proj(δV,F ) if for each vertex that belongs to F its displacement in δV
has been replaced with its corresponding value in Proj(δV,F ).

The motion propagation algorithm takes as input the displacement vector for a
subset of the feature points, say, �vi1,�vi2, . . . ,�vik . Denote T = {i1, i2, . . . , ik}.
Below is a description of the motion propagation algorithm.

MotionPropagation
Begin

Set δV = 0.
While (stop-criteria is not met) Do

For each ik ∈ T , set δV (ik)=�vik .
For all Feature point set F , set hasBeenProcessed(F ) to be false.

Find the feature point set F with the lowest hierarchy such that F ∩ T �= ∅.
MotionPropagationFeaturePointSet(F).

End
End

The function MotionPropagationFeaturePointSet is defined as follows:

MotionPropagationFeaturePointSet(F ∗)
Begin

Set h to be the hierarchy of F ∗.
If hasBeenProcessed(F ∗) is true, return.
Compute Proj(δV,F ∗).
Update δV with Proj(δV,F ∗).
Set hasBeenProcessed(F ∗) to be true.
For each feature set F belonging to hierarchy h− 1 such that F ∩ F ∗ �= ∅.

MotionPropagationFeaturePointSet(F ).
For each feature set F belonging to hierarchy h+ 1 such that F ∩ F ∗ �= ∅.
MotionPropagationFeaturePointSet(F ).

End

The algorithm initializes δV to a zero vector. At the first iteration, it sets δV (ik)
to be equal to the input displacement vector for vertex vik . Then it finds the feature
point set with the lowest hierarchy so it intersects with the input feature point set T
and calls MotionPropagationFeaturePointSet. The function uses principal compo-
nent analysis to infer the motions for the rest of the vertices in this feature point set.
It then recursively calls MotionPropagationFeaturePointSet on other feature point
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Fig. 20.16 Example images of the male subject. (From Zhang et al. [65], with permission)

sets. At the end of the first iteration, δV contains the inferred displacement vectors
for all the feature points. Note that for the vertex in T its inferred displacement
vector may be different from the input displacement vector because of the principal
component projection. At the second iteration, δV (ik) is reset to the input displace-
ment vector for all ik ∈ T . The process repeats.

Figure 20.16 shows example images of a male subject, and Fig. 20.17 shows the
results of mapping a female subject’s expressions to this male subject.

In addition to expression mapping, Zhang et al. [65] applied their techniques to
expression editing. They developed an interactive expression editing system that
allows a user to drag a face feature point, and the system interactively displays the
resulting image with expression details. Figure 20.18 is a snapshot of their interface.
The red dots are the feature points that the user can click and drag. Figure 20.19
shows some of expressions generated by the expression editing system.

20.5 Discussion

We have reviewed recent advances on face synthesis including face modeling, face
relighting, and facial expression synthesis. There are many open problems that re-
main to be solved.

One problem is how to generate face models with fine geometric details. As dis-
cussed in Sect. 20.2, many 3D face modeling techniques use some type of model
space to constrain the search, thereby improving the robustness. The resulting face
models in general do not have the geometric details, such as creases and wrinkles.
Geometric details are important visual cues for human perception. With geomet-
ric details, the models look more realistic; and for personalized face models, they
look more recognizable to human users. Geometric details can potentially improve
computer face recognition performance as well.

Another problem is how to handle non-Lambertian reflections. The reflection
of human face skin is approximately specular when the angle between the view
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Fig. 20.17 Results of the enhanced expression mapping. The expressions of the female subject
are mapped to the male subject. (From Zhang et al. [65], with permission)

direction and lighting direction is close to 90°. Therefore, given any face image, it
is likely that there are some points on the face whose reflection is not Lambertian. It
is desirable to identify the non-Lambertian reflections and use different techniques
for them during relighting.

How to handle facial expressions in face modeling and face relighting is another
interesting problem. Can we reconstruct 3D face models from expression images?
One would need a way to identify and undo the skin deformations caused by the ex-
pression. To apply face relighting techniques on expression face images, we would
need to know the 3D geometry of the expression face to generate correct illumina-
tion for the areas with strong deformations.

One ultimate goal in face animation research is to be able to create face models
that look and move just like a real human character. Not only do we need to synthe-
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Fig. 20.18 The expression
editing interface. The red dots
are the feature points which a
user can click on and drag.
(From Zhang et al. [65], with
permission)

Fig. 20.19 Expressions generated by the expression editing system. (From Zhang et al. [65], with
permission)



544 Y. Wang et al.

size facial expression, we also need to synthesize the head gestures, eye gazes, hair,
and the movements of lips, teeth, and tongue.

Face synthesis techniques can be potentially used for face detection and face
recognition to handle different head poses, different lighting conditions, and differ-
ent facial expressions. As we discussed earlier, some researchers have started ap-
plying some face synthesis techniques to face recognition [44, 48]. We believe that
there are many more opportunities along this line, and that it is a direction worth
exploring.

Acknowledgements We thank Ying-Li Tian for carefully reading our manuscripts and providing
critical reviews. We also thank Zhengyou Zhang, Alex Acero, and Heung-Yeung Shum for their
support.

References

1. Akimoto, T., Suenaga, Y., Wallace, R.S.: Automatic 3d facial models. IEEE Comput. Graph.
Appl. 13(5), 16–22 (1993)

2. Badler, N., Platt, S.: Animating facial expressions. In: Computer Graphics, pp. 245–252. Sig-
graph, August 1981

3. Basri, R., Jacobs, D.: Lambertian reflectance and linear subspaces. In: Proc. ICCV’01,
pp. 383–390 (2001)

4. Beier, T., Neely, S.: Feature-based image metamorphosis. In: Computer Graphics, pp. 35–42.
Siggraph, July 1992

5. Blanz, V., Vetter, T.: A morphable model for the synthesis of 3d faces. In: Computer Graphics,
Annual Conference Series, pp. 187–194. Siggraph, August 1999

6. Bregler, C., Covell, M., Slaney, M.: Video rewrite: Driving visual speech with audio. In: Com-
puter Graphics, pp. 353–360. Siggraph, August 1997

7. Chuang, E., Bregler, C.: Mood swings: expressive speech animation. ACM Trans. Graph.
24(2), 331–347 (2005)

8. Dariush, B., Kang, S.B., Waters, K.: Spatiotemporal analysis of face profiles: Detection, seg-
mentation, and registration. In: Proc. of the 3rd International Conference on Automatic Face
and Gesture Recognition, April 1998, pp. 248–253. IEEE, New York (1998)

9. Debevec, P.E.: Rendering synthetic objects into real scenes: Bridging traditional and image-
based graphics with global illumination and high dynamic range photography. In: Computer
Graphics, Annual Conference Series, pp. 189–198. Siggraph, July 1998

10. Debevec, P.E., Hawkins, T., Tchou, C., Duiker, H.-P., Sarokin, W., Sagar, M.: Acquiring the
reflectance field of a human face. In: Computer Graphics, Annual Conference Series, pp. 145–
156. Siggraph, July 2000

11. Deng, Z., Neumann, U.: Data-Driven 3D Facial Animation. Springer, Berlin (2007)
12. Dimitrijevic, M., Ilic, S., Fua, P.: Accurate face models from uncalibrated and ill-lit video

sequences. In: Computer Vision and Pattern Recognition, vol. II, pp. 1034–1041 (2004)
13. Fua, P., Miccio, C.: From regular images to animated heads: A least squares approach. In:

Eurographics of Computer Vision, pp. 188–202 (1996)
14. Fua, P., Miccio, C.: Animated heads from ordinary images: A least-squares approach. Comput.

Vis. Image Underst. 75(3), 247–259 (1999)
15. Georghiades, A., Belhumeur, P., Kriegman, D.: Illumination-based image synthesis: Creating

novel images of human faces under differing pose and lighting. In: IEEE Workshop on Multi-
View Modeling and Analysis of Visual Scenes, pp. 47–54 (1999)

16. Guenter, B., Grimm, C., Wood, D., Malvar, H., Pighin, F.: Making faces. In: Computer Graph-
ics, Annual Conference Series, pp. 55–66. Siggraph, July 1998



20 Face Synthesis 545

17. Horn, B.K.: Closed-form solution of absolute orientation using unit quaternions. J. Opt. Soc.
Am. A 4(4), 629–642 (1987)

18. http://www.digimask.com
19. http://www.eyematic.com
20. Ip, H.H.S., Yin, L.: Constructing a 3d individualized head model from two orthogonal views.

Vis. Comput. 12, 254–266 (1996)
21. Jiang, X., Kong, Y., Huang, J., Zhao, R., Zhang, Y.: Learning from real images to model light-

ing variations for face images. In: European Conference on Computer Vision (ECCV’2008),
vol. IV, pp. 284–297 (2008)

22. Joshi, P., Tien, W.C., Desbrun, M., Pighin, F.: Learning controls for blend shape based realistic
facial animation. In: Proc. Symposium on Computer Animation (SCA’03), pp. 187–192, July
2003

23. Kemelmacher, I., Basri, R.: Molding face shapes by example. In: European Conference on
Computer Vision, pp. I:277–288 (2006)

24. Lau, M., Chai, J., Xu, Y.-Q., Shum, H.-Y.: Face poser: Interactive modeling of 3D facial ex-
pressions using facial priors. ACM Trans. Graph. 29(1), 1–17 (2009)

25. Lee, Y., Terzopoulos, D., Waters, K.: Realistic modeling for facial animation. In: Computer
Graphics, pp. 55–62. Siggraph, August 1995

26. Lee, J., Moghaddam, B., Pfister, H., Machiraju, R.: A bilinear illumination model for ro-
bust face recognition. In: International Conference on Computer Vision (ICCV’05), vol. II,
pp. 1177–1184 (2005)

27. Lei, Z., Bai, Q., He, R., Li, S.: Face shape recovery from a single image using cca mapping
between tensor spaces. In: Computer Vision and Pattern Recognition (2008)

28. Li, S.Z., Gu, L.: Real-time multi-view face detection, tracking, pose estimation, alignment,
and recognition. In: IEEE Conf. on Computer Vision and Pattern Recognition Demo Summary
(2001)

29. Li, H., Weise, T., Pauly, M.: Example-based facial rigging. In: ACM Transactions on Graphics.
Siggraph, July 2010

30. Litwinowicz, P., Williams, L.: Animating images with drawings. In: Computer Graphics,
pp. 235–242. Siggraph, August 1994

31. Liu, Z.: A fully automatic system to model faces from a single image. Microsoft Research
Technical Report: MST-TR-2003-55 (2003)

32. Liu, Z., Zhang, Z.: Robust head motion computation by taking advantage of physical proper-
ties. In: IEEE Workshop on Human Motion (HUMO), pp. 73–77 (2000)

33. Liu, Z., Shan, Y., Zhang, Z.: Expressive expression mapping with ratio images. In: Computer
Graphics, Annual Conference Series, pp. 271–276. Siggraph, August 2001

34. Liu, Z., Zhang, Z., Jacobs, C., Cohen, M.: Rapid modeling of animated faces from video.
J. Vis. Comput. Animat. 12(4), 227–240 (2001)

35. Ma, W.-C., Jones, A., Chiang, J.-Y., Hawkins, T., Frederiksen, S., Peers, P., Vukovic, M.,
Ouhyoung, M., Debevec, P.: Facial performance synthesis using deformation-driven polyno-
mial displacement maps. In: SIGGRAPH Asia ’08, pp. 1–10. ACM, New York (2008)

36. Marschner, S.R., Greenberg, D.P.: Inverse lighting for photography. In: IST/SID Fifth Colort
Imaging Conference, November 1997

37. Marschner, S.R., Westin, S., Lafortune, E., Torance, K., Greenberg, D.: Image-based brdf
measurement including human skin. In: Rendering Techniques (1999)

38. Marschner, S.R., Guenter, B., Raghupathy, S.: Modeling and rendering for realistic facial
animation. In: Rendering Techniques, pp. 231–242. Springer, New York (2000)

39. Noh, J.J., Neumann, U.: Expression cloning. In: Computer Graphics, Annual Conference Se-
ries, pp. 277–288. Siggraph, August 2001

40. Parke, F.I.: Computer generated animation of faces. In: ACM National Conference, November
1972

41. Patel, A., Smith, W.: 3d morphable face models revisited. In: Computer Vision and Pattern
Recognition (CVPR’09), pp. 1327–1334 (2009)

http://www.digimask.com
http://www.eyematic.com


546 Y. Wang et al.

42. Pighin, F., Hecker, J., Lischinski, D., Szeliski, R., Salesin, D.H.: Synthesizing realistic facial
expressions from photographs. In: Computer Graphics, Annual Conference Series, pp. 75–84.
Siggraph, July 1998

43. Pyun, H., Kim, Y., Chae, W., Kang, H.W., Shin, S.Y.: An example-based approach for facial
expression cloning. In: Proc. Symposium on Computer Animation (SCA’03), pp. 167–176,
July 2003

44. Qing, L., Shan, S., Gao, W.: Face recognition with harmonic de-lighting. In: Asian Conference
on Computer Vision (ACCV), January 2004

45. Ramamoorthi, R., Hanrahan, P.: An efficient representation for irradiance environment maps.
In: Proc. SIGGRAPH 2001, pp. 497–500, August 2001

46. Riklin-Raviv, T., Shashua, A.: The quotient image: Class based re-rendering and recognition
with varying illuminations. In: IEEE Conference on Computer Vision and Pattern Recognition,
pp. 566–571, June 1999

47. Romdhani, S., Vetter, T.: Estimating 3d shape and texture using pixel intensity, edges, spec-
ular highlights, texture constraints and a prior. In: Computer Vision and Pattern Recognition,
vol. II, pp. 986–993 (2005)

48. Romdhani, S., Blanz, V., Vetter, T.: Face identification by fitting a 3d morphable model us-
ing linear shape and texture error functions. In: European Conference on Computer Vision
(ECCV’2002), vol. IV, pp. 3–19 (2002)

49. Shan, Y., Liu, Z., Zhang, Z.: Modle-based bundle adjustment with application to face model-
ing. In: International Conference on Computer Vision (ICCV’01), vol. II, pp. 644–651 (2001)

50. Shim, H., Luo, J., Chen, T.: A subspace model-based approach to face relighting under un-
known lighting and poses. IEEE Trans. Image Process. 17(8), 1331–1341 (2008)

51. Sim, T., Baker, S., Bsat, M.: The CMU pose, illumination, and expression (PIE) database. In:
Face and Gesture’02 (2002)

52. Smith, W., Hancock, E.: Recovering facial shape using a statistical model of surface normal
direction. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 1914–1930 (2006)

53. Stoschek, A.: Image-based re-rendering of faces for continuous pose and illumination direc-
tions. In: Computer Vision and Pattern Recognition (CVPR’00), pp. 582–587 (2000)
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Chapter 21
Evaluation Methods in Face Recognition

P. Jonathon Phillips, Patrick Grother, and Ross Micheals

21.1 Introduction

Face recognition from still frontal images has made great strides over the last twenty
years. Over this period, error rates have decreased by three orders of magnitude
when recognizing frontal face in still images taken with consistent controlled il-
lumination in an environment similar to a studio [5, 10, 15, 17–22]. Under these
conditions, error rates below 1% at a false accept rate of 1 in 1000 were reported in
the Face Recognition Vendor Test1 (FRVT) 2006 and the Multiple Biometric Eval-
uation (MBE) 2010 [10, 21].

The heart of designing and conducting evaluations is the experimental protocol.
The protocol states how an evaluation is to be conducted and how the results are to
be computed. In this chapter, we concentrate on describing the FERET and FRVT
2002 protocols. The FRVT 2002 evaluation protocol is based on the FERET eval-
uation protocols. The FRVT 2002 protocol is designed for biometric evaluations in
general, not just for evaluating face recognition algorithms. These two evaluation
protocols served as a basis for the FRVT 2006 and MBE 2010 evaluations.

The FRVT 2002 protocol was designed to allow for computing a wide range of
performance statistics. This includes the standard performance tasks of open-set and
closed-set identification, and verification. It also allows for resampling techniques,
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similarity score normalization, measuring the variability of performance statistics,
and covariate analysis [1–4, 9, 11, 14].

21.2 Performance Measures

In face recognition and biometrics, performance is reported on three standard tasks:
verification, open-set and closed-set identification. Each task has its own set of per-
formance measures. All three tasks are closely related, with open-set identification
being the general case.

A biometric system works by processing biometric samples. Biometric samples
are recordings of a feature of a person that allows that person to be recognized. Ex-
amples of biometric samples are facial images and fingerprints. A biometric sample
can consist of multiple recordings, for example, five images of a person acquired at
the same time or a facial image and a fingerprint.

Computing performance requires three sets of images. The first is a gallery G ,
which contains biometric samples of the people known to a system. The other two
are probe sets. A probe is a biometric sample that is presented to the system for
recognition, where recognition can be verification or identification. The first probe
set is PG that contains biometric samples of people in a gallery (these samples
are different from the samples in the gallery). The other probe set is PN , which
contains biometric samples of people that are not in a gallery.

Closed-set identification is the classic performance measure used in the auto-
matic face recognition community, where it is known as identification. In closed-set
identification, the basic question asked is: whose face is this? This question is mean-
ingful for closed-set identification, since the biometric sample in a probe is always
someone in the gallery. The general case of closed-set identification is open-set
identification.

In open-set identification, the person in the probe does not have to be somebody
in the gallery. In open-set identification, the basic question asked is: do we know
this face? In open-set identification, a system has to decide if the probe contains an
image of a person in the gallery. If a system decides that a person is in the gallery,
then the system has to report the identity of the person. When the gallery is small,
open-set identification can be referred to as a watch list task. When the gallery is
large, then open-set identification models mugshot book searching and the opera-
tion of large automatic fingerprint identification systems (AFIS as they are some-
times called). Open-set and closed-set identification are sometimes referred to as 1
to many matching or 1:N matching. Depending on the context and author, 1 to many
matching or 1:N matching can refer to either open-set or closed-set identification.

In a verification task, a person presents a biometrics sample to a system and
claims an identity. The system has to decide if the biometric sample belongs to the
claimed identity. In verification, the basic question asked is: is this person who he
claims to be? Verification is also called authentication or 1 to 1 matching.
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21.2.1 Open-Set Identification

Open-set identification is the general case task, with verification and closed-set iden-
tification being special cases. In the open-set identification task, a system determines
if a probe pj corresponds to a person in a gallery G . If the probe is determined to
be in the gallery, then the algorithm identifies the person in the probe.

A gallery G consists of a set of biometric samples {g1, . . . , g|G |}, with one bio-
metric sample per person. When a probe pj is presented to a system, it is compared
to the entire gallery. The comparison between a probe pj and each gallery biomet-
ric sample gi produces a similarity score sij . Larger similarity scores indicate that
two biometric samples are more similar. (A distance measure between biometric
samples can be converted to a similarity score by negating the distance measure.)
A similarity score sij is a match score if gi and pj are biometric samples of the same
person. A similarity score sij is a nonmatch score if gi and pj are biometric samples
of the different people. If pj is a biometric sample of a person in the gallery, then
let g∗ be its unique match in the gallery. The similarity score between pj and g∗ is
denoted by s∗j . The function id() returns the identity of a biometric sample, with
id(pj ) = id(g∗). For identification, all similarity scores between a probe pj and a
gallery are examined and sorted. A probe pj has rank n if s∗j is the nth largest
similarity score. This is denoted by rank(pj ) = n. Rank 1 is sometimes called the
top match.

Performance for open-set identification is characterized by two performance
statistics: detection and identification rate, and false alarm rate. We will first look at
the case where the identity of a probe is someone in the gallery; that is, pj ∈ PG .
A probe is detected and identified if the probe is correctly identified and the correct
match score is above an operating threshold τ . These conditions formally corre-
spond to:

• rank(pj )= 1 and
• s∗j ≥ τ for the similarity match where id(pj )= id(g∗),

for operating threshold τ . The detection and identification rate is the fraction of
probes in PG that are correctly detected and identified. The detection and identifi-
cation rate is a function of the operating threshold τ . The detection and identification
rate at threshold τ is

PDI(τ,1)= |{pj : pj ∈ PG , rank(pj )= 1, and s∗j ≥ τ }|
|PG | . (21.1)

The second performance statistic is false alarm rate. The false alarm rate provides
performance when a probe is not of someone in the gallery; that is, pj ∈ PN . This
type of probe is also referred to as an imposter. A false alarm occurs when the top
match score for an imposter is above the operating threshold. Formally, a false alarm
occurs when

max
i
sij ≥ τ.
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Fig. 21.1 Open-set identification performance reported on an ROC. The gallery consisted of 800
individuals. Performance is for FRVT 2002 and is explained in Sect. 21.5.1

The false alarm rate is the fraction of probes in pj ∈ PN that are alarms. This is
computed by

PFA(τ )= |{pj : pj ∈ PN ,maxi sij ≥ τ }|
|PN | . (21.2)

The ideal system would have a detection and identification rate of 1.0 and a false
alarm rate of 0.0. All people in the probe are detected and identified and there are
no false alarms. However, in real-world systems there is a trade-off between the de-
tection and identification rate, and the false alarm rate. By changing the operating
threshold, the performance rates change. Increasing the operating threshold lowers
both the false alarm rate and the detection and identification rate. Both these perfor-
mance rates cannot be maximized simultaneously; there is a trade-off between them.
This trade-off is shown on a receiver operating characteristic (ROC). An example
of an ROC is shown in Fig. 21.1 The horizontal axis is the false alarm rate (scaled
logarithmically). A logarithmic axis emphasizes low false alarm rates, which are
the operating points of interest in applications. The vertical axis is the detection and
identification rate. When reporting performance, the size of the gallery, and both
probe sets need to be stated.

In the general open-set identification case, a system examines the top n matches
between a probe and a gallery. A probe of a person in the gallery is detected and
identified at rank n if the probe is of rank n or less and the correct match is above
the operating threshold. These conditions formally correspond to:

• rank(pj )≤ n and
• s∗j ≥ τ for the similarity match where id(pj )= id(g∗).
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Fig. 21.2 Open-set identification performance as a function of rank for eight false alarm rates.
The false alarm rate for each curve is on the right side of the graph. The gallery size is 800. The
top curve is for a false alarm rate of 1.0

The detection and identification rate at rank n is the fraction of probes in PG who
are correctly detected and identified at rank n. The detection and identification rate
at rank n and threshold τ is

PDI(τ, n)= |{pj : pj ∈ PG , rank(pj )≤ n, and s∗j ≥ τ }|
|PG | . (21.3)

The computation of PFA(τ ) at rank n is the same as in the rank 1 case.
The general open-set identification performance can be plotted along three axes:

detection and identification rate, false alarm rate, and rank. The performance of a
system is represented as a surface in this three-dimensional parameter space. Instead
of plotting the complete open-set identification performance as a surface, perfor-
mance is usually plotted as two dimensional slices. One example is Fig. 21.1 where
rank is held constant at 1, and the trade-off between the detection and identification
rate and false alarm rate is shown. Figure 21.2 presents another format for reporting
open-set identification performance. The vertical axis is the detection and identifi-
cation rate and the horizontal axis is rank on a logarithmic scale. Each curve is the
performance of the same system at a different false alarm rate.

The method presented above for computing rank, assumes that all the similarity
scores between a probe and a gallery are unique. Special care needs to be taken
if there are multiple similarity scores with the same value, we will refer to these
as tied similarity scores. There are three methods for handling tie scores: optimistic,
pessimistic, and average rank. The optimistic rank is the number of similarity scores
strictly greater than (>) s∗j plus one. In this case, we assign a probe the highest
possible rank. The pessimistic rank is the number of similarity scores greater than
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or equal to (≥) s∗j plus one. In this case, we assign a probe the lowest possible rank.
The average rank is the average of the optimistic and pessimistic ranks. In the FRVT
2002 protocol, the average rank was used. Resolving ties with the optimistic rank
can lead to strange pathologies. For example, if a similarity matrix consisted of one
value, then the identification rate reported with the optimistic rank would be 100%.

21.2.2 Verification

Verification or authentication follows the following operational model. In a typical
verification task, a person presents his biometric sample to a system and claims to
be a person in the system’s gallery. The presented biometric sample is a probe. The
system then compares the probe with the stored biometric sample of the person in
the gallery. The comparison produces a similarity score. The system accepts the
identity claim if the similarity score is greater than the system’s operating threshold.
The operational threshold is determined by the applications, and different applica-
tions will have different operational thresholds. Otherwise, the system rejects the
claim.

There are two standard protocols for computing verification performance. The
first is the round robin methods. In the round robin protocol, both of the probe set
PG and PN are the same set and will be referred to as the probe set P . All scores
between gallery and probe set samples are computed. All match scores between the
gallery and probe set are used to compute the verification rate, and all non-match
scores are used to compute the false accept rate. Formal, for the round robin method,
the verification rate is computed by

PV(τ )= |{pj : sij ≥ τ, id(gi)= id(pj )}|
|P| , (21.4)

and the false accept rate is computed by

PFA(τ )= |{sij : sij ≥ τ and id(gi) �= id(pj )}|
(|P| − 1)|G | . (21.5)

One complaint with the round robin protocol is that probes are used to generate
both verification and false accept rates. There is a concern that this does not ade-
quately model the situation where false identity claims are generated by people not
in the gallery. The true imposter protocol addresses this concern. In the true im-
poster protocol, performance is computed from two probe sets, PG and PN . The
verification rate is computed from the match scores between a gallery and PG . The
number of match scores is the size of PG . The false alarm rate is computed from all
non-match scores between the gallery and PN . These non-match scores are called
true imposters because people in PN are not in the galley. The number of non-
match scores is |PN ||G |. Formal, for the true impostor method, the verification
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rate is computed by

PV(τ )= |{pj : pj ∈ PG , sij ≥ τ, id(gi)= id(pj )}|
|PG | , (21.6)

and the false accept rate is computed by

PFA(τ )= |{sij : pj ∈ PN , sij ≥ τ }|
|PN ||G | . (21.7)

21.2.3 Closed-Set Identification

Performance on the closed-set identification task is the classic performance statistic
in face recognition. In closed-set identification, the question is not always “is the
top match correct?,” but rather “is the correct answer in the top n matches?”

The first step in computing closed-set performance is to sort the similarity scores
between pj and gallery G , and compute the rank(pj ). The identification rate for
rank n, PI(n), is the fraction of probes at rank n or lower. For rank n, let

C(n)= ∣∣{pj : rank(pj )≤ n
}∣
∣, (21.8)

be the cumulative count of the number of probes of rank n or less. The identification
rate at rank n is

PI(n)= |C(n)|
|PG | . (21.9)

The functions C(n) and PI(n) are nondecreasing in n. The identification rate at
rank 1, PI(1), is also called the correct identification rate, or top match rate.

Closed-set identification performance is reported on a cumulative match char-
acteristic (CMC). A CMC plots PI(n) as a function of rank n. Figure 21.3 shows
a CMC. The horizontal axis is rank on a logarithmic scale and the vertical axis
is PI(n).

Closed-set identification performance is most often summarized with rank one
performance, the other points such as rank 5, 10, or 20 are commonly used. The
strength and weakness of the CMC is its dependence on gallery size, |G |. To show
the effect of gallery size on performance, rank 1 performance versus gallery size
is plotted. To remove the effect of gallery size, one can plot identification perfor-
mance as a percentage of rank; that is, performance when the correct answer is in
the top 10%.

Closed-set identification is a special case of open-set identification where the
probe set PN is empty and the operating threshold τ = −∞. An operating thresh-
old of τ = −∞ corresponds to a false alarm rate of 1.0. This means that s∗j ≥ τ
for all match scores and all match scores are reported as alarms. Thus, for any n,
PDI(−∞, n) = PI(n). The curve in Fig. 21.2 with a false alarm rate of 1.0 (top
curve) is the CMC for the closed-set version of this experiment. The CMC for an
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Fig. 21.3 Identification performance reported on a CMC. The gallery consisted of one image of
37 437 individuals. The probe set consisted of two images for each of the 37 437 individuals in the
gallery. Performance is for FRVT 2002 and is explained in Sect. 21.5.1

open-set experiment is the closed-set identification performance computed in the
open-set gallery G and probe set PG . In Fig. 21.2, it is interesting to note the dif-
ference between the CMC and the performance curve with a false alarm rate of 0.98.
This shows that there are a reasonable number of match scores with a low similarity
score.

21.2.4 Normalization

The FRVT 2002 protocol introduced similarity score normalization procedures
to biometric evaluations. Normalization is a post processing function f that ad-
justs similarity scores based on a specific probe. A normalization function is
f :R|G | →R|G |. The input to a normalization function is a vector s = (s1j , . . . ,
s|G |j ) of all similarity scores between a probe pj and a gallery G . The output
is a vector ŝ of length |G | which is a new set of normalized similarity scores
ŝ = (ŝ1j , . . . , ŝ|G |j ) between a probe pj and a gallery G . The normalization func-
tion attempts to adjust for variations among probes and to emphasize differences
among the gallery signatures. The final performance scores are computed from the
normalized similarity scores. An example of a normalization function is

ŝij = sij − mean(s)
sd(s)

,
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where mean(s) is the sample mean of the components of s and sd(s) is the sample
standard deviation of the components of s. FRVT 2002 and the HumanID Gait Chal-
lenge problem demonstrated the effectiveness of normalization for verification [23].

If the gallery changes, then similarity scores need to be normalized again. This
has implications for scoring techniques that require performance on multiple gal-
leries. Traditionally, verification has been referred to as “1 to 1” matching. This is
because, in verification, one probe is matched with one gallery signature. However,
normalization requires that a probe be compared with a gallery set. When normal-
ization is applied, is verification still “1 to 1” matching?

21.2.5 Variability

The variance of performance statistics in biometrics is an important but often over-
looked subject in biometrics. We will look at variations in verification performance.
The first is how performance varies with different galleries. This models the per-
formance of a system that is installed at different locations. The second is how per-
formance varies for different classes of probes. For example, what is the difference
in performance for male and female probes? Each combination of the gallery and
probe sets generates a different ROC. To study the variation, it is necessary to com-
bine results over a set of ROCs. One method of combining results is to measure the
variation of the verification rate for each false alarm rate. This models the situation
where one can readjust the operating threshold for each gallery or probe set. For
many applications, this is not feasible or desirable. However, this is an appropriate
technique for combining ROCs from multiple systems because it is not possible to
set uniform operating thresholds across different systems. For the same system, it
is possible to set one operating threshold across all galleries and probe sets. Us-
ing this base-operating threshold, one computes the verification and false accept
rate for each gallery and probe set. The resulting verification and false alarm rates
will vary across different galleries and probe sets. This method for computing vari-
ance in performance models the situation in which the operating threshold is set
once for an application. Setting the base-operating threshold can be based upon an
overall desired performance level for the population that will use the system. In the
FRVT 2002 protocol, the base-operating threshold is set based upon the system per-
formance on an aggregate population. The base-operating threshold corresponds to
a specific false accept rate on the aggregate population—this is referred to as the
nominal false accept rate.

In most ROCs, verification performance is reported for a single large gallery.
The results do not address the important question of how performance varies if
the people in the gallery are different. This question was studied in FRVT 2002,
and here we present the technique that was used. To measure variation due to
gallery change, verification performance was computed for the twelve galleries, see
Fig. 21.4. each of the twelve galleries consisted of different people. Each gallery
consisted of 3000 people. The probe set contained two images of each person in the
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Fig. 21.4 Standard error ellipses for verification performance for Cognitec, Eyematic, and Identix.
The standard error was computed for twelve galleries of size 3000. The center line is the ROC per-
formance for the aggregate of all twelve galleries. The ellipses are two times the standard deviation
at select performance points. Each ellipse is computed from the performance of the twelve small
galleries at the selected performance points. Each point clustered around an ellipse corresponds to
one of the twelve galleries. Performance is for FRVT 2002 and is explained in Sect. 21.5.1

gallery and 6000 true imposters (two images of 3000 individuals). The centerline
is the aggregate performance for the twelve galleries. For selected operating points,
performance was computed for the twelve small galleries and probe sets. For each of
the twelve galleries, verification rates and false accept rates were computed. Thus,
at each operating threshold, there are twelve pairs of verification and false accept
rates. A standard error ellipse was computed for each set of verification and false
accept rates.

Error ellipses in Fig. 21.4 are two times the standard deviation of the verification
and false accept rates along the appropriate axes. An ellipse gives an estimate of the
range in performance that could result if the people in the gallery are changed. If
the large gallery were larger, it would be possible to compute performance for more
small galleries of size 3000. The greater number of small galleries would increase
the accuracy of the error ellipse. However, the size of the ellipses would not de-
crease as the number of small galleries increased. This is because the error ellipses
are a function of the multiple small galleries, and composition of the small galleries
reflects the natural variation in the population. The natural variation will always be
present–more small galleries increase the accuracy of the estimated variation in the
performance due to the natural composition of the population. In the HCInt, the el-
lipses are estimated from disjoint galleries and probe sets. This avoids many of the
issues associated with resampling techniques. Resampling techniques require mak-
ing assumptions about the distributional properties of the similarity scores. Typical
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assumptions are that similarity scores are independent and identically distributed
(i.i.d.). In interpreting the meaning of error ellipses, a number of subtle facts need to
be noted. The error ellipses are not error bounds on the ROC. Rather, error ellipses
are a measure of the variance in performance that occurs by changing the gallery.
The standard error is an empirical estimate of the variation. They are not confidence
intervals. Confidence intervals decrease in size as the number of samples increase.
To estimate confidence intervals requires that one knows or can estimate the under-
lying distribution.

21.3 Evaluation Protocols

A set of design principles and its associated testing protocol describe how evalu-
ations are designed and conducted. Design principles outline the core philosophy
and guiding beliefs in designing an evaluation; the evaluation protocol provides the
implementation details.

The defacto evaluation protocol standards in face recognition and biometrics are
the FRVT 2002 and FERET evaluation protocols [17, 18]. The FRVT 2002 evalua-
tion protocol is based on the September 1996 evaluation protocol. The FRVT 2002
protocol added general biometric samples, normalization of similarity scores, and an
XML-based specification [12]. The XML-based specification is extensible to other
biometrics and is being used for fingerprint recognition evaluation.

The design of FRVT 2002, along with the FERET evaluations and FRVT 2000,
followed the precepts for biometrics evaluations articulated in Phillips et al. [16].
Succinctly stated, the precepts are:

1. Evaluations are designed and administered by groups that are independent of
algorithm developers and vendors being tested.

2. Test data is sequestered and not seen by the participants prior to an evaluation.
3. The evaluation test design, protocol, and methodology are published.
4. Performance results are spread in a manner that allows for meaningful differ-

ences among the participants.

