
17
Rendering

Rendering is a general term for methods that display a realistic-looking three-dimensional
solid object on a two-dimensional output device (normally screen or paper). Perhaps
the simplest way to render an object is to display its surface as a wireframe. The next
step in rendering is to display, as a wireframe, only those parts of the surface that would
be visible in real life. More realistic rendering is achieved by shading—computing the
amount and color of the light emitted from every point of the surface. Complete realism
may be achieved by simulating surface texture, reflections from neighboring surfaces,
and shadows cast by all the objects in the scene.

Note. For years, the goal of rendering was to produce images that looked as real
as possible. This never-ending quest for realism provided powerful impetus for legions
of programmers, researchers, and engineers. The harder it was for a human observer
to decide whether a given image was real or synthetic, the better the rendering was
considered. However, because the human mind is always in motion—always looking for
new ways, new explanations, and new achievements—it is no wonder that at a certain
point in the history of computer graphics, several researchers decided to explore other
ways to render images. This trend has become known as non-photorealistic rendering
and it includes rendering images in terms of dots and strokes, making them look like
comics or like watercolor paintings, and applying interesting and artistic distortions.

The last few sections of this chapter discuss approaches to non-photorealistic ren-
dering. Readers looking for more on this topic can try [Strothotte and Schelchtweg 02].

The Computer Graphics Manual
DOI 10.1007/978-
D. Salomon, , Texts in Computer Science,

0-85729-886-7_17, ©
851

Springer-Verlag London Limited 2011

852 17.1 Introduction

17.1 Introduction

Producing a computer-generated image is a multistep process whose main steps are as
follows:

1. The designer/user has to specify the objects in the scene (the image), their
shapes, positions, orientations, and surface color/texture.

2. He should select the viewer’s position and direction of view. The computer then
transforms the points defining each object to create a perspective projection.

3. An algorithm should now be executed, to determine what parts of each object
are visible to the viewer. This is the hidden-surface removal problem (often referred to
as visible surface determination). All parts of all objects in the image must be checked,
and only those that are visible to the viewer are actually displayed.

4. The objects in the scene are displayed by simulating lighting. The designer/user
has to define the light source (or sources), their positions, shapes, intensities, and colors.
The light emanating from any surface in the scene is a combination of (1) light coming
from light sources (direct lighting) and reflected by the surface, (2) light coming from
other surfaces (indirect) and reflected by our surface, (3) light generated by the surface
(if it happens to be one of the light sources), and (4) light transmitted by the surface
(if it happens to be transparent or translucent).

5. The image (complete scene) is now displayed by rendering software that computes
the amount and color of light reaching the viewer’s eye from any point in the image,
and then displays that point.

Current (2010) computers often have special hardware to implement perspective
projections, hidden-surface elimination, and direct illumination. Everything else requires
software. The most important rendering task done by software is illumination, both
direct and indirect. The latter is important when the image contains shiny surfaces,
each reflecting some of the others. Several methods for indirect illumination are currently
popular, ray tracing (Section 17.5), photon mapping (Section 17.6), and radiosity. These
methods use very different approaches to compute the light reflection.

Ray tracing was introduced by Turner Whitted of Bell Laboratories in 1979. The
main idea is to trace the path of a light ray from the eye of the observer through each
pixel on the screen into the image. If the ray strikes a surface, the algorithm spawns
reflected or refracted rays which, in turn, are traced to see if they intersect any other
surfaces. The final color and intensity of each pixel are determined by adding up the
light contributed by each spawned ray.

Ray tracing produces realistic images but is view dependent. This means that the
entire computation must be repeated when the viewer’s position is changed. Ray tracing
is also too slow to generate real-time sequences of pictures, since each image may take
minutes or more to compute.

The radiosity method, developed at Cornell in 1984, is view independent: Given
an image, the calculations need be made only once. Once the global illumination has
been determined, it is easy to create a series of images by moving the viewer to different
viewpoints. Indeed, the method can be used to generate real-time sequences of images,
which makes it useful for applications such as flight simulation and architecture (walking
through a newly designed structure).

17 Rendering 853

Radiosity uses conservation of energy to compute the light intensity for each surface
in a scene that consists of ideal diffuse surfaces (either light sources or reflectors). An
equation is written for the radiosity of each surface in the image—the intensity of light
emanating from the surface—as a function of the radiosity of all the other surfaces.

17.2 A Simple Shading Model

The simplest shading technique simulates light reflection from the surface to be rendered.
It assumes a light source (which itself may not have to be displayed) at a certain point.
It assumes that the viewer is located at the center of perspective and that there is an
environment around the object—such as walls and furniture—that can reflect more light
on the object and can cast shadows. It then uses a mathematical model to calculate the
intensity (and color) of the light reflected from every pixel on the surface of the object.
Such a calculation may be very complex, depending on the model used. Figure 17.1
shows how a flat drawing can be made to look real (i.e., three-dimensional) by simulating
reflection. It is easy to tell which of the four buttons are convex and which are concave.
It is also easy to tell that the bevels around the buttons in Figure 17.1c,d face the viewer.

Figure 17.1: Light Reflection from Buttons.

The resulting shaded image depends on the following entities:

The light source. Its intensity, color, shape, direction, and distance. It can be a
point source, or a large source, such as a window or a light fixture.

The surface of the object. It can vary from shiny to dull, from smooth to rough,
and from bright to dark. It can have several colors, can be opaque, transparent or
translucent (diffusing light so that objects beyond it cannot be clearly distinguished).

The environment. Objects seen in empty space, without any background to reflect
light on them, look harsh. Imagine a spaceship in deep space, away from any reflecting
planets. Those parts of the ship illuminated by direct starlight are very bright, while
parts that are in the shade are completely dark. The result is that we see the ship mostly
in black and white, with few grays or colors. A realistic shading model should therefore
consider light reflection from other objects and from nearby walls.

854 17.2 A Simple Shading Model

In general, a ray of light striking a surface is partly absorbed, partly transmitted
(and also refracted), and partly reflected. The following three sections briefly discuss
these phenomena. Following these, we describe the simple shading model.

17.2.1 Absorption

Light absorption is a phenomenon that depends on the material and on the wavelength
of the light. Material that absorbs all wavelengths except blue (which it reflects or
transmits) looks blue. Thus, absorption of certain wavelengths of light determines the
color and brightness of the surface.

17.2.2 Refraction

When light moves from one medium to another, such as from air to glass to water, its
speed changes. The denser the medium, the slower the light travels. When we talk
about the speed of light, we implicitly mean its speed in vacuum (where it is fastest).
The result of the speed change is that a beam of light changes its direction of motion
and bends when it enters a different medium (Figure 17.2). This phenomenon is called
refraction (see Plate B.3). Notice that it affects all electromagnetic radiation (X-rays,
radio waves, microwaves, etc.), not just light.

Air

Light beam

Glass Wave
front

New
front

Figure 17.2: Bending of Light as a Result of Speed Change.

Figure 17.3a shows why refraction is important in computer graphics. When a ray
of light moves from air to glass and again to air, it bends twice, in opposite directions,
so it comes out of the glass in its original direction but with its position shifted. An
observer looking at an object through the glass will therefore see the object shifted away
from its original position. Thus, realistic-looking computer-generated images should
simulate refraction.

Figure 17.3e shows a ray of light traveling in the air entering a slab of glass at
an angle α to the normal of the glass surface. Inside the glass, the ray bends and it
now moves at an angle β with respect to the normal. The rule of refraction, discovered
experimentally by the Dutch mathematician Willebrord Snell in 1621, is

sinα

sinβ
=

C1

C2
= C,

17 Rendering 855

where C1 and C2 are the speeds of light in air and glass, respectively, and C, their ratio,
is called the refraction coefficient of air and glass. This is Snell’s law. (The index of
refraction of a medium M is defined as the ratio of the speed of light in a vacuum and
the speed of light in M . Hence, the refraction coefficient of two media is the ratio of
their refraction indexes.)

Willebrord Snellius (born Willebrord Snel van Royen) was a Dutch
astronomer and mathematician who lived and worked in Leiden from
1580 to 1626 (he succeeded his father as professor of mathematics at
the University of Leiden).

For centuries, his name has been attached to the law of refraction
of light, but it is now known that this law was understood empirically in
ancient times by Ptolemy, was mentioned in the middle ages by Witelo,
and was first described rigorously by Ibn Sahl in 984.

In addition to this well-known law, Snell’s name is also known from a method for
determining the radius of the Earth that he originated and executed in 1615. The idea
was to employ triangulation to measure the distance of one point on the Earth from the
parallel of latitude of another point. Another achievement of Snell was an algorithm for
computing the value of π.

How does the change of speed cause the light to change its direction? This can be
explained by means of a general physical principle called the principle of least time. It
was proposed by Pierre Fermat around 1650, so it is sometimes called Fermat’s principle.
It says that light chooses the particular path in air and glass that takes the shortest time
to traverse. Using this principle, it is easy to prove that the path of least time is the one
obeying Snell’s law. Figure 17.3b shows an analogous situation. A lifeguard is stationed
on a beach and there is a swimmer in the water. The swimmer starts drowning and the
lifeguard starts running toward him. The best path for the lifeguard (from the point
of view of the swimmer) is that of least time. Path b is a straight line. This may be
the intuitive choice of many lifeguards, but it may not be the path of least time since
swimming is slower than running. Path d minimizes the swimming time, but there is no
guarantee that it is the right path. Intuitively, it seems that the right path is somewhere
between paths b and d since it is clear that paths such as a and e require longer times.

We now show that the path of least time is the one that satisfies Snell’s law. The
proof is short and elegant and its geometry is shown in Figure 17.3c. We assume that
the best path is the one that hits the water at point P, and we then try another path
that hits at point Q, close to P. Figure 17.3d shows how the curve of travel time versus
point of hit has a minimum at P. Since point Q is close to P and since the curve is
continuous, we expect only a very small difference in the travel times of the rays that
hit the water at points P and Q. Another way to express this is to say that we expect
the travel times of the two rays to be essentially the same in the first approximation,
because the curve of Figure 17.3d is close to flat (horizontal) at point P.

The proof should therefore figure out the difference between the travel times along
the two paths and set that difference to zero. This will generate an equation whose
solution should produce Snell’s law. The first step is to draw a perpendicular to LP

856 17.2 A Simple Shading Model

Ray

ray

Apparent
ray

Glass

Air

g

d

x b

a b

Observer

Normal

Glass

Air

Lifeguard

Swimmer

a
b

c

Beach

Water

Observer

Object

A
pparent object

Glass

(a) (b)

(c)

(e)

d

e

Point of
crossing

Travel time

(d)

L

S

β
β

P

Q

a

b

PQ

β

Figure 17.3: Refraction.

