
4
Transformations

The 1960s were the golden age of computer graphics. This was the time when many
of its basic methods, algorithms, and techniques were developed, tested, and improved.
Two of the most important concepts that were identified and studied in those years
were transformations and projections. Workers in the graphics field immediately rec-
ognized the importance of transformations. Once a graphics object is constructed, the
use of transformations enables the designer to create copies of the object and modify
them in important ways. The necessity of projections was also realized early. Sophisti-
cated graphics requires three-dimensional objects, but graphics output devices are two-
dimensional. A three-dimensional object has to be projected on the flat output device
in a way that will preserve its depth information. Thus, early researchers in computer
graphics developed the mathematics of parallel and perspective projections and imple-
mented these techniques. Nonlinear projections deform the projected image in various
ways and are mostly used for artistic and ornamental purposes. These projections were
also studied and implemented over the years by many people.

� Exercise 4.1: Most nonlinear projections are valued for their artistic and ornamental
effects, but there is at least one type of nonlinear projection that has important practical
applications. What is it?

The English term sea-change (or seachange) was coined by Shakespeare in his play
The Tempest. The term means a gradual transformation in which the form is retained
but the substance is replaced. Thus, sea-change is a real-life transformation. In computer
graphics (and in other fields of science) the term transformation refers to a process that
varies the location and orientation (i.e., the form) of an object while normally retaining
its shape (i.e., substance) or at least its topology.

Today, transformations and projections are important components of computer gra-
phics and computer-aided design (CAD). Transformations save the designer work and
time, while projections are necessary because three-dimensional output devices are still
rare (but see Section 6.15 for autostereoscopic displays, a revolutionary technique for

The Computer Graphics Manual
DOI 10.1007/978-
D. Salomon, , Texts in Computer Science,

0-85729-886-7_4, ©
199

Springer-Verlag London Limited 2011

200 Transformations

three-dimensional displays), hence this part of the book.
Figure 4.1 shows the power of even the simplest two-dimensional transformations.

It illustrates, from left to right, the following transformations: rotation, reflection, de-
formation (shearing), and scaling (see also Figure 4.3). It is not difficult to imagine
the power of combining these transformations, but it is more difficult to imagine and
visualize the power and flexibility of three-dimensional transformations.

Figure 4.1: Elementary Two-Dimensional Transformations.

The basic two-dimensional transformations are translation, rotation, reflection, scal-
ing, and shearing. They are simple, but it is their combinations that make them powerful.
It comes as a surprise to realize that these transformations can be specified by means of
a single 3×3 matrix where only six of the nine elements are used. The same five basic
transformations also exist in three dimensions, but have more degrees of freedom and
therefore require more parameters to fully specify them. The general transformation
matrix in three dimensions is 4×4, where 13 of the 16 elements control the transforma-
tions and the remaining three are used to specify the orientation of the projection plane
in the case of perspective projections.

� Exercise 4.2: What transformations are possible in one dimension?
In contrast with the five basic transformations, there are more than five types

of projections. As Figure 4.2 illustrates, we distinguish between linear and nonlinear
projections. The former class consists of parallel and perspective projections, while the
latter class includes many different types. Each type of projection has variants. Thus,
parallel projections are classified into orthographic, axonometric, and oblique, while
perspective projections include one-, two-, and three-point projections.

Nonlinear projections are all different and employ different approaches and ideas.
Linear projections, on the other hand, are all based on the following simple rule of
projection.

Rule. A three-dimensional object is projected on a two-dimensional plane called
the projection plane. The object must be fully located on one side of the plane, and
we imagine a viewer or an observer located on the other side. On that side, we select a
point termed the center of projection, and it is the location of this point that determines
the class, parallel or perspective, of the linear projection. A three-dimensional point
P on the object is projected to a two-dimensional point P∗ on the projection plane by
connecting P to the center of projection with a straight segment. Point P∗ is placed at
the intersection of this segment with the projection plane. When the center of projection

4 Transformations 201

Projections

Linear Nonlinear

Parallel Perspective

Orthographic

Axonometric

Oblique

One-point

Two-point

Three-point

Fisheye, Panorama, Telescopic,

Microscopic, Map, others...

Figure 4.2: Classification of Projections.

is at infinity, the result is a parallel projection. If the center of projection is at the
observer, the projection is perspective.

When working on computer graphics projects, we discover very quickly that trans-
formations are an important part of the process of building an image. If an image has
two identical (or even similar) parts, such as wheels, only one part need be constructed
from scratch. The other parts can be obtained by copying the first and then moving,
reflecting, and rotating it to bring it to the right shape, size, position, and orientation.
Often, we want to zoom in on a small part of an image so that more detail can be
seen. Sometimes it is useful to zoom out, so a large image can be seen in its entirety on
the screen, even though no details can then be discerned. Operations such as moving,
rotating, reflecting, or scaling an image are called geometric transformations and are
discussed in this chapter for two and three dimensions.

4.1 Introduction

Mathematically, a geometric transformation is a function f whose domain and range
are points. We denote by P a general point before any transformation and by P∗ the
same point after a transformation. The notationP∗ = f(P) implies that the transformed
point P∗ is obtained by applying f to P. We call our transformations geometric because
they have geometric interpretations. Thus, only certain functions f can be used. Years
of study and practical experience have shown that in order for it to be meaningful as a
geometric transformation, a function must satisfy two conditions: it has to be onto and
one-to-one.

A general function f maps its domain D into its range R. If every point in R has a
corresponding point in D, then the function maps its domain onto its range. An example
is f(x) = �x�, which maps the real numbers onto the integers. Every integer has a real
number (in fact, infinitely many real numbers) that map to it. Another example is
g(x) = 1/x, a mapping from the real numbers into the real numbers. This mapping is

202 4.1 Introduction

not onto because no real number maps to zero. Requiring a transformation to be onto
makes sense since it guarantees that there will not be any special points P∗ that cannot
be reached by the transformation.

An arbitrary function may map two distinct points x and y into the same point.
Function f(x) above maps the two distinct numbers 9.2 and 9.9 into the integer 9. A
one-to-one function satisfies x �= y → f(x) �= f(y). Function g(x) above is one-to-one.
The requirement that a transformation be one-to-one makes sense because it implies
that a given point P∗ is the transformed image of one point only, thereby making it
possible to reconstruct the inverse transformation.

Definition. A geometric transformation is a function that is both onto and one-
to-one, and whose range and domain are points.

� Exercise 4.3: Do either of the two real functions f1(x, y) = (x2, y) and f2(x, y) =
(x3, y) satisfy the definition above?

There are two ways to look at geometric transformations. We can interpret them
as either moving the points to new locations or as moving the entire coordinate system
while leaving the points alone. The latter interpretation is discussed in Section 4.5, but
the reader should realize that whatever interpretation is used, the movement caused by
a geometric transformation is instantaneous. We should not think of a point as moving
along a path from its original location to a new location, but rather as being grabbed
and immediately planted in its new location.

The description of right lines and circles, upon which geometry is founded, belongs to
mechanics. Geometry does not teach us to draw these lines, but requires them to be
drawn.

—Isaac Newton (1687).

Combining transformations is an important operation that is discussed in detail
in Section 4.2.2. This paragraph intends to make it clear that such a combination
(sometimes called a product) amounts to a composition of functions. If functions f and
g represent two transformations, then the composition g◦f represents the product of the
two transformations. Such a composition is often written as P∗ = g(f(P)). It can be
shown that combining transformations is associative (i.e., g ◦ (f ◦ h) = (g ◦ f) ◦ h). This
fact, together with a few other basic properties of transformations, makes it possible
to identify groups of transformations. A discussion of mathematical groups is beyond
the scope of this book but can be found in many texts on linear algebra. A set of
transformations constitutes a group if it includes the identity transformation, if it is
closed, and if every transformation in the set has an inverse that is also included in the
set.

An example of a group of transformations is the set of two-dimensional rotations
about the origin through angles of 0◦ and 180◦. This two-element set is a group because
a 0◦ rotation is an identity transformation and because a 180◦ rotation is the inverse of
itself.

� Exercise 4.4: Is the operation of combining transformations commutative?

4 Transformations 203

Another important example of a group of transformations is the set of linear trans-
formations that map a point P = (x, y, z) to a point P∗ = (x∗, y∗, z∗), where

x∗ = a11x+ a12y + a13z + a14,

y∗ = a21x+ a22y + a23z + a24,

z∗ = a31x+ a32y + a33z + a34.

(4.1)

Each new coordinate depends on all three original coordinates, and the dependence
is linear. Such transformations are called affine and are defined more rigorously on
Page 218.

A little thinking shows that the coefficients ai4 of Equation (4.1) represent quantities
that are added to the transformed coordinates (x∗, y∗, z∗) regardless of the original
coordinates, thereby simply translating P∗ in space. This is why we start the detailed
discussion here by temporarily ignoring these coefficients, which leads to the simple
system of equations

x∗ = a11x+ a12y + a13z,

y∗ = a21x+ a22y + a23z,

z∗ = a31x+ a32y + a33z.

(4.2)

If the 3×3 coefficient matrix of this system of equations is nonsingular or, equivalently,
if the determinant of the coefficient matrix is nonzero (see any text on linear algebra for
a refresher on matrices and determinants), then the system is easy to invert and can be
expressed in the form

x = b11x
∗ + b12y

∗ + b13z
∗,

y = b21x
∗ + b22y

∗ + b23z
∗,

z = b31x
∗ + b32y

∗ + b33z
∗,

(4.3)

where the bij ’s are expressed in terms of the aij ’s. It is now easy to see that, for
example, the two-dimensional line Ax + By + C = 0 is transformed by Equation (4.3)
to the two-dimensional line

(Ab11 +Bb21)x∗ + (Ab12 +Bb22)y∗ + C = 0.

� Exercise 4.5: Show that Equation (4.3) maps the general second-degree curve

Ax2 +Bxy + Cy2 +Dx+Ey + F = 0

to another second-degree curve.

In general, an affine transformation maps any curve of degree n to another curve of
the same degree.

204 4.2 Two-Dimensional Transformations

4.2 Two-Dimensional Transformations

In practice, a complete two-dimensional image is constructed on the screen object-by-
object and it may be edited before it is deemed satisfactory. One aspect of editing
is to transform objects. Typical transformations (Figures 4.1 and 4.3 and color Plate
Q.1) are moving or sliding (translation), reflecting or flipping (mirror image), zooming
(scaling), rotating, and shearing (distorting). Notice how the orientation of Bach’s nose
in Figure 4.3 is different for reflection and rotation.

Figure 4.3: Two-Dimensional Transformations.

The transformation can be applied to every pixel of the object. Alternatively, it
can be applied only to some key points that fully define the object (such as the four
corners of a rectangle), following which the transformed object is constructed from the
transformed key points.

As soon as we use words like “image,” we are already thinking of how one shape cor-
responds to the other—of how you might move one shape to bring it into coincidence
with the other. Bilateral symmetry means that if you reflect the left half in a mirror,
then you obtain the right half. Reflection is a mathematical concept, but it is not
a shape, a number, or a formula. It is a transformation—that is, a rule for moving
things around.

—Ian Stewart, Nature’s Numbers (1995).

The same principle applies to a three-dimensional image. Such an image consists
of one or more three-dimensional objects that can be transformed individually, follow-
ing which the entire image should be projected on the two-dimensional screen (or other
output device). We first take a look at the mathematics of two-dimensional transforma-
tions.

4 Transformations 205

We use the notation P = (x, y) for a point and P∗ = (x∗, y∗) for the transformed
point. We are looking for a simple, fast transformation rule, so it is natural to try a linear
transformation (i.e., a mathematical rule that does not use operations more complex
than multiplications and shifts). The simplest linear transformation is x∗ = ax+ cy and
y∗ = bx+dy, in which each of the new coordinates is a linear combination of the two old
coordinates. This transformation can be written P∗ = PT, where T is the 2×2 matrix(
a b
c d

)
. Thus, the transformation depends on just four parameters, which makes it easy

to analyze and fully understand it.
To understand the effect of each of the four matrix elements, we start by setting

b = c = 0. The transformation becomes x∗ = ax and y∗ = dy, i.e., scaling. If applied
to all the points of an object, all the x dimensions are scaled by a factor of a and all
the y dimensions are scaled by a factor of d. Note that a and d can also be less than 1,
which results in shrinking the object. If a or d (or both) equal −1, the transformation
is a reflection. Any other negative values result in both scaling and reflection.

Note that scaling an object by factors of a and d changes its area by a factor of
a×d and that this factor is also the value of the determinant of the scaling matrix

(
a 0
0 d

)
.

Here are examples of scaling and reflection. In A, the y coordinates are scaled by
a factor of 2. In B, the x coordinates are reflected. In C, the x dimensions are shrunk
to 0.001 of their original values. In D, the figure is shrunk to a vertical line.

A =
(
1 0
0 2

)
, B =

(−1 0
0 1

)
, C =

(
0.001 0
0 1

)
, D =

(
0 0
0 1

)
.

� Exercise 4.6: In the novel The Oxford Murders, the author mentions the sequence of
symbols 11 822 . Guess the meanings of the symbols and the next symbol in this sequence.
(Hint. Ignore the obvious meanings of the M and the 8. This has to do with symmetry,
specifically, with reflection.)

� Exercise 4.7: What scaling transformation changes a circle to an ellipse?
The next step is to set a = 1 and d = 1 (no scaling or reflection) and explore the

effect of matrix elements b and c. The transformation becomes x∗ = x+ cy, y∗ = bx+y.
We first set b = 1 and c = 0 and easily find out that matrix

(
1 1
0 1

)
transforms the

four points (1, 0), (3, 0), (1, 1), and (3, 1) to (1, 1), (3, 3), (1, 2), and (3, 4), respectively.
When we plot the original points and the transformed points (Figure 4.4a), it becomes
obvious that the original rectangle has been sheared vertically and was transformed into
a parallelogram. A similar shearing effect results from matrix

(
1 0
1 1

)
. The quantities b

and c are therefore responsible for shearing. Figure 4.4b shows the connection between
shearing and the operation of scissors, which is the reason for the term shearing.

