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Abstract
In this chapter, the classical line geometry is modeled in R3,3, where lines are
represented by null vectors, and points and planes by null 3-blades. The group
of 3D special projective transformations SL(4) when acting upon points in space
induces a Lie group isomorphism, with SO(3,3) acting upon lines.
As an application of the use of the R3,3 model of line geometry, this chapter
analyzes the inverse singularity analysis of generalized Stewart platforms, using
vectors of R

3,3 to encode the force and torque wrenches to classify their singular
configurations.

13.1 Introduction

H. Grassmann (1844) and J. Plücker (1865) are the co-founders of line geometry
[5]. A line in space is the extension of two points. For two points with homoge-
neous coordinates (x0, x1, x2, x3) and (y0, y1, y2, y3), the line they extend can be
represented by the outer product of their homogeneous coordinates. In coordinate
form, this outer product has the following Plücker coordinates:

(l01, l02, l03, l23, l31, l12), (13.1)

where lij = xiyj − xjyi . If we denote x = (x1, x2, x3)
T and y = (y1, y2, y3)

T , then
the line xy has the Plücker coordinates
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(l, l̄) := (x0y − y0x,x × y). (13.2)

In affine geometry, (l, l̄) describes an affine line if and only if l �= 0. When this
is satisfied, then the direction of the line is its point at infinity, also called its ideal
point: (0, l). Let (1,x) be an affine point on the line; then l̄ = x × l is the moment
vector. Obviously, we have l · l̄ = 0 or, in the coordinate form,

l01l23 + l02l31 + l03l12 = 0. (13.3)

This equality is called the Grassmann–Plücker relation of the line. It states that
all lines are points on a quadratic surface in the 5D projective space of 6-tuples of
homogeneous coordinates. Plücker’s theorem states that the converse is also true: if
a point in the 5D projective space is on the Klein quadric defined by (13.3), then it
must be the Plücker coordinates of a spatial line.

Classical line geometry studies invariant properties of line complexes under 3D
projective, affine, or Euclidean transformations. Nowadays it has important applica-
tions in computer aided design, geometric modeling, scientific visualization, com-
puter aided manufacturing, and robotics. The design of efficient algorithms involv-
ing lines can be greatly simplified if it is based on the right geometric model.

For example, a ruled surface is simply a curve of lines, whose study is much
easier in line geometry. In studying developable surfaces, line geometry contributes
to simplifying the computing of medial axes, rational curves with rational offsets,
and cyclographic mapping. Line congruences arise in collision problems in five-axis
milling, and rational congruences of line complexes are related to geometric optics.
Line geometry not only provides tools for visualization, but also has interesting links
to planar and spherical motions, rational curves on quadratic surfaces, and problems
of surveying [4, 12, 15, 18, 22–24].

Various algebraic structures can be introduced to Plücker coordinates in geomet-
ric computing. Study (1903) considered introducing a dual element ε, which is a
nilpotent element that commutes with everything, such that a line (l, l̄) can be de-
scribed by dual vector l+ εl̄. If there is another line m+ εm̄, let l,m be unit vectors,
and let

θ = ∠(l,m),

n = unit vector along l × m,

δ = signed distance between the two lines along direction n,

n̄ = moment vector of the common perpendicular of the two lines.

(13.4)

Then
{

(l + εl̄) · (m + εm̄) = cos(θ + εδ),

(l + εl̄) × (m + εm̄) = (n + εn̄) sin(θ + εδ).
(13.5)

The angle, distance, and common perpendicular of the two lines can all be read from
their inner product and cross product.
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Fig. 13.1 Stewart platform

In this chapter, we introduce a nondegenerate inner product structure to the
Plücker coordinates of lines and convert them to null vectors of a 6D real vector
space of signature (3,3). After classifying all 2-blades and 3-blades generated by
null vectors in the 6D space R

3,3 and presenting their geometric interpretations in
line geometry, we point out that all points and planes in space can be represented by
null 3-blades, i.e., 3-blades with completely degenerate inner product structure. On
one hand, any special projective transformation in space, i.e., special linear trans-
formation in the 4D vector space realizing the 3D projective space, induces a special
orthogonal transformation in R

3,3; on the other hand, any element in SO(3,3) in-
duces a special projective transformation in the 3D projective space of null 3-blades
representing projective points in space. We further point out that all dualities in 3D
projective geometry, i.e., linear mappings between the 4D vector space representing
projective points and the dual 4D vector space representing projective planes, can be
realized by orthogonal transformations of determinant −1 in R

3,3 via their actions
upon lines in space.

Hence, the Lie group isomorphism between SL(4) and SO(3,3) is realized via
the R

3,3 model of line geometry. Since SO(3,3) can be covered by Spin(3,3), and
the latter has an algebraic representation in R3,3, we can use R3,3 to construct not
only all kinds of special projective transformations, but a hierarchy of advanced
projective invariants.

