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Abstract
The bottleneck in symbolic geometric computation is middle expression swell.
Another embarrassing problem is geometric explanation of algebraic results,
which is often impossible because the results are not invariant under coordinate
transformations. In classical invariant-theoretical methods, the two difficulties
are more or less alleviated but stay, while new difficulties arise.
In this chapter, we introduce a new framework for symbolic geometric computing
based on conformal geometric algebra: the algebra for describing geometric con-
figuration is null Grassmann–Cayley algebra, the algebra for advanced invariant
manipulation is null bracket algebra, and the algebra underlying both algebras is
null geometric algebra. When used in geometric computing, the new approach
not only brings about amazing simplifications in algebraic manipulation, but can
be used to extend and generalize existing theorems by removing some geometric
constraints from the hypotheses.

10.1 Introduction

In algebraic approaches to geometric computing, the general procedure is as fol-
lows [19]: first, the geometric configuration, including both the hypotheses and the
conclusion, is translated into an algebraic formulation in a prerequisite algebraic
language; second, algebraic computations are carried out to the conclusion by uti-
lizing the computational rules of the algebra and the given hypotheses; third, the
result of the computations is translated back to geometry or, in other words, is given
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a geometric interpretation. In geometric reasoning and theorem proving, the input
of a geometric problem is formulated by a set of symbols and their algebraic rela-
tions, and the algebraic computing, if geometrically meaningful, is called “symbolic
geometric computation” [18].

The most commonly used algebraic formulation is Cartesian coordinates and its
variations. In this setting, geometric relations are represented by polynomial equal-
ities of coordinates. When coordinates are used in geometric computation, two typ-
ical difficulties occur:
1. Middle expression swell [1]: It is quite often that both the input and output are

small but the polynomials in middle steps are huge. Some computations are thus
possible only theoretically, at least for the current publicly available PCs and
computer algebra systems.

2. Geometric inexplicability [19]: The result of algebraic computation is usually
difficult to explain geometrically. In fact, most results produced do not have any
geometric meaning—they are not invariant under coordinate transformations and
thus are geometrically meaningless.
In the second half of the 19th century, several algebras of geometric covariants

and invariants were proposed. When used in geometric computing, such algebras
may help alleviating the difficulties, because they keep more geometry within their
algebraic structures [16].

Classical invariant theory deals with invariance under the transformation group
GLn(K ). The corresponding geometry is projective geometry. The correspond-
ing algebra of covariants for describing projective incidence relations is called
“Grassmann–Cayley algebra.” This is an algebra equipped with two products that
are dual to each other: the outer product as in exterior algebra represents the exten-
sion of geometric entities, and the meet product represents the intersection of the
entities.

In classical invariant theory, the algebra of invariants is the algebra of determi-
nants of homogeneous coordinates, called “bracket algebra” [18]. For example, let
1,2,3 be three points in the 2D projective plane, let their homogeneous coordinates
be (xi, yi, zi) for i = 1,2,3, respectively. Then

[123] =
∣
∣
∣
∣
∣
∣

x1 y1 z1
x2 y2 z2
x3 y3 z3

∣
∣
∣
∣
∣
∣

. (10.1)

Obviously, the bracket is multilinear and antisymmetric with respect to its compo-
nents 1,2,3. The two properties, however, do not suffice to define bracket algebra
completely.

In bracket algebra, people do not resort to Laplace expansions of the brackets;
instead they use the brackets as basic indeterminates and take the algebraic relations
among the brackets as “syzygies” [16]. Again take as example the 2D projective ge-
ometry. Let there be five points 1,2,3,4,5 in the projective plane. The 3D bracket
algebra generated by the five points is the bracket polynomials with C3

5 = 10 inde-
terminates
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[123], [124], [125], . . . , [345].

The ten brackets are not algebraically independent. They satisfy five algebraic
relations which generate all other relations:

[123][145] − [124][135] + [125][134] = 0,

[123][245] − [124][235] + [125][234] = 0,

[123][345] − [134][235] + [135][234] = 0,

[124][345] − [134][245] + [145][234] = 0,

[125][345] − [135][245] + [145][235] = 0.

(10.2)

These generating relations are the syzygies defining the bracket algebra, called
the “Grassmann–Plücker syzygies” of the five coplanar points [16]. These syzygies
are still not algebraically independent from each other. For example, among the five
syzygies in (10.2), only three are algebraically independent, e.g., the first three. They
form a “bracket basis” of the syzygies.

Brackets have obvious representational advantage over coordinates. For five
points 1 to 5 in the projective plane, the corresponding bracket algebra contains
monomials like [123][145] and binomials like [123][145] + [124][135]. In coordi-
nates, however, their expanded forms are much longer:

[123][145]
= x2z1y3x1y4z5 − x2z1y3x1z4y5 − x2z1y3x4y1z5 + x2z

2
1y3x4y5

− x1y2z3x4y1z5 + x1y2z3x4z1y5 + x1y2z3x5y1z4 − x1y2z3x5z1y4

− x3z1y2x1y4z5 + x3z1y2x1z4y5 + x3z1y2x4y1z5 − x3z
2
1y2x4y5

+ x3z
2
1y2x5y4 + x2

1y2z3y4z5 − x2
1y2z3z4y5 − x1z2y3x5y1z4

+ x1z2y3x5z1y4 − x2y1z3x1y4z5 + x2y1z3x1z4y5 + x2y
2
1z3x4z5

− x2y1z3x4z1y5 − x2y
2
1z3x5z4 + x2y1z3x5z1y4 + x2z1y3x5y1z4

− x2z
2
1y3x5y4 + x3y1z2x1y4z5 − x3y1z2x1z4y5 − x3y

2
1z2x4z5

+ x3y1z2x4z1y5 + x3y
2
1z2x5z4 − x3y1z2x5z1y4 − x2

1z2y3y4z5

+ x2
1z2y3z4y5 + x1z2y3x4y1z5 − x1z2y3x4z1y5 − x3z1y2x5y1z4,

[123][145] + [124][135]
= −x1y2z4x3y1z5 − x1y2z4x5z1y3 + x2

1z2y4z3y5

− x1z2y4x5y1z3 − x2y1z4x1y3z5 + x2y
2
1z4x3z5 − x2y1z4x3z1y5

+ 2x2z1y3x1y4z5 − x2z1y3x1z4y5 − x2z1y3x4y1z5 + x2z
2
1y3x4y5
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− x1y2z3x4y1z5 + 2x1y2z3x4z1y5 + 2x1y2z3x5y1z4 − x1y2z3x5z1y4