� Exercise 4.8: Apply the shearing transformation (
1−1
0 1

)
to the four points (1, 0), (3, 0),

(1, 1), and (3, 1). What are the transformed points? What geometrical figure do they
represent?

The next important transformation is rotation. Figure 4.5 shows a point P rotated
clockwise about the origin through an angle θ to become P∗. Simple trigonometry yields

206 4.2 Two-Dimensional Transformations

x

y

1
(a) (b)

1

2

2

3

3

4

4

5

Rectangle

Par
all

elo
gr

am

Figure 4.4: Scissors and Shearing.

x = R cosα and y = R sinα. From this, we get the expressions for x∗ and y∗

x∗ = R cos(α− θ) = R cosα cos θ +R sinα sin θ = x cos θ + y sin θ,
y∗ = R sin(α− θ) = −R cosα sin θ +R sinα cos θ = −x sin θ + y cos θ.

Hence, the clockwise rotation matrix in two dimensions is

(
cos θ − sin θ
sin θ cos θ

)
,

which also
equals
the product

(
cos θ 0
0 cos θ

)(
1 − tan θ

tan θ 1

)
. (4.4)

This shows that any rotation in two dimensions is a combination of scaling (and, perhaps,
reflection) by a factor of cos θ and shearing, an unexpected result (that’s true for all
angles where tan θ is finite).

x x*

P

P*

Figure 4.5: Clockwise Rotation.

� Exercise 4.9: Show how a 45◦ rotation can be achieved by scaling followed by shearing.

4 Transformations 207

� Exercise 4.10: Discuss rotation in two dimensions using the polar coordinates (r, θ) of
points instead of the Cartesian coordinates (x, y).

A rotation matrix has the following property: When any row is multiplied by itself,
the result is 1, and when a row is multiplied by another row, the result is 0. The same
is true for columns. Such a matrix is called orthonormal.

Matrix T1 below rotates counterclockwise. Matrix T2 reflects about the line y = x,
and matrix T3 reflects about the line y = −x. Note the determinants of these matrices.
In general, a determinant of +1 indicates pure rotation, whereas a determinant of −1
indicates pure reflection. (As a reminder, det

(
a b
c d

)
= ad− bc.)

T1 =
(
cos θ sin θ
− sin θ cos θ

)
; T2 =

(
0 1
1 0

)
; T3 =

(
0 −1
−1 0

)
. (4.5)

� Exercise 4.11: Show that a y-reflection (i.e., reflection about the x axis) followed by
a reflection through the line y = −x produces pure rotation.

� Exercise 4.12: Show that the transformation matrix⎛
⎝ 1− t2

1 + t2
2t

1 + t2

−2t
1 + t2

1− t2

1 + t2

⎞
⎠

produces pure rotation.

� Exercise 4.13: For what values of A does the following matrix represent pure rotation
and for what values does it represent pure reflection?(

a/A b/A
−b/A a/A

)
.

A 90◦ Rotation: For a 90◦ clockwise rotation, the rotation matrix is(
cos(90) − sin(90)
sin(90) cos(90)

)
=

(
0 −1
1 0

)
. (4.6)

A point P = (x, y) is therefore transformed to point (y,−x). For a counterclockwise 90◦
rotation, (x, y) is transformed to (−y, x). This is called the negate and exchange rule.

Representations rotated not always by one hundred and eighty degrees, but sometimes
by ninety or forty-five, completely subvert habitual perceptions of space; the outline
of Europe, for instance, a shape familiar to anyone who has been even only to junior
school, when swung around ninety degrees to the right, with the west at the top,
begins to look like Denmark.

—Georges Perec, Life, A User’s Manual (1976).

208 4.2 Two-Dimensional Transformations

The Golden Ratio

Start with a straight segment of length l and divide it into two parts a and b such
that a+ b = l and l/a = a/b.

l

a b

The ratio a/b is a constant called the Golden Ratio and is denoted φ. It is one
of the important mathematical constants, like π and e, and was already known to the
ancient Greeks. There seems to be a general belief that geometric figures can be made
more pleasing to the eye if they obey this ratio. One example is the golden rectangle,
whose sides are x and xφ long (Plate P.3). Many classical buildings and paintings seem
to include this ratio. [Huntley 70] is a lively introduction to the Golden Ratio. It
illustrates properties such as

φ =

√
1 +

√
1 +

√
1 +

√
1 + · · · and φ = 1 +

1
1 + 1

1+ 1
···

.

The value of φ is easy to determine. The basic ratio l/a = a/b = φ implies (a+ b)/a =
a/b = φ, which, in turn, means 1 + b/a = φ or 1 + 1/φ = φ, an equation that can be
written φ2−φ−1 = 0. This equation is easy to solve, yielding φ = (1+√

5)/2 ≈ 1.618

1

1 1/φ

(a) (c)(b)

φ

Figure 4.6: The Golden Ratio.

The equation φ = 1 + 1/φ illustrates another unusual property of φ. Imagine the
golden rectangle with sides 1 and φ (Figure 4.6a). Such a rectangle can be divided
into a 1 × 1 square and a smaller golden rectangle of dimensions 1 × 1/φ. The smaller
rectangle can now be divided into a 1/φ × 1/φ square and an even smaller golden
rectangle (Figure 4.6b). When this process continues, the rectangles converge to a
point. Figure 4.6c shows how a logarithmic spiral can be drawn through corresponding
corners of the rectangles.

4 Transformations 209

4.2.1 Homogeneous Coordinates

Unfortunately, our simple 2×2 transformation matrix cannot generate all the basic
transformations that are needed in practice! In particular, it cannot generate translation.
This is easy to see by arguing that any object containing the origin will, after any of the
transformations above, still contain the origin [i.e., the result of (0, 0)T is (0, 0) for any
matrix T].

Translations can be expressed by x∗ = x+m, y∗ = y+n, and one way to implement
them is to generalize our transformations to P∗ = PT+ (m,n), where T is the familiar
2 × 2 transformation matrix. A more elegant approach, however, is to stay with the
compact notation P∗ = PT and to extend T to the 3×3 matrix

T =

⎛
⎝ a b 0

c d 0
m n 1

⎞
⎠ . (4.7)

This approach is called homogeneous coordinates and is commonly used in projective
geometry. It makes it possible to unify all the two-dimensional transformations within
one 3× 3 matrix with six parameters. The problem is that a two-dimensional point (a
pair) cannot be multiplied by a 3×3 matrix. This is solved by representing our points
in homogeneous coordinates, which is done by extending the pair (x, y) to the triplet
(x, y, 1). The rules for using homogeneous coordinates are the following:

1. To transform a point (x, y) to homogeneous coordinates, simply add a third
component of 1. Hence, (x, y)⇒ (x, y, 1).

2. To transform the triplet (a, b, c) from homogeneous coordinates back into a pair
(x, y), divide by the third component. Hence, (a, b, c)⇒ (a/c, b/c).

This means that a point (x, y) has an infinite number of representations in homoge-
neous coordinates. Any triplet (ax, ay, a) where a is nonzero is a valid representation of
the point. This suggests a way to intuitively understand homogeneous coordinates. We
can consider the triplet (ax, ay, a) a point in three-dimensional space. When a varies
from 0 to∞, the point travels along a straight ray from the origin to infinity. The direc-
tion of the ray is determined by x and y but not by a. Therefore, each two-dimensional
point (x, y) corresponds to a ray in three-dimensional space. To find the “real” location
of the point, we look at the z = 1 plane. All points on this plane have coordinates
(x, y, 1), so we only have to strip off the “1” in order to see where the point is located.
Section 4.4 shows that homogeneous coordinates can also be applied to three-dimensional
points.

� Exercise 4.14: Write the transformation matrix that performs (1) a y-reflection, (2)
a translation by −1 in the x and y directions, and (3) a 180◦ counterclockwise rotation
about the origin. Apply this compound transformation to the four corners (1, 1), (1,−1),
(−1, 1), and (−1,−1) of a square centered on the origin. What are the transformed
corners?

Matrix (4.7) is the general transformation matrix in two dimensions. It produces
the most general linear transformation, x∗ = ax+cy+m, y∗ = bx+dy+n, and it shows
that this transformation is fully specified by just six numbers.

210 4.2 Two-Dimensional Transformations

We can gain a deeper understanding of homogeneous coordinates when we include
two more parameters in matrix (4.7), writing it as

⎛
⎝ a b p

c d q
m n 1

⎞
⎠ . (4.8)

A general point (x, y) is now transformed to

(x, y, 1)

⎛
⎝ a b p

c d q
m n 1

⎞
⎠ = (ax+ cy +m, bx+ dy + n, px+ qy + 1).

Applying rule 2 shows that the transformed point (x∗, y∗) is given by

x∗ =
ax+ cy +m

px+ qy + 1
, y∗ =

bx+ dy + n

px+ qy + 1
.

To understand what this means, we apply this result to the four points (2, 1), (6, 1),
(2, 5), and (6, 5) that constitute the four corners of a square (Figure 4.7a). Using the
simple transformation ⎛

⎝ 1 0 1
0 1 1
0 0 1

⎞
⎠

(i.e., no scaling, rotation, shearing, or translation and p = q = 1), the points are
transformed to

P1 = (2, 1)→ (2, 1, 4)→ (1/2, 1/4),
P2 = (6, 1)→ (6, 1, 8)→ (3/4, 1/8),
P3 = (2, 5)→ (2, 5, 8)→ (1/4, 5/8),
P4 = (6, 5)→ (6, 5, 12)→ (1/2, 5/12).

The transformed points (Figure 4.7b) also seem to form a square, but one that’s viewed
from a different direction and seen in perspective. This suggests that our transformation
(using just p and q, without scaling, reflection, rotation, or shearing) has moved the
square from its original position in the xy plane to another plane. Such transformations
are called projections and are useful when dealing with objects in three-dimensional
space.

4.2.2 Combining Transformations

Matrix notation is useful when working with transformations, because it makes it easy to
combine transformations. To combine transformations A, B, and C, we write the three
transformation matrices and multiply them. An example is an x-reflection, followed by
a y-scaling, followed by a 45◦ rotation

(−1 0
0 1

)(
1 0
0 2

)(
0.707 −0.707
0.707 0.707

)
=

(−0.707 0.707
1.414 1.414

)
.

4 Transformations 211

x

y

x

y

1

1

1
(a) (b)

1

2

2

3

3

4

4

5

5

6 1/2

1/2

1/4

1/4

3/4

3/4

P1 P2

P3 P4

P1 P2

P3

P4

Figure 4.7: A Two-Dimensional Projection of a Square.

In general, matrix multiplication is noncommutative, reflecting the fact that geo-
metric transformations are also noncommutative. It is easy to convince yourself that,
for example, a rotation about the origin followed by a translation is not the same as a
translation followed by a rotation about the origin.

Note that all the transformations discussed earlier are performed about the origin.
Figure 4.8a shows an object rotated 40◦ clockwise. It is easy to see that the center
of rotation is the origin. If, for example, we want to rotate an object about a point
P, we have to translate both the object and the point such that P goes to the origin
(Figure 4.8b), then rotate the object, and finally translate back (Figure 4.8c). Similarly,
to reflect an object through an arbitrary line, we have to (1) translate the line (and the
object) until it passes through the origin, (2) rotate the line (and the object) until it
coincides with one of the coordinate axes, (3) reflect through that axis, (4) rotate back,
and (5) translate back.

(a) (b) (c)

translate

rotate

translate backrotate
about

origin

Figure 4.8: Rotation About a Point.

(Transformations are often done about the origin. See Exercise 6.11 for an example

212 4.2 Two-Dimensional Transformations

on how this affects scaling in three dimensions.)

� Exercise 4.15: Derive the rotation matrix for a two-dimensional rotation about a point
(x0, y0) using just trigonometry (i.e., without using translation).

Example: Reflection about the line y = x + 1. This line has a slope of 1 (i.e., it
makes an angle of 45◦ with the x axis) and it intercepts the y axis at y = 1. We first
translate down one unit, then rotate clockwise by 45◦, then reflect through the x axis,
rotate back, and translate back. The result is (α stands for both sin 45◦ and cos 45◦)

T =

⎛
⎝ 1 0 0
0 1 0
0 −1 1

⎞
⎠

⎛
⎝α −α 0
α α 0
0 0 1

⎞
⎠

⎛
⎝ 1 0 0
0 −1 0
0 0 1

⎞
⎠

⎛
⎝ α α 0

−α α 0
0 0 1

⎞
⎠

⎛
⎝ 1 0 0
0 1 0
0 1 1

⎞
⎠

=

⎛
⎝ 0 2α2 1
2α2 0 0
−2α2 1 1

⎞
⎠ =

⎛
⎝ 0 1 0
1 0 0
−1 1 1

⎞
⎠

(because 2α2 = sin2 45◦ + cos2 45◦ = 1). Note that detT = −1, i.e., pure reflection.
� Exercise 4.16: Demonstrate that the result in the example is correct.

Example: Reflection about an arbitrary line. Given the line y = ax+ b, it is pos-
sible to reflect a point about this line by transforming the line to the x axis, reflecting
about that axis, and transforming the line back. Since a is the slope (i.e., the tangent
of the angle α between the line and the x axis) and b is the y intercept, the individ-
ual transformations needed are (1) a translation of −b units in the y direction, (2) a
clockwise rotation of α degrees about the origin, (3) a reflection about the x axis, (4) a
counterclockwise rotation, and (5) a reverse translation. The combined transformation
matrix is therefore

Treflect =

⎛
⎝ 1 0 0
0 1 0
0 −b 1

⎞
⎠

⎛
⎝ cosα − sinα 0
sinα cosα 0
0 0 1

⎞
⎠

⎛
⎝ 1 0 0
0 −1 0
0 0 1

⎞
⎠

×
⎛
⎝ cosα sinα 0

− sinα cosα 0
0 0 1

⎞
⎠

⎛
⎝ 1 0 0
0 1 0
0 b 1

⎞
⎠

=

⎛
⎝ cos(2α) sin(2α) 0

sin(2α) − cos(2α) 0
−b sin(2α) 2b cos2 α 1

⎞
⎠ . (4.9)

The determinant of this transformation matrix equals −1, as should be for pure reflec-
tion. For the two special cases α = b = 0 and α = 45◦ and b = 0, Equation (4.9) reduces
to ⎛

⎝ 1 0 0
0 −1 0
0 0 1

⎞
⎠ and

⎛
⎝ 0 1 0
1 0 0
0 0 1

⎞
⎠ , respectively.

