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An Integrated Pedestrian Behavior Model
Based on Extended Decision Field Theory
and Social Force Model
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Abstract A novel pedestrian behavior model is proposed, which integrates
(1) extended decision field theory (EDFT) for tactical level human decision-
making, (2) social force model (SFM) to represent physical interactions and
congestions among people and the environment, and (3) dynamic planning algo-
rithm involving AND/OR graphs. Furthermore, SFM is enhanced with the vision
of each individual, and both individual and group behaviors are considered. The
proposed model is illustrated and demonstrated with a shopping mall scenario
(a typical mall in the city of Tucson, AZ). Literature survey and observations have
been conducted at the mall for data collection and partial validation of the pro-
posed model. The computational environment for human-in-the-loop experiment is
also conceptually developed, which will be used to collect more human data in the
future. We then developed a simulation model of the considered mall using
AnyLogic� software, where each individual in the simulation executes a planning
algorithm to select a destination, EDFT for choosing a direction, and extended
social force model (ESFM) to adjust its velocity. Using the constructed crowd
simulation model, several experiments have been conducted to test the impact of
various factors (e.g. consideration of human’s vision, group shopping behavior,
arrangement of stores, complexity of the model) on several metrics such as the
average distance among neighboring shoppers, the movement speed of pedestri-
ans, profit of the shopping mall, and scalability.
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4.1 Introduction

Human crowd dynamics is an essential factor in designing facilities involving a large
crowd considering both emergency conditions (e.g. emergency evacuation from a
stadium) (Helbing et al. 2005) as well as normal conditions (e.g. shopping mall)
(Parisi et al. 2009). Over the past decade, several models have been developed to
analyze the underlying mechanism of large-scale crowd behaviors. Xia et al. (2009)
classified those models into two major categories: (1) macroscopic models focusing
on extremely large crowds whose crowd behaviors are represented via a continuous
flow as a whole (as opposed to individualized behaviors) (Gaskell and Benewick
1987; Xia et al. 2009) and (2) microscopic models for studying relatively small
crowds whose behaviors emerge from interactions among individuals [e.g. cellular
automaton model (Blue and Adler 2001); social force model (SFM) (Helbing et al.
2000); and lattice-gas model (Muramatsu et al. 1999)]. As macroscopic models
focus on the continuous flow of crowd as opposed to highly variant, individualized
behaviors, they have been mostly applied to the crowd behaviors under competitive
situations (e.g. emergency evacuation from a building resulting in a highly dense
crowd), where panicking individuals are usually driven by their instincts before
every movement and tend to show maladaptive and relentless mass behavior
(Helbing 2000). On the other hand, microscopic models pay more attention to
individual differences (e.g. preferences, destinations, and tightness in schedule).
As our interest in this work is on pedestrian behaviors in a shopping mall (under a
normal situation), we will focus on microscopic models.

The SFM introduced by Helbing (2000) is a widely used microscopic model,
used for various applications, such as prediction and analysis of congestion,
assessment of building or urban layouts and planning of evacuation strategies
(Helbing 2005; Moussaïd et al. 2009). Since the original SFM, several researchers
have proposed variations or an extended version of it. For example, Hu et al.
(2009) extended the model by taking into account the anisotropic characteristic of
pedestrian movement in terms of pedestrian vision. Similarly, Parisi et al. (2009)
applied the concept of respect area to the original model, which enabled to
reproduce the experimental data (e.g. specific flow rates and fundamental diagram
of pedestrian flows) for normal conditions.

While extensive works have been performed to enhance the original SFM with
various other aspects, limited research works are available in the literature that
integrate the human decision-making aspect with SFMs. This has motivated our
research, the goal of which is to develop a crowd behavior modelthat integrates (1)
tactical level human decision-making, (2) operational-level congestions among
people, and (3) detailed-level perceptions (e.g. vision) of individuals. In particular, in
the proposed crowd behavior model, decisions on selecting one from alternatives
(e.g. destinations and movement directions) are made based on the extended decision
field theory (EDFT; Lee et al. 2008), and the physical interactions are represented by
the extended social force model (ESFM), which is proposed in this research
enhanced with the vision of each person. In addition, pedestrian group behaviors as
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well as their communications are also explicitly considered in this work. The pro-
posed model is illustrated and demonstrated with a shopping mall scenario providing
us with various environmental conditions (e.g. different kinds of shops, obstacles,
promotions on the shops) and population variations (e.g. gender, age, preference,
schedule, and grouping). Consideration of a rich set of attributes for the environment
as well as people will allow us to mimic a real shopping mall environment closely. In
particular, the scenario has been built based on the shopping corridor of Tucson Mall
(the largest mall in the city of Tucson, AZ). To this end, we have developed a
simulation model of the considered shopping mall using AnyLogic� software, where
each individual in the simulation executes (1) EDFT (see Sect. 4.2.2), (2) ESFM
(see Sect. 4.2.1), and (3) dynamic shopping planning (see Sect. 4.3.4). Using the
constructed crowd simulation model, several experiments have been conducted for
various purposes, such as (1) to test the impact of the consideration of human vision
into SFM on the average distance among neighboring shoppers and the movement
speed of pedestrians, (2) test the impact of the number of planned and unplanned
shoppers on the profit of the considered shopping mall under low and high density
cases, (3) test the impact of group shopping behavior on the profit of the considered
shopping mall, (4) test the impact of arrangement of stores in the considered shop-
ping mall on their profit score, and (5) demonstrate the scalability of the proposed
model for complex scenarios. Observations have been conducted at Tucson Mall for
partial validation of the proposed model and simulations.

The remainder of this paper is organized as follows. In Sect. 4.2, we describe
the proposed pedestrian behavior model, its submodules, and techniques employed
for the submodules. Section 4.3 describes the development of crowd simulation
models based on the proposed behavior model, and computational environments
for human-in-the-loop experiments. Section 4.4 discusses five experiments
conducted using the developed crowd simulation models. Finally, Sects. 4.5 and
4.6 discuss the conclusions and future work.

