
23
Compression Techniques

In the last few decades, the digital computer has risen to become an integral part of our
lives. It influences every aspect of our existence from commerce to kitchens and from
entertainment to education. A large part of that influence is graphic. Digital images,
whether computer generated or produced by a camera, are all around us. Images may
be important, influential, entertaining, and profitable, but they are also large, which
is why compressing images has become an important topic of research and why image
compression constitutes an entire part (and not just a single chapter) of this book.

The first half of this chapter discusses the concept of redundancy and the principle
of data compression. This is followed by the basic features and types of digital images,
the main approaches to image compression, and a description of several basic image
compression methods. The second half of the chapter is devoted to variable-length
codes, a family of codes widely used in the compression of images and of data in general.

23.1 Redundancy in Data

There are many known methods for the compression of images and for data compres-
sion in general. They are based on different ideas, are suitable for different types of
data, and produce different results, but they are all based on the same principle; they
compress data by removing redundancy from the original, uncompressed data. Any
nonrandom data has some structure, and this structure can be exploited to achieve a
smaller representation of the data, a representation where no structure is discernible.
The professional literature on compression employs the terms redundancy and structure,
as well as smoothness, coherence, and correlation; they all refer to the same thing. Thus,
redundancy is a key concept in any discussion of data compression.

To illustrate the meaning of the term “redundancy” we start with text. In typical
English text, the letter E appears very often, while Z is rare (Tables 23.1 and 23.2). This
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1028 23.1 Redundancy in Data

Letter Freq. Prob. Letter Freq. Prob.

A 51060 0.0721 E 86744 0.1224
B 17023 0.0240 T 64364 0.0908
C 27937 0.0394 I 55187 0.0779
D 26336 0.0372 S 51576 0.0728
E 86744 0.1224 A 51060 0.0721
F 19302 0.0272 O 48277 0.0681
G 12640 0.0178 N 45212 0.0638
H 31853 0.0449 R 45204 0.0638
I 55187 0.0779 H 31853 0.0449
J 923 0.0013 L 30201 0.0426
K 3812 0.0054 C 27937 0.0394
L 30201 0.0426 D 26336 0.0372
M 20002 0.0282 P 20572 0.0290
N 45212 0.0638 M 20002 0.0282
O 48277 0.0681 F 19302 0.0272
P 20572 0.0290 B 17023 0.0240
Q 1611 0.0023 U 16687 0.0235
R 45204 0.0638 G 12640 0.0178
S 51576 0.0728 W 9244 0.0130
T 64364 0.0908 Y 8953 0.0126
U 16687 0.0235 V 6640 0.0094
V 6640 0.0094 X 5465 0.0077
W 9244 0.0130 K 3812 0.0054
X 5465 0.0077 Z 1847 0.0026
Y 8953 0.0126 Q 1611 0.0023
Z 1847 0.0026 J 923 0.0013

Frequencies and probabilities of the 26 letters in a previous edition of this book. The
histogram in the background illustrates the byte distribution in the text.

Most, but not all, experts agree that the most common letters in English, in order, are
ETAOINSHRDLU (normally written as two separate words ETAOIN SHRDLU). However, [Fang 66]
presents a different viewpoint. The most common digrams (2-letter combinations) are TH,
HE, AN, IN, HA, OR, ND, RE, ER, ET, EA, and OU. The most frequently appearing letters
beginning words are S, P, and C, and the most frequent final letters are E, Y, and S. The 11
most common letters in French are ESARTUNILOC.

Table 23.1: Probabilities of English Letters.
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Char. Freq. Prob. Char. Freq. Prob. Char. Freq. Prob.

e 85537 0.099293 x 5238 0.006080 F 1192 0.001384
t 60636 0.070387 | 4328 0.005024 H 993 0.001153
i 53012 0.061537 - 4029 0.004677 B 974 0.001131
s 49705 0.057698 ) 3936 0.004569 W 971 0.001127
a 49008 0.056889 ( 3894 0.004520 + 923 0.001071
o 47874 0.055573 T 3728 0.004328 ! 895 0.001039
n 44527 0.051688 k 3637 0.004222 # 856 0.000994
r 44387 0.051525 3 2907 0.003374 D 836 0.000970
h 30860 0.035823 4 2582 0.002997 R 817 0.000948
l 28710 0.033327 5 2501 0.002903 M 805 0.000934
c 26041 0.030229 6 2190 0.002542 ; 761 0.000883
d 25500 0.029601 I 2175 0.002525 / 698 0.000810
m 19197 0.022284 ^ 2143 0.002488 N 685 0.000795
\ 19140 0.022218 : 2132 0.002475 G 566 0.000657
p 19055 0.022119 A 2052 0.002382 j 508 0.000590
f 18110 0.021022 9 1953 0.002267 @ 460 0.000534
u 16463 0.019111 [ 1921 0.002230 Z 417 0.000484
b 16049 0.018630 C 1896 0.002201 J 415 0.000482
. 12864 0.014933 ] 1881 0.002183 O 403 0.000468
1 12335 0.014319 ’ 1876 0.002178 V 261 0.000303
g 12074 0.014016 S 1871 0.002172 X 227 0.000264
0 10866 0.012613 _ 1808 0.002099 U 224 0.000260
, 9919 0.011514 7 1780 0.002066 ? 177 0.000205
& 8969 0.010411 8 1717 0.001993 K 175 0.000203
y 8796 0.010211 ‘ 1577 0.001831 % 160 0.000186
w 8273 0.009603 = 1566 0.001818 Y 157 0.000182
$ 7659 0.008891 P 1517 0.001761 Q 141 0.000164
} 6676 0.007750 L 1491 0.001731 > 137 0.000159
{ 6676 0.007750 q 1470 0.001706 * 120 0.000139
v 6379 0.007405 z 1430 0.001660 < 99 0.000115
2 5671 0.006583 E 1207 0.001401 ” 8 0.000009

Frequencies and probabilities of the 93 most-common characters in an older book by this author,
containing 861,462 characters. See Figure 23.3 for the Mathematica code.

Table 23.2: Frequencies and Probabilities of Characters.
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fpc = OpenRead["test.txt"];
g = 0; ar = Table[{i, 0}, {i, 256}];
While[0 == 0,
g = Read[fpc, Byte];
(* Skip space, newline & backslash *)
If[g==10||g==32||g==92, Continue[]];
If[g==EndOfFile, Break[]];
ar[[g, 2]]++] (* increment counter *)
Close[fpc];
ar = Sort[ar, #1[[2]] > #2[[2]] &];
tot = Sum[
ar[[i,2]], {i,256}] (* total chars input *)
Table[{FromCharacterCode[ar[[i,1]]],ar[[i,2]],ar[[i,2]]/N[tot,4]},
{i,93}] (* char code, freq., percentage *)
TableForm[%]

Figure 23.3: Code for Table 23.2.

alphabetic redundancy suggests a simple way to compress text. Assign variable-length
codes to the letters, with E being assigned the shortest code and Z receiving the longest
code. Another type of redundancy, contextual redundancy, is illustrated by the fact that
the letter Q is almost always followed by the letter U (i.e., that in plain English certain
digrams and trigrams are more common than others).

� Exercise 23.1: (Fun.) Find English words that contain all five vowels “aeiou” in their
original order.

In this book we are interested in images, and redundancy in images stems from the
well-known fact that in a nonrandom image adjacent pixels tend to have similar colors.
This important fact is the principle of image compression (Page 1035) and forms the
basis of all the image compression methods.

The theory of information, developed in 1948 by Claude Shannon, discusses redun-
dancy and offers a rigorous definition of this term. However, even without a precise
definition, it is intuitively clear that a variable-length code has less redundancy than
a fixed-length code (and may have no redundancy at all). Fixed-length codes make it
easier to work with text and pixels, which is why they are useful, but they contribute
to data redundancy.

The idea of compression by reducing redundancy suggests the general law of data
compression, which is to “assign short codes to common events (symbols or phrases)
and long codes to rare events.” There are many ways to implement this law, and an
analysis of any compression method shows that, deep inside, it works by obeying the
general law.

Compressing data is done by changing its representation from inefficient (i.e., long)
to efficient (short). Compression is therefore possible only because data is normally
represented in the computer in a format that is longer than absolutely necessary. The
reason that inefficient (long) data representations are used all the time is that they make
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it easier to process the data, and data processing is more common and more important
than data compression. The ASCII code for characters is a good example of a data
representation that is longer than absolutely necessary. It uses 7-bit codes because
fixed-size codes are easy to work with. A variable-size code, however, would be more
efficient, since certain characters are used more than others and so could be assigned
shorter codes.

In a world where data is always represented by its shortest possible format, there
would therefore be no way to compress data.

23.2 Image Types

For the purpose of image compression it is useful to distinguish the following types of
images: (For information on pixels and their history, see the lively references [Lyon 09]
and [Smith 09].)
1. A bi-level (or monochromatic) image. This is an image where the pixels can have
one of two values, normally referred to as black and white (but also as foreground and
background). Each pixel in such an image is represented by one bit, making this the
simplest type of image.
2. A grayscale image. A pixel in such an image can have one of the n values 0 through
n − 1, indicating one of 2n shades of gray (or shades of some other color). The value
of n is normally compatible with a byte size; i.e., it is 4, 8, 12, 16, 24, or some other
convenient multiple of 4 or of 8. The set of the most-significant bits of all the pixels is
the most-significant bitplane. Thus, a grayscale image has n bitplanes.
3. A continuous-tone image. This type of image can have many similar colors (or
grayscales). When adjacent pixels differ by just one unit, it is hard or even impossible
for the eye to distinguish their colors. As a result, such an image may contain areas
with colors that seem to vary continuously as the eye moves along the area. A pixel
in such an image is represented by either a single large number (in the case of many
grayscales) or three components (in the case of a color image). A continuous-tone
image is normally a natural image (natural as opposed to artificial) and is obtained by
taking a photograph with a digital camera, or by scanning a photograph or a painting.
Figures 24.40 through 24.43 are typical examples of continuous-tone images. A general
survey of lossless compression of this type of images is [Carpentieri et al. 00].
4. A discrete-tone image (also called a graphical image or a synthetic image). This is
normally an artificial image. It may have a few colors or many colors, but it does not
have the noise and blurring of a natural image. Examples are an artificial object or
machine, a page of text, a chart, a cartoon, or the contents of a computer screen. (Not
every artificial image is discrete-tone. A computer-generated image that’s meant to look
natural is a continuous-tone image in spite of its being artificially generated.) Artificial
objects, text, and line drawings have sharp, well-defined edges, and are therefore highly
contrasted from the rest of the image (the background). Adjacent pixels in a discrete-
tone image often are either identical or vary significantly in value. Such an image does
not compress well with lossy methods, because the loss of just a few pixels may render
a letter illegible, or change a familiar pattern to an unrecognizable one. Compression
methods for continuous-tone images often do not handle sharp edges very well, so special
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methods are needed for efficient compression of these images. Notice that a discrete-tone
image may be highly redundant, since the same character or pattern may appear many
times in the image. Figure 24.44 is a typical example of a discrete-tone image.
5. A cartoon-like image. This is a color image that consists of uniform areas. Each area
has a uniform color but adjacent areas may have very different colors. This feature may
be exploited to obtain excellent compression.

Whether an image is treated as discrete or continuous is usually dictated by the depth
of the data. However, it is possible to force an image to be continuous even if it would
fit in the discrete category. (From www.genaware.com)

It is intuitively clear that each type of image may feature redundancy, but they are
redundant in different ways. This is why any given compression method may not perform
well for all images, and why different methods are needed to compress the different image
types. There are compression methods for bi-level images, for continuous-tone images,
and for discrete-tone images. There are also methods that try to break an image up into
continuous-tone and discrete-tone parts, and compress each separately.

23.3 Redundancy in Images

Modern computers employ graphics extensively. Window-based operating systems dis-
play the disk’s file directory graphically. The progress of many system operations, such
as downloading a file, may also be displayed graphically. Many applications provide a
graphical user interface (GUI), which makes it easier to use the program and to interpret
displayed results. Computer graphics is used in many areas in everyday life to convert
many types of complex information to images. Thus, images are important, but they
tend to be big! Modern hardware can display many colors, which is why it is common
to have a pixel represented internally as a 24-bit number, where the percentages of red,
green, and blue occupy eight bits each. Such a 24-bit pixel can specify one of 224 ≈ 16.78
million colors. As a result, an image at a resolution of 512×512 that consists of such
pixels occupies 786,432 bytes. At a resolution of 1024×1024 it becomes four times as
big, requiring 3,145,728 bytes. Videos are also commonly used in computers, making
for even bigger images. This is why image compression is so important. An important
feature of image compression is that it can be lossy. An image, after all, exists for people
to look at, so, when it is compressed, it is acceptable to lose image features to which
the eye is not sensitive. This is one of the main ideas behind the many lossy image
compression methods described in the data compression literature.

In general, information can be compressed if it is redundant. It has already been
mentioned that data compression amounts to reducing or removing redundancy in the
data. With lossy compression, however, we have a new concept, namely compressing
by removing irrelevancy. An image can be lossy-compressed by removing irrelevant
information even if the original image does not have any redundancy.

� Exercise 23.2: It would seem that an image with no redundancy is always random
(and therefore uninteresting). It that so?

The idea of losing image information becomes more palatable when we consider
how digital images are created. Here are three examples: (1) A real-life image may be

http://www.genaware.com
http://www.genaware.com
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scanned from a photograph or a painting and digitized (converted to pixels). (2) An
image may be recorded by a digital camera that creates pixels and stores them directly
in memory. (3) An image may be painted on the screen by means of a paint program.
In all these cases, some information is lost when the image is digitized. The fact that
the viewer is willing to accept this loss suggests that further loss of information might
be tolerable if done properly.

