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Spline Interpolation

Given a set of points, it is easy to compute a polynomial that passes through the points.
The Lagrange polynomial (LP) of Section 10.2 is an example of such a polynomial.
However, as the discussion in Section 8.8 (especially Exercise 8.16) illustrates, a curve
based on a high-degree polynomial may wiggle wildly and its shape may be far from what
the user has in mind. In practical work we are normally interested in a smooth, tight
curve that proceeds from point to point such that each segment between two points is a
smooth arc. The spline approach to curve design, discussed in this chapter, constructs
such a curve from individual segments, each a simple curve, generally a parametric cubic
(PC). This chapter illustrates spline interpolation with four examples, cubic splines
(Section 12.1), the Akima spline (Section 12.2), cardinal splines (Section 12.5), and
Kochanek–Bartels splines (Section 12.8). Another important type, the B-spline, is the
topic of Chapter 14. Other types of splines are known and are discussed in the scientific
literature. A short history of splines can be found in [Schumaker 81] and [Farin 04].

For those looking for other texts on splines, the bibliography lists several books by
Gerald Farin, and I would also like to recommend [Späth 95a,b] and [Dierckx 95].

Definition: A spline is a set of polynomials of degree k that are smoothly connected
at certain data points. At each data point, two polynomials connect, and their first
derivatives (tangent vectors) have the same values. The definition also requires that all
their derivatives up to the (k − 1)st be the same at the point.
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578 12.1 The Cubic Spline Curve

12.1 The Cubic Spline Curve

The cubic spline was originally introduced by James Ferguson in [Ferguson 64]. Given
n data points that are numbered P1 through Pn, there are infinitely many curves that
pass through all the points in order of their numbers (Figure 12.1a), but the eye often
tends to trace one imaginary smooth curve through the points, especially if the points
are arranged in a familiar pattern. It is therefore useful to have an algorithm that does
the same. Since the computer does not recognize familiar patterns the way humans do,
such a method should be interactive, thereby allowing the user to create the desired
curve.

The cubic spline method is such an algorithm. Given n data points, it makes it
possible to construct a smooth curve that passes through the points (see definition of
data points in Section 8.6). The curve consists of n − 1 individual Hermite segments
that are smoothly connected at the n− 2 interior points and that are easy to compute
and display. For the segments to meet at the interior points, their tangent vectors (first
derivatives) must be the same at each interior point. An added feature of cubic splines
is that their second derivatives are also the same at the interior points. The cubic spline
method is interactive. The user can control the shape of the curve by varying the two
extreme tangent vectors at the beginning and the end of the curve.

Given the n data points P1, P2, through Pn, we look for n− 1 parametric cubics
P1(t), P2(t), . . . ,Pn−1(t) such that Pk(t) is the polynomial segment from point Pk to
point Pk+1 (Figure 12.1b). The PCs will have to be smoothly connected at the n − 2
interior points P2, P3, . . . ,Pn−1, which means that their first derivatives will have to
match at every interior point. The definition of a spline requires that their second
derivatives match too. This requirement (the boundary condition of the cubic spline) is
important because it provides the necessary equations and also results in a tight curve
in the sense that once the curve is drawn, the eye can no longer detect the positions of
the original data points.

Pk

Pk+1
Pk+2

(a) (b)

Pk(t)

Pk+1(t)

Figure 12.1: (a) Three Different Curves. (b) Two Segments.

The principle of cubic splines is to divide the set of n points into n− 1 overlapping
pairs of two points each and to fit a Hermite segment (Equations (11.4) and (11.5)) to
each pair. The pairs are (P1,P2), (P2,P3), and so on, up to (Pn−1,Pn). Recall that a
Hermite curve segment is specified by two points and two tangents. In our case, all the
points are given, so the only unknowns are the tangent vectors. In order for segments
Pk(t) and Pk+1(t) to connect smoothly at point Pk+1, the end tangent of Pk(t) has to
equal the start tangent of Pk+1(t). Thus, there is only one tangent vector per point, for
a total of n unknowns.
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The unknown tangent vectors are computed as the solutions of a system of n equa-
tions. The equations are derived from the requirement that the second derivatives of the
individual segments match at every interior point. However, there are only n−2 interior
points, so we can only have n− 2 equations, enough to solve for only n− 2 unknowns.

The key to resolving this shortage of equations is to ask the user to provide the
software with the values of two tangent vectors (normally the first and last ones). Once
this is done, the equations can easily be solved, yielding the remaining n− 2 tangents.
This seems a strange way to solve equations, but it has the advantage of being interactive.
If the resulting curve looks wrong, the user can repeat the calculation with two new
tangent vectors. Before delving into the details, here is a summary of the steps involved.

1. The n data points are input into the program.
2. The user provides values (guesses or estimates) for two tangent vectors.
3. The program sets up n− 2 equations, with the remaining n− 2 tangent vectors

as the unknowns, and solves them.
4. The program loops n− 1 times. In each iteration, it selects two adjacent points

and their tangent vectors to compute one Hermite segment.

We start with three adjacent points, Pk, Pk+1, and Pk+2, of which Pk+1 must
be an interior point and the other two can be either interior or endpoints. Thus, k
varies from 1 to n − 2. The Hermite segment from Pk to Pk+1 is denoted by Pk(t),
which implies that Pk(0) = Pk and Pk(1) = Pk+1. The tangent vectors of Pk(t) at
the endpoints are still unknown and are denoted by Ptk and P

t
k+1. The first step is to

express segment Pk(t) geometrically, in terms of the two endpoints and the two tangents.
Applying Equation (11.4) to our segment results in

Pk(t) = Pk +Ptkt+
[
3(Pk+1 −Pk)− 2Ptk −Ptk+1

]
t2

+
[
2(Pk −Pk+1) +Ptk +P

t
k+1

]
t3.

(12.1)

When the same equation is applied to the next segment Pk+1(t) (from Pk+1 to Pk+2),
it becomes

Pk+1(t) = Pk+1 +Ptk+1t+
[
3(Pk+2 −Pk+1)− 2Ptk+1 −Ptk+2

]
t2

+
[
2(Pk+1 −Pk+2) +Ptk+1 +P

t
k+2

]
t3.

(12.2)

� Exercise 12.1: Where do we use the assumption that the first derivatives of segments
Pk(t) and Pk+1(t) are equal at the interior point Pk+1?

Next, we use the requirement that the second derivatives of the two segments be
equal at the interior points. The second derivative Ptt(t) of a Hermite segment P(t) is
obtained by differentiating Equation (11.1)

Ptt(t) = 6at+ 2b. (12.3)

Equality of the second derivatives at the interior point Pk+1 implies

Pttk (1) = P
tt
k+1(0) or 6ak×1 + 2bk = 6ak+1×0 + 2bk+1. (12.4)
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Using the values of a and b from Equations (12.1) and (12.2), we get

6
[
2(Pk −Pk+1) +Ptk +P

t
k+1

]
+ 2

[
3(Pk+1 −Pk)− 2Ptk −Ptk+1

]
= 2

[
3(Pk+2 −Pk+1)− 2Ptk+1 −Ptk+2

]
,

(12.5)

which, after simple algebraic manipulations, becomes

Ptk + 4Ptk+1 +P
t
k+2 = 3(Pk+2 −Pk). (12.6)

The three quantities on the left side of Equation (12.6) are unknown. The two quantities
on the right side are known.

Equation (12.6) can be written n − 2 times for all the interior points Pk+1 =
P2, P3, . . . ,Pn−1 to obtain a system of n − 2 linear algebraic equations expressed in
matrix form as

n−2

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝
1 4 1 0 · · · 0
0 1 4 1 · · · 0

. . . . . .
...

0 · · · · · · 1 4 1

⎞
⎟⎟⎠

︸ ︷︷ ︸
n

⎛
⎜⎜⎜⎝
Pt1
Pt2
...
Ptn

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎝

3(P3 −P1)
3(P4 −P2)

...
3(Pn −Pn−2)

⎞
⎟⎟⎠. (12.7)

Equation (12.7) is a system of n − 2 equations in the n unknowns Pt1, Pt2, . . . ,Ptn. A
practical approach to the solution is to let the user specify the values of the two extreme
tangents Pt1 and Ptn. Once these values have been substituted in Equation (12.7), it’s
easy to solve it and obtain values for the remaining n − 2 tangents, Pt2 through Ptn−1.
The n tangent vectors are now used to calculate the original coefficients a, b, c, and d
of each segment by means of Equations (11.3), (11.4), or (11.7), which should be written
and solved n− 1 times, once for each segment of the spline.

The reader should notice that the matrix of coefficients of Equation (12.7) is tridi-
agonal and therefore diagonally dominant and thus nonsingular. This means that the
system of equations can always be solved and that it has a unique solution. (Matrices
and their properties are discussed in texts on linear algebra.)

This approach to solving Equation (12.7) is called the clamped end condition. Its
advantage is that the user can vary the shape of the curve by entering new values for Pt1
and Ptn and recalculating. This allows for interactive design, where each step brings the
curve closer to the desired shape. Figure 12.1a is an example of three cubic splines that
pass through the same points and differ only in Pt1 and Ptn. It illustrates how the shape
of the entire curve can be radically changed by modifying the two extreme tangents.

It is possible to let the user specify any two tangent vectors, not just the two extreme
ones. However, varying the two extreme tangents is a natural way to edit and reshape
the curve in practical applications.

Tension control. Section 11.2.3 shows how to control the tension of a Hermite
segment by varying the magnitudes of the tangent vectors. Since a cubic spline is based
on Hermite segments, its tension can also be controlled in the same way. The user may
input a tension parameter s and the software simply multiplies every tangent vector by
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s. Small values of s correspond to high tension, so a user-friendly algorithm inputs a
parameter T in the interval [0, 1] and multiplies each tangent vector by s = α(1 − T )
for some predetermined α. Large values of T (close to 1) correspond to small s and
therefore to high tension, while small values of T correspond to s close to α. This makes
T a natural tension parameter. Section 12.5 has the similar relation T = 1− 2s, which
makes more sense for cardinal splines.

The downside of the cubic spline is the following:
1. There is no local control. Modifying the extreme tangent vectors changes Equa-

tion (12.7) and results in a different set of n tangent vectors. The entire curve is modified!
2. Equation (12.7) is a system of n equations that, for large values of n, may be

too slow to solve.
Picnic Blues (anagram of Cubic Spline).

12.1.1 Example

Given the four points P1 = (0, 0), P2 = (1, 0), P3 = (1, 1), and P4 = (0, 1), we are
looking for three Hermite segments P1(t), P2(t), and P3(t) that will connect smoothly
at the two interior points P2 and P3 and will constitute the spline. We further select
an initial direction Pt1 = (1,−1) and a final direction Pt4 = (−1,−1). Figure 12.2 shows
the points, the two extreme tangent vectors, and the resulting curve.

P1 P2

P3P4

x

y

Figure 12.2: A Cubic Spline Example.

We first write Equation (12.7) for our special case (n = 4)

(
1 4 1 0
0 1 4 1

)⎛
⎜⎝

(1,−1)
Pt2
Pt3

(−1,−1)

⎞
⎟⎠ =

(
3[(1, 1)− (0, 0)]
3[(0, 1)− (1, 0)]

)
=

(
(3, 3)
(−3, 3)

)
,

or
(1,−1) + 4Pt2 +P

t
3 = (3, 3),

Pt2 + 4Pt3 + (−1,−1) = (−3, 3).
This is a system of two equations in two unknowns. It is easy to solve and the solutions
are Pt2 = (2

3 ,
4
5 ) and P

t
3 = (−2

3 ,
4
5 ).
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We now write Equation (11.7) three times, for the three spline segments. For the
first segment, Equation (11.7) becomes

P1(t) = (t3, t2, t, 1)

⎛
⎜⎝

2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0

⎞
⎟⎠

⎛
⎜⎝

(0, 0)
(1, 0)
(1,−1)
(2
3 ,

4
5 )

⎞
⎟⎠

= (−1
3 ,−1

5 )t
3 + (1

3 ,
6
5 )t

2 + (1,−1)t.

The second segment is calculated in a similar way:

P2(t) = (t3, t2, t, 1)

⎛
⎜⎝

2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0

⎞
⎟⎠

⎛
⎜⎝

(1, 0)
(1, 1)
(2
3 ,

4
5 )

(−2
3 ,

4
5 )

⎞
⎟⎠

= (0,−2
5 )t

3 + (−2
3 ,

3
5 )t

2 + (2
3 ,

4
5 )t+ (1, 0).

Finally, we write, for the third segment,

P3(t) = (t3, t2, t, 1)

⎛
⎜⎝

2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0

⎞
⎟⎠

⎛
⎜⎝

(1, 1)
(0, 1)
(−2

3 ,
4
5 )

(−1,−1)

⎞
⎟⎠

= (1
3 ,−1

5 )t
3 − (2

3 ,
3
5 )t

2 + (−2
3 ,

4
5 )t+ (1, 1),

which completes the example.

� Exercise 12.2: Check to make sure that the three polynomial segments really connect
at the two interior points. What are the tangent vectors at the points?

� Exercise 12.3: Redo the example of this section with an indefinite initial direction
Pt1 = (0, 0). What does it mean for a curve to start going in an indefinite direction?

12.1.2 Relaxed Cubic Splines

The original approach to the cubic spline curve is for the user to specify the two extreme
tangent vectors. This approach is known as the clamped end condition. It is possible to
have different end conditions, and the one described in this section is based on the simple
idea of setting the two extreme second derivatives of the curve, Ptt1 (0) and Pttn−1(1), to
zero. If we think of the second derivative as the acceleration of the curve (see the particle
paradigm of Section 8.6), then this end condition implies constant speeds and therefore
small curvatures at both ends of the curve. This is why this end condition is called
relaxed.

It is easy to calculate the relaxed cubic spline. The second derivative of the para-
metric cubic P(t) is Ptt(t) = 6at+ 2b (Equation (12.3)). The end condition Ptt1 (0) = 0
implies 2b1 = 0 or, from Equation (11.3),

−3P1 + 3P2 − 2Pt1 −Pt2 = 0, which yields Pt1 =
3
2 (P2 −P1)− 1

2P
t
2. (12.8)



12 Spline Interpolation 583

The other end condition, Pttn−1(1) = 0, implies 6an−1 + 2bn−1 = 0 or, from Equa-
tion (11.3)

6
(
2Pn−1 − 2Pn +Ptn−1 +P

t
n

)
+ 2

(−3Pn−1 + 3Pn − 2Ptn−1 −Ptn
)
= 0,

or
Ptn =

3
2 (Pn −Pn−1)− 1

2P
t
n−1. (12.9)

Substituting Equations (12.8) and (12.9) in Equation (12.7) results in

n−2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎣
1 4 1 0 · · · 0
0 1 4 1 · · · 0

. . . . . .
...

0 · · · 1 4 1 0
0 · · · · · · 1 4 1

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
n

⎡
⎢⎢⎢⎢⎣

3
2 (P2 −P1)− 1

2P
t
2

Pt2
...

Ptn−1
3
2 (Pn −Pn−1)− 1

2P
t
n−1

⎤
⎥⎥⎥⎥⎦

(12.10)

=

⎡
⎢⎢⎢⎢⎣

3(P3 −P1)
3(P4 −P2)

...
3(Pn−1 −Pn−3)
3(Pn −Pn−2)

⎤
⎥⎥⎥⎥⎦ .