As a specific application of the classification of blades generated by null vectors
in R

3,3, we consider the problem of analyzing the inverse singular configurations of
generalized Stewart platforms. The topic is important in that in an inverse singular
configuration, the end-effector may still possess certain degrees of freedom after
all the actuators are locked, which may incur some unexpected damages such as
collapse [2, 11, 14, 17, 20, 29].

Parallel robots have various advantages over serial robots, such as high accuracy,
high payload-to-weight ratio, and high rigidity. They also have a few drawbacks, the
most important of which is failure in or close to a singular configuration. A famous
parallel manipulator is a Stewart platform (or Gough–Stewart platform) [25], as
shown in Fig. 13.1. It is a 6-dof parallel manipulator composed of a static platform
and a moving platform, and controlled by six distance constraints between six point
pairs.
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Fig. 13.2 Generalized
Stewart platforms actuated by
Left: six distance constraints
between three points and
three lines; Right: 6 distance
constraints between 6 lines
and 3 planes

Historically, line geometry is closely related to machine mechanism and kine-
matics, because lines are supports of forces and moments [1, 26, 28]. The theory
of screws [27] is closely related to line geometry. Some previous works on singu-
larity analysis of a Stewart platform include [3, 13, 19, 21]. In particular, Merlet
[19] described the singularity configurations as degeneracies of the line complexes
spanned by the six lines representing the linear actuators of the platform. This ap-
proach has the advantage of avoiding complicated computing of the Jacobian ma-
trix.

A natural idea to generalize the 6-dof parallel structure of a Stewart platform is
to replace some of the point-pair distance actuators by distance and angle actuators
between pairs of linear objects such as points, lines, and planes. Gao et al. [10] pro-
posed six new types of limb actuators by distances between point/point, point/line,
point/plane, line/line, line/plane, and plane/plane, and three types of limb actuators
by angles between line/line, line/plane, and plane/plane. A 6-dof parallel manipu-
lator controlled by such constraints is called a generalized Stewart platform (GSP).
Figure 13.2 shows two GSPs containing limb actuators by point/line and line/plane
distances.

For a GSP, the actuator of a limb corresponds to either a force or a couple, which
is unanimously referred to as a driving wrench. We deduce by the virtual work
principle the following new conclusion: for any GSP, the inverse Jacobian is the
transpose of the matrix composed of the Plücker coordinates of the driving wrenches
and common constraint wrenches of the six limbs. An inverse singularity occurs
when the rank of the wrench matrix is less than six. While for a classical Stewart
platform the matrix is a 6 × 6 square, for a GSP, the matrix often has more than six
columns. Its singularities are dramatically different from those of a classical Stewart
platform.

This chapter is organized as follows. Section 13.2 introduces line geometry by
formulating it in the null geometric algebra over R

3,3. Section 13.3 relates inverse
singularity with degeneracy of wrench matrix. Section 13.4 classifies the inverse
singularities of some typical GSPs.
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13.2 Line Geometry with Null Geometric Algebra

In the projective space, all projective lines form a Grassmann variety. In the Grass-
mann space

∧
(V 4) over the 4D vector space V 4 realizing 3D projective geometry,

all bivectors form a 6D vector subspace, denoted by
∧2

(V 4). A bivector A rep-
resents a projective line if and only if it satisfies the so-called Grassmann–Plücker
relation,1

A ∧ A = 0. (13.6)

If we define the following symmetric bilinear function in
∧2

(V 4):

A · B := [AB], (13.7)

where the bracket is in the Grassmann algebra
∧

(V 4), then the function defines a
nondegenerate real inner product of signature (3,3).

This property can be proved as follows. Let e0, e1, e2, e3 be a basis of V 4. Then
the eij = ei ∧ej for 0 ≤ i < j ≤ 3 are the induced basis of

∧2
(V 4). For any nonzero

element A ∈ ∧2
(V 4), at least one of its coordinates, say its coordinate a01 in e01, is

nonzero. Then [Ae23] = a23 �= 0. This proves that if A · B = 0 for all B ∈ ∧2
(V 4),

then A = 0. The inner product is thus nondegenerate. Since e01, e02, e03 are pairwise
orthogonal to each other, and they are all basis elements, the 6D inner-product space
has a 3D subspace that is null: the subspace spanned by e01, e02, e03 has the property
that any two vectors in it are orthogonal to each other. This property leads to the
conclusion that the signature of the inner product is (3,3). Henceforth we denote
the 6D inner product space by R

3,3.
By Plücker’s theorem, any nonzero vector in R

3,3 represents a projective line
if and only if it is null. The representation of a line is unique up to scale, i.e., is
homogeneous. The geometry of projective lines can thus be described by the geo-
metric algebra generated by null vectors in R

3,3, called the null geometric algebra
of spatial lines.

First consider the geometric meaning of the inner product between two null vec-
tors in R

3,3. Let e0, e1, e2, e3 be a basis of the 3D affine space V 4 such that e0
represents the origin, and e1, e2, e3 are points at infinity.