(Digitizing an image involves two steps: sampling and quantization. Sampling an
image is the process of dividing the two-dimensional original image into small regions:
pixels. Quantization is the process of assigning an integer value to each pixel. Notice
that digitizing sound involves the same two steps, with the difference that sound is
one-dimensional.)

Here is a simple process that can determine qualitatively the amount of data loss in
a compressed image. Given an image A, (1) compress it to B, (2) decompress B to C,
and (3) subtract D = C − A. If A was compressed without any loss and decompressed
properly, then C should be identical to A and image D should be uniformly white. The
more data was lost in the compression, the farther will D be from uniformly white.

How should an image be compressed? The common compression programs that
are used in practice and described in books are based on a few techniques such as run-
length encoding (RLE), scalar quantization, statistical methods, and dictionary-based
methods. None of these techniques is very satisfactory for color or grayscale images
(although they may be used in combination with other methods). Here is why:

Reference [Salomon 09] shows how run-length encoding (RLE) can be used for
(lossless or lossy) compression of an image. This is simple, and it is used by certain
parts of JPEG, especially by its lossless mode. In general, however, the transform
employed by JPEG (Section 24.5.1) produces much better compression than does RLE
alone. Facsimile compression employs RLE combined with Huffman coding and obtains
good results, but only for bi-level images.

Scalar quantization is discussed in [Salomon 09] and other texts. It can be used to
compress images, but its performance is mediocre. Imagine an image with 8-bit pixels.
It can be compressed with scalar quantization by cutting off the four least-significant
bits of each pixel. This yields a compression ratio of 0.5, not very impressive, and at
the same time reduces the number of colors (or grayscales) from 256 to just 16. Such
a reduction not only degrades the overall quality of the reconstructed (decompressed)
image, but may also create bands of different colors, a noticeable and annoying effect
that’s illustrated here.

Imagine a row of 12 pixels with similar colors, ranging from 202 to 215. In binary
notation these values are
11010111 11010110 11010101 11010011 11010010 11010001 11001111 11001110 11001101 11001100 11001011 11001010.

Quantization will result in the 12 4-bit values
1101 1101 1101 1101 1101 1101 1100 1100 1100 1100 1100 1100,

which will reconstruct the 12 pixels
11010000 11010000 11010000 11010000 11010000 11010000 11000000 11000000 11000000 11000000 11000000 11000000.

The first six pixels of the row now have the value 110100002 = 208, while the next six
pixels are 110000002 = 192. If neighboring rows have similar pixels, the first six columns
will form a band, distinctly different from the band formed by the next six columns. This
banding, or contouring, effect is very noticeable to the eye, since our eyes are sensitive
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to edges and breaks in an image.
One way to eliminate this effect is called improved grayscale (IGS) quantization.

It works by adding to each pixel a random number generated from the four rightmost
bits of previous pixels. Section 23.4.1 shows that the least-significant bits of a pixel are
fairly random, so IGS works by adding to each pixel randomness that depends on the
neighborhood of the pixel.

The method maintains an 8-bit variable, denoted by rsm, that’s initially set to zero.
For each 8-bit pixel P to be quantized (except the first one), the IGS method does the
following:

1. Set rsm to the sum of the eight bits of P and the four rightmost bits of rsm. However,
if P has the form 1111xxxx, set rsm to P .
2. Write the four leftmost bits of rsm on the compressed stream. This is the compressed
value of P . IGS is thus not exactly a quantization method, but a variation of scalar
quantization.

The first pixel is quantized in the usual way, by dropping its four rightmost bits.
Table 23.4 illustrates the operation of IGS.

Compressed
Pixel Value rsm value

1 1010 0110 0000 0000 1010
2 1101 0010 1101 0010 1101
3 1011 0101 1011 0111 1011
4 1001 1100 1010 0011 1010
5 1111 0100 1111 0100 1111
6 1011 0011 1011 0111 1011

Table 23.4: Illustrating the IGS Method.

Vector quantization (Section 23.5.2) can be used more successfully to compress
images. It is discussed in detail in [Salomon 09].

Statistical methods work best when the symbols being compressed have different
probabilities. An input stream where all symbols have the same probability will not
compress, even though it may not be random. It turns out that in a continuous-tone color
or grayscale image, the different colors or shades of gray may often have roughly the same
probabilities. This is why statistical methods are not a good choice for compressing such
images, and why new approaches are needed. Images with color discontinuities, where
adjacent pixels have widely different colors, compress better with statistical methods,
but it is not easy to predict, just by looking at an image, whether it has enough color
discontinuities.

Dictionary-based compression methods also tend to be unsuccessful in dealing with
continuous-tone images. Such an image typically contains adjacent pixels with similar
colors, but does not contain repeating patterns. Even an image that contains repeated
patterns such as vertical lines may lose them when digitized. A vertical line in the
original image may become slightly crooked when the image is digitized (Figure 23.5),
so the pixels in a scan row may end up having slightly different colors from those in
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(a) (b) (c)

An ideal vertical rule is shown in (a). In (b), the
rule is assumed to be perfectly digitized into ten
pixels, stacked vertically. However, if the image is
placed in the scanner slightly crooked, the scan-
ning may be imperfect, and the resulting pixels
might look as in (c).

Figure 23.5: Perfect and Imperfect Digitizing.

neighboring rows, resulting in a dictionary with short strings. (This problem may also
affect curved edges.)

Another problem with dictionary compression of images is that such methods scan
the image row by row, and therefore may miss vertical correlations between pixels. An
example is the two simple images of Figure 23.6a,b. Saving both in GIF89, a dictionary-
based graphics file format, has resulted in file sizes of 1,053 and 1,527 bytes, respectively,
on the author’s computer.

(a) (b)

Figure 23.6: Dictionary Compression of Parallel Lines.

Traditional methods are therefore unsatisfactory for image compression, so this
chapter discusses novel approaches. They are all different, but they remove redundancy
from an image by employing the following principle:

The principle of image compression. If we select a pixel in an image at random,
there is a good chance that its neighbors (especially its immediate neighbors) will have
the same color or very similar colors.

Image compression is therefore based on the fact that neighboring pixels are highly
correlated. This correlation is also called spatial redundancy.

Here is a simple example that illustrates what can be done with correlated pixels.
The following sequence of values gives the intensities of 24 adjacent pixels in a row of a
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continuous-tone image:

12, 17, 14, 19, 21, 26, 23, 29, 41, 38, 31, 44, 46, 57, 53, 50, 60, 58, 55, 54, 52, 51, 56, 60.

Only two of the 24 pixels are identical. Their average value is 40.3. Subtracting pairs
of adjacent pixels results in the sequence

12, 5, −3, 5, 2, 4, −3, 6, 11, −3, −7, 13, 4, 11, −4, −3, 10, −2, −3, 1, −2, −1, 5, 4.

The two sequences are illustrated in Figure 23.7.

Figure 23.7: Values and Differences of 24 Adjacent Pixels.

The sequence of difference values has three properties that illustrate its compression
potential: (1) The difference values are smaller than the original pixel values. Their
average is 2.58. (2) They repeat. There are just 15 distinct difference values, so in
principle they can be coded by four bits each. (3) They are decorrelated . Adjacent
difference values tend to be different. This can be seen by subtracting them, which
results in the sequence of 24 second differences

12, −7, −8, 8, −3, 2, −7, 9, 5, −14, −4, 20, −11, 7, −15, 1, 13, −12, −1, 4, −3, 1, 6, 1.

They are larger than the differences themselves.
Figure 23.8 provides another illustration of the meaning of the term “correlated

quantities.” A 32 × 32 matrix A is constructed of random numbers, and its elements
are displayed in part (a) as shaded squares. The random nature of the elements is
clear. The matrix is then inverted and stored in B, which is shown in part (b). This
time, there seems to be more structure to the 32×32 squares. A direct calculation using
Equation (23.1) shows that the cross-correlation between the top two rows of A is 0.0412,
whereas the cross-correlation between the top two rows of B is −0.9831 (these numbers
change each time the code is run, because different random numbers are generated).
The elements of B are correlated since each depends on all the elements of A

R =
n
∑

xiyi −
∑

xi
∑

yi√
[n
∑

x2
i − (
∑

xi)2][n
∑

y2
i − (
∑

yi)2]
. (23.1)



23 Compression Techniques 1037

(a) (b)

rm=RandomReal[1, {32,32}];
Graphics[Raster[rm]]
irm=Inverse[rm];
Graphics[Raster[irm,Automatic, {Min[irm],Max[irm]}]]

Figure 23.8: Maps of (a) a Random Matrix and (b) its Inverse.

� Exercise 23.3: Use mathematical software to illustrate the covariance matrices of (1)
a matrix with correlated values and (2) a matrix with decorrelated values.

Once the concept of correlated quantities is grasped, we start looking for a cor-
relation test. Given a matrix M , a statistical test is needed to determine whether its
elements are correlated or not. The test is based on the statistical concept of covariance.
If the elements of M are decorrelated (i.e., independent), then the covariance of any two
different rows and any two different columns of M will be zero (the covariance of a row
or of a column with itself is always 1). As a result, the covariance matrix of M (whether
covariance of rows or of columns) will be diagonal. If the covariance matrix of M is not
diagonal, then the elements of M are correlated. The statistical concepts of variance,
covariance, and correlation are discussed in any text on statistics.

The principle of image compression has another aspect. We know from experience
that the brightnesses of neighboring pixels are also correlated. Two adjacent pixels may
have different colors. One may be mostly red, and the other may be mostly green.
Yet if the red component of the first is bright, the green component of its neighbor
will, in most cases, also be bright. This property can be exploited by converting pixel
representations from RGB to three other components, one of which is the brightness,
and the other two represent color. One such format (or color space) is YCbCr, where
Y (the “luminance” component) represents the brightness of a pixel, and Cb and Cr
define its color. This format is discussed in Section 21.12, but its advantage is easy to
understand. The eye is sensitive to small changes in brightness but not to small changes
in color. Thus, losing information in the Cb and Cr components compresses the image
while introducing distortions to which the eye is not sensitive. Losing information in
the Y component, on the other hand, is very noticeable to the eye.
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23.4 Approaches to Image Compression

An image compression method is normally designed for a specific type of image, and
this section lists various approaches to compressing images of different types. Only the
general principles are discussed here; specific methods are described in the many texts
on data and image compression.
Approach 1: This approach is appropriate for bi-level images. A pixel in such an image
is represented by one bit. Applying the principle of image compression to a bi-level image
therefore means that the immediate neighbors of a pixel P tend to be identical to P .
Thus, it makes sense to use run-length encoding (RLE) to compress such an image. A
compression method for such an image may scan it in raster order (row by row) and
compute the lengths of runs of black and white pixels. The lengths are encoded by
variable-length codes and are written on the compressed stream. An example of such a
method is facsimile compression [Salomon 09].

It should be stressed that this is just an approach to bi-level image compression. The
details of specific methods vary. For instance, a method may scan the image column by
column or in zigzag (Figure 23.9), it may convert the image to a quadtree (Section 18.7),
or it may scan it region by region using a space-filling curve.

Figure 23.9: A Zigzag Sequence.

Approach 2: Also for bi-level images. The principle of image compression tells us that
the neighbors of a pixel tend to be similar to the pixel. We can extend this principle
and conclude that if the current pixel has color c (where c is either black or white), then
pixels of the same color seen in the past (and also those that will be found in the future)
tend to have the same immediate neighbors.

This approach looks at n of the near neighbors of the current pixel and considers
them an n-bit number. This number is the context of the pixel. In principle there can
be 2n contexts, but because of image redundancy we expect them to be distributed in a
nonuniform way. Some contexts should be common while others will be rare.

The encoder counts the number of times each context has already been found for
a pixel of color c, and assigns probabilities to the contexts accordingly. If the current
pixel has color c and its context has probability p, the encoder can use adaptive arith-
metic coding to encode the pixel with that probability. This approach is used by JBIG
[Salomon 09].
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Next, we turn to grayscale images. A pixel in such an image is represented by n
bits and can have one of 2n values. Applying the principle of image compression to a
grayscale image implies that the immediate neighbors of a pixel P tend to be similar to
P , but are not necessarily identical. Thus, RLE should not be used to compress such
an image. Instead, two approaches are discussed.
Approach 3: Separate the grayscale image into n bi-level images and compress each
with run-length encoding (RLE) and prefix codes. The principle of image compression
seems to imply intuitively that two adjacent pixels that are similar in the grayscale
image will be identical in most of the n bi-level images. This, however, is not true, as
the following example makes clear. Imagine a grayscale image with n = 4 (i.e., 4-bit
pixels, or 16 shades of gray). The image can be separated into four bi-level images. If
two adjacent pixels in the original grayscale image have values 0000 and 0001, then they
are similar. They are also identical in three of the four bi-level images. However, two
adjacent pixels with values 0111 and 1000 are also similar in the grayscale image (their
values are 7 and 8, respectively) but differ in all four bi-level images.

This problem occurs because the binary codes of adjacent integers may differ by
several bits. The binary codes of 0 and 1 differ by one bit, those of 1 and 2 differ by two
bits, and those of 7 and 8 differ by four bits. The solution is to design special binary
codes such that the codes of any consecutive integers i and i + 1 will differ by one bit
only. An example of such a code is the reflected Gray codes of Section 23.4.1.
Approach 4: Use the context of a pixel to predict its value. The context of a pixel
is the values of some of its neighbors. We can examine some neighbors of a pixel P ,
compute an average A of their values, and predict that P will have the value A. The
principle of image compression tells us that our prediction will be correct in most cases,
almost correct in many cases, and completely wrong in a few cases. We can say that the
predicted value of pixel P represents the redundant information in P . We now calculate
the difference

Δ def= P −A,

and assign variable-length codes to the different values of Δ such that small values
(which we expect to be common) are assigned short codes and large values (which are
expected to be rare) are assigned long codes. If P can have the values 0 through m− 1,
then values of Δ are in the range [−(m−1),+(m−1)], and the number of codes needed
is 2(m− 1) + 1 or 2m− 1.

