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Abstract
We show how a number of combinatorial problems, such as determining the num-
ber of cycles in graphs, can be recast using a graded commutative algebra con-
structed within a real Grassmann exterior algebra. The computational complexity
of this approach is then measured by considering operations at the basis blade
level of the algebra. In particular, the worst-case time complexity of counting
arbitrary length cycles in simple n-vertex graphs via nilpotent adjacency matrix
methods is shown to be O(nα+12n), where α ≤ 3 is the exponent representing
the complexity of matrix multiplication. The storage complexity of the nilpotent
adjacency matrix approach is O(n22n). A probabilistic model is used to describe
a class of graphs in which the average-case time complexity of cycle enumera-
tion is O(n3(1 + q)n) for fixed 0 < q < 1. For reference, experimental results
detailing computation times (in seconds) are compared with algorithms based on
the approaches of Bax and Tarjan.

12.1 Introduction

The complexity of a number of NP-class combinatorial problems can be solved
using only a polynomial number of multivector operations in a 2n-dimensional al-
gebra generated by n mutually commuting null-squares, as we have shown in [5]. In
particular, by defining a “nilpotent adjacency matrix” associated with a finite graph
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on n vertices, the problem of enumerating cycles of length k requires O(nα log k)

multivector operations in the algebra, where α ≤ 3 denotes the exponent associated
with matrix multiplication. While α < 3 for ordinary matrix multiplication (see [2]),
such algorithmic speedups do not necessarily hold for matrices whose elements are
multivectors.

In this chapter, the computational complexity of enumerating cycles of arbitrary
length in graphs is studied in greater detail by counting algebraic operations at the
basis blade level of the algebra as opposed to the multivector level. For practical
reference, the theoretical complexity of this approach is compared to that of the
algorithms of Bax and Tarjan. Moreover, experimental comparisons using MATHE-
MATICA illustrate practical advantages of the nilpotent adjacency matrix approach,
particularly in the case of sparse graphs.

The algebra used in the construction can be regarded as a commutative subalge-
bra of the exterior algebra

∧
R

2n. Its generators commute and square to zero so that
linear combinations of the generators are nilpotent. This nilpotent nature is the key
to combinatorial applications.

All MATHEMATICA examples were computed on a 2.4 GHz MacBook Pro with
4 GB of 667 MHz DDR2 SDRAM running MATHEMATICA 6 for MAC OS X
with the Combinatorica package. Cycle enumeration is accomplished using the
nilpotent adjacency matrix approach, Bax’s approach, and the HamiltonianCycle
procedure found in the MATHEMATICA package Combinatorica. Time plots com-
paring the three approaches are included. MATHEMATICA code used to gener-
ate examples can be found online through the second-named author’s web page,
http://www.siue.edu/~sstaple.

12.2 Essential Background

A graph G = (V ,E) is a collection of vertices V and a set E of unordered pairs of
vertices called edges. Two vertices vi, vj ∈ V are said to be adjacent if there exists
an edge eij = {vi, vj } ∈ E. In this case, the vertices vi and vj are said to be incident
with eij .

A k-walk {v0, . . . , vk} in a graph G is a sequence of vertices in G with initial
vertex v0 and terminal vertex vk such that there exists an edge (vj , vj+1) ∈ E for
each 0 ≤ j ≤ k − 1. A k-walk contains k edges. A k-path is a k-walk in which no
vertex appears more than once. A closed k-walk is a k-walk whose initial vertex is
also its terminal vertex. A k-cycle is a closed k-path with v0 = vk .

The diameter of a graph G is defined to be the length of the longest path in G.
The girth and circumference of a graph are defined to be the lengths of the graph’s
shortest and longest cycles, respectively. If the graph has no cycles, its girth and
circumference are defined to be ∞.

If G = (V ,E) is a graph, A is its adjacency matrix, and S ⊆ V , define the modi-
fied adjacency matrix AS by

[AS]ij =
{

Aij if i ∈ S and j ∈ S,

0 otherwise.

http://www.siue.edu/~sstaple
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Theorem 12.1 (Bax) Each main diagonal element of

∑

S⊆V

(−1)|V |−|S|(AS)|V |

contains the number of Hamiltonian cycles in G if |V | > 0.

