
19
Computer Animation

Webster defines “animate” as “to give life to; to make alive.” This is precisely what we
feel when we watch a well-made piece of animation, and this is the reason why traditional
animation has always been popular and why computer animation is such a successful
field. In fact, computer graphics has developed over the years in three stages. The
first stage was to display a single image consisting of smooth, curved, realistic-looking
surfaces. The second stage was to create and display an entire animation made of many
frames, where each frame is an image. The third stage is virtual reality, where the user
can interact with the animation.

There is increasing interaction between images and language. One might say that
living in society today is almost like living in a vast comic strip.
—Jean-Luc Godard (as Narrator) in Deux ou trois choses que je sais d’elle (1966).

19.1 Background

Animation is based on the way our eye and brain work. If the eye is presented with a
slow sequence of images, the brain interprets them as separate. If the images are speeded
up more and more, the brain starts interpreting them first as motion with flickers, then
as continuous motion, and finally as a blur. The physiological property that allows our
eye and brain to turn a sequence of individual images into a continuous stream is called
persistence of vision.

The rate of animation should be fast enough to create the perception of continuous
motion but slow enough so as not to waste resources. In practice, playback rates of 24
or 30 frames per second are normally used. With cheap animation, however, each frame
may be displayed several consecutive times, producing a sampling rate (or update rate)
that’s much lower than the playback rate.

The Computer Graphics Manual
DOI 10.1007/978-
D. Salomon, , Texts in Computer Science,

0-85729-886-7_19, ©
911

Springer-Verlag London Limited 2011

912 19.1 Background

The computer is used to automate parts of the overall task of animation, letting the
animator work on an abstract level, concentrating on scene design and specifying the
important information. In practice, this means that the animator enters information
about the state of the animation at certain key frames and the software uses this to
create the images for all the frames by interpolating between consecutive key frames.
We say that the computer does the in-betweening.

Different pieces of animation can have different characteristics. Artistic animation,
cheap cartoons, and flight simulation are all animations, but they are very different in
their approach, attention to detail, the use of color, and the amount of information
displayed. As a result, different tools, techniques, and algorithms have to be used,
depending on the type of animation at hand.

Computer animation is divided into computer-aided (or two-dimensional) anima-
tion and computer-generated (or three-dimensional) animation. The former uses the
computer to interpolate between two-dimensional shapes, whereas the latter uses it to
build three-dimensional objects, to move both camera and objects along their paths, and
to stop and take a snapshot at each frame. The term two-and-a-half-dimensional ani-
mation is also sometimes used. It refers to two-dimensional animation where each frame
consists of several shapes drawn on separate slides. They represent objects at different
distances from the viewer (for example, a nearby dog and trees in the background) and
are moved different distances between frames (the background trees are shifted to the
right while the dog is running to the left) to simulate parallax.

A complete piece of animation is sometimes called a presentation. It consists of a
number of acts, where each act is broken down into several scenes. A scene is made of
several shots or sequences of animation, each a succession of animation frames, where
there is a small change in scene and camera position between consecutive frames. Thus,
the hierarchy is

piece→ act→ scene→ sequence→ frame.
Each sequence is tested before it is actually produced, by displaying it with low-

quality rendering and a small number of frames. Objects may be displayed as wire
frames, or without removal of hidden parts, or in low resolution. The camera may
be moved large distances between frames. The test is played back and watched by
animators, which may lead them to change features such as timing, the camera path,
the arrangement of objects, or the background color.

Time is an important term in animation and should be discussed further. Time is
used in animation as a discrete quantity and can be varied by changing the number of
frames. Speeding up an action is traditionally done by deleting certain frames, while
slowing down the animation requires adding new frames. In traditional animation, the
new frames that are added are identical to existing ones. For example, if every other
frame is duplicated, the same sequence takes 50% longer to run. In computer animation,
time can be controlled in a sophisticated way and there is no need to add or delete frames.
If the animator decides, based on a test, to slow down an n-frame sequence by, say, 50%,
the software is simply told to recreate the entire sequence from scratch using 50% more
frames (1.5n frames instead of n). The entire action is interpolated between the frames
and the result is that no two frames are identical.

References [carlson 11] and [morrison 10] discuss the history of computer graphics,
including the history of computer animation.

19 Computer Animation 913

Early computer animation employed film as the output medium. Either 16-, 35-, or
70-mm film was used at 24 frames per second (fps). Very high quality can be achieved
with 70-mm film, but high resolution (at least 3K×3K) is required. The advantage
of film is high resolution (Appendix E), a large number of colors, and insensitivity of
the medium to magnetic fields. The disadvantages are the need for developing (the
film cannot be watched immediately) and non-reusability of the medium (the same film
cannot be used twice).

It is possible to place a camera in front of the computer screen and shoot frames, but
old CRT displays normally had curved screens, resulting in image distortions. Another
drawback is the fact that the screen is refreshed all the time. Taking a quick snapshot
may produce a picture that’s partly bright (from those parts of the screen that have
just been refreshed) and partly dark (from other parts). The shot should therefore be
slow, covering several screen refreshes, or it should be synchronized with the refresh so
that the camera shutter remains open during an entire screen refresh. It is because of
these reasons that better results are obtained with a film recorder. Such a device has a
special flat screen and can be used with different cameras to take high-quality pictures.

If the animation is produced for television or for home entertainment, where it is
going to be played back from a VCR or a DVD player, it makes sense to record it on
video tape or a DVD. A video tape can be viewed immediately, is easy to copy, lasts a
long time, and can be reused. Its main drawback is low resolution. The NTSC standard
calls for 525 scan lines per image, of which only 480 actually contain the image. The
NTSC aspect ratio is 4 : 3, leading to 640 pixels per scan line. Currently, a resolution
of 480×640 is considered low. The new HDTV standard (Section 26.2.2) doubles both
the horizontal and vertical resolutions and employs a 16:9 aspect ratio. This results in
a high-resolution video image.

Placing a video camera in front of the computer screen involves the same problems
as with film. It is therefore better to output the bitmap from memory directly to the
camera, which is done by means of a special interface card plugged into the computer.

The main problems in computer animation are as follows:

How to display on the screen only those parts of the scene that would be seen by an
actual camera located at a certain point. This involves general perspective projection
and clipping. In computer animation, the term camera replaces the word observer. This
term refers to what is displayed on the screen (what we want the camera to see). In the
computer, the camera is represented by several numbers describing its position, direction
of view, an “up” direction, the distance k between it and the projection screen, and the
two viewing half-angles h and v (Section 6.10).

How to move the camera along any desired path and rotate it during movement so
it always points to the center of interest (generally a different direction in each frame).
Its “up” direction may also have to be rotated to achieve the desired animation effects.

How to move the scene along another path (mathematically this is the same as
moving the camera) and move parts of the scene in different ways (imagine a person
walking, moving hands and feet in a complex pattern).

Nothing is more revealing than movement.
—Martha Graham.

914 19.2 Interpolating Positions

A typical sequence in a computer-generated piece of animation involves a camera
moving smoothly along a curved path around a scene composed of objects. The objects
may also move at the same time. Creating such a sequence requires the following tasks:

Defining the camera path. This may be a long, complex curve but the software
should be able to follow it and to stop at many points (frames) for a snapshot. The
frames should be equally spaced if uniform camera speed and smooth animation are
important. Special effects may require the camera to accelerate or to slow down. The
problem is that a typical parametric curve P(t) has variable velocity; varying t in equal
increments advances unequal segments on the curve.

At each point, the camera may have to be rotated so that it points in the right
direction (normally directly at the scene, but sometimes off it). This is where spherical
interpolation is used (Section 19.5).

When the camera is properly positioned, a snapshot is taken. This is done by
projecting the scene (or part of it) on the screen, which is assumed to be perpendicular
to the line of sight of the camera, at a distance of k units from it. The y axis of the
screen should be in the “up” direction of the camera. Perspective projection is normally
used, since an image generated by other types of projection may look unnatural.

The objects constituting the scene may also have to be moved and rotated (imagine a
camera flying over a moving train). This task can use the techniques and tools developed
for tasks 1 and 2. In fact, the case where only the camera moves and the objects of the
scene are stationary is special and is referred to as a “walk-through” or a “flyby.”

Perspective projection has been discussed in detail in Chapter 6. Here we show
simple ways to approach the first two tasks.

19.2 Interpolating Positions

Task 1, defining a curve and moving along it at a constant speed, can be done by an
interpolating Bézier curve. Section 13.12 shows how such a curve can be constructed.
Given a set of n+ 1 points P0 through Pn, the curve goes from P1 to Pn−1 (not from
P0 to Pn) and is constructed of n−2 segments Pi(t), each connecting one pair of points.
The pairs are (P1,P2), (P2,P3), up to (Pn−2,Pn−1). Each segment Pi(t) is based on
four points, the two exterior points are Pi and Pi+1 and the two interior ones, Xi and
Yi, are automatically calculated by Equation (13.29), duplicated here:

Xi = Pi +
1
6
(Pi+1 −Pi−1); Yi = Pi+1 − 1

6
(Pi+2 −Pi). (13.29)

No segments connect P0 to P1 or Pn−1 to Pn. The two extreme points, P0 and Pn, are
used as guide points, to control the initial and final directions of the curve. Point X1 is
obtained by adding vector (P2 − P0)/6 to point P1. Point Yn−2 is similarly obtained
by subtracting vector (Pn−Pn−2)/6 from point Pn−1. Figure 19.1 shows such a curve.