− x3z1y2x1y4z5 + 2x3z1y2x1z4y5 + 2x3z1y2x4y1z5 − 2x3z
2
1y2x4y5

+ x3z
2
1y2x5y4 + x2

1y2z3y4z5 − 2x2
1y2z3z4y5 − x1z2y3x5y1z4

+ 2x1z2y3x5z1y4 − x2y1z3x1y4z5 + 2x2y1z3x1z4y5 + x2y
2
1z3x4z5

− x2y1z3x4z1y5 − 2x2y
2
1z3x5z4 + 2x2y1z3x5z1y4 + 2x2z1y3x5y1z4

− 2x2z
2
1y3x5y4 + 2x3y1z2x1y4z5 − x3y1z2x1z4y5 − 2x3y

2
1z2x4z5

+ 2x3y1z2x4z1y5 + x3y
2
1z2x5z4 − x3y1z2x5z1y4 − x4z1y2x1y3z5

− x4z1y2x5y1z3 + x4z
2
1y2x5y3 − 2x2

1z2y3y4z5 + x2
1z2y3z4y5

+ 2x1z2y3x4y1z5 − x1z2y3x4z1y5 − x3z1y2x5y1z4 + x2
1y2z4y3z5

− x4y1z2x1z3y5 + x4y
2
1z2x5z3 − x4y1z2x5z1y3 − x2z1y4x1z3y5

− x1z2y4x3z1y5 − x2z1y4x3y1z5 + x2z
2
1y4x3y5. (10.3)

The representational advantage of brackets does not necessarily lead to any ma-
nipulational advantage. Since the brackets are not algebraically independent, one
may consider using only a minimum set of algebraically independent brackets and
representing all other brackets by elements in the minimum set. If brackets are used
in this way, then they are equivalent to coordinates. For example, in (10.2) the first
three syzygies form a bracket basis. If only such syzygies are used, then the fol-
lowing algebraically independent brackets can represent the other brackets via the
syzygies and are such a minimum set:

[123], [124], [125], [234], [235], [134], [135]. (10.4)

Then essentially points 1,2,3 are taken as a basis of the 3D vector space realizing
the 2D projective plane, and (10.4) is composed of the volume [123] of the basis
and the homogeneous coordinates of points i = 4,5 with respect to the basis

xi = [12i]
[123] , yi = [13i]

[123] , zi = [23i]
[123] .

Let us see how invariants are manipulated in classical invariant theory. Classi-
cal invariant-theoretical method employs a Gröbner basis of the ideal generated by
the Grassmann–Plücker syzygies in bracket algebra, called “straightening syzygies”
[16]. All bracket polynomials form a Z -module with elements in the straightening
syzygies as a basis. Any bracket polynomial can be written in a unique manner as
a linear combination of the basis elements with integer coefficients. The latter is
the “normal form” of the bracket polynomial. In the procedure of normalization,
a non-straightened bracket monomial is “exploded” into many terms many times.
This procedure does not have any control to the middle expression swell.
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Geometric interpretation is also a problem for bracket algebra. Although each
bracket, as a determinant of homogeneous coordinates of the constituent points, can
be interpreted in affine geometry as the signed volumes of the simplex spanned by
the points as vertices, a bracket polynomial is by no means easily interpretable with
geometric terms. If the polynomial can be written as a rational monomial in a suit-
able covariant algebra in which the basic elements and their products are geometri-
cally meaningful, then the polynomial finds its geometric interpretation. According
to a theorem by Sturmfels [17], theoretically this procedure is always successful,
called “Cayley factorization.” However, there is no algorithm to produce this fac-
torization, except for the simplest case where every point in the bracket polynomial
occurs only once [18].

So in the setting of classical invariant theory, the two major problems faced by the
coordinate approach are still alive, although in some special cases the algebraic ma-
nipulations can be simplified because of the simplicity in algebraic representation.
Due to the algebraic dependencies among brackets, new difficulties arise, which are
by no means easy to handle. In invariant-theoretical methods, people do not get rid
of algebraic dependencies; otherwise it becomes a traditional coordinate method.
The following are some newly invoked problems [4, 11]:
• Representation: A geometric entity or relation often has many representations in

invariant algebra. How to choose a suitable one in computation? Can the comput-
ing be made robust against the choice?

This problem has never been studied before. A typical example is a conic
formed by five points in the projective plane. It has fifteen equal but different
forms when represented as a degree-four binomial of brackets. Different choice
of the representation can lead to drastic difference in complexity in subsequent
algebraic manipulations.

• Contraction: Reduce the number of terms of a bracket polynomial.
This problem does not exist in polynomials of coordinates. In bracket algebra

this problem is wide open: people do not know how to judge and how to find a
minimum-sized form for a bracket polynomial.

• Expansion: The reverse procedure of Cayley factorization is called “Cayley ex-
pansion” [11]. It is to translate a scalar-valued expression of the algebra of co-
variants into a polynomial in the algebra of invariants.

This problem turns out to be rather complicated. A simple example is the
bracket [aa′a′′] formed by three intersections of pairs of lines in the projective
plane:

a = 12 ∩ 34, a′ = 1′2′ ∩ 3′4′, a′′ = 1′′2′′ ∩ 3′′4′′.

To compute the bracket, by substituting the expressions of the a’s in Grassmann–
Cayley algebra into it, we get

[{

(1 ∧ 2) ∨ (3 ∧ 4)
}{(

1′ ∧ 2′) ∨ (

3′ ∧ 4′)}{(1′ ∧ 2′) ∨ (

3′ ∧ 4′)}].

