
8Text Segmentation for Document
Recognition

Nicola Nobile and Ching Y. Suen

Contents

Introduction. 258
Zone and Line Segmentation. 259

Challenges. 260
Noisy Documents. 260
Historical Documents. 262
Line Segmentation. 263

Segmentation for Optical Character Recognition (OCR). 272
Challenges. 273
Touching Characters. 273
Broken Characters. 274
Lack of Baseline Information. 275
Typefaces. 276
Touching Italic Characters. 278
Segmentation of Degraded Characters. 282
Segmentation of Mathematical Expressions. 283

Conclusion. 286
Cross-References. 288
References. 288

Further Reading. 290

N. Nobile
Centre for Pattern Recognition and Machine Intelligence (CENPARMI), Concordia University,
Montréal, QC, Canada
e-mail: nicola@cenparmi.concordia.ca

C.Y. Suen
Department of Computer Science and Software Engineering, Centre for Pattern Recognition and
Machine Intelligence (CENPARMI), Concordia University, Montréal, QC, Canada
e-mail: suen@encs.concordia.ca; suen@cenparmi.concordia.ca

D. Doermann, K. Tombre (eds.), Handbook of Document Image
Processing and Recognition, DOI 10.1007/978-0-85729-859-1 8,
© Springer-Verlag London 2014

257

258 N. Nobile and C.Y. Suen

Abstract
Document segmentation is the process of dividing a document (handwritten or
printed) into its base components (lines, words, characters). Once the zones
(text and non-text) have been identified, the segmentation of the text elements can
begin. Several challenges exist which need to be worked out in order to segment
the elements correctly. For line segmentation, touching, broken, or overlapping
text lines frequently occur. Handwritten documents have the additional challenge
of curvilinear lines. Once a line has been segmented, it is processed to further
segment it into characters. Similar problems of touching and broken elements
exist for characters.

An added level of complexity exists since documents have a degree of
noise which can come from scanning, photocopying, or from physical damage.
Historical documents have some amount of degradation to them. In addition,
variation of typefaces, for printed text, and styles for handwritten text bring new
difficulties for segmentation and recognition algorithms.

This chapter contains descriptions of some methodologies, presented from
recent research, that propose solutions that overcome these obstacles. Line
segmentation solutions include horizontal projection, region growth techniques,
probability density, and the level set method as possible, albeit partial, solutions.
A method of angle stepping to detect angles for slanted lines is presented.
Locating the boundaries of characters in historical, degraded ancient documents
employs multi-level classifiers, and a level set active contour scheme as a possible
solution. Mathematical expressions are generally more complex since the layout
does not follow standard and typical text blocks. Lines can be composed of
split sections (numerator and denominator), can have symbols spanning and
overlapping other elements, and contain a higher concentration of superscript
and subscript characters than regular text lines. Template matching is described
as a partial solution to segment these characters.

The methods described here apply to both printed and handwritten. They
have been tested on Latin-based scripts as well as Arabic, Dari, Farsi, Pashto,
and Urdu.

Keywords
Anisotropic probability density • Broken • Characters • Contour • Curvi-
linear • Degradation • Features • Handwriting • Histogram • Historical •
Level set • Lines • Line slant • Normalization • OCR • Pixel density •
Projection • Recognition • Region growth • Segmentation • Template
matching • Touching • Typefaces

Introduction

Document segmentation has been a difficult problem to solve through automation.
The problem itself has evolved since its inception. Where initially, the problem was
to recognize isolated printed words and characters, it has modernized itself over the

8 Text Segmentation for Document Recognition 259

years in order to keep up with user needs. In later years, the research in this field
became more complex. The progression continued by finding words and characters
[29] in a line of text, then finding all text lines in a given printed document. As
documents became more complex, it was then necessary to identify the regions of a
document which are text and which are non-text – a common layout for newspapers
and magazines.

Modern demands push the field into finding solutions for new problems. Such is
the case with the Sarbanes-Oxley Act. This law requires every public company in
the United States to electronically store all business records. Storing these document
images is the easy part – searching them is much more difficult. These documents
can have any layout ranging from standard business letters, receipts, purchase
forms, and accounting tables to name a few, to charts, tables, and figures containing
important textual information which need to be identified.

To handle this wide range of layouts, document processing systems [25] are
required to identify the location of the text blocks and separate them from the non-
text blocks. Of these text blocks, the lines of text need to be separated. The lines
may be of different orientations from each other or a line may even be curved.

More recent applications include handwritten [15] documents usually co-existing
with printed text in a document. Handwritten line segmentation and OCR are much
more difficult [19–22, 28, 35] due to the greater diversity of handwriting styles
compared with printed texts. Furthermore, machine-printed text lines are usually
laid out straight and the skew and/or rotated texts are minimal, usually caused when
it is – scanned or photocopied where the document is not aligned with the glass edge
of the recording device. Handwritten documents are influenced mostly by proper
line segmentation. The latest trend is geared towards page segmentation and OCR
of Middle-Eastern languages such as Arabic [11, 30, 32], Farsi [12], and Urdu [23].

Other recent applications which use text segmentation and OCR technology are
search engines used to search scanned documents. This is most useful for historical
documents which would take too long to manually create an editable text version.

Word spotting is a relatively new field. The goal is to find specific words in
documents. Depending on the system, accuracy relies greatly on the OCR [24]
performance. Data mining can be used to find similar documents based on a user’s
reading patterns. Each has its own unique challenges and obstacles in OCR.

The remaining of this chapter discusses the latest research in line segmen-
tation (section “Zone and Line Segmentation”) and OCR will be discussed in
section “Segmentation for Optical Character Recognition.”

Zone and Line Segmentation

Document segmentation involves locating and separating the text from the non-
text regions of a page. In �Chap. 5 (Page Segmentation Techniques in Document
Analysis), the reader can find more information on document segmentation. In
�Chap. 6 (Analysis of the Logical Layout of Documents), the reader can find details
on how text blocks are located in complex document layouts.

http://dx.doi.org/10.1007/978-0-85729-859-1_5
http://dx.doi.org/10.1007/978-0-85729-859-1_6

260 N. Nobile and C.Y. Suen

Once a text region has been identified, it is passed to a line segmentation module
which will locate and, if needed, separate the lines in that region. The scope of
this chapter involves the processing of a region of text which contains no images
and contains only text. The text may be arranged in an unnatural manner or it
may contain noise. It is the job of the line segmentation module to locate the lines
which have been naturally written and send this information to next module for
further processing. Breaking down the problem from large objects (text and non-
text regions) to smaller objects (characters or connected components) allows each
module in the process to deal with fewer items, thereby speeding up the process and
accuracy. However, any errors that occur in previous modules will affect subsequent
tasks that follow. This has a negative effect on accuracy of all modules, be it OCR
or word recognition.

Challenges

Documents come in a variety of layouts, printing media, and languages. Older
documents may have been scanned at a lower resolution and may show signs of
degradation. Similarly, historical documents usually are in poor condition, so high
resolution scanning would not improve the quality.

Regardless of the layout, media, or language, all digitized documents contain a
common feature – noise. The only difference is the degree of noise present in a
digital document. Another common challenge to overcome is the flow of the text.
Ideally, all text would be aligned in a straight organized direction and well-spaced.
This is usually not the case since it is observed that most scanned documents are ro-
tated and contain some skew. Furthermore, consecutive text lines can be overlapping
or worse, touch each other. Touching lines should be separated before further pro-
cessing can be applied. Other common hurdles include broken lines, lines that do not
contain baseline information, curvilinear text, and/or touching/broken characters.

Algorithms were developed to address these issues and a few of them are
discussed in this section. Section “Noisy Documents” discusses and describes the
types of noise in documents and what can be done to clean it. In section “Historical
Documents,” a description of noise specific to historical documents is presented.
In section “Line Segmentation,” a few line segmentation techniques are explained.

Noisy Documents

Noise is the appearance of objects in a document image which do not belong to or
are not part of the original document. These objects can be the result of poor paper
quality, digitizing, or a physically damaged document (e.g., handwriting over text,
coffee spills, creases, scratches).