In practical animation work, the animator should have a rough idea of the shape of
the path along which the camera should move. The animator inputs the coordinates of

19 Computer Animation 915

Pn-2(t)
P1(t) P2(t)

P3(t)P0

P1

Y2

Y1

X2

X1

P3

P2

Pn-1

Pn

Figure 19.1: An Interpolating Bézier Curve for n+ 1 Points.

n− 1 key points Pi on the path (they should be fairly close to each other and roughly
equally spaced) followed by the two extreme guide points P0 and Pn to control the start
and end directions of the path. The n − 1 points are called the animation key frames.
The software calculates and displays all the interior points Xi and Yi, and the n − 2
individual Bézier segments Pi(t). The path (which is normally three-dimensional) is
then examined by rotating it and watching it from different directions. If the path is
not satisfactory, it can be edited either by deleting some key frames, moving them, or
adding new ones. The interior points can also be manually repositioned at this time.

When the right path is finally obtained, the software moves the camera along the
path, segment by segment, varying t from 0 to 1 in F steps, called frames, (where F is a
parameter) for each of the n− 2 segments. The value of t for frame f is, thus, given by
t = (f − 1)/(F − 1). The original n+1 points are converted in this way to n− 2 Bézier
segments that produce the final (n − 2)F equally spaced animation frames. At each
frame, the camera is rotated to point in the right direction and a snapshot taken. In
professional jargon, this process is called in-betweening. The computer stops the camera
and generates F frames between each pair of key frames supplied by the animator.

And when a damp fell round the path of Milton, in his hand The thing became a
trumpet; whence he blew Soul-animating strains,–alas! too few.

—William Wordsworth, Scorn Not The Sonnet.

19.3 Constant Speed: I

To obtain smooth animation, the camera should move along its path in equal steps,
covering equal arc lengths in each step. In principle, this can be achieved by a parameter
substitution. Suppose that we substitute some parameter s(t) for t, such that our curve
becomes P(s) instead of P(t). Clearly, the best choice for s is the arc length. If s(0.2)
is the length of the curve from its start P(0) to point P(0.2), then incrementing s in
equal steps will advance equal arc lengths on the curve. Section 8.2 shows that the arc
length of the entire curve P(t) is given by the integral

∫
|dP(t)| =

∫ 1

0

|Pt(t)| dt.

916 19.4 Constant Speed: II

The arc length s(u) from t = 0 to t = u is therefore given by

s(u) =
∫ u

0

|Pt(t)| dt.

The trouble is that such integrals are normally impossible to calculate analytically;
they must be computed numerically (they belong to the family of elliptic integrals). A
simple alternative that’s sometimes satisfactory is to calculate a large number of points
on the curve, to replace the curve with the polyline made by these points, and to calculate
approximate arc lengths by computing the lengths of the polyline segments. The steps
are as follows:

1. Vary t from 0 to 1 in n+1 small, equal steps and calculate n+1 points P(t) on
the curve.

2. Compute the n straight line distances between the points.
3. Accumulate the distances of step 2, such that accumulated distance i will give

the total (approximate) distance from the start of the curve to point t = i.
4. Divide all the accumulated distances by the last one, resulting in a table T of

normalized accumulated distances (whose values are between 0 and 1).
5. Find the entries in T that are closest to the required arc lengths. Suppose,

for example, that we want to select the six points on the curve where the normalized
accumulated arc lengths are 0, 0.2, 0.4, 0.6, 0.8, and 1. We find the entries of table T
that are the closest to these values. Assume that these are entries 1, 43, 61, 78, 95, and
100. The parameter t should be set to the normalized values of these six entries.

Figure 19.2 is a listing of Mathematica code that illustrates this method for a four-
point Bézier curve.

Speed is scarcely the noblest virtue of graphic composition, but it has its curious
rewards. There is a sense of getting somewhere fast, which satisfies a native American
urge.

—James Thurber.

19.4 Constant Speed: II

Given a space curve P(t) = (x(t), y(t), z(t)), we denote by Len(t1, t2) the arc length from
P(t1) to P(t2). This section presents a numerical approach—proposed by [Guenter and
Parent 90] and called adaptive subdivision—to two problems:

Problem 1. Given values t1 and t2 of the time parameter, calculate Len(t1, t2)
numerically.

Problem 2. Given a value t1 and an arc length s, find a value t2 such that
Len(t1, t2) = s.

We first show why these problems are important. If we want to move the animation
camera along P(t) at a constant speed, we can use problem 1 to find the length S =

19 Computer Animation 917

p0={0,1}; p1={5,1}; p2={5,0}; p3={4,.5};
Bez[t_]:=(1-t)^3p0+3t(1-t)^2p1+3t^2(1-t)p2+t^3p3;
tbl=Table[Bez[t], {t,0,1,.01}];
(* tab1 is a list of lengths of straight segments *)
tab1=Table[Sqrt[(tbl[[i+1,1]]-tbl[[i,1]])^2
+(tbl[[i+1,2]]-tbl[[i,2]])^2], {i,1,100}];
(* tab2 is a list of accumulated lengths *)
tab2={tab1[[1]]};
Do[tab2=Append[tab2,tab1[[i]]+tab2[[i-1]]],{i,2,100}];
tab2=tab2/tab2[[100]]; (* normalize tab2 *)
tab3={0}; d=.1;
(* tab3 is a list of non-equally-spaced parameter values *)
Do[If[tab2[[i]]>d, {tab3=Append[tab3,i/100], d=d+.1}], {i,1,100}];
tab3=Append[tab3,1];
len=Length[tab3];
tab4=Table[Bez[tab3[[i]]], {i,1,len}];
(* use tab3 as the parameter values *)
ListPlot[tab4] (* display equally-spaced points *)
ListPlot[tbl] (* display 101 non-equally-spaced points *)

Figure 19.2: Normalized Accumulated Arc Lengths.

Len(0, 1) of the entire curve, then divide it into n− 1 equal parts s = S/(n− 1) and use
problem 2 to find values t1 = 0 < t2 < t3 < · · · < tn = 1 such that

Len(t1, t2) = Len(t2, t3) = · · · = Len(tn−1, tn) = s.

The ti values should then be used to specify n equally spaced frames along the curve. A
similar method can be used for more complex cases where we want to move the camera
at a nonuniform speed along the curve. We divide S into parts si of different sizes and
use problem 2 to find values ti such that Len(ti, ti+1) = si. Acceleration will result if
si < si+1, but any nonuniform motion can be generated by carefully selecting the values
of si. Here is how to approach the two problems.

Problem 1 : Section 8.2 shows that the arc length of a curve P(t) is given by
∫ 1

0

|Pt(t)| dt.

Since P(t) = (x(t), y(t), z(t)), we get

Pt(t) =
dP(t)
dt

=
(
dx(t)
dt

,
dy(t)
dt

,
dz(t)
dt

)
,

and from this,

|Pt(t)| =
√(

dx(t)
dt

)2
+
(
dy(t)
dt

)2
+
(
dz(t)
dt

)2
. (19.1)

918 19.4 Constant Speed: II

Gaussian quadrature is used to numerically integrate Equation (19.1) from 0 to ti
for certain values of i. Each such integral results in an arc length si from the start of
the curve to point P(ti). The pairs of values (ti, si) are stored in a table and are later
used to solve problem 1 in the following way. Given two values t1 and t2, the arc length
Len(t1, t2) is determined as follows:

1. Find entry i in the table such that ti ≤ t1 < ti+1.
2. Using Gaussian quadrature, integrate Equation (19.1) from ti to t1 to obtain arc

length s1 (if ti = t1, skip the integration and set s1 = 0).
3. Set Len(0, t1) = si + s1.
4. Do the same thing for t2. Find entry j in the table such that tj ≤ t2 < tj+1,

integrate from tj to t2 to obtain s2 (or set s2 = 0, if tj = t2), and set Len(0, t2) = sj+s2.
5. Subtract Len(0, t2)− Len(0, t1) = sj + s2 − (si + s1) to obtain Len(t1, t2).

The question is what values of i to select for the table, and the answer should now
be obvious. Since we integrate from ti to t1, we can relate the distance between two
consecutive values ti and ti+1 to the curvature of P(t) in that region. If the curvature
is low (the curve between points P(ti) and P(ti+1) is close to a straight line), we can
place ti+1 well away from ti. The integral from ti to t1 would be done over a region of
the curve that may be long but is close to a straight line. The result would therefore be
quick and accurate. If the curvature is high, the two values ti and ti+1 have to be close
by. The integral from ti to t1 would be done in this case over a curvy but short region
of the curve, so, again, it would be accurate.

Instead of calculating the curvature, the method uses a recursive procedure Sub-
divide, and a threshold parameter eps. The procedure is given a range [tl, tr], it uses
Gaussian integration to find the arc length slr of this range, then divides the range in
the middle tm = (tl + tr)/2, integrates each part to get arc lengths slm and smr, and
calculates the difference |slr − (slm + smr)|. If this difference is less than eps, the pro-
cedure assumes that the curvature of P(t) in the region [tl, tr] is small enough and it
stores the pair (tm, s0l + slm) in the table. Otherwise, it calls itself recursively for the
two ranges [tl, tm] and [tm, tr]. Figure 19.3 lists C++ code for this procedure.

Problem 2 : Given a value t1 and an arc length s, find a value t2 such that
Len(t1, t2) = s. We define a function f(t) = Len(t1, t) − s that reduces problem 2
to that of finding a zero of f(t) in the range [t1, 1]. Perhaps the simplest method for
finding a zero of a function is binary subdivision. The range [t1, 1] is divided in the mid-
dle, tm = (t1 + 1)/2. If f(tm) = 0 (or if it is very close to 0), we are done. Otherwise,
if f(t1) and f(tm) have the same sign, we divide the range [t1, tm] in the middle and
perform the same tests. Otherwise, we divide the range [tm, 1].