Notation In this section, the outer product in
∧

(V 4) has to be denoted by jux-
taposition of elements, and the outer product in

∧
(R3,3) is denoted by the wedge

symbol.

Consider a line A passing through point e0 +x and point at infinity l, and a second
line B passing through point e0 + y and point at infinity m, where x,y, l,m ∈ R

3 ⊂
V 4. Then

1Editorial note: See also Chap. 14.
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A = (e0 + x)l, B = (e0 + y)m, (13.8)

so

A · B = (e0l) · (ym) + (xl) · (e0m) = [lym] + [mxl] = [
lm(x − y)

]
, (13.9)

where the bracket is with respect to e1e2e3 in
∧

(R3).
When B is a line at infinity, let B = m1m2 where m1,m2 ∈ R

3, and let A be an
affine line as in (13.8); then

A · B = (e0l) · (m1m2) = [lm1m2]. (13.10)

Given two directed lines A = (e0 + x, l) and B = (e0 + y,m), the signed volume
of A and B is defined as the signed volume of the parallelepiped formed by vectors
x − y, l,m:

VA,B := [xlm] + [yml] = [
(x − y)lm

]
. (13.11)

It is symmetric in A and B. We have thus proved the following conclusion:

When A,B are affine lines, then A · B is their signed volume. When one is a
line at infinity, then A · B is the signed volume of the parallelepiped formed
by their components at infinity, a 1D direction and a 2D direction.

In particular, two lines intersect if and only if their representative null vectors are
orthogonal. If the lines are written in the Plücker coordinate form, A = (f, f̄) and
B = (g, ḡ), then

A · B = f · ḡ + g · f̄. (13.12)

Next we classify all 2-spaces and 3-spaces of R
3,3 spanned by null vectors, i.e.,

2D and 3D linear extensions of null vector generators. There are only two kinds of
such 2-spaces, R

1,1,0 and R
0,0,2. Below all points, lines, and planes are projective

ones in space.
• R

1,1,0 (2-space with metric diag(1,1,0)): Its 1D null subspaces represent a pair
of noncoplanar lines, as shown in Fig. 13.3 (left).

• R
0,0,2 (2-space with metric diag(0,0,2)): Its 1D null subspaces represent all the

lines incident to a fixed point and a fixed plane, as shown in Fig. 13.3 (right). All
such lines form a 1D algebraic variety, called a 1D concurrent pencil of lines or a
single-wheel pencil. The point of concurrency is called the center.
In R

3,3, there are three kinds of 3-spaces spanned by null vectors: R
1,2,0 or

R
2,1,0, R

1,1,1, and R
0,0,3.
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Fig. 13.3 Left: null vectors
in R

1,1,0, a pair of
noncoplanar lines. Right: null
vectors in R

0,0,2, a 1D pencil
of lines concurrent at point o
and on plane aoc

Fig. 13.4 Null vectors in
R

1,2,0 or R
2,1,0: a 1D regulus

pencil

Fig. 13.5 Null vectors in
R

1,1,1: a 1D couple-wheel
pencil; the axis is line ab

• R
1,2,0 or R

2,1,0 (3-space with metric diag(1,2,0) or diag(2,1,1)): Its 1D null
subspaces represent a 1D regulus pencil of lines, i.e., a 1-parameter family of
straight-line generators of a hyperboloid of one sheet, as shown in Fig. 13.4.

• R
1,1,1 (3-space with metric diag(1,1,1)): Its 1D null subspaces represent two 1D

concurrent pencils of lines sharing a unique common line, as shown in Fig. 13.5.
Such a pencil is called a 1D couple-wheel pencil; the common line is called the
axis.

• R
0,0,3 (3-space with metric diag(0,0,3)): Its 1D null subspaces represent either

all the lines concurrent at the point, called a 2D concurrent pencil of lines, or
equivalently, the point of concurrency, or all the lines lying on the same plane,
called a 2D coplanar pencil of lines, or equivalently, the supporting plane of the
lines. Figure 13.6 shows both cases.
We see that in the R

3,3 model of line geometry, points and planes are both repre-
sented by null 3-blades. Algebraically they cannot be distinguished from each other.
We need to introduce an affine structure to make the distinction.
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Fig. 13.6 Null vectors in
R

0,0,3. Left: a 2D concurrent
pencil, or a point. Right: a 2D
coplanar pencil, or a plane

In the Grassmann algebra
∧

(V n) over V n, for an r-blade Ar and an s-blade Bs ,
their 0th-level intersection refers to Ar ∨ Bs . Their ith-level intersection [16] refers
to

Ar ∨(i) Bs :=
∑

(n−s−i,r+s−n+i)�Ar

[Ar(1)Bs]Ar(2), (13.13)

if their j th-level intersection is zero for all 0 ≤ j < i. Here (n−s− i, r +s−n+ i) �
Ar denotes bipartitioning the r vectors whose outer product equals Ar into two
subsequences of lengths n − s − i and r + s − n + i, with Ar(1) denoting the outer
product of the first subsequence, and Ar(2) denoting the outer product of the second
subsequence. The bracket is set up upon the (n − i)D subspaces spanned by vectors
in Ar and Bs .

