
24
Transforms and JPEG

24.1 Image Transforms

The concept of a transform is familiar to mathematicians. A transform is a standard
mathematical tool that is employed to solve problems in many areas. The idea is to
transform a mathematical quantity (a number, a vector, a function, or anything else)
to another form, where it may look unfamiliar but may have useful properties. The
transformed quantity is used to solve a problem or to perform a computation, and the
result is then transformed back to its original form.

A simple, illustrative example is Roman numerals. The ancient Romans presumably
knew how to operate on such numbers, but when we have to, say, multiply two Roman
numerals, we may find it more convenient to transform them into modern (Arabic)
notation, multiply, and then transform the result back into a Roman numeral. Here is
a simple example:

XCVI×XII→ 96× 12 = 1152→ MCLII.
An image can be compressed by transforming its pixels (which are correlated) to a

representation where they are decorrelated. Compression is achieved if the new values
are smaller, on average, than the original values. Lossy compression can be achieved
by quantizing the transformed values. The decoder inputs the transformed values from
the compressed stream and reconstructs the (precise or approximate) original data by
applying the inverse transform. The transforms discussed in this chapter are orthogonal.
Chapter 25 discusses subband transforms. Reference [Rao and Yip 00] is an excellent
reference on transforms and their applications to data compression.

The term decorrelated means that the transformed values are independent of one
another. As a result, they can be encoded independently, which makes it simpler to
construct a statistical model. An image can be compressed if its representation has

The Computer Graphics Manual
DOI 10.1007/978-
D. Salomon, , Texts in Computer Science,

0-85729-886-7_24, ©
1079

Springer-Verlag London Limited 2011



1080 24.1 Image Transforms

redundancy. The redundancy in images stems mostly from pixel correlation. If we
transform the image to a representation where the pixels are decorrelated, we have
eliminated the redundancy and the image has been maximally compressed.

To illustrate orthogonal transforms, we start with a simple example where we scan
an image in raster order and group pairs of adjacent pixels. Because the pixels are
correlated, the two pixels (x, y) of a pair normally have similar values. We now consider
each pair of pixels a point in two-dimensional space, and we plot the points. We know
that all the points of the form (x, x) are located on the 45◦ line y = x, so we expect our
points to be concentrated around this line. Figure 24.2a shows the results of plotting
the pixels of a typical image—where a pixel has values in the interval [0, 255]—in such
a way. Most points form a cloud around the 45◦ line, and only a few points are located
away from it. We now transform the image by rotating all the points 45◦ clockwise
about the origin, such that the 45◦ line now coincides with the x-axis (Figure 24.2b).
This is done by the simple transformation (see Equation (4.4))

(x∗, y∗) = (x, y)
(
cos 45◦ − sin 45◦
sin 45◦ cos 45◦

)
= (x, y)

1√
2

(
1 −1
1 1

)
= (x, y)R, (24.1)

where the rotation matrix R is orthonormal (i.e., the dot product of a row with itself is
1, the dot product of different rows is 0, and the same is true for columns). The inverse
transformation is

(x, y) = (x∗, y∗)R−1 = (x∗, y∗)RT = (x∗, y∗)
1√
2

(
1 1
−1 1

)
. (24.2)

(The inverse of an orthonormal matrix is its transpose.)
It is obvious that most points end up with y coordinates that are zero or close to zero,

while the x coordinates don’t change much. Figure 24.3a,b shows the distributions of
the x and y coordinates (i.e., the odd-numbered and even-numbered pixels) of the 128×
128× 8 grayscale Lena image before the rotation. It is clear that the two distributions
don’t differ by much. Figure 24.3c,d shows that the distribution of the x coordinates
stays about the same (with greater variance) but the y coordinates are concentrated
around zero. The Matlab code that generated these results is also shown. (Figure 24.3d
shows that the y coordinates are concentrated around 100, but this is because a few
were as small as −101, so they had to be scaled by 101 to fit in a Matlab array, which
always starts at index 1.)

p={{5,5},{6, 7},{12.1,13.2},{23,25},{32,29}};
rot={{0.7071,-0.7071},{0.7071,0.7071}};
Sum[p[[i,1]]p[[i,2]], {i,5}]
q=p.rot
Sum[q[[i,1]]q[[i,2]], {i,5}]

Figure 24.1: Code for Rotating Five Points.
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p=Table[Random[Real,{0,2}],{250}];
p=Flatten[Append[p,Table[Random[Real,{1,3}],{250}]]];
p=Flatten[Append[p,Table[Random[Real,{2,4}],{250}]]];
p=Flatten[Append[p,Table[Random[Real,{3,5}],{250}]]];
p=Flatten[Append[p,Table[Random[Real,{4,6}],{250}]]];
p=Flatten[Append[p,Table[Random[Real,{0,6}],{150}]]];
rot={{0.7071,-0.7071},{0.7071,0.7071}};
Graphics[Table[{Hue[RandomReal[]],Point[{p[[i]],p[[i+1]]}]},{i,1,1399,2}],
Axes->True,AspectRatio->0.5,Ticks->{{{3,128},{6,256}},{{3,128},{6,256}}}]
Graphics[Table[{Hue[RandomReal[]],Point[{p[[i]],p[[i+1]]}.rot]},{i,1,1399,2}],
Axes->True,AspectRatio->0.5,Ticks->{{{3,128},{6,256}},{{3,128},{-3,-128}}}]

Figure 24.2: Rotating a Cloud of Points.

Once the coordinates of points are known before and after the rotation, it is easy to
measure the reduction in correlation. A simple measure is the sum

∑
i xiyi, also called

the cross-correlation of points (xi, yi).

� Exercise 24.1: Given points (5, 5), (6, 7), (12.1, 13.2), (23, 25), and (32, 29), rotate
them 45◦ clockwise and compute their cross-correlations before and after the rotation.

We can now compress the image by simply outputting the transformed pixels to
become the compressed file. If lossy compression is acceptable, then all the pixels can
be quantized (see [Salomon 09] for scalar and vector quantizations), resulting in even
smaller numbers. We can also write all the odd-numbered pixels (those that make up the
x coordinates of the pairs) on the compressed stream, followed by all the even-numbered
pixels. These two sequences are called the coefficient vectors of the transform. The
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filename=’lena128’; dim=128;
xdist=zeros(256,1); ydist=zeros(256,1);
fid=fopen(filename,’r’);
img=fread(fid,[dim,dim])’;
for col=1:2:dim-1
for row=1:dim
x=img(row,col)+1; y=img(row,col+1)+1;
xdist(x)=xdist(x)+1; ydist(y)=ydist(y)+1;
end
end
figure(1), plot(xdist), colormap(gray) %dist of x&y values
figure(2), plot(ydist), colormap(gray) %before rotation
xdist=zeros(325,1); % clear arrays
ydist=zeros(256,1);
for col=1:2:dim-1
for row=1:dim
x=round((img(row,col)+img(row,col+1))*0.7071);
y=round((-img(row,col)+img(row,col+1))*0.7071)+101;
xdist(x)=xdist(x)+1; ydist(y)=ydist(y)+1;
end
end
figure(3), plot(xdist), colormap(gray) %dist of x&y values
figure(4), plot(ydist), colormap(gray) %after rotation

Figure 24.3: Distribution of Image Pixels Before and After Rotation.
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latter sequence consists of small numbers and may, after quantization, have runs of
zeros, resulting in even better compression.

It can be shown that the total variance of the pixels does not change by the rotation,
because a rotation matrix is orthonormal. However, since the variance of the new y
coordinates is small, most of the variance is now concentrated in the x coordinates. The
variance is sometimes called the energy of the distribution of pixels, so we can say that
the rotation has concentrated (or compacted) the energy in the x coordinate and has
created compression this way.

Concentrating the energy in one coordinate has another advantage. It makes it
possible to quantize that coordinate more finely than the other coordinates. This type
of quantization results in better (lossy) compression.

The following simple example illustrates the power of this basic transform. We start
with the point (4, 5), whose two coordinates are similar. Using Equation (24.1) the point
is transformed to (4, 5)R = (9, 1)/

√
2 ≈ (6.36396, 0.7071). The energies of the point and

its transform are 42 + 52 = 41 = (92 + 12)/2. If we delete the smaller coordinate (4) of
the point, we end up with an error of 42/41 = 0.39. If, on the other hand, we delete the
smaller of the two transform coefficients (0.7071), the resulting error is just 0.70712/41 =
0.012. Another way to obtain the same error is to consider the reconstructed point.
Passing 1√

2
(9, 1) through the inverse transform (Equation (24.2)) results in the original

point (4, 5). Doing the same with 1√
2
(9, 0) results in the approximate reconstructed

point (4.5, 4.5). The energy difference between the original and reconstructed points is
the same small quantity[

(42 + 52)− (4.52 + 4.52)]
42 + 52

=
41− 40.5

41
= 0.0012.

This simple transform can easily be extended to any number of dimensions. Instead
of selecting pairs of adjacent pixels we can select triplets. Each triplet becomes a point
in three-dimensional space, and these points form a cloud concentrated around the line
that forms equal (although not 45◦) angles with the three coordinate axes. When this
line is rotated such that it coincides with the x axis, the y and z coordinates of the
transformed points become small numbers. The transformation is done by multiplying
each point by a 3×3 rotation matrix, and such a matrix is, of course, orthonormal. The
transformed points are then separated into three coefficient vectors, of which the last
two consist of small numbers. For maximum compression each coefficient vector should
be quantized separately.

This can be extended to more than three dimensions, with the only difference
being that we cannot visualize spaces of dimensions higher than three. However, the
mathematics can easily be extended. Some compression methods, such as JPEG, divide
an image into blocks of 8×8 pixels each, and rotate first each row and then each column,
by means of Equation (24.13), as shown in Section 24.3. This double rotation produces
a set of 64 transformed values, of which the first—termed the “DC coefficient”—is large,
and the other 63 (called the “AC coefficients”) are normally small. Thus, this transform
concentrates the energy in the first of 64 dimensions. The set of DC coefficients and
each of the sets of 63 AC coefficients should, in principle, be quantized separately (JPEG
does this a little differently, though; see Section 24.5.2).
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24.2 Orthogonal Transforms

Image transforms are designed to have two properties: (1) reduce image redundancy by
reducing the sizes of most pixels and (2) identify the less important parts of the image
by isolating the various frequencies of the image. Thus, this section starts with a short
discussion of frequencies. We intuitively associate a frequency with a wave. Water waves,
sound waves, and electromagnetic waves have frequencies, but pixels in an image can
also feature frequencies. Figure 24.4 shows a small, 5×8 bi-level image that illustrates
this concept. The top row is uniform, so we can assign it zero frequency. The rows
below it have increasing pixel frequencies as measured by the number of color changes
along a row. The four waves on the right roughly correspond to the frequencies of the
four top rows of the image.

a
b

c

d

Figure 24.4: Image Frequencies.

Image frequencies are important because of the following basic fact: Low frequencies
correspond to the important image features, while high frequencies correspond to the
details of the image, which are less important. Thus, when a transform isolates the
various image frequencies, transform coefficients that correspond to high frequencies
can be quantized heavily, while transform coefficients that correspond to low frequencies
should be quantized lightly or not at all. This is how a transform can compress an image
very effectively by losing information, but only information associated with unimportant
image details.

Practical image transforms should be fast and preferably also simple to implement.
This suggests the use of linear transforms. In such a transform, each transformed value
(or transform coefficient) ci is a weighted sum of the data items (the pixels) dj that are
being transformed, where each item is multiplied by a weight wij . Thus, ci =

∑
j djwij ,

for i, j = 1, 2, . . . , n. For n = 4, this is expressed in matrix notation as follows:

⎛
⎜⎝

c1

c2

c3

c4

⎞
⎟⎠ =

⎛
⎜⎝

w11 w12 w13 w14

w21 w22 w23 w24

w31 w32 w33 w34

w41 w42 w43 w44

⎞
⎟⎠
⎛
⎜⎝

d1

d2

d3

d4

⎞
⎟⎠ .

In the general case, we can write C =W·D. Each row ofW is called a “basis vector.”
The only quantities that have to be determined are the weights wij . The guiding

principles for determining them are as follows:

1. Reducing redundancy. The first transform coefficient c1 can be large, but the
remaining values c2, c3, . . . should be small.
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2. Isolating frequencies. The first transform coefficient c1 should correspond to zero
pixel frequency, and the remaining coefficients should correspond to higher and higher
frequencies.

The key to determining the weights wij is the fact that our data items dj are not
arbitrary numbers but pixel values, which are nonnegative and correlated.

The basic relation ci =
∑

j djwij suggests that the first coefficient c1 will be large
if all the weights of the form w1j are positive. To make the other coefficients ci small,
it is enough to make half the weights wij positive and the other half negative. A simple
choice is to assign half the weights the value +1 and the other half the value −1. In the
extreme case where all the pixels dj are identical, this will result in ci = 0. When the
dj ’s are similar, ci will be small (positive or negative).

This choice of wij satisfies the first requirement: to reduce pixel redundancy by
means of a transform. In order to satisfy the second requirement, the weights wij of
row i should feature frequencies that get higher with i. Weights w1j should have zero
frequency; they should all be +1’s. Weights w2j should have one sign change; i.e., they
should be +1,+1, . . . + 1,−1,−1, . . . ,−1. This continues until the last row of weights
wnj should have the highest frequency +1,−1,+1,−1, . . . ,+1,−1. The mathematical
discipline of vector spaces coins the term “basis vectors” for our rows of weights.

In addition to isolating the various frequencies of pixels dj , this choice results in
basis vectors that are orthogonal. The basis vectors are the rows of matrixW, which is
why this matrix—and by implication, the entire transform—are also termed orthogonal.

These considerations are satisfied by the orthogonal matrix

W =

⎛
⎜⎝
1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1

⎞
⎟⎠ . (24.3)

The first basis vector (the top row of W) consists of all 1’s, so its frequency is zero.
Each of the subsequent vectors has two +1’s and two −1’s, so they produce small
transformed values, and their frequencies (measured as the number of sign changes along
the basis vector) get higher. This matrix is similar to the Walsh–Hadamard transform
(Equation (24.4)).

To illustrate how this matrix identifies the frequencies in a data vector, we multiply
it by four vectors as follows:

W·

⎡
⎢⎣
1
0
0
1

⎤
⎥⎦ =
⎡
⎢⎣
2
0
2
0

⎤
⎥⎦ , W·

⎡
⎢⎣

0
0.33
−0.33
−1

⎤
⎥⎦ =
⎡
⎢⎣
0
2.66
0
1.33

⎤
⎥⎦ , W·

⎡
⎢⎣
1
0
0
0

⎤
⎥⎦ =
⎡
⎢⎣
1
1
1
1

⎤
⎥⎦ , W·

⎡
⎢⎣

1
−0.8
1
−0.8

⎤
⎥⎦ =
⎡
⎢⎣
0.4
0
0
3.6

⎤
⎥⎦ .

The results make sense when we discover how the four test vectors were determined

(1, 0, 0, 1) = 0.5(1, 1, 1, 1) + 0.5(1,−1,−1, 1),
(1, 0.33,−0.33,−1) = 0.66(1, 1,−1,−1) + 0.33(1,−1, 1,−1),

(1, 0, 0, 0) = 0.25(1, 1, 1, 1) + 0.25(1, 1,−1,−1) + 0.25(1,−1,−1, 1) + 0.25(1,−1, 1,−1),
(1,−0.8, 1,−0.8) = 0.1(1, 1, 1, 1) + 0.9(1,−1, 1,−1).
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The product ofW and the first vector shows how that vector consists of equal amounts
of the first and the third frequencies. Similarly, the transform (0.4, 0, 0, 3.6) shows that
vector (1,−0.8, 1,−0.8) is a mixture of a small amount of the first frequency and nine
times the fourth frequency.

It is also possible to modify this transform to conserve the energy of the data
vector. All that’s needed is to multiply the transformation matrix W by the scale
factor 1/2. Thus, the product (W/2)×(a, b, c, d) has the same energy a2 + b2 + c2 + d2

as the data vector (a, b, c, d). An example is the product of W/2 and the correlated
vector (5, 6, 7, 8). It results in the transform coefficients (13,−2, 0,−1), where the first
coefficient is large and the remaining ones are smaller than the original data items. The
energy of both (5, 6, 7, 8) and (13,−2, 0,−1) is 174, but whereas in the former vector the
first component accounts for only 14% of the energy, in the transformed vector the first
component accounts for 97% of the energy. This is how our simple orthogonal transform
compacts the energy of the data vector.

Another advantage ofW is that it also performs the inverse transform. The product
(W/2)·(13,−2, 0,−1)T reconstructs the original data (5, 6, 7, 8).

We are now in a position to appreciate the compression potential of this transform.
We use matrixW/2 to transform the (not very correlated) data vector d = (4, 6, 5, 2).
The result is t = (8.5, 1.5,−2.5, 0.5). It’s easy to transform t back to d, but t itself
does not provide any compression. In order to achieve compression, we quantize the
components of t, and the point is that even after heavy quantization, it is still possible
to get back a vector very similar to the original d.

We first quantize t to the integers (9, 1,−3, 0) and perform the inverse transform
to get back (3.5, 6.5, 5.5, 2.5). In a similar experiment, we completely delete the two
smallest elements and inverse-transform the coarsely quantized vector (8.5, 0,−2.5, 0).
This produces the reconstructed data (3, 5.5, 5.5, 3), still very close to the original values
of d. The conclusion is that even this simple, intuitive transform is a powerful tool for
“squeezing out” the redundancy in pixel data. More sophisticated transforms produce
results that can be quantized coarsely and still be used to reconstruct the original data
to a high degree.

24.2.1 Two-Dimensional Transforms

Given two-dimensional data such as the 4×4 matrix

D =

⎛
⎜⎝
5 6 7 4
6 5 7 5
7 7 6 6
8 8 8 8

⎞
⎟⎠ ,

where each of the four columns is highly correlated, we can apply our simple one-
dimensional transform to the columns of D. The result is

C′ =W·D =

⎛
⎜⎝
1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1

⎞
⎟⎠·D =

⎛
⎜⎝
26 26 28 23
−4 −4 0 −5
0 2 2 1
−2 0 −2 −3

⎞
⎟⎠ .
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Each column of C′ is the transform of a column of D. Notice how the top element
of each column of C′ is dominant, because the data in the corresponding column of
D is correlated. Notice also that the rows of C′ are still correlated. C′ is the first
stage in a two-stage process that produces the two-dimensional transform of matrix D.
The second stage should transform each row of C′, and this is done by multiplying C′

by the transpose WT . Our particular W, however, is symmetric, so we end up with
C = C′ ·WT =W·D·WT =W·D·W or

C =

⎛
⎜⎜⎜⎝
26 26 28 23
−4 −4 0 −5
0 2 2 1
−2 0 −2 −3

⎞
⎟⎟⎟⎠
⎛
⎜⎝
1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1

⎞
⎟⎠ =

⎛
⎜⎝
103 1 −5 5
−13 −3 −5 5
5 −1 −3 −1
−7 3 −3 −1

⎞
⎟⎠ .