It has 16847 different expansion results.
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It is an appalling fact that classical invariant-theoretical method is far from be-
ing well developed for symbolic computation. Basic computing tasks like choosing
optimal representations in the procedure of computing, different expansions of co-
variant expressions, contraction of invariant expressions, and factorization in both
invariant and covariant algebras, are either open or overlooked. The bottleneck in
symbolic computing, i.e., middle expression swell, is not taken care of. Because of
this, although invariant algebra can provide simplification in algebraic description,
its cost is significantly high complexity in algebraic manipulation.

When it comes to Euclidean geometry, the algebra of basic invariants is “inner-
product bracket algebra” [3]. This algebra contains, besides brackets, the inner prod-
ucts of vectors as basic elements. In its defining syzygies there is a polynomial of
the form

[i1i2 · · · in][j1j2 · · · jn] − det(ik · jl )k,l=1,...,n,

which equates the product of two determinants to the determinant of the inner prod-
ucts of the constituent column vectors of the two determinants. This syzygy contains
as many as n! + 1 terms. So the task to control the limit of middle expression swell
is much heavier. Further to people’s dismay, the invariants and covariants in geo-
metric computing are often complicated rational polynomials of basic ones. This
suggests that basic invariants are too low-level. As a result, symbolic computation
in Euclidean geometry with inner-product bracket algebra is much more difficult
than in projective geometry.

This is the background of our research in recent years on invariant symbolic com-
putation in classical geometry. In the course of eight years, we have proposed a new
invariant framework, called “null geometric algebra,” and a new guideline for com-
putation, called “BREEFS” [6–10, 12, 13, 15]. The former is a system of monomial
representations of Euclidean incidence geometric constructions and an associated
hierarchy of infinitely graded advanced invariants grown out of Clifford multipli-
cation, and the latter is a stepwise size control strategy based on syzygies of the
invariant algebra. The new framework and guideline can help achieving significant
simplification in invariant algebraic manipulation and thus lead to much better com-
putation both in efficiency (size control) and in quality (geometric interpretation),
as follows:
• In projective geometry and Euclidean geometry, generally the size of an expres-

sion being computed is controlled to within two terms.
• Some geometric computing tasks, which have proved to be very hard if using

only coordinates or basic invariants, can be finished with our new system.
This chapter intends to provide an introduction to the new system. This is done

in Sect. 10.2. Section 10.3 is a practical application of the new system to the prob-
lem of “geometric factorization, decomposition, and theorem completion,” that is,
to explore the quantitative and geometric relationship between the hypotheses and
the conclusion of a geometric theorem, and to explore and discover geometrically
meaningful new conclusions by reducing the number of hypotheses in the theo-
rem.
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10.2 Null Grassmann–Cayley Algebra and Null Bracket Algebra

10.2.1 Grassmann–Cayley Algebra, Bracket Algebra and
Inner-Product Bracket Algebra

First recall the definition of Grassmann–Cayley algebra [18]. Let V n be an nD line-
ar space over a field of characteristic not 2. Let Λ(V n) be the Grassmann space over
the base space V n. Define in Λ(V n) the following meet product, which is dual to
the outer product: for any A,B ∈ Λ(V n), their meet product A ∨ B is defined by [9]

(A ∨ B)∗ := B∗ ∧ A∗, (10.5)

where “∗” is the dual operator in Grassmann algebra, and “∧” is the outer product.
Grassmann–Cayley algebra is a language for describing projective incidence

constructions. Any vector of V n represents a point of (n − 1)D projective space,
and the representation is homogeneous in that it is unique up to scale: any two vec-
tors represent the same projective point if and only if they differ by scale only. The
line extended by two points is represented by their outer product, and the plane
extended by three points is represented by the outer product of any three vectors
representing the three points. In projective space, the intersection of a line and a
plane is represented by their meet product.

Let there be m projective points. An nD bracket algebra generated by a sequence
S of m symbols 1,2, . . . ,m representing the points, where m > n + 1, is the poly-
nomial ring generated by all subsequences of S of length n, denoted by square
brackets, modulo the ideal generated by the left side of the following identity, called
“Grassmann–Plücker syzygies”:

n+1
∑

k=1

(−1)k+1[i1i2 · · · in−1jk][j1j2 · · · ǰk · · · jn+1] = 0, (10.6)

where the i’s and j’s are symbols in S , and ǰk denotes that jk does not occur in the
subsequence. By requiring antisymmetry among them, the elements in each bracket
do not need to follow their original order in the sequence 1,2, . . . ,m.

The proof of (10.6) is trivial: expand

(i1 ∧ i2 ∧ · · · ∧ in−1) ∨ (j1 ∧ j2 ∧ · · · ∧ jn+1) (10.7)

using the “shuffle formula” in Grassmann–Cayley algebra [16] to distribute the j’s
to the sequence i1i2 · · · in−1, once for each j but with alternating signs. That (10.7)
equals zero follows from the fact that any n + 1 vectors in an nD vector space are
linearly dependent, so their outer product equals zero. Thus,

j1 ∧ j2 ∧ · · · ∧ jn+1 = 0.

The meet product of zero with any element is zero. This proves (10.6).
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Bracket algebra is established for projective geometry and, after some revision,
for affine geometry. For Euclidean geometry, a new structure called inner product
is needed. A bracket algebra supplemented by an inner product is an inner-product
bracket algebra [3]. Formally, an nD inner-product bracket algebra generated by
a sequence S of m symbols of vectors 1,2, . . . ,m, where m ≥ n, is the quotient
of the polynomial ring generated by two classes of subsequences of S of length 2
and n, denoted by dot and square bracket, respectively, modulo the ideal generated
by the following syzygies:
• GP1:

n+1
∑

k=1

(−1)k+1i · jk[j1j2 · · · ǰk · · · jn+1]. (10.8)

• GP2:

[i1i2 · · · in][j1j2 · · · jn] − det(ik · jl )k,l=1,...,n. (10.9)

The order of elements in the subsequences can be violated by requiring that the dot
structure is symmetric while the bracket structure is antisymmetric.