Experiments with a large number of images suggest that the values of Δ tend to be
distributed according to the Laplace distribution (Figure 23.10). A compression method
can, therefore, use this distribution to assign a probability to each value of Δ, and use
arithmetic coding to encode the Δ values very efficiently. This is the principle of the
MLP method [Salomon 09].

The context of a pixel may consist of just one or two of its immediate neighbors.
However, better results may be obtained when several neighbor pixels are included in
the context. The average A in such a case should be weighted, with near neighbors
assigned higher weights. Another important consideration is the decoder. In order for
it to decode the image, it should be able to compute the context of every pixel. This
means that the context should employ only pixels that have already been encoded. If the
image is scanned in raster order, the context should include only pixels located above
the current pixel or on the same row and to its left.
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Figure 23.10: Laplace distribution.

Approach 5: Transform the values of the pixels and encode the transformed values.
The concept of a transform, as well as the most important transforms used in image
compression, are discussed in Chapter 24. Chapter 25 is devoted to the wavelet trans-
form. Recall that compression is achieved by reducing or removing redundancy. The
redundancy of an image is caused by the correlation between pixels, so transforming the
pixels to a representation where they are decorrelated eliminates the redundancy. It is
also possible to think of a transform in terms of the entropy of the image. In a highly
correlated image, the pixels tend to have equiprobable values, which results in maxi-
mum entropy. If the transformed pixels are decorrelated, certain pixel values become
common, thereby having large probabilities, while others are rare. This results in small
entropy. Quantizing the transformed values can produce efficient lossy image compres-
sion. We want the transformed values to be independent because coding independent
values makes it simpler to construct a statistical model.

We now turn to color images. A pixel in such an image consists of three color
components, such as red, green, and blue. Most color images are either continuous-tone
or discrete-tone.
Approach 6: The principle of this approach is to separate a continuous-tone color image
into three grayscale images and compress each of the three separately, using approaches
3, 4, or 5.

For a continuous-tone image, the principle of image compression implies that adja-
cent pixels have similar, although perhaps not identical, colors. However, similar colors
do not mean similar pixel values. Consider, for example, 12-bit pixel values where each
color component is expressed in four bits. Thus, the 12 bits 1000|0100|0000 represent
a pixel whose color is a mixture of eight units of red (about 50%, since the maximum
is 15 units), four units of green (about 25%), and no blue. Now imagine two adjacent
pixels with values 0011|0101|0011 and 0010|0101|0011. They have similar colors, since
only their red components differ, and only by one unit. However, when considered as
12-bit numbers, the two numbers 001101010011 and 001001010011 are very different,
since they differ in one of their most significant bits.

An important feature of this approach is to use a luminance chrominance color rep-
resentation instead of the more common RGB. The concepts of luminance and chromi-
nance are discussed in Section 21.12. The advantage of the luminance chrominance
color representation is that the eye is sensitive to small changes in luminance but not in
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chrominance. This allows the loss of considerable data in the chrominance components,
while making it possible to decode the image without a significant visible loss of quality.
Approach 7: A different approach is needed for discrete-tone images. Recall that such
an image contains uniform regions, and a region may appear several times in the image.
A good example is a screen dump. Such an image consists of text and icons. Each
character of text and each icon is a region, and any region may appear several times
in the image. A possible way to compress such an image is to scan it, identify regions,
and find repeating regions. If a region B is identical to an already found region A, then
B can be compressed by writing a pointer to A on the compressed stream. The block
decomposition method (FABD, [Salomon 09]) is an example of how this approach can
be implemented.
Approach 8: Partition the image into parts (overlapping or not) and compress it by
processing the parts one by one. Suppose that the next unprocessed image part is part
number 15. Try to match it with parts 1–14 that have already been processed. If part
15 can be expressed, for example, as a combination of parts 5 (scaled) and 11 (rotated),
then only the few numbers that specify the combination need be saved, and part 15
can be discarded. If part 15 cannot be expressed as a combination of already-processed
parts, it is declared processed and is saved in raw format.

This approach is the basis of the various fractal methods for image compression. It
applies the principle of image compression to image parts instead of to individual pixels.
Applied in this way, the principle tells us that “interesting” images (i.e., those that we
keep and try to compress) have a certain amount of self similarity. Parts of the image
are identical or similar to the entire image or to other parts.

Image compression methods are not limited to these basic approaches. Texts on
data compression discuss methods that use the concepts of context trees, Markov models,
and wavelets, among others. In addition, the concept of progressive image compression
[Salomon 09] should be mentioned, since it adds another dimension to the field of image
compression.

23.4.1 Gray Codes

An image compression method that has been developed specifically for a certain type
of image can sometimes be used for other types. Any method for compressing bi-
level images, for example, can be used to compress grayscale images by separating the
bitplanes and compressing each individually, as if it were a bi-level image. Imagine, for
example, an image with 16 grayscale values. Each pixel is specified by four bits, so the
image can be separated into four bi-level images. The trouble with this approach is
that it violates the general principle of image compression. Imagine two adjacent 4-bit
pixels with values 7 = 01112 and 8 = 10002. These pixels have close values, but when
separated into four bitplanes, the resulting 1-bit pixels are different in every bitplane!
This is because the binary representations of the consecutive integers 7 and 8 differ in
all four bit positions. In order to apply any bi-level compression method to grayscale
images, a binary representation of the integers is needed where consecutive integers have
codes differing by one bit only. Such a representation exists and is called reflected Gray
code (RGC). This code is easy to generate with the following recursive construction:

Start with the two 1-bit codes (0, 1). Construct two sets of 2-bit codes by duplicating
(0, 1) and appending, either on the left or on the right, first a zero, then a one, to the
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original set. The result is (00, 01) and (10, 11). We now reverse (reflect) the second set,
and concatenate the two. The result is the 2-bit RGC (00, 01, 11, 10); a binary code of
the integers 0 through 3 where consecutive codes differ by exactly one bit. Applying the
rule again produces the two sets (000, 001, 011, 010) and (110, 111, 101, 100), which are
concatenated to form the 3-bit RGC. Note that the first and last codes of any RGC also
differ by one bit. Here are the first three steps for computing the 4-bit RGC:

Add a zero (0000, 0001, 0011, 0010, 0110, 0111, 0101, 0100),
Add a one (1000, 1001, 1011, 1010, 1110, 1111, 1101, 1100),

reflect (1100, 1101, 1111, 1110, 1010, 1011, 1001, 1000).

43210 Gray 43210 Gray 43210 Gray 43210 Gray
00000 00000 01000 10010 10000 00011 11000 10001
00001 00100 01001 10110 10001 00111 11001 10101
00010 01100 01010 11110 10010 01111 11010 11101
00011 01000 01011 11010 10011 01011 11011 11001
00100 11000 01100 01010 10100 11011 11100 01001
00101 11100 01101 01110 10101 11111 11101 01101
00110 10100 01110 00110 10110 10111 11110 00101
00111 10000 01111 00010 10111 10011 11111 00001

function b=rgc(a,i)
[r,c]=size(a);
b=[zeros(r,1),a; ones(r,1),flipud(a)];
if i>1, b=rgc(b,i-1); end;

Table 23.11: First 32 Binary and Reflected Gray Codes.

Table 23.11 shows how individual bits change when moving through the binary
codes of the first 32 integers. The 5-bit binary codes of these integers are listed in the
odd-numbered columns of the table, with the bits of integer i that differ from those of
i−1 shown in boldface. It is easy to see that the least-significant bit (bit b0) changes all
the time, bit b1 changes for every other number, and, in general, bit bk changes every
k integers. The even-numbered columns list one of the several possible reflected Gray
codes for these integers. A recursive Matlab function to compute RGC is also listed.

� Exercise 23.4: It is also possible to generate the reflected Gray code of an integer n
with the following nonrecursive rule: xor n with a copy of itself that’s logically shifted
one position to the right. In the C programming language this is denoted by n^(n>>1).
Use this expression to construct a table similar to Table 23.11.

The conclusion is that the most-significant bitplanes of an image obey the princi-
ple of image compression more than the least-significant ones. When adjacent pixels
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clear; clear;
filename=’parrots128’; dim=128; filename=’parrots128’; dim=128;
fid=fopen(filename,’r’); fid=fopen(filename,’r’);
img=fread(fid,[dim,dim])’; img=fread(fid,[dim,dim])’;
mask=1; % between 1 and 8 mask=1 % between 1 and 8

a=bitshift(img,-1);
b=bitxor(img,a);

nimg=bitget(img,mask); nimg=bitget(b,mask);
imagesc(nimg), colormap(gray) imagesc(nimg), colormap(gray)

Binary code Gray code

Figure 23.12: Matlab Code to Separate Image Bitplanes.

have values that differ by one unit (such as p and p + 1), chances are that the least-
significant bits are different and the most-significant ones are identical. Any image
compression method that compresses bitplanes individually should therefore treat the
least-significant bitplanes differently from the most-significant ones, or should use RGC
instead of the binary code to represent pixels. Figures 23.14, 23.15, and 23.16 (prepared
by the Matlab code of Figure 23.12) show the eight bitplanes of the well-known parrots
image in both the binary code (the left column) and in RGC (the right column). The
bitplanes are numbered 8 (the leftmost or most-significant bits) through 1 (the right-
most or least-significant bits). It is obvious that the least-significant bitplane doesn’t
show any correlations between the pixels; it is random or very close to random in both
binary and RGC. Bitplanes 2 through 5, however, exhibit better pixel correlation in the
Gray code. Bitplanes 6 through 8 look different in Gray code and binary, but seem to
be highly correlated in either representation.

43210 Gray 43210 Gray 43210 Gray 43210 Gray
00000 00000 01000 01100 10000 11000 11000 10100
00001 00001 01001 01101 10001 11001 11001 10101
00010 00011 01010 01111 10010 11011 11010 10111
00011 00010 01011 01110 10011 11010 11011 10110
00100 00110 01100 01010 10100 11110 11100 10010
00101 00111 01101 01011 10101 11111 11101 10011
00110 00101 01110 01001 10110 11101 11110 10001
00111 00100 01111 01000 10111 11100 11111 10000

a=linspace(0,31,32); b=bitshift(a,-1);
b=bitxor(a,b); dec2bin(b)

Table 23.13: First 32 Binary and Gray Codes.

Figure 23.17 is a graphic representation of two versions of the first 32 reflected
Gray codes. Part (b) shows the codes of Table 23.11, and part (c) shows the codes of
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(1)

(2)

Binary code Gray code

Figure 23.14: Bitplanes 1 and 2 of the Parrots Image.
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(3)

(4)

(5)

Binary code Gray code

Figure 23.15: Bitplanes 3, 4, and 5 of the Parrots Image.
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(6)

(7)

(8)

Binary code Gray code

Figure 23.16: Bitplanes 6, 7, and 8 of the Parrots Image.
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Table 23.13. Even though both are Gray codes, they differ in the way the bits in each
bitplane alternate between 0 and 1. In part (b), the bits of the most-significant bitplane
alternate four times between 0 and 1. Those of the second most-significant bitplane
alternate eight times between 0 and 1, and the bits of the remaining three bitplanes
alternate 16, two, and one times between 0 and 1. When the bitplanes are separated,
the middle bitplane features the smallest correlation between the pixels, since the Gray
codes of adjacent integers tend to have different bits in this bitplane. The Gray codes
shown in Figure 23.17c, on the other hand, alternate more and more between 0 and 1
as we move from the most significant bitplanes to the least-significant ones. The least
significant bitplanes of this version feature less and less correlation between the pixels
and therefore tend to be random. For comparison, Figure 23.17a shows the binary code.
It is obvious that bits in this code alternate more often between 0 and 1.

� Exercise 23.5: Even a cursory look at the Gray codes of Figure 23.17c shows that they
exhibit some regularity. Examine these codes carefully and identify two features that
may be used to compute the codes.

� Exercise 23.6: Figure 23.17 is a graphic representation of the binary codes and reflected
Gray codes. Find a similar graphic representation of the same codes that illustrates the
fact that the first and last codes also differ by one bit.

Color images provide another example of using the same compression method across
image types. Any compression method for grayscale images can be used to compress
color images. In a color image, each pixel is represented by three color components
(such as RGB). Imagine a color image where each color component is represented by
one byte. A pixel is represented by three bytes, or 24 bits, but these bits should not
be considered a single number. The two pixels 118|206|12 and 117|206|12 differ by just
one unit in the first component, so they have very similar colors. Considered as 24-bit
numbers, however, these pixels are very different, since they differ in one of their most-
significant bits. Any compression method that treats these pixels as 24-bit numbers
would consider these pixels very different, and its performance would suffer as a result.
A compression method for grayscale images can be applied to compressing color images,
but the color image should first be separated into three color components, and each
component compressed individually as a grayscale image.

23.4.2 Error Metrics

Developers and implementers of lossy image compression methods need a standard met-
ric to measure the quality of reconstructed images compared with the original ones. The
better a reconstructed image resembles the original one, the bigger should be the value
produced by this metric. Such a metric should also produce a dimensionless number, and
that number should not be very sensitive to small variations in the reconstructed image.
A common measure used for this purpose is the peak signal to noise ratio (PSNR). It is
familiar to workers in the field, it is also simple to calculate, but it has only a limited,
approximate relationship with the perceived errors noticed by the human visual system.
This is why higher PSNR values imply closer resemblance between the reconstructed
and the original images, but they do not provide a guarantee that viewers will like the
reconstructed image.
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(a) (b) (c)

Table 23.17: First 32 Binary and Reflected Gray Codes.

The binary Gray code is fun,
For in it strange things can be done.
Fifteen, as you know,
Is one, oh, oh, oh,
And ten is one, one, one, one.