Finding the zero of a function can also be done by using the well-known Newton–
Raphson method (discussed in texts on numerical analysis). This is a fast method, but
it has two disadvantages.

1. It requires the derivative of the function. In our case, the derivative depends
on the particular curve used, so it has to be implemented by the user for each curve
separately.

2. The derivative may be zero, or very close to zero. Since this method divides by
the derivative, the division may result in overflow.

19 Computer Animation 919

#include <stdio.h>
#include <math.h> // for function fabs
float totl_arc; // global variable
void Add_tabl(float, float);
float Gauss(float, float);
float Subdivide(float left, float right, float full_intr, float eps){
float mid, left_arc, right_arc, left_sub;
mid=(left+right)/2;
left_arc=Gauss(left,mid);
right_arc=Gauss(mid,right);
if(fabs(full_intr-left_arc-right_arc)<eps)
{left_sub=Subdivide(left,mid,left_arc,eps/2.0);
totl_arc=totl_arc+left_sub;
Add_tabl(mid,totl_arc);
return(Subdivide(mid,right,right_arc,eps/2.0)+left_sub);}
else
return(left_arc+right_arc);

}
int main(){
float left, right, full_intr, eps;
left=0; right=1.0; totl_arc=0; eps=0.001;
full_intr=Gauss(left,right);
Subdivide(left,right,full_intr,eps);
}

Figure 19.3: Procedure Subdivide.

19.5 Interpolating Orientations: I

Now comes the second task. The animator should supply the animation software with
the data needed for orienting the camera. This process is based on the following fact,
proved by Leonhard Euler in 1752. Imagine a rigid object positioned at point P and
having a certain orientation. We now send the object flying through space. It may
roll and tumble in a complicated way, but its position and orientation at any moment
can be completely described by two transformations, a translation from P to its present
position and a rotation through an angle θ about some axis v.

Our imaginary camera may be considered such an object. It may have to move
around the scene along a complicated path and change its orientation all the time, so
that it always points in the right direction. The animator should have a rough idea of
how to move the camera and in what direction it should look. The animator should
therefore input n− 2 direction vectors (the directions in which the camera should look
when positioned at the key frames) and the animation software should use these vectors
to interpolate between key frames and determine the orientation of the camera at any
point.

Before we discuss how to interpolate the direction vectors, we have to introduce
one more complication, namely the “up” vector. Imagine a camera placed in the xy

920 19.5 Interpolating Orientations: I

plane, looking in the positive x direction (1, 0, 0) with its top pointing in the positive
z direction. We now rotate the camera in small steps until it points in the positive y
direction (0, 1, 0) with its top still pointing in the positive z direction (Figure 19.4a). At
any time during this rotation the camera points in a direction (a, b, 0), i.e., somewhere
in the xy plane. Now, imagine that while rotating the camera from x to y, the animator
also wants to rotate it about its direction of view (a, b, 0) such that when it reaches its
final direction, its top will be pointing in the negative z direction (Figure 19.4b). If such
an effect is called for, then the animator also has to specify an “up” direction in each
key frame. These “up” vectors should be interpolated between key frames and should
be used to indicate the top of the screen each time a snapshot is taken. (When the
software calls a procedure to project the scene on the screen, it should transfer to the
procedure, as parameters, the position of the camera, its direction of view, the direction
of the “top” of the screen, and any other necessary data.) The interpolation method
discussed below should therefore be applied to the direction of view of the camera, as
well as to its “up” direction, if this direction is explicitly defined.

x

z yy

x

z

(a) (b)

Figure 19.4: Illustrating the “Up” Direction.

(One special, important case of camera orientation, namely the case where the
camera follows a moving object along its path, should be mentioned. Imagine a camera
following an airplane, repeating all its maneuvers while staying the same distance behind
it all the time. This case is easy to implement. When the camera is located at point
Pi(t), it should look at point Pi(t+ f), where f is a constant. If f is negative, then the
camera is located in front of the object, flying backward and constantly looking at the
object.)

For each of the n − 1 key frames, the animator has to input the direction Di in
which the camera should be looking. The software interpolates these vectors to orient
the camera between successive key frames. Figure 19.5 shows several vectors Di. To
interpolate Di and Di+1 we need to compute the angle θi between them. This is done
by first normalizing the two direction vectors (dividing each by its length to obtain unit
vectors), then computing their dot product Di •Di+1 which equals cos θi. We will see
that sin θi is also necessary, but it can always be calculated as sin θi = ±

√
1− cos2 θi.

� Exercise 19.1: How does the software decide what sign to use for
√
1− cos2 θ ?

19 Computer Animation 921

Scene Scene
Di

Di+1

D1 D1D2 D2
D3 D3

D4 D4

Figure 19.5: Rotating the Camera at Key Frames.

We now need a function to correctly interpolate direction vectors. For each of the
n − 2 segments Pi(t) that constitute the camera path, we start with a direction Di in
animation frame 1 (where t = 0) and end with a direction Di+1 in animation frame F
(t = 1). A linear interpolation (1 − t)Di + tDi+1 is simple but produces nonuniform
moves. When t is varied from 0 to 1 in equal steps, the interpolation steps are not
the same; they start large and get smaller. The reason is that rotation has to do with
spherical symmetry, whereas linear interpolation has to do with straight lines.

To derive a proper interpolation function, we have to think in terms of moving along
a circular arc. We start with a two-dimensional example. Imagine two unit vectors D1

and D2 in two-dimensional space. The vector Dl that’s defined as the combination
Dl(t) = (1− t)D1+ tD2 rotates from D1 to D2 such that its tip moves along a straight
line (i.e., the magnitude of Dl keeps changing, Figure 19.6a). To move from D1 to D2

along a circular arc, we should use spherical linear interpolation (slerp, Figure 19.6b).
We use the expression

Ds(t) =
sin((1− t)θ)

sin θ
D1 +

sin(tθ)
sin θ

D2, (19.2)

where θ is the angle between vectors D1 and D2 (note that D1 •D2 = cos θ, since these
are unit vectors). Ds(t) is a unit vector that changes direction from D1 (when t = 0)
to D2 (when t = 1) in equal increments. Its tip describes a circular arc (Figure 19.6b).

(a) (b)

D1

DlDl

D2
D1

Ds

Ds

D2

Figure 19.6: Linear and Spherical Interpolations.

922 19.5 Interpolating Orientations: I

� Exercise 19.2: Prove the above claim.

Another way to look at spherical interpolation is to consider all the two-dimensional
unit vectors. They have the same size, but they point in all possible directions. Placing
them with their tails at the origin creates a unit circle about the origin. Spherically
interpolating two such vectors, Di and Di+1, is equivalent to moving along an arc on
this circle.

The same is true for two unit vectors in three-dimensional space. We can imagine all
the three-dimensional unit vectors to form a unit sphere. Spherically interpolating two
such vectors is equivalent to moving along a great arc on this sphere. A good spherical
interpolation function for direction vectors Di and Di+1 would therefore be

Di+t =
sin((1− t)θ)

sin θ
Di +

sin(tθ)
sin θ

Di+1. (19.3)

When t is incremented in equal steps, this function produces smooth movements of the
animation camera from the orientation specified by Di to that specified by Di+1. A
two-dimensional vector D = (x, y) can be considered a complex number. When we use
this interpretation, the spherical interpolation of two unit vectors can also be written
Di(D−1

i Di+1)t (complex numbers can be multiplied, they have an inverse, and they can
be raised to a power). When t varies from 0 to 1, this expression varies from Di to Di+1.
Since both Di and Di+1 are unit vectors, the absolute value of this triple product is 1.

Spherical interpolation involves a division by sin θ, so the case sin θ = 0 should
be discussed. This case occurs when θ = 0◦ or θ = 180◦, but the latter case can be
excluded since it does not make sense to use two direction vectors going in opposite
directions in two consecutive key frames (see Exercise 19.3). The case θ = 0◦ means two
parallel direction vectors in two consecutive key frames. This case is common (it means
that the camera’s orientation should not change between two consecutive key frames),
so the interpolation software should check for it and perform the trivial interpolation
Di+t = Di.

� Exercise 19.3: Explain why the case θ = 180◦ can be excluded.

Table 19.7 illustrates the difference between linear and spherical interpolations.
Given the two unit vectors D1 = (1, 0) and D2 = (0, 1) with a 90◦ angle between them,
the table shows the results of the linear interpolation (1− t)D1+ tD2 and the spherical
interpolation

sin(90(1− t))
sin 90◦

D1 +
sin(90t)
sin 90◦

D2

for 11 values of t. The spherical interpolation results in equal increments of 9◦, while the
linear interpolation results in angle increments (row “Diff” in the table) that initially
get bigger, then get smaller.

19 Computer Animation 923

t: .1 .2 .3 .4 .5 .6 .7 .8 .9 1
Linear: 6.34 14.04 23.20 33.69 45.00 56.31 66.80 75.96 83.66 90.00
Diff: 6.34 7.70 9.16 10.49 11.31 11.31 10.49 9.16 7.70 6.34
Spherical: 9 18 27 36 45 54 62 72 81 90

Table 19.7: Linear and Spherical Interpolations.