17 Rendering 857

that passes through point Q. This shows that path LPS has to travel on the beach a
distance of a units longer than path LQS. It takes a/C1 time units to travel distance
a. The second step is to draw a perpendicular to line QS that passes through point P.
This shows that path LQS has to travel in the water a distance b longer than path LPS.
It takes b/C2 time units to travel distance b. Denoting by d the distance PQ, we get
sinα = a/d and sinβ = b/d from elementary trigonometry. We can now write

time(a) = time(b)

⇒ a

C1
=

b

C2

⇒ d sinα

C1
=

d sinβ

C2

⇒ sinα

C1
=
sinβ

C2

⇒ sinα

sinβ
=

C1

C2
.

� Exercise 17.1: Prove Snell’s law using just elementary calculus and trigonometry.
Snell’s law is mathematically simple, so people generally like to think of it as an

explanation of refraction. A ray of light hits a glass surface and bends by the right
amount, depending on the angle of incidence. It is easy for us to imagine that the light
“knows” at what angle it hits and what medium it is entering, so it changes its direction
of motion accordingly. The least-time principle, on the other hand, even though more
elegant, is harder to accept as an explanation. The problem is: How does light know in
advance what the least time path is? When we humans are faced with such a problem,
we have to try different paths, we hesitate, we need to perform calculations, but light
does not hesitate, does not seem to try different paths, and always selects the right path
confidently.

Quantum electrodynamics provides a completely different explanation to refraction.
Advanced readers are referred to pages 49–52 of [Feynman 85]. Another book by Feyn-
man, The Feynman Lectures on Physics, (volume 1, chapter 26, page 5) describes a few
common phenomena, such as a mirage, that are caused by refraction.

Figure 17.3e illustrates the refraction problem as it typically occurs in practice (i.e.,
in computer graphics applications). A ray of light passes through a thick slab of glass
and is observed on the other side of the glass. The known quantities are the angle of
incidence α, the thickness g of the glass, the vertical distance d between the observer
and the glass, and the refraction coefficient C = C1/C2. The unknown quantity is x, the
horizontal distance between the observer and the point of incidence. Once x is known,
we know where the observer should be positioned in order to see the (refracted) ray.
The derivation is elementary and uses similar triangles:

a = g tanβ, a+ b = g tanα,

b = g tanα− a = g tanα− g tanβ, x+ b = (g + d) tanα,

x = g tanα+ d tanα− b

858 17.2 A Simple Shading Model

= g tanα+ d tanα− g tanα+ g tanβ

= d tanα+ g tanβ

= d tanα+
g sinα√

C2 − sin2 α
. (17.1)

The last equality is true because

tanβ =
sinβ

cosβ
=

sinα sinβ

sinα
√
1− sin2 β

=
sinα sinβ√

sin2 α− sin2 α sin2 β

=
sinα√(

sinα
sinβ

)2

− sin2 α

=
sinα√

C2 − sin2 α
.

It is easy to test Equation (17.1) for the case C1 = C2, where the light goes from
a medium M to the same medium M. In this case, there should be no refraction, so the
equation should yield α = β. Substituting C = 1 in Equation (17.1) yields

x = d tanα+
g sinα√
1− sin2 α

= d tanα+
g sinα

cosα
= (d+ g) tanα.

Figure 17.3e shows that x = (d+ g) tanα implies b = 0 or α = β.

� Exercise 17.2: The SI (Système International) definition of the meter was adopted at
the 1983 Conference Générale des Poids et Mesures. It says “the meter is the length
of the path traveled by light in vacuum during a time interval of 1/299,792,458 of a
second.” This defines the speed of light in vacuum to be exactly 299,792,458 m per s.
The speed of light in typical glass fiber is roughly 33% less, or about 200,000 km per
s. The refraction coefficient C from vacuum to glass is, therefore, approximately 1.5.
Using Equation (17.1), calculate and plot the distance x as a function of the angle of
incidence α for the case d = 0 and g = 1.

17.2.3 Reflection

When a ray of light hits a mirror, it is reflected. The direction of reflection is determined
by the following simple rule: The angle of reflection equals the angle of incidence (the
angles are measured between the rays of light and the normal to the surface). This rule
can also be elegantly deduced from Fermat’s principle. Figure 17.4 shows a ray traveling
from point A to a mirror M, getting reflected, and arriving at point B. What path takes
the ray from A to the mirror and to B in the least time?

Consider path ADB. The travel time from A to D is minimal, but the travel time
from D to B is much longer. If we move a bit to the right and let the ray hit the mirror
at, say, E, we slightly increase the travel time AE but greatly decrease the travel time
EB. To find the best point, we use an elegant “trick.” We construct an imaginary point
B′ on the other side of the mirror, at the same distance as B. The total travel time AEB

17 Rendering 859

equals the travel time AEB′, since the speed of light on both sides of the mirror is the
same. It is now clear that the minimal-time path AB′ is also the minimal distance path
AB′, i.e., a straight line. We denote by C the point where this line intercepts the mirror.
Since line ACB′ is straight, and since BF=FB′, we conclude that angle BCF equals angle
B′CF which, in turn, equals angle ACM. This implies that the angle between direction
AC and the normal equals the angle between direction CB and the normal.

A
B

M
CD E

B’

F

Figure 17.4: Least Time in Reflection.

In the case of reflection, the light speed is always the same, so times are proportional
to distances. In the case of refraction, however, the path of minimal time is different
from that of minimal distance.

An ideal mirror reflects all the light that hits it, and each ray hitting a point on
the surface is reflected in one direction, such that the angle of reflection equals that of
incidence. If a viewer happens to be in that direction, looking at the point, he will see a
reflection of the light source at the point (in the color of the light source, not that of the
surface). Such an ideal reflection is called specular. Determining the specular reflection
from a point requires the knowledge of the normal to the surface at the point, and the
position of the viewer.

An ideal dull surface reflects each ray of light in all directions, because every point
on the surface has many microfacets pointing in different directions. A viewer always
sees the same intensity reflected from a given point, regardless of his position. He still
sees different reflections from different points, since some points may be farther away
from the light source, or may be pointing away from it. This type of reflection is called
diffuse (Figure 17.5). The banana and apple in Figure 17.5 are examples of diffuse and
specular surfaces, respectively, while the orange features both types of reflection.

It depends on what you call normal.
—Keanu Reeves (as Scott Favor) in My Own Private Idaho (1991).

Figure 17.5a illustrates strong diffuse reflection, where the angle θ between the
direction L of the light source and the normal is small. The blue circular arc indicates
equal (and strong) reflection in all directions. Part (c) of the figure shows weak reflection
as a result of a large angle between L and the normal. The blue arc is still circular but is
small. Figure 17.5b demonstrates specular reflection. The angle between the direction L

860 17.2 A Simple Shading Model

Diffuse

R
eflection

Refle
ctio

n

N
or

m
al

Max. reflection (M)

L L

N
or

m
al

Viewer (V)

(a)

Diffuse

N
or

m
al

(c)

(b)

N
or

m
al

(d)

Specular

Specular

Figure 17.5: Diffuse and Specular Reflection.

of the light source and the normal is denoted by θ. The direction of maximum reflection
forms the same angle θ on the other side of the normal. A viewer at V will see the
reflection drop as α gets bigger. Part (d) of the figure shows an elongated blue arc that

17 Rendering 861

indicates the direction of maximum reflection and how the reflection intensity drops off
quickly as the viewer moves away from this direction.

17.2.4 A Reflection Model

We now realize that every point on a surface emits three types of light: diffuse and
specular reflected light, and transmitted (refracted) light. Each light ray leaving the
surface is a sum of these three contributions. We are now ready to discuss a simple
shading model that simulates only reflection (no refraction) but produces acceptable
results.

Diffuse reflection. The intensity of diffuse reflection from a point depends on the
intensity Ip and direction L of the light source, on the direction N of the normal to
the surface at the point, and on the coefficient of diffuse reflection kd (a user-selected
parameter between 0 and 1). According to Lambert’s law, the intensity is Ipkd cos θ.

Figure 17.6 illustrates this law. In Figure 17.6a, a wide light beam hits a surface
while traveling parallel to the normal. In Figure 17.6b, the same beam hits the surface at
an angle θ to the normal. Elementary trigonometry shows that the surface area covered
by the beam is now greater by a factor of 1/ cos θ. Since the same amount of light is
now spread over a larger area, the reflection is weaker, by the same factor.

Surface

Normal

(a) (b)

Surface

NormalLight beam
Light beam

Figure 17.6: Diffuse Reflection at an Angle.

If L and N are unit vectors, then cos θ = L •N. To simplify the calculation, we
can sometimes assume that the light source is at infinity, i.e., all the light rays arriving
at the surface are parallel, so L is the same for all points on the surface.

The intensity that reaches the viewer depends on his distance R from the point, so
our model of diffuse reflection should be modified to give Ipkd(L •N)/R2 as the intensity
of light reaching the viewer from a given point. Notice that R varies as the viewer moves
around the surface from point to point.

Specular reflection. Looking at a shiny surface, we may see a highlight at a
certain point. The reflection at that point is strong and it has the color of the light
source, instead of that of the surface. The highlight also has the shape of the light
source. As we move around the surface, the highlight moves with us on the surface.
This is specular reflection.

The simple specular reflection model assumes L and N as before, and a viewer at
V. The reflection is mostly in directionM (Figure 17.5d), and the intensity seen by the

862 17.2 A Simple Shading Model

viewer depends on the material and on the angle α (Figure 17.5b,d). The smaller α,
the stronger the intensity seen by the viewer from this particular point on the surface.
The intensity is therefore proportional to cosα. In order to include the properties of the
material, we use the term cosn α, where n is an integer that depends on the material.
For a perfect mirror, n = ∞ implying cosα = 0 and specular reflection that is strictly
in theM direction. For a rougher surface, n is normally in the range 1–10.

50
105

n=

π/2-π/2

1

g1=Plot[{Red,Cos[t]},{t,-Pi/2,Pi/2}];
g2=Plot[Cos[t]^5,{t,-Pi/2,Pi/2}];
g3=Plot[Cos[t]^10,{t,-Pi/2,Pi/2}];
g4=Plot[Cos[t]^50,{t,-Pi/2,Pi/2}, PlotRange->All];
Show[g1,g2,g3,g4,PlotRange->All]

Figure 17.7: The Behavior of cosn θ.

Figure 17.7 illustrates the behavior of cosn θ for n = 1, 5, 10, 50. It is clear that for
large values of n, the function is almost always zero.