4 Transformations 213

One feature that makes Equation (4.9) less than general is the way the sine and
cosine are obtained from the tangent of a known angle. Given that the slope a equals
tanα, we can calculate

a = tanα =
sinα
cosα

=
sinα√
1− sin2 α

,

which yields sin2 α = a2/(1 + a2) or

sinα = ± a√
1 + a2

and cosα = ± 1√
1 + a2

.

The signs depend on the angle (or rather the quadrant in which the angle happens to
be) and cannot be determined in a general way.

� Exercise 4.17: Compute the numerical value of matrix Treflect for the case α = 30◦

and b = 1.

� Exercise 4.18: Digital images displayed on a screen or printed on paper consist of
pixels. Even smooth curves are made of pixels. Thus, there is a need for efficient
algorithms to compute the best pixels for a given curve or geometric figure. The circle
has a high degree of symmetry, which is why it is possible to determine the best pixels for
a given circle by computing the pixels for one octant and duplicating and transforming
each pixel seven times to complete the remaining seven octants. The question is, is it
possible to improve such an algorithm even more by doing half an octant and duplicating
each pixel 15 times?

Another feature that makes Equation (4.9) less than general is the use of the explicit
representation y = ax + b. This representation is limited because it cannot express
vertical lines (for which a would be infinite). When reflecting a point about an arbitrary
line, it is better to use the more general implicit representation of a straight line ax +
by + c = 0, where a or b but not both can be zero. The slope of this line is −a/b, and
substituting b = 0 yields a vertical line.

Given such a line, we start with a point P = (x, y) and its reflection P∗ = (x∗, y∗)
about the line. It is clear that the segment PP∗ must be perpendicular to the line, so
its equation must be bx − ay + d = 0. Since both P and P∗ are on such a line, they
satisfy bx− ay + d = 0 and bx∗ − ay∗ + d = 0. Subtracting these two expressions yields

b(x− x∗) = a(y − y∗). (4.10)

We assume that P∗ is the reflection of P about the line ax+ by+ c = 0, so the midpoint
of segment PP∗, which is the point

(
(x + x∗)/2, (y + y∗)/2

)
, must be on this line and

must therefore satisfy

a
x+ x∗

2
+ b

y + y∗

2
+ c = 0. (4.11)

Equations (4.10) and (4.11) can easily be solved for x∗ and y∗. The solutions are

P∗ = (x∗, y∗) =
(
x− 2a(ax+ by + c)

a2 + b2
, y − 2b(ax+ by + c)

a2 + b2

)

214 4.2 Two-Dimensional Transformations

=
(
(b2 − a2)x− 2aby − 2ac

a2 + b2
,
−2abx+ (a2 − b2)y − 2bc

a2 + b2

)
. (4.12)

Equation (4.12) is easy to verify intuitively for vertical and for horizontal lines.
When b is zero, the line becomes the vertical line x = −c/a and Equation (4.12) reduces
to

P∗ = (x∗, y∗) =
(
x− 2a(ax+ c)

a2
, y

)
=

(
−x− 2c

a
, y

)
.

When a = 0, the line is the horizontal y = −c/b, and the same equation reduces to

P∗ = (x∗, y∗) =
(
x, y − 2b(by + c)

b2

)
=

(
x,−y − 2c

b

)
.

The transformation matrix for reflection about an arbitrary line ax+ by + c = 0 is
directly obtained from Equation (4.12)

T =

⎛
⎝ b2 − a2 −2ab 0

−2ab a2 − b2 0
−2ac −2bc 1

a2+b2

⎞
⎠ . (4.13)

Its determinant is

detT =
(b2 − a2)(a2 − b2)− 4a2b2

a2 + b2
= −a4 + 2a2b2 + b4

a2 + b2
= −(a2 + b2),

which equals −1 (pure reflection) for lines expressed in the standard form (defined as
the case where a2 + b2 = 1).

� Exercise 4.19: Use Equation (4.12) to obtain the transformation rule for reflection
about a line that passes through the origin.

We turn now to the product of two reflections about the two arbitrary lines L1 :
ax+ by+ c = 0 and L2 : dx+ ey+ f = 0 (Figure 4.9a). This product can be calculated
from Equation (4.13) as the matrix product

⎛
⎝ b2 − a2 −2ab 0

−2ab a2 − b2 0
−2ac −2bc 1

a2+b2

⎞
⎠

⎛
⎝ e2 − d2 −2de 0

−2de d2 − e2 0
−2df −2ef 1

d2+e2

⎞
⎠ ,

but this product is complex and difficult to interpret geometrically. In order to simplify
it, we assume, without loss of generality, that both lines pass through the origin and
that the first is also horizontal (Figure 4.9b). The first assumption means that the lines
intersect at the origin and that c = f = 0. The second assumption means that the first
line is identical to the x axis, so a = 0 and b = 1. Also, f = 0 implies dx + ey = 0
or y = −(d/e)x. The quantity −d/e is the slope (i.e., tan θ) of the second line, so we
conclude that

−d

e
= − tan θ = − sin θ

cos θ
, implying d2 + e2 = 1.

4 Transformations 215

(a) (b)

L1

L1

L2

L2

Figure 4.9: Reflections About Two Intersecting Lines.

Under these assumptions, the matrix product above becomes

⎛
⎝ 1 0 0
0 −1 0
0 0 1

⎞
⎠

⎛
⎝ e2 − d2 −2de 0

−2de d2 − e2 0
0 0 1

⎞
⎠

=

⎛
⎝ e2 − d2 −2de 0

2de e2 − d2 0
0 0 1

⎞
⎠

=

⎛
⎝ cos(2θ) − sin(2θ) 0
sin(2θ) cos(2θ) 0
0 0 1

⎞
⎠ , (4.14)

leading to the important conclusion that the product of two reflections about arbitrary
lines is a rotation through an angle 2θ about the intersection point of the lines, where
θ is the angle between the lines. It can be shown that the opposite is also true; any
rotation is the product of two reflections about two intersecting lines.

The discussion above assumes that both lines pass through the origin. In the special
case where θ = 0, such lines would be identical, so reflecting a point P about them would
move it back to itself. However, for θ = 0, matrix (4.14) reduces to the identity matrix,
so it is valid even for identical lines.

In the special case where the lines are parallel, their intersection point is at infinity
and a rotation about a center at infinity is a translation.

� Exercise 4.20: Given the two parallel lines y = 0 and y = c, calculate the double
reflection of a point (x, y) about them.

� Exercise 4.21: Consider the shearing transformation Ta of Equation (4.15), followed
by the 90◦ rotation Tb. What is the combined transformation, and what kind of trans-
formation is it?

Ta =

⎛
⎝ 0 1 0
2 0 0
0 0 1

⎞
⎠ , Tb =

⎛
⎝ cos 90◦ − sin 90◦ 0
sin 90◦ cos 90◦ 0
0 0 1

⎞
⎠ . (4.15)

216 4.2 Two-Dimensional Transformations

� Exercise 4.22: Given the two rotations

T1 =

⎛
⎝ cos θ1 − sin θ1 0
sin θ1 cos θ1 0
0 0 1

⎞
⎠ and T2 =

⎛
⎝ cos θ2 − sin θ2 0
sin θ2 cos θ2 0
0 0 1

⎞
⎠ ,

calculate the combined transformation T1T2. Is it identical to a rotation through (θ1+
θ2)?

� Exercise 4.23: Given the two shearing transformations

T1 =

⎛
⎝ 1 b 0
0 1 0
0 0 1

⎞
⎠ and T2 =

⎛
⎝ 1 0 0

c 1 0
0 0 1

⎞
⎠ ,

calculate the combined transformation T1T2. Is it identical to a shearing by factors b
and c?

� Exercise 4.24: Prove that three successive shearings about the x, y, and x axes is
equivalent to a rotation about the origin.

� Exercise 4.25: Matrix (
a 0
0 d

)
scales an object by factors a and d along the x and y axes,

respectively. If we want to scale the object by the same factors, but in the i and j
directions (see Figure 4.10, where i and j are perpendicular and form an angle θ with
the x and y axes, respectively), we need to (1) rotate the object θ degrees clockwise, (2)
scale along the x and y axes using matrix

(
a 0
0 d

)
, and (3) rotate back. Write the three

transformation matrices and their product. Discuss the case a = d (uniform scaling).

� Exercise 4.26: We can perform an exercise with shearing, similar to Exercise 4.25.
Matrix

(
1 b
c 1

)
shears an object by factors c and b along the x and y axes, respectively.

Calculate the matrix that shears the object by the same factors, but in the i and j
directions (Figure 4.10).

x

y

i

j

Figure 4.10: Scaling Along Rotated Axes.

4 Transformations 217

� Exercise 4.27: Discuss scaling relative to a point (x0, y0), and show that the result
is identical to the product of a translation followed by scaling, followed by a reverse
translation.

Using Equation (Ans.2) in the Answers to Exercises, it is easy to explore the effect
of two consecutive scaling transformations, with scaling factors of k1 and k2 and about
points P1 = (x1, y1) and P2 = (x2, y2), respectively. We simply multiply the two
transformation matrices

⎛
⎝ k1 0 0

0 k1 0
x1(1− k1) y1(1− k1) 1

⎞
⎠

⎛
⎝ k2 0 0

0 k2 0
x2(1− k2) y2(1− k2) 1

⎞
⎠

=

⎛
⎝ k1k2 0 0

0 k1k2 0
k2(1− k1)x1 + (1− k2)x2 k2(1− k1)y1 + (1− k2)y2 1

⎞
⎠ . (4.16)

The result is similar to Equation (Ans.2) except for the bottom row. It seems that the
product of two scalings is a third scaling with a factor k1k2, but about what point? To
write Equation (4.16) in the form of Equation (Ans.2), we write

k2(1− k1)x1 + (1− k2)x2 = xc(1− k1k2),
k2(1− k1)y1 + (1− k2)y2 = yc(1− k1k2),

and solve for (xc, yc), obtaining

xc =
k2(1− k1)x1 + (1− k2)x2

1− k1k2
,

yc =
k2(1− k1)y1 + (1− k2)y2

1− k1k2
.

The center of the double scaling is therefore point

Pc =
k2(1− k1)
1− k1k2

P1 +
1− k2

1− k1k2
P2 = aP1 + bP2.

Notice that a + b = 1, which is why Pc is a point on the straight segment connecting
P1 and P2 (see also Equation (Ans.42)).

In the special case P1 = P2, it is easy to see that the center of the double scaling
is Pc = P1 = P2.

� Exercise 4.28: What is the result of two consecutive scalings with the same scaling
factors but about two different points?

218 4.2 Two-Dimensional Transformations

1+
t2

1-t2

2t
x

y

Figure 4.11: A Unit Circle.

� Exercise 4.29: Show that all the points with coordinates (t2, t), where 0 ≤ t ≤ 1, after
being transformed by ⎛

⎝−1 0 1
0 2 0
1 0 1

⎞
⎠ ,

lie on the perimeter of the unit circle x2 + y2 = 1. (Hint: See Figure 4.11.)

It is easy to see that the transformations discussed here can change lengths and
angles. Scaling changes the lengths of objects. Rotation and shearing change angles.
One feature that’s preserved, though, is parallel lines. A pair of parallel lines will remain
parallel after any scaling, reflection, rotation, shearing, and translation. A transforma-
tion that preserves parallelism (and also maps finite points to finite points) is called
affine.

4.2.3 Fast Rotations

Rotation requires the calculation of the transcendental sine and cosine functions, which
is time consuming. If many rotations are needed, it is preferable to precompute the
trigonometric functions for many angles and store them in a table. This section shows
how to do this using integers only, a method that results in much faster rotations than
using floating-point numbers.

The method is illustrated for the first quadrant (rotation angles of 0◦ to 90◦) in
increments of 1◦. Notice that rotations in other quadrants can be achieved by a first-
quadrant rotation followed by a reflection. The following Mathematica code generates
91 sine values, from sin 0◦ = 0 to sin 90◦ = 1, multiplies each by 214 = 16,384, rounds
them, and stores them in a table as 16-bit integers ranging from 0 to 16,384.

d2r=Pi/180;
Table[Round[N[16384*Sin[i*d2r]]], {i,0,90}]

The 91 values are listed in Table 4.12, but notice that they are only approximations
of the true sine values. (Even floating-point sine values are, in general, just approxi-
mations, but normally better than our integers.) This means that the use of this table
for many successive rotations of a point may place it farther and farther away from its
true position. When we perform many successive rotations of an object that consists

4 Transformations 219

θ sin θ θ sin θ θ sin θ θ sin θ θ sin θ
0 0 1 286 2 572 3 857 4 1143
5 1428 6 1713 7 1997 8 2280 9 2563
10 2845 11 3126 12 3406 13 3686 14 3964
15 4240 16 4516 17 4790 18 5063 19 5334
20 5604 21 5872 22 6138 23 6402 24 6664
25 6924 26 7182 27 7438 28 7692 29 7943
30 8192 31 8438 32 8682 33 8923 34 9162
35 9397 36 9630 37 9860 38 10087 39 10311
40 10531 41 10749 42 10963 43 11174 44 11381
45 11585 46 11786 47 11982 48 12176 49 12365
50 12551 51 12733 52 12911 53 13085 54 13255
55 13421 56 13583 57 13741 58 13894 59 14044
60 14189 61 14330 62 14466 63 14598 64 14726
65 14849 66 14968 67 15082 68 15191 69 15296
70 15396 71 15491 72 15582 73 15668 74 15749
75 15826 76 15897 77 15964 78 16026 79 16083
80 16135 81 16182 82 16225 83 16262 84 16294
85 16322 86 16344 87 16362 88 16374 89 16382
90 16384

Table 4.12: Sine Values as 16-Bit Integers.

of many points, placing points away from where they should be generally results in a
deformation of the object.