The proof of the syzygies is also trivial. (10.8) is the expansion of the inner
product

i · (j1 ∧ j2 ∧ · · · ∧ jn+1), (10.10)

which equals zero because the outer product of the n + 1 j’s is zero. (10.9) follows
from

[i1i2 · · · in][j1j2 · · · jn]
= (i1 ∧ i2 ∧ · · · ∧ in)∗(j1 ∧ j2 ∧ · · · ∧ jn)∗

= (

(i1 ∧ i2 ∧ · · · ∧ in) · (jn ∧ jn−1 ∧ · · · ∧ j1)
)

= det(ik · jl )k,l=1,...,n,

where the e’s are a basis of the nD vector space defining the dual operator, and
the dot denotes the inner product in geometric algebra. The Grassmann–Plücker
syzygies (10.6) can be obtained from (10.9) directly.

To obtain geometrically explicitly meaningful results, one needs to resort to ad-
vanced algebraic invariants. An algebraic invariant is a polynomial function of
finitely many geometric entities, each represented by coordinates, such that un-
der all kinds of coordinate transformations specified by the defining group of the
geometry, the function remains either invariant or rescaled by a power of the deter-
minant of the transformation. It is a classical theorem that all projective algebraic
invariants are generated by brackets and that all Euclidean algebraic invariants are
generated by brackets and inner products of vector pairs. Conversely, it is clear that
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Fig. 10.1 Basic invariants in
2D Euclidean geometry

all brackets are projective invariants and all inner products are Euclidean invari-
ants.

Brackets and inner products of vector pairs are basic Euclidean invariants. For
example, in 2D Euclidean geometry the two basic Euclidean invariants are shown
in Fig. 10.1: the distance between two points a1 = (x1, y1), a2 = (x2, y2):

|a1 − a2|2 = (x1 − x2)
2 + (y1 − y2)

2

= x2
1 + x2

2 − 2x1x2 + y2
1 + y2

2 − 2y1y2, (10.11)

and twice the signed volume of a simplex spanned by vertexes aj = (xj , yj ) for
1 ≤ j ≤ 3:

[

(a1 − a2)(a1 − a3)
] =

∣
∣
∣
∣
∣

x1 − x2 x1 − x3

y1 − y2 y1 − y3

∣
∣
∣
∣
∣

= x1y2 − x2y1 − x1y3 + x3y1 + x2y3 − x3y2. (10.12)

All other algebraic invariants are polynomial functions of the basic ones.
An invariant has three different forms of appearance: the coordinate form such

as the right side of (10.12); the expanded form such as the right side of

[

(a1 − a2)(a1 − a3)
] = [a1a2] − [a1a3] + [a2a3]; (10.13)

and the compact form such as [(a1 − a2)(a1 − a3)]. Obviously, the compact form
is the most convenient in reading out geometric interpretation. On the other hand,
without expanding the parentheses in a compact form, algebraic manipulations are
much more complicated.

An advanced invariant is an algebraic invariant having a compact form that is
a monomial in a geometric algebra. The geometric interpretation of an advanced
invariant is immediate from the compact form. Advanced invariant theory studies
the geometric and algebraic properties of advanced invariants. CGA (conformal ge-
ometric algebra) provides a natural tool to construct advanced Euclidean invariants.

10.2.2 From Conformal Geometric Algebra to Null
Grassmann–Cayley Algebra and Null Bracket Algebra

To start with, consider the expansion of (10.11), i.e., the squared length of line seg-
ment a1a2:
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d2
ab = |a1 − a2|2 = (a1 − a2) · (a1 − a2)

= a1 · a1 + a2 · a2 − 2a1 · a2. (10.14)

A geometric point can be represented by the vector drawn from the origin of the
coordinate frame to the point; so a1 · a1 represents the squared distance between
the origin and the point. When the coordinate frame changes, so does the squared
distance. Hence, a1 · a1 is geometrically meaningless, and so is each term on the
right side of (10.14). We are confronted with a bunch of geometrically meaningless
terms when expanding a squared distance.

To avoid such expansions, a natural idea is to introduce a new inner product such
that if vectors a1,a2 represent two geometric points, then a1 · a2 is a geometric
quantity relying on the two points only. Any such a candidate must be a function of
the distance between the two points.

Then a1 · a1 has to be independent of a1, because it has to be a function of the
distance zero between a point and itself. The simplest choice is to set a1 · a1 = 0,
i.e., vector a1 is null. Then from (10.14) we get

a · b = −d2
ab

2
. (10.15)

To realize nD Euclidean geometry in an inner-product space having property
(10.15), the smallest dimension is n + 2, and the space is Minkowski. Such a re-
alization, called the conformal model, has its root in the work of Wachter (1830s)
and later occurred in S. Lie’s dissertation (1870s). For n = 3, the null-vector rep-
resentation of a point (x, y, z) ∈ R

3 in Minkowski space R
4,1 is the following: let

(e1, e2, e3) be a basis of R
3, and let (e1, e2, e3,n∞,n0) be a basis of R

4,1 with
inner-product matrix

⎛

⎜
⎜
⎜
⎝

1
1

1
0 −1

−1 0

⎞

⎟
⎟
⎟
⎠

; (10.16)

then

(x, y, z) ∈ R
3 �→

(

x, y, z,1,−x2 + y2 + z2

2

)

∈ R
4,1 (10.17)

is an isometry. When x2 + y2 + z2 → ∞, the right side of (10.17) tends to the
direction of vector n∞. So n∞ represents a unique point at infinity compactifying a
Euclidean space.

The classical conformal model of nD Euclidean space is the following set:

Nn∞ = {

x ∈ Rn+1,1 |x · x = 0, x · n∞ = −1
}

. (10.18)
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Here n∞ is a null vector in the (n + 2)D Minkowski space Rn+1,1. Elements in
Nn∞ are in one-to-one correspondence with points in nD Euclidean space. Let null
vector n0 ∈ Ne be the origin. In the conformal model, a point x in Rn is represented
by the null vector

−→x = n0 + x + x2

2
n∞. (10.19)

Because they never occur simultaneously, later on, both a Euclidean vector and its
null vector representation are denoted by the same letter without arrow top.