Now return to line geometry. Fix a null 3-space of R
3,3, and let I3 be its 3-blade

representation. Define the plane at infinity to be the set of lines in space whose
representative null vectors are in I3. A vector x ∈ V 4 denotes an affine point in 3D
affine geometry if and only if for any vector X ∈ I3, we have xX �= 0 in

∧
(V 4).

Then I3 introduces a 3D affine structure to the underlying 4D vector space V 4 of
3D projective geometry.

The following properties can be easily established. Let A3 be a null 3-blade of∧
(R3,3) linearly independent of I3.

• If A3 ∨ I3 �= 0, then A3 represents an affine point.
• If A3 ∨ I3 = 0 but A3 ∨(1) I3 �= 0, then A3 represents an affine plane.
• If both A3 ∨ I3 = 0 and A3 ∨(1) I3 = 0, then A3 represents a point at infinity.

Let A3,B3 be points (including points at infinity), and let A∗
3,B∗

3 be planes (in-
cluding the plane at infinity). Then A3 ∨(1) B3 is the line connecting the two points,
and A∗

3 ∨(1) B∗
3 is the line of intersection of the two planes. A line represented by

null vector X passes through point A3 if and only if X∧A3 = 0; a line X is on plane
A∗

3 if and only if X ∧ A∗
3 = 0.

Consider the relationship between a point x = e0 + x1e1 + x2e2 + x3e3 and a
plane passing through a point y = e0 + y1e1 + y2e2 + y3e3. Without loss of gener-
ality, assume that the plane has normal direction e3. In

∧
(R3,3), the point has the

representation

A3 = xe1 ∧ xe2 ∧ xe3, (13.14)

and the plane has the representation

B3 = ye1 ∧ ye2 ∧ e1e2. (13.15)
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So with respect to pseudoscalar e01 ∧ e02 ∧ e03 ∧ e12 ∧ e13 ∧ e23,

A3 ∨ B3 = (x3 − y3)
2 (13.16)

is the squared distance between the point and the plane, or in affine terms, the
squared volume of the parallelepiped formed by vectors x − y, e1, e2. Similarly,
we get

A3 · B3 = A3 ∨ B3 = (x3 − y3)
2. (13.17)

Now fix another null 3-space of R
3,3 such that it forms a direct sum decompo-

sition with the plane at infinity I3. Let J3 be a null 3-blade representing this 3D
null subspace, such that if I3 = E1 ∧ E2 ∧ E3, then J3 = −E∗

1 ∧ E∗
2 ∧ E∗

3, where
E∗

i · Ej = δij for 1 ≤ i, j ≤ 3. The E∗
i are called the reciprocal basis of the Ej . Ge-

ometrically, J3 represents an affine point. It is called the origin of the affine space.
For example, let e0, e1, e2, e3 be a basis of the 3D affine space V 4 such that e0

represents the origin, and e1, e2, e3 are an orthonormal basis of the plane at infinity.
In

∧
(V 4), denote

eij := eiej . (13.18)

Then in
∧

(R3,3), we can choose

I3 = e12 ∧ e13 ∧ e23, J3 = e01 ∧ e02 ∧ e03. (13.19)

The decomposition

R
3,3 = I3 ⊕ J3 (13.20)

is called a symplectification of R
3,3. Let E1,E2,E3 be a basis of I3, and let

E∗
1,E∗

2,E∗
3 be the corresponding reciprocal basis of J3. Define the symplectic form

of the symplectification as

K2 = E1 ∧ E∗
1 + E2 ∧ E∗

2 + E3 ∧ E∗
3. (13.21)

It can be proved that K2 is invariant under different choices of the basis elements.

Notation In this section, the duality of A ∈ ∧
(I3) in I3 is denoted by AI3 ; the

duality of B ∈ ∧
(J3) in J3 is denoted by BJ3 . The duality of C in

∧
(V 4) is denoted

by C†.

Consider a point e0 +x = e0 +x1e1 +x2e2 +x3e3. Its null 3-blade representation
is

A = (e0 + x)e1 ∧ (e0 + x)e2 ∧ (e0 + x)e3

= J3 − (e0x) ∧ K2 + (e0x) ∧ (e0x)†I3, (13.22)



262 H. Li and L. Zhang

where (e0x)†I3 denotes ((e0x)†)I3 . This is a quadratic mapping from R
3 to the space

of null 3-blades representing affine points.
When x tends to infinity, (13.22) represents a point at infinity. So the point at

infinity x has the null 3-blade representation

(e0x) ∧ (e0x)†I3 . (13.23)

Consider an affine plane with 2D direction L2 ∈ ∧2
(R3) and passing through a

point x. Its 3-blade representation in
∧

(V 4) is (e0 +x)L2. When the plane does not
pass through the origin e0, then xL2 �= 0. Rescale L2 so that the 3-blade representa-
tion of the plane in

∧
(V 4) becomes

e1e2e3 + e0L2. (13.24)

Let L2 = y1e2e3 − y2e1e3 + y3e1e2. The intersections of plane (13.24) with planes
e0e1e2, e0e1e3, e0e2e3 are respectively

P3 = −y2e01 + y1e02 + e12,

P2 = −y3e01 + y1e03 + e13,

P1 = −y3e02 + y2e03 + e23.