Several types of noise can appear in an image but the most common type is
“salt and pepper” noise which contains randomly white (salt) and black (pepper)
pixels appearing throughout the image. Some causes of this kind of noise can come
from dead pixels on the capture device, errors from converting analog to digital,

8 Text Segmentation for Document Recognition 261

Fig. 8.1 Salt and pepper noise example (before (a) and after (b) cleaning)

Fig. 8.2 Common photocopying artifacts; (a) original, (b) black borders, (c) uneven toner,
(d) too Light, (e) too dark, (f) 10th generation copy

from quantization, using long shutter speeds or a high ISO in digital cameras, and
transmission errors. This noise is commonly corrected by using a median filter.
Figure 8.1 shows an example of an image containing salt and pepper noise before
and after cleaning.

Noise can be produced by the way a document was handled. For example, poor
photocopying is one source that results in noisy and degraded images. Figure 8.2
displays some common problems resulting in poor photocopying.

262 N. Nobile and C.Y. Suen

In Fig. 8.2b, the document image contains black borders around the perimeter.
This usually occurs when the document is slanted and the cover of the scanner was
left open during photocopying, or the photocopier has a dark background under the
lid when it is closed. Although these borders do not usually interfere with the text
of the document, the segmentation preprocessing must still identify these unwanted
objects and remove them.

Another common problem that results from photocopying (or sometimes print-
ing) is the uneven distribution of the toner which leaves part of the document lighter
than the rest. Special care is needed to identify this problem and to correct it. If not
identified, the lighter part of the document may disappear during the binarization
process if a fixed threshold is used. This can be seen in Fig. 8.2c.

Some photocopiers have the option to make the copy lighter or darker than the
original. Making the document too light may cause some characters to be too faint to
recognize. Making the page darker may introduce a dark scanning “texture” as seen
in Fig. 8.2e which interferes and overlaps the text giving the segmentation a difficult
challenge to correct. Finally, another common routine people do is to make copies of
copies. This can be repeated several times with each new generation inheriting the
previous generation problems (i.e., noise) while introducing new unwanted artifacts.
Furthermore, since a photocopy is not 100 % identical to the original, the quality of
the document degrades with each new generation.

Figure 8.2f shows an example of a simple document which went through ten copy
generations on the same photocopier. This shows the additive characteristic of nth-
generation copying. Flaws in the photocopier(s) will show in the copy in addition
to the previous flawed versions. Other copier functions can affect the quality such
as resizing and resolution. Fax machines usually print in a lower resolution (usually
between 100 and 200 DPI). Additionally, dirty copier or scanner glass or damaged
capture devices will lead to noisier images.

The process of scanning itself can sometimes lead to degraded documents
regardless of the quality of the document. Some examples of unwanted scanning
items include scanning at low resolution, with a dirty or defective scanner, rotated or
upside-down scans, and ghost images. Ghost images appear when the scanned page
is double-sided or there is another page behind the scanned page during scanning. If
the paper is thin enough, or the scanner lamp is too bright, ink from the second
page will faintly appear on the scanned image. Also, some newer scanners can
scan in duplex mode in such a way that both pages are scanned at the same time.
This leads to the second page ink to “bleed” through the scan and appear in the
image. Figure 8.3 shows examples of “ghost images.”

Historical Documents

The current trend for digital libraries and online publishers is to make their books
and magazines available online in digital form. This is not a problem with recent
documents that have been written using word processors. However, old historical
documents need to be scanned and sent through an OCR. The challenges with old

8 Text Segmentation for Document Recognition 263

Fig. 8.3 Scanning ghost (show-through) examples

documents are usually related to the quality of the paper. Aged paper shows signs
of fading, degrading, destruction from infestation, or degrading from environmental
elements such as heat, oxygen, sunlight, humidity, and general paper decay. Any of
these issues result in a poor image quality and therefore making it more difficult to
segment characters. Figure 8.4 shows a few examples of aged-looking documents.

Line Segmentation

Given a digital text image, a line segmentation algorithm locates and extracts each
text line from the image for further processing. Several types of software, such as
OCR, word segmentation, and word spotting, make use of individual lines of text.
The challenges for line segmentation are listed as follows:
1. Overlapping line boundaries
2. Touching lines
3. Broken lines
4. Lack of baseline information

264 N. Nobile and C.Y. Suen

Fig. 8.4 Examples of old historical books/documents

8 Text Segmentation for Document Recognition 265

Fig. 8.5 Highlighted connected components of Arabic text (with horizontal projection)

5. Curvilinear text
6. Piecewise linear text
7. Touching characters and words within a line

Several approaches exist to solve these problems and they fall into one of
two categories – top-down and bottom-up [1]. In a top-down approach, a line
segmentation algorithm uses large features of a line in order to determine its
boundaries.

Bottom-up starts from the smallest element of a document image – the pixel.
By grouping touching pixels, connected components are generated. In Fig. 8.5, a
sample Arabic handwritten text is shown with the different connected components
displayed in various colors.

Researchers in image processing use connected components as the building
blocks for analysis. In the case of text segmentation, they are used to locate
characters and symbols having a specific relationship – they could be components
on the same line or belonging to a complex mathematical formula (spanning several
lines and containing symbols).

Segmenting the lines in Fig. 8.5 is a rather easy task. To the right of the three
lines are the horizontal projections (in green). The gaps between the lines have no
value in the projection and therefore can be used to determine where one line begins
and another ends.

However, not all texts are written as neatly as the sample shown in Fig. 8.5. Most
look like the example in Fig. 8.6 where handwritten text may begin in a straight line
but taper off towards the end (right to left) [18]. This may be due to writers “drifting”
off or it can be from a photocopy of the inner binding of a book. Figure 8.6 shows
examples of overlapping lines as well as some touching lines.

Other elements that can add to the difficulties are broken lines, lack of baseline
information, and unique language features. Languages from different regions make
some techniques, which are successful with one family of languages, less effective
on other types of languages. For example, using connected components on printed
English text can help identify individual isolated characters in a line of text. How-
ever, for Arabic printed text, neighboring characters are frequently touching and not
isolated. Additionally, for Arabic, the character shape/style changes depending on
where in a word the character appears (beginning, middle, or end).

266 N. Nobile and C.Y. Suen

Fig. 8.6 Highlighted connected components in curvilinear, overlapping, and touching lines of
handwritten Arabic text

Fig. 8.7 English printed characters having same upper and lower case shapes

Lack of baseline information occurs when all the characters on the line have the
same height and each of those characters begin and end at the same y-positions.
Figure 8.7 shows the English printed characters which fall into this category.

When this situation occurs, the case of the characters cannot be determined –
even though the letters are correct. This can be a problem later on when the
segmented line is passed to an OCR.

Several methods exist to counter these challenges in order to correctly segment
lines from a document. The following lists some techniques used:
1. Horizontal projection
2. Region growth techniques
3. Probability density
4. Level set method

Each has its own advantages and disadvantages and they are discussed in greater
detail in the remaining of this chapter.

Horizontal Projection
Using a horizontal projection is probably the easiest way to segment lines [16].
A horizontal projection is a histogram, or count, of all the foreground pixels in a
document for each horizontal scan line. Figure 8.5 shows horizontal projections to
the right of the text. This method is ideal when the lines are well separated and

8 Text Segmentation for Document Recognition 267

Fig. 8.8 Horizontal projection smoothing with different window sizes

are not overlapping or touching each other. In this situation, the projection will
contain non-zero values for scan lines crossing a line of text. Gaps between lines
will have values of zero thereby effectively marking the start and ends of the text
line boundaries.

Small values may be present in the gaps if some noise is present. In this case,
a threshold value or a smoothing algorithm can be applied to reduce the noise.
Smoothing can also be used to fill in broken lines.

Figure 8.8 shows the horizontal projection for a short two line text block. The
original contains some noise between the lines and the projection within each line is
not smooth. There are too many high peak-to-valley values for adjacent scan lines.
This is sometimes an indicator of broken text or some special noise, such as a cross-
out [17], is present. When a sliding window of 3 pixels is applied, the peaks fall and
the “holes” are filled in. A sliding window of seven eliminates all the influence of
the gaps and noise within the lines. The peaks between the lines, which were caused
by noise, have been reduced to small enough values which can be detected by a
small threshold value.