4.2 Proposed Integrated Pedestrian Behavior Model

The proposed pedestrian behavior model is based on the integration of extended
Decision-Field-Theory (for tactical-level decisions such as selecting a destination
or a movement direction during shopping) and extended SFM for dynamic
congestions among shoppers and the environment (e.g. walls and obstacles).
Each of them is discussed in detail below.

4.2.1 Extended Social Force Model

Helbing (2000) has proposed an SFM, where the motives and impacts to a
pedestrian crowd are represented by a combination of physical and psychological
forces (which are translated into the acceleration equation). Equation 4.1 depicts

4 An Integrated Pedestrian Behavior Model 71



the formulation of changing velocity at time t, where a pedestrian i’s velocity vi is
determined by his/her desired speed vi

0(t) and desired direction ei
0(t) as well as

interactions with other individuals and obstacles.

mi
dvi

dt
¼ mi

v0
i ðtÞe0

i ðtÞ � viðtÞ
si

þ
X

jð6¼iÞ
fij þ

X

W

fiW ð4:1Þ

where m is the pedestrian mass, si is a time constant related to the relaxation time
of the particle to achieve vi.

The first term on the right-hand side of Eq. 4.1 represents the impact from
the pedestrian’s self-consciousness while fij and fiW illustrate interaction forces
from pedestrian j and the wall W, respectively. The pedestrians try to keep a
velocity-dependent distance from other people and the walls so as to construct
a comfortable zone for themselves. The interaction force consists of a socio-
psychological force fij

psy resulting from the distance between each other, and a
physical force fij

phy inspired by counteracting body compression and sliding
friction. The total force exerted by pedestrian j to pedestrian i is calculated as
below:

fij ¼ f psy
ij þ f phy

ij ð4:2Þ

f psy
ij ¼ Ai exp

rij � dij

Bi

� �
nij ð4:3Þ

where A and B are constants that describe the strength and range of psychological
interaction, rij is the sum of radii of pedestrian i and j, dij is the distance between
i and j, nij is the unit vector pointing from j to i.

f phy
ij ¼ kgðrij � dijÞnij þ jgðrij � dijÞDvt

jitij ð4:4Þ

where k and j are the normal and tangential elastic restorative constants, tij is
tangential unit vector perpendicular to nij, vij

t is the tangential projection of the
relative velocity seen from pedestrian j (vij = vi - vj), and g is 1 if dij [ rij and 0
otherwise.

While the original SFM (Helbing 2000) discussed above has been extensively
applied to pedestrian behavior modeling, there exist two improvement opportu-
nities when applying to a real-life human behavior. First, the original SFC com-
putes a force impact between every pair of agents in the environment. In other
words, there will be a force even between agents who are significantly far away
from each other, which is not realistic. Second, the social force between agents is
always positive implying that all agents are psychologically against each other.
However, this is not the case for friends or family members, who usually stay close
to each other while moving (shopping in our case) under a nonemergency
condition. To address these two problems, we extended the original SFC. Details
of each modification will be discussed in Sects. 4.2.1.2 and 4.2.1.3.
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4.2.1.1 Connection Range Impact on Social Force Model

Experimental investigations have demonstrated the self-organization phenomenon
to be a typical characteristic of pedestrians. With the help of technologies like
video tracing, researchers have further found that self-organization is caused by
collision avoidance behavior. In other words, pedestrians tend to keep a suitable
distance from others to avoid bumping into one another (Ma et al. 2010).
Therefore, in this work we define a connection range, CR, for each agent in the
environment. Before applying the force (see Eq. 4.2) between two agents, ESFM
will evaluate the distance, dij, between them first and compare it with the con-
nection range. Only if dij \ CR, are these two agents connected and have a force
affecting their movement (see Eq. 4.5). However, there is an exception for the
group members, which will be discussed in Sect. 4.4.1. Considering the radius of
agent ri in the range between 0.25 and 0.35 m (Helbing et al. 2000), we have
chosen CR as 5 m in this work so that pedestrians could get more information from
their surroundings (Ma et al. 2010).

dij
[ CR agent i and j are not connected

�CR agent i and j are connected

(
ð4:5Þ

4.2.1.2 Psychological Attraction Between Group Members

Pedestrian populations in the shopping mall (case study in this research) can be
categorized into two types: individual shoppers and group shoppers (see Sect. 4.3
for more details about the considered scenario). Among individual shoppers or
shoppers from different groups, a psychological force in the original SFC is
applicable to keep a comfort distance between them. However, for shoppers
belonging to the same group, the psychological force will prohibit them from
staying close to each other. Therefore, we propose a modification of the psycho-
logical force for members of the same group (see Sect. 4.4.1 for more details),
where an intimate factor Iij (see Eq. 4.6) is multiplied with the psychological force
(see Eq. 4.3). The main idea is that a positive psychological force is applicable for
people belonging to different groups while a negative psychological force is
applicable for people belonging to the same group (Helbing 2005).