The elements of C are decorrelated. The top-left element is dominant. It contains most
of the total energy of the original D. The elements in the top row and the leftmost
column are somewhat large, while the remaining elements are smaller than the original
data items. The double-stage, two-dimensional transformation has reduced the corre-
lation in both the horizontal and vertical dimensions. As in the one-dimensional case,
excellent compression can be achieved by quantizing the elements of C, especially those
that correspond to higher frequencies (i.e., located toward the bottom-right corner of
C).

This is the essence of orthogonal transforms. The next few sections discuss the
following important transforms:

1. The Walsh–Hadamard transform (WHT, Section 24.2.2) is fast and easy to compute
(it requires only additions and subtractions), but its performance, in terms of energy
compaction, is lower than that of the DCT.
2. The Haar transform [Stollnitz et al. 96] is a simple, fast transform. It is the simplest
wavelet transform and is discussed in Section 24.2.3 and in Chapter 25.
3. The Karhunen–Loève transform (KLT, Section 24.2.4) is the best one theoretically,
in the sense of energy compaction (or, equivalently, pixel decorrelation). However, its
coefficients are not fixed; they depend on the data to be compressed. Calculating these
coefficients (the basis of the transform) is slow, as is the calculation of the transformed
values themselves. Since the coefficients are data dependent, they have to be included
in the compressed stream. For these reasons and because the DCT performs almost as
well, the KLT is not generally used in practice.
4. The discrete cosine transform (DCT) is discussed in detail in Section 24.3. This
important transform is almost as efficient as the KLT in terms of energy compaction,
but it uses a fixed basis, independent of the data. There are also fast methods for
computing the DCT. This method is used by JPEG and MPEG audio.

24.2.2 Walsh–Hadamard Transform

As mentioned earlier, this transform has low compression efficiency, which is why it is
not used much in practice. It is, however, fast, because it can be computed with just
additions, subtractions, and an occasional right shift (to replace a division by a power
of 2).
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Given an N×N block of pixels Pxy (where N must be a power of 2, N = 2n), its
two-dimensional WHT and inverse WHT are defined by Equations (24.4) and (24.5):

H(u, v) =
N−1∑
x=0

N−1∑
y=0

pxyg(x, y, u, v)

=
1
N

N−1∑
x=0

N−1∑
y=0

pxy(−1)
∑n−1

i=0
[bi(x)pi(u)+bi(y)pi(v)], (24.4)

Pxy =
N−1∑
u=0

N−1∑
v=0

H(u, v)h(x, y, u, v)

=
1
N

N−1∑
u=0

N−1∑
v=0

H(u, v)(−1)
∑n−1

i=0
[bi(x)pi(u)+bi(y)pi(v)], (24.5)

where H(u, v) are the results of the transform (i.e., the WHT coefficients), the quantity
bi(u) is bit i of the binary representation of the integer u, and pi(u) is defined in terms
of the bj(u) by Equation (24.6):

p0(u) = bn−1(u),
p1(u) = bn−1(u) + bn−2(u),
p2(u) = bn−2(u) + bn−3(u),

...
pn−1(u) = b1(u) + b0(u).

(24.6)

(Recall that n is defined above by N = 2n.) As an example, consider u = 6 = 1102.
Bits zero, one, and two of 6 are 0, 1, and 1, respectively, so b0(6) = 0, b1(6) = 1, and
b2(6) = 1.

The quantities g(x, y, u, v) and h(x, y, u, v) are called the kernels (or basis images)
of the WHT. These matrices are identical. Their elements are just +1 and −1, and they
are multiplied by the factor 1

N . As a result, the WHT transform consists in multiplying
each image pixel by +1 or −1, summing, and dividing the sum by N . Since N = 2n is
a power of 2, dividing by it can be done by shifting n positions to the right.

The WHT kernels are shown, in graphical form, for N = 4, in Figure 24.5, where
white denotes +1 and black denotes −1 (the factor 1

N is ignored). The rows and columns
of blocks in this figure correspond to values of u and v from 0 to 3, respectively. The rows
and columns inside each block correspond to values of x and y from 0 to 3, respectively.
The number of sign changes across a row or a column of a matrix is called the sequency
of the row or column. The rows and columns in the figure are ordered in increased
sequency. Some authors show similar but unordered figures, because this transform
was defined by Walsh and by Hadamard in slightly different ways (see [Gonzalez and
Woods 92] for more information).

Compressing an image with the WHT is done similarly to the DCT, except that
Equations (24.4) and (24.5) are used, instead of Equations (24.13) and (24.14).
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u

v

Figure 24.5: The Ordered WHT Kernel for N = 4.

� Exercise 24.2: Use appropriate mathematical software to compute and display the
basis images of the WHT for N = 8.

24.2.3 Haar Transform

The Haar transform [Stollnitz et al. 96] is based on the Haar functions hk(x), which are
defined for x ∈ [0, 1] and for k = 0, 1, . . . , N − 1, where N = 2n. Its application is also
discussed in Chapter 25.

Before we discuss the actual transform, we have to mention that any integer k can
be expressed as the sum k = 2p + q − 1, where 0 ≤ p ≤ n− 1, q = 0 or 1 for p = 0, and
1 ≤ q ≤ 2p for p �= 0. For N = 4 = 22, for example, we get 0 = 20+0−1, 1 = 20+1−1,
2 = 21 + 1− 1, and 3 = 21 + 2− 1.

The Haar basis functions are now defined as

h0(x)
def= h00(x) =

1√
N

, for 0 ≤ x ≤ 1, (24.7)

and

hk(x)
def= hpq(x) =

1√
N

⎧⎪⎨
⎪⎩
2p/2, q−1

2p ≤ x < q−1/2
2p ,

−2p/2, q−1/2
2p ≤ x < q

2p ,
0, otherwise for x ∈ [0, 1].

(24.8)
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The Haar transform matrix AN of order N×N can now be constructed. A general
element i, j of this matrix is the basis function hi(j), where i = 0, 1, . . . , N − 1 and
j = 0/N, 1/N, . . . , (N − 1)/N . For example,

A2 =
(

h0(0/2) h0(1/2)
h1(0/2) h1(1/2)

)
=

1√
2

(
1 1
1 −1

)
(24.9)

(recall that i = 1 implies p = 0 and q = 1). Figure 24.6 shows code to calculate this
matrix for any N , and also the Haar basis images for N = 8.

� Exercise 24.3: Compute the Haar coefficient matrices A4 and A8.

Given an image block P of order N×N where N = 2n, its Haar transform is the
matrix product ANPAN (Section 25.1).

24.2.4 Karhunen–Loève Transform

The Karhunen–Loève transform (also called the Hotelling transform) has the best effi-
ciency in the sense of energy compaction, but for the reasons mentioned earlier, it has
more theoretical than practical value. Given an image, we break it up into k blocks of
n pixels each, where n is typically 64 but can have other values, and k depends on the
image size. We consider the blocks vectors and denote them by b(i), for i = 1, 2, . . . , k.
The average vector is b = (

∑
i b

(i))/k. A new set of vectors v(i) = b(i) − b is defined,
causing the average (

∑
v(i))/k to be zero. We denote the n×n KLT transform matrix

that we are seeking by A. The result of transforming a vector v(i) is the weight vec-
tor w(i) = Av(i). The average of the w(i) is also zero. We now construct a matrix V
whose columns are the v(i) vectors and another matrixW whose columns are the weight
vectors w(i):

V =
(
v(1),v(2), . . . ,v(k)

)
, W =

(
w(1),w(2), . . . ,w(k)

)
.

Matrices V and W have n rows and k columns each. From the definition of w(i), we
getW = A·V.

The n coefficient vectors c(j) of the Karhunen–Loève transform are given by

c(j) =
(
w

(1)
j , w

(2)
j , . . . , w

(k)
j

)
, j = 1, 2, . . . , n.

Thus, vector c(j) consists of the jth elements of all the weight vectors w(i), for i =
1, 2, . . . , k (c(j) is the jth coordinate of the w(i) vectors).

We now examine the elements of the matrix product W ·WT (this is an n × n
matrix). A general element in row a and column b of this matrix is the sum of products:

(
W·WT

)
ab
=

k∑
i=1

w(i)
a w

(i)
b =

k∑
i=1

c
(a)
i c

(b)
i = c(a) • c(b), for a, b ∈ [1, n]. (24.10)

The fact that the average of each w(i) is zero implies that a general diagonal element
(W·WT )jj of the product matrix is the variance (up to a factor k) of the jth element
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Needs["GraphicsImage‘"] (* Draws 2D Haar Coefficients *)
n=8;
h[k_,x_]:=Module[{p,q}, If[k==0, 1/Sqrt[n], (* h_0(x) *)
p=0; While[2^p<=k ,p++]; p--; q=k-2^p+1; (* if k>0, calc. p, q *)
If[(q-1)/(2^p)<=x && x<(q-.5)/(2^p),2^(p/2),
If[(q-.5)/(2^p)<=x && x<q/(2^p),-2^(p/2),0]]]];

HaarMatrix=Table[h[k,x], {k,0,7}, {x,0,7/n,1/n}] //N;
HaarTensor=Array[Outer[Times, HaarMatrix[[#1]],HaarMatrix[[#2]]]&,
{n,n}];
Show[GraphicsArray[Map[GraphicsImage[#, {-2,2}]&, HaarTensor,{2}]]]

Figure 24.6: The Basis Images of the Haar Transform for n = 8.

(or jth coordinate) of the w(i) vectors. This, of course, is the variance of coefficient
vector c(j).

� Exercise 24.4: Explain why this is true.
The off-diagonal elements of (W·WT ) are the covariances of the w(i) vectors such

that element
(
W·WT

)
ab
is the covariance of the ath and bth coordinates of the w(i)’s.

Equation (24.10) shows that this is also the dot product c(a) · c(b). One of the main
aims of image transform is to decorrelate the coordinates of the vectors, and probability
theory tells us that two coordinates are decorrelated if their covariance is zero (the other
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aim is energy compaction, but the two goals go hand in hand). Thus, our aim is to find
a transformation matrix A such that the productW·WT will be diagonal.

From the definition of matrixW we get

W·WT = (AV)·(AV)T = A(V·VT )AT .

Matrix V ·VT is symmetric, and its elements are the covariances of the coordinates of
vectors v(i), i.e., (

V·VT
)
ab
=

k∑
i=1

v(i)
a v

(i)
b , for a, b ∈ [1, n].

Since V·VT is symmetric, its eigenvectors are orthogonal. We therefore normalize these
vectors (i.e., make them orthonormal) and choose them as the rows of matrix A. This
produces the result

W·WT = A(V·VT )AT =

⎛
⎜⎜⎜⎜⎝

λ1 0 0 · · · 0
0 λ2 0 · · · 0
0 0 λ3 · · · 0
...

...
...

...
0 0 · · · 0 λn

⎞
⎟⎟⎟⎟⎠ .

This choice of A results in a diagonal matrixW·WT whose diagonal elements are the
eigenvalues of V·VT . Matrix A is the Karhunen–Loève transformation matrix; its rows
are the basis vectors of the KLT, and the energies (variances) of the transformed vectors
are the eigenvalues λ1, λ2, . . . , λn of V·VT .

The basis vectors of the KLT are calculated from the original image pixels and are,
therefore, data dependent. In a practical compression method, these vectors have to be
included in the compressed stream, for the decoder’s use, and this, combined with the
fact that no fast method has been discovered for the calculation of the KLT, makes this
transform less than ideal for practical applications.

24.3 The Discrete Cosine Transform

This important transform (DCT for short) was originated by [Ahmed et al. 74] and has
been used and studied extensively since. Because of its importance for data compres-
sion, the DCT is treated here in detail. Section 24.3.1 introduces the mathematical
expressions for the DCT in one dimension and two dimensions without any theoretical
background or justifications. The use of the transform and its advantages for data com-
pression are then demonstrated by several examples. Sections 24.3.2 and 24.3.3 cover
the theory of the DCT and discuss its two interpretations as a rotation and as a basis
of a vector space. Section 24.3.4 introduces the four DCT types, and Section 11.15.2
of [Salomon 09] discusses the three-dimensional DCT. Section 24.3.5 describes ways to
speed up the computation of the DCT, and Section 24.3.7 is a short discussion of the
symmetry of the DCT and how it can be exploited for a hardware implementation.
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Several sections of important background material follow. Section 24.3.8 explains the
QR decomposition of matrices. Section 24.3.9 introduces the concept of vector spaces
and their bases. Section 24.3.10 shows how the rotation performed by the DCT relates
to general rotations in three dimensions. Finally, the discrete sine transform is intro-
duced in Section 24.3.11 together with the reasons that make it unsuitable for data
compression.

For more information on this important transform, see [Ahmed et al. 74], [Rao and
Yip 90], and [Britanak et al. 06].

24.3.1 Introduction

The DCT in one dimension is given by

Gf =

√
2
n

Cf

n−1∑
t=0

pt cos
[
(2t+ 1)fπ

2n

]
, (24.11)

where

Cf =
{

1√
2
, f = 0,

1, f > 0,
for f = 0, 1, . . . , n− 1.

The input is a set of n data values pt (pixels, audio samples, or other data), and the
output is a set of n DCT transform coefficients (or weights) Gf . The first coefficient
G0 is called the DC coefficient, and the rest are referred to as the AC coefficients (these
terms have been inherited from electrical engineering, where they stand for “direct cur-
rent” and “alternating current”). Notice that the coefficients are real numbers even if
the input data consists of integers. Similarly, the coefficients may be positive or nega-
tive even if the input data consists of nonnegative numbers only. This computation is
straightforward but slow (Section 24.3.5 discusses faster versions). The decoder inputs
the DCT coefficients in sets of n and uses the inverse DCT (IDCT) to reconstruct the
original data values (also in groups of n). The IDCT in one dimension is given by

pt =

√
2
n

n−1∑
j=0

CjGj cos
[
(2t+ 1)jπ

2n

]
, for t = 0, 1, . . . , n− 1. (24.12)

The important feature of the DCT, the feature that makes it so useful in data
compression, is that it takes correlated input data and concentrates its energy in just
the first few transform coefficients. If the input data consists of correlated quantities,
then most of the n transform coefficients produced by the DCT are zeros or small
numbers, and only a few are large (normally the first ones). We will see that the
early coefficients contain the important (low-frequency) image information and the later
coefficients contain the less-important (high-frequency) image information. Compressing
data with the DCT is therefore done by quantizing the coefficients. The small ones are
quantized coarsely (possibly all the way to zero), and the large ones can be quantized
finely to the nearest integer. After quantization, the coefficients (or variable-length codes
assigned to the coefficients) are written on the compressed stream. Decompression is
done by performing the inverse DCT on the quantized coefficients. This results in data
items that are not identical to the original ones but are not much different.
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In practical applications, the data to be compressed is partitioned into sets of n
items each and each set is DCT-transformed and quantized individually. The value of
n is critical. Small values of n such as 3, 4, or 6 result in many small sets of data items.
Such a small set is transformed to a small set of coefficients where the energy of the
original data is concentrated in a few coefficients, but there are only a few coefficients in
such a set! Thus, there are not enough small coefficients to quantize. Large values of n
result in a few large sets of data. The problem in such a case is that the individual data
items of a large set are normally not correlated and therefore result in a set of transform
coefficients where all the coefficients are large. Experience indicates that n = 8 is a good
value, and most data compression methods that employ the DCT use this value of n.

The following experiment illustrates the power of the DCT in one dimension. We
start with the set of eight correlated data items p = (12, 10, 8, 10, 12, 10, 8, 11), apply
the DCT in one dimension to them, and find that it results in the eight coefficients

28.6375, 0.571202, 0.46194, 1.757, 3.18198, −1.72956, 0.191342, −0.308709.

These can be fed to the IDCT and transformed by it to precisely reconstruct the origi-
nal data (except for small errors caused by limited machine precision). Our goal, how-
ever, is to compress the data by quantizing the coefficients. We first quantize them to
28.6, 0.6, 0.5, 1.8, 3.2,−1.8, 0.2,−0.3, and apply the IDCT to get back

12.0254, 10.0233, 7.96054, 9.93097, 12.0164, 9.99321, 7.94354, 10.9989.

We then quantize the coefficients even more, to 28, 1, 1, 2, 3,−2, 0, 0, and apply the IDCT
to get back

12.1883, 10.2315, 7.74931, 9.20863, 11.7876, 9.54549, 7.82865, 10.6557.

Finally, we quantize the coefficients to 28, 0, 0, 2, 3,−2, 0, 0, and still get back from the
IDCT the sequence

11.236, 9.62443, 7.66286, 9.57302, 12.3471, 10.0146, 8.05304, 10.6842,

where the largest difference between an original value (12) and a reconstructed one
(11.236) is 0.764 (or 6.4% of 12). The code that does all that is listed in Figure 24.7.

n=8;
p={12.,10.,8.,10.,12.,10.,8.,11.};
c=Table[If[t==1, 0.7071, 1], {t,1,n}];
dct[i_]:=Sqrt[2/n]c[[i+1]]Sum[p[[t+1]]Cos[(2t+1)i Pi/16],{t,0,n-1}];
q=Table[dct[i],{i,0,n-1}] (* use exact DCT coefficients *)
q={28,0,0,2,3,-2,0,0}; (* or use quantized DCT coefficients *)
idct[t_]:=Sqrt[2/n]Sum[c[[j+1]]q[[j+1]]Cos[(2t+1)j Pi/16],{j,0,n-1}];
ip=Table[idct[t],{t,0,n-1}]

Figure 24.7: Experiments with the One-Dimensional DCT.
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It seems magical that the eight original data items can be reconstructed to such
high precision from just four transform coefficients. The explanation, however, relies on
the following arguments instead of on magic: (1) The IDCT is given all eight transform
coefficients, so it knows the positions, not just the values, of the nonzero coefficients.
(2) The first few coefficients (the large ones) contain the important information of the
original data items. The small coefficients, the ones that are quantized heavily, contain
less important information (in the case of images, they contain the image details). (3)
The original data is redundant because of pixel correlation.

The following experiment illustrates the performance of the DCT when applied to
decorrelated data items. Given the eight decorrelated data items −12, 24, −181, 209,
57.8, 3, −184, and −250, their DCT produces

−117.803, 166.823, −240.83, 126.887, 121.198, 9.02198, −109.496, −185.206.

When these coefficients are quantized to (−120., 170.,−240., 125., 120., 9.,−110.,−185)
and fed into the IDCT, the result is

−12.1249, 25.4974, −179.852, 208.237, 55.5898, 0.364874, −185.42, −251.701,

where the maximum difference (between 3 and 0.364874) is 2.63513 or 88% of 3. Ob-
viously, even with such fine quantization the reconstruction is not as good as with
correlated data.

� Exercise 24.5: Compute the one-dimensional DCT (Equation (24.11)) of the eight
correlated values 11, 22, 33, 44, 55, 66, 77, and 88. Show how to quantize them, and
compute their IDCT from Equation (24.12).

An important relative of the DCT is the Fourier transform, discussed in any text on
digital signal processing, which also has a discrete version termed the DFT. The DFT
has important applications, but it does not perform well in data compression because it
assumes that the data to be transformed is periodic.