This is a system of n−2 equations in the n−2 unknowns Pt2, Pt3, . . . ,Ptn−1. Calculating
the relaxed cubic spline is done in the following steps:

1. Set up Equation (12.10) and solve it to obtain the n− 2 interior tangent vectors.
2. Use Pt2 to calculate Pt1 from Equation (12.8). Similarly, use Ptn−1 to calculate

Ptn from Equation (12.9).
3. Now that the values of all n tangent vectors are known, write and solve Equa-

tion (11.4) or (11.7) n− 1 times, each time calculating one spline segment.
The clamped cubic spline is interactive. The curve can be modified by varying

the two extreme tangent vectors. The relaxed cubic spline, on the other hand, is not
interactive. The only way to edit or modify it is to move the points or add points. The
points, however, are data points that may be dictated by the problem on hand or that
may be given by a user or a client, so it may not always be possible to move them.

Example: We use the same four points P1 = (0, 0), P2 = (1, 0), P3 = (1, 1), and
P4 = (0, 1) of Section 12.1.1. The first step is to set up Equation (12.10) and solve it to
obtain the two interior tangent vectors Pt2 and Pt3.

(
1 4 1 0
0 1 4 1

)⎛
⎜⎝

(3
2 , 0)− 1

2P
t
2

Pt2
Pt3

(−3
2 , 0)− 1

2P
t
3

⎞
⎟⎠ =

(
(3, 3)
(−3, 3)

)
.

The solutions are

Pt2 =
(
3
5
,
2
3

)
, Pt3 =

(
−3
5
,
2
3

)
.
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The second step is to calculate Pt1 and Pt4

Pt1 =
3
2
(P2 −P1)− 1

2
Pt2 =

(
3
2
, 0

)
− 1
2

(
3
5
,
2
3

)
=

(
6
5
,−1

3

)
,

Pt4 =
3
2
(P4 −P3)− 1

2
Pt3 =

(
−3
2
, 0

)
− 1
2

(
−3
5
,
2
3

)
=

(
−6
5
,−1

3

)
.

Now that the values of all four tangent vectors are known, the last step is to write and
solve Equation (11.4) or (11.7) three times to calculate each of the three segments of
our example curve.

For the first segment, Equation (11.7) becomes

P1(t) = (t3, t2, t, 1)

⎛
⎜⎝

2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0

⎞
⎟⎠

⎛
⎜⎜⎝

(0, 0)
(1, 0)
(6
5 ,−1

3 )
(3
5 ,

2
3 )

⎞
⎟⎟⎠

= (−1
5 ,

1
3 )t

3 + (6
5 ,−1

3 )t.

For the second segment, Equation (11.7) becomes

P2(t) = (t3, t2, t, 1)

⎛
⎜⎝

2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0

⎞
⎟⎠

⎛
⎜⎜⎝

(1, 0)
(1, 1)
(3
5 ,

2
3 )

(−3
5 ,

2
3 )

⎞
⎟⎟⎠

= (0,−2
3 )t

3 + (−3
5 , 1)t

2 + (3
5 ,

2
3 )t+ (1, 0).

� Exercise 12.4: Compute the third Hermite segment.

12.1.3 Cyclic Cubic Splines

The cyclic end condition is ideal for a closed cubic spline (Section 12.1.5) and also for a
periodic cubic spline (Section 12.1.4). The condition is that the tangent vectors be equal
at the two extremes of the curve (i.e., Pt1 = Ptn) and the same for the second derivatives
Ptt1 = Pttn . Notice that the curve doesn’t have to be closed, i.e., a segment from Pn to
P1 is not required.

Applying Equation (11.1) to the first condition yields

Pt1(0) = P
t
n−1(1)

or
3a1t

2 + 2b1t+ c1|t=0 = 3an−1t
2 + 2bn−1t+ cn−1|t=1

or
c1 = 3an−1 + 2bn−1 + cn−1. (12.11)
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Applying Equation (12.3) to the second condition yields

Ptt1 (0) = P
tt
n−1(1)

or
6a1t+ 2b1|t=0 = 6an−1t+ 2bn−1|t=1

or
2b1 = 6an−1 + 2bn−1. (12.12)

Subtracting Equations (12.11) and (12.12) yields c1 − 2b1 = −3an−1 + cn−1 or, from
Equation (11.3),

Pt1 − 2[−3P1 + 3P2 − 2Pt1 −Pt2] = −3[2Pn−1 − 2Pn +Ptn−1 +P
t
n] +P

t
n−1.

This can be written

Pt1 + 4Pt1 + 3Ptn = 6(P2 −P1 +Pn −Pn−1)− (Pt2 +P
t
n−1).

Using the end condition Pt1 = Ptn, we get

Pt1 = P
t
n =

3
4 (P2 −P1 +Pn −Pn−1)− 1

4

(
Pt2 +Ptn−1

)
. (12.13)

Substituting Equation (12.13) in Equation (12.7) results in

n−2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎣
1 4 1 0 · · · 0
0 1 4 1 · · · 0

. . . . . .
...

0 · · · 1 4 1 0
0 · · · · · · 1 4 1

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
n

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
4 (P2 −P1 +Pn −Pn−1)−

−1
4

(
Pt2 +Ptn−1

)
Pt2
...

Ptn−1
3
4 (P2 −P1 +Pn −Pn−1)−

−1
4

(
Pt2 +Ptn−1

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12.14)

=

⎡
⎢⎢⎢⎢⎣

3(P3 −P1)
3(P4 −P2)

...
3(Pn−1 −Pn−3)
3(Pn −Pn−2)

⎤
⎥⎥⎥⎥⎦ ,

which is a system of n − 2 equations in the n − 2 unknowns Pt2, Pt3, . . . ,Ptn−1. Notice
that in the case of a closed curve, these equations are somehow simplified because the
two extreme points P1 and Pn are identical. Calculating the cyclic cubic spline is done
in the following steps:

1. Set up Equation (12.14) and solve it to obtain the n− 2 interior tangent vectors.
2. Use Pt2 and Ptn−1 to calculate Pt1 and Ptn from Equation (12.13).
3. Now that the values of all n tangent vectors are known, write and solve Equa-

tion (11.4) or (11.7) n− 1 times, each time calculating one spline segment.
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Example: We select the five points P1 = P5 = (0,−1), P2 = (1, 0), P3 = (0, 1),
and P4 = (−1, 0) and calculate the cubic spline with the cyclic end condition for these
points. Notice that the curve is closed since P1 = P5. Also, since the points are
symmetric about the origin, we can expect the resulting four PC segments to be similar.
We start with Equation (12.14)

⎡
⎣ 1 4 1 0 0
0 1 4 1 0
0 0 1 4 1

⎤
⎦

⎡
⎢⎢⎢⎣

3
4 (P2 −P1 +P5 −P4)− 1

4 (P
t
2 +Pt4)

Pt2
Pt3
Pt4

3
4 (P2 −P1 +P5 −P4)− 1

4 (P
t
2 +Pt4)

⎤
⎥⎥⎥⎦ =

⎡
⎣ 3(P3 −P1)
3(P4 −P2)
3(P5 −P3)

⎤
⎦ ,

which is solved to yield Pt2 = (0, 3/2), Pt3 = (−3/2, 0), and Pt4 = (0,−3/2). These
values are used to solve Equation (12.13)

Pt1 = P
t
5 =

3
4 (P2 −P1 +P5 −P4)− 1

4 (P
t
2 +Pt4) ,

which gives Pt1 = Pt5 = (3/2, 0). The four segments can now be calculated in the usual
way. For the first segment, Equation (11.7) becomes

P1(t) = (t3, t2, t, 1)

⎛
⎜⎝

2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0

⎞
⎟⎠

⎛
⎜⎝
(0,−1)
(1, 0)
(3
2 , 0)
(0, 3

2 )

⎞
⎟⎠

= −(1
2 ,

1
2 )t

3 + (0, 3
2 )t

2 + (3
2 , 0)t+ (0,−1).

For the second segment, Equation (11.7) becomes

P2(t) = (t3, t2, t, 1)

⎛
⎜⎝

2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0

⎞
⎟⎠

⎛
⎜⎝

(1, 0)
(0, 1)
(0, 3

2 )
(−3

2 , 0)

⎞
⎟⎠

= (1
2 ,−1

2 )t
3 + (−3

2 , 0)t
2 + (0, 3

2 )t+ (1, 0).

� Exercise 12.5: Compute the third and fourth Hermite segments.
Notice how the symmetry of the problem causes the coefficients of P1(t) and P3(t)

to have opposite signs, and the same for the coefficients of P2(t) and P4(t).
It is also possible to have an anticyclic end condition for the

cubic spline. It requires that the two extreme tangent vectors
have the same magnitudes but opposite directions Pt1 = −Ptn
and the same condition for the second derivatives Ptt1 = −Pttn .
Such an end condition makes sense for curves such as the cross
section of a vase or any other surface of revolution.

Following steps similar to the ones for the cyclic case, we get for the anticyclic end
condition

Pt1 = −Ptn =
3
4
(P2 −P1 −Pn +Pn−1)− 1

4
(
Pt2 −Ptn−1

)
. (12.15)
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� Exercise 12.6: Given the three points P1 = (−1, 0), P2 = (0, 1), and P3 = (1, 0),
calculate the anticyclic cubic spline for them and compare it to the clamped cubic spline
for the same points.

12.1.4 Periodic Cubic Splines

A periodic function f(x) is one that repeats itself. If p is the period of the function, then
f(x+ p) = f(x) for any x. A two-dimensional cubic spline is periodic if it has the same
extreme tangent vectors (i.e., if it starts and ends going in the same direction) and if
its two extreme points P(0) and P(1) have the same y coordinate. If the curve satisfies
these conditions, then we can place consecutive copies of it side by side and the result
would look like a single periodic curve.

The case of a three-dimensional periodic cubic spline is less clear. It seems that
the two extreme points can be any points (they don’t have to have the same y or z
coordinates or any other relationship), so the condition for periodicity is that the curve
will have the same start and end tangents, i.e., it will be cyclic.

Example: Exercise 8.11 shows that the parametric expression (cos t, sin t, t) de-
scribes a helix (see also Section 9.4.1 for a double helix). Modifying this expression to
P(t) = (0.05t+cos t, sin t, .1t) creates a helix that moves in the x direction as it climbs up
in the z direction. Figure 12.3 shows its behavior. This curve starts at P(0) = (1, 0, 0)
and ends at P(10π) = (0.5π + 1, 0, π). There is no special relation between the start
and end points, but the curve is periodic since both its start and end tangents equal
Pt(0) = Pt(10π) = (0.05, 1, 0.1). We can construct another period of this curve by
copying it, moving the copy parallel to itself, and placing it such that the start point of
the copy is at the end point of the original curve.

Notice that it is possible to make the start and end points even more unrelated by,
for example, tilting the helix also in the y direction as it climbs up in the z direction.
This kind of effect is achieved by an expression such as

P(t) = (0.05t+ cos t,−0.05t2 + sin t, 0.1t).

12.1.5 Closed Cubic Splines

A closed cubic spline has an extra curve segment from Pn to P1 that closes the curve. In
such a curve, every point is interior, so Equation (12.7) becomes a system of n equations
in the same n unknowns. No user input is needed, which implies that the only way to
control or modify such a curve is to move, add, or delete points. It is convenient to
define the two additional points Pn+1

def= P1 and Pn+2
def= P2. Equation (12.7) then

becomes
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(* tilted helix as a periodic curve *)
ParametricPlot3D[{.05t+Cos[t],Sin[t],.1t},{t,0,10Pi},
Ticks->{{-1,0,1,2},{-1,0,1},{0,1,2,3}},
PlotPoints->100,PlotStyle->Red]

Figure 12.3: A Tilted Helix as a Periodic Curve.

n

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎣

1 4 1 · · · 0 · · · 0
0 1 4 1 · · · · · · 0

. . . . . .
...

0 · · · · · · · · · 1 4 1
1 · · · · · · · · · 0 1 4
4 1 0 · · · 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
n

⎡
⎢⎢⎢⎢⎢⎣
Pt1
Pt2
...

Ptn−1

Ptn

⎤
⎥⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎣

3(P3 −P1)
3(P4 −P2)

...
3(Pn+1 −Pn−1)
3(Pn+2 −Pn)

⎤
⎥⎥⎥⎥⎥⎦. (12.16)

Example: Given the four points of Section 12.1.1, P1 = (0, 0), P2 = (1, 0), P3 =
(1, 1), and P4 = (0, 1), we are looking for four Hermite segments P1(t), P2(t), P3(t),
and P4(t) that would connect smoothly at the four points. Equation (12.16) becomes⎛

⎜⎝
1 4 1 0
0 1 4 1
1 0 1 4
4 1 0 1

⎞
⎟⎠

⎛
⎜⎝
Pt1
Pt2
Pt3
Pt4

⎞
⎟⎠ =

⎡
⎢⎣
3(P3 −P1)
3(P4 −P2)
3(P1 −P3)
3(P2 −P4)

⎤
⎥⎦ . (12.17)

Its solutions are Pt1 = (3/4,−3/4), Pt2 = (3/4, 3/4), Pt3 = (−3/4, 3/4), and Pt4 =
(−3/4,−3/4), and the four spline segments are

P1(t) = (−1/2, 0)t3 + (3/4, 3/4)t2 + (3/4,−3/4)t,
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P2(t) = (0,−1/2)t3 + (−3/4, 3/4)t2 + (3/4, 3/4)t+ (1, 0),
P3(t) = (1/2, 0)t3 + (−3/4,−3/4)t2 + (−3/4, 3/4)t+ (1, 1),
P4(t) = (0, 1/2)t3 + (3/4,−3/4)t2 + (−3/4,−3/4)t+ (0, 1).

12.1.6 Nonuniform Cubic Splines

All the different types of cubic splines discussed so far assume that the parameter t
varies in the interval [0, 1] in each segment. These types of cubic spline are therefore
uniform or normalized. The nonuniform cubic spline is obtained by adding another
parameter tk to each spline segment and letting t vary in the interval [0, tk]. Since there
are n−1 spline segments connecting the n data points, this adds n−1 parameters to the
curve, which makes it easier to fine-tune the shape of the curve. The nonuniform cubic
splines are especially useful in cases where the data points are nonuniformly spaced. In
regions where the points are closely spaced, the normalized cubic spline tends to develop
loops and overshoots. In regions where the points are widely spaced, it tends to “cut
corners,” i.e., to be too tight. Careful selection of the tk parameters can overcome these
tendencies.

The calculation of the nonuniform cubic spline is based on that of the uniform
version. We simply rewrite some of the basic equations, substituting tk for 1 as the final
value of t. We start with Equation (11.2) that becomes, for the first spline segment,

a·03 + b·02 + c·0 + d = P1,

a(t1)3 + b(t1)2 + c(t1) + d = P2,

3a·02 + 2b·0 + c = Pt1,
3a(t1)2 + 2b(t1) + c = Pt2,

with solutions

a =
2(P1 −P2)

t31
+
Pt1
t21

+
Pt2
t21

,

b =
3(P2 −P1)

t21
− 2Pt1

t1
− P

t
2

t1
,

c = Pt1,
d = P1.

(12.18)

Equation (11.4) now becomes

P(t) =
[
2(P1 −P2)

t31
+
Pt1
t21

+
Pt2
t21

]
t3 +

[
3(P2 −P1)

t21
− 2Pt1

t1
− P

t
2

t1

]
t2 +Pt1t+P1.

(12.19)
Equation (12.4) becomes

Pttk (tk) = P
tt
k+1(0) or 6ak × tk + 2bk = 6ak+1 × 0 + 2bk+1, (12.20)
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and Equation (12.5) is now

2
[
3(Pk+1 −Pk)

t2k
− 2Ptk

tk
− P

t
k+1

tk

]
+ 6tk

[
2(Pk −Pk+1)

t3k
+
Ptk
t2k

+
Ptk+1

t2k

]

= 2
[
3(Pk+2 −Pk+1)

t2k+1

− 2Ptk+1

tk+1
− P

t
k+2

tk+1

]
.