268 N. Nobile and C.Y. Suen

The horizontal projection is best suited for printed text. Printed text is more
consistent when it comes to maintaining gaps between the lines and for keeping
the lines horizontally straight. Handwritten text can have curvilinear, touching,
and overlapping text as seen in the example in Fig. 8.6.

Region Growth Techniques
Region growth techniques are methods which group neighboring pixels in an image
into subregions. Pixels in a subregion share a common feature that no other pixel,
in other subregions, has. A feature can be anything from the color of the pixel, the
intensity, or texture, for example.

Several methods exist but all should obey the following rules:
1. Every pixel in the document must belong to a subregion.
2. Pixels in a subregion must be spatially connected with one another.
3. No two subregions have a common pixel member. That is, each pixel can belong

to only one subregion.
4. Each pixel in a subregion must satisfy a logical predicate based on a feature.

For example, each pixel color.
5. Applying a predicate function from one subregion to the pixels of another

subregion should return false (or the empty set). That is, pixels not belonging
to the first subregion cannot satisfy its predicate function.
The process of building the subregions is a bottom-up approach. It begins

with “seedpoints.” A seedpoint is an initial point, or pixel, in a digital document
from which to begin to build a subregion from. More than 1 pixel can be added
to a subregion’s set of seedpoints. From a seedpoint, the neighboring pixels are
examined and are added to the subregion based on the criterion established for
subregion pixel membership, and they do not belong to any other subregion’s set
of pixels. Neighboring pixels are pixels which are immediately adjacent – either by
4-connectivity or 8-connectivity connection. The next step continues by following
the same membership confirmation of neighboring pixels based around the newly
added pixels from the previous iteration. This iterative process ends when no new
pixels have been added to the set.

Choosing initial seedpoints is an important step and can be facilitated by using
overall document statistics. For example, in our case, if text is needed to be removed
from a background [27], the histogram of a grayscale image can be viewed and a
value can be chosen where the foreground pixels are prevalent. The criterion for
this subregion could be if the pixel grayscale value is less than a certain value. This
value is shown as the red line in Fig. 8.9.

Of course this is not limited to just pixel counts. An alternative could be to
assign a pixel on the edge of an object as our seedpoint and add neighboring pixels
which are also edge pixels. This would give a set of points which form the outline
of the object in which the initial seedpoint resides on. Or a criterion based on
texture can be used. Applications using texture-based criteria are mainly used for
image segmentation such as locating contaminated areas in meat products, defects
in lumber moving through a sawmill, or cancerous regions in cell tissue, but can
also be used for text segmentation.

8 Text Segmentation for Document Recognition 269

Fig. 8.9 Sample text
document pixel intensity
histogram

Note that choosing the initial seedpoints is important. This method will only
find the pixels in the document which satisfy the criterion and are connected to the
initial seedpoints. Points which meet the subregion’s criterion but cannot be linked
to any of the seedpoints will be neglected. In our example above, at least one point
from each character in the text document will need to be added to our initial set of
seedpoints in order to have full coverage. However, the advantage is that most will
be filtered out and will not be included in the segmentation result.

These methods of segmentation rely heavily on a good choice of initial seed-
points. In addition, this method is highly computationally expensive.

Probability Density
A digital image can be considered as a two-dimensional array of pixel intensities or
colors. From this array, algorithms can be applied to obtain features and statistical
information [14] (such as a projection, density, and centroids). However, obtaining
these features can be a time-consuming procedure and may not provide the best
information for line segmentation.

Probability densities themselves can be considered a feature of a document. It
is computed once and information can be obtained directly or they can be used for
processing by other methodologies.

Peaks on a probability map of a text document correspond to the lines of text.
Valleys correspond to the boundaries between consecutive text lines. In general, the
probability density represents the distribution of the lines in a document. The values
are higher (denser) within text lines and lower (thinner) in the spaces between the
lines and in the margins.

Probability densities are usually continuous for most applications. However, for
document processing, the functions are not known. Therefore, a discrete estimate is
performed. To generate a probability density for a document, a value is computed
using an anisotropic Gaussian kernel defined as [2, 37]:

f .x; y/ D Ae

�
2
4 .x � bx/

2

2�2
x

C
.y � by/

2

2�2
y

3
5

(8.1)

270 N. Nobile and C.Y. Suen

Fig. 8.10 (a) Original handwritten document, (b) probability density using anisotropic Gaussian
probability density function

where bx is the x-axis shift and by is the shift for the y-axis and �x and �y are the
standard deviation-curve spread parameters in the x and y-directions, respectively.
A is the amplitude of the function. Note that if �x D �y , then our Gaussian function
will be isotropic. Having an isotropic Gaussian function is undesirable in the case
of text line segmentation because text, printed or handwritten, is usually written
horizontally with a little skew. This is the case with most languages. Having a
large vertical spread will cause text lines, which are close to each other, to merge.
Instead, it is preferred to use an anisotropic spread where the height (y-axis) is
shorter and the horizontal reach (along the x-axis) is longer. This reduces the
chances of consecutive lines being merged and increases the likelihood that pixels
on consecutive characters, on the same line, will have a large influence on the
probability density.

A new grayscale image is created from applying the Gaussian kernel. This image
represents the intensity around the black pixels by expanding the area of influence of
a pixel based on all the black pixels in its immediate neighborhood. The more black
pixels in a neighborhood, the darker the grayscale image will be in that area. The
surrounding pixel intensities will depend on the distance to the original pixel and
for this reason, the Gaussian kernel generates a grayscale image representation with
intensity values ranging from 0 to 255. The grayscale image is a representation of
the probabilities that corresponding pixels in the original document belong to a text
line or not. Figure 8.10 shows an original handwritten document and the grayscale

8 Text Segmentation for Document Recognition 271

Fig. 8.11 Level set cross sections

image representing the probability density when applying an anisotropic Gaussian
probability function.

It can be seen that the text line locations are more prevalent in the probability
density image in Fig. 8.10. In addition, noise and pixels in the margins tend to
disappear since they are isolated from the text and, therefore, have a little support
from neighboring white pixels.

Level Set Method
The level set method [31] was developed by mathematicians Stanley Osher and
James Sethian in 1988. The method was conceived to track moving objects and
shapes in consecutive video frames and has been extended to image segmentation.
It is used to separate foreground objects from the background. Visually, a level set
is a cross section (in the xy-plane) of a two-dimensional object projected into a
three-dimensional model as seen in Fig. 8.11. The corresponding three-dimensional
graph is shown below each shape and is called the level set function defining the
shape. The three-dimensional surface represents the motion of a two-dimensional
shape.

The boundary of the shape is called the zero level set. The level set function
is zero at the boundary points. The shape contains the points which are inside
the boundary – where the level set function is positive. Any point inside the
two-dimensional shape generates a positive level set function value. Any point
outside will produce negative level set function values. As time advances, the
shape can change form or topology as seen in Fig. 8.11b, c. Keeping track of the
transformations of the original shape requires a great deal of work mostly for times
when the shapes divide or join. Using the corresponding level set is much easier
since it now only needs to track the zero level set (the cross section in the xy-plane).

The level set method can be used to separate the text regions from the background
for text line segmentation. This is an iterative process where an initial zero level
set is evolved according to a partial differential equation. The direction of growth

272 N. Nobile and C.Y. Suen

of the boundary over time is guided by its partial derivatives and an external
vector field [3]:

@f

@t
C ES Crf C VN jrf j D bkjrf j (8.2)

@f

@t
is the boundary movement depending on the vector field ES . The normal direction

is represented by the gradient rf and the velocity VN . The curvature is defined by
bk The zero level can therefore grow, shrink, or remain at rest based on Eq. 8.2.
Experiments performed by Li et al. [4] showed that boundaries grew faster within
text lines – where black pixel densities are large and slower when the gaps are
approached. Taking advantage of the knowledge that text lines are horizontally
written (for most languages), the boundaries can be set to grow faster in the
horizontal direction. In addition, the curvature at the ends of a line is larger than
the curvatures at the top and bottom. Knowing this, fewer iterations may be needed
to reach the goal.