Iij ¼
1; i and j are group members
�1; otherwise

�
ð4:6Þ

4.2.1.3 Pedestrians’ Reactions According to Their Visions

In the original SFM, obstacles located at the same distance (without considering
the concept of vision or sight) from a pedestrian enforce the equal psychological
force on him/her. In a real shopping environment, however, people usually pay
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more attention to objects within their vision than to those out of their sight.
To resolve this problem, we incorporate this concept of vision by defining a visible
area for each agent in this work. From the view of an agent, only neighbors in his
visible area could affect his movement with psychological force. Neighbors behind
his back (out of vision) may provide influence only via a physical force
(e.g. contact). In our proposed model, a visible area (range) is defined with a half
circle in front of each pedestrian (±90 degree angle from the pedestrian’s current
moving direction) (see Figs. 4.1, 4.2). The vision formula is given in Eq. 4.7,
where uij(t) is the angle between direction ei(t) and normalized vector nij(t).
Withuij(t) [ 90�, cos (uij(t)) (\0) is rounded up to 0, whileuij \ 90� will round
cos(uij(t)) (C0) up to 1. Based on this visible area, a modified social force exerted
from pedestrian j on pedestrian i is given in Eq. 4.8.

cosðuijðtÞÞ ¼
nijðtÞeiðtÞ

nijðtÞ
�� �� eiðtÞk k

ð4:7Þ

f psy
ij ¼ Ai exp

rij � dij

Bi

� �
nijIij cosðuijðtÞÞ

� �
ð4:8Þ

4.2.2 Incorporating EDFT into the Pedestrian Model

It is generally agreed that decision making about walking trips takes place
simultaneously at two or more levels: (1) decisions about basic strategy of the trip,
(2) route choice, and (3) local spatial behavior considering velocity, trajectory,

Fig. 4.1 Sequence diagram of components of the proposed pedestrian behavior model
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stops, and attention direction (Zacharias 2005). In this work, it is assumed that a
basic strategy (which shops to stop by) and a route choice (in what sequence) are
fixed for each individual. Therefore, pedestrian’s decisions, of interest to us, are
focused on changing their movement directions. Since pedestrians adjust their
actual direction from time to time due to the interaction force, the EDFT is
employed in this work to mimic this dynamic human decision deliberation process.

Decision Field Theory (DFT) is a psychology-based model and has been widely
used for mimicking human deliberation process in making decisions under uncer-
tainty (Busemeyer and Diederich 2002; Busemeyer and Townsend 1993). Lee et al.
(2008) extended the original DFT to cope with a dynamically changing environment,
where a Bayesian Belief Network (BBN) was used to infer human decision attributes
under the dynamically changing environment. In the shopping mall scenario con-
sidered in this research, the environmental conditions (e.g. crowd density and des-
tinations) change dynamically for individuals. Therefore, we integrate the EDFT into
our proposed pedestrian model to better mimic pedestrians’ deliberation on direction
changes. Our EDFT is able to model (1) the change of evaluation on the options and
(2) the change of human attention along with the dynamically changing environment.
The formulation of EDFT is given in Eq. 4.9, which illustrates the dynamic evolution
of preferences P among options during the deliberation time h.

Pðt þ hÞ ¼ SPðtÞ þ CMðt þ hÞWðt þ hÞ ð4:9Þ

In our work, pedestrians change their movement direction according to the
environment around them, for example, the increase/decrease of crowd density or
the position of their next destination. Definitions of the main elements of EDFT are
explained below:

• M(t) is the value matrix (n 9 m matrix, where each n option has m attributes)
representing the subjective perceptions of a decision-maker by M(i, j). In our

Fig. 4.2 Visible area for
each agent
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case (choosing a direction), a 6 9 2 matrix (see Eq. 4.10) is used, where
pedestrians have six options (see Fig. 4.3), and each direction corresponds with
two attributes (crowd density and destination) that affect their choice. If the next
destination is within direction i, the entry value Desi(t) is 0.5; otherwise, it is 0.1.
To decide whether a destination is within a particular direction, niD to denote a
vector from pedestrian i to the destination. If the angle between niD and the
direction is B22.5�, we claim that the destination is in this direction. Thus,
the value matrix M has a dynamic representation as shown in Eq. 4.10, and its
values change whenever the underlying conditions change.

MðtÞ ¼

DenFðtÞ
DenLFðtÞ
DenRFðtÞ
DenLðtÞ
DenRðtÞ
DenBðtÞ

DesFðtÞ
DesLFðtÞ
DesRFðtÞ
DesLðtÞ
DesRðtÞ
DesBðtÞ

2

66666664

3

77777775

ð4:10Þ

where
DesiðtÞ ¼

0:5; next destination is in direction i

0:1 ; otherwise

(
ð4:11Þ

DeniðtÞ ¼
0:2; if cdiðtÞ\5

0:4; if 5� cdiðtÞ\15

0:6; otherwise

8
><

>:
ð4:12Þ

W(t) is a weight vector allocating the portion of human attention to each column
j (attribute) of M through W(j, 1), which is the only dynamically changing element
in the original DFT (Busemeyer and Townsend 1993). In the shopping mall

Fig. 4.3 Potential directions for each decision making
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environment, it is assumed that pedestrians intend to arrive at their destination as
soon as possible. However, when the environment is really crowded, they tend to
put more weight on the impact of crowd density. Equations 4.12 and 4.13 depict
W(t) used in the considered shopping mall scenario, where cdi(t) denotes the crowd
density.

Wð1; 1Þ ¼
0:2; 0:3½ �T ; if cdiðtÞ\5

½0:25; 0:6�T ; if 5� cdiðtÞ\15

½0:4; 0:6�T ; otherwise

8
>><

>>:
ð4:13Þ

Wð1; 2Þ ¼ 1�Wð1; 1Þ ð4:14Þ

• S demonstrates the stability of preference to each option by its structure. The
diagonal elements of S represent the memory from the previous preference state
while off-diagonal elements give the inhibitory interactions among competing
options. Here, it is assumed that the same amounts of memory and interaction
effects are given to the options: (1) matrix S is assumed to be symmetric and
(2) diagonal elements of S are assumed to have the same value. Moreover,
all eigenvalues ki of S are [1 in magnitude to make the linear system stable
(|ki| \ 1). Besides, from Fig. 4.3, we can see larger interactions between
directions within 45� than those in 90 or larger degrees. Considering this, we
have defined S matrix (see Eq. 4.15).