The intensity of specular reflection that reaches the viewer is (assuming that M
and V are unit vectors) Ipks cosn α/R2 = Ipks(M •V)n/R2. The quantity ks is the
coefficient of specular reflection, a user-controlled parameter in the interval [0, 1] that
can be varied to simulate various materials.

Transparent objects transmit light, but also reflect some of it. We know from
everyday experience that, looking through a sheet of glass, the angle between the line
of sight and the glass surface determines how clearly we see through the glass. When a
ray of light strikes the glass at a 90◦ angle, almost all of it is transmitted and refracted;
very little is absorbed or reflected. The opposite is true when the ray hits the glass at
a grazing angle. Such a ray is mostly reflected. Thus, a transparent object reflects light
in a special way. The amount of reflection depends in a complex way on the angle of
incidence and also on the wavelength. We say that such a surface has a coefficient of
specular reflection that’s a function of both the angle and the wavelength.

In practice, it is slow to compute vector M because it has to point in a certain
direction, and also be in the same plane as L and N, so the dot product M •V should
preferably be replaced by a simpler expression that employs just the vectors L, N, and

17 Rendering 863

V. We note that

V • L = cos(2θ + α)
= cos(2θ) cos(α)− sin(2θ) sinα

= cosα[cos2(θ)− sin2 θ]− 2 sin θ cos θ sinα,

and
N •V = cos(θ + α)

= cos θ cosα− sin θ sinα.

Combining these expressions yieldsM •V = 2(N •L)(N •V)−V •L. The intensity of
specular reflection can now be expressed as

Ipks[2(N • L)(N •V)−V • L]n
R2

.

The computation of specular reflection is more intensive than in the case of diffuse
reflection, because it involves determining the vectors N and V for every pixel (if the
light source cannot be assumed to be at infinity, then L also has to be recomputed for
each pixel).

Example: Figure 17.8 shows a surface with a normal in the y direction, N =
(0, 1, 0), a light source at 45◦ in the xy plane L = (−0.7071, 0.7071, 0), and a viewer
at 30◦ from the x axis in the same plane, V = (0.866, 0.5, 0). We get N • L = 0.7071,
N•V = 0.5, and V •L = −0.2588, which yields 2(N•L)(N•V)−V •L = 2×0.7071×
0.5+0.2588 = 0.966. A relatively high reflection (96.6% of the maximum value), because
the viewer is only 15◦ away from the direction of maximum reflection. This large value
is normally reduced when the effects of Ipks and R2 are included. The effect of n can
now easily be illustrated.

Surface

L
N

M

V

450 450

300

150

x

y

Figure 17.8: Specular Reflection Example.

For n = 10, the value above goes down to 70.7%, and for n = 100 (a very shiny
surface), it drops all the way down to 3.14%! With a shiny surface, even an offset of 15◦

is enough to reduce the reflection highlight to almost nothing.
Ambient Reflection. In most cases, we can account for multiple reflections from

nearby objects with the simple model Iaka, where Ia is the intensity of ambient reflection
and ka is the coefficient of this reflection (a parameter that depends on the material).

864 17.3 Gouraud and Phong Shading

In summary, our simple shading model thus assigns to each pixel an intensity I of
reflected light reaching the viewer of

I = Iaka +
Ip[kd(L •N) + ks(M •V)n]

R2
.

Color Shading. The reflection coefficients kd and ka depend on the color of the
incident light. A shading model for a color output device should therefore compute three
intensities IR, IG, and IB for each pixel, and use them to determine the color of the
pixel. For example, IG = IaGkaG + IpG[kdG(L •N) + ks(M •V)n]/R2.

More sophisticated rendering models can compute shadows and take into account
multiple reflections, transparent objects, and shadows (Section 17.5). They can also
deal with complex, nonsolid objects such as waves, smoke, and clouds. Because of these
models, rendering is considered a computationally intensive application.

17.3 Gouraud and Phong Shading

A polygonal surface is especially easy to shade, because we can assume that all the pixels
of a polygon reflect the same amount of light. The particular shading model being used
should therefore be applied just once to each polygon. The resulting surface, however,
looks angular and unnatural. Fortunately, there are two simple methods that result in
a better looking surface by smoothing out the shading. These are the Gouraud and
Phong shading algorithms. The former interpolates intensities and is discussed below.
The latter interpolates normal vectors and its implementation details are similar.

Gouraud’s method [Gouraud 71] smooths out the shading of a polygonal surface by
computing reflection intensities at the corner points of each polygon and interpolating
these intensities at every pixel on the polygon. It proceeds in four steps as follows:

Ia

Ib

0

w

.1
.2

.9

1

0

u

P2
N3

N4

N2

NvN1
P1

P3

1-u

(a) (b)

Figure 17.9: Gouraud Shading.

17 Rendering 865

1. The normal vectors Ni are determined for all polygons i (Figure 17.9a).
2. Vertex normals Nv are computed for each vertex v by averaging the surface

normals of all the polygons sharing the vertex. Figure 17.9a shows one such normal,
calculated at the intersection of four triangles. Its value isNv = (N1+N2+N3+N4)/4.

3. Vertex intensities Iv are computed for all the vertices of the surface by using the
normal vectors Nv of step 2 and any desired shading model.

4. Each polygon is shaded, scan line by scan line, by interpolating the reflection
intensities at its vertices. If the polygon is a triangle, the scanning is done using Equa-
tion (9.5), which is duplicated here:

P1 + u(P2 −P1) + w(P3 −P1) = P1(1− u− w) +P2u+P3w. (9.5)

For each scan line, two intensities, Ia and Ib, are interpolated from the vertex intensities
I1, I2, and I3 (Figure 17.9b) and are then used to interpolate an intensity Ip for every
pixel on the line. Figure 17.10a shows a procedure for scanning a triangle. Figure 17.10b
shows the start and end points of each scan line.

procedure Gouraud(P1,P2,P3,I1,I2,I3);
real I; point P;
for u:=0 to 1 step 0.1 do
for w:=0 to 1-u step 0.001 do
I:=I1*(1-u-w)+I2*u+I3*w;
P:=P1*(1-u-w)+P2*u+P3*w;
Pixel(P,I);

end;

(a)

Value Range Scan Line
of u of w from to

0 0− 1 P1 P3

.1 0− .9 .9P1 + .1P2 .1P2 + .9P3

.2 0− .8 .8P1 + .2P2 .2P2 + .8P3
...

...
.9 0− .1 .1P1 + .9P2 .9P2 + .1P3

1 0− 0 P2 P2

(b)

Figure 17.10: Scanning a Triangle.

� Exercise 17.3: Modify the above triangle scanning procedure to handle a four-sided
polygon.

Gouraud’s shading is a simple method that often produces good results. Its main
drawback is the case where there should be a small shiny reflection (a highlight) inside

866 17.4 Palette Optimization

a polygon. This algorithm computes only the reflection intensities at the corners, so it
never finds out about the highlight.

Phong shading is similar, but it overcomes this shortcoming by interpolating the
normal vectors rather than the intensities. It ends up with an interpolated normal Np

at every pixel p and employs any shading method to calculate the reflection intensity
from the point. This enhances mostly specular reflection.

17.4 Palette Optimization

Color lookup tables are discussed on Page 34. In this section, we assume a lookup table
of 256 entries. Before displaying an image, the table has to be loaded with a palette of
256 colors, and only these colors can later be displayed.

Rendering consists of generating the surfaces and then displaying them. Displaying
a surface is also a two-part task. First, a shading algorithm is executed to determine
the ideal color of each pixel, and then another algorithm is needed, to pick up the best
palette color, the one that’s nearest the ideal color. It is therefore crucial to load the
lookup table with the right 256 colors, the ones that best “represent” the image to be
displayed. This is the problem of palette optimization.

A simple solution is to compute the distribution of colors (count the number of
times each color occurs in the original image) and to load into the
lookup table the 256 most common colors of the image. This simple
solution has a serious drawback, outliers! A color that occurs in just
a few pixels in the original image may be crucial to our understanding
(or our enjoyment) of the image. If such a color (like the green in the
figure) does not appear in the lookup table, the final, displayed image
would look very different from the original. A better method should
load the lookup table with the most common colors of the image, but
also with a representative (or several representatives) of every other
color that happens to appear in the image.

A good example is an image of a beach scene. The dominant colors are blue (water
and sky), yellow (sand), and white (clouds). However, there may be a person in the
image, wearing a green swimsuit. Clearly, the lookup table needs to have at least one
shade of green in it, even though it is going to be used in only a few pixels.

Examining an image, one would be at a loss to know whether it owed its shape to the
original source of light or to the details of the intervening gravitational field. The only
difference between the appearance of the surface of the lake and that of the night sky
is that the former depends on reflection and the latter on refraction.

—Hans Christian von Baeyer, The Fermi Solution, 1993.

A good, although not fast, palette optimization method is median-cut color quan-
tization. It starts with the RGB cube (Section 21.6.1) where each axis is labeled from
0 to 255, and it ends up cutting the cube into 256 rectangular blocks, each containing
about the same number of picture colors. In the beach example, there will be many
blocks in the blue, yellow, and white regions of the RGB cube, but there will be at least

17 Rendering 867

one block in the green region. The last step is to select the color in the middle of each
block and to load the lookup table with those 256 colors. Here are the steps:

1. Determine the extreme values of red in the picture colors. If no color in the
picture has red below, say, 18 and above 240, then those parts of the RGB cube corre-
sponding to red below 18 and above 240 are ignored (we can imagine them being cut
off the cube and thrown away, since the picture has no colors in those parts). The same
thing is done for the green and blue dimensions of the RGB cube.

2. The longest side of the remaining cube is now determined. Let’s say that it is
the red side. All the colors in the picture are sorted by their red values and the median
color is picked up. The median is that shade of red that has equal numbers of shades
of red above and below it. If it is, for example, (56, x, y), then there are equal numbers
of colors in the picture with red < 56 and with red > 56. The RGB cube is now cut at
red = 56, producing two rectangular blocks.

3. The above process is now applied to the two blocks created in step 2. Each is
cut at a median, which produces four blocks.

4. The process of cutting blocks is repeated four more times, for a total of eight
times, producing 28 = 256 blocks. Because the cuts are always done at the median, each
of the final 256 blocks has the same number of picture colors.

5. The center of each of the blocks is calculated, using the corner coordinates of
the block, and is added to the color lookup table. An even better result is obtained by
averaging, in each block, all the picture colors included in the block, but this is even
more time-consuming.