Bax’s approach to cycle enumeration uses powers of a graph’s adjacency ma-
trix with the principle of inclusion–exclusion to count all Hamiltonian cycles in
O(2npoly(n)) time and poly(n) storage [1]. Enumerating only those cycles of
length k is accomplished by applying Bax’s algorithm to all k-vertex subgraphs.
For fixed k, this is O(poly(n)) since

(
n
k

) ≤ nk for all n ≥ k. For k increasing with n,
the complexity remains O(2npoly(n)), which can be verified by a rearrangement of
Bax’s formula (cf. Exercise 12.1).

Tarjan’s algorithm (based on pruning with look-ahead) enumerates all cycles in
a graph on n vertices with time complexity O((n + |E|)(C + 1)) when applied to
a graph with C cycles [7]. The storage complexity is O(n + |E| + S), where S is
the sum of the lengths of all cycles. Note that the number of cycles on a k-vertex
subgraph is potentially of order k! while the number of subgraphs supporting such
cycles is of order

(
n
k

)
.

A convenient and practical Tarjan-type implementation is the HamiltonianCy-
cle procedure found in the MATHEMATICA package Combinatorica. The algorithm
uses backtracking and look-ahead to enumerate all Hamiltonian cycles in a graph
on n vertices. The implementation utilized for the examples in this paper enumer-
ates cycles of length k in an n-vertex graph G by applying HamiltonianCycle to all
k-vertex subgraphs of G. Implementations of this Tarjan-like approach are referred
to henceforth as “CombiTarjan.” Tarjan’s algorithm actually lists cycles, which can
result in O(n!) space complexity.

12.3 Technical Considerations

Fix positive integer n and let γ = {ei : 1 ≤ i ≤ 2n} be an orthonormal basis for R
2n.

Note that the pair (γ,∧) generates a nonabelian semigroup A of order 22n. Let

Z = {e2i−1 ∧ e2i : 1 ≤ i ≤ n} ⊂ A, (12.1)

and note that the pair (Z,∧) generates an abelian subsemigroup RΨn of A. It should
be clear that all elements of Ψn square to zero.

Definition 12.1 Let RΨn denote the real abelian semigroup algebra of Ψn. For
convenience, the generators of Ψn are rewritten as ζi = e2i−1 ∧ e2i , and henceforth
the wedge operator is implicit.

Remark 12.1 The algebra RΨn is isomorphic to the n-particle zeon algebra C �n
nil

appearing in the earlier work [5].
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It is evident that the dimension of RΨn is 2n and that an arbitrary element u ∈
RΨn can be expanded as

u =
∑

I∈2[n]
uI ζI , (12.2)

where I ∈ 2[n] is a subset of [n] = {1,2, . . . , n} used as a multiindex, uI ∈ R, and
ζI = ∏

ι∈I ζι.
A canonical basis element ζI is referred to as a blade. The number of elements

in the multiindex I is referred to as the grade of the blade ζI .
The scalar sum evaluation of an element u ∈ RΨn, denoted 〈〈u〉〉, is defined by

〈〈u〉〉 =
〈〈 ∑

I∈2[n]
uI ζI

〉〉

=
∑

I∈2[n]
uI . (12.3)

Definition 12.2 Let G be a graph on n vertices, either simple or directed with
no multiple edges, and let {ζi}, 1 ≤ i ≤ n, denote the nilpotent generators of RΨn.
Define the nilpotent adjacency matrix associated with G by

Aij =
{

ζj if (vi, vj ) ∈ E(G),
0 otherwise.

(12.4)

Recalling Dirac notation, the ith row of A will be conveniently denoted by
〈vi |A , while the j th column will be denoted by A |vj 〉.

A graph-theoretic interpretation of the nilpotent adjacency matrix can be stated
thusly: 〈vi |A |vj 〉 = ζj if and only if one can reach vj from vi in one step. Moreover,
that “step” algebraically corresponds to multiplication by the null-square genera-
tor ζj . Extending by induction, nonzero terms of 〈vi |A k|vj 〉 correspond to k-step
walks from vi to vj in which each walk is “accomplished” in the algebra by com-
puting a product of null-square generators. The null-square property then naturally
“sieves out” walks on distinct generators, i.e., self-avoiding walks. This is all made
precise in the next theorem.