Segmentation for Optical Character Recognition (OCR)

Any character recognition system is highly dependent on the quality of the
segmentation algorithm that precedes it. Segmentation is the process of dividing
a document image into smaller elements. The purpose is to simplify a problem into
a form which can be more easily manageable. In this chapter, research performed on
segmentation of printed characters from a document is discussed. Characters include
those found in the ASCII character set as well as some accented characters and
symbols. Some research has also been done on segmenting mathematical symbols
and characters found in non-Latin documents. Only English documents will be
the language we will focus on but the techniques can be applied to most other
languages.

Optical Character Recognition (OCR) [26,38,39] has been available since 1929.
The idea of an OCR system or device has been around since the early twentieth
century when several patents for OCR systems were granted. In the 1960s, the
OCR-A font was designed to make it easier for both humans to read and for
machines to perform OCR on the printed texts. OCR-A is a fixed-width Sans Serif
font (see Fig. 8.12).

OCR-A was designed as a simple font with little complications. Each character
was evenly spaced and had little extraneous features. Some companies would use
this font to print serial numbers, airline tickets, and utility bills, to name a few
examples. This limited OCR systems to the commercial environment. Existing
printed material, such as literature, business, and legal documents, printed in a font
other than OCR-A, was not accurately “read” by the existing OCR systems which
were trained specifically on the OCR-A font.

In 1974, the Kurzweil Computer Products company developed an OCR which
could read documents printed in any normal font. A few years later, the OCR system
was sold commercially to the general public.

8 Text Segmentation for Document Recognition 273

Fig. 8.12 OCR-A font
sample

OCR has several uses. Some practical examples for OCR systems are license
plate recognition, book scanning for digital libraries, mail address reader, text to
speech, form processing, computer vision, and sign recognition.

OCR systems have improved greatly since the early pioneer years. However,
even the current systems must deal with several obstacles that are inherent with any
printed document. There are several problems which can occur that the segmentation
procedure must overcome in order to obtain the best segmentation results possible.
More on the challenges of segmentation of printed documents are described in
section “Region Growth Techniques.”

In this section, “Segmentation for Optical Character Recognition (OCR),” some
recent research done to overcome the challenges in order to improve printed
character segmentation is presented.

Challenges

Recognizing printed texts is not a trivial problem. Several obstacles can appear on a
document which hinders the segmentation procedure. Because of the vast number of
document types, fonts, paper quality, and even how the documents were digitized,
this results in an almost endless number of variations for an OCR system to contend
with. Since it is not possible to train on all these combinations, researchers instead
train on common features which most documents contain.

Ideally, the characters on a printed page would appear clean and isolated, free
from any obstructions or damages. However, this is rarely the case. Problems
arise that cause the characters on a page to be fragmented, distorted [33], or even
disappear. Below is a list of some of the common problems which a segmentation
algorithm must overcome.

Touching Characters

The problems regarding poor document image capture can directly affect the quality
of the printed characters on the document image. One common problem, which is
of great importance for segmentation, is the separation of touching characters [36].
There are several reasons that lead to touching characters. They occur frequently
either “naturally” or as a result of poor image capture. Documents that have text
printed using a typewriter may have touching characters as a result of a malfunction
such as a small-space advance, misaligned typebars, or even if character keys were
pressed simultaneously.

Serif fonts have a higher rate of touching characters because of their serifs.
When the serifs of neighboring characters are facing each other, the chance of

274 N. Nobile and C.Y. Suen

dc a

b

c

AB rn nn
xx gy FIZ

The cat in the
hat

The cat in the hat

a b

Fig. 8.13 Touching characters resulting from (a) Serif font, (b) kerning, (c) noise, (d)
strikethrough

Fig. 8.14 Touching
characters with potential
cutting points

Original: r m

r m n m m n

r r n r n n n n n

a

b c d

e f g

touching is higher as seen in Fig. 8.13a. Kerning, or the spacing between characters
in proportional fonts, is another source of this problem. If the spacing is too small,
characters will overlap. Most word processors allow the user to change the default
kerning which can lead to more touching characters even for non-serif and fixed-
spaced typefaces. Figure 8.13b shows an example of a sample text at regular spacing
and when kerning is manually changed.

Noise is any unwanted component on the document image. This includes objects
appearing as a result of scanning or photocopying or handwritten strokes overlap-
ping the text. Figure 8.13c shows an example where regular pepper noise can cause
characters to touch. The bottom image shows an example where a person crossed out
some text causing the characters to be fully connected. Although striking out char-
acters is not really considered as real noise, it has the same effect as the handwritten
strike-out as previously mentioned. Figure 8.13d shows a strike-out example.

These examples show some sources responsible for touching characters which
are a problem for the segmentation module because it is often difficult to accurately
determine the cutting point to split them. Some common difficult cases are “rn”
misclassified as the letter “m” and vice versa, “w” with “vv,” “ri” and “n,” “in” with
“m,” and “rm” with “nn,” to name a few. Figure 8.14 shows the touching character
pair “rm” and some potential segmentation cutting candidates.

More cutting points can be found in this example; however, Fig. 8.14 shows an
example of the difficulty in printed touching character segmentation.

Broken Characters

Another major concern with segmentation is the case of broken characters. As with
touching characters, several reasons can cause characters to be fragmented, for
example, uneven ink, faded patches of text from old documents, or damaged paper.

8 Text Segmentation for Document Recognition 275

Fig. 8.15 Broken character examples

Fig. 8.16 Text line reference points

Some binarization algorithms during preprocessing will cause these uneven images
to develop broken strokes if the binarization threshold is too low, for example.

Repairing broken characters involves an opposite procedure than that for seg-
menting touching characters. Here, separate components must be merged together
to form a character. This could pose a bigger challenge than solving touching
characters since some components may not be part of a character but just happened
to be in the general area. Figure 8.15 shows some examples of broken characters.
Figure 8.15a, b appear to have random breaks in the text. However, a consistent
break across the text in Fig. 8.15c may be attributed to a scanner streak or defective
scanner.

Lack of Baseline Information

The baseline is an imaginary line where most of the characters reside on. Figure 8.16
shows the location of the baseline and other reference points of a text line. Most of
the time, a line will have a combination of characters with different heights which
makes distinguishing between upper- and lowercase much easier. However, for lines
where all the character heights are the same, distinguishing between uppercase and
lowercase for some characters becomes difficult. The characters which have similar
upper- and lowercase shapes are C, K, O, S, U, V, W, X, and Z. Additionally, digits
“0” and “1,” which are often misrecognized as “O” and “I,” respectively, also fall
into this category.

A line that contains any combination of these characters, mixed with symbols of
the same height, may lead to misclassifications in character case. Some examples of
case confusing strings are “ZOO” with “zoo,” “COWS” with “cows,” and “VOX”
with “vox.” Although the text is correctly recognized in terms of spelling, in some
situations, the case may be important if a list of acronyms, codes, or passwords

276 N. Nobile and C.Y. Suen

appear on the document, for example. When all characters in a line have the same
height, the segmentation module will not be able to provide the recognizer with the
case information.

Typefaces

There are thousands of typefaces available for creating digital documents. There
have been studies that show that some fonts are more legible than others using OCRs
[5]. The main difficulty lies in the fact that it is time-consuming to train a system
on every known typeface and for every character. Additionally, new typefaces are
introduced every day, which would require such a system to be retrained. A more
generic approach to segmentation is preferred to avoid this obstacle. However, such
a system must deal with the variations in the fonts. Font features that a segmentation
module must take into account are: Serif and Sans Serif, point size, proportional or
fixed spacing, boldness, and italicized text.

As mentioned before, Serif fonts lead to an increase in touching characters.
Section “Historical Documents” described in more detail the reasons why this
is a problem for segmentation. Similarly, proportional spaced fonts, which have
different spacing values for each character, also tend to have more cases of touching
characters since the text is more compact than fixed-spaced fonts.