The following example illustrates the difference in performance between the DCT
and the DFT. We start with the simple, highly-correlated sequence of eight num-
bers (8, 16, 24, 32, 40, 48, 56, 64). It is displayed graphically in Figure 24.8a. Apply-
ing the DCT to it yields (100,−52, 0,−5, 0,−2, 0, 0.4). When this is quantized to
(100,−52, 0,−5, 0, 0, 0, 0) and transformed back, it produces (8, 15, 24, 32, 40, 48, 57, 63),
a sequence almost identical to the original input. Applying the DFT to the same
input, on the other hand, yields (36, 10, 10, 6, 6, 4, 4, 4). When this is quantized to
(36, 10, 10, 6, 0, 0, 0, 0) and is transformed back, it produces (24, 12, 20, 32, 40, 51, 59, 48).
This output is shown in Figure 24.8b, and it illustrates the tendency of the Fourier
transform to produce a periodic result.

The DCT in one dimension can be used to compress one-dimensional data, such as
audio samples. This chapter, however, discusses image compression which is based on
the two-dimensional correlation of pixels (a pixel tends to resemble all its near neighbors,
not just those in its row). This is why practical image compression methods use the
DCT in two dimensions. This version of the DCT is applied to small parts (data blocks)
of the image. It is computed by applying the DCT in one dimension to each row of
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(a) (b)

Figure 24.8: (a) One-Dimensional Input. (b) Its Inverse DFT.

a data block, and then to each column of the result. Because of the special way the
DCT in two dimensions is computed, we say that it is separable in the two dimensions.
Because it is applied to blocks of an image, we term it a “blocked transform.” It is
defined by

Gij =

√
2
m

√
2
n

CiCj

n−1∑
x=0

m−1∑
y=0

pxy cos
[
(2y + 1)jπ

2m

]
cos
[
(2x+ 1)iπ

2n

]
, (24.13)

for 0 ≤ i ≤ n−1 and 0 ≤ j ≤ m−1 and for Ci and Cj defined by Equation (24.11). The
first coefficient G00 is again termed the “DC coefficient,” and the remaining coefficients
are called the “AC coefficients.”

The image is broken up into blocks of n×m pixels pxy (with n = m = 8 typically),
and Equation (24.13) is used to produce a block of n×m DCT coefficients Gij for each
block of pixels. The coefficients are then quantized, which results in lossy but highly
efficient compression. The decoder reconstructs a block of quantized data values by
computing the IDCT whose definition is

pxy =

√
2
m

√
2
n

n−1∑
i=0

m−1∑
j=0

CiCjGij cos
[
(2x+ 1)iπ

2n

]
cos
[
(2y + 1)jπ

2m

]
, (24.14)

where Cf =
{

1√
2
, f = 0

1 , f > 0,

for 0 ≤ x ≤ n − 1 and 0 ≤ y ≤ m − 1. We now show one way to compress an entire
image with the DCT in several steps as follows:

1. The image is divided into k blocks of 8×8 pixels each. The pixels are denoted
by pxy. If the number of image rows (columns) is not divisible by 8, the bottom row
(rightmost column) is duplicated as many times as needed.

2. The DCT in two dimensions (Equation (24.13)) is applied to each block Bi. The
result is a block (we’ll call it a vector) W (i) of 64 transform coefficients w

(i)
j (where

j = 0, 1, . . . , 63). The k vectors W (i) become the rows of matrixW

W =

⎡
⎢⎢⎢⎣

w
(1)
0 w

(1)
1 . . . w

(1)
63

w
(2)
0 w

(2)
1 . . . w

(2)
63

...
...

w
(k)
0 w

(k)
1 . . . w

(k)
63

⎤
⎥⎥⎥⎦ .
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3. The 64 columns of W are denoted by C(0), C(1), . . . , C(63). The k elements
of C(j) are

(
w

(1)
j , w

(2)
j , . . . , w

(k)
j

)
. The first coefficient vector C(0) consists of the k DC

coefficients.
4. Each vector C(j) is quantized separately to produce a vector Q(j) of quantized

coefficients (JPEG does this differently; see Section 24.5.2). The elements of Q(j) are
then written on the compressed stream. In practice, variable-length codes are assigned
to the elements, and the codes, rather than the elements themselves, are written on
the compressed stream. Sometimes, as in the case of JPEG, variable-length codes are
assigned to runs of zero coefficients, to achieve better compression.

In practice, the DCT is used for lossy compression. For lossless compression (where
the DCT coefficients are not quantized) the DCT is inefficient but can still be used, at
least theoretically, because (1) most of the coefficients are small numbers and (2) there
often are runs of zero coefficients. However, the small coefficients are real numbers,
not integers, so it is not clear how to write them in full precision on the compressed
stream and still have compression. Other image compression methods are better suited
for lossless image compression.

The decoder reads the 64 quantized coefficient vectors Q(j) of k elements each, saves
them as the columns of a matrix, and considers the k rows of the matrix weight vectors
W (i) of 64 elements each (notice that theseW (i)’s are not identical to the originalW (i)’s
because of the quantization). It then applies the IDCT (Equation (24.14)) to each weight
vector, to reconstruct (approximately) the 64 pixels of block Bi. (Again, JPEG does
this differently.)

We illustrate the performance of the DCT in two dimensions by applying it to two
blocks of 8× 8 values. The first block (Table 24.9a) has highly correlated integer values
in the range [8, 12], and the second block has random values in the same range. The first
block results in a large DC coefficient, followed by small AC coefficients (including 20
zeros, Table 24.9b, where negative numbers are underlined). When the coefficients are
quantized (Table 24.9c), the result, shown in Table 24.9d, is very similar to the original
values. In contrast, the coefficients for the second block (Table 24.10b) include just one
zero. When quantized (Table 24.10c) and transformed back, many of the 64 results are
very different from the original values (Table 24.10d).

� Exercise 24.6: Explain why the 64 values of Table 24.9a are correlated.
The next example illustrates the difference in the performance of the DCT when ap-

plied to a continuous-tone image and to a discrete-tone image. We start with the highly
correlated pattern of Table 24.11. This is an idealized example of a continuous-tone
image, since adjacent pixels differ by a constant amount except the pixel (underlined)
at row 7, column 7. The 64 DCT coefficients of this pattern are listed in Table 24.12.
It is clear that there are only a few dominant coefficients. Table 24.13 lists the coef-
ficients after they have been coarsely quantized, so that only four nonzero coefficients
remain! The results of performing the IDCT on these quantized coefficients are shown
in Table 24.14. It is obvious that the four nonzero coefficients have reconstructed the
original pattern to a high degree. The only visible difference is in row 7, column 7,
which has changed from 12 to 17.55 (marked in both figures). The Matlab code for this
computation is listed in Figure 24.19.
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12 10 8 10 12 10 8 11
11 12 10 8 10 12 10 8
8 11 12 10 8 10 12 10

10 8 11 12 10 8 10 12
12 10 8 11 12 10 8 10
10 12 10 8 11 12 10 8
8 10 12 10 8 11 12 10

10 8 10 12 10 8 11 12

81 0 0 0 0 0 0 0
0 1.57 0.61 1.90 0.38 1.81 0.20 0.32
0 0.61 0.71 0.35 0 0.07 0 0.02
0 1.90 0.35 4.76 0.77 3.39 0.25 0.54
0 0.38 0 0.77 8.00 0.51 0 0.07
0 1.81 0.07 3.39 0.51 1.57 0.56 0.25
0 0.20 0 0.25 0 0.56 0.71 0.29
0 0.32 0.02 0.54 0.07 0.25 0.29 0.90

(a) Original data (b) DCT coefficients

81 0 0 0 0 0 0 0
0 2 1 2 0 2 0 0
0 1 1 0 0 0 0 0
0 2 0 5 1 3 0 1
0 0 0 1 8 1 0 0
0 2 0 3 1 2 1 0
0 0 0 0 0 1 1 0
0 0 0 1 0 0 0 1

12.29 10.26 7.92 9.93 11.51 9.94 8.18 10.97
10.90 12.06 10.07 7.68 10.30 11.64 10.17 8.18
7.83 11.39 12.19 9.62 8.28 10.10 11.64 9.94

10.15 7.74 11.16 11.96 9.90 8.28 10.30 11.51
12.21 10.08 8.15 11.38 11.96 9.62 7.68 9.93
10.09 12.10 9.30 8.15 11.16 12.19 10.07 7.92
7.87 9.50 12.10 10.08 7.74 11.39 12.06 10.26
9.66 7.87 10.09 12.21 10.15 7.83 10.90 12.29

(c) Quantized (d) Reconstructed data (good)

Table 24.9: Two-Dimensional DCT of a Block of Correlated Values.

8 10 9 11 11 9 9 12
11 8 12 8 11 10 11 10
9 11 9 10 12 9 9 8
9 12 10 8 8 9 8 9

12 8 9 9 12 10 8 11
8 11 10 12 9 12 12 10

10 10 12 10 12 10 10 12
12 9 11 11 9 8 8 12

79.12 0.98 0.64 1.51 0.62 0.86 1.22 0.32
0.15 1.64 0.09 1.23 0.10 3.29 1.08 2.97
1.26 0.29 3.27 1.69 0.51 1.13 1.52 1.33
1.27 0.25 0.67 0.15 1.63 1.94 0.47 1.30
2.12 0.67 0.07 0.79 0.13 1.40 0.16 0.15
2.68 1.08 1.99 1.93 1.77 0.35 0 0.80
1.20 2.10 0.98 0.87 1.55 0.59 0.98 2.76
2.24 0.55 0.29 0.75 2.40 0.05 0.06 1.14

(a) Original data (b) DCT coefficients

79 1 1 2 1 1 1 0
0 2 0 1 0 3 1 3
1 0 3 2 0 1 2 1
1 0 1 0 2 2 0 10

20 1 0 1 0 10 0 0
3 1 2 2 2 0 0 1
1 2 1 1 2 1 1 3
2 1 0 1 2 0 0 1

7.59 9.23 8.33 11.88 7.12 12.47 6.98 8.56
12.09 7.97 9.3 11.52 9.28 11.62 10.98 12.39
11.02 10.06 13.81 6.5 10.82 8.28 13.02 7.54
8.46 10.22 11.16 9.57 8.45 7.77 10.28 11.89
9.71 11.93 8.04 9.59 8.04 9.7 8.59 12.14

10.27 13.58 9.21 11.83 9.99 10.66 7.84 11.27
8.34 10.32 10.53 9.9 8.31 9.34 7.47 8.93

10.61 9.04 13.66 6.04 13.47 7.65 10.97 8.89

(c) Quantized (d) Reconstructed data (bad)

Table 24.10: Two-Dimensional DCT of a Block of Random Values.

Tables 24.15 through 24.18 show the same process applied to a Y-shaped pattern,
typical of a discrete-tone image. The quantization, shown in Table 24.17, is light. The
coefficients have only been truncated to the nearest integer. It is easy to see that the
reconstruction, shown in Table 24.18, isn’t as good as before. Quantities that should
have been 10 are between 8.96 and 10.11. Quantities that should have been zero are as
big as 0.86. The conclusion is that the DCT performs well on continuous-tone images
but is less efficient when applied to a discrete-tone image.

24.3.2 The DCT as a Basis

The discussion so far has concentrated on how to use the DCT for compressing one-
dimensional and two-dimensional data. The aim of this section and the next one is
to show why the DCT works the way it does and how Equations (24.11) and (24.13)
have been derived. This topic is approached from two different directions. The first
interpretation of the DCT is as a special basis of an n-dimensional vector space. We
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00 10 20 30 30 20 10 00
10 20 30 40 40 30 20 10
20 30 40 50 50 40 30 20
30 40 50 60 60 50 40 30
30 40 50 60 60 50 40 30
20 30 40 50 50 40 30 20
10 20 30 40 40 30 12 10
00 10 20 30 30 20 10 00

12

Table 24.11: A Continuous-Tone Pattern.

239 1.19 −89.76 −0.28 1.00 −1.39 −5.03 −0.79
1.18 −1.39 0.64 0.32 −1.18 1.63 −1.54 0.92

−89.76 0.64 −0.29 −0.15 0.54 −0.75 0.71 −0.43
−0.28 0.32 −0.15 −0.08 0.28 −0.38 0.36 −0.22
1.00 −1.18 0.54 0.28 −1.00 1.39 −1.31 0.79
−1.39 1.63 −0.75 −0.38 1.39 −1.92 1.81 −1.09
−5.03 −1.54 0.71 0.36 −1.31 1.81 −1.71 1.03
−0.79 0.92 −0.43 −0.22 0.79 −1.09 1.03 −0.62

Table 24.12: Its DCT Coefficients.

239 1 -90 0 0 0 0 0
0 0 0 0 0 0 0 0

-90 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Table 24.13: Quantized Heavily to Just Four Nonzero Coefficients.

0.65 9.23 21.36 29.91 29.84 21.17 8.94 0.30
9.26 17.85 29.97 38.52 38.45 29.78 17.55 8.91
21.44 30.02 42.15 50.70 50.63 41.95 29.73 21.09
30.05 38.63 50.76 59.31 59.24 50.56 38.34 29.70
30.05 38.63 50.76 59.31 59.24 50.56 38.34 29.70
21.44 30.02 42.15 50.70 50.63 41.95 29.73 21.09
9.26 17.85 29.97 38.52 38.45 29.78 17.55 8.91
0.65 9.23 21.36 29.91 29.84 21.17 8.94 0.30

Table 24.14: Results of IDCT.
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00 10 00 00 00 00 00 10
00 00 10 00 00 00 10 00
00 00 00 10 00 10 00 00
00 00 00 00 10 00 00 00
00 00 00 00 10 00 00 00
00 00 00 00 10 00 00 00
00 00 00 00 10 00 00 00
00 00 00 00 10 00 00 00

Table 24.15: A Discrete-Tone Image (Y).

13.75 −3.11 −8.17 2.46 3.75 −6.86 −3.38 6.59
4.19 −0.29 6.86 −6.85 −7.13 4.48 1.69 −7.28
1.63 0.19 6.40 −4.81 −2.99 −1.11 −0.88 −0.94
−0.61 0.54 5.12 −2.31 1.30 −6.04 −2.78 3.05
−1.25 0.52 2.99 −0.20 3.75 −7.39 −2.59 1.16
−0.41 0.18 0.65 1.03 3.87 −5.19 −0.71 −4.76
0.68 −0.15 −0.88 1.28 2.59 −1.92 1.10 −9.05
0.83 −0.21 −0.99 0.82 1.13 −0.08 1.31 −7.21

Table 24.16: Its DCT Coefficients.

13.75 −3 −8 2 3 −6 −3 6
4 −0 6 −6 −7 4 1 −7
1 0 6 −4 −2 −1 −0 −0
−0 0 5 −2 1 −6 −2 3
−1 0 2 −0 3 −7 −2 1
−0 0 0 1 3 −5 −0 −4
0 −0 −0 1 2 −1 1 −9
0 −0 −0 0 1 −0 1 −7

Table 24.17: Quantized Lightly by Truncating to Integer.

-0.13 8.96 0.55 -0.27 0.27 0.86 0.15 9.22
0.32 0.22 9.10 0.40 0.84 -0.11 9.36 -0.14
0.00 0.62 -0.20 9.71 -1.30 8.57 0.28 -0.33
-0.58 0.44 0.78 0.71 10.11 1.14 0.44 -0.49
-0.39 0.67 0.07 0.38 8.82 0.09 0.28 0.41
0.34 0.11 0.26 0.18 8.93 0.41 0.47 0.37
0.09 -0.32 0.78 -0.20 9.78 0.05 -0.09 0.49
0.16 -0.83 0.09 0.12 9.15 -0.11 -0.08 0.01

Table 24.18: The IDCT. Bad Results.
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% 8x8 correlated values
n=8;
p=[00,10,20,30,30,20,10,00; 10,20,30,40,40,30,20,10; 20,30,40,50,50,40,30,20; ...
30,40,50,60,60,50,40,30; 30,40,50,60,60,50,40,30; 20,30,40,50,50,40,30,20; ...
10,20,30,40,40,30,12,10; 00,10,20,30,30,20,10,00];
figure(1), imagesc(p), colormap(gray), axis square, axis off
dct=zeros(n,n);
for j=0:7
for i=0:7
for x=0:7
for y=0:7

dct(i+1,j+1)=dct(i+1,j+1)+p(x+1,y+1)*cos((2*y+1)*j*pi/16)*cos((2*x+1)*i*pi/16);
end;
end;
end;
end;
dct=dct/4; dct(1,:)=dct(1,:)*0.7071; dct(:,1)=dct(:,1)*0.7071;
dct
quant=[239,1,-90,0,0,0,0,0; 0,0,0,0,0,0,0,0; -90,0,0,0,0,0,0,0; 0,0,0,0,0,0,0,0; ...
0,0,0,0,0,0,0,0; 0,0,0,0,0,0,0,0; 0,0,0,0,0,0,0,0; 0,0,0,0,0,0,0,0];
idct=zeros(n,n);
for x=0:7
for y=0:7
for i=0:7

if i==0 ci=0.7071; else ci=1; end;
for j=0:7

if j==0 cj=0.7071; else cj=1; end;
idct(x+1,y+1)=idct(x+1,y+1)+ ...

ci*cj*quant(i+1,j+1)*cos((2*y+1)*j*pi/16)*cos((2*x+1)*i*pi/16);
end;
end;
end;
end;
idct=idct/4;
idct
figure(2), imagesc(idct), colormap(gray), axis square, axis off

Figure 24.19: Code for Highly Correlated Pattern.

show that transforming a given data vector p by the DCT is equivalent to representing it
by this special basis that isolates the various frequencies contained in the vector. Thus,
the DCT coefficients resulting from the DCT transform of vector p indicate the various
frequencies in the vector. The lower frequencies contain the important information in
p, whereas the higher frequencies correspond to the details of the data in p and are
therefore less important. This is why they can be quantized coarsely.

The second interpretation of the DCT is as a rotation, as shown intuitively for n = 2
(two-dimensional points) in Figure 24.2. This interpretation considers the DCT a rota-
tion matrix that rotates an n-dimensional point with identical coordinates (x, x, . . . , x)
from its original location to the x axis, where its coordinates become (α, ε2, . . . , εn)
where the various εi are small numbers or zeros. Both interpretations are illustrated for
the case n = 3, because this is the largest number of dimensions where it is possible to
visualize geometric transformations.
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For the special case n = 3, Equation (24.11) reduces to

Gf =

√
2
3
Cf

2∑
t=0

pt cos
[
(2t+ 1)fπ

6

]
, for f = 0, 1, 2.

Temporarily ignoring the normalization factors
√
2/3 and Cf , this can be written in

matrix notation as⎡
⎣G0

G1

G2

⎤
⎦ =
⎡
⎣ cos 0 cos 0 cos 0
cos π6 cos 3π

6 cos 5π
6

cos 2π6 cos 23π
6 cos 25π

6

⎤
⎦
⎡
⎣ p0

p1

p2

⎤
⎦ = D · p.