We assume that the points are represented by coordinates that are 16-bit inte-
gers. Calculating the rotated coordinates (x∗, y∗) of a point (x, y) can now be done, for
example, by

x∗ = rshift(x× Table(90− θ), 14)− rshift(y × Table(θ), 14),
y∗ = rshift(x× Table(θ), 14) + rshift(y × Table(90− θ), 14).

Notice how the required cosine values are obtained from the end of the table. This
method works because the table has 91 entries. Multiplying a 16-bit integer coordinate
by a 16-bit integer sine value yields a 32-bit product. The right shift effectively divides
the product by 214 = 16,384, a necessary operation because our integer sine values have
been premultiplied by this scale factor.

� Exercise 4.30: Use this method to calculate the results of rotating point (1, 2) by 60◦
and by 80◦. In each case, compare the results with those obtained when built-in sine
and cosine functions are used.

4.2.4 CORDIC Rotations

We routinely use calculators to compute values of common functions, but have you ever
wondered how a calculator determines the value of, say, tan 72.81◦ so fast? Many cal-
culators use CORDIC (COordinate Rotation, DIgital Computer), a general method for

220 4.2 Two-Dimensional Transformations

computing many elementary functions. CORDIC was originally proposed by [Volder 59]
and was extended by [Walther 71]. The original references are hard to find but are
included in [Swartzlander 90]. Here, we show how CORDIC can be used to implement
fast rotations.

It is sufficient to consider a rotation about the origin where the rotation angle θ is
in the interval [0, 90◦) (the first quadrant). The special case θ = 90◦ can be implemented
by the negate and exchange rule, Equation (4.6). Rotations in other quadrants can be
achieved by a first-quadrant rotation, followed by a reflection.

The rotation is expressed by [see Equation (4.4)]

(x∗, y∗) = (x, y)
(
cos θ − sin θ
sin θ cos θ

)
. (4.17)

Because θ is less than 90◦, we know that cos θ is nonzero, so we can factor out cos θ,
yielding

(x∗, y∗) = cos θ (x, y)
(

1 − tan θ
tan θ 1

)
.

We now express θ as the sum
∑m

i=0 θi, where angles θi are defined by the relation

tan θi = 2−i or θi
def= arctan(2−i). The first 16 θi, for i = 0, 1, . . . , 15, are listed in

Table 4.13.

i θi (degrees) θi(radians) Ki

0 45. 0.785398 0.70710678118654746
1 26.5651 0.463648 0.63245553203367577
2 14.0362 0.244979 0.61357199107789628
3 7.12502 0.124355 0.60883391251775243
4 3.57633 0.0624188 0.60764825625616825
5 1.78991 0.0312398 0.60735177014129604
6 0.895174 0.0156237 0.60727764409352614
7 0.447614 0.00781234 0.60725911229889284
8 0.223811 0.00390623 0.60725447933256249
9 0.111906 0.00195312 0.60725332108987529
10 0.0559529 0.000976562 0.60725303152913446
11 0.0279765 0.000488281 0.60725295913894495
12 0.0139882 0.000244141 0.60725294104139727
13 0.00699411 0.00012207 0.60725293651701029
14 0.00349706 0.0000610352 0.60725293538591352
15 0.00174853 0.0000305176 0.60725293510313938

Table 4.13: The First 16 θi’s and Scale Factors.

In order to express any angle θ as the sum of these particular θi, some θi will have
to be subtracted. Consider, for example, θ = 58◦. We start with θ0 = 45◦. Since θ0 < θ,
we add θ1. The sum θ0 + θ1 = 45 + 26.5651 = 71.5651 is greater than θ, so we subtract
θ2. The new sum, 57.5289, is less than θ, so we add θ3, and so on.

4 Transformations 221

� Exercise 4.31: We want to be able to express any angle θ in the range [0◦, 90◦) by
adding and subtracting a number of consecutive θi, from θ0 to some θm, without skipping
any θi in between. Is that possible?

It is easy to write a program that decides which of the θi’s should be added and
which should be subtracted. Thus, we end up with

θ =
m∑
i=0

diθi =
m∑
i=0

di arctan(2−i), where di = ±1.

Once the number m of necessary di’s and their values have been determined, we
rotate (x, y) to (x∗, y∗) in a loop where each iteration rotates a point (xi, yi) through an
angle diθi to a point (xi+1, yi+1). A general iteration can be expressed in the form

(xi+1, yi+1) = cos(diθi) (xi, yi)
(

1 −di tan θi
di tan θi 1

)

= cos(diθi) (xi, yi)
(

1 −di2−i
di2−i 1

)
= cos(diθi) (xi + yidi2−i, yi − xidi2−i). (4.18)

We interpret the result (xi+1, yi+1) of an iteration as the vector from the origin to
point (xi+1, yi+1). Equation (4.18) shows that this vector is the product of two terms.
The second term, (xi + yidi2−i, yi − xidi2−i), determines the direction of the vector,
while the first term, cos(diθi), affects only the magnitude of the vector. The second
term is easy to calculate since it just involves shifts. We know that di is just a sign and
that a product of the form xi2−i can be computed by shifting xi i positions to the right.
The problem is to calculate the first term, cos(diθi), and to multiply the two terms.

This is why CORDIC proceeds by first performing all the iterations

(xi+1, yi+1)← (xi + yidi2−i, yi − xidi2−i)

using just right shifts and additions/subtractions; the cosine terms are ignored. The
result is a vector that points in the right direction but is too long (Figure 4.14). To
bring this vector to its correct size, it should be multiplied by the scale factor

Km =
m∏
i=0

cos θi.

(Notice that cos(diθi) = cos θi since cosine is an even function.) This is discouraging
because it suggests that m multiplications are needed just to calculate the scale factor
Km. However, the first 16 scale factors are listed in Table 4.13 and even a quick glance
shows that they converge to the number 0.60725. . . . Reference [Vachss 87] shows that
Km can be obtained simply by using the m most significant bits of this number and
ignoring the rest.

222 4.2 Two-Dimensional Transformations

Using the identity sin2 θ + cos2 θ = 1 and the definition tan θi = 2−i, we get

cos θi =
1√

1 + tan2 θi
=

1√
1 + 2−2i

,

which is why the scale factors of Table 4.13 were so easily calculated to a high precision
by the code
N[Table[Product[(2^(-2i)+1)^(-1/2),{i,0,n}],{n,0,16}],17]//TableForm.

x

y

P=(x,y)

P*=(x*,y*)

0

1

2

3

Figure 4.14: CORDIC Rotation.

� Exercise 4.32: Suggest another way to calculate Km.

Any practical CORDIC implementation (see [Jarvis 90] for a C program) should
have the following two features.

1. CORDIC employs only shifts and additions/subtractions, so any implementation
should use fixed-point, instead of floating-point, arithmetic. This is fast since shifting
and adding fixed-point numbers can be done with integer operations. Notice that all the
numbers involved in the computations are less than unity, except perhaps the original
coordinates (x, y). A software package for graphics employing this method should there-
fore use normalized coordinates (fixed-point numbers in the interval [0, 1]) throughout
and perform all the calculations on these small numbers. Each iteration results in a pair
(xi+1, yi+1) that’s slightly larger than its predecessor, but the last iteration results in
a pair that can be larger than (x, y) by a factor of at most 1/0.60725 . . . = 1.64676
This pair is then scaled down when multiplied by Km. The final step is to scale the final
coordinates up.

All this suggests a 32-bit fixed-point format where the leftmost bit is reserved, as
usual, for the sign, the next two bits are the integer part, and the remaining 29 bits are

4 Transformations 223

the fractional part (29 bits being equivalent to 9 decimal digits). The largest number
that can be represented by this format is 11.11 . . . 12 = 3.999 . . . and the smallest one
is 110 . . . 02 = −4. It’s a good idea to reserve two bits for the integer part because (1)
even though all the numbers involved are 1 or smaller, some intermediate results may
be greater than 1 and (2) this convention makes it possible to represent the important
constants π, e, and φ (the Golden Ratio).

2. Earlier, we said, “It is easy to write a program that decides which of the θi’s
should be added and which should be subtracted.” The practical way to do this is to
initialize a variable z to θ and try to drive z to zero during the iterations. In iteration
i the program should calculate both z + θi and z − θi, select the value that’s closer to
zero, use it to decide whether to add or subtract θi, and then update z. If z − θi is
closer to zero, then θi should be added; otherwise, θi should be subtracted. An example
is θ = 58◦. We initialize z to 58. In iteration 0, it is clear that 58 − 45 = 13 is closer
to zero than 58 + 45. The program therefore adds θ0 and updates z to 13. In iteration
1, the program finds that 13− 26.5651 = −13.5651 is closer to zero than 13 + 26.5651,
so it adds θ1 and updates z to −13.5651. In iteration 2, the program discovers that
−13.5651 + 14.0362 = 0.4711 is closer to zero than −13.5651− 14.0362, so it subtracts
θ2 and updates z to 0.4711.

Finally, we realize that there is really no need to compare z+θi and z−θi in iteration
i. We simply start by selecting d0 = +1 and update z by subtracting z ← z − θ0,
z ← z − θ1, etc., until we get a negative value in z. We then change di to −1 (the new
sign of z) and update z by z ← z− diθi (which now amounts to adding θi to z). This is
summarized by the Mathematica code of Figure 4.15. (But note that the Sign function
of Mathematica returns +1, 0, or −1, while we need a result of +1 or −1. The code as
shown is simple but not completely general.)

t=Table[ArcTan[2.^{-i}], {i,0,15}]; (* arctans in radians *)
d=1; x=2.1; y=0.34; z=46. Degree;
Do[{Print[i,", ",x,", ",y,", ",z,", ",d],
xn=x+y d 2^{-i}, yn=y-x d 2^{-i},
zn=z-d t[[i+1]], d=Sign[zn], x=xn, y=yn, z=zn}, {i,0,14}]
Print[0.60725x,", ",0.60725y]

Figure 4.15: Mathematica Code for CORDIC Rotations.

Compared to other approaches, CORDIC is a clear winner when a hardware multiplier
is unavailable (e.g. in a microcontroller) or when you want to save the gates required
to implement one (e.g. in an FPGA). On the other hand, when a hardware multiplier
is available (e.g. in a DSP microprocessor), table-lookup methods and good old-
fashioned power series are generally faster than CORDIC.

—Grant R. Griffin, www.dspguru.com/info/faqs/cordic.htm

� Exercise 4.33: Instead of using the complex CORDIC method, wouldn’t it be simpler
to perform a rotation by a direct use of Equation (4.17)? After all, this only requires
the calculation of one sine and one cosine values.

http://www.dspguru.com/info/faqs/cordic.htm
http://www.dspguru.com/info/faqs/cordic.htm

224 4.2 Two-Dimensional Transformations

4.2.5 Similarities

A similarity is a transformation that scales all distances by a fixed factor. It is easy to
show that a similarity is produced by the special transformation matrix

⎛
⎝ a c 0

−c a 0
m n 1

⎞
⎠ .

To show this, we observe that translations preserve distances, so we can ignore
the translation part of the matrix above and restrict ourselves to the matrix

(
a c
−c a

)
. It

transforms a point P = (x, y) to the point P∗ = (x∗, y∗) = (ax − cy, cx + ay). Given
the two transformations P1 → P∗

1 and P2 → P∗
2, it is straightforward to illustrate the

relation

distance2(P∗
1P

∗
2) =

(
(Δx∗)2 + (Δy∗)2

)
= [(ax2 − cy2)− (ax1 − cy1)]2 + [(cx2 + ay2)− (cx1 + ay1)]2

= (aΔx− cΔy)2 + (cΔx+ aΔy)2

= a2Δx2 − 2aΔxcΔy + c2Δy2 + c2Δx2 + 2cΔxaΔy + a2Δy2

= (a2 + c2)(Δx2 +Δy2)

= (a2 + c2)distance2(P1P2),

implying that distance(P∗
1P

∗
2) =

√
a2 + c2 distance(P1P2). Thus, all distances are

scaled by a factor of
√
a2 + c2.

In general, a similarity is a transformation of the form P∗ = (x∗, y∗) = (ax− cy +
m,±(cx+ ay) + n), where the ratio of expansion (or shrinking) is k =

√
a2 + c2. If k is

positive, the similarity is called direct; if k is negative, the similarity is opposite.

� Exercise 4.34: Discuss the case k = 0.
Using the ratio k, we can write a similarity (ignoring the translation part) as the

product ⎛
⎝ a c 0

−c a 0
0 0 1

⎞
⎠

⎛
⎝ k 0 0
0 k 0
0 0 1

⎞
⎠

⎛
⎝ a/k c/k 0

−c/k a/k 0
0 0 1

⎞
⎠ ,

which shows that a similarity is a combination of a scaling/reflection (by a factor k) and
a rotation. (The definition of k implies that (a/k)2+(c/k)2 = 1, so we can consider c/k
and a/k the sine and cosine of the rotation angle, respectively.)

4.2.6 A 180◦ Rotation

Another interesting example of combining transformations is a 180◦ rotation about a
fixed point P = (Px, Py). This combination is called a halfturn. It is performed, as
usual, by translating P to the origin, rotating about the origin, and translating back.

4 Transformations 225

The transformation matrix is (notice that cos(180◦) = −1)

T =

⎛
⎝ 1 0 0

0 1 0
−Px −Py 1

⎞
⎠

⎛
⎝−1 0 0
0 −1 0
0 0 1

⎞
⎠

⎛
⎝ 1 0 0
0 1 0
Px Py 1

⎞
⎠ =

⎛
⎝ −1 0 0

0 −1 0
2Px 2Py 1

⎞
⎠ .