—Anonymous.
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History of Gray Codes
Gray codes are named after Frank Gray, who patented their use for shaft encoders

in 1953 [Gray 53]. However, the work was performed much earlier, the patent being
applied for in 1947. Gray was a researcher at Bell Telephone Laboratories. During
the 1930s and 1940s he was awarded numerous patents for work related to television.
According to [Heath 72] the code was first, in fact, used by J. M. E. Baudot for
telegraphy in the 1870s, though it is only since the advent of computers that the code
has become widely known.

The Baudot code uses five bits per symbol. It can represent 32 × 2 − 2 = 62
characters (each code can have two meanings, the meaning being indicated by the
LS and FS codes). It became popular and, by 1950, was designated the International
Telegraph Code No. 1. It was used by many first- and second-generation computers.

The August 1972 issue of Scientific American contains two articles of interest,
one on the origin of binary codes [Heath 72], and another [Gardner 72] on some
entertaining aspects of the Gray codes.

Denoting the pixels of the original image by Pi and the pixels of the reconstructed
image by Qi (where 1 ≤ i ≤ n), we first define the mean square error (MSE) between
the two images as

MSE =
1
n

n∑
i=1

(Pi −Qi)2. (23.2)

It is the average of the square of the errors (pixel differences) of the two images. The
root mean square error (RMSE) is defined as the square root of the MSE, and the PSNR
is defined as

PSNR = 20 log10

maxi |Pi|
RMSE

, (23.3)

The absolute value is normally not needed, since pixel values are rarely negative. For a
bi-level image, the numerator is 1. For a grayscale image with eight bits per pixel, the
numerator is 255. For color images, only the luminance component is used.

Greater resemblance between the images implies smaller RMSE and, as a result,
larger PSNR. The PSNR is dimensionless, since the units of both numerator and denom-
inator are pixel values. However, because of the use of the logarithm, we say that the
PSNR is expressed in decibels (dB). The use of the logarithm also implies less sensitivity
to changes in the RMSE. For example, dividing the RMSE by 10 multiplies the PSNR
by 2. Notice that the PSNR has no absolute meaning. It is meaningless to say that
a PSNR of, say, 25 is good. PSNR values are used only to compare the performance
of different lossy compression methods or the effects of different parametric values on
the performance of an algorithm. The MPEG committee, for example, uses an informal
threshold of PSNR = 0.5 dB to decide whether to incorporate a coding optimization,
since they believe that an improvement of that magnitude would be visible to the eye.

Typical PSNR values range between 20 and 40. Assuming pixel values in the range
[0, 255], an RMSE of 25.5 results in a PSNR of 20, and an RMSE of 2.55 results in a
PSNR of 40. An RMSE of zero (i.e., identical images) results in an infinite (or, more
precisely, undefined) PSNR. An RMSE of 255 results in a PSNR of zero, and RMSE
values greater than 255 yield negative PSNRs.
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� Exercise 23.7: If the maximum pixel value is 255, can the RMSE values be greater
than 255?

Some authors define the PSNR as

PSNR = 10 log10

maxi |Pi|2
MSE

.

In order for the two formulations to produce the same result, the logarithm is multiplied
in this case by 10 instead of by 20, since log10A

2 = 2 log10A. Either definition is useful,
because only relative PSNR values are used in practice. However, the use of two different
factors is confusing.

A related measure is signal to noise ratio (SNR). This is defined as

SNR = 20 log10

√
1
n

∑n
i=1 P

2
i

RMSE
.

The numerator is the root mean square of the original image.
Figure 23.18 is a Matlab function to compute the PSNR of two images. A typical

call is PSNR(A,B), where A and B are image files. They must have the same resolution
and have pixel values in the range [0, 1].

function PSNR(A,B)
if A==B
error(’Images are identical; PSNR is undefined’)
end
max2_A=max(max(A)); max2_B=max(max(B));
min2_A=min(min(A)); min2_B=min(min(B));
if max2_A>1 | max2_B>1 | min2_A<0 | min2_B<0

error(’pixels must be in [0,1]’)
end
differ=A-B;
decib=20*log10(1/(sqrt(mean(mean(differ.^2)))));
disp(sprintf(’PSNR = +%5.2f dB’,decib))

Figure 23.18: A Matlab Function to Compute PSNR.

Another relative of the PSNR is the signal to quantization noise ratio (SQNR) This
is a measure of the effect of quantization on signal quality. It is defined as

SQNR = 10 log10

signal power
quantization error

,

where the quantization error is the difference between the quantized signal and the
original signal.

Another approach to the comparison of an original and a reconstructed image is to
generate the difference image and judge it visually. Intuitively, the difference image is
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Di = Pi−Qi, but such an image is hard to judge visually because its pixel values Di tend
to be small numbers. If a pixel value of zero represents white, such a difference image
would be almost invisible. In the opposite case, where pixel values of zero represent
black, such a difference would be too dark to judge. Better results are obtained by
calculating

Di = a(Pi −Qi) + b,

where a is a magnification parameter (typically a small number such as 2) and b is half
the maximum value of a pixel (typically 128). Parameter a serves to magnify small
differences, while b shifts the difference image from extreme white (or extreme black) to
a more comfortable gray.

23.5 Intuitive Methods

It is easy to come up with simple, intuitive methods for compressing images. They are
generally inefficient but they illustrate how easy it is to come up with image compression
algorithms.

23.5.1 Subsampling

Subsampling is perhaps the simplest way to compress an image. One approach to
subsampling is simply to delete some of the pixels. The encoder may, for example,
ignore every other row and every other column of the image, and write the remaining
pixels (which constitute 25% of the image) on the compressed stream. The decoder
inputs the compressed data and uses each pixel to generate four identical pixels of the
reconstructed image. This, of course, involves the loss of much image detail and is rarely
acceptable. Notice that the compression ratio is known in advance.

A slight improvement is obtained when the encoder calculates the average of each
block of four pixels and writes this average on the compressed stream. No pixel is
totally deleted, but the method is still primitive, because a good lossy image compression
method should lose only data to which the eye is not sensitive.

Better results (but worse compression) are obtained when the color representation
of the image is changed from the original (normally RGB) to luminance and chromi-
nance. The encoder subsamples the two chrominance components of a pixel but not its
luminance component. Assuming that each component uses the same number of bits,
the two chrominance components use 2/3 of the image size. Subsampling them reduces
this to 25% of 2/3, or 1/6. The size of the compressed image is therefore 1/3 (for the
uncompressed luminance component), plus 1/6 (for the two chrominance components)
or 1/2 of the original size.

23.5.2 Quantization

Scalar quantization has been mentioned in Section 23.3. This is an intuitive, lossy
method where the information lost is not necessarily the least important. Vector quan-
tization can obtain better results, and an intuitive version of it is described here.

The image is partitioned into equal-size blocks (called vectors) of pixels, and the
encoder has a list (called a codebook) of blocks of the same size. Each image block B
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is compared to all the blocks of the codebook and is matched with the “closest” one.
If B is matched with codebook block C, then the encoder writes a pointer to C on the
compressed stream. If the pointer is smaller than the block size, compression is achieved.
Figure 23.19 shows an example.

Codebook

Original image

Compressed image

Reconstructed image

0

00

1

2

23 3
4

4

5

6

6

7

Figure 23.19: Intuitive Vector Quantization.

The details of selecting and maintaining the codebook and of matching blocks are
discussed in [Salomon 09]. Notice that vector quantization is a method where the com-
pression ratio is known in advance.

23.6 Variable-Length Codes

The remainder of this chapter is devoted to variable-length codes, a type of code that
constitutes the basis of many image compression algorithms. Even methods that are
based on other approaches, such as transforms or fractals, employ these codes as one
of several steps in the algorithm. The following sections describe a few of the most-
important variable-length codes used in image compression.

23.7 Codes, Fixed- and Variable-Length

A code is a symbol that stands for another symbol. At first, this idea seems pointless.
Given a symbol S, what is the use of replacing it with another symbol Y ? However, it
is easy to find many important examples of the use of codes. Here are a few.

Any language and any system of writing are codes. They provide us with symbols
Y that we use in order to express our thoughts S.

Acronyms and abbreviations can be considered codes. Thus, the string IBM is a
symbol that stands for the much longer symbol “International Business Machines” and
the well-known French university École Supérieure D’électricité is known to many simply
as Supélec.
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Cryptography is the art and science of obfuscating messages. Before the age of
computers, a message was typically a string of letters and was encrypted by replacing
each letter with another letter or with a number. In the computer age, a message is a
binary string (a bitstring) in a computer, and it is encrypted by replacing it with another
bitstring, normally of the same length.

Error control. Messages, even secret ones, are often transmitted over communi-
cations channels and may become damaged, corrupted, or garbled on their way from
transmitter to receiver. We often experience low-quality, garbled telephone conversa-
tions. Even experienced pharmacists often find it difficult to read and understand a
handwritten prescription. Computer data stored on magnetic disks may become cor-
rupted because of exposure to magnetic fields or extreme temperatures. Music and videos
recorded on optical discs (CDs and DVDs) may become unreadable because of scratches.
In all these cases, it helps to augment the original data with error-control codes. Such
codes—formally titled channel codes, but informally known as error-detecting or error-
correcting codes—employ redundancy to detect and even correct, certain types of errors.

ASCII and Unicode. These are character codes that make it possible to store
characters of text as bitstrings in a computer. The ASCII code, which dates back to the
1960s [ascii-wiki 09], assigns 7-bit codes to 128 characters including 26 letters (upper- and
lowercase), the 10 digits, certain punctuation marks, and several control characters. The
Unicode project assigns 16-bit codes to many characters, and has a provision for even
longer codes. The long codes make it possible to store and manipulate many thousands of
characters, taken from many languages and alphabets (such as Greek, Cyrillic, Hebrew,
Arabic, and Indic), and including punctuation marks, diacritics, mathematical symbols,
technical symbols, arrows, and dingbats.

The last example illustrates the use of codes in the field of computers and computa-
tions. Mathematically, a code is a mapping. Given an alphabet of symbols, a code maps
individual symbols or strings of symbols to codewords, where a codeword is a string of
bits, a bitstring. The process of mapping a symbol to a codeword is termed encoding
and the reverse process is known as decoding.

Codes can have a fixed or variable length, and can be static or adaptive (dynamic).
A static code is constructed once and never changes. ASCII and Unicode are examples
of such codes. A static code can also have variable length, where short codewords are
assigned to the commonly-occurring symbols. A variable-length, static code is normally
designed based on the probabilities of the individual symbols. Each type of data has
different probabilities and may benefit from a different code. The Huffman method
(Section 23.13) is an example of an excellent variable-length, static code that can be
constructed once the probabilities of all the symbols in the alphabet are known. In
general, static codes that are also variable length can match well the lengths of individual
codewords to the probabilities of the symbols. Notice that the code table must normally
be included in the compressed file, because the decoder does not know the symbols’
probabilities (the model of the data) and so has no way to construct the codewords
independently.

A dynamic code varies over time, as more and more data is read and processed
and more is known about the probabilities of the individual symbols. The dynamic
(adaptive) Huffman algorithm [Salomon 09] is a method that employs such a code.



1054 23.7 Codes, Fixed- and Variable-Length

Fixed-length codes are known as block codes. They are easy to implement in soft-
ware. It is easy to replace an original symbol with a fixed-length code, and it is equally
easy to start with a string of such codes and break it up into individual codes that are
then replaced by the original symbols.

There are cases where variable-length codes (VLCs) have obvious advantages. As
their name implies, VLCs are codes that have different lengths. They are also known
as variable-size codes. A set of such codes consists of short and long codewords. The
following is a short list of important applications where such codes are commonly used.

Data compression (or source coding). Given an alphabet of symbols where certain
symbols occur often in messages, while other symbols are rare, it is possible to compress
messages by assigning short codes to the common symbols and long codes to the rare
symbols. This is an important application of variable-length codes.

The Morse code for telegraphy, originated in the 1830s by Samuel Morse and Alfred
Vail, exploits the same idea. It assigns short codes to commonly-occurring letters (the
code of E is a dot and the code of T is a dash) and long codes to rare letters and
punctuation marks (--.- to Q, --.. to Z, and --..-- to the comma).

Processor design. Part of the architecture of any computer is an instruction set
and a processor that fetches instructions from memory and executes them. It is easy
to handle fixed-length instructions, but modern computers normally have instructions
of different sizes. It is possible to reduce the overall size of programs by designing the
instruction set such that commonly-used instructions are short. This also reduces the
processor’s power consumption and physical size and is especially important in embedded
processors, such as processors designed for digital signal processing (DSP) or for mobile
communication devices.

Country calling codes. ITU-T recommendation E.164 is an international standard
that assigns variable-length calling codes to many countries such that countries with
many telephones are assigned short codes and countries with fewer telephones are as-
signed long codes. These codes also obey the prefix property (Section 23.8) which means
that once a calling code C has been assigned, no other calling code will start with C.

The International Standard Book Number (ISBN) is a unique number assigned to a
book, to simplify inventory tracking by publishers and bookstores. The ISBN numbers
are assigned according to an international standard known as ISO 2108 (1970). One
component of an ISBN is a country code, that can be between one and five digits long.
This code also obeys the prefix property. Once C has been assigned as a country code,
no other country code will start with C.

VCR Plus+ (also known as G-Code, VideoPlus+, and ShowView) is a prefix,
variable-length code for programming video recorders. A unique number, a VCR Plus+,
is computed for each television program by a proprietary algorithm from the date, time,
and channel of the program. The number is published in television listings in newspa-
pers and on the Internet. To record a program on a VCR, the number is located by
the user and is typed into the video recorder. This programs the recorder to record the
correct channel at the right time. This system was developed by Gemstar-TV Guide
International [Gemstar 06].
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I gave up on new poetry myself thirty years ago, when most of it began to read like
coded messages passing between lonely aliens on a hostile world.

—Russell Baker.