(12.21)

Equation (12.6) now becomes

tk+1Ptk + 2(tk + tk+1)Ptk+1 + tkPtk+2

=
3

tktk+1

[
t2k(Pk+2 −Pk+1) + t2k+1(Pk+1 −Pk)

]
.

(12.22)

This produces the new version of Equation (12.7)

n−2

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣
t2 2(t1 + t2) t1 0 0 · · · 0
0 t3 2(t2 + t3) t2 0 · · · 0

. . . . . .
...

0 0 · · · · · · tn−1 2(tn−1 + tn−2) tn−2

⎤
⎥⎥⎦

︸ ︷︷ ︸
n

⎡
⎢⎢⎣
Pt1
Pt2
...
Ptn

⎤
⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

3
t1t2

[
t21(P3 −P2) + t22(P2 −P1)

]
3
t2t3

[
t22(P4 −P3) + t23(P3 −P2)

]
...

3
tn−2tn−1

[
t2n−2(Pn −Pn−1) + t2n−1(Pn−1 −Pn−2)

]

⎤
⎥⎥⎥⎥⎦ .

(12.23)

This is again a system of n− 2 equations in the n unknowns Pt1, Pt2,. . . , Ptn. After the
user inputs the guessed or estimated values for the two extreme tangent vectors Pt1 and
Ptn, this system can be solved, yielding the values of the remaining n−2 tangent vectors.
Each of the n− 1 spline segments can now be calculated by means of Equation (12.18)
that is written here for the first segment in compact form⎛

⎜⎝
a
b
c
d

⎞
⎟⎠ =

⎛
⎜⎝

2/t31 −2/t31 1/t21 1/t21
−3/t21 3/t21 −2/t1 −1/t1
0 0 1 0
1 0 0 0

⎞
⎟⎠

⎛
⎜⎝
P1

P2

Pt1
Pt2

⎞
⎟⎠ . (12.24)

Notice how each of Equations (12.18) through (12.24) reduces to the corresponding
original equation when all the ti are set to 1. The nonuniform cubic spline can now be
calculated in the following steps:

1. The user inputs the values of the two extreme tangent vectors and the values of
the n− 1 parameters tk. The software sets up and solves Equation (12.23) to calculate
the remaining tangent vectors.

2. The software sets up and solves Equation (12.24) n − 1 times, once for each of
the spline segments.
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3. Each segment Pk(t) is plotted by varying t from 0 to tk.

Before looking at an example, it is useful to try to understand the advantage of
having the extra parameters tk. Equation (12.18) shows that a large value of tk for spline
segment Pk(t) means small a and b coefficients (since tk appears in the denominators),
and hence a small second derivative Pttk (t) = 6ak + 2bk for that segment. Since the
second derivative can be interpreted as the acceleration of the curve, we can predict
that a large tk will result in small overall acceleration for segment k. Thus, most of the
segment will be close to a straight line. This is also easy to see when we substitute small
a and b in Pk(t) = at3 + bt2 + ct + d. The dominant part of the segment becomes
ct+d, which brings it close to linear. If the start and end directions of the segment are
very different, the entire segment cannot be a straight line, so, in order to minimize its
overall second derivative, the segment will end up consisting of two or three parts, each
close to a straight line, with short, highly-curved corners connecting them (Figure 12.4).
Such a geometry has a small overall second derivative. This knowledge is useful when
designing curves, which is why the nonuniform cubic spline should not be dismissed as
impractical. It may be the best method for certain curves.

Figure 12.4: Curves with Small Overall Second Derivative.

Example: The four points of Section 12.1.1 are used in this example. They are
P1 = (0, 0), P2 = (1, 0), P3 = (1, 1), and P4 = (0, 1). We also select the same initial
and final directions Pt1 = (1,−1) and Pt4 = (−1,−1). We decide to use tk = 2 for each
of the three spline segments to illustrate how large tk values create a curve very different
from the one of Section 12.1.1. Equation (12.23) becomes

[
t2 2(t1 + t2) t1 0
0 t3 2(t2 + t3) t2

]⎡
⎢⎢⎣
(1,−1)
Pt2
Pt3

(−1,−1)

⎤
⎥⎥⎦ =

[
3
t1t2

[t21(P3 −P2) + t22(P2 −P1)]
3
t2t3

[t22(P4 −P3) + t23(P3 −P2)]

]
.

For t1 = t2 = t3 = 2, this yieldsPt2 = (1/6, 1/2) andPt3 = (−1/6, 1/2). Equation (12.24)
is now written and solved three times:

Segment 1

⎛
⎜⎝
a
b
c
d

⎞
⎟⎠ =

⎛
⎜⎝

2/t31 −2/t31 1/t21 1/t21
−3/t21 3/t21 −2/t1 −1/t1
0 0 1 0
1 0 0 0

⎞
⎟⎠

⎡
⎢⎣

(0, 0)
(1, 0)
(1,−1)
(1/6, 1/2)

⎤
⎥⎦ .
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Segment 2

⎛
⎜⎝
a
b
c
d

⎞
⎟⎠ =

⎛
⎜⎝

2/t32 −2/t32 1/t22 1/t22
−3/t22 3/t22 −2/t2 −1/t2
0 0 1 0
1 0 0 0

⎞
⎟⎠

⎡
⎢⎣

(1, 0)
(1, 1)

(1/6, 1/2)
(−1/6, 1/2)

⎤
⎥⎦ .

Segment 3

⎛
⎜⎝
a
b
c
d

⎞
⎟⎠ =

⎛
⎜⎝

2/t33 −2/t33 1/t23 1/t23
−3/t23 3/t23 −2/t3 −1/t3
0 0 1 0
1 0 0 0

⎞
⎟⎠

⎡
⎢⎣

(1, 1)
(0, 1)

(−1/6, 1/2)
(−1,−1)

⎤
⎥⎦ .

This yields the coefficients for the three spline segments:

P1(t) = (1/24,−1/8)t3 + (−1/3, 3/4)t2 + (1,−1)t,
P2(t) = (0, 0)t3 + (−1/12, 0)t2 + (1/6, 1/2)t+ (1, 0),

P3(t) = −(1/24, 1/8)t3 + (−1/12, 0)t2 + (−1/6, 1/2)t+ (1, 1).

The result is shown in Figure 12.5. It should be compared with the uniform curve of
Figure 12.2 that’s based on the same four points. (Recall that t varies from 0 to 2 in
each of the segments above.)

1.25

-0.25

1

1

0.5

0.2 0.6

P1

P1

P2

P2

(* Nonuniform cubic spline example *)
C1:=ParametricPlot[{1/24,-1/8}t^3+{-1/3,3/4}t^2+{1,-1}t,{t,0,2}];
C2:=ParametricPlot[{-1/12,0}t^2+{1/6,1/2}t+{1,0}, {t,0,2}];
C3:=ParametricPlot[-{1/24,1/8}t^3+{-1/12,0}t^2+{-1/6,1/2}t+{1,1},{t,0,2}];
Show[C1, C2, C3, PlotRange->All, AspectRatio->Automatic]

Figure 12.5: A Nonuniform Cubic Spline Example.
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12.1.7 Fair Cubic Splines

The term “fair curve” refers to a spline curve where each segment is close to a circular
arc. Such a curve does not have very flat or very curved segments (e.g., segments with
loops) and is generally considered pleasing to the eye. It is useful in artistic applications
and in font design, where the aim is to get beautiful curves rather than a precise fit
to a given set of points. The approach presented here is based on [Manning 74] and
is illustrated by Figure 12.6. In Figure 12.6a we see four Hermite segments connecting
the same two endpoints, all with 45◦ tangent vectors. The difference between them
is the magnitude of the vectors. If we denote the distance between the points l, then
Figure 12.6a(i)–(iii) shows curves whose tangent vectors have magnitudes smaller than,
equal to, and greater than l, respectively. In Figure 12.6a(iv), the left tangent has
magnitude > l and the right one < l, resulting in a curve that’s “pulled” to the right.
Of these four, curve (ii) can be considered “fair,” since it is close to a special circular
arc, namely the arc that passes through the endpoints of the curve at the same angle as
the tangent vectors.

1 2

1
2

1
2

P1

P1

P1

A B

P2

P2

P2

(a) (b)

(c)

(d)(i)

(ii)

(iv)

(iii)

Pk

Pk(t) Pk+1(t)
Pk+1

Pk+2
(e)

rkTk

rk+1Tk+1

lk+2Tk+2

lk+1Tk+1

Figure 12.6: Varying Tangent Vector Magnitudes.

� Exercise 12.7: Two given points P1 and P2 define a straight segment P1 → P2. Your
task is to construct a “fair” Hermite segment with P1 and P2 as its endpoints. Here
is what you need to show. Imagine the circular arc that passes through P1 and P2

and makes angles θ with the line P1 → P2. Show that if the center point P(0.5) of
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the Hermite segment is located on this circular arc, then the magnitudes of the tangent
vectors satisfy

|Pt1| = |Pt2| =
2|P2 −P1|
1 + cos θ

. (12.25)

Figure 12.6b shows a Hermite segment with tangent vectors whose magnitudes sat-
isfy Equation (12.25). The curve is therefore close to the special circular arc mentioned
earlier. In Figure 12.6c, the left tangent vector P1 has been rotated (but has the same
magnitude), thereby increasing angle θ1 and pulling the curve to the left. Figure 12.6d
shows how the curve can (approximately) be returned to its former shape by shortening
P1. This suggests a way to build a complete cubic spline where every segment is fair. At
every internal point Pk+1, the “incoming” and “outgoing” tangent vectors should go in
the same direction but should have different magnitudes. Figure 12.6e shows the termi-
nology used. The incoming tangent vector at interior point Pk+1 is Ptk(1) = lk+1Tk+1,
where all Ti are unit vectors and lk+1 is a scalar (the magnitude of the tangent). Simi-
larly, the outgoing tangent vector at Pk+1 is Ptk+1(0) = rk+1Tk+1, the same unit vector,
but with a different magnitude rk+1.

Equation (12.25) can be considered the definition of a fair Hermite segment in the
special case θ1 = θ2. The previous paragraph suggests a way to extend it to cases where
θ1 �= θ2. We need to express the magnitudes of the tangents Pt1 and Pt2 in terms of the
endpoints and the angles θ1 and θ2 such that θ1 > θ2 will result in |Pt1| < |Pt2|. One
way to achieve this effect is to define

r1 = |Pt1| =
2|P2 −P1|

1 + α cos θ2 + (1− α) cos θ1
, (12.26)

l2 = |Pt2| =
2|P2 −P1|

1 + α cos θ1 + (1− α) cos θ2
, (12.27)

where α is a parameter in the range [0, 1] to be determined by the user. This, of course,
is not the only way to define a fair curve, but this definition has two useful properties:

1. For θ1 = θ2, Equations (12.26) and (12.27) reduce to Equation (12.25).
2. If θ1 > θ2, then cos θ1 < cos θ2 (for fair curves, we can assume angles between

0◦ and 90◦). In order to achieve |Pt1| < |Pt2|, we need a situation where (1−α) cos θ1 <
α cos θ2. This is satisfied when 1−α ≤ α, i.e., when 0.5 ≤ α ≤ 1. [Manning 74] suggests
α = 2/3, but it seems that α should be left as a user-defined parameter, especially for
closed fair curves, which are discussed later, where there is no other parameter for the
user to adjust.

The condition for slope continuity at the n − 2 interior points is thus written
hk+1Ptk(1) = Ptk+1(0), where hk+1 is the ratio of the tangent vectors’ magnitudes.
We denote by Tk a unit tangent vector, so we can write hk+1lk+1Tk+1 = rk+1Tk+1 or
hk+1 = rk+1/lk+1 for k = 1, 2, . . . , n − 2. The two tangents Ptk(1) and P

t
k+1(0) go in

the same direction, so hk+1 must be positive.
The quantities l2, l3, . . . , ln and r1, r2, . . . , rn−1 make a total of 2n−2 unknowns that

have to be calculated. The equations to calculate them are obtained by the requirement
that the curvatures of the spline segments be equal at the n− 2 interior points. When
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Equation (8.19) is used for the curvature, this requirement becomes

d2Pk(1)
ds2

=
d2Pk+1(0)

ds2

or
Pttk (1)

Ptk(1) •Ptk(1)
− Ptk(1) •Pttk (1)(
Ptk(1) •Ptk(1)

)2P
t
k(1)

=
Pttk+1(0)

Ptk+1(0) •Ptk+1(0)
− Ptk+1(0) •Pttk+1(0)(
Ptk+1(0) •Ptk+1(0)

)2P
t
k+1(0).

This is simplified by substituting hk+1Ptk(1) = P
t
k+1(0) and multiplying by (Ptk(1) •

Ptk(1)), yielding

Pttk (1)−
Ptk(1) •Pttk (1)
Ptk(1) •Ptk(1)

Ptk(1) =
Pttk+1(0)
h2
k+1

− h2
k+1

(
Ptk(1) •Pttk+1(0)

)
h4
k+1

(
Ptk(1) •Ptk(1)

) Ptk(1)
or

h2
k+1P

tt
k (1)−Pttk+1(0) =

h2
k+1

(
Ptk(1) •Pttk (1)

)− (
Ptk(1) •Pttk+1(0)

)
Ptk(1) •Ptk(1)

Ptk(1). (12.28)

Equation (12.28) can be written

h2
k+1P

tt
k (1)−Pttk+1(0) =Mk+1Ptk(1), (12.29)

where the quantity Mk+1 that is defined by

Mk+1
def=

h2
k+1

(
Ptk(1) •Pttk (1)

)− (
Ptk(1) •Pttk+1(0)

)
Ptk(1) •Ptk(1)

,

is a scalar combining all the scalar quantities from the right-hand side of Equation (12.28).

Fair: To draw and adjust (the lines of a ship’s hull being designed) to produce
regular surfaces of the correct form.

— A dictionary definition.

The next step is to replace the two second derivatives on the left side of Equa-
tion (12.29) with expressions containing the unknowns lk, rk, and Tk (and, perhaps,
some known quantities, such as the points Pk). This will provide equations whose so-
lutions will yield the tangent vectors Ptk at all the points. We start with the second
derivative of a PC Ptt(t) = 6at + 2b (Equation (12.3)), where a and b are given by
Equation (11.3). The two second derivatives used in Equation (12.29) are (see also
Figure 12.6e) as follows:
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1. From segment Pk(t),

Pttk (1) = 6ak × 1 + 2bk
= 6[2(Pk −Pk+1) +Ptk +P

t
k+1] + 2[3(Pk+1 −Pk)− 2Ptk −Ptk+1]

= −6(Pk+1 −Pk) + 2Ptk + 4Ptk+1

= −6(Pk+1 −Pk) + 2rkTk + 4lk+1Tk+1. (12.30)

2. From segment Pk+1(t),

Pttk+1(0) = 6ak+1 × 0 + 2bk+1

= 2[3(Pk+2 −Pk+1)− 2Ptk+1 −Ptk+2]
= 6(Pk+2 −Pk+1)− 4rk+1Tk+1 − 2lk+2Tk+2. (12.31)

Substituting Equations (12.30) and (12.31) into Equation (12.29) and taking into
account that hk = rk/lk for k = 1, 2, . . . , n− 2, we get

r2
k+1

l2k+1

[−6(Pk+1 −Pk) + 2rkTk + 4lk+1Tk+1]

− [6(Pk+2 −Pk+1)− 4rk+1Tk+1 − 2lk+2Tk+2]
=Mk+1Ptk(1).