(* Two interpolations of vectors with 90 deg *)
d1={1,0}; d2={0,1};
(* Generate 11 linearly interpolated vectors in ’vec’ *)
vec=Table[(1-t)d1+t d2,{t,0,1,.1}];
(* Normalize these vectors *)
Do[vec[[i]]=vec[[i]]/Sqrt[vec[[i,1]]^2+vec[[i,2]]^2], {i,1,11}];
(* Show them *)
Table[ArcCos[vec[[1]].vec[[i+1]]]/Degree, {i,1,10}]
Table[ArcCos[vec[[i]].vec[[i+1]]]/Degree, {i,1,10}]
(* Generate 11 spherically interpolated vectors in ’vec’ *)
vec=Table[(Sin[90(1-t)Degree]d1+Sin[90t Degree]d2),{t,0,1,.1}];
(* Normalize these vectors *)
Do[vec[[i]]=vec[[i]]/Sqrt[vec[[i,1]]^2+vec[[i,2]]^2], {i,1,11}];
(* Show them *)
Table[ArcCos[vec[[1]].vec[[i+1]]]/Degree, {i,1,10}]
Table[ArcCos[vec[[i]].vec[[i+1]]]/Degree, {i,1,10}]

Mathematica Code for Table 19.7.

19.6 SLERP

This section explains why slerp (shorthand for spherical linear interpolation) is the right
interpolation for vector rotation. Imagine a sphere of radius R intersected by a plane
that passes through the center of the sphere. The intersection of the sphere and the
plane is a great circle of the sphere. Imagine two points x and y on the surface of a
unit radius sphere. The shortest path between them is called a geodesic and is part of
a great circle. (The case where x and y are antipodal must be excluded because in this
case there is no unique shortest path between them.)

Given a number t ∈ [0, 1], we want to locate the point z on the sphere located a
fraction t of the distance from x to y on the geodesic connecting them. Figure 19.8a,b
makes it clear that z = cos(tθ)x + sin(tθ)w, where w is the unit vector perpendicular
to x. It only remains to express w in terms of the given quantities y and θ.

Section 8.1.2 discusses the projections of one vector onto another, and demonstrates
the following. Given two vectors v and u, the components (or projections) of v in the
direction of u and perpendicular to it are (u · v)u, and v − (u · v)u, respectively.

Figure 19.8b shows vector v, the projection of y perpendicular to x. This vector
satisfies v = y− (cos θ)x = y− (y · x)x. Vector w is a unit vector in the direction of v,

924 19.7 Summary

x

z

x

z

y

t

y

v

w

(a) (b)

Figure 19.8: Derivation of the slerp Function.

so it satisfies w = v/ sin θ = v/
√

v · v. From these relations we obtain the final result

slerp(x,y, θ) = cos(tθ)x+ sin(tθ)w

= cos(tθ)x+ sin(tθ)
y − (cos θ)x

sin θ

=
[
cos(tθ)− sin(tθ)

cos θ
sin θ

]
x+

sin(tθ)
sin θ

y

=
sin θ cos(tθ)− sin(tθ) cos θ

sin θ
x+

sin(tθ)
sin θ

y

=
sin(θ − tθ)

sin θ
x+

sin(tθ)
sin θ

y

=
sin((1− t)θ)

sin θ
x+

sin(tθ)
sin θ

y

,

(where the trigonometric identity sin(a − b) = sin a cos b − sin b cos a was used in the
next-to-last line.)

19.7 Summary

Animating the camera starts with the animator specifying the key frames. For key frame
i, the animator should specify the camera position Pi, its direction of view Di, and if
necessary, also its “up” direction (the values of k, h, and v may also vary from one key
frame to the next). The software prepares the entire path as described in Section 19.2.
It then varies the time parameter t in F steps for each path segment, to obtain all the
(n− 2)F frames. For each frame, the two direction vectors Di and Di+1 are spherically
interpolated, the camera is pointed in the new direction, and the entire scene is projected
on the projection plane (the screen), a process that may require clipping. Each path
segment should be short and should not deviate much from a straight line, so varying
t in equal steps would cover roughly equal distances on the segment even though the
velocity of the segment is normally variable.

19 Computer Animation 925

I’m appropriately animate for a human being in the context in which I exist.
—Woody Allen in Wild Man Blues (1998).

19.7.1 Example 1

This example is in three dimensions, but to make it easier to visualize the way the
camera moves, we restrict the scene and the camera path to the xy plane. The scene is
assumed to be located about the origin and the camera path, Figure 19.9a, is assumed to
be in the xy plane. The camera should therefore start at point P1, pointing toward the
origin (i.e., in the positive y direction) and should rotate about the z axis as it moves,
in order to always point toward the origin. We define the camera path by means of the
seven points

P0 = (1.5,−2, 0), P1 = (0,−2, 0), P2 = (−2, 0, 0), P3 = (1.5, 2, 0),
P4 = (5, 0, 0), P5 = (3,−2, 0), P6 = P0.

The two extreme points P0 and P6 control the start and end directions of the path,
respectively. The path itself is made of four segments defined by means of the four
overlapping groups P0P1P2P3, P1P2P3P4, P2P3P4P5, and P3P4P5P6.

Equation (13.29) is used to calculate the four sets of X and Y points:

X1 = P1 + 1
6 (P2 −P0) =

(− 7
12 ,−53 , 0

)
, Y1 = P2 − 1

6 (P3 −P1) =
(−94 ,−23 , 0) ,

X2 = P2 + 1
6 (P3 −P1) =

(−2112 , 23 , 0) , Y2 = P3 − 1
6 (P4 −P2) =

(
2
6 , 2, 0

)
,

X3 = P3 + 1
6 (P4 −P2) =

(
8
3 , 2, 0

)
, Y3 = P4 − 1

6 (P5 −P3) =
(
19
4 ,

2
3 , 0

)
,

X4 = P4 + 1
6 (P5 −P3) =

(
21
4 ,−23 , 0

)
, Y4 = P5 − 1

6 (P6 −P4) =
(
43
12 ,−53 , 0

)
.

Thus, the path is made of the four Bézier segments:

P1(t) = (1− t)3P1 + 3t(1− t)2X1 + 3t2(1− t)Y1 + t3P2,
P2(t) = (1− t)3P2 + 3t(1− t)2X2 + 3t2(1− t)Y2 + t3P3,
P3(t) = (1− t)3P3 + 3t(1− t)2X3 + 3t2(1− t)Y3 + t3P4,
P4(t) = (1− t)3P4 + 3t(1− t)2X4 + 3t2(1− t)Y4 + t3P5.

We assume that the scene is located at the origin and the camera should always be
positioned to look at it. The five direction vectors D1 through D5 are thus the vectors
from each of the points Pi to the origin (Figure 19.9b). They are shown as unit vectors:

D1 = −P1 = (0, 1, 0), D2 = −P2 = (1, 0, 0), D3 = −P3 = (−3/5,−4/5, 0),
D4 = −P4 = (−1, 0, 0), D5 = −P5 = (−0.83, 0.55, 0).

The angles between them are determined by means of dot products:

(D1 •D2) = 0→ θ12 = 90◦, (D2 •D3) = −3/5→ θ23 = 126.87◦,
(D3 •D4) = 3/5→ θ34 = 53.13◦, (D4 •D5) = .83→ θ45 = 33.9◦.

926 19.7 Summary

P0=P6P1

P2

P3

P4

P5
X1

X2

X3

X4
Y1

Y2

Y3

Y4

y

x

(a)

Scene at origin

(b)

12

23

34

45

D1

D2

D3

D4

D5

Figure 19.9: (a) A Seven-Point Animation Path.
(b) Five Direction Vectors.

To produce the first animation frame, we assume that the camera is located at
P1, looking in direction D1 and we take a snapshot, i.e., we assume a projection plane
perpendicular to D1, located at a distance k from P1, on which the scene can now be
projected.

To produce more animation frames, we start with the first Bézier segment, P1(t),
vary t in steps, and for each value ti calculate a position P1(ti) on the curve and a
direction D1+ti that’s a spherical interpolation of D1 and D2:

D1+ti =
sin(θ12 − tiθ12)

sin θ12
D1 +

sin(tiθ12)
sin θ12

D2.

Once D1+ti is obtained for frame i, we use it to take a snapshot.

19 Computer Animation 927

As an example, for t = 0.5 the camera should be moved to point

P1(0.5) = 0.53(0,−2, 0) + 3 · 0.5 · 0.52(−7/12,−5/3, 0)
+ 3 · 0.52 · 0.5(−9/4,−2/3, 0) + 0.53(−2, 0, 0)

= 0.53[(0,−2, 0) + 3(−7/12,−5/3, 0) + 3(−9/4,−2/3, 0) + (−2, 0, 0)]
= (−1.3125,−1.125, 0)

and should look in direction D1+0.5,

D1+0.5 =
sin((1− 0.5)θ12)

sin θ12
D1 +

sin(0.5θ12)
sin θ12

D2

=
sin 45◦

sin 90◦
(D1 +D2),

= 0.7071[(0, 1, 0) + (1, 0, 0)]
= (0.7071, 0.7071, 0).

Notice that D1+0.5 is a unit vector pointing in a 45◦ direction in the xy plane.
We now have the new position (−1.3125,−1.125, 0) and new direction of view

(0.7071, 0.7071, 0) of the camera and we can use a perspective projection technique,
such as the one described in Section 6.10, to calculate the projections of all the points
in the scene. We assume that the projection plane is perpendicular to D1+0.5 =
(0.7071, 0.7071, 0) and is located at a distance k from the camera (where k is a user-
controlled parameter that may vary from frame to frame). Notice that the technique of
Section 6.10 assumes that two viewing half-angles h and v are given. They correspond
to the size of the projection plane. Any image point that would be projected outside
that size should be ignored.

� Exercise 19.4: The new camera direction is (0.7071, 0.7071, 0). In order to point at the
origin, the camera should be located at a point with coordinates (−c,−c, 0), i.e., the x
and y coordinates should be identical. We, however, got P1(0.5) = (−1.3125,−1.125, 0).
What’s the explanation?