Point size can be a problem when the size is either too small or too large.
If too small, then features may not appear as evident as with larger point sizes.
Figure 8.17 shows two popular typefaces, Courier New and Times New Roman,
at various point sizes. The smallest point size displayed (6) in either font shows
how features are less pronounced than the larger characters. Some features which
are important to segmentation and OCR systems include stroke widths, curves,
loops, and stems for Serif fonts. These features are severely reduced in the smaller
fonts and, consequently, provide less information to work with. Furthermore, feature
calculations will not be as accurate for smaller fonts such as finding the curvature
rate for some strokes.

A common practice in OCR is to binarize, normalize [13], and skeletonize a
character image to a fixed bounding box size. Downscaling from a larger size to a
smaller size may lead to a loss of information as pixels may be dropped. The bigger
problem occurs when an image is scaled up from a small point size to the normalized
size. This procedure introduces jaggy edges and blocky pixels. As seen in Fig. 8.18,
the letter “a” produces a different shape when the smaller image is scaled up than
the larger image. In fact, the normalized image derived from the smaller 6-point
image does not resemble the letter “a” anymore. The skeletonized images of the
normalized ones also show that the smaller “a” now looks more like the digit “8” or
the letter “B” than it does “a.” The larger 36-point “a” maintained the shape when
scaled up to the normalized size. Even though the edges still appear jagged, the final
skeleton appears correct.

Two more features that can lead to problems are bold and italicized fonts. Bold
fonts have thicker strokes than the regular normal font. As previously mentioned,

8 Text Segmentation for Document Recognition 277

Courier New abc abc abc abc abc
Times New Roman abc abc abc abc abc

Point Size 6 8 10 12 16

Fig. 8.17 Courier New and
Times New Roman typefaces
at different font sizes

Fig. 8.18 Example of
scaling problems due to
normalization

Original
Grayscale Binarized Normalized Skeleton

6

36

Original
Point
Size

Fig. 8.19 (a) Bold, and (b)
italic examples leading to
segmentation problems

ABa

b

RD Kh gy
AB RD Kh gy

this leads to more touching characters. Figure 8.19a shows both normal and bold
fonts for the Courier New typeface. The normal font for this Serif typeface has
no touching characters. When the same text is bolded, the serifs touch. This, as
previously discussed, poses a problem for segmentation.

Italicized characters cause challenges for those segmentation algorithms that
make use of vertical projection to perform character segmentation. In Fig. 8.19b,
the normal font produces a vertical projection with discernible breaks which helps
segmentation by easily identifying most character separation spaces. A red line is
displayed if the projection in that column contains 1 pixel or less. Only one failed
case exists in this example and it is the missed spacing between “f” and “g.”

However, the italicized vertical projection loses most of the inter-character
spacing which requires the segmentation algorithm to find other ways to separate
the characters.

One last issue deals with nonstandard typefaces. Common typefaces are easier
to segment because training is usually performed on them. However, when a less
frequent or “artistic” typeface is used, segmentation will usually have trouble with
character separation due to the fact that it has not seen (was not trained on)
this typeface before. Table 8.1 shows examples of four commonly used typefaces
(two Serif and two Sans Serif) at the top. The bottom row of the table shows

278 N. Nobile and C.Y. Suen

Table 8.1 Examples of four common typefaces and four rarely used typefaces

Times New Roman Courier New Arial Frutiger Linotype

Letter Gothic Haettenschweiler Impact Harry Potter

examples of more stylized fonts which are less legible. In fact, it was shown that
typefaces with lower human legibility have higher OCR error rates [5].

Touching Italic Characters

In the paper “A Segmentation Method for Touching Italic Characters” [6], the
authors describe a method of solving two common problems which occur together –
touching and italic characters. Touching italic characters are the seventh most
difficult case (out of eight) for the recognition of printed text [7]. The common
practices of using vertical projection or connected component and contour analysis
alone do not produce acceptable results and are not suitable for italic fonts. Vertical
projection is not useful here as was described in Fig. 8.19 of section Typefaces.
Slant correction is not used by the authors because, in general, it introduces noise
and distorts the original characters. Instead, the authors proposed a combination
of slant projection and contour analysis to segment touching italic characters. This
proposed method is independent of slant correction and keeps the font information.

The algorithm accepts an image of a printed text line as input. After cleaning
and other preprocessing, the authors perform a four-step procedure to segmentation.
The first step is to find the slant angle. Again, this is done without the need to deskew
the image. Second, the slant projection, combined with contour analysis, is used to
find potential segmentation points. A shortest-path approach is used to determine all
the potential cut paths. Based on these potential paths, dynamic programming using
recognition is employed to find the paths with the highest recognition confidence
values. These paths will be considered to be the final segmentation result. Following
are more details on each step.

Slant Angle
To determine the slant angle of the italicized text line, the image is rotated by angles
between 0ı and 30ı using steps of 1ı. For each rotated angle, a vertical histogram is
calculated. When finished, each histogram is normalized to values between 0.0 and
1.0. The variance for each histogram is computed, and the angle which contains the
highest variance is considered to be the slant angle. Figure 8.20 shows some rotated
images between this range (using 5ı steps) and their associated vertical histograms.
The red lines in the projection indicate a gap between projection peaks. This usually

8 Text Segmentation for Document Recognition 279

Fig. 8.20 Rotated line images with vertical histograms, rotation angle, and variance values

Fig. 8.21 Slant projection lines using angle obtained from Fig. 8.20

indicates a segmentation point. The variance value is computed for each histogram
as well. In our limited example, the line image with the highest variance is for the
angle at 20ı.

Segmentation Points
The next step is to find all the connected components in the line. To determine
if a connected component needs to be segmented, the aspect ratio and a classifier
confidence output are used. If the aspect ratio is above a threshold value or the
classifier confidence value is below a threshold value, the connected component
is considered to contain touching characters and therefore segmentation will be
performed. To find the segmentation points, the authors used two methods – slant
projection and contour feature points.

Slant Projection
Since the slant angle has already been found (see Fig. 8.20), the next step is to
compute the slant projection. This is similar to a vertical projection; however, the
projection line is along the slant lines. Figure 8.21 shows some of the slant lines
from our example of 20ı.

280 N. Nobile and C.Y. Suen

The points along a slant line can be computed using the following equation:

Xi D X0 � i�tan � i D 1 : : : n (8.3)

where i is the y-coordinate of a point, � is the slant angle, in our case 20ı, and n is
the height of the image. The points Xi that lie on the line starting with point (X0, 0)
can be calculated for all i from [0, n]. All slant projection values are computed for
X0 � Œ0;w�, where w D width of the image.

After the slant projection histogram is computed, it is smoothed and then the local
minima points are found. They represent potential segmentation points. Redundant
segmentation candidates can be removed if too many appear clustered together.
If the distance between two candidates is less than a threshold value, the candidate
with the smaller projection value is removed. Additionally, if a vertical line along a
segmentation point crosses the character more than twice, it is likely to be incorrect
and the candidate point can be removed.

Contour Feature Points
Some true segmentation points may be missed by the slant projection. This oversight
usually occurs when two characters are heavily touching and as a result, will have
large slant projection values at the points where the characters are touching. The true
segmentation point will be missed because those values will exceed the threshold.
To compensate for this, contour feature points are located and used to find more
candidate segmentation points. Only the outer contour features are used in this step.
To find these feature points requires the following steps:
1. Find the outer contour of each connected component.
2. A point on the upper contour is considered a candidate if, when joined with its

two neighboring pixels, forms an upward-facing angle (i.e., a “v” shape).
3. A point on the lower contour is considered a candidate if, when joined with its

two neighboring pixels, forms a downward facing angle (i.e., a “ˆ” shape).
Figure 8.22 shows the upper and lower candidate feature points. Once the

candidate points have been located, they are used to find the cut paths. The
traditional method of vertical cutting will not give good performance for italic fonts.
Therefore, a curved path is preferred. An ideal cut path is one that goes through the
least number of black pixels and follows the slant angle of the italic font. To employ
this methodology, penalty costs are used when building a path. Table 8.2 shows the
penalty costs for building a segmentation cut path.

