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    Background and Introduction 

 Although not traditionally considered immunogenic, increasing 
evidence indicates that ovarian cancers are, in fact, immuno-
genic tumors and are responsive to immunotherapies. Three 
distinct categories of data support this claim. First, there is 
accumulating evidence of spontaneous antitumor immune 

responses and of their association with longer survival in a pro-
portion of ovarian cancer patients. Second, and conversely, 
there is evidence of active tumor immune evasion mechanisms 
and their association with short survival in some ovarian cancer 
patients. And fi nally, preclinical as well as clinical data have 
now demonstrated that immunotherapy can be effi cacious 
against these cancers. 

 It is now clear that spontaneous antitumor immune 
responses exist in many ovarian cancer patients. Tumor- 
reactive T cells and antibodies have been detected in 
peripheral blood of patients with advanced stage disease 
at diagnosis [ 1 ,  2 ], while oligoclonal tumor-reactive T 
cells have been isolated from tumors or ascites [ 3 – 11 ]. 
The tumor rejection antigens expressed by ovarian cancer 
have not been thoroughly characterized. Among the most 
promising candidates are cdr2, mesothelin, and NY-ESO-1 
[ 12 – 14 ]. Several additional well-known tumor-associated 
antigens are recognized by peripheral blood or tumor-
associated lymphocytes of many ovarian cancer patients. 
These include p53;  HER2/neu; folate receptor-α; cancer-
testis antigens such as the MAGE melanoma antigen fam-
ily members and sperm surface protein Sp17; mucins or 
glycoproteins such as Lewis(y), sialylated-Tn, CA-125, 
and MUC-1; and universal tumor antigens such as survivin 
and hTERT [ 15 ]. Importantly, the detection of an antitumor 
immune response in the form of intraepithelial (also called 
intratumoral) tumor-infi ltrating lymphocytes (TILs), i.e., T 
cells infi ltrating tumor islets, predicts signifi cantly longer 
survival in ovarian cancer. We fi rst reported in an Italian 
cohort that patients whose tumors had intraepithelial T cells 
experienced longer progression-free and overall survival as 
compared to patients whose tumors lacked intraepithelial 
T cells [ 16 ]. Survival at 5 years was substantial (38 %) in 
patients whose tumors had intraepithelial T cells ( n  = 102) 
and negligible (4.5 %) in patients lacking them ( n  = 72), 
even after complete response to chemotherapy. A signa-
ture of antitumor immune response activation was identi-
fi ed in tumors with intraepithelial T cells [ 16 ]. The impact 
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of intraepithelial CD3 +  or CD8 +  T cells was confi rmed by 
multiple independent studies on ethnically and geographi-
cally diverse populations [ 17 – 21 ]. Importantly, intraepithe-
lial T cells were more prevalent in tumors with increased 
 proliferation, indicating that improved outcome is not due 
to indolent tumor cell behavior [ 17 ]. 

 Signifi cant progress has been made recently in our 
understanding of immune evasion mechanisms operating 
in some patients with ovarian cancer. CD4 +  CD25 +  FoxP3 +  
T regulatory (Treg) cells were fi rst demonstrated in ovar-
ian cancer [ 22 ,  23 ], where increased Treg frequency pre-
dicts poor patient survival [ 20 ,  23 ]. Immunosuppressive 
B7-H4 expressing macrophages were recently found to 
correlate with survival in ovarian cancer [ 24 ]. In addition, 
ovarian cancer cells express programmed death ligand 
1 (PD-L1 or B7-H1), a ligand for the immunosuppres-
sive T-cell receptor PD1, which blocks T-cell responses. 
Expression of PD-L1 by tumor cells predicted paucity of 
intraepithelial TILs and short overall survival in ovarian 
cancer [ 19 ]. Further, overexpression of the endothelin B 
receptor (ET B R), which suppresses T-cell-endothelial adhe-
sive interactions and T cell homing to tumor, correlated 
with absence of TIL and short survival in ovarian cancer 
[ 25 ,  26 ]. Finally, a recent study segregated high- and low-risk 
ovarian cancer patients based upon their tumor gene sig-
nature and found a strong correlation between decreased 
expression of immune genes and the development of high-
risk tumors. In particular, high-risk tumors often displayed 
downregulation of genes involved in antigen processing and 
presentation [ 27 ]. 

 The association of antitumor immune responses with 
prolonged survival and, vice versa, the association of 
immune escape mechanisms with poor survival suggest that 
ovarian cancers are intrinsically immunogenic. Indeed, 
ovarian cancers should no longer be considered immuno-
logically inert tumors. Accordingly, pilot clinical data indi-
cate that ovarian cancer patients can, in fact, respond to the 
same immunotherapy approaches as patients with other 
immunogenic tumors [ 28 ], including interleukin-2 (IL-2) 
[ 29 ,  30 ], anti-CTLA- 4 antibody [ 31 ,  32 ], and adoptive 
transfer of ex vivo expanded TIL [ 33 ,  34 ]. Notably, each of 
these therapies is designed to exploit a preexisting endoge-
nous antitumor immune response. Although, insuffi cient to 
reject tumor naturally, these responses can potentially be 
harnessed therapeutically. Here we will review three catego-
ries of immunotherapies which can be used to manipulate 
natural antitumor immunity or to induce new antitumor 
immune responses. These include cancer vaccines (active 
immunization), adoptive T-cell therapy (passive immuniza-
tion), and nonspecifi c immunomodulation. Each targets 
immune cells in different ways. They can be used alone, 
together, or with conventional approaches for combinatorial 
tumor therapy.  