A general point (x, y) is therefore transformed by a halfturn to

(x, y, 1)

⎛
⎝ −1 0 0

0 −1 0
2Px 2Py 1

⎞
⎠ = (−x+ 2Px,−y + 2Py, 1) (4.19)

(Figure 4.16a), but it’s more interesting to explore the effect of two consecutive halfturns,
about points P and Q. The second halfturn transforms point (−x + 2Px,−y + 2Py, 1)
to

(−x+2Px,−y+2Py, 1)
⎛
⎝ −1 0 0

0 −1 0
2Qx 2Qy 1

⎞
⎠ = (x−2Px+2Qx, y−2Py+2Qy, 1). (4.20)

If P = Q, then the result of the second halfturn is (x, y), showing how two identical
180◦ rotations return a point to its original location. If P and Q are different, the result
is a translation of the original point (x, y) by factors −2Px + 2Qx and −2Py + 2Qy

(Figure 4.16b).

S

P Q

R

P

Q
P

(x,y)

(x,y)
(x,y)

(x*,y*)

(x*,y*)
(x*,y*)

(a) (b)

Translation

(c)

Figure 4.16: Halfturns.

� Exercise 4.35: What is the result of three consecutive halfturns about the distinct
points P, Q, and R?

Things turn out best for the people who make the best out of the
way things turn out.

—Art Linkletter.

226 4.2 Two-Dimensional Transformations

4.2.7 Glide Reflections

This transformation is a special combination of three reflections. Imagine the two vertical
parallel lines x = L and x =M and the horizontal line y = N (Figure 4.17a). Reflecting
a point P = (x, y) about the line x = L is done by translating the line to the y axis,
reflecting about that axis, and translating back. The transformation matrix is⎛

⎝ 1 0 0
0 1 0
−L 0 1

⎞
⎠

⎛
⎝−1 0 0
0 1 0
0 0 1

⎞
⎠

⎛
⎝ 1 0 0
0 1 0
L 0 1

⎞
⎠ =

⎛
⎝−1 0 0
0 1 0
2L 0 1

⎞
⎠ ,

and the transformed point is

(x, y, 1)

⎛
⎝−1 0 0
0 1 0
2L 0 1

⎞
⎠ = (−x+ 2L, y, 1).

Reflecting this point about the line x =M results in

(−x+ 2L, y, 1)
⎛
⎝ −1 0 0

0 1 0
2M 0 1

⎞
⎠ = (x− 2L+ 2M,y, 1)

(a translation), and reflecting this about the horizontal line y = N yields

(x− 2L+ 2M,y, 1)

⎛
⎝ 1 0 0
0 −1 0
0 2N 1

⎞
⎠ = (x− 2L+ 2M,−y + 2N, 1).

This particular glide reflection is therefore a translation in x and a reflection in y. A
general glide reflection is the product of three reflections, the first two about parallel
lines L and M and the third about a line N perpendicular to them (Figure 4.17b).

(a) (b)

x=L x=M

y=N

L

MN

Figure 4.17: Glide Reflection.

4 Transformations 227

4.2.8 Improper Rotations

A rotation followed by a reflection about one of the coordinate axes is called an improper
rotation. The transformation matrices for the two possible improper rotations in two
dimensions (Figure 4.18) are

(
cos θ − sin θ
sin θ cos θ

)(
1 0
0 −1

)
=

(
cos θ sin θ
sin θ − cos θ

)
,(

cos θ − sin θ
sin θ cos θ

)(−1 0
0 1

)
=

(− cos θ − sin θ
− sin θ cos θ

)
,

and the transformation rules therefore are

x∗ = x cos θ + y sin θ, y∗ = x sin θ − y cos θ,
x∗ = −x cos θ − y sin θ, y∗ = −x sin θ + y cos θ.

Notice that the determinant of an improper rotation matrix equals −1, like that of a
pure reflection.

(a) (b)

Figure 4.18: Improper Rotations.

An improper rotation differs from a rotation in one important aspect. When we
rotate an object through a small angle and repeat this transformation, the object seems
to move smoothly along a circle. Each time we repeat an improper rotation, however,
the object “jumps” from one side of the coordinate plane to the other. The total effect
is very different from that of a smooth circular movement.

4.2.9 Decomposing Transformations

Sometimes, a certain transformation A may be equivalent to the combined effects of
several different transformations B, C, and D. We say that A can be decomposed into B,
C, and D. Mathematically, this is equivalent to saying that the original transformation
matrix TA equals the product TBTCTD. We have already seen that a rotation in two
dimensions can be decomposed into a scaling followed by a shearing; here are other
examples.

It may come as a surprise that the general two-dimensional transformation matrix,
Equation (4.7), can be written as a product of shearing, scaling, rotation, and translation

228 4.2 Two-Dimensional Transformations

as follows:⎡
⎣ a b 0

c d 0
m n 1

⎤
⎦ =

⎡
⎣ 1 0 0
(ac+ bd)/A2 1 0

0 0 1

⎤
⎦
⎡
⎣A 0 0
0 (ad− bc)/A 0
0 0 1

⎤
⎦
⎡
⎣ a/A b/A 0
−b/A a/A 0
0 0 1

⎤
⎦
⎡
⎣ 1 0 0
0 1 0
m n 1

⎤
⎦ ,

(4.21)

where A =
√
a2 + b2. The third matrix produces rotation since (a/A)2 + (b/A)2 = 1.

Even something as simple as shearing in one direction can be written as the product
of a unit shearing and two scalings:

⎛
⎝ 1 0 0

c 1 0
0 0 1

⎞
⎠ =

⎛
⎝ 1/c 0 0

0 1 0
0 0 1

⎞
⎠

⎛
⎝ 1 0 0
1 1 0
0 0 1

⎞
⎠

⎛
⎝ c 0 0
0 1 0
0 0 1

⎞
⎠ .

Even the simple transformation of a unit shearing can be decomposed into a product
that involves a scaling and two rotations. Note that the Golden Ratio φ is involved,

⎛
⎝ 1 0 0
1 1 0
0 0 1

⎞
⎠ =

⎛
⎝ cosα − sinα 0
sinα cosα 0
0 0 1

⎞
⎠

⎛
⎝φ 0 0
0 1/φ 0
0 0 1

⎞
⎠

⎛
⎝ cosβ sinβ 0

− sinβ cosβ 0
0 0 1

⎞
⎠ ,

where α = tan−1 φ ≈ 58.28◦ and β = tan−1(1/φ) ≈ 31.72◦.
(This is indeed a surprising result. It means that a clockwise rotation of 58.28◦,

followed by a scaling of φ in the x direction and 1/φ in the y direction, followed by a
counterclockwise rotation of 31.72◦, is equivalent to a unit shear in the x direction. This
is illustrated by Figure 4.19.)

Geometry has two great treasures: one the Theorem of Pythagoras; the other,
the division of a line into extreme and mean ratio. The first we may compare
to a measure of gold; the second we may name a precious jewel.

—Johannes Kepler.

� Exercise 4.36: Given the transformation

x∗ = 3x− 2y + 1, y∗ = 4x+ 5y − 6,

calculate the transformation matrix and decompose it into a product of four matrices
as shown in Equation (4.21).

4 Transformations 229

(a)

rotate 580

(b)

(c) (d)

clockwise

scale by
1.618 and 0.618

rotate 320
counterclockwise

Figure 4.19: Shearing Decomposed into Rotation and Scaling.

4.2.10 Reconstructing Transformations

Given a sequence of two-dimensional transformations, we normally write the 3×3 matrix
for each and then multiply the matrices. The result is another 3×3 matrix which is used
to transform all the points of an object. An interesting question is: Given the points
of an object before and after a transformation, can we reconstruct the transformation
matrix from them?

The answer is yes! The general two-dimensional transformation matrix depends on
six numbers, so all we need are six equations involving transformed points. Since each
point consists of two numbers, three points are enough to reconstruct the transformation
matrix. Given three points both before (P1, P2, P3) and after (P∗

1, P∗
2, P∗

3) a transfor-
mation, we can write the three equations P∗

1 = P1T, P∗
2 = P2T, and P∗

3 = P3T and
solve for the six elements of T.

Example: The three points (1, 1), (1, 0), and (0, 1) are transformed to (3, 4),
(2,−1), and (0, 2), respectively. We write the general transformation (x∗, y∗) = (ax +
cy +m, bx+ dy + n) for the three sets

(3, 4) = (a+ c+m, b+ d+ n),
(2,−1) = (a+m, b+ n),
(0, 2) = (c+m,d+ n),

and this is easily solved to yield a = 3, b = 2, c = 1, d = 5, m = −1, and n = −3. The

230 4.2 Two-Dimensional Transformations

transformation matrix is therefore

T =

⎛
⎝ 3 2 0
1 5 0
−1 −3 1

⎞
⎠ .

� Exercise 4.37: Inverse transformations. From P∗ = PT, we get P∗T−1 = PTT−1 or
P = P∗T−1. We can therefore reconstruct an original point P from the transformed
one, P∗, if we know the inverse of the transformation matrix T. In general, the inverse
of the 3× 3 matrix

T =

⎛
⎝ a b 0

c d 0
m n 1

⎞
⎠

is

T−1 =
1

ad− bc

⎛
⎝ d −b 0

−c a 0
cn− dm bm− an 1

⎞
⎠ . (4.22)

Calculate the inverses of the transformation matrices for scaling, shearing, rotation, and
translation, and discuss their properties.

� Exercise 4.38: Given that the four points

P1 = (0, 0), P2 = (0, 1), P3 = (1, 1), and P4 = (1, 0)

are transformed to

P∗
1 = (0, 0), P∗

2 = (2, 3), P∗
3 = (8, 4), and P∗

4 = (6, 1),

reconstruct the transformation matrix.

4.2.11 A Note

All the expressions derived so far for transformations are based on the basic relation
P∗ = PT. Some authors prefer the equivalent relation P∗ = TP, which changes the
mathematics somewhat. If we want the coordinates of the transformed point to be the
same as before (i.e., x∗ = ax+ cy+m, y∗ = bx+ dy + n), we have to write the relation
P∗ = TP in the form ⎛

⎝x∗

y∗

1

⎞
⎠ =

⎛
⎝ a c m

b d n
0 0 1

⎞
⎠

⎛
⎝x

y
1

⎞
⎠ .

The first difference is that both P and P∗ are columns instead of rows. This is because of
the rules of matrix multiplication. The second difference is that the new transformation
matrix T is the transpose of the original one. Hence, rotation, for example, is achieved
by the matrices ⎛

⎝ cos θ sin θ 0
− sin θ cos θ 0
0 0 1

⎞
⎠

4 Transformations 231

for a clockwise rotation, and

⎛
⎝ cos θ − sin θ 0
sin θ cos θ 0
0 0 1

⎞
⎠

for a counterclockwise rotation.

Similarly, translation is done by

⎛
⎝ 1 0 m
0 1 n
0 0 1

⎞
⎠ instead of

⎛
⎝ 1 0 0
0 1 0
m n 1

⎞
⎠ .

4.2.12 Summary

The general two-dimensional affine transformation is given by x∗ = ax+ cy +m, y∗ =
bx+ dy + n. This section lists the values or constraints that should be assigned to the
four coefficients a, b, c, and d in order to obtain certain types of transformations (we
ignore translations).

A general affine transformation is obtained when ad − bc �= 0. For ad − bc = +1,
the transformation is rotation, and for ad− bc = −1, it is reflection.

The case ad− bc = 0 corresponds to a singular transformation.

The identity transformation is obtained for a = d = 1 and b = c = 0.

An isometry is obtained by a2+ b2 = c2+ d2 = 1 and ac+ bd = 0. An isometry is a
transformation that preserves distances. If P and Q are two points on an object, then
the distance d between them is preserved, meaning that the distance d between P∗ and
Q∗ is the same. Rotations, reflections, and translations are isometries.

A similarity is obtained for a2 + b2 = c2 + d2 and ac + bd = 0. A similarity is a
transformation that preserves the ratios of lengths. A typical similarity is scaling, but
it may be combined with rotation, reflection, and translation.

An equiareal transformation (preserving areas) is obtained when |ad− bc| = 1.
A shearing in the x direction is caused by a = d = 1 and b = 0. Similarly, a shearing

in the y direction corresponds to a = d = 1 and c = 0.

A uniform scaling is a = d > 0 and b = c = 0. (The identity is a special case of
scaling.)

A uniform reflection is a = d < 0 and b = c = 0.

A rotation is the result of a = d = cos θ and b = −c = sin θ.

232 4.3 Three-Dimensional Coordinate Systems

4.3 Three-Dimensional Coordinate Systems

We now turn to transformations in three dimensions. In most cases, the mathematics of
linear transformations is easy to extend from two dimensions to three dimensions, but
the discussion in this section demonstrates that certain transformations, most notably
rotations, are more complex in three dimensions because there are more directions about
which to rotate and because the simple terms clockwise and counterclockwise no longer
apply in three dimensions. We start with a short discussion of coordinate systems in
three dimensions.

x

y

z

z Left-handed

Right-handed

x

y

z

(b) Left-handed

Observer

Object
x

y

z

(c) Right-handed

Observer

Object

(a)

Figure 4.20: Three-Dimensional Coordinate Systems.

In two dimensions, there is only one Cartesian coordinate system, with two per-
pendicular axes labeled x and y (actually, the axes don’t have to be perpendicular, but
this is irrelevant for our discussion of transformations). A coordinate system in three
dimensions consists similarly of three perpendicular axes labeled x, y, and z, but there
are two such systems, a left-handed and a right-handed (Figure 4.20a), and they are
different. A right-handed coordinate system is constructed by the following rule. Align
your right thumb with the positive x axis and your right index finger with the positive y
axis. Your right middle finger will then point in the direction of positive z. The rule for
a left-handed system uses the left hand in a similar manner. It is also possible to define a
left-handed coordinate system as the mirror image (reflection) of a right-handed system.
Notice that one coordinate system cannot be transformed into the other by translating
or rotating it.

