
20ProcessingMathematical Notation

Dorothea Blostein and Richard Zanibbi

Contents

Introduction. 680
Systems and Applications. 681
Inputs and Outputs of Math Recognition Systems. 682
Four Component Problems in Recognition of Math Notation. 683

Expression Detection. 685
Detecting Expressions in Document Images. 686
Detecting Expressions in Vector Graphics. 687
Detecting Expressions in Pen-Based Input. 688

Symbol Recognition or Symbol Extraction. 688
Layout Analysis. 690

Recursive Decomposition. 692
Grammar-Based Syntactic Pattern Recognition Methods. 693
Syntactic Constraints Applied During Post-Processing. 694
Matrix Recognition and Tabular Structures. 694

Interpretation of Mathematical Content. 695
Validation and Datasets. 696
Conclusion. 697
Cross-References. 698
References. 699

Further Reading. 702

D. Blostein (�)
School of Computing, Queen’s University, Kingston, Canada
e-mail: blostein@cs.queensu.ca

R. Zanibbi
Department of Computer Science, Rochester Institute of Technology, Rochester, NY, USA
e-mail: rlaz@cs.rit.edu

D. Doermann, K. Tombre (eds.), Handbook of Document Image
Processing and Recognition, DOI 10.1007/978-0-85729-859-1 21,
© Springer-Verlag London 2014

679

mailto:blostein@cs.queensu.ca
mailto:rlaz@cs.rit.edu

680 D. Blostein and R. Zanibbi

Abstract
Automated recognition of mathematical notation is required for convenient
document search and editing. The recognition problem varies depending on
whether the input is a document image, vector graphics such as PDF, or hand-
written tablet input. This chapter describes the state of the art in recognition of
math notation, discussing the four component problems of expression detection,
symbol recognition, layout analysis, and mathematical content interpretation.

Keywords
Graphics recognition • Math detection • Math recognition • Mathematical
information retrieval • Syntactic pattern recognition

Introduction

Mathematical notation offers challenging pattern recognition problems, including
segmentation ambiguities, symbol recognition challenges, and ambiguity of mean-
ing [5, 58]. Similar problems arise in other branches of document image analysis
(�Chap. 3 (The Evolution of Document Image Analysis)). The following character-
istics of math notation are favorable for automated recognition. In comparison with
document notations such as tables (�Chap. 19 (Recognition of Tables and Forms))
or music notation (�Chap. 22 (Analysis and Recognition of Music Scores)), the
semantics of math notation are compact and fairly well standardized. A typical
math expression contains a modest number of well-separated symbols, making
recognition algorithms computationally tractable. Most symbols in clean math
notation are surrounded by white space, making symbol segmentation easier than in
domains such as maps or engineering drawings. Also, the visual syntax (the symbol
layout) of mathematical notation has a recursive structure, making this notation
particularly well suited for syntactic pattern recognition techniques using grammars,
tree rewriting, graph rewriting, and other recursive language processing methods.

Offsetting these tractable characteristics, mathematical notation also offers spe-
cial challenges for automated recognition. As illustrated in Fig. 20.1, mathematical
notation presents many types of ambiguities. Symbol recognition is challenging
due to the large character set, which includes Roman and Greek letters, digits, and
numerous operator symbols. Commas, dots, and other small symbols are common
and can be difficult to distinguish from noise. Mathematical symbol recognition is
further complicated by the variety of fonts, faces, and font sizes and the frequent
occurrence of bold and italicized symbols.

Mathematical notation offers little redundancy, meaning that in many instances
it is impossible to guess the identity of a symbol based on context. For example,
consider a small mathematical expression consisting of an x followed by a noisy
subscript: this subscript could be a Latin or Greek letter, a digit, or some other
symbol chosen by the author. Sometimes context does provide helpful redundancy,
as in expressions containing a clear subscripting pattern such as repeated subscripts

http://dx.doi.org/10.1007/978-0-85729-859-1_43
http://dx.doi.org/10.1007/978-0-85729-859-1_20
http://dx.doi.org/10.1007/978-0-85729-859-1_24

20 ProcessingMathematical Notation 681

s⋅tpa
a
b
c i = 1

100
i2 + i + y − x

a b c d

Fig. 20.1 Ambiguities in mathematical expressions. (a) Which division is performed first? (b) Is
the a superscripted? (c) What is the scope of the summation? (d) What do s, t, and � represent?

or ascending subscript values. Some recognition systems restrict the mathematical
expression language in order to make better use of context. For example, the
notation for multiplying a variable by a constant can be restricted by requiring
the constant to appear first [36]. The strongest systems in the recent CROHME
competition parse handwritten expressions based on the provided context-free
expression grammars [37]. An expression grammar defines a set of legal expressions
over a fixed symbol set. This reduces the language of expressions that may be
recognized, but the constrained expression language makes it easier to construct
effective algorithms for symbol segmentation, symbol classification, and layout
recognition.

Mathematical notation is a semiformal visual language, with spatial relation-
ships representing interactions between primitive mathematical objects. Formally
defining math notation is difficult because the many domains of discourse give rise
to dialects, and authors use many variations in notation. The 2010 Mathematical
Subject Classification is an extensive categorization of mathematical domains used
in math research (www.ams.org/mathscinet/msc/msc2010.html). A recent survey
provides further references for the history and typesetting conventions of mathe-
matical notation [58].

Mathematical notation uses six spatial relationships: horizontal adjacency,
above, below, superscript, subscript, and contains. All six of these spatial rela-
tionships are illustrated by the expression below in Fig. 20.3a. Some mathematical
symbols are overloaded with several possible meanings. For example, as shown in
Fig.20.3a, possible meanings for a horizontal line include division, subtraction, part
of an D symbol, or mean value of a list (Nx). Operators are represented explicitly by
symbols or implicitly by spatial relationships. For example, in Fig. 20.3a, implied
multiplication is used between the 1=2 and square root.

Systems and Applications

Research into computer recognition of mathematical notation dates back to the
late 1960s [1, 8]. Publicly available math recognition systems are summarized in
Table 20.1.

Computer recognition of math notation is useful in many contexts. One such
context is document editing: math recognition software can be applied to user-
specified images or to user input from pen, keyboard, and mouse. Another context is
computer algebra systems, which provide various facilities for entering and editing
math notation. Recognition of math notation is also useful in tutoring systems [58].

www.ams.org/mathscinet/msc/msc2010.html

682 D. Blostein and R. Zanibbi

Table 20.1 Systems for recognition of math notation

Handwritten input Research systems
Natural Log [34] www.ai.mit.edu/projects/natural-log
FFES/DRACULAE [47, 59] www.cs.rit.edu/�rlaz/ffes
MathPad [25] mathpad.com
MathPaper [29] pen.cs.brown.edu/research.html
JMathNotes [52]
PenMath [46] www.orcca.on.ca/penmath
Mathbrush [24] www.scg.uwaterloo.ca/mathbrush
Commercial systems
Web Equation (Vision Objects)
Pen-based math entry in the Windows operating system [39]
MathJournal (XThink) www.xthink.com

Mouse and keyboard input Xpress [41]
Document images Infty [12, 49] www.inftyproject.org/en/index.html

Supports document image and pen-based input and speech and
Braille output

Mathematical information retrieval is an important application of math recogni-
tion. In mathematical information retrieval, a document collection can be searched
using queries containing math notation; this is called query by expression. To
support this, math recognition algorithms need to be applied not only to the query
but to all documents in the collection. The documents must be annotated with the
location of their math expressions as well as the interpretation (the recognition
result) for these math expressions. Important open problems in mathematical infor-
mation retrieval include creating effective indexing and retrieval algorithms for math
notation, along with making effective use of math notation recognition results in the
presence of recognition errors [58]. An ambitious project for large-scale annotation
of documents in digital mathematics libraries is described in [35]. Mathematical
information retrieval is closely tied to other types of document retrieval, including
page classification and similarity (�Chap. 7 (Page Similarity and Classification)),
information retrieval from noisy text, navigation into graphic document masses
(section “Logo Detection and Removal in Images and Videos” of �Chap. 18 (Logo
and Trademark Recognition)), and retrieval based on document images and word
spotting (�Chap. 24 (Image Based Retrieval and Keyword Spotting in Documents)).