    Cancer Vaccines 

 As with many other tumor types, vaccines have been the pri-
mary approach to ovarian cancer immunotherapy so far [ 15 , 
 35 – 37 ]. Consistent with experience in other immunogenic 
tumors [ 38 ], vaccines have shown limited effi cacy as mono-
therapy in patients with advanced recurrent disease. Clearly, 
much work is required to improve their performance. Current 
efforts to improve vaccines are directed broadly towards (a) 
optimizing the choice of antigens, (b) improving vaccine 
delivery systems to maximize the magnitude and quality 
(phenotype and polarization) of T-cell response, and (c) 
developing combinatorial approaches with adoptive T cell or 
immunomodulation therapy to maximize activation and 
function of vaccine-primed T cells in vivo. 

    Pros 

 The results of some studies provide encouragement for fur-
ther vaccine development. In a retrospective review of 
patients treated in the adjuvant setting after secondary com-
plete response, Sabbatini and colleagues noted that patients 
vaccinated with monovalent or heptavalent vaccines against 
carbohydrate epitopes experienced signifi cantly longer time 
to progression and higher progression-free survival rates 
relative to controls from the same institutions treated with 
alternative consolidation therapies [ 39 ]. In addition, vaccina-
tion with anti-idiotype ACA-125, an analogue of CA-125, 
resulted in CA-125-specifi c antibodies and was associated 
with prolonged survival [ 40 ]. Another study was performed 
using CEA-MUC-1-TRICOM poxviral-based vaccines in 16 
patients including 3 ovarian cancer patients. Immune 
responses to MUC-1 and/or CEA were seen following vac-
cination in 9 patients. A patient with clear cell ovarian cancer 
and symptomatic ascites had a radiographically and bio-
chemically durable (18-month) clinical response [ 41 ]. In 
another study, vaccination against HER2 has resulted in sus-
tained antigen-specifi c T-cell and humoral immunity as well 
as epitope spreading in ovarian cancer patients [ 42 ]. 

 An alternative to vaccines directed towards specifi c 
 antigens is whole tumor antigen vaccines created using 
tumor cells, autologous tumor lysate, or tumor-derived RNA 
[ 43 – 45 ]. Tumor antigen preparations can be injected into 
patients directly, or they can be fi rst loaded onto autologous 
dendritic cells. Advantages of these vaccines include the 
opportunity to induce immunity to a personalized and broad 
range of antigens, which could minimize the development of 
tumor escape variants, the inclusion of yet unidentifi ed tumor 
rejection antigens, no HLA haplotype restriction, and the 
simultaneous administration of MHC class I and class II epi-
topes, which could prove benefi cial for immunologic mem-
ory. In a pilot study using mature DCs pulsed with whole 
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autologous tumor lysate, three of six subjects demonstrated 
remission inversion, i.e., their progression-free survival post-
vaccination was longer than the interval between pre-vaccine 
recurrence and prior chemotherapy treatment [ 46 ]. The use 
of DC/tumor cell fusion approach is a viable alternative 
whereby autologous DCs are fused with tumor cells, which 
allows DCs to express the entire antigen repertoire of the 
tumor cells to CD4 +  and CD8 +  T cells. DC/ovarian tumor cell 
fusions have been generated and demonstrated to be able to 
induce antitumor CTL activity in vitro [ 47 ]. 

 Several groups have used viruses to increase tumor cell 
immunogenicity for whole tumor cell vaccination. Objective 
responses have been seen after intracavity delivery of a viral 
oncolysate vaccine generated with ovarian cancer cell lines 
infected with infl uenza A virus [ 48 ,  49 ] or with autologous 
tumor cells infected with Newcastle disease virus [ 50 ]. We 
also performed preclinical studies using replication-restricted 
herpes simplex virus (HSV) 1 to infect autologous tumor 
cells for vaccine preparation. HSV-infected tumor cells used 
directly or pulsed on dendritic cells elicited potent antitumor 
immune response in the mouse, which was superior to the 
use of UV-irradiated tumor cells [ 51 – 53 ]. Thus, whole tumor 
antigen vaccines can produce objective response if immuno-
genicity is increased through the use of pathogens.  

    Cons 

 A major limitation of cancer vaccines presently stems from 
the inability to elicit a rapid and overwhelming T-cell response, 
which is required to reject established tumors. This problem is 
magnifi ed in ovarian cancer by the paucity of well-character-
ized rejection antigens to target and by the signifi cant molecu-
lar heterogeneity of the disease [ 54 ]. Even when a defi ned 
target is available, and vaccination successfully induces an 
immune response, the long-term benefi t can be limited by 
tumor evolution. In a recent study, one patient experienced 
complete objective response to NY-ESO-1 peptide vaccine, 
but later recurred with an NY-ESO-1-negative tumor, proving 
that single-target immunization can result in immune escape 
tumor variants following initial response [ 55 ]. 