Multiplying by l2k+1 and simplifying yields

r2
k+1[−6(Pk+1 −Pk) + 2rkTk + 4lk+1Tk+1]
− l2k+1[6(Pk+2 −Pk+1)− 4rk+1Tk+1 − 2lk+2Tk+2]

= l2k+1Mk+1Ptk(1) = l3k+1Mk+1Tk+1

or

− 6r2
k+1(Pk+1 −Pk) + 2r2

k+1rkTk + 4r2
k+1lk+1Tk+1

− 6l2k+1(Pk+2 −Pk+1) + 4l2k+1rk+1Tk+1 + 2l2k+1lk+2Tk+2

= l3k+1Mk+1Tk+1.

Dividing by 2 and changing signs results in

3r2
k+1(Pk+1 −Pk)− 3l2k+1(Pk+2 −Pk+1)− r2

k+1rkTk − l2k+1lk+2Tk+2

= −1
2
l3k+1Mk+1Tk+1 − 2r2

k+1lk+1Tk+1 + 2l2k+1rk+1Tk+1
def=Lk+1Tk+1,

(12.32)

where Lk+1 is defined as everything that multiplies Tk+1 on the right-hand side of
Equation (12.32).

Equation (12.32) is a vector equation that can be written n − 2 times, for k =
1, 2, . . . , n− 2. It therefore yields 2(n− 2) or 3(n− 2) equations, depending on whether
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the original data points Pk are two- or three-dimensional. However, more equations are
needed. To derive them, we turn our attention to Figure 12.7, which shows the relation
between a unit tangent vector T and the angle θ between it and the line connecting the
two endpoints

cos θk = Tk • Pk+1 −Pk
|Pk+1 −Pk| .

Pk

Tk

Pk+1

Pk+1−Pk

Figure 12.7: Relation Between θ and T.

For segment Pk(t), we get from Equation (12.27)

lk+1 = |Ptk+1| =
2|Pk+1 −Pk|

1 + αTk • Pk+1−Pk

|Pk+1−Pk| + (1− α)Tk+1 • Pk+1−Pk

|Pk+1−Pk|

=
2|Pk+1 −Pk|

1 + [αTk + (1− α)Tk+1] • Pk+1−Pk

|Pk+1−Pk|
. (12.33)

From Equation (12.26)

rk = |Ptk| =
2|Pk+1 −Pk|

1 + αTk+1 • Pk+1−Pk

|Pk+1−Pk| + (1− α)Tk • Pk+1−Pk

|Pk+1−Pk|

=
2|Pk+1 −Pk|

1 + [αTk+1 + (1− α)Tk] • Pk+1−Pk

|Pk+1−Pk|
. (12.34)

Equations (12.33) and (12.34) are scalar. They can be written for each of the n− 1
spline segments (i.e., for k = 1, 2, . . . , n−1), providing 2n−2 additional equations. The
total number of equations is thus (2n− 4) + (2n− 2) = 4n− 6 for the two-dimensional
case and (3n− 6)+ (2n− 2) = 5n− 8 for the three-dimensional case. The unknowns are

l2, l3, . . . , ln, r1, r2, . . . , rn−1, L2, L3, . . . , Ln−1 and T1,T2, . . . ,Tn,

a total of (n− 1) + (n− 1) + (n− 2) + n = 4n− 4 unknowns. It is important to realize
that in the two-dimensional case, each unit vector Tk is equivalent to only one unknown
(since it can be written (cos θ, sin θ) for some angle θ). In the three-dimensional case,
each Tk is equivalent to two unknowns, so the number of unknowns in that case is 5n−4.
We thus end up with 4n − 6 equations and 4n − 4 unknowns (in the two-dimensional
case) or 5n−8 equations and 5n−4 unknowns (in the three-dimensional case). We seem
to be two or four equations short, but we already know from past experience with cubic
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splines that this apparent problem can be turned to our advantage. The solution, of
course, is to ask the user to supply the values of the two extreme unit tangents T1 and
Tn. This provides the two or four necessary values to bring the number of unknowns
down to the number of equations. This, together with the free parameter α, turns fair
cubic splines into an interactive method.

The discussion so far has assumed an open curve, but closed curves are also useful in
practical problems. In fact, the original fair cubic splines were developed by [Manning 74]
to help design insoles for shoes; a useful, practical example of a closed curve. A closed
curve does not have endpoints; every point can be considered interior. Equation (12.32)
can thus be written n times, providing 2n or 3n equations. A closed curve also requires
n segments, instead of n−1. Each of Equations (12.33) and (12.34) can thus be written
n times, once for each segment. The total number of equations is therefore 4n or 5n.
The unknowns are

l1, l2, . . . , ln, r1, r2, . . . , rn, L1, L2, . . . , Ln and T1,T2, . . . ,Tn,

a total of 4n or 5n unknowns. A closed curve can thus be computed based on the n
data points, without any additional user input. If it is unsatisfactory, it can be edited
by moving the points or changing the value of the parameter α.

One drawback of this method is that the equations are not linear. This makes it
complicated to solve them and it also means that there may be either no solutions or
several different solutions. A simple, iterative algorithm for solving the equations is the
following:

1. Guess reasonable initial values for the unit tangents Tk. A good idea is to set
Tk in the direction Pk+1 −Pk.

2. Using these values, solve Equations (12.33) and (12.34) to calculate initial values
for all the lk and rk unknowns.

3. Substitute the current values of Tk, lk, and rk in the left-hand side of Equa-
tion (12.32) to obtain better values for the products LkTk. Once such a product is
known, Tk can be calculated since its magnitude is 1.

4. Repeat steps 2 and 3 until the process converges (i.e., until none of lk, rk, and
Tk changes between consecutive iterations by more than a preset threshold).

As has been mentioned earlier, this process is not guaranteed to converge, or it
may converge to one of several possible solutions. Another difficulty has to do with the
constants Lk. We never need their magnitudes, but their signs are important, since they
give the sense of direction at the interior points. One way to handle the Lk is to keep the
angle between the two vectors (Pk+2 −Pk+1) and (Pk+1 −Pk) small for every interior
point Pk+1 (see Figure 12.6e). This will produce individual spline segments, none of
which turns too much, resulting in tangents Tk, Tk+1, and Tk+2 that don’t differ much
in direction. Such a situation corresponds to Lk > 0 for every k. An alternative is to
keep the sign of each of the new products LkTk obtained in step 3 identical to the sign
of Tk used earlier in that step. This guarantees that none of the new Tk will change
much in direction during an iteration.



12 Spline Interpolation 599

12.2 The Akima Spline

In the late 1960s, Hiroshi Akima was looking for a cubic spline curve that would look
natural and smooth, like a curve drawn intuitively by hand. The result turned out to be
successful and the Akima spline has become the algorithm of choice for several illustra-
tion and drawing applications. The Akima algorithm has been published in [Akima 70],
[Akima 78], and [Akima 91], with Matlab code available at [Akima-matlab 10].

The curves produced by the Akima spline are often very similar to those obtained
by cubic splines, but are less prone to wiggling. This feature is especially noticeable
when one data point is an outlier, as illustrated by Figure 12.8. The figure shows several
data points and it is obvious that one of them lies at an unexpected location, far from
the other points. A cubic spline has been computed for the points and it is clear that
it wiggles between points. The Akima spline, on the other hand, is smooth overall and
resembles a curve we expect a person to draw for the given points.

Definition of outlier

A value that “lies outside” (is much smaller or larger than) most of the other values
in a set of data.
A person who lives away from his place of work.
An observation that lies outside the overall pattern of a distribution. The presence of
an outlier normally indicates some sort of problem.
A point which a data set is better off without (this is an embarrassing secret of the
statistical trade).

Cubic spline
Akima spline

Figure 12.8: Two Splines at an Outlier.

The original Akima spline was developed for explicit curves (i.e., curves expressed
as y = f(x), also referred to as single-valued functions). Each spline segment from
point xi to point xi+1 is a cubic polynomial, and the main idea is to compute the slope
si

def= f ′(xi) of the segment at point xi explicitly, by means of a simple expression that
depends on the point, its two immediate predecessors and its two immediate successors.
The method is therefore local, and moving a point affects at most five spline segments.
(This explains its usefulness when some data points are outliers. It also implies that the



600 12.2 The Akima Spline

number of data points must be at least five.) Another notable feature is the absence of
the large system of equations, which is the cornerstone of the traditional cubic splines.
A possible shortcoming is the fact that the second derivatives of the spline segments are
not continuous at the data points.

Figure 12.9 shows two examples of the construction that is used to compute the
slope. Five data points, numbered 1 through 5, are shown. The points are connected
with straight segments (secants) whose slopes are denoted by m1 through m4. Thus,
for example, m1 = (y2 − y1)/(x2 − x1). The desired slope at point 3 is also shown, as a
short straight segment.

1

1

2 2
3

3

4

4

5

5m1 m
1

m
2 m

2

m
3

m3

m4

m4

Figure 12.9: Construction for Computing the Slope.

The chief innovation of the Akima algorithm is the expression for computing the
slope at point 3

s3 =
|m4 −m3|m2 + |m2 −m1|m3

|m4 −m3|+ |m2 −m1| . (12.35)

In reference [Akima 70], the developer of this method, Hiroshi Akima, shows why this
expression makes sense. Figure 12.10a again shows five points. The straight segments
12, 23, 43, and 54 are extended to determine the locations of auxiliary points A and
B. Segment CD is the desired slope at point 3, and it is determined by satisfying the
relation ∣∣∣∣ 2CCA

∣∣∣∣ =
∣∣∣∣ 4DDB

∣∣∣∣ .
About a dozen steps (not listed here) are needed to arrive from this relation to Equa-
tion (12.35).

Figure 12.10: Construction for Determining the Slope.
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Notice that in Figure 12.10b the two segments 4D and DB seem to go in “opposite”
directions, which is why the relation above uses absolute values.

Equation (12.35) implies that the slope at point 3 depends only on the slopes of
the four secants. It is independent of the lengths of the secants and is invariant under
a linear transformation of the coordinate system. It is also obvious that the equation
makes sense in the following special cases: If m1 = m2 and m3 �= m4, then s = m2. If
m3 = m4 and m1 �= m2, then s = m3. If m2 = m3, then s = m2 = m3. However, in the
special case m1 = m2 �= m3 = m4, Equation (12.35) is indeterminate and the slope is
simply defined as the average (m2 +m3)/2.

Once we accept Equation (12.35), it is applied to points (xi, yi) and (xi+1, yi+1) to
compute slopes si and si+1. These six numbers (four coordinates and two slopes) are
then used to compute the cubic polynomial segment from xi to xi+1. The polynomial
itself has the form

yi = p0 + p1(x− xi) + p2(x− xi)2 + p3(x− xi)3, where xi ≤ x ≤ xi+1, (12.36)

and it is easy to show that the four parameters pk are expressed in terms of the six
numbers as

p0 = yi, (12.37)
p1 = si, (12.38)
p2 =

[
3(yi+1 − yi)/(xi+1 − xi)− 2si − si+1

]
/(xi+1 − xi), (12.39)

p3 =
[
si + si+1 − 2(yi+1 − yi)/(xi+1 − xi)

]
/(xi+1 − xi)2. (12.40)

� Exercise 12.8: Only subscripts i and i+1 appear in Equations (12.37) through (12.40),
but the slope at each data point i depends on the point and its four near neighbors.
Where are the subscripts of the other neighbors?

Computing and drawing an Akima spline for a set of n data points is done in
n − 1 iterations. For each pair of consecutive points, the four polynomial coefficients
are computed and the curve segment, Equation (12.36), is drawn. While experimenting
with the curve, it is a good idea to save the four polynomial coefficients of each segment.
If the user decides to move a data point, the software has to recompute the coefficients
of at most five polynomial segments.

The next point to consider is the computation of the first two and last two spline
segments. The developer of this method, Hiroshi Akima, adopts the following idea. To
compute the first segment, from point 1 to point 2, assume two imaginary points, 0
and −1, to the left of point 1, and compute slopes m−1 and m0. To compute the last
segment, assume two more points n+ 1 and n+ 2, and compute slopes mn and mn+1.
The computations are done as follows. For a non-periodic curve, m−1 = 3m1 − 2m2,
m0 = 2m1 −m2, mn = 2mn−1 −mn−2, and mn+1 = 3mn−1 − 2mn−2. For a periodic
curve, m−1 = mn−2, m0 = mn−1, mn = m1, and mn+1 = m2.
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12.3 The Quadratic Spline

The cubic spline curve is useful in certain practical applications, which raises the question
of splines of different degrees based on the same concepts. It turns out that splines
of degrees higher than 3 are useful only for special applications because they are more
computationally intensive and tend to have many undesirable inflection points (i.e., they
tend to wiggle excessively). Splines of degree 1 are, of course, just straight segments
connected to form a polyline, but quadratic (degree-2) splines can be useful in certain
applications. Such a spline is easy to derive and to compute. Each spline segment
is a quadratic polynomial, i.e., a parabolic arc, so it results in fewer oscillations in the
curve. On the other hand, quadratic spline segments connect with at most C1 continuity
because their second derivative is a constant. Thus, a quadratic spline curve may not
be as tight as a cubic spline that passes through the same points.

The quadratic spline curve is derived in this section based on the variant Hermite
segment of Section 11.7. Each segment Pi(t) is therefore a quadratic polynomial defined
by its two endpoints Pi and Pi+1 and by its start tangent vector Pti. Equation (11.33)
shows that the end tangent of such a segment is Pti(1) = 2(Pi+1 −Pi)−Pti. The first
two spline segments are

P1(t) = (P2 −P1 −Pt1)t2 +Pt1t+P1,

P2(t) = (P3 −P2 −Pt2)t2 +Pt2t+P2.

At their joint point P2 they have the tangent vectors Pt1(1) = 2(P2 − P1) − Pt1 and
Pt2(0) = Pt2. In order to achieve C1 continuity we have to have the boundary condition
Pt1(1) = Pt2(0) or 2(P2 − P1) − Pt1 = Pt2. This equation can be written Pt1 + Pt2 =
2(P2−P1), and when duplicated n−1 times, for the points P1 through Pn−1, the result
is

n−1

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣
1 1 0 0 · · · 0 0
0 1 1 0 · · · 0 0

. . . . . .
...

0 0 0 0 · · · 1 1

⎤
⎥⎥⎦

︸ ︷︷ ︸
n

⎡
⎢⎢⎢⎣
Pt1
Pt2
...
Ptn

⎤
⎥⎥⎥⎦= 2

⎡
⎢⎢⎣
P2 −P1

P3 −P2
...

Pn −Pn−1

⎤
⎥⎥⎦ . (12.41)

As with the cubic spline, there are more unknowns than equations (n unknowns and
n − 1 equations), and the standard technique is to ask the user to provide a value for
one of the unknown tangent vectors, normally Pt1.

Example: We select the four points of Section 12.1.1, namely P1 = (0, 0), P2 =
(1, 0), P3 = (1, 1), and P4 = (0, 1). We also select the same start tangent Pt1 = (1,−1).
Equation (12.41) becomes

⎛
⎝ 1 1 0 0
0 1 1 0
0 0 1 1

⎞
⎠

⎛
⎜⎝
Pt1
Pt2
Pt3
Pt4

⎞
⎟⎠ = 2

⎛
⎝P2 −P1

P3 −P2

P4 −P3

⎞
⎠ =

⎛
⎝ (2, 0)

(0, 2)
(−2, 0)

⎞
⎠ ,

with solutions Pt2 = (1, 1), Pt3 = (−1, 1), and Pt4 = (−1,−1). The three spline segments
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become

P1(t) = (P2 −P1 −Pt1)t2 +Pt1t+P1 = (t, t2 − t),
P2(t) = (P3 −P2 −Pt2)t2 +Pt2t+P2 = (−t2 + t+ 1, t),
P3(t) = (P4 −P3 −Pt3)t2 +Pt3t+P3 = (−t+ 1,−t2 + t+ 1).