Thus, the DCT of the three data values p = (p0, p1, p2) is obtained as the product of
the DCT matrix D and the vector p. We can therefore think of the DCT as the product
of a DCT matrix and a data vector, where the matrix is constructed as follows: Select
the three angles π/6, 3π/6, and 5π/6 and compute the three basis vectors cos(fθ) for
f = 0, 1, and 2, and for the three angles. The results are listed in Table 24.20 for the
benefit of the reader.

θ 0.5236 1.5708 2.618
cos 0θ 1. 1. 1.
cos 1θ 0.866 0 −0.866
cos 2θ 0.5 −1 0.5

Table 24.20: The DCT Matrix for n = 3.

Because of the particular choice of the three angles, these vectors are orthogonal but
not orthonormal. Their magnitudes are

√
3,
√
1.5, and

√
1.5, respectively. Normalizing

them results in the three vectors v1 = (0.5774, 0.5774, 0.5774), v2 = (0.7071, 0,−0.7071),
and v3 = (0.4082,−0.8165, 0.4082). When stacked vertically, they produce the following
3×3 matrix

M =

⎡
⎣ 0.5774 0.5774 0.5774
0.7071 0 −0.7071
0.4082 −0.8165 0.4082

⎤
⎦ . (24.15)

(Equation (24.11) tells us how to normalize these vectors: Multiply each by
√
2/3,

and then multiply the first by 1/
√
2.) Notice that as a result of the normalization the

columns of M have also become orthonormal, so M is an orthonormal matrix (such
matrices have special properties).

The steps of computing the DCT matrix for an arbitrary n are as follows:

1. Select the n angles θj = (j+0.5)π/n for j = 0, . . . , n−1. If we divide the interval
[0, π] into n equal-size segments, these angles are the centerpoints of the segments.

2. Compute the n vectors vk for k = 0, 1, 2, . . . , n− 1, each with the n components
cos(kθj).

3. Normalize each of the n vectors and arrange them as the n rows of a matrix.
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The angles selected for the DCT are θj = (j + 0.5)π/n, so the components of each
vector vk are cos[k(j + 0.5)π/n] or cos[k(2j + 1)π/(2n)]. Section 24.3.4 covers three
other ways to select such angles. This choice of angles has the following two useful
properties: (1) The resulting vectors are orthogonal, and (2) for increasing values of k,
the n vectors vk contain increasing frequencies (Figure 24.21). For n = 3, the top row
ofM (Equation (24.15)) corresponds to zero frequency, the middle row (whose elements
become monotonically smaller) represents low frequency, and the bottom row (with
three elements that first go down, then up) represents high frequency. Given a three-
dimensional vector v = (v1, v2, v3), the product M ·v is a triplet whose components
indicate the magnitudes of the various frequencies included in v; they are frequency
coefficients. (Strictly speaking, the product is M ·vT , but we ignore the transpose in
cases where the meaning is clear.) The following three extreme examples illustrate the
meaning of this statement.

1

1

0.5

0.5

2

2 3

1.5

1.5 2.5

Figure 24.21: Increasing Frequencies.

The first example is v = (v, v, v). The three components of v are identical, so they
correspond to zero frequency. The product M ·v produces the frequency coefficients
(1.7322v, 0, 0), indicating no high frequencies. The second example is v = (v, 0,−v).
The three components of v vary slowly from v to −v, so this vector contains a low
frequency. The product M ·v produces the coefficients (0, 1.4142v, 0), confirming this
result. The third example is v = (v,−v, v). The three components of v vary from
v to −v to v, so this vector contains a high frequency. The product M ·v produces
(0, 0, 1.6329v), again indicating the correct frequency.

These examples are not very realistic because the vectors being tested are short,
simple, and contain a single frequency each. Most vectors are more complex and contain
several frequencies, which makes this method useful. A simple example of a vector with
two frequencies is v = (1., 0.33,−0.34). The product M ·v results in (0.572, 0.948, 0)
which indicates a large medium frequency, small zero frequency, and no high frequency.
This makes sense once we realize that the vector being tested is the sum 0.33(1, 1, 1) +
0.67(1, 0,−1). A similar example is the sum 0.9(−1, 1,−1)+0.1(1, 1, 1) = (−0.8, 1,−0.8),
which when multiplied byM produces (−0.346, 0,−1.469). On the other hand, a vector
with random components, such as (1, 0, 0.33), typically contains roughly equal amounts
of all three frequencies and produces three large frequency coefficients. The product
M·(1, 0, 0.33) produces (0.77, 0.47, 0.54) because (1, 0, 0.33) is the sum

0.33(1, 1, 1) + 0.33(1, 0,−1) + 0.33(1,−1, 1).
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Notice that if M ·v = c, then MT ·c = M−1 ·c = v. The original vector v can
therefore be reconstructed from its frequency coefficients (up to small differences due to
the limited precision of machine arithmetic). The inverseM−1 ofM is also its transpose
MT becauseM is orthonormal.

A three-dimensional vector can have only the three frequencies zero, medium, and
high. Similarly, an n-dimensional vector can have n different frequencies, which this
method can identify. We concentrate on the case n = 8 and start with the DCT in one
dimension. Figure 24.22 shows eight cosine waves of the form cos(fθj), for 0 ≤ θj ≤ π,
with frequencies f = 0, 1, . . . , 7. Each wave is sampled at the eight points

θj =
π

16
,

3π
16

,
5π
16

,
7π
16

,
9π
16

,
11π
16

,
13π
16

,
15π
16

(24.16)

to form one basis vector vf , and the resulting eight vectors vf , f = 0, 1, . . . , 7 (a total
of 64 numbers) are shown in Table 24.23. They serve as the basis matrix of the DCT.
Notice the similarity between this table and matrixW of Equation (24.3).

Because of the particular choice of the eight sample points, the vi’s are orthogo-
nal. This is easy to check directly with appropriate mathematical software, but Sec-
tion 24.3.4 describes a more elegant way of proving this property. After normalization,
the vi’s can be considered either as an 8×8 transformation matrix (specifically, a rotation
matrix, since it is orthonormal) or as a set of eight orthogonal vectors that constitute
the basis of a vector space. Any vector p in this space can be expressed as a lin-
ear combination of the vi’s. As an example, we select the eight (correlated) numbers
p = (0.6, 0.5, 0.4, 0.5, 0.6, 0.5, 0.4, 0.55) as our test data and express p as a linear combi-
nation p =

∑
wivi of the eight basis vectors vi. Solving this system of eight equations

yields the eight weights

w0 = 0.506, w1 = 0.0143, w2 = 0.0115, w3 = 0.0439,
w4 = 0.0795, w5 = −0.0432, w6 = 0.00478, w7 = −0.0077.

Weight w0 is not much different from the elements of p, but the other seven weights are
much smaller. This is how the DCT (or any other orthogonal transform) can lead to
compression. The eight weights can be quantized and written on the compressed stream,
where they occupy less space than the eight components of p.

Figure 24.24 illustrates this linear combination graphically. Each of the eight vi’s
is shown as a row of eight small, gray rectangles (a basis image) where a value of +1 is
painted white and −1 is black. The eight elements of vector p are also displayed as a
row of eight grayscale pixels.

To summarize, we interpret the DCT in one dimension as a set of basis images
that have higher and higher frequencies. Given a data vector, the DCT separates the
frequencies in the data and represents the vector as a linear combination (or a weighted
sum) of the basis images. The weights are the DCT coefficients. This interpretation
can be extended to the DCT in two dimensions. We apply Equation (24.13) to the case
n = 8 to create 64 small basis images of 8 × 8 pixels each. The 64 images are then
used as a basis of a 64-dimensional vector space. Any image B of 8 × 8 pixels can be
expressed as a linear combination of the basis images, and the 64 weights of this linear
combination are the DCT coefficients of B.
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Figure 24.22: Angle and Cosine Values for an 8-Point DCT.
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θ 0.196 0.589 0.982 1.374 1.767 2.160 2.553 2.945
cos 0θ 1. 1. 1. 1. 1. 1. 1. 1.
cos 1θ 0.981 0.831 0.556 0.195 −0.195 −0.556 −0.831 −0.981
cos 2θ 0.924 0.383 −0.383 −0.924 −0.924 −0.383 0.383 0.924
cos 3θ 0.831 −0.195 −0.981 −0.556 0.556 0.981 0.195 −0.831
cos 4θ 0.707 −0.707 −0.707 0.707 0.707 −0.707 −0.707 0.707
cos 5θ 0.556 −0.981 0.195 0.831 −0.831 −0.195 0.981 −0.556
cos 6θ 0.383 −0.924 0.924 −0.383 −0.383 0.924 −0.924 0.383
cos 7θ 0.195 −0.556 0.831 −0.981 0.981 −0.831 0.556 −0.195

Table 24.23: The Unnormalized DCT Matrix in One Dimension for n = 8.

Table[N[t],{t,Pi/16,15Pi/16,Pi/8}]
dctp[pw_]:=Table[N[Cos[pw t]],{t,Pi/16,15Pi/16,Pi/8}]
dctp[0]
dctp[1]
...
dctp[7]

Code for Table 24.23.

dct[pw_]:=Plot[Cos[pw t], {t,0,Pi}, DisplayFunction->Identity,
AspectRatio->Automatic];
dcdot[pw_]:=ListPlot[Table[{t,Cos[pw t]},{t,Pi/16,15Pi/16,Pi/8}],
DisplayFunction->Identity]
Show[dct[0],dcdot[0], Prolog->AbsolutePointSize[4],
DisplayFunction->$DisplayFunction]
...
Show[dct[7],dcdot[7], Prolog->AbsolutePointSize[4],
DisplayFunction->$DisplayFunction]

Code for Figure 24.22.

0.506

0.0143

0.0115

0.0439

0.0795

−0.0432

0.00478

−0.0077

p

v0

v2

v4

v6

v7

wi

Figure 24.24: A Graphic Representation of the One-Dimensional DCT.
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Figure 24.25 shows the graphic representation of the 64 basis images of the two-
dimensional DCT for n = 8. A general element (i, j) in this figure is the 8 × 8 image
obtained by calculating the product cos(i · s) cos(j · t), where s and t are varied indepen-
dently over the values listed in Equation (24.16) and i and j vary from 0 to 7. This figure
can easily be generated by the Mathematica code shown with it. The alternative code
shown is a modification of code in [Watson 94], and it requires the GraphicsImage.m
package, which is not widely available.

Using appropriate software, it is easy to perform DCT calculations and display the
results graphically. Figure 24.26a shows a random 8×8 data unit consisting of zeros
and ones. The same unit is shown in Figure 24.26b graphically, with 1 as white and 0
as black. Figure 24.26c shows the weights by which each of the 64 DCT basis images
has to be multiplied in order to reproduce the original data unit. In this figure, zero is
shown in neutral gray, positive numbers are bright (notice how bright the DC weight is),
and negative numbers are shown as dark. Figure 24.26d shows the weights numerically.
The Mathematica code that does all that is also listed. Figure 24.27 is similar, but for
a very regular data unit.

� Exercise 24.7: . Imagine an 8×8 block of values where all the odd-numbered rows
consist of 1’s and all the even-numbered rows contain zeros. What can we say about the
DCT weights of this block?

24.3.3 The DCT as a Rotation

The second interpretation of matrixM (Equation (24.15)) is as a rotation. We already
know thatM·(v, v, v) results in (1.7322v, 0, 0) and this can be interpreted as a rotation
of point (v, v, v) to the point (1.7322v, 0, 0). The former point is located on the line
that makes equal angles with the three coordinate axes, and the latter point is on
the x axis. When considered in terms of adjacent pixels, this rotation has a simple
meaning. Imagine three adjacent pixels in an image. They are normally similar, so we
start by examining the case where they are identical. When three identical pixels are
considered the coordinates of a point in three dimensions, that point is located on the
line x = y = z. Rotating this line to the x axis brings our point to that axis where its
x coordinate hasn’t changed much and its y and z coordinates are zero. This is how
such a rotation leads to compression. Generally, three adjacent pixels p1, p2, and p3

are similar but not identical, which locates the point (p1, p2, p3) somewhat off the line
x = y = z. After the rotation, the point will end up near the x axis, where its y and z
coordinates will be small numbers.

This interpretation ofM as a rotation makes sense becauseM is orthonormal and
any orthonormal matrix is a rotation matrix. However, the determinant of a rotation
matrix is 1, whereas the determinant of our matrix is −1. An orthonormal matrix
whose determinant is −1 performs an improper rotation (a rotation combined with a
reflection). To get a better insight into the transformation performed by M, we apply
the QRmatrix decomposition technique (Section 24.3.8) to decomposeM into the matrix
product T1×T2×T3×T4, where

T1 =

⎡
⎣ 0.8165 0 −0.5774

0 1 0
0.5774 0 0.8165

⎤
⎦ , T2 =

⎡
⎣ 0.7071 −0.7071 0
0.7071 0.7071 0
0 0 1

⎤
⎦ ,
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Figure 24.25: The 64 Basis Images of the Two-Dimensional DCT.

dctp[fs_,ft_]:=Table[SetAccuracy[N[(1.-Cos[fs s]Cos[ft t])/2],3],
{s,Pi/16,15Pi/16,Pi/8},{t,Pi/16,15Pi/16,Pi/8}]//TableForm
dctp[0,0]
dctp[0,1]
...
dctp[7,7]

Code for Figure 24.25.

Needs["GraphicsImage‘"] (* Draws 2D DCT Coefficients *)
DCTMatrix=Table[If[k==0,Sqrt[1/8],Sqrt[1/4]Cos[Pi(2j+1)k/16]],
{k,0,7}, {j,0,7}] //N;
DCTTensor=Array[Outer[Times, DCTMatrix[[#1]],DCTMatrix[[#2]]]&,
{8,8}];
Show[GraphicsArray[Map[GraphicsImage[#, {-.25,.25}]&, DCTTensor,{2}]]]

Alternative Code for Figure 24.25.
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10011101
11001011
01100100
00010010
01001011
11100110
11001011
01010010

(a) (b) (c)

4.000 −0.133 0.637 0.272 −0.250 −0.181 −1.076 0.026
0.081 −0.178 −0.300 0.230 0.694 −0.309 0.875 −0.127
0.462 0.125 0.095 0.291 0.868 −0.070 0.021 −0.280
0.837 −0.194 0.455 0.583 0.588 −0.281 0.448 0.383
−0.500 −0.635 −0.749 −0.346 0.750 0.557 −0.502 −0.540
−0.167 0 −0.366 0.146 0.393 0.448 0.577 −0.268
−0.191 0.648 −0.729 −0.008 −1.171 0.306 1.155 −0.744
0.122 −0.200 0.038 −0.118 0.138 −1.154 0.134 0.148

(d)

Figure 24.26: An Example of the DCT in Two Dimensions.

DCTMatrix=Table[If[k==0,Sqrt[1/8],Sqrt[1/4]Cos[Pi(2j+1)k/16]],
{k,0,7}, {j,0,7}] //N;
DCTTensor=Array[Outer[Times, DCTMatrix[[#1]],DCTMatrix[[#2]]]&,
{8,8}];
img={{1,0,0,1,1,1,0,1},{1,1,0,0,1,0,1,1},
{0,1,1,0,0,1,0,0},{0,0,0,1,0,0,1,0},
{0,1,0,0,1,0,1,1},{1,1,1,0,0,1,1,0},
{1,1,0,0,1,0,1,1},{0,1,0,1,0,0,1,0}};
ShowImage[Reverse[img]]
dctcoeff=Array[(Plus @@ Flatten[DCTTensor[[#1,#2]] img])&,{8,8}];
dctcoeff=SetAccuracy[dctcoeff,4];
dctcoeff=Chop[dctcoeff,.001];
MatrixForm[dctcoeff]
ShowImage[Reverse[dctcoeff]]

Code for Figure 24.26.



1110 24.3 The Discrete Cosine Transform

01010101
01010101
01010101
01010101
01010101
01010101
01010101
01010101

(a) (b) (c)

4.000 −0.721 0 −0.850 0 −1.273 0 −3.625
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

(d)

Figure 24.27: An Example of the DCT in Two Dimensions.

Some painters transform the sun into a yellow spot; others trans-
form a yellow spot into the sun.

—Pablo Picasso.

DCTMatrix=Table[If[k==0,Sqrt[1/8],Sqrt[1/4]Cos[Pi(2j+1)k/16]],
{k,0,7}, {j,0,7}] //N;
DCTTensor=Array[Outer[Times, DCTMatrix[[#1]],DCTMatrix[[#2]]]&,
{8,8}];
img={{0,1,0,1,0,1,0,1},{0,1,0,1,0,1,0,1},
{0,1,0,1,0,1,0,1},{0,1,0,1,0,1,0,1},{0,1,0,1,0,1,0,1},
{0,1,0,1,0,1,0,1},{0,1,0,1,0,1,0,1},{0,1,0,1,0,1,0,1}};
ShowImage[Reverse[img]]
dctcoeff=Array[(Plus @@ Flatten[DCTTensor[[#1,#2]] img])&,{8,8}];
dctcoeff=SetAccuracy[dctcoeff,4];
dctcoeff=Chop[dctcoeff,.001];
MatrixForm[dctcoeff]
ShowImage[Reverse[dctcoeff]]

Code for Figure 24.27.



24 Transforms and JPEG 1111

T3 =

⎡
⎣ 1 0 0
0 0 1
0 −1 0

⎤
⎦ , T4 =

⎡
⎣ 1 0 0
0 1 0
0 0 −1

⎤
⎦ .

Each of matrices T1, T2, and T3 performs a rotation about one of the coordinate axes
(these are called Givens rotations, Section 4.4.4) Matrix T4 is a reflection about the z
axis. The transformationM·(1, 1, 1) can now be written as T1×T2×T3×T4×(1, 1, 1),
where T4 reflects point (1, 1, 1) to (1, 1,−1), T3 rotates (1, 1,−1) 90◦ about the x axis
to (1,−1,−1), which is rotated by T2 45◦ about the z axis to (1.4142, 0,−1), which is
rotated by T1 35.26◦ about the y axis to (1.7321, 0, 0).

(This particular sequence of transformations is a result of the order in which the
individual steps of the QR decomposition have been performed. Performing the same
steps in a different order results in different sequences of rotations. One example is
(1) a reflection about the z axis that transforms (1, 1, 1) to (1, 1,−1), (2) a rotation of
(1, 1,−1) 135◦ about the x axis to (1,−1.4142, 0), and (3) a further rotation of 54.74◦
about the z axis to (1.7321, 0, 0).)

For an arbitrary n, this interpretation is similar. We start with a vector of n
adjacent pixels. They are considered the coordinates of a point in n-dimensional space.
If the pixels are similar, the point is located near the line that makes equal angles with
all the coordinate axes. Applying the DCT in one dimension (Equation (24.11)) rotates
the point and brings it close to the x axis, where its first coordinate hasn’t changed
much and its remaining n− 1 coordinates are small numbers. This is how the DCT in
one dimension can be considered a single rotation in n-dimensional space. The rotation
can be broken up into a reflection followed by n− 1 Givens rotations, but a user of the
DCT need not be concerned with these details.