Points 1 and 2 ensure fairness in an evaluation. Point 1 provides assurance that
the test is not designed to favor one participant over another. Independent evalu-
ations help enforce points 2 and 4. In addition, point 2 ensures that systems are
evaluated on their ability to generalize performance to new data sets, not the ability
of the system to be tuned to a particular set of biometric samples. When judging and
interpreting results, it is necessary to understand the conditions under which algo-
rithms and systems are tested. These conditions are described in the evaluation test
design, protocol and methodology. Tests are administered using an evaluation pro-
tocol that identifies the mechanics of the tests and the manner in which the tests will
be scored. In face recognition, the protocol states the number and types of images
of each person in the test, how the output from the algorithm is recorded, and how
the performance results are reported. Publishing the evaluation protocol, as recom-
mended in point 3, lets the readers of published results understand how the results
were computed.
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Point 4 addresses the three bears problem. Phillips et al. [17] first articulated the
three bears problem in designing evaluations. The three bears problem sets guiding
principles for designing an evaluation of the right level of difficulty. If all the scores
for all algorithms are too high and within the same error margin, then one cannot
distinguish among the algorithms tested. In addition, if the scores are too high in an
evaluation, then that is an indication that the evaluation was in reality an exercise
in ‘tuning’ algorithm parameters. If the scores are too low, then it is not possible
to determine what problems have been solved. The goal in designing an evaluation
is to have variation among the scores. There are two sorts of variation. The first
type is variation among the experiments in an evaluation. Most evaluations consist
of a set of experiments, where each experiment reports performance on different
problems in face recognition. For example, experiments might look at changes in
lighting or subject pose of a face. The second type of variation is among algorithms
for each experiment. The variation in performance among the experiments lets one
know which problems are currently sufficiently solved for consideration in field
testing, which problems are research problems, and which problems are beyond
the capabilities of the field. The variation among algorithm performance lets one
know which techniques are best for a particular experiment. If all the scores for all
algorithms across all experiments are virtually the same, then one cannot distinguish
among the algorithms.

The key elements that ease adoption of points three and four can be incorporated
into the evaluation protocol. For the FERET and FRVT evaluations, this was the
FERET and FRVT 2002 evaluation protocol. This evaluation protocol was designed
to assess the state of the art, advance the state of the art, and point to future directions
of research. The ability to accomplish these three goals simultaneously was through
a protocol whose framework allows for the computation of performance statistics
for multiple galleries and probe sets. This allows for the FERET and FRVT 2002
evaluation protocol to solve the three bears problem by including galleries and probe
sets of different difficulties into the evaluation. This produces a comprehensive set
of performance statistics that assess the state of the art, progress in face recognition,
and point to future directions of research. The use of an XML-based specification
allows for this evaluation protocol to become a formal standard for biometric eval-
uation.

The solution to the three bears problem lies in the selection of images used in
the evaluation. The characteristics and quality of the images are major factors in
determining the difficulty of the problem being evaluated. For example, the location
of the face in an image can affect problem difficulty. The problem is much easier
if a face must be in the center of image compared to the case where a face can be
located anywhere within the image. In FERET and FRVT 2002 data sets, variability
was introduced by the size of the database, inclusion of images taken at different
dates and both outdoor and indoor locations. This resulted in changes in lighting,
scale, and background.

The testing protocol is based upon a set of design principles. The design princi-
ples directly relate the evaluation to the face recognition problem being evaluated.
In particular, for FERET and FRVT 2000, the driving applications were search-
ing large databases and access control. Stating the design principles allows one to
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assess how appropriate the FERET tests and FRVT 2000 are for a particular face
recognition algorithm. Also, design principles assist in determining if an evaluation
methodology for testing algorithm(s) for a particular application is appropriate.

The FERET and FRVT 2002 evaluation protocols consists of two parts. The first
is the rules for conducting an evaluation, and the second is the format of the results
that allow for scoring. For FERET this was file format based and for FRVT 2002
the file format specifications are XML-based.

The input to an algorithm or system being evaluated is two sets of biometrics
samples, target set T and a query sets Q. Galleries and probe sets are constructed
from the target and query sets, respectively. The output from an algorithm is a sim-
ilarity measure sij between all pairs of images ti from the target set and qj for the
query sets. A similarity measure is a numerical measure of how similar two faces
are. In FERET and FRVT 2002, a larger similarity scores implies greater similarity
between two faces. Performance statistics are computed from the similarity mea-
sures. A complete set of similarity scores between all pairs of biometric samples
from the target and query set is referred to as a similarity matrix. The first rule in
the FERET and FRVT 2002 evaluation protocol is that a complete similarity matrix
must be computed. This rule guarantees that performance statistics can be computed
for all algorithms.

To be able to compute performance for multiple galleries and probe sets requires
that multiple biometric samples of a person are placed in both the target and query
sets. This leads to the second rule: Each biometrics sample in the target and query
sets is considered to contain an unique sample. In practice, this rule is enforced by
giving every sample in the target and query sets a unique random identifier.

The third rule is that training is completed prior to the start of an evaluation. This
forces each algorithm to have a general representation for faces, not a representation
tuned to a specific gallery. Also, if training were specific to a gallery, it would not
be possible to construct multiple galleries and probe sets from a single run. An
algorithm would have to be retrained and the evaluation rerun for each gallery. In
the FRVT 2002 protocol, similarity score normalization is permitted. This allows
for adjustments based on the samples in a gallery.

Using target and query sets allows us to compute performance for different cate-
gories of biometric samples. Using face recognition as an example, possible probe
categories include (1) gallery and probe images taken on the same day, (2) duplicates
taken within a week of the gallery image, and (3) duplicates where the time between
the images is at least one year. This is illustrated in the following example. A target
and query set consists of the same set of facial images. Eight images of each face
are taken. Each face is taken both indoors and outdoors, with two different facial ex-
pressions on two different days. From these target and query sets, one can measure
the effects of indoor versus outdoor illumination by constructing a gallery of indoor
images and a probe set of outdoor images, both consisting of neutral expressions
taken on the first day. Construction of similar galleries and probe sets would allow
one to test the effects of temporal or expression changes. The effect of covariates
such as age and sex of a person can also be measured. It is the ability to construct
virtual galleries from the target set and virtual probe sets from the query set that
allows the FERET and FRVT 2002 protocol to perform detailed analyses.
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The FERET and FRVT 2002 evaluation protocol allows for the computation of
performance statistics for verification, and open-set and closed-set identification
tasks. The protocol is sufficiently flexible that one can estimate performance us-
ing subsampling and resampling techniques. For example, galleries of varying sizes
are created to measure the effects of gallery size on performance. To estimate the
variability of performance, multiple galleries are created.

Given the numerous theories and techniques that are applicable to face recog-
nition, it is clear that evaluation and benchmarking of these algorithms is crucial.
Evaluations and benchmarking allow for testing of theories and identification of the
most promising approaches. The most important face recognition evaluations are
the three FERET evaluations and the three Face Recognition Vendor Tests (FRVT).
All six evaluations build on each other. The three FERET evaluations were admin-
istered in August 1994, March 1995, and September 1996. The three FRVT evalu-
ations were administered in 2000, 2002, and 2006 (the FRVT 2006 is not covered
in this review, please see Phillips et al. [21]). The MBE 2010 Still Face Track was
administered between January and May 2010.

21.4 The FERET Evaluations

Until the FERET evaluations, there did not exist a common evaluation protocol that
included a large data set and a standard evaluation method. This made it difficult to
assess the status of face recognition technology, even though many existing systems
reported almost perfect performance on small data sets.

The first FERET evaluation test was administered in August 1994 [15]. This eval-
uation established a baseline for face recognition algorithms, and was designed to
measure performance of algorithms that could automatically locate, normalize, and
identify faces. This evaluation consisted of three tests, each with a different gallery
and probe set. (A gallery is a set of known individuals, while a probe is a set of
unknown faces presented for recognition.) The first test measured identification per-
formance from a gallery of 316 individuals with one image per person; the second
was a false-alarm test; and the third measured the effects of pose changes on perfor-
mance. The second FERET evaluation was administered in March 1995; it consisted
of a single test that measured identification performance from a gallery of 817 indi-
viduals, and included 463 duplicates in the probe set [15]. (A duplicate is a probe
for which the corresponding gallery image was taken on a different day; there were
only 60 duplicates in the Aug94 evaluation.) The third and last evaluation (Sep96)
was administered in September 1996 and March 1997.

21.4.1 Database

The FERET database was the first data set that was available to researchers. In
terms of the number of people, it is the largest data set that is publicly available.
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Fig. 21.5 Images from the FERET dataset. The fa and fb were taken with the same lighting
condition with different expressions. The fc image has a different lighting condition than the fa and
fb images. The duplicate I image was taken within one year of the fa image and the duplicate II
and fa image were taken at least one year apart

The images in the database were initially acquired with a 35-mm camera and then
digitized.

The images were collected in 15 sessions between August 1993 and July 1996.
Each session lasted one or two days, and the location and setup did not change
during the session. Sets of 5 to 11 images of each individual were acquired under
relatively unconstrained conditions. They included two frontal views; in the first of
these (fa) a neutral facial expression was requested and in the second (fb) a dif-
ferent facial expression was requested (these requests were not always honored);
see Fig. 21.5. For 200 individuals, a third frontal view was taken using a different
camera and different lighting condition; this is referred to as the fc image. The re-
maining images were nonfrontal and included right and left profiles, right and left
quarter profiles, and right and left half profiles. The FERET database consists of
1564 sets of images (1199 original sets and 365 duplicate sets)—a total of 14 126
images. A development set of 503 sets of images were released to researchers; the
remaining images were sequestered for independent evaluation. In late 2000 the
entire FERET database was released along with the Sep96 evaluation protocols,
evaluation scoring code, and baseline PCA algorithms.

21.4.2 Evaluation

For details of the three FERET evaluations, see [15, 17, 22]. The results of the most
recent FERET evaluation (Sep96) will be briefly reviewed here. Because the entire
FERET data set has been released, the Sep96 protocol provides a good benchmark
for performance of new algorithms. For the Sep96 evaluation, there was a primary
gallery consisting of one frontal image (fa) per person for 1196 individuals. This
was the core gallery used to measure performance for the following four different
probe sets.

• fb probes—Gallery and probe images of an individual taken on the same day with
the same lighting (1195 probes).
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• fc probes—Gallery and probe images of an individual taken on the same day with
different lighting (194 probes).

• Dup I probes—Gallery and probe images of an individual taken on different
days—duplicate images (722 probes).

• Dup II probes—Gallery and probe images of an individual taken over a year apart
(the gallery consisted of 894 images; 234 probes).

The Sep96 evaluation tested the following ten algorithms:

• An algorithm from Excalibur Corporation (Carlsbad, CA) (Sept. 1996).
• Two algorithms from MIT Media Laboratory (Sept. 1996) [13, 25].
• Three Linear Discriminant Analysis based algorithms from Michigan State Uni-

versity [24]. (Sept. 1996) and the University of Maryland [8, 28] (Sept. 1996 and
March 1997).

• A gray-scale projection algorithm from Rutgers University [26] (Sept. 1996).
• An Elastic Graph Matching algorithm from the University of Southern Califor-

nia [7, 27] (March 1997).
• A baseline PCA algorithm [14, 25].
• A baseline normalized correlation matching algorithm.

Performance was computed for both closed-set identification and verifica-
tion. Three of the algorithms performed very well: Probabilistic Eigenface from
MIT [13], Subspace LDA from UMD [28, 29], and Elastic Graph Matching from
USC [7, 27].

A number of lessons were learned from the FERET evaluations. The first is that
performance depends on the probe category and there is a difference between best
and average algorithm performance.

Another lesson is that the scenario has an impact on performance. For identifi-
cation, on the fb and duplicate probes, the USC scores were 94% and 59%, and the
UMD scores were 96% and 47%.

21.4.3 Summary

The availability of the FERET database and evaluation technology has had a sig-
nificant impact on progress in the development of face recognition algorithms. The
FERET data set facilitated the development of algorithms, and the FERET series
of tests has allowed advances in algorithm development to be quantified. This is il-
lustrated by, the performance improvements in the MIT algorithms between March
1995 and September 1996, and in the UMD algorithms between September 1996
and March 1997.

Another important contribution of the FERET evaluations is the identification of
areas for future research. In general, the test results revealed three major problem
areas: recognizing duplicates, recognizing people under illumination variations, and
under pose variations.
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21.5 The FRVT 2000

The Sep96 FERET evaluation measured performance on prototype laboratory sys-
tems. After March 1997, there was rapid advancement in the development of com-
mercial face recognition systems. This advancement represented both a maturing
of face recognition technology, and the development of the supporting system and
infrastructure necessary to create commercial off-the-shelf (COTS) systems. By the
beginning of 2000, COTS face recognition systems were readily available.

To assess the state of the art in COTS face recognition systems the Face Recog-
nition Vendor Test (FRVT) 2000 was organized [5]. FRVT 2000 was a technology
evaluation that used the Sep96 evaluation protocol, but was significantly more de-
manding than the Sep96 FERET evaluation.

Participation in FRVT 2000 was restricted to COTS systems, with companies
from Australia, Germany, and the United States participating. The five companies
evaluated were Banque-Tec International Pty. Ltd., C-VIS Computer Vision and
Automation GmbH, Miros, Inc., Lau Technologies, and Visionics Corporation.

A greater variety of imagery was used in FRVT 2000 than in the FERET eval-
uations. FRVT 2000 reported results in eight general categories: compression, dis-
tance, expression, illumination, media, pose, resolution, and temporal. There was no
common gallery across all eight categories; the sizes of the galleries and probe sets
varied from category to category.

We briefly summarize the results of FRVT 2000. Full details can be found in
Blackburn et al. [5], and include identification and verification performance statis-
tics. The media experiments showed that changes in media do not adversely affect
performance. Images of a person were taken simultaneously on conventional film
and on digital media. The compression experiments showed that compression does
not adversely affect performance. Probe images compressed up to 40:1 did not re-
duce recognition rates. The compression algorithm was JPEG.

FRVT 2000 also examined the effect of pose angle on performance. The results
show that pose does not significantly affect performance up to ±25◦, but that per-
formance is significantly affected when the pose angle reaches ±40◦.

In the illumination category, two key effects were investigated. The first was
lighting change indoors. This was equivalent to the fc probes in FERET. For the
best system in this category, the indoor change of lighting did not significantly af-
fect performance. In a second experiment, recognition with an indoor gallery and
an outdoor probe set was computed. Moving from indoor to outdoor lighting signif-
icantly affected performance, with the best system achieving an identification rate
of only 0.55.

The temporal category is equivalent to the duplicate probes in FERET. To com-
pare progress since FERET, dup I and dup II scores were reported. For FRVT 2000
the dup I identification rate was 0.63 compared with 0.58 for FERET. The corre-
sponding rates for dup II were 0.64 for FRVT 2000 and 0.52 for FERET. These
results show that there was algorithmic progress between the FERET and FRVT
2000 evaluations. FRVT 2000 showed that two common concerns, the effects of
compression and recording media, do not affect performance. It also showed that
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future areas of interest continue to be duplicates, pose variations, and illumination
variations generated when comparing indoor images with outdoor images.

21.5.1 The FRVT 2002

The Face Recognition Vendor Test (FRVT) 2002 was a large-scale evaluation of
automatic face recognition technology. The primary objective of FRVT 2002 was
to provide performance measures for assessing the ability of automatic face recog-
nition systems to meet real-world requirements. Ten participants were evaluated
under the direct supervision of the FRVT 2002 organizers in July and August 2002.
Ten companies participated in FRVT 2002: AcSys Biometrics Corp., Cognitec Sys-
tems GmbH, C-VIS Computer Vision and Automation GmbH, Dream Mirh Co.,
Ltd, Eyematics Interfaces Inc., Iconquest, Identix, Imagis Technologies Inc., Viis-
age Technology, VisionSphere Technologies Inc.

FRVT 2002 consisted of two parts: high computational intensity test (HCInt) and
the medium computational intensity test (MCInt). The heart of the FRVT 2002 was
the HCInt, which consisted of 121 589 operational images of 37 437 people. The
images were provided from the U.S. Department of State’s Mexican nonimmigrant
Visa archive. From this data, real-world performance figures on a very large data set
were computed. Performance statistics were computed for verification, closed-set
identification, and open-set identification (watch list) tasks. Open-set identification
performance is reported in Fig. 21.1, closed-set identification performance is re-
ported in Fig. 21.3, verification performance with error ellipses is given in Fig. 21.2
for the HCInt (only eight of the ten companies took the HCInt portion of FRVT
2002). The MCInt measured performance on facial images from different categories.
The categories included mugshot style images, still images taken outside, nonfrontal
indoor images, and morphed nonfrontal images.

FRVT 2002 results show that normal changes in indoor lighting do not signifi-
cantly affect performance of the top systems. Approximately the same performance
results were obtained using two indoor data sets, with different lighting, in FRVT
2002. In both experiments, the best performer had a 90% verification rate at a false
accept rate of 1%. On comparable experiments conducted two years earlier in FRVT
2000, the results of FRVT 2002 indicate there has been a 50% reduction in error
rates. For the best face recognition systems, the recognition rate for faces captured
outdoors, at a false accept rate of 1%, was only 50%. Thus, face recognition from
outdoor imagery remains a research challenge area.

A very important question for real-world applications is the rate of decrease in
performance as time increases between the acquisition of the database of image
and new images presented to a system. FRVT 2002 found that for the top systems,
performance degraded at approximately 5% points per year.

One open question in face recognition is: How does database and watch list size
effect performance? Because of the large number of people and images in the FRVT
2002 data set, FRVT 2002 reported the first large-scale results on this question.
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For the best system, the top-rank identification rate was 85% on a database of 800
people, 83% on a database of 1600, and 73% on a database of 37 437. For every
doubling of database size, performance decreases by two to three overall percentage
points. More generally, identification performance decreases linearly in the loga-
rithm of the database size.

Previous evaluations have reported face recognition performance as a function of
imaging properties. For example, previous reports compared the differences in per-
formance when using indoor versus outdoor images, or frontal versus non-frontal
images. FRVT 2002, for the first time, examined the effects of demographics on
performance. Two major effects were found. First, recognition rates for males were
higher than females. For the top systems, identification rates for males were 6% to
9% points higher than that of females. For the best system, identification perfor-
mance on males was 78% and for females was 79%. Second, recognition rates for
older people were higher than younger people. For 18 to 22 year olds, the average
identification rate for the top systems was 62%, and for 38 to 42 year olds was 74%.
For every ten years increase in age, on average performance increases approximately
5% through age 63.

FRVT 2002 looked at two of these new techniques. The first was the three-
dimensional morphable models technique of Blanz and Vetter [6]. Morphable mod-
els are a technique for improving recognition of non-frontal images. FRVT 2002
found that Blanz and Vetter’s technique significantly increased recognition perfor-
mance. The second technique is recognition from video sequences. Using FRVT
2002 data, recognition performance using video sequences was the same as the per-
formance using still images.

In summary, the key lessons learned in FRVT 2002 were: (1) Given reasonable
controlled indoor lighting, the current state of the art in face recognition is 90%
verification at a 1% false accept rate. (2) Face recognition in outdoor images is
a research problem. (3) The use of morphable models can significantly improve
nonfrontal face recognition. (3) Identification performance decreases linearly in the
logarithm of the size of the gallery. (4) In face recognition applications, accommo-
dations should be made for demographic information since characteristics such as
age and sex can significantly affect performance.

21.6 The MBE 2010 Still Face Track

The primary goals of the Multiple Biometric Evaluation (MBE) 2010 Still Face
Track were to measure improvement in face recognition from frontal still faces
since the FRVT 2006 and measure identification performance on extremely large
datasets [10, 21]. The MBE 2010 Still Face Track had an open submission period
from January through May 2010. Participants could submit multiple systems in an
SDK format during this submission period.

Performance was measured on two primary datasets. The first dataset was the
FRVT 2002 HCInt dataset. Performance was also reported for this dataset in the
FRVT 2006, where it was known as the low-resolution dataset. Performance on this



570 P.J. Phillips et al.

Fig. 21.6 Verification performance on the FRVT 2002 HCInt and the FBI Photo File datasets. The
FRR at a FAR = 0.001 is reported and the horizontal (FRR) axis is on a logarithmic scale. Results
are reported by participant and SDK version

dataset allows for a direct measurement of improvement in algorithm performance
from 2002 to 2010. The second consists of face images collected by various law
enforcement agencies and transmitted to the Federal Bureau of Investigation (FBI)
as part of various criminal records checks. This is known as the FBI Photo File
dataset.

Verification results on the FRVT 2002 HCInt and the FBI Photo File datasets
are reported in Fig. 21.6. On the HCInt data set the SDK V04 submitted by NEC
achieved a false reject rate (FRR) = 0.003 at a false accept rate (FAR) = 0.001.
On this dataset, the best performance in the FRVT 2002 was FRR = 0.2 at a
FAR = 0.001 and in the FRVT 2006 a FRR = 0.03 at a FAR = 0.001 was achieved.
The results in MBE 2010 show an improvement of almost two orders of magnitude
between 2002 and 2010 on the same test set of images. The best performance on the
FBI Photo File data was a FRR = 0.038 at a FAR = 0.001. On the FBI Photo File
data set, a reasonable number of participants had FRR of around 0.10 or better at a
FAR = 0.001.

The FBI Photo File dataset allowed for measuring identification rates from gal-
leries in excess of 1 million faces. The protocol for the MBE 2010 Still Face was
designed to allow for testing extremely large scale identification problems. Closed-
set identification results are reported in Fig. 21.7. The SDK V03 submitted by NEC
achieved a rank 1 identification rate = 0.93 on a gallery of 1.6 million faces. SDK’s
from four participants achieved a rank 1 identification rate of 0.80 or better on this
dataset.
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Fig. 21.7 Closed-set identification performance on the FBI Photo File dataset with a gallery of
1.6 million faces. Rank 1 identification rate is report. Results are reported by participant and SDK
version

The results from the MBE 2010 Still Face Track shows how automatic face
recognition has matured since the start of the FERET program in 1993. The re-
sults from MBE 2010 show that automatic face recognition systems are ready for
consideration for applications that performing recognition from controlled frontal
face images.

21.7 Issues and Discussions

Periodic face recognition evaluations have advanced the field of face recognition
from its infancy in the early 1990s to the deployment of systems. The periodic eval-
uations have developed standard evaluation protocols and methods for reporting
performance scores. As the field of face recognition has advanced, there has been
an concomitant advancement in evaluation techniques. This is leading to different
styles of evaluations, each with its ability to answer different questions.

The advance in automatic face recognition from FERET to MBE 2010 has been
documented by a series of evaluations. These evaluation show that recognition from
frontal still images acquired under controlled conditions has matured. However, this
does not mean that automatic face recognition is a solved problem. Face recognition
from still and video taken in unconstrained conditions is a research challenge. In
fact, the Multiple Biometric Grand Challenge (MBGC) was designed to address
these problems [20].

The face recognition community, and biometrics in general, has developed a
range of evaluations in terms of number of people and images. To provide a rough
guide to evaluation size, we introduce the following nomenclature:

• Small: ∼1000 signatures and ∼330 individuals.
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• Medium: ∼10 000 signatures and ∼3300 individuals.
• Large: ∼100 000 signatures and ∼33 000 individuals.
• Very large: ∼1 000 000 signatures and ∼330 000 individuals.
• Extremely large: ∼10 000 000 signatures and ∼3 300 000 individuals.

Each size has its own role and place. A larger evaluation is not inherently better,
especially when cost is considered. Most evaluations have been small, but they have
had a positive impact on the development and assessment of biometrics.

The FERET, FRVT 2000, and FRVT 2002 MCInt evaluations were small to
medium evaluation, and were able to differentiate between large and small effects
on performance. The FERET evaluations showed a big difference in performance
between images taken on the same day and images takes on different days. This
showed that the interesting problem for face recognition was images taken on differ-
ent days. The FRVT 2002 MCInt results showed a large difference in performance
between recognition of non-frontal images and non-frontal images that have been
morphed. The MCInt results showed that morphable models improved performance
for non-frontal images. Evaluation such as FERET and FRVT 2002 MCInt are good
for making an assessment on (1) a specified set of experiments, and (2) where one
is looking to distinguish between large and small effects.

The FRVT 2002 HCInt is a large evaluation and the MBE 2010 is an extremely
large evaluation. The FRVT 2002 HCInt and the FBI Photo File datasets allowed for
a more detailed analysis and was able to estimate the variance of performance statis-
tics and measure the effects of covariates on performance. This analysis required not
only a large numbers of images and people, but also an appropriate number of er-
rors. If there had only been ten or hundred errors, we would not have been able
to perform detailed covariate analysis. In designing very large and extremely large
evaluations one needs to state the object of the evaluation and have an idea of the
overall accuracy of the biometric being tested. For example, if a biometric has an
identification rate of 0.9999 (error rate of one in 10 000), then an evaluation on a
data set of 100 000 images would on average produce ten errors. To be able to per-
form a detailed analysis of performance, such as in the FRVT 2002 HCInt, would
require a test set several orders of magnitude larger.

Evaluations of all sizes are needed and have their role in assessing performance
of biometrics. Factors effecting the size and design of an evaluation include the
evaluations goals and the overall accuracy of a biometric. The greater the accuracy
of biometric, the larger the required size of an evaluation. The more detailed analysis
needed, the larger the required size of an evaluation. At the other end of the scale,
an evaluation with very specific and defined purposes maybe able to meets its goals
with a small evaluation.

When research in automatic face recognition began, the primary goal was to de-
velop recognition algorithms. With progress in face recognition, the goal of under-
standing the properties of face recognition algorithms has joined the goal of devel-
oping algorithms. Understanding the properties of face recognition is computational
experiments.



21 Evaluation Methods in Face Recognition 573

21.8 Conclusions

Independent evaluations provide an assessment of the state-of-the-art, but do not
provide an understanding of the fundamental properties of face recognition algo-
rithms. The province of answering these types of questions is computational ex-
periments. For example, FRVT 2002 showed that men are easier to recognize than
women. However, FRVT 2002 was not designed to answer the more fundamental
question of why men are easier to recognize than women. The computation experi-
ments are being conducted. They will give greater understanding of face recognition
and provide a strong scientific underpinning.

References

1. Beveridge, J.R., She, K., Draper, B.A., Givens, G.H.: A nonparametric statistical comparison
of principal component and linear discriminant subspaces for face recognition. In: Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 535–542 (2001)

2. Beveridge, J.R., Givens, G.H., Phillips, P.J., Draper, B.A., Lui, Y.M.: Focus on quality, pre-
dicting FRVT 2006 performance. In: Proceeding of the Eighth International Conference on
Automatic Face and Gesture Recognition (2008)

3. Beveridge, J.R., Givens, G.H., Phillips, P.J., Draper, B.A.: Factors that influence algorithm
performance in the Face Recognition Grand Challenge. Comput. Vis. Image Underst. 113,
750–762 (2009)

4. Beveridge, J.R., Givens, G.H., Phillips, P.J., Draper, B.A., Bolme, D.S., Lui, Y.M.: FRVT
2006: Quo vadis face quality. Image Vis. Comput. 28(5), 732–743 (2010)

5. Blackburn, D., Bone, M., Phillips, P.J.: Face recognition vendor test 2000. Technical report
(2001). http://www.frvt.org

6. Blanz, V., Vetter, T.: A morphable model for the synthesis of 3d faces. In: Proceedings, SIG-
GRAPH’99, pp. 187–194 (1999)

7. Okada, K., et al.: The Bochum/USC face recognition system. In: Wechsler, H., Phillips, P.J.,
Bruce, V., Fogelman Soulie, F., Huang, T.S. (eds.) Face Recognition: From Theory to Appli-
cations. Springer, Berlin (1998)

8. Etemad, K., Chellappa, R.: Discriminant analysis for recognition of human face images.
J. Opt. Soc. Am. A 14, 1724–1733 (1997)

9. Givens, G.H., Beveridge, J.R., Draper, B.A., Bolme, D.: A statistical assessment of subject
factors in the pca recognition of human faces. In: CVPR 2003 Workshop on Statistical Anal-
ysis in Computer Vision Workshop (2003)

10. Grother, P.J., Quinn, G.W., Phillips, P.J.: MBE 2010: Report on the evaluation of 2D still-
image face recognition algorithms. NISTIR 7709, National Institute of Standards and Tech-
nology (2010)

11. Micheals, R.J., Boult, T.: Efficient evaluation of classification and recognition systems. In:
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 50–
57 (2001)

12. Micheals, R.J., Grother, P., Phillips, P.J.: The NIST HumanID evaluation framework. In: Kit-
tler, J., Nixon, M.S. (eds.) Third Inter. Conf. on Audio- and Video-Based Biometric Person
Authentication. LNCS, vol. 2688, pp. 403–411. Springer, Berlin (2003)

13. Moghaddam, B., Nastar, C., Pentland, A.: Bayesian face recognition using deformable in-
tensity surfaces. In: Proceedings Computer Vision and Pattern Recognition 96, pp. 638–645
(1996)

14. Moon, H., Phillips, P.J.: Computational and performance aspects of PCA-based face-
recognition algorithms. Perception 30, 303–321 (2001)

http://www.frvt.org


574 P.J. Phillips et al.

15. Phillips, P.J., Wechsler, H., Huang, J., Rauss, P.: The FERET database and evaluation proce-
dure for face-recognition algorithms. Image Vis. Comput. 16(5), 295–306 (1998)

16. Phillips, P.J., Martin, A., Wilson, C.L., Przybocki, M.: An introduction to evaluating biometric
systems. Computer 33, 56–63 (2000)

17. Phillips, P.J., Moon, H., Rizvi, S., Rauss, P.: The FERET evaluation methodology for face-
recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1090–1104 (2000)

18. Phillips, P., Grother, P., Micheals, R., Blackburn, D., Tabassi, E., Bone, J.: Face recognition
vendor test 2002: Evaluation report. Technical Report NISTIR 6965, National Institute of
Standards and Technology (2003). http://www.frvt.org

19. Phillips, P.J., Flynn, P.J., Scruggs, T., Bowyer, K.W., Chang, J., Hoffman, K., Marques, J.,
Min, J., Worek, W.: Overview of the face recognition grand challenge. In: IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, pp. 947–954 (2005)

20. Phillips, P.J., Flynn, P.J., Beveridge, J.R., Scruggs, W.T., O’Toole, A.J., Bolme, D., Bowyer,
K.W., Draper, B.A., Givens, G.H., Lui, Y.M., Sahibzada, H., Scallan, J.A. III, Weimer, S.:
Overview of the Multiple Biometrics Grand Challenge. In: Proceedings Third IAPR Interna-
tional Conference on Biometrics (2009)

21. Phillips, P.J., Scruggs, W.T., O’Toole, A.J., Flynn, P.J., Bowyer, K.W., Schott, C.L.,
Sharpe, M.: FRVT 2006 and ICE 2006 large-scale results. IEEE Trans. Pattern Anal. Mach.
Intell. 32(5), 831–846 (2010)

22. Rizvi, S., Phillips, P.J., Moon, H.: A verification protocol and statistical performance analysis
for face recognition algorithms. In: Computer Vision and Pattern Recognition 98, pp. 833–838
(1998)

23. Sarkar, S., Phillips, P.J., Liu, Z., Robledo, I., Grother, P., Bowyer, K.W.: The HumanID gait
challenge problem: Data sets, performance, and analysis. Technical report (2003). http://www.
gaitchallenge.org

24. Swets, D., Weng, J.: Using discriminant eigenfeatures for image retrieval. IEEE Trans. Pattern
Anal. Mach. Intell. 18(8), 831–836 (1996)

25. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991)
26. Wilder, J.: Face recognition using transform coding of gray scale projection projections and

the neural tree network. In: Mammone, R.J. (ed.) Artificial Neural Networks with Applications
in Speech and Vision, pp. 520–536. Chapman & Hall, London (1994)

27. Wiskott, L., Fellous, J.-M., Kruger, N., von der Malsburg, C.: Face recognition by elastic
bunch graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 17(7), 775–779 (1997)

28. Zhao, W., Chellappa, R., Krishnaswamy, A.: Discriminant analysis of principal components
for face recognition. In: 3rd International Conference on Automatic Face and Gesture Recog-
nition, pp. 336–341 (1998)

29. Zhao, W., Krishnaswamy, A., Chellappa, R., Swets, D., Weng, J.: Discriminant analysis of
principal components for face recognition. In: Wechsler, H., Phillips, P.J., Bruce, V., Fogelman
Soulie, F., Huang, T.S. (eds.) Face Recognition: From Theory to Applications, pp. 73–85.
Springer, Berlin, (1998)

http://www.frvt.org
http://www.gaitchallenge.org
http://www.gaitchallenge.org


Chapter 22
Dynamic Aspects of Face Processing in Humans

Heinrich H. Bülthoff, Douglas W. Cunningham, and Christian Wallraven

22.1 Introduction

The human face is capable of a wide variety of facial expressions that manifest
themselves as usually highly non-rigid deformations of the face. On the one hand,
this presents the visual system with a problem: Recognizing someone requires de-
termining what information in the face remains constant despite the various facial
deformations. Extraction of such invariant features will allow me, for example, to
identify my neighbor regardless of whether he or she is smiling or looking sad. On
the other hand, the impressive repertoire of changes can also be seen as a positive: It
provides considerable information. The particular way my neighbor smiles or looks
sad might well be used for identification, similar to how Jack Nicholson’s and Tom
Cruise’s smiles are very specific to them.

In addition to potentially providing information about who someone is, facial
deformations can help us to infer something about a person’s age, social status,
general health, level of fatigue, and focus of attention. Likewise, changes in the
facial surface play a central, albeit often ignored, role in communication. Facial
deformations that serve this latter role are generally referred to as facial expressions.

A distinction should be drawn between the information that is present in a specific
image and the information that must be present for that expression or person to be

H.H. Bülthoff (�) · D.W. Cunningham · C. Wallraven
Max Planck Institute for Biological Cybernetics, Spemannstrasse 38, 72076 Tübingen, Germany
e-mail: heinrich.buelthoff@tuebingen.mpg.de

H.H. Bülthoff · C. Wallraven
Department of Brain and Cognitive Engineering, Korea University, Seoul, Korea

C. Wallraven
e-mail: wallraven@korea.ac.kr

D.W. Cunningham
Brandenburg Technical University, 03046 Cottbus, Germany
e-mail: douglas.cunningham@tu-cottbus.de

S.Z. Li, A.K. Jain (eds.), Handbook of Face Recognition,
DOI 10.1007/978-0-85729-932-1_22, © Springer-Verlag London Limited 2011

575

mailto:heinrich.buelthoff@tuebingen.mpg.de
mailto:wallraven@korea.ac.kr
mailto:douglas.cunningham@tu-cottbus.de
http://dx.doi.org/10.1007/978-0-85729-932-1_22


576 H.H. Bülthoff et al.

recognized. Trying to determine what information is perceptually necessary not only
provides critical insights into how humans process faces, but can also yield clues for
the design of automated facial recognition and synthesis systems.