(13.25)

So the null 3-blade representation of the plane is

B = P3 ∧ P2 ∧ P1 = I3 − L2 ∧ K2 + L2 ∧ L†J3
2 . (13.26)

When L2 tends to infinity, (13.26) represents a plane passing through the origin.
So the plane passing through the origin with 2D direction L2 has the null 3-blade
representation

L2 ∧ L†J3
2 . (13.27)

A linear transformation f in V 4 induces another linear transformation f in∧2
(V 4), and the mapping

� : f ∈ GL(4) �→ f ∈ GL(6) (13.28)

is a group monomorphism. Let A1,A2, . . . ,A6 be bivectors in
∧

(V 4). They are
also vectors in R

3,3. Then [f (A1)f (A2) . . . f (A6)] = det(f )3[A1A2 . . .A6]. So �
is also a group monomorphism from SL(4) to SL(6).

By the definition of the inner product in R
3,3, any special linear transformation in

V 4 induces a special orthogonal transformation in R
3,3. After some mathematical

reasoning, it can be proved that � : SL(4) −→ SO(3,3) is a Lie group isomorphism.
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Let SL−(4) be the set of linear transformations in V 4 of determinant −1. Let
Sproj(3) = SL(4) ∪ SL−(4). Then Sproj(3) is a Lie group. Similarly, let O(3,3) =
SO(3,3) ∪ SO−(3,3), where SO−(3,3) are the orthogonal transformations in R

3,3

of determinant −1. Both Sproj(3) and O(3,3) have two connected components,
and their connected components containing the identity are isomorphic under �.
However, any element of SL−(4) maps points to points, maps planes to planes,
but reverses the sign of the inner product in R

3,3. On the contrary, any element
of SO−(3,3) keeps the sign of the inner product in R

3,3 but interchanges points and
planes in space. Thus, (13.28) does not provide an isomorphism between Sproj(3)

and O(3,3).
Now take a retrospect at the R

3,3 model of line geometry. When we identify
O(3,3) as the geometric transformation group and check for its action on the null
vectors in R

3,3, we find that for two linearly dependent null vectors, their relative
scale (or ratio) is preserved by O(3,3). Indeed, this scale measures the signed length
of the vector representing the direction of the line. A vector with a spatial line as
its support is called a spear. In fact, O(3,3) describes the volume-preserving spear
geometry in space.

With the spin group representation of the orthogonal transformations, all special
projective transformations can be classified by their spinor generators. This chapter
has no room left for further discussion.

13.3 Inverse Singularity Analysis by Wrench Matrix

In screw theory [1], any nonzero vector in R
3,3 is called a screw when describing

the geometry of lines, called a twist when describing Euclidean motion, and called
a wrench in statics. The general form of a nonzero vector in R

3,3 is of the form

S = (λs, λr × s + μs), (13.29)

where s is a unit vector in R
3, (s, r × s) are the Plücker coordinates of a line with

direction s and passing through point r, and λ,μ are scalars that cannot be zero
simultaneously. The scalar h = μ/λ is called the pitch of the screw (or twist, or
wrench).

In statics, a force acting on a rigid body is a force wrench F = (f, r × f), where
r points to the supporting line of the force. A system of forces acting upon a rigid
body can be described by a wrench consisting of a certain force and a torque whose
supporting plane is perpendicular to the force. If (13.29) represents a wrench, s is
the direction of the force in the wrench, and λ is the scale of the force. When λ = 0,
then h = ∞, and the wrench is the sum of two forces of the same magnitude but
of opposite direction. Its action leads to a rotation about an axis along the direction
of f. Such a wrench is called a pure torque. When h = 0, the wrench is a pure force.

An infinitesimal Euclidean motion in space can be described by a vector in the
Lie algebra of the 3D Euclidean group, say 6D vector S = (s, s̄ + t), where (s, s̄)
is a spear on the axis of the infinitesimal rotation and generating the latter, and t is
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Fig. 13.7 Left: a limb of
stretchable length L with two
ball joints. Right: the 7 twists
of the limb

a vector generating the infinitesimal translation. By Charles’ theorem, s and t are
linearly dependent for any infinitesimal Euclidean motion.

A rigid body is said to receive a twist about a screw if it rotates uniformly about
the screw, and at the same time translates uniformly along the screw through a dis-
tance equal to the product of the pitch and the angle of rotation. If (13.29) represents
a twist, then s is the direction of the rotation axis, r points to the axis, λ is the angle
of rotation, and μ is the distance of translation.