From the definition, it is clear that the conformal model depends on the choice
of the origin n0. The homogeneous model [3] is a more general formulation of the
classical conformal model. The model is composed of the set of null vectors

N = {

x ∈ Rn+1,1 |x · x = 0
}

(10.20)

and a null vector n∞ ∈ N . An element x ∈ N represents a finite point if and only
if x ·n∞ = 0. Two elements in N represents the same point if and only if they differ
by scale. This representation is homogeneous, and the model is conformal instead of
isometric. Because of this, it can represent classical geometries of different metrics,
where the “point at infinity” n∞ remains a nonzero vector, but not necessarily a null
vector. To unclutter the formulas, we will denote it by e in the remainder of this
chapter.

The geometric algebra established upon the homogeneous model is called con-
formal geometric algebra (CGA).1 It is the covariant algebra for Euclidean inci-
dence relations, including collinearity, cocircularity, parallelism, perpendicularity,
and tangency. CGA provides the following algebraic representations for incidence
geometric constructions in Euclidean geometry:

(1) The line passing through two points a,b is represented by e ∧ a ∧ b, where
the vectors representing points are null. A circle passing through three points a,b, c
is represented by a ∧ b ∧ c.

(2) The above constructions are “extension constructions” based on points.
Duality provides intersection constructions. The intersection of two circles/lines
A1 = a1 ∧ b1 ∧ c1 and A2 = a2 ∧ b2 ∧ c2 is a 0D circle represented by the meet
product A1 ∨ A2.

Besides geometric constructions based on points, CGA also provides represen-
tations of geometric constructions based on symmetry generators. There are three
kinds of nonzero vectors in a Minkowski space: positive, null, and negative. They
are vectors whose inner product with itself is positive, zero, and negative, respec-
tively. We have seen that a null vector represents in Euclidean geometry a point or
the point at infinity. Below we introduce the other two kinds of vectors as symmetry
generators.

1Editorial note: This characterization of CGA is more restrictive than elsewhere in this book, where
(10.19) is employed.
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Fig. 10.2 Reflection,
inversion, and antipodal
inversion. Left: x �→ x′,
reflection. Right: x �→ x′,
inversion; x �→ x′′, antipodal
inversion

Any positive vector in Minkowski space R
n+1,1 can be written up to scale as ei-

ther n+δe or c−ρ2e/2, where n ∈ R
n is a unit vector, c is a null vector representing

a point, and δ,ρ ∈ R.
Let x be a null vector representing a point. Let s be a positive vector. Then x ·s = 0

iff point x is on the hyperplane or sphere represented by s∗. When s = n+ δe, where
δ = −(a ·n)/(a ·e) for a vector a ∈ N representing a point, then s∗ is the hyperplane
normal to n and passing through point a; when s = c − ρ2e/2, then s∗ is the sphere
centering at c with radius |ρ|.

When x ·s = 0, then x∧s represents a pair of points: x and the reflection/inversion
of x with respect to hyperplane/sphere s∗, as shown in Fig. 10.2.

Any negative vector t ∈ R
n+1,1 can be written up to scale as c + ρ2e/2, where c

is a null vector representing a point, and ρ ∈ R
+. Let x be a null vector representing

a point. Let t be a negative vector. Then x ∧ t represents a pair of points, x and the
antipodal inversion of x with respect to sphere (c, ρ). As shown in Fig. 10.2 (right):
x is mapped to x′′ such that −→ox′′ = −ρ−→ox−1.

Hence in CGA, the extension product is generalized to include not only gener-
ating objects (e.g., points), but also symmetries (e.g., reflection, inversion, and an-
tipodal inversion) of the resulting object. Dually, the intersection of two geometric
objects can be their common symmetry. CGA extends Grassmann’s original exten-
sion of linear (flat) objects to include not only round objects, but also symmetries.

Now consider the simplest 2D case and the representations of points of intersec-
tion. Let ab1c1 and ab2c2 be two circles/lines. Their intersection is a pair of points,
one of which may be the point at infinity:

(a ∧ b1 ∧ c1) ∨ (a ∧ b2 ∧ c2) = a ∧ ([ab1c1c2]b2 − [ab1c1b2]c2
)

= a ∧ ([ab1b2c2]c1 − [ac1b2c2]b1
)

. (10.21)

The point other than a at the intersection is called the second point of intersection.
Suppose that we are already given one point of intersection a, and we want to

have an expression for the second point of intersection. First of all, the expression
is neither vector [ab1c1c2]b2 − [ab1c1b2]c2 nor vector [ab1b2c2]c1 − [ac1b2c2]b1,
because both vectors are not null. Second, the second point of intersection must be
of the form [ab1c1c2]b2 − [ab1c1b2]c2 + λa or [ab1b2c2]c1 − [ac1b2c2]b1 + μa,
where λ,μ are scalars to make the whole expression into a null vector. In order to
obtain a monomial and symmetric representation with respect to ab1c1 and ab2c2,
we need to introduce a new meet product to unify the two different forms, and
another product to convert a non-null vector into a null one.
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Hence, to represent the second intersection point by a null vector multiplicatively
in a monomial manner, we need to introduce two more products into CGA, the
reduced meet product and the nullification product. The reduced meet product of
b1 ∧ c1 and b2 ∧ c2 with base a is denoted by (b1 ∧ c1) ∨a (b2 ∧ c2) and defined by

a ∧ {

(b1 ∧ c1) ∨a (b2 ∧ c2)
} = (a ∧ b1 ∧ c1) ∨ (a ∧ b2 ∧ c2). (10.22)

The above identity indicates that the reduced meet product defined in the CGA
over R

3,1 with base a is unique only modulo a, i.e., if both u,v ∈ R
3,1 satisfy

a ∧ u = a ∧ v = (a ∧ b1 ∧ c1) ∨ (a ∧ b2 ∧ c2), (10.23)

then u = v + λa for some scale λ. Despite the uncertainty, a{(b1 ∧ c1)∨a (b2 ∧ c2)}
and {(b1 ∧ c1) ∨a (b2 ∧ c2)}a are both fixed.