17.5 Ray Tracing

The shading methods described so far share an important defect. They shade each
object in the scene separately. If the objects are dull, this basic shading produces good
results. In a scene with shiny objects, however, each object may be reflected in other
objects, so shading objects separately may result in an image that looks wrong, artificial,
and unreal. The ray tracing method discussed here is based on a completely different
approach to shading and is especially successful in rendering complex scenes that consist
of many colored, shiny, and transparent objects (see Plates A.2, G.4, H.3, and K.2).

The term “ray tracing” refers to any method that approaches a problem by comput-
ing the paths of rays or particles. In addition to its use in computer graphics, ray tracing
is also employed in physics, mostly to analyze the behavior of optical devices. Notice
that we can imagine a light ray as either a thin, mathematical line, or as a stream of pho-
tons traveling together along the same straight path until they are absorbed, reflected,
or refracted (slowed down in dense material).

When a light ray (or equivalently, a beam of photons) hits the surface of an object,
it may be (fully or partly) absorbed, reflected, or refracted. Some surfaces absorb part of
the light and in response emit photons of longer wavelengths and in different directions.
This phenomenon, called fluorescence, is rare and is generally disregarded by rendering
software. Notice that conservation of energy applies to the energy of photons as well.
If 40% of the light is absorbed by a surface and 60% is reflected by it, then nothing is
refracted. Ray tracing can handle absorption, reflection, and refraction.

868 17.5 Ray Tracing

History. The history of ray tracing starts in 1968, with ray casting, This was a
simple rendering method where rays are traced from the eye (more accurately, from an
eyepoint), through the pixels of the final image, all the way back to the first surface they
hit. Once the intersection point of a ray and a surface has been determined, the ray
casting algorithm may employ any shading method to determine the color and brightness
of the pixel through which the ray was sent.

In 1979, Turner Whitted extended ray casting to ray tracing. In hindsight, this was
the obvious step, but ray tracing is computationally intensive and computer hardware in
the late 1970s was much slower than today. Nevertheless, once the first step was taken,
researchers and programmers immediately realized the advantages of the ray tracing
approach (the simulation of refraction, multiple reflections, and shadows) and tried to
implement it in full or in part.

Teraflop club: /te’r*-flop kluhb/ [FLOP = Floating Point Operation] n. A mythical
association of people who consume outrageous amounts of computer time in order
to produce a few simple pictures of glass balls with intricate ray-tracing techniques.
Caltech professor James Kajiya is said to have been the founder.

—Eric Raymond, The Hacker’s Dictionary.

A good, detailed reference for ray tracing is [Glassner 89], but see also chapter 8 of
[Hill 06] for a simplified, two-dimensional example. Many other references are available
in the standard computer graphics literature.

Ray tracing in computer graphics is based on the fact that whatever method we
use for rendering a scene, we end up watching it as a rectangular set of pixels. Most
often, an image is viewed on a screen where each pixel sends light of a certain color and
intensity to the eye. Thus, the problem of rendering can be stated as follows: Determine
the color and intensity of each pixel on the screen. In real life, light starts from a light
source, it hits an object and is partly reflected. It may hit other objects and be reflected
by them, and it may eventually, after bouncing around several times, emerge from a
pixel on the screen, enter our eye, and be perceived by us as a small dot. The principle
of ray tracing is to reverse this process. Instead of a light ray proceeding from its source
to our eye, it is traced from our eye, through a pixel on the screen, to the objects that
reflected it, and eventually to its source. The tracing makes it possible to determine
what color and intensity reach our eye from any pixel. Thus, ray tracing simulates the
paths of many rays of light backward, from their target to their source.

Figure 17.11 shows a simple scene with a few objects and four rays traced. Ray a is
traced to the dodecahedron on the coffee table and from there to the ceiling, where it is
traced back to the top of the light fixture. It is clear that after two reflections, the light
has lost much of its intensity. so the pixel through which ray a emerges should appear
dark. Ray b is traced directly to the light source, so the corresponding pixel should be
painted bright. Both rays c and d emerge through their corresponding pixels and strike
the camera after one reflection, so these pixels should be assigned shades between those
of a and b, depending on how much light the wall and the dodecahedron reflect. The
precise colors of the pixels depend on the amounts of diffuse and specular reflections

17 Rendering 869

d

cb

a

Figure 17.11: Ray Tracing: The Principle.

of the various objects. Recall that specular reflection involves highlights whose color is
that of the light source regardless of the color of the object.

� Exercise 17.4: Tracing rays of light backward seems counterintuitive. Why not start
at the light source and trace each ray of light forward until it enters the eye through
some pixel on the screen?

Even this simple example illustrates the main drawback of ray tracing. This ap-
proach to rendering requires the determination of a vast number of intersection points.
The computational cost of ray tracing is therefore much higher than that of shading
objects separately, one by one (scanline rendering). As rays are traced back deeper and
deeper into the scene, they may intersect more and more objects. Current (2010) dis-
play monitors may consist of millions of pixels (a typical 1920× 1200 display resolution
corresponds to more than 2.3 million pixels), and each ray traced back through a pixel
may be reflected several (even many) times before it ends up at a light source.

� Exercise 17.5: If fully traced, will every ray end up at a light source?
The tracing process may be speeded up considerably when we realize that most

objects are not shiny and reflect only a small percentage of the light. Thus, with each
reflection, the intensity of the ray that finally emerges from a pixel is greatly reduced.
It therefore makes sense to stop the tracing when it becomes clear that the intensity
of the final ray is below a certain threshold, and simply paint the corresponding pixel

870 17.5 Ray Tracing

black. Another shortcut is provided by the natural tendency of a light beam to diverge.
We know that the intensity of a light beam falls off as the square of the distance. If
the intensity of a ray falls to 1/2 of its original after traveling a distance d, then after
traveling 3d units it drops to (1/2)3 = 1/8 of its original. A practical ray tracing
algorithm should therefore stop the tracing when the total distance traveled by a ray is
greater than another user-controlled threshold parameter.

Ray tracing is therefore expensive, but its chief advantage is a high degree of realism,
and after all, realism is the supreme goal of computer graphics (but see the beginning
of this chapter for non-photorealistic rendering). The ray-tracing approach to rendering
can simulate the important optical effects of reflection, refraction, scattering, chromatic
aberration, and shadow casting. It often results in an image that is difficult or even
impossible to distinguish from a photograph of a real scene.

In addition to realism, ray tracing can simulate the effects and constraints of a real,
physical camera on an image. Among the important camera effects are limited depth of
field (Section 26.4.7) and the shape of the aperture, which is typically a pentagon or a
hexagon.

As if these advantages were not enough, ray tracing also determines those surfaces
that are visible to the eye at its current location. Imagine a ray of light traced back
from the eye through a pixel p. If this ray intersects surface s at point t, then no other
points on s or on any other surface are visible to the eye at pixel p. Once rays have been
traced from the eye to all the pixels on the display screen, only those surfaces that are
visible to the eye will appear on the screen. Thus, the additional work required by ray
tracing is somewhat alleviated by not having to have an extra step for visible surface
determination.

The preceding discussion should convince the reader that ray tracing can also handle
multiple reflections. Images with multiple reflections are not common, but they can be
striking, colorful, complex, and beautiful. Try the following experiment. Take a small
mirror and stand in front of a large mirror while holding the small mirror in front of
you, facing the large mirror. Figure 17.12 and Plate G.4 illustrate the series of infinite
reflections you see. This effect is simulated in ray tracing, except that the simulation
(like everything else in real life) must be finite. It stops when either the number of
reflections or the total distance traveled by the light exceeds a threshold parameter.

Sophie Sheekhy stood in front of her mirror in her white shift. She stared at herself,
and herself stared back at herself. The mirror on the pine chest reflected the cheval
glass by the door so that she stood behind and behind herself, on a series of thresholds
going white-green into diminishing infinity.

—A. S. Byatt, Angels and Insects (1986).

Once the general approach of ray tracing is grasped, it is easy to understand the
main steps of a ray tracing algorithm. Each ray sent from the eye through a pixel in the
display screen must be traced. The algorithm must find the nearest object (if any) that
it intersects and the precise intersection point. The simplest way of determining this is
to test the ray for intersection with all the objects in the scene. With some thinking,
however, we can easily improve this step. When the software generates an object, it
determines the bounding box of the object (the smallest rectangular box into which the
object fits). The ray tracing algorithm can use the bounding boxes to quickly eliminate

17 Rendering 871

Figure 17.12: Ray Tracing: Infinite Reflections.

many objects from the tests. For example, if a ray enters the scene at a z coordinate of
z0 and it goes “up” in the scene (i.e., its z coordinate increases as the ray propagates),
then the ray cannot intersect any object the z coordinate of whose bounding box is less
than z0.

It is also possible to have a hierarchy of bounding boxes. If the object is a chair,
then each of its parts can have a bounding box, and the bounding box for the entire chair
is constructed by selecting the extreme coordinates of the individual bounding boxes.
The ray tracing algorithm tests the current ray against the general bounding box. If
there is no match, the ray does not intersect the chair. If there is a match, there may
be an intersection, and the algorithm tests the ray against each part’s bounding box to
find a possible match.

Another way to speed up the tracing of rays is parallel execution. The tracing of a
ray determines the color of a pixel of the image. Each ray is therefore independent of
all the other rays, which makes ray tracing a natural candidate for parallel execution.
Imagine a parallel computer withN processors sharing a central memory. Each processor
may be assigned an area of the image, and they can work in parallel, tracing N rays in
the time it previously took to trace one ray. In practice, this type of computer suffers
from memory contention. Several processors may try to access memory while memory
is busy serving another processor. A solution may be to construct a parallel computer
where each processor has its own memory.

The discussion of curves and surfaces in Part III of this book makes it clear that
even though an image may be smooth and curved in principle, once it is rendered in the

872 17.5 Ray Tracing

computer it becomes a grid of pixels with a limited resolution. This is an important fact
that simplifies the task of implementing ray tracing.

In addition to multiple reflections, ray tracing can also handle refraction and trans-
parent objects. When an object is created, the software has to construct a table with
the bounding box and other attributes of the object. Among other attributes, this table
contains reflection and transparency information. For example, the object may reflect
10% of the light (2% diffuse and 8% specular), absorb 30%, and transmit the remaining
60%. The refraction index may be 2.418 (that of diamond) and the surface color may
be blue (more precisely, 475 nm, or RGB (0, 0, 255), or HSB (240, 100, 100)).