• C is the contrast matrix comparing the weighted evaluation of each option,
MW(t). In our case, each option is evaluated independently, thus C tends to be
I (identity matrix). Given the aforementioned elements and our six-option
scenario, the corresponding DFT formula, as defined in Eq. 4.9, is described in
Eq. 4.15.

p1ðtþ hÞ
p2ðtþ hÞ
p3ðtþ hÞ
p4ðtþ hÞ
p5ðtþ hÞ
p6ðtþ hÞ

0

BBBBBBB@

1

CCCCCCCA

¼

0:9
�0:6
�0:6
�0:4

�0:4

�0:1

�0:6
0:9
�0:4
�0:6

�0:2

�0:6

�0:6
�0:4
0:9
�0:2

�0:2

�0:2

�0:4
�0:6
�0:2

0:9

�0:1

�0:4

�0:4
�0:2
�0:2
�0:1

0:9

�0:4

�0:1
�0:6
�0:2
�0:4

�0:4

0:9

0

BBBBBB@

1

CCCCCCA

p1ðtÞ
p2ðtÞ
p3ðtÞ
p4ðtÞ
p5ðtÞ
p6ðtÞ

0

BBBBBBB@

1

CCCCCCCA

þ

1
0
0
0

0

0

0
1
0
0

0

0

0
0
1
0

0

0

0
0
0
1

0

0

0
0
0
0

1

0

0
0
0
0

0

1

0

BBBBBB@

1

CCCCCCA

M11ðtþ hÞ
M21ðtþ hÞ
M31ðtþ hÞ
M41ðtþ hÞ
M51ðtþ hÞ
M61ðtþ hÞ

M12ðtþ hÞ
M22ðtþ hÞ
M32ðtþ hÞ
M42ðtþ hÞ
M52ðtþ hÞ
M62ðtþ hÞ

0

BBBBBBB@

1

CCCCCCCA

W11ðtþ hÞ
W21ðtþ hÞ

� �

ð4:15Þ
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4.3 Development of Agent-Based Simulation Based
on Proposed Pedestrian Model

This section describes the development of a crowd simulation model for a shop-
ping mall scenario, where behaviors of individual shoppers are based on the
proposed, integrated pedestrian behavior model (see Sect. 4.2). We employed a
two-layer modeling principle (Hamgami and Hirata 2003) in the development of
the crowd simulation model to reduce the complexity of the modeling process,
where agents and the environment they interact with are modeled separately in two
conceptual layers. The interactions between agents and the environment are
analogous to how humans behave in the real world. Agents evaluate the sur-
roundings and try to make optimal decisions so as to achieve their intentions.
Figure 4.4 depicts a state chart for shoppers, which contains different states in
which shoppers will be in and their transitions. More details about each state and
simulation models will be discussed in the following sections.

4.3.1 Shopping Mall (Case Study) and Customer
Classifications

A shopping mall scenario has been designed, and its simulation implemented using
AnyLogic� 6.4 agent-based simulation software. The considered scenario covers
eight shops of four different types: three clothing shops, two sports shops, two

Fig. 4.4 State charts for the shopper’s behavior
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beauty shops, and one candy shop. Each shop has its own ID as listed in Table 4.1.
Each type of shop has its target customers. For instance, female customers may be
more interested in beauty shops while males may be more interested in sports shops.
In this work, to enhance the validity and realism of the constructed simulation model,
we have categorized customers in multiple ways. Table 4.2 depicts multiple
categories of customers considered in this work. First, customers are tagged with
three agent types based on their gender and age: (1) female adult, (2) male adult, and
(3) child. In this work, the agent type is based on the ratios of sex and age of the
Tucson population (http://www.maps-n-stats.com/). Therefore, agent type is deter-
mined based on the discrete, empirical statistical distribution shown in Eq. 4.16.

Pagent type ¼
½0; 0:4�; agent type is female adult

ð0:4; 0:8�; agent type is male adult

ð0:8; 1:0�; agent type is child

8
><

>:
ð4:16Þ

Besides utilitarian-oriented shopping, there also exists window shopping orien-
tation and recreational shopping. Therefore, based on their shopping style, customers
are categorized into planned shoppers (people who go to the mall with specific
shopping plan) and unplanned shoppers (who do not have a specific shopping plan).
Upon arriving at the mall, planned shoppers already have in mind which shops they
will visit. Planned shoppers are further partitioned into group shoppers (those who do
shopping with friends or family members) and individual shoppers. In this work, it is
assumed that all the unplanned shoppers are individual shoppers. By combining
agent type with other categorizations (e.g. planned vs. unplanned shoppers; indi-
vidual verses group shoppers), we can enhance the flexibility of pedestrians’
behaviors as well as their adaptability to the environment.

4.3.2 Algorithm for Movement of Pedestrians

In this section, the algorithm for movement of pedestrians is discussed in detail.
Figure 4.5 depicts a flowchart of the movement algorithm. As discussed in
Sect. 4.2.2, a desired destination is used as part of input M for EDFT during the

Table 4.1 Shop list in the
simulation scenario

Shop ID Shop type Shop ID Shop type
A, B, G Clothes shop C Candy shop
D, F Sports shop E, H Beauty shop

Table 4.2 Agent
categorizations

Shopping style Agent type

Unplanned Female adult Male adult
Planned Group Female adult Male adult Child
Planned Individual Female adult Male adult
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decision deliberation on directions. For the planned shoppers, a potential desti-
nation is obtained from their shopping plans. On the other side, unplanned
shoppers normally set the closest shop as their potential destination. In this work,
an attribute (crowdedness threshold) is defined to represent the largest number of
people that each shopper could accept to shop with in the same store. Before a
shopper enters his/her planned destination (shop), he/she will evaluate it based
on several criteria such as their interest level, shop’s attraction level, and
crowdedness level, and confirm the desired destination based on their evalua-
tions. More details about evaluation of the destination will be illustrated in Sects.
4.3.3 and 4.3.4 for unplanned and planned shoppers, respectively. As soon as an
agent (shopper) comes up with a desired destination, he/she utilizes EDFT to
determine their next moving direction. To implement/compute EDFT, a Java
Matrix Package (JAMA) has been embedded into our simulator (Anylogic
model). Then, by calculating the physical and social forces based on the sur-
roundings along the moving direction, each agent adjusts its velocity in SFM
(see Eq. 4.1).