The DCT in two dimensions is interpreted similarly as a double rotation. This
interpretation starts with a block of n×n pixels (Figure 24.28a, where the pixels are
labeled L). It first considers each row of this block as a point (px,0, px,1, . . . , px,n−1) in
n-dimensional space, and it rotates the point by means of the innermost sum

G1x,j =

√
2
n

Cj

n−1∑
y=0

pxy cos
(
(2y + 1)jπ

2n

)

of Equation (24.13). This results in a block G1x,j of n × n coefficients where the first
element of each row is dominant (labeled L in Figure 24.28b) and the remaining elements
are small (labeled S in that figure). The outermost sum of Equation (24.13) is

Gij =

√
2
n

Ci

n−1∑
x=0

G1x,j cos
(
(2x+ 1)iπ

2n

)
.

Here, the columns of G1x,j are considered points in n-dimensional space and are rotated.
The result is one large coefficient at the top-left corner of the block (L in Figure 24.28c)
and n2 − 1 small coefficients elsewhere (S and s in that figure). This interpretation
considers the two-dimensional DCT as two separate rotations in n dimensions; the first
one rotates each of the n rows, and the second one rotates each of the n columns. It is
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L L L L L L L L
L L L L L L L L
L L L L L L L L
L L L L L L L L
L L L L L L L L
L L L L L L L L
L L L L L L L L
L L L L L L L L

L S S S S S S S
L S S S S S S S
L S S S S S S S
L S S S S S S S
L S S S S S S S
L S S S S S S S
L S S S S S S S
L S S S S S S S

L S S S S S S S
S s s s s s s s
S s s s s s s s
S s s s s s s s
S s s s s s s s
S s s s s s s s
S s s s s s s s
S s s s s s s s

(a) (b) (c)
Figure 24.28: The Two-Dimensional DCT as a Double Rotation.

interesting to observe that 2n rotations in n dimensions are faster than one rotation in
n2 dimensions, since the latter requires an n2×n2 rotation matrix.

24.3.4 The Four DCT Types

There are four ways to select n equally-spaced angles that generate orthogonal vectors
of cosines. They correspond (after the vectors are normalized by scale factors) to four
discrete cosine transforms designated DCT-1 through DCT-4. The most useful is DCT-
2, which is normally referred to as the DCT. Equation (24.17) lists the definitions of
the four types. The actual angles of the DCT-1 and DCT-2 are listed (for n = 8) in
Table 24.29. Note that DCT-3 is the transpose of DCT-2 and DCT-4 is a shifted version
of DCT-1. Notice that the DCT-1 has n+1 vectors of n+1 cosines each. In each of the
four types, the n (or n + 1) DCT vectors are orthogonal and become normalized after
they are multiplied by the proper scale factor. Figure 24.30 lists Mathematica code to
generate the normalized vectors of the four types and test for normalization.

DCT1
k,j =

√
2
n

CkCj cos
[
k j π

n

]
, k, j = 0, 1, . . . , n,

DCT2
k,j =

√
2
n

Ck cos
[
k(j + 1

2 )π
n

]
, k, j = 0, 1, . . . , n− 1,

DCT3
k,j =

√
2
n

Cj cos
[
(k + 1

2 )jπ
n

]
, k, j = 0, 1, . . . , n− 1,

(24.17)

DCT4
k,j =

√
2
n
cos
[
(k + 1

2 )(j +
1
2 )π

n

]
, k, j = 0, 1, . . . , n− 1,

where the scale factor Cx is defined by

Cx =
{
1/
√
2, if x = 0 or x = n,

1, otherwise.

Orthogonality can be proved either directly, by multiplying pairs of different vectors,
or indirectly. The latter approach is discussed in detail in [Strang 99] and it proves that
the DCT vectors are orthogonal by showing that they are the eigenvectors of certain
symmetric matrices. In the case of the DCT-2, for example, the symmetric matrix is
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k scale DCT-1 Angles (9×9)
0 1

2
√

2
0∗ 0 0 0 0 0 0 0 0∗

1 1
2 0 π

8
2π
8

3π
8

4π
8

5π
8

6π
8

7π
8

8π
8

2 1
2 0 2π

8
4π
8

6π
8

8π
8

10π
8

12π
8

14π
8

16π
8

3 1
2 0 3π

8
6π
8

9π
8

12π
8

15π
8

18π
8

21π
8

24π
8

4 1
2 0 4π

8
8π
8

12π
8

16π
8

20π
8

24π
8

28π
8

32π
8

5 1
2 0 5π

8
10π
8

15π
8

20π
8

25π
8

30π
8

35π
8

40π
8

6 1
2 0 6π

8
12π
8

18π
8

24π
8

30π
8

36π
8

42π
8

48π
8

7 1
2 0 7π

8
14π
8

21π
8

28π
8

35π
8

42π
8

49π
8

56π
8

8 1
2
√

2
0∗ 8π

8
16π
8

24π
8

32π
8

40π
8

48π
8

56π
8

64π
8

∗

∗
the scale factor for these four angles is 4.

k scale DCT-2 Angles

0 1
2
√

2
0 0 0 0 0 0 0 0

1 1
2

π
16

3π
16

5π
16

7π
16

9π
16

11π
16

13π
16

15π
16

2 1
2

2π
16

6π
16

10π
16

14π
16

18π
16

22π
16

26π
16

30π
16

3 1
2

3π
16

9π
16

15π
16

21π
16

27π
16

33π
16

39π
16

45π
16

4 1
2

4π
16

12π
16

20π
16

28π
16

36π
16

44π
16

52π
16

60π
16

5 1
2

5π
16

15π
16

25π
16

35π
16

45π
16

55π
16

65π
16

75π
16

6 1
2

6π
16

18π
16

30π
16

42π
16

54π
16

66π
16

78π
16

90π
16

7 1
2

7π
16

21π
16

35π
16

49π
16

63π
16

77π
16

91π
16

105π
16

Table 24.29: Angle Values for the DCT-1 and DCT-2.

A =

⎡
⎢⎢⎢⎢⎣

1 −1
−1 2 −1

...
−1 2 −1

−1 1

⎤
⎥⎥⎥⎥⎦ . For n = 3, matrix A3 =

⎡
⎣ 1 −1 0
−1 2 −1
0 −1 1

⎤
⎦

has eigenvectors (0.5774, 0.5774, 0.5774), (0.7071, 0,−0.7071), (0.4082,−0.8165, 0.4082)
with eigenvalues 0, 1, and 3, respectively. Recall that these eigenvectors are the rows of
matrixM of Equation (24.15).

24.3.5 Practical DCT

Equation (24.13) can be coded directly in any higher-level language. Since this equation
is the basis of several compression methods such as JPEG and MPEG, its fast calculation
is essential. It can be speeded up considerably by making several improvements, and
this section offers some ideas.
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(* DCT-1. Notice (n+1)x(n+1) *)
Clear[n, nor, kj, DCT1, T1];
n=8; nor=Sqrt[2/n];
kj[i_]:=If[i==0 || i==n, 1/Sqrt[2], 1];
DCT1[k_]:=Table[nor kj[j] kj[k] Cos[j k Pi/n], {j,0,n}]
T1=Table[DCT1[k], {k,0,n}]; (* Compute nxn cosines *)
MatrixForm[T1] (* display as a matrix *)
(* multiply rows to show orthonormality *)
MatrixForm[Table[Chop[N[T1[[i]].T1[[j]]]], {i,1,n}, {j,1,n}]]

(* DCT-2 *)
Clear[n, nor, kj, DCT2, T2];
n=8; nor=Sqrt[2/n];
kj[i_]:=If[i==0 || i==n, 1/Sqrt[2], 1];
DCT2[k_]:=Table[nor kj[k] Cos[(j+1/2)k Pi/n], {j,0,n-1}]
T2=Table[DCT2[k], {k,0,n-1}]; (* Compute nxn cosines *)
MatrixForm[T2] (* display as a matrix *)
(* multiply rows to show orthonormality *)
MatrixForm[Table[Chop[N[T2[[i]].T2[[j]]]], {i,1,n}, {j,1,n}]]

(* DCT-3. This is the transpose of DCT-2 *)
Clear[n, nor, kj, DCT3, T3];
n=8; nor=Sqrt[2/n];
kj[i_]:=If[i==0 || i==n, 1/Sqrt[2], 1];
DCT3[k_]:=Table[nor kj[j] Cos[(k+1/2)j Pi/n], {j,0,n-1}]
T3=Table[DCT3[k], {k,0,n-1}]; (* Compute nxn cosines *)
MatrixForm[T3] (* display as a matrix *)
(* multiply rows to show orthonormality *)
MatrixForm[Table[Chop[N[T3[[i]].T3[[j]]]], {i,1,n}, {j,1,n}]]

(* DCT-4. This is DCT-1 shifted *)
Clear[n, nor, DCT4, T4];
n=8; nor=Sqrt[2/n];
DCT4[k_]:=Table[nor Cos[(k+1/2)(j+1/2) Pi/n], {j,0,n-1}]
T4=Table[DCT4[k], {k,0,n-1}]; (* Compute nxn cosines *)
MatrixForm[T4] (* display as a matrix *)
(* multiply rows to show orthonormality *)
MatrixForm[Table[Chop[N[T4[[i]].T4[[j]]]], {i,1,n}, {j,1,n}]]

Figure 24.30: Code for Four DCT Types.

From the dictionary
Exegete (EK-suh-jeet), noun: A person who ex-
plains or interprets difficult parts of written works.
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1. Regardless of the image size, only 32 cosine functions are involved. They can be
precomputed once and used as needed to calculate all the 8× 8 data units. Calculating
the expression

pxy cos
[
(2x+ 1)iπ

16

]
cos
[
(2y + 1)jπ

16

]
now amounts to performing two multiplications. The double sum of Equation (24.13)
therefore requires 64× 2 = 128 multiplications and 63 additions.

� Exercise 24.8: Why are only 32 different cosine functions needed for the DCT?
2. A little algebraic tinkering shows that the double sum of Equation (24.13) can

be written as the matrix product CPCT , where P is the 8× 8 matrix of the pixels, C
is the matrix defined by

Cij =

{ 1√
8
, i = 0

1
2 cos

[
(2j+1)iπ

16

]
, i > 0,

(24.18)

and CT is the transpose of C. (The product of two matrices Amp and Bpn is a matrix
Cmn defined by

Cij =
p∑

k=1

aikbkj .

For other properties of matrices, see any text on linear algebra.)
Calculating one matrix element of the product CP therefore requires eight multi-

plications and seven (but for simplicity let’s say eight) additions. Multiplying the two
8×8 matrices C and P requires 64×8 = 83 multiplications and the same number of
additions. Multiplying the product CP by CT requires the same number of operations,
so the DCT of one 8×8 data unit requires 2×83 multiplications (and the same number
of additions). Assuming that the entire image consists of n×n pixels and that n = 8q,
there are q×q data units, so the DCT of all the data units requires 2q283 multiplications
(and the same number of additions). In comparison, performing one DCT for the entire
image would require 2n3 = 2q383 = (2q283)q operations. By dividing the image into
data units, we reduce the number of multiplications (and also of additions) by a factor
of q. Unfortunately, q cannot be too large, because that would mean very small data
units.

Recall that a color image consists of three components (often RGB, but sometimes
YCbCr or YPbPr). In JPEG, the DCT is applied to each component separately, bringing
the total number of arithmetic operations to 3×2q283 = 3,072q2. For a 512×512-pixel
image, this implies 3072×642 = 12,582,912 multiplications (and the same number of
additions).

3. Another way to speed up the DCT is to perform all the arithmetic operations on
fixed-point (scaled integer) rather than on floating-point numbers. On many comput-
ers, operations on fixed-point numbers require (somewhat) sophisticated programming
techniques, but they are considerably faster than floating-point operations (except on
supercomputers, which are optimized for floating-point arithmetic).
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The DCT algorithm with smallest currently-known number of arithmetic operations
is described in [Feig and Linzer 90]. Today, there are also various VLSI chips that
perform this calculation efficiently.

24.3.6 The LLM Method

This section describes the Loeffler–Ligtenberg–Moschytz (LLM) method for the DCT
in one dimension [Loeffler et al. 89]. Developed in 1989 by Christoph Loeffler, Adriaan
Ligtenberg, and George S. Moschytz, this algorithm computes the DCT in one dimension
with a total of 29 additions and 11 multiplications. Recall that the DCT in one dimension
involves multiplying a row vector by a matrix. For n = 8, multiplying the row by one
column of the matrix requires eight multiplications and seven additions, so the total
number of operations required for the entire operation is 64 multiplications and 56
additions. Reducing the number of multiplications from 64 to 11 represents a savings
of 83% and reducing the number of additions from 56 to 29 represents a savings of
49%—very significant!

Only the final result is listed here and the interested reader is referred to the original
publication for the details. We start with the double sum of Equation (24.13) and claim
that a little algebraic tinkering reduces it to the form CPCT , where P is the 8×8 matrix
of the pixels, C is the matrix defined by Equation (24.18), and CT is the transpose of
C. In the one-dimensional case, only one matrix multiplication, namely PC, is needed.
The originators of this method show that matrix C can be written (up to a factor of√
8) as the product of seven simple matrices, as shown in Figure 24.32.
Even though the number of matrices has been increased, the problem has been

simplified, because our seven matrices are sparse and contain mostly 1’s and −1’s. Mul-
tiplying by 1 or by −1 does not require a multiplication, and multiplying something by
0 saves an addition. Table 24.31 summarizes the total number of arithmetic operations
required to multiply a row vector by the seven matrices.

Matrix Additions Multiplications
C1 0 0
C2 8 12
C3 4 0
C4 2 0
C5 0 2
C6 4 0
C7 8 0

Total 26 14

Table 24.31: Number of Arithmetic Operations.

These surprisingly small numbers can be reduced further by the following obser-
vation. We notice that matrix C2 has three groups of four cosines each. One of the
groups consists of (we ignore the

√
2) two cos 6

16π and two cos 2
16π (one with a neg-

ative sign). We use the trigonometric identity cos(π2 − α) = sinα to replace the two
± cos 2

16π with ± sin 6
16π. Multiplying any matrix by C2 now results in products of the

form A cos( 6
16π) − B sin( 6

16π) and B cos( 6
16π) + A sin( 6

16π). It seems that computing
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C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0 0 0
1 −1 0 0 0 0 0 0
0 0

√
2 cos 6π

16

√
2 cos 2π

16 0 0 0 0
0 0 −√2 cos 2π

16

√
2 cos 6π

16 0 0 0 0
0 0 0 0

√
2 cos 7π

16 0 0
√
2 cos π

16

0 0 0 0 0
√
2 cos 3π

16

√
2 cos 5π

16 0
0 0 0 0 0 −√2 cos 5π

16

√
2 cos 3π

16 0
0 0 0 0 −√2 cos π

16 0 0
√
2 cos 7π

16

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 −1 1
0 0 0 0 0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 −1 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1/

√
2 0 0

0 0 0 0 0 0 1/
√
2 0

0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0
0 1 −1 0 0 0 0 0
1 0 0 −1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0
0 0 0 1 −1 0 0 0
0 0 1 0 0 −1 0 0
0 1 0 0 0 0 −1 0
1 0 0 0 0 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= C1C2C3C4C5C6C7.

Figure 24.32: Product of Seven Matrices.
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these two elements requires four multiplications and two additions (assuming that a
subtraction takes the same time to execute as an addition). The following computation,
however, yields the same result with three additions and three multiplications:

T = (A+B) cosα, T −B(cosα− sinα), −T +A(cosα+ sinα).

Thus, the three groups now require nine additions and nine multiplications instead of
the original six additions and 12 multiplications (two more additions are needed for
the other nonzero elements of C2), which brings the totals of Table 24.31 down to 29
additions and 11 multiplications.

There is no national science just as there is no national multiplication table;
what is national is no longer science.

—Anton Chekhov.

24.3.7 Hardware Implementation of the DCT

Table 24.29 lists the 64 angle values of the DCT-2 for n = 8. When the cosines of those
angles are computed, we find that because of the symmetry of the cosine function, there
are only six distinct nontrivial cosine values. They are summarized in Table 24.33, where
a = 1/

√
2, bi = cos(iπ/16), and ci = cos(iπ/8). The six nontrivial values are b1, b3, b5,

b7, c1, and c3.

1 1 1 1 1 1 1 1
b1 b3 b5 b7 −b7 −b5 −b3 −b1

c1 c3 −c3 −c1 −c1 −c3 c3 c1

b3 −b7 −b1 −b5 b5 b1 b7 −b3

a −a −a a a −a −a a
b5 −b1 b7 b3 −b3 −b7 b1 −b5

c3 −c1 c1 −c3 −c3 c1 −c1 c3

b7 −b5 b3 −b1 b1 −b3 b5 −b7

Table 24.33: Six Distinct Cosine Values for the DCT-2.

This feature can be exploited in a fast software implementation of the DCT or
to make a simple hardware device to compute the DCT coefficients Gi for eight pixel
values pi. Figure 24.34 shows how such a device may be organized in two parts, each
computing four of the eight coefficients Gi. Part I is based on a 4×4 symmetric matrix
whose elements are the four distinct bi’s. The eight pixels are divided into four groups
of two pixels each. The two pixels of each group are subtracted, and the four differences
become a row vector that’s multiplied by the four columns of the matrix to produce the
four DCT coefficients G1, G3, G5, and G7. Part II is based on a similar 4×4 matrix
whose nontrivial elements are the two ci’s. The computations are similar except that
the two pixels of each group are added instead of subtracted.

[
(p0 − p7), (p1 − p6), (p2 − p5), (p3 − p4)

] ⎡⎢⎣
b1 b3 b5 b7

b3 −b7 −b1 −b5

b5 −b1 b7 b3

b7 −b5 b3 −b1

⎤
⎥⎦→ [G1, G3, G5, G7],

(I)
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[
(p0 + p7), (p1 + p6), (p2 + p5), (p3 + p4)

] ⎡⎢⎣
1 c1 a c3

1 c3 −a −c1

1 −c3 −a c1

1 −c1 a −c3

⎤
⎥⎦→ [G0, G2, G4, G6].

(II)

Figure 24.34: A Hardware Implementation of the DCT-2.

Figure 24.35 (after [Chen et al. 77]) illustrates how such a device can be constructed
out of simple adders, complementors, and multipliers. Notation such as c(3π/16) in the
figure refers to the cosine function.
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Figure 24.35: A Hardware Implementation of the DCT-2.

24.3.8 QR Matrix Decomposition

This section provides background material on the technique of QRmatrix decomposition.
It is intended for those already familiar with matrices who want to master this method.

Any matrix A can be factored into the matrix product Q×R, where Q is an
orthogonal matrix and R is upper triangular. If A is also orthogonal, then R will
also be orthogonal. However, an upper triangular matrix that’s also orthogonal must
be diagonal. The orthogonality of R implies R−1 = RT and its being diagonal implies
R−1×R = I. The conclusion is that ifA is orthogonal, thenR must satisfyRT×R = I,
which means that its diagonal elements must be +1 or −1. If A = Q×R and R has this
form, then A and Q are identical, except that columns i of A and Q will have opposite
signs for all values of i where Ri,i = −1.