Their tangent vectors arePt1(t) = (1, 2t−1), Pt2(t) = (−2t+1, 1), andPt3(t) = (−1,−2t+
1). It is easy to see that Pt1(1) = Pt2(0) = (1, 1) and Pt2(1) = Pt3(0) = (−1, 1). Also,
the end tangent of the entire curve is Pt3(1) = (−1,−1), the same as for the cubic case.
The complete spline curve is shown in Figure 12.11.

0.2 0.4 0.6 0.8 1 1.2
°0.2

0.2

0.4

0.6

0.8

1

1.2

P4 P3

P2
P1

x

y

−

(*quadratic spline example*)
C1:=ParametricPlot[{t,t^2-t},{t,0,1}];
C2:=ParametricPlot[{-t^2+t+1,t},{t,0,1}];
C3:=ParametricPlot[{-t+1,-t^2+t+1},{t,0,1}];
C4=Graphics[{Red, AbsolutePointSize[6],Point[{0,0}],
Point[{1,0}],Point[{1,1}],Point[{0,1}]}];
Show[C1,C2,C3,C4,PlotRange->All, AspectRatio->Automatic]

Figure 12.11: A Quadratic Spline Example.
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12.4 The Quintic Spline

The derivation of the cubic spline is based on the requirement (boundary condition)
that the second derivatives of the individual segments be equal at the interior points.
This produces n− 2 equations to compute the first derivatives, but makes it impossible
to control the values of the second derivatives. In cases where the designer wants to
specify the values of the second derivatives, higher-degree polynomials must be used. A
degree-5 (quintic) polynomial is a natural choice. Section 11.3 discusses the similar case
of the quintic Hermite segment.

The approach to the quintic spline is similar to that of the cubic spline. The spline is
a set of n−1 segments, each a quintic polynomial, so we have to compute the coefficients
of each segment from the boundary conditions. A general quintic spline segment from
point Pk to point Pk+1 is given by Equation (11.16), duplicated here

Pk(t) = akt5 + bkt4 + ckt3 + dkt2 + ekt+ fk. (11.16)

The six coefficients are computed from the following six boundary conditions

Pk(0) = Pk, Pk(1) = Pk+1, P′k(1) = P
′
k+1(0),

P′′k(1) = P
′′
k+1(0), P

′′′
k (1) = P

′′′
k+1(0), P

′′′′
k (1) = P

′′′′
k+1(0).

(Notice that these conditions involve the first four derivatives. Experience indicates that
better-looking splines are obtained when the boundary conditions are based on an even
number of derivatives, which is why the quintic, and not the quartic, polynomial is a
natural choice.)

The boundary conditions can be written explicitly as follows:

fk = Pk, a

ak + bk + ck + dk + ek + fk = fk+1 = Pk+1, b

5ak + 4bk + 3ck + 2dk + ek = ek+1, c

20ak + 12bk + 6ck + 2dk = 2dk+1, (12.42)d
60ak + 24bk + 6ck = 6ck+1, e

120ak + 24bk = 24bk+1. f

These equations are now used to express the six coefficients of each of the n− 1 quintic
polynomials in terms of the second and fourth derivatives.

Equation (12.42)f results in 24bk+1 = P
′′′′
k+1(0) or bk = 1

24P
′′′′
k (0). This also

implies ak = 1
120 [P

′′′′
k+1(0) − P

′′′′
k (0)]. Equation (12.42)d implies 2dk+1 = P′′k+1(0) or

dk = 1
2P

′′
k(0). Now that we have expressed ak, bk, and dk in terms of the second

and fourth derivatives, we substitute them in Equation (12.42)d to get the following
expression for ck

ck =
1
6
[P

′′
k+1(0)−P

′′
k(0)]−

1
36
[P

′′′′
k+1(0) + 2P

′′′′
k (0)].
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The last coefficient to be expressed in terms of the (still unknown) second and fourth
derivatives is ek. This is done from Pk(1) = Pk+1 and results in

ek = [Pk+1 −Pk]− 1
6
[P′′k+1(0) + 2P′′k(0)] +

1
360

[7P
′′′′
k+1(0) + 8P

′′′′
k (0)].

When these expressions for the six coefficients are combined with P′k−1(1) = P
′
k(0),

all the terms with first and third derivatives are eliminated, and the result is a relation
between the (unknown) second and fourth derivatives and the (known) data points

[Pk−1 −Pk] + 1
6
[P′′k−1(0) + 2P′′k(0)]−

1
360

[7P
′′′′
k−1(0) + 8P

′′′′
k (0)] (12.43)

= [Pk+1 −Pk]− 1
6
[P′′k+1(0) + 2P′′k(0)] +

1
360

[7P
′′′′
k+1(0) + 8P

′′′′
k (0)].

When these expressions for the six coefficients are similarly combined with P′′′k−1(1) =
P′′′k (0), the result is another relation between the second and fourth derivates

−P′′k−1(0) + 2P′′k(0)−P′′k+1(0) +
1
6
P

′′′′
k−1(0) +

2
3
P

′′′′
k (0) +

1
6
P

′′′′
k+1(0) = 0. (12.44)

Each of Equations (12.43) and (12.44) is n− 1 equations for k = 1, 2, . . . , n− 1, so
we end up with 2(n− 1) equations with the 2n second and fourth unknown derivatives.
As in the case of the cubic spline, we complete this system of equations by guessing
values for some extreme derivatives. The simplest end condition is to require

P
′′′
1 (0) = P

′′′
n−1(1) = P

′′′′
1 (0) = P

′′′′
n−1(1) = 0,

which implies P
′′
1 (0) = P

′′
1 (1)− 1

6P
′′′′
1 (1) and P

′′
n(0) = P

′′
n−1(1)− 1

6P
′′′′
n−1(1) and makes

it possible to eliminate P
′′
1 (0) and P

′′
n(0) from Equations (12.43) and (12.44). [Späth 83]

shows that the end result is the system of equations[
A −B
C A

] [
P

′′

P
′′′′

]
=

[
D
0

]
, (12.45)

where
P

′′
=

(
P′′1(0), . . . ,P

′′
n−1(0)

)T
, P

′′′′
=

(
P′′′′1 (0), . . . ,P′′′′n−1(0)

)T
,

D =
[
6[(P2 −P1)− (P1 −P0)], . . . , 6[(Pn −Pn−1)− (Pn−1 −Pn−2)]

]T
,

and

A =

⎡
⎢⎢⎢⎣

5 1
1 4 1

1 4 1

. . .
1 4 1

1 5

⎤
⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎣

26 7
7 16 7

7 16 7

. . .
7 16 7

7 26

⎤
⎥⎥⎥⎦ , C =

⎡
⎢⎢⎢⎣

6 −6
−6 12 −6

−6 12 −6

. . .
−6 12 −6

6 6

⎤
⎥⎥⎥⎦ .
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Notice that matrices A, B, and C are tridiagonal and symmetric. In addition, A
and B are diagonally dominant, while C is nonnegative definite. This guarantees that
the block matrix of Equation (12.45) will have an inverse, which implies that the system
of equations has a unique solution.

Solving the system of Equations (12.45) means expressing the second and fourth
derivatives of the spline segments in terms of the data points (the known quantities).
Once this is done, the six coefficients of each of the n−1 spline segments can be expressed
in terms of the data points, and the segments can be constructed.

12.5 Cardinal Splines

The cardinal spline is another example of how Hermite interpolation is applied to con-
struct a spline curve. The cardinal spline overcomes the main disadvantages of cubic
splines, namely the lack of local control and the need to solve a system of linear equa-
tions that may be large (its size depends on the number of data points). Cardinal splines
also offer a natural way to control the tension of the curve by modifying the magnitudes
of the tangent vectors (Section 11.2.3). The price for all this is the loss of second-order
continuity. Strictly speaking, this loss means that the cardinal spline isn’t really a spline
(see the definition of splines on Page 577), but its form, its derivation, and its behavior
are so similar to those of other splines that the name “cardinal spline” has stuck.

Figure 12.12a illustrates the principle of this method. The figure shows a curve that
passes through seven points. The curve looks continuous but is constructed in segments,
two of which are thicker than the others. The first thick segment, the one from P2 to
P3, starts in the direction from P1 to P3 and ends going in the direction from P2 to
P4. The second thick segment, from P5 to P6, features the same behavior. It starts in
the direction from P4 to P6 and ends going in the direction from P5 to P7.

P1
P2

P3

P4 P5

P6

P7

(a) (b)

P3−P1 P
4−P

2

P1 P4

P3
P2

Figure 12.12: Tangent Vectors in a Cardinal Spline.

The cardinal spline for n given points is calculated and drawn in segments, each
depending on four points only. Each point participates in at most four curve segments,
so moving one point affects only those segments and not the entire curve. This is
why the curve features local control. The individual segments connect smoothly; their
first derivatives are equal at the connection points (the curve therefore has first-order
continuity). However, the second derivatives of the segments are generally different at
the connection points.
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The first step in constructing the complete curve is to organize the points into n−3
highly-overlapping groups of four consecutive points each. The groups are

[P1,P2,P3,P4], [P2,P3,P4,P5], [P3,P4,P5,P6], . . . , [Pn−3,Pn−2,Pn−1,Pn].

Hermite interpolation is then applied to construct a curve segment P(t) for each group.
Denoting the four points of a group by P1, P2, P3, and P4, the two interior points P2

and P3 become the start and end points of the segment and the two tangent vectors
become s(P3 − P1) and s(P4 − P2), where s is a real number. Thus, segment P(t)
goes from P2 to P3 and its two extreme tangent vectors are proportional to the vectors
P3 −P1 and P4 −P2 (Figure 12.12b). The proportionality constant s is related to the
tension parameter T . Note how there are no segments from P1 to P2 and from Pn−1

to Pn. These segments can be added to the curve by adding two new extreme points
P0 and Pn+1. These points can also be employed to edit the curve, because the first
segment, from P1 to P2, starts going in the direction from P0 to P2, and similarly for
the last segment.

The particular choice of the tangent vectors guarantees that the individual seg-
ments of the cardinal spline will connect smoothly. The end tangent s(P4 −P2) of the
segment for group [P1,P2,P3,P4] is identical to the start tangent of the next group,
[P2,P3,P4,P5].

Segment P(t) is therefore defined by

P(0) = P2, P(1) = P3,

Pt(0) = s(P3 −P1), Pt(1) = s(P4 −P2)
(12.46)

and is easily calculated by applying Hermite interpolation (Equation (11.7)) to the four
quantities of Equation (12.46)

P(t) = (t3, t2, t, 1)

⎛
⎜⎝

2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0

⎞
⎟⎠

⎛
⎜⎝

P2

P3

s(P3 −P1)
s(P4 −P2)

⎞
⎟⎠

= (t3, t2, t, 1)

⎛
⎜⎝
−s 2− s s− 2 s
2s s− 3 3− 2s −s
−s 0 s 0
0 1 0 0

⎞
⎟⎠

⎛
⎜⎝
P1

P2

P3

P4

⎞
⎟⎠ . (12.47)

Tension in the cardinal spline can now be controlled by changing the lengths of the
tangent vectors by means of parameter s. A long tangent vector (obtained by a large
s) causes the curve to continue longer in the direction of the tangent. A short tangent
has the opposite effect; the curve moves a short distance in the direction of the tangent,
then quickly changes direction and moves toward the end point. A zero-length tangent
(corresponding to s = 0) produces a straight line between the endpoints (infinite ten-
sion). In principle, the parameter s can be varied from 0 to ∞. In practice, we use only
values in the range [0, 1]. However, since s = 0 produces maximum tension, we cannot
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intuitively think of s as the tension parameter and we need to define another parameter,
T inversely related to s.

The tension parameter T is defined as s = (1 − T )/2, which implies T = 1 − 2s.
The value T = 0 results in s = 1/2. The curve is defined as having tension zero in this
case and is called the Catmull–Rom spline [Catmull and Rom 74]. Section 12.6 includes
a detailed derivation of this type of spline as a blend of two parabolas. Increasing T
from 0 to 1 decreases s from 1/2 to 0, thereby reducing the magnitude of the tangent
vectors down to 0. This produces curves with more tension. Exercise 11.7 tells us that
when the tangent vectors have magnitude zero, the Hermite curve segment is a straight
line, so the entire cardinal spline curve becomes a set of straight segments, a polyline,
the curve with maximum tension. Decreasing T from 0 to −1 increases s from 1/2 to 1.
The result is a curve with more slack at the data points.

To illustrate this behavior mathematically, we rewrite Equation (12.47) explicitly
to show its dependence on s:

P(t) = s(−t3 + 2t2 − t)P1 + s(−t3 + t2)P2 + (2t3 − 3t2 + 1)P2

+ s(t3 − 2t2 + t)P3 + (−2t3 + 3t2)P3 + s(t3 − t2)P4.
(12.48)

For s = 0, Equation (12.48) becomes (2t3 − 3t2 + 1)P2 + (−2t3 + 3t2)P3, which can
be simplified to (3t2 − 2t3)(P3 − P2) + P2. Substituting u = 3t2 − 2t3 reduces this to
u(P3 −P2) +P2, which is the straight line from P2 to P3.

For large s, we use Equation (12.48) to calculate the mid-curve value P(0.5):

P(0.5) =
s

8
[(P3 −P1) + (P2 −P4)] + 0.5(P2 +P3)

=
s

8
[
Pt(0)−Pt(1)]+ 0.5(P2 +P3).

This is an extension of Equation (Ans.13). The first term is the difference of the two
tangent vectors, multiplied by s/8. As s grows, this term grows without limit. The
second term is the midpoint of P2 and P3. Adding the two terms (a vector and a point)
produces a point that may be located far away (for large s) from the midpoint, showing
that the curve moves a long distance away from the start point P2 before changing
direction and starting toward the end point P3. Large values of s therefore feature a
loose curve (low tension).

Thus, the tension of the curve can be increased by setting s close to 0 (or, equiv-
alently, setting T close to 1); it can be decreased by increasing s (or, equivalently,
decreasing T toward 0).

� Exercise 12.9: What happens when T > 1?

Setting T = 0 results in s = 0.5. Equation (12.47) reduces in this case to

P(t) = (t3, t2, t, 1)

⎛
⎜⎝
−0.5 1.5 −1.5 0.5

1 −2.5 2 −0.5
−0.5 0 0.5 0

0 1 0 0

⎞
⎟⎠

⎛
⎜⎝
P1

P2

P3

P4

⎞
⎟⎠ , (12.49)
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a curve known as the Catmull–Rom spline. Its basis matrix is termed the parabolic
blending matrix.

Example: Given the four points (1, 0), (3, 1), (6, 2), and (2, 3), we apply Equa-
tion (12.47) to calculate the cardinal spline segment from (3, 1) to (6, 2):

P(t) = (t3, t2, t, 1)

⎡
⎢⎣
−s 2− s s− 2 s
2s s− 3 3− 2s −s
−s 0 s 0
0 1 0 0

⎤
⎥⎦

⎡
⎢⎣
(1, 0)
(3, 1)
(6, 2)
(2, 3)

⎤
⎥⎦

= t3(4s− 6, 4s− 2) + t2(−9s+ 9,−6s+ 3) + t(5s, 2s) + (3, 1).

For high tension (i.e., T = 1 or s = 0), this reduces to the straight line

P(t) = (−6,−2)t3 + (9, 3)t2 + (3, 1) = (3, 1)(−2t3 + 3t2) + (3, 1) = (3, 1)u+ (3, 1).