Start

Have a shopping
plan?

Look up the plan and
find the destination of

next shop

Yes

Walk toward the
exit

No

Moving close to
a shop?

Yes

Have interest in the
shop?

No

Set the shop as
destination

Yes

No

Evaluate the
direction of next

shop from current
position to get M[0]

Evaluate crowd
density in each
direction to get

M[1] and W

Call DFT to get preference of each
direction and choose next direction
based on the probability distributed

according to preference

Adjust velocity
based on force

Change to next
direction and move

to next shop

Calculate force
from neighbors
and obstacles

Arrive the
destination?

Yes

No

Is the destination
an exit?

No

End

Yes

Arrive the exit?

Yes

End

No

Fig. 4.5 Pedestrian moving algorithm
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4.3.3 Destination Confirmation Algorithm for Unplanned
Shoppers

As mentioned earlier, unplanned shoppers wander around the shopping mall,
without knowing in advance which shop they will visit. When they pass by a shop,
they will set it as a potential destination if the shop’s crowdedness level is below
their threshold. Then, they evaluate the shop based on their personal interest and
the shop’s attraction level by Eq. 4.17. Based on this evaluation, the potential
destination may become a confirmed destination. For instance, a male, unplanned
shopper who is more interested in sports shoes than cosmetics may enter a sports
shop but not a beauty shop when he passes by one of them. However, if the beauty
shop has a special promotion (e.g. big sale), he may still visit the shop. Equation
4.17 depicts a probability function on whether unplanned shoppers enter a shop
or not.

Piw ¼ aIiw þ bAiw ð4:17Þ

Iiw denotes the interest level of agent i for shop w, while Aiw describes the
attraction level of shop w towards agent i. Constants a and b are the weight values
assigned to the interest level and attraction level, respectively. Both variables
(Iiw, Aiw) and constants (a, b) range from 0 to 1. In our model, we give the same
weight to Iiw and Aiw by setting a = b = 1. Therefore, in the normalization step, the
value obtained for Piw is divided by 2 in order to obtain its normalized value. Here,
we assume that Piw[0.5 indicates that agent i is definitely attracted by shop w and
will enter this shop.

4.3.4 Planning Algorithm for Planned Shoppers

Planned shoppers obtain their potential destinations based on their shopping plan,
and evaluate them in the same way as unplanned shoppers (see Sect. 4.3.3). If the
potential destination does not meet one of their three criteria (interest level, shop’s
attraction level, and shop’s crowdedness level), planned shoppers will need to
decide whether they will skip the shop or move to another shop (of the same kind).
This decision process is defined as plan adjustment. The following sections discuss
the design of initial shopping plans and the plan adjustment algorithm for planned
shoppers in greater detail.

4.3.4.1 Alternative Initial Shopping Plans for Planned Shoppers

When planned agents arrive at the entrance of the mall, they will be offered with
initial shopping plans according to their characteristics (see Table 4.2). For
individual planned shoppers, the plan is designed based on their agent type.
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For instance, female shoppers may want to visit all three clothes shops and two
beauty shops if their schedule permits. Thus their initial shopping plan will include
these shops. For a male shopper, a different plan will be designed according to his
personal need. Table 4.3 depicts the shopping plans for individual shoppers.
Plans in Table 4.3 contain alternatives in stores to visit (using OR junctions) or in
the sequence of stores to visit (using AND junctions).

Based on the survey conducted by Kuruvilla et al. (2009) and observations
made in the real shopping environment, we have partitioned shopping groups into
three types based on their shopping interest and group members’ personal char-
acteristics: (1) female groups consisting of female shoppers whose interests mainly
focus on beauty and clothing shops; (2) mixed gender groups with both male and
female members; and (3) family with-kid groups. Family groups are mixed-
gendered groups that need to balance shopping interests, but they will include
candy shops on their plan due to kids. For group shoppers, their shopping plans are
not based only on one person’s interests, but should consider the need of all the
members in the group and achieve a balance for the whole group’s interests.
Taking a mixed-gender group for example, while female members may need to
visit more beauty shops and males may need to visit sports shops, the group
shopping plan would include both types but only one shop (less than what is
preferred by each party) for each type. As another example, if there is a kid in the
group (family group), adult members may have to give up one of their shops of
interest (e.g. sports, clothes, or beauty) since they may need to go to the candy
shop with the kid. When group shoppers enter the mall, they will be assigned with
a group ID (0 * 8), which will indicate the group type they belong to. Table 4.4
depicts group types and the corresponding initial plans. The group frequencies
vary by scenario (e.g. different ethnicity). For example, about 70% of Indian
people always shop with families while the percentage is lower for American
shoppers (Kuruvilla et al. 2009).

As shown in Tables 4.3 and 4.4, initial shop plans contain alternatives, and one
of them will need to be selected based on the current situation. Taking a female
adult as an example in Table 4.3, she needs to visit shop A and shop B upon her

Table 4.3 Predefined
shopping plans for individual
shoppers

Agent type Initial shopping plan

Female adult
sa 

B 
so 

D 

F 

jo 

A 

ja sa 
E 

H 

ja G 

C 

Male adult
so 

B 
sa 

D 

F 

ja 

A 

jo so 
E 

G 

jo 

H 

: shop (See Table 4.1)
: separate end of OR operation : joint end of OR operation
: separate end of AND operation : joint end of AND

operation
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arrival, but in any sequence. This selection is based on both her current position
and the shop selection probability. If she enters the mall at area 1 in Fig. 4.8, the
probability of selecting shop B is higher than that of shop A because of its
proximity. In this work, we use Psw to denote the probability that shop w will be
selected by a nearby agent and Posk to denote the position of agent. Then the
probability of selecting shop A and shop B as the first destination is given by
Eqs. 4.18 , and 4.19, respectively.