When the ray-tracing algorithm determines that a traced ray intersects an object,
it has to check the object’s data table for transparency (or refraction). If the object is
transparent, the ray is split, as illustrated in Figure 17.13, into two secondary rays, a
reflection ray and a transmission (or transparency) ray. Ray a in the figure is traced
back to the prism, so part of it (b) is reflected and part (c) is refracted (some of the
beam’s energy may be absorbed). Similarly, ray d intersects the rectangular box, and
the algorithm must create, and recursively trace, secondary rays e and f . It is now
obvious that a ray tracing program must be recursive and may have to complete a huge
amount of work, tracing many thousands of both primary and secondary rays.

a

b
c

d e f

Figure 17.13: Ray Tracing: Refraction.

Shadows. In the presence of light, opaque objects cast shadows (see Plates A.2,
G.1, G.2, I.7, L.1, and O.2), and this optical phenomenon can also be simulated in ray
tracing.

Figure 17.14 illustrates how this is done. A ray a is traced into the scene. It hits a
surface (the floor) and is reflected (b) as usual, in order to locate its next intersection.
However, another shadow ray (c) is also created and is sent toward the light source
(there is only one light source in the figure, but in principle there may be any number).
This ray intersects the opaque rectangular box on its way to the source, which means
that point p is in shadow. The pixel through which ray a passes should therefore be
dark.

If there are several light sources, then a shadow ray has to be sent to each. Even
more, if a light source has a finite extent (if it is more than a mathematical point), then
several rays should be sent to it.

Creating and tracing shadow rays adds extra work, but also helps to reduce the
total amount of work of the raytracer, because once it is known that p is in shadow,
there is no need to create and trace ray b.

17 Rendering 873

a

b

c

p

Mirror

Figure 17.14: Ray Tracing: Shadows.

In scenes with shiny surfaces, the statement above may not be true. It may happen
that ray b will intersect a very bright object, perhaps a mirror that reflects the light
source directly to point p. In such a case, p will not be in complete shadow. In general,
the knowledge that p is in direct shadow helps the ray tracing algorithm to select the
correct color and brightness for p. See also the discussion of diffuse interreflection in
Section 17.6.

(Here is a typical example of a point that is in shadow, yet is brightly illuminated.
A room with one small window open. It is sunny outside, but the room is dark. A child
is standing outside and is reflecting the sun into the room with a small mirror. Even
though the room is generally dark, there is now a bright patch of light on one wall, and
this increases the ambient light in the entire room.)

After reading the material in this section, it is useful to look at a list of the main
steps of a ray tracing algorithm.
for all pixels p do
begin

1. Construct a ray R(p) from the position of the eye through p.
2. Determine the intersections of R(p) with all the objects in the scene.
3. Select the intersection point (if any) that is nearest the eye position.
4. Compute the color of pixel p. This is done recursively by constructing a reflection

ray, a transmission (or transparency) ray, and shadow rays (one per light source) and
following these rays recursively until each ends at a light source or bounces too many
times or propagates too long.

5. Set p to the color determined in step 4.
end.

Clearly, most of the work is done in step 4, where one ray is followed and processed
and new rays are created and pushed into the recursion stack to be processed later.

As if this algorithm is not complex enough, there are additional problems and points
to consider. Perhaps the most important drawback of the “basic” ray tracing method
is lack of sampling. Figure 17.15(a) illustrates this problem. The small blue and green
objects are smaller than a pixel and are completely lost when rays are sent from the eye.

874 17.5 Ray Tracing

d e

a

c

b

d e

a

p

q

n
c

b

(a) (b) (c)

Figure 17.15: Ray Tracing: Small Objects and Adaptive Supersampling.

If an object in the scene is smaller than a pixel, the object cannot be seen, but in
a realistic rendering it should not disappear completely. Instead, its color should affect
the color of the pixel of which the object is part. This problem was immediately noticed
by workers in the ray tracing area and several solutions have been proposed as follows:

Send several thin rays through each pixel, trace all the rays to determine the colors
they return, compute the average color, and assign it to the pixel. This color will reflect
the fact that a small, invisible object exists at that pixel. If we decide to divide each
pixel into k × k subpixels, then this approach increases the amount of work by a factor
of k2, a price that is justified only in those cases where the small objects are important.
This approach is referred to as supersampling.

Adaptive supersampling is more complex to implement, but is much faster. The
idea is to identify those pixels that seem to cover small objects and concentrate on
them. Figure 17.15(b) shows five rays traced through the four corners and the center
of a square pixel. The rays are fully traced and the colors of the five points are saved.
The four pairs of colors (a, c), (b, c), (d, c), and (e, c) are prepared and compared. If all
pairs are equal (or if their differences are below a certain threshold parameter), then
the algorithm assumes that there are no small objects behind the pixel and the pixel
is painted color c. If two pairs, such as (b, c) and (a, c), are similar and the other two
are different, as in Figure 17.15(c), then the algorithm assumes that there is a small
object behind the red quadrant aqpc. In this case, the algorithm traces rays p, q, and
n, constructs four color pairs, and performs similar color comparisons. This process can
be repeated several times for smaller and smaller quadrants.

Stochastic sampling. Instead of tracing rays in a regular pattern in each pixel,
stochastic sampling creates rays that are distributed within the pixel in a semi-random
pattern called a Poisson disk distribution or blue noise (see insert below). The process
starts by generating a large number of random dots in the pixel, and then eliminating
many of them such that the remaining dots are always separated by a certain minimum
distance. This method is computationally expensive but is claimed to produce excellent
results.

The term stochastic (from the Greek στóχoς, meaning aim or guess) means random.
A stochastic process is non-deterministic; the next state of the process is determined
not just by deterministic rules, but also by some random element.

17 Rendering 875

Poisson disk distribution

Section 21.3 discusses the structure of the human eye and its photosensitive cells,
the rods and cones. Here, we concentrate on the spatial distribution of the cones (see
also [Deering 05]). These cells are located in the retina and most of them are found
in a sensitive part of the retina called the fovea (or yellow spot). The fovea is a small
(< 1mm2) but very special region of the retina, where the cell concentration is highest
and the sampling of light is maximal. There are about 200,000 cones per square mm in
the fovea of an adult eye, to provide maximum image resolution and color sensitivity.
In order to cover the space most efficiently, the cones are arranged in a hexagonal
(honeycomb) pattern. (To visualize this pattern, hold a stack of round toothpicks in
your hand and look at their tips.)

Outside the fovea, both the rods and cones are distributed less tightly. In the early
1980s, it became known that the distribution of cones outside the fovea is mostly random,
but obeys a simple rule, individual cones are never closer than a certain distance. This
distribution is often referred to as a Poisson disk distribution, but is also known as blue
noise.

Figure 17.16: Poisson Disk Distribution of Points.

Caustics. Ray tracing is based on backward tracing of rays, from the eye to the
light source. Is it computationally expensive, but is feasible. It is also possible to
consider forward ray tracing, from the light source, through reflections, either to the eye
of the observer or in another direction, where it is ignored by the algorithm. Clearly, the
number of light rays is too great to completely simulate, but this approach can simulate
the phenomenon of caustic better than ray tracing.

A caustic (in optics) is the envelope of light rays reflected or refracted by a curved
surface or object. Such an envelope can be seen when it is projected on a surface.

876 17.6 Photon Mapping

Geometrically, a caustic is a curve or surface to which each of the light rays is tangent.
The rainbow is a familiar caustic. A common example is shown in the figure, where the
parallel light rays from the sun project the (wide) surface of the water onto a narrow
pattern on the bottom of the glass and on the bright, diffuse surface. Often, light shining
through ripples causes caustics in a shallow body of water.

Figure 17.17: Caustic Cast by Water in a Glass.

17.6 Photon Mapping

Photon mapping is a two-pass rendering technique that combines the advantages of
forward and backward ray tracings. In the first pass, photons are traced forward from
the light source and are used to generate and collect illumination information which
is stored in a data structure (the photon map). The second pass computes the actual
rendering using data from the photon map. Rays are traced backward from the eye to
objects in the scene to determine the surface points visible to the eye, and the photon
map is then used to estimate the illumination at each visible point. Reference [Jensen 05]
is by the developer of this method.

Photon mapping produces images that are especially striking and realistic in the
following cases:

Caustics. Those concentrated patterns of light reflected from and refracted by thick
layers of glass or by the surface of water.

Diffuse interreflection. This is a phenomenon where light reflected by a diffuse
surface is reflected again by another surface such as the ground, a wall, or furniture. In
this way, light reaches areas that are supposed to be in a shadow (i.e., points from which
a light source is not visible). If the original diffuse surface is colored, the reflected light
inherits that color, which is in turn given to the surrounding objects.

17 Rendering 877

Subsurface scattering. This phenomenon occurs where light hits the surface of an
object and is scattered in various directions before being absorbed or reflected. Scatter-
ing happens when the light is reflected at various angles inside the object, perhaps as
a result of the object having layers of varying refraction indexes. The light eventually
emerges outside the object, but not at the refraction angle. Materials such as marble,
skin, and milk exhibit this kind of optical behavior.

In the first pass of photon mapping, photons are sent from the various light sources
into the scene. When a photon hits a surface, its direction and the coordinates of the
intersection points are stored in the photon map. The data table of the surface is then
examined to decide on the future of the photon. The table contains percentages of
absorption, reflection, and refraction. A random number is then produced and is used
to determine the future of the photon. The photon may be absorbed (in which case it
simply disappears) or it may be reflected or refracted (in these cases its new direction
is determined and the photon is traced further).

The second pass (rendering). The photon map is now used to estimate the illu-
mination (color and brightness) of the display pixels, as in traditional ray tracing. For
each pixel, a ray is traced from the eye, through the pixel, until it intersects an object
in the scene at a point P or until it passes through the scene without hitting anything.

The algorithm now computes the amount and color of light emitted at P as the
sum of direct and indirect terms. The indirect illumination is estimated from the photon
map. For the direct illumination, the algorithm sends rays from P to each light source.
If such a ray does not hit any object on its way, then the color, intensity, and distance
of the light source are used to compute the direct illumination at P.

17.7 Texturing

Texturing is a method commonly used to add realism to an image (see Plates A.6, A.8,
D.2, H.5, I.4, I.7, J.1, J.3, K.2, and N.1). The idea is to create a table with texture
values (black and white, or colors) and map it onto the surface. The texture table is just
a small bitmap, where each entry describes the color of a pixel. In practice, the table is
an array T [m,n] of values. Texturing is done in one of two ways:

1. A surface P(u,w) is given and has to be textured. The entire surface has to be
scanned and each pixel should be assigned a value from the texture table. Normally, the
surface is much bigger than the table. The table covers only a small part of the surface,
and several copies of the table have to be used to texture the entire surface. The surface
is scanned by varying u and w independently from 0 to 1, and a function is needed that
maps each pair (u,w) to a pair of indexes (i, j) in the texture table (where 1 ≤ i ≤ m
and 1 ≤ j ≤ n).