For T = 0 (or s = 1/2), this cardinal spline reduces to the Catmull–Rom curve

P(t) = (−4, 0)t3 + (4.5, 0)t2 + (2.5, 1)t+ (3, 1). (12.50)

Figure 12.13 shows an example of a similar cardinal spline (the points are different)
with four values 0, 1/6, 2/6, and 3/6 of the tension parameter.

1.5 2 2.5 3

0.5

1

1.5

2

2.5

3 P1

P2

P3

P4

(* Cardinal spline example *)
T={t^3,t^2,t,1};
H[s_]:={{-s,2-s,s-2,s},{2s,s-3,3-2s,-s},{-s,0,s,0},{0,1,0,0}};
B={{1,3},{2,0},{3,2},{2,3}};
s=3/6; (* T=0 *)
g1=ParametricPlot[T.H[s].B,{t,0,1}];
s=2/6; (* T=1/3 *)
g2=ParametricPlot[T.H[s].B,{t,0,1}];
s=1/6; (* T=2/3 *)
g3=ParametricPlot[T.H[s].B,{t,0,1}];
s=0; (* T=1 *)
g4=ParametricPlot[T.H[s].B,{t,0,1}];
g5=Graphics[{AbsolutePointSize[4], Table[Point[B[[i]]],{i,1,4}] }];
Show[g1,g2,g3,g4,g5, PlotRange->All]

Figure 12.13: A Cardinal Spline Example.
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12.6 Parabolic Blending: Catmull–Rom Curves

The Catmull–Rom curve (or the Catmull–Rom spline) is the special case of a cardinal
spline with tension T = 0. In this section, we describe an approach to the Catmull–Rom
spline where each spline segment is derived as the blend of two parabolas.

This approach to the Catmull–Rom curve proceeds in the following steps:

1. Organize the points in overlapping groups of three consecutive points each. The
groups are

[P1,P2,P3], [P2,P3,P4], [P3,P4,P5], · · · [Pn−2,Pn−1,Pn].

2. Fit two parabolas, one through the first three points, P1, P2, and P3, and the
other through the overlapping group, P2, P3, and P4.

3. Calculate the first curve segment from P2 to P3 as a linear blend of the two
parabolas, using the two barycentric weights 1− t and t.

4. Fit a third parabola, through points P3, P4, and P5 and calculate the second
curve segment, from P3 to P4, as a linear blend of the second and third parabolas.

5. Repeat until the last segment, from Pn−2 to Pn−1, is calculated as a linear blend
of the (n− 3)rd and the (n− 2)nd parabolas.

Each parabola is defined by three points (which, of course, are on the same plane)
and is therefore flat. However, the two parabolas that make up the segment are not
generally on the same plane, so their blend is not necessarily flat and can twist in space.

The two original parabolas are denoted by Q(u) = (u2, u, 1)H123 and R(w) =
(w2, w, 1)H234, where H123 and H234 are column vectors, each depending on the three
points involved. They will have to be calculated. The expression for the blended segment
is P(t) = (1−t)Q(u)+tR(w). Since this expression depends on t only, we have to express
parameters u and w in terms of t. We try the linear expressions u = at+ b, w = ct+ d.

To calculate a, b, c, and d, we write the end conditions for the two parabolas and
for the curve segment (Figure 12.14a):

Q(0) = P1, Q(0.5) = P2, Q(1) = P3,

R(0) = P2, R(0.5) = P3, R(1) = P4,

P(0) = P2, P(1) = P3.

For point P2, we get (1) u = 0.5 and t = 0, implying b = 0.5, and (2) w = 0 and
t = 0, implying d = 0. For point P3, we similarly get (1) u = 1 and t = 1, implying
a + b = 1 ⇒ a = 0.5, and (2) w = 0.5 and t = 1, implying c = 0.5. This results in
u = (1 + t)/2 and w = t/2.

Therefore, for the first parabola, we get

Q(0) = P1 = (0, 0, 1)H123,

Q(0.5) = P2 = (1/4, 1/2, 1)H123,

Q(1) = P3 = (1, 1, 1)H123.

=⇒
⎛
⎝P1

P2

P3

⎞
⎠ =

⎛
⎝ 0 0 1
1/4 1/2 1
1 1 1

⎞
⎠H123 =MH123,
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0
.5

1 F2

10F4 10F1

F3

(a)

(b)

P1
P2

P3
P4

Figure 12.14: Parabolic Blending: (a) Two Parabolas.
(b) The Blend Functions.

This can be solved for H123

H123 =M−1

⎛
⎝P1

P2

P3

⎞
⎠ =

⎛
⎝ 2 −4 2
−3 4 −1
1 0 0

⎞
⎠

⎛
⎝P1

P2

P3

⎞
⎠ .

So the first parabola is

Q(u) = (u2, u, 1)M−1

⎛
⎝P1

P2

P3

⎞
⎠ .

The second parabola is obtained similarly:

R(w) = (w2, w, 1)M−1

⎛
⎝P2

P3

P4

⎞
⎠ .

The first curve segment is therefore

P(t) = (1− t)Q(u) + tR(w)

= (1− t)(u2, u, 1)M−1

⎛
⎝P1

P2

P3

⎞
⎠+ t(w2, w, 1)M−1

⎛
⎝P2

P3

P4

⎞
⎠

= (1− t)(2u2 − 3u+ 1,−4u2 + 4u, 2u2 − u)

⎛
⎝P1

P2

P3

⎞
⎠
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+ t(2w2 − 3w + 1,−4w2 + 4w, 2w2 − w)

⎛
⎝P2

P3

P4

⎞
⎠

= (−0.5t3 + t2 − 0.5t)P1 + (1.5t3 − 2.5t2 + 1)P2

+ (−1.5t3 + 2t2 + 0.5t)P3 + (0.5t3 − 0.5t2)P4 (12.51)

= (t3, t2, t, 1)

⎛
⎜⎝
−0.5 1.5 −1.5 0.5

1 −2.5 2 −0.5
−0.5 0 0.5 0

0 1 0 0

⎞
⎟⎠

⎛
⎜⎝
P1

P2

P3

P4

⎞
⎟⎠

= (t3, t2, t, 1)BP, (12.52)

where B is called the parabolic blending matrix.
The other segments are calculated similarly. Note that, in practice, there is no need

to calculate the parabolas. The program simply executes a loop where in each iteration,
it uses Equation (12.51) with the next group of points to calculate the next segment.

The Catmull–Rom curve starts at point P2 and ends at Pn−1. To make it pass
through all n points P1, . . . ,Pn, we add two more points P0 and Pn+1. In practice,
we normally select them as P0 = P1 and Pn+1 = Pn. The first group of points is
now P0, . . . ,P3, and the last one is Pn−2, . . . ,Pn+1. This also makes the method more
interactive, since two more points can be repositioned to edit the shape of the curve.
The curve can also be closed, if the first and last points are set to identical values.

Equation (12.51) gives the representation of the Catmull–Rom curve curves in terms
of the four blending functions

F1(t) = (−0.5t3 + t2 − 0.5t), F2(t) = (1.5t3 − 2.5t2 + 1),

F3(t) = (−1.5t3 + 2t2 + 0.5t), F4(t) = (0.5t3 − 0.5t2).

Note how F1 and F4 are negative (Figure 12.14b), how F2 and F3 are symmetric, and
how the four functions are barycentric.

� Exercise 12.10: Prove the first-order continuity of the parabolic curve.

Example: Given the five points (1, 0), (3, 1), (6, 2), (2, 3), and (1, 4), we calculate
the Catmull–Rom curve from (1, 0) to (1, 4). The first step is to add two more points,
one on each end. We simply duplicate each of the two endpoints, ending up with seven
points. The first segment is (from Equation (12.51))

P1(t) = (−0.5t3 + t2 − 0.5t)(1, 0) + (1.5t3 − 2.5t2 + 1)(1, 0)

+ (−1.5t3 + 2t2 + 0.5t)(3, 1) + (0.5t3 − 0.5t2)(6, 2)

= (−0.5t3 + 1.5t2 + t+ 1,−0.5t3 + t2 + 0.5t).

This segment goes from point (1, 0) (for t = 0) to point (3, 1) (for t = 1). The next
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segment, from (3, 1) to (6, 2), is similarly

P2(t) = (−0.5t3 + t2 − 0.5t)(1, 0) + (1.5t3 − 2.5t2 + 1)(3, 1)

+ (−1.5t3 + 2t2 + 0.5t)(6, 2) + (0.5t3 − 0.5t2)(2, 3)

= (−4, 0)t3 + (4.5, 0)t2 + (2.5, 1)t+ (3, 1).

This is identical to Equation (12.50). Calculating the other two segments is left as an
exercise.

12.6.1 Generalized Parabolic Blending

The previous discussion assumes that the n points are roughly equally spaced. This is
why we could write Q(0.5) = P2 and R(0.5) = P3. This assumption is sometimes true
in practical work. In cases where it isn’t true, it is possible to write Q(α) = P2 and
R(β) = P3 (where 0 ≤ α, β ≤ 1 and their values depend on the placement of the points)
and derive the expression for the curve from there.

Here is a summary of the results: The three parameters are now related by u =
(1− α)t+ α and w = βt. The two parabolas are given by

⎛
⎝P1

P2

P3

⎞
⎠ =

⎛
⎝ 0 0 1
α2 α 1
1 1 1

⎞
⎠H123,

implying

H123 =M−1

⎛
⎝P1

P2

P3

⎞
⎠ =

⎛
⎝ 1

α
−1

α(1−α)
1

1−α
−(1+α)

α
1

α(1−α)
−α
1−α

1 0 0

⎞
⎠

⎛
⎝P1

P2

P3

⎞
⎠ ,

and ⎛
⎝P2

P3

P4

⎞
⎠ =

⎛
⎝ 0 0 1
β2 β 1
1 1 1

⎞
⎠H234,

implying

H234 =M−1

⎛
⎝P2

P3

P4

⎞
⎠ =

⎛
⎝ 1

β
−1

β(1−β)
1

1−β
−(1+β)

β
1

β(1−β)
−β
1−β

1 0 0

⎞
⎠

⎛
⎝P2

P3

P4

⎞
⎠ .

The final expression of the curve is

P(t) = (t3, t2, t, 1)

⎛
⎜⎜⎜⎝
−(1−α)2

α
(1−α)+αβ

α
−(1−α)−αβ

1−β
β2

1−β
2(1−α)2

α
−2(1−α)−αβ

α
2(1−α)−β(1−2α)

1−β
−β2
1−β

−(1−α)2

α
(1−2α)

α α 0
0 1 0 0

⎞
⎟⎟⎟⎠

⎛
⎜⎝
P1

P2

P3

P4

⎞
⎟⎠ .
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12.6.2 Bessel’s Algorithm

The cardinal spline and the Catmull–Rom curve are based on the particular way the
two extreme tangent vectors of each four-point segment are defined. Equation (12.46)
definesPt(0) = s(P3−P1) and Pt(1) = s(P4−P2). So far, these definitions, which seem
arbitrary, have been used because they make sense. They can, however, be explained
(or justified) by a simple method called Bessel’s algorithm. The idea is to calculate
a quadratic interpolating polynomial Qs(t) for the first three points P0, P1, and P2

and define Pt(0) as the tangent vector of Qs(t) at point P1 (Figure 12.15). Similarly,
another quadratic interpolating polynomial Qe(t) is calculated for the last three points
P1, P2, and P3, and Pt(1) is defined as the tangent vector of Qe(t) at point P2.

P1

P1

P0 P2

P3

Qs(t)

Qe(t)

P2

Figure 12.15: Bessel’s Algorithm.

Friedrich Wilhelm Bessel (1784–1846): German astronomer and mathematician.
Best known for making the first accurate measurement of the distance to a star.

The uniform quadratic Lagrange polynomial (Equation (10.11)) is used as our in-
terpolating polynomial:

Qs(t) =
t2 − 3t+ 2

2
P0 − (t2 − 2t)P1 +

t2 − t

2
P2

= (t2, t, 1)

⎛
⎝ 1/2 −1 1/2
−3/2 2 −1/2
1 0 0

⎞
⎠

⎛
⎝P0

P1

P2

⎞
⎠ .

The parameter t varies in the range [0, 2], so Qs(1) gives the middle point. The tangent
vector of Qs(t) is

Qt
s(t) =

2t− 3
2
P0 − (2t− 2)P1 +

2t− 1
2
P2

= (2t, 1, 0)

⎛
⎝ 1/2 −1 1/2
−3/2 2 −1/2
1 0 0

⎞
⎠

⎛
⎝P0

P1

P2

⎞
⎠ .
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Thus, Qt
s(1) = (P2 −P0)/2. Similarly,

Qe(t) =
t2 − 3t+ 2

2
P1 − (t2 − 2t)P2 +

t2 − t

2
P3

= (t2, t, 1)

⎛
⎝ 1/2 −1 1/2
−3/2 2 −1/2
1 0 0

⎞
⎠

⎛
⎝P1

P2

P3

⎞
⎠ ,

which yields Qt
e(1) = (P3 −P1)/2.

It is also possible to use the nonuniform quadratic Lagrange polynomial (Equa-
tion (10.12)). If we select

Qs(t) = (t2, t, 1)

⎛
⎜⎜⎜⎜⎝

1
Δ0(Δ0 +Δ1)

− 1
Δ0Δ1

1
(Δ0 +Δ1)Δ1

−1
Δ0 +Δ1

− 1
Δ0

1
Δ0

+
1
Δ1

− 1
Δ1

+
1

Δ0 +Δ1

1 0 0

⎞
⎟⎟⎟⎟⎠

⎛
⎝P0

P1

P2

⎞
⎠ , (12.53)

then the tangent vector at point P1 becomes

Qt
s(Δ0) = − Δ1

Δ0(Δ0 +Δ1)
P0 +

Δ1 −Δ0

Δ0Δ1
P1 +

Δ0

(Δ0 +Δ1)Δ1
P2

=
(

Δ1

Δ0 +Δ1

)(
P1 −P0

Δ0

)
+

(
Δ0

Δ0 +Δ1

)(
P2 −P1

Δ1

)
.

(12.54)

It is easy to see that Equation (12.54) reduces to (P2 −P0)/2 when Δ0 = Δ1 = 1.

� Exercise 12.11: Use Equation (10.12) to represent Qe(t) and calculate the tangent
vector Qt

e(Δ1).

12.7 Catmull–Rom Surfaces

The cardinal spline or the Catmull–Rom curve can easily be extended to a surface that’s
fully defined by a rectangular grid of data points. In analogy to the Catmull–Rom curve
segment—which involves four points but only passes through the two interior points—a
single Catmull–Rom surface patch is specified by 16 points, the patch is anchored at the
four middle points and spans the area delimited by them.

We start with a group of m × n data points roughly arranged in a rectangle. We
examine all the overlapping groups that consist of 4×4 adjacent points, and we calculate
a surface patch for each group. Some of the groups are shown in Figure 12.16.
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P40P41P42P43 P41P42P43P44 P42P43P44P45 . . . P4,n−3P4,n−2P4,n−1P4n

P30P31P32P33 P31P32P33P34 P32P33P34P35 . . . P3,n−3P3,n−2P3,n−1P3n

P20P21P22P23 P21P22P23P24 P22P23P24P25 . . . P2,n−3P2,n−2P2,n−1P2n

P10P11P12P13 P11P12P13P14 P12P13P14P15 . . . P1,n−3P1,n−2P1,n−1P1n

P30P31P32P33 P31P32P33P34 P32P33P34P35 . . . P3,n−3P3,n−2P3,n−1P3n

P20P21P22P23 P21P22P23P24 P22P23P24P25 . . . P2,n−3P2,n−2P2,n−1P2n

P10P11P12P13 P11P12P13P14 P12P13P14P15 . . . P1,n−3P1,n−2P1,n−1P1n

P00P01P02P03 P01P02P03P04 P02P03P04P05 . . . P0,n−3P0,n−2P0,n−1P0n

Figure 12.16: Points for a Catmull–Rom Surface Patch.