Inputs and Outputs of Math Recognition Systems

The input to a math recognition system can take three forms: vector graphics
such as PDF, strokes such as pen strokes on a data tablet, or a document image.
Figure 20.2 illustrates the use of touch, mouse, keyboard, and image input in
the min system, a recent web-based search interface. The min interface was
influenced by a number of earlier systems, including the pen-based equation editors
Natural Log [34] and FFES [47, 59], the Infty math OCR system [12, 49], and
the Xpress equation editor [41]. Pen-based interaction is also used in interfaces

www.ai.mit.edu/projects/natural-log
pen.cs.brown.edu/research.html
www.orcca.on.ca/penmath
www.scg.uwaterloo.ca/mathbrush
www.xthink.com
www.inftyproject.org/en/index.html
http://dx.doi.org/10.1007/978-0-85729-859-1_7
http://dx.doi.org/10.1007/978-0-85729-859-1_16
http://dx.doi.org/10.1007/978-0-85729-859-1_27
http://www.cs.rit.edu/�rlaz/ffes
http://mathpad.com

20 ProcessingMathematical Notation 683

Fig. 20.2 Illustration of inputs and outputs of a math recognition system. This is min, a web
interface for math search that runs on iPads [44]. Symbols may be placed on the canvas using
keyboard and mouse. Math recognition can be applied to an uploaded image or to a handwritten
input. The recognized symbols appear in white, overlayed on top of connected components from
the input. In this screen shot, ten symbols have been correctly recognized from an uploaded image:
Also, two handwritten symbols have been correctly recognized: ™ and y. Once expression editing
is complete, a click on the “+” button at top right inserts the recognized expression into the text
box as LaTeX. Keywords may be added to the text box, in addition to LaTeX; the text box contents
can then submitted to math-aware search engines such as NIST DLMF and Wolfram Alpha

to computer algebra systems such as Mathematica and Maple. Examples include
MathBrush [24], E-chalk [51], MathPad2 (also supporting diagram interaction) [25],
and MathPaper [29]. Several of these pen-based computer algebra systems provide
support for matrices.

The two classes of output produced by math recognition systems are layout
trees and operator trees. Layout trees provide sufficient information for typeset-
ting an expression or for searching based on the appearance of an expression
(Fig. 20.3b). Operator trees contain the information required to evaluate an expres-
sion (Fig. 20.3c). Operator trees may be used to search based on the mathematical
semantics of the expression. To evaluate an expression – whether by hand or by a
computer algebra system – the operator tree must be supplemented with definitions
and values for the variables and operations in the expression.

Four Component Problems in Recognition of Math Notation

Four component problems arise in the recognition of math notation: expression de-
tection, symbol recognition or extraction, layout analysis, and mathematical content
interpretation. Figure 20.4 illustrates the input formats and component problems.

The first component problem, expression detection, is discussed in section
“Expression Detection.” Methods for detecting offset expressions are fairly robust,
but the detection of expressions embedded in text lines remains a challenge.

The second component problem, symbol recognition or symbol extraction, is
discussed in section “Symbol Recognition or Symbol Extraction.” Symbol recog-
nition is challenging when the input consists of a document image or pen strokes.
Hundreds of alphanumeric and mathematical symbols are used, many so similar
in appearance that context is necessary for disambiguation. For example, context is

684 D. Blostein and R. Zanibbi

a

b

c

Fig. 20.3 Illustration of the classes of output provided by math recognition systems. (a) An
image of math notation. (b) The layout tree describes the spatial structure of the expression as
an organization of symbols into baselines. (The baselines are similar to writing lines used in
text; see �Chaps. 10 (Machine-Printed Character Recognition) and �26 (Online Handwriting
Recognition).) Information equivalent to a layout tree is provided by output formats such as LaTeX
and Presentation MathML. (c) The operator tree represents mathematical operations and their
operands. For example, the implied multiplication between the 1=2 and square root in image (a)
appears as the root of operator tree (c). The operator tree provides information about the meaning
of symbols – for example, that n represents the length of vector x. Information equivalent to an
operator tree is provided by output formats such as Content MathML and OpenMath

necessary to distinguish O, o, and 0 [36]. Symbol extraction is easier in vector-based
representations such as PDF because these representations directly encode symbol
locations and labels. Even vector-based representations require some processing to
form complete symbols. For example, square root symbols are often typeset with
the upper horizontal bar represented separately from the radical sign [3].

http://dx.doi.org/10.1007/978-0-85729-859-1_44
http://dx.doi.org/10.1007/978-0-85729-859-1_29

20 ProcessingMathematical Notation 685

Document:
Vector

Graphics

Expression
Detection

Expression:
Vector

Graphics
Symbol

Extraction

Symbol
Recognition

Symbol List
(Id, Location)

Layout
Analysis

Symbol Layout
Tree

Syntax
Analysis

Operator
TreeExpression:

Strokes

Expression:
Image

Document:
Strokes

Document:
Image

Fig. 20.4 Four component problems in recognition of math notation: expression detection,
symbol recognition or symbol extraction, layout analysis, and interpretation of mathematical
content. Shown at left are the possible input formats, including vector-based document encodings
such as PDF files, pen/finger strokes, and document images. Many systems perform recognition
in the order shown, but not all. For example, some systems combine Layout Analysis and
Mathematical Content Interpretation, producing an operator tree directly using the expected
locations of operator/relation arguments [6, 8]

The third component problem, layout analysis, is discussed in section “Layout
Analysis.” In layout analysis, spatial relationships between symbols are used to
construct a layout tree (Fig. 20.3b). Correctly identifying the spatial relationships
between symbols is often difficult, particularly in handwritten math notation.

The fourth component problem, interpretation of mathematical content, is
discussed in section “Interpretation of Mathematical Content.” Given the mathemat-
ical domain of discourse, mathematical content interpretation uses symbol layout
information and information about the meaning of symbols to create an operator tree
representing the expression semantics. Due to the recursive and nested structure of
mathematical notation, context-free grammars are often used to define legal symbol
layouts (equivalently, layout trees) and operations (i.e., operator trees). For example,
to construct the operator tree in Fig. 20.3c, it is necessary to either know or infer
that n denotes the length of vector x. Determining the meaning of symbols and
structures is difficult, particularly if limited context is available. For example, the
symbol œ can be used to represent a variable, a constant, or a binding function as in
the Lambda Calculus. The meaning of œ can be deduced by analyzing the context in
which the math notation occurs. In some situations ambiguities remain even if the
mathematical context is known. For example, even if the mathematical context is
known to be Bayesian probability, the symbol P may represent either a probability
mass function or a probability density function.

Expression Detection

The input to a math recognition system can consist of vector graphics such as
PDF, pen strokes, or a document image. Different challenges arise in detecting
expressions in each of these input types, as discussed in sections “Detecting
Expressions in Document Images,” “Detecting Expressions in Vector Graphics”
and “Detecting Expressions in Pen-Based Input.” An overview of methods for
expression detection is provided in Table 20.2.

