

Guide to Geometric Algebra in Practice

Leo Dorst � Joan Lasenby
Editors

Guide to Geometric
Algebra in Practice

Editors
Dr. Leo Dorst
Informatics Institute
University of Amsterdam
Science Park 904
1098 XH Amsterdam
The Netherlands
l.dorst@uva.nl

Dr. Joan Lasenby
Department of Engineering
University of Cambridge
Trumpington Street
CB2 1PZ Cambridge
UK
jl221@cam.ac.uk

ISBN 978-0-85729-810-2 e-ISBN 978-0-85729-811-9
DOI 10.1007/978-0-85729-811-9
Springer London Dordrecht Heidelberg New York

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2011936031

© Springer-Verlag London Limited 2011
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as per-
mitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publish-
ers, or in the case of reprographic reproduction in accordance with the terms of licenses issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to
the publishers.
The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Cover design: VTeX UAB, Lithuania

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

mailto:l.dorst@uva.nl
mailto:jl221@cam.ac.uk
http://www.springer.com
http://www.springer.com/mycopy

How to Read This Guide to Geometric Algebra
in Practice

This book is called a ‘Guide to Geometric Algebra in Practice’. It is composed
of chapters by experts in the field and was conceived during the AGACSE-2010
conference in Amsterdam. As you scan the contents, you will find that all chapters
indeed use geometric algebra but that the term ‘practice’ means different things
to different authors. As we discuss the various Parts below, we guide you through
them. We will then see that appearances may deceive: some of the more theoretical
looking chapters provide useful and practical techniques.

This book is organized in themes of application fields, corresponding to the di-
vision into Parts. This is sometimes an arbitrary allocation; one of the powers of
geometric algebra is that its unified approach permits techniques and representa-
tions from one field to be applied to another. In this guide we move, generally, from
the description of physical motion and its measurement to the description of objects
of a geometrical nature.

Basic geometric algebra, sometimes known as Clifford algebra, is well under-
stood and arguably has been for many years. It is important to realize that it is not
just one algebra, but rather a family of algebras, all with the same essential structure.
A successful application for geometric algebra involves identifying, among those in
this family, an algebra that considerably facilitates a particular task at hand. The
current emphasis on rigid body motion (measurement, interpolation, tracking) has
focused the attention on a specific geometric algebra, the conformal model. This
uses an algebra in which such motions are representable as rotations in a carefully
chosen model space (for 3D, a 5D space denoted R

4,1, with a 32D geometric alge-
bra denoted R4,1). Doing so is an innovation over traditionally used representations
such as homogeneous coordinates, since geometric algebra has a particularly pow-
erful representation of rotations (as ‘rotors’—essentially spinors, with quaternions
as a very special case). This conformal model (CGA, for Conformal Geometric Al-
gebra) is used in most of this book. We provide a brief tutorial introduction to its
essence in the Appendix (Chap. 21), to make this guide more self-contained, but
more extensive accessible introductions may be found elsewhere.

Application of geometric algebra started in physics. Using conformal geometric
algebra, we can now update its description of motion in Part I: Rigid Body Motion.
From there, geometric algebra migrated to applications in engineering and computer
science, where motion tracking and image processing were the first to appreciate
and apply its techniques. In this book these fields are represented in Part II: Inter-
polation and Tracking and Part III: Image Processing. More recently, traditionally

v

vi How to Read This Guide to Geometric Algebra in Practice

combinatorial fields of computer science have begun to employ geometric algebra
to great advantage, as Part IV: Theorem Proving and Combinatorics demonstrates.

Although prevalent at the moment, the conformal model is not the only kind of
geometric algebra we need in applications. It hardly offers more than homogeneous
coordinates if your interest is specifically in projective transformations. It takes the
geometric algebra of lines (the geometric algebra of a 6D space, for 3D lines), to turn
such transformations into rotations (see Part V: Applications of Line Geometry), and
reap the benefits from their rotor representation. And even if your interest is only
rigid body motions, alternative and lower-dimensional algebras may do the job—
this is explored in Part VI: Alternatives to Conformal Geometric Algebra.

While those parts of this guide show how geometric algebra ‘cleans up’ appli-
cations that would classically use linear algebra (notably in its matrix represen-
tation), there are other fields of geometrical mathematics that it can affect simi-
larly. Foremost among those is differential geometry, in which the use of the truly
coordinate-free methods of geometric algebra have hardly penetrated; Part VII: To-
wards Coordinate-Free Differential Geometry should offer inspiration for several
PhD projects in this direction!

To conclude this introduction, some sobering thoughts. Geometric algebra has
been with us in applicable form for about 15 to 20 years now, with general appli-
cation software available for the last 10 years. There have been tutorial books writ-
ten for increasingly applied audiences, migrating the results from mathematics to
physics, to engineering and to computer science. Still, a conference on applications
(like the one in Amsterdam) only draws about 50 people, just like it did 10 years
ago. This is not compensated by integrated use and acceptance in other fields such
as computer vision (which would obviate the need for such a specialized geometric
algebra based gathering; after all, few in computer vision would go to a dedicated
linear algebra conference even though everybody uses it in their algorithms). So if
the field is growing, it is doing so slowly.