Theorem 12.2 Let A be the nilpotent adjacency matrix of an n-vertex graph G.
For any k > 1 and 1 ≤ i, j ≤ n,

〈
vi |A k|vj

〉 =
∑

(w1,...,wk)∈V k

(wk=vj )∧(m �=�⇒wm �=w�)

ζ{w1,...,wk} =
∑

I⊆V
|I |=k

ωI ζI , (12.5)

where ωI denotes the number of k-step walks from vi to vj visiting each vertex in I

exactly once when initial vertex vi /∈ I , and revisiting vi exactly once when vi ∈ I .
In particular, for any k ≥ 3 and 1 ≤ i ≤ n,
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〈
vi |A k|vi

〉 =
∑

I⊆V
|I |=k

ωI ζI , (12.6)

where ωI denotes the number of k-cycles on vertex set I based at vi ∈ I .

Proof Because the generators of RΨn square to zero, a straightforward inductive ar-
gument shows that the nonzero terms of 〈vi |A k|vj 〉 are multivectors corresponding
to two types of k-walks from vi to vj : self-avoiding walks (i.e., walks with no re-
peated vertices) and walks in which vi is repeated exactly once at some step but are
otherwise self-avoiding. Walks of the second type are zeroed in the kth step when
the walk is closed. Hence, terms of 〈vi |A k|vi〉 represent the collection of k-cycles
based at vi . �

In light of this theorem, the name “nilpotent adjacency matrix” is justified by the
following corollary.

Corollary 12.1 Let A be the nilpotent adjacency matrix of a simple graph on n

vertices. For any positive integer k ≤ n, the entries of A k are homogeneous elements
of grade k in RΨn. Moreover, A k = 0 for all k > n.

Another immediate corollary is that

〈〈
tr
(
A k

)〉〉 = k
∣
∣{k-cycles in G}∣∣, (12.7)

since each k-cycle appears with k choices of base point along the main diagonal
of A k .

In earlier work (see [5, 6]), the authors defined complexity in terms of the number
of multivector operations in C �n

nil, or “C �ops”, required. In contrast, this chapter
work considers complexity at the level of the basis blades of RΨn

∼= C �n
nil.

Definition 12.3 A blade operation in RΨn is defined as computing the sum or prod-
uct of two basis blades. In particular, for multiindices I and J , each of the following
computations is regarded as a blade operation:

(aζI )(bζJ ) =
{

0 if I ∩ J �= ∅,

(ab)ζI∪J otherwise;
(12.8)

aζI + bζJ =
{

(a + b)ζI if I = J ,

aζI + bζJ otherwise.
(12.9)

Recalling the correlation between subsets of [n] and bit strings of length n, each
basis blade ζI is uniquely associated with a binary string I . The cost of a basis blade
multiplication in RΨn is then equal to that of computing first the bitwise AND and
then the bitwise OR of two n-bit words, which is known to be O(n). Summing a
pair of basis blades is similarly O(n).
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Given arbitrary elements u,v ∈ RΨn and letting νu and νv denote the respective
numbers of nonzero coefficients in the canonical expansions of u and v, the number
of blade multiplications required to compute uv is then νuνb . The number of blade
additions is similarly O(νuνv). Taking the costs of the blade operations themselves
into consideration, the complexity of expanding the product uv is thus seen to be
O(n νuνv).

The MATHEMATICA implementation of RΨn used in the examples contained
herein is based on subset operations rather than binary representations of subsets and
bit operations. The additional overhead is offset by the relatively low dimensions of
the examples.

12.4 Theoretical Complexity

Lemma 12.1 Enumerating cycles in a simple graph on n vertices using nilpotent
adjacency matrix methods has storage complexity O(n22n).

Proof The nilpotent matrix method requires construction of n × n matrices whose
entries are elements of a 2n-dimensional algebra; i.e., in the worst case, O(2n) co-
efficients must be associated with each matrix entry. Consequently, the space com-
plexity is O(n22n). �

Theorem 12.3 The worst-case time complexity of enumerating cycles of arbitrary
length in a graph on n vertices using the nilpotent adjacency matrix method is
O(nα+12n).

Proof In light of Theorem 12.2, for any k ≤ n, computing A k = A k−1A requires
computing

〈
vi |A k|vj

〉 =
n∑

�=1

〈
vi |A k−1|v�

〉〈v�|A |vj 〉 (12.10)

for all 1 ≤ i, j ≤ n. Entries of A k−1 are homogeneous grade-(k − 1) elements
of Zn. Moreover, terms in the canonical expansion of 〈vi |A k−1|v�〉 must be in-
dexed by subsets containing v�, while in all cases, 〈v�|A |vj 〉 is either 0 or ζvj

.
Thus, the maximum number of blade multiplications performed in computing the

product 〈vi |A k−1|v�〉〈v�|A |vj 〉 is
(
n−1
k−2

)
for each 1 ≤ � ≤ n.