An important property of the Minkowski plane is that it has two and only two null
directions, and the two directions can be interchanged by any reflection in the plane.
Since in Geometric Algebra a reflection is generated by the graded adjoint action of
an invertible vector [2], the second intersection of circles/lines ab1c1 and ab2c2 can
be represented by reflecting vector a with respect to vector (b1 ∧ c1) ∨a (b2 ∧ c2):

1

2

{

(b1 ∧ c1) ∨a (b2 ∧ c2)
}

a
{

(b1 ∧ c1) ∨a (b2 ∧ c2)
}

. (10.24)

In CGA, the nullification product of a by b is defined by

Nb(a) := 1

2
aba. (10.25)

An nD null Grassmann–Cayley algebra refers to a Grassmann–Cayley algebra
whose generating vectors are null and whose algebraic operators include not only
the outer product, meet product, dual and bracket operators, but also i-grading op-
erators where i takes values in {0,1, n − 1, n}, the reduced meet product, and the
nullification product.

Null Grassmann–Cayley algebra is a language for describing Euclidean inci-
dence constructions. For example, in the plane there are three points 1,2,3. The
line passing through point 1 and parallel to line 23 has the following monomial
representation:

e ∧ 1 ∧ 〈e23〉1, (10.26)

where 〈e23〉1 is a vector describing the direction of line 23. As a second exam-
ple, the line passing through point 1 and perpendicular to line 23 has the following
monomial representation:

e ∧ 1 ∧ 〈e23〉∗3, (10.27)

where 〈e23〉∗3 is a vector describing the normal direction of line 23.
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Fig. 10.3 Geometric
interpretations of 〈a1a2a3a4〉
and [a1a2a3a4]

CGA also provides a hierarchy of advanced invariants for geometric comput-
ing. In the previous subsection, we have shown that there are two basic invariants,
〈a1a2〉 = a1 · a2 = 〈a1a2〉0, and [a1a2 · · ·an] = (a1 ∧ · · · ∧ an)

∗ = 〈a1a2 · · ·an〉∗n,
where 〈 〉0 and 〈 〉n are grading operators of grade 0 and n, respectively. The geo-
metric product prolongs the two basic invariants to the following two sequences of
advanced invariants: for any k, l ≥ 0,

〈a1a2 · · ·a2k〉 := 〈a1a2 · · ·a2k〉0,

[a1a2 · · ·an+2l] := 〈a1a2 · · ·an+2l〉∗n.
(10.28)

The two kinds of advanced invariants have nice geometric interpretations and
algebraic properties. For example, if the ai are null vectors representing points such
that ai · e = −1, then

〈a1a2 · · ·a2k〉 = 1

2
〈−−→a1a2

−−→a2a3 · · ·−−−−−→a2k−1a2k
−−−→a2ka1〉,

[a1a2 · · ·an+2l] = (−1)n
1

2
[−−→a1a2

−−→a2a3 · · ·−−−−→an+2la1].
(10.29)

Here −−→aiaj denotes the displacement vector from point ai to point aj in Euclidean
geometry. In particular, when n = 2, k = 2, and l = 1, then

〈a1a2a3a4〉 = −da1a2da2a3da3a4da4a1

2
cos(∠a1a2a3 + ∠a3a4a1),

[a1a2a3a4] = −da1a2da2a3da3a4da4a1

2
sin(∠a1a2a3 + ∠a3a4a1),

(10.30)

where dab denotes the Euclidean distance between points a, b.
In the plane, if a1,a2,a4,a3 are the sequence of vertexes of a quadrilateral

(Fig. 10.3(a)), then ∠a1a2a3,∠a3a4a1 have opposite signs; if a1,a2,a3,a4 are the
sequence of vertexes of a quadrilateral (Fig. 10.3(b)), then ∠a1a2a3,∠a3a4a1 have
the same sign. By (10.30), [a1a2a3a4] = 0 iff ∠a1a2a3 + ∠a3a4a1 = 0 mod π or,
equivalently, iff points a1,a2,a3,a4 are on the same circle or line.

The two advanced invariants have the following reversion symmetries and shift
symmetries:

〈a1a2 · · ·a2k〉 = 〈a2ka2k−1 · · ·a1〉 = 〈a2ka1a2 · · ·a2k−1〉,
[a1a2 · · ·an+2l] = (−1)

n(n−1)
2 [an+2l · · ·a2a1] = (−1)n−1[an+2la1 · · ·an+2l−1].

(10.31)
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Clifford bracket algebra [3] is the algebra of advanced invariants generated by
the above two kinds of brackets. The elements are naturally graded by their lengths.
Formally, an nD Clifford bracket algebra generated by a sequence S of m symbols
of vectors 1,2, . . . ,m, where m ≥ n, is the quotient of the polynomial ring generated
by (1) subsequences of length n, denoted by square brackets, (2) symmetric pairs
of vectors, denoted by angular brackets, (3) repeatable permutations of vectors of
length n+ 2k for k > 0, denoted by square brackets, (4) another group of repeatable
permutations of vectors of length 2l + 2 for l > 0, denoted by angular brackets,
modulo the ideal generated by GP1 in (10.8), GP2 in (10.9), where the dot products
are replaced by angular brackets of length two, and the following SB and AB:
• SB:

[i1i2 · · · in+2k] −
∑

1≤σ≤n+2k

sign(σ, σ̌ )〈iσ(1)iσ(2) · · · iσ(2k)〉

× [iσ̌ (1)iσ̌ (2) · · · iσ̌ (n)], (10.32)

where σ, σ̌ run over all permutations of 1,2, . . . , n+ 2k such that σ(1) < σ(2) <

· · · < σ(2k) and σ̌ (1) < σ̌ (2) < · · · < σ̌(n).
• AB:

〈i1i2 · · · i2l〉 −
2l

∑

k=2

(−1)k〈i1ik〉 〈i2 · · · ǐk · · · i2l〉. (10.33)

In fact, 〈i1i2 · · · i2l〉 is just the Pfaffian of the i’s, and (10.33) is the recursive rela-
tion of Pfaffians. (10.32) is the nth-grade Caianiello expansion [5] of the geometric
product of the i’s. The term Pfaffian was introduced by A. Cayley, who used the
term in 1852 to honor of the German mathematician J. Pfaff [14].