23.8 Prefix Codes

Encoding a string of symbols ai with VLCs is easy. No clever methods or algorithms
are needed. The software reads the original symbols ai one by one and replaces each
ai with its binary, variable-length code ci. The codes are concatenated to form one
(normally long) bitstring. The encoder either includes a table with all the pairs (ai, ci)
or it executes a procedure to compute code ci from the bits of symbol ai.

Decoding is slightly more complex, because of the different lengths of the codes.
When the decoder reads the individual bits of VLCs from a bitstring, it has to know
either how long each code is or where each code ends. This is why a set of variable-length
codes has to be carefully selected and why the decoder has to be taught about the codes.
The decoder either has to have a table of all the valid codes, or it has to be told how to
identify valid codes.

We start with a simple example. Given the set of four codes a1 = 0, a2 = 01,
a3 = 011, and a4 = 111 we easily encode the message a2a3a3a1a2a4 as the bitstring
01|011|011|0|01|111. This string can be decoded unambiguously, but not easily. When
the decoder inputs a 0, it knows that the next symbol is either a1, a2, or a3, but the
decoder has to input more bits to find out how many 1’s follow the 0 before it can
identify the next symbol. Similarly, given the bitstring 011 . . . 111, the decoder has to
read the entire string and count the number of consecutive 1’s before it finds out how
many 1’s follow the single 0 at the beginning. The codes could be 0|111 . . ., 01|111 . . .,
or 011|111 . . .. We say that such codes are not instantaneous.

In contrast, the following set of VLCs a1 = 0, a2 = 10, a3 = 110, and a4 = 111
is similar and is also instantaneous. Given a bitstring that consists of these codes,
the decoder reads consecutive 1’s until it has read three 1’s (an a4) or until it has read
another 0. Depending on how many 1’s precede the 0 (zero, one, or two 1’s), the decoder
knows whether the next symbol is a1, a2, or a3. The 0 acts as a separator, which is why
instantaneous codes are also known as comma codes. The rules that drive the decoder
can be considered a finite automaton or a decision tree.

The next example is similar. We examine the set of VLCs a1 = 0, a2 = 10, a3 = 101,
and a4 = 111. Only the code of a3 is different, but a little experimenting shows that
this set of VLCs is bad because it is not uniquely decodable (UD). Given the bitstring
0101111. . . , it can be decoded either as a1a3a4 . . . or a1a2a4 . . ..

This observation is crucial because it points the way to the construction of large
sets of VLCs. The set of codes above is bad because 10, the code of a2, is also the prefix
of the code of a3. When the decoder reads 10. . . , it often cannot tell whether this is the
code of a2 or the start of the code of a3.

Thus, a useful, practical set of VLCs has to be instantaneous and has to satisfy the
following prefix property. Once a code c is assigned to a symbol, no other code should
start with the bit pattern c. Prefix codes are also referred to as prefix-free codes, prefix
condition codes, or instantaneous codes.
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The following results can be proved: (1) A code is instantaneous if and only if it
is a prefix code. (2) The set of UD codes is larger than the set of instantaneous codes
(i.e., there are UD codes that are not instantaneous). (3) There is an instantaneous
variable-length code with codeword lengths Li if and only if there is a UD code with
these codeword lengths.

The last of these results indicates that we cannot reduce the average word length of a
variable-length code by using a UD code rather than an instantaneous code. Thus, there
is no loss of compression performance if we restrict our selection of codes to instantaneous
codes.

A UD code that consists of r codewords of lengths li must satisfy the Kraft inequality
[Salomon 09], but this inequality does not require a prefix code. Thus, if a code satisfies
the Kraft inequality it is UD, but if it is also a prefix code, then it is instantaneous.
This feature of a UD code being also instantaneous, comes for free, because there is no
need to add bits to the code and make it longer.

A prefix code (a set of codewords that satisfy the prefix property) is UD. Such a code
is also complete if adding any codeword to it turns it into a non-UD code. A complete
code is the largest UD code, but it also has a downside; it is less robust. If even a single
bit is accidentally modified or deleted (or if a bit is somehow added) during storage or
transmission, the decoder will lose synchronization and the rest of the transmission will
be decoded incorrectly (see the discussion of robust codes in [Salomon 07]).

While discussing UD and non-UD codes, it is interesting to observe that the Morse
code is non-UD (because, for example, the code of I is “..” and the code of H is “....”),
so Morse had to make it UD by requiring accurate relative timing.

23.9 VLCs for Integers

Following Elias, it is customary to denote the standard binary representation of the
integer n by β(n). This representation can be considered a code (the beta code), but
it does not satisfy the prefix property (because, for example, 2 = 102 is the prefix of
4 = 1002). The beta code has another disadvantage. Given a set of integers between 0
and n, we can represent each in 1+�log2 n� bits, a fixed-length representation. However,
if the number of integers in the set is not known in advance (or if the largest integer
is unknown), a fixed-length representation cannot be used and the natural solution is
to assign variable-length codes to the integers. Any variable-length codes for integers
should satisfy the following requirements:

1. Given an integer n, its codeword should be as short as possible and should be
constructed from the magnitude, length, and bit pattern of n, without the need for any
table lookups or other mappings.

2. Given a bitstream of variable-length codes, it should be easy to decode the next
codeword and obtain an integer n even if n hasn’t been seen before.

We will see that in many VLCs for integers, part of the binary representation of
the integer is included in the codeword, and the rest of the codeword is side information
indicating the length or precision of the encoded integer.

Several codes for the integers are described in the next few sections. Some can
code only nonnegative integers and others can code only positive integers. A VLC for
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positive integers can be extended to encode nonnegative integers by incrementing the
integer before it is encoded and decrementing the result produced by decoding. A VLC
for arbitrary integers can be obtained by a bijection, a mapping of the form

0 −1 1 −2 2 −3 3 −4 4 −5 5 · · ·
1 2 3 4 5 6 7 8 9 10 11 · · ·

A function is bijective if it is one-to-one and onto.

Perhaps the simplest variable-length code for integers is the well-known unary code.
The unary code of the positive integer n is constructed as n− 1 bits of 1 followed by a
single 0, or alternatively as n− 1 zeros followed by a single 1 (the three left columns of
Table 23.20). The length of the unary code for the integer n is therefore n bits. The two
rightmost columns of Table 23.20 show how the unary code can be extended to encode
the nonnegative integers (which makes the codes one bit longer). The unary code is
simple to construct and is useful in many applications, but it is not universal. Stone-age
people indicated the integer n by marking n adjacent vertical bars on a stone, which
is why the unary code is sometimes known as a stone-age binary and each of its n or
(n− 1) 1’s (or n or (n− 1) zeros) is termed a stone-age bit.

Stone Age Binary?

n Code Reverse Alt. code Alt. reverse
0 – – 0 1
1 0 1 10 01
2 10 01 110 001
3 110 001 1110 0001
4 1110 0001 11110 00001
5 11110 00001 111110 000001

Table 23.20: Some Unary Codes.

It is easy to see that the unary code satisfies the prefix property, so it is instanta-
neous and can be used as a variable-length code. Since its length L satisfies L = n, we
get 2−L = 2−n, so it makes sense to use this code in cases where the input data consists
of integers n with exponential probabilities P (n) ≈ 2−n. Given data that lends itself to
the use of the unary code (i.e., a set of integers that satisfy P (n) ≈ 2−n), we can assign
unary codes to the integers and these codes will be as good as the Huffman codes with
the advantage that the unary codes are trivial to encode and decode. In general, the
unary code is used as part of other, more sophisticated, variable-length codes.

Example: Table 23.21 lists the integers 1 through 6 with probabilities P (n) = 2−n,
except that P (6) = 2−5 ≈ 2−6. The table lists the unary codes and Huffman codes for
the six integers, and it is obvious that these codes have the same lengths (except the
code of 6, because this symbol does not have the correct probability).

Every positive number was one of Ramanujan’s personal friends.
—J. E. Littlewood.
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n Prob. Unary Huffman

1 2−1 0 0
2 2−2 10 10
3 2−3 110 110
4 2−4 1110 1110
5 2−5 11110 11110
6 2−5 111110 11111

Table 23.21: Six Unary and Huffman Codes.

23.10 Start-Step-Stop Codes

The unary code is ideal for compressing data that consists of integers n with probabilities
P (n) ≈ 2−n. If the data to be compressed consists of integers with different probabilities,
it may benefit from one of the general unary codes (also known as start-step-stop codes).
Such a code, proposed by [Fiala and Greene 89], depends on a triplet (start, step, stop)
of nonnegative integer parameters. A set of such codes is constructed subset by subset
as follows:

1. Set n = 0.
2. Set a = start + n× step.
3. Construct the subset of codes that start with n leading 1’s, followed by a single

intercalary bit (separator) of 0, followed by a combination of a bits. There are 2a such
codes.

4. Increment n by step. If n < stop, go to step 2. If n > stop, issue an error and
stop. If n = stop, repeat steps 2 and 3 but without the single intercalary 0 bit of step 3,
and stop.

This construction makes it obvious that the three parameters have to be selected
such that start + n × step will reach “stop” for some nonnegative n. The number of
codes for a given triplet is normally finite and depends on the choice of parameters. It
is given by

2stop+step − 2start

2step − 1
.

Notice that this expression increases exponentially with parameter “stop,” so large sets
of these codes can be generated even with small values of the three parameters. Notice
that the case step = 0 results in a zero denominator and thus in an infinite set of codes.

Tables 23.22 and 23.23 show the 680 codes of (3,2,9) and the 2044 codes of (2,1,10).
Table 23.24 lists the number of codes of each of the general unary codes (2, 1, k) for k =
2, 3, . . . , 11. This table was calculated by the Mathematica command Table[2^(k+1)-
4,{k,2,11}].

Examples:
1. The triplet (n, 1, n) defines the standard (beta) n-bit binary codes, as can be

verified by direct construction. The number of such codes is easily seen to be

2n+1 − 2n

21 − 1
= 2n.
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a = nth Number of Range of
n 3 + n · 2 codeword codewords integers

0 3 0xxx 23 = 8 0–7
1 5 10xxxxx 25 = 32 8–39
2 7 110xxxxxxx 27 = 128 40–167
3 9 111xxxxxxxxx 29 = 512 168–679

Total 680

Table 23.22: The General Unary Code (3,2,9).

a = nth Number of Range of
n 2 + n · 1 codeword codewords integers
0 2 0xx 4 0–3
1 3 10xxx 8 4–11
2 4 110xxxx 16 12–27
3 5 1110xxxxx 32 28–59

· · · · · · · · ·
8 10 11...1︸ ︷︷ ︸

8

xx...x︸ ︷︷ ︸
10

1024 1020–2043

Total 2044

Table 23.23: The General Unary Code (2,1,10).

k : 2 3 4 5 6 7 8 9 10 11
(2, 1, k): 4 12 28 60 124 252 508 1020 2044 4092

Table 23.24: Number of General Unary Codes (2, 1, k) for k = 2, 3, . . . , 11.

2. The triplet (0, 0,∞) defines the codes 0, 10, 110, 1110,. . .which are the unary
codes but assigned to the integers 0, 1, 2,. . . instead of 1, 2, 3,. . . .

3. The triplet (0, 1,∞) generates a variance of the Elias gamma code.
4. The triplet (k, k,∞) generates another variance of the Elias gamma code.
5. The triplet (k, 0,∞) generates the Rice code [Salomon 09] with parameter k.
6. The triplet (s, 1,∞) generates the exponential Golomb codes [Salomon 09].
7. The triplet (1, 1, 30) produces (230 − 21)/(21 − 1) ≈ a billion codes.
8. Table 23.25 shows the general unary code for (10,2,14). There are only three

code lengths since “start” and “stop” are so close, but there are many codes because
“start” is large.

The start-step-stop codes are very general. Often, a person gets an idea for a
variable-length code only to find out that it is a special case of a start-step-stop code.
Here is a typical example. We can design a variable-length code where each code consists
of triplets. The first two bits of a triplet go through the four possible values 00, 01, 10,
and 11, and the rightmost bit acts as a stop bit. If it is 1, we stop reading the code,
otherwise we read another triplet of bits. Table 23.26 lists the first 22 codes.

To see why this is a start-step-stop code, we rewrite it by placing the stop bits on
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a = nth Number of Range of
n 10 + n · 2 codeword codewords integers

0 10 0x...x︸︷︷︸
10

210 = 1K 0–1023

1 12 10xx...x︸ ︷︷ ︸
12

212 = 4K 1024–5119

2 14 11xx...xx︸ ︷︷ ︸
14

214 = 16K 5120–21503

Total 21504

Table 23.25: The General Unary Code (10,2,14).

n Codes n Codes
0 001 11 010 111
1 011 12 100 001
2 101 13 100 011
3 111 14 100 101
4 000 001 15 100 111
5 000 011 16 110 001
6 000 101 17 110 011
7 000 111 18 110 101
8 010 001 19 110 111
9 010 011 20 000 000 001

10 010 101 21 000 000 011

n Codes n Codes
0 1 00 11 01 01 11
1 1 01 12 01 10 00
2 1 10 13 01 10 01
3 1 11 14 01 10 10
4 01 00 00 15 01 10 11
5 01 00 01 16 01 11 00
6 01 00 10 17 01 11 01
7 01 00 11 18 01 11 10
8 01 01 00 19 01 11 11
9 01 01 01 20 001 00 00 00

10 01 01 10 21 001 00 00 01

Table 23.26: Triplet-Based Codes. Table 23.27: Same Codes Rearranged.

the left end, followed by pairs of code bits, as listed in Table 23.27. Examining these 22
codes shows that the code for the integer n starts with a unary code of j zeros followed
by a single 1, followed by j + 1 pairs of code bits. There are four codes of length 3
(a 1-bit unary followed by a pair of code bits, corresponding to j = 0), 16 6-bit codes
(a 2-bit unary followed by two pairs of code bits, corresponding to j = 1), 64 9-bit
codes (corresponding to j = 2), and so on. A little tinkering shows that this is the
start-step-stop code (2, 2,∞).