Computing the product A k−1A then requires at most nα
(
n−1
k−2

)
blade multiplica-

tions. Applying this result recursively, computing A k requires

nα

k∑

�=2

(
n − 1

� − 2

)

< nα2n−1 (12.11)



12 On the Complexity of Cycle Enumeration for Simple Graphs 239

blade multiplications. Since each blade multiplication is of complexity O(n), the
result follows. �

Note that an immediate consequence of the theorem is that the worst-case com-
plexity of computing the girth and circumference of a graph on n vertices is also
O(nα+12n).

Recalling that the diameter of a graph is defined as the length of the graph’s
longest path, another corollary is obtained.

Corollary 12.2 The worst-case time complexity of computing the diameter of a
graph on n vertices using the nilpotent adjacency matrix method is O(nα+12n).

Proof Letting Δ be the n × n diagonal matrix whose main diagonal entries are
Δii = ζi , it can be shown that the off-diagonal entries of ΔA k are homogeneous
grade-(k+1) multivectors corresponding to k-paths in the graph associated with A .
The effect of left multiplication by Δ is to account for the initial vertex of any walk.
Hence, the diameter of the graph is given by the largest positive integer k for which
ΔA k is not the zero matrix. �

Note that the complexity of computing A k may vary depending on various meth-
ods of computing powers. The iterated method requires k − 1 matrix products to
compute

A k :=
{

A if k = 1,

A k−1A otherwise.
(12.12)

Given the binary representation of positive integer k, the successive squares
method requires �log2 k� matrix products and matrix sums to compute. In partic-
ular, letting k be a set of nonnegative integers such that k = ∑

�∈k 2�, then

A k =
∑

�∈k

A 2�

. (12.13)

While the successive squares method is generally more efficient than the iterated
method, the application to nilpotent adjacency matrices is not straightforward. All
discussion is henceforth restricted to the iterated method.

Example 12.1 Computation times in seconds are given for enumerating �n/2�-
cycles in randomly generated n-vertex graphs in Fig. 12.1. The experimental results
illustrate practical advantages of the nilpotent adjacency matrix approach.
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Fig. 12.1 Times (in seconds) required to enumerate �n/2�-cycles in randomly generated n-vertex
graphs having equiprobable edges (p = 0.25)
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12.4.1 Average-Case Complexity in “Suitably Sparse” Graphs

Discussion now turns to the average-case complexity of cycle enumeration in ho-
mogeneous random graphs. A homogeneous random graph G = Gn,p is a graph on
n vertices with independent equiprobable edges of probability p. That is, each pair
of vertices in the graph has equal probability p of being adjacent.

The next example illustrates the role of graph sparseness in the algorithmic com-
parisons. For fixed values of n and k, the time required to count k-cycles in an n-
vertex graph depends on graph density for the CombiTarjan and nilpotent adjacency
matrix methods, but is essentially constant for Bax’s algorithm.

Example 12.2 Mean run times over 20 trials of counting �n/2�-cycles in simple
graphs are compared in Fig. 12.2 (top). In Fig. 12.2 (bottom), the number of vertices
is fixed at 10, and edge existence probability varies from p = 0.1 to p = 0.5.

The next theorem describes a class of random graphs for which the nilpotent
adjacency matrix method is more efficient than O(2npoly(n)).

Theorem 12.4 Let q ∈ (0,1) be fixed. Let n be a positive integer, and let 3 ≤
k ≤ n. Let Gn,p be a homogeneous random graph on n vertices with independent
equiprobable edges of probability p ≤ q

k−1 . Then, the average-case complexity of
enumerating cycles of length less than or equal to k in Gn,p using the nilpotent
adjacency matrix method is O(n3(1 + q)n).

Proof As in the proof of Theorem 12.3, the result is obtained by considering the
number of nonzero coefficients in A k . To consider the average-case complexity,
we consider expected numbers of nonzero coefficients according to the probabil-
ity model indicated. In particular, the average number of blade multiplications per-
formed in computing

〈
vi |A k|vj

〉 =
n∑

�=1

〈
vi |A k−1|v�

〉〈v�|A |vj 〉

is the product of the expected numbers of nonzero coefficients in the canonical ex-
pansions of 〈vi |A k−1|v�〉 and 〈v�|A |vj 〉.