The QR decomposition of matrix A into Q and R is done by a loop where each
iteration converts one element of A to zero. When all the below-diagonal elements of
A have been zeroed, it becomes the upper triangular matrix R. Each element Ai,j is
zeroed by multiplying A by a Givens rotation matrix Ti,j (Section 4.4.4). This is an
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antisymmetric matrix where the two diagonal elements Ti,i and Tj,j are set to the cosine
of a certain angle θ, and the two off-diagonal elements Tj,i and Ti,j are set to the sine
and negative sine, respectively, of the same θ. The sine and cosine of θ are defined as

cos θ =
Aj,j

D
, sin θ =

Ai,j

D
, where D =

√
A2
j,j +A

2
i,j .

Following are some examples of Givens rotation matrices:

[
c s
−s c

]
,

⎡
⎣ 1 0 0
0 c s
0 −s c

⎤
⎦ ,

⎡
⎢⎣
1 0 0 0
0 c 0 s
0 0 1 0
0 −s 0 c

⎤
⎥⎦ ,

⎡
⎢⎢⎢⎣
1 0 0 0 0
0 c 0 s 0
0 0 1 0 0
0 −s 0 c 0
0 0 0 0 1

⎤
⎥⎥⎥⎦ . (24.19)

Those familiar with rotation matrices will recognize that a Givens matrix [Givens 58] ro-
tates a point through an angle whose sine and cosine are the s and c of Equation (24.19).
In two dimensions, the rotation is done about the origin. In three dimensions, it is done
about one of the coordinate axes (the x axis in Equation (24.19)). In four dimensions, the
rotation is about two of the four coordinate axes (the first and third in Equation (24.19))
and cannot be visualized. In general, an n×n Givens matrix rotates a point about n−2
coordinate axes of an n-dimensional space.

Figure 24.36 is a Matlab function for the QR decomposition of a matrix A. Notice
how Q is obtained as the product of the individual Givens matrices and how the double
loop zeros all the below-diagonal elements column by column from the bottom up.

function [Q,R]=QRdecompose(A);
% Computes the QR decomposition of matrix A
% R is an upper triangular matrix and Q
% an orthogonal matrix such that A=Q*R.
[m,n]=size(A); % determine the dimens of A
Q=eye(m); % Q starts as the mxm identity matrix
R=A;
for p=1:n
for q=(1+p):m
w=sqrt(R(p,p)^2+R(q,p)^2);
s=-R(q,p)/w; c=R(p,p)/w;
U=eye(m); % Construct a U matrix for Givens rotation
U(p,p)=c; U(q,p)=-s; U(p,q)=s; U(q,q)=c;
R=U’*R; % one Givens rotation
Q=Q*U;
end
end

Figure 24.36: A Matlab Function for the QR Decomposition of a Matrix.
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“Computer!’ shouted Zaphod, “rotate angle of vision through oneeighty degrees and
don’t talk about it!’

—Douglas Adams, The Hitchhikers Guide to the Galaxy.

24.3.9 Vector Spaces

The discrete cosine transform can also be interpreted as a change of basis in a vector
space from the standard basis to the DCT basis, so this section is a short discussion of
vector spaces, their relation to data compression and to the DCT, their bases, and the
important operation of change of basis.

An n-dimensional vector space is the set of all vectors of the form (v1, v2, . . . , vn).
We limit the discussion to the case where the vi’s are real numbers. The attribute of
vector spaces that makes them important to us is the existence of bases. Any vector
(a, b, c) in three dimensions can be written as the linear combination

(a, b, c) = a(1, 0, 0) + b(0, 1, 0) + c(0, 0, 1) = ai+ bj+ ck,

so we say that the set of three vectors i, j, and k forms a basis of the three-dimensional
vector space. Notice that the three basis vectors are orthogonal; the dot product of any
two of them is zero. They are also orthonormal; the dot product of each with itself is 1.
It is convenient to have an orthonormal basis, but this is not a requirement. The basis
does not even have to be orthogonal.

The set of three vectors i, j, and k can be extended to any number of dimensions. A
basis for an n-dimensional vector space may consist of the n vectors vi for i = 1, 2, . . . , n,
where element j of vector vi is the Kronecker delta function δij . This simple basis is
the standard basis of the n-dimensional vector space. In addition to this basis, the n-
dimensional vector space can have other bases. We illustrate two other bases for n = 8.

God made the integers, all else is the work of man.
—Leopold Kronecker.

The DCT (unnormalized) basis consists of the eight vectors

(1, 1, 1, 1, 1, 1, 1, 1), (1, 1, 1, 1,−1,−1,−1,−1),
(1, 1,−1,−1,−1,−1, 1, 1), (1,−1,−1,−1, 1, 1, 1,−1),
(1,−1,−1, 1, 1,−1,−1, 1), (1,−1, 1, 1,−1,−1, 1,−1),
(1,−1, 1,−1,−1, 1,−1, 1), (1,−1, 1− 1, 1,−1, 1,−1).

Notice how their elements correspond to higher and higher frequencies. The (unnormal-
ized) Haar wavelet basis (Section 25.1) consists of the eight vectors

(1, 1, 1, 1, 1, 1, 1, 1), (1, 1, 1, 1,−1,−1,−1,−1),
(1, 1,−1,−1, 0, 0, 0, 0), (0, 0, 0, 0, 1, 1,−1,−1),
(1,−1, 0, 0, 0, 0, 0, 0), (0, 0, 1,−1, 0, 0, 0, 0),
(0, 0, 0, 0, 1,−1, 0, 0), (0, 0, 0, 0, 0, 0, 1,−1).
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To understand why these bases are useful for data compression, recall that our data
vectors are images or parts of images. The pixels of an image are normally correlated, but
the standard basis takes no advantage of this. The vector of all 1’s, on the other hand, is
included in the above bases because this single vector is sufficient to express any uniform
image. Thus, a group of identical pixels (v, v, . . . , v) can be represented as the single
coefficient v times the vector of all 1’s. (The discrete sine transform of Section 24.3.11 is
unsuitable for data compression mainly because it does not include this uniform vector.)
Basis vector (1, 1, 1, 1,−1,−1,−1,−1) can represent the energy of a group of pixels
that’s half dark and half bright. Thus, the group (v, v, . . . , v,−v,−v, . . . ,−v) of pixels
is represented by the single coefficient v times this basis vector. Successive basis vectors
represent higher-frequency images, up to vector (1,−1, 1,−1, 1,−1, 1,−1). This basis
vector resembles a checkerboard and therefore isolates the high-frequency details of an
image. Those details are normally the least important and can be heavily quantized or
even zeroed to achieve better compression.

The vector members of a basis don’t have to be orthogonal. In order for a set S
of vectors to be a basis, it has to have the following two properties: (1) The vectors
have to be linearly independent and (2) it should be possible to express any member
of the vector space as a linear combination of the vectors of S. For example, the three
vectors (1, 1, 1), (0, 1, 0), and (0, 0, 1) are not orthogonal but form a basis for the three-
dimensional vector space. (1) They are linearly independent because none of them can
be expressed as a linear combination of the other two. (2) Any vector (a, b, c) can be
expressed as the linear combination a(1, 1, 1) + (b− a)(0, 1, 0) + (c− a)(0, 0, 1).

Once we realize that a vector space may have many bases, we start looking for good
bases. A good basis for data compression is one where the inverse of the basis matrix
is easy to compute and where the energy of a data vector becomes concentrated in a
few coefficients. The bases discussed so far are simple, being based on zeros and ones.
The orthogonal bases have the added advantage that the inverse of the basis matrix is
simply its transpose. Being fast is not enough, because the fastest thing we could do
is to stay with the original standard basis. The reason for changing a basis is to get
compression. The DCT base has the added advantage that it concentrates the energy
of a vector of correlated values in a few coefficients. Without this property, there would
be no reason to change the coefficients of a vector from the standard basis to the DCT
basis. After changing to the DCT basis, many coefficients can be quantized, sometimes
even zeroed, with a loss of only the least-important image information. If we quantize
the original pixel values in the standard basis, we also achieve compression, but we lose
image information that may be important.

Once a basis has been selected, it is easy to express any given vector in terms of
the basis vectors. Assuming that the basis vectors are bi and given an arbitrary vector
P = (p1, p2, . . . , pn), we write P as a linear combination P = c1b1+ c2b2+ · · ·+ cnbn of
the bi’s with unknown coefficients ci. Using matrix notation, this is written P = c ·B,
where c is a row vector of the coefficients and B is the matrix whose rows are the basis
vectors. The unknown coefficients can be computed by c = P · B−1 and this is the
reason why a good basis is one where the inverse of the basis matrix is easy to compute.

A simple example is the coefficients of a vector under the standard basis. We have
seen that vector (a, b, c) can be written as the linear combination a(1, 0, 0) + b(0, 1, 0) +
c(0, 0, 1). Thus, when the standard basis is used, the coefficients of a vector P are simply
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its original elements. If we now want to compress the vector by changing to the DCT
basis, we need to compute the coefficients under the new basis. This is an example of
the important operation of change of basis.

Given two bases bi and vi and assuming that a given vector P can be expressed
as
∑

cibi and also as
∑

wivi, the problem of change of basis is to express one set of
coefficients in terms of the other. Since the vectors vi constitute a basis, any vector
can be expressed as a linear combination of them. Specifically, any bj can be written
bj =

∑
i tijvi for some numbers tij . We now construct a matrix T from the tij and

observe that it satisfies biT = vi for i = 1, 2, . . . , n. Thus, T is a linear transformation
that transforms basis bi to vi. The numbers tij are the elements of T in basis vi.

For our vector P, we can now write (
∑

cibi)T =
∑

civi, which implies

n∑
j=1

wjvj =
∑
j

wjbjT =
∑
j

wj

∑
i

vitij =
∑
i

(∑
j

wjtij

)
vi.

This shows that ci =
∑

j tijwj ; in other words, a basis is changed by means of a linear
transformation T and the same transformation also relates the elements of a vector in
the old and new bases.

Once we switch to a new basis in a vector space, every vector has new coordinates
and every transformation has a different matrix.

A linear transformation T operates on an n-dimensional vector and produces an
m-dimensional vector. Thus, T(v) is a vector u. If m = 1, the transformation produces
a scalar. If m = n−1, the transformation is a projection. Linear transformations satisfy
the two important properties T(u+ v) = T(u) +T(v) and T(cv) = cT(v). In general,
the linear transformation of a linear combination T(c1v1+ c2v2+ · · ·+ cnvn) equals the
linear combination of the individual transformations c1T(v1)+c2T(v2)+ · · ·+cnT(vn).
This implies that the zero vector is transformed to itself under any linear transformation.

Examples of linear transformations are projection, reflection, rotation, and dif-
ferentiating a polynomial. The derivative of c1 + c2x + c3x

2 is c2 + 2c3x. This is a
transformation from the basis (c1, c2, c3) in three-dimensional space to basis (c2, c3) in
two-dimensional space. The transformation matrix satisfies (c1, c2, c3)T = (c2, 2c3), so
it is given by

T =

⎡
⎣ 0 0
1 0
0 2

⎤
⎦ .

Examples of nonlinear transformations are translation, the length of a vector, and
adding a constant vector v0. The latter is nonlinear because if T(v) = v + v0 and
we double the size of v, then T(2v) = 2v + v0 is different from 2T(v) = 2(v + v0).
Transforming a vector v to its length ||v|| is also nonlinear because T(−v) �= −T(v).
Translation is nonlinear because it transforms the zero vector to a nonzero vector.

In general, a linear transformation is performed by multiplying the transformed
vector v by the transformation matrix T. Thus, u = v ·T or T(v) = v ·T. Notice that
we denote by T both the transformation and its matrix.

In order to describe a transformation uniquely, it is enough to describe what it does
to the vectors of a basis. To see why this is true, we observe the following. If for a given
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vector v1 we know what T(v1) is, then we know what T(av1) is for any a. Similarly,
if for a given v2 we know what T(v2) is, then we know what T(bv1) is for any b and
also what T(av1 + bv2) is. Thus, we know how T transforms any vector in the plane
containing v1 and v2. This argument shows that if we know what T(vi) is for all the
vectors vi of a basis, then we know how T transforms any vector in the vector space.

Given a basis bi for a vector space, we consider the special transformation that
affects the magnitude of each vector but not its direction. Thus, T(bi) = λibi for some
number λi. The basis bi is the eigenvector basis of transformation T. Since we know T
for the entire basis, we also know it for any other vector. Any vector v in the vector space
can be expressed as a linear combination v =

∑
i cibi. If we apply our transformation

to both sides and use the linearity property, we end up with

T(v) = v ·T =
∑
i

cibi ·T. (24.20)

In the special case where v is the basis vector b1, Equation (24.20) implies T(b1) =∑
i cibi · T. On the other hand, T(b1) = λ1b1. We therefore conclude that c1 = λ1

and, in general, that the transformation matrix T is diagonal with λi in position i of its
diagonal.

In the eigenvector basis, the transformation matrix is diagonal, so this is the perfect
basis. We would love to have it in compression, but it is data dependent. It is called
the Karhunen–Loève transform (KLT) and is described in Section 24.2.4.

24.3.10 Rotations in Three Dimensions

For those exegetes who want the complete story, the following paragraphs show how a
proper rotation matrix (with a determinant of +1) that rotates a point (v, v, v) to the x
axis can be derived from the general rotation matrix in three dimensions (Section 4.4.3).

A general rotation in three dimensions is fully specified by (1) an axis u of rotation,
(2) the angle θ of rotation, and (3) the direction (clockwise or counterclockwise as viewed
from the origin) of the rotation about u. Given a unit vector u = (ux, uy, uz), matrixM
of Equation (24.21) performs a rotation of θ◦ about u. The rotation appears clockwise to
an observer looking from the origin in the direction of u. If P = (x, y, z) is an arbitrary
point, its position after the rotation is given by the product P ·M.

M = (24.21)⎛
⎜⎝

u2
x + cos θ(1− u2

x) uxuy(1− cos θ)− uz sin θ uxuz(1− cos θ) + uy sin θ

uxuy(1− cos θ) + uz sin θ u2
y + cos θ(1− u2

y) uyuz(1− cos θ)− ux sin θ

uxuz(1− cos θ)− uy sin θ uyuz(1− cos θ) + ux sin θ u2
z + cos θ(1− u2

z)

⎞
⎟⎠ .

The general rotation of Equation (24.21) can now be applied to our problem, which
is to rotate the vector D = (1, 1, 1) to the x axis. The rotation should be done about
the vector u that’s perpendicular to both D and (1, 0, 0). This vector is computed by
the cross-product u = D×(1, 0, 0) = (0, 1,−1). Normalizing it yields u = (0, α,−α),
where α = 1/

√
2.

The next step is to compute the angle θ between D and the x axis. This is done by
normalizing D and computing the dot product of it and the x axis (recall that the dot
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product of two unit vectors is the cosine of the angle between them). The normalizedD is
(β, β, β), where β = 1/

√
3, and the dot product results in cos θ = β, which also produces

sin θ = −
√
1− β2 = −√2/3 = −β/α. The reason for the negative sign is that a rotation

from (1, 1, 1) to (1, 0, 0) about u appears counterclockwise to an observer looking from
the origin in the direction of positive u. The rotation matrix of Equation (24.21) was
derived for the opposite direction of rotation. Also, cos θ = β implies that θ = 54.76◦.
This angle, not 45◦, is the angle made by vector D with each of the three coordinate
axes. (As an aside, when the number of dimensions increases, the angle between vector
(1, 1, . . . , 1) and any of the coordinate axes approaches 90◦.)

Substituting u, sin θ, and cos θ in Equation (24.21) and using the relations α2 +
β(1− α2) = (β + 1)/2 and −α2(1− β) = (β − 1)/2 yields the simple rotation matrix

M =

⎡
⎣β −β −β

β α2 + β(1− α2) −α2(1− β)
β −α2(1− β) α2 + β(1− α2)

⎤
⎦ =
⎡
⎣β −β −β

β (β + 1)/2 (β − 1)/2
β (β − 1)/2 (β + 1)/2

⎤
⎦

≈
⎡
⎣ 0.5774 −0.5774 −0.5774
0.5774 0.7886 −0.2115
0.5774 −0.2115 0.7886

⎤
⎦ .

It is now easy to see that a point on the line x = y = z, with coordinates (v, v, v) is
rotated by M to (v, v, v)M = (1.7322v, 0, 0). Notice that the determinant of M equals
+1, so M is a rotation matrix, in contrast to the matrix of Equation (24.15), which
generates improper rotations.

24.3.11 Discrete Sine Transform

Readers who have made it to this point may raise the question of why the cosine function,
and not the sine, is used in the transform? Is it possible to use the sine function in a
similar way to the DCT to create a discrete sine transform? Is there a DST, and if not,
why? This short section discusses the differences between the sine and cosine functions
and shows why these differences lead to a very ineffective discrete sine transform.

A function f(x) that satisfies f(x) = −f(−x) is called odd. Similarly, a function
for which f(x) = f(−x) is called even. For an odd function, it is always true that
f(0) = −f(−0) = −f(0), so f(0) must be 0. Most functions are neither odd nor even,
but the trigonometric functions sine and cosine are important examples of odd and even
functions, respectively. Figure 24.37 shows that even though the only difference between
them is phase (i.e., the cosine is a shifted version of the sine), this difference is enough to
reverse their parity. When the (odd) sine curve is shifted, it becomes the (even) cosine
curve, which has the same shape.

To understand the difference between the DCT and the DST, we examine the one-
dimensional case. The DCT in one dimension, Equation (24.11), employs the function
cos[(2t + 1)fπ/16] for f = 0, 1, . . . , 7. For the first term, where f = 0, this function
becomes cos(0), which is 1. This term is the familiar and important DC coefficient,
which is proportional to the average of the eight data values being transformed. The
DST is similarly based on the function sin[(2t+ 1)fπ/16], resulting in a zero first term
[since sin(0) = 0]. The first term contributes nothing to the transform, so the DST does
not have a DC coefficient.
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2π−2π

Sine

0

1
Cosine

π−π
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Figure 24.37: The Sine and Cosine as Odd and Even Functions, Respectively.

The disadvantage of this can be seen when we consider the example of eight identical
data values being transformed by the DCT and by the DST. Identical values are, of
course, perfectly correlated. When plotted, they become a horizontal line. Applying
the DCT to these values produces just a DC coefficient: All the AC coefficients are
zero. The DCT compacts all the energy of the data into the single DC coefficient whose
value is identical to the values of the data items. The IDCT can reconstruct the eight
values perfectly (except for minor differences resulting from limited machine precision).
Applying the DST to the same eight values, on the other hand, results in seven AC
coefficients whose sum is a wave function that passes through the eight data points
but oscillates between the points. This behavior, illustrated by Figure 24.38, has three
disadvantages, namely (1) the energy of the original data values is not compacted, (2) the
seven coefficients are not decorrelated (since the data values are perfectly correlated), and
(3) quantizing the seven coefficients may greatly reduce the quality of the reconstruction
done by the inverse DST.

DST coefficients

DCT coefficients

Figure 24.38: The DCT and DST of Eight Identical Data Values.