In (13.29), when λ = 0, then h = ∞, and the motion is a pure translation along
the axis. When μ = 0, the twist reduces to a pure rotation around the axis. A twist
generating an infinitesimal motion is called an infinitesimal motion twist or velocity
twist.

The virtual work done by a wrench W to a twist S is their inner product in R
3,3.

A wrench and a twist are said to be reciprocal to each other if they have zero virtual
work. If the work done by a wrench of a mechanism to a velocity twist is zero, the
wrench is called a constraint of the mechanism. If a wrench is reciprocal to all twists
of a mechanism, it is called a common constraint of the mechanism.

The R
3,3 model of line geometry provides vector representation to the driving

wrenches of 1-dof kinematic pairs such as revolute pairs, prismatic pairs, and screw
pairs. It provides bivector representation to the driving wrenches of 2-dof kinematic
pairs such as cylindrical pairs.

In R
3,3, the common constraints are the orthogonal complement of the kinematic

screw (twist) system of a mechanism [8, 9, 19]. Figure 13.7 is a typical example of a
limb used in parallel manipulators. It has a stretchable length L, and its two ends are
ball joints. Let e1, e2, e3 be an orthonormal basis of the space such that e3 is along
the limb. The kinematic screw system of the limb is composed of the following,
where 0 denotes the zero vector in R

3:
1. The three infinitesimal rotation generators of the base ball joint:

S1 = (e1,0)T , S2 = (e2,0)T , S3 = (e3,0)T . (13.30)

2. The infinitesimal translation generator along the shaft of the limb:

S4 = (0, e3)
T . (13.31)
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Fig. 13.8 Left: a limb of
stretchable length L and
variable angle θ between two
revolute joint axes. Right: the
6 twists of the limb

3. The three infinitesimal rotation generators of the moving ball joint:

S5 = (e1,Le2)
T , S6 = (e2,−Le1)

T , S7 = (e3,0)T . (13.32)

Since the above seven vectors span R
3,3, their orthogonal complement is zero, and

the limb does not have any common constraint.
Traditionally, inverse singularities of a Stewart platform are defined to be the

singularities of the Jacobian mapping the velocity of the end-effector to the joint
velocities. In [6], it is shown that the columns of the Jacobian matrix are zero-pitch
or infinite-pitch wrenches (i.e., pure forces or pure torques) acting upon the moving
platform. The inverse singularities can thus be interpreted as configurations where
the lines of actions are linearly dependent [7].

By (13.30) to (13.32), for a Stewart platform, in the course of motion there does
not occur any common constraint. For a GSP, however, things are quite different.
Figure 13.8 is a GSP limb connecting two lines where either the distance L or
the angle θ between the two lines is used to drive the mechanism. Let e1, e2, e3
be an orthonormal basis where e2 is along the lower revolute joint axis, and e3 is
along the shaft of the limb. Let the direction of the upper revolute joint axis be
e4 = (cos θ, sin θ,0). The kinematic screw system of the limb is composed of the
following:
1. The infinitesimal rotation generator and translation generator of the base revolute

joint:

S1 = (0, e2)
T , S2 = (e2,0)T . (13.33)

2. The infinitesimal rotation generator and translation generator of the limb shaft:

S4 = (0, e3)
T , S3 = (e3,0)T . (13.34)

3. The infinitesimal rotation generator and translation generator of the upper revo-
lute joint:

S6 = (e4,Le5)
T , S5 = (0, e4)

T , (13.35)

where e5 = e3 × e4 = (− sin θ, cos θ,0).
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When cos θ = 0, i.e., the two revolute joint axes are parallel to each other, then
e4 = ±e2 and e5 = ∓e1. So (e1,0)T is not spanned by the above six vectors in
R

3,3; since (0, e1)
T spans the orthogonal complement of them, it is the common

constraint of the limb. It is a pure torque that should result in a virtual rotation of
some part of the limb around an axis in the direction of e1 but fails to make it due to
the perpendicularity of the whole structure to e1.

The occurrence of common constraints can compensate for the linear degeneracy
of driving wrenches to make a configuration nonsingular. If we stick to the original
Jacobian map from the velocity of the end-effector to the joint velocities, we get
wrong conclusions on the singularity of the configuration. For a GSP, we need to
consider the following more general Jacobian map J .

In a parallel manipulator, let there be all together n driving wrenches and lin-
early independent common constraint wrenches. For a GSP, n ≥ 6. Each driving
wrench Pi when executed leads to a virtual displacement qi along the wrench. Let
the end-effector velocity be denoted by vector X# ∈ R

3,3, where “#” is the linear
transformation in R

3,3 changing X = (x,y) to (y,x) for any x,y ∈ R
3. Let

Q = (q1, q2, . . . , q6,0,0, . . . ,0︸ ︷︷ ︸
n−6

)T , (13.36)

where the n − 6 zeroes denote the virtual displacements of the n − 6 linearly inde-
pendent common constraints. Now the parallel manipulator is in singular configu-
ration if and only if the following matrix J defined for arbitrary X is of rank less
than 6:

J X = Q. (13.37)

Below we prove that J can be represented by the matrix of driving wrenches
and common constraint wrenches. This conclusion holds not only for GSPs, but for
all parallel robots of at most 6 degrees of freedom.