686 D. Blostein and R. Zanibbi

Table 20.2 Methods for detecting math expressions

Document images:
offset expressions

Clustering based on visual and layout features of connected
components; operator range and dominance [21]
Geometric features of nearest-neighbor graphs for connected
components [11]

Document images:
inline expressions

Fuzzy connected component classification, region growing around
operators [21]
Locate text lines, use symbol n-grams to identify text lines
containing math [14]

Vector graphics Projection profiles, rule-based classification of lines as text and math,
followed by baseline extraction to obtain a symbol layout tree [3]
Visual and layout features, identification of offset and embedded
expressions using operator range and dominance and clustering of
mathematical symbols [30]

Pen-based input Gestures in combination with clustering or region growing [25, 52]
Gestures for delimiting matrix elements [29, 53]

Detecting Expressions in Document Images

Detecting expressions in document images is one part of the page segmentation
problem, where page regions that contain text, figures, tables, mathematics, images,
and other graphical objects/notations are identified (see �Chap. 5 (Page Segmen-
tation Techniques in Document Analysis)). Expressions in document images are
commonly found using properties of connected components. Offset expressions are
vertically separated from text (e.g., when defining an equation or function formally
in a paper), whereas embedded expressions occur in the middle of lines of text.
Offset expressions can be distinguished from text lines using attributes such as
height, separation, character sizes, and symbol layout. Embedded expressions are
difficult to detect reliably, particularly for expressions containing few symbols.
Some methods of expression detection make use of OCR, whereas others locate
expressions using only geometric features.

Kacem et al. detect offset expressions in images based on simple visual and
layout features of adjacent connected components [21]. Embedded expressions are
found by coarsely classifying connected components. Regions are grown around
components that are identified as operators. The region growing is based on
the expected locations for operands, using information about operator range and
operator dominance. An operator dominates the operators belonging to its operands.
During expression evaluation, the dominated operators must be applied before the
dominant operator. For example, in the expression 1 * (2 + 3), the range of the
multiplication operator is to the left and right of the *, with one operand on each
side. The * operator dominates the + operator: during evaluation, the addition must
be applied before the multiplication. In this example, parentheses make the range
of * explicit.

http://dx.doi.org/10.1007/978-0-85729-859-1_5

20 ProcessingMathematical Notation 687

If an image contains touching characters, then a single connected component
contains more than one symbol. This can introduce errors into analysis based
on connected components. Template matching can be used to address the prob-
lem of touching characters – see �Chap. 8 (Text Segmentation for Document
Recognition).

An alternative approach for detecting embedded expressions first locates text
lines and then computes symbol n-grams [14]. Training data provides information
about the frequencies of symbol sequences for two classes of text lines: lines that
are pure text versus lines that contain embedded expressions. Reported recall rates
are as high as 95 % for embedded expressions and 97 % for offset expressions.

Offset expressions can be detected without symbol classification. Drake and
Baird distinguish text lines from offset expressions using properties of the neighbor
graph for connected components [11]. The reported accuracy for this method is high
(over 99 %), but the method has not been applied to embedded expressions.

Detecting Expressions in Vector Graphics

The processing needed to extract content from born-digital documents such as
PDF files differs from the processing needed for document images (see �Chap. 23
(Analysis of Documents Born Digital)). Unfortunately, vector graphics-based file
formats such as PDF do not contain explicit demarcation of math regions. Devel-
oping reliable methods for finding math regions in PDF is an important direction
for future work, particularly to support mathematical information retrieval. Work
has begun on methods for extracting symbols and then automatically detecting the
location of expressions in a PDF document.

One approach for detecting offset PDF expressions applies a vertical and a
horizontal projection profile cut to a rendered image of the PDF page; the result
is used to identify columns and then candidate text lines for offset expressions in
a document page [3]. Symbols in the PDF file are joined using lexical rules, font
face and size, vertical position, and horizontal separation. Lines are merged to form
paragraphs and math regions, with classification of text vs. math performed using
rules on layout and lexical structure of symbols on a line. Layout trees for detected
offset expressions are created using a parser that performs baseline extraction (see
section “Layout Analysis”).

Another approach identifies embedded as well as offset expressions [30]. First,
symbols are constructed from the PDF symbol primitives. Then “lines” that contain
text or math are detected using a branch-and-bound algorithm, making use of
baseline information provided within the PDF file. Offset expressions are identified
using rules as well as a Support Vector Machine with features based on geometry,
symbol, and font properties. Additional features used to classify lines as math versus
text include the presence of specific symbols such as operator symbols, proximity to
math symbols, and operator range and dominance. Symbol identities and operator
dominance are used to identify expressions embedded in text lines, similar to the
clustering strategy employed in [21].

http://dx.doi.org/10.1007/978-0-85729-859-1_8
http://dx.doi.org/10.1007/978-0-85729-859-1_26

688 D. Blostein and R. Zanibbi

In summary, expression detection in PDF files is nontrivial, even though symbol
identities may be obtained almost directly from a PDF file. As for document images,
detecting embedded expressions is more difficult than detecting offset expressions.

Detecting Expressions in Pen-Based Input

Pen-based math entry systems are a form of sketching interface (see �Chap. 28
(Sketching Interfaces)). In pen-based applications, expressions are often segmented
using gestures [25, 52]. For example, a gesture is used in the E-chalk system to
indicate the end of an expression and request its evaluation. Typically, a gesture
gives a partial or approximate indication of the extent of an expression. Additional
clustering or region growing methods can be applied, based on the visual features,
identity, and distances between recognized symbols. Matrix elements can be
detected using similar methods (see section “Syntactic Constraints Applied During
Post-Processing”).

Symbol Recognition or Symbol Extraction

Recognizing symbols in math notation is a difficult problem, due to the great
variation in symbol size and the large number of classes [33], as well as problems
caused by touching and over-segmented characters [34, 47]. Because of these
factors, standard OCR methods such as described in �Chap. 10 (Machine-Printed
Character Recognition) do not perform well when applied to math notation. In the
early 1990s, it was observed that commercial optical character recognition systems
with recognition rates of 99 % or higher fell to 10 % or less when tried on perfectly
formed characters in mathematical equations [4]. Heuristics that are effective for
text lines and tables fail with math notation because of variations in font size,
multiple baselines, special characters, and differing n-gram frequencies. Selected
methods for recognizing math symbols are summarized in Table 20.3.

For typeset symbols, recognition rates as high as 97.7 % (for over 600 classes)
have been achieved using Support Vector Machines to reduce common class
confusions [33]. A general discussion of techniques for recognizing non-textual
symbols is provided in �Chap. 16 (An Overview of Symbol Recognition).

Accuracies for online recognition of handwritten mathematical symbols have
been reported at rates of over 95 %. (See �Chaps. 26 (Online Handwriting Recog-
nition) and �28 (Sketching Interfaces) for more information on online handwriting
recognition and sketch-based interfaces). Some methods based on Hidden Markov
Models (HMMs) extend early work by Winkler [56]. As a general trend, HMMs
are being expanded to include more aspects of the math recognition problem.
Initially, HMMs were used to perform segmentation and recognition for a time
series of pen strokes. Recent examples of this approach include using features based
on Freeman Chain Code [15] and using stroke features based on local curvature
and pen position [20]. In more recent work, increasing amounts of layout and

http://dx.doi.org/10.1007/978-0-85729-859-1_28
http://dx.doi.org/10.1007/978-0-85729-859-1_44
http://dx.doi.org/10.1007/978-0-85729-859-1_17
http://dx.doi.org/10.1007/978-0-85729-859-1_29
http://dx.doi.org/10.1007/978-0-85729-859-1_28

20 ProcessingMathematical Notation 689

Table 20.3 Methods for symbol recognition or symbol extraction

Handwritten input Hidden Markov Models
Isolated classification [15, 20]
Simultaneous segmentation [56]

PCA of preprocessed stroke data with quadratic classifier [34]
Nearest neighbor

Classification of strokes represented by polynomial basis functions [17]
Greedy approximate Dynamic Time Warping for elastic matching [32]
Using Freeman Chain Coding of strokes [15]

Minimum spanning tree constraining legal stroke segmentations [34]
AdaBoost to bootstrap writer-independent classification to writer
dependent [26]
Using symbol layout features

Symbol segmentation incorporating layout [54]
Dynamic programming for segmentation and classification [45]

Typeset expressions Using SVMs to reduce frequency of common confusions [33]
Vector graphics Combining PDF symbol information and connected components [3]

mathematical content information are being incorporated into HMM training and
recognition [45]. An open problem is to extend current HMM methods to handle
late additions to symbols. An example of a late addition is when a user enters a large
expression but delays drawing the dot on top of an “i” until the end of expression
entry. A related technique for recognizing handwritten symbols uses Dynamic Time
Warping (DTW) to align features along symbol contours [32].