23.11 Start/Stop Codes

The start-step-stop codes are flexible. By carefully adjusting the values of the three
parameters it is possible to construct sets of codes of many different lengths. However,
the lengths of these codes are restricted to the values n+1+start+n× step (except for
the last subset where the codes have lengths stop + start + stop× step). The start/stop
codes of this section were conceived by Steven Pigeon and are described in [Pigeon 01a,b],
where it is shown that they are universal. A set of these codes is fully specified by an
array of nonnegative integer parameters (m0,m1, . . . ,mt) and is constructed in subsets,
similar to the start-step-stop codes, in the following steps:
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1. Set i = 0 and a = m0.
2. Construct the subset of codes that start with i leading 1’s, followed by a single

separator of 0, followed by a combination of a bits. There are 2a such codes.
3. Increment i by 1 and set a← a+mi.
4. If i < t, go to step 2. Otherwise (i = t), repeat step 2 but without the single 0

intercalary, and stop.

Thus, the parameter array (0, 3, 1, 2) results in the set of codes listed in Table 23.28.

i a Codeword # of codes Length
0 2 0xx 4 3
1 5 10xxxxx 32 7
2 6 110xxxxxx 64 9
3 8 111xxxxxxxx 256 11

Table 23.28: The Start/Stop Code (2,3,1,2).

The maximum code length is t+m0 + · · ·+mt and on average the start/stop code
of an integer s is never longer than 	log2 s
 (the length of the binary representation of
s). If an optimal set of such codes is constructed by an encoder and is used to compress
a data file, then the only side information needed in the compressed file is the value
of t and the array of t + 1 parameters mi (which are mostly small integers). This is
considerably less than the size of a Huffman tree or the side information required by
many other compression methods.

The start/stop codes can also encode an indefinite number of arbitrarily large inte-
gers. Simply set all the parameters to the same value and set t to infinity.

Steven Pigeon, the developer of these codes, shows that the parameters of the
start/stop codes can be selected such that the resulting set of codes will have an average
length shorter than what can be achieved with the start-step-stop codes for the same
probability distribution. He also shows how the probability distribution can be employed
to determine the best set of parameters for the code. In addition, the number of codes
in the set can be selected as needed, in contrast to the start-step-stop codes that often
result in more codes than needed.

The Human Brain starts working the moment you are born and never stops until you
stand up to speak in public!

—George Jessel.
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23.12 Elias Codes

In his pioneering work [Elias 75], Peter Elias described three useful prefix codes. The
main idea of these codes is to prefix the integer being encoded with an encoded repre-
sentation of its order of magnitude. For example, for any positive integer n there is an
integer M such that 2M ≤ n < 2M+1. We can therefore write n = 2M + L where L is
at most M bits long, and generate a code that consists of M and L. The problem is to
determine the length of M and this is solved in different ways by the various Elias codes.
Elias denoted the unary code of n by α(n) and the standard binary representation of n,
from its most significant 1, by β(n). His first code was therefore designated γ (gamma).

The Elias gamma code γ(n) for positive integers n is simple to encode and decode
and is also universal.

Encoding. Given a positive integer n, perform the following steps:

1. Denote by M the length of the binary representation β(n) of n.
2. Prepend M − 1 zeros to it (i.e., the α(n) code without its terminating 1).

Step 2 amounts to prepending the length of the code to the code, in order to ensure
unique decodability.

The length M of the integer n is

1 + �log2 n� (23.4),

so the length of γ(n) is

2M − 1 = 2�log2 n� + 1. (23.5)

We later show that this code is ideal for applications where the probability of n is
1/(2n2).

An alternative construction of the gamma code is as follows:

1. Find the largest integer N such that 2N ≤ n < 2N+1 and write n = 2N + L.
Notice that L is at most an N -bit integer.

2. Encode N in unary either as N zeros followed by a 1 or N 1’s followed by a 0.
3. Append L as an N -bit number to this representation of N .

Peter Elias

1 = 20 + 0 = 1 10 = 23 + 2 = 0001010
2 = 21 + 0 = 010 11 = 23 + 3 = 0001011
3 = 21 + 1 = 011 12 = 23 + 4 = 0001100
4 = 22 + 0 = 00100 13 = 23 + 5 = 0001101
5 = 22 + 1 = 00101 14 = 23 + 6 = 0001110
6 = 22 + 2 = 00110 15 = 23 + 7 = 0001111
7 = 22 + 3 = 00111 16 = 24 + 0 = 000010000
8 = 23 + 0 = 0001000 17 = 24 + 1 = 000010001
9 = 23 + 1 = 0001001 18 = 24 + 2 = 000010010

Table 23.29: 18 Elias Gamma Codes.
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Table 23.29 lists the first 18 gamma codes, where the L part is in italics.
In his 1975 paper, Elias describes two versions of the gamma code. The first version

(titled γ) is encoded as follows:

1. Generate the binary representation β(n) of n.
2. Denote the length |β(n)| of β(n) by M .
3. Generate the unary u(M) representation of M as M − 1 zeros followed by a 1.
4. Follow each bit of β(n) by a bit of u(M).
5. Drop the leftmost bit (the leftmost bit of β(n) is always 1).

Thus, for n = 13 we prepare β(13) = 1̄1̄0̄1̄, so M = 4 and u(4) = 0001, resulting in
1̄01̄00̄01̄1. The final code is γ(13) = 01̄00̄01̄1. In general, the length of the gamma code
for the integer i is 1 + 2�log2 i�.

The second version, dubbed γ′, moves the bits of u(M) to the left. Thus γ′(13) =
0001|1̄0̄1̄. The gamma codes of Table 23.29 are Elias’s γ′ codes. Both gamma versions
are universal.

Decoding is also simple and is done in two steps:

1. Read zeros from the code until a 1 is encountered. Denote the number of zeros
by N .

2. Read the next N bits as an integer L. Compute n = 2N + L.

It is easy to see that this code can be used to encode positive integers even in
cases where the largest integer is not known in advance. Also, this code grows slowly
(see Figure 23.31), so it is a good candidate for compressing integer data where small
integers are common and large integers are rare.

It is easy to understand why the gamma code (and in general, all variable-length
codes) should be used only when it is known or estimated that the distribution of
the integers to be encoded is close to the ideal distribution for the given code. The
simple computation here assumes that the first n integers are given and are distributed
uniformly (i.e., each appears with the same probability). We compute the average
gamma code length and show that it is much larger than the length of the fixed-size
binary codes of the same integers.

The length of the Elias gamma code for the integer i is 1 + 2�log2 i�. Thus, the
average of the gamma codes of the first n integers is

a =
n+ 2

∑n
i=1�log2 i�
n

.

The length of the fixed-size codes of the same integers is b = 	log2 n
. Figure 23.30 is
a plot of the ratio a/b and it is easy to see that this value is greater than 1, indicating
that for flat distributions of the integers the fixed-length (beta) code is better than the
gamma code. The curve in the figure generally goes up, but features sudden drops
(where it remains greater than 1) at points where n = 2k + 1 for integer k.

The Elias delta code. In his gamma code, Elias prepends the length of the code in
unary (α). In his next code, δ (delta), he prepends the length in binary (β). Thus, the
Elias delta code, also for the positive integers, is slightly more complex to construct.

Encoding a positive integer n, is done in the following steps:

1. Write n in binary. The leftmost (most significant) bit will be a 1.
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gamma[i_] := 1. + 2 Floor[Log[2, i]];
Plot[Sum[gamma[j], {j,1,n}]/(n Ceiling[Log[2,n]]), {n,1,200}]

Figure 23.30: Gamma Code Versus Binary Code.

2. Count the bits, remove the leftmost bit of n, and prepend the count, in binary,
to what is left of n after its leftmost bit has been removed.

3. Subtract 1 from the count of step 2 and prepend that number of zeros to the
code.

When these steps are applied to the integer 17, the results are: 17 = 100012 (five
bits). Remove the leftmost 1 and prepend 5 = 1012 yields 101|0001. Three bits were
added, so we prepend two zeros to obtain the delta code 00|101|0001.

To compute the length of the delta code of n, we notice that step 1 generates (from
Equation (23.4)) M = 1 + �log2 n� bits. For simplicity, we omit the � and � and observe
that

M = 1 + log2 n = log2 2 + log2 n = log2(2n).

The count of step 2 is M , whose length C is therefore C = 1+log2M = 1+log2(log2(2n))
bits. Step 2 therefore prepends C bits and removes the leftmost bit of n. Step 3 prepends
C − 1 = log2M = log2(log2(2n)) zeros. The total length of the delta code is therefore
the three-part sum

log2(2n) + [1 + log2 log2(2n)] − 1 + log2 log2(2n) = 1 + �log2 n� + 2�log2 log2(2n)�.
︸ ︷︷ ︸
step 1

︸ ︷︷ ︸
step 2

︸ ︷︷ ︸
step 3 (23.6)

Figure 23.31 illustrates the length graphically (the Fibonacci code is described in [Sa-
lomon 07]). We show below that the delta code is ideal for data where the integer n
occurs with probability 1/[2n(log2(2n))2].

An equivalent way to construct the delta code employs the gamma code:
1. Find the largest integer N such that 2N ≥ n < 2N+1 and write n = 2N + L.

Notice that L is at most an N -bit integer.
2. Encode N + 1 with the Elias gamma code.
3. Append the binary value of L, as an N -bit integer, to the result of step 2.
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(* Plot the lengths of four codes
1. staircase plots of binary representation *)

bin[i_] := 1 + Floor[Log[2, i]];
Table[{Log[10, n], bin[n]}, {n, 1, 1000, 5}];
g1 = ListPlot[%, AxesOrigin -> {0, 0}, PlotJoined -> True,

PlotStyle -> { AbsoluteDashing[{5, 5}]}]
(* 2. staircase plot of Fibonacci code length *)
fib[i_] := 1 + Floor[ Log[1.618, Sqrt[5] i]];
Table[{Log[10, n], fib[n]}, {n, 1, 1000, 5}];
g2 = ListPlot[%, AxesOrigin -> {0, 0}, PlotJoined -> True]
(* 3. staircase plot of gamma code length*)
gam[i_] := 1 + 2Floor[Log[2, i]];
Table[{Log[10, n], gam[n]}, {n, 1, 1000, 5}];
g3 = ListPlot[%, AxesOrigin -> {0, 0}, PlotJoined -> True,

PlotStyle -> { AbsoluteDashing[{2, 2}]}]
(* 4. staircase plot of delta code length*)
del[i_] := 1 + Floor[Log[2, i]] + 2Floor[Log[2, Log[2, i]]];
Table[{Log[10, n], del[n]}, {n, 2, 1000, 5}];
g4 = ListPlot[%, AxesOrigin -> {0, 0}, PlotJoined -> True,

PlotStyle -> { AbsoluteDashing[{6, 2}]}]
Show[g1, g2, g3, g4, PlotRange -> {{0, 3}, {0, 20}}]

Figure 23.31: Lengths of Binary, Fibonacci, and Two Elias Codes.

When these steps are applied to n = 17, the results are: 17 = 2N +L = 24 +1. The
gamma code of N + 1 = 5 is 00101, and appending L = 0001 to this yields 00101|0001.

Table 23.32 lists the first 18 delta codes, where the L part is in italics.
Decoding is done in the following steps:
1. Read bits from the code until you can decode an Elias gamma code. Call the

decoded result M + 1. This is done in the following substeps:
1.1 Count the leading zeros of the code and denote the count by C.
1.2 Examine the leftmost 2C + 1 bits (C zeros, followed by a single 1, followed by

C more bits). This is the decoded gamma code M + 1.
2. Read the next M bits. Call this number L.
3. The decoded integer is 2M + L.
In the case of n = 17, the delta code is 001010001. We skip two zeros, so C = 2.
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1 = 20 + 0 → |L| = 0 → 1 10 = 23 + 2 → |L| = 3 → 00100010
2 = 21 + 0 → |L| = 1 → 0100 11 = 23 + 3 → |L| = 3 → 00100011
3 = 21 + 1 → |L| = 1 → 0101 12 = 23 + 4 → |L| = 3 → 00100100
4 = 22 + 0 → |L| = 2 → 01100 13 = 23 + 5 → |L| = 3 → 00100101
5 = 22 + 1 → |L| = 2 → 01101 14 = 23 + 6 → |L| = 3 → 00100110
6 = 22 + 2 → |L| = 2 → 01110 15 = 23 + 7 → |L| = 3 → 00100111
7 = 22 + 3 → |L| = 2 → 01111 16 = 24 + 0 → |L| = 4 → 001010000
8 = 23 + 0 → |L| = 3 → 00100000 17 = 24 + 1 → |L| = 4 → 001010001
9 = 23 + 1 → |L| = 3 → 00100001 18 = 24 + 2 → |L| = 4 → 001010010

Table 23.32: 18 Elias Delta Codes.

The value of the leftmost 2C + 1 = 5 bits is 00101 = 5, so M + 1 = 5. We read the next
M = 4 bits 0001, and end up with the decoded value 2M + L = 24 + 1 = 17.

To better understand the application and performance of these codes, we need to
identify the type of data it compresses best. Given a set of symbols ai, where each
symbol occurs in the data with probability Pi and the length of its code is li bits, the
average code length is the sum

∑
Pili and the entropy (the smallest number of bits

required to represent the symbols) is
∑

[−Pi log2 Pi]. The redundancy is the difference∑
i Pili −

∑
i[−Pi log2 Pi] and we are looking for probabilites Pi that will minimize this

difference.
In the case of the gamma code, li = 1 + 2�log2 i�. If we select symbol probabilities

Pi = 1/(2i2) (a power law distribution of probabilities, where the first 10 values are
0.5, 0.125, 0.0556, 0.03125, 0.02, 0.01389, 0.0102, 0.0078, 0.00617, and 0.005), both the
average code length and the entropy become the identical sums

∑
i

1 + 2 log i
2i2

,

indicating that the gamma code is asymptotically optimal for this type of data. A
power law distribution of values is dominated by just a few symbols and especially by
the first. Such a distribution is very skewed and is therefore handled very well by the
gamma code which starts very short. In an exponential distribution, in contrast, the
small values have similar probabilities, which is why data with this type of statistical
distribution is compressed better by a Rice code [Salomon 07].