 A recent meta-analysis of 173 published, peer-reviewed 
immunotherapy trials revealed the low success rate of cancer 
vaccines to date. The trials involved patients with a variety 
of tumor types, including melanoma, renal cell and hepato-
cellular carcinomas, lung, prostate, breast, colorectal, cervi-
cal, pancreatic, and ovarian cancers. Patients received either 
molecular-defi ned antigens (synthetic peptides or proteins 
and viral or plasmid vectors encoding peptides or proteins; 
1,711 patients) or whole tumor antigen (autologous or allo-
geneic tumor cells, dendritic cells pulsed with tumor extracts 
or mRNA; 1,733 patients). Overall, the authors calculated 
that 8.1 % of patients vaccinated with whole tumor antigen 

had objective clinical responses while 3.6 % of patients vac-
cinated with molecularly defi ned tumor antigens had objec-
tive clinical responses ( p  < 0.0001, chi-square test) [ 56 ]. 

 Although whole tumor vaccines offer distinct advantages, 
some drawbacks warrant consideration. First, surgical procure-
ment of large numbers of autologous tumor cells may not be 
possible in many patients. Alternatives to this limitation exist, 
including use of allogeneic cell lines or the use of tumor 
mRNA. RNA electroporation of DCs is a convenient approach 
to generate a potent tumor vaccine [ 52 ]. An additional concern 
with whole tumor vaccination relates to the inclusion of a large 
number of “self” antigens, which could potentially drive tolero-
genic responses, i.e., expand Treg rather than cytotoxic lym-
phocyte responses. Recent work has demonstrated that DCs 
can be polarized ex vivo with the use of interferons, Toll-like 
receptor agonists, or p38 mitogen- activated protein kinase 
(MAPK) inhibitors to drive cytotoxic lymphocytes and Th17 
effector cells at the expense of Treg [ 57 ]. On the other hand, if 
immunization is successful, there may be increased concern for 
breaking tolerance to “self” antigens, leading to immunopa-
thology. To date, pilot studies with whole tumor vaccines have 
reported no autoimmunity in patients with ovarian cancer. 

 There is a controversy in the choice of target antigen with 
cancer vaccines and adoptively transferred T cells, as well. In 
the past few decades, shared (also known as “public”) tumor-
associated antigens have been the favored target of various 
immunotherapy strategies. This approach has been based 
largely on studies with melanoma [ 58 ]. This leads to the con-
cept of “dispensable tissues,” meaning that in order to achieve 
tumor eradication, it was necessary to expect tissue- specifi c 
toxicity damaging normal tissues [ 59 ]. As the expression of 
these antigens was shared between most individuals, this 
would make the manufacturing of a universal vaccine a pos-
sibility. However, recent advances in the clinical application of 
immunotherapy suggest that immunotherapy with “personal-
ized” antigens (that arise from mutations) with preexisting 
immunity, which are designed to stimulate antigen-specifi c 
memory T cells, could also be expected to induce rapid and 
strong secondary immune responses (reviewed in [ 60 ,  61 ]). 
The current view is that both approaches, targeting public or 
targeting private antigens, can be benefi cial either in cancer 
vaccines or adoptive T-cell therapy, but to increase the clinical 
benefi ts, special attention should be paid to the immunological 
status of each patient by characterizing the preexisting immune 
responses to the targeted antigens before immunotherapy.   

    Adoptive T-Cell Therapy 

 Effective cancer immunotherapy is dependent on the pres-
ence of large numbers of antitumor lymphocytes with appro-
priate homing and effector functions that enable them to seek 
out and destroy cancer cells in vivo. The adoptive transfer of 
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ex vivo expanded tumor-reactive T cells holds the potential 
of achieving this condition in a short period of time. Clinical 
trials testing spontaneous or induced polyclonal or oligoclo-
nal T cells conducted in the past two decades have provided 
crucial lessons that can guide further optimization. The use 
of ex vivo expanded TILs has yielded promising clinical 
results. Based on animal studies showing that host lym-
phodepletion prior to T-cell transfer enhances persistence of 
T cells and antitumor responses, a scheme of incremental 
lymphodepletion through high dose non-myeloablating che-
motherapy and added whole-body radiation was tested. 
Infused cells were both long lived and highly penetrating, 
showing regression of voluminous metastatic tumors, with 
up to 16 % complete response and 72 % overall objective 
response rates in recent reports with maximal lymphodeple-
tion and radiation. T-cell persistence correlated with long 
lasting responses [ 38 ,  62 ]. Although these are phase I studies 
involving a highly selected cohort of patients with metastatic 
melanoma with preexisting antitumor immunity, whose 
tumors yield tumor-reactive TILs, the results clearly demon-
strate the power of adoptive immunotherapy and dispel the 
assumption that immunotherapy can only control small 
tumors [ 28 ]. Furthermore, although the role of CD8 +  T cells 
has been well established in adoptive immunotherapy [ 38 , 
 62 ], CD4 +  cells can also produce objective responses [ 63 ]. 