Starting from an initial point (X0, 0), points along the imaginary line which lies
along the slant angle can be generated by points (X1, 1), (X2, 2), : : : , (Xn, n).
A normal directional move is a move from one point to a neighboring point that
follows the slant angle. A deviated move is one that drifts away from the slant
angle. The authors found that the best path can be found by only considering the
points from Xi � 3 to Xi C 3 on any given row. Therefore, each segmentation point
can have an associated cut path.

8 Text Segmentation for Document Recognition 281

Fig. 8.22 Outer contour
with candidate segmentation
points

Table 8.2 Segmentation cut
path penalty costs

Move to Direction Cost

White Normal 0
Black Normal 10
White Deviated 1
Black Deviated 14

After the connected components have been cut into two, dynamic programming
matching is applied. Each segmented component is passed to a neural network
classifier and the confidence value returned is used. Those components with high
recognition confidence values are kept; the remaining ones are rejected.

Results
This method was applied to 50 strongly touching/italicized text lines collected by
CENPARMI. This dataset consists of 311 touching italic connected components –
several of which consist of more than 2 touching characters. The total number of
characters is 1,969 from all 50 lines. All the true segmentation points were found
as well as the cut paths corresponding to them except for two. Recognition results
generated some errors due to the simplicity of the neural network used. Table 8.3
shows the recognition rates using different segmentation methods along with the
new method proposed by the authors.

Each method sent the segmented connected components to the same simple
neural network classifier in order to omit the classifier influence in the segmentation
accuracy results. The new method shows great improvement over the others for
touching italicized character segmentation.

The proposed method has both advantages and disadvantages; advantages
include the fact that no slant correction is performed. This preserves the character
images to be used in their original states without introducing noise and character
distortion, as is sometimes the case when performing slant correction.

As a disadvantage, this method assumes the text line to be entirely italicized,
which is rare in English documents. Therefore, the usefulness of the method is
limited. Similarly, all the characters should be slanted at the same angle and written
using the same typeface in order for the method to outperform other methods.
Practically, the system may be too slow for commercial purposes. For one reason,
slant angles are computed 30 times in order to find the best slant angle. This process

282 N. Nobile and C.Y. Suen

Table 8.3 Recognition rates
using various methods

Segmentation method Recognition rate (%)
Vertical projection 78.21
Contour analysis 83.24
Vertical projection

and contour analysis
87.77

Method [6] 90.66

includes rotating the image and computing a vertical projection for each of the
30 angles. Secondly, calling a neural network classifier for each connected compo-
nent also adds to the processing time, and therefore, slows down the entire system.

Segmentation of Degraded Characters

Several researchers have studied the difficult problem of segmenting characters from
degraded documents. The source of the degradation could have originated from
historical documents [34] or from recent documents that have gone through wear
and tear (i.e., coffee spills, sun damage, heat, or other environmental factors) or just
through the natural and gradual deterioration of the medium.

In the paper by Moghaddam et al. [8], a method was introduced using multi-level
classifiers, and a level set active contour scheme was used to locate the boundaries
of the characters in degraded ancient documents. This research aimed to correct two
types of problems in segmentation – restoring degraded characters and fixing broken
characters.

A degraded grayscale image of a character extracted from a document is input
into the algorithm. This degraded image may contain missing pixels and elements
from neighboring characters that may appear in the image. Additionally, the average
stroke width, w, is provided to the program as well. The aim is to reconstruct the
damaged character as close to the true shape as possible. This is done using the
level-set method.

The first step is to obtain the average stroke width, w. Since the documents are
degraded, the character images will contain noncontinuous and thinned strokes;
therefore, the w is reduced to w=2 to compensate for this. The strokes are then
converted into a structure usable by the level-set method. A Stroke Map (SM) [9]
is created for this purpose. A SM contains all possible stroke pixels in an image by
using a kernel method and the average stroke width, w.

After the SM has been computed, a Stroke Cavity Map (SCM), which is a
representation of all the probable stroke pixels in an image, is generated. This
includes all pixels in the SM with those that are between two SM pixels and less
than w. The following binary kernel provided by the authors was used to create
the SCM:

Kr1;r2 .r/ D
�
1 kr1 � r2k � w & r 2 R .r1; r2; t/

0 otherwise
(8.4)

8 Text Segmentation for Document Recognition 283

where R(r1; r2; t) is a rectangle from r1 to r2 of height t . To take advantage of
the fact that the provided image is in the center, the SCM is computed by using a
modified spatial decay transform [8]. This transform requires the average character
width and height in the entire text from which the degraded character image was
taken.

When the SCM is completed, the pixel intensities are computed by using
a normalized smoothed histogram. Finally, contours in the level set are found
by matching those that intersect the surface at the zero level, z D 0. This is
approximated as a signed distance function ˆ(r). When the level set function
ˆ(ri) >D 0, this signifies that the pixel is part of the text; otherwise, it is labeled as
a background pixel. The function is guided by a governing equation which attracts
stroke pixels and repels background pixels.

The results for character restoration reported by the authors look very promising.
Although it does not perform the segmentation on its own, it can provide a huge
assistance to algorithms which attempt to locate and segment degraded characters
in historical documents. The average stroke width and the pre-segmented character
images must be provided in order for this method to function. In addition, the
characters must be centered in the image. Testing needs to be improved – in
particular, on more samples and on automated outputs. Although the experiments
showed promising results, it was performed only on a few manually extracted
sample images.

Segmentation of Mathematical Expressions

The methods used to segment regular printed text will provide little help when
segmenting most mathematical expressions. Mathematical expressions are com-
posed of several more characters, symbols, and valid overlapping components.
The expressions include typefaces with superscript and subscript fonts which make
recognition much more difficult due to the normalization problem. Table 8.4 shows
some common mathematical formulae and some of the unique properties which
make them different from regular printed text such that regular segmentation
algorithms would not work on them.

Aside from the superscripts and subscripts, there are objects such as the
summation symbol (†/ and parentheses in Table 8.4(b) and (d) which span more
than one row of text and may have some small components below and above it.
There also exists some text in the middle of two lines such as (ancos) in Table 8.4(b).
There are numerators and denominators vertically positioned and separated by a
dividing line. In addition, new special symbols such as †, ˙, � , 1,

p
, �, and �

and Greek letters are now part of the character set that will need to be recognized and
therefore segmented. Mathematical expressions are two-dimensional as opposed to
regular text which is just one-dimensional in nature. Segmentation algorithms must
now be adapted to segment components in the vertical direction as is shown in
some of the examples of Table 8.4. Therefore, methods such as projection will not
be very useful for expression segmentation. The segmentation of overlapping and

284 N. Nobile and C.Y. Suen

Table 8.4 Common equation expressions

a2 C b2 D c2 f .x/ D a0 C
1P
nD1

�
an cos n�x

L
C bn sin n�x

L

�
x D �b˙

p

b2�4ac
2a

(a) (b) (c)

.x C a/
n D

nP
kD0

n

k

!
xkan�k ex D 1C x

1Š
C x2

2Š
C x3

3Š
C : : : ; �1 < x < 1

(d) (e)

touching characters is the most difficult part of expression segmentation. According
to the authors [10], more than half of the misclassifications are caused by touching
characters.

A four-step procedure proposed in [10] begins by identifying expressions in reg-
ular text. Each located expression is then segmented into its connected components.
Touching characters are detected and segmented. Finally, each extracted component
is passed to a classifier for recognition.

The main part, the detection of touching characters, is done by passing the
component to a classifier for an initial recognition result. The result from the
classifier is used to compare the component with specific precomputed features
of that recognized character. Some features used for comparison are the aspect
ratio (height/width) and the peripheral features. If there is a difference in these
feature values with the initial recognized touching pair, then the component will be
considered as touching and will be passed to the segmentation module. Otherwise,
it is regarded as one character and sent directly to the main classifier for recognition.

The segmentation will split a component into two characters. Again, an initial
classifier is used to assist and guide the segmentation routine. Several touching
character pairs were synthesized and trained on. The segmentation will pass the
component to an initial classifier, trained on geometric features, to determine which
touching pair it most closely matches with. That is, if the difference is larger than a
pre-calculated threshold, it is considered to be a touching character pair candidate.
Otherwise, it is believed to be a single character and passed directly to the main
classifier. To overcome font variations, the current component is matched with
previously recognized components from the same document.