Let G = Gn,p be a homogeneous random graph on n vertices with independent
equiprobable edges of nonzero probability p ≤ q

k−1 for fixed q ∈ (0,1).

Claim Let n ≥ 3, and let 2 ≤ k ≤ n. For any 1 ≤ i, j ≤ n, the expected number of
nonzero coefficients in the canonical expansion of 〈vi |A k|vj 〉 satisfies the following
inequality:

E
(
�{nonzero coefficients}) ≤ qk−1

(
n − 1

k − 1

)

. (12.14)
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Fig. 12.2 Top: Mean run times over 20 trials enumerating �n/2�-cycles in randomly generated
n-vertex graphs having equiprobable edges (p = 0.25). Bottom: 20-Run mean run times of count-
ing 5-cycles in 10-vertex graphs with edge probabilities running from p = 0.1 to p = 0.5. Plot-
markers: B—Bax, C—CombiTarjan, •—RΨn

Proof of Claim By Theorem 12.2, the expected number of nonzero coefficients in
the canonical expansion of 〈vi |A k|vj 〉 is equal to the expected number of k-vertex
subsets I ⊆ V such that there exists a k-step walk from vi to vj ∈ I visiting each
vertex of I exactly once when vi /∈ I and revisiting vi exactly once when vi ∈ I .

The special case k = 2 is treated first. The expected number of nonzero coeffi-
cients in the canonical expansion of 〈vi |A 2|vj 〉 is equal to the expected degree of vi

when i = j and equal to the expected number of two step walks on distinct vertices
vi → v� → vj when i �= j ; i.e.,

E
(
�{nonzero coefficients}) =

{
p(n − 1) i = j ,

p2(n − 2) otherwise.
(12.15)
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The desired inequality for k = 2 is then established by observing that p < q , whence

p2(n − 2) < p(n − 1) < q(n − 1) = qk−1(n − 1). (12.16)

Turning now to the more general case 2 < k ≤ n, the expected number of vertex
sets I on which k-walks vi → vj exist with no repeated vertices except possibly vi

at an intermediate step is determined by partitioning the collection of these walks
into two classes: (i) walks on k edges and (ii) walks on k − 1 edges (in which case,
vertex vi is revisited on the second step).

Unless otherwise indicated, k-walks will refer only to those walks w : vi → vj

with no revisited vertex except possibly vi exactly once at an intermediate step.
Note that the total number of k-walks w : vi → vj in Kn revisiting no vertex

except possibly vi at an intermediate step is given by

W = (k − 1)!
(

n − 1

k − 1

)

(12.17)

since these walks are specified by ordered k-tuples of vertices with vj in the kth
position. Hence, k − 1 intermediate vertices visited are chosen from V \ {vj } with
(k − 1)! possible permutations.

Denote as Class I those walks on k independent equiprobable edges. Class I
walks either revisit no vertices or may revisit vi at some step other than the second
step. Let W1 denote the total number of these walks in Kn. Denote as Class II those
walks on k − 1 independent equiprobable edges. Class II walks revisit vertex vi at
the second step. Let W2 denote the number of Class II walks in Kn.

Note first that W = W1 + W2. Given a homogeneous random graph G = Gn,p , it
is now evident that

E
(
�{k-walks w : vi → vj in G})

= E
(
�{Class I k-walks w : vi → vj in G})

+ E
(
�{Class II k-walks w : vi → vj in G}). (12.18)

When a collection of k-walks vi → vj exists on k independent equiprobable
edges,

E
(
�{Class I k-walks w : vi → vj }

) =
∑

Class I k-walks w:vi→vj

P(w exists)

= pkW1. (12.19)

Similarly,

E
(
�{Class II k-walks w : vi → vj }

) = pk−1W2. (12.20)
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Together, (12.18), (12.19), and (12.20) give

E
(
�{k-walks w : vi → vj in G}) = pkW1 + pk−1W2

≤ pk−1(W1 + W2) = pk−1W. (12.21)

The expected number of vertex subsets supporting these walks therefore satisfies
the following inequality:

E
(
�{I : ∃ k-walk w : vi → vj }

) ≤ pk−1W. (12.22)