The Clifford bracket algebra generated by points and the point at infinity e in
conformal geometric algebra is null bracket algebra [7]. It is an (n + 2)D Clifford
bracket algebra with the special requirement that all symbolic vectors are null, i.e.,
the following null syzygies:

〈ii〉 = 0. (10.34)

10.3 Applications: Geometric Factorization, Decomposition,
and Theorem Completion

In this section, we present an example of automated discovering of new geometric
theorems to show the essential role played by null geometric algebra. The scenario is
as follows [7]: for a geometric theorem, if one of its hypotheses is removed, then the
conclusion is no longer true. However, the conclusion should contain the removed
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hypothesis as a factor. If the other factors of the conclusion are all geometrically
meaningful, the factorization of the conclusion is called geometric.

If more than one hypothesis is removed, by Hilbert’s Nullstellensatz, some power
of the conclusion can be written as a linear combination of the removed hypothe-
ses. If the coefficients in the combination are geometrically meaningful, then this
decomposition is called geometric. However, a geometric decomposition does not
provide any clear geometric interpretation to the conclusion other than the quan-
titative contribution of each hypothesis to the conclusion in geometrical terms. If
instead the conclusion can be written in some suitable covariant algebra into the
form f = 0 where f is a monomial, then it has clear geometric interpretation, and
a new theorem is created (or discovered), called the geometric completion of the
original theorem. It generalizes an existing theorem by reducing its hypotheses.

In the following example, first the geometric factorization is carried out by re-
moving one hypothesis, then a geometric completion is reached by removing one
more hypothesis, and finally a geometric decomposition is obtained by expanding
the completion. The original theorem is very easy:

Example 10.1 In the plane two circles intersect at points 1,1′, respectively. Draw
two secant lines through them, which intersect the two circles at points 2,3 and
2′,3′, respectively, then 22′//33′. See Fig. 10.4 (left).

The first question is this: if one constraint is absent, say 1,1′,2,2′ are no longer
cocircular (see Fig. 10.4 (right)), then how far are lines 22′ and 33′ away from being
parallel?

A beautiful formula is obtained with null bracket algebra:

1

2

[e22′e33′]
(e · 2)(e · 2′)(3 · 3′)

= [e13]
[e12]

[e131′]
[e31′2′]

[11′22′]
(1 · 1′)(1 · 3)

. (10.35)

Its geometric interpretation follows the list below:

(1) e · 2 = e · 2′ = −1;

(2) 3 · 3′ = d33′

2
, 1 · 1′ = d11′

2
, 1 · 3 = d13

2
;

(3)
[

e13′1′] = 2S131′ ,
[

e31′2′] = 2S31′2′ ;
(4)

[

e22′e33′] = −2
(

23 × 2′3′);

(5)
[e13]
[e12] = d13

d12
ε123.

Here (a) S131′ denotes the signed area of triangle 131′ with respect to the orien-

tation of the plane; (b)
−→
22′ × −→

33′ denotes the signed length of the vector product of

vectors
−→
22′,

−→
33′ with respect to the unit normal of the plane; (c) ε123 = 1 if point 1

is inside line segment 23 and −1 otherwise.
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Fig. 10.4 Left: the original
theorem; right: one
hypothesis removed

The computing of (10.35) is executed by a general algorithm as follows:

Input (1) Geometric objects constructed sequentially, with free objects first.
(2) Target conc = [e22′e33′], which is a Clifford algebraic expression.

The construction sequence of the configuration is as follows:
Free points 1,2,1′,2′.
Semifree point 3 on line 12.
Intersection 3′ = 1′e2′ ∩ 1′13.
This means that 1′,3′ are the intersection of circle 1′13 and line 1′2′.

Output conc/conc′ after canceling their common factors, where conc′ is an ex-
pression to homogenize conc, and for which we choose 3 · 3′. Below we explain the
term “homogenization.”

In the homogeneous model, any geometric relation occurs as a homogeneous
equality. Unfortunately, this is no longer true in algebraic representations of geomet-
ric entities. For example, let a be the intersection of lines 12 and 1′2′. In Grassmann–
Cayley algebra,

a = (1 ∧ 2) ∨ (

1′ ∧ 2′). (10.36)

Obviously, this is not a homogeneous relation. The five vectors can be scaled arbi-
trarily and independently, so the equality can only be understood as an equality up
to an arbitrary scale. When we compute the quantitative relations among geometric
objects, we certainly do not want a result with arbitrary scale.

There is a remedy for this. For example, in a rational expression in which the
degree of point a in the numerator equals that in the denominator, the substitution
of (10.36) into the expression does not cause any arbitrary scaling. If we compute
like this:

[abc]
[ab′c′] = (1 ∧ 2) ∨ (1′ ∧ 2′) ∨ (b ∧ c)

(1 ∧ 2) ∨ (1′ ∧ 2′) ∨ (b′ ∧ c′)
,

then we get an equality invariant under the scaling of a.
Homogenization is to change a nonhomogeneous equality into a homogeneous

one. To achieve this, we need to compute a second expression conc′ containing the
same constrained vector variables with their degrees inclusive as those in conc. Then
we compute conc/conc′.
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Part 1. Elimination (1) Eliminate the last entity from conc. Expand and simplify
the result. (2) Go to the beginning of Step 1 if conc contains any constrained entity.