Almost all research on the perception of faces—both for identity and expres-
sion—has tended to focus on the relatively stable aspects of faces. Some of this
information is invariant to deformations of the facial surface, such as the color of
or distance between the eyes. In other cases, the result of the deformation is the
information, such as the shape of the mouth. In such cases, usually the maximum
deformation (or peak expression) is examined. In other words, there is a pervasive
emphasis on static facial information. To some degree, this focus on static informa-
tion is driven by technology. It is difficult to systematically manipulate a photograph
in order to provide the systematic and parameterized variations needed for percep-
tual experiments without making the photograph look unrealistic. It is considerably
more difficult to perform the same manipulations on a sequence of images without
introducing artifacts either in any given image or across images [29, 80].

In general, however, human faces are not static entities. Indeed, if we meet some-
one who never moved their face, we would most likely be rather uncomfortable.
Some have gone so far as to argue that an individual (specifically, an android) that
looks like a human but moves either incorrectly or not at all (i.e., has a “dead” face)
will—as a result of the zombie-like appearance—lead to humans being repulsed by
that individual [75]. This hypothesis is referred to as the “uncanny valley”. Regard-
less of whether a zombie—or zombie-like individual—will repulse humans or not, it
is clear that the pattern of change over time is itself a great source of information for
many visual processes [46] and can often be used to discern real from synthesized
stimuli [106].

Fortunately, recent advances in technology, have allowed researchers to carefully
and systematically alter video sequences without introducing noticeable artifacts
and thus begin to examine the role of motion in face processing. Before one can
determine what types of motion are used (i.e., uncover the dynamic features), one
must determine if motion plays any role at all. It has been shown that facial motion
can provide information about gender [15, 51] and age [14].

In this chapter, we will focus on the role of motion in identity (Sect. 22.2) and
expression (Sect. 22.3) recognition in humans, and explain its developmental and
neurophysiological aspects. We will make some inferences and conclusions based
on results from literature.

22.2 Dynamic Information for Identity

Correctly identifying other people is critical to everyday survival and there has been
a considerable amount of research on how such a task might be performed. The
literature on how humans use faces to recognize people is quite extensive (for a
review, see Chap. 26, this volume or [91]). While the great majority of this literature
has focused on static information for identity, there has been an increasing interest
in dynamic information (see, e.g., [81]).
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Motion can be subdivided into rigid and nonrigid types. Rigid “facial” motion
generally refers to the rotations and/or translations of the entire head (e.g., such as
nodding or shaking the head). Nonrigid facial motion, in contrast, generally refers
to the nonlinear deformations of the facial surface (e.g., lip motion, eyebrow mo-
tion). One of the first studies to examine motion presented a 10 second clip of an
individual rotating in a chair through a full 360 degrees (rigid motion; [83]). This
motion was chosen as it represents a simple change in relative viewpoint, and thus
may help an observer to build up a more complete 3D representation of the individ-
ual. Accordingly, [83] found higher identity recognition performance in dynamic
conditions than in static conditions.

Shortly thereafter, [24] presented contrasting results. They showed five frames of
a person moving his/her head up and down and found no difference between static
and dynamic conditions. The head motion here, they suggested, represents social
communication (such as a nod of agreement). Thus the difference in results might
be represent a contrast between viewpoint change and social signal. It is important
to note that there are a number of other differences between the two studies, such as
length of the stimuli, direction of motion (horizontal versus vertical rotations), and
task. Subsequent studies have examined some of the differences to determine the
source of the conflict.

Another way of saying that [83]’s videos were longer than [24]’s is to say that
they contained many more images. This raises the possibility that not only is the
difference in results due to the length of the stimuli, but perhaps [83]’s dynamic
advantage itself is due merely to the number of images: The dynamic sequence has
more images than the static image. Perhaps one of the many views shown in [83]’s
had a facial view which was more optimal than the one used in the static condition
or in [24]’s five image video. To explicitly test this hypothesis, [69] asked partici-
pants to identify a number of famous faces, which were presented in three different
formats: as a nine-frame video sequence, a static 3 × 3 array of the nine images
in order, and a static 3 × 3 array with the nine images in random order. Not only
was there a dynamic advantage (despite the sequences being only 9 frames long),
but performance in the two static conditions did not differ from one another. Thus,
the reason why video sequences are recognized better is not simply that they have
more snapshots. It is important to notice, however, that [69]’s sequences consisted
primarily of nonrigid motion (talking, expressions) with little rigid motion.

Note that the 9 frames in [69]’s videos were presented sequentially in the dy-
namic condition and next to one another in the static conditions. Perhaps the mere
presence of multiple images is sufficient, but they need to be presented one after
another. That is, maybe the images need to be temporally separated or presented at
the same spot on the monitor, and motion per se is not required. To test this, [67] and
[83] presented a video where the images in the video were presented in a random
order. Note that such sequences have motion, but this motion is jerky and erratic
(i.e., the motion does not occur in nature). They found that identity was more ac-
curately recognized in normal sequences than in random sequences. This suggests
that it is not just the presence of time or motion that is important, but the specific,
naturally occurring motion (either horizontal rotation or nonrigid motion) that pro-
vides the advantage. As a final, more stringent test that it is the characteristic motion
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that is important, [67] showed that reversing the direction of motion (by playing the
sequence backwards) decreases recognition performance, suggesting that the tem-
poral direction of the motion trajectories is important. Likewise, they showed that
changing the speed of the motion sequence (e.g., by playing parts or all of a video
sequence too fast or too slow) decreased recognition performance.

The finding that a scrambled version of simple, uniform, horizontal head rotation
was not better than a static photograph, while an intact rotation sequence yielded a
significant recognition advantage [83] suggests that something other than character-
istic motion might be important. Wallis and Bülthoff [104], for example, suggested
that the temporal coherence of the stimuli provides some information. Specifically,
they examined how people learned new faces. While the head of the person-to-be-
learned was rotated (horizontally), the identity was changed. One unfamiliar face
was shown when the head was at its left extreme position and a different (but still
unfamiliar) face when the head was at the right extreme position. The intermediate
positions were a morph between the two identities. The results clearly show that
participants treated the different identities as if they were the same person (seen
from different views). Moreover, the fusion of the two identities was only found for
continuous head rotations; Scrambling the order in which the views were presented
eliminated the effect. Thus, it seems that spatiotemporal continuity plays a role in
learning identity.

In an attempt to determine the specific roles of rigid and nonrigid motion—
independent of static information—[52] used motion capture recordings of a con-
versation to animate an average face. They artificially separated rigid from nonrigid
motion and examined identity recognition and sex recognition. They found that both
types of motion can be used for both tasks, but that rigid head motion was slightly
more useful than nonrigid for identity recognition (while the reverse was true for
sex recognition). They also showed that inverting the face and playing the sequence
backwards reduced recognition, again pointing to some characteristic motion infor-
mation.

Following this, [68] also compared the role of different forms of motion. In con-
trast to [52]’s use of an average face, they used degraded images of familiar indi-
viduals (individuals from the same working environment). They found a dynamic
advantage for non-rigid motions such as expressions and speech, but not for rigid
motions (head nodding). Interestingly, the dynamic advantage was stronger for “dis-
tinctive” facial motions. This finding has been extended by [71], who showed that
recognition of familiar faces was better when the smile was “natural” rather than
“artificial”. Based on these findings, [71] concluded that some familiar faces have
characteristic motions that can help in identification via incorporating supplemental
motion-based information about the face.

The role of nonrigid motion in the learning of new individuals was examined
by [99]. While the novel faces were being learned, the beginning of a smile or a
frown was presented (specifically, the first 18 frames). Using a sequential matching
paradigm, they showed an advantage of motion when the test image was the same
person with a different (static) expression as well as when the same person was seen
from a different view (i.e., generalization across expression and viewpoint). The
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effect of dynamic information in generalization was subsequently replicated by [84]
using the motions from surprise and anger and a delayed visual search paradigm.

Many of the successful demonstrations of a dynamic advantage used degraded
stimuli. For example, [65] presented photographic negatives of the faces (see
Fig. 22.1b). Likewise, Lander and colleagues have impaired static information in
a number of ways, including Gaussian blurring (see Fig. 22.1c), inverting (see
Fig. 22.1d), pixelation (see Fig. 22.1e), and thresholding (reducing the image to
a two-tone, black/white image; see Fig. 22.1f)) [68–70]. As a result, it has been
suggested that dynamic information only plays a role when static information is im-
paired and the person is familiar (see, e.g., [81]). The successful demonstration of
a dynamic advantage in nondegraded stimuli of unfamiliar individuals by [52, 84,
99, 104] makes it unlikely that such an explanation captures the whole story.

As an alternate explanation, Thornton and colleagues [99] suggested that previ-
ous failures to find a dynamic effect (specifically that of [24]) may have been due
to the task used (an old-new task). That is, it might be a memory effect, but not a
face perception effect. Additional evidence for this comes from [88], who also used
an old-new task to examine the role of different types of motion in learning new
individuals. The videos were from a speech database, so contained rigid as well as
nonrigid motion. In contrast to the other work on learning new individuals, they
found no dynamic advantage, consistent with Thornton’s suggestion that the task
may be problematic. There is, however, some difficulty with such an explanation:
[68] found head nodding did not lead to a dynamic advantage, but they used a nam-
ing task (and not an old-new task) for familiar individuals. Interestingly, the type of
rigid motion in [68]’s and [24]’s experiments was the same: vertical rotations. It is
possible that this also plays a role.

In the first study to explicitly examine the interaction between static and dynamic
identity information, [64] recorded several individuals performing various actions
(such as chewing and smiling) and used those motions to animate unfamiliar faces.
The motions and the faces were subsequently systematically combined. Participants
learned, for example, two different faces each with its own motion. Subsequently,
they were presented with a series of trials where the motion was always from one
individual, but the face shape was a morph of the two. By systematically varying
the degree of the morph, they were able to measure psychometric functions show-
ing the independent contribution of shape and motion. They found clear evidence
that the characteristic aspects of the motion influenced the learning and subsequent
recognition of identity.

22.2.1 Developmental Aspects

As part of the large body of literature on the importance of motion and moving stim-
uli in general for the perceptual development of the infant, several studies have in-
vestigated how infants might benefit from the information inherent in moving faces.
Looking at the performance of infants in the context of dynamic face recognition
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Fig. 22.1 Examples for several individuals of some image degradation procedures a the original
photos; b Photographic negative version of those individuals; c Gaussian blur; d inversion; e pixe-
lation; and f thresholding
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is especially illuminating for two reasons: First, infants (especially in their first few
years) have not yet become full experts in face processing. Indeed, as research has
shown, face recognition takes an astonishingly long period to reach adult recog-
nition levels [92]. This means, that infants have not yet reached “ceiling”, that is,
they do not yet exhibit the excellent generalization capabilities and almost perfect
recognition results usually found in adult observers. A second important reason for
investigating infants is that during the first few years, information about facial iden-
tity and facial expressions comes exclusively from real, living, moving faces (for
example, the gaze of infants is attracted to a movie of the mother’s face versus an
abstract movie [55] at as early as 10 weeks of age), whereas for adults the processing
of static faces (e.g., photographs) is a much more common activity.

One of the first studies to explicitly test whether infants are specifically sensitive
to dynamic information in faces [96] is a follow-up study to [51] using the same
stimuli. Since they tested young infants between 4 and 8 months of age, standard
recognition paradigms could not be used. Instead, a variant on the preferential look-
ing paradigm was employed. First, an average face told a joke. Whereas the shape
of the average face was independent of the actor who told the joke, its deformation
was driven by that particular actor’s motion. After having seen such a dynamic face,
the infants were presented with the same average face telling a different joke. This
time, however, there were two faces: one driven by the previous actor’s motion and
another driven by another actor’s motion. The study found that infants tended to
spend more time looking at the sequence with the previous actor’s motion indicat-
ing that, indeed, the motion signature of the actor was processed—and can be used
by infants to disambiguate individuals.

Similarly, in [82] infants between 3 and 4 months of age were tested. In one
experiment, infants were either presented with either a short clip of a face in mo-
tion (performing a facial expression) or of the last, static frame of that movie. After
30 seconds of exposure, infants then looked at two (static) faces differing in facial
expression. The study found that infants could only tell the two faces apart using the
dynamic familiarization stage. Only after the familiarization phase was extended to
90 seconds could infants use the static familiarization face for subsequent recogni-
tion.

In another related study [94], two groups of 7 and 10 year-old children were re-
quired to learn unfamiliar faces from either static or dynamic stimuli with a sub-
sequent static or dynamic test phase. Interestingly, the study found that motion
helped during familiarization but not during recognition, that is, it did not matter
whether faces during testing were shown as pictures or as movies. On average—and
in agreement with the general trend observed during development—older children
performed better at the task.

Taken together, these studies show that motion plays perhaps the greatest role
during the early stages of development, helping the perceptual system to recog-
nize idiosyncratic movements quickly and enabling a better structural description of
faces through the use of motion cues. During adulthood, however, the face process-
ing system has reached an expert level, making it hard to identify the advantage of
moving faces for recognition of identity.
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22.2.2 Neurophysiological Aspects

Given that faces are learned in a dynamic context, one would expect the brain to
have specific networks devoted to processing of spatiotemporal information about a
face. Indeed, such a hypothesis would go hand in hand with the models proposed for
face recognition [17, 20, 50] which posit a separate processing stream for “change-
able aspects” of a face. Usually, such changeable aspects are contrasted with the
invariant, static aspects such as the identity of a person. Given the discussion above
of how motion can help recognition of identity in some cases, the idea of two fully
separate streams seems unlikely in the light of these perceptual and developmental
findings, however.

With the advent of fMRI as a widespread imaging technique, the question of how
dynamic and static information about faces are dealt with in the brain has become
the focus of a few recent studies. Again, however, the majority of studies have used
non-natural, or highly abstract stimuli for testing any differences (cartoon faces,
morphed expression-like stimuli, etc.). It seems clear from these earlier studies that,
for example, the superior-temporal-sulcus (STS) in the dorsal pathway is active dur-
ing perception of moving face stimuli (e.g., [2]). This region is also active during
observation of biological motion and complex motion patterns such as optic flow in
general [47].

Recently, two studies have directly contrasted activation in the brain during ob-
servation of static versus dynamic stimuli. In the first study [42], static and dynamic
face stimuli were used in two different participant groups to localize areas involved
in face perception. Such localizers are usually the first step in a fMRI study to iden-
tify candidate regions for closer inspection in the main part of the study. They found
that using dynamic faces, face-sensitive regions could be much better identified than
for static faces. Taking this one step further, a recent study [90] investigated response
differences due to the dynamic information in the same group of participants. In ad-
dition to the expected activation in typical motion areas (Visual Area 5 and STS),
they found that face regions in the ventral pathway that responded to static face
stimuli were significantly more active for dynamic stimuli. This suggests that areas
that are not traditionally associated with processing motion might already integrate
dynamic information in the case of faces. At the very least, these results underline
the fact that dynamic faces are the preferred stimulus for the brain.

22.2.3 Summary

In sum, it is clear that facial motion—both rigid and nonrigid—plays a role in the
learning of new individuals and in the recognition of already learned individuals.
This effect is strongest when the images are degraded. That is, the dynamic in-
formation helps to compensate for loss of static information. Since normal static
images already contain a considerable amount of identity information, this is to be
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expected for many reasons. It is not surprising that for a phenomena which has mul-
tiple sources of information, the removal of one source (e.g., static information)
allows the effect of other sources (e.g., dynamic information) to be more clearly
seen. Likewise, one might well imagine that the recognition of identity could be
near ceiling performance for many types of task. Regardless, it is clear that not
only do simple motions (such as horizontal rotations) help us to identify individ-
uals, but that complex, characteristic motions (such as a certain way of smiling)
provide distinct information about specific individuals. Future studies will need to
clarify exactly what types of facial motions we remember about a person and how
these might help us in identification. In addition, it seems that the beneficial effect
of motion information is much more pronounced during early development of the
perceptual apparatus, as the developmental studies have shown a clearer motion ad-
vantage also already for unfamiliar faces. These results highlight the fact that human
face perception undergoes a long process of optimization and fine-tuning to let us
become experts in face processing.

22.3 Dynamic Information for Expressions

Although less studied than identity perception, facial expressions are no less impor-
tant for everyday life. Compared to other species, humans have developed highly
sophisticated communication systems for social interaction. One of the most impor-
tant of these is based on facial expressions. More specifically, facial expressions are
known to serve a wide variety of functions:

• Meaning: They can, of course, be used to independently express complex ideas
and intentions. For example, someone can look happy, sad, confused, or disgusted
(see Fig. 22.2) [8, 9, 16, 29, 34, 62].

• Modifier: They are also very useful in modifying the meaning of auditory com-
munication [11, 19, 25, 31, 76]. For example, a spoken statement by itself conveys
a different meaning than when it is accompanied by a look of boredom. Indeed,
in situations where the meaning conveyed by the face differs from that in an-
other communication channel, the face tends to be considered more important
[21, 41, 73].

• Emphasis: They co-occur with vocal accentuation [32, 79]. This emphasis can
be seen, to some degree, in the static snapshot shown in Fig. 22.3.

• Control: Listeners can provide a wealth of information to the speaker without
ever saying a word (this is referred to as “back-channel” signals; [111]). For
example, a properly timed nod of agreement can tell the speaker to continue
speaking, while a look of confusion at the same junction of the conversation
would indicate that the speaker should stop and try to explain the last point again
[10, 12, 18, 22, 23, 56, 86, 102].

Starting at birth, humans are trained to process faces and facial expressions, re-
sulting in a high degree of perceptual expertise for face perception and social com-
munication. This highly trained degree of expertise makes facial expressions—both
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Fig. 22.2 Static snapshots of several facial expressions. a Agreement; b Disagreement; c Happi-
ness; d Sadness; e Thinking; f Confusion; g Cluelessness; h Disgust; i Surprise. Some of these
expressions can be recognized even in a static snap shot. Other expressions, like agreement and
disagreement, seem to rely more heavily on dynamic information

emotional and conversational—an extremely difficult topic to study: We can detect
very small differences in both motion and meaning. Furthermore, the physical dif-
ferences between an expression that is recognizable (or is seen as sincere) and one
that is not can be very subtle (see, for example, Fig. 22.4). Moreover, there are a
number of different ways that humans express any given meaning, and not all of the
resulting expressions are easily recognized [27–29]. All these factors jointly make
the recognition of facial expressions one of the most difficult tasks the human visual
system can perform [7].

Facial expressions have been the topic of scientific examination since at least
[30]’s and [33]’s seminal work. These studies, as well as the majority of studies that
followed, examined the reaction of people to various facial poses using photographs.
Obviously, different facial areas are important for the recognition of different emo-
tions: The mouth is critical for a smile, and the eyes for surprise, etc. [9, 29, 48,
78, 85]. For example, [37] showed that a true smile of enjoyment has not only the
characteristic mouth shape, but also specific wrinkles near the eyes whereas faked
expressions of enjoyment, in contrast, contain just the mouth information. This also
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Fig. 22.3 A photograph of a
facial expression that
accompanied vocal emphasis.
The facial expression that
accompanies a vocal
emphasis may be sufficient to
recognize the emphatic nature
of the statement, even in a
static snapshot. This figure is
taken from [29]

Fig. 22.4 Three photographs showing that small physical changes can produce large perceptual
changes. These three snapshots were taken from three separate recordings of a clueless expression.
All three expressions were recorded within 5 minutes of each other. This figure is adapted from
[29]

shows that different facial regions can contribute to the perception of sincerity as
well as to the recognition of the underlying expression.

The differential role of facial areas in different expressions is reflected in the fact
that most models of facial expressions are explicitly parts-based [36, 38, 39, 43,
44, 57, 72, 101]. For example, Massaro and colleagues have proposed a parts-based
model of perception (the fuzzy logical model of perception, or FLMP) in which
the features are independently processed and subsequently integrated [38]. In one
study, they used computer generated static facial expressions where either (a) the
mouth, (b) the eyebrow, or (c) both were parametrically varied. Participants were
asked to say if the expression was happiness or anger. Ellison and Massaro found
that both features affected the participants’ judgments, and that the influence of
one feature was more prominent when the other feature was neutral or ambiguous.
Moreover, the FLMP captured patterns in the data better than either holistic models
or a straight-forward additive model based on recognition rates of the individual fea-
tures. There are, however, at least two models that integrate holistic (undecomposed
whole face) information [58, 109].
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Perhaps the most widely used method for parameterizing the high-dimensional
space of facial expressions is the facial action coding system (or FACS, [36]), which
segments the visible effects of facial muscle activity and rigid head motion into “ac-
tion units”. Combinations of these action units can then be used to describe different
expressions. It is important to note that FACS is a system for describing the elements
of photographs (or series of photographs) of facial expressions. It is not a model of
facial expression processing per se and makes no claims in and of itself about which
elements go together to produce different expressions [89].

Regardless of being parts-based, holistic, or hybrid, nearly all models of expres-
sion perception focus exclusively on static information. One can, sometimes include
some information about the change of the static features over time by looking at the
features in every frame, but there is rarely any ability to describe information that is
only available over time. One potential exception to this rule is FACS+ from [40].
They used an optic flow technique combined with a few domain-based constraints
to estimate facial structure and motion, yielding an empirical model of facial motion
and structure. It is unclear, however, how the components of this model relate to the
features used by humans. It is nonetheless increasingly clear that there is dynamic
information for expressions and that any model of expression processing must take
it into account.

Some of the earliest hints at spatiotemporal expression information comes from
[8, 9], who used Johansson point-light faces to examine the role of motion in expres-
sion recognition (for more on point-light stimuli, see [59]). Their displays consisted
of low-light recordings of the face and neck of several actors and actresses perform-
ing either an expression (happy, sad, surprise, disgust, interest, fear, and anger) or a
random facial motion. The visible parts were painted black and then covered with
approximately 100 white spots and the eyes were closed during the recording ses-
sions. Thus, in the final video sequences, all that were visible were the 100 white
points, moving about the screen. Each participant saw a single display (to avoid
any learning effect or comparison of displays) and was asked to describe what they
saw (such a free description task also helped to prevent biasing the participants’
answers). The display was either single static snapshot or a full video recording
of one expression. On average, the collection of points was recognized as being a
face considerably more often in the dynamic conditions than in the static conditions
(73% versus 22% of the time, respectively). That is, the procedure removed nearly
all static information that the display was a face as well as any information for more
specific facial properties (such as identity or the specific expression). In a second
experiment, an additional set of recordings where the face was visible (that is, no
makeup was used) was included and participants were asked to identify the expres-
sion using a forced choice task (note that in a forced-choice task, a limited set of
response options is given and the participant must choose one of these options as
the answer). Overall, the expressions were recognized more often in the nonmakeup
condition than in the point-light condition (65% versus 33% correct responses, re-
spectively). Critically, more expressions were recognized in the point-light condi-
tion than can be expected by pure guessing, suggesting that there is some temporal
information for facial expressions. Additional work suggests that even in dynamic
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expressions, different expressions rely on different facial regions, with most expres-
sions relying primarily on a single region [9, 29, 80]. Note that although eye, eye-
brow, mouth, and rigid head motion are jointly sufficient for accurate recognition
of the conversational expressions, other regions do contain information about facial
expressions [80].

During the 20 years following Bassili’s work, little to no studies examined the
perception of dynamic facial expressions. In one of the few exceptions, [37] demon-
strated that deceptive expressions of enjoyment appear to have different temporal
characteristics than spontaneous ones. At the start of a rebirth in interest in dynamic
expressions, [34] conducted an innovative experiment to demonstrate human sen-
sitivity to temporal information. They printed out each frame of a video sequence
of an expression. These photographs were given to participants (in a scrambled or-
der), who were asked to place the photographs in the correct order. Participants were
remarkably accurate, with particularly strong sensitivity to the temporal characteris-
tics in the early phases of an expression. Interestingly, participants performed better
when asked to complete the task with extremely tight time constraints than when
given unlimited time, from which Edwards concluded that conscious strategies are
detrimental to this task.

Similar to [52]’s and [67]’s work with identity recognition, [62] examined the
role of speed in the perception of expressions. Specifically, they manipulated the
speed with which a neutral face transitioned into an emotional one. They found that
happiness and surprise were better recognized from fast sequences, sadness better
from slow sequences, and that angryness was best recognized at medium speeds.
Subsequently, [53], demonstrated that increasing the distance traveled by an area
while holding the timing constant (which also alters the speed and acceleration of
the part) can exaggerate the emotional content of sentence. This suggests that dif-
ferent expressions seem to have a characteristic speed or rate of change.

Consistent with the work on identity, most examinations of dynamic expressions
used degraded stimuli [3, 26, 35, 49, 60, 77, 105, 107, 108]. It has been consis-
tently shown that dynamic expressions are recognized better than static ones. It has
even been shown that the recognition of dynamic expressions with degraded static
information can be as good as if not better than static expressions that are not de-
graded. That is, dynamic information can compensate for the loss of static informa-
tion [35, 60, 105]. For example, [105] systematically degraded the shape, texture,
and motion of a series of computer animated facial expressions. They examined
performance in a forced-choice task, and found that dynamic sequences produce
higher recognition rates than the static sequences. Likewise, they found that degrad-
ing either shape or texture information in the static conditions decreased perfor-
mance. Critically, all dynamic conditions showed equal performance. That is, the
presence of dynamic information eliminated the negative effect of degrading static
information (specifically, shape and texture). In a separate experiment, they showed
that animations that had proper nonrigid motion but lacked rigid head motion were
recognized much worse than expressions that had both rigid and nonrigid motion.
Additionally, the absence of rigid head motion greatly increased reaction times (par-
ticipants were much slower in performing with rigid head motion). Finally, a simple,
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temporal linear morph resulted in a small but significant drop in performance from
the full motion condition, indicating that not only is motion important, but that nat-
ural motion seems to be important.

Just because one can use dynamic information does not, however, mean that one
normally uses it. Indeed, in all the studies that have shown a dynamic advantage
for expressions, the dynamic and static stimuli generally differed along a number
of dimensions (such as the number of images and facial poses). Thus, it is unclear
whether the dynamic advantage is due to (spatio)temporal information or some-
thing simpler. To help determine whether the dynamic advantage is due to the sim-
ple presence of more images, [3] compared recognition performance for a static
expression, a dynamic version of that expression, and a condition where a 200 ms
Gaussian noise mask was interspersed between the frames of the dynamic sequence.
The noise was intended to mask the motion information. The normal dynamic con-
dition resulted in much better performance than either of the other two conditions.
Performance in the static condition and the masked dynamic condition did not differ
from each other. This latter result confirms that masking does eliminate the percep-
tion of motion, as expected. Unfortunately, such a mask is also known to inhibit
the processing of static information (see, e.g., backwards masking: [5, 61, 97, 110]
or change blindness: [13, 87, 93]). Moreover, the stimuli contained only the early
phases of an expression (i.e., the first three to six frames). This means that the static
condition was degraded in a particular fashion: it did not contain all of the static
information that is present in the peak expression which is used in other expression
studies. Thus, it is not clear that the dynamic advantage found in [3]’s experiment
would generalize to real-world situations.

Recently, [26] presented a series of 5 experiments conclusively demonstrating
the presence of spatiotemporal information for facial expressions. Most of the ex-
periments are strict analogues to the series run by [67, 69, 83] for facial identity.
In Experiment 1, [26] directly compared dynamic and static peak versions of nine
conversational expressions (see Fig. 22.2), seven of which demonstrated a dynamic
advantage (happy and thinking were roughly equivalent in the static and dynamic
conditions). This shows that a dynamic advantage can be found for video record-
ings over peak static images using normal intensity, conversational and emotional
expressions of real individuals. The second experiment examined several static ex-
planations for the dynamic advantages. For example, it is possible that the frame
chosen in the first experiment was sub-optimal. Perhaps another frame was better,
and the presence of this single image in the dynamic condition is the cause of the
improved results. Likewise, since the perception of faces is, at least partially, based
on its component parts, it is possible that people pick and choose the best parts from
different frames, and composite them into a joint static whole (some evidence for
this comes from [4]’s work with identity perception). Thus, similar to [69], a short-
ened dynamic sequence (the last 16 frames) and two static arrays (scrambled and
ordered) were compared to the full dynamic and static peak conditions. The full
dynamic and 16 frame dynamic conditions, which did not differ from one another,
both produced higher recognition rates than the three static conditions (interestingly,
the two array conditions produced slightly better performance than the static peak).
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These results, combined with those from the third experiment (which scrambled the
order of the frames in the dynamic sequence) show that the mere presence of many
images or even face-appropriate dynamic information is not sufficient. There is some
specific information present in the normal temporal development of an expression.
Likewise, playing the expressions backwards (Experiment 4) reduced performance.
Finally, the fifth experiment demonstrated that performance increases with increases
in the number of frames that are kept together (blockwise scrambling). The length
of the temporal integration window was at least 100 ms. In sum, dynamic expres-
sions are recognized more easily and more accurately than static expressions, this
effect is fairly robust, and the effect cannot be explained by simple, static-based
explanations.

22.3.1 Developmental Aspects

Dynamic information is an even more crucial factor for processing of facial expres-
sions during the perceptual development than it is for face identity [103]. Interest-
ingly, despite a few early studies, there have been only relatively few recent studies
that directly highlight the difference between static and dynamic processing of facial
expression from a developmental perspective.

In an early study, [103] found that 5 and 7 month-old infants were able to dis-
criminate between dynamically presented happy and angry facial expressions when
they were presented with a congruent vocal expression. Following up on this finding,
[95] used dynamic happy and angry expressions that were either point-light stim-
uli or normal faces. The study showed that infants, indeed, preferred the congruent
stimuli over the incongruent ones in both conditions, highlighting the fact that the
dynamic information in the visual and acoustic domains were integrated—this was
especially true, of course, for the point light stimuli which presented much reduced
shape information.

One of the most well-known perceptual findings about people suffering from
autism spectrum disorder (ASD) is that they seem to have problems in identifying
facial expressions. Interestingly, most research on this had been done with pho-
tographs, again presenting the participants with “unrealistic” stimuli. In a study
comparing ASD and normal children on their performance with static and dynamic
presentations of emotional facial expressions, surprisingly few differences between
the two groups were found [45]. Interestingly, the authors hypothesized that is was
the presence of slow dynamic changes in the stimuli that they had used that gave the
autistic group a better chance at processing the stimuli—a result that was recently
confirmed [98]. In another study, two groups of ASD and normal children were
tested with a more complex set of facial expressions that were presented either stat-
ically or dynamically [6]. Although individuals with ASD performed significantly
worse than the control group, there was little difference between static and dynamic
presentation of expressions, which was most likely due to low, overall recognition
performance (see [26]).
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Finally, a recent larger, cross-sectional study tested an age range from 4 to 18
years with facial animations portraying different emotions at varying intensity [74].
The study found that the performance of expression recognition increased with age
and that it also increased with the intensity with which emotions were animated.
Interestingly, performance increased faster for the girls than the boys in the study
indicating a gender difference during development of emotional understanding.

In summary, whereas the importance of dynamic information—and with that also
the use of dynamic, natural stimuli—for the investigation of facial expression pro-
cessing has been recognized, more studies are needed to elucidate the development
of dynamic expression processing.

22.3.2 Neurophysiological Aspects

There is some emerging evidence that the neural mechanisms responsible for the
perception of expression are at least partially different for static and dynamic fa-
cial expressions [1, 54, 66]. These studies include reports from patients who are
completely unable to recognize expressions from static pictures or static descrip-
tions, but have normal recognition performance for both dynamic expressions and
descriptions of dynamic expressions or actions. A recent neural model for the pro-
cessing of facial expressions was presented in [1], which details the different areas
that might be involved at different points in time. Whereas this model accounts for
some dynamic aspects, an integrated model of how the human brain interprets the
highly complex dynamic signals from facial expressions is still lacking.

In one of the first studies to use real-world video sequences (rather than, for ex-
ample, expression morphs such as in [66]), participants observed happy and angry
facial expressions in both static and dynamic versions [63]. The study used Positron
Emission Tomography (PET) to chart the different neural networks that were in-
volved in perception of the different stimuli. In good agreement with the fMRI stud-
ies mentioned earlier, they found a series of typical motion areas to be activated for
the dynamic stimuli. Additionally, the found critical differences depending on the
expression used. That is, different networks of areas were associated with perception
of dynamic happy expressions than with the perception of dynamic angry expres-
sions, and those networks were in turn different from the networks found during
perception of static expressions. A recent study [100] extended the stimulus mate-
rial to include many more actors (thereby avoiding potential habituation effects as in
previous studies, which mostly used expressions of only one actor/actress), and con-
trasted static and dynamic version of neutral, happy, and disgusted expressions using
fMRI. Again, the results for the dynamic stimuli indicated a much more widespread
network of activation than for the static stimuli. Interestingly, this also included
pre-motor areas that are thought to be the human equivalent of the mirror-neuron
system and perhaps might be related to motor imagery, or (unconscious) imitation
of the observed expression. In addition, the recognition results for dynamic stimuli
were found to be better than those for static stimuli [3, 26].
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Whereas all studies seem to converge on the fact that facial expression percep-
tion in the brain for dynamic stimuli is different from that of static stimuli, a point
of criticism still is that stimuli (and also the most prevalent existing models of ex-
pression processing [1]) in all cases are based on a few examples from the universal,
emotional expressions. It remains to be seen how conversational facial expressions
and thus more general facial movements will fit into the overall picture.

22.4 Conclusions

It is clear that there is some form of characteristic facial information that is only
available over time, and that it plays an important role in the recognition of identity,
expression, speech, and gender. It is also clear that the addition of dynamic informa-
tion improves the recognizability of expressions and identity, and can compensate
for the loss of static information. Moreover, at least several different types of mo-
tion seem to exist, which play different roles, and a simple rigid/nonrigid dichotomy
is neither sufficient nor appropriate to describe. Additional research is necessary to
determine what the dynamic features for face processing are.

The sole reliance on static information in any attempt to understand how humans
use the face and head to identify or communicate with other people will illuminate
only a very limited and maybe even artificial part of the perceptual and cognitive
mechanisms involved. Likewise, any system designed to describe or recognize peo-
ple or facial expressions that does not explicitly allow for the description of dynamic
information will never yield human-like performance.

Artificial systems that aim at communicating naturally and efficiently with hu-
mans need to be based on a truly spatiotemporal description of the face and commu-
nication. Such a description will not only open the door for computer vision systems
in biometrics and human-computer interaction, but also enable a more targeted anal-
ysis and a potential road to successful therapy and training approaches for patients
with both deficits in communication production (such as occurring after a stroke,
for example) or in communication understanding (patients with Autism Spectrum
Disorder, or Asperger’s syndrome, for example).
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Chapter 23
Face Recognition by Humans and Machines

Alice J. O’Toole

23.1 Introduction

We recognize individual human faces dozens of times each day, with seemingly
minimal effort. Our repertoire of known faces includes those of our family, friends,
coworkers, acquaintances, and the many familiar faces we see in the news and en-
tertainment media. At its best, human face recognition is highly robust to changes in
viewing angle and illumination. It is also robust across the set of nonrigid face de-
formations that define emotional expressions and speech movements. Humans can
even manage, in some cases, to recognize faces over decade-long lapses between en-
counters. Over time spans early in life, the head structure and facial features change
markedly as children grow into adolescents and adults. Later in life, faces can age
in ways that alter both the shape of the facial surface and the texture of the skin,
as well as the color of the hair and eyebrows. By almost any current measure of the
complexity of the computational vision problems solved to accomplish this task, the
human face recognition system is impressive.