2. Several surfaces are given and the entire scene is shaded by ray tracing. Instead
of shading each surface independently, we follow light rays from the eye of the observer
through the screen and into the scene. Such a ray may hit a surface P(u,w) at point
P = (x, y, z). We have to find the pair (u,w) that corresponds to this point and map
this pair to a pair of indexes (i, j) in the texture table.

Regardless of the method used, texturing is affected by the topology of the surface.
The texture table can be considered a flat rectangle. If the surface is anything other

878 17.7 Texturing

than a flat plane, then mapping the table to the surface may introduce distortions (in
the same way that mapping the spherical Earth to a flat sheet of paper always involves
distortions). This is why there is no single mapping that is good for all surfaces. Mapping
functions have to be derived for common, regular surfaces, such as a sphere, a cone, a
cylinder, or a torus. When given a general surface, the user should decide which of the
known mapping functions to use, based on the shape of the surface given.

Example: Mapping a cylinder. This is a simple example because it is easy to wrap
a rectangle on a cylinder without distortions. We start with the parametric equation of
the cylinder (Equation (Ans.7)):

P(u,w) =
(
a(2u− 1), R sinw,R cosw

)
,

where 0 ≤ u ≤ 1 and 0 ≤ w ≤ 2π. This describes a cylinder that’s 2a pixels long, with
a radius R, centered on the origin and pointing in the x direction. We assume a texture
table T (i, j), where 0 ≤ i ≤ m− 1 and 0 ≤ j ≤ n− 1.

The quantity round(u(2a − 1)) has integer values that vary from 0 (when u = 0)
to 2a− 1 (when u = 1). We therefore define i = round(u(2a− 1)) mod m. This assigns
index i values between 0 and m− 1 and causes several copies of the texture table to be
laid side by side along the cylinder.

For j, we similarly start with round(w(2πR−1)). This quantity gets integer values
in the range 0 (when w = 0) to 2πR− 1 (when w = 1). The index j itself is now defined
as j = round(w(2πR− 1)) mod n.

The surface can now be displayed by a double loop, on u and on w, where for each
point, we perform two steps:

1. The normal vector at the point is calculated and a shading model is used to
calculate the reflection intensity from the point.

2. A pair of indexes (i, j) is calculated, and the value T (i, j) is used to modify the
reflected intensity of step 1.

When ray tracing is used, we start with a ray that intersects the cylinder at a point
(x, y, z). We need to find the values of (u,w) that correspond to that point. We consider
the single equation (

a(2u− 1), R sinw,R cosw
)
= (x, y, z),

a system of three equations in the two unknowns u and w. The solutions are

u =
(x

a
+ 1
)

/2, w = arcsin(y/R) = arccos(z/R).

Once u and w are known, a pair of indexes (i, j) can be calculated as above.
Example: Texturing a Sphere. A sphere of radius R, centered at the origin is

expressed by:
(R cosu cosw,R cosu sinw,R sinu),

where −π/2 ≤ u ≤ π/2 and 0 ≤ w ≤ 2π. A large circle on this sphere has length 2πR,
so a meridian (constant w) from the south to the north pole covers πR pixels. The
quantity u+π/2 varies in the range [0, π], so (u+π/2)R varies in the range [0, πR]. We,
therefore, define the first mapping index as i = round((u+ π/2)R) mod m.

17 Rendering 879

Varying w for a constant u takes us along a latitude of radius R cosu. This radius
varies from R at the equator (where u = 0) to zero at the poles (where u = π/2 or −π/2).
The circumference of this circle is, therefore, 2πR cosu, and half the circumference is
πR cosu.

Since w varies in the range [0, 2π], the quantity (w/2)R cosu varies in the range
[0, πR cosu]. The second mapping index, j, is therefore defined as

j = round((w/2)R cosu) mod n.

The distortion can be observed by noticing that when u = π/2, the general expres-
sion of the sphere reduces to point (0, 0, R), the north pole, regardless of w. The first tex-
ture index for this point is i = round(πR) mod m. This is a number in the range [0,m−
1]. However, the second texture index for this point is j = round((w/2)R cos(π/2)) mod
n = 0.

When ray tracing is used, a ray may intersect the sphere at point (x, y, z). We need
to calculate the corresponding values of (u,w). The equation

(R cosu cosw,R cosu sinw,R sinu) = (x, y, z)

is used as a system of three equations with the two unknowns u and w. The solutions
are u = arcsin(z/R) and tanw = y/x⇒ w = arctan(y/x).

17.8 Bump Mapping

Shading models are supposed to create realistic-looking surfaces, but the simplest shad-
ing methods, such as the Gouraud and Phong models, result in surfaces that are ideally
smooth and therefore look artificial, as if made of plastic. Real surfaces are not com-
pletely smooth. They may have stains, holes, or cracks in them. At the very least, a real
surface features small irregularities. Bump mapping is a method that simulates such
irregularities.

The principle is to perturb the normal to the surface at every point before the point
is shaded and use the new normal to shade the point. The perturbation can be random,
or it may be based on a table. A good example is the surface of a strawberry. It is
shiny but not smooth. Anyone familiar with this fruit knows that its
surface varies in a complex but regular way. It is possible to prepare a
small table that describes the variation in surface height over a small
region of the strawberry and apply the table repeatedly to create a
“strawberry” effect on any surface.

If the bumps are to be random, no special algorithm is needed. A normal vector
N = (Nx, Ny, Nz) is first normalized, then perturbed by adding random numbers to each
of its three components. A component of a unit vector is always in the range [−1, 1], so
the random numbers should be drawn from a smaller interval, say, [−0.001, 0.001].
Bump: A small area raised above the level of the surrounding surface; protuberance.

—A dictionary definition.

880 17.8 Bump Mapping

If the bumps are not random, we assume that a bump table B(u,w) is given, that
specifies the bump size for every surface point. Note that B is a table of numbers, not
of points or vectors. The value of each table entry B(u,w) indicates by how much the
corresponding surface point P(u,w) is to be raised (or lowered, if B(u,w) is negative).
Such a bump table can be generated by a drawing/painting program, or by scanning
a picture. The surface is denoted, as usual, by P(u,w), the two partial derivatives are
denoted Pu(u,w) and Pw(u,w), the normal is the cross-product N(u,w) = Pu(u,w)×
Pw(u,w), and the unit normal vector is denoted by n(u,w). The mapping rule is as
follows: Each surface point should be raised by B(u,w)n (note that this defines both
the magnitude and direction of the raise). We use the notation P∗(u,w) = P(u,w) +
B(u,w) · n, where P∗(u,w) is the new surface point. The new tangent vectors are

P∗
u(u,w) = Pu(u,w) +Bu(u,w) · n+B(u,w) · nu,

P∗
w(u,w) = Pw(u,w) +Bw(u,w) · n+B(u,w) · nw.

Next, we note that the derivatives nu and nw of the unit normal depend on the curvature
of the surface. If the surface is not highly curved, the magnitudes of those derivatives
are small and they can be ignored. We can therefore write P∗

u ≈ Pu + Bu · n and
P∗
w ≈ Pw +Bw · n.
The normal N∗(u,w) to the new surface P∗(u,w) is the cross-product

N∗ = P∗
u ×P∗

w

= (Pu +Bu · n)× (Pw +Bw · n)
= Pu ×Pw +Bu · n×Pw +Bw ·Pu × n
= N+Bu · n×Pw +Bw ·Pu × n
= N+ αPu + βPw.

It is the sum of the original normal N and of two cross-products, each scaled by a
derivative of B. The first cross-product is perpendicular to both Pw and n, so it points
in the direction of Pu. The second cross product is perpendicular to both Pu and n, so
it points in the direction of Pw.

The new normal is now used to shade the surface point. Note that we don’t actually
move or “bump” the surface point P(u,w) to P∗(u,w). We just compute a new normal
N∗ and use it to shade the point.

It is also important to note that the bump map B itself is not used by the algorithm,
only its derivatives. In practice, good values for the derivatives can be obtained by
subtracting

Bu(u,w) = B(u+ s,w)−B(u− s,w),
Bw(u,w) = B(u,w + s)−B(u,w − s).

where s is a convenient step size, and the indexes u ± s, w ± s should be calculated
modulo the size of the bump table.

17 Rendering 881

17.9 Particle Systems

Part III of this book discusses curves and surfaces, but the surfaces it deals with are
solid. They are not suitable for representing non-solid or particulate objects such as
hair, fur, grass, dust, fire, sparks, smoke, fog, and water spray, as well as glowing trails
and snow storms. Such objects can be created and manipulated by a technique called
particle systems, the brainchild, in 1983, of computer graphics pioneer William Reeves
[Reeves 83]. The main idea is to construct a non-solid object from a large number of
particles that move and interact according to rules implemented by software. Typically,
software for particle systems generates and manipulates three-dimensional particles, but
two-dimensional particle systems are much simpler to implement and often produce
satisfactory results.

The following is a list of the main components of a particle system:

Particle. A particle is visible (but only for its lifetime) and has attributes such as
shape (a small bitmap), color (or surface texture), size, weight, lifetime, and velocity.
Any of these may be fuzzy, i.e., may be specified by a central value and a range of
variability allowed around that value. Thus, the lifetime of a particle may be specified
as 60 animation frames ±25%, i.e., from 60 − 15 to 60 + 15 frames. A complex object
is modeled by generating many particles and moving them together, much as a flock of
birds or a school of fish, to achieve the desired visual effect. Once a particle is created,
it behaves according to its built-in attributes and the user has no further control over it
(this is appropriate, since a particle system may consist of many thousands of particles
at any given time).

Emitter. This component generates particles and emits them, but is itself invisible;
it does not appear in the scene. An emitter has two sets of attributes. The first includes
properties such as the path followed by the emitter, its shape, speed, and rate of particle
creation. Also, an emitter may emit several types of particles. The second set consists
of the attributes of the types of particles generated by the emitter. If the emitter has a
shape (if it is more than just a point), it is typically a simple polyhedron whose every
face emits particles in a direction perpendicular to the face.

A prime (or super) emitter. This emitter creates emitters, which in turn spawn
and spray particles. Thus, a single prime emitter may produce a shower of (invisible)
emitters, each producing a shower of particles, similar to the effect produced by high-
quality fireworks that explode several times to produce showers of showers of sparks.

Deflector. This component deflects any particles hitting it. A deflector is a flat
plane (in a two-dimensional particle system it is a line segment) that acts as a mirror,
but is itself invisible. The attributes of a deflector are its position in space and its size.