In this example there are two constructions, the second point of intersection

3′ = 1

2

{(

e ∧ 2′) ∨1′ (1 ∧ 3)
}

1′{(e ∧ 2′) ∨1′ (1 ∧ 3)
}

(10.37)

and a free point 3 on line 12; from e ∧ 1 ∧ 2 ∧ 3 = 0 we get the following Cramer’s
rule:

[e12]3 = [123]e − [e23]1 + [e13]2, (10.38)

where the brackets are based on the 3D space spanned by e,1,2,3.
The eliminations are made by substituting the expressions of the constructions

into the conclusion expression and then making simplification:

[

e22′e33′] eliminate 3′= 1

2

[

e22′e3
{(

e ∧ 2′) ∨1′ (1 ∧ 3)
}

1′{(e ∧ 2′) ∨1′ (1 ∧ 3)
}]

expand= 1

2

[

e31′2′][e131′]
︸ ︷︷ ︸

[

e22′e311′2′]

simplify= e · 2′
︸︷︷︸

[

2′2e311′]

eliminate 3= [e13]
[e12]
︸ ︷︷ ︸

[

2′2e211′]

simplify= 2 (e · 2)
︸ ︷︷ ︸

[

121′2′]. (10.39)

Explanation:
(1) Step 1 substitutes the expression of 3′ into conc.
(2) Step 2 expands the reduced meet products in a monomial manner: since

(

e ∧ 2′) ∨1′ (1 ∧ 3) = [

1′e2′3
]

1 − [

1′e2′1
]

3

= [

1′e13
]

2′ − [

1′2′13
]

e mod 1′,

if 3′ occurs in an expression where 3′ is neighbor to either null vector 1 or
null vector 3, by selecting the first expansion one can control the conclusion
expression to be 1-termed. Alternatively, if 3′ is neighbor to either e or 2′ in the
conclusion expression, then choosing the last expansion leads to a monomial
result. This is called monomial expansion in null Grassmann–Cayley algebra.

In the above computing, the first meet product in the expression is neighbor
to 3, while the second is neighbor to e by shift symmetry, so up to scale, the two
meet products are replaced by vectors 1 and 2′, respectively. The under braced
factors in the result do not participate in further eliminations and simplifications,
and are removed from succeeding computing procedure.
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Fig. 10.5 Two hypotheses
removed

(3) Step 3 is simplification after expansions and is based on the symmetries

[

e22′e311′2′] = −[

2′e22′e311′] = [

2′e2′2e311′]

and monomial expansion 2′e2′ = 2(e · 2′)2′.
(4) Step 4 substitutes the expression of 3 from Cramer’s rule into conc.
(5) The last step is based on 2e2 = 2(e · 2)2 and antisymmetry within a bracket of

length n + 2 = 4.

Part 2. Homogenization Use the algorithm in Part 1 to compute conc′ = 3 · 3′.

3 · 3′ eliminate 3′= 1

2

〈

3
{(

e ∧ 2′) ∨1′ (1 ∧ 3)
}

1′{(e ∧ 2′) ∨1′ (1 ∧ 3)
}〉

expand= 1

2

[

e31′2′]2

︸ ︷︷ ︸

〈

311′1
〉

simplify= (

1 · 1′)(1 · 3).

The ratio conc/conc′ gives the desired identity (10.35), which is an extended
theorem. It provides a quantization of the dependency of the conclusion upon the
cocircularity of points 1,2,1′,2′.

In the above computing procedure, the conclusion expression remains 1-termed.
The result is naturally in factored form containing the desired factor [121′2′]. Fur-
thermore, (10.35) is a quantitative description of the conclusion.

Next, we remove one more hypothesis. We remove straight line 123. The
new configuration, as shown in Fig. 10.5, has only two constraints: cocircularity
[131′3′] = 0 and collinearity [e1′2′3′] = 0 in the homogeneous model.

The new configuration can be constructed as follows: points 1,2,3,1′,2′ are free
in the plane, and points 1′,3′ are at the intersection of line 1′2′ and circle 131′. In
(10.39), we have already obtained the result of eliminating 3′ after the third step.
Again, choose conc′ = 3 · 3′. We have

conc

conc′ = [e22′e33′]
3 · 3′ = e · 2′[e131′][e311′2′2]

(1 · 1′)(1 · 3)[e31′2′] . (10.40)

(10.40) is the geometric completion of the original theorem under the constraints
that 1,3,1′,3′ are cocircular and 1′,2′,3′ are collinear. Its geometric meaning is
immediate from
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[

e311′2′2
] = 1

2
d31d11′d1′2′d2′2 sin

(

∠
(−→
31,

−→
11′) + ∠

(−→
1′2′,

−→
2′2

))

. (10.41)

The geometric decomposition of [e22′e33′] with respect to the two removed hy-
potheses [121′2′] = 0 and [e123] is obtained by the following rational binomial
expansion [9] of [e311′2′2]:

[

e311′2′2
] = −[

2e311′2′]

= − 1

2(1 · 2)

[

2e31211′2′]

= − 1

2(1 · 2)

(〈2e31〉[211′2′] + 〈

211′2′〉[2e31]). (10.42)

An algebraic proof is said to be a monomial (or binomial) one if throughout the
proving procedure, the expressions in process are monomials (or binomials at most).
By now we have tested over 100 theorems in Euclidean geometry involving circles
and angles. About two thirds are given binomial proofs, and about one third are
given monomial proofs.

10.4 Conclusion

In symbolic geometric computation, the bottleneck is middle expression swell,
which makes many computations possible only theoretically. Another problem is
geometric explanation of algebraic results. Often this is impossible if using coordi-
nates, especially when the results are not invariant under coordinate transforms. In
classical invariant-theoretical methods the two problems remain, and new difficul-
ties arise.

In this chapter, we introduce a new invariant framework based on Clifford alge-
bra and the homogeneous model of classical geometry. In geometric computing, the
advanced invariants introduced in this framework bring about amazing simplifica-
tions in algebraic manipulations. The proofs generated by such advanced invariants
have the features that the symbolic manipulations are easy and succinct, the input
and output are both geometrically meaningful, and the proofs provide quantitative
descriptions of the relations among the conclusion and the hypotheses.

Still this is just the beginning. A variety of open problems, old and new, are
waiting there for us to solve. Their solving may ultimately lead to a revolution in
symbolic geometric computing, which is a revitalization of synthetic covariant ap-
proach to classical geometry.

10.5 Exercises

10.1 Using the nullification product show that Ne(a) for a non-null vector a repre-
senting a sphere is proportional to the point at the center of the sphere (remembering
that e represents the point at infinity).
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10.2 Verify the geometric interpretation of (10.30).

10.3 Verify the geometric interpretation of all factors in (10.35).

10.4 Verify the geometric interpretation of all factors in (10.40) using hint (10.42).

Acknowledgements Both authors are supported partially by NSFC 10871195, NSFC 60821002/
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