� Exercise 19.5: If at P1 the camera should look at the positive y direction, and at P2,
at the positive x direction, then midway it should look between these directions, i.e.,
at 45◦ or in the (1, 1, 0) direction. In fact, if we want the camera to stop, for example,
at P1, P2, and at three other points equally spaced in between, we know we should
point the camera at angles of 0◦, 22.5◦, 45◦, 67.5◦, and 90◦ to the positive y direction
at the five points and there seems to be no need for the direction vectors Di. What’s
the explanation?

� Exercise 19.6: Perform the same calculation for the second Bézier segment. Find the
coordinates of point P2(0.5) and compute the new camera direction D2+0.5 as a spherical
interpolation of D2 and D3.

� Exercise 19.7: Calculate D3+0.5 for the third path segment.

928 19.7 Summary

19.7.2 Example 2

This is the same as Example 1, except that point P2 is moved to location (−2, 0, 1).
The camera path in this example is therefore not completely contained in the z = 0
plane. The only direction vector that is different is D2, which becomes (2, 0,−1) or,
after normalization, (2, 0,−1)/√5. Only two angles are affected:

(D1 •D2) =
1√
5
(0, 1, 0) • (2, 0,−1) = 0→ θ12 = 90◦,

(D2 •D3) =
1√
5
(2, 0,−1) • (−3/5,−4/5, 0) = − 6

5
√
5
≈ −0.5367→ θ23 = 122.46◦.

The two interpolations D1+0.5 and D2+0.5 are shown

D1+0.5 =
sin 45◦

sin 90◦
(D1 +D2) = 0.7071

[
(0, 1, 0) +

1√
5
(2, 0,−1)

]
= (0.6324, 0.7071,−0.3162),

D2+0.5 =
sin 61.23◦

sin 122.46◦
(D2 +D3) =

0.8766
0.8438

[
1√
5
(2, 0,−1) + (−3/5,−4/5, 0)

]
= (0.3059,−0.8311,−0.4646).

The new camera directions have a negative z component, since the camera itself is
now located at points with positive z and should be looking at the origin. However, it
is impossible to tell just by examining the interpolated directions whether they are the
right ones. The best test is to actually implement the example in software.

19.7.3 Example 3

This is still a simple example, but this time the camera is aimed at different points in
the scene while moving along its path. We assume a camera path that’s a straight line
from P1 = (2, 2, 0) to P2 = (1, 1, 0) (Figure 19.10a). The equation of this line is, of
course, P1(t) = (1− t)P1 + tP2 = (2− t, 2− t, 0), but notice that this equation is also
easy to obtain with an interpolating Bézier curve, which is our standard method. All
that’s necessary is two more points, P0 = (3, 3, 0) and P3 = (0, 0, 0) which will define
the start and end directions, respectively, of the curve, and will make it a straight line.
We first calculate the two new interior points

X1 = P1 +
1
6
(P2 −P0) =

(
5
3
,
5
3
, 0
)
, Y1 = P2 − 1

6
(P3 −P1) =

(
4
3
,
4
3
, 0
)
.

The curve is, as usual,

P1(t) = (1− t)3P1 + 3t(1− t)2X1 + 3t2(1− t)Y1 + t3P2

= (1− t)3(2, 2, 0) + 3t(1− t)2
(
5
3
,
5
3
, 0
)
+ 3t2(1− t)

(
4
3
,
4
3
, 0
)
+ t3(1, 1, 0)

= (2− t, 2− t, 0).

19 Computer Animation 929

We arbitrarily decide that at P1, the camera should look at point S1 = (1.75, 1.75,−1),
while at P2, it should look at S2 = (1.25, 1.25,−1). The idea is to slide the camera
along its simple path while panning it, so it covers the area between S1 and S2.

z

(a) (b)

x

Negative z
(into the page)

y

z=-1

S1

S2

x

y
S1

S2P1 P1

D1
P0 P0

P2 P2

D2

P3

P3

Figure 19.10: An Animation Path with Panning.

The two normalized direction vectors are

D1 = S1 −P1 = (1.75, 1.75,−1)− (2, 2, 0)
= (−0.25,−0.25,−1) normalized to (−0.2357,−0.2357,−0.9428),

D2 = S2 −P2 = (1.25, 1.25,−1)− (1, 1, 0)
= (0.25, 0.25,−1) normalized to (0.2357, 0.2357,−0.9428).

The angle between them is

cos θ12 = (D1 •D2) = −0.049− 0.049 + 0.79 = 0.7777,

implying θ12 = 38.94◦. For t = 0.5, the position of the camera midway between P1 and
P2 is given by the linear interpolation P1(0.5) = (2− 0.5, 2− 0.5, 0) = (1.5, 1.5, 0). Its
direction of view is calculated by the spherical interpolation

D1+0.5 =
sin 19.47◦

sin 38.94◦
(D1 +D2) = 0.5303(0, 0,−1.8856) = (0, 0,−1).

Both values, the position and direction of view, are easy to verify visually because of
the simple geometry of the problem.

� Exercise 19.8: Change the camera path from a straight line to an arc (Figure 19.10b)
by moving the two extreme guide points P0 and P3 to positions (3, 3,−0.25) and
(0, 0,−0.25), respectively. Notice that this will not change the interpolated directions of
the camera.

930 19.8 Interpolating Orientations: II

19.8 Interpolating Orientations: II

The discussion so far has employed only two direction vectors, Di and Di+1, to compute
the new camera orientation at each frame by spherical interpolation. This, however, may
lead to a sudden change in camera direction at a key frame and thus to nonsmooth, jerky
animation. As a simple example, imagine a two-segment camera path with direction
vectors at three consecutive key frames pointing, respectively, in the positive x, y, and z
directions. When the camera is moved along the first segment, it will change directions
from the x to the y axis, so it will always point somewhere in the xy plane. When the
camera switches to the second segment, it will start pointing somewhere in the yz plane.
Switching directions between the two perpendicular xy and yz planes (Figure 19.11)
may cause a jerk in the animation. The usual solution is to define key frames with
direction vectors that don’t differ by much. An alternative may be to derive a new
spherical interpolation function that interpolates several consecutive direction vectors.
When the camera moves in segment i, such a function should interpolate Di and Di+1

but should also assign weights to Di−1 (mostly at the start of segment i) and to Di+2

(mostly at the end of the segment).

y

x

z

Figure 19.11: Abrupt Change of Direction.

We now show how such interpolation can be achieved. At a certain point, the
animator has to input the n− 1 direction vectors Di at the key frames (in practice, the
animator may input the coordinates of the points the camera should be looking at in
every key frame and the software uses these points to calculate the direction vectors).
In addition to these data, the animator should input two more direction vectors X1

and Yn−1, to provide the software with more direction information at the start and at
the end of the path. The animation software then calculates “intermediate” direction
vectors Xi and Yi for each segment, in the same way the interior points are defined for
the segment, i.e.,

Xi = Di +
1
6
(Di+1 −Di−1), Yi = Di+1 − 1

6
(Di+2 −Di).

Once this is done, the software should do the following for each segment i of the
camera path. Vary the time parameter t from 0 to 1, calculate spatial camera positions

19 Computer Animation 931

Pi(t), and for each value t, use spherical interpolation to interpolate the four direction
vectors Di, Xi, Yi, and Di+1 of the segment. Initially, when t is close to 0, the inter-
polation should give more weight to Xi (and thus include a contribution from Di−1).
Toward the end, when t gets close to 1, the same spherical interpolation should assign
more weight to Yi (and, thus, to Di+2).

Our problem is to find the right way to do this kind of spherical interpolation. The
first thing that comes to mind is to define the interpolated camera direction Di+t as the
standard Bézier weighted sum,

Di+t = (1− t)3Di + 3t(1− t)2Xi + 3t2(1− t)Yi + t3Di+1.

This certainly favors Xi in the early parts of the segment and favors Yi in the later
parts. However, since the Bézier curve has variable velocity, this kind of interpolation
will produce direction vectors that are spread nonuniformly between Di and Di+1. What
we need in this case is to extend spherical interpolation to four vectors, and we do this
by means of the de Casteljau construction of Section 13.6, but with spherical instead of
linear mediation. As a reminder, the mediation operator t[[P0,P1]] between two points
P0 and P1 is defined as

t[[P0,P1]] = tP1 + (1− t)P0 = t(P1 −P0) +P0, where 0 ≤ t ≤ 1.

We now use our spherical interpolation, Equation (19.2), as a spherical mediation oper-
ator and apply it to construct the scaffolding of the four direction vectors in the same
way it is done for four points (see Page 650 and Figure 13.8). We use the notation
[A;B; t] to denote the spherical interpolation of vectors A and B (Equation (19.3)) and
we construct the scaffold in three steps.

1. Calculate the three interpolated direction vectors

P01 = [Di;Xi; t], P02 = [Xi;Yi; t], and P03 = [Yi;Di+1; t].

2. Calculate the two interpolated direction vectors P11 = [P01;P02; t] and P12 =
[P02;P03; t].

3. Compute the final interpolated direction vector Di+t = [P11;P12; t]. This be-
comes the direction of the camera at point Pi(t).

When the camera is moved to point Pi(t) and is oriented there, pointing in direction
Di+t, we can expect smooth animation since direction Di+t not only takes into account
Di and Di+1 but also “remembers” the past direction Di−1 and “anticipates” the future
direction Di+2. Notice that four such direction vectors are available at every key frame,
including the first and last ones, since the animator inputs the two extra direction vectors
X1 and Yn−1 explicitly.