Another group of symbol recognition methods approximate handwritten strokes
using linear combinations of basis vectors or parametric curves. Techniques include
Principal Component Analysis (PCA) [34] and polynomial basis functions [17].
These methods perform dimensionality reduction on the raw stroke data. For
example, Matsakis uses just 15 principal components to represent handwritten
symbols which may be comprised of multiple strokes [34]. The basis vectors may
be used to regenerate the original data up to a chosen level of fidelity; such features
have intuitive appeal because the features can be viewed as strokes in the original
input space.

Voting-based methods for classifier combination have been successfully applied
to symbol recognition. Golubitsky and Watt use runoff elections in order to combine
1-against-1 SVM classifiers for a set of 280 symbols, with 280 * 279/2 = 39,060
classifiers in total [18]. Majority voting is used in the first runoff election, followed
by a tie-breaking runoff election that considers only votes for the top N classes.
LaViola and Zelenik apply AdaBoost to an all-pairs classifier ensemble, with a
binary classifier for every pair of classes [26]. Each base classifier uses only a single
feature, where features are based on strokes and on the output of the Microsoft
handwriting recognizer. This work aims to adapt a writer-independent classifier (the
Microsoft classifier) to the handwriting of specific individuals through stroke-based
features.

690 D. Blostein and R. Zanibbi

Various techniques use contextual information to constrain symbol recognition.
A dynamic programming framework optimizes symbol segmentation and recogni-
tion in online handwritten input by searching all possible partitions of the stroke
sequence to find the partition that optimizes a criterion function based on bigrams
and probabilities of spatial relationships [45]. Symbol recognition results can also
be corrected in post-processing using techniques such as math-specific n-grams [55]
and error-correcting parsing [6].

Symbol recognition is easier in born-digital document representations, such as
in PDF (see �Chap. 23 (Analysis of Documents Born Digital)), because these
provide bounding boxes and symbol labels, along with an indication of the font to
use in rendering each symbol. However, identifying exact symbol location requires
examination of character font properties, because the boxes used to identify the
placement of symbols in the PDF are not necessarily filled by the symbol. One
solution is to combine PDF bounding box information with analysis of connected
components in the rendered image [3]. Another option is to capture character font
properties as characters are produced by a rendering library (e.g., using OpenFont).
Symbol recognition in PDF must also allow for symbols that are represented
by multiple primitives. For example, fraction lines are sometimes represented as
multiple dashes and square root symbols as an upper horizontal bar and a separate
symbol for the radical (the “check mark” at the left end of a square root symbol).

Layout Analysis

Analyzing the layout of a mathematical expression is difficult, particularly in
handwritten notation. A number of factors contribute to this. Even when symbol
identities are known, their spatial relationship may be highly ambiguous in some
cases (see Fig. 20.1b). Sometimes operator symbols do not completely cover the
extent of their arguments, such as when the numerator or denominator extends past
the width of a fraction line. Another complication is interaction between the possible
interpretations of symbol identity and symbol placement: because symbol identity
constrains legal symbol adjacencies, incorrect symbol classification may lead to
identifying invalid spatial relationships. For example, horizontal lines normally
cannot have superscripts or subscripts, so misclassifying a symbol as a horizontal
line precludes identifying the superscripts or subscripts of the misclassified symbol.
Alternative segmentations of the input easily lead to combinatorial explosions in the
number of possible symbol and layout interpretations.

Interactions between symbol location, symbol identity, and symbol relationships
are endemic to graphics recognition and, indeed, to structural pattern recogni-
tion as a whole. These interactions reflect the well-understood interdependency
between symbol segmentation and classification. They also reflect the less often
discussed dependency between (a) determining location and identity of detected
objects and (b) parsing relationships between objects. Consider text as an example.
Recognition of symbol relationships is a necessary step for recognizing words and
their sequence. OCR and handwriting recognition systems commonly detect the

http://dx.doi.org/10.1007/978-0-85729-859-1_26

20 ProcessingMathematical Notation 691

Table 20.4 Layout analysis

Recursive
decomposition

Projection profile cutting [15, 38]

Baseline extraction [3, 59]
w. MST constraining partitioning of non-baseline symbols [34, 52]

Operator-driven decomposition: via operator dominance [6, 8, 28]
Syntactic methods
(grammars and parsing)

Stochastic context-free grammar for symbols and layout [9, 36, 57]

Fuzzy grammars [16]

Incremental A* parse: measure consistency of symbol size, style, and
repetition [43]

Graph grammars and graph rewriting [19, 27]
Syntactic constraints
applied during
post-processing

Error-correcting parsing to correct symbol segmentation and
recognition [6]

LaTeX grammar to constrain handwritten symbols [15]

Local grammatical rules to correct under-segmentation of vertical
operators [54]

Penalty graph representing symbols and spatial relations; find
min-cost layout tree [12]

Matrix recognition Virtual link networks [22]

Projections of symbol bounding boxes [52]

Region growing [28, 53]

Analyzing the operator tree to correct errors in recognizing matrix
structure [23]

adjacency of characters within text lines and use whitespace to segment words. In
text, as in math, additional structural relationships must be analyzed to determine
the reading order. A linguistic analysis of text – such as a parse tree – provides
nonlinear structural relationships: the relationship between subject and object in a
sentence is analogous to a superscript relationship in math notation. See �Chaps. 15
(Graphics Recognition Techniques), �17 (Analysis and Interpretation of Graphical
Documents), �19 (Recognition of Tables and Forms), and �22 (Analysis and
Recognition of Music Scores) for related discussions in other domains of graphics
recognition.

Table 20.4 summarizes existing techniques for analyzing symbol layout in math
expressions. Each of these methods has strengths and weaknesses, and improving
the methods is an active area of research. Techniques for layout analysis include
recursive decomposition of the input into subregions as well as syntactic methods
that use grammars and parsers to produce a layout tree from a set of symbols or pen
strokes. Syntactic constraints are often applied during post-processing, to correct
the results of symbol recognition and layout analysis.

Generally, simple features are used to identify layout between symbols or sub-
expressions. Examples of features include the relative placement of bounding boxes
and properties of projection histograms. A common technique is to assign symbols
to layout classes and define the properties of each layout class. Membership in
a layout class restricts the set of allowable regions that may be associated with

http://dx.doi.org/10.1007/978-0-85729-859-1_18
http://dx.doi.org/10.1007/978-0-85729-859-1_19
http://dx.doi.org/10.1007/978-0-85729-859-1_20
http://dx.doi.org/10.1007/978-0-85729-859-1_24

692 D. Blostein and R. Zanibbi

a symbol. For example, x might belong to a layout class that allows adjacent,
superscript, and subscript regions, but does not allow above, below, or contains
regions. Commonly region locations are defined using simple thresholds and the
membership of symbols in these regions is tested using a single point, such as the
symbol centroid. The vertical position of the centroid within the symbol’s bounding
box is adjusted according to the layout class of the symbol [59].

It is difficult to devise one layout analysis method that performs well for all
inputs. As an alternative, an ensemble analysis could be created by combining the
outputs of a set of layout analyzers. Classifier combination is a well-studied area,
one that offers ideas and methods that might be adapted to a combination of layout
analyzers.