The description of human face recognition skills just offered is a best case sce-
nario and one that is true only for the faces of people we know reasonably well
(e.g., friends and family) or have seen many times in the popular media (e.g., Barack
Obama, Angelina Jolie). For the faces of people we know from only a single or small
number of encounters, human performance is not similarly robust. This is abun-
dantly clear from the mundane day-to-day mistakes we make, and more critically,
from the many well-documented cases of the fallibility of eyewitness identifications.
In this latter case, a person may be seen initially under sub-optimal viewing condi-
tions. A witness may then be asked days, weeks, or even months later to make an
identification. Human recognition can be highly prone to error in these cases [9, 10].
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A key issue both for computer vision researchers and for psychologists is to un-
derstand how it is possible to create a representation of faces that achieves the kind
of robust face recognition people show when they know someone well. Understand-
ing the changes that occur in the quality of a face representation as a newly learned
face becomes increasingly familiar over time may offer insight into the critical prob-
lems that still challenge even the best available computer-based face recognition
systems. It may also help us to understand the conditions under which human face
recognition is reliable. We will conclude, ultimately, that the best current face recog-
nition algorithms are well on their way to achieving the recognition ability humans
show for unfamiliar faces, but have a long way to go before they can compete with
humans in the best case scenario.

In the first part of this chapter, I will describe the characteristics of human face
processing, emphasizing psychological studies that illustrate the nature of human
face representations. We begin with a brief overview of the multiple tasks humans
do with faces, including identification, categorization, and expression perception.
Next we will look at some characteristics of the human representation of faces that
distinguish it from representations used in machine vision. In particular, we focus
on the advantages of norm-based coding for identification tasks. This optimizes the
feature dimensions used to code faces, but may have a cost in generalization to faces
that are not described by the derived sets of features (e.g., faces of “other” races or
ethnicities).

In the second part of the chapter, I will discuss a series of recent studies that
compare human performance to the performance of state-of-the-art face recogni-
tion systems. One goal of these comparisons is to establish human benchmarks for
the performance of face recognition algorithms. A second goal is to understand the
strengths and weaknesses of humans and machines at the task of face recognition
and to come up with strategies for optimally combining human and machine recog-
nition decisions. A third aim of these studies is to understand qualitative similarities
and differences in the pattern of errors made by humans and machines. We will ar-
gue that studying human face recognition in this way can help us to anticipate and
mitigate the errors made by both human and computer-based systems.

23.2 What Humans Do with Faces

Perhaps the most remarkable aspect of the human face is the diversity of informa-
tion it provides simultaneously to the human observer for solving different “tasks”.
These tasks include recognition, identification, visually-based categorization (e.g.,
sex, race, age), and emotional/facial expression perception. The challenge for the
human system is to extract and apply the information needed for the task at hand.
As we will see, the coexistence of identity information (e.g., distinctive facial fea-
tures) and social information (e.g., smiles, head turns, etc.) in the human face makes
the problem of recognition even more challenging.
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23.2.1 Recognition and Identification

Each human face is unique and, as such, provides information about the identity
of its owner. Humans can keep track of hundreds (if not thousands) of individual
faces. This far exceeds our ability to memorize individual exemplars from any other
class of objects (e.g., How many individual suitcases can we remember?). For psy-
chologists, recognition refers to the judgment that we have seen a particular face
before. Identification assumes recognition, but with the added burden of being able
to label the face with a name or context (e.g., the sales clerk at the grocery store).
For humans, recognition can occur with a high degree of confidence and accuracy,
even with no ability to supply a name or context. We have all had the experience of
seeing someone, being certain you “know” them, but having no idea who they are or
where you met them previously. The separability of recognition from identification
success highlights the fact that, for humans, faces are coded perceptually, and that
this perceptual code can be activated and remembered without reference to other se-
mantic information like a name. This characteristic, of course, differs for machines
in that the “recognition” of a face by computer necessarily implies the retrieval of a
tag or label for the person.

Returning to the question of the visual information that is extracted and encoded
for later recognition, it is clear that to identify a face we must locate information
that makes the face unique or different from all other faces we have seen before
and from all other unknown faces. Humans deal with this problem by coding faces
relative to an average or prototype face. The prototype face is likely derived from
the history or experience a person has with faces. In this sense, people with different
experience profiles (e.g., with faces of different races) will have different prototype
faces. We discuss the advantages and consequences of this relativistic coding strat-
egy in Sect. 23.3.1. For now, we simply note this as an important characteristic of
human face recognition that sets it apart from most approaches in computer vision.

23.2.2 Visually Based Categorization

In addition to our ability to recognize and identify faces, humans can also catego-
rize faces along a number of dimensions referred to as visually-derived semantic
categories [7], including sex, ethnicity/race, and age. By a broader definition, one
can also include other visually-specified, albeit abstract, categories such as person-
ality characteristics. For example, humans routinely make judgments about whether
a face looks “generous” or “competent” or “extroverted”. Faces can be categorized
quickly and effortlessly based on a host of social and personality dimensions. An in-
triguing aspect of the human tendency to make these types of judgments about faces
is that the act of judging actually increases human accuracy at recognizing faces.
Specifically, recognition is better when people are asked to make social judgments
about a face as they are learning (e.g., “Is this person extroverted?”), as compared
to when they make physical feature-based judgments (e.g., “Does this person have
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a big nose?”) [4]. To date, judging faces for social and personality traits is still one
of the best ways to improve human accuracy at face recognition.

Although the trait judgments we make about people from their faces do not pre-
dict a person’s social and personality characteristics cite someone, they nonetheless
have real predictive power for other important decisions. Todorov and colleagues
showed recently that judgments of “competence”, made only from a black and white
picture of a face, predicted the outcome of U.S. Senate and House of Representa-
tives elections at levels well above chance [33]. In that study, people were asked to
answer the following questions about pairs of face images taken from actual election
races. Which person is the more competent? The researchers eliminated data for any
trials where the subject knew the candidates. Remarkably, naive subjects’ answer
to this question predicted the outcome of 71.6% of United States Senate races and
66.8% of the House of Representative races.

This effect was replicated subsequently by researchers in Switzerland, who ex-
tended the finding to show that children’s judgments of faces predicted the outcomes
of French parliamentary run-off elections in 2002 [2]. In that study, Swiss children
between the ages of 5 and 13 years decided, “Which of these people do you want to
be the captain of your boat?”. They found that the probability of predicting an elec-
tion outcome based on the children’s choice of preferred captain was 0.71, similar
to the predictive power of the adult judgment’s in the study by Todorov et al. [33].
The children’s judgments even predicted the margin of victory in the races.

Combined, these studies indicate a willingness to categorize faces along both
physical and social dimensions. They further suggest the availability of categorical
information in faces that humans perceive in a similar way as predictive of personal
and social traits. More important, these perceptual judgments affect human face
recognition accuracy and the decisions we make about people, from our simplest
expectations of a person’s approachability to our trust in their ability to govern.
Moreover, the information we extract from faces to make these categorical judg-
ments is readily available even to children, who presumably know less about the
social structure of the world.

23.2.3 Expression Processing

Facial expressions available on the human face provide others with information
about our emotional state and social intent. Expressions of fear, happiness, sadness,
disgust, surprise, and anger are universally interpretable as conveying information
about the internally felt emotions of another person [13]. The universal nature of
these expressions indicates that the information that specifies them is shared across
all human faces. Because facial expressions are made by muscle movements that
cause nonrigid deformations of the shape of facial features and configurations, in
principle, they can complicate the problem of face recognition. For humans, there is
surprisingly little data on the effect of expression change on face recognition accu-
racy, though anecdotal information suggests that for faces we know well, the effects
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of expression are minimal. The effects for less familiar faces are not known, though
it is likely that expression change may make recognition less accurate.

For familiar faces, one reason that expression change may have minimal effect
on human abilities to recognize faces is that by most theoretical and neural ac-
counts, the processing of facial expression by humans is at least partially indepen-
dent from the processing of identity information in the face [7, 15]. Support for the
neural side of this claim comes from long-standing observations in brain-damaged
patients indicating that neural lesions can affect the identity processing system or
the expression processing system selectively. Thus, there are documented cases of
prosopagnosia (a complete inability to recognize people by their faces, with no
other difficulties with object recognition) following brain damage, with spared abil-
ity to recognize facial expressions [37]. Concomitantly, there are documented cases
of impaired expression recognition following brain damage with spared ability to
recognize faces [1]. Although these observations have suggested the independence
of the identity and expression-processing systems, the completeness of this sepa-
ration has been questioned in recent years [11]. Notwithstanding, the implication
is that the human system may process expression and identity in parallel systems
with different goals. Moreover, current neural models allocate these two processes
into separate systems that analyze facial motions including expression, gaze and fa-
cial speech, and those that analyze the static invariant structure of the face and its
features for categorization and identification [15]. See Chap. 22 for more detail on
moving faces.

23.3 Characteristics of Human Recognition

The characteristics of human face recognition have been studied by psychologists
for decades. In this chapter, we focus on the characteristic of representations that
may most differentiate human face recognition from machine recognition. Specifi-
cally, the use of relative rather than absolute face codes.

23.3.1 Norm-Based Coding

There is strong evidence that humans code individual faces relative to a prototype or
average face, rather than in absolute terms. This type of code directly captures how
individual faces differ from the average face. Thus, we refer to the representation as
“norm-based”. A norm-based code has several important advantages over absolute
codes, including its neural efficiency and adaptability to the perceiver’s local envi-
ronment of faces. The code also has some pitfalls which we consider subsequently.
Critically, however, understanding the way humans represent faces provides us with
a way of anticipating the types of errors we make.

Evidence for the human use of prototypes to encode faces comes from three types
of findings: (a) the finding that typical/attractive faces are recognized less accurately
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than distinctive or unusual faces [21]; (b) the effectiveness of caricatured faces for
improving recognition (cf. [32]); and (c) recent effects on “perceptual adaptation”
of faces [19, 35, 36]. All three of these findings can be understood in the context of a
human representation of faces in a metaphorical face subspace, with an origin at the
average face and with axes representing the features along which faces differ (i.e.,
shape, pigmentation, etc.). Each individual face can be thought of as a point in the
face subspace, with feature values specified by the coordinates of their projections
onto the axes that define the space. Faces close in the space appear similar and faces
more distant from each other appear less similar.

It is perhaps worth digressing briefly to present a more detailed geography of a
face subspace. For purposes of illustration, we use the face subspace implemented
in the three-dimensional morphing software developed by Blanz and Vetter [3]. That
software creates a face subspace using three-dimensional laser scans from approx-
imately 200 faces. These scans sample the surface and texture (reflectance) of the
face with high resolution. The face subspace is created as follows. Faces are first put
into correspondence with the average face. Individual faces are then coded in terms
of their deformation from the average. Because the representation contains both sur-
face and reflectance samples, each sample contains information about how the face
differs in shape (δx, δy, δz) and reflectance (δr , δg, δb) from the corresponding
sample point on the average face. Next, the axes of the space are calculated using
a principal components analysis (PCA) of the face codes. This yields a high di-
mensional face subspace that can be used to describe a very large number of faces.
The face subspace created in this morph software is, in some ways, a computational
implementation of the norm-based face codes used by humans.

Figure 23.1 shows a simplified two-dimensional schematic of the resultant space,
with a few sample faces. At the center is the average face. Individual faces are
represented as directions through the (multidimensional space). Each of the original
faces appears with a green box around it. Along the line between the original face
and the average face is a morph line referred to as the identity trajectory, because
the faces on this line retain the identity of the original. As the line approaches the
average, the faces appear progressively less distinctive. These faces are referred to
as anti-caricatures. Continuing along this line to the other-side of the mean at the
opposite end of the line is the anti-face, which is a kind of “opposite” of the original
face.

Returning to the question of how we see evidence for a norm-based face code
in humans, let’s consider the typicality effect, caricature perception, and perceptual
adaptation. We will make reference to the face subspace model just defined to help
to clarify these effects.

Typicality It has been known for some time that faces rated by humans as “typi-
cal” are recognized less accurately than faces rated as “unusual”. The negative cor-
relation between the typicality and “recognizability” of faces is one of the most
robust findings in the face recognition literature (e.g., [21]). Moreover, much of the
correlation between typicality and recognizability is due to a strong positive correla-
tion between typicality and false alarm rate. In other words, highly typical faces are
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Fig. 23.1 A face subspace
made using laser scans of
human heads that are in
correspondence with the
average face [3]. The average
face is at the center,
individual trajectories in the
space progress from the
average to veridical faces
(green boxes) with less
distinct anti-caricatures in
between. The anti-faces (red
boxes) are physical opposites
of the originals that lie on the
other side of the average face.
Faces in this space are
represented in terms of their
shape and reflectance
deviations from the average
face

falsely recognized as “known” more frequently than less typical faces. In general,
the face subspace model explains the typicality-recognizability relationship in terms
of the density of faces closer to the average face. The assumption is that faces are
distributed normally around the average, with typical faces close to the average and
more distinctive faces farther away. Typical faces are difficult to remember because
they are in the densest region of the space and are thus easily confused with other
faces.

More theoretically, for human face recognition, the relationship between face
typicality and recognizability points to a norm-based coding because typicality judg-
ments inherently reference a standard face. Thus, when a human observer judges a
face to be unusual or distinctive, nominally it might be because “the nose is too
big”, or “the eyes are too close together”. It is clear, however, that implicit in these
judgments is a reference to internalized knowledge about how long a nose should be
or how close together eyes should be. As such, the typicality-recognizability find-
ing has been interpreted as evidence that human observers store a representation of
the average or prototype face, against which all other faces are compared [34]. This
suggests that individual faces are represented, not in absolute terms, but in relative
terms.

The finding is relevant for predicting face recognition success for human ob-
servers at the level of individual faces. Moreover, it suggests that some faces are
more or less likely, on average, to be successfully recognized. In that sense, the hu-
man finding is related to work by Doddington who proposes that individual items
in a biometric database can be categorized by their susceptibility to different kinds
of recognition errors (e.g., false alarms) [12]. Doddington refers metaphorically to
a categorization of individual items into types of “animals in a zoo” (e.g., goats are
“difficult to match”, “wolves are good impersonators”, etc.). We will not explore
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Fig. 23.2 Original face (left)
and caricature (right) made
with both the shape and
reflectance information in the
face [3]

the connection between the computational and psychological theories in detail here.
Instead, we use this as an example of how the performance of human and machine
recognition systems can be analyzed and understood in related terms. Moreover,
the major conclusion we draw here is that item characteristics, as well as viewing
conditions (i.e., illumination, viewpoint, etc.), can pose special challenges to both
human and machine-based face recognition. These item characteristics cannot be
understood in absolute terms, but rather, they stem from the properties of the item
relevant to a population of “distractor items”.

Caricatures The notion of a caricaturing simply extends the typicality effect be-
yond face variations that occur naturally, to a physical distortion of a face that moves
it away from the average face in a particular direction. When an artist draws a car-
icature of a person, they do so by exaggerating the person’s distinctive or unusual
features. Thus, a caricature of a person with a large nose, invariably portrays the in-
dividual with an even larger nose. People with eyes “too close together”, end up with
eyes much too close together. Distinguishing features become further exaggerated
and thereby more distinguishing and valuable for identifying a person. An example
of a computer-generated caricature, based on the three-dimensional morphing soft-
ware developed by Blanz and Vetter appears in Fig. 23.2. Note that in the context of
the face subspace presented in Fig. 23.1, this caricatured face would be at a position
along the identity trajectory, farther away from the average face than the original
face.

From a psychological point of view, the paradox for human perception and mem-
ory is that caricatures are often a gross distortion of the human face, and yet we
see them as a “good likeness”. Moreover, under some circumstances, we recognize
people more accurately and efficiently from caricatures (for a review [32]). In the
context of a norm-based face code and a face subspace, the paradox is easy to un-
derstand. A caricatured face remains on the identity trajectory, retaining its direction
away from the average in the space, but is pulled farther away from other potentially
similar distractor faces. It is therefore less likely to be confused with other faces.

Perceptual Adaptation The third line of evidence for a norm-based coding of
faces comes from data on perceptual after-effects and adaptation. Humans experi-
ence many simple visual after-effects, including effects involving color, orientation,
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and motion. Let’s take motion as an example. The Waterfall illusion is a motion
direction after-effect first described in detail by Purkinje in 1820. It can be expe-
rienced by staring at a waterfall for about 60 seconds and then glancing away to
a stationary object, such as a tree. Most people see a strong perception of the tree
moving upward, counter to the direction of the waterfall motion. This perceptual
illusion gives some basic insight into the nature of the neural code for motion. Long
before neuroscientists were able to recode the activity in neurons, the illusion sug-
gested that motion is coded in the human visual system with neural units that are
selective to a particular axis of motion in a contrastive or opponent fashion. When
these neurons are stimulated continuously with one motion direction, their neural
firing rate slows or adapts to the continuous stimulus. This stable state sets a new
norm against which increased velocity of motion, or reverse motion will be signally
with greater potency. Thus, the stationary object contrasts strongly to the newly ad-
justed motion-direction norm. The code is efficient and adaptive to the local visual
environment.

What does any of this have to do with faces? The short answer is that in the last
decade, a host of analogous, albeit more complex, opponent-based after-effects have
been demonstrated for faces. The first after-effect discovered operates on our per-
ception of the configuration or shape of a face. It occurs after people stare at a face
that has been distorted by unnaturally expanding or contracting the area around the
eyes and nose (see Fig. 23.3, top row, left and right-most images). A subsequently
presented normal face (Fig. 23.3, top row, middle image) then appears to be dis-
torted in the opposite direction [35]. A related demonstration shows after-effects for
perceiving the gender of a face. In this case, staring at male faces for a short period
of time makes an androgynous face, defined usually as a 50% morph between a male
and a female face, appear female, and vice versa [36].

Notably, there is also an opponent aftereffect between a face and its anti-face [19]
(see Fig. 23.3, bottom row). Staring at the opposite of a face makes the perception of
the face and its anti-caricatures easier. Again, this opposite is defined across many
axes of variation. At its core, this is an expected property of a facial code that is
centered at an average or prototype face and directly represents individual faces in
terms of how they diverge from this average.

Combined the data on these after-effects suggests that human face representa-
tions are highly organized, and thoroughly interconnected. A face, and its individual
characteristics and categorical dimensions (sex, race, age, competence, trustworthi-
ness, etc.), continually reference locally similar and distantly contrastive faces in
other parts of the face subspace. As noted at the outset, the advantage of this code is
that it is highly efficient and adaptive in both the short term (i.e., perceptual adapta-
tion) and long term senses. In the next section, we note the long term implications
of the code and see an example of a weakness of over-optimizing representations.
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Fig. 23.3 Perceptual adaptation demonstrations that illustrate the norm-based nature of human
face codes (top row). After staring at the unnaturally contracted face on the left for a short time
(60 seconds), the normal face in the center appears unnaturally expanded (i.e., similar to the face
on the right) and vice versa [35] (bottom row). A similar effect occurs for the face and anti-face
pair. After staring at the anti-face, the identity of the original face is more efficiently perceived
from anti-caricatures (i.e., less distinct versions of the original face) [19]

23.3.2 The “Other-Race Effect” for Faces

There is long-standing evidence from human face recognition studies that people
recognize faces of their own-race more accurately than faces of other races [23].
Most explanations of the effect appeal to differences in the amount and quality of
experience or contact we have with faces of our own race versus faces of other
races (e.g., [8]). A simple version of this contact hypothesis explanation of the phe-
nomenon, however, has been challenged by data that fail to show a consistent rela-
tionship between self-reported contact with people of other races and the magnitude
of the other-race effect [20]. Self-reported contact is measured usually by asking
someone how often they interact with people of another race. The magnitude of the
other-race effect is measured as the difference in accuracy for faces of your own
race and faces of another race. In sum, the relationship between these two variables
is rather weak.

A broader look at the contact hypothesis, however, suggests that experience is
indeed responsible for the other-race effect, with one important caveat. The expe-
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rience must occur during childhood [17]. In particular, experience with other-race
faces must occur as children are acquiring and tuning the feature sets they will use
ultimately to optimize their representations of faces. This points to an important dif-
ference in learning during early infancy/childhood and learning later in life. Specifi-
cally, during early childhood, the brain is highly plastic in ways that do not continue
into adulthood (e.g., physical growth and connectivity of neurons). Although clearly
we continue to be able to “learn” later in life, the neural mechanisms by which this
is accomplished are more stable and less malleable. In a more general context, this
makes the process of learning to perceive and remember faces much like the pro-
cess of learning language. It is well known that if children are exposed to a second
language early in life (usually before the age of 4 or 5 years), they will acquire that
language far more efficiently and with fewer negative indications (e.g., accents) than
learning the language later in life [18]. The acquisition of human expertise for faces
may proceed analogously.

The other-race effect suggests that human face codes develop from experience
and that the types of features used may vary as a function of the face learning history
of the individual. Although perceptual adaptation effects for faces are short-term and
easily reversible, face learning in early life may have a more permanent effect on
the quality of the representations we can create of other-race faces. We consider
this question shortly in the context of the training methods used by current face
recognition algorithms.

23.4 Human–Machine Comparisons

In the following, we consider human and machine-based face recognition systems
in a common context. How accurate are machines relative to humans? Do machines
and humans make the same kinds of errors? In what ways can the performance
of humans inform algorithm developers about the challenges that they will need
to overcome to enable machines to operate in natural environments? Can human
strategies be helpful in mitigating obstacles to the application of face recognition
technology in the real world?

Over the last few years, we have undertaken a number of direct compar-
isons between humans and automatic face recognition algorithms. As a source for
these comparisons, we have made use of algorithms tested by U.S. Government-
sponsored competitions of automated face recognition technology. These competi-
tions have documented substantial gains in machine-based face recognition perfor-
mance over the last decade (cf., [28, 29, 31]) (see also Chap. 21). Although these
algorithms have been compared extensively to each other, there has been relatively
little work aimed at benchmarking algorithm performance against humans. Because
humans are currently the competition in most security applications, a full evaluation
of human performance is required to know whether the use of an algorithm will
improve security or put it at greater risk.

Before proceeding, it is perhaps worth giving a brief overview of the purpose
and procedures used in the U.S. Government’s large scale tests, which have been or-
ganized by the National Institute of Standards and Technology (NIST) (for a more
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detailed account, see Chap. 21). The stated purpose of these competitions is to spur
the development of face recognition technologies to continually solve increasingly
difficult recognition tasks. Face recognition algorithms developed in the late eight-
ies and early nineties operated under highly controlled conditions, matching faces
in frontal, neutral-expression images, taken close in time (i.e., without age or strong
appearance differences) and under optimal illumination conditions. The first of the
U.S. Government tests, the FERET evaluation (1991–1994), tested algorithms un-
der these controlled conditions [28]. As the performance of algorithms improved on
the controlled task, more challenging recognition tasks where attempted and tested
in subsequent NIST evaluations [29, 31]. These conditions have included illumi-
nation variation between images, facial expression change, and differences in the
appearance of a face that occur with time lapses of a year or more.

The advantage of the large scale evaluations is that they test many algorithms si-
multaneously using an identical protocol and stimulus set. Moreover, the tests make
use of very large stimulus sets. Algorithm developers submit executable code to
NIST, which is then used to test identity matching performance over a large set of
gallery and probe images. The algorithms compute an n×m similarity score matrix
between all possible pairs of the n gallery andm probe images. The similarity score,
si,j represents an algorithm’s estimate of the likelihood that the ith gallery image
and j th probe image are the same person. Performance is evaluated by NIST, using
a standard receiver operating characteristic (ROC) curve that plots the verification
(hit) rate against the false accept (false alarm) rate. This allows for a simple perfor-
mance comparison among the algorithms. The data provided for algorithms in the
NIST tests, operating under a variety of test scenarios, provide the source for the
human comparisons we present.

23.5 Identification Accuracy Across Illumination

Matching the identity of people across two or more images is a common task for
security personnel. It is also a common application for face recognition algorithms.
Did this person apply for a driver’s license under another name? Is this the person
on a police watch list? For both humans and machines, the task is more difficult
when the images to-be-compared vary in viewing conditions (pose, illumination) or
in other extraneous ways (facial expression differences). One of the most studied
of these viewing parameters is illumination. Many studies have demonstrated that
recognizing people from images taken under different illumination conditions is
challenging for both humans [5, 6, 16] and machines [14]. Although the problem
has been studied both for humans and for machines, it is unclear how well face
recognition algorithms perform relative to humans on this task. We carried out this
comparison using data from the algorithms tested in the Face Recognition Grand
Challenge (FRGC) [26]. In the FRGC, undertaken in 2005, the performance of face
recognition algorithms was substantially worse when illumination varied between
the target and query images than when both the target and query were taken under
controlled illumination [31].
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Fig. 23.4 Human versus machine-based face recognition performance in the FRGC database [26]
shows that the best algorithms are superior to humans. Humans performed better than four of the
algorithms

To test humans using an analogous test, it was necessary to select a manageable
sample of face pairs from the roughly 128 million pairs matched in the FRGC test.
This was achieved by pre-screening face pairs by level of difficulty, using a PCA-
based face recognition algorithm. The human test was implemented using a set of
“difficult” face pairs. We measured performance by presenting pairs of faces side-
by-side on a computer screen and asking human subjects to decide whether the two
faces were the same person or different people. Humans also generated something
like the similarity score computed by algorithms by rating their certainty that the
images were of the same person (1: sure they are the same person; . . . 5: sure they
are different people). These confidence data can be used to create an ROC curve
analogous to the ones that are used to describe algorithm performance [22].

The results of the human performance analysis appear in Fig. 23.4, along with the
ROC curves for seven algorithms, tested with the identical set of difficult face pairs.
The figure shows that three of the seven algorithms were more accurate than humans
at this task. We have since repeated this kind of human-machine comparison using
a new set of algorithms and two new stimulus sets from the FRVT 2006 [27]. The
results again show human performance to be worse than the performance of the top
algorithms.

In summary, we conclude that human and machine performance may be roughly
comparable at a task of matching faces across changes in illumination, when these
illumination changes are not too extreme.
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23.6 Fusing Machine and Human Results

Do humans and machines make the same kinds of errors? We addressed this ques-
tion using a fusion approach [25]. Fusion is a computational strategy for improving
accuracy by combining judgments from multiple, but imperfect, sources. In general,
fusion increases performance only when the information provided from the various
sources is partially independent. Fusing algorithm and human judgments, therefore,
can provide an indication of the extent to which human and machine recognition
strategies diverge.

The fusion experiments we conducted again made use of the data collected in
the FRGC experiment just described, in which algorithms matched identity across
changes in illumination. The human part of the fusion was based on the similarity
judgments generated by the human subjects in the previous study [26]. The fusion
was approached in two steps. First, we combined the identity match estimates from
the seven algorithms tested in the FRGC to determine whether differences among
the algorithms could be leveraged to improve performance. In a second experiment,
we fused the human-generated similarity estimates with the estimates from the seven
algorithms, as a kind of eighth algorithm. To fuse, we used a statistical mapping
procedure called partial least squares regression (PLS) that combined the face pair
similarity estimates to predict the match status of the face pair (same or different
person?). The model was tested with a cross validation procedure.

The results of the first fusion showed that the combination of the seven algorithms
reduced the error rate in half, (0.06), over that of the best performing algorithm
operating alone (0.12). When humans were included in the fusion, the error rate
dropped to near perfect (0.003).

The two sets of fusion results suggests enough divergence in strategy among the
algorithms and humans to successfully exploit these qualitative differences to im-
prove the overall accuracy. Moreover, in combining human and machine judgments,
there may be an optimal combination formula that can be discovered empirically
using fusion techniques.

23.7 The “Other-Race Effect”

The human other-race effect for face recognition is likely due, at least in part, to the
experience of individuals as they learn the complex task of recognizing faces. Many
face recognition algorithms likewise employ training strategies that make use of one
or more databases of images. These images can be used to select and optimize the
feature sets that will be used by the algorithm to represent faces. The potential appli-
cations of automatic face recognition algorithms are now global. Moreover, in the
FRVT 2006, for example, the algorithms submitted were developed in East Asia,
Europe, and North America [31]. These regions vary immensely in their demo-
graphical compositions and presumably also in the demographical composition of
the face databases easily available for training the algorithms. Given these circum-
stances, it is reasonable to ask whether state-of-the-art face recognition systems, like
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humans, show an other-race effect. More specifically, does the geographical origin
of an algorithm (i.e., where it was developed) affect its accuracy on different races
of faces?

This question was addressed recently by comparing the performance of algo-
rithms as a combined function of their geographic origin and the race of faces they
recognized [30]. In this study, we used data from the FRVT 2006, which had partic-
ipating algorithms from three East Asian countries (China, Japan and Korea) and
three Western countries (France, Germany, and The United States). To compare
performance on East Asian and Caucasian faces, we created an East Asian algo-
rithm by fusing the similarity scores from the five algorithms submitted from East
Asian countries and a Western algorithm by fusing the similarity scores from the
eight algorithms submitted from Western countries. Identity match accuracy for the
two algorithms was tested for all available East Asian (n= 205 114) and Caucasian
(n= 3 359 404) face pairs in the database. The findings showed a classic other-race
effect, with the East Asian pairs matched more accurately by the East Asian algo-
rithm and Caucasian face pairs matched more accurately by the Western algorithm.

In a second experiment, we conducted a head-to-head comparison between the
algorithms and humans of East Asian and Caucasian descent. In this case, we tested
with a more manageable number of face pairs, which were carefully matched by
demographics other than face race. We found a standard other-race effect for the hu-
mans. We also found an other-race effect for the algorithms, but one with a different
form than that found with all available pairs. The Western algorithm performed sub-
stantially worse on East Asian faces than on Caucasian faces. The East Asian also
performed better on Caucasian faces, but by a far smaller margin. Phillips et al. (in
press) suggested that one possible reason for the difference was the possibility that
the East Asian algorithms, in preparing for the FRVT 2006, may have anticipated
the demographic characteristics of the test. These algorithms may, therefore, have
used both Caucasian and East Asian training faces. Notwithstanding, the relatively
better performance on East Asian faces by the East Asian algorithm is consistent
with an other-race effect.

Because the NIST tests work directly with executable code, without access to
the algorithms and training procedures, it is impossible to establish an unambigu-
ous cause for these results. It is nonetheless important to know that these biases
may exist in current state-of-the-art systems and to anticipate, test for, and mitigate
these types of problems before putting an algorithm into the field. Many applica-
tion venues (e.g., major airports across the globe) will present unique challenges for
stable, accurate, and fair recognition across ethnic and racial groups.

In summary, just as the human strategy of optimizing a representation for a partic-
ular demographic context has advantages and costs, so too must algorithms consider
both the advantages and limitations of optimization strategies.

23.8 Conclusions

In this chapter, we have noted that an important characteristic of human face repre-
sentations that these representations are centered on an average face. A unique indi-
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vidual face is defined, therefore, by its differences from the average. The face sub-
space that results is richly interconnected and can be manipulated both by short term
(by perceptual adaptation) and longer term (developmental) experience. A strategy
for performing well in difficult face recognition tasks for humans may involve active
and internal gain adjustments that can magnify the salience of some features while
minimizing others.

As algorithms approach and begin to overtake humans on simple face recognition
tasks, it is clear that they still operate in a monolithic way. The neural systems
for face recognition are highly distributed and involve a number of distinct brain
regions [15]. These regions are in part divided according to the type of task they
carry out with faces (i.e., identification, the perception of non-rigid and rigid facial
motions and expressions (see Chap. 22)). This flexibility of the system to multi-
task may be the key to the expertise that humans show with the faces of people
they know well [24]. This kind of flexible and robust recognition should be the
aim of the next generation of algorithms. To achieve this goal, algorithms will need
to understand not only the static structure of a face, but the ways in which faces
move and change with age/appearance. They will also need to move beyond the sole
concern of operating robustly over viewing conditions, and onto strategies that will
allow them operate in real environments that will vary in demographic composition.
If they succeed in all of these challenges, they will surpass even humans in even the
best case scenario.
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Chapter 24
Face Recognition Applications

Thomas Huang, Ziyou Xiong, and Zhenqiu Zhang

24.1 Introduction

One of the reasons face recognition has attracted so much research attention and
sustained development over the past 30 years is its great potential in numerous gov-
ernment and commercial applications. In 1995, Chellappa et al. [5] listed a small
number of applications of face recognition technology and described their advan-
tages and disadvantages. However, they did not analyze any system deployed in real
applications. Even the more recent review [38], where the set of potential applica-
tions has been grouped into five categories, did not conduct such an analysis. In
1997, at least 25 face recognition systems from 13 companies were available [3].
Since then, the numbers of face recognition systems and commercial enterprises
have greatly increased owing to the emergence of many new application areas, fur-
ther improvement of the face recognition technologies, and increased affordability
of the systems. We have listed 10 of the representative commercial face recogni-
tion companies, their techniques for face detection, the face features they extract,
and face similarity comparison methods in Table 24.1. These 10 companies are also
the participants of the face recognition vendor test (FRVT 2002) [29] carried out
independently by the U.S. government to evaluate state-of-the-art face recognition
technology. Although some of these techniques are not publicly available for pro-
prietary reasons, one can conclude that many others have been incorporated into
commercial systems.
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Table 24.1 Comparison of face recognition algorithms from 10 commercial systems in FRVT
2002. N/A: not available

Company Method for face
detection

Face feature extraction
method

Matching method

Acsys N/A Biometric templates Template matching

Cognitec N/A Local discriminant
analysis (LDA)

N/A

C-VIS Fuzzy face model and
neural net

N/A Elastic net matching

Dream Mirh N/A N/A N/A

Eyematic General face model Gabor wavelet Elastic graph matching

IConquest Fractal image comparison algorithm

Identix N/A Local feature analysis
(LFA)

Neural network

Imagis Deformable face
model

Spectral analysis N/A

Viisage N/A Eigenface Euclidean distance

VisionSphere N/A Holistic feature code N/A

As one of the most nonintrusive biometrics, face recognition technology is be-
coming ever closer to people’s daily lives. Evidence of this is that in 2000 the Inter-
national Civil Aviation Organization endorsed facial recognition as the most suitable
biometrics for air travel [12]. To our knowledge, no review papers are available on
the newly enlarged application scenarios since then [3, 5, 38]. We hope this chap-
ter will be an extension of the previous studies. We review many face recognition
applications that have already used face recognition technologies. This set of appli-
cations is a much larger super-set of that reviewed in [3]. We also review some other
new scenarios that will potentially utilize face recognition technologies in the near
future.