 Currently, attempts to improve the effi cacy of adoptive 
TIL therapy are focused on two areas: (a) optimizing methods 
to select tumor-reactive TIL and expand them under optimal 
costimulation conditions and (b) optimizing host and/or 
tumor conditioning. Findings from melanoma trials argue 
that use of memory rather than effector cells may be more 
effi cacious for adoptive transfer [ 64 ]. In these key studies, 
although infused cells dominantly displayed a highly differ-
entiated effector cell phenotype (CD27 –  CD28 –  CD45RA –  
CD62L –  CCR7 – ), TILs persisting 2 months after infusion in 
patients who exhibited tumor regression were characterized 
by a less differentiated phenotype (CD27 +  CD28 +  CD45RA +  
but CD62L –  CCR7 – ) and longer telomeres [ 65 – 69 ]. Mouse 
models confi rm these fi ndings [ 70 ]. Because TILs comprise a 
large number of tumor-reactive effector cells, identifi cation of 
culture conditions that preferentially expand memory pheno-
types is a priority. Recent technological advances with the 
development of artifi cial antigen- presenting cells (aAPCs) 
expressing a variable repertoire of costimulatory molecules 
and cytokines have generated new opportunities to provide 
the desired costimulatory molecules and cytokines to reedu-
cate TILs, improving their potency and function in vivo. Carl 
June and colleagues have described the development of a 
next-generation K562-based aAPC platform capable of 
expressing multiple gene inserts, including human lympho-
cyte antigen (HLA)-A2; CD64 (the high- affi nity Fc receptor), 
CD80, CD83, CD86, CD137L (4-1BBL), and CD252 
(Ox40L); and a variety of T-cell supporting cytokines [ 71 ]. 

Cell-based aAPCs have proven to be more effi cient at activat-
ing and expanding CD8 +  CD28 –  T cells, and antigen-specifi c 
T cells, than the magnetic bead- based aAPC [ 71 ]. 

 TIL therapy is only possible for a fraction of patients. To 
generate TIL, a tumor mass must fi rst be resected, which is 
not always possible. Additionally, that tumor mass must con-
tain TIL, and those TIL must be responsive to the existing ex 
vivo expansion protocols. For many patients, these limita-
tions make TIL therapy impossible. One strategy to make 
adoptive therapy available to a larger patient population 
involves engineering polyclonal T cells to redirect their 
specifi city towards tumor antigens. This can be accom-
plished by transducing lymphocytes with a cloned T-cell 
receptor (TCR) of high affi nity to tumor-associated epitopes. 
In this case, the cloned heterodimeric TCR is transduced to 
mixed peripheral blood T cells isolated from the patient, cre-
ating a large population of bispecifi c T cells, which are poly-
clonal with respect to their original TCR, but potentially 
monoclonal for the cloned TCR [ 72 ]. 

 A second strategy to generate novel tumor-targeted T cells 
is to transduce the polyclonal population with receptors that 
recognize antigens in an MHC-unrestricted fashion. These so-
called chimeric antigen receptors (CARs) are fusion genes 
encoding an extracellular domain that specifi cally binds to 
tumor epitopes through a single-chain variable fragment 
(scFv) linked to intracellular signaling modules (such as the 
CD3 zeta chain, TCRz) that mediate T-cell activation [ 72 – 74 ]. 
The scFv contains the  V  H  and  V  L  chains of an antitumor anti-
body joined by a peptide linker of about 15 residues in length, 
and it confers the parental antibody’s specifi city to the trans-
duced T cells. In principle, universal targeting vectors can be 
constructed, because the scFvs bind to native cell surface epi-
topes and bypass the requirement for MHC restriction [ 75 ,  76 ]. 
Thus, in comparison to TCRs, CARs have two major advan-
tages: (a) their HLA-independent recognition of antigen, 
which makes them broadly applicable regardless of the sub-
ject’s HLA and regardless of the level of HLA expression on 
tumor cells, and (b) their signaling, which redirects T-cell 
cytotoxicity and permits T-cell proliferation and survival upon 
repeat antigen exposure. A potential drawback stems from 
their potential immunogenicity, if scFv are nonhuman. This 
can be averted by using human scFv. 

    Pros 

 There is evidence that TIL-based adoptive therapy is an 
important opportunity in ovarian cancer. In the early 1990s, 
ovarian cancers were found to yield reactive TILs after IL-2 
culturing in vitro [ 77 ,  78 ]. Moreover, in pilot clinical trials, 
patients who received adjuvant therapy with adoptive trans-
fer of tumor-derived lymphocytes expanded ex vivo with 
IL-2, following surgical debulking and frontline chemotherapy, 
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showed a survival advantage [ 33 ,  34 ]. Stage III EOC patients 
treated with consolidation adoptive transfer of expanded 
TILs after completion of cisplatin-based frontline chemo-
therapy ( n  = 13) had a 3-year overall survival rate of 100 %, 
while that of a control group of patients ( n  = 10) receiving 
only chemotherapy was 67.5 % ( p  < 0.01). The 3-year dis-
ease-free survival rate of the patients in the TIL group and 
in the control group was 82.1 and 54.5 %, respectively. While 
these results can be limited by the lack of randomization, 
they nevertheless support the feasibility of adoptive therapy 
for ovarian cancer [ 33 ]. 

 TCR-based engineering represents a potentially powerful 
strategy for ovarian cancer therapy as TCRs that recognize 
HLA-A2-restricted epitopes from known ovarian cancer 
antigens such as NY-ESO-1 and p53 are available for clinical 
testing as well [ 79 – 82 ]. Optimization through selection of 
naturally occurring or recombinant high-affi nity receptors, 
engineering to prevent recombination with endogenous 
TCR, and the use of lentiviral vectors developed in the June 
lab with transfection effi ciency above 90 % are poised to 
improve this approach signifi cantly [ 83 ]. 