With the assumption p ≤ q
k−1 for fixed q > 0 and substitution of W from (12.18),

one thereby obtains

E
(
�{I : ∃k-walk w : vi → vj }

) ≤ qk−1

(k − 1)k−1
W ≤ qk−1

(k − 1)!W

= qk−1
(

n − 1

k − 1

)

. (12.23)

This completes the proof of the claim. �

By considering the expected number of nonzero coefficients in the canonical
expansion of 〈vi |A k−1|vj 〉 for 3 ≤ k ≤ n, it is now evident that the expected number
of blade multiplications performed in computing 〈vi |A k−1A |vj 〉 is bounded above
by

n∑

�=1

qk−2
(

n − 1

k − 2

)

p = npqk−2
(

n − 1

k − 2

)

≤ qk−1 n

k − 1

(
n − 1

k − 2

)

= qk−1
(

n

k − 1

)

. (12.24)

Hence, the expected number of blade multiplications performed in computing the
matrix product A k = A k−1A is bounded above by n2qk−1

(
n

k−1

)
. Applying this

result recursively, the average number of blade multiplications required to compute
A k is found to be bounded above by n2 ∑k−1

�=1 q�
(
n
�

)
.

Observing that

k−1∑

�=1

q�

(
n

�

)

≤
n∑

�=0

q�

(
n

�

)

= (1 + q)n, (12.25)

cycle enumeration is of average-case complexity O(n2(1 + q)n) in terms of blade
operations required. Recalling the O(n) complexity of blade operations thus com-
pletes the proof. �
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Fig. 12.3 Top: Counting cycles of random length k ∈ {3, . . . ,max({3, n/2})} in n-vertex graphs
with edge probability p = q/(k − 1). The continuous curve is y = cn3(1 + q)n, where q = 0.7
and c = 2.4862 · 10−9, obtained by least squares method. Bottom: Counting cycles of length
k ∈ {3, . . . ,max(3, �n/2�)} in n-vertex graphs with edge probability p = q/(k−1), where q = 0.7.
Plotmarkers: B—Bax, C—CombiTarjan, •—RΨn

Example 12.3 Average computation times (over 200 trials) of enumerating cycles
of length k ∈ {3, . . . ,max({3, n/2})} in homogeneous random graphs satisfying the
conditions of Theorem 12.4 with constant q = 0.7 are depicted in Fig. 12.3 (top).
Also plotted is the curve y = cn3(1 + q)n with c = 2.4862 · 10−9 determined by
least squares.

Example 12.4 A comparison of average computation times (over 20 trials) for the
three methods of enumerating cycles of length k ∈ {3, . . . ,max({3, n/2})} in ho-
mogeneous random graphs satisfying the conditions of Theorem 12.4 with constant
q = 0.7 are depicted in Fig. 12.3 (bottom).
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As the next theorem shows, the fixed cycle length case is very well-behaved in
terms of complexity.

Theorem 12.5 For fixed k ∈ N, the worst-case complexity of enumerating k-cycles
in an n-vertex graph by the nilpotent adjacency matrix method is O(nα+k−1).

Proof The case k = 3 is clear from the special case in the proof of Theorem 12.4.
When k > 3, the maximum number of nonzero coefficients in the canonical expan-

sion of 〈vi |A k−1|vj 〉 is
(
n−1
k−2

)
. Asymptotically,

(
n−1
k−2

) ≈ (n−1)k−2

(k−2)! = O(nk). Hence,

computing A k requires computing at most

nα
k−2∑

�=0

(
n − 1

�

)

= O
(
nαnk−2) = O

(
nk+(α−2)

)
(12.26)

blade products. �

12.5 Implementation Notes

In general, coding the geometric product (or any noncommutative operation) in
MATHEMATICA is most reliably done using one of MATHEMATICA’s undefined
symbols. However, since the product in RΨn is commutative, a much more efficient
implementation is possible. The nilpotent adjacency matrix approach was imple-
mented herein by overloading the Times operator of MATHEMATICA to facilitate
multiplication of blades from RΨn. Figure 12.4 details MATHEMATICA code for
implementing the multiplication in RΨn.

Once the RΨn multiplication is implemented, the algorithm for counting cycles
is very straightforward. The corresponding code is seen in Fig. 12.5.