These scenarios are grouped into 10 categories, as shown in Table 24.2. Although
we try to cover as many categories as possible, these 10 categories are neither ex-
clusive nor exhaustive. For each category, some of the exemplar applications are
also listed. The last category, called “Others,” includes future applications and some
current applications that we have not looked into. These 10 categories are reviewed
from Sects. 24.3 to 24.11. In Sect. 24.12, some of the limitations of the face recog-
nition technologies are reviewed. Concluding remarks are made in Sect. 24.13.

24.2 Face Identification

Face recognition systems identify people by their face images [6]. In contrast to tra-
ditional identification systems, face recognition systems establish the presence of an
authorized person rather than just checking whether a valid identification (ID) or key
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Table 24.2 Application categories

Category Exemplar application scenarios

Face ID Driver licenses, entitlement programs, immigration, national ID,
passports, voter registration, welfare registration

Access control Border-crossing control, facility access, vehicle access, smart kiosk
and ATM, computer access, computer program access, computer
network access, online program access, online transactions access,
long distance learning access, online examinations access, online
database access

Security Terrorist alert, secure flight boarding systems, stadium audience
scanning, computer security, computer application security, database
security, file encryption, intranet security, Internet security, medical
records, secure trading terminals

Surveillance Advanced video surveillance, nuclear plant surveillance, park
surveillance, neighborhood watch, power grid surveillance, CCTV
control, portal control

Smart cards Stored value security, user authentication

Law enforcement Crime stopping and suspect alert, shoplifter recognition, suspect
tracking and investigation, suspect background check, identifying
cheats and casino undesirables, post-event analysis, welfare fraud,
criminal face retrieval and recognition

Face databases Face indexing and retrieval, automatic face labeling, face classification

Multimedia management Face-based search, face-based video segmentation and summarization,
event detection

Human computer
interaction (HCI)

Interactive gaming, proactive computing

Others Antique photo verification, very low bit-rate image & video
transmission, etc.

is being used or whether the user knows the secret personal identification numbers
(PINs) or passwords. The security advantages of using biometrics to check identi-
fication are as follows. It eliminates the misuse of lost or stolen cards, and in cer-
tain applications it allows PINs to be replaced with biometric characteristics, which
makes financial and computer access applications more convenient and secure. In
addition, in situations where access control to buildings or rooms is automated, op-
erators may also benefit from improved efficiency. Face recognition systems are
already in use today, especially in small database applications such as those noted
in Sect. 24.3. In the future, however, the targeted face ID applications will be large-
scale applications such as e-commerce, student ID, digital driver licenses, or even
national ID.

Large-scale applications still face a number of challenges. Some of the trial ap-
plications are listed below.

1. In 2000, FaceIt technology was used for the first time to eliminate duplicates in
a nationwide voter registration system because there are cases where the same
person was assigned more than one identification number [12]. The face recog-
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nition system directly compares the face images of the voters and does not use
ID numbers to differentiate one from the others. When the top two matched faces
are extremely similar to the query face image, manual inspection is required to
make sure they are indeed different persons so as to eliminate duplicates.

2. Viisage’s faceFinder system [33] has been supplied to numerous state corrections
authorities and driver license bureaus. This face recognition technology has also
been used by the U.S. Department of State for the Diversity Visa Program, which
selects approximately 50 000 individuals to be considered for a permanent U.S.
visa from millions of applications submitted each year. Each application includes
a facial image. The system compares the image of every applicant against the
database to reduce the potential of the same face obtaining multiple entries in the
lottery program. Once enrolled in the Viisage system, images can also be used
during the diversity visa application process to help identify known individuals
who pose specific security threats to the nation.

24.3 Access Control

In many of the access control applications, such as office access or computer log-
in, the size of the group of people that need to be recognized is relatively small.
The face pictures are also captured under constrained conditions, such as frontal
faces and indoor illumination. Face recognition-based systems in these applications
can achieve high accuracy without much cooperation from the users; for example,
there is no need to touch an object by fingers or palms, no need to present an eye
to a detector. When combined with other forms of authentication schemes such as
fingerprint or iris recognition, face recognition systems can achieve high accuracy.
Thus, the user satisfaction level is high. This area of application has attracted many
commercial face recognition systems. The following are several examples.

• In 2000, IBM began to ship FaceIt [11] enabled screen saver with Ultraport cam-
era for A, T, and X series Thinkpad notebook computers. Face recognition tech-
nology is used to monitor continuously who is in front of a computer terminal. It
allows the user to leave the terminal without closing files and logging off. When
the user leaves for a predetermined time, a screen saver covers the work and
disables the keyboard and mouse. When the user returns and is recognized, the
screen saver clears and the previous session appears as it was left. Any other user
who tries to log in without authorization is denied.

• The University of Missouri-Rolla campus has chosen a face recognition system
by Omron [28] to secure a nuclear reactor, which is a 200-kilowatt research facil-
ity that uses low-enriched uranium to train nuclear engineers. Visitors must pass
through a staff-monitored lobby, a second door that is accessed with a key, and a
third door that is secured with a keypad before getting to the face scanner, which
regulates access to the reactor core.

• Another commercial access control system is called FaceGate [10]. Entering a
building using FaceGate simply requires one to enter his entry code or a card and
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Fig. 24.1 FaceGate access
control system

face a camera on the door entry system. Figure 24.1 is a snapshot of the system.
By applying a mathematical model to an image of a face, FaceGate generates
a unique biometric “key.” Whenever one wishes to access a building, FaceGate
verifies the person’s entry code or card, then compares his face with its stored
“key.” It registers him as being authorized and allows him to enter the building.
Access is denied to anyone whose face does not match.

• The FaceKey standard biometric access control system combines face recogni-
tion and fingerprint recognition to provide a high level of security [13]. There is
no need for cards, keys, passwords, or keypads. The combination of the two bio-
metrics makes it possible to have security with a low error rate. The system can
operate as a stand-alone, one-door system, or it can be networked to interconnect
multiple doors at multiple sites, domestically or internationally.

• “FaceVACS-Entry” [6] adds facial recognition to conventional access control sys-
tems. At the access point, the face of each person is captured by a video camera,
and the facial features are extracted and compared with the stored features. Only
if they match is access permitted. For high security areas, a combination with
card terminals is possible, so each card can be used only by its owner. Flexible
communication interfaces enable easy integration into existing access control or
time and attendance systems. Terminals with FaceVACS-Entry can be networked
together, so after central enrollment the face data are distributed automatically
to all the terminals. In addition, visual control by security personnel can be sup-
ported. All facial images collected at the terminals can be stored in a log for later
visual inspection via a standard browser.

In addition to commercial access control systems, many systems are being de-
veloped in university research laboratories that are exploring new face recognition
algorithms. We give two examples.
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Fig. 24.2 A computer access control system using both face and speaker recognition

1. At the University of Illinois [37], face recognition and speaker identification sys-
tems have been integrated to produce high recognition accuracy for a computer
login system. Figure 24.2 shows the system interface where the upper-left corner
displays the real-time video captured by a digital camcorder. The upper-center
displays text or digits for the user to read aloud for speaker identification. At the
upper-right corner are three buttons titled “Start Testing,” “Add User,” “Delete
User,” indicating three functionalities. Two bar charts in the lower-left corner
display the face recognition and speaker identification likelihoods, respectively,
for each user. In the lower-center, icon images of users that are currently in the
database are shown in black and white and the recognized person has his image
enlarged and shown in color. The lower-right of the screen displays all the names
of the users currently in the database.

2. The second system [2] uses a multilayer perceptron for access control based
on face recognition. The robustness of neural network (NN) classifiers is studied
with respect to the false acceptance and false rejection errors. A new thresholding
approach for rejection of unauthorized persons is proposed. Ensembles of NN
with different architectures were also studied.



24 Face Recognition Applications 623

Fig. 24.3 An exemplar airport security system

24.4 Security

Today more than ever, security is a primary concern at airports and for airline per-
sonnel and passengers. Airport security systems that use face recognition technol-
ogy have been implemented at many airports around the globe. Figure 24.3 diagrams
a typical airport security system that employs face recognition technology. Although
it is possible to control lighting conditions and face orientation in some security ap-
plications, (e.g., using a single pedestrian lane with controlled lighting), one of the
greatest challenges for face recognition in public places is the large number of faces
that need to be examined, resulting in a high false alarm rate. Overall, the perfor-
mance of most of the recognition systems has not met the very low false rejects
goal with low false alarm requirements. The user satisfaction level for this area of
application is low.

Some of the exemplar systems at airports, stadiums, and for computer security
are listed below.
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1. During the 2008 Beijing Olympics games, a face recognition system developed
by the Institute of Automation of the Chinese Academy of Sciences (CAS) was
introduced into the entrance security checks for the Olympic opening and closing
ceremony. According to CAS, it was the first time that such technology was
adopted as security measures in the Olympic history.

2. In October, 2001, Fresno Yosemite International (FYI) airport in California de-
ployed Viisage’s face recognition technology for airport security purposes. The
system is designed to alert FYI’s airport public safety officers whenever an indi-
vidual matching the appearance of a known terrorist suspect enters the airport’s
security checkpoint. Anyone recognized by the system would undergo further
investigative processes by public safety officers.

3. At Sydney airport, Australian authorities are trying out a computerized face-
recognition system called SmartFace by Visionics with cameras that have wide-
angle lenses. The cameras sweep across the faces of all the arriving passengers
and send the images to a computer, which matches the faces with pictures of
wanted people stored in its memory. If the computer matches the face with that
of a known person, the operator of the surveillance system receives a silent alarm
and alerts the officers that the person should be questioned. The technology is
also used at Iceland’s Keflavik airport to seek out known terrorists.

4. At Oakland airport (San Jose, California), a face recognition system by Imagis
Technologies of Vancouver, British Columbia, Canada is used in interrogation
rooms behind the scenes to match suspects brought in for questioning to a
database of wanted criminals’ pictures.

5. Malaysia’a 16 airports use a FaceIt-based security system to enhance passenger
and baggage security. A lipstick-size camera at the baggage check-in desk cap-
tures a live video of the passengers and embeds the data on a smart-card chip. The
chip is embedded on the boarding pass and on the luggage claim checks. The sys-
tem ensures that only passengers who have checked their luggage can enter the
departure lounge and board the aircraft, and that only the luggage from boarding
passengers is loaded into the cargo area. During the boarding process, the system
automatically checks a real-time image of a passenger’s face against that on the
boarding pass smart chip. No luggage is loaded unless there is a match.

6. Viisage’s faceFINDER equipment and software were used to scan the stadium
audience at the Super Bowl 2001 at the Raymond James Stadium in Tampa,
Florida in search of criminals. Everyone entering the stadium was scanned by
video cameras set up at the entrance turnstiles. These cameras were tied to a
temporary law-enforcement command center that digitized their faces and com-
pared them against photographic lists of known malefactors. The system is also
used by South Wales Police in Australia to spot soccer hooligans who are banned
from attending matches.

7. Computer security has also seen the application of face recognition technology.
To prevent someone else from modifying files or transacting with others when
the authorized individual leaves the computer terminal momentarily, users are
continuously authenticated, ensuring that the individual in front of the computer
screen or at a kiosk is the same authorized person who logged in.
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24.5 Surveillance

Like security applications in public places, surveillance by face recognition systems
has a low user satisfaction level, if not lower. Unconstrained lighting conditions, face
orientations and other factors all make the deployment of face recognition systems
for large scale surveillance a challenging task. The following are some examples of
face-based surveillance.

1. In 1998 Visionics FaceIt technology was deployed for the first time to enhance
town center surveillance in Newham Borough of London, which has 300 cameras
linked to the closed circuit TV (CCTV) control room. The city council claims
that the technology has helped to achieve a 34% drop in crime since its instal-
lation. Similar systems are in place in Birmingham, England. In 1999 Visionics
was awarded a contract from National Institute of Justice to develop smart CCTV
technology [12].

2. Tampa, Florida police use video cameras and face recognition software to scan
the streets in search of sex offenders. FaceIt provided by Visionics quickly com-
pares the face of a target against a database of people wanted on active warrants
from the Hillsborough Sheriff’s Office and a list of sex offenders maintained by
the Florida Department of Law Enforcement. When the FaceIt system comes up
with a close match, cops using it in a remote location can contact others on the
street via radio and instruct them to do further checking.

3. Virginia Beach, Virginia is the second U.S. city to install the FaceIt system on its
public streets to scan pedestrian’s faces to compare with 2500 images of people
with outstanding warrants, missing persons, and runaways.

4. In New York City, the National Park Service deployed a face recognition surveil-
lance system for the security of the Statue of Liberty. The system, including two
cameras mounted on tripods, at the ferry dock where visitors leave Manhattan for
Liberty Island, takes pictures of visitors and compares them with a database of
terror suspects. The cameras are focused on the line of tourists waiting to board
the ferry, immediately before they pass through a bank of metal detectors.

24.6 Smart Cards

The Smart Card has an embedded microprocessor or memory chip that provides
the processing power to serve many applications. Memory cards simply store data.
A microprocessor card, on the other hand, can add, delete, and manipulate infor-
mation in its memory on the card. A microprocessor card also has built-in security
features. Contact-less smart cards contain a small antenna so the card reader detects
the card from a distance. The Smart Card’s portability and ability to be updated
make it a technology well suited for securely connecting the virtual and physical
worlds.

The application of face recognition technology in smart cards, in essence, is a
combination of the two. This can be seen from the following two examples. Smart
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cards store the mathematical characteristics of the faces during the enrollment stage.
The characteristics are read out during the verification stage for comparison with
the live capture of the person’s face. If granted, the person can have his stored facial
characteristics updated in the card’s memory.

1. Maximus [26] coupled face recognition system with fingerprint technology to
construct a smart card designed to help airline passengers quickly clear security.
To get a smart card, one needs to submit to a background check and register his
or her facial and fingerprint characteristics. Biometric readers, presumably set up
in specially designated “fast lanes,” then verify his or her identification.

2. The ZN-Face system [19], which combines face recognition and smart card tech-
nology, is used for protecting secure areas at Berlin airports. Potential threats
posed by criminals who often succeed in entering high security areas by means
of a suitable disguise (e.g., pilot uniforms) are ruled out effectively. The indi-
vidual’s face characteristics are stored on a smart card; ZN-Face compares and
verifies the card information with the face readings at each access station.

Smart cards are used mainly in a face verification scenario. The accuracy of the
similarity calculation between the face characteristics stored in the cards and the
live-captured face depends on the elapsed time between the two images. With a
timely update of the face characteristics, this elapsed time can be kept short. High
user satisfaction level can be achieved for a small database of faces.

24.7 Law Enforcement

With a face recognition and retrieval program, investigators can find a suspect
quickly. Face recognition technology empowers the law enforcement agencies with
the ability to search and identify suspects quickly even with incomplete informa-
tion of their identity, sometimes even with a sketch from a witness’s recollection.
Owing to the difficulty of obtaining good-quality face images of the criminals, the
system performance is rather low. However, automatic face recognition is playing
increasingly important role in assisting the police departments. Some examples in
this category of applications are as follows:

1. A law enforcement system by Imigis provides the Huntington Beach, Califor-
nia’s police officers and detectives with current arrest information and pho-
tographs, readily available by using laptops, Internet protocols, and secure wire-
less delivery and communication [18]. The Imagis system includes biometric
facial recognition, and image and database management, giving officers invalu-
able investigative tools in their law enforcement and surveillance work. With
this face recognition and retrieval program, investigators no longer have to spend
hundreds of hours trying to identify a suspect. Now detectives can take a suspect
composite and systematically search any digital database of booking images to
identify possible suspects. Similarly, a suspect’s image caught on a bank or con-
venience store surveillance video can be matched against a digital photo database
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for possible identification. With a face ID interface on a county booking system,
officers are able to utilize this face-recognition technology at the time of book-
ing to immediately identify a criminal with multiple identities or outstanding
warrants. Detectives can also use face ID to search for suspects in a database of
registered sex offenders. It allows witnesses to identify specific features of vari-
ous faces as a means to query a large database of images. This function enhances
the crime resolution process by eliminating the need for witnesses to search large
mug-shot books one image at a time.

2. When deployed in a casino environment, an intelligent surveillance and patron
management system supported by Imagis’s face recognition technology [17] al-
lows casino operators to identify and exclude certain individuals from specific
properties. Using a database of North American undesirable patrons or self-
barred gamblers, casinos receive a highly effective security solution that can
rapidly identify persons entering or playing in casinos. It not only can conduct
face recognition searches from images captured through existing surveillance
cameras against an internal database, a casino can also widen the identification
search to the national database.

24.8 Face Databases

During the early 1990s, because of the emergence of large image databases, diffi-
culties faced by the text-based image retrieval became more and more acute [32].
Content-based image retrieval tries to solve the difficulties faced by text-based im-
age retrieval. Instead of being manually annotated by text-based keywords, images
would be indexed by their own visual content, such as color and texture. Feature
vector is the basis of content-based image retrieval, which captures image prop-
erties such as color and texture. However, these general features have their own
limitations. Recently, researchers have tried to combine it with other image analysis
technologies, such as face detection and recognition, to improve the retrieval accu-
racy. For example, web-based face recognition has been used in social-computer
sites such as Facebook, Google’s Picasa web album, and Microsoft’s Windows
Live Gallery. These applications use facial scanning and recognition algorithms to
scan through a person’s online photos and those public photos belonging to his/her
friends in order to identify and suggest tags for the untagged people within them [9].
Although face recognition techniques have been mainly used to retrieve and index
faces in face-only databases (e.g., searching mug-shot databases of criminals), re-
cently these techniques have also been used for other databases containing both
faces and nonfaces (e.g., personal photo albums).

The performance of these retrieval systems is still low because the size of face
database is normally large and the face pictures are captured under unconstrained
conditions.
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24.8.1 Using Faces to Assist Content-Based Image Retrieval

A personal digital photo album has many images that have either human faces or no
human faces. Deciding whether an image contains a face can be a preprocessing step
to limit the range of search space for a given image query. FotoFile [20] is one of
the systems that tries to support this functionality to make the management of per-
sonal photo albums easier. This system also blends human and automatic annotation
methods. Fotofile offers a number of techniques that make it easier for a consumer
to annotate the content manually and to fit the annotation task more naturally into
the flow of activities that consumers find enjoyable. The use of automated feature
extraction tools enables FotoFile to generate some of the annotation that would oth-
erwise have to be manually entered. It also provides novel capabilities for content
creation and organization.

When presented with photos that contain faces of new people, the face recogni-
tion system attempts to match the identity of the face. The user either corrects or
confirms the choice; the system then can match faces to their correct identities more
accurately in subsequent photos. Once a face is matched to a name, that name is
assigned as an annotation to all subsequently presented photos that contain faces
that match the original. To handle the false positives and false negatives of the face
recognition system, a user must confirm face matches before the annotations asso-
ciated with these faces are validated.

24.8.2 Using Content-Based Image Retrieval Techniques to Search
Faces

The content-based retrieval of faces has multiple applications that exploit existing
face databases. One of the most important tasks is the problem of searching a face
without its explicit image, only its remembrance. Navarrete and del Solar [27] used
the so-called relevance feedback approach. Under this approach, previous human
computer interactions are employed to refine subsequent queries, which iteratively
approximate the wishes of the user. This idea is implemented using self-organizing
maps. In particular, their system uses a tree-structured self-organizing map (TS-
SOM) for auto-organizing the face images in the database. Similar face images are
located in neighboring positions of the TS-SOM.

To know the location of the requested face in the map, the user is asked to select
face images he considers to be similar to the requested one from a given set of face
images. The system then shows the new images, which have neighboring positions,
with respect to the ones selected by the user. The user and the retrieval system iterate
until the interaction process converges (i.e., the requested face image is found). This
retrieval system in shown in Fig. 24.4, and a real example of the interactive face-
retrieval process is shown in Fig. 24.5.

Eickeler and Birlinghoven [8] explored the face database retrieval capabilities of
a face recognition system based on the hidden Markov model. This method is able
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Fig. 24.4 Interface of the SOM system

Fig. 24.5 Face retrieval using the SOM system

to work on a large database. Experiments carried out on a database of 25 000 face
images show that this method is suitable for retrieval on a large face database. Mar-
tinez [25] presented a different approach to indexing face images. This approach
is based on identifying frontal faces and allows reasonable variability in facial ex-
pressions, illumination conditions, and occlusions caused by eyewear or items of
clothing such as scarves. The face recognition system of this approach is also based
on the hidden Markov model [8].
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24.8.3 Photo Tagging

Face recognition has been used to tag faces found in photographs. Apple’s iPhoto
and Google’s Picasa software allows a user to search and/or tag his/her personal col-
lection of photos based on a tagged photo. Moreover, companies such as face.com
specializing in face recognition techniques have introduced software to search
and/or tag larger online photo repositories on social networking sites such as Face-
book and Twitter. For example, one application of face.com’s software is for finding
lost photos of a user and his/her friends on Facebook sites [9].

24.9 Multimedia Management

Human faces are frequently seen in news, sports, films, home video, and other mul-
timedia content. Indexing this multimedia content by face detection, face tracking,
face recognition, and face change detection is important to generate segments of co-
herent video content for video browsing, skimming and, summarization. Together
with speech recognition, natural language processing, and other image understand-
ing techniques, face processing is a powerful tool for automatic indexing, retrieval,
and access to the ever-growing digital multimedia content.

One difficulty of directly using face recognition in multimedia applications is
that usually the gallery set is not available. The identity of the person whose
face has been detected must be obtained through the multimedia content itself.
Houghton [15] developed a “face-naming” method. His method finds names in Web
pages associated with the broadcast television stations using three text processing
methods and names in images using the optical character recognition (OCR) tech-
nique. The names are then linked to the faces detected in the images. The face de-
tector is the FaceIt [11]. In this way, a gallery set is created. Queried about an image
without a name, the “face-naming” system compares the faces in the image with the
gallery and returns the identity of the face.

Ma and Zhang [24] developed an interactive user interface to let the user annotate
a set of video segments that the face recognizer concludes to be belonging to the
same nonenrolled person. They have used the face detection algorithm [31] to detect
faces to help to extract key frames for indexing and browsing home video. Chan et
al. [4] used face recognition techniques to browse video databases to find shots of
particular people.

One integrated multimedia management system is the “Infomedia” project at
Carnegie Mellon University [34]. This project aims to create an information dig-
ital video library to enhance learning for people of all ages. Thousands of hours of
video content is indexed and archived for search and retrieval by users via desktop
computers through computer networks. One of its indexing schemes is the face de-
tection developed by Rowley et al. [31]. The detected human faces and text are used
as a basis for significance during the creation of video segments. A small number of
face images can be extracted to represent the entire segment of video containing an
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individual for video summarization purposes. It supports queries such as “find video
with talking heads” supported by face detection, “find interviews by Tim Russert”
supported by face detection and video text recognition, and so on.

Another system is a multilingual, multimodal digital video library system, called
iVIEW, developed at the Chinese University of Hong Kong [23]. Its face recognition
scheme is similar to the one in Houghton’s article [15]. Faces detected are cross-
referenced with the names detected by OCR on on-screen words. iVIEW is designed
on Web-based architecture with flexible client server interaction. It supports access
to both English and Chinese video contents. It also supports access via wired and
wireless networks.

Wang and Chang [35] developed a system for real-time detection, tracking, and
summarization of human faces in the video compressed domain at Columbia Uni-
versity. Their face detection component uses the MPEG compressed data to detect
face objects and refine the results by tracking the movement of faces. The sum-
maries of people appearance in the spatial and temporal dimensions help users to
understand the interaction among people.

Because the orientation of faces or lighting conditions in most of the multimedia
content is seldom controlled, face recognition accuracy is relatively low.

24.10 Human Computer Interaction

To achieve efficient and user-friendly human computer interaction, human body
parts (e.g., the face) could be considered as a natural input “device”. This has moti-
vated research on tracking, analyzing, and recognizing human body movements.

24.10.1 Face Tracking

Although the goal of such interfaces is to recognize and understand human body
movements, the first step to achieve this goal is to reliably localize and track such
human body parts as the face and the hand. Skin color offers a strong cue for efficient
localization and tracking of human body parts in video sequences for vision-based
human computer interaction. Color-based target localization could be achieved by
analyzing segmented skin color regions. Although some work has been done on
adaptive color models, this problem still needs further study. Wu and Huang [36]
presented their investigation of color-based image segmentation and nonstationary
color-based target tracking by studying two representations for color distributions.
Based on the so-called D-EM algorithm, they implemented a nonstationary color
tracking system. Figure 24.6 shows an example of face localization and tracking in
a typical laboratory environment.
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Fig. 24.6 Tracking results based on color model

24.10.2 Emotion Recognition

It is argued that for the computer to be able to interact with humans it must have
the communication skills of humans, and one of these skills is the ability to under-
stand the emotional state of the person. The most expressive way humans display
emotions is through facial expressions. Cohen et al. [7] reported on several advances
they have made in building a system for classifying facial expressions from continu-
ous video input. They used Bayesian network classifiers for classifying expressions
from video. Figure 24.7 shows four examples of real-time expression recognition.
The labels show the recognized emotion of the user.

24.10.3 Face Synthesis and Animation

A realistic three dimensional head model is one of the key factors in natural human
computer interaction. A graphics-based human model provides an effective solution
for information display, especially in collaborative environments. Examples include
3D model-based very low bit-rate video coding for visual telecommunication, au-
dio/visual speech recognition, and talking head representation of computer agents.
In noisy environments, the synthetic talking face can help users understand the asso-
ciated speech, and it helps people react more positively during interactive sessions.
It has been shown that a virtual sales agent inspires confidence in customers in the
case of e-commerce, and a synthetic talking face enables students to learn better in
computer-aided education [14].

Hong et al. [14] have successfully designed a system, called iFACE, that pro-
vides functionalities for face modeling and animation. The 3D geometry of a face is
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Fig. 24.7 Emotion recognition results

modeled by a triangular mesh. A few control points are defined on the face mesh. By
dragging the control points, the user can construct different facial shapes. Two kinds
of media, text stream and speech stream, can be used to drive the face animation.
A display of the speech-driven talking head is shown in Fig. 24.8.

24.11 Other Applications

Many of the application scenarios in this section require close collaboration between
face recognition systems and domain experts. The face recognition systems assist
the domain experts.

• Antique photo verification. It is of great value for historians, biographers, and
antique collectors to verify whether an antique photo of a person is genuine, given
a true photo taken when that person is much older. The age difference and some-
times the low quality of the antique photo pose a great challenge for the face
recognition systems.

• Face images transmission. Li et al. [21] coded the face images with a com-
pact parameterized model for low bandwidth communication applications, such
as videophone and teleconferencing. Instead of sending face images or video,
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Fig. 24.8 Speech driven face animation

they send robust feature representation of the faces to the other end of the channel
so that by fitting a generic face model to the face feature representation a good
reconstruction of the original face images can be achieved. Similarly, Lyons et
al. [22] developed an algorithm that can automatically extract a face from an im-
age, modify it, characterize it in terms of high-level properties, and apply it to the
creation of a personalized avatar in an online Japanese sumo game application.
The algorithm has potential applications in educational systems (virtual museums
or classrooms) and in entertainment technology (e.g., interactive movies, multiple
user role-playing communities).

• Chellappa et al. [5] listed several application scenarios that involve close collabo-
ration between the face recognition system and the user or image domain expert.
The interaction between the algorithms and known results in psychophysics and
neuroscience studies is needed in these applications. We summarize these appli-
cations below; for detailed information see Chellappa et al. [5].

1. “Expert Identification”: An expert confirms that the face in the given image
corresponds to the person in question. Typically, in this application a list of
similar looking faces is generated using a face identification algorithm. The
expert then performs a careful analysis of the listed faces.

2. “Witness Face Reconstruction”: The witness is asked to compose a picture of
a culprit using a library of features such as noses, eyes, lips, and so on. The
“sketch” by the user is compared with all the images in the database to find the
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closest matches. The witness can refine the “sketch” based on these matches.
A face recognition algorithm can recompute the closest matches in the hope
of finding the real culprit.

3. “Electronic Lineup”: A witness identifies a face from a set of face images that
include some false candidates. This set of images can be the results from the
“Witness Face Reconstruction” application by the face recognition algorithm.

4. “Reconstruction of Face from Remains” and “Computerized Aging”: Avail-
able face images are transformed to what a face could have been or what the
face will be after some time.

24.12 Limitations of Current Face Recognition Systems

Although face recognition technology has great potential in the applications re-
viewed above, currently the scope of the application is still quite limited. There
are at least two challenges that need to be addressed to deploy them in large-scale
applications.

1. Face recognition technology is still not robust enough, especially in uncon-
strained environments, and recognition accuracy is still not acceptable, especially
for large-scale applications. Lighting changes, pose changes, and time difference
between the probe image and the gallery image(s) further degrade the perfor-
mance. These factors have been evaluated in FRVT 2002 using some of the best
commercial systems [29]. For example, in a verification test with reasonably con-
trolled indoor lighting, when the gallery consisted of 37 437 individuals with one
image per person and the probe set consisted of 74 854 probes with two images
per person, the best three systems, on average, achieved a verification rate of
90% at a false alarm rate of 1%, 80% at a false alarm rate of 0.1%, and 70% at
a false alarm rate of 0.01%. Although good progress has been made to increase
the verification rate from 80% to 99% at a false alarm rate of 0.1%, as reported
in FRVT 2006 [30], this level of accuracy may be (or may not be) suitable for an
access control system with a small database of hundreds of people but not for a
security system at airports where the number of passengers is much larger. When
evaluating the performance with respect to pose change, with a database of 87 in-
dividuals the best system can achieve an identification rate of only 42% for faces
with ±45° left or right pose differences and 53% with ±45° up or down pose
differences. The elapsed time between the database and test images degrades
performance at a rate of 5% per year of difference. Lighting changes between
probe images obtained outdoors and gallery images taken indoors degrades the
best systems, from a verification rate of 90% to around 60% at a false accept rate
of 1%. The test results in FRVT 2002 can partly explain why several systems
installed at airports and other public places have not received positive feedback
based on their poor performance. One example is that the crowd surveillance
system tested by Tampa, Florida police reported 14 instances of a possible crim-
inal match in a 4-day session, but they were all false alarms. The Tampa police
department has abandoned the system.
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2. The deployment of face recognition-based surveillance systems has raised con-
cerns of possible privacy violation. For example, the American Civil Liberties
Union (ACLU) opposes the use of face recognition software at airports due to
ineffectiveness and privacy concern [1]. In addition to listing several factors af-
fecting the face recognition accuracy, such as change of hairstyle, weight gain,
or loss, eye glasses or disguise, the ACLU opposes face recognition because
“facial recognition technology carries the danger that its use will evolve into a
widespread tool for spying on citizens as they move about in public places.”

24.13 Conclusions

We reviewed many face recognition systems in various application scenarios. We
also pointed out the limitations of the current face recognition technology. The
technology has evolved from laboratory research to many small-, medium- or,
large-scale commercial deployments. At present, it is most promising for small-
or medium-scale applications, such as office access control and computer log in;
it still faces great technical challenges for large-scale deployments such as airport
security and general surveillance. With more research collaborations worldwide be-
tween universities and industrial researchers, the technology will become more re-
liable and robust.

Another direction for improving recognition accuracy lies in a combination of
multiple biometrics and security methods. It can work with other biometrics such as
voice-based speaker identification, fingerprint recognition, and iris scan in many ap-
plications. For security purpose at airports, face recognition systems can also work
together with X-ray luggage scanners, metal detectors, and chemical trace detectors
at security checkpoints.

This chapter concludes with the following description of how face recognition
could be used in our daily lives in the near future, although some of them are already
in place.

If we drive to work, a face recognizer installed in the car will decide whether to
authorize our usage of the vehicle before starting the engine. If we choose to take
a bus or subway to work, our prepaid boarding pass will be verified by a face rec-
ognizer comparing the photo on the pass and live captured pictures of our faces.
At the entrance of the office building, we go through a face recognition based ac-
cess control system that compares our face images with those in its database. We sit
down in front of the office computer, a face recognizer in it runs its face recognition
algorithm before we log on. when we go to a secure area in the office building, the
security check is carried out by another face recognizer. On a business trip, when we
use the smart ATM, we are subject to a face recognizer of the bank system. At the
airport, our boarding pass and passport or identity card are screened by the airport’s
face recognizer for passenger security purpose. When we go to a retail store, restau-
rant, or a movie theater, the cameras equipped with cash registers would be aimed
at our faces to compare our pictures with those in a customer database to identify
us, if not, we could complete the purchase by using a PIN (personal identification
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number). After the cash register had calculated the total sale, the face recognition
system would verify us and the total amount of the sales would be deducted from
our bank accounts [16]. When we go back home, a face recognition based home
security system makes sure we are living in the house before we open the door.
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Chapter 25
Large Scale Database Search

Michael Brauckmann and Christoph Busch

This chapter focuses on large scale search systems for the biometric and face recog-
nition, in particular, on issues related to scalability, system throughput, biometric
accuracy, and database sanitization.

25.1 Introduction

The accuracy of core face recognition algorithms has been increasing continuously
over the past three decades. The series of face recognition vendor tests conducted by
the U.S. National Institute of Standards and Technology (NIST), indicated a reduc-
tion by factor of two over a development period of four years in the late ninetieth.
The first NIST-testing resulted for a fixed false match error rate of 0.001 in a false
nonmatch-error-rate of FNMR = 0.79 as documented in the FERET 1993 report.
Errors were reduced from FNMR = 0.54 in the FERET 1997 test down to 0.20 in
FRVT 2002 test. Since then the biometric performance of commercially available
systems improved even by factor of ten every four years. At the same false accept
level, a FNMR = 0.026 was observed in FRVT 2006 and a FNMR = 0.003 in the
MBE 2010 test report [1]. However, the likelihood of a false match of a subject
to any of the enrolled references in a large database increases with the size of the
database and thus the false positive identification rate (FPIR) is linear dependent of
the size of the enrollment data base [6]. Thus, specifically for large scale applica-
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tions high accuracy is required to perform successful and reliable searches in the
enrollment database, which can easily exceed the million entry boundary in prac-
tice. One of the largest enrollment databases today is the U.S. Visit database with
110 million enrollment records that were collected after six years of operation until
the year 2010 [1].

Accuracy is often considered as the most important property at the algorithmic
level. However at the system or application level dealing with large databases, op-
erators do require the consideration of aspects other than the accuracy of the under-
lying algorithm. Design principles comprise integrability, flexibility, scalability, and
durability.

Integrability is important to allow integration services to deploy systems in exist-
ing environments. A key factor for large scale system is the adherence to information
technology standards with regards to communication protocols and platforms. The
system needs flexibility to allow choices on hardware platforms, operating systems,
algorithms, and business applications. Further the design principle scalability is rel-
evant, which allows the extension of the system when databases grow or throughput
requirements, i.e. the number of searches to be performed in a certain time period,
change. Durability encompasses measures for fault tolerance, recovery scenarios,
backup and replication, redundancy and no single point of failure.

The core functions required in a biometric system are enrollment, update, dele-
tion, and search of biometric data in a enrollment database. Execution times, hard-
ware requirements, scalability, integrability, flexibility, fail-safety and many other
aspects gain importance as they become key factors of the system when the data
sets get large.