Absorber. An absorber is a plane, much like a deflector, but it absorbs any particles
hitting it. A sophisticated particle system may allow a certain percentage of particles
to pass through an absorber.

Blocker. A blocker is a region of space in which particles are not visible. They
disappear momentarily as if they are passing behind an unseen object, and then reappear.
The background color is not affected by a blocker.

882 17.9 Particle Systems

Force. This is a vector associated with every point in space. When a particle is
located at point P, it feels the force at that point, and this changes its velocity (direction
and speed). Forces are used to simulate the effects of wind, gravity, friction, and electric
and magnetic fields.

The software of a particle system consists of a loop where the following tasks are
executed in each iteration:

Update. The positions of all existing particles are updated based on rules that
must include the effects of deflectors and forces. Particles past the end of their lives
are deleted, as are also those particles that happen to hit an absorber. The positions of
all emitters and prime emitters are also updated. New particles are produced from the
emitters depending on each emitter’s spawning rate. Collisions between particles may
occur, but they are generally ignored because they are expensive to simulate and also
because the number of particles may be huge and a viewer cannot follow the precise
path of every particle to make sure all collisions are simulated properly.

Rendering. If a particle is a single pixel or a very small bitmap, its color may not
depend on the existing light sources and may be constant or may vary with time (for
example, a particle in a gas flame may change color from blue to red). If the particle is
bigger, it may have to be shaded according to the existing light sources. However, this
type of shading does not require high-precision computations and may be done sloppily
because of the large number of particles and because they often move at high speeds, so
a viewer may not be able to tell when particle colors are wrong.

Similarly, visible surface determination may not be a problem. With thousands
of particles, it is impractical to determine the visibility of every one. Thus, a particle
system looks best in applications where visibility determination is irrelevant. Fog is a
good example of such a case. The software simply renders every particle, without regard
to its visibility, and the result looks fine, because of the large number of particles and
because they are so similar (or even identical).

A particle system may be animated (also referred to as snow) or static (often called
hair). In the former case, the life of a particle is distributed over time, while in the latter
case the entire life (the path and color of the particle) is rendered when the particle is
generated, so it may look like a thin strand of hair (where the thickness may vary along
the path).

Figure 17.18 shows examples of (a) Snow flakes, (b) bubbles, and (c) water jet,
constructed by the particle illusion software [wondertouch 10]. See color Plates B.2 and
E.2 for more examples.

The following is quoted from The Particle System API, free particle software in
C++ by David K. McAllister [McAllister 10]:

The Particle System API allows C++ application developers to easily
include dynamic simulations of groups of moving objects. The API is much
lighter weight than a full physics engine. It is especially useful for eye candy
in games and screen savers, but is also used in off-line animation software.

With the Particle System API you create a group of particles, then describe
the components of the particle effect using actions like Gravity(), Explosion(),
Bounce(), etc. You apply the actions to the particle group at each time step,

17 Rendering 883

Figure 17.18: Particle System, an Example.

then read back the particle positions and other attributes into your app, or
send them directly to the GPU as a vertex array or as geometry instances.

17.10 Mosaics

The ancients believed that the world is made up of four elements. They did not have
much science, but they certainly had lots of art. One art form that was more developed
and used in ancient times than today is mosaic. Mosaic is the art of constructing images
(pictures or patterns) with small pieces of colored material, such as stone, glass, shells,
minerals, tiles, or ceramics. The pieces can be squares, triangles, or hexagons (such
shapes fill up a two-dimensional space), but they may also have irregular shapes. The
pieces are embedded in mortar and each serves as a “pixel” of the mosaic. Figure 17.19
shows two beautiful mosaics uncovered by archeologists. Mosaics can be preserved,
buried in dirt or clay, for long periods of times. The oldest known examples date back
to the third century b.c.

Figure 17.19: Ancient Mosaics.

Making a mosaic is time consuming and requires much effort and concentration,
which is perhaps why today this art is not very popular. However, 1933 saw the birth
of photomosaic, the modern form of this ancient art. A photomosaic is an image (the
primary) that consists of small regions called tiles (normally equal-size squares or rect-
angles), each of which is a small image (taken from a large library of images) whose
average color is similar to the average color of the tile in the primary image. When a
photomosaic is viewed from a distance, the details of the small images become blurred
and the eye perceives each as a large pixel. Naturally, a close examination reveals the
details of the small components of the primary. These components resemble a huge

884 17.10 Mosaics

pile of images, but viewers generally agree that photomosaic is an art form. Reference
[mosaic history 10] is a history of photomosaics.

(The term photomosaic has another meaning. It may also be used to describe a
large photograph made of small, overlapping images that are stitched together. Such a
panorama is common with photos taken by satellites or other space vehicles.)

To some viewers, a photomosaic may seem to reveal secrets in the primary image.
This is especially true if the library images are somehow related to the primary, such as
when (1) the primary is a person and the images are portraits of family and friends or
(2) when the images are parts of the primary itself.

The main tasks in preparing a photomosaic are to partition the primary image into
many small tiles, determine the average color of each tile, and search among the many
images in the library for the image that offers the best match to the tile. It is easy to
see why these tasks lend themselves to automatic execution by a computer. The first
examples of computerized photomosaics appeared in 1993.

The detailed steps in creating a photomosaic by computer are as follows:

Select the primary image and a large library (at least hundreds and preferably
thousands) of images.

Decide on the size and shape of the tiling grid. The triangle, square, and hexagon
are the only regular polygons that, in a tessellation, fill the plane (Figure 17.20). Thus,
the tiling grid may consist of one of them. If squares or rectangles are used as tiles,
they may be laid in rows and columns or in a brick pattern, but their locations may also
be random and irregular (a scattered layout). It is possible to create a photomosaic by
placing many small squares or rectangles over the primary, and some may even be tilted.
Such a random grid does not fully cover the plane, but areas in the primary image not
covered by any tile are simply left in their original colors.

Figure 17.20: Regular Polygons.

Once the size and shape of the tiles have been determined, each image in the library
is scaled to this size and shape (this is possible only if the tiles are identical). It helps
if all the library images have the same aspect ratio.

The main loop starts at this point. It scans the primary tile by tile. The average
color of the current tile is determined and the library is scanned for the image that best
matches this color. This step must implement the following points:

1. For each library image, the software maintains a counter. Once an image has
been selected, its count is incremented by 1. The software flags all the library images
that are feasible matches to a given tile and selects the one with the smallest count.

17 Rendering 885

This produces better results in cases where the same library image would be selected
often, while other images that have the same average color would be ignored.

2. There must be a user-controlled threshold parameter for the software to decide
on a match. If the difference between the average colors of a tile and of a library image
is less than the threshold, the image is considered a feasible match.

3. Large values of the threshold lead to many tiles without a match, in which case
the tile retains its original color. Thus, large values of the threshold parameter result in
a mosaic where many tiles are not replaced by library images. In such a case, the final
mosaic resembles the primary image, but close inspection shows the unmodified tiles,
which to some users may look like cheating.

Here is how a tile T is matched to a library image I. We assume that both are
squares of n × n pixels. Denote the color of a pixel P by C, and assuming that C is
given as the 24 bits R7R6R5R4R3R2R1R0, G7G6G5G4G3G2G1G0, and B7B6B5B4B3B2B1B0,
we interleave these bits to create the 24-bit integer

P = G7R7B7G6R6B6G5R5B5G4R4B4G3R3B3G2R2B2G1R1B1G0R0B0.

Section 2.13.1 shows why P is a good candidate for the title “average of the three
color components of C.” Once this is clear, it is not hard to see why the following
expression—where T (i, j) denotes the 24-bit color average of pixel T (i, j) and similarly
for pixel I(i, j)—is a reasonable measure of the difference of color averages

D(T, I) =

∑n
i=1

∑n
j=1

(
T (i, j)− I(i, j)

)2
n2

.

Any library image I where D(T, I) < Threshold is a feasible match for tile T .
If the tiles are squares or rectangles, it may be possible to obtain much better

results with variable-size tiles. The principle is to locate areas of high detail (or high
noise) in the primary and partition each tile in these areas into four smaller tiles. In
areas of very high image noise, a tile may be partitioned twice, resulting in 4× 4 small
tiles. Section 18.7 discusses the quadtree data structure, which is the natural choice for
partitioning a region into four smaller regions.

In order to implement such a refinement, we need a criterion for measuring the
amount of image noise in a given region. Two methods immediately suggest themselves
as follows:

Apply a Fourier transform or a wavelet transform (Chapter 25) to the pixels of the
region in order to identify the image frequencies in the region. The more high-frequency
data is obtained, the noisier the region.

Apply an edge detection algorithm to determine the number and lengths of edges
in the region. The more edges, the noisier the region.

An algorithm that employs this technique starts by partitioning the primary im-
age into four quadrants. Each is checked for the amount of noise and, if needed, is
partitioned into four subquadrants recursively. Partitioning stops when a “quiet” sub-
quadrant is reached or when the subquadrants are too small (as determined by another
user-controlled parameter).

886 17.10 Mosaics

Another approach to photomosaics is to partition the primary image into a small
number of large tiles, and then convert each tile to a mosaic. This creates a mosaic of
mosaics.

Exploring this idea, however, I suggest an alternative: In this manner, weaving fic-
tional elements in and out of each other, the mosaic is turned into a “mosaic of
mosaics” where the themes of individual sections are more readily juxtaposed against
each other.

—J. M. McDermott.

The basic color matching described here is based on average colors and a threshold
parameter, but this approach can be varied. The following is a short list of variations
on the theme of tile–image matching.

Have just one library image. This image replaces every tile in the primary and its
color is corrected according to the color of the current tile.

Have several or many library images and assign them to primary tiles at random.
Again, when an image replaces a tile, its color is corrected.

Select the library image for each tile manually. Clearly, a user can do a good job
of matching a library image to a given tile, but only if the library (and the number of
tiles) is small.

Match library images to tiles by their edges. When the loop arrives at a tile, it
checks the tile for edges and selects the library image that has the most similar edge
structure. Such matching can produce excellent results, but edge detection is slow and
not absolutely reliable (any edge-locating algorithm may find edges where there are none
and may miss existing edges).

The last topic that needs to be covered is color matching. Given a primary tile and
a matching library image with average colors T and I, respectively, we want to vary the
colors of the image’s pixels such that their new average will be T . The simplest method
is to set the colors of all the pixels of the image to T , but this results in uniform library
images and an ugly mosaic with many uniform tiles.