19.8.1 Example 4

The same points and direction vectors of Example 1 of Section 19.7.1 are used. The
normalized direction vectors are

D1 = −P1 = (0, 1, 0), D2 = −P2 = (1, 0, 0), D3 = −P3 = (−3/5,−4/5, 0),
D4 = −P4 = (−1, 0, 0), D5 = −P5 = (−0.83, 0.55, 0).

932 19.8 Interpolating Orientations: II

We assume that the animator inputs the two extra directions, X1 = (1, 3, 0) and Y4 =
(−1, 0.5, 0). All other “interior” directions are now calculated and normalized:

X1 = (1, 3, 0)→ (0.3162, 0.9487, 0),

Y1 = D2 − 1
6
(D3 −D1) = (1.1, 0.3, 0)→ (0.964764, 0.263117, 0),

X2 = D2 +
1
6
(D3 −D1) = (0.9,−0.3, 0)→ (0.948683,−0.316228, 0),

Y2 = D3 − 1
6
(D4 −D2) = (−0.2667,−0.8, 0)→ (−0.316228,−0.948683, 0),

X3 = D3 +
1
6
(D4 −D2) = (−0.9333,−0.8, 0)→ (−0.759257,−0.650791, 0),

Y3 = D4 − 1
6
(D5 −D3) = (−0.9617,−0.225, 0)→ (−0.973704,−0.227816, 0),

X4 = D4 +
1
6
(D5 −D3) = (−1.0383, 0.225, 0)→ (−0.977318, 0.211778, 0),

Y4 = (−1, 0.5, 0)→ (−0.8944, 0.4472, 0).

We now calculate D1+0.5 in three steps.
Step 1 : Calculate the three interpolated direction vectors

P01 =[D1;X1; .5] =
sin 18.43◦

sin 9.215◦
(D1 +X1) = (0.160167, 0.987089, 0),

P02 =[X1;Y1; .5] =
sin 56.31◦

sin 28.155◦
(X1 +Y1) = (0.726438, 0.687225, 0),

P03 =[Y1;D2; .5] =
sin 15.255◦

sin 7.628◦
(Y1 +D2) = (0.991152, 0.132733, 0).

Step 2 : Calculate the two interpolated direction vectors

P11 =[P01;P02; .5] =
sin 37.37◦

sin 18.69◦
(P01 +P02) = (0.46797, 0.883741, 0),

P12 =[P02;P03; .5] =
sin 35.78◦

sin 17.89◦
(P02 +P03) = (0.902439, 0.430814, 0).

Step 3 : Calculate the final interpolated direction vector

D1+0.5 = [P11;P12; 0.5] =
sin 36.58◦

sin 18.29◦
(P11 +P12) = (0.721658, 0.692245, 0).

This becomes the direction of the camera at point P1(0.5) = (−1.3125,−1.125, 0). No-
tice that it differs from the 45◦ direction calculated in Example 1, since it depends on
the choice of the “exterior” direction X1 that was input by the animator.

19.8.2 Interpolating Orientations: III

This approach to the problem of interpolating orientations uses quaternions. These
mathematical entities are introduced in Appendix B and their application to general

19 Computer Animation 933

rotations is discussed in Section 4.4.5. The reader should review these sections prior
to reading this section. Quaternions can be used in computer animation to interpolate
orientations between key frames because of two facts:

1. A general rotation of θ degrees about an axis u can be expressed by the unit
quaternion q = [cos(θ/2), sin(θ/2)u].

2. When a rigid object is sent flying through space, it may roll and tumble in a
complicated way, but at any moment, its position and orientation can be completely
described by two transformations—a translation from its initial position to its present
position and a rotation of θ degrees about some axis u.

We can imagine all the unit quaternions to form a unit four-dimensional sphere.
Spherically interpolating two unit quaternions is therefore equivalent to moving along a
great arc on this sphere. The technique is identical to the one discussed in Section 19.5 for
vectors. Interpolating camera orientation between two key frames by using quaternions
is done in the following steps:

1. The animator inputs the data for all the key frames. The software uses this to
calculate the directions of view Di for each key frame i.

2. The software “positions” the camera at the preferred point (0, 0,−k), looking in
the positive z direction (i.e., in direction (0, 0, 1)).

3. A quaternion qi is calculated for each key frame i, describing the rotation that
would bring the camera from its initial orientation (0, 0, 1) to its new orientation in key
frame i.

4. The software goes into a loop where it moves the camera along its path, segment
by segment. In segment i (the segment between key frames i and i + 1), the time
parameter t is incremented from 0 to 1 in F steps. In each step tm, the camera is
translated to position Pi(tm) and is reoriented by rotating it. The main point is that
the translation is done from the initial position (0, 0,−k), and the rotation is done from
the initial orientation (0, 0, 1). The software uses tm to spherically interpolate the two
quaternions qi and qi+1 to a quaternion qi+tm . Quaternion qi describes a rotation from
(0, 0, 1) to key frame i. Similarly, qi+1 describes a rotation from (0, 0, 1) to key frame
i+ 1. Thus, their interpolation describes a rotation that will bring the camera from its
initial orientation (0, 0, 1) to the orientation it should have at point Pi(tm).

(The discussion of Section 19.8 suggests that four quaternions, instead of two, should
participate in any interpolation. The software should therefore calculate two auxiliary
quaternions Xi and Yi for each segment and use the scaffolding construction on qi, Xi,
Yi, and qi+1 to calculate qi+tm .)

5. Once qi+tm is obtained, the software uses it to generate a rotation matrix M
according to Equation (4.33). This matrix is then used to take a snapshot. The snapshot
can be taken with the methods of Section 6.9 or 6.10. An alternative is the technique
of Section 6.6, which is the one used here. The principle is the following: We know that
the camera had to be translated from its initial position (0, 0,−k) to its present position
Pi(tm) and rotated according to qi+tm . The software simply applies the two reverse
transformations (and in reverse order) to every point of the scene, thus “bringing the
scene to the camera” (which remains in its preferred position) instead of bringing the
camera to the scene. Once the scene is brought to the camera, any point in the scene
can be projected using the standard projection matrix Tp, Equation (6.6).

934 19.8 Interpolating Orientations: II

19.8.3 Example 5

The camera is located at the preferred point (0, 0,−k) (here, we assume that 0 < k < 1),
looking in the preferred direction D = (0, 0, 1). Three key frames are defined, at points
P1 = (−1, 0, 2), P2 = (0, 0, 1), and P3 = (1, 0, 2.5) (Figure 19.12a, where a right-handed
coordinate system implies that the y axis should come out of the page). The center of
interest (the direction the camera should be looking at) is arbitrarily selected as point
(0, 0, 2). The three direction vectors are, thus,

D1 = (0, 0, 2)− (−1, 0, 2) = (1, 0, 0),
D2 = (0, 0, 2)− (0, 0, 1) = (0, 0, 1),
D3 = (0, 0, 2)− (1, 0, 2.5) = (−1, 0,−0.5), normalized to (−0.8944, 0,−0.4472).

The angles between each direction vector and the original directionD are (Figure 19.12b)

cos θ1 = D •D1 = (0, 0, 1) • (1, 0, 0) = 0→ θ1 = 90◦,
cos θ2 = D •D2 = (0, 0, 1) • (0, 0, 1) = 1→ θ2 = 0◦,
cos θ3 = D •D3 = (0, 0, 1) • (−.8944, 0,−.4472) = −.4472→ θ3 = 116.56◦.

The quaternions for the three key frames can now be calculated:

q1 = [cos(θ1/2), sin(θ1/2)(0, 1, 0)] = (0.7071, 0, 0.7071, 0),
q2 = [cos(θ2/2), sin(θ2/2)(0, 1, 0)] = (1, 0, 0, 0),
q3 = [cos(θ3/2), sin(θ3/2)(0,−1, 0)] = (0.5258, 0,−0.8506, 0).

Notice that q1 corresponds to a clockwise rotation about the positive y axis, whereas
q3 corresponds to a clockwise rotation about the negative y axis (Figure 19.12b). This
is the reason for using direction (0,−1, 0) as the rotation axis for the latter. The axis of
rotation for quaternion qi is simply the cross-product D×Di, where the unnormalized
form of Di is used.

z

x

Camera

P1

P3

D3
D2

D1

D
D

D

P2
1

2

3

(a) (b)

Figure 19.12: A Three-Point Animation Path.

The quaternions are now used to calculate, as an example, the two interpolations
q1+0.5 and q2+0.5. From q1 • q2 = 0.7071, we find that the angle between q1 and q2 is

19 Computer Animation 935

45◦. Similarly, q2 • q3 = 0.5258 implies that the angle between them is 58.28◦. (Notice
that these are angles between quaternions, not between the direction vectors.) Using
these angles, we get

q1+0.5 =
sin(45◦/2)
sin 45◦

[(0.7071, 0, 0.7071, 0) + (1, 0, 0, 0)]

=
0.3829
0.7071

(1.7071, 0, 0.7071, 0)

= (0.9239, 0, 0.3829, 0) = (cos 22.5◦, 0, sin 22.5◦, 0),

q2+0.5 =
sin(58.28◦/2)
sin 58.28◦

[(1, 0, 0, 0) + (0.5258, 0,−0.8506, 0)]

=
0.4869
0.85

(1.5258, 0, 0.8506, 0)

= (0.8734, 0, 0.4869, 0) = (cos−29.14◦, 0, sin−29.14◦, 0).

Quaternion q1+0.5 thus generates a rotation of 22.5× 2 = 45◦ from the initial direction
(0, 0, 1) about the y axis. Quaternion q2+0.5 corresponds to a rotation of −29.14× 2 =
−58.28◦ from the same initial direction about the same axis. (Notice how the camera
has to be rotated in opposite directions for q1+0.5 and q2+0.5.)