Use cases can have different underlying business processes such as forensic
searches with adjudication of a list of candidate reference record for a data sub-
ject or civil ID systems where alarms are raised in case of potential ID fraud. The
application requirements do impact the system processes and protocols and need to
be reflected by the system behavior. Requirements can change the importance of
a single factor dramatically for example, it makes a big difference whether a pro-
cess requires a system to answer within a second or within an hour, or whether 10
searches per hour or 1000 searches per hour need to be performed.

This chapter focuses on the biometric and face recognition related aspects of
large scale search systems, focusing on issues related to scalability, system through-
put, biometric accuracy, and database sanitization.

25.2 Design Objectives and Cost Criteria

The design objective for a large scale system is a multi-dimensional optimization
task. In general an optimal system should perform a

• certain number of searches
• in a certain time period
• on a database of a certain size
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• on a certain hardware architecture
• at a certain accuracy level

The business process defines, which of these criteria are variables and which ones
are fixed parameters. In addition, variables are commonly be bound to a certain
range and suppliers need to commit themselves that deployed systems do not exceed
those limits.

Example 25.1 In the case of a passport application system, a single application
transaction might be coupled with a duplicate enrollment check (DEC) to detect
potential applications under different identities that are linked to the same biometric
characteristic. For the de-duplication confirmation, the required number of searches
in a certain time period is bound by a lower limit since a state has a certain number
of applicants for passports per day. Operating at a lower throughput would create
a backlog increasing over time. Also, the lower bound for the size of the database
is given by the number of passport holders. Solving the problem at the boundaries
leaves the option to trade accuracy for hardware for example, by using a faster, but
less accurate algorithm on the same hardware.

Example 25.2 In the case of a forensic search system, accuracy is paramount. The
search speed or throughput, that is, number of searches per time period is not critical
since as long as the number of cases per day is significantly lower than the capacity
of the system and thus piling up of cases is avoided. Within these constraints, it is
most important to solve the case, but solving more cases in a certain period is of
value. The size of the database is known, obviously. This constellation allows to ac-
cept a reduced throughput and consequently a longer system reaction is acceptable,
if at the same point in time a better accuracy can be expected.

Beyond the criteria listed here an essential further aspect for the design is the
direct communication with the data subject or indirect communications. For indi-
rect communication, the data subject has provided his biometric data in a capture
session and biometric searches are conducted off-line and reported back to the in-
dividual eventually. However, in direct communication such as for instance second
level background checks conducted at a border the data subject is waiting in the
control process until the result of the biometric search allows any further step in the
control process. Aside from the pragmatic constraints to avoid any piling of trans-
actions the total duration of a single transaction is essential. If the single transaction
exceeds a given time limit the Biometric system would be considered inconvenient
and incompatible with given border control regulations.

In order to calculate solutions that lie within the bounds of the variables and the
specific parameters, it is necessary to describe the system in a model that predicts the
variable interrelations. Thus, variables and parameters specified above serve as the
input for an optimization process. Optimization in general is related to a cost func-
tion to be minimized. The definition of such a cost function is not straightforward
since some decision criteria are not known, for example, a decision maker decides
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to save money on hardware. In practice, cost in real currency plays an important
role and multiple variations need to be created and provided during the procurement
process.

25.3 Scalability

A single processor has an upper limit on the search speed and the memory capacity.
Thus, the number of biometric templates that can be stored in the computer’s mem-
ory is limited by an upper bound while the acceptable response time of the system
for a single transaction defined by the application criteria again constitutes an upper
bound limit. A scalable system provides methods that allow to fulfill the operational
task within the agreed criteria even when demands grow.

Scalability is categorized in vertical scaling and horizontal scaling. Vertical
scaling, also known as scale-up takes place on a single node of a system and in-
creases resources such as processing power to enable a larger number of processes
and memory capacity to store a larger amount of biometric templates. Horizontal
scaling, also known as scale out adds more nodes to the system. Horizontal scaling
provides a way to maintain a throughput requirement that is larger than the largest
possible throughput on a single node, for example, if a node has a search speed of
one search per second, but a search speed of two searches per second is required
then two nodes will be necessary.

As a consequence, a scalable system produces distributed results across processes
or processors. In consequence, multiple individual number or decisions need to be
merged to a single final result. In a practical implementation of an identification
application, the candidate list with ranked references need to be merged while re-
specting comparison scores when computing the overall rank position. Furthermore,
modules and components need to support parallelism and interleaved access to a
unique or segmented enrollment database.

25.4 System Throughput and Biometric Accuracy

When considering the throughput of a single node, there are strategies for a given
hardware platform to optimize accuracy and speed as well as the capacity of the
database. For an accurate system, we expect accuracy metrics that is, on the algo-
rithm level the false nonmatch rate (FNMR) and false match rate (FMR)) as well
as on the system level failure to acquire rate (FTA) to be low; thus for a system a
low false accept rate (FAR) and a low false reject rate (FRR) depends on algorithm
accuracy according to the relationship [6].

FAR = FMR · (1 − FTA) (25.1)

and

FRR = FTA + FNMR · (1 − FTA). (25.2)
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For the embedded algorithms we assume the following to hold:

• a more accurate algorithm is computationally more expensive than a less accurate
algorithm, that is, high accuracy implies slow transaction speed

• a more accurate algorithm compares biometric probes to biometric templates,
which are larger in size than the template of a less accurate algorithm, that is,
high accuracy implies high memory consumption

To cope with contradicting objectives of high accuracy at low memory consump-
tion with high search speed, various concepts can be followed such as for instance
the multi-stage comparison or binning of the enrollment database. The concept of
multi-stage comparison is elaborated in Sect. 25.4.1 while binning on three dimen-
sional databases is considered in Sect. 25.4.6.

25.4.1 Multi-stage Comparison

Multi-stage comparison analyzes the database in a first stage with a very fast al-
gorithm, which consumes a small amount of the main memory while it operates at
a moderate accuracy. It is expected that this algorithm ranks a mate in the upper
area of the ranks (e.g., ranks one to 10 000), but not necessarily at the top. The next
stage consists of an algorithm which is more accurate than the previous one and thus
slower. This algorithm will examine only the upper area of the ranks which will take
much less time than examining the whole database. The results of the first stage will
provide indices of mid-sized templates and while comparison is conducted in the
second stage on longer feature vectors and optimal accuracy there is a good chance
to find the mate therein. It is expected that this algorithm ranks a mate even higher
since it is more accurate. Again, the upper ranks of this result (e.g., ranks one to
1000) serve as the input for the next algorithm operating, which is even more accu-
rate, but again slower. This process is reiterated until comparison is conducted on
the full-sized feature vector in the final stage and the final candidate is reached.

Applying the steps above with all templates in the computers main memory is
a very resource consuming strategy. While it is extremely slow to load the whole
database from a hard disk drive this is affordable for a relatively small number of
biometric templates. Thus, once the number of biometric templates to analyze is
reduced, loading from disk can be considered for memory economy.

25.4.2 Meaningful Scores

The set of scores returned from a search should ideally have a meaning that is useful
in the process. Scores may reflect the false acceptance risk enabling the operator to
tell the likelihood of an accidental match on a certain database size. The false ac-
ceptance risk associated with a score is in general determined empirically on sample
data. Alternatively, the database size may be incorporated.

This allows setting thresholds to accomplish a tolerable false alarm rate.
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Example 25.3 Let scores be related to the false acceptance risk. For convenience a
mapping that represents −log10(false acceptance risk) is used such that e.g. a score
of 3 corresponds to a false acceptance risk of 0.001 = 10−3. This means it is ex-
pected to have one false positive match in 1000 comparisons on average. Assuming
an enrollment database of a size of 1 000 000 entries a threshold of 6 would create
one false positive match per search since each search comprises 1 000 000 com-
parisons in the database. To get one false positive match in every 10 searches the
threshold needs to be set to 7, to get one in every 100 searches the threshold should
be 8 etc.

Alternatively, the database size may be incorporated in the score by means of
−log10(false acceptance risk)−log10(database size).

25.4.3 False Positive Identification in Large Scale Systems

For many large scale identification applications we are concerned to avoid a poten-
tial false positive alarm, while we do not bother to which biometric reference the
probe falsely matched. Thus we can estimate the false positive rate for an open-set
systems, based on the FMR [6].

FPIR = (1 − FTA) · (1 − (1 − FMR)N
)

(25.3)

where FPIR is the False-Positive-Identification-Rate. For a small FMR we can sub-
stitute in (25.3)

(1 − FMR)N ≈ 1 −N · FMR (25.4)

and thus under the assumption of FTA = 0 we derive

FPIR = (1 − 0) · (1 − (1 −N · FMR)
)
, (25.5)

FPIR =N · FMR. (25.6)

As we can see the likelihood for a false positive identification is linearly dependent
with the size of the database. However, such estimates cannot take account of cor-
relations in the comparisons involving the same data subject, and consequently can
be quite inaccurate.

25.4.4 Fusion

The availability of multiple algorithms in multi-stage comparison scenarios allows
for improved accuracy by means of fusion. The concept of multi-biometric fusion is
divided into the categories feature level fusion, score level fusion, and decision level
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Fig. 25.1 Score level fusion in a multi-biometric system, where multiple information channels
(e.g., multiple algorithms or multiple modalities) are fused

fusion. For details on fusion strategies, the reader is referred to the ISO Technical
Report on Multi-Modal and Other Multi-Biometric Fusion [2]. In the design of large
scale systems, score level fusion as depicted in Fig. 25.1 is oftentimes preferred.

This is because the concept allows adding new algorithms at the system level
without deeper knowledge of the feature structure while feature level fusion would
require such knowledge. The decision level has the disadvantage that it makes sort-
ing difficult if not impossible as a result would be a decision between hit and non
hit. The downside of the feature-level fusion strategy is that a comprehensive score
normalization is a precondition, in order to adjust to a standardized metric (i.e.,
similarity scores versus dissimilarity scores) and to a harmonized distribution of the
scores. While a large variety of score normalization methods has been proposed,
a simple Z-score normalization can be sufficient for a simple application, which
computes a normalized score according to

S∗ = S − SMean

SSD
(25.7)

where S is the score rendered by a single algorithm, SMean is the mean of both the
impostor and genuine score distribution for this algorithm and SSD the respective
standard deviation. The underlying assumption of equal standard distribution that is
symmetric about the mean might not be met in the reality but is a good approxima-
tion. It is relevant to invest efforts to measure those a priori numbers for the target
population. Subsequent fusion of scores in a specific comparison can weight the
accuracy of the individual algorithms i according to

S =
M∑

i=1

wiS
∗
i (25.8)

where for algorithm i the weight wi is inversely proportional to the measured bio-
metric performance metrics for the algorithm i and thus determines to which extend
a contribution to the joint decision of allM algorithms should be made.
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It is noteworthy that all the calculations above describe the behavior of a large
ensemble on average. Z-score normalization is a popular candidate whenever the
available scores reflect the whole distribution. Unfortunately, this assumption is vi-
olated in the case of multi-pass systems. In the higher stages of such systems only
the tail of the distribution, represented in the top ranks, is available.

Thus, it is worthwhile to take a deeper glance at the statistics of top ranks.
A search returns a list of items ordered by their score. This allows for a refined
modeling by means of the order statistic. Order statistic determines the distribution
of random samples drawn from a known distribution and placed in ascending order.
Minimum and maximum are special cases in the order statistic. Formally, a sample
of N unsorted variables X1, . . . ,XN is sorted such that X(1) < X(2) < · · ·< X(N),
that is, the index denotes the respective rank after sorting. In the sequel, we will
derive the probability density function1 and the corresponding cumulative distribu-
tion function2 for the sorted variables at a certain rank based on the PDF and CDF
of the unsorted variables. Let f (x) and F(x) denote the PDF and the CDF3 of the
unsorted variables while fX(r) (x) and FX(r) (x) denote the PDF and the CDF of the
sorted variables at rank r .

If the probability density function f (x) and the distribution function F(x) are
known, then the probability density function fX(r) (x) is given by

fX(r) (x)=
N !

(r − 1)!(N − r)!
[
F(x)

]r−1[1 − F(x)]N−r
f (x). (25.9)

It is convenient to use the multinomial coefficient which is an extension of the bino-
mial coefficient. It describes the number of ways to order elements for two or more
categories and is defined by

(
n

k1, k2, . . . , km

)

= n!
k1!k2! . . . km! (25.10)

with k1, k2, . . . , km being the numbers of elements in the categories 1,2, . . . ,m and
where n is the total number of elements.

Example 25.4 (Multinomial coefficient) We want to know how many ways we can
arrange 2 blue, 3 red, and 10 green balls in. The multinomial coefficient for three
categories is defined by

(
a+b+c
a,b,c

)= (a+b+c)!
a!b!c! and tells us 15!

2!3!10! = 30 030 ways.

With this definition, we can rewrite (25.9) by

fX(r) (x)=
(

N

r − 1,1,N − r
)
[
F(x)

]r−1[1 − F(x)]N−r
f (x). (25.11)

1Probability Density Function—PDF.
2Cumulative Distribution Function—CDF.
3We omit the index X in fX(x) and FX(x) for brevity.
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In Sect. 25.4.4.1, we will take advantage from the fact that we want scores to be
related to the false acceptance risk. The false acceptance risk is a uniform distribu-
tion with a probability density function at a constant value of 1 in the interval [0,1].
Thus, (25.9) simplifies to

fX(r) (x)=
(

N

r − 1,1,N − r
)

xr−1(1 − x)N−r x ∈ [0,1]. (25.12)

So far we can tell the distribution of scores at any rank given that the underlying
assumptions hold. It is of particular interest to analyze conditional distributions.

Example 25.5 (Order statistics) We may ask: what is the probability of exceeding a
score of x at rank j given that we saw a score of y at rank k?

To solve the question in Example 25.5, we need the conditional probability. in
general, the conditional probability density function of X given the occurrence of
the value yo of Y can be calculated with the joint probability density fX,Y (x, y) and
the marginal density fY (y) and is given by

fX(x | Y = yo)= fX,Y (x, yo)

fY (yo)
. (25.13)

For ranks j < k, we are interested in the joint density fX(j),X(k) (x, y). Expressed
with a multinomial coefficient this leads to

fX(j),X(k) (x, y)

=
(

N

j − 1,1, k− j − 1,1,N − k
)

F(x)j−1f (x)
(
F(y)− F(x))k−j−1

× f (y)(1 − F(y))N−k
.

Here we have 5 categories, the j − 1 elements smaller than rank j , one element at
rank j and one at rank k, k− j − 1 elements between rank j and rank k and N − k
elements above rank k. We find

fX(j) (x |X(k) = yo)=
fX(j),X(k) (x, yo)

fX(k) (yo)

=
(

k − 1

j − 1,1, k− j − 1

)
F(x)j−1f (x)(F (yo)− F(x))k−j−1

F(yo)k−1
.

(25.14)

Interestingly, we don’t have the gallery size N any longer in term above. This is
encoded in the observation of the rank k.
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Fig. 25.2 Probability of
observing a
−logFAR-mapped score
greater than t at rank 3 given
that we observed a score of 3
at rank 6

Fig. 25.3 Probability of
observing a
−logFAR-mapped score
greater than t at rank 3 given
that we observed a score of 2
at rank 6

25.4.4.1 Uniform Distribution

The uniform distribution is of particular interest since the −logFAR-mapped scores
denoted by sL have a correspondence to this distribution, assuming that the mapping
generalizes well. t = 10−sL is uniformly distributed for impostor scores and relates
to the empirical risk of observing an impostor score larger than sL. For the uniform
distribution, f (x)= 1,0 ≤ x ≤ 1 and F(x)= x,0 ≤ x ≤ 1 holds.

fX(j),X(k) (x, y)

=
(

n

j − 1,1, k− j − 1,1,N − k
)

xj−1(y − x)k−j−1(1 − y)n−k.

The conditional probability density function in this case becomes

fX(j)(x |X(k) = yo)=
(

k − 1

j − 1,1, k− j − 1

)
xj−1(yo − x)k−j−1

yk−1
o

.
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We can see from Figs. 25.2 and 25.3 that the shape of the curve does not depend
on the observed score for uniform distributions. The math above allows to calculate
the likelihood that an observed score originates from an impostor.

Example 25.6 Figure 25.2 tells us that seeing a score of 4.0 or higher at rank 3
given that we saw an impostor score of 3.0 at rank 6 is a fairly unlikely statistical
event, that is, statistically this happens in less than 5% of all cases. Thus, we can be
confident in the assumption that this score belongs to a client.

Care has to be taken in cases where the underlying assumptions for the approach
are violated. Such a case may arise for databases with statistical distributions quite
different from the statistical distributions of the database used to calculate −logFAR
mapping.

25.4.5 Filtering and Demographic Information

While previous considerations employed biometric information extracted from the
captured biometric sample there is oftentimes additional non-biometric data avail-
able such as the age of the subject, height, gender, etc. In many cases, such as for
the subject height the information can be exploited at no extra costs as it can be
contained in the reference data (in a respective field in ISO 19794-5 [4]) and is a
side-information from the capturing process, in which the capture device has been
adjusted to the eyelevel. Sorting out subjects based on demographic knowledge can
tremendously reduce the number of biometric comparisons required in a search. The
ratio of the number of biometric comparisons made after filtering by means of de-
mographic data and the whole population size in the enrollment database is called
penetration rate. Employing demographic information has various advantages:

• The search can be accelerated as a fewer number of comparisons are required.
• Accidentally high scoring impostors may be filtered out.
• Chances of clients to end up in the top N ranks is a function of the database

size. Reducing the database size increases this chance. Moreover, in multi-stage
comparison the first stage is typically the weakest stage in terms of accuracy.
While the more accurate higher stages might have the discriminative power to
rank a mate high the first stage may fail to propagate it to the higher stages. Like
above, this depends on the database size. Thus, the chances for propagating a
mate to the next stage are raised by demographic filtering.

25.4.6 Binning

The objective of binning reduces the search space and thus directly the number of
references that are compared to a biometric probe. The concept is equivalent to
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Fig. 25.4 Antropometric measurements according to Alphonse Bertillion. (Image source:
http://c1.ac-images.myspacecdn.com/images02/138/l_70d895b111834c3c9e68e89cc861055c.jpg)

the approach described in Sect. 25.4.5 while for binning intrinsic information that
is contained in the biometric sample is exploited. A prominent case for such an
approach has been in use in Automatic Fingerprint Identification Systems (AFIS)
that pre-segmented the enrollment database in several bins according to the Henry
pattern (i.e., left loop, right loop, whorl, arch). Likewise the pattern is determined
for the probe sample and the database search is conducted only on the pre-selected
bin that is labeled with the corresponding Henry pattern.

Applying binning to a face recognition system is not as straight-forward possi-
ble as one might wish. By experience we can tell that the human face recognition
system and its biological neural network can reliably distinguish between male and
female no matter whether the full three-dimensional face information or just a two-
dimensional image supports that decision. On the contrary artificial neural networks
and other pattern classifiers struggle with exactly the same task.

However, under the assumption that for the face-recognition system a multi-
modal information with 2D textured information and 3D shape information is avail-
able such binning strategies based on intrinsic biometric data can be accomplished.
A 3D face capturing device maintains at a known scale the given metric of the sub-
ject in the sampled model space. Measurements between distinct landmarks in the
captured 3D-model can be conducted and will provide various robust base-lines.
Thus, a preselection of the search space is achieved based on analysis of fixed base-
lines in the captured model. With this approach, large scale systems can implement
what Alphonse Bertillon has applied in forensic applications more than 150 years
ago with his anthropometric measurements (see Fig. 25.4).

As illustrated in Fig. 25.5, landmarks that provide the respective base-lines can
be extracted quite reliable from the model, when the symmetric property of the face
is assumed [7].

These base-lines and other anatomical Bertillion features such as curvatures on
the central profile can effectively partition the enrollment database. While this will
not improve the biometric performance the approach can significantly reduce the

http://c1.ac-images.myspacecdn.com/images02/138/l_70d895b111834c3c9e68e89cc861055c.jpg
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Fig. 25.5 Automatically
detected landmarks in
3D-model (from Mracek [7])

Fig. 25.6 Distribution of selected anatomical Bertillion features in the feature space (from
Mracek [7])

transaction time, as only a preselected bin is investigated, in which anatomical fea-
tures of all references correspond to the biometric probe.

This application has a significant additional challenge over the above AFIS ap-
plication that needs to be addressed. While the AFIS approach is based on discrete
enumerated properties (loop, whorl, arch), the analysis of the 3D-shape results in
values in a continuous scale (i.e., a distance metric or a curvature metric). In conse-
quence, the derived bins correspond to a quantization of those measured values and
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misclassifications (binning errors) are likely to happen at decision boundaries. This
needs to be addressed with suitable decision strategies such as fuzzy logic. A further
compensating strategy is to exploit the anatomical Bertillion features merely to sort
the reference in a sequence that mate are likely to be visited first, while nonmate
will only be considered if time allows. In this respect, the binning approach can ef-
fectively be combined with the multi-stage comparison as described in Sect. 25.4.5.

Binning in its strictest sense is a classification task executed prior to the compari-
son. Binning errors can be mitigated by adding neighbored bins. It has to be weighed
during the design process whether or not this is a desirable strategy. The most in-
fluencing factor is the dimension of the feature space. The higher the dimension,
the larger the number of neighbors that need to be taken into account. Employing
an appropriate distance (or similarity) between the features is sometimes an attrac-
tive alternative, since it eliminates the mentioned boundary problems. The decision
whether binning should be favored over the distance (or similarity) method depends
on

• comparison speed
• memory requirements

Omitting items during a search is certainly more effective than comparing each item
with the probe, but for very fast comparators the difference may not be dramatic.
Binning allows to reserve a single partition of the memory per bin. This ion turn can
lead to very effective searches. However, if the spread of database items over various
memory partitions is compensated by the gain in accuracy from a cost perspective
the later may be preferred.

25.5 Database Sanitization

The information stored in databases has oftentimes a number of incorrect entries
not known to the owner of the database. Such cases can arise from operator-typos
occurring when meta information is entered during the enrollment process, subjects
with similar names that get assigned wrongly and many other reasons. In general,
there are two types of error:

1. Two different individuals share the same unique identifier
2. Two unique identifiers point to the same individual

Both errors are reflected in the respective biometric scores. The first type leads to
very low genuine scores, when mated samples are analyzed, while the second type
leads to very high imposter scores, when nonmated samples are analyzed. Thus,
while biometric systems are usually designed to detect fraud (i.e., duplicate enroll-
ment attempts) the very same technology provides a powerful method to perform
data sanitization. An efficient support for a semi-automatic consistency check of a
large scale database is given, if identifier labels for the minimum imposter scores
and the maximum imposter scores are filtered and can be validated visually. This
process of database sanitization becomes more relevant as the size of the database
grows.
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25.6 Conclusions

The design of large scale systems requires a series of considerations beyond the
ones covered by the algorithmic design. Template size, comparison speed, and re-
sponse time of the system can be very important factors depending on the use case
of the system. Apart from speedup of the algorithms, there are ways to accelerate
the system by means of filtering and binning. Furthermore, in case of fusion the
overall accuracy of the system can outperform the accuracy of each single algo-
rithm in the system. All these aspects have an impact on the complexity and the
cost of a large scale system. Moreover, an essential factor for maintenance costs is
adherence to standards. More specifically, compliance of system components with
standardized BioAPI interfaces [5] is required that will lead to independence of
suppliers of sensors and other individual components. Compliance with standards
supports operation reliability in cases, where product lines are no longer supported
and maintenance is discontinued. For those cases, the storage of biometric refer-
ences in standardized formats such as the formats developed by the International
Organization for Standardization (ISO) is essential. The reader will find more de-
tails on this in the standards ISO/IEC 19794 [3] and [4]. A best practice example
of a large scale system being compliant to standards is the Indian e-ID system that
was established in 2010. This system relies not only on standardized sensor com-
ponent but also on standardized interfaces to three independently biometric engines
operated in the background.
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Chapter 26
Face Recognition in Forensic Science

Nicole A. Spaun

26.1 Introduction

The use of facial recognition in the field of forensic science presents a challenging
set of issues. Forensic science is the use of scientific principles and methods to
answer questions of interest to a legal system. Forensic science differs from the field
of security; in security applications the goal is to prevent incidents from occurring,
while in forensic cases typically an incident has already occurred.

Unlike security or portal scenarios where the administrators have control over the
scene and the setup of cameras, in forensics the evidence and surveillance generated
is completely uncontrolled by the user of the facial recognition system. Uncon-
strained lighting conditions, face orientation, and other factors all make the deploy-
ment of face recognition systems for surveillance a difficult task [7]. For example,
surveillance cameras in places of business are generally pointed at specific loca-
tions to spot theft by criminals or employees. These locations include entry/exit
doors where the opening of the door may allow the contrast of the camera to be
overwhelmed or above an employee’s head, where the angle will be steep and the
camera is more likely to observe the top of the subject’s head than the front of their
face. Such conditions lead to the inability to enroll facial images or the worsening
of system accuracy rates. Low system accuracy can be disastrous in legal matters.
Thus, many forensic organizations have yet to embrace facial recognition as fully as
users in the field of security.
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In this chapter, we will first explain the current means of comparing faces used
by forensic science laboratories. It is a nonautomated process performed by foren-
sic examiners and has been referred to as facial “photographic comparison” [15] or
forensic facial identification. Next, we will outline the innovative ways in which fa-
cial recognition systems are being used by the forensic community. Lastly, we will
discuss the growing future of facial biometrics in the legal system and the increas-
ing (not decreasing) need for human examiners to perform facial identification in
combination with the automated facial recognition systems.

26.2 Characteristics of Forensic Facial Recognition

Forensic facial recognition and facial identification are distinct, separate processes.
In the past facial recognition in the forensic context referred to the process of us-
ing eye-witnesses to identify a suspect from either a physical or photo line-up. In
today’s terminology, facial recognition is the use of an automated system to deter-
mine matches to a probe image from a gallery of images, a one-to-many search, or
to verify the identity of an individual, a one-to-one check. The one-to-many process
can propose suspects to be investigated or can generate candidate lists to be shown
to eyewitnesses. This differs from forensic facial identification, which is a man-
ual process where an expert performs a photographic comparison focusing on the
face of an individual. According to the Scientific Working Group on Imaging Tech-
nology, photographic comparison is an assessment of the correspondence between
features in images and/or known objects for the purpose of rendering an expert opin-
ion regarding identification or elimination [15]. Within these manual comparisons,
the features of the head will be analyzed and compared both morphologically and
spatially. We will focus on forensic facial identification in this section and the use
of automated facial recognition in the following section.

Forensic photographic comparison has a long history; documentation shows it
has been in use within the US legal system since at least 1970 [4]. Specialized
photographic comparisons have assisted different forensic fields: fingerprint com-
parisons, tire tread and tool mark analysis, footwear impressions, ballistics, etc.

The specific analysis of faces in images has been performed by forensic exam-
iners with various backgrounds, such as image analysts, photographers, forensic
artists, and forensic anthropologists. This diversity of backgrounds is due to the na-
ture of facial identification, where one is assessing a highly three-dimensional aging
anatomical feature, a face, in an image that is generally subject to varying photo-
graphic conditions including lighting and angles of view. While the backgrounds
of persons performing facial identification may vary, the common approach is the
application of scientific principles in the course of a visual comparison.

One way of articulating the scientific method for use in photographic compar-
isons was derived by R.A. Huber for questioned documents [8] and later referred
to as “ACE-V”: Analyze, Compare, Evaluate and Verify. When assessing a face, a
forensic examiner can use this method to rigorously document facial characteris-
tics, compare them, and form an opinion that can be verified by a similarly trained
examiner.
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The goal of facial identification is to determine if the questioned individual is the
same individual as the known to the exclusion of all others. If so, this is called an
Individualization or Identification in the forensics community. Within the biomet-
rics community such a one-to-one comparison is called a “verification”; however
in forensic science the term verification generally specifically refers to a peer re-
view or other post-examination evaluation process. Because there are differences in
terminology between the forensic and biometric communities, when using a word
that has different meanings we will introduce both terms and then continue with the
forensic usage for consistency. In contrast to an identification, the examination may
lead to the conclusion of Exclusion or Elimination of the known individual as being
the questioned individual. If an individualization or elimination cannot be made, it
is reported that no definitive conclusion is possible, while listing noted similarities
and/or dissimilarities.

A typical facial comparison begins with at least two images depicting individuals
for identification. In forensic science, the subject of interest is commonly referred to
as the “questioned individual”; in biometrics the image of the subject to be analyzed
is called the “probe”. Likewise, in forensic science the suspect depicted in the image
is generally called the “known individual”; in biometrics the images of the suspects
or potential matches are referred to as the ‘gallery’. It is common for known images
in forensic cases to be controlled images, such as those from a driver’s license,
passport, previous arrest photograph (a.k.a. mugshot), or other official sources. Most
questioned images are typically uncontrolled, obtained from surveillance images or
video. The difficulty of the comparison is compounded when both the questioned
and known images are uncontrolled. As an example, the case of “the ruthless care
giver”, a subject accused of felony embezzlement who later pled guilty, features
uncontrolled known and questioned images.

Figure 26.1 depicts four known images submitted to the Federal Bureau of Inves-
tigation (FBI) for a facial identification examination. These personal photographs
demonstrate several challenging elements for facial identification and recognition:
the position (tilt, rotation, and pitch) of the head differs in each image, back-
ground/scene is busy and differs in each image, facial expressions differ, illumi-
nation varies, image resolution is low, and the face is obstructed by eyewear and
other objects. It is worth noting, however, that the ability to resolve details on these
images is considerably better than for typical surveillance video obtained in most
cases. The submitted questioned images of a suspect were also highly uncontrolled
and arrived as both photographs and digital video; the three best images were se-
lected for further examination (see Fig. 26.2). There is at least 10 years in time
between when the pictures were taken, possibly more. Matching uncontrolled im-
ages such as these is challenging for facial identification but virtually impossible
with current facial recognition technology; this highlights the importance of having
human examiners involved in the process of forensic facial comparison.

In the analysis stage of the examination, the morphology and texture of the face
is reviewed. One observes and notes the characteristics of the questioned face and
then for the known face(s). The traits that are used within facial comparisons, like
most other forensic examinations, fall into two categories: class and individual char-
acteristics. Class characteristics are those that place an individual within a class or
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Fig. 26.1 Four known images of the subject. Images were submitted as printed photographs. No-
tice the variation in perspective, lighting, expression, pose, and background scene of these uncon-
trolled images

Fig. 26.2 Three questioned images of the suspect taken under uncontrolled conditions. Image Q1
is derived from digital video; Images Q2 and Q3 were submitted as printed photographs

group [17]. These general characteristics include hair color, overall facial shape,
presence of facial hair, shape of the nose, presence of freckles, etc. Individual char-
acteristics are those that are unique to the individual and/or allow for a person to
be individualized [17]. These specific characteristics include number and location
of facial minutiae, such as moles and blemishes, as well as scars, tattoos, chipped
teeth, lip creases, wrinkles, etc. The mere presence of freckles is a class character-
istic whereas, if the image is detailed enough for one to observe them, the specific
number, pattern, and relative location of freckles can be an individualizing charac-
teristic. Many individuals develop wrinkles around the eyes therefore the presence
of crow’s feet would be a class characteristic, however matching patterns, lengths,
and locations of individual wrinkles may be unique. In order to bring out such de-
tails within the questioned and known images, the examiner may deem it beneficial
to enhance all or part of the image. For example, simple contrast adjustments may
bring out details in skin texture such as freckles, blemishes, and scars.
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The procedure of the comparison can be qualitative or quantitative, using rela-
tive or absolute dimensions. In a morphological comparison, the location and size
of facial features is measured relatively, not absolutely. If the perspectives of the
questioned and known images are similar and the position of the head is similar,
the image depicting the known individual can be scaled to that of the questioned in-
dividual by using the interpupillary distance or other consistent features within the
image.

An overlay of the scaled known image and the questioned image can then be
made in order to determine if the relative alignment of other facial features is con-
sistent. This overlay of images is also referred to as the superimposition method and
can be performed with video editing or image processing equipment [19]. A varia-
tion of the overlay approach is a photogrammetric one: a side-by-side of the images
is prepared and two sets of 3 or more parallel lines are drawn through facial fea-
tures, such as the jawline, pupils, nasal bridge, on both images and compared by
position [4].

For both a photogrammetric and overlay approach, the images must be of the
same perspective, but the key difference is that an overlay allows one to view the
length and width simultaneously although viewing the lines in the photogrammet-
ric approach leaves more to human perception as one looks across both images.
Superimposition can appear to be doctoring the evidence if not properly explained
because scaling implies changing the images to effect alignment, but the method
is sound. Consider that if you scale an image of Abraham Lincoln to the same eye
corner-to-corner distance as that of George Washington, that scaling will not force
the length of the face or shape of the jaw to match up, and rightly so because they
are different individuals. Just as scaling two images of Abraham Lincoln to the same
interpupillary distance will demonstrate the similar locations of facial marks and the
consistent sizes of facial features because the images do depict the same individual.
Therefore a superimposition can provide extremely beneficial information to deter-
mine if features appear to be the same and if the relative locations and dimensions
relate.

With an overlay, the examiner can “blink” back and forth between questioned
and known imagery to assist in the comparison by identifying similarities and dis-
similarities. In this type of comparison, facial landmarks, standard reference marks
generally defined by the underlying structure of the skull [6, 10], are used in the
main as guides and are not typically measured.

26.3 Anthropometric Method

On the contrary, the anthropometric method of facial comparison relies on mea-
surements between facial landmarks [10, 19]. The challenge with the anthropomet-
ric method, and others that are absolute measurement driven, is two-fold: they are
severely affected by image perspective and are therefore fairly inaccurate in surveil-
lance situations, where the position of the head and camera-to-subject distances are
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Fig. 26.3 To make this side-by-side chart, the K4 image was scaled by the distance from the ear
to the nose of the Q1 image. Of all the submitted images, these two were most similar in pose and
perspective, although there is clearly a difference in the rotation of the head. An overlay of the
images was attempted but proved to be unhelpful

uncontrolled [13], and also it is difficult to consistently locate the landmarks in dif-
ferent images by different examiners [5]. Therefore, the FBI’s forensic examiners
do not use an anthropometric method for facial identification and instead use a fu-
sion of the morphological and superimposition technique. Figure 26.3 depicts two
images, one questioned and one known, that are of a similar perspective. However,
in this case, the images were scaled by the nose to ear distance to assist in preparing
a visual aid, a side-by-side chart, instead of a direct overlay as the superimposi-
tion would be affected by the difference in position of the head. Figure 26.4 depicts
additional side-by-side charts that display greater variation in perspective.

Within the comparison examination, the number and significance of correspond-
ing features must be evaluated [17]. If there are dissimilarities, the examiner works
to understand the nature of the dissimilarity. The mere presence of a dissimilar-
ity is not necessarily a cause for exclusion as many dissimilarities can be readily
explained by differences in pose, illumination, expression, and time. It is also im-
portant to note the significance of any dissimilarity. For example, a large variation in
ear length between individuals in questioned and known images is more significant
than a possible difference in skin-tone as the latter can potentially be explained by
make-up, sun exposure, or differences in photographic conditions.