PA ¼ Pos2 � PsA þ Pos1 � ð1� PsBÞ ð4:18Þ

PB ¼ Pos1 � PsB þ Pos2 � ð1� PsAÞ ð4:19Þ

where

Posk ¼
1; if an agent’s entering position in area i;

0; otherwise

(
ð4:20Þ

PsA ¼ PsB ¼ 0:7 ð4:21Þ

4.3.4.2 Plan Adjustment for Individual Planned Shop

As described in Sect. 4.3.4, a potential destination of planned shoppers becomes a
confirmed one if the shop’s crowdedness level is below their threshold. If a
considered shop is too crowded, they may want to skip it and go to a next planned
one or adjust their plan to visit a different shop (of the same kind). Figure 4.6
illustrates the procedure in which planned shoppers adjust their shopping plans
according to dynamically changing surroundings. For individual shoppers, they
evaluate a shop according to Eq. 4.17 just as unplanned shoppers do. We use Piw to
denote the probability that agent i would like to stop by shop w. If Piw is larger
than 0.5, they will choose to visit a similar shop instead. Otherwise, they will skip
the shop and set a next planned shop as the potential destination.

Table 4.4 Predefined shopping plans for group shoppers

Group ID Agent type Initial shopping plan

0, 1, 5 Female group
sa 

B 
so 

D 

F 

jo 

A 

ja sa 
E 

H 

ja G 

2, 4, 8 Mix-gender group
so 

B 
so 

D 

F 

jo 

A 

jo so 
E 

H 

jo G 

C 

3, 6, 7 Family with kids group
so 

B 
jo 

D 

H A 

so 
E 

F 

jo 
G 

C 
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4.4 Experiments and Results

Using the crowd simulation model constructed based on the proposed pedestrian
model and data (survey and observations), we have conducted several experiments
for various purposes, such as (1) to test the impact of consideration of human’s vision
into SFM on the average distance among neighboring shoppers and the movement
speed of pedestrians, (2) test the impact of the number of planned and unplanned
shoppers on the profit of the considered shopping mall under low and high density
cases, (3) test the impact of group shopping behavior on the profit of the considered
shopping mall, and (4) test the impact of arrangement of stores in the considered

Start

Is crowdedness
below threshold?

No

Suggest group
changing to a
similar shop

All group members
change destination

Enter the
shop

Yes

Yes

Suggest group to
skip this shopand
move to next one

No

Do the group
agree?

Yes

No

Is individual
shopper?

Is the shop’ s
attracting level beyond

threshold?

No

Is the shop’ s

attracting level beyond

threshold?

Change to a
similar shop

Yes

Skip this shop and
move to next one

No

Yes

Fig. 4.6 Plan adjustment algorithm against dynamic situations
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shopping mall on their profit score. Also, we tested the scalability of the proposed
model by increasing the number of agents in the simulation. The detailed design of
each experiment, results, and analyses are described in the following sections.

4.4.1 Significance of Consideration of Vision
in Social Force Model

The goal of this experiment is to test the significance of consideration of human’s
vision into SFM, which is part of the proposed pedestrian behavior model in this
work. As mentioned in Sect. 4.2, one of the group characteristics is the positive social
force among the group members. Unlike individual and group shoppers belonging to
different groups, group members of the same group stay close to each other and move
together. In Sect. 4.2.1.1, a concept of connection range (CR) was discussed for the
social force between agents except the group members. The exception for the group
members is that even if two group members are out of their connection range, there is
still a psychological force f psy between them in order to reduce the distance between
them. Once they get closer and are within the connection range, a physical force f phy

begins working to avoid any friction or collision between them. Figure 4.7 depicts
the forces between group members from group member i’s view. Equation 4.22
depicts the resultant force function for the group members.

fij ¼
f psy
ij þ f phy

ij ; dij�CR

f psy
ij ; dij [ CR

(
ð4:22Þ

By considering the human vision in SFM, pedestrians will have a psychological
force against only those neighbors in front of them and adjust their speed con-
sequently. In this case, their resistance force is reduced; therefore, they are
hypothesized to move faster. Then we do the Student’s t test with alternative
hypothesis H1 and null hypothesis H0 stated as below:

H1 Pedestrians will tend to move faster when vision is considered
H0 Pedestrians will not move faster when vision is considered

Figure 4.8 depicts a snapshot of the shopping mall simulator that we have
developed, where 100 pedestrians are moving along the hallway towards the exit.
This experiment was designed in a way that pedestrians do not visit any shop.
Therefore, it allows us to test the significance of consideration of human vision
into SFM in a general case, where the average speed of pedestrians is used as a
metric. Experiments have been conducted with 30,100, and 1,000 pedestrians to
compare average speeds between models with and without consideration of human
vision. Statistics shown in Table 4.5 are based on 16 samples collected every 10 s
in each case. By using student’s t testing with equal sample sizes and unequal
variance, we obtained p-value \0.001 which accepts our hypothesis. The experi-
mental results reveal that our intuition on faster movement of pedestrians when we
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consider human vision is correct regardless of the crowd density. Therefore,
consideration of human vision into SFM has been found to be significant (Fig. 4.9).