Here are the details of the snapshots for the first two key frames. At P1, the camera
has to go (Figure 19.13) through the three transformations (1) translate to the origin (k
units in the positive z direction), (2) rotate 90◦ clockwise about the positive y axis, and
(3) translate one unit in the negative x and two units in the positive z directions. Since
we leave the camera in place, we have to apply the reverse transformations in reverse
order to the scene: (4) translate one unit in the positive x and two units in the negative
z directions, (5) rotate 90◦ about the origin, counterclockwise about the positive y axis,
and (6) translate k units in the negative z direction. Notice how the relative positions
of the camera and scene are the same in parts (3) and (6) of the figure.

At P2, the camera has to go through the two transformations (Figure 19.14): (1)
translate to the origin (k units in the positive z direction), and (2) translate one unit in
the positive z direction. We again apply the reverse transformations in reverse order to
the scene, (3) translate one unit in the negative z direction, and (4) translate k units in
the negative z direction.

� Exercise 19.9: Describe the transformations for key frame 3.

Thus, a general snapshot is taken as follows:

1. Determine the camera position Pi(tm). Assume that this is point (a, b, c).
2. Calculate qi+tm by interpolating qi and qi+1. Assume that this is quaternion

(w, x, y, z).
3. The camera is translated to the origin. This is done by matrix T1 below.
4. The camera is rotated by matrix M, Equation (4.33).
5. The camera is translated the rest of the way to point (a, b, c), i.e., by an amount

936 19.8 Interpolating Orientations: II

z

x

P1

z

x

P1

z

x

(1)

(3)

(2)

z

x

(4)

z

x

(5)

z

x

(6)
P1P1

P1 P1

P3P3

P3

P2P2

P2P2

P3

P3P3

Figure 19.13: Camera (1–3) and Scene (4–6) Transformations for P1.

(a, b, c− k) using matrix T2:

T1 =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 k 1

⎞
⎟⎠ , T2 =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
a b c− k 1

⎞
⎟⎠ ,

M =

⎛
⎜⎝

1− 2y2 − 2z2 2xy + 2wz 2xz − 2wy 0
2xy − 2wz 1− 2x2 − 2z2 2yz − 2wx 0
2xz + 2wy 2yz − 2wx 1− 2x2 − 2y2 0

0 0 0 1

⎞
⎟⎠ .

6. Since we want to apply the reverse transformations to the scene (and in reverse

19 Computer Animation 937

z

x

z

x

(1) (2)

z

x

z

x

(3) (4)
P1

P3 P3

P3 P3

P1

P1

P2 P2

P1

Figure 19.14: Camera (1–2) and Scene (3–4) Transformations for P2.

order), we multiply each point of the scene by

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
−a −b −c+ k 1

⎞
⎟⎠ ·M−1 ·

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 −k 1

⎞
⎟⎠ ·Tp,

where Tp is the standard projection matrix, Equation (6.6). (The inverse of matrix M
can be calculated in general by appropriate software, but it is too big and complex to
list here.)

19.9 Nonuniform Interpolation

Spherical interpolation has been specifically developed for uniform change of orienta-
tion. Varying t in equal steps produces direction vectors that are uniformly distributed
between directions Di and Di+1. Sometimes, however, nonuniform changes of orienta-
tion and/or position are required. In such cases, a function T (t) is needed, such that
varying t in equal steps will vary T (t) from 0 to 1 in unequal steps. If T is used to
position the camera, this will simulate acceleration or deceleration of the animation. If
T is used to interpolate camera orientation, this will simulate rotating the camera at
nonuniform rates. The methods presented here for nonuniform interpolation are based
on the concept of blending (Section 8.5).

938 19.9 Nonuniform Interpolation

19.9.1 Quadratic and Cubic Blending

The well-known expression P (t) = (1− t)P0 + tP1 (Equation (9.1)) can be considered a
blending of the two values P0 and P1. It blends a (1− t) fraction of P0 with a t fraction
of P1. The weights (or fractions) should add up to 1. Since this expression is linear in
t, we can call it linear blending.

It is possible to blend values (numbers, points, vectors, etc.) in nonlinear ways.
Section 13.5.1 is a short discussion of the concepts involved. Nonlinear blending seems
the best approach for nonuniform interpolation and we start by exploring quadratic
blending, i.e., ways to blend two quantities by using weights that employ t2. The simplest
approach is to generalize the linear expression above by squaring t and (1 − t). This
results in (1− t)2P1+ t2P2, which varies from P1 (for t = 0) to P2 (for t = 1). However,
this expression is clearly wrong since the two weights (1− t)2 and t2 do not add up to
1 and therefore cannot serve as fractions. It is possible to correct this by artificially
adding the missing term 2t(1 − t) (recall that (1 − t)2 + 2t(1 − t) + t2 = 1). We now
notice that the term 2t(1− t) is zero when t = 0 and also when t = 1. It therefore does
not affect the blending at the extreme values, but it must have an effect on the blending
in between. We can therefore multiply this term by any quantity Pw and find out how
various values of Pw affect the blending. Figure 19.15a shows a blending of the form
(1− t)2P1 + 2t(1− t)Pw + t2P2 created by the Mathematica code of Figure 19.15c. The
figure shows the results of blending P0 = 0 and P1 = 1 for five values of Pw ranging
from 0 to 1. Notice that certain values of Pw create blendings outside the range [P0, P1],
but, in general, quadratic blending can give satisfactory results in many, perhaps most,
practical cases.

Similarly, if we try a cubic blend by simply writing P (t) = (1 − t)3P1 + t3P2, we
end up with the same problem. Cubic blending can be achieved by adding four terms
with weights t3, 3t2(1− t), 3t(1− t)2, and (1− t)3. Figure 19.15b shows the results of
cubically blending the two values P0 = 0 and P3 = 1. It calculates

t3P0 + 3t2(1− t)P1 + 3t(1− t)2P2 + (1− t)3P3,

for the five pairs of “interior” weights (P1, P2) set to (0, 0.1), (0.2, 0.3), (0.333, 0.667),
(0.7, 0.8), and (0.9, 1).

We next notice that the expressions for the linear, quadratic, and cubic blends are
identical to the parametric sums used to construct the Bézier curve. This suggests a
way to define parametric blends for cases where complex behavior of T (t) is required.
In general, a parametric blend T (t) that uses the n− 1 parameters P1, P2,. . . , Pn−1 to
blend the two quantities P0 and Pn should have the form

T (t) =
n∑
i=0

PiBni(t),

where Bni(t) are the Bernstein polynomials of degree n The fact that the Bézier curve is
an ideal tool for blending numbers also suggests how to obtain smooth blending across
key frames. We know from Section 13.5 how to connect individual Bézier segments
smoothly. The same idea can be used when numbers are blended. Suppose, for example,

19 Computer Animation 939

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0

.25

.5

.75

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

(0,.1)

(.2,.3)

(.333,.667)

(.7,.8)

(P1,P2)=(.9,1)

(a)

T[Pw] Bez[P1,P2]

(b)

t t

Pw=1

Clear[T];p1=0;p2=1;(*Quadratic Blending*)
T[pw_]:=Plot[(1-t)^2 p1+2t (1-t)pw+t^2 p2,{t,0,1},
PlotStyle->{Red, AbsoluteThickness[.5]}];
Show[T[0],T[.25],T[.5],T[.75],T[1],
PlotRange->All,AspectRatio->Automatic]

Clear[Bez];p0=0;p3=1;(*Bezier Blending*)Bez[p1_,p2_]:=
Plot[(1-t)^3 p0+3t (1-t)^2p1+3t^2(1-t)p2+t^3 p3,{t,0,1},
AspectRatio->Automatic,PlotStyle->{Red, AbsoluteThickness[.5]}];
Show[Bez[0,.1],Bez[.2,.3],Bez[.333,.667],Bez[.7,.8],Bez[.9,1],
PlotRange->All]

(c)

Figure 19.15: (a) Quadratic Blending. (b) Cubic Blending. (c) Code.

that we use a five-point (i.e., n = 4) Bézier blending to advance T (t) nonuniformly from
0 to 1 in each of our key frames. For each key frame, we therefore have to select P0 = 0,
P4 = 1, plus three parameters P1, P2, and P3 to control the precise way T varies. If
we want T to have the same speed on both sides of a key frame, we have to make sure
that the difference P4 − P3 = 1− P3 in the segment to the left of the key frame equals
the difference P1 − P0 = P1 − 0 in the segment to the right of the same key frame. If
we select, for example, P3 = 0.9 in one key frame, then we should select P1 = 0.1 in the
next key frame.

It is also possible to use the Hermite interpolation (Section 11.1) to blend two values
v1 and v2 in different proportions by using two parameters s and e.

Hermite interpolation has been developed to construct a curve by blending two
points and two tangent vectors. It can also be applied to blend any two numbers v1
and v2, by using two user-defined “rates of change” s and e. Equation (11.7) can be
modified by substituting v1 for P1, v2 for P2, and s and e for Pt

1 and Pt
2, respectively.

940 19.9 Nonuniform Interpolation

The result is

T (t) = (t3, t2, t, 1)

⎛
⎜⎝

2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0

⎞
⎟⎠
⎛
⎜⎝
v1
v2
s
e

⎞
⎟⎠ .

The quantities s and e can be considered the start and end “slopes” or rates of change
of the blending. Figure 19.16a illustrates the results of the five Hermite interpolations
of v1 = 0 and v2 = 1 for e = 0 and s values ranging from 0 to 4. It is easy to see how
s affects the start slope of the interpolation. Figure 19.16b shows the results of similar
interpolations for identical s and e values ranging from 0 to 4. Notice that both the
start and end slopes are affected.