 Adoptive transfer of T cells engineered to express chimeric 
receptors is also expected to be useful for ovarian cancer 
patients once the tools are refi ned. Some of the CARs investi-
gated in vitro and in vivo target ovarian cancer antigens including 
FBP [ 84 ,  85 ], MUC-1 [ 86 ], HER-2, and mesothelin [ 87 ].  

    Cons 

 So far, there has only been a single study of adoptive transfer 
of CAR T cells in ovarian cancer [ 88 ]. Patients received 
autologous T cells which had been transduced with an FRα- 
specifi c CAR. While this study demonstrated safety, the 
results were disappointing. There were no clinically evident 
tumor responses—most likely due to low expression of the 
transgenic CAR and poor persistence of the transferred T 
cells [ 88 ]. However, strategies to address these issues are 
being developed. For instance, T-cell persistence can be dra-
matically improved by using human scFv and by adding 
costimulatory signaling capabilities to the intracytoplasmic 
domain of CARs. Indeed, one issue needing to be addressed 
with CARs is that signaling through the cytosolic domain of 
the usual scFv-TCRz construct does not fully replicate the 
multichain TCR signaling complex. This can be solved by 
incorporating additional signaling modules in the cytoplas-
mic domain of the chimeric receptor. The value of such inno-
vations was recently demonstrated in a mouse xenograft 
model. Similar to the unsuccessful clinical trial, T cells were 
transduced with a CAR targeting FRα. However, in this study, 
the signaling domain of costimulatory molecule CD137 was 
added to the CAR’s intracellular tail. When transferred into 
mice, these CAR T cells demonstrated enhanced in vivo 

 persistence and tumor infi ltration and achieved tumor regres-
sion superior to that seen in mice treated with T cells lacking 
the CD137 signaling domain [ 89 ].   

    Nonspecifi c Immunomodulation 

 Given the limitations of immunotherapy, there is a reason to 
hope that modulating immune checkpoints (Fig.  29.1 ) by acti-
vation of effector cells, depletion of Tregs, or activation of pro-
fessional APCs could substantially improve the therapeutic 
effi cacy of vaccines or adoptively transferred T cells. Certain 
chemotherapy regimens promote antitumor immunity through 
each of these mechanisms. Additionally, a number of nonspe-
cifi c immunotherapies, including immunomodulatory cyto-
kines, Toll-like receptor (TLR) agonists, and functional 
antibodies, are being developed to achieve these goals. Many 
of these nonspecifi c therapies may prove to be valuable adju-
vants to more targeted immunotherapies, including vaccina-
tion and adoptive T-cell therapy.

      Pros 

 The immunomodulatory effects of chemotherapy can be broadly 
grouped into three mechanisms. First,  chemotherapy- induced 
tumor cell death can result in in situ vaccination. Drugs such as 
doxorubicin, idarubicin, mitoxantrone, and oxaliplatin induce 
immunogenic tumor cell death, which facilitates tumor antigen 
uptake by professional antigen- presenting cells and subsequent 
antigen presentation to antitumor T cells. Second, some chemo-
therapy drugs can also induce direct activation of antigen-pre-
senting cells. Since the 1980s, it has been recognized that 
cyclophosphamide administered at standard dose prior to can-
cer vaccines signifi cantly enhanced immunotherapy. However, 
the mechanism of this phenomenon was initially unclear [ 90 ]. 
A recent study in the mouse reported that a myelosuppressive 
dose of cyclophosphamide induces rebound myelopoiesis and 
leads to the emergence of tumor-infi ltrating DCs that secrete 
more IL-12 and less IL-10 and are fully capable of priming 
T-cell responses [ 91 ]. In addition, metronomic or low-dose, 
non- myelotoxic administration of paclitaxel, doxorubicin, vin-
cristine, and other drugs can cause activation and maturation of 
DCs, including increased IL-12 secretion, a critical factor 
required for T-cell priming. Signaling via STAT4 and Rho 
GTPases may account for these effects [ 92 ]. The third mecha-
nism by which chemotherapy achieves immunomodulation is 
through suppression of immune inhibitory cells. For instance, 
oral administration of metronomic cyclophosphamide was 
shown to induce a profound and selective reduction of circulat-
ing CD4 + CD25 +  regulatory T cells and restored T and NK effec-
tor functions in end-stage cancer patients [ 93 ]. Cyclophosphamide 
may also have additional effects contributing to restoration of 
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the immune response; it can enhance IFN-γ production by sple-
nocytes in a mouse model [ 94 ]. Conventional paclitaxel therapy 
also caused a signifi cant decline in both numbers and activity of 
Treg, enhancing CD4 +  and CD8 +  activity systemically in 
patients with non-small cell lung cancer [ 95 ]. The mechanisms 
behind each of these immunomodulatory mechanisms are quite 
complex, and our understanding is still in its infancy. But effects 
appear to be dependent on drug type, dose, and schedule as well 
as the immune cell type. 

 Pleiotropic immune activation can also be achieved with 
cytokines and Toll-like receptor agonist therapy. Type I and 
II interferons and IL-2 are the most extensively studied cyto-
kines for tumor therapy. 