4.4.2 Impact of Unplanned Shoppers on the Number of Visits
to Shops

The goal of this experiment is to analyze the impact of the number of unplanned
shoppers on the number of visits to the shops (and therefore profit of the shopping
mall) during the same time period. As mentioned in Sect. 4.3.3, shoppers (planned
and unplanned) will evaluate the crowdedness of a shop before entering it.
Equation 4.23 depicts the probabilities that planned and unplanned shoppers will
purchase items used in this experiment. Equation 4.24 depicts the profit of shop w,
where m denotes the minimum crowdedness threshold of the shopper in the shop.
If shops are mostly filled with unplanned shoppers, they may lose the opportunity
to attract planned shoppers whose probability of purchasing is higher, reducing the
profit of the shop. For unplanned shoppers, we assumed equal chances for them to
make a purchase or not while visiting a shop. Many previous studies (Zhuang et al.
2006; Babin et al. 1994; Batra and Ahtola 1991; Baumann et al. 1981) found that
the buying intention tends to increase shoppers’ buying of non-food products such
as clothes; we give higher purchase probability to planned shoppers.

PriðpurchaseÞ \0:5; is a planned shopper
¼ 0:5; is an unplanned shopper

�
ð4:23Þ

Fig. 4.7 Force execution
between group members
(from group member i’s
view)

Table 4.5 Statistics of Student’s t testing on the significance of vision in SFM

Number of pedestrians X1 X2 s2
1 s2

2 n1 ¼ n2 t p

30 11.91306 11.83306 0.00015 0.00041 16 13.522 \0.001
100 11.77788 11.43238 0.00325 0.04586 16 6.236 \0.001
1000 11.95081 11.45106 0.00010 0.00732 16 23.207 \0.001
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ProScorew ¼
Xm

i

PriðpurchaseÞ ð4:24Þ

The first experiment has been conducted with a high density envrionment,
where the total profit score of the mall for 100 min is compared under three
different conditions: (1) 54 planned shoppers and 76 unplanned shoppers in the
mall, (2) 57 planned shoppers and 117 unplanned shoppers in the mall, and (3) 96
planned shoppers and 78 unplanned shoppers in the mall. By setting the purchasing
probability of planned shoppers as 0.6 and 0.8 repectively, we could see from Figs.
4.10 and 4.11 the impact of shoppers’ buying intention on the mall’s profit gaining.
As depicted in Figs 4.11a and b, cases 1 and 2 indicate that the profit score does
not increase greatly when about 40 additional unplanned shoppers are in the mall.

Fig. 4.8 Snapshot of a shopping mall simulation with 100 participants

Fig. 4.9 Average speed of pedestrians in SFM with and without considering of vision
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Figure 4.11c, however, demonstrates that 40 additional planned shoppers in the
mall increases the profit score from 125 to nearly 250. When we decrease
Pr(purchase) from 0.8 to 0.6, the profit does not increase much by adding either
more unplanned or more planned shoppers. Besides, the profit from planned
shoppers is almost the same as that from unplanned shoppers. In other words, the
higher the buying intention, the more profit the mall will gain. Therefore, opera-
tional strategies such as promotion should target at increasing shoppers’ buying
intention.

Next, an experiment involving a low density environment has been also con-
ducted with 29 planned shoppers and 39 planned shoppers (See Fig. 4.12a), where
planned shoppers’ purchase probability is 0.8. By adding 20 more unplanned
shoppers (see Fig. 4.12b) and planned shoppers (see Fig. 4.12c) into the mall,

Fig. 4.10 Results for testing the impact of unplanned shoppers on the profit of the mall under a
high density case [Pr(purchase) = 0.8]

Fig. 4.11 Results for testing the impact of unplanned shoppers on the profit of the mall under
high density case [Pr(purchase) = 0.6]
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respectively, smaller differences are observed compared with the case with higher
density environment. According to our experiments, it has been found that the
impact of the number of unplanned shoppers on the profit of the mall is more
obvious when the mall is more crowded (e.g. during holidays or weekends). It is
believed that this finding (and more detailed simulation results) would be very
useful for the shopping mall management when they design promotion and/or
advertisement policies during the regular as well as busy seasons.

4.4.3 Impact of Group Shopping Behavior on the Profit of Mall

As described in Sect. 4.3.4.2, individual shoppers would skip a planned shop or go
to an alternative one (of the same type) if the crowdedness level in that shop is
above their threshold. They make these decisions only based on their interests and
how the shop attracts them (e.g. promotion). However, when a member in a group
wants to skip a planned shop or go to an alternative shop, he/she needs to com-
municate (discuss) with all the other group members first and follow the group’s
final decision (which may accept or reject his/her proposal). Therefore, the chance
that group shoppers skip or alter a shop is lower than that of individual shoppers.
The goal of this experiment is to test our intuition that the shopping mall will gain
more profit as the percentage of group shoppers increases. Figure 4.13a depicts the
experimental results for the case with 48 individual planned shoppers, 50 group
planned shoppers, and 89 unplanned shoppers. Here, the ratio between the group
shoppers to the individual shoppers is about 1. Figure 4.13b depicts the experi-
mental results for the case, where the number of unplanned shoppers remains
unchanged, the number of group shoppers is increased to 70, and the number of
individual shoppers is reduced to 34. It is clearly shown in Fig. 4.13b that the profit
score increases as the percentage of the group shoppers increases.

Fig. 4.12 Results for testing the impact of unplanned shoppers on the profit of the mall under a
low density case [Pr(purchase) = 0.8]
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4.4.4 Arrangement of Stores

An empirical study conducted by Zhuang et al. (2006) demonstrated that the
number of stores visited has a negative impact on shoppers’ purchase. We observe
that similar shops are usually located near to each other in many large shopping
malls such as Dillards and Macy’s. The goal of this experiment is to test the impact
of the arrangement of stores in the considered shopping mall on their profit score.
Two different configurations have been considered: (1) same-type shops are placed
far from each other (see Fig. 4.14) and (2) same-type shops are placed close to
each other (see Fig. 4.15). Experimental results reveal that the shopping mall gains
a higher profit for the second configuration. One possible reason could be that

Fig. 4.13 Results for testing the impact of group shopping behavior on the profit of the mall

Fig. 4.14 Configuration 1: placement of similar stores far from each other
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people are more likely to make a purchase in a similar store nearby if their original
planned destination is crowded. To validate this conjecture, further study such as
survey on shoppers will be valuable.