Ease-in/Ease-out: This term refers to nonuniform velocity that starts with ac-
celeration, gradually changes to constant speed, then decelerates. Figure 19.17 shows a
typical example. One way to achieve this effect is to set parameters 0 ≤ a ≤ b ≤ 1 and
use the sine function to interpolate and define a parameter T (t) that accelerates when t
varies from 0 to a, decelerates when t varies from b to 1, and is linear in the range [a, b].
Mathematically, this is expressed by Equation (19.4) (where the second line scales T (t)
to the range [0, 1]). Figure 19.17 illustrates the result. Notice that the precise shape of
T (t) depends on the values of a and b.

T0(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2a
π

sin
(
π

2
· t− a

a

)
, t < a,

2(1− b)
π

sin
(
π

2
· t− b
1− b

)
+

2a
π

+ b− a, t > b,

2a
π

+ t− a, a ≤ t ≤ b.

T (t) = T0(t)/
(
2a
π

+
2(1− b)

π
+ b− a

)
. (19.4)

� Exercise 19.10: Calculate the acceleration of T (t) in the initial interval [0, a] and its
deceleration in the final interval [b, 1].

The same effect of ease-in/ease-out can be obtained from physical considerations,
without the use of the sine function, by integrating speed to obtain position. We first
decide what speed v(t) we want in each subrange of [0, 1], then integrate v(t) to obtain
the position T (t) as a function of t in each subrange. Equation (19.5) describes a speed
v(t) that increases from zero to a certain value V in subrange [0, a), decreases from V
to zero in subrange (b, 1], and is constant in between:

v(t) =

⎧⎪⎪⎨
⎪⎪⎩
V · t

a
, t < a,

V, a ≤ t ≤ b,

V − V · t− b
1− b = V · 1− t

1− b , t > b.

(19.5)

19 Computer Animation 941

0

1

2

3

4

0

1
2
3
4

s=

s=e=

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

(a)

Hermi(0,1,s,0)
Hermi(0,1,s,s)

(b)

t t

Clear[T,H,Hermi]; (* Hermite Interpolation *)
T={t^3,t^2,t,1};
H={{2,-2,1,1},{-3,3,-2,-1},{0,0,1,0},{1,0,0,0}};
(*B={0,1,0,0};*)
Hermi[v1_,v2_,s_,e_]:=Plot[T.H.{v1,v2,s,e},{t,0,1},
AspectRatio->Automatic, Prolog->AbsoluteThickness[.4]];
Show[Hermi[0,1,0,0], Hermi[0,1,1,1], Hermi[0,1,2,2],
Hermi[0,1,3,3], Hermi[0,1,4,4]]

Figure 19.16: Hermite Interpolation.

t

T(t)

Clear[fa,fb,fm,den,a,b];
a=.1; b=.3;
fa:=2a(Sin[Pi(t-a)/(2a)]+1)/Pi;
fb:=Sin[Pi(t-b)/(2(1-b))]2(1-b)/Pi+2a/Pi+b-a;
fm:=2a/Pi+t-a;
den=2a/Pi+2(1-b)/Pi+b-a;
T:=If[t<a,fa/den,If[t>b,fb/den,fm/den]];
Plot[T, {t,0,1}, AspectRatio->1]

Figure 19.17: Ease-in/Ease-out with a Sine Function.

942 19.9 Nonuniform Interpolation

We can find the total distance traveled in each subrange by integrating v(t):

∫ a

0

V t

a
dt =

1
2
V

a
(a2 − 0),

∫ b

a

V dt = V (b− a),
∫ 1

b

V
1− t
1− b dt =

V (1− b)2
2(1− b) =

1
2
V (1− b).

Thus, the total distance for the three subranges is

1
2
V a+ V (b− a) + 1

2
V (1− b) = b− a+ 1

2
.

If we want this distance to equal one unit, we should select V = 2/(b − a + 1). The
distance T (t) traveled in the first subrange is

∫ t

0

V t

a
dt =

V t2

2a
.

For a ≤ t ≤ b, the total distance traveled from the start of the curve is

1
2
V a+

∫ t

a

V dt =
1
2
V a+ V (t− a).

(Notice that for t = a, this equals the distance traveled in the first subrange.) For
b ≤ t ≤ 1, the total distance traveled from the start of the curve is

V

2
a+ V (b− a) +

∫ t

b

V
1− t
1− b dt =

V

2
a+ V (b− a) +

[
−V (1− t)2

2(1− b) +
V (1− b)2
2(1− b)

]

=
V

2
a+ V (b− a) + V

2(1− b) [−2b+ b2 + 2t− t2].

These methods can be generalized to obtain other types of nonuniform speeds.

When graphing a function, the width of the line should be inversely proportional to
the precision of the data.

—Marvin J. Albinak.

19 Computer Animation 943

19.10 Morphing

The technique of in-betweening is one of the main advantages of computer animation.
This technique has been mentioned before, but it can also be implemented by means of
morphing. The idea in morphing is for an artist or designer to prepare two key frames
of animation and use software to generate all the in-between frames automatically.

The metamorphosis of an object, a topic that came to be known as morphing, is
the case where two pictures are painted by an artist and are designated as the first
and last frames of a scene. The artist specifies what points on the first and last frames
correspond to each other and the computer then creates several intermediate frames by
interpolating each point.

The word morphing is derived from the Greek μoρφε, meaning form or shape.

Let’s assume that point P1 in the first frame corresponds to point P2 in the last
frame and that four intermediate frames are needed. The coordinates of the point in
the four frames are simply t[[P1,P2]], where t = 0.2, 0.4, 0.6, 0.8. Figure 19.18 is a simple
example of morphing (see also Plates K.1 and K.3). To us, it seems that only two objects
are involved, a start face and an end face. To the computer, however, each component,
such as eye, nose, and mouth, has to be transformed separately.

Figure 19.18: Morphing Bach to Beethoven.

You know the funny thing about morphin? You don’t appreciate it till you can’t do
it anymore!

—David Yost (as Billy) in Mighty Morphin Power Rangers: The Movie (1995).

944 19.11 Free-Form Deformations

19.11 Free-Form Deformations

Free-form deformation is a modern technique based on old concepts. The principle is to
employ a grid of control points combined with two-dimensional interpolation to distort
an image in a systematic way, in order to achieve special effects.

Figure 19.19 shows objects in grids that are distorted in two different ways (see
also Plates E.1, N.3, and R.2). Such effects can be useful in computer animation. The
principle is to construct a bounding box around the object and partition it into a regular
grid. The box is then deformed in the desired way and enough control points are placed
at strategic locations on the grid to fully specify the deformation (points P11 through
P33 in Figure 19.19). The image is then displayed, point by point, where each point is
transformed from the original bounding box to the deformed box based on its original
coordinates and on the control points.

P31 P33

P22P21
P11

P12
P13

P23

P32

Figure 19.19: Free-Form Deformations.

We denote the coordinates of the bottom-left and top-right corners of the bounding
box by (xmin, ymin) and (xmax, ymax), respectively. A point P = (x, y) in the image
that is being deformed is transformed to P∗ = (x∗, y∗) in two steps as follows:

1. Its position relative to the two corners of the bounding box is first determined
by

u =
(x− xmin)

(xmax − xmin) and w =
(y − ymin)

(ymax − ymin) .

Notice that u and w are in the interval [0, 1].
2. Its new, deformed coordinates are computed using appropriate two-dimensional

interpolation. In our example there are 3×3 control points, so we denote n = 3 and use
biquadratic interpolation (Section 2.4) to obtain

(x∗, y∗) =
(
(1− u)2, 2u(1− u), u2)

⎛
⎝P11 P12 P13

P21 P22 P23
P31 P32 P33

⎞
⎠
⎛
⎝ (1− w)2

2w(1− w)
w2

⎞
⎠

= (B20(u), B21(u), B22(u))

⎛
⎝P11 P12 P13

P21 P22 P23
P31 P32 P33

⎞
⎠
⎛
⎝B20(w)
B21(w)
B22(w)

⎞
⎠ .

This is repeated for every point in the image. If the image consists of straight lines, only
the two endpoints of each line have to be transformed.

19 Computer Animation 945

If the image is complex, or if a complicated deformation is needed, the grid can be
made bigger and more control points added. The only difference is that higher-order
Bernstein polynomials need to be used.

This technique can also be extended to three-dimensional images. The control
points must be arranged in a three-dimensional grid and the process is similar. In each
step, three parameters, u, v, and w, are determined and are used to transform a point
P = (x, y, z) to a point P∗ = (x∗, y∗, z∗).

To produce an animation sequence of F frames showing an image being deformed,
we start with two sets of control points, an initial and a final. We then calculate F − 2
intermediate sets of control points and use the resulting F sets to compute F deformed
images which are then displayed at the desired rate (between 18 and 24 frames per
second) to animate the image.

Animation can explain whatever the mind of man can conceive.

—Walt Disney

	19 Computer Animation
	19.1 Background
	19.2 Interpolating Positions
	19.3 Constant Speed: I
	19.4 Constant Speed: II
	19.5 Interpolating Orientations: I
	19.6 SLERP
	19.7 Summary
	19.7.1 Example 1
	19.7.2 Example 2
	19.7.3 Example 3

	19.8 Interpolating Orientations: II
	19.8.1 Example 4
	19.8.2 Interpolating Orientations: III
	19.8.3 Example 5

	19.9 Nonuniform Interpolation
	19.9.1 Quadratic and Cubic Blending

	19.10 Morphing
	19.11 Free-Form Deformations