 IFN-γ has been shown to have direct antiproliferative 
activity on ovarian cancer cells in vitro, which proved to be 
synergistic with cisplatin and doxorubicin [ 96 – 98 ]. In vitro 
and in vivo, IFN-γ upregulates HLA class I and class II mol-
ecules and antigen presentation in ovarian tumor cells [ 99 ], a 
requisite for recognition by T cells. In fact, HLA class I 
expression by the tumor correlates with the intensity of T-cell 
infi ltration [ 100 ], a predictor of longer survival. Furthermore, 
IFN-γ has antiangiogenic effects [ 101 ]. 

 Interleukin-2 (IL-2) promotes expansion and enhances 
the cytotoxicity of effector immune cells [ 102 ]. In addition, 
IL-2 can restore T-cell function following suppression by 
negative regulatory receptors such as PD-1 (see below). 
Because ovarian cancer patients exhibit spontaneous antitumor 

immune response, IL-2 therapy may be a rational approach 
to activate preexisting immunity or enhance immunomodu-
latory therapy. Intraperitoneal IL-2 was used in a phase I/II 
study in 41 patients with laparotomy-confi rmed persistent or 
recurrent ovarian cancer. Weekly IL-2 infusion of 24 h dura-
tion was relatively well tolerated and demonstrated evidence 
of long-term effi cacy in a modest number of patients. The 
toxicities of systemic IL-2 are signifi cant; however, the peri-
toneal delivery method appeared to reduce the number and 
severity of the toxicities until the concentration in the intra-
peritoneal infusion reached the point where serum IL-2 
became detectable. The appearance of systemic toxicity such 
as hypotension and thrombocytopenia, as well as locore-
gional dose-limiting toxicity (catheter infection), was associ-
ated with the highest doses. Twenty percent of patients had a 
negative third look, i.e., exhibited pathologic evidence of 
complete response and no residual disease at repeat abdomi-
nal exploration [ 29 ]. Recently, the therapeutic potential of 
several additional cytokines has been of increasing interest. 
IL-7, IL-15, IL-18, and IL-21 provide possible alternatives to 
IL-2. However, their function and clinical use are still under 
investigation [ 103 – 112 ]. 

 Like cytokines, TLR agonists have multifaceted stimula-
tory effects on the immune system. TLR triggering induces 
DC maturation, which leads to the upregulation of costimula-
tory molecules, including CD40, CD80, and CD86, and secre-
tion of immunomodulatory cytokines and chemokines. In 
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addition, TLRs can directly stimulate the proliferation of 
CD4 +  and CD8 +  T cells as well as reverse the suppressive 
function of Treg cells [ 113 – 115 ]. Several clinical trials have 
demonstrated that administration of agonists for TLRs 3, 4, 7, 
and 9 can enhance activity of cancer vaccines in the context of 
non-small cell lung cancer [ 116 ], non-Hodgkins lymphoma 
[ 117 ,  118 ], glioblastoma [ 119 ], superfi cial basal cell carci-
noma [ 120 ], and melanoma [ 121 – 124 ]. Adding TLR 3, 4, 7, or 
9 ligands was shown to activate CD8 +  cytotoxic T cells with 
increased IFN-alpha production and promote a stimulatory 
cytokine milieu at the tumor microenvironment [ 125 ,  126 ]. 

 The use of antibodies to block T-cell inhibitory receptors 
such as CTLA-4 and PD-1 can lead to sustained activation and 
proliferation of tumor-specifi c T cells, preventing anergy or 
exhaustion and thereby allowing the development of an effec-
tive tumor-specifi c immune response. The majority of clinical 
data to date have emerged from studies in patients with mela-
noma [ 127 ], where CTLA-4 blockade has yielded objective 
responses. In a small study of ovarian cancer patients, one 
patient experienced a durable objective radiographic response. 
Multiple infusions of anti-CTLA-4 antibody every 3–5 months 
maintained disease control over 4 years [ 31 ]. The toxicities of 
CTLA-4 treatment showed similar pattern compared with 
those shown in melanoma patients, namely, grade I, rash in 
most of the patients (8/9); grade I or II, constitutional symp-
toms in 33 % (3/9) and sweet’s syndrome in 22 % (1/9); and 
grade III, diarrhea in 22 % of the patients(2/9). Tumor regres-
sion correlated with the CD8 + /Treg ratio, suggesting that other 
forms of therapy that target Treg depletion may provide a 
highly effective form of treatment when combined with the 
tumor vaccine and CTLA-4 antibody arsenal [ 31 ]. 

 Another way to enhance antitumor T-cell activity is through 
blockade of the PD-1 pathway. PD-1, expressed on activated T 
cells, binds PD-L1 and PD-L2 ligands. PD-L2 is restricted to 
professional antigen-presenting cells, while PD-L1 is expressed 
on many tissues. Importantly, ovarian carcinoma cells as well 
as tumor-infi ltrating tolerogenic DCs and myeloid-derived sup-
pressor cells express PD-L1 [ 128 ,  129 ], and expression levels 
correlate with disease course. Constitutive expression of PD-L1 
by tumors conferred resistance to immunotherapy in mice 
[ 130 ], while antibodies blocking PD-L1 or PD-1 profoundly 
enhanced the effi cacy of immunotherapy [ 130 ,  131 ]. A phase I 
study using PD-1 blocking antibody showed the antibody to be 
safe and well tolerated in patients with hematologic malignan-
cies. Clinical benefi t was observed in 33 % of the patients, with 
one complete remission [ 132 ]. 