Better results are achieved when the difference T − I is added to each image pixel
(this is referred to as color shift). Assume that the image consists of n pixels, each with
an average color pi. The average color of the image is I = 1

n

∑
pi and the correction

changes the color of a pixel from pi to qi = pi + T − I. The new average color of the
entire image is now

1
n

∑
qi =

1
n

∑
pi +

1
n

∑
T − 1

n

∑
I = I + T − I = T.

However, some of the new pixel colors qi may be outside the range of reproducible colors,
so the color of such pixels should be corrected differently, by scaling rather than shifting.
The scaling transformation is qi = pi

T
I and it tends to brighten the pixels (if T > I)

or darken them (in the opposite case). Experience shows that color shifts, replaced by
color scaling when necessary, result in reasonable color correction. (See Plate L.4 for an
example of a computer-generated mosaic.)

17 Rendering 887

17.10.1 ASCII Art

The ASCII code was developed in the early 1960s in response to the growing capabilities
of printers. Older printers could print only digits and uppercase letters, but the printers
available in the 1960s could also print lowercase letters and punctuation marks. Modems
also came into use in the 1960s, which made it possible to send and receive data on
telephone lines. This raised the need for control characters (symbols that do not get
printed but act as commands when data is sent and received). The ASCII codes consist
of seven data bits and a parity bit, and so can encode a set of 27 = 128 characters.
Of those, 95 characters are printable and the remaining 33 are control characters that
specify commands such as carriage return, end of text, and ring the bell.

Naturally, the ASCII code was meant to input data into the computer (originaly
from punched cards) and to send data to be printed. Like many other new concepts,
ideas, and devices, some users tried to employ printers and printed text in new ways,
and one of these new applications was ASCII art, a graphics technique that employs
ASCII characters as large pixels of an image.

Images in ASCII art were created as early as 1966 by computer-art pioneer Kenneth
Knowlton. These may be the earliest known examples of this art form.

A curiosity. ASCII art was used in the early days of e-mail to send images in
addition to text. Today it is easy to attach an image to a message, so this application
of ASCII art seems to be dead.

Figure 17.21 shows examples of ASCII art (see also Plate T.1).

 _ ____ ____ ________ _ ________ __________
 dM. 6MMMMb\ 6MMMMb/ `MM'`MM' dM. `MMMMMMMb. MMMMMMMMMM
 ,MMb 6M' ` 8P YM MM MM ,MMb MM `Mb / MM \
 d'YM. MM 6M Y MM MM d'YM. MM MM MM
 ,P `Mb YM. MM MM MM ,P `Mb MM MM MM
 d' YM. YMMMMb MM MM MM d' YM. MM .M9 MM
 ,P `Mb `Mb MM MM MM ,P `Mb MMMMMMM9' MM
 d' YM. MM MM MM MM d' YM. MM \M\ MM
 ,MMMMMMMMb MM YM 6 MM MM ,MMMMMMMMb MM \M\ MM
 d' YM. L ,M9 8b d9 MM MM d' YM. MM \M\ MM
dM _dMM_MYMMMM9 YMMMM9 _MM__MM_ _dM_ _dMM__MM_ \M_ _MM_

:::. .;;ssssssyy=...
::::. .;g2E5132&EEEE55E25c[3t=.
::::. .;@5252eEE5EEEEEEE35525t1tc2:. .
:::::: .gE25E2E1E5EESEEEE5EEEEtt]j;:!!:::c.
:::::.: .gEE2E25@E532@s5@@@@@EEEizz5Ec.;:::E1t:.
::::::: .gEZ3E2EB5E5E5tt2S22EEEEEE35E335=!t::tt=z..
:::::: :@E5g@EE5EEE5E5222EEE53E5E2325:;!5z:!z!:zc;.:;
::::::;EE3@EEEEEE5SEESEE2E5EE5Ett1335:::::::::::!t.:t.
::::::3EEEEEEE25325Z5353EE35355tt33EEt::::c:c!:::::c;i.
::::::!$E3E5EEEE32t335tE33Et1ttttttEt::::::::::;;.:3E3z
:::::::$EEEEEEEEEE33EEE55ttttttttttttt:tz!:::553z3sz7E3L
:::::::@EEEE@EEE3EE3EE1:::tttttttttttt:ttt;JE3E5t13t)!tL
:::;g&SEEEE@EE5ttttttttttzttzzzzz;:::t:::tZz333EE5tt3EtL
:::@E3EEEEE$3133EEEttttttztz3tt33tEz;:;::!3333E3E5Et3351.
::39EEEEEE@E3ESE@@E555ttt33EE2ZEEE5EE33t:::1E3EEEEEE1z::!..
:x@EEEEEEEEEt333EE3311tzzt353@12$E3EEEE3t::::!SSEEEE325scc:..
::JE5EE553Etttt33553ttttt33E5tttttttt1E7::::::J55EEE35C27::.
::::5E1EE35tttt11tttttttt3EEttt33ttttt:::::::JEZ332E5Etzzc!
::::::![j3Zttttt:tttt1tz33553t:::ttttt:::::::33E2t3523EE3L=
::::::!!735ztttztttzzi13Ej3E3Etc:zttttzzt::::[332t55}zttzL
::::::: ::ctttttttt3333KE335tztztttttttz::::Et5ztEEEttz3L
:::::::: :Et33tztiizzzzzzt3ttttt3335Ettz::3EEEZ3ZEtc3F'
:::::::: 1ttt333EE3555EE2E@@Ett3335E3tt:3EEztzt3CzF
::::::: :kttttttt133[33EE53Ettt3EEE55tzEEF:::zF
::::::::: \ttttttt335335t1ttt3333EEEic5Z[.:
::::::::: ?Etttttt:tttt31t33353E535c@c!
:::::::::. JEtttttzzztt33333E3EEE1zt@BE....
:::::::.c..;@5LJEttttttz33333EEEE5E35E5t$$F3Q;:.
:::!::::zt@EQ@.:$Etzttt33EEEE5EEEEEEEE3@QE:Q@E=3L

Figure 17.21: ASCII Art.

The principle of ASCII art is to partition an image (the primary) into square tiles,
measure the average color of a tile, and replace the tile with a character that best
matches it. In the simplest version of this art, the tiles have the same dimensions, so it

mailto:.;@5252eEE5EEEEEEE35525t1tc2:
mailto::@E5g@EE5EEE5E5222EEE53E5E2325:;!5z:!z!:zc;.:
mailto:EE3@EEEEEE5SEESEE2E5EE5Ett1335:::::::::::!t.:t
mailto:zt@EQ@.:$Etzttt33EEEE5EEEEEEEE3@QE:Q@E=3L
mailto:zt@EQ@.:$Etzttt33EEEE5EEEEEEEE3@QE:Q@E=3L
mailto:EE3@EEEEEE5SEESEE2E5EE5Ett1335:::::::::::!t.:t
mailto::@E5g@EE5EEE5E5222EEE53E5E2325:;!5z:!z!:zc;.:
mailto:.;@5252eEE5EEEEEEE35525t1tc2:

888 17.10 Mosaics

makes sense to use a fixed-width (or non-proportional) font, where characters have the
same width. A common example of such a font in current operating systems is Courier.

Before any primary image can be converted to ASCII, the set of ASCII printable
characters has to be examined and the average gray of each character determined. There
are only 95 printable ASCII characters and many may have similar average gray. Thus,
there may be only 40–50 different gray averages in the character set. We denote the
number of different gray averages by G.

The primary is often a color image, but the ASCII characters are black. Thus, the
first step in matching a tile to a character is to determine the tile’s brightness. This is
done by converting the tile’s color from its original color space to the YCbCr color space
and scaling the luminance Y to the interval [0, G − 1]. Once this is done, it is easy to
match the tile to a character.

As with other forms of art, it is possible to modify the basic process in various ways.
The following is a list of ideas for those keen on implementations:

Partition the primary image into hexagons instead of squares. It is also possible to
partition the primary into random squares.

A binary version partitions the primary into small tiles and replaces each tile with
a 0 or a 1.

Another version employs thick and thin fonts. This increases the number of gray
averages significantly.

Quadtrees (Section 18.7) can be used, as discussed on Page 885, to partition the
primary into variable-size squares according to the noise in individual parts of the pri-
mary. Large tiles are replaced with large characters (such as M and #) or characters from
large-size fonts, while small tiles are replaced with small characters or characters from
small-size fonts.

17.10.2 Mechanical Mirrors

Ancient mirrors were made of shiny, reflecting metal; then came glass. Today, in the
age of computers and graphics, there are mechanical mirrors that can render an image
in innovative ways, not just by displaying it on a monitor. Imagine standing in front of
a large board covered with many small wood blocks, looking at your reflection. Such a
wooden mirror, as well as other mechanical mirrors, are the brainchild of Daniel Rozin,
a New-York artist [Rozin 11].

Daniel Rozin is an artist, educator and developer, working in the area of interactive
digital art. As an interactive artist Rozin creates installations and sculptures that
have the unique ability to change and respond to the presence and point of view of
the viewer. In many cases the viewer becomes the contents of the piece and in others
the viewer is invited to take an active role in the creation of the piece. Even though
computers are often used in Rozin’s work, they are seldom visible.

—From http://www.smoothware.com/danny/newbio.html

The principle is simple and attractive. The mirror consists of 830 wood blocks,
that can be individually rotated under computer control. When rotated, a block reflects
varying amounts of light, depending on the grain of the wood and the angle to which it

http://www.smoothware.com/danny/newbio.html
http://www.smoothware.com/danny/newbio.html

17 Rendering 889

is set. A camera hidden in the mirror collects the image in front of the mirror, converts
it to 830 large pixels, and uses the grayscale G of each pixel to rotate the corresponding
wood block such that its reflection is close to G.

This process takes a fraction of a second and it is done in real time. As the observer
moves in front of the mirror, its “reflection” is constantly updated. The image is not
clear and sharp, as in a traditional, optical mirror. It appears ghostly and leaves a dark,
haunted trace as it is updated.

It was a magnificent, sprawling artist’s

rendering of an imagined fairy homeland.

—Terry Brooks, Magic Kingdom For Sale, Sold! (1986)

	17 Rendering
	17.1 Introduction
	17.2 A Simple Shading Model
	17.2.1 Absorption
	17.2.2 Refraction
	17.2.3 Reflection
	17.2.4 A Reflection Model

	17.3 Gouraud and Phong Shading
	17.4 Palette Optimization
	17.5 Ray Tracing
	17.6 Photon Mapping
	17.7 Texturing
	17.8 Bump Mapping
	17.9 Particle Systems
	17.10 Mosaics
	17.10.1 ASCII Art
	17.10.2 Mechanical Mirrors