Assuming the component is composed of two touching characters, segmentation
is a four-step procedure:
1. Search for the first component character
2. Create a residual image
3. Identify the second component character
4. Verification

Searching for the first character begins by choosing an image from the document
of a recognized character. This character is used as a template to see if a match is
found within one of the four quadrant areas of the touching character image. If a
match is found, then this is considered to be the first component character.

The residual image is created by subtracting a thickened version of the character
image found in step one from the touching components. A thickened version of

8 Text Segmentation for Document Recognition 285

Fig. 8.23 Touching character segmentation using template matching

the known character is used in order to remove the small differences between the
two images. This leaves the other character image as the remainder. Using this first
residual image, the same step can be applied to find the identity of this remaining
character. An image is taken from the set of single classified images from the same
document and is matched with an unknown image. If a match is found, the procedure
stops and proceeds to the verification step; otherwise, it continues with another
known image and repeats the step. A match is found if subtracting the known
character from the residual image leaves an empty image. Figure 8.23 shows the
steps used to identify the touching characters.

The final step is to verify the result. Verification is done by creating a synthetic
image of the touching characters that were identified in the first and third steps and
by using two known characters and merging them. The original touching character
image is then matched with the synthetic image by subtracting the two images. If
the subtraction returns a blank image, then the verification step will have confirmed
the segmentation result.

The verification step is useful to “undo” false-positives. If the difference between
the touching characters image with the synthesized touching image does not yield a
blank image, then the decision is rejected and a new search is performed to find the
true touching pair.

If there exists more than one known component to match with, the represen-
tative component is used. The representative component is found by a sequential
clustering method where each component is added to its closest cluster and
clusters are dynamically split when the variance exceeds a predetermined threshold.
Each component in a cluster will have the same result in both the detection and
segmentation stages. Therefore, one representative (the centroid) component is used
for comparison during both stages.

Results reported in [10] show that out of a test set of about 140,000 connected
components, 2,978 were touching characters. The initial classifier, used to determine
if a component contains touching characters, performed at 92.9 % – where 60 % of
the misrecognitions were due to touching characters. Using the clustering method,

286 N. Nobile and C.Y. Suen

Fig. 8.24 Touching pair
containing a broken character

the 140,000 components were grouped into 13,291 clusters. Of these, 909 clusters
contained touching characters.

The performance was 96 % successful in detecting touching characters.
For segmentation, about 51 % of the actual touching characters were successfully
segmented into their two characters. Although not a high value, this does reduce
the errors due to touching characters by half. Analysis showed that the three major
reasons for the segmentation failure of the 49 % touching characters were (i) either
one or both of the characters were not represented in the known isolated characters,
(ii) the subtraction step of correct matching character images produced a small but
significant remainder that was enough to declare a non-match, and (iii) touching
characters were segmented into two incorrect characters (i.e., see Fig. 8.14). Of the
three causes, the first was responsible for 40 % of the total errors.

Recognition was reported to be 95.1 %. This technique reduced the number of
misrecognitions to 70 % from the initial classifier.

One advantage of this technique is the adaptiveness to the document font style
and size. Characters used for matching come from the same document so excessive
training is not required. However, this assumes that each character in a touching pair
has a known isolated representative character. For short documents, the probability
that an isolated representative character exists is smaller.

Further investigation showed that the speed increased the overall performance by
one-tenth when not using clustering.

The limitation of the technique is bounded by the availability of known characters
to match with those in the touching pairs. When a known character is missing from
the document, this causes the technique to fail. The authors claim that the technique
can be extended to segmentation of three touching characters. While this is possible,
it adds an order of complexity to the system especially because of the large character
set being used. Additionally, documents that contain broken characters will fail.
For example, Fig.8.24 shows the touching character pair “DO” with the “O” broken.
Using the template-matching technique will not detect the “O” because subtracting
a known identified “O” from this one will leave too many leftover pixels. Therefore,
the “O” will not be classified, or worse, misclassified.

Conclusion

This chapter presented research and approaches to solving common problems
associated with printed document zoning, line, and character segmentation.
The solutions must overcome the vast diversity of document layouts, printing

8 Text Segmentation for Document Recognition 287

media, and resolution. They must also be able to handle documents written in any
language [19]. Historical documents have a set of difficulties such as degraded
media and possibly physical missing sections from wear and tear. Wrinkles and
creases in the paper will cause problems for segmentation algorithms.

Once these obstacles have been overcome and the text zones have been iden-
tified, text segmentation begins. Various techniques for performing this task were
discussed. The structural-based procedure using horizontal projection performs very
well but requires that the text lines not overlap each other and have a relatively
horizontal orientation.

Region growth techniques are an alternative structural method which group
neighboring pixels of an image into subregions. Pixels in a subregion share
a common feature. Although region growth techniques are better for handling
touching, skewed, and overlapping lines, these segmentation methods rely heavily
on a good choice of initial seedpoints. Furthermore, they are highly computationally
expensive. An advantage is that most noise will not be included in the segmentation
result.

A common statistical approach is to use probability density features. By treating
a document as a two-dimensional array of pixel intensities, algorithms are used
to extract statistical information from this array. These features can be used to
determine the most likely line and edge boundaries of text. Probability densities
are good for eliminating noise and pixels which are distant from any text, such
as pixels in the margins. They are also well suited for handling broken characters
within a line. However, obtaining these features can be a time-consuming procedure
and may not provide the best information for line segmentation.

Level set methods are used to separate foreground objects from the background
in a document. This is ideal for text line segmentation to separate text lines in front
of other elements such as a photo or ghost images. The procedure is an iterative
process beginning with an initial zero level set and is evolved according to a partial
differential equation. This has the disadvantage of having a high computational
requirement. The advantage is shown where it is observed that the boundary of a
level set grew faster inside text lines that is, where black pixel densities are large.
Slower growth was observed when the gaps were approached.

In addition, the segmentation challenges faced for character recognition was
described. It was mentioned that several factors affect segmentation such as the
typeface, font size, and bold and italicized text. Because of these and other features,
this leads to structural problems such as broken and touching characters. A lack
of baseline information (when all characters in a text line are the same height) can
also impede segmentation. Several algorithms to solve these types of problems as
well as slanted lines were pointed out. Degraded characters, which are prevalent in
historical documents or documents which have gone through a great deal of wear
and tear, need to be specially handled in order to reconstruct missing and damaged
characters. Alternative special cases are mathematical expressions. The text layout
is not in the form as a regular text block. More than one line can be contained
within a larger line. Subscripts, superscript, symbolic characters, and mathematical
symbols are introduced. In addition, the kerning (spacing between the characters) is

288 N. Nobile and C.Y. Suen

not predictable as it is with a known typeface. Because of the variation of kerning
and font sizes, the majority of misclassifications are caused by touching characters.

There has been a great amount of research on segmentation. Several solutions
to common segmentation difficulties were presented. It is unlikely any one solution
will achieve a complete result. It is common practice that more than one algorithm
is used to obtain the best segmentation possible.