The expression of the surface is obtained by applying the technique of Cartesian
product (Section 8.12) to the Catmull–Rom curve. Equation (8.25) produces

P(u,w) = (u3, u2, u, 1)BPBT

⎛
⎜⎝
w3

w2

w
1

⎞
⎟⎠ , (12.55)

where B is the parabolic blending matrix of Equation (12.49)

B =

⎛
⎜⎝
−0.5 1.5 −1.5 0.5

1 −2.5 2 −0.5
−0.5 0 0.5 0

0 1 0 0

⎞
⎟⎠

and P is a matrix consisting of the 4×4 points participating in the patch

P =

⎛
⎜⎝
Pi+3,j Pi+3,j+1 Pi+3,j+2 Pi+3,j+3

Pi+2,j Pi+2,j+1 Pi+2,j+2 Pi+2,j+3

Pi+1,j Pi+1,j+1 Pi+1,j+2 Pi+1,j+3

Pi,j Pi,j+1 Pi,j+2 Pi,j+3

⎞
⎟⎠ .

Notice that the patch spans the area bounded by the four central points. In general,
the entire surface spans the area bounded by the four points P11, P1,n−1, Pm−1,1, and
Pm−1,n−1. If we want the surface to span the area bounded by the four corner points
P00, P0n, Pm0, and Pmn, we have to create two new extreme rows and two new extreme
columns of points, by analogy with the Catmull–Rom curve.

Example: Given the following coordinates for 16 points in file CRpoints

0 0 0 1 0 0 2 0 0 3 0 0
0 1 0 .5 .5 1 2.5 .5 0 3 1 0
0 2 0 .5 2.5 0 2.5 2.5 1 3 2 0
0 3 0 1 3 0 2 3 0 3 3 0
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0 0 0 1 0 0 2 0 0 3 0 0
0 1 0 .5 .5 1 2.5 .5 0 3 1 0
0 2 0 .5 2.5 0 2.5 2.5 1 3 2 0
0 3 0 1 3 0 2 3 0 3 3 0

Clear[Pt,Bm,CRpatch,g1,g2];
Pt=ReadList["CRpoints",{Number,Number,Number},RecordLists->True];
Bm:={{-.5,1.5,-1.5,.5},{1,-2.5,2,-.5},{-.5,0,.5,0},{0,1,0,0}};
CRpatch[i_]:=(*1st patch,rows 1-4*)
{u^3,u^2,u,1}.Bm.Pt[[{1,2,3,4},{1,2,3,4},i]].
Transpose[Bm].{w^3,w^2,w,1};
g1=Graphics3D[{Red, AbsolutePointSize[6],
Table[Point[Pt[[i,j]]],{i,1,4},{j,1,4}]}];
g2=ParametricPlot3D[{CRpatch[1],CRpatch[2],CRpatch[3]},
{u,0,.98},{w,0,1}];
Show[g1,g2,ViewPoint->{-4.322,0.242,0.306},PlotRange->All]

Figure 12.17: A Catmull–Rom Surface Patch.

the Mathematica code of Figure 12.17 reads the file and generates the Catmull–Rom
patch. Note how the patch spans only the four center points and how the z coordinates
of 0 and 1 create the particular shape of the patch.

Example: (extended) We now add four more points to file CRpoints, and use rows
2–5 to calculate and display another patch. Notice the five values of y compared to the
four values of x. The code of Figure 12.18 reads the extended file and generates and
displays both patches. Each patch spans four points, but they share the two points
(0.5, 2.5, 0) and (2.5, 2.5, 1). Note how they connect smoothly.

Tension can be added to a Catmull–Rom surface patch in the same way that it is
added to a Catmull–Rom curve or to a cardinal spline. Figure 12.19 illustrates how
smaller values of s create a surface closer to a flat plane.

12.8 Kochanek–Bartels Splines

The Kochanek–Bartels spline method [Kochanek and Bartels 84] is an extension of the
cardinal spline. In addition to the tension parameter T , this method introduces two new
parameters, c and b to control the continuity and bias, respectively, of individual curve
segments. The curve is a spline computed from a set of n data points, and the three
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0 0 0 1 0 0 2 0 0 3 0 0
0 1 0 .5 .5 1 2.5 .5 0 3 1 0
0 2 0 .5 2.5 0 2.5 2.5 1 3 2 0
0 3 0 1 3 0 2 3 0 3 3 0
0 4 0 1 4 0 2 4 0 3 4 0

Clear[Pt,Bm,CRpatch,CRpatchM,g1,g2,g3];
Pt=ReadList["CRpoints",{Number,Number,Number},RecordLists->True];
Bm:={{-.5,1.5,-1.5,.5},{1,-2.5,2,-.5},{-.5,0,.5,0},{0,1,0,0}};
CRpatch[i_]:=(*1st patch,rows 1-4*){u^3,u^2,u,1}.Bm.
Pt[[{1,2,3,4},{1,2,3,4},i]].Transpose[Bm].{w^3,w^2,w,1};
CRpatchM[i_]:=(*2nd patch,rows 2-5*){u^3,u^2,u,1}.Bm.
Pt[[{2,3,4,5},{1,2,3,4},i]].Transpose[Bm].{w^3,w^2,w,1};
g1=Graphics3D[{Red,AbsolutePointSize[6],
Table[Point[Pt[[i,j]]],{i,1,5},{j,1,4}]}];
g2=ParametricPlot3D[{CRpatch[1],CRpatch[2],CRpatch[3]},
{u,0,.98},{w,0,1}];
g3=ParametricPlot3D[{CRpatchM[1],CRpatchM[2],CRpatchM[3]},
{u,0,1},{w,0,1}];
Show[g1,g2,g3,PlotRange->All]

Figure 12.18: Two Catmull–Rom Surface Patches.

shape parameters can be specified separately for each point or can be global. Thus, the
user/designer has to specify either 3 or 3n parameters.

Consider an interior point Pk where two spline segments meet. When the “arriving”
segment arrives at the point it is moving in a certain direction that we call the arriving
tangent vector. Similarly, the “departing” segment starts at the point while moving in a
direction that we call the departing tangent vector. The three shape parameters control
these two tangent vectors in various ways. The tension parameter varies the magnitudes
of the arriving and departing vectors. The bias parameter rotates both tangents by the
same amount from their “natural” direction, and the continuity parameter rotates each
tangent separately, so they may no longer point in the same direction.

A complete Kochanek–Bartels spline passes through n given data points P1 through
Pn and is computed and displayed in the following steps:

1. The designer (or user) adds two new points P0 and Pn+1. Recall that each
cardinal spline segment is determined by a group of four points but it goes from the
second point to the third one. Adding point P0 makes it possible to have a segment
from P1 to P2, and similarly for the new point Pn+1. All the original n points are now
interior.

2. Two tangent vectors, arriving and departing, are computed for each of the n
interior points from Equations (12.56) and (12.57). The arriving tangent at P1 and the
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s=0.4 s=0.9

(* A Catmull-Rom surface with tension *)
Clear[Pt,Bm,CRpatch,g1,g2,s];
Pt={{{0,3,0},{1,3,0},{2,3,0},{3,3,0}},
{{0,2,0},{.1,2,.9},{2.9,2,.9},{3,2,0}},
{{0,1,0},{.1,1,.9},{2.9,1,.9},{3,1,0}},
{{0,0,0},{1,0,0},{2,0,0},{3,0,0}}};
Bm:={{-s,2-s,s-2,s},{2s,s-3,3-2s,-s},{-s,0,s,0},{0,1,0,0}};
CRpatch[i_]:=(*rows 1-4*){u^3,u^2,u,1}.Bm.
Pt[[{1,2,3,4},{1,2,3,4},i]].Transpose[Bm].{w^3,w^2,w,1};
g1=Graphics3D[{Red,AbsolutePointSize[6],
Table[Point[Pt[[i,j]]],{i,1,4},{j,1,4}]}];
s=.4;
g2=ParametricPlot3D[{CRpatch[1],CRpatch[2],CRpatch[3]},
{u,0,1},{w,0,1}];
Show[g1,g2,ViewPoint->{1.431,-4.097,0.011},PlotRange->All]

Figure 12.19: A Catmull–Rom Surface Patch with Tension.

departing tangent at Pn are not used, so the total number of tangents to compute is
2n− 2.

3. The n+2 points are divided into n−1 overlapping groups of four points each, and
a Hermite curve segment is computed and displayed for each group. The computations
are similar to those for the cardinal spline, the only difference being that the tangent
vectors are computed in a special way.

Pk−1

Pk+1

PkPk−1(t) Pk(t)

Pk
d

Pk
a

Pk−1
a

Pk−1
d

Figure 12.20: Two Kochanek–Bartels Spline Segments.

Figure 12.20 shows two spline segments Pk−1(t) and Pk(t) that meet at interior
point Pk. This point is the last endpoint of segment Pk−1(t) and the first endpoint
of segment Pk(t). We denote the two tangent vectors at Pk by Pak−1

def= Ptk−1(1) and

Pdk
def= Ptk(0). In a cardinal spline the two tangents P

a
k−1 and P

d
k are identical and are

proportional to the vector Pk+1−Pk−1 (the chord surrounding Pk). This guarantees a
smooth connection of the two segments. In a Kochanek–Bartels spline, the two tangents
are computed as shown here, they have the same magnitude, but may point in different
directions. Notice that the two endpoints of segment Pk(t) are Pk and Pk+1 and its two
extreme tangent vectors are Pdk and P

a
k. Here is how the tangent vectors are computed.
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Tension. In a cardinal spline, tension is controlled by multiplying the tangent vec-
tors by a parameter s. Small values of s produce high tension, so the tension parameter
T is defined by s = (1− T )/2. Thus, we can express the tangents as

1− T

2
(Pk+1 −Pk−1) = (1− T )

1
2
(
(Pk+1 −Pk) + (Pk −Pk−1)

)
.

This can be interpreted as (1 − T ) multiplied by the average of the “arriving” chord
(Pk − Pk−1) and the “departing” chord (Pk+1 − Pk). In a Kochanek–Bartels spline,
the tension parameter contributes the same quantity

(1− Tk)
1
2
(
(Pk+1 −Pk) + (Pk −Pk−1)

)
to the two tangents Pak−1 and Pdk at point Pk. The value Tk = 1 results in tangent
vectors of zero magnitude, which corresponds to maximum tension. The value Tk = 0
(zero tension) results in a contribution of (Pk+1−Pk−1)/2 to both tangent vectors. The
value Tk = −1 results in twice that contribution and therefore to long tangents and low
tension.

Continuity. Curves are important in computer animation. An object being an-
imated is often moved along a curve and the (virtual) camera may also move along
a path. Sometimes, an animation path should not be completely smooth, but should
feature jumps and jerks at certain points. This effect is achieved in a Kochanek–Bartels
spline by separately rotating Pak−1 and Pdk, so that they point in different directions.
The contributions of the continuity parameter to these vectors are

contribution to Pak−1 is
1− ck
2

(Pk −Pk−1) +
1 + ck
2

(Pk+1 −Pk) ,

contribution to Pdk is
1 + ck
2

(Pk −Pk−1) +
1− ck
2

(Pk+1 −Pk) ,

where ck is the continuity parameter at point Pk. The value ck = 0 results in Pak−1 = P
d
k

and therefore in a smooth curve at Pk. For ck �= 0, the two tangents are different and
the curve has a sharp corner (a kink or a cusp) at point Pk, a corner that becomes more
pronounced for large values of ck. The case ck = −1 implies Pak−1 = Pk − Pk−1 (the
arriving chord) and Pdk = Pk+1 −Pk (the departing chord). The case ck = 1 produces
tangent vectors in the opposite directions: Pak−1 = Pk+1 − Pk and Pdk = Pk − Pk−1.
These three extreme cases are illustrated in Figure 12.21.

Pk−1

Pk+1Pk+1−Pk

Pk+1
−Pk-1

P k
−P

k
− 1

Pk

Pk
d

Pk
d

Pk
d

Pk−1
a Pk−1

a

Pk−1
a

c=0c=−1 c=1

Figure 12.21: Effects of the Continuity Parameter.
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Tension and continuity may have the same effect, yet they affect the dynamics of
the curve in different ways as illustrated by Figure 12.22. Part (a) of the figure shows
five points and a two-segment Kochanek–Bartels spline from P1 through P2 to P3. Both
the tension and continuity parameters are set to zero at P2, so the direction of the curve
at this point is the direction of the chord P3 − P1. Setting T = 1 at P2 increases the
tension to maximum at that point, thereby changing the curve to two straight segments
(part (b) of the figure). However, if we leave T at zero and set c = −1 at P2, the
resulting curve will have the same shape (the direction of the arriving tangent Pa1 is
from P1 to P2 while the direction of the departing tangent Pd2 is from P2 to P3).

c=−1

T=1

P0

P1

P2

P3

P4

(a) (b) (c)

or

Figure 12.22: Different Dynamics of Tension and Continuity.

Thus, maximum tension and minimum continuity may result in identical geometries,
but not in identical curves. These parameters have different effects on the speed of the
curve as illustrated in Part (c) of the figure. Specifically, infinite tension results in
nonuniform speed. If the first spline segment P1(t) is plotted by incrementing t in equal
steps, the resulting points are first bunched together, then feature larger gaps, and finally
become dense again.

When the user specifies high (or maximum) tension at a point, the tangent vectors
become short (or zero) at the point, but they get longer as the curve moves away from
the point. The speed of the curve is determined by the size of its tangent vector, which
is why high tension results in nonuniform speed. In contrast, low tension does not
affect the magnitude of the tangent vectors, which is why it does not affect the speed.
When low continuity results in a straight segment, the speed will be uniform. Curved
segments, however, always have variable speed regardless of the continuity parameters
at the endpoints of the segment.

� Exercise 12.12: Compute the tangent vector of the cardinal spline for s = 0 and show
that its length is zero for t = 0 and t = 1, but is nonzero elsewhere.

Bias. In a cardinal spline with zero tension, both tangent vectors at point Pk have
the value

1
2
(Pk+1 −Pk−1) =

1
2
(
(Pk −Pk−1) + (Pk+1 −Pk)

)
,

implying that the direction of the curve at point Pk is the average of the two chords
connecting at Pk.

The Kochanek–Bartels spline introduces an additional (sometimes misunderstood)
parameter bk to control the direction of the curve at Pk by rotating Pak−1 and P

d
k by

the same amount. The contribution of the bias parameter to the arriving and departing
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tangents is set (somewhat arbitrarily) to

1 + bk
2

(Pk −Pk−1) +
1− bk
2

(Pk+1 −Pk) .

Setting bk = 1 changes both tangents to Pk − Pk−1, the chord on the left of Pk. The
other extreme value, bk = −1, changes them to the chord on the right ofPk. Figure 12.23
illustrates the effects of the three extreme values of bk.

P0

P1

P2

P3

P4

(a) (b) (c)

b=0 b=1 b=−1

Figure 12.23: Effect of the Bias Parameter b.

Bias is used in computer animation to obtain the effect of overshooting a point
(bk = 1) or undershooting it (bk = −1).