Example: Applying the DST to the eight identical values 100 results in the eight
coefficients (0, 256.3, 0, 90, 0, 60.1, 0, 51). Using these coefficients, the IDST can recon-
struct the original values, but it is easy to see that the AC coefficients do not behave like
those of the DCT. They are not getting smaller, and there are no runs of zeros among
them. Applying the DST to the eight highly correlated values 11, 22, 33, 44, 55, 66, 77,
and 88 results in the even worse set of coefficients

(0, 126.9,−57.5, 44.5,−31.1, 29.8,−23.8, 25.2).

There is no energy compaction at all.
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N=8;
m=[1:N]’*ones(1,N); n=m’;
% can also use cos instead of sin
%A=sqrt(2/N)*cos(pi*(2*(n-1)+1).*(m-1)/(2*N));
A=sqrt(2/N)*sin(pi*(2*(n-1)+1).*(m-1)/(2*N));
A(1,:)=sqrt(1/N);
C=A’;
for row=1:N
for col=1:N
B=C(:,row)*C(:,col).’; %tensor product
subplot(N,N,(row-1)*N+col)
imagesc(B)
drawnow

end
end

Figure 24.39: The 64 Basis Images of the DST in Two Dimensions.
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These arguments and examples, together with the fact (discussed in [Ahmed et
al. 74] and [Rao and Yip 90]) that the DCT produces highly decorrelated coefficients,
argue strongly for the use of the DCT as opposed to the DST in data compression.

� Exercise 24.9: Use mathematical software to compute and display the 64 basis images
of the DST in two dimensions for n = 8.

We are the wisp of straw, the plaything of the winds. We think that we are making
for a goal deliberately chosen; destiny drives us towards another. Mathematics, the
exaggerated preoccupation of my youth, did me hardly any service; and animals, which
I avoided as much as ever I could, are the consolation of my old age. Nevertheless,
I bear no grudge against the sine and the cosine, which I continue to hold in high
esteem. They cost me many a pallid hour at one time, but they always afforded me
some first rate entertainment: they still do so, when my head lies tossing sleeplessly
on its pillow.

—J. Henri Fabre, The Life of the Fly.

24.4 Test Images

New image compression methods that are developed and implemented have to be tested.
Testing different methods on the same data makes it possible to compare their perfor-
mance both in compression efficiency and in speed. This is why there are standard
collections of test data, such as the Calgary Corpus [Calgary 11], the Canterbury Cor-
pus [Canterbury 11], and the ITU-T set of eight training documents for fax compression
[funet 11].

In addition to these sets of test data, there currently exist collections of still images
commonly used by researchers and implementors in the fields of image compression and
image processing. Three of the four images shown here, namely Lena, mandril, and
peppers, are arguably the most well-known of them. They are continuous-tone images,
although Lena has some features of a discrete-tone image.

Each image is accompanied by a detail, showing individual pixels (see also Fig-
ure 21.13). It is easy to see why the peppers image is continuous-tone. Adjacent pixels
that differ much in color are fairly rare in this image. Most neighboring pixels are very
similar. In contrast, the mandril image, even though natural, is a bad example of a
continuous-tone image. The detail (showing part of the right eye and the area around
it) shows that many pixels differ considerably from their immediate neighbors because
of the animal’s facial hair in this area. This image compresses badly under any com-
pression method. However, the nose area, with mostly blue and red, is continuous-tone.
The Lena image is mostly pure continuous-tone, especially the wall and the bare skin
areas. The hat is good continuous-tone, whereas the hair and the plume on the hat are
bad continuous-tone. The straight lines on the wall and the curved parts of the mirror
are features of a discrete-tone image.

The Lena image is widely used by the image processing community, in addition to
being popular in image compression. Because of the interest in it, its origin and his-
tory have been researched and are well documented. This image is part of the Playboy
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Figure 24.40: Lena and Detail.

centerfold for November, 1972. It features the Swedish playmate Lena Soderberg (née
Sjooblom), and it was discovered, clipped, and scanned in the early 1970s by Alexander
Sawchuk, an assistant professor at the University of Southern California for use as a
test image for his image compression research. It has since become the most impor-
tant, well-known, and commonly used image in the history of imaging and electronic
communications. As a result, Lena is currently considered by many the First Lady of
the Internet. Playboy, which normally prosecutes unauthorized users of its images, has
found out about the unusual use of one of its copyrighted images, but decided to give
its blessing to this particular “application.”

Lena herself currently lives in Sweden. She was told of her “fame” in 1988, was
surprised and amused by it, and was invited to attend the 50th Anniversary IS&T (the
society for Imaging Science and Technology) conference in Boston in May 1997. At the
conference she autographed her picture, posed for new pictures (available on the www),
and gave a presentation (about herself, not image processing).

The three images are widely available for downloading on the Internet.
Figure 24.44 shows a typical discrete-tone image, with a detail shown in Fig-

ure 24.45. Notice the straight lines and the text, where certain characters appear several
times (a source of redundancy). This particular image has few colors, but in general, a
discrete-tone image may have many colors.

Lena, Illinois, is a community of approximately 2,900 people. Lena is considered to be
a clean and safe community located centrally to larger cities that offer other interests
when needed. Lena is 2-1/2 miles from Lake Le-Aqua-Na State Park. The park offers
hiking trails, fishing, swimming beach, boats, cross country skiing, horse back riding
trails, as well as picnic and camping areas. It is a beautiful well-kept park that has
free admission to the public. A great place for sledding and ice skating in the winter!
(From http://www.villageoflena.com/)

http://www.villageoflena.com/
http://www.villageoflena.com/
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Figure 24.41: Mandril and Detail.

Figure 24.42: JPEG Blocking Artifacts.

Figure 24.43: Peppers and Detail.
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Figure 24.44: A Discrete-Tone Image.

Figure 24.45: A Discrete-Tone Image (Detail).
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24.5 JPEG

JPEG is a sophisticated lossy/lossless compression method for color or grayscale still
images (not videos). It does not handle bi-level (black and white) images very well. It
also performs best on continuous-tone images, where adjacent pixels have similar colors.
An important feature of JPEG is its use of many parameters, allowing the user to adjust
the amount of the data lost (and thus also the compression ratio) over a very wide range.
Often, the eye cannot see any image degradation even at compression factors of 10 or 20.
There are two operating modes, lossy (also called baseline) and lossless (which typically
produces compression ratios of around 0.5). Most implementations support just the
lossy mode. This mode includes progressive and hierarchical coding. A few of the many
references to JPEG are [Pennebaker and Mitchell 92], [Wallace 91], and [Zhang 90].

JPEG is a compression method, not a complete standard for image representation.
This is why it does not specify image features such as pixel aspect ratio, color space, or
interleaving of bitmap rows.

JPEG has been designed as a compression method for continuous-tone images. The
main goals of JPEG compression are the following:

1. High compression ratios, especially in cases where image quality is judged as very
good to excellent.
2. The use of many parameters, allowing knowledgeable users to experiment and achieve
the desired compression/quality trade-off.
3. Obtaining good results with any kind of continuous-tone image, regardless of image
dimensions, color spaces, pixel aspect ratios, or other image features.
4. A sophisticated, but not too complex compression method, allowing software and
hardware implementations on many platforms.
5. Several modes of operation: (a) A sequential mode where each image component
(color) is compressed in a single left-to-right, top-to-bottom scan; (b) a progressive
mode where the image is compressed in multiple blocks (known as “scans”) to be viewed
from coarse to fine detail; (c) a lossless mode that is important in cases where the user
decides that no pixels should be lost (the trade-off is low compression ratio compared
to the lossy modes); and (d) a hierarchical mode where the image is compressed at
multiple resolutions allowing lower-resolution blocks to be viewed without first having
to decompress the following higher-resolution blocks.

The name JPEG is an acronym that stands for Joint Photographic Experts Group.
This was a joint effort by the CCITT and the ISO (the International Standards Or-
ganization) that started in June 1987 and produced the first JPEG draft proposal in
1991. The JPEG standard has proved successful and has become widely used for image
compression, especially in Web pages.

The main JPEG compression steps are outlined here, and each step is then described
in detail later.

1. Color images are transformed from RGB into a luminance-chrominance color space
(Section 21.12; this step is skipped for grayscale images). The eye is sensitive to small
changes in luminance but not in chrominance, so the chrominance part can later lose
much data, and thus be highly compressed, without visually impairing the overall image
quality much. This step is optional but important because the remainder of the algo-
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rithm works on each color component separately. Without transforming the color space,
none of the three color components will tolerate much loss, leading to worse compression.
2. Color images are downsampled by creating low-resolution pixels from the original ones
(this step is used only when hierarchical compression is selected; it is always skipped
for grayscale images). The downsampling is not done for the luminance component.
Downsampling is done either at a ratio of 2:1 both horizontally and vertically (the so-
called 2h2v or 4:1:1 sampling) or at ratios of 2:1 horizontally and 1:1 vertically (2h1v
or 4:2:2 sampling). Since this is done on two of the three color components, 2h2v
reduces the image to 1/3 + (2/3) × (1/4) = 1/2 its original size, while 2h1v reduces it
to 1/3 + (2/3) × (1/2) = 2/3 its original size. Since the luminance component is not
touched, there is no noticeable loss of image quality. Grayscale images don’t go through
this step.
3. The pixels of each color component are organized in groups of 8×8 pixels called
data units, and each data unit is compressed separately. If the number of image rows or
columns is not a multiple of 8, the bottom row and the rightmost column are duplicated
as many times as necessary. In the noninterleaved mode, the encoder handles all the
data units of the first image component, then the data units of the second component,
and finally those of the third component. In the interleaved mode the encoder processes
the three top-left data units of the three image components, then the three data units
to their right, and so on. The fact that each data unit is compressed separately is one of
the downsides of JPEG. If the user asks for maximum compression, the decompressed
image may exhibit blocking artifacts due to differences between blocks. Figure 24.42 is
an extreme example of this effect.
4. The discrete cosine transform (DCT, Section 24.3) is then applied to each data unit
to create an 8×8 map of frequency components (Section 24.5.1). They represent the
average pixel value and successive higher-frequency changes within the group. This
prepares the image data for the crucial step of losing information. Since DCT involves
the transcendental function cosine, it must involve some loss of information due to the
limited precision of computer arithmetic. This means that even without the main lossy
step (step 5 below), there will be some loss of image quality, but it is normally small.
5. Each of the 64 frequency components in a data unit is divided by a separate number
called its quantization coefficient (QC), and then rounded to an integer (Section 24.5.2).
This is where information is irretrievably lost. Large QCs cause more loss, so the high-
frequency components typically have larger QCs. Each of the 64 QCs is a JPEG param-
eter and can, in principle, be specified by the user. In practice, most JPEG implemen-
tations use the QC tables recommended by the JPEG standard for the luminance and
chrominance image components (Table 24.47).
6. The 64 quantized frequency coefficients (which are now integers) of each data unit
are encoded using a combination of RLE and Huffman coding (Section 24.5.3). An
arithmetic coding variant known as the QM coder (see [Salomon 09]) can optionally be
used instead of Huffman coding.
7. The last step adds headers and all the required JPEG parameters, and outputs the
result. The compressed file may be in one of three formats (1) the interchange format,
in which the file contains the compressed image and all the tables needed by the decoder
(mostly quantization tables and tables of Huffman codes), (2) the abbreviated format for
compressed image data, where the file contains the compressed image and may contain
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no tables (or just a few tables), and (3) the abbreviated format for table-specification
data, where the file contains just tables, and no compressed image. The second format
makes sense in cases where the same encoder/decoder pair is used, and they have the
same tables built in. The third format is used in cases where many images have been
compressed by the same encoder, using the same tables. When those images need to be
decompressed, they are sent to a decoder preceded by one file with table-specification
data.

The JPEG decoder performs the reverse steps. (Thus, JPEG is a symmetric com-
pression method.)

The progressive mode is a JPEG option. In this mode, higher-frequency DCT
coefficients are written on the compressed stream in blocks called “scans.” Each scan
that is read and processed by the decoder results in a sharper image. The idea is to
use the first few scans to quickly create a low-quality, blurred preview of the image, and
then either input the remaining scans or stop the process and reject the image. The
trade-off is that the encoder has to save all the coefficients of all the data units in a
memory buffer before they are sent in scans, and also go through all the steps for each
scan, slowing down the progressive mode.

Figure 24.46a shows an example of an image with resolution 1024 × 512. The
image is divided into 128× 64 = 8192 data units, and each is transformed by the DCT,
becoming a set of 64 8-bit numbers. Figure 24.46b is a block whose depth corresponds
to the 8,192 data units, whose height corresponds to the 64 DCT coefficients (the DC
coefficient is the top one, numbered 0), and whose width corresponds to the eight bits
of each coefficient.

After preparing all the data units in a memory buffer, the encoder writes them on the
compressed stream in one of two methods, spectral selection or successive approximation
(Figure 24.46c,d). The first scan in either method is the set of DC coefficients. If
spectral selection is used, each successive scan consists of several consecutive (a band of)
AC coefficients. If successive approximation is used, the second scan consists of the four
most-significant bits of all AC coefficients, and each of the following four scans, numbers
3 through 6, adds one more significant bit (bits 3 through 0, respectively).

In the hierarchical mode, the encoder stores the image several times in the output
stream, at several resolutions. However, each high-resolution part uses information from
the low-resolution parts of the output stream, so the total amount of information is less
than that required to store the different resolutions separately. Each hierarchical part
may use the progressive mode.

The hierarchical mode is useful in cases where a high-resolution image needs to be
output in low resolution. Today, in 2011, it is difficult to come up with an example
of a low-resolution output device, but there may be places where a few old, obsolete
dot-matrix printers are still in use.

The lossless mode of JPEG (Section 24.5.4) calculates a “predicted” value for each
pixel, generates the difference between the pixel and its predicted value, and encodes the
difference using the same method (i.e., Huffman or arithmetic coding) employed by step
5 above. The predicted value is calculated using values of pixels above and to the left
of the current pixel (pixels that have already been input and encoded). The following
sections discuss the steps in more detail:
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Figure 24.46: Scans in the JPEG Progressive Mode.
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24.5.1 DCT

The general concept of a transform is discussed in Section 24.1. The discrete cosine
transform is discussed in much detail in Section 24.3. Other examples of important
transforms are the Fourier transform and the wavelet transform (Chapter 25). Both
have applications in many areas and also have discrete versions (DFT and DWT).

The JPEG committee elected to use the DCT because of its excellent performance,
because it does not assume anything about the structure of the data (the DFT, for
example, assumes that the data to be transformed is periodic), and because there are
ways to speed it up (Section 24.3.5).

The JPEG standard calls for applying the DCT not to the entire image but to data
units (blocks) of 8×8 pixels. The reasons for this are: (1) Applying DCT to large blocks
involves many arithmetic operations and is therefore slow. Applying DCT to small data
units is faster. (2) Experience shows that, in a continuous-tone image, correlations
between pixels are short range. A pixel in such an image has a value (color component
or shade of gray) that’s close to those of its near neighbors, but has nothing to do with
the values of far neighbors. The JPEG DCT is therefore executed by Equation (24.13),
duplicated here for n = 8

Gij =
1
4
CiCj

7∑
x=0

7∑
y=0

pxy cos
(
(2x+ 1)iπ

16

)
cos
(
(2y + 1)jπ

16

)
,

where Cf =
{

1√
2
, f = 0,

1, f > 0,
and 0 ≤ i, j ≤ 7.

(24.13)

The DCT is JPEG’s key to lossy compression. The unimportant image information
is reduced or removed by quantizing the 64 DCT coefficients, especially the ones located
toward the lower-right. If the pixels of the image are correlated, quantization does not
degrade the image quality much. For best results, each of the 64 coefficients is quantized
by dividing it by a different quantization coefficient (QC). All 64 QCs are parameters
that can be controlled, in principle, by the user (Section 24.5.2).

The JPEG decoder works by computing the inverse DCT (IDCT), Equation (24.14),
duplicated here for n = 8

pxy =
1
4

7∑
i=0

7∑
j=0

CiCjGij cos
(
(2x+ 1)iπ

16

)
cos
(
(2y + 1)jπ

16

)
,

where Cf =
{

1√
2
, f = 0;

1, f > 0.

(24.14)

It takes the 64 quantized DCT coefficients and calculates 64 pixels pxy. If the QCs are the
right ones, the new 64 pixels will be very similar to the original ones. Mathematically,
the DCT is a one-to-one mapping of 64-point vectors from the image domain to the
frequency domain. The IDCT is the reverse mapping. If the DCT and IDCT could be
calculated with infinite precision and if the DCT coefficients were not quantized, the
original 64 pixels would be exactly reconstructed.
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24.5.2 Quantization

After each 8×8 data unit of DCT coefficients Gij is computed, it is quantized. This
is the step where information is lost (except for some unavoidable loss because of finite
precision calculations in other steps). Each number in the DCT coefficients matrix is
divided by the corresponding number from the particular “quantization table” used, and
the result is rounded to the nearest integer. As has already been mentioned, three such
tables are needed, for the three color components. The JPEG standard allows for up to
four tables, and the user can select any of the four for quantizing each color component.
The 64 numbers that constitute each quantization table are all JPEG parameters. In
principle, they can all be specified and fine-tuned by the user for maximum compres-
sion. In practice, few users have the patience or expertise to experiment with so many
parameters, so JPEG software normally uses the following two approaches:

1. Default quantization tables. Two such tables, for the luminance (grayscale) and
the chrominance components, are the result of many experiments performed by the
JPEG committee. They are included in the JPEG standard and are reproduced here as
Table 24.47. It is easy to see how the QCs in the table generally grow as we move from
the upper left corner to the bottom right corner. This is how JPEG reduces the DCT
coefficients with high spatial frequencies.
2. A simple quantization table Q is computed, based on one parameter R specified by
the user. A simple expression such as Qij = 1 + (i+ j)×R guarantees that QCs start
small at the upper-left corner and get bigger toward the lower-right corner. Table 24.48
shows an example of such a table with R = 2.

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

17 18 24 47 99 99 99 99
18 21 26 66 99 99 99 99
24 26 56 99 99 99 99 99
47 66 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99

Luminance Chrominance

Table 24.47: Recommended Quantization Tables.

If the quantization is done correctly, very few nonzero numbers will be left in the
DCT coefficients matrix, and they will typically be concentrated in the upper-left region.
These numbers are the output of JPEG, but they are further compressed before being
written on the output stream. In the JPEG literature this compression is called “entropy
coding,” and Section 24.5.3 shows in detail how it is done. Three techniques are used
by entropy coding to compress the 8× 8 matrix of integers:
1. The 64 numbers are collected by scanning the matrix in zigzags (Figure 23.9). This
produces a string of 64 numbers that starts with some nonzeros and typically ends with
many consecutive zeros. Only the nonzero numbers are output (after further compressing
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1 3 5 7 9 11 13 15
3 5 7 9 11 13 15 17
5 7 9 11 13 15 17 19
7 9 11 13 15 17 19 21
9 11 13 15 17 19 21 23
11 13 15 17 19 21 23 25
13 15 17 19 21 23 25 27
15 17 19 21 23 25 27 29

Table 24.48: The Quantization Table 1 + (i+ j)× 2.

them) and are followed by a special end-of block (EOB) code. This way there is no need
to output the trailing zeros (we can say that the EOB is the run-length encoding of all
the trailing zeros). The interested reader should also consult chapter 11 of [Salomon 09]
for other methods to compress binary strings with many consecutive zeros.