Recursive Decomposition

The simplest methods for layout analysis recursively decompose the input into sub-
regions. Projection profile cutting cuts an image into smaller regions at whitespace
gaps in alternating vertical and horizontal projections, producing a tree. Baseline
extraction identifies symbols sitting on the main baseline of an expression, partition-
ing the remaining symbols relative to baseline symbols, and recursively repeating
the process in nonempty regions around baseline symbols. Operator-driven decom-
position identifies the dominant operator in a region, partitioning remaining symbols
into the expected locations for operands and recursively repeating the process in the
operand regions. Each of these techniques is described in more detail below.

Projection profile cutting is closely related to X-Y cutting (see [58] for further
discussion). A math expression image is decomposed by computing pixel intensity
histograms and splitting at gaps in the histograms, alternating between projecting
in the vertical and horizontal directions. Cutting stops when no further cuts may
be made in a region, as when the region contains a single connected component or
a square root symbol [38]. Subsequent steps can be used to merge split symbols,
separate symbols within square roots and kerned characters, and incorporate cutting
thresholds based on the estimated dominant character height and width [58]. An
interesting property of projection profile cutting is that symbol recognition is
performed after layout analysis. Special handling is used to identify over-segmented
symbols, such as an i separated into a base stroke and a dot. The resulting tree of
vertical and horizontal cuts may be directly mapped to a symbol layout tree.

Baseline extraction recursively decomposes a math expression by identifying
symbols on the main baseline of an expression starting from the left end and
partitioning remaining symbols into regions relative to the baseline symbols [59].
The leftmost baseline symbol is not always the leftmost symbol of the expression:
for example, limit symbols can extend past the left end of an integral or summation
symbol. A technique for identifying the leftmost symbol in a baseline is to examine
symbols from right to left, applying tests for operator dominance [59]. Baseline
extraction has been used in pen-based math entry systems [41,44,46,52,53], and the
technique can be applied to document images as well. A minimum spanning tree can

20 ProcessingMathematical Notation 693

be used to improve the symbol partitioning step: for example, arguments that extend
past the end of a summation symbol are clustered together during partitioning.
Clustering also helps with the detection of subscripts at the left of a symbol, as
when the subexpression “n choose 2” is written as nC2 [34, 52].

Operator-driven decomposition differs from the other layout analysis methods
described in this section, in that it analyzes symbol layout to construct an operator
tree rather than a layout tree. The operator tree is produced top-down, starting with
the lowest precedence operator at the root and placing primitive arguments (e.g.,
variables and constants) at the leaves. The method uses operator dominance to
identify the operator that has most or all of the remaining symbols in the expected
operand locations [6, 8]. To avoid producing invalid operator trees, error-correcting
parsing may be used to revise segmentation and classification hypotheses [6]. The
earliest example of a pen-based calculator made use of this method [7].

Grammar-Based Syntactic Pattern RecognitionMethods

A variety of grammar-based syntactic pattern recognition methods have been used to
analyze symbol layout in math notation. Grammars provide explicit models for legal
symbol layouts. Stochastic and fuzzy grammars are able to rank different layout
interpretations. The way that a grammar constrains the space of possible layouts
is analogous to how dictionaries provide word-level constraints for OCR results
(see the chapters in �Part C (Text Recognition) and �Chap. 10 (Machine-Printed
Character Recognition) in particular). A drawback is that grammar-based systems
tend to be brittle: if symbol or layout recognition errors prevent a legal parse, then
no output is produced. This limits the use of grammars in online systems, making it
difficult to provide feedback about recognized layout before a valid expression has
been entered completely.

Chou uses a stochastic context-free grammar to combine segmentation, sym-
bol recognition, and layout analysis [9]. A probability is associated with each
recognized symbol. Grammatical rules define how expressions may be composed
bottom-up or decomposed top-down by concatenating or splitting sub-expressions
vertically or horizontally. Probabilities are associated with each concatenation rule –
these may be set empirically or tuned using the inside-outside algorithm [9]. There
is a bias toward small parse trees, because long derivations in a stochastic grammar
have low probabilities. To avoid this, some systems use a grammar to constrain
the search for layouts, and then compute a confidence or probability based on the
set of symbols and spatial relationships identified during parsing. For example,
a linear combination of penalties based on probabilities for recognized symbols
and layout can be used [2]. A related approach uses fuzzy grammars, where
membership functions rather than probabilities are used for symbol classes and
spatial relationships [16].

Graph grammars have also been used to perform layout analysis. Graph produc-
tions are applied to a host graph in which graph edges represent spatial and logical
relationships among symbols [19,27]. The use of graphs, rather than strings, allows

http://dx.doi.org/10.1007/978-0-85729-859-1_C
http://dx.doi.org/10.1007/978-0-85729-859-1_44

694 D. Blostein and R. Zanibbi

production rules to more conveniently express spatial constraints. However, there is
additional computational cost in applying rules.

Syntactic Constraints Applied During Post-Processing

Many layout parsers use layout information to disambiguate symbol recognition
results. For example, in segmenting and parsing online handwritten symbols, local
grammatical rules can be used to correct under-segmentation of vertical operators
such as fractions, square roots, and summations [54]. Variations of the CYK parsing
algorithm (a dynamic programming algorithm for parsing context-free grammars)
have been used to apply symbol layout information to constrain symbol recognition
for stochastic context-free grammars [2].

In penalty graph minimization, candidate relationships between pairs of symbols
are defined before minimizing a penalty criterion over a set of possible layout trees
[12]. Relationships over pairs of candidate symbol identities are considered using
a branch-and-bound variation of Prim’s minimum spanning tree algorithm. A set
of approximately minimum-cost spanning trees are constructed, using syntactic
constraints to ensure that symbols and relationships added to a tree are consistent.
For example, two relationships attached to a symbol must assign the same identity
to that symbol. After obtaining the final set of candidate trees, penalties are modified
according to additional heuristics related to expression syntax and appearance. For
example, symbols in exponents are expected to be smaller than the base symbol.
The layout tree that has minimum penalty is selected for output.

Matrix Recognition and Tabular Structures

Matrix recognition is a challenging open problem in layout analysis, closely related
to table recognition (see �Chap. 19 (Recognition of Tables and Forms)). Matrix
recognition is also closely related to the problem of identifying other tabular
structures used in math notation, including lists of expressions in derivations, and
lists occurring in conditional statements such as the following:

t.x/ D
�
1; if x � 0

0; otherwise

Recognition of small typeset matrices is fairly easy, because there is generally more
whitespace between matrix elements than between symbols within a matrix element.
However, in the absence of large regular gaps of separating whitespace it can be
difficult to determine the correct segmentation into matrix elements. Several matrix
recognition techniques begin by searching for a large left and right parenthesis
or brace, to determine the location of the matrix. Once the matrix location is
known, segmentation of matrix elements is achieved through region growing [28,53]

http://dx.doi.org/10.1007/978-0-85729-859-1_20

20 ProcessingMathematical Notation 695

or through projections of symbol bounding boxes [52]. In an extension of the virtual
link network method, projections of matrix symbols produce a linear system of
equations for estimating row and column positions [22]. Recent work allows ellipses
(using “. . . ” to indicate a repeating pattern of elements) in pen-based interfaces for
computer algebra systems [29, 53]. See also �Chap. 28 (Sketching Interfaces) on
sketching interfaces.

Interpretation of Mathematical Content

Many present-day math recognition systems perform layout analysis but do not go
on to determine the mathematical meaning of the expression. The output from such
systems suffices for typesetting purposes, but does not support expression evaluation
or interaction with computer algebra systems. In order to support expression
evaluation, it is necessary to produce some form of operator tree (Fig. 20.3c)
representing logical relationships and domain semantics.

The semantics of a mathematical domain of discourse are difficult to deduce.
Most existing systems that interpret mathematical content do so by assuming a given
math dialect is used: the math dialect provides the definitions for operators and
relations. In future work, content dictionaries such as those provided by OpenMath
[10] could be used to define the meanings of mathematical symbols in various
dialects.