Each driving wrench or common constraint wrench is a vector Pi in R
3,3. The

wrench matrix of the system refers to the following 6 × n matrix:

W = [P1 P2 . . . Pn]. (13.38)

In a force statical equilibrium of the end-effector, the external force and torque
wrench E equals the sum of the driving wrenches and common constraint wrenches:

E = W F , (13.39)

where F is an nD vector whose components are the force scales of the driving
wrenches and common constraint wrenches.

The virtual work done by E equals the virtual work done by F , so

F T δQ = E · δX# = ET δX, (13.40)
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Fig. 13.9 A limb driven by
line/plane angle

where the dot symbol denotes the inner product in R
3,3. By (13.37), (13.39), and

(13.40), F T J δX = F T W T δX for arbitrary F and δX; hence

J = W T . (13.41)

A GSP is in singular configuration if and only if its driving wrenches and constraint
wrenches span a linear subspace of dimension less than 6.

13.4 Singular Configurations of GSPs

According to the driving parameters of a GSP, all GSPs can be divided into four
classes: (1) 3D3A: 3 distance control parameters and 3 angle control parameters,
(2) 4D2A, (3) 5D1A, (4) 6D. There cannot be more than three angle control pa-
rameters due to the fact that a rigid body needs at most three angle constraints to
determine its orientation.

Figure 13.9 illustrates a limb of fixed length L and driven by line/plane angle θ .
Let e3 be along the shaft, and e2 be normal to the plane. The upper revolute line is
in direction e4 = (cos θ, sin θ,0). Let e5 = (− sin θ, cos θ,0). The kinematic screw
system of the limb is the following:
1. The infinitesimal translation generators of the base plate:

S1 = (0, e1)
T , S2 = (0, e3)

T . (13.42)

2. The infinitesimal rotation generator of the limb shaft:

S3 = (e3,0)T . (13.43)

3. The infinitesimal translation generator and rotation generator of the upper revo-
lute axis:

S4 = (0, e4)
T , S5 = (e4,Le5)

T . (13.44)
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Fig. 13.10 A limb driven by
plane/plane angle

The above five twists span a 5D subspace of R
3,3 when sin θ �= 0, i.e., when the

upper revolute axis is not parallel to the base plate. Its 1D orthogonal complement is
spanned by a vector (0, e5)

T , which represents the common constraint of the limb.
When θ = 0 mod π , the orthogonal complement is 2D, and is spanned by vectors
(0, e2)

T and (e2,−Le1)
T .

Figure 13.10 shows a limb of fixed length L and driven by plane/plane an-
gle θ . Let e3 be along the limb shaft, and e2 be normal to the plane. Let e4 =
(cos θ, sin θ,0)T . The kinematic screw system of the limb is the following:
1. The infinitesimal translation generators of the base plate:

S1 = (0, e1)
T , S2 = (0, e3)

T . (13.45)

2. The infinitesimal rotation generator of the limb shaft:

S3 = (e3,0)T . (13.46)

3. The infinitesimal translation generators of the upper plate:

S4 = (0, e4)
T , S5 = S2. (13.47)

When sin θ �= 0, i.e., when the two plates are not parallel to each other, then the
above five twists span a 4D subspace of R

3,3, whose 2D orthogonal complement
is spanned by vectors (0, e1)

T and (0, e2)
T , which represent two linearly indepen-

dent common constraints of the limb. When the two plates are parallel, the twists
span a 3D subspace, whose 3D orthogonal complement has a third vector generator
(e2,0)T .

We have computed the common constraints of all the limbs used in GSPs, four
of which have been shown in this chapter so far. The following list summarizes the
number of linearly independent common constraint wrenches of a limb in GSP:
# = 0 (1) point to point (or point to line, or point to plane) distance drive; (2) non-
parallel line/line distance or angle drive.
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Fig. 13.11 A 5D1A-type
GSP

# = 1 (1) line to parallel line distance or angle drive; (2) line to plane distance drive;
(3) line to nonparallel plane angle drive.
In the above three cases, the common constraint wrench is a null vector in R

3,3

representing a pure torque.
# = 2 (1) line to parallel plane angle drive; (2) plane/plane distance drive; (3) non-
parallel plane/plane angle drive.
In the first case, the common constraint wrenches form a 2D subspace R

1,1 in R
3,3,

whose two null 1-subspaces represent a pure force and a pure torque, respectively.
In the latter two cases, the common constraint wrenches form a 2D null subspace
whose null 1-subspaces represent pure torques.