The three shape parameters are incorporated in the tangent vectors as follows: the
tangent vector that departs point Pk is defined by

Pdk = P
t
k(0) =

1
2
(1−Tk)(1+bk)(1−ck)(Pk−Pk−1)+

1
2
(1−Tk)(1−bk)(1+ck)(Pk+1−Pk).

(12.56)
Similarly, the tangent vector arriving at point Pk+1 is defined by

Pak = P
t
k(1) =

1
2
(1− Tk+1)(1 + bk+1)(1 + ck+1)(Pk+1 −Pk)

+
1
2
(1− Tk+1)(1− bk+1)(1− ck+1)(Pk+2 −Pk+1). (12.57)

As a result, the Kochanek–Bartels curve segment Pk(t) from Pk to Pk+1 is constructed
by the familiar expression

Pk(t) = (t3, t2, t, 1)H

⎛
⎜⎝
Pk
Pk+1

Pdk
Pak

⎞
⎟⎠ ,

where H is the Hermite matrix, Equation (11.7). Notice that the segment depends on
six shape parameters, three at Pk and three at Pk+1. The segment also depends on four
points Pk−1, Pk, Pk+1, and Pk+2.

Note also that the second derivatives of this curve are generally not continuous at
the data points.
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Example: The three points P1 = (0, 0), P2 = (4, 6), and P3 = (10,−1) are given,
together with the extra points P0 = (−1,−1) and P4 = (11,−2). Up to nine shape
parameters can be specified (three parameters for each of the three interior points).
Figure 12.24 shows the curve with all shape parameters set to zero, and the effects of
setting T to 1 (maximum tension) and to −1 (a loose curve), setting c to 1, and setting b
to 1 (overshoot) and −1 (undershoot), all in P2. The Mathematica code that computed
the curves is also included.

t=1 t=−1

b=−1b=1c=1

2 4 6 8 10

2

4

6

2 4 6 8 10
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6

2 4 6 8 10

2

4

6

2 4 6 8 10
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4

6

2 4 6 8 10

2

4

6

2 4 6 8 10

2

4

6

Clear[T, H, B, pts, Pa, Pd, te, bi, co];
(*Kochanek Bartels 3+2 points*)
T = {t^3, t^2, t, 1};
H = {{2, -2, 1, 1}, {-3, 3, -2, -1}, {0, 0, 1, 0}, {1, 0, 0, 0}};
Pd[k_] := (1 - te[[k + 1]]) (1 + bi[[k + 1]]) (1 +

co[[k + 1]]) (pts[[k + 1]] - pts[[k]])/
2 + (1 - te[[k + 1]]) (1 - bi[[k + 1]]) (1 -
co[[k + 1]]) (pts[[k + 2]] - pts[[k + 1]])/2;

Pa[k_] := (1 - te[[k + 2]]) (1 + bi[[k + 2]]) (1 -
co[[k + 2]]) (pts[[k + 2]] - pts[[k + 1]])/
2 + (1 - te[[k + 2]]) (1 - bi[[k + 2]]) (1 +
co[[k + 2]]) (pts[[k + 3]] - pts[[k + 2]])/2;

pts := {{-1, -1}, {0, 0}, {4, 6}, {10, -1}, {11, -2}};
te = {0, 0, 0, 0, 0}; bi = {0, 0, 0, 0, 0}; co = {0, 0, 0, 0, 0};
B = {pts[[2]], pts[[3]], Pd[1], Pa[1]};
Simplify[T.H.B];
Simplify[D[T.H.B, t]];
g1 = ParametricPlot[T.H.B, {t, 0, 1}, PlotRange -> All];

B = {pts[[3]], pts[[4]], Pd[2], Pa[2]};
Simplify[T.H.B];
Simplify[D[T.H.B, t]];
g2 = ParametricPlot[T.H.B, {t, 0, 1}, PlotRange -> All];
g3 = Graphics[{Red, AbsolutePointSize[6],
Table[Point[pts[[i]]], {i, 1, 5}]}];

Show[g1, g2, g3, PlotRange -> All]

Figure 12.24: Effects of the Three Parameters in the Kochanek–Bartels Spline.
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12.9 Fitting a PC to Experimental Points

The spline methods discussed so far use data points. The curve methods of Chapters 13
and 14 use control points. In the case of data points, the curve has to pass through
all of them. Control points exert a pull on the curve, so each of them pulls the curve
toward itself (Section 8.6). The method described here, due to [Plass and Stone 83],
uses experimental points (“epoints” for short). Such points are typically obtained as a
result of a science experiment, but can also be input by scanning an image. Given n
epoints P1, P2,. . . , Pn, the problem is calculating a PC curve that will pass close to
all the points but will not necessarily pass through them. A user-controlled tolerance
parameter controls the closeness of the fit.

Since a PC is fully defined by means of just four coefficients, it cannot have a very
complex shape, so it may not be able to follow a set of epoints that meander all over
the place. In such a case, the curve will have to be calculated as a spline where each
segment is a PC and the segments fit together, either smoothly or with corner joints.
In this section, we show how to calculate one such PC, so we assume that the n epoints
do not describe a complex curve. To distinguish between simple and complex curves
quantitatively, we connect the n epoints with n − 1 straight segments, resulting in an
open polygon. Experience shows that the set of points is simple and will allow a PC to
follow it if (1) all the angles between consecutive segments are in the range [135◦, 180◦],
(2) the curve has at most one loop, and (3) if it does not have a loop, it can have at
most two inflection points.

We denote our single PC segment by

P(t) =
(
u(t), w(t)

)
= a3t

3 + a2t
2 + a1t+ a0

= (a3x, a3y)t3 + (a2x, a2y)t2 + (a1x, a1y)t+ (a0x, a0y),

(12.58)

where the four vector quantities a, b, c, and d have to be determined. Together, they
constitute eight numbers, so we can say that a PC segment has eight degrees of freedom.
To understand the method, let’s imagine that we have somehow found a PC segment
P(t) that passes close to all n epoints. We can use this PC to find the n values of the
parameter t where the curve passes closest to each of the n epoints. Denoting these
values by t1, t2,. . . , tn, we use them to label the epoints Pt1 , Pt2 ,. . . , Ptn . Now imagine
the opposite situation where we still don’t know the PC segment, but we already have
the epoints somehow labeled correctly. Using the coordinates of the n epoints and the
n values of t, we could, in such a case, calculate a curve using the least-squares fitting
technique.

The idea is to start with an initial set of estimated t values, use least squares to
calculate a PC segment from this set, use this PC to calculate a better set of t values,
and repeat until the curve obtained is close enough to all the epoints. Convergence is not
guaranteed, but experience shows that epoints that satisfy the three conditions stated
earlier normally result in a reasonably shaped curve in just a few iterations.

The initial set of estimated t values is based on the lengths of the polygon’s edges.
Denoting the polygon vertices (i.e., the epoints) by Pi = (xi, yi), we define a quantity



12 Spline Interpolation 625

sk as the sum of the polygon’s edges from P1 to Pk:

s1 = 0, sk =
k−1∑
i=1

|Pi+1 −Pi| =
k−1∑
i=1

√
(xi+1 − xi)2 + (yi+1 − yi)2, k = 2, 3, . . . , n.

The initial value of tk is now defined as the ratio sk/sn, resulting in t1 = 0, tn = 1, and,
in general, 0 ≤ ti ≤ 1.

� Exercise 12.13: Given the eight epoints P1 = (2, 5), P2 = (2, 8), P3 = (5, 11), P4 =
(8, 8), P5 = (11, 4), P6 = (14, 8), P7 = (13, 8), and P8 = (11, 10), draw them in the
xy plane, draw the open polygon connecting them, indicate the “bad” polygon vertices,
and calculate the quantities sk and tk.

Once a set of ti values is available, a PC curve segment can be calculated by least
squares. The principle is to compute values for the four coefficients ai that will minimize
the expression

S(a0,a1,a2,a3) =
n∑
j=1

(P(tj)−Pj)2 =
n∑
j=1

(
3∑
i=0

aitij −Pj
)2

.

We consider this expression a function S of the four coefficients ai and minimize it by
(1) writing the four partial derivatives of S,

∂S(a0,a1,a2,a3)
∂ak

=
n∑
j=1

2
3∑
i=0

(
aitij −Pj

)
tkj , 1 ≤ k ≤ 4,

(2) equating each to zero,

3∑
i=0

⎛
⎝ n∑
j=1

tijt
k
j

⎞
⎠ai = n∑

j=1

Pjtkj , 1 ≤ k ≤ 4,

which can also be written

a0(t01t
k
1 + t02t

k
2 + · · ·+ t0nt

k
n) + a1(t11t

k
1 + t12t

k
2 + · · ·+ t1nt

k
n)

+ a2(t21t
k
1 + t22t

k
2 + · · ·+ t2nt

k
n) + a3(t31t

k
1 + t32t

k
2 + · · ·+ t3nt

k
n)

= P1t
k
1 +P2t

k
2 + · · ·+Pntkn, 1 ≤ k ≤ 4,

(12.59)

and then (3) solving the resulting system of four linear equations in the four unknowns
ai.

Having produced values for the four coefficients ai, we use the resulting PC to
calculate a better set of t values. For each epoint, we find the value of t that produces
the point nearest it on the PC and assign that t value to the epoint. Mathematically,
this amounts to finding the minimum distance between an epoint Pj = (xj , yj) and the
curve P(t) = (u(t), w(t)). Since the distance involves a square root, we use the square
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of the distance (a similar method is used in the Bresenham–Michener circle method,
Section 3.8.3).

Our problem is, therefore, to minimize the function

D(t) = |P(t)−Pj | =
(
u(t)− xj

)2 +
(
w(t)− yj

)2
,

and we do this by differentiating it with respect to t, equating the derivative to zero,
and solving for t. Thus,

2(u(t)− xj)ut(t) + 2(w(t)− yj)wt(t) = 0. (12.60)

Since u(t) and w(t) are cubic polynomials in t, their derivatives are quadratic polynomi-
als. The left side of Equation (12.60) is thus a degree-5 polynomial in t, so a numerical
solution is required. We use the Newton–Raphson method, a general, fast, iterative
method for finding roots of functions. Given a function f(t), the method requires an
initial value of t (a guess or an estimate) and updates this value by the iteration

t← t− f(t)
f ′(t)

.

If the initial value is close to a root, convergence is fast but is not guaranteed. In our
case, function f(t) is given by Equation (12.60), and we always have an estimate for t.
Our Newton–Raphson iteration thus becomes

t← t− 2(u(t)− xj)ut(t) + 2(w(t)− yj)wt(t)
ut(t)2 + wt(t)2 + (u(t)− xj)utt(t) + (w(t)− yj)wtt(t)

.

Experience shows that one iteration is enough to produce a new t value much better
than its predecessor.

The new t values may be located outside the interval [0, 1], so one last step is needed,
where all n new t values are linearly scaled to bring them back into the right interval, if
necessary. Here is how it’s done.

If the new t1 is positive, it should not be scaled or changed in any way. This is
the algorithm’s way of telling us that a better fit would be achieved if the curve did not
start at the first epoint. However, if t1 becomes negative (e.g., if t1 = −α), it should be
incremented by α to bring it back to zero, and all the other ti’s should be incremented
by quantities that get smaller with i until they reach zero for i = n (i.e., tn should not
be changed). Similarly, if the new tn is less than 1, it should not be scaled, but if it
exceeds 1 (by a quantity β), it should be decremented by β and all the other ti’s should
be decremented by quantities that get smaller with i until they reach zero for i = 1.

Once this is grasped, it is easy to guess how a general value ti should be scaled. It
should be incremented by α multiplied by some weight and decremented by β multiplied
by another weight, such that the weights add up to 1. If the new t1 is positive, α should
be set to 0. Similarly, if the new tn is less than 1, β should be set to 0. The result is

ti ← ti + α
n− i

n− 1
− β

i− 1
n− 1

. (12.61)
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� Exercise 12.14: Given the eight new t values, −0.1, 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, and 1.2,
use Equation (12.61) to scale them.

These are the steps of the iteration. The loop continues until none of the t values
changes significantly or, alternatively, until the maximum distance between an epoint
and the curve falls below a preset threshold. If this does not happen after a certain,
fixed number of iterations, the loop stops and displays an error message (curve does not
converge to epoints). Figure 12.25 is an example of a spline fitting a set of 20 epoints.
It is easy to see how the fit improves even after a small number of iterations.

Initial fit 1 iteration 10 iterations 100 iterations

Figure 12.25: Spline Fit to Many Epoints.

We next discuss how to add constraints to the PC segment that’s being calculated.
When the initial t values are calculated by tk = sk/sn, the first value, t1, becomes zero,
and the last value, tn, is set to 1. The PC segment thus starts at the first epoint P1 and
ends at Pn. When the t values are updated in an iteration, both t1 and tn may get new
values. If t1 goes below zero, it is scaled back to zero. However, if it becomes positive
(e.g., t1 = 0.05), it is not changed. This means that point P(0.05) on the curve would
be closest to P1. The start of the curve (point P(0)) would, in this case, be located
“before” P1. A similar situation may happen at the end of the curve, where P(1) may
move “past” the last epoint Pn.

Fitting a PC segment to a set of epoints in this way generally means that the curve
may be “longer” than the set. Sometimes, we want the curve to start and end at the
two extreme epoints, so we have to “constrain” it. Another aspect of constraining arises
when we are given a complex set of epoints, where more than one PC segment is needed
to fit all the points. In such a case, we have to consider the problem of joining individual
segments. A segment may therefore have to be constrained by specifying its start and/or
end tangent vectors.

The point to understand is that each added constraint reduces the quality of the
fit. The reason is that a PC depends on four vector coefficients, which constitute eight
scalar quantities (it has eight degrees of freedom). Adding a constraint means fixing
one or more of those quantities, thereby reducing the number of degrees of freedom, and
thus leading to a worse fit. The number of constraints should, therefore, be kept small
(no more than one or two).
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Adding constraints is done by generalizing the cubic polynomials u(t) and w(t).
Instead of writing them in the form(

u(t), w(t)
)
= a3t

3 + a2t
2 + a1t+ a0,

we express them as(
u(t), w(t)

)
= a1F1(t) + a2F2(t) + a3F3(t) + a4F4(t),

where the Fi(t) are any four linearly independent cubic polynomials. Both u(t) and
w(t) remain cubic polynomials, but certain choices of the Fi(t)’s may make it easy to
constrain the endpoints or the extreme tangents of the PC segment.

One such choice is the set of four Hermite blending functions of Equation (11.6),
duplicated here:

F1(t) = 2t3 − 3t2 + 1, F2(t) = −2t3 + 3t2,
F3(t) = t3 − 2t2 + t, F4(t) = t3 − t2.

(11.6)

We know from Equation (11.5) that if a PC segment P(t) is expressed as the weighted
sum

P(t) = a1F1(t) + a2F2(t) + a3F3(t) + a4F4(t), (12.62)

then a1 and a2 are the endpoints of the segment, and a3 and a4 are its two extreme tan-
gents. We can now add constraints by using Equation (12.62) instead of Equation (12.58)
and preassigning values to some of the four ai coefficients. For example, if we want the
initial tangent vector to be in the “up” direction (0, 1), we assign a3 the value (0, 1)
and end up with Equation (12.59) becoming a system of three equations in the three
unknowns a1, a2, and a4. It is now obvious that the more constraints (i.e., the more
coefficients are assigned values and eliminated from Equation (12.59)), the fewer are the
possibilities for fitting the PC segment to the epoints. There is, therefore, a trade-off
between a good fit and more constraints.

. . . and then in midair the elasticity makes the shape rebound, so

what you have is not a circle but some linked spline curves, not

exactly symmetrical, because the ball flattens on one side . . .

—John Updike, Roger’s version (1996)
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