Another consideration when weighing the significance of dissimilarities is to
consider the effects of time: wrinkles, transience of facial markings, and changes
in weight. If a dissimilarity can be logically explained, such as the disappearance of
a pimple or increase in eye wrinkles, then it can be weighted accordingly as a less
substantial difference. In our example shown, similarities are noted in overall class
characteristics to include shape of the head and nose and the presence and location
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Fig. 26.4 Two side-by-side charts depicting image K4 for comparison to images Q2 and Q3. No
superimposition of the images was attempted due to the significant differences in rotation and tilt
of the head between images

of wrinkles. Figure 26.5 is the chart from Fig. 26.3 with arrows added to identify
specific individualizing features: a blemish on the left cheek and the ear pattern.

One distinct advantage that humans have over today’s automated facial recogni-
tion programs is that we regard the ear as part of the face and can use it in our anal-
ysis. Automated systems for ears are being developed, generally separately from
facial recognition programs, and the combination of face and ear analysis is consid-
ered multi-modal biometrics. The ear is important because researchers have noted
that they have not found any ears that are alike in all parts and that the ear is also
stable throughout adulthood [9, 18]. The ear itself contains approximately 16 dif-
ferent features that can be assessed and compared. Figure 26.6 focuses on the left
ears depicted in the questioned and known images. The similarity in ear features is
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Fig. 26.5 Arrows have been added to the K4 and Q1 images depicted in Fig. 26.3 to indicate the
most individualizing similar characteristics: a blemish on the left cheek and the pattern of the left
ear

striking, to include the pattern of the crux of the helix and triangular fossa and the
projection of the tragus and anti-tragus.

Based on the number and significance of the similarities in the case depicted in
the figures, the known individual was identified as the questioned individual by the
FBI examiner. The result was peer-reviewed by a similarly trained FBI examiner as
a verification of the case results. If the examiners had a difference of opinion, the
results would be discussed and then arbitrated if further disagreement existed. In this
instance, the examiners readily reached the same conclusion. A similar analysis by
the Oakland County Sheriff’s Office in state of Michigan [1] also reached the same
conclusion. The suspect was arrested in 2005 and pled guilty to 6 out of 10 charges.
The facial identification examinations in this case were a critical component of the
forensic investigation.

26.4 Use of Facial Recognition in Forensics

Facial recognition technology is being embraced by, and for, law enforcement
world-wide. It is being used in novel ways and is pushing the limits of the tech-
nology. It is those limits of the technology, mainly the accuracy rates, which are
holding back the usage of facial recognition in the legal system. This section will
explore several uses of automated facial recognition systems in forensics.
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Fig. 26.6 Top. Enlargements of the left ear depicted in the fourth known image, K4, and the three
questioned images, Q1–Q3. Bottom. Arrows added to indicate similarities in the pattern of the crux
of the helix, Darwin’s point, triangular fossa into the antihelix, tragus, and intertragic notch

26.4.1 Department of Motor Vehicles

When most people think of their state’s department of motor vehicles (DMV) they
think of long lines and unflattering photographs. However, when it comes to fa-
cial recognition, those photographs are showing their worth. Facial biometrics is
a natural fit in a DMV environment because the photographs are controlled, taken
under consistent circumstances. Many states are now on the fore-front of fraud and
identity-theft detection by using automated facial recognition systems. West Vir-
ginia was the first state to use an automated facial recognition system in the late
1990s; by 2009, more than 30 states were using facial recognition systems in their
driver’s licensing procedures.

Most DMV fraud occurs when people use different spellings of their names,
use aliases, and show false documents. Previously these cases of fraud would have
involved numerous hours of investigation by state DMVs and police departments.
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The investigation time has been decreased by facial image screening measures that
start when a person tries to apply for a license.

Presently in many states in the US, an individual’s photograph is taken for the
driver’s license and later fed into a facial recognition system. If there is supposed to
be an existing license photo on file and the submitted photograph is not matched to
it that could be a sign of identity theft where either the first or second photograph
is of an imposter. Likewise, if there is a facial match found, then the biographical
information is checked to determine whether this is the same individual applying
for a license renewal or if there is deception in the biographical information and the
person is seeking to obtain an illegal license bearing fake information or a stolen
identity.

As an example, the North Carolina Division of Motor Vehicles has used facial
recognition in their licensing procedures since 2005. Their Viisage (now part of L-1
Identity Solutions) system has successfully detected fraud, such as one man with
nine license pictures and social security numbers, a woman with 11 different iden-
tities, and a 15-year old who had posed twice to get fake IDs to get into bars [3].
Additionally, the successes from the DMV’s use of facial recognition have been
publicized, providing a deterrent to other individuals contemplating fraud. The use
of biometric systems has changed the way DMVs operate. In Indiana and several
other states, individuals are now asked to assume a neutral expression, instead of a
smile, to better control variability between images and enhance the matching accu-
racy of their automated systems [3]; the state of Virginia even adopted such a policy
in 2009 in anticipation of having a facial recognition system in use in the future.
The Oregon, Nevada, Wisconsin and other DMVs no longer issue same day license
cards in order to allow their investigators time to review the biometric data before
sending the license to the customer.

In a revolutionary shift, a new contract for the North Carolina DMV with the
MorphoTrak-Safran Group (formerly Sagem Morpho) outlines plans to begin cap-
turing facial images in 3-D for better facial matching. Because a driving license
agency generally has the largest repository of images of state residents, DMV facial
databases have always been an asset to police looking for photos of their suspects.
Now a DMV’s biometric system is also proving to be a boon. Nevada police were
able to arrest a fugitive with an outstanding felony warrant for sexual assault after
his identity fraud was detected with their facial recognition system. In North Car-
olina, the DMV has welcomed the FBI into their facilities to use their automated
system to check for the FBI’s wanted individuals. The NC DMV has generated suc-
cesses for both the North Carolina law enforcement and the FBI, demonstrating the
benefit of cross-agency cooperation in forensic facial recognition.

26.4.2 Police Agencies

The archetypal application of automated facial recognition in forensics is to en-
able law enforcement to take images obtained from surveillance or Closed Circuit
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Television (CCTV) and query a database as a means of identifying the subjects de-
picted [20]. Using automated biometrics for the development of suspects is nothing
new to forensics: fingerprint and DNA results are frequently used to narrow down
a suspect pool or identify unknown subjects. However the unconstrained lighting,
perspective of the face, obstructions to the face (e.g., hats, glasses), generally poor
resolution, and other factors affecting common CCTV imagery severely affects cur-
rent facial recognition technology. This leads to accuracy rates well below 90%;
while that may sound fair for a small database, most law enforcement agencies will
be sieving databases of at least several hundred thousand people, if not millions.

The time spent reviewing the incorrectly selected images can be a drain on police
resources and the false reject rate could be an even larger concern. Yet the use of
facial biometrics to develop a list of leads for police to then investigate is a more
manageable task for today’s technology. Many smaller police agencies are taking
up the challenge and pioneering facial recognition systems for development of sus-
pects in their investigations. We will next outline police use cases by exploring as
examples of two police agencies that have been using facial recognition biometrics
for several years and a third who are rolling out a ground-breaking new system.

In Washington State, the Pierce County Sheriff’s Department has been using
automated facial recognition since 2008. The county, which includes the city of
Tacoma, was part of a pilot study by Sagem Morpho Inc (now known as Morpho) to
use their MorphoFace Investigate (MFI) software in a forensic setting. Crimes like
Automated Teller Machine (ATM) robbery, or identity theft using an ATM, have
always been a challenge for biometrics because of the sheer volume of innocent
fingerprints on the machine. Within the first six months of using facial biometric
technology, Pierce County had already matched photos from ATM machines that
were robbed with a suspect who was in their database; the suspect was charged
with 11 crimes and pleaded guilty. Their database is primarily made up of booking
photographs from people previously entered into the county’s penal system. Dur-
ing the booking process, the identity of people was previously validated solely by
their fingerprints. The photographs taken are now fed into the MFI software for a
secondary validation; repeat offenders offer a chance to test the system by match-
ing the new booking photograph to their previous arrest photos. The output of the
system is reviewed by a human examiner, who makes the final determination. As a
forensic service, officials began using the software to revisit cold cases by selecting
good surveillance images and comparing them against the database. This technique
is now also in use for active cases when suitable images are available.

Besides using forensic facial recognition at the station, it can be used by law en-
forcement in the field as well. In Florida, the Pinellas County Sheriff’s Office pio-
neered a system that deputies can operate from their patrol cars. In place since 2002,
the facial recognition system developed by Viisage (now L-1 Identity Solutions) has
lead to over 500 arrests and assisted in identifying countless other individuals. At
the station, the system resembles that used by Pierce County: booking photographs
are taken and submitted to the system to verify the identity of the arrestee. Later, if
the person is not charged with a crime, their photograph is expunged from the sys-
tem. The database contains over 8.3 million arrest photos, including records from
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several other sheriff’s departments throughout Florida, the state Department of Cor-
rections, and access to driver’s license photographs from several Florida counties. It
is not uncommon for other law enforcement agencies to send their own questioned
images to the Pinellas County Sheriff’s Office for facial recognition searches.

The novel aspect of the Pinellas County Sheriff’s Office system is its mobile
application. Installed in more than 170 patrol cars, the mobile system includes a
standard digital camera. When a deputy encounters an individual who either does
not have a driver’s license or ID, or the deputy has reason to doubt the validity of
the document, the deputy requests to take a photograph of the individual. An obvi-
ous advantage of this system is that the public are generally more willing to allow
themselves to be photographed than fingerprinted. The image is uploaded into the
automated system at the in-car terminal. Within seconds, the software provides a
gallery of images and biographical data as potential matches to the law enforcement
officer. The deputy then decides if the person resembles a photograph in the gallery.
If the match is to the identity verbally provided by the individual, the deputy can
now be confident about the identity even without the individual having their driver’s
license present. If the match is to an individual with an outstanding warrant, the
deputy can bring the person to the station for further identity verification by finger-
print.

The success of their program using off-the-shelf cameras has garnered additional
attention and funding from agencies to include the Departments of Defense, Jus-
tice, and Homeland Security for Pinellas County Sheriff’s Office to expand their
mobile facial recognition system. Mobile facial recognition applications for law en-
forcement are increasing in usage as they are ideal for both officers in the field and
detectives at the station.

One such break-through system in Massachusetts is using an application for the
iPhone. The police in the city of Brockton are using a system developed by BI2
called MORIS: Mobile Offender Recognition and Identification System. While the
technology is not new, the application of it over the iPhone is recently developed.
The multi-modal wireless application is using face now with iris and fingerprint un-
der development. The iPhone is used to take a photograph of an individual and then
wirelessly upload it into a secure network where it is analyzed by facial recognition
software. If a match is made, the officer’s phone then receives the additional im-
ages and biographic information about the individual. The Massachusetts Sheriff’s
Association has plans to use the technology in thirty-two police departments and
sheriff’s offices throughout the state. As with the mobile system used in Pinellas
County Florida, the speed and ease-of-use of this technology are likely to entice
other law enforcement agencies to adopt similar systems.

26.5 Future Perspectives

The automation of facial analysis in forensic science is as inevitable as it was for fin-
gerprint analysis. However, while the idea of a lights-out facial recognition system
is appealing, the reality is that there are too many external variables, such as lighting
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conditions, and internal variables, such as aging, to allow the use of an automated
facial recognition system as the final evaluator for identifying faces in the imme-
diate future. Just as latent print examiners use an automated system to develop or
narrow a suspect list and then perform the manual analysis to make the final conclu-
sion, humans will need to be in the facial analysis process as well [16]. Therefore,
the near future of facial comparisons involves the fusion between automated sys-
tems performing facial recognition and humans verifying the results through facial
identification.

Studies have shown that the combination of algorithms and humans yields ac-
curacy rates that surpass those for either solely algorithm or human facial evalua-
tions [14]. In addition, most algorithms in use today rely on measurements between
facial landmarks and dimensions of facial features; human methods are more textu-
ral, focusing on facial minutiae such as blemishes and wrinkles. Thus, using a fusion
of human examiners and algorithms provides a more diverse approach overall until
a lights out system can be created.

Because the goal of forensic examinations is successful crime-solving and pros-
ecutions, facial identification must maintain standards that continue its acceptance
within the judicial system. A hindrance to both forensic facial identification and au-
tomated facial recognition is the paucity of robust statistics for the size and spacing
of facial features/landmarks and the frequency of occurrence of facial minutiae. Ex-
aminers provide opinion conclusions at this time without quantitative support, other
than being 100% positive of their conclusion that it is, or is not, the same individual.

According to Evison and Vorder Bruegge [4], what is lacking is a quantitative
means of establishing a match between two facial images, and in the event of a
match, there is no process by which to estimate the frequency of any given face
shape in the general population. A statistical foundation would allow the examiner
to give DNA-like results.

A qualitative conclusion could be supported by a statistical deduction, such as
only a given percentage of the population has both a certain interpupillary distance
and a blemish on their left cheek, therefore limiting the possible number of people
that the questioned image may depict. Furthermore, currently a percentage match
score presented by automated facial recognition is a factor of the system’s algo-
rithm. If it means anything at all, it is a measure of certainty in the match by the
system; this is the equivalent of an eyewitness saying they are 75% sure that the im-
age depicts the person they observed at the crime scene. It would be a great benefit in
forensic usage if the score presented was rooted in measurable physical characteris-
tics instead, such that a result of 91 would actually mean that the person is within the
91st percentile of the population who have certain facial statistics and therefore only
9% of the population could be the depicted person. While not definitive, it would
be a significant improvement over the current result scores presented by automated
systems.

Inevitably, as facial recognition algorithms improve, the number of applications
that need human evaluation should decrease in the future. By incorporating the
methods that human examiners use into algorithms, Jain and Park [11] have shown
that algorithms to detect and compare facial minutiae can be used in tandem with
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standard facial recognition systems to improve the overall accuracy rates of the au-
tomated system. In other approaches, system designers are experimenting with 3-D
facial recognition to improve accuracy. The critical difference between 3-D facial
technology in security and forensic applications is that one can obtain both ques-
tioned and known imagery in 3-D for access control or document checks but in a
forensic instance there is little chance of capturing 3-D questioned images. There-
fore in a forensic capacity, the possibility of generating 3-D models from 2-D images
is more promising. Multiple known images of varying perspective are taken and can
be fused to produce a 3-D model of a face that can be positioned to match the per-
spective of the face in an uncontrolled questioned image, such as a frame of CCTV
video [2, 12].

Facial recognition algorithms combined with face finding software also provides
a powerful tool for future forensics. The push for advanced software that can find,
track, and extract “faces in the wild” (e.g., from video or the Internet) comes from
the commercial sector as much as the government sector. For example, the Picasa
photo-album program by search engine giant Google includes facial recognition
technology to sort and label personal photos by the faces they contain. Similarly,
law enforcement agencies are interested in using the same type of programs in an
array of applications.

The FBI is interested in locating faces of potential suspects during computer
forensic examinations of seized computers and mobile phones; such technology
will greatly benefit gang related and organized crime or terrorism cases where the
network of individuals is as important as the initial subject. The National Insti-
tute of Justice is assisting the National Center for Missing and Exploited Children
(NCMEC) in using face finding software to search the Internet for missing or ab-
ducted children in a program similar to the ChildBase system used by the National
Criminal Intelligence Service in the United Kingdom to identify child pornogra-
phy on the Internet. In London, where there is one CCTV camera per 14 people,
the Metropolitan Police Service is looking to use such programs to sort through
the ubiquitous video to track criminals in both post-event, forensic situations and
real-time scenarios.

There is also interest in using facial recognition technology to update more tra-
ditional police procedures. Rather than manually developing photo arrays to present
to eye witnesses for review, police could use forensic facial recognition software
to create arrays of individuals who are more similar in appearance to reduce bias
and increase accuracy. Facial recognition technology is already being used to im-
prove the performance of facial composite software used by forensic artists to de-
velop images from eyewitness accounts, yet future uses could entail using automated
facial one-to-many matching of sketches and composites against law enforcement
databases to develop suspects [21].

26.6 Conclusions

It is clear that forensic science will benefit from improvements in facial recogni-
tion technology and increased usage thereof. Of course, the ultimate goal for facial
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recognition in forensic science is for the advances it will bring in policing and se-
curity to lead to less forensics being needed due to fewer criminals in our neighbor-
hoods. Until then, the combination of automated facial recognition to develop leads
and forensic examiners performing facial identification will be a great step up from
existing purely manual processes.
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Chapter 27
Privacy Protection and Face Recognition

Andrew W. Senior and Sharathchandra Pankanti

27.1 Introduction

Digital imagery—from personal cameras, cellphones, surveillance cameras and
television—is now ubiquitous, being used by governments, corporations and indi-
viduals to bring undreamed-of new capabilities for entertainment and government
or commercial services. This pervasiveness, together with the new technologies for
analyzing and exploiting such images, lead us to ask what are the risks to privacy
thus created or exacerbated, and what protections are, or could be put, in place to
protect individuals’ privacy. Visual privacy has been of concern since the inven-
tion of photography, but the issues are becoming critical as digital imagery is used
more widely. At the same time, image processing, computer vision and cryptogra-
phy techniques are, for the first time, able to deliver technological solutions to some
visual privacy problems.

In this chapter, we describe the privacy issues surrounding the proliferation of
digital imagery, particularly of faces, in surveillance video, online photo-sharing,
medical records and online navigable street imagery. We highlight the growing ca-
pacity for computer systems to process, recognize and index face images and outline
some of the techniques that have been used to protect privacy while supporting on-
going innovation and growth in the applications of digital imagery.

We first examine what is meant by privacy, and visual privacy in particular, fo-
cusing on the privacy concerns surrounding facial images. In Sect. 27.2, we examine
some of the factors that determine visual privacy, and in Sect. 27.3 we summarize
particular domains in which visual privacy is important. Section 27.4 describes tech-
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nologies for protecting privacy in images and Sect. 27.5 presents three systems that
have been developed for applying privacy enhancing technologies to face images.

27.1.1 What is Privacy?

The problem of protecting privacy is ill-posed in the sense that privacy means dif-
ferent things to different people [1], and attitudes to its protection vary from the
belief that this is a right and obligation, to an assumption that anyone demanding
privacy must have something to hide [11]. Just as it is difficult to define privacy, it is
difficult to determine when privacy has been intruded upon. Equally, many people
are happy to trade in their intangible privacy for only small incentives [53], whereas
others guard their privacy jealously, so it is hard to determine the value of privacy
and privacy intrusions. There is a continuum of privacy intrusion, and our comfort
point on that continuum can easily be displaced, by a small incentive or a bout of
media hype. A range of factors come into play and our personal tolerances all vary
with those factors, from less-than-flattering photos on the Internet to images that
form part of our medical record.

In many applications where there are privacy concerns, it is hard to point to ex-
amples where there is material effect on a person “who has done nothing wrong”,
yet the feeling of disquiet remains perhaps because everyone has done something
“wrong”, whether in a personal or legal sense. The area where the public is perhaps
most concerned over privacy is video surveillance, with fears aroused by authori-
tarian governments, and science fiction like 1984 or Minority Report. Few people
wish a society where all its laws (speeding, parking, jaywalking. . . ) are enforced
absolutely rigidly, never mind arbitrarily, by an omniscient state. There is always
the possibility that a government to which we give such powers may begin to move
towards authoritarianism and apply them towards ends that we do not endorse.

Danielson [16] views the ethics of video surveillance as “a continuously modi-
fiable practice of social practice and agreement”. What is considered acceptable or
intrusive in video privacy is a result of cultural attitudes (Danielson contrasts atti-
tudes in the UK and Canada) but also technological capability. A report of the US
General Accounting Office [54] quotes the 10th Circuit Court of Appeals decision
to uphold the use of surveillance cameras on a public street without a warrant on
grounds that “activity a person knowingly exposes to the public is not a subject of
Fourth Amendment protection, and thus, is not constitutionally protected from ob-
servation.” However technology (with capabilities such as high zooms, automatic
control, relentless monitoring, night vision and long term analysis) enables surveil-
lance systems to record and analyze much more than we might naturally believe we
are “exposing to the public”. It has been argued that the “chilling” effect of video
surveillance is an infringement of US first amendment rights.

Brin, in “The Transparent Society” [10], argues that at some level privacy can-
not be preserved and suggests that in the face of inevitable ubiquitous surveillance,
our only choice is whether to leave this surveillance in the hands of the authorities
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or democratize access to the surveillance mechanisms and use these same tools to
“watch the watchers” and so protect the populace against abuses of the tremendous
power that the surveillance apparatus affords.

27.1.2 Visual Privacy vs. General Data Privacy

In many legal systems, visual privacy falls under the legislation dealing with general
data privacy and thence data protection. In the European Union, for instance, this is
covered by EU directive 95/46/EC which is enacted by member states in their own
legislation and came into force in March 2000. In the United Kingdom, with perhaps
the densest video surveillance, the relevant legislation is the 1998 Data Protection
Act (DPA) which outlines the principles of data protection, saying that data must
be:

• Fairly and lawfully processed.
• Processed for limited purposes.
• Adequate, relevant and not excessive.
• Accurate.
• Not kept longer than necessary.
• Processed in accordance with the data subject’s rights.
• Secure.
• Not transferred to countries without adequate protection.

The act requires all CCTV systems to be registered with the Information Com-
missioner, extending the 1984 Data Protection act that only required registration of
CCTV systems that involved “Automatic Processing” of the data. It further gives
specific requirements on proper procedure in a CCTV system in order to protect
privacy:

Users of CCTV systems must prevent unauthorized access to CCTV control rooms/areas; all
visitors must be authorized and recorded in the visitors log and have signed the confiden-
tiality proforma. Operators/staff must be trained in equipment use and tape management.
They should also be fully aware of the Codes of Practice and Procedures for the system.
The observation of the data by a third party is to be prevented for example, no unauthorized
staff must see the CCTV monitors.

It has been estimated [33] that 80% of CCTV systems in London’s business district
are not compliant with the DPA.

The act also guarantees the individual’s right of access to information held about
them, which extends to access to CCTV recordings of the individual, with protec-
tions on the privacy of other individuals who may have been recorded at the same
time.1

1“The DPA supports the right of the individual to a copy of any personal data held about them.
Therefore data controllers are obliged to provide a copy of the tape if the individual can prove that
they are identifiable on the tape, and they provide enough detail to locate the image (e.g., 1 hour
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The European Convention on Human Rights guarantees the individual’s right to
privacy2 and further constrains the use of video surveillance, most explicitly con-
straining its use by public authorities. The Swiss Federal Data Protection Commis-
sioner has published these guidelines: [57]

When private individuals use video cameras, for example to protect individuals or prevent
material damage, this is subject to the federal law of 19th June 1992 on data protection
(DPL; SR 235.1) when the images filmed show identified or identifiable individuals. This
applies irrespective of whether the images are stored or not. The processing of the images—
such as acquisition, release, immediate or subsequent viewing or archiving—must comply
with the general principles of data protection.

A big difference between ordinary data privacy and image privacy is the amor-
phous nature of images, and the difficulty in processing them automatically to ex-
tract useful information. A video clip can convey negligible amounts of information
or may contain very detailed and specific information (about times, a person’s ap-
pearance, actions). Privacy is hard to define, even for explicit textual information
such as name, address and social security number fields in a database, knowledge
of which can be used for identity theft, fraud and the mining of copious information
about the individual from other databases. It becomes much harder to assess the
privacy-intrusion that might result from the unstructured but potentially very rich
information that could be harvested from surveillance video. A simple video of a
person passing in front of a surveillance camera by itself affords little power over
the individual, except in a few rare circumstances (such as proving or invalidating
an alibi).

There are already strong restrictions on the use of microphones for surveillance
because of the presumption of privacy of conversations, but video has been less
restricted because there is an expectation of being observed when entering a public
space. The UK DPA exempts from controls data where, “The information contained
in the personal data has been made public as a result of steps deliberately taken by
the data subject.” While the act of walking along, the street could be construed as
deliberate steps to make ones visual appearance public, we have seen that the DPA
does provide privacy safeguards for CCTV.

Until recently, the unmanageability of images has limited their potential for
abuse. Few photographs were online, and those that were only manually labeled,
and mostly of celebrities, for whom privacy is handled somewhat differently. It takes
time to review surveillance video to find “interesting” excerpts, and the storage re-
quirements have added to privacy reasons to ensure that recordings are retained
for only short periods of time. Long term storage, and detailed analysis have been

before/after the time they believe they were captured by CCTV, their location and what identifiable
features to look for). They must submit an appropriate application to the Data Controller and pay a
£10 fee. However, the request can be refused if there are additional data/images on the tape relating
to a third party. These additional images must be blurred or pixelated out, if shown to a third party.
A good example would be a car accident where one party is attempting to claim against another.
The data controller is obliged to say no to a civil request to view the tape, as consideration must be
given to the other party. A request by the police is a different matter though.”
2See http://www.crimereduction.gov.uk/cctv13.htm.

http://www.crimereduction.gov.uk/cctv13.htm
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reserved for situations with strong economic or forensic motivation. However, the
advent of sophisticated computer algorithms to automate the extraction of data from
images and video, means that imagery is becoming as easy to mine and interrelate
as a queryable, machine-readable database.

27.2 Factors in Visual Privacy

The goal of privacy protection is to prevent access to information that intrudes on an
individual’s privacy, but specifying exactly what information is sensitive is difficult.
For the purposes of this chapter, we limit ourselves to considering images of faces,
though certainly other visual information (e.g., documents, the presence of an ob-
ject, other biometric identifiers) can compromise privacy in certain circumstances.
Identification of individuals is the major threat to privacy in images, and facial ap-
pearance is the most commonly captured and easily recognized biometric in images.
In Sect. 27.3, we review specific domains where face images are handled. Here, we
consider a number of factors (listed in Table 27.1) that play a role in the privacy-
intrusiveness of automatic video surveillance, the most complex of these domains.
Most systems must be designed to operate under multiple combinations of these
factors, requiring multiple levels of privacy protection.

The location of the camera is certainly a principal factor. In high security surveil-
lance environments, no privacy protection may be necessary, but to some, in the
home no level of video obfuscation may be considered acceptable. The person
with access to the information also determines the level of privacy-intrusiveness,
as shown by [30]. A person from any of the categories of Table 27.1 may be fa-
miliar with an individual observed by the system, increasing the risk of information
being viewed as sensitive, but an unfamiliar person is still subject to voyeurism and
prejudiced treatment. In each category the availability of each type of data must be
limited as far as possible, consistent with the person’s need to access information.
The person seen by the camera also plays a role, being observed with some kind of
informed consent (e.g., an employee); with active consent, or denial of such, per-
haps expressed through the carrying of a privacy token (Sect. 27.4.4); passively as a
member of the public; or indeed as an intruder.

In preventing privacy breaches from a surveillance system, we must review the
information that can be leaked, the access points to that information within the sys-
tem, and the availability to different groups of people. Raw video contains much
privacy-intrusive information, but much effort is required to get to that information.
A key frame may convey much less information, but if well-chosen presents infor-
mation succinctly. An index with powerful search facilities can easily direct a user to
a particular clip of video. The power to intrude on privacy is greatly enhanced if the
system has the capability to identify individuals (Sect. 27.2.1). While in principle,
all the information stored in a networked digital system is vulnerable to hacking,
such breaches are defended against and their effects minimized, by conventional
information and physical security, for instance strict access controls should be in
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Table 27.1 Factors affecting privacy protection in a video surveillance system

Scenario Observer Familiarity Role of subject

High security Law enforcement Familiar Member of general public

Low security
e.g., workplace

System managers Unfamiliar Employee

System operators (Non-)consenting subject

Public space Authorized accessors Wearer of privacy tag

Private space

Public Intruder

Hackers

Person observed

Effort Data type Tools

Passive Raw video/image Summary

Opportunistic Redacted video/image Video review

Deliberate Extracted metadata Freeze-frame

Sophisticated. Anonymized data Search

Linked to an identity Biometric ID

Weak identifier

place to limit access to privacy-sensitive information, this information can be al-
ways encrypted when stored or transmitted, and there may be audit trails to record
who accessed what data under what circumstances.

27.2.1 Absolute and Relative Identification

A major distinction that we have drawn for privacy in surveillance systems [51], that
significantly correlates with how likely they are to intrude on privacy, is the level of
anonymity they afford. We distinguish three types of system: Anonymous, Relative
ID, and Absolute ID:

• Anonymous A traditional CCTV system without computer augmentation is
anonymous—it knows nothing about the individuals who are recorded onto the
tape or presented on the monitors. While open to abuse by individuals watching
the video, it does not facilitate that abuse in a systematic way.

• Absolute ID These systems have some method of identifying the individuals ob-
served (usually face recognition but also such identifiers as a badge swipe corre-
lated with the video) and associating them with a personal record in a database.
Such systems require some kind of enrollment process [7] to register the person
in the database and link the personal information (such as name, social security
number) with the identifying characteristic (face image or badge number), though
the enrollment can happen without the knowledge or consent of the subject.
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• Relative ID These systems can recognize people they have seen before, but have
no enrollment step. Such systems can be used to collect statistics about people’s
comings and goings, but do not know any individual information. A relative ID
system may use weaker methods of identification (such as clothing colors) to
collect short term statistics as people pass from one camera to another, but be
unable to recognize people over periods of time longer than a day, or use face
recognition without any external label.

Clearly, anonymity protects the individual’s privacy. An absolute ID system
might, for instance be made to “Give a report on the movements of Joe Bloggs
at the end of each day”. A relative ID system with a “strong identifier” can easily be
converted retrospectively into an Absolute ID with a manual enrollment, and as the
availability of labeled data on the web increases, it is becoming easier to partially
automate that enrollment. Extracting Relative or Absolute ID from an Anonymous
system would require storing and reprocessing the data.

27.3 Explosion of Digital Imagery

In this section, we review some of the domains in which the privacy of face images
is important.

27.3.1 Video Surveillance

CCTV deployment is undoubtedly expanding rapidly. In 2003, McCahill and Nor-
ris [33] estimated that there were more than 4 million CCTV cameras in operation
in the UK. At the time, most such CCTV systems were rarely monitored and of poor
quality, installed largely as a deterrent. Automatic processing of surveillance video,
however, is bringing a new era of CCTV with constant monitoring, recording and
indexing of all video signals.

Many groups around the world [6, 8, 26, 29, 34, 55] are developing software tools
to automate and facilitate the task of “watching” and understanding surveillance
videos. These systems also have the potential for gathering much richer information
about the people being observed, as well as beginning to make judgments about their
actions and behaviors, as well as aggregating this data across days, or even lifetimes.
It is these systems that magnify the potential for video surveillance, taking it from
an expensive, labor-intensive operation with patchy coverage and poor recall, to an
efficient, automated system that observes everything in front of any of its cameras,
and allows all that data to be reviewed instantly and mined in new ways: tracking a
particular person throughout the day; showing what happens at a particular time of
day over a long period; looking for people or vehicles who return to a location, or
reappear at related locations. This brings great power in the prevention and solution
of crimes.
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Some CCTV systems have already publicly deployed face recognition soft-
ware which has the potential for identifying, and thus tracking, people as effec-
tively as cars are recognized today (for instance, the London Congestion Charg-
ing scheme [13]). Currently, face recognition technology is limited to operating on
relatively small databases or under good conditions with compliant subjects [42].
Further algorithms bring the potential to automatically track individuals across mul-
tiple cameras, with tireless uninterrupted monitoring, across visible and non-visible
wavelengths. Such computer systems may in future be able to process many thou-
sands of video streams—whether from cameras installed for this purpose by a single
body, public webcams [56] or preinstalled private CCTV systems [38]—resulting in
blanket, omnivident surveillance networks.

Yu et al. [63], in work supported by the US Department of Justice, describe one
potential future direction for higher-level learning based on face recognition. They
show how automatically captured location tracks and face images from fixed and
steerable cameras can be used to learn graphs of social networks in groups of people,
particularly targeted at identifying gangs and their leaders in prisons.

27.3.1.1 Camera-Based Sensors

While surveillance has driven the widespread deployment of cameras, low cost sen-
sors and more sophisticated algorithms are enabling many other applications that in-
volve the installation of cameras that will see people, but in which it is not the images
themselves that are of interest, but rather the data extracted from them. These range
from today’s traffic cameras and cameras that anticipate drownings in swimming
pools [44] to “human aware” buildings that adjust heating, lighting [32], elevators
and telephones according to the locations and activities of people, as well as control-
ling physical access and assisting with speech recognition by lip-reading [45]. Many
future devices and systems will have cameras installed because they are a low-cost
sensor that “sees the world as humans see it”. While the purpose of these sensors is
often merely to detect a single piece of information, such as the number of people at
a check-out line [60], the same hardware could equally be used for surveillance and
face recognition. It is impossible for the subjects of the observation to know what is
happening to the data once it has left the sensor, so without suitable oversight these
devices are a potential and perceived privacy intrusion.

27.3.1.2 Ambient Video Connections

Some of the earliest work on image-based privacy relates to the use of video for
ambient awareness in media spaces, particularly video for awareness of co-workers
in a remote location. Here, a worker may choose to be shown in a constant video
feed to provide a sense of copresence. However, in times when there is no explicit
face-to-face conversation the worker may wish to reveal only general information,
such as presence or general location without revealing specific details that would be
visible in a full-resolution video. Such a privacy protection system that uses model-
based face obscuration is described in Sect. 27.5.2.
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27.3.2 Medical Images

Medical images are also proliferating, with the advances in medical science and the
lowering cost of imaging devices. Much attention has been paid to the electronic
patient record and its privacy implications. The ability to copy and transmit sensi-
tive patient records in electronic form as well as access them remotely, together with
the increasing richness of the records has led to stricter controls on medical record
privacy, such as the HIPAA [58] regulations in the USA. These regulate medical
records as a whole, but photographs of patients that show their faces are of specific
concern here. Face images may be an important component of a patient record for
such areas as oral and maxillofacial surgery, dentistry, dermatology and plastic and
reconstructive surgery. It is important to protect the patient from exposure of the data
both through unauthorized access and use for teaching or research material. It is es-
sential in the latter case to remove identifying information while preserving the use-
fulness and accuracy for the intended purpose. De-identifying faces (Sect. 27.5.2) is
an important technique here.

27.3.3 Online Photograph Sharing

Photo-sharing has recently become one of the most popular activities on the Inter-
net, featuring in social networking sites like Facebook, and special photo storage
and sharing sites like Flickr or photobucket.com. Billions of photographs are stored
by such services.3 As traffic has grown, the affordances for labeling have become
more sophisticated. Text tagging has evolved to labeled bounding boxes and to the
automatic face recognition found in Picasa and Windows Live Photo Gallery. Now
the task of labeling a photo album has been made much easier by software which
allows the user to name a person in one picture and then propagate that label to
other similar photos of the same person. These new labels can be confirmed or cor-
rected and the face model is improved accordingly, so a large photo collection can
be iteratively labeled with relatively little manual intervention.