4 Transformations 233

The difference between left-handed and right-handed coordinate systems becomes
important when a three-dimensional object is projected on a two-dimensional screen
(Chapter 6). We assume that the screen is positioned at the xy plane with its origin
(i.e., its bottom-left corner) at the origin of the three-dimensional system. We also
assume that the object to be projected is located on the positive side of the z axis
and the viewer is located on the negative side, looking at the projection of the image
on the screen. Figure 4.20b shows that in a left-handed three-dimensional coordinate
system, the directions of the positive x and y axes on the screen coincide with those of
the three-dimensional x and y axes. However, in a right-handed system (Figure 4.20c)
the two-dimensional x axis (on the screen) and the three-dimensional x axis point in
opposite directions.

Principle: Express co-ordinate ideas in similar form.
This principle, that of parallel construction, requires that expressions of similar con-
tent and function should be outwardly similar. The likeness of form enables the reader
to recognize more readily the likeness of content and function. Familiar instances from
the Bible are the Ten Commandments, the Beatitudes, and the petitions of the Lord’s
Prayer.

—W. Strunk Jr. and E. B. White, The Elements of Style.

4.4 Three-Dimensional Transformations

We derive three-dimensional transformations by extending the methods used in two-
dimensional transformations, especially the concept of homogeneous coordinates. A
three-dimensional point P = (x, y, z, 1) is transformed to a point P∗ = (x∗, y∗, z∗, 1) by
multiplying it by a 4×4 matrix

T =

⎛
⎜⎝

a b c p
d e f q
h i j r
l m n s

⎞
⎟⎠ . (4.23)

The last column of T is not (0, 0, 0, 1)T and is used for projections. (See the discussion of
n-point perspective on Page 319.) As a result, the productPT is the 4-tuple (X,Y,Z,H),
where H equals xp+yq+zr+s and is generally not 1. The three coordinates (x∗, y∗, z∗)
of P∗ are obtained by dividing (X,Y,Z) by H. Hence, (x∗, y∗, z∗) = (X/H, Y/H,Z/H).

The top left 3 × 3 part of T is responsible for scaling and reflection (a, e, and j),
shearing (b, c, f and d, h, i), and rotation (all nine elements). The three quantities l, m,
and n are responsible for translation, and the only new parameters are those in the last
column (p, q, r, s).

To understand the meaning of s, we examine the matrix T =
(1

1
1

S

)
. Mul-

tiplying P by T transforms (x, y, z, 1) into (x, y, z, s), so the new point has coordinates

234 4.4 Three-Dimensional Transformations

(x/s, y/s, z/s). The parameter s is therefore responsible for global scaling (by a factor

of 1/s). Its effect is identical to transforming by
(1/s

1/s
1/s

1

)
.

Translation in three dimensions is a direct extension of the two-dimensional case.
A point can be translated in the direction of any of the coordinate axes.

Scaling in three dimensions is simple. An object can be scaled about the origin
along any of the three coordinate axes. To scale about another point P0, a sequence
of three transformations is needed. The point should be translated to the origin, the
scaling performed, and the point translated back. Notice that scaling an object is done
by scaling all its points. Scaling a point does not change its dimensions (a point has no
dimensions) but simply moves it to another location.

Shearing in three dimensions is difficult to visualize. It is controlled by the six
off-diagonal matrix elements b, c, f , d, h, and i, which is why many variations are
possible. Perhaps the best way to become familiar with three-dimensional shearing is
to experiment with the effect of varying each of the six parameters. Figure 4.21 shows
a few possible shearings of a rectangular box.

Figure 4.21: Shearing in Three Dimensions.

Shearing: A transformation in which all points along a given line L remain fixed while
other points are shifted parallel to L by a distance proportional to their perpendicular
distance from L. Shearing a plane figure does not change its area. This can also be
generalized to three dimensions, where planes are translated instead of lines.

—Eric W. Weisstein, http://mathworld.wolfram.com/Shear.html

4.4.1 Reflection

It is easy to reflect a point (x, y, z) about any of the three coordinate planes xy, xz, or
yz. All that is needed is to change the sign of one of the point’s coordinates. In this
section, we discuss and explain the general case where an arbitrary plane and a point
are given and we want to reflect the point about the plane. We proceed in three steps
as follows: (1) We discuss planes and their equations (there is a similar discussion in
Section 9.2.2), (2) we show how to determine the distance of a point from a given plane,
and (3) we explain how to compute the reflection of a point about a plane.

The (implicit) equation of a straight line is Ax+By+C = 0, where A or B but not
both can be zero. The equation of a flat plane is the direct extension Ax+By+Cz+D =
0, where A, B, and C cannot all be zero. Four equations are needed to calculate the
four unknown coefficients A, B, C, and D. On the other hand, we know that any three
independent (i.e., noncollinear) points Pi = (xi, yi, zi), i = 1, 2, 3 define a plane. Thus,
we can write a set of four equations, three of which are based on three given points and

http://mathworld.wolfram.com/Shear.html
http://mathworld.wolfram.com/Shear.html

4 Transformations 235

the fourth one expressing the condition that a general point (x, y, z) lies on the plane

0 =

∣∣∣∣∣∣∣
x y z 1
x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1

∣∣∣∣∣∣∣
=x

∣∣∣∣∣∣
y1 z1 1
y2 z2 1
y3 z3 1

∣∣∣∣∣∣− y

∣∣∣∣∣∣
x1 z1 1
x2 z2 1
x3 z3 1

∣∣∣∣∣∣+ z

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣−
∣∣∣∣∣∣
x1 y1 z1
x2 y2 z2
x3 y3 z3

∣∣∣∣∣∣ .
We cannot solve this system of equations because x, y, and z can have any values,

but we don’t need to solve it! We just have to guarantee that this system has a solution.
In general, a system of linear algebraic equations has a solution if and only if its deter-
minant is zero. The expression below assumes this and also expands the determinant
by its top row:

0 =

∣∣∣∣∣∣∣
x y z 1
x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1

∣∣∣∣∣∣∣
=x

∣∣∣∣∣∣
y1 z1 1
y2 z2 1
y3 z3 1

∣∣∣∣∣∣− y

∣∣∣∣∣∣
x1 z1 1
x2 z2 1
x3 z3 1

∣∣∣∣∣∣+ z

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣−
∣∣∣∣∣∣
x1 y1 z1
x2 y2 z2
x3 y3 z3

∣∣∣∣∣∣ .
This is of the form Ax+By + Cz +D = 0, so we conclude that

A =

∣∣∣∣∣∣
y1 z1 1
y2 z2 1
y3 z3 1

∣∣∣∣∣∣ B = −
∣∣∣∣∣∣
x1 z1 1
x2 z2 1
x3 z3 1

∣∣∣∣∣∣ C =

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ D = −
∣∣∣∣∣∣
x1 y1 z1
x2 y2 z2
x3 y3 z3

∣∣∣∣∣∣ .
(4.24)

� Exercise 4.39: Derive the expression of the plane containing the z axis and passing
through the point (1, 1, 0).

� Exercise 4.40: In the plane equation Ax + By + Cz + D = 0 if D = 0, then the
plane passes through the origin. Assuming D �= 0, we can write the same equation as
x/a + y/b + z/c = 1, where a = −D/A, b = −D/B, and c = −D/C. What is the
geometrical interpretation of a, b, and c?

We operate with nothing but things which do not exist, with lines, planes, bodies,
atoms, divisible time, divisible space—how should explanation even be possible when
we first make everything into an image, into our own image!

—Friedrich Nietzsche.

In some practical applications, the normal to the plane and one point on the plane
are known. It is easy to derive the plane equation in such a case.

We assume that N is the (known) normal vector to the plane, P1 is a known point
on the plane, andP is an arbitrary point in the plane. The vectorP−P1 is perpendicular

236 4.4 Three-Dimensional Transformations

toN, so their dot productN•(P−P1) equals zero. Since the dot product is associative,
we can write N •P = N •P1. The dot product N •P1 is just a number, to be denoted
by s, so we get

N •P = s or Nxx+Nyy +Nzz − s = 0. (4.25)

Equation (4.25) can now be written as Ax + By + Cz + D = 0, where A = Nx, B =
Ny, C = Nz, and D = −s = −N • P1. The three unknowns A, B, and C are the
components of the normal vector, and D can be calculated from any known point P1

on the plane. The expression N •P = s is a useful equation of the plane and is used in
many applications.

� Exercise 4.41: Given N(u,w) = (1, 1, 1) and P1 = (1, 1, 1), calculate the plane equa-
tion.

P1

P3

P

r

urs

ws
P2

(a)
(3,0,0)

(0,0,3)

(b)

x

y

z

Figure 4.22: (a). A Plane. (b) Three Points on a Plane.

Note that the direction in which the normal is pointing is irrelevant for the plane
equation. Substituting (−A,−B,−C) for (A,B,C) would also change the sign of D,
resulting in the same equation. However, the direction of the normal is important when
a surface is to be shaded. We want the normal, in such a case, to point outside the
surface. Often, this has to be done manually since the computer has no concept of the
shape of the object in question and the meaning of the terms “inside” and “outside.”
However, in cases where a plane is defined by three points, the direction of the normal
can be specified by arranging the three points (in the data structure in memory) in a
certain order.

It is also easy to derive the equation of a plane when three points on the plane, P1,
P2, and P3, are known. In order for the points to define a plane, they should not be
collinear. We consider the vectors r = P2 − P1 and s = P3 − P1 a local coordinate
system on the plane. Any point P on the plane can be expressed as a linear combination
P = ur + ws, where u and w are real numbers. Since r and s are local coordinates on
the plane, the position of point P relative to the origin is expressed as (Figure 4.22b)

P(u,w) = P1 + ur+ ws, −∞ < u,w < ∞. (4.26)

4 Transformations 237

P

Q

N
v v N

Figure 4.23: Distance of a Point from a Plane.

� Exercise 4.42: Given the three points P1 = (3, 0, 0), P2 = (0, 3, 0), and P3 = (0, 0, 3),
write the equation of the plane defined by them.

The next step is to determine the distance between a point and a plane. Given the
point P = (x, y, z) and the plane Ax+ By + Cz +D = 0, we select an arbitrary point
Q = (x0, y0, z0) on the plane. SinceQ is on the plane, it satisfies Ax0+By0+Cz0+D = 0
or −Ax0 − By0 − Cz0 = D. We construct the vector v from Q to P as the difference
v = P − Q = (x − x0, y − y0, z − z0). Figure 4.23 shows that the required distance
(the size of the vector from the plane to P that’s perpendicular to the plane) is the
component vN of v in the direction of the normal N = (A,B,C). This component is
given by

vN =
|v •N|
|N| =

|A(x− x0) +B(y − y0) + C(z − z0)|√
A2 +B2 + C2

=
|Ax+By + Cz −Ax0 −By0 − Cz0|√

A2 +B2 + C2

=
|Ax+By + Cz +D|√

A2 +B2 + C2
. (4.27)

If we omit the absolute value, then the distance becomes a signed quantity. We can
think of the plane as if it divides all of space into two parts, one in the direction of N
and the other on the other side of the plane. The distance is positive if P is located in
that part of space pointed to by the normal (which is the case in Figure 4.23), and it is
negative in the opposite case.

� Exercise 4.43: What’s the distance of a plane from the origin?

Now that we can figure out the distance between a point and a plane, the last
step is to reflect a point about a given plane. We start with a point P = (x, y, z)
and a plane Ax + By + Cz + D = 0. We denote the normal unit vector by N =
(A,B,C)/

√
A2 +B2 + C2 and the (signed) distance between P and the plane by d. To

get from P to the plane, we have to travel a distance d in the direction of N. To arrive
at the reflection point P∗, we should travel another d units in the same direction. Thus,
the reflection P∗ of P is given by

P∗ = P− 2dN = P− 2(Ax+By + Cz +D)
A2 +B2 + C2

(A,B,C). (4.28)

238 4.4 Three-Dimensional Transformations

� Exercise 4.44: Why P− 2dN and not P+ 2dN?

Most neurotics have been mindful of their five W’s since grammar school: why, why,
why, why, why.

—Terri Guillemets.

(a) (b)

(1,1,1)

(-1,0,2)

(0,1,2)

(-1,-1,1)

(1,1,1)

xx

y y

z

Figure 4.24: Reflection in Three Dimensions: Examples.

Examples: We select (Figure 4.24a) the plane x+y = 0 and the point P = (1, 1, 1).
Equation (4.28) becomes

P∗ = (1, 1, 1)− 2(1 + 1)
1 + 1 + 0

(1, 1, 0) = (−1,−1, 1).

Similarly, point P = (0, 1, 2) is reflected to

P∗ = (0, 1, 2)− 2(0 + 1)
1 + 1 + 0

(1, 1, 0) = (−1, 0, 2).

We now select (Figure 4.24b) the plane x + y + z − 1 = 0 and the point P = (1, 1, 1).
Equation (4.28) becomes

P∗ = (1, 1, 1)− 2(1 + 1 + 1− 1)
1 + 1 + 1

(1, 1, 1) = −1
3
(1, 1, 1).

Similarly, point P = (0, 0, 0) is reflected to

P∗ = (0, 0, 0)− 2(0 + 0 + 0− 1)
1 + 1 + 1

(1, 1, 1) =
2
3
(1, 1, 1).

The special case of a reflection about one of the coordinate planes is also obtained
from Equation (4.28). The equation of the xy plane, for example, is z = 0, where
Equation (4.28) yields

P∗ = (x, y, z)− 2(0 + 0 + z + 0)
02 + 02 + 12

(0, 0, 1) = (x, y,−z).

4 Transformations 239

4.4.2 Rotation

Rotation in three dimensions is difficult to visualize and is often confusing. One approach
to rotations is to write three rotation matrices that rotate about the three coordinate
axes:

⎛
⎜⎝
cos θ − sin θ 0 0
sin θ cos θ 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠ ,

⎛
⎜⎝
cos θ 0 − sin θ 0
0 1 0 0
sin θ 0 cos θ 0
0 0 0 1

⎞
⎟⎠ ,

⎛
⎜⎝
1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

⎞
⎟⎠ .