4.4.5 Scalability and Computational Aspects

In this research, several efforts have been made to enhance the validity of the
crowd simulation model for the considered shopping mall, such as (1) adopting
EDFT to mimic decision deliberation of each individual pedestrian (at each point
to choose a next direction), (2) incorporation of explicit group communications,
and (3) consideration of human’s vision into pedestrian’s movement (SFM).
However, it is expected that these additions will result in longer simulation exe-
cution times. The goal of this experiment is to test the scalability of the proposed,
integrated pedestrian behavior model in terms of computational requirements. By
increasing the number of agents involved in the simulation, we have evaluated the
simulation execution times. As shown in Fig. 4.16, simulation execution times
increase nearly linearly when the number of agents increases. Therefore, it is
believed that our modeling approach is extensible to more complex situations
without involving significant increase in the computational time.

Fig. 4.15 Configuration 2: placement of similar stores together

Fig. 4.16 Simulation
execution times with increase
in the number of agents
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4.5 Conclusion

The integrated pedestrian model proposed in this chapter has allowed us to develop
a more realistic simulation of pedestrian behaviors at a shopping mall. In partic-
ular, consideration of the vision of each individual allowed us to mimic physical
and psychological interactions among the people and the environment more
realistically. Similarly, consideration of the EDFT (based on the psychological
principle) allowed us to represent the human decision deliberation process, where
economic approaches based on expected values are not always applicable.
In addition, consideration of a rich set of attributes for the environment (different
kind of shops, obstacles, promotions on the shops) as well as people (e.g. gender,
age, preference, schedule, and grouping) has allowed us to mimic a real shopping
mall environment closely. A crowd simulation model constructed based on the
proposed pedestrian model and data (survey and observations) has been used to
conduct several experiments. Our experimental results revealed several interesting
findings such as (1) consideration of human vision into SFM (part of the contri-
bution in this work) is found to be significant, (2) impact of shoppers’ buying
intention on the profit of the mall, especially when the mall is crowded (e.g. during
holidays or weekends), (3) the profit score largely increases as the percentage of
the group shoppers increases, and (4) the shopping mall gains a higher profit if
similar-type shops are placed close to each other. It is believed that many of these
findings (and more detailed simulation results) would be very useful for the
shopping mall management when they make strategic decisions (e.g. layout design
and arrangement of stores) as well as operational decisions (e.g. promotion and/or
advertisement policies during the regular as well as busy seasons).

4.6 Future Work

Currently, the dynamic planning algorithm is based on a rather simple probability,
but our future work will employ the extended decision field theory for shopping
path planning according to the dynamically changing environment. In addition,
while efforts have been made to collect data and validate part of the model via
observations made at the mall, more comprehensive data collection and validation
will be performed via human-in-the-loop experiment using the CAVE-based vir-
tual reality environment. This environment will be used to simulate shopping mall
situations under various conditions and collect information about the decisions
made by individuals. The collected data will be used to support the development
and calibration of the proposed pedestrian behavior model.

To this end, the first task will be to identify test scenarios covering a broad
spectrum of different shopping environments to support model construction.
Human-in-the-loop experiments will be executed using a scenario representing
situations forcing shoppers to make a series of decisions. During shopping,
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individuals must decide which stores to visit first according to the shopping plan
(see Sects. 4.3.3 and 4.3.4). This decision often depends on various factors such as
crowd density, tightness in their schedule, and real-time attractions (e.g. promotion
and sales) from stores. Once a destination store is determined, shoppers must
choose one of the six directions (see Fig. 4.3) at major decision points along the
path. This decision often depends on the crowd density and the relative distance to
the destination.

The second task will be to develop a computational model required to provide a
realistic virtual test environment for the implementation of scenarios to conduct
human-in-the-loop experiments. For the scenario, a high-fidelity shopping mall
simulator will be set up to investigate how an individual shopper plans and makes
decisions in a dynamic manner. During the experiments, shoppers will navigate in
an area within the simulator based on their plan (see Fig. 4.8). At each decision
point, each subject will be asked to evaluate the crowd density and performance
(e.g. remaining distance to the destination) of available alternatives (e.g., choose a
direction, choose a store to be visited next) depending on various observations.
The effects of varying shopping mall conditions will be assessed by running
experiments featuring, among others, different crowdedness, arrangement of
stores, and various types of real-time information (e.g. sales and promotions)
available. Experiments will be conducted using a CAVE three-dimensional virtual
reality environment. In such an environment, subjects sense that either the user’s
point of view or some part of the user’s body is contained within the computer-
generated space. This allows observing quasi-real human responses. The hardware
system that will be used is the FakeSpace simulator, located at the University of

Fig. 4.17 VR environment (using integrated simulators) for human experiments
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Arizona, and which has already been successfully used by the authors to assess
evacuation behaviors under a terrorist bomb attack (Lee and Son 2008; Shendarkar
et al. 2008), evacuation behaviors under fire in a factory (Vasudevan and
Son 2008), virtual stock investment (Son and Jin 2006), and error detection and
resolution by people in a complex manufacturing facility (Zhao and Son 2008).

The third task will be to employ efficient and effective synchronization and
coordination mechanisms (which the authors have already developed) for linking
simulation elements that will be hosted at different computers. To enhance the
realism of the shopping mall simulator executed in the CAVE environment, it will
be federated in real-time with other simulators (e.g. crowd simulator) via the web
services (see Fig. 4.17).
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