� Exercise 24.10: Propose a practical way to write a loop that traverses an 8×8 matrix
in zigzag.

2. The nonzero numbers are compressed using Huffman coding (Section 24.5.3).
3. The first of those numbers (the DC coefficient, Page 1083) is treated differently from
the others (the AC coefficients).

She had just succeeded in curving it down into a graceful zigzag, and was going to
dive in among the leaves, which she found to be nothing but the tops of the trees
under which she had been wandering, when a sharp hiss made her draw back in a
hurry.

—Lewis Carroll, Alice in Wonderland (1865).

24.5.3 Coding

We first discuss point 3 above. Each 8×8 matrix of quantized DCT coefficients contains
one DC coefficient (at position (0, 0), the top left corner) and 63 AC coefficients. The
DC coefficient is a measure of the average value of the 64 original pixels, constituting
the data unit. Experience shows that in a continuous-tone image, adjacent data units
of pixels are normally correlated in the sense that the average values of the pixels in
adjacent data units are close. We already know that the DC coefficient of a data unit
is a multiple of the average of the 64 pixels constituting the unit. This implies that the
DC coefficients of adjacent data units don’t differ much. JPEG outputs the first one
(encoded), followed by differences (also encoded) of the DC coefficients of consecutive
data units.

Example: If the first three 8× 8 data units of an image have quantized DC coef-
ficients of 1118, 1114, and 1119, then the JPEG output for the first data unit is 1118
(Huffman encoded, see below) followed by the 63 (encoded) AC coefficients of that data
unit. The output for the second data unit will be 1114− 1118 = −4 (also Huffman en-
coded), followed by the 63 (encoded) AC coefficients of that data unit, and the output
for the third data unit will be 1119− 1114 = 5 (also Huffman encoded), again followed



24 Transforms and JPEG 1139

by the 63 (encoded) AC coefficients of that data unit. This way of handling the DC
coefficients is worth the extra trouble, because the differences are small.

Coding the DC differences is done with Table 24.49, so first here are a few words
about this table. Each row has a row number (on the left), the unary code for the row
(on the right), and several columns in between. Each row contains greater numbers (and
also more numbers) than its predecessor but not the numbers contained in previous rows.
Row i contains the range of integers [−(2i−1),+(2i−1)] but is missing the middle range
[−(2i−1 − 1),+(2i−1 − 1)]. Thus, the rows get very long, which means that a simple
two-dimensional array is not a good data structure for this table. In fact, there is no
need to store these integers in a data structure, since the program can figure out where
in the table any given integer x is supposed to reside by analyzing the bits of x.

The first DC coefficient to be encoded in our example is 1118. It resides in row
11 column 930 of the table (column numbering starts at zero), so it is encoded as
111111111110|01110100010 (the unary code for row 11, followed by the 11-bit binary
value of 930). The second DC difference is−4. It resides in row 3 column 3 of Table 24.49,
so it is encoded as 1110|011 (the unary code for row 3, followed by the 3-bit binary value
of 3).

� Exercise 24.11: How is the third DC difference, 5, encoded?
Point 2 above has to do with the precise way the 63 AC coefficients of a data

unit are compressed. It uses a combination of RLE and either Huffman or arithmetic
coding. The idea is that the sequence of AC coefficients normally contains just a few
nonzero numbers, with runs of zeros between them, and with a long run of trailing
zeros. For each nonzero number x, the encoder (1) finds the number Z of consecutive
zeros preceding x; (2) finds x in Table 24.49 and prepares its row and column numbers
(R and C); (3) the pair (R, Z) (that’s (R,Z), not (R,C)) is used as row and column
numbers for Table 24.52; and (4) the Huffman code found in that position in the table
is concatenated to C (where C is written as an R-bit number) and the result is (finally)
the code emitted by the JPEG encoder for the AC coefficient x and all the consecutive
zeros preceding it.

0: 0 0
1: -1 1 10
2: -3 -2 2 3 110
3: -7 -6 -5 -4 4 5 6 7 1110
4: -15 -14 . . . -9 -8 8 9 10 . . . 15 11110
5: -31 -30 -29 . . . -17 -16 16 17 . . . 31 111110
6: -63 -62 -61 . . . -33 -32 32 33 . . . 63 1111110
7: -127 -126 -125 . . . -65 -64 64 65 . . . 127 11111110
...

...
14: -16383 -16382 -16381 . . . -8193 -8192 8192 8193 . . . 16383 111111111111110
15: -32767 -32766 -32765 . . . -16385 -16384 16384 16385 . . . 32767 1111111111111110
16: 32768 1111111111111111

Table 24.49: Coding the Differences of DC Coefficients.

The Huffman codes in Table 24.52 are not the ones recommended by the JPEG
standard. The standard recommends the use of Tables 24.50 and 24.51 and says that
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up to four Huffman code tables can be used by a JPEG codec, except that the baseline
mode can use only two such tables. The actual codes in Table 24.52 are thus arbitrary.
The reader should notice the EOB code at position (0, 0) and the ZRL code at position
(0, 15). The former indicates end-of-block, and the latter is the code emitted for 15
consecutive zeros when the number of consecutive zeros exceeds 15. These codes are
the ones recommended for the luminance AC coefficients of Table 24.50. The EOB and
ZRL codes recommended for the chrominance AC coefficients of Table 24.51 are 00 and
1111111010, respectively.

As an example consider the sequence

1118, 2, 0,−2, 0, . . . , 0︸ ︷︷ ︸
13

,−1, 0, . . . .

The first AC coefficient 2 has no zeros preceding it, so Z = 0. It is found in Table 24.49
in row 2, column 2, so R = 2 and C = 2. The Huffman code in position (R,Z) = (2, 0) of
Table 24.52 is 01, so the final code emitted for 2 is 01|10. The next nonzero coefficient,
−2, has one zero preceding it, so Z = 1. It is found in Table 24.49 in row 2, column
1, so R = 2 and C = 1. The Huffman code in position (R,Z) = (2, 1) of Table 24.52 is
11011, so the final code emitted for 2 is 11011|01.

� Exercise 24.12: What code is emitted for the last nonzero AC coefficient, −1?
Finally, the sequence of trailing zeros is encoded as 1010 (EOB), so the output for

the above sequence of AC coefficients is 01101101110111010101010. We saw earlier that
the DC coefficient is encoded as 111111111110|1110100010, so the final output for the
entire 64-pixel data unit is the 46-bit number

1111111111100111010001001101101110111010101010.
These 46 bits encode one color component of the 64 pixels of a data unit. Let’s assume
that the other two color components are also encoded into 46-bit numbers. If each
pixel originally consists of 24 bits, then this corresponds to a compression factor of
64× 24/(46× 3) ≈ 11.13; very impressive!

(Notice that the DC coefficient of 1118 has contributed 23 of the 46 bits. Subsequent
data units code differences of their DC coefficient, which may take fewer than 10 bits
instead of 23. They may feature much higher compression factors as a result.)

The same tables (Tables 24.49 and 24.52) used by the encoder should, of course,
be used by the decoder. The tables may be predefined and used by a JPEG codec
as defaults, or they may be specifically calculated for a given image in a special pass
preceding the actual compression. The JPEG standard does not specify any code tables,
so any JPEG codec must use its own.

Readers who feel that this coding scheme is complex should take a look at the much
more complex CAVLC coding method that is employed by H.264 [Salomon 09] to encode
a similar sequence of 8×8 DCT transform coefficients.

Some JPEG variants use a particular version of arithmetic coding, called the QM
coder, that is specified in the JPEG standard. This version of arithmetic coding is
adaptive, so it does not need Tables 24.49 and 24.52. It adapts its behavior to the
image statistics as it goes along. Using arithmetic coding may produce 5–10% better
compression than Huffman for a typical continuous-tone image. However, it is more
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R

Z 1 2 3 4 5
6 7 8 9 A

0 00 01 100 1011 11010
1111000 11111000 1111110110 1111111110000010 1111111110000011

1 1100 11011 11110001 111110110 11111110110
1111111110000100 1111111110000101 1111111110000110 1111111110000111 1111111110001000

2 11100 11111001 1111110111 111111110100 111111110001001
111111110001010 111111110001011 111111110001100 111111110001101 111111110001110

3 111010 111110111 111111110101 1111111110001111 1111111110010000
1111111110010001 1111111110010010 1111111110010011 1111111110010100 1111111110010101

4 111011 1111111000 1111111110010110 1111111110010111 1111111110011000
1111111110011001 1111111110011010 1111111110011011 1111111110011100 1111111110011101

5 1111010 11111110111 1111111110011110 1111111110011111 1111111110100000
1111111110100001 1111111110100010 1111111110100011 1111111110100100 1111111110100101

6 1111011 111111110110 1111111110100110 1111111110100111 1111111110101000
1111111110101001 1111111110101010 1111111110101011 1111111110101100 1111111110101101

7 11111010 111111110111 1111111110101110 1111111110101111 1111111110110000
1111111110110001 1111111110110010 1111111110110011 1111111110110100 1111111110110101

8 111111000 111111111000000 1111111110110110 1111111110110111 1111111110111000
1111111110111001 1111111110111010 1111111110111011 1111111110111100 1111111110111101

9 111111001 1111111110111110 1111111110111111 1111111111000000 1111111111000001
1111111111000010 1111111111000011 1111111111000100 1111111111000101 1111111111000110

A 111111010 1111111111000111 1111111111001000 1111111111001001 1111111111001010
1111111111001011 1111111111001100 1111111111001101 1111111111001110 1111111111001111

B 1111111001 1111111111010000 1111111111010001 1111111111010010 1111111111010011
1111111111010100 1111111111010101 1111111111010110 1111111111010111 1111111111011000

C 1111111010 1111111111011001 1111111111011010 1111111111011011 1111111111011100
1111111111011101 1111111111011110 1111111111011111 1111111111100000 1111111111100001

D 11111111000 1111111111100010 1111111111100011 1111111111100100 1111111111100101
1111111111100110 1111111111100111 1111111111101000 1111111111101001 1111111111101010

E 1111111111101011 1111111111101100 1111111111101101 1111111111101110 1111111111101111
1111111111110000 1111111111110001 1111111111110010 1111111111110011 1111111111110100

F 11111111001 1111111111110101 1111111111110110 1111111111110111 1111111111111000
1111111111111001 1111111111111010 1111111111111011 1111111111111101 1111111111111110

Table 24.50: Recommended Huffman Codes for Luminance AC Coefficients.
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R

Z 1 2 3 4 5
6 7 8 9 A

0 01 100 1010 11000 11001
111000 1111000 111110100 1111110110 111111110100

1 1011 111001 11110110 111110101 11111110110
111111110101 111111110001000 111111110001001 111111110001010 111111110001011

2 11010 11110111 1111110111 111111110110 111111111000010
1111111110001100 1111111110001101 1111111110001110 1111111110001111 1111111110010000

3 11011 11111000 1111111000 111111110111 1111111110010001
1111111110010010 1111111110010011 1111111110010100 1111111110010101 1111111110010110

4 111010 111110110 1111111110010111 1111111110011000 1111111110011001
1111111110011010 1111111110011011 1111111110011100 1111111110011101 1111111110011110

5 111011 1111111001 1111111110011111 1111111110100000 1111111110100001
1111111110100010 1111111110100011 1111111110100100 1111111110100101 1111111110100110

6 1111001 11111110111 1111111110100111 1111111110101000 1111111110101001
1111111110101010 1111111110101011 1111111110101100 1111111110101101 1111111110101110

7 1111010 11111111000 1111111110101111 1111111110110000 1111111110110001
1111111110110010 1111111110110011 1111111110110100 1111111110110101 1111111110110110

8 11111001 1111111110110111 1111111110111000 1111111110111001 1111111110111010
1111111110111011 1111111110111100 1111111110111101 1111111110111110 1111111110111111

9 111110111 1111111111000000 1111111111000001 1111111111000010 1111111111000011
1111111111000100 1111111111000101 1111111111000110 1111111111000111 1111111111001000

A 111111000 1111111111001001 1111111111001010 1111111111001011 1111111111001100
1111111111001101 1111111111001110 1111111111001111 1111111111010000 1111111111010001

B 111111001 1111111111010010 1111111111010011 1111111111010100 1111111111010101
1111111111010110 1111111111010111 1111111111011000 1111111111011001 1111111111011010

C 111111010 1111111111011011 1111111111011100 1111111111011101 1111111111011110
1111111111011111 1111111111100000 1111111111100001 1111111111100010 1111111111100011

D 11111111001 1111111111100100 1111111111100101 1111111111100110 1111111111100111
1111111111101000 1111111111101001 1111111111101010 1111111111101011 1111111111101100

E 11111111100000 1111111111101101 1111111111101110 1111111111101111 1111111111110000
1111111111110001 1111111111110010 1111111111110011 1111111111110100 1111111111110101

F 111111111000011 111111111010110 1111111111110111 1111111111111000 1111111111111001
1111111111111010 1111111111111011 1111111111111100 1111111111111101 1111111111111110

Table 24.51: Recommended Huffman Codes for Chrominance AC Coefficients.
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R Z: 0 1 . . . 15

0: 1010 11111111001(ZRL)
1: 00 1100 . . . 1111111111110101
2: 01 11011 . . . 1111111111110110
3: 100 1111001 . . . 1111111111110111
4: 1011 111110110 . . . 1111111111111000
5: 11010 11111110110 . . . 1111111111111001
...

...

Table 24.52: Coding AC Coefficients.

complex to implement than Huffman coding, so in practice it is rare to find a JPEG
codec that uses it.

24.5.4 Lossless Mode

The lossless mode of JPEG uses differencing to reduce the values of pixels before they are
compressed. This particular form of differencing is called predicting. The values of some
near neighbors of a pixel are subtracted from the pixel to get a small number, which
is then compressed further using Huffman or arithmetic coding. Figure 24.53a shows
a pixel X and three neighbor pixels A, B, and C. Figure 24.53b shows eight possible
ways (predictions) to combine the values of the three neighbors. In the lossless mode,
the user can select one of these predictions, and the encoder then uses it to combine
the three neighbor pixels and subtract the combination from the value of X. The result
is normally a small number, which is then entropy-coded in a way very similar to that
described for the DC coefficient in Section 24.5.3.

Predictor 0 is used only in the hierarchical mode of JPEG. Predictors 1, 2, and 3
are called one-dimensional. Predictors 4, 5, 6, and 7 are two dimensional.

C B
A X

Selection value Prediction
0 no prediction
1 A
2 B
3 C
4 A + B− C
5 A+ ((B− C)/2)
6 B + ((A− C)/2)
7 (A + B)/2

(a) (b)

Figure 24.53: Pixel Prediction in the Lossless Mode.

It should be noted that the lossless mode of JPEG has never been very successful.
It produces typical compression factors of 2, and is therefore inferior to other lossless
image compression methods. Because of this, many JPEG implementations do not even
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implement this mode. Even the lossy (baseline) mode of JPEG does not perform well
when asked to limit the amount of loss to a minimum. As a result, some JPEG imple-
mentations do not allow parameter settings that result in minimum loss. The strength of
JPEG is in its ability to generate highly compressed images that when decompressed are
indistinguishable from the original. Recognizing this, the ISO has decided to come up
with another standard for lossless compression of continuous-tone images. This standard
is now commonly known as JPEG-LS and is described in [Salomon 09].

24.5.5 The Compressed File

A JPEG encoder outputs a compressed file that includes parameters, markers, and the
compressed data units. The parameters are either four bits (these always come in pairs),
one byte, or two bytes long. The markers serve to identify the various parts of the file.
Each is two bytes long, where the first byte is X’FF’ and the second one is not 0 or
X’FF’. A marker may be preceded by a number of bytes with X’FF’. Table 24.55 lists
all the JPEG markers (the first four groups are start-of-frame markers). The compressed
data units are combined into MCUs (minimal coded unit), where an MCU is either a
single data unit (in the noninterleaved mode) or three data units from the three image
components (in the interleaved mode).

Compressed

[Tables]

[Tables]

[DNL segment]

SOI Frame

Frame

EOI

MCU MCU MCU MCU MCU MCU

image

Frame header

Segment0 Segmentlast

Frame header

Scan1

Scan

ECS0 [RST0] ECSlastECSlast-1 [RSTlast-1]

[Scan2] [Scanlast]

Figure 24.54: JPEG File Format.

Figure 24.54 shows the main parts of the JPEG compressed file (parts in square
brackets are optional). The file starts with the SOI marker and ends with the EOI
marker. In between these markers, the compressed image is organized in frames. In
the hierarchical mode there are several frames, and in all other modes there is only
one frame. In each frame the image information is contained in one or more scans,
but the frame also contains a header and optional tables (which, in turn, may include
markers). The first scan may be followed by an optional DNL segment (define number
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Value Name Description
Nondifferential, Huffman coding

FFC0 SOF0 Baseline DCT
FFC1 SOF1 Extended sequential DCT
FFC2 SOF2 Progressive DCT
FFC3 SOF3 Lossless (sequential)

Differential, Huffman coding
FFC5 SOF5 Differential sequential DCT
FFC6 SOF6 Differential progressive DCT
FFC7 SOF7 Differential lossless (sequential)

Nondifferential, arithmetic coding
FFC8 JPG Reserved for extensions
FFC9 SOF9 Extended sequential DCT
FFCA SOF10 Progressive DCT
FFCB SOF11 Lossless (sequential)

Differential, arithmetic coding
FFCD SOF13 Differential sequential DCT
FFCE SOF14 Differential progressive DCT
FFCF SOF15 Differential lossless (sequential)

Huffman table specification
FFC4 DHT Define Huffman table

Arithmetic coding conditioning specification
FFCC DAC Define arith coding conditioning(s)

Restart interval termination
FFD0–FFD7 RSTm Restart with modulo 8 count m

Other markers
FFD8 SOI Start of image
FFD9 EOI End of image
FFDA SOS Start of scan
FFDB DQT Define quantization table(s)
FFDC DNL Define number of lines
FFDD DRI Define restart interval
FFDE DHP Define hierarchical progression
FFDF EXP Expand reference component(s)
FFE0–FFEF APPn Reserved for application segments
FFF0–FFFD JPGn Reserved for JPEG extensions
FFFE COM Comment

Reserved markers
FF01 TEM For temporary private use
FF02–FFBF RES Reserved

Table 24.55: JPEG Markers.
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of lines), which starts with the DNL marker and contains the number of lines in the
image that’s represented by the frame. A scan starts with optional tables, followed by
the scan header, followed by several entropy-coded segments (ECS), which are separated
by (optional) restart markers (RST). Each ECS contains one or more MCUs, where an
MCU is, as explained earlier, either a single data unit or three such units.

I think he be transform’d into a beast;

For I can nowhere find him like a man.

—William Shakespeare, As You Like It (1601)
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