Table 20.5 lists methods that use parsing techniques to analyze symbol layout
in order to directly produce an operator tree. (In contrast, the Operator-Driven
Decomposition described in section “Recursive Decomposition” constructs an
operator tree top-down.) Various types of attributed grammars have been used,
including context-free string grammars [13] and graph grammars [19, 27]. As
for the methods discussed in section “Layout Analysis,” spatial relationships are
determined by testing simple geometric features, but with the output of parsing
being an operator tree rather than a symbol layout tree. An alternative approach
is to transform a layout tree into an operator tree, using a grammar that defines
operator trees in this math dialect. One such approach organizes layout analysis
and interpretation of mathematical content into a series of stages similar to a
compiler [58].

Table 20.5 Interpretation
of mathematical content

Integrated layout analysis
and content interpretation

Top-down, via operator dominance
(also see Table 20.4) [6, 8, 28]

Context-free string grammar [13]

Graph grammar to produce a
layout/content graph [19, 27]

Compiler-based approach Tree transformation to translate
symbol layout tree to operator
tree [59]

http://dx.doi.org/10.1007/978-0-85729-859-1_31

696 D. Blostein and R. Zanibbi

Table 20.6 Datasets
Datasets for math
recognition

Infty I-III www.inftyproject.org/en/database.html [50] Infty I: over 20,000
typeset expressions from 30 technical articles (476 pages). Manually
created ground provides symbols with bounding boxes and edges of the
symbol layout tree in .csv, XML, and MathML. Infty II adds 37
documents (English, French, German). Infty III: database of over 250,000
math characters and symbols
UW-III www.science.uva.nl/research/dlia/datasets/uwash3.html [40]
25 pages with math content (approximately 100 typeset equations).
Ground truth created with double entry and triple verification: LaTeX and
labeled bounding boxes for expressions and symbols
Waterloo/MathBrush www.scg.uwaterloo.ca/mathbrush/corpus [32]
4,655 handwritten expressions by 20 writers. Semiautomated ground truth
method provides operator trees, LaTeX, .gif, Microsoft, and SCG ink
formats
CROHME www.isical.ac.in/�crohme [37]
Data used in the ICDAR 2011 online handwritten math recognition
contest (�1,000 handwritten expressions from multiple writers; dataset is
being expanded)
HAMEX www.projet-depart.org [42]
Handwritten and audio: 4,350 online handwritten expressions by 58
writers and read aloud in French by 58 speakers. Ground truth for
handwriting: INKML files with digital ink, symbol segmentation, and
MATHML structure. Ground truth for audio: XML files with transcription
of the spoken expressions
Marmot www.founderrd.com/marmot data.htm [31]
400 pages from 194 digitally originated PDF documents with 1,575 offset
and 7,907 embedded expressions. XML ground truth created
semiautomatically

Statistical
information
about math
notation

Empirical study of over 19,000 papers stored in the ArXiv e-Print
Archive [48] – Provides frequency of symbols and operators used in
different math domains
N-grams from analysis of LaTeX sources for 3 engineering math
textbooks [55]

Validation and Datasets

The choice of data, performance metrics, and evaluation protocols significantly
affects the results obtained when comparing document recognition systems.
An effective comparison determines the relative strengths and weaknesses of
the systems; see �Chaps. 29 (Datasets and Annotations for Document Analysis
and Recognition) and �30 (Tools and Metrics for Document Analysis Systems
Evaluation). Meaningful comparison of math recognition system performance is
challenging because systems focus on a variety of mathematical domains, layout
conventions, and components of the recognition process. For example, it is difficult
to compare a high-accuracy system that processes a narrow range of inputs to
a lower-accuracy system that processes a broad range of inputs. The CROHME
competition was started in order to address this issue for the problem of online
handwritten math input [37].

www.inftyproject.org/en/database.html
www.science.uva.nl/research/dlia/datasets/uwash3.html
www.scg.uwaterloo.ca/mathbrush/corpus
www.founderrd.com/marmot_data.htm
http://dx.doi.org/10.1007/978-0-85729-859-1_32
http://dx.doi.org/10.1007/978-0-85729-859-1_33
http://www.isical.ac.in/�crohme
http://www.projet-depart.org

20 ProcessingMathematical Notation 697

Table 20.6 lists benchmark data sets for training and evaluation of math
recognition systems. It remains difficult to characterize the representativeness of
a data set, the relevance of the data for a particular application, and the degree of
noise tolerance of a math recognition system.

Performance metrics for evaluation of math recognition systems include expres-
sion recognition rate, symbol recognition rate, measures of layout structure accuracy
based on token placement and baselines, string edit distance applied to Euler strings
derived from layout trees, and metrics using bipartite graphs defined over nodes
representing strokes or connected components [58].

Conclusion

Technology for recognition of math notation is maturing, as demonstrated by
the availability of numerous research systems and several commercial systems.
Avenues for future work include the following: Improve segmentation algorithms,
both for detecting inline expressions, and for segmenting symbols in handwritten
expressions. Increase the reliability of layout analysis through the use of more
robust models for symbol layout. This was identified as a key problem in the
CROHME 2011 competition [37]. A related problem is to improve the reliability
and flexibility of matrix processing. This might be done through the development
of parser combination methods for producing ensembles of existing layout analysis
methods.

The versatility and robustness of math recognition systems can be increased
through the following avenues of investigation:
• Integrate the recognition stages: segmentation, symbol classification, layout

analysis, and interpretation of mathematical content. Integration has the
potential to reduce recognition errors by making effective use of contextual
information. At heart, this global optimization is a machine learning problem: the
component algorithms in a math recognition system should interact to produce
a globally optimal result. Various integration methods in math recognition have
been explored, notably grammars and dynamic programming. This is a promising
avenue for future development.

• Create language models with statistical information about math notation.
Stochastic language models will continue to become increasingly sophisticated,
extending stochastic grammars [9] using a variety of segmentation and parsing
approaches. This development will be fueled by increasing availability of data
sets and statistical information about math notation [48, 55].

• Develop recognition systems that can identify and understand various
dialects of math notation. A starting point is provided by the categorization
defined in the Mathematical Subject Classification (www.ams.org/mathscinet/
msc/msc2010.html). Develop a model of math notation that can be adapted to
dialects, perhaps using content dictionaries such as those provided by OpenMath
[10] to define the meanings of mathematical symbols in various dialects.

www.ams.org/mathscinet/msc/msc2010.html
www.ams.org/mathscinet/msc/msc2010.html

698 D. Blostein and R. Zanibbi

• Adopt more formal problem statements for math recognition. The language
of layouts and expressions accepted by math recognition systems should be
explicitly defined. This could be done by formally defining languages of layout
trees and operator trees. Such formality is needed in order to precisely character-
ize the scope of a dataset and the range of inputs accepted by a math recognition
system. The language models should explicitly define the types of noise that can
be tolerated by a system and the types of errors that can be corrected by a system.

• Detect the mathematical domain of discourse. To process math expressions
in large document repositories, methods are needed for identifying the mathe-
matical domain of discourse. This requires analysis of the document text to find
information such as symbol definitions of the type “Let X be”

An effective user interface is essential in creating a usable math recognition system;
indeed, doing this for document recognition systems in general is ongoing work
(�Chap. 3 (The Evolution of Document Image Analysis)). Future directions for
interfaces supporting math recognition include:
• Improve the convenience and effectiveness of methods for displaying recognition

results to the user. Existing methods include two-window displays, morphing
symbols to visualize the recognized symbol layout and displaying symbol
recognition results using images placed behind user input or placed on top of
user input in a transparent layer [58].

• Increase the use of multimodal input, such as handwritten math expression data
combined with audio, allowing a user to both draw and speak an expression [42].

• Increase the predictability of performance of math recognition systems. In order
for recognition systems to effectively compete with direct entry systems (such
as LaTeX or structure-based editors), the user of a recognition system must feel
confident about how to interact with the system in order to obtain highly reliable
recognition results.