Bax’s algorithm is implemented using the formula obtained in Exercise 12.1.
Counting all k-cycles in a graph G having adjacency matrix A is accomplished by
computing the quantity

k�{k-cycles in G} = Tr

( ∑

S⊆V
|S|≤k,S �=∅

(
n − |S|
k − |S|

)

(−1)k−|S|(AS)k
)

. (12.27)

The corresponding code is seen in Fig. 12.6.
The CombiTarjan method was implemented by first extracting all k-vertex sub-

graphs and summing recovered numbers of Hamiltonian cycles on them. The code
appears in Fig. 12.7.

The comparisons seen in Fig. 12.1, Fig. 12.3, and Fig. 12.2 were generated as
follows: For any given trial, a random simple graph is first generated by constructing
a random symmetric binary matrix. The corresponding nilpotent adjacency matrix
is then constructed.



12 On the Complexity of Cycle Enumeration for Simple Graphs 247

Fig. 12.4 MATHEMATICA code defining RΨn multiplication by overloading the Times operator

Fig. 12.5 MATHEMATICA code for counting k-cycles via nilpotent adjacency matrix method

Fig. 12.6 MATHEMATICA code for counting k-cycles via algorithm of Bax

Fig. 12.7 MATHEMATICA implementation of “CombiTarjan” approach

The MATHEMATICA system cache was cleared before counting by each method.
The system time was stored in a variable, the appropriate method was called, and
the subsequent system time was stored in another variable. Relevant data were then
appended to a table. Test points were incorporated after each method to ensure that
all three methods were returning the same results.



248 R. Schott and G.S. Staples

12.6 Conclusion

Leslie Valiant first defined the complexity class �P when dealing with the complex-
ity of counting solutions to NP decision problems [8]. The problem of deciding
whether or not a graph contains a Hamiltonian cycle is one such decision prob-
lem [3].

Generally, the problem of counting cycles in finite graphs is known to be �P -
complete, and no polynomial-time algorithm is known to exist for solving this prob-
lem. Algorithms with O(2npoly(n)) time complexity and O(poly(n)) space com-
plexity are known to exist (see [1, 4]).

The time complexity of Tarjan’s algorithm is proportional to the number of cy-
cles contained in the graph. Unlike Bax’s algorithm, which simply counts cycles,
Tarjan’s algorithm actually lists the cycles. As a result, the storage and time com-
plexity of Tarjan’s algorithm are potentially factorial rather than exponential.

The nilpotent adjacency matrix method, like Bax’s algorithm, counts cycles with-
out listing them, providing an advantage over Tarjan’s approach in terms of storage-
complexity (assuming the counting of cycles is all that is required). Unlike Bax’s
algorithm, which has time complexity O(2npoly(n)) in all cases, the average-case
complexity is significantly less when dealing with “suitably-sparse” graphs. The
storage complexity of the nilpotent adjacency matrix approach lies between Bax
and Tarjan, since it is proportional to the number of vertex subsets supporting cy-
cles in the graph.

As illustrated by the experimental results, the nilpotent adjacency matrix method
often has computational advantages over other classical algorithms. Much work re-
mains to be done in characterizing theoretical complexity on various families of
graphs.

12.7 Exercises

12.1 Let A be the adjacency matrix of a simple graph G on n vertices as seen in
Theorem 12.1. Show that for any vertex vi in G and positive integer k ≤ n,

�{k-cycles at vi} =
[

∑

S⊆V
|S|≤k,S �=∅

(
n − |S|
k − |S|

)

(−1)k−|S|(AS)k

]

ii

. (12.28)

12.2 For positive integer n, let Z = {e2i−1 ∧ e2i : 1 ≤ i ≤ n} as in (12.1). Prove that
the pair (Z,∧) forms an abelian semigroup.

12.3 Let u ∈ RΨn be an element of the form u = a1ζ1 + a2ζ2, where a1 and a2 are
nonzero scalars. Show that u2 �= 0 and u3 = 0.
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Fig. 12.8 A simple graph on
14 vertices

12.4 Suppose that n and k are positive integers satisfying 1 < k ≤ n and u ∈ RΨn

is an element of the form u = ∑k
i=1 aiζi where ai �= 0 for i = 1, . . . , k. Prove the

following:
i. uk = k!a1 · · ·akζ{1,...,k}

ii. um = 0 for all m > k.

12.5 Construct a nilpotent adjacency matrix A for the graph appearing in Fig. 12.8
and count the 7-cycles contained therein by computing A 7. Verify your result by
hand as well as by applying the Bax and CombiTarjan algorithms.
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