# = 3 parallel plane/plane angle drive.
In this case, the common constraint wrenches form a 3D subspace R

1,1,1 in R
3,3,

where the unique null 1-subspace orthogonal to the whole R
1,1,1 represents a pure

force, and the two null 2-subspaces both represent pure torques.
Below consider the 5D1A-type GSP shown in Fig. 13.11. It is actuated by five

distance constraints between point pairs and one angle constraint between two lines.
There are only three ball joints linking the moving platform: B1,2,B3,4, and B5.
Lines B1,2B3,4 and A2A3 are connected by a revolute limb S of stretchable length.
This GSP has the following kinds of singularities:

Singularity type 1 The five lines supporting the driving wrenches of the limbs
between point pairs are linearly independent, while the driving wrench and possible
common constraint wrench of the limb S between two lines are both within the 5D
subspace spanned by the five lines.

Figure 13.12 shows such a singular configuration. Line A5B5 meets line
B1,2B3,4, and lines A2A3 ‖ B1,2B3,4. The five limbs between point pairs all have
their supporting lines intersecting line B1,2B3,4 but are otherwise arbitrary, so they
form a 5D subspace of R

3,3 with degenerate inner product.
Let e1 be along B1,2B3,4, and e2 be along S. Let B1,2 be the origin of the coor-

dinate system. Now limb S has a driving torque (0, e2)
T and a common constraint

wrench (0, e3)
T , and both are orthogonal to (e1,0)T , i.e., both when taken as lines

intersect line B1,2B3,4. So all seven wrenches have their supporting lines intersect-
ing a common line, i.e., their representative null vectors orthogonal to the same null
vector in R

3,3. Hence the configuration is singular.
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Fig. 13.12 A configuration
of singularity type 1

Fig. 13.13 A configuration
of singularity type 3

Singularity type 2 The five lines between point pairs are linearly dependent, and
the two lines connected by the angle-driven limb S are not parallel.

Singularity type 3 The five lines between point pairs span a 4D linear subspace,
the two lines of limb S are parallel, and the 4D subspace has nonempty intersection
with the 2D subspace spanned by the driving wrench and common constraint wrench
of limb S.

Figure 13.13 shows such a singular configuration. All points except for B5 lie in
the same plane, and A2A3 ‖ B1,2B3,4. Since lines A1B1,2, A2B1,2, A3B3,4, A4B3,4
are in the same plane, and the line at infinity of the plane supports the common
constraint wrench of S, the rank of the five lines is 3, and the rank of the 6 × 7
wrench matrix is 5.

Singularity 4 The five lines between point pairs span a linear subspace of dimen-
sion at most 3.

Figure 13.14 shows another type of 5D1A GSP in a configuration where the
matrix of driving wrenches is singular but the whole wrench matrix is not, and hence
the configuration is nonsingular.

In the configuration, lines A5B5, A2B1,2, A3B3, A4B4 intersect at the same
point O , and A3A4 ‖ B3B4. Let e1 be along B3B4, and e2 be along the shaft of the
limb S connecting two lines. Let O be the origin of the coordinate system. Then
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Fig. 13.14 A nonsingular
configuration whose matrix of
driving wrenches is singular

limb S has a driving torque (0, e2)
T and a common constraint wrench (0, e3)

T , and
limbs A5B5, A2B1,2, A3B3, A4B4 span a null 3-space of R

3,3 with basis (e1,0)T ,
(e2,0)T , and (e3,0)T . So to limb A1B1,2, let s be its direction, and let r be the vector
from O to B1,2. Then as long as the three vectors r, s, e1 are linearly independent,
the wrench matrix is nonsingular. On the contrary, the matrix of driving wrenches is
always singular.

13.5 Conclusion

The R
3,3 model of line geometry is ideal for analyzing line complexes and design-

ing line-based surfaces. Spinor representation of 3D special projective transforma-
tions casts new light on geometric construction and decomposition of projective
transformations. This model thus carries the hope of many GAers in improving the
performance of GA in projective geometry.

13.6 Exercises

13.1 Investigate which lines are represented by the nonline element E = e03 ∧ e12

in R
3,3 if the original 3D space is Euclidean. Probe with L = (e0 + d)u (where

d · u = 0) in two ways, related dually: solve L · E = 0, and solve L ∧ E = 0.

13.2 (Continued from previous): You should have found e3 · (u(1 ∓ d∗)), where ∗
denotes the dual in the 3D space. Interpret these sets of lines geometrically.

13.3 Following the hints at the end of Sect. 13.2, show that exp( 1
2τe12 ∧ e31) rep-

resents the translation versor for a translation over τe1.

13.4 Following the hints at the end of Sect. 13.2, show that exp( 1
2γ e01 ∧ e23) rep-

resents the scaling versor for a scaling relative to the origin by eγ along the e1-
direction.
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13.5 (Continued from previous): Provide versors for the remaining projective trans-
formations.
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