Cross-References

�Analysis of the Logical Layout of Documents
�Imaging Techniques in Document Analysis Process
�Machine-Printed Character Recognition
�Page Segmentation Techniques in Document Analysis

References

1. Li Y, Zheng Y, Doermann D, Jaeger S (2008) Script-Independent text line segmentation in
freestyle handwritten documents. IEEE Trans Pattern Anal Mach Intell 30(8):1313–1329

2. Brodić D (2010) Optimization of the anisotropic Gaussian kernel for text segmentation and
parameter extraction. In: Theoretical computer science. Springer, Brisbane, pp 140–152

3. Sumengen B (2004) Variational image segmentation and curve evolution on natural images.
Ph. D. Thesis, University of California, Santa Barbara

4. Li Y, Zheng Y, Doermann D, Jaeger S (2006) A new algorithm for detecting text line
in handwritten documents. In: Tenth international workshop on frontiers in handwriting
recognition, La Baule, pp 35–40

5. Suen C, Nikfal S, Li Y, Zhang Y, Nobile N (2010) Evaluation of typeface legibility. In: ATypI,
Dublin, Sept 2010

6. Li Y, Naoi S, Cheriet M, Suen C (2004) A segmentation method for touching Italic characters.
In: International conference on pattern recognition (ICPR), Cambridge, pp 594–597, Aug 2004

7. Lu Y (1995) Machine printed character segmentation – an overview. Pattern Recognit 28:
67–80

8. Moghaddam R, Rivest-Hénault D, Cheriet M (2009) Restoration and segmentation of highly
degraded characters using a shape-independent level set approach and multi-level classifiers.
In: International conference on document analysis and recognition (ICDAR), Barcelona,
pp 828–832, July 2009

9. Moghaddam R, Cheriet M (2009) RSLDI: restoration of single-sided low-quality document
images. Pattern Recognit 42(12):3355–3364

10. Nomura A, Michishita K, Uchida S, Suzuki M (2003) Detection and segmentation of touching
characters in mathematical expressions. In: Seventh international conference on document
analysis and recognition – ICDAR2003, Edinburgh, pp 126–130

11. Ball G, Srihari S, Srinivasan H (2006) Segmentation-Based and segmentation-free approaches
to Arabic word spotting. In: Proceedings of the international workshop on frontiers in
handwriting recognition (IWFHR-10), La Baule, pp 53–58, Oct 2006

12. Liu C, Suen C (2008) A new benchmark on the recognition of handwritten Bangla and
Farsi numeral characters. In: Proceedings of eleventh international conference on frontiers in
handwriting recognition (ICFHR 2008), Montreal, pp 278–283

13. Liu C, Nakashima K, Sako H, Fujisawa H (2004) Handwritten Digit Recognition: Investigation
of Normalization and Feature Extraction Techniques. Pattern Recognition 37(2):265–279

http://dx.doi.org/10.1007/978-0-85729-859-1_6
http://dx.doi.org/10.1007/978-0-85729-859-1_4
http://dx.doi.org/10.1007/978-0-85729-859-1_44
http://dx.doi.org/10.1007/978-0-85729-859-1_5

8 Text Segmentation for Document Recognition 289

14. McLachlan G (1992) Discriminant Analysis and Statistical Pattern Recognition. Wiley
Interscience, New York

15. Shi M, Fujisawa Y, Wakabayashi T, Kimura F (2002) Handwritten Numeral Recognition Using
Gradient and Curvature of Gray Scale Image. Pattern Recognition 35(10):2051–2059

16. Li Y, Zheng Y, Doermann D (2006) Detecting Text Lines in Handwritten Documents. In:
International Conference on Pattern Recognition, Hong Kong, vol 2, pp 1030–1033

17. Likforman-Sulem L, Vinciarelli A (2008) HMM-based Offline Recognition of Handwritten
Words Crossed Out with Different Kinds of Strokes. In: Eleventh International Conference on
Frontiers in Handwriting Recognition, Montreal, pp 70–75

18. Zheng D, Sun J, Naoi S, Hotta Y, Minagawa A, Suwa M, Fujimoto K (2008) Handwritten
Email address recognition with syntax and lexicons. In: Eleventh international conference on
frontiers in handwriting recognition, Montreal, pp 119–124

19. Kessentini Y, Paquet T, Benhamadou A (2008) A multi-stream HMM-based approach for
off-line multi-script handwritten word recognition. In: Eleventh international conference on
frontiers in handwriting recognition, Montreal, pp 147–152

20. Fei Y, Liu C-L (2008) Handwritten text line segmentation by clustering with distance
metric learning. In: Eleventh international conference on frontiers in handwriting recognition,
Montreal, pp 229–234

21. Roy P, Pal U, LLados J (2008) Morphology based handwritten line segmentation using
foreground and background information. In: Eleventh international conference on frontiers in
handwriting recognition, Montreal, pp 241–246

22. Du X, Pan W, Bui T (2008) Text line segmentation in handwritten documents using Mumford-
Shah model. In: Eleventh international conference on frontiers in handwriting recognition,
Montreal, pp 253–258

23. Liu C-L, Suen C (2008) A new benchmark on the recognition of handwritten Bangla and
Farsi numeral characters. In: Eleventh international conference on frontiers in handwriting
recognition, Montreal, pp 278–283

24. Mori S, Nishida H, Yamada H (1999) Optical character recognition. Wiley-Interscience,
New York

25. Chaudhuri B (2007) Digital document processing: major directions and recent advances.
Springer, London

26. Bunke H, Wang P (1997) Handbook of character recognition and document image analysis.
World Scientific, Singapore

27. Garain U, Paquet T, Heutte L (2006) On foreground – background separation in low quality
document images. Int J Doc Anal Recognit 8(1):47–63

28. Morita M, Sabourin R, Bortolozzi F, Suen C (2004) Segmentation and recognition of
handwritten dates: an HMM-MLP hybrid approach. Int J Doc Anal Recognit 6(4):248–262

29. Hase H, Yoneda M, Tokai S, Kato J, Suen C (2004) Color segmentation for text extraction. Int
J Doc Anal Recognit 6(4):271–284

30. Sarhan A (2009) Arabic character recognition using a combination of k-means and k-NN
algorithms. Int J Comput Process Lang 22(4):305–320

31. Karthik S, Hemanth V, Balaji V, Soman K (2012) Level set methodology for Tamil document
image binarization and segmentation. Int J Comput Appl 39(9):7–12

32. Ouwayed N, Belaı̈d A (2008) Multi-Oriented text line extraction from handwritten Arabic
documents. In: Eighth IAPR international workshop on document analysis systems, Nara,
pp 339–346

33. Pan P, Zhu Y, Sun J, Naoi S (2011) Recognizing characters with severe perspective distortion
using hash tables and perspective invariants. In: International conference on document analysis
and recognition, Beijing, pp 548–552

34. Silva G, Lins R (2011) An automatic method for enhancing character recognition in degraded
historical documents. In: International conference on document analysis and recognition,
Beijing, pp 553–557

35. Saabni R, El-Sana J (2011) Language-Independent text lines extraction using seam carving. In:
International conference on document analysis and recognition, Beijing, pp 563–568

290 N. Nobile and C.Y. Suen

36. Kang L, Doermann D (2011) Template based segmentation of touching components in
handwritten text lines. In: International conference on document analysis and recognition,
Beijing, pp 569–573

37. Bukhari S, Shafait F, Breuel T (2011) Text-Line extraction using a convolution of isotropic
Gaussian filter with a set of line filters. In: International conference on document analysis and
recognition, Beijing, pp 579–583

38. Marinai S, Fujisawa H (eds) (2010) Machine learning in document analysis and recognition,
1st edn. Studies in computational intelligence, vol 90. Springer, Berlin

39. Cheriet M, Kharma N, Liu C-L, Suen C (2007) Character Recognition systems: a guide for
students and practitioners. Wiley, Hoboken

Further Reading

Bunke H, Wang P (1997) Handbook of character recognition and document image analysis. World
Scientific, Singapore

Chaudhuri B (2007) Digital document processing: major directions and recent advances. Springer,
London

Cheriet M, Kharma N, Liu C-L, Suen C (2007) Character recognition systems: a guide for students
and practitioners. Wiley, Hoboken

Li H, Doermann D, Zheng Y (2008) Handwritten document image processing: identification,
matching, and indexing of handwriting in noisy document images. VDM, Saarbrücken

Marinai S, Fujisawa H (eds) (2010) Machine learning in document analysis and recognition, 1st
edn. Studies in computational intelligence, vol 90. Springer, Berlin

	8 Text Segmentation for Document Recognition
	Introduction
	Zone and Line Segmentation
	Challenges
	Noisy Documents
	Historical Documents
	Line Segmentation
	Horizontal Projection
	Region Growth Techniques
	Probability Density
	Level Set Method

	Segmentation for Optical Character Recognition (OCR)
	Challenges
	Touching Characters
	Broken Characters
	Lack of Baseline Information
	Typefaces
	Touching Italic Characters
	Slant Angle
	Segmentation Points
	Slant Projection
	Contour Feature Points
	Results

	Segmentation of Degraded Characters
	Segmentation of Mathematical Expressions

	Conclusion
	Cross-References
	References
	Further Reading