An important trend is increased integration of recognition and retrieval [58]. This
requires advances in user interfaces for convenient query by expression, as well as
advances in retrieval algorithms to make effective use of noisy recognition results.

Acknowledgements Financial support from the National Science Foundation, USA, (Grant No.
IIS-1016815) and the Natural Sciences and Engineering Research Council of Canada are gratefully
acknowledged.

Cross-References

�Analysis and Interpretation of Graphical Documents
�Analysis and Recognition of Music Scores
�Analysis of Documents Born Digital
�Analysis of the Logical Layout of Documents
�An Overview of Symbol Recognition
�Continuous Handwritten Script Recognition
�Graphics Recognition Techniques
�Handprinted Character and Word Recognition

http://dx.doi.org/10.1007/978-0-85729-859-1_43
http://dx.doi.org/10.1007/978-0-85729-859-1_19
http://dx.doi.org/10.1007/978-0-85729-859-1_24
http://dx.doi.org/10.1007/978-0-85729-859-1_26
http://dx.doi.org/10.1007/978-0-85729-859-1_6
http://dx.doi.org/10.1007/978-0-85729-859-1_17
http://dx.doi.org/10.1007/978-0-85729-859-1_12
http://dx.doi.org/10.1007/978-0-85729-859-1_18
http://dx.doi.org/10.1007/978-0-85729-859-1_11

20 ProcessingMathematical Notation 699

�Image Based Retrieval and Keyword Spotting in Documents
�Language, Script, and Font Recognition
�Logo and Trademark Recognition
�Machine-Printed Character Recognition
�Online Handwriting Recognition
�Online Signature Verification
�Page Segmentation Techniques in Document Analysis
�Page Similarity and Classification
�Recognition of Tables and Forms
�Text Segmentation for Document Recognition

References

1. Anderson R (1977) Syntax-directed recognition of hand-printed two-dimensional equations.
PhD thesis, Harvard University, Cambridge, Jan 1968. Portions of this thesis appear as a
chapter. In: Fu KS (ed) Syntactic pattern recognition, applications. Springer, pp 147–177

2. Awal A-M, Mouchére H, Viard-Gaudin C (2009) Towards handwritten mathematical expres-
sion recognition. In: Proceedings of the 10th international conference on document analysis
and recognition, Barcelona, pp 1046–1050

3. Baker J, Sexton A, Sorge V, Suzuki M (2011) Comparing approaches to mathematical
document analysis from PDF. In: Proceedings of the 11th international conference on document
analysis and recognition, Beijing, pp 463–467

4. Berman B, Fateman R (1994) Optical character recognition for typeset mathematics. In:
Proceedings of the 1994 international symposium on symbolic and algebraic computation,
Oxford, pp 348–353, July 1994

5. Chan K-F, Yeung D-Y (2000) Mathematical expression recognition: a survey. Int J Doc Anal
Recognit 3:3–15

6. Chan K-F, Yeung D-Y (2001) Error detection, error correction and performance evaluation in
on-line mathematical expression recognition. Pattern Recognit 34(8):1671–1684

7. Chan K-F, Yeung D-Y (2001) Pencalc: a novel application of on-line mathematical expression
recognition technology. In: Proceedings of the 6th international conference on document
analysis and recognition, Seattle, pp 774–778

8. Chang S-K (1970) A method for the structural analysis of two-dimensional mathematical
expressions. Inf Sci 2(3):253–272

9. Chou P (1989) Recognition of equations using a two-dimensional stochastic context-free
grammar. In: Visual communications and image processing IV, Philadelphia. SPIE, vol 1199,
pp 852–863

10. Dewar M (2000) Openmath: an overview. ACM SIGSAM Bull 34:2–5
11. Drake D, Baird H (2005) Distinguishing mathematics notation from English text using

computational geometry. In: Proceedings of the 8th international conference on document
analysis and recognition, Seoul, pp 1270–1274

12. Eto Y, Suzuki M (2001) Mathematical formula recognition using virtual link network. In:
Proceedings of the 6th international conference on document analysis and recognition, Seattle,
pp 430–437

13. Fateman R, Tokuyasu T (1996) Progress in recognizing typeset mathematics. Proc Int Soc Opt
Eng 2660:37–50

14. Garain U (2009) Identification of mathematical expressions in document images. In: Proceed-
ings of the 10th international conference on document analysis and recognition, Barcelona,
pp 1340–1344

15. Garain U, Chaudhuri BB (2004) Recognition of online handwritten mathematical expressions.
IEEE Trans Syst Man Cybern 34(6):2366–2376

http://dx.doi.org/10.1007/978-0-85729-859-1_27
http://dx.doi.org/10.1007/978-0-85729-859-1_9
http://dx.doi.org/10.1007/978-0-85729-859-1_16
http://dx.doi.org/10.1007/978-0-85729-859-1_44
http://dx.doi.org/10.1007/978-0-85729-859-1_29
http://dx.doi.org/10.1007/978-0-85729-859-1_30
http://dx.doi.org/10.1007/978-0-85729-859-1_5
http://dx.doi.org/10.1007/978-0-85729-859-1_7
http://dx.doi.org/10.1007/978-0-85729-859-1_20
http://dx.doi.org/10.1007/978-0-85729-859-1_8

700 D. Blostein and R. Zanibbi

16. Genoe R, Fitzgerald JA, Kechadi T (2006) An online fuzzy approach to the structural analysis
of handwritten mathematical expressions. In: Proceedings of the IEEE international conference
on fuzzy systems, Vancouver, pp 242–250, July 2006

17. Golubitsky O, Watt SM (2010) Distance-based classification of handwritten symbols. Int J Doc
Anal Recognit 13(2):133–146

18. Golubitsky O, Watt SM (2010) Improved classification through runoff elections. In: Proceed-
ings of the international workshop document analysis systems, Boston, pp 59–64

19. Grbavec A, Blostein D (1995) Mathematics recognition using graph rewriting. In: Proceed-
ings of the 3rd international conference on document analysis and recognition, Montreal,
pp 417–421

20. Hu L, Zanibbi R (2011) HMM-based recognition of on-line handwritten mathematical symbols
using segmental k-means initialization and a modified pen up/down feature. In: Proceedings of
the international conference on document analysis and recognition, Beijing, pp 457–462

21. Kacem A, Belaid A, Ben Ahmed M (2001) Automatic extraction of printed mathematical
formulas using fuzzy logic and propagation of context. Int J Doc Anal Recognit 4(2):97–108

22. Kanahori T, Suzuki M (2002) A recognition method of matrices by using variable block pattern
elements generating rectangular areas. In: Graphics recognition – algorithms and applications.
LNCS, vol 2390. Springer, pp 320–329

23. Kanahori T, Sexton A, Sorge V, Suzuki M (2006) Capturing abstract matrices from paper. In:
Mathematical knowledge management. LNAI, vol 4108. Springer, pp 124–138

24. Labahn G, Lank E, MacLean S, Marzouk M, Tausky D (2008) Mathbrush: a system for
doing math on pen-based devices. In: Proceedings of the eighth IAPR workshop on document
analysis systems (DAS 2008), Nara. IEEE Computer Society, pp 599–606

25. LaViola J, Zeleznik R (2004) Mathpad2: a system for the creation and exploration of
mathematical sketches. ACM Trans Graph (Proc SIGGRAPH 2004) 23(3):432–440

26. LaViola J, Zeleznik R (2007) A practical approach to writer-dependent symbol recogni-
tion using a writer-independent recognizer. IEEE Trans Pattern Anal Mach Intell 29(11):
1917–1926

27. Lavirotte S, Pottier L (1997) Optical formula recognition. In: Proceedings of the 4th interna-
tional conference on document analysis and recognition, Ulm, pp 357–361

28. Lee H-J, Wang J-S (1997) Design of a mathematical expression understanding system. Pattern
Recognit Lett 18(3):289–298