 Antibodies targeting the IL-2 receptor alpha chain (also 
known as CD25) can be used to deplete Tregs. In mouse mod-
els, the use of anti-CD25 monoclonal antibody before vacci-
nation led to complete tumor rejection and establishment of 
long-lasting tumor immunity with no autoimmune complica-
tions [ 133 ,  134 ]. Daclizumab, which is an FDA- approved 
humanized IgG1-kappa mAb that binds specifi cally to CD25 

[ 135 ], has been used in autoimmune disorders [ 136 ,  137 ], 
acute graft-versus-host disease [ 138 ], and in cancer patients 
with CD25 +  T-cell malignancies [ 139 ]. The advantage of 
daclizumab is that it is well tolerated and has a half-life of 20 
days [ 140 ]. In a recent study, daclizumab was used in a single 
dose of 1 mg/m 2  prior to hTERT peptide vaccine for meta-
static breast cancer. Total CD4 + CD25 +  and CD4 + CD25 + FoxP3 +  
cells remained suppressed for several weeks after a single 
infusion. Importantly, administration of anti-CD25 antibody 
was compatible with effective vaccination [ 141 ]. 

 The main mechanism of immune stimulation by CD40 
agonists (including recombinant CD40 ligand and agonistic 
anti-CD40 antibodies) is activation of CD40-expressing 
DCs, resulting in increased survival, upregulation of costim-
ulatory molecules, and secretion of critical cytokines for 
T-cell priming, such as IL-12. In vitro human cell studies 
have also been conducted to evaluate whether recombinant 
CD40L is able to stimulate maturation of DCs derived from 
ovarian cancer patients. In one study, autologous DCs from 
ten ovarian cancer patients were pulsed with killed primary 
tumors as a source of tumor antigens. DCs were then cul-
tured in the presence of TNF, TRANCE (tumor necrosis 
factor-related activation-induced cytokine), and CD40L to 
induce maturation. These mature whole lysate-pulsed DCs 
were able to stimulate CD8 +  T cells that secreted IFN-γ in 
responses to ovarian tumor antigens. Similar results were 
also obtained in another study where DCs derived from ovar-
ian cancer patients who were in remission were fi rst loaded 
with HOCl-SKOV-3 tumor lysate and subsequently matured 
with activating anti-CD40 antibody [ 142 ]. In this study, 
mature DCs were able to stimulate both CD8 +  and CD4 +  
antitumor T-cell responses. All these results highly suggested 
a potential benefi t of using CD40L or anti-CD40 activating 
antibody as an adjuvant in DC-based whole tumor cell 
immunotherapy. Additional value of administering CD40 
agonists in vivo is provided by the fact that ovarian cancers, 
like many tumors, express the CD40 receptor [ 143 – 146 ] and 
respond to CD40 ligation with apoptosis and growth inhibi-
tion in vitro and in vivo [ 145 ,  147 ,  148 ].  

    Cons 

 The usefulness of IL-2, although FDA approved for treat-
ment of melanoma and renal cell carcinoma, has several 
limitations. Alone or in the context of adoptive immunother-
apy, IL-2 is used at MTD, which induces a systemic infl am-
matory response with signifi cant morbidity including 
multiple organ toxicities, most signifi cantly the heart, lungs, 
kidneys, and central nervous system. Another manifestation 
of IL-2 toxicity is capillary leak syndrome, resulting in a 
hypovolemic state and fl uid accumulation in the extravascu-
lar space [ 149 ]. Additionally, IL-2 is essential for the 
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 peripheral homeostasis of CD4 + CD25 + Foxp3 +  Treg cells, 
and it is now known that IL-2 is also an important activator 
of Treg suppressive activity in vivo [ 150 ]. 

 Many clinical trials have demonstrated the effi cacy of type I 
interferon therapy in the treatment of hematologic malignan-
cies [ 151 – 153 ], melanoma [ 154 – 158 ], and renal cell carcinoma 
[ 159 – 161 ]. In contrast, trials in ovarian carcinoma were less 
encouraging. Intraperitoneal recombinant IFN-α alone or com-
bined with cisplatin as salvage therapy for persistent ovarian 
cancer after primary chemotherapy has shown clinical effi cacy 
in small volume disease [ 162 ,  163 ], but there was no signifi cant 
effect in a cohort of patients with recurrent, platinum-resistant 
disease [ 164 ]. A large randomized, phase III trial ( n  = 300) con-
ducted in patients with epithelial ovarian cancer concluded that 
INF-a2a as maintenance therapy following surgery and/or che-
motherapy is not effective alone [ 165 ]. 

 Confl icting results from trials involving IFN-γ adminis-
tration highlight the diffi culty in designing immunomodula-
tion therapies. In one instance, a threefold prolongation of 
progression-free survival was observed in a phase III multi-
center study from Europe with subcutaneous administration 
of rhIFN-γ combined with MTD cisplatin and cyclophospha-
mide chemotherapy, with minimal added toxicity [ 166 ]. 
However, in a subsequent randomized phase III trial con-
ducted in the USA, addition of subcutaneous rhIFN-γ to car-
boplatin and paclitaxel did not improve survival [ 167 ]. 
Although one cannot exclude that racial and other demo-
graphic differences may account for opposite results, these 
data may indicate that the choice of chemotherapy drugs is in 
fact critical in combinatorial approaches with immunother-
apy. Indeed, whereas cyclophosphamide has potent immuno-
modulatory effects on suppressive Tregs, high-dose steroids, 
which are necessarily given with paclitaxel to prevent acute 
hypersensitivity reactions, are immunosuppressive and 
induce Treg in the setting of antigen presentation. 