(4.29)
Let’s look at the first of these matrices. Its third row and third column are (0, 0, 1, 0),
which is why multiplying a point (x, y, z, 1) by this matrix leaves its z coordinate un-
changed. The sines and cosines in the first two rows and two columns mix up the x
and y coordinates in a way similar to a two-dimensional rotation, Equation (4.4). Thus,
this transformation matrix causes a rotation about the z axis. The two other matrices
rotate about the y and x axes.

(1,0,0)

(0,1,0)

(0,
0,1

)

(0,1,0)

x x x

y
y y

z z z

(a) (b) (c)

Figure 4.25: Rotating About the Coordinate Axes.

Okay, so I assume going into this tutorial that you know how to perform matrix
multiplication. I don’t care to explain it, and it’s available all over the Internet.
However, once you know how to perform that operation, you should be good to go for
this tutorial.

(Found on the Internet).

It is therefore easy to identify the axis of rotation for each of the three rotation
matrices of Equation (4.29), but what about their direction of rotation? To figure out
the directions, we select θ = 90◦ and substitute sin θ = 1 and cos θ = 0. Simple tests in a
right-handed coordinate system show that the first matrix of Equation (4.29) (rotation
about the z axis) rotates point (1, 0, 0) to (0,−1, 0) and point (0, 1, 0) to (1, 0, 0). Thus,
when we observe this 90◦ rotation looking in the direction of positive z, the rotation
is counterclockwise (Figure 4.25a). The second matrix, however, behaves differently.
It rotates point (1, 0, 0) to (0, 0,−1) and point (0, 0, 1) to (1, 0, 0). When we observe
this 90◦ rotation about the y axis looking in the direction of positive y, the rotation
is clockwise (Figure 4.25b). The third matrix (rotation about the x axis) rotates point
(0, 1, 0) to (0, 0,−1) and point (0, 0, 1) to (0, 1, 0). When we observe this 90◦ rotation
looking in the direction of positive x, the rotation is counterclockwise (Figure 4.25c).

We therefore decide (somewhat arbitrarily) to switch the signs (positive and neg-
ative) of the sine functions in the matrices that rotate about the z and x axes. The

240 4.4 Three-Dimensional Transformations

result,

⎛
⎜⎝
cos θ sin θ 0 0
− sin θ cos θ 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠ ,

⎛
⎜⎝
cos θ 0 − sin θ 0
0 1 0 0
sin θ 0 cos θ 0
0 0 0 1

⎞
⎟⎠ ,

⎛
⎜⎝
1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1

⎞
⎟⎠ , (4.30)

is a set of three rotation matrices that rotate a point about the three coordinate axes in
such a way that if we look in the positive direction of that axis, the rotation is clockwise.

(Surprisingly, it turns out that there is an elegant way to specify the direction
of rotation that’s generated by the rotation matrices of Equation (4.29), and this is
described below.)

The rotation matrices of Equations (4.29) and (4.30) are simple but not very useful
because in practice we rarely know how to break a general rotation into three rotations
about the coordinate axes. There are some cases, however, where rotations about the
coordinate axes are common. One such case is discussed in Section 5.2; two more are
presented here.

Case 1: Rotations about the coordinate axes are common in the motion of a sub-
marine or an airplane. These vehicles have three degrees of freedom and have three
natural, mutually perpendicular axes of rotation that are called roll, pitch, and yaw
(Figure 4.26). Roll is a rotation about the direction of motion of the vehicle. An air-
plane rolls when it banks by dipping one wing and lifting the other. Pitch is an up or
down rotation about an axis that goes through the wings. An airplane uses its elevators
for this. Yaw is a left–right rotation about a vertical axis, accomplished by the rudder.
These terms originated with sailors because a ship can yaw and also has limited roll and
pitch capabilities.

Yaw

Pitch

Roll

Figure 4.26: Roll, Pitch, and Yaw.

Case 2: Another example of an application where rotations about the three coor-
dinate axes are common is L-systems. This is a system of formal notation developed
by the biologist Aristid Lindenmayer (hence the “L”) in 1968 as a tool to describe the
morphology of plants [Lindenmayer 68]. In the 1970s, this notation was adopted by
computer scientists and used to define formal languages. Since 1984, it has also been
used to describe and draw many types of fractals. Today, L-systems are used to generate
tilings, geometric art, and even music.

The main idea of L-systems is to specify a complex object by (1) defining an initial
simple object, called the axiom, and (2) writing rules that show how to replace parts

4 Transformations 241

of the axiom. The rules are written in terms of turtle moves, a concept originally
introduced in the LOGO programming language [Abelson and diSessa 82]. L-systems,
however, specify the structure of three-dimensional objects, so the turtle must move in
three dimensions and can rotate about its three main axes. For more information on
L-systems, see [Prusinkiewicz 89].

It has already been mentioned that rotation in three dimensions is more complex
than in two dimensions. One reason for this is that rotation in two dimensions is about
a point, whereas rotation in three dimensions is about an axis (any axis, not just one
of the three coordinate axes). Another reason is that the direction of rotation in two
dimensions can be only clockwise or counterclockwise, but the direction of rotation in
three dimensions is more complex to specify. The rotation is about an axis, but its direc-
tion, clockwise or counterclockwise, about this axis depends on how we look at the axis.
Thus, a general rule is needed to specify the direction of a three-dimensional rotation
unambiguously. We state such a rule for the rotation matrices of Equation (4.29).

The direction of a three-dimensional rotation generated by the matrices of (4.29) in
a right-handed coordinate system is determined by the following rule: Write down the
sequence “x, y, z” and erase the symbol that corresponds to the axis of rotation. The
two remaining symbols are denoted by l and r. Draw the coordinate axes such that
the positive direction of l will be up and the positive direction of r will be to the right.
(This is not a necessary requirement, but it conforms to Figure 4.27.) The rotation will
then be from positive r to positive l to negative r to negative l (Figure 4.27 and see also
Exercise 6.13).

x x

y

y

z z

Figure 4.27: Direction of Three-Dimensional Rotations.

Example: A rotation about the z axis produced by the leftmost matrix of (4.29).
After erasing z, the two symbols left are x and y. We draw the coordinate axes such that
positive x is up and positive y is to the right. The matrix produces counterclockwise
rotation. To achieve clockwise rotation, either use a negative angle or the inverse of the
rotation matrix. Inverting our rotation matrices is especially easy and requires only that
we change the signs of the sine functions.

Example: Consider the following compound transformation: (1) a translation by
l, m, and n units along the three coordinate axes, (2) a rotation of θ degrees about the
x axis, (3) a rotation of φ degrees about the y axis, and (4) the reverse translation. The

242 4.4 Three-Dimensional Transformations

four transformation matrices are

Tr =

⎛
⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
l m n 1

⎞
⎟⎠ , Trr =

⎛
⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
−l −m −n 1

⎞
⎟⎠ ,

Rx =

⎛
⎜⎝
1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1

⎞
⎟⎠ , Ry =

⎛
⎜⎝
cosφ 0 − sinφ 0
0 1 0 0

sinφ 0 cosφ 0
0 0 0 1

⎞
⎟⎠ .

Their product equals the 4×4 matrix

T = TrRxRyTrr

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cosφ 0 − sinφ 0
sinφ sin θ cos θ cosφ sin θ 0
cos θ sinφ − sin θ cosφ cos θ 0

−l + l cosφ
+m cos(φ− θ)/2
−m cos(φ+ θ)/2
+n sin(φ− θ)/2
+n sin(φ+ θ)/2

−m
+m cos θ
−n sin θ

[−2n+ n cos(φ− θ)
+n cos(φ+ θ)

−2l sinφ
−m sin(φ− θ)

+m sin(φ+ θ)]/2

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Substituting the values θ = 30◦, φ = 45◦, and l = m = n = −1, we get the 4× 4 matrix

T =

⎛
⎜⎝
0.7071 0 −0.7071 0
0.3540 0.866 0.3540 0
0.6124 −0.50 0.6124 0
−0.673 0.634 0.7410 1

⎞
⎟⎠ .

A point at (1, 2, 3), for example, is transformed by T to the point

(1, 2, 3, 1)T = (2.5793, 0.866, 2.5791, 1).

� Exercise 4.45: Do the same operations for the compound transformation TrRxTrr.

4.4.3 General Rotations

In practice, we generally don’t know how to express an arbitrary rotation as a product of
rotations about the coordinate axes, so we have to derive the important transformation
of general rotation explicitly. The problem is easy to state. A point P is to be rotated
through an angle θ about a specified axis. It is important to realize that there is a
difference between an axis and a vector. A vector is fully specified by three numbers. It
has direction and magnitude, but no specific location in space. An axis has both direction
and location (it starts at a certain point), but its magnitude is normally irrelevant. A
full specification of an axis requires a start point and a vector, a total of six numbers.

4 Transformations 243

(However, because the magnitude of the vector is irrelevant, it can be represented by
two numbers only.) In order to simplify our derivation, we assume that our axis of
rotation starts at the origin. If it starts at point P0, we have to precede the rotation by
a translation of P0 to the origin and follow the rotation by the inverse translation (see
also Section 24.3.10 for a discussion of rotations in connection with the discrete cosine
transform (DCT)).

We therefore denote by u a unit vector located on an axis that starts at the origin.
We can now fully specify a general rotation in three dimensions by four numbers—the
rotation angle θ and the three components of u. The rotated point P ends up at P∗.
We connect P to the origin and call the resulting vector r. Rotating point P to P∗ is
identical to rotating vector r to r∗.

Figure 4.28a shows that the component OC of r along u is left unchanged, but the
component CP is rotated to CP*. The distance OC is seen from the diagram to be (r•u),
so the vector �OC can be written (r •u)u. From r = �OC+ �CP, we get �CP = r− (r •u)u
or, in terms of magnitudes, | �CP| = |r− (r • u)u|. It can also be seen from the diagram
that | �CP| = |r| sinφ. Since u is a unit vector, we can write |u× r| = |r| sinφ. We thus
obtain | �CP| = |r− (r • u)u| = |u× r|.

Figure 4.28b shows the situation when looking from the origin in the positive u
direction. (The diagram shows the tail of u.) Note that the vector �CQ is perpendicular
to both u and r, so it is in the direction of u× r.

O

C

P

P*
r

r

*

u
P

P*

C

(a) (b)
Q

u

φ

Figure 4.28: A General Rotation.

The next step is to resolve CP* into its components. From Figure 4.28b, we get

�CP∗ = cos θ[r− (r • u)u] + sin θ[r− (r • u)u] = cos θ[r− (r • u)u] + sin θ(u× r),

which can be used to express r∗:

r∗ = �OC+ �CP∗ = (r • u)u+ cos θ[r− (r • u)u] + sin θ(u× r). (4.31)

244 4.4 Three-Dimensional Transformations

Using Equations (A.3) and (A.5) (Page 1290), we can rewrite this as r∗ = (uuT)r +
cos θr− cos θ(uuT)r+ sin θUr, where

U =

⎛
⎝ 0 −uz uy

uz 0 −ux
−uy ux 0

⎞
⎠ .

The result can now be summarized as r∗ =Mr, where

M = uuT + cos θ(I− uuT) + sin θU (4.32)

=

⎡
⎢⎣
u2
x + cos θ(1− u2

x) uxuy(1− cos θ)− uz sin θ uxuz(1− cos θ) + uy sin θ

uxuy(1− cos θ) + uz sin θ u2
y + cos θ(1− u2

y) uyuz(1− cos θ)− ux sin θ

uxuz(1− cos θ)− uy sin θ uyuz(1− cos θ) + ux sin θ u2
z + cos θ(1− u2

z)

⎤
⎥⎦ .

Direction cosines. If v = (vx, vy, vz) is a three-dimensional vector, its direction
cosines are defined as

N1 =
vx
|v| , N2 =

vy
|v| , N3 =

vz
|v| .

These are the cosines of the angles between the direction of v and the three coordinate
axes. It is easy to verify that N2

1 + N2
2 + N2

3 = 1. If u = (ux, uy, uz) is a unit vector,
then |u| = 1 and ux, uy, and uz are the direction cosines of u.

It can be shown that a rotation through an angle −θ is performed by the transpose
MT . Consider the two successive and opposite rotations r∗ =Mr and r′ =MT r∗. On
the one hand, they can be expressed as the product r′ = MT r∗ = MTMr. On the
other hand, they rotate in opposite directions, so they return all points to their original
positions; therefore r′ must be equal to r. We end up with r =MTMr or MMT = I,
where I is the identity matrix. The transposeMT therefore equals the inverse,M−1, of
M, which shows that a rotation matrixM is orthogonal.

Example: Consider a rotation about the z axis. The rotation axis is u = (0, 0, 1),
resulting in

uuT =

⎛
⎝ 0 0 0
0 0 0
0 0 1

⎞
⎠ and U =

⎛
⎝ 0 −1 0
1 0 0
0 0 0

⎞
⎠ , and henceM =

⎛
⎝ cos θ − sin θ 0
sin θ cos θ 0
0 0 1

⎞
⎠ ,

which is the familiar rotation matrix about the z axis. It is identical to the z-rotation
matrix of Equation (4.29), so we conclude that it rotates counterclockwise when viewed
from the direction of positive z.

The general rotation matrix of Equation (4.32) can also be constructed as the
product of five simple rotations about various coordinate axes. Given a unit vector
u = (ux, uy, uz), consider the following rotations.

1. Rotate u about the z axis into the xz plane, so its y coordinate becomes zero.
This is done by a rotation matrix of the form

A =

⎡
⎣ cosψ − sinψ 0
sinψ cosψ 0
0 0 1

⎤
⎦ ,

4 Transformations 245

and the angle ψ of rotation can be computed from the requirement that the y component
of vector v = uA be zero. This component is −ux sinψ + uy cosψ, which implies

cosψ = ux/
√
u2
x + u2

y and sinψ = uy/
√
u2
x + u2

y. Notice that rotating u does not affect
its magnitude, so v is also a unit vector. In addition, since the rotation is about the z
axis, the z component of u does not change, so vz = uz.