In the case of the delta code, li = 1 + log i + 2 log log(2i). If we select symbol
probabilities Pi = 1/[2i(log(2i))2] (where the first five values are 0.5, 0.0625, 0.025,
0.0139, and 0.009), both the average code length and the entropy become the identical
sums ∑

i

log 2 + log i+ 2 log log(2i)
2i(log(2i))2

,

indicating that the redundancy is zero and the delta code is therefore asymptotically
optimal for this type of data.



23 Compression Techniques 1067

The phrase “working mother” is redundant.
—Jane Sellman.

The Elias omega code. Unlike the previous Elias codes, the omega code uses itself
recursively to encode the prefix M , which is why it is sometimes referred to as a recursive
Elias code. The main idea is to prepend the length of n to n as a group of bits that
starts with a 1, then prepend the length of the length, as another group, to the result,
and continue prepending lengths until the last length is 2 or 3 (and therefore fits in two
bits). In order to distinguish between a length group and the last, rightmost group (of
n itself), the latter is followed by a delimiter of 0, while each length group starts with a
1.

Encoding a positive integer n is done recursively in the following steps:
1. Initialize the code-so-far to 0.
2. If the number to be encoded is 1, stop; otherwise, prepend the binary represen-

tation of n to the code-so-far. Assume that we have prepended L bits.
3. Repeat step 2, with the binary representation of L− 1 instead of n.
The integer 17 is therefore encoded by (1) a single 0, (2) prepended by the 5-bit

binary value 10001, (3) prepended by the 3-bit value of 5−1 = 1002, and (4) prepended
by the 2-bit value of 3 − 1 = 102. The result is 10|100|10001|0.

Table 23.33 lists the first 18 omega codes. Note that n = 1 is handled as a special
case.

1 0 10 11 1010 0
2 10 0 11 11 1011 0
3 11 0 12 11 1100 0
4 10 100 0 13 11 1101 0
5 10 101 0 14 11 1110 0
6 10 110 0 15 11 1111 0
7 10 111 0 16 10 100 10000 0
8 11 1000 0 17 10 100 10001 0
9 11 1001 0 18 10 100 10010 0

Table 23.33: 18 Elias Omega Codes.

Decoding is done in several nonrecursive steps where each step reads a group of bits
from the code. A group that starts with a zero signals the end of decoding.

1. Initialize n to 1.
2. Read the next bit. If it is 0, stop. Otherwise read n more bits, assign the group

of n+ 1 bits to n, and repeat this step.
Some readers may find it easier to understand these steps rephrased as follows.
1. Read the first group, which will either be a single 0, or a 1 followed by n more

digits. If the group is a 0, the value of the integer is 1; if the group starts with a 1, then
n becomes the value of the group interpreted as a binary number.

2. Read each successive group; it will either be a single 0, or a 1 followed by n more
digits. If the group is a 0, the value of the integer is n; if it starts with a 1, then n
becomes the value of the group interpreted as a binary number.
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Example: Decode 10|100|10001|0. The decoder initializes n = 1 and reads the first
bit. It is a 1, so it reads n = 1 more bit (0) and assigns n = 102 = 2. It reads the next
bit. It is a 1, so it reads n = 2 more bits (00) and assigns the group 100 to n. It reads
the next bit. It is a 1, so it reads four more bits (0001) and assigns the group 10001 to
n. The next bit read is 0, indicating the end of decoding.

The omega code is constructed recursively, which is why its length |ω(n)| can also be
computed recursively. We define the quantity lk(n) recursively by l1(n) = �log2 n� and
li+1(n) = l1(li(n)). We already know that |β(n)| = l1(n) + 1 (where β is the standard
binary representation), and this implies that the length of the omega code is given by
the sum

|ω(n)| =
k∑
i=1

β(lk−i(n)) + 1 = 1 +
k∑
i=1

(li(n) + 1),

where the sum stops at the k that satisfies lk(n) = 1. From this, Elias concludes that
the length satisfies |ω(n)| ≤ 1 + 5

2�log2 n�.
A quick glance at any table of these codes shows that their lengths fluctuate. In

general, the length increases slowly as n increases, but when a new length group is
added, which happens when n = 22k for any positive integer k, the length of the code
increases suddenly by several bits. For k values of 1, 2, 3, and 4, this happens when n
reaches 4, 16, 256, and 65,536. Because the groups of lengths are of the form “length,”
“log(length),” “log(log(length)),” and so on, the omega code is sometimes referred to as
a logarithmic-ramp code.

Table 23.34 compares the length of the gamma, delta, and omega codes. It shows
that the delta code is asymptotically best, but if the data consists mostly of small
numbers (less than 8) and there are only a few large integers, then the gamma code
performs better.

Values Gamma Delta Omega

1 1 1 2
2 3 4 3
3 3 4 4
4 5 5 4

5–7 5 5 5
8–15 7 8 6–7
16–31 9 9 7–8
32–63 11 10 8–10
64–88 13 11 10
100 13 11 11
1000 19 16 16
104 27 20 20
105 33 25 25
105 39 28 30

Table 23.34: Lengths of Three Elias Codes.
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Beware of bugs in the above code; I have only proved it correct, not tried it.
—Donald Knuth.

23.13 Huffman Coding

David Huffman (1925–1999)

Being originally from Ohio, it is no wonder that Huffman went to Ohio State Uni-
versity for his BS (in electrical engineering). What is unusual was
his age (18) when he earned it in 1944. After serving in the United
States Navy, he went back to Ohio State for an MS degree (1949)
and then to MIT, for a PhD (1953, electrical engineering).

That same year, Huffman joined the faculty at MIT. In 1967,
he made his only career move when he went to the University of
California, Santa Cruz as the founding faculty member of the Com-
puter Science Department. During his long tenure at UCSC, Huff-
man played a major role in the development of the department (he
served as chair from 1970 to 1973) and he is known for his motto
“my products are my students.” Even after his retirement, in 1994, he remained active
in the department, teaching information theory and signal analysis courses.

Huffman made significant contributions in several areas, mostly information theory
and coding, signal designs for radar and communications, and design procedures for
asynchronous logical circuits. Of special interest is the well-known Huffman algorithm
for constructing a set of optimal prefix codes for data with known frequencies of occur-
rence. At a certain point he became interested in the mathematical properties of “zero
curvature” surfaces, and developed this interest into techniques for folding paper into
unusual sculptured shapes (the so-called computational origami).

Huffman coding is a popular method for data compression. It serves as the basis for
several popular programs run on various platforms. Some programs use just the Huffman
method, while others use it as one step in a multistep compression process. The Huffman
method [Huffman 52] is somewhat similar to the Shannon–Fano method. It generally
produces better codes, and like the Shannon–Fano method, it produces the best code
when the probabilities of the symbols are negative powers of 2. The main difference
between the two methods is that Shannon–Fano constructs its codes top to bottom
(from the leftmost to the rightmost bits), while Huffman constructs a code tree from
the bottom up (builds the codes from right to left).

Since its development in 1952 by D. Huffman, this method has been the subject of
intensive research in data compression. The long discussion in [Gilbert and Moore 59]
proves that the Huffman code is a minimum-length code in the sense that no other en-
coding has a shorter average length. An algebraic approach to constructing the Huffman
code is introduced in [Karp 61]. In [Gallager 78], Robert Gallager shows that the redun-
dancy of Huffman coding is at most p1 + 0.086 where p1 is the probability of the most
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common symbol in the alphabet. The redundancy is the difference between the average
Huffman codeword length and the entropy. Given a large alphabet, such as the set of
letters, digits, and punctuation marks used by a natural language, the largest symbol
probability is typically around 15–20%, bringing the value of the quantity p1 + 0.086 to
around 0.1. This means that Huffman codes are at most 0.1 bit longer (per symbol)
than an ideal entropy encoder, such as arithmetic coding.

The Huffman algorithm starts by building a list of all the alphabet symbols in
descending order of their probabilities. It then constructs a tree, with a symbol at every
leaf, from the bottom up. This is done in steps, where at each step the two symbols with
smallest probabilities are selected, added to the top of the partial tree, deleted from the
list, and replaced with an auxiliary symbol representing the two original symbols. When
the list is reduced to just one auxiliary symbol (representing the entire alphabet), the
tree is complete. The tree is then traversed to determine the codes of the symbols.

Truth is stranger than fiction, but this is because fiction is obliged to stick to proba-
bility; truth is not.

—Anonymous.

This process is best illustrated by an example. Given five symbols with probabilities
as shown in Figure 23.35a, they are paired in the following order:

1. a4 is combined with a5 and both are replaced by the combined symbol a45, whose
probability is 0.2.
2. There are now four symbols left, a1, with probability 0.4, and a2, a3, and a45, with
probabilities 0.2 each. We arbitrarily select a3 and a45, combine them, and replace them
with the auxiliary symbol a345, whose probability is 0.4.
3. Three symbols are now left, a1, a2, and a345, with probabilities 0.4, 0.2, and 0.4,
respectively. We arbitrarily select a2 and a345, combine them, and replace them with
the auxiliary symbol a2345, whose probability is 0.6.
4. Finally, we combine the two remaining symbols, a1 and a2345, and replace them with
a12345 with probability 1.

The tree is now complete. It is shown in Figure 23.35a “lying on its side” with its
root on the right and its five leaves on the left. To assign the codes, we arbitrarily assign
a bit of 1 to the top edge, and a bit of 0 to the bottom edge, of every pair of edges. This
results in the codes 0, 10, 111, 1101, and 1100. The assignments of bits to the edges is
arbitrary.

The average size of this code is 0.4× 1 + 0.2× 2 + 0.2× 3 + 0.1× 4 + 0.1× 4 = 2.2
bits/symbol, but even more importantly, the Huffman code is not unique. Some of
the steps above were chosen arbitrarily, since there were more than two symbols with
smallest probabilities. Figure 23.35b shows how the same five symbols can be combined
differently to obtain a different Huffman code (11, 01, 00, 101, and 100). The average
size of this code is 0.4 × 2 + 0.2 × 2 + 0.2 × 2 + 0.1 × 3 + 0.1 × 3 = 2.2 bits/symbol, the
same as the previous code.
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Figure 23.35: Huffman Codes.

� Exercise 23.8: Given the eight symbols A, B, C, D, E, F, G, and H with probabilities
1/30, 1/30, 1/30, 2/30, 3/30, 5/30, 5/30, and 12/30, draw three different Huffman trees
with heights 5 and 6 for these symbols and calculate the average code size for each tree.

� Exercise 23.9: Figure Ans.64d shows another Huffman tree, with height 4, for the
eight symbols introduced in Exercise 23.8. Explain why this tree is wrong.

It turns out that the arbitrary decisions made in constructing the Huffman tree
affect the individual codes but not the average size of the code. Still, we have to answer
the obvious question, which of the different Huffman codes for a given set of symbols
is best? The answer, while not obvious, is simple: The best code is the one with the
smallest variance. The variance of a code measures how much the sizes of the individual
codes deviate from the average size. The variance of code 23.35a is

0.4(1 − 2.2)2 + 0.2(2 − 2.2)2 + 0.2(3 − 2.2)2 + 0.1(4 − 2.2)2 + 0.1(4 − 2.2)2 = 1.36,

while the variance of code 23.35b is

0.4(2 − 2.2)2 + 0.2(2 − 2.2)2 + 0.2(2 − 2.2)2 + 0.1(3 − 2.2)2 + 0.1(3 − 2.2)2 = 0.16.

Code 23.35b is therefore preferable (see below). A careful look at the two trees shows
how to select the one we want. In the tree of Figure 23.35a, symbol a45 is combined with
a3, whereas in the tree of 23.35b it is combined with a1. The rule is: When there are
more than two smallest-probability nodes, select the ones that are lowest and highest in
the tree and combine them. This will combine symbols of low probability with ones of
high probability, thereby reducing the total variance of the code.

If the encoder simply writes the compressed stream on a file, the variance of the
code makes no difference. A small-variance Huffman code is preferable only in cases
where the encoder transmits the compressed stream, as it is being generated, over a
communications line. In such a case, a code with large variance causes the encoder to
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generate bits at a rate that varies all the time. Since the bits have to be transmitted at a
constant rate, the encoder has to use a buffer. Bits of the compressed stream are entered
into the buffer as they are being generated and are moved out of it at a constant rate,
to be transmitted. It is easy to see intuitively that a Huffman code with zero variance
will enter bits into the buffer at a constant rate, so only a short buffer will be needed.
The larger the code variance, the more variable is the rate at which bits enter the buffer,
requiring the encoder to use a larger buffer.

The following claim is sometimes found in the literature:
It can be shown that the size of the Huffman code of a symbol
ai with probability Pi is always less than or equal to 	− log2 Pi
.

Even though it is correct in many cases, this claim is not true in general. It seems
to be a wrong corollary drawn by some authors from the Kraft-MacMillan inequality,
[Salomon 09]. I am indebted to Guy Blelloch for pointing this out and also for the
example of Table 23.36.

� Exercise 23.10: Find an example where the size of the Huffman code of a symbol ai
is greater than 	− log2 Pi
.

Pi Code − log2 Pi 	− log2 Pi

.01 000 6.644 7

*.30 001 1.737 2
.34 01 1.556 2
.35 1 1.515 2

Table 23.36: A Huffman Code Example.

� Exercise 23.11: It seems that the size of a code must also depend on the number n of
symbols (the size of the alphabet). A small alphabet requires just a few codes, so they
can all be short; a large alphabet requires many codes, so some must be long. This being
so, how can we say that the size of the code of symbol ai depends just on its probability
Pi?