Companies such as PolarRose are seeking to apply these techniques to social
network sites, and companies such as Google have developed face recognition tech-
nologies to label photographs and videos [48] of celebrities on the web. As recog-
nition technology improves and the quantity of labeled data increases, it seems that
it is only a matter of time before all photos of you on the Internet can be tagged as
such and searchable.

Google Goggles which allows visual search using images captured with a smart
phone has the potential to carry out face recognition, but privacy concerns have
prevented it from being made available [39], according to a spokesman. “We do
have the relevant facial recognition technology at our disposal. . . . But we haven’t
implemented this on Google Goggles because we want to consider the privacy im-
plications and how this feature might be added responsibly.” [46].

3More than 3 billion photos a day are uploaded to Facebook [20].
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27.3.4 Street View

Online services such as Google’s Street View, Bing Streetside, Mapjack, and Ev-
eryscape present systematically captured street-level imagery on an unprecedented
scale, allowing users to explore distant places through intuitive user interfaces in
their computer browser. The extent of their coverage, the high image quality and the
easy access have aroused concern over the effect of the imagery on privacy. Indi-
viduals are concerned about the possibility of their presence in a particular location
being publicly visible and about their property being easily examinable without their
knowledge and scouted by burglars. In Japan, privacy concerns led to Street View
imagery being recaptured with the car-mounted cameras lowered by 40 cm so that
the service would not present imagery taken over people’s garden walls, and there
has been considerable opposition to the service on privacy grounds in Switzerland
and Germany [2]. Mechanisms are provided for individuals to request that particu-
lar images are not made public, but the ubiquity of faces and license plates in the
imagery, and the general unease that these elicit, required an automated solution to
attempt to automatically obscure all the faces and license plates. The automatic sys-
tem that Google deployed to blur faces and license plates is described in Sect. 27.5.1.
Flores and Belongie [21] have shown preliminary work using multiple views and in-
painting to remove isolated pedestrians images from Street View images.

27.3.5 Institutional Databases

Increasingly in recent years, governments and corporations have sought to harness
Information Technology to improve efficiency in their provision of services, to pre-
vent fraud and to ensure the security of citizens. Such developments have involved
collecting more information and making that information more readily available
to searching and through links between databases. Silos of information, collected
for an authorized process are readily accepted for the benefits they bring, but the
public becomes more uneasy as such databases succumb to “function creep”, being
used for purposes not originally intended, especially when several such databases
are linked together to enable searches across multiple domains. Plans for Australian
identity cards were rejected because of just such fears [17] and there was a signifi-
cant backlash when retired Admiral John Poindexter conceived the “Total Informa-
tion Awareness” (TIA) project [43] which aimed to gather and mine large quantities
of data, of all kinds, and use these to detect and track criminals and terrorists. The
Orwellian potential for such a project raised an outcry that resulted in the project
being renamed the Terrorist Information Awareness project, an epithet calculated to
stifle objection in post-September 11th America.

Naturally, faces are an important part of such electronic databases allowing the
verification of identity for such purposes as border control and driver licensing, but
registered faces provide a link between definitive, exploitable identification infor-
mation such as name, address, social security number, bank accounts, immigration
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status, criminal record and medical history and the mass of images of individuals
that is building up from other channels like surveillance and photo-sharing.4 Many
authors, from Bentham [5] to the present have expressed concern about the potential
for state oppression by the exercise of extensive monitoring and the projection that
such monitoring is pervasive if unknowable.

The widespread use of electronic records and their portability has led to numer-
ous cases of records being leaked or lost, and their potential value for identity theft
has made them a target for theft and hacking, from within as well as outside the
controlling institution. This inadvertent exposure is a major reason for strong auto-
matic privacy protection controls such as encryption, tight access control and image
redaction even in databases where normal use would not lead to privacy intrusion.

27.4 Technology for Enabling Privacy

In recent years, a number of technological solutions have been proposed for the gen-
eral problem of privacy protection in images and video, and for face privacy protec-
tion in particular. In this section, we review the principal methods being developed:
intervention, redaction, and provably secret processing, together with a discussion
of privacy policies and tokens for claiming or relinquishing privacy protection.

27.4.1 Intervention

Patel et al. [41] have proposed a system that prevents unauthorized photography by
detecting cameras using their retro-reflective properties. In their detection system,
a bright infra-red source is located near a camera. If the lens of another camera is
pointed toward the detector, a strong retro-reflection is seen in the image, which
can easily be detected automatically. When a camera is detected, a light is flashed
towards it using a digital projector, spoiling any images that it may record. This
unusual approach, dubbed an “anti-paparazzi” device, exploits computer vision to
create a privacy-protection solution where no control can be exerted over the use of
the images once recorded. As well as privacy protection, the system is envisaged
for copyright protection, for instance to prevent recording of new release films in
cinemas.

27.4.2 Visual Privacy by Redaction

Most recent work on visual privacy protection has focused on systems that modify,
or redact, visual images to mask out privacy sensitive information. Such systems

4Consider the case of the British fraudster John Darwin who faked his own death but was identified
in a photograph on a real estate web site after subsequently buying property [61].
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typically use computer vision technology to determine privacy sensitive regions
of the image, for instance tracking moving people in a video [51], or detecting
faces [22] in still or moving images. Such regions of interest are then changed in
some way to prevent subsequent viewers or algorithms from extracting the privacy
sensitive information. Obscuration methods that are commonly used include blur-
ring, masking, pixellating [27], scrambling [18], or permuting pixels [12]. Recent
work has investigated the limitations of some of these, for instance Gross et al. [25]
show that simple pixellation and blurring may not be strong enough to defeat face
recognition systems. They train a parrot [37] recognizer on gallery images with the
same distortion as the probe and obtain markedly higher recognition rates than using
a system trained on clean images. Neustaedter et al. [35] have also found global blur-
ring and other obscuration techniques to be unable to supply simultaneously both
sufficient privacy and adequate information for always-on home video conferenc-
ing. Koshimizu et al. [31] have explored the acceptability of different obscuration
and rerendering techniques for video surveillance.

Stronger masking with greater changes to the image may have the limitation of
reducing the usability of the video for its intended purpose, but rerendering [51]
may alleviate this by showing computer generated images to convey important in-
formation hidden by the redaction process. One example of this would be to obscure
a person’s face in an image with a computer generated face—hiding the identity
yet preserving the gaze direction and expression. Two extensions of this using face
modeling are described in Sect. 27.5.2.

One important aspect of redaction systems is reversibility. It may be desirable
for some purposes to permanently destroy the privacy-intrusive information, but for
others it may desirable or necessary, perhaps for evidential reasons, to be able to
reconstruct the original video.

When redacted information is to be presented to the user, one fundamental ques-
tion is what redaction is necessary and when the redaction is to occur. In some sce-
narios, the system may need to guarantee that redaction happens at the earliest stage,
and that unredacted data is never accessible. For such a scenario, we proposed the
PrivacyCam [52], a camera with on-board redaction that behaves as a normal video
camera but outputs video with privacy-sensitive areas redacted. Only one level of
redaction at a time is possible when such a system is a drop-in replacement for an
analogue camera. However for a general system, it may be necessary to present both
redacted and unredacted data to end users according to the task and their rights, and
to allow different types and extents of redaction according to the circumstances.

In a distributed surveillance system, there are three principal locations through
which the data must pass: the video processor, database and browser (or end-user
application), at each of which the redaction could take place:

Browser: Here the unredacted data is delivered to the client and client software
carries out the redaction and presents the redacted information to the user. This
scenario means that redacted data does not need to be stored and transmitted but
metadata for redaction does need to be transferred with the raw data. Since the
browser is the part of a system most exposed to attack, transmitting the unredacted
data there is not secure.
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Fig. 27.1 Double redaction: Video is decomposed into information streams which protect privacy
and are recombined when needed by a sufficiently authorized user. Information is not duplicated
and sensitive information is only transmitted when authorized. Optionally an unmodified (but en-
crypted) copy of the video may need to be securely stored to meet requirements for evidence

Content management: The content management system can redact the informa-
tion when requested for viewing, which will minimize storage requirements and al-
low complete flexibility, but involve additional processing (with the same keyframe
perhaps being redacted multiple times), latency and imposes image modification
requirements on the database system. If the unredacted video is stored, unautho-
rized access can reveal the privacy-intrusive data.

Video analytics: The video analytics system has access to the richest information
about the video activity and content, and thus can have the finest control over the
redaction, but committing at encoding time allows for no post-hoc flexibility. In
the other two scenarios, for instance, a set of people and objects could be chosen
and obscured on-the-fly. Sending redacted and raw frames to the database imposes
bandwidth and storage requirements.

Double redaction: Perhaps the most flexible and secure method is double redac-
tion [50], in which privacy protection is applied at the earliest possible stage (ide-
ally at the camera), and privacy-protected data flows through the system by de-
fault. Separate encrypted streams containing the private data can be transmitted in
parallel to the content management system and to authorized end users, allowing
the inversion of the privacy protection in controlled circumstances. The operating
point of the detection system can even be changed continuously at display time
according to a user’s rights, to obscure all possible detections, or only those above
a certain confidence. Figure 27.1 shows an example of such a double redaction
scheme, with two levels of redaction.

Several authors [28, 40] have adopted such a double redaction system and have
explored options for embedding or hiding additional data streams in the redacted
video data, for instance Zhang et al. [64] store the information as a watermark, Car-
illo et al. [12] use a reversible cryptographic pixel permutation process to obscure
information in a manner that can be reversed, given the right key, and that is robust
to compression and transcoding of video. Li et al. transform sensitive data using the
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Discrete Wavelet Transform, preserving only low frequency information and hide
the encrypted high-frequency information in the JPEG image.

27.4.3 Cryptographically Secure Processing

A recent development in visual privacy protection is in the development of crypto-
graphically secure methods for processing images. These methods establish proto-
cols by which two parties can collaborate to process images without risk of privacy
intrusion. In particular, if one party owns images and another party has an image
processing algorithm, algorithms such as “Blind Vision” [3] allow certain algorith-
mic operations to be carried out by the second party on the first party’s data without
the data itself or the algorithm being made available to the other party. Such sys-
tems have been applied to the problems of face detection and recognition, as will be
discussed in Sect. 27.5.3.

27.4.4 Privacy Policies and Tokens

An important aspect of privacy protection systems is the policies for determining
what data needs to be obscured for which users. As we have seen in Sect. 27.2, pri-
vacy systems may need to operate in different modes according to different factors
including the roles, authorization and relationship of the observer and the observed.
Determining privacy policies is a complex area, made more so when detection of
the privacy sensitive information is not reliable.

Brassil [9] and Wickramasuriya et al. [62] explore the use of devices (detected
through separate sensors) that can be used to claim privacy protection in public cam-
eras, and Schiff et al. [49] use visual cues (hats or jackets) to designate individuals
whose faces are to be redacted, or preserved from redaction.

27.5 Systems for Face Privacy Protection

In this section, we describe three approaches that have been specifically designed
for privacy protection of face images.

27.5.1 Google Street View

As mentioned in Sect. 27.3.4, Google’s Street View and similar sites present par-
ticular privacy challenges with their vast coverage of street-level public imagery.
Frome et al. [22] describe the system that they developed to address this problem.
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They highlight both the scale of the problem and the challenging nature of their “in
the wild” data. They use a standard sliding-window face detector that classifies each
square region of each image as face or non-face. The detector is applied with two
operating points, and the results are combined with a number of other features (in-
cluding face color and a 3D position estimate) using a neural network to determine
a final classification of the region as face or non-face. All face detections are blurred
in the final imagery that is served in Google Maps. A similar system is used to detect
and blur license plates.

They describe the criteria used for choosing the redaction method, that it should
be: (1) irreversible; (2) visually acceptable for both true faces and false positives;
(3) makes it clear to the public that redaction has taken place, a requirement that
precludes the use of rerendering techniques from the next section. To meet these
requirements, the authors choose to redact the faces with Gaussian blurring and the
addition of noise.

27.5.2 De-identifying Face Images

Coutaz et al. [15], described a system for preserving privacy in the CoMedi media
space which gives remote participants a sense of co-presence. The system offered
shadowing and resolution lowering redaction methods [27] for privacy protection
but also used eigenspace filtering for face redaction. In this technique an eigen-
face [59] representation is constructed using a training set of face images, and faces
detected in the mediaspace video are projected into that eigenspace before rerender-
ing. This effectively constrains the rendered face to conform to variations seen in the
training set, and obscures other kinds of appearance differences. While this can pro-
tect privacy in some ways, such as hiding socially incorrect gestures or expressions,
it is also shown to have limitations. The choice of the correct model and the cor-
responding training set is crucial. Using a mismatched model may unintentionally
change the identity, pose, or expression of the face.

In several papers, Sweeney and collaborators [23–25, 36] have described a series
of algorithms for de-identifying faces that extend this eigenface approach, tackling
the problem of identity hiding. They use the Active Appearance Model [14], face
representation which normalizes for pose and facial expression. Their algorithms
create a weighted average of faces from different people, such that the resulting
face is not identifiable. This deidentification is termed k-same in that it results in
a face whose chance of being correctly identified is no more than 1

k
. In their more

recent work [25], they use a multifactor decomposition in their face representations
that reduces blending artifacts and allows the facial expression to be preserved while
hiding the face identity. They also consider the application of this in a medical video
database, showing patients’ responses to pain, in which facial expression, not iden-
tity, is important.
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27.5.3 Blind Face Recognition

As described in Sect. 27.4.3, a new field of research is cryptographically provable
privacy preserving signal processing, or “Blind vision”. Recent work has applied
this to face detection [4] and recognition algorithms. Erkin et al. [19] describe a se-
cure implementation of an eigenface face recognition algorithm [59]. Their system
performs the operations of projecting a face image onto the eigenvectors of “face
subspace” and calculating the distances to each of the enrolled faces, without the
querying party, Alice, having to reveal the query image, nor the owner of the face
recognizer, Bob, having to reveal the enrolled faces. Such a secure multiparty com-
putation can be very laborious and time consuming, with a single recognition taking
10–20 s, though speed-ups have been proposed [47].

27.6 Delivering Visual Privacy

The technological tools of the previous section can help to prevent privacy intrusion
from image-based applications, but as we have seen they form only part of a privacy
solution, along with information security and privacy policies. To ensure that the
privacy benefits are delivered effectively, two further factors must be considered—
ensuring that systems are used where appropriate and operate effectively when in-
stalled.

27.6.1 Operating Point

Video information processing systems are error prone. Perfect performance can not
be guaranteed, even under fairly benign operating conditions, and systems make
two types of errors when determining image regions for redaction: missed detection
(of an event or object) and false alarm (triggering when the event or object is not
present). We can trade these errors off against one another, choosing an operating
point with high sensitivity that has few missed detections, but many false alarms, or
one with low sensitivity that has few false alarms, but more often fails to detect real
events when they occur.

The problems of imperfect image processing can be minimized by selecting the
appropriate system operating point. The costs of missed detection and false alarm
can be quite different, as seen in Sect. 27.5.1, where not blurring a face reveals pri-
vate information and blurring a non-face degrades the quality of the information
provided. In a surveillance system, the operating point for privacy protection may
be chosen differently than for general object detection for indexing. Given the sen-
sitive nature of the information, it is likely that a single missed detection may reveal
personal information over extended periods of time. For example, failing to detect,
and thus obscure, a face in a single frame of video could allow identity information
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to be displayed and thus compromise the anonymity of days of aggregated track in-
formation associated with the supposedly anonymous individual. On the other hand,
an occasional false alarm and unnecessary redaction may have a limited impact on
the effectiveness of the installation. The operating point can be part of the access-
control structure—greater authorization allows the reduction of the false alarm rate
at a higher risk of compromising privacy. Additional measures such as limiting ac-
cess to freeze-frame or data export functions can also reduce the risks associated
with occasional failures in the system. For some applications it will be some time
before algorithms are accurate enough to deliver an operating point that gives useful
privacy benefits without degrading the usefulness of the data provided.

Even with perfect detection, anonymity cannot be guaranteed. While face recog-
nition is the most salient identifier in video, a number of other biometrics such as
face, gait or ear shape; and weak identifiers (height, pace length, skin color, clothing
color) can still be preserved after face redaction. Contextual information alone may
be enough to uniquely identify a person even when all identifying characteristics are
obscured in the video. Obscuring biometrics and weak identifiers will nevertheless
reduce the potential for privacy intrusion. These privacy-protection algorithms, even
when operating imperfectly, will serve the purpose of making it harder, if not im-
possible, to run automatic algorithms to extract privacy-intrusive information, and
making abuses by human operators more difficult or costly.

27.6.2 Will Privacy Technology Be Used?

The techniques described in this chapter could be considered as optional additions
to systems that display images—that will cost more and risk impinging on the use-
fulness of the systems, while the privacy protection benefits may accrue to stake-
holders other than the service provider or the primary users. We must then ask why
providers of image-based services will choose to bear the extra burden of imple-
menting privacy protection technologies, even when the technologies are fast and
accurate enough to be practically deployed. Clearly in many cases companies will
choose to implement them as being the “right thing” to do, out of concern for pro-
tecting privacy, and for guarding their good name. Others may be pressured by the
public, shareholders or customers to apply such technologies, or be asked to do so
by privacy ombudsmen. Finally explicit legislation may be implemented to require
such technologies, though creating manageable legislation for the nebulous area of
privacy is extremely difficult. Existing legislation in some jurisdictions may already
require the deployment of these techniques in domains such as surveillance as soon
as they become feasible and commercially available.

Even when privacy protection methods are mandated, compliance and enforce-
ment are still open to question, particularly in private systems such as medical im-
ages and surveillance. McCahill and Norris [33] estimated that nearly 80% of CCTV
systems in London’s business space did not comply with current data protection leg-
islation, which specifies privacy protection controls such as preventing unauthorized
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people from viewing CCTV monitors. Legislating public access to surveillance sys-
tems as proposed by Brin [10] is one solution, but that still begs the question—are
there are additional video feeds that are not available for public scrutiny? A po-
tential solution that we have proposed [52] is certification and registration of sys-
tems, along the lines of the TRUSTe system that evolved for Internet privacy. Ven-
dors of video systems might invite certification of their privacy-protection system
by some independent body. (In the US, the Federal Trade Commission Act5 has
the power to enforce companies’ privacy policies.) For purpose-built devices with a
dedicated camera sensor (like PrivacyCam, Sect. 27.4.2), this would suffice. Individ-
ual surveillance installations could also be certified for compliance with installation
and operating procedures, with a certification of the privacy protection offered by
the surveillance site prominently displayed on the equipment and CCTV advisory
notices. Such notices might include a site (or even camera) identification number
and the URL or SMS number of the surveillance privacy registrar where the site can
be looked up to confirm the certification of the surveillance system. Consumer com-
plaints would invoke investigations by the registrar, and conscientious companies
could invite voluntary inspections.

27.7 Conclusions

As cameras and networking have become cheaper and ubiquitous, there has been an
explosion in the dissemination of images, for new and traditional applications from
photo-sharing to surveillance and medical imaging. With this explosion, there has
been a corresponding increase in the potential for privacy-intrusive uses of those im-
ages. Thus far, controls on such privacy intrusions have been very limited. We have
examined how images in different domains can contain sensitive information, par-
ticularly images of faces that allow individuals to be identified. We have described
ways in which that information can be obscured by redaction, based on computer
vision techniques to identify regions of interest, and image processing techniques
to carry out the redaction in a secure, possibly invertible, manner. Finally, we have
described three particular systems that have been used to apply privacy preserving
techniques to face images and explored ways in which such privacy protection tech-
niques can be deployed and might become more widespread.
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Symbols
3D face capture, 364
3D face recognition, 431
3D face rendering, 149
3D Landmark detection, 437
3D model fitting, 257
3D morphable model, see Morphable model
3D reconstruction, 153, 364
3D representation, 138
3D scan, 138
3D+2D enrollment, 443
3D-3D face recognition, 435
3D-3D face recognition for partial scans, 436
3D-aided 2D face recognition, 443
3D-aided profile recognition, 440

A
AAM, 125, 306, 311, 370, 463, 685

For tracking, 478
Multi-resolution, 371
Tensor-based, 307

Absolute ID, 676
Access control, 620
Action units, 465, 470
Active appearance model, see AAM
Active shape model, see ASM
Active vision, 358, 360
AdaBoost, 279, 280

Learning algorithm, 288
Optimal threshold of weak classifiers, 285
Strong classifier, 280
Weak classifier, 280

AFEA, see Automatic facial expression
analysis

Aging modeling, 252
Aging pattern, 258
Aging simulation, 252

Aligning shapes, 110
Ambient video, 678
Analysis by synthesis, 138, 149, 150
Annotated Face Model (AFM), 429
Anonymous surveillance, 676
Anthropometric, 258
Anthropometric method, 659
Aperture stop, 356
Appearance feature, 504
Appearance models, 109, 118
Appearance-based, 10, 278

Tracking, 473, 478
Appearance-based representation, 140
ASM, 92, 121, 306, 311
AsymBoost, 290
Asymmetric learning, 289
Atmospheric distortion, 356
Atmospheric transmission loss, 365
Automatic enrollment, 369
Automatic facial expression analysis, 488

B
Baseline, 364
Basis functions, 20

KLT, 21
Bayes rule, 152
Bayesian face subregions, 210
Benchmarking, 564
Bidirectional relighting, 447
Bilateral Total Variation (BTV), 375
Binary tree, 313
Bing streetside, 680
Binning, 643
Biometric samples, 552
Biometric surveillance system, 366
Blind vision, 684
Blurring, 682
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Bone-based animation, 469
Bones, 469
Bregman divergence, 71, 72

C
Camera calibration, 366, 367
Camera models, 471
Camera network, 338
Candide, 469, 474, 478
Caricatures, 604
Cascade of classifiers, 290
Certification, 688
Challenges, 7
Chi-square distance, 90
Closed-set identification, 552, 557
Cognitec FaceVACS, 369
Color

In video sequences, 238
Color camera, 226
Color cue

For face detection, 239
For face recognition, 244

Color spaces, 234
For skin, 234
Overlapping, 234

Compliance, 687
Compositional AAM, 131
Congestion charging, 678
Convex combination, 534, 535
Cooperation

Subject, 353, 355
Cooperative scenario, 3
Copyright protection, 681
Correspondence, 138
Cranial size, 258
Cryptography, 683

D
Database

Facial expression, 496
FERET, 36, 564
Long range, 359
MBGC, 337

De-identifying faces, 685
Deformable model fitting, 439
Deliberate expression, 494
Demographic information, 649
Department of motor vehicles, 663
Depth of field, 356
Developmental aspects, 589
Dimension

Intrinsic, 20

Dimensionality, 20
Discriminative Locality Alignment (DLA), 53,

63, 64
Distant Human Identification (DHID), 360
Distributed surveillance, 682
Double redaction, 683
Dynamic aspect, 575
Dynamic information, 576

E
Edgelet, 364
Eigen light-fields

Classification, 206
Definition, 202
Estimation algorithm, 203
Face recognition across pose, 204

Eigenface, 19, 140, 465, 685, 686
Eigenfaces, 24, 465, 479

Bayesian, 27
Probabilistic, 24

Eigenfeatures, 45
EKF, see Extended Kalman filter
EM-algorithm, 147
Emotional-based expressions, 489
Evaluation, 564
Evasive subject, 355
Exposure time, 356
Expression, 600
Expression details, 535, 538
Expression editing, 541, 543
Expression intensity, 493
Expression mapping, 533, 534, 538
Expression model, 120
Expression ratio image (ERI), 535, 536
Expression recognition, 506
Expressions, 575, 583
Extended Kalman filter, 463, 474, 476
Extrapersonal variations, 27
Eye candidate, 308
Eye localization, 307
Eye-pair, 311
Eyeglasses, 394

F
F-number, 355
F-stop, 356
Face acquisition, 488, 499
Face aging, 395
Face alignment, 370
Face cataloger, 361
Face categorization, 599
Face databases, 627
Face description using LBP, 87
Face detection, 4, 5, 277, 499
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Merge, 295
Nonfrontal faces, 280, 292

Face detector, 685
Face Identification, 618
Face image

Broad band, 401
Multispectral, 401
Narrow bands, 401

Face image variations, 139
Face matching, 4
Face model compactness, 371
Face modeling, 464, 522

from a single image, 522, 527
from an image sequence, 522
from two orthogonal views, 522, 526

Face normalization, 4
Face recognition, 5, 197

Across illumination, 199
Across pose, 197
Across pose and illumination, 201
Multiview, 197
under varying illumination, 532

Face recognition processing, 3
Face recognition system, 1
Face recognition vendor test, see FRVT02
Face recognition with spherical harmonic

representations, 184
Face relighting, 522, 529

from a single image, 530
Face subregions, 210
Face subspace, 20, 140, 141, 144, 147, 465
Face tracking, 323
Facebook, 679
FaceVACS, 253
Facial action coding system, 465
Facial aging, 251
Facial animation parameters, 466
Facial definition parameters, 466, 468
Facial expression analysis, 487
Facial expression recognition, 488
Facial expression synthesis, 522, 533
Facial feature extraction, 502
Facial feature representation, 502
Facial landmark, 305
Facial Landmark Model (FLM), 437
Facial motion, 582
Facial representation, 488
FACS, see Facial action coding system
FACS action units, 489
False alarm rate, 553
FAP, see Facial animation parameters
FDP, see Facial definition parameters
Feature extraction, 4
Feature selection, 284, 389

Feature-based tracking, 474
Featureless, see Appearance-based
Federal Bureau of Investigation (FBI), 657
FERET, 90, 156, 551, 561, 564
FG-NET, 254
Field of view, 355
Fisher light-fields

Definition, 214
Face recognition across pose and

illumination, 214
Fisherfaces, 26

Kernel, 36
Fisher’s Linear Discriminant Analysis

(FLDA), 52–55, 57, 59, 60, 66, 71,
72, 74

Fitting algorithm, 138, 150
Initialization, 151

Fitting score, 158
Flexibility, 640
Flickr, 679
FloatBoost, 289

Learning algorithm, 289
FMRI, 582
Focal length, 149, 355
Focus-of-attention, 358
Forensic examiners, 656
Forensic photographic comparison, 656
Forensic science, 655
Forward feature selection, 288
Fourier transform profilometry, 365
Foveated imaging, 358, 361
FRVT, 160, 551, 554, 558, 561, 567, 617
Funk–Hecke theorem, 175
Fusion of machine and human recognition,

610, 667

G
Gait, 360

Fusion with face, 365
Generative model, 138
Generative Topographic Mapping (GTM), 53,

62, 64
Geometric feature, 503
Geometric Mean Subspace Selection (GMSS),

55–59
Geometric warping, 534
Geometry-driven expression synthesis, 536
Google, 679

Goggles, 679
Street view, 680

Grassmann manifold, 57, 335
Gray-scale invariance, 84
Ground truth, 496
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H
Haar-like features, 281
Harmonic Mean Subspace Selection (HMSS),

56–59
Harmonic reflectances, 180
Head orientation, 494
Head pose estimation, 500
Head rotations, 292
Hessian Eigenmaps (HLLE), 52, 53, 60, 62
Hierarchical principal component analysis, 539
HIPAA, 679
Histogram, 85, 86, 88
History of research, 1
Holography, 365
Horizontal scaling, 642
Human computer interaction (HCI), 631
Human face processing, 598
Human ID, 359
Human performance, 597

Characteristics of, 601
Human-machine comparisons, 607
HumanID gait challenge problem, 559

I
ICA, 29
Identification, 2, 675

Across pose, 156
Across pose and illumination, 156
Confidence, 158

Identification rate, 553
Identity variation, 120
Identix faceIt, 369
Illumination, 608
Illumination change, 383
Illumination cone, 174
Illumination invariant, 386, 388
Illumination modeling, 149
Illumination normalization, 217
Image space, 19
Independent component analysis, 29
Integrability, 640
Interior point method, 539
Intervention, 681
Intrapersonal variations, 27
Inverse rendering, 529
Inverse-compositional AAM, 306
ISOMAP, 52, 53, 60, 62
Iterative closest point, 523

K
Kalman filter, 463, 476
Kalman filter tracking, 366, 368
Karhunen–Loève Transform, 21

Kinetic Traveling Salesman Problem (KTSP),
363

KLT, 21

L
Lambertian, 170–174, 187, 200, 204, 325
Lambertian model, 386, 387
Laplacian Eigenmaps (LE), 52, 60, 62
Laser, 365
Laser radar, 365
Law enforcement, 626
LBP, 84
LBP-TOP, 86
LDA, 10, 26
Learning, 10
Legislation, 687
Light-field, 202
Linear asymmetric classifier, 290

Cascade learning goal, 290
Linear class of face geometries, 523
Linear discriminant analysis, 26
Linear Gaussian model, 146
Linear interpolation, 258
Local binary patterns, 84
Local tangent space alignment (LTSA), 53, 60,

62
Locality Preserving Projections (LPP), 53, 62,

66, 67, 74, 75
Locally Linear Embedding (LLE), 52, 60, 62
LRHM database, 359

M
Manifold, 5
Manifold Elastic Net (MEN), 64–69
Manifolds

Nonlinear, 7
Max-Min Distance Analysis (MMDA), 52, 54,

57–59
Maximum a posteriori estimation, 151
MBE, see Multiple Biometric Evaluation
MBGC, see Multiple Biometric Grand

Challenge
Mean shape, 259
Mechanical vibration, 356
Media space, 678, 685
Medical images, 679
Metric, 523
Model space, 523
Model-based bundle adjustment, 525
Model-based tracking, 472
Model-driven bundle adjustment, 522
Monte Carlo method, 329
Morph targets, 468
Morph-based facial expression synthesis, 533
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Morphable model, 138, 170, 255, 320
Construction of, 141
Regularized, 146
Segmented, 147

Morphology, 657
Motion blur, 356
Motion propagation, 539
Motion-based tracking, 472
MPEG-4 Facial Animation, 463, 466
Mugshot, 657
Multi-stage comparison, 643
Multi-view videos, 339
Multimedia management, 630
Multiple Biometric Evaluation, 551, 569
Multiple Biometric Grand Challenge, 337,

359, 360, 571
NIST, 359

Multispectral face database, 409
Multispectral imaging, 402

Band selection, 402, 408
Capture systems, 403
Feature extraction, 408
Fixed-filter systems, 404
SpectraCube, 405
Turnable filter systems, 404

Multispectral power distributions, 412

N
Narrow field of view, 358
Near infrared face image

Matching, 391
Modeling, 387

Near infrared imaging, 384
Active lighting, 384
Frontal lighting, 384
Non-intrusive, 384
Ourdoor, 396
System, 384

Neurophysiological aspects, 582, 590
NFOV, see Narrow field of view
NIR, see Near infrared
NIR face recognition, 383
Non-additive combinations, 493
Non-cooperative scenario, 3
Normalized color coordinates (NCC), 235

O
Object centered representation, 140
Omnivident, 678
Open-set identification, 552, 553
Operating point, 686
Optical axis, 149

Orthogonal projection, 256
Orthographic projection, 470

P
Pan-tilt-zoom camera, 358, 366

Calibration, 367
Paparazzi, 681
Parametric face model, 523
Parrot recognizer, 682
Partial Registration, 439
PCA, 10, 21, 51, 53, 60, 64, 66, 67, 71, 74,

111, 172, 312, 465
Kernel-PCA, 35
Nonlinear, 33

Penetration rate, 649
Perceptual adaptation, 604
Performance evaluation, 551
Performance measures, 552
Performance statistics

Variance of, 559
Permutation

Pixel, 682
Person detection, 366
Person tracking, 366
Perspective projection, 149, 471

Weak, 149
Phong model, 149
Photometric stereo, 189
Physically-based facial expression synthesis,

533
Picasa, 679
PIE (Pose, Illumination and Expression), 153,

156, 357
Pittsburgh pattern recognition, 360
Pixellation, 682
Plenoptic function, 202
PolarRose, 679
Police agencies, 664
Pose correction, 254
Pose normalization, 160
Principal component analysis, see PCA
Principal components, 255
Principal components analysis, 144
Principal components analysis

probabilistic, 146
Principal curves, 33
Privacy, 671

Data, 673
Visual, 673

Privacy concern, 672
Privacy policies, 684
Privacy protection, 671
Privacy registrar, 688
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Privacy threat, 675
Privacy tokens, 684
PrivacyCam, 682, 688
Procrustes analysis, 110
Profile extraction, 441
Projection models, 470

Q
Quadratic programming, 539
Quality of model matching, 126
Quotient image, 529

R
Radial basis function, 258
Radiance environment map, 530
Random forest, 311

Classifier, 313
Embedded ASM, 311

RANSAC, 481
Ratio image, 529, 532, 533
Re-rendering across pose, 204
Redaction, 681
Region of interest (ROI), 443
Reinforcement learning, 361
Relative ID, 677
Relighting from a single image, 530
Rerendering, 682
Resource allocation, 363
Reversibility of redaction, 682
Rigid transformation, 149
Robots, 378
Rotation matrix, 257

S
Scalability, 640
Scale out, 642
Scale-up, 642
Scrambling, 682
Security, 623
Sequential importance sampling, 329
SfM, see Structure from motion
Shape AAM, 131
Shape models, 109
Shape pattern, 258
Shape reconstruction, 189
Simultaneous inverse compositional (SIC), 370
Singular value decomposition, 22
Skin color, 223

Canonical image, 228
Difficulty in using, 223
In face detection, 224, 225
Mathematical models, 236
Non-canonical image, 231
White balancing, 227

Skin reflectance model, 445
Skinning, 469
Smart cards, 625
Social network, 362
Spatio-temporal patterns, 326
Spatiotemporal LBP, 86
Specular reflectance, 187
Spherical harmonic basis, 530
Spherical harmonic basis image, 530
Spherical harmonic morphable model, 522,

530
Spherical harmonic representations, 174
Spontaneous expression, 494
Stereo baseline, 364
Still-to-video matching, 326
Stochastic Newton optimization (SNO), 152
Strong classifiers, 287
Structure from motion, 463, 474, 476
Subspace, 4, see also Face subspace, 320
Subsurface scattering, 171
Super-resolution

Facial, 363, 375
Facial side-view, 365
General, 375
Registration, 375
Regularization, 375

Surveillance, 3, 625
Surveillance perspective, 357
SVD, see Singular value decomposition
Synthetic face image, 149

T
Task visibility interval, 363
Technologies, 11
Tensorfaces, 31
Texture mapping, 469, 479
Texture models, 115
Texture pattern, 259
Texture primitives, 85
Texture representation, 118
Transparent society, 672
Throughput, 642
Tikhonov regularization, 256
Total information awareness (TIA), 680
Tracking-then-recognition, 326
Transfer Subspace Learning (TSL), 71
Transitions, 492
TRUSTe, 688
Typicality, 602

U
University of Texas at Dallas, 359
Unsharp masking, 363
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