2. Rotate vector v about the y axis until it coincides with the z axis. This is
accomplished by the matrix

B =

⎡
⎣ cosφ 0 sinφ

0 1 0
− sinφ 0 cosφ

⎤
⎦ .

The angle φ of rotation is computed from the dot product cosφ = v · (0, 0, 1) = vz = uz,
implying that sinφ =

√
1− u2

z. Since v is a unit vector, it is rotated by B to vector
(0, 0, 1).

3. Rotate (0, 0, 1) about the z axis through an angle θ. This is done by matrix

C =

⎡
⎣ cos θ − sin θ 0
sin θ cos θ 0
0 0 1

⎤
⎦ .

This is a trivial rotation that does not change (0, 0, 1).
4. Rotate the result of step 3 by B−1 (which equals BT).
5. Rotate the result of step 4 by A−1 (which equals AT).
When these five steps are performed on a point (x, y, z), the effect is to rotate the

point through an angle θ about u. In practice, the five steps are combined by multiplying
the five matrices above, as shown in the listing of Figure 4.29. The result is identical to
Equation (4.32).

tm=Sqrt[x^2+y^2];
a={{x/tm,-y/tm,0},{y/tm,x/tm,0},{0,0,1}};
b={{z,0,Sqrt[1-z^2]},{0,1,0},{-Sqrt[1-z^2],0,z}};
c={{Cos[t],-Sin[t],0},{Sin[t],Cos[t],0},{0,0,1}};
FullSimplify[a.b.c.Transpose[b].Transpose[a] /. x^2+y^2->1-z^2]

Figure 4.29: Mathematica Code for a General Rotation.

4.4.4 Givens Rotations

The general rotation matrix, Equation (4.32), can be constructed for any general rotation
in three dimensions. Given such a matrix A, it is possible to reduce it to a product of
rotation matrices that cause the same rotation by performing a sequence of rotations
about the coordinate axes. This process, first described in [Givens 58], is based on the
QR decomposition of matrices, a subject discussed in any text on matrices (and also in
Section 24.3.8), and it results in a set of Givens rotations. Each Givens rotation matrix

246 4.4 Three-Dimensional Transformations

Ti,j is identified by two indexes, i and j, where i > j. The matrix is an identity matrix
except for the two diagonal elements (i, i) and (j, j) that are cosines of some angle and
for the two off-diagonal elements (i, j) and (j, i) that are the ± sin of the same angle.
Specifically, Ti,j [i, i] = Ti,j [j, j] = c and Ti,j [j, i] = −Ti,j [i, j] = s, where c = A[j, j]/D,
s = A[i, j]/D, and D =

√
A[j, j]2 +A[i, j]2. The special construction of Ti,j implies

that the matrix product Ti,jA transforms A to a matrix whose (i, j)th element is zero.
Once a general rotation matrix A is given, its Givens rotations can be found by

preparing the Givens rotation matrices Ti,j that zero those elements of A located below
the main diagonal, column by column, from the bottom up. Figure 4.30 is a listing of
Matlab code that does that for the rotation matrix that rotates point (1, 1, 1) to the x
axis.

n=3;
A=[.5774,-.5774,-.5774; .5774,.7886,-.2115; .5774,-.2115,.7886]
% Rotation from 1,1,1 to x-axis
Q=eye(n);
for j=1:n-1,
for i=n:-1:j+1,
T=eye(n);
D=sqrt(A(j,j)^2+A(i,j)^2);
cos=A(j,j)/D; sin=A(i,j)/D;
T(j,j)=cos; T(j,i)=sin; T(i,j)=-sin; T(i,i)=cos; T
A=T*A;

Q=Q*T’;
end;

end;
Q
A

Figure 4.30: Computing Three Givens Matrices.

The three rotation matrices produced by this computation are listed in Figure 4.31,
where they are used to rotate point (1, 1, 1) to the x axis. Matrix T1 rotates (1, 1, 1)
45◦ about the y axis to (1.4142, 1, 0), which is rotated by T2 35.26◦ about the z axis to
(1.7321, 0, 0), which is trivially rotated by T3 15◦ about the x axis to itself.

T1=[0.7071,0,0.7071; 0,1,0; -0.7071,0,0.7071];
T2=[0.8165,0.5774,0; -0.5774,0.8165,0; 0,0,1];
T3=[1,0,0; 0,0.9660,0.2587; 0,-0.2587,0.9660];
p=[1;1;1];
a=T1*p
b=T2*a
c=T3*b

Figure 4.31: Rotating Point (1,1,1) to the x Axis.

4 Transformations 247

J. Wallace Givens, Jr. (1910–1993) pioneered the use of plane rotations in the
early days of automatic matrix computations. Givens graduated from Lynchburg
College in 1928, and he completed his Ph.D. at Princeton University in 1936. After
spending three years at the Institute for Advanced Study in Princeton as an assistant
of Oswald Veblen, Givens accepted an appointment at Cornell University, but later
moved to Northwestern University. In addition to his academic career, Givens was
the director of the Applied Mathematics Division at Argonne National Lab and, like
his counterpart Alston Householder at Oak Ridge National Laboratory, Givens served
as an early president of SIAM. He published his work on the rotations in 1958.

—Carl D. Meyer.

4.4.5 Quaternions

Appendix B is a general introduction to quaternions and should be reviewed before
reading ahead. Quaternions can elegantly express arbitrary rotations in three dimen-
sions. Those familiar with complex numbers may have noticed that a rotation in two
dimensions is similar to multiplying two complex numbers because the product

(a, b)
(

c d
−d c

)
= (ac− bd, ad+ bc)

is identical to the product (a+ ib)(c+ id). Quaternions extend this similarity to three
dimensions as follows. To rotate a point P by an angle θ about a direction v, we first
prepare the quaternion q = [cos(θ/2), sin(θ/2)u], where u = v/|v| is a unit vector in the
direction of v. The rotation can then be expressed as the triple product q · [0,P] · q−1.
Note that our q is a unit quaternion since sin2(θ/2) + cos2(θ/2) = 1. This interesting
connection between quaternions and rotations is developed in detail in [Hanson 06] (see
especially page 50 of this reference).

� Exercise 4.46: Prove that the triple product q· [0,P]· q−1 really performs a rotation
of P about v (or u). (Hint: Perform the multiplications and show that they produce
Equation (4.31).)

As an example of quaternion rotation, consider a 90◦ rotation of point P = (0, 1, 1)
about the y axis. The quaternion required is q = [cos 45◦, sin 45◦(0, 1, 0)]. It is a unit
quaternion, so its inverse is q−1 = [cos 45◦,− sin 45◦(0, 1, 0)]. The rotated point is thus

q[0,P]q−1

= [− sin 45◦, (sin 45◦, cos 45◦, cos 45◦)] [0, (0, 1, 1)] [cos 45◦,− sin 45◦(0, 1, 0)]
= [0, (1, 1, 0)].

The quaternion resulting from the triple product always has a zero scalar. We ignore
the scalar and find that the point has been moved, by the rotation, from the x = 0 plane
to the z = 0 plane.

Figure 4.32 illustrates this particular rotation about the y axis and also makes it
easy to understand the rule for the direction of the quaternion rotation q[0,P]q−1. The
rule is: Let q = [s,v] be a rotation quaternion in a right-handed three-dimensional

248 4.4 Three-Dimensional Transformations

coordinate system. To an observer looking in the direction of v, the triple product
q[0,P]q−1 rotates point P clockwise. For a negative rotation angle, the rotation is
counterclockwise. In a left-handed coordinate system (Figure 4.32b), the direction of
rotation is the opposite.

x

y
z (toward
the reader)

(a) (b)

z (into
the page)

x

y

Figure 4.32: Rotation in a Right-Handed (a) and in a Left-Handed (b) Coordinate System.

4.4.6 Concatenating Rotations

Sometimes we have to perform two consecutive rotations on an object. This turns out
to be easy and numerically stable with a quaternion representation.

If q1 and q2 are unit quaternions representing the two rotations, then associativity
of quaternion multiplication implies that the combined rotation of q1 followed by q2 is
represented by the quaternion q2 · q1. The proof is

q2 · (q1 ·P · q−1
1) · q−1

2 = (q2 · q1) ·P · (q−1
1 · q−1

2) = (q2 · q1) ·P · (q2 · q1)−1.

Quaternion multiplication involves fewer operations than matrix multiplication, so
combining rotations by means of quaternions is faster. Performing fewer multiplications
also implies better numerical accuracy.

In general, we use 4×4 transformation matrices to express three-dimensional trans-
formations, so we would like to be able to express the rotation P∗ = q[0,P]q−1 as
P∗ = PM, whereM is a 4×4 matrix. Given the two quaternions q1 = w1+x1i+ y1j+
z1k = (w1, x1, y1, z1) and q2 = w2 + x2i+ y2j+ z2k = (w2, x2, y2, z2), their product is

q1 · q2 =(w1w2 − x1x2 − y1y2 − z1z2) + (w1x2 + x1w2 + y1z2 − z1y2)i
+ (w1y2 − x1z2 + y1w2 + z1x2)j+ (w1z2 + x1y2 − y1x2 + z1w2)k.

The first step is to realize that each term in this product depends linearly on the coeffi-
cients of q1. This product can therefore be expressed as

q1 · q2 = q2 · L(q1) = (x2, y2, z2, w2)

⎛
⎜⎝

w1 z1 −y1 −x1

−z1 w1 x1 −y1

y1 −x1 w1 −z1
x1 y1 z1 w1

⎞
⎟⎠ .

4 Transformations 249

When L(q1) multiplies the row vector q2, the result is a row vector representation for
q1 · q2. Each term also depends linearly on the coefficients of q2, so the same product
can also be expressed as

q1 · q2 = q1 ·R(q2) = (x1, y1, z1, w1)

⎛
⎜⎝

w2 −z2 y2 −x2

z2 w2 −x2 −y2

−y2 x2 w2 −z2
x2 y2 z2 w2

⎞
⎟⎠ .

When R(q2) multiplies the row vector q1, the result is also a row vector representation
for q1 · q2.

We can now write the triple product q · [0,P] · q−1 in terms of the matrices L(q)
and R(q):

q[0,P]q−1 = q([0,P] · q−1) = q([0,P]R(q−1))

= ([0,P]R(q−1))L(q) = [0,P](R(q−1)L(q))
= [0,P]M,

where matrixM is

M =R(q−1) · L(q)

=

⎛
⎜⎝

w z −y x
−z w x y
y −x w z
−x −y −z w

⎞
⎟⎠

⎛
⎜⎝

w z −y −x
−z w x −y
y −x w −z
x y z w

⎞
⎟⎠

=

⎛
⎜⎝
w2+x2−y2−z2 2xy + 2wz 2xz − 2wy 0
2xy − 2wz w2−x2+y2−z2 2yz + 2wx 0
2xz + 2wy 2yz − 2wx w2−x2−y2+z2 0

0 0 0 w2+x2+y2+z2

⎞
⎟⎠ .

Since we have unit quaternions, they satisfy w2 + x2 + y2 + z2 = 1, so we can write the
final result

M =

⎛
⎜⎝
1− 2y2 − 2z2 2xy + 2wz 2xz − 2wy 0
2xy − 2wz 1− 2x2 − 2z2 2yz − 2wx 0
2xz + 2wy 2yz − 2wx 1− 2x2 − 2y2 0

0 0 0 1

⎞
⎟⎠ . (4.33)

In a left-handed coordinate system, the same rotation is expressed by the triple product
q−1[0,P]q or, equivalently, by P∗ = P ·MT , whereMT is the transpose of M.

250 4.5 Transforming the Coordinate System

4.5 Transforming the Coordinate System

Our discussion so far has assumed that points are transformed in a static coordinate
system. It is also possible (and sometimes useful) to transform the coordinate system
instead of the points. To understand the main idea, let’s consider the simple example
of translation. Suppose that a two-dimensional point P is transformed to a point P∗

by translating it m and n units in the x and y directions, respectively. How can the
transformation be reversed? We consider two ways.

1. Suppose that the original transformation was P∗ = PT, where

T =

⎛
⎝ 1 0 0
0 1 0
m n 1

⎞
⎠ .

It is clear that the transformation matrix

S =

⎛
⎝ 1 0 0

0 1 0
−m −n 1

⎞
⎠

will transform P∗ back to P. However, it is trivial to show, by using Equation (4.22),
that S is the inverse of T.

2. The transformation can be reversed by translating the coordinate system in the
reverse directions (i.e., by −m and −n units) by using an (unknown) transformation
matrixM.

Since the two methods produce the same result, we conclude that M = S = T−1.
Transforming the coordinate axes is therefore done by a matrix that’s the inverse of
transforming a point. This is true for any affine transformations, not just translation.

Simple kindness to one’s self and all that lives is

the most powerful transformational force of all.

—David R. Hawkins.

	4 Transformations
	4.1 Introduction
	4.2 Two-Dimensional Transformations
	4.2.1 Homogeneous Coordinates
	4.2.2 Combining Transformations
	4.2.3 Fast Rotations
	4.2.4 CORDIC Rotations
	4.2.5 Similarities
	4.2.6 A 180. Rotation
	4.2.7 Glide Reflections
	4.2.8 Improper Rotations
	4.2.9 Decomposing Transformations
	4.2.10 Reconstructing Transformations
	4.2.11 A Note
	4.2.12 Summary

	4.3 Three-Dimensional Coordinate Systems
	4.4 Three-Dimensional Transformations
	4.4.1 Reflection
	4.4.2 Rotation
	4.4.3 General Rotations
	4.4.4 Givens Rotations
	4.4.5 Quaternions
	4.4.6 Concatenating Rotations

	4.5 Transforming the Coordinate System