29. Li C, Zeleznik R, Miller T, LaViola J (2008) Online recognition of handwritten mathematical
expressions with support for matrices. In: Proceedings of the 19th international conference on
pattern recognition, Tampa, pp 1–4

30. Lin X, Gao L, Tang Z, Lin X, Hu X (2011) Mathematical formula identification in PDF
documents. In: Proceedings of the 11th international conference on document analysis and
recognition, Beijing, pp 1419–1423

31. Lin X, Gao L, Tang Z, Lin X, Hu X (2012) Performance evaluation of mathematical formula
identification. In: Proceedings of the 10th IAPR international workshop on document analysis
systems, Gold Coast, pp 287–291

32. MacLean S, Labahn G, Lank E, Marzouk M, Tausky D (2011) Grammar-based techniques for
creating ground-truthed sketch corpora. Int J Doc Anal Recognit 14(1):65–74

33. Malon C, Uchida S, Suzuki M (2008) Mathematical symbol recognition with support vector
machines. Pattern Recognit Lett 29(9):1326–1332

34. Matsakis N (1999) Recognition of handwritten mathematical expressions. Master’s thesis,
Massachusetts Institute of Technology, Cambridge, May 1999

35. Michler G (2003) How to build a prototype for a distributed digital mathematics archive library.
Ann Math Artif Intell 38:137–164

36. Miller E, Viola P (1998) Ambiguity and constraint in mathematical expression recognition. In:
Proceedings of the 15th national conference of artificial intelligence, Madison, pp 784–791,
July 1998

37. Mouchère H, Viard-Gaudin C, Kim DH, Kim JH, Garain U (2011) CROHME2011: com-
petition on recognition of online handwritten mathematical expressions. In: Proceedings

20 ProcessingMathematical Notation 701

of the 11th international conference on document analysis and recognition, Beijing,
pp 1497–1500

38. Okamoto N, Miao B (1991) Recognition of mathematical expressions by using the layout
structures of symbols. In: Proceedings of the 1st international conference on document analysis
and recognition, Saint-Malo, pp 242–250

39. Panic M (2009) Math handwriting recognition in Windows 7 and its benefits. In: Intelligent
computer mathematics. LNCS, vol 5625. Springer, Berlin/Heidelberg, pp 29–30

40. Phillips I (1998) Methodologies for using UW databases for OCR and image understand-
ing systems. In: Proceedings of the document recognition V, San Jose. SPIE, vol 3305,
pp 112–127

41. Pollanen M, Wisniewski T, Yu X (2007) Xpress: a novice interface for the real-time com-
munication of mathematical expressions. In: Proceedings of the workshop on mathematical
user-interfaces, Linz, June 2007

42. Quiniou S, Mouchère H, Peña Saldarriaga S, Viard-Gaudin C, Morin E, Petitrenaud S,
Medjkoune S (2011) HAMEX – a handwritten and audio dataset of mathematical expressions.
In: Proceedings of the 11th international conference on document analysis and recognition,
Beijing, pp 452–456

43. Rhee TH, Kim JH (2009) Efficient search strategy in structural analysis for handwritten
mathematical expression recognition. Pattern Recognit 42(12):3192–3201

44. Sasarak C, Hart K, Pospesel R, Stalnaker D, Hu L, LiVolsi R, Zhu S, Zanibbi R. (2012) min:
a multimodal web interface for math search. In: Symposium on human-computer interaction
and information retrieval, Cambridge. Online: https://sites.google.com/site/hcirworkshop/hcir-
2012

45. Shi Y, Soong FK (2008) Symbol graph based discriminative training and rescoring for im-
proved math symbol recognition. In: Proceedings of the international conference on acoustics,
speech, and signal processing, Las Vegas, pp 1953–1956

46. Smirnova E, Watt S (2008) Communicating mathematics via pen-based computer interfaces.
In: Proceedings of the 10th international symposium on symbolic and numeric algorithms for
scientific computing (SYNASC 2008), Timisoara, pp 9–18

47. Smithies S, Novins K, Arvo J (1999) A handwriting-based equation editor. In: Proceedings of
the graphics interface, Kingston, pp 84–91, June 1999

48. So CM, Watt SM (2005) Determining empirical characteristics of mathematical expression
use. In: Proceedings of the mathematical knowledge management. LNCS, vol 3863. Springer,
pp 361– 375

49. Suzuki M, Tamari F, Fukuda R, Uchida S, Kanahori T (2003) INFTY: an integrated OCR
system for mathematical documents. In: Proceedings of the ACM symposium on document
engineering 2003, Grenoble, pp 95–104

50. Suzuki M, Uchida S, Nomura A (2005) A ground-truthed mathematical character and symbol
image database. In: Proceedings of the 8th international conference on document analysis and
recognition, Seoul, pp 675–679

51. Tapia E, Rojas R (2003) Recognition of on-line handwritten mathematical formulas in the
E-chalk system. In: Proceedings of the 7th international conference on document analysis and
recognition, Edinburgh, pp 980–984

52. Tapia E, Rojas R (2004) Recognition of on-line handwritten mathematical expressions
using a minimum spanning tree construction and symbol dominance. In: Graphics recog-
nition, recent advances and perspectives. LNCS, vol 3088. Springer, Berlin/New York,
pp 329–340

53. Tausky D, Labahn G, Lank E, Marzouk M (2007) Managing ambiguity in mathematical
matrices. In: Proceedings of the 4th Eurographics workshop on sketch-based interfaces and
modeling, Riverside California, pp 115–122

54. Toyozumi K, Yamada N, Mase K, Kitasaka T, Mori K, Suenaga Y, Takahashi T (2004)
A study of symbol segmentation method for handwritten mathematical formula recognition
using mathematical structure information. In: Proceedings of the 17th international conference
on pattern recognition, Cambridge, vol 2, pp 630–633

https://sites.google.com/site/hcirworkshop/hcir-2012
https://sites.google.com/site/hcirworkshop/hcir-2012

702 D. Blostein and R. Zanibbi

55. Watt SM (2008) An empirical measure on the set of symbols occurring in engineering
mathematics texts. In: Proceedings of the 8th IAPR international workshop on document
analysis systems (DAS 2008), Nara, pp 557–564

56. Winkler H-J (1996) HMM-based handwritten symbol recognition using on-line and off-
line features. In: Proceedings of the international conference on acoustics speech and signal
processing, Atlanta, pp 3438–3441

57. Yamamoto R, Sako S, Nishimoto T, Sagayama S (2006) On-line recognition of handwritten
mathematical expressions based on stroke-based stochastic context-free grammar. In: Proceed-
ings of the 10th international workshop on frontiers in handwriting recognition, La Baule, Oct
2006

58. Zanibbi R, Blostein D (2012) Recognition and retrieval of mathematical expressions. Int J Doc
Anal Recognit 15(4):331–357

59. Zanibbi R, Blostein D, Cordy JR (2002) Recognizing mathematical expressions using tree
transformation. IEEE Trans Pattern Anal Mach Intell 24(11):1455–1467

Further Reading

Readers looking to expand their knowledge of math recognition are directed to the survey papers
[5] and [58]. Tables 20.1–20.6 above direct the reader to references relevant to particular aspects
of math recognition.

	20 Processing Mathematical Notation
	Contents
	Introduction
	Systems and Applications
	Inputs and Outputs of Math Recognition Systems
	Four Component Problems in Recognition of Math Notation

	Expression Detection
	Detecting Expressions in Document Images
	Detecting Expressions in Vector Graphics
	Detecting Expressions in Pen-Based Input

	Symbol Recognition or Symbol Extraction
	Layout Analysis
	Recursive Decomposition
	Grammar-Based Syntactic Pattern Recognition Methods
	Syntactic Constraints Applied During Post-Processing
	Matrix Recognition and Tabular Structures

	Interpretation of Mathematical Content
	Validation and Datasets
	Conclusion
	Cross-References
	References
	Further Reading