Figure 23.37 shows a Huffman code for the 26 letters. As a self-exercise, the reader
may calculate the average size, entropy, and variance of this code.

� Exercise 23.12: Discuss the Huffman codes for equal probabilities.

Exercise 23.12 shows that symbols with equal probabilities don’t compress under
the Huffman method. This is understandable, since strings of such symbols normally
make random text, and random text does not compress. There may be special cases
where strings of symbols with equal probabilities are not random and can be compressed.
A good example is the string a1a1 . . . a1a2a2 . . . a2a3a3 . . . in which each symbol appears
in a long run. This string can be compressed with run-length encoding (RLE) but not
with Huffman codes.

Notice that the Huffman method cannot be applied to a two-symbol alphabet. In
such an alphabet, one symbol can be assigned the code 0 and the other code 1. The
Huffman method cannot assign to any symbol a code shorter than one bit, so it cannot
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    000 E .1300
   0010 T .0900
   0011 A .0800
   0100 O .0800

0101 N .0700
0110 R .0650
0111 I .0650

10000 H .0600
10001 S .0600
10010 D .0400
10011 L .0350
10100 C .0300
10101 U .0300
10110 M .0300
10111 F .0200
11000 P .0200
11001 Y .0200
11010 B .0150
11011 W .0150
11100 G .0150
11101 V .0100
111100 J .0050
111101 K .0050
111110 X .0050

1111110 Q .0025
1111111 Z .0025 .005

.11

.010

.010
.020

.025

.045

.070

.115

.305

.420

.580

.30

.28

.195
1.0

1

1

0
0

1

0

1
0

01

0

1

Figure 23.37: A Huffman Code for the 26-Letter Alphabet.

improve on this simple code. If the original data (the source) consists of individual
bits, such as in the case of a bi-level (monochromatic) image, it is possible to combine
several bits (perhaps four or eight) into a new symbol and pretend that the alphabet
consists of these (16 or 256) symbols. The problem with this approach is that the original
binary data may have certain statistical correlations between the bits, and some of these
correlations would be lost when the bits are combined into symbols. When a typical
bi-level image (a painting or a diagram) is digitized by scan lines, a pixel is more likely to
be followed by an identical pixel than by the opposite one. We therefore have a file that
can start with either a 0 or a 1 (each has 0.5 probability of being the first bit). A zero is
more likely to be followed by another 0 and a 1 by another 1. Figure 23.38 is a finite-state
machine illustrating this situation. If these bits are combined into, say, groups of eight,
the bits inside a group will still be correlated, but the groups themselves will not be
correlated by the original pixel probabilities. If the input stream contains, e.g., the two
adjacent groups 00011100 and 00001110, they will be encoded independently, ignoring
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the correlation between the last 0 of the first group and the first 0 of the next group.
Selecting larger groups improves this situation but increases the number of groups, which
implies more storage for the code table and longer time to calculate the table.

0 1

s

0,50% 1,50%

0,40% 1,60%

1,33%

0,67%

Start

Figure 23.38: A Finite-State Machine.

� Exercise 23.13: How does the number of groups increase when the group size increases
from s bits to s+ n bits?

A more complex approach to image compression by Huffman coding is to create
several complete sets of Huffman codes. If the group size is, e.g., eight bits, then several
sets of 256 codes are generated. When a symbol S is to be encoded, one of the sets is
selected, and S is encoded using its code in that set. The choice of set depends on the
symbol preceding S.

� Exercise 23.14: Imagine an image with 8-bit pixels where half the pixels have values
127 and the other half have values 128. Analyze the performance of run-length encoding
(RLE) on the individual bitplanes of such an image, and compare it with what can be
achieved with Huffman coding.

23.13.1 Dual Tree Coding

Dual tree coding, an idea due to G. H. Freeman ([Freeman 91] and [Freeman 93]),
combines Tunstall and Huffman coding in an attempt to improve the latter’s performance
for a two-symbol alphabet. The idea is to use the Tunstall algorithm [Salomon 09] to
extend such an alphabet from two symbols to 2k strings of symbols, and select k such
that the probabilities of the strings will be close to negative powers of 2. Once this is
achieved, the strings are assigned Huffman codes and the input stream is compressed
by replacing the strings with these codes. This approach is illustrated here by a simple
example.

Given a binary source that emits two symbols a and b with probabilities 0.15 and
0.85, respectively, we try to compress it in four different ways as follows:

1. We apply the Huffman algorithm directly to the two symbols. This simply
assigns the two 1-bit codes 0 and 1 to a and b, so there is no compression.

2. We combine the two symbols to obtain the four two-symbol strings aa, ab, ba,
and bb, with probabilities 0.0225, 0.1275, 0.1275, and 0.7225, respectively. The four
strings are assigned Huffman codes as shown in Figure 23.39a, and it is obvious that the
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average code length is 0.0225 × 3 + 0.1275 × 3 + 0.1275 × 2 + 0.7225 × 1 = 1.4275 bits.
On average, each two-symbol string is compressed to 1.4275 bits, yielding a compression
ratio of 1.4275/2 ≈ 0.714.

(a) (b) (c)

0

0

0

1

1

1

a

a

b

ba

ba

bb

bba

bba

bbb

bbb

aa ab

ba

bb

.15

.25

.85

.1275 .7225

.50

.1084 .614

Figure 23.39: Dual Tree Coding.

3. We apply Tunstall’s algorithm [Salomon 09] to obtain the four strings bbb, bba,
ba, and a with probabilities 0.614, 0.1084, 0.1275, and 0.15, respectively. The resulting
parse tree is shown in Figure 23.39b. Tunstall’s method compresses these strings by
replacing each with a two-bit code. Given a string of 257 bits with these probabilities,
we expect the strings bbb, bba, ba, and a to occur 61, 11, 13, and 15 times, respectively,
for a total of 100 strings. Thus, Tunstall’s method compresses the 257 input bits to
2 × 100 = 200 bits, for a compression ratio of 200/257 ≈ 0.778.

4. We now change the probabilities of the four strings above to negative powers
of 2, because these are the best values for the Huffman method. Strings bbb, bba,
ba, and a are thus assigned the probabilities 0.5, 0.125, 0.125, and 0.25, respectively.
The resulting Huffman code tree is shown in Figure 23.39c and it is easy to see that
the 61, 11, 13, and 15 occurrences of these strings will be compressed to a total of
61 × 1 + 11 × 3 + 13 × 3 + 15 × 2 = 163 bits, resulting in a compression ratio of
163/257 ≈ 0.634, much better.

To summarize, applying the Huffman method to a two-symbol alphabet produces
no compression. Combining the individual symbols in strings as in 2 above or applying
the Tunstall method as in 3, produce moderate compression. In contrast, combining the
strings produced by Tunstall with the codes generated by the Huffman method, results
in much better performance. The dual tree method starts by constructing the Tunstall
parse tree and then using its leaf nodes to construct a Huffman code tree. The only
(still unsolved) problem is determining the best value of k. In our example, we iterated
the Tunstall algorithm until we had 22 = 4 strings, but iterating more times may have
resulted in strings whose probabilities are closer to negative powers of 2.

23.13.2 Huffman Decoding

Before starting the compression of a data stream, the compressor (encoder) has to de-
termine the codes. It does that based on the probabilities (or frequencies of occurrence)
of the symbols. The probabilities or frequencies have to be written, as side information,
on the compressed stream, so that any Huffman decompressor (decoder) will be able to
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decompress the stream. This is easy, since the frequencies are integers and the proba-
bilities can be written as scaled integers. It normally adds just a few hundred bytes to
the compressed stream. It is also possible to write the variable-length codes themselves
on the stream, but this may be awkward, because the codes have different sizes. It is
also possible to write the Huffman tree on the stream, but this may require more space
than just the frequencies.

In any case, the decoder must know what is at the start of the stream, read it, and
construct the Huffman tree for the alphabet. Only then can it read and decode the rest
of the stream. The algorithm for decoding is simple. Start at the root and read the first
bit off the compressed stream. If it is zero, follow the bottom edge of the tree; if it is
one, follow the top edge. Read the next bit and move another edge toward the leaves
of the tree. When the decoder gets to a leaf, it finds the original, uncompressed code
of the symbol (normally its ASCII code), and that code is emitted by the decoder. The
process starts again at the root with the next bit.

This process is illustrated for the five-symbol alphabet of Figure 23.40. The four-
symbol input string a4a2a5a1 is encoded into 1001100111. The decoder starts at the
root, reads the first bit 1, and goes up. The second bit 0 sends it down, as does the
third bit. This brings the decoder to leaf a4, which it emits. It again returns to the
root, reads 110, moves up, up, and down, to reach leaf a2, and so on.

1

2

3

4

5

1

1

0

0

Figure 23.40: Huffman Codes for Equal Probabilities.

23.13.3 Fast Huffman Decoding

Decoding a Huffman-compressed file by sliding down the code tree for each symbol is
conceptually simple, but slow. The compressed file has to be read bit by bit and the
decoder has to advance a node in the code tree for each bit. The method of this section,
originally conceived by [Choueka et al. 85] but later reinvented by others, uses preset
partial-decoding tables. These tables depend on the particular Huffman code used, but
not on the data to be decoded. The compressed file is read in chunks of k bits each
(where k is normally 8 or 16 but can have other values) and the current chunk is used
as a pointer to a table. The table entry that is selected in this way can decode several
symbols and it also points the decoder to the table to be used for the next chunk.

As an example, consider the Huffman code of Figure 23.35a, where the five code-
words are 0, 10, 111, 1101, and 1100. The string of symbols a1a1a2a4a3a1a5 . . . is
compressed by this code to the string 0|0|10|1101|111|0|1100 . . .. We select k = 3 and
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read this string in 3-bit chunks 001|011|011|110|110|0 . . .. Examining the first chunk, it
is easy to see that it should be decoded into a1a1 followed by the single bit 1 which
is the prefix of another codeword. The first chunk is 001 = 110, so we set entry 1 of
the first table (table 0) to the pair (a1a1, 1). When chunk 001 is used as a pointer
to table 0, it points to entry 1, which immediately provides the decoder with the two
decoded symbols a1a1 and also directs it to use table 1 for the next chunk. Table 1 is
used when a partially-decoded chunk ends with the single-bit prefix 1. The next chunk
is 011 = 310, so entry 3 of table 1 corresponds to the encoded bits 1|011. Again, it is
easy to see that these should be decoded to a2 and there is the prefix 11 left over. Thus,
entry 3 of table 1 should be (a2, 2). It provides the decoder with the single symbol a2

and also directs it to use table 2 next (the table that corresponds to prefix 11). The
next chunk is again 011 = 310, so entry 3 of table 2 corresponds to the encoded bits
11|011. It is again obvious that these should be decoded to a4 with a prefix of 1 left
over. This process continues until the end of the encoded input. Figure 23.41 is the
simple decoding algorithm in pseudocode.

i←0; output←null;
repeat
j←input next chunk;
(s,i)←Tablei[j];
append s to output;

until end-of-input

Figure 23.41: Fast Huffman Decoding.

Table 23.42 lists the four tables required to decode this code. It is easy to see that
they correspond to the prefixes Λ (null), 1, 11, and 110. A quick glance at Figure 23.35a
shows that these correspond to the root and the four interior nodes of the Huffman code
tree. Thus, each partial-decoding table corresponds to one of the four prefixes of this
code. The number m of partial-decoding tables therefore equals the number of interior
nodes (plus the root) which is one less than the number N of symbols of the alphabet.

T0 = Λ T1 = 1 T2 = 11 T3 = 110
000 a1a1a1 0 1|000 a2a1a1 0 11|000 a5a1 0 110|000 a5a1a1 0
001 a1a1 1 1|001 a2a1 1 11|001 a5 1 110|001 a5a1 1
010 a1a2 0 1|010 a2a2 0 11|010 a4a1 0 110|010 a5a2 0
011 a1 2 1|011 a2 2 11|011 a4 1 110|011 a5 2
100 a2a1 0 1|100 a5 0 11|100 a3a1a1 0 110|100 a4a1a1 0
101 a2 1 1|101 a4 0 11|101 a3a1 1 110|101 a4a1 1
110 − 3 1|110 a3a1 0 11|110 a3a2 0 110|110 a4a2 0
111 a3 0 1|111 a3 1 11|111 a3 2 110|111 a4 2

Table 23.42: Partial-Decoding Tables for a Huffman Code.

Notice that some chunks (such as entry 110 of table 0) simply send the decoder
to another table and do not provide any decoded symbols. Also, there is a tradeoff
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between chunk size (and thus table size) and decoding speed. Large chunks speed up
decoding, but require large tables. A large alphabet (such as the 128 ASCII characters
or the 256 8-bit bytes) also requires a large set of tables. The problem with large tables
is that the decoder has to set up the tables after it has read the Huffman codes from the
compressed stream and before decoding can start, and this process may preempt any
gains in decoding speed provided by the tables.

To set up the first table (table 0, which corresponds to the null prefix Λ), the
decoder generates the 2k bit patterns 0 through 2k − 1 (the first column of Table 23.42)
and employs the decoding method of Section 23.13.2 to decode each pattern. This yields
the second column of Table 23.42. Any remainders left are prefixes and are converted
by the decoder to table numbers. They become the third column of the table. If no
remainder is left, the third column is set to 0 (use table 0 for the next chunk). Each of
the other partial-decoding tables is set in a similar way. Once the decoder decides that
table 1 corresponds to prefix p, it generates the 2k patterns p|00 . . . 0 through p|11 . . . 1
that become the first column of that table. It then decodes that column to generate the
remaining two columns.

This method was conceived in 1985, when storage costs were considerably higher
than today (late 2010). This prompted the developers of the method to find ways to
cut down the number of partial-decoding tables, but these techniques are less important
today and are not described here.

He can compress the most words into

the smallest idea of any man I know.

—Abraham Lincoln
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