 Similarly, the use of TLR agonists in the clinic requires 
careful preclinical evaluation. For example, in the absence of 
specifi c cell-mediated antitumor immunity, nonspecifi c acti-
vation of infl ammation might in fact promote tumor growth 
rather than reducing it [ 168 ]. TLR4 agonists were shown to 
promote tumor cell survival, tumor growth, and paclitaxel 
resistance in a proportion of ovarian cancer cells [ 169 ,  170 ]. 

 Meanwhile, agonistic anti-CD40 antibody is best used in 
combination with vaccines or TLR agonists [ 171 ,  172 ]. This 
is because, when used alone, it can accelerate the deletion of 
tumor-specifi c cytotoxic lymphocytes [ 173 ].   

    Conclusions 

 In the past decade, we have witnessed important advances 
in the development of immunotherapies for gynecologic 
cancers. First, ovarian cancers are now seen as potentially 
immunogenic tumors, a characterization formerly reserved 
only for melanoma and renal cell cancer. Second, the a 

priori notion that chemotherapy drugs antagonize immune 
mechanisms altogether was challenged by evidence that 
select chemotherapy drugs commonly used to treat gyne-
cologic cancers have important immunomodulatory 
effects. This has opened the door to explore interactions 
of these drugs with natural antitumor immunity. Third, 
several mechanisms of tumor immune escape, accounting 
for failure of immunotherapy, have been deciphered, and 
the importance of combinatorial immunotherapy target-
ing both adaptive and innate effector and suppressor 
mechanisms has been proven. Fourth, this decade has pro-
duced novel and potent  bona fi de  stimulants of innate and 
adaptive immunity. The next decade will be the time to 
test and optimize these combinations to maximize effi -
cacy and decrease toxicity. Rational combinations of 
agents will require understanding of their precise mecha-
nism of action in order to select combinations yielding 
positive interactions.  

    Future Directions 

 Evidence now convincingly shows that ovarian cancers are 
immunogenic tumors. The dramatic advances in laboratory 
technology and clinical procedures in cellular immunother-
apy, along with the development of powerful immunomodu-
latory antibodies, create new opportunities in ovarian cancer 
therapeutics. The challenge for the next decade will be to test 
rational combinations that offer maximal clinical benefi t at 
the lowest cost. 

 Selection of appropriate patients for clinical trial partici-
pation will also be quite infl uential. Additional biomarkers 
are needed to maximize selection of patients who may ben-
efi t from immunotherapy. Evidence to date indicates that 
many ovarian cancer patients display a spontaneous antitu-
mor immune response. These patients may be best suited for 
vaccine therapy or TIL-based therapy as they are the most 
likely to harbor a natural repertoire of tumor-reactive T cells 
with tumor rejecting potential that can be expanded in vivo 
or ex vivo. In addition, patients whose tumors exhibit 
intraepithelial T cells may be most likely to respond to 
immunotherapy as the tumor microenvironment is already 
conducive to T-cell homing and engraftment. Finally, more 
work will be necessary to develop strategies to integrate 
immunotherapy with current standard of care. We have pre-
viously demonstrated that patients with advanced ovarian 
cancer whose tumors exhibit low frequency of intraepithelial 
CD8 +  T cells or high Ki67 expression are more likely to draw 
benefi t from aggressive surgical cytoreduction, while deb-
ulking did not signifi cantly affect the survival of patients 
with brisk CD8 +  T cells or low Ki67 expression [ 17 ]. It is 
possible that immunotherapy with adoptive transfer of TILs 
and/or vaccine plus immunomodulation could be a rational 
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adjuvant therapy for patients with intraepithelial T cells fol-
lowing conventional debulking surgery and chemotherapy. 
Based on the observation that VEGF antibody blockade 
enhances T-cell infi ltration in tumors and that its effi cacy 
depends on antitumor CD8 T-cell response [ 174 ], it is pos-
sible that patients with intraepithelial T cells may also 
respond better to bevacizumab or other VEGF inhibitors. On 
the other hand, our data suggest that maximal debulking 
efforts should be undertaken in tumors with low T cells and 
it is possible that these patients are not the best candidates for 
adjuvant immunotherapy that exploits natural antitumor 
immune response. Personalized adoptive therapy with engi-
neered T cells redirected against known tumor epitopes 
might be the most effi cient approach to adjuvant immuno-
therapy in patients with low level of naturally occurring 
TILs. Careful preclinical evaluation in well-characterized 
animal models will be necessary to evaluate combinations 
before undertaking clinical studies. However, the major 
challenge facing the fi eld at present is to conduct randomized 
clinical trials demonstrating suffi cient clinical benefi t to jus-
tify the logistics and expense of customized cellular thera-
pies. A positive outcome from immunotherapy trials in terms 
of effective therapy, extension of progression free, and over-
all survival would represent a major advancement for patients 
with advanced ovarian cancer.      
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