Perhaps a major issue is education. Very few, even among the contributors to this
guide, have taught geometric algebra, and in none of their universities is it a com-
pulsory part of the curriculum. Although we all have the feeling that we understand
linear algebra much better because we know geometric algebra and that it improves
our linear-algebra-based software considerably (in its postponement of coordinate
choices till the end), we still have not replaced parts of linear algebra courses by the
corresponding clarifying geometric algebra.1 Most established colleagues may be
too set in their ways to change their approach to geometry; but if we do not tell the
young minds about this novel and compact structural approach, it may never reach
its potential.

Our message to you and them is: ‘Go forth and multiply—but use the geometric
product!’

1The textbook Linear and Geometric Algebra (by Alan Macdonald, 2010) enables this, and we
should all consider using it!

How to Read This Guide to Geometric Algebra in Practice vii

Part I: Rigid Body Motion

The treatment of rigid body motion is the first algebraically advanced topic that the
geometry of Nature forces upon us. Since it was the first to be treated, it shaped the
field of geometric representation; but now we can repay our debt by using modern
geometric representations to provide more effective computation methods for mo-
tions. All chapters in this part use conformal geometric algebra to great advantage
in compactness and efficiency.

Chapter 1: Rigid Body Dynamics and Conformal Geometric Algebra uses con-
formal geometric algebra to reformulate the Lagrangian expression of the classical
physics of combined rotational and translational motion, due to the dynamics of
forces and torques. It uses the conformal rotors (‘spinors’) to produce a covariant
formulation and in the process extends some classical concepts such as inertia and
Lagrange multipliers to their more encompassing geometric algebra counterparts. In
its use of conformal geometric algebra, this chapter updates the use of geometric al-
gebra to classical mechanics that has been explored in textbooks of the past decade.
A prototype implementation shows that this approach to dynamics really works,
with stability and computational advantages relative to more common methods.

As we process uncertain data using conformal geometric algebra, our ultimate
aim is to estimate optimal solutions to noisy problems. Currently, we do not yet
have an agreed way to model geometrical noise; but we can determine a form of
optimal processing for conflicting data. This is done in quite general form for rigid
body motions in Chap. 2: Estimating Motors from a Variety of Geometric Data in 3D
Conformal Geometric Algebra. Polar decomposition is incorporated into conformal
geometric algebra to study how motors are embedded in the even subalgebra and
what is the best projection to the motor manifold. A general, dot-product-like simi-
larity criterion is designed for a variety of geometrical primitives. Instances of this
can be added to give a total similarity criterion to be maximized. Langrangian opti-
mization of the total similarity criterion then reduces motor estimation to a straight-
forward eigenrotor problem. The chapter provides a very general means of esti-
mation and, despite its theoretical appearance, may be one of the more influential
applied chapters in this book.

In robotics, the inverse kinematics problem (of figuring out what angles to give
the joints to reach a given position and orientation) is notoriously hard. Chapter 3:
Inverse Kinematics Solutions Using Conformal Geometric Algebra demonstrates
that having spheres and lines as primitives in conformal geometric algebra really
helps to design straightforward numerical algorithms for inverse kinematics. Since
the geometric primitives are more directly related to the type of geometry one en-
counters, they lead to realtime solvers, even for a 3D hand with its 25 joints.

Another example of the power of conformal geometric algebra to translate a
straightforward geometrical idea directly into an algorithm is given in Chap. 4: Re-
constructing Rotations and Rigid Body Motions from Exact Point Correspondences
Through Reflections. There, rigid body motions are reconstructed from correspond-
ing point pairs by consecutive midplanes of remaining differences. Applying the
algorithm to the special case of pure rotation produces a quaternion determination

viii How to Read This Guide to Geometric Algebra in Practice

formula that is twice as fast as existing methods. That clearly demonstrates that
understanding the natural geometrical embedding of quaternions into geometric al-
gebra pays off.

Part II: Interpolation and Tracking

Conformal geometric algebra can only reach its full potential in applications when
middle-level computational operations are provided. This part provides those for
recurring aspects of motion interpolation and motion tracking.

Chapter 5: Square Root and Logarithm of Rotors in 3D Conformal Geometric
Algebra Using Polar Decomposition, gives explicit expressions for the square root
and logarithm of rotors in conformal geometric algebra. Not only are these useful
for interpolation of motions, but the form of the bivector split reveals the orthogonal
orbit structure of conformal rotors. In the course of the chapter, a polar decompo-
sition is developed that may be used to project elements of the algebra to the rotor
manifold.

Geometric algebra offers a characterization of rotations through bivectors. Since
these form a linear space, they permit more stable numerical techniques than the
nonlinear and locally singular classical representations by means of, for instance,
Euler angles or direction cosine matrices. Chapter 6: Attitude and Position Tracking
demonstrates this for attitude estimation in the presence of the notoriously annoy-
ing ‘coning motion’. It then extends the technique to include position estimation,
employing the bivectors of the conformal model.

An important step in the usage of any flexible camera system is calibration rela-
tive to targets of unknown location. Chapter 7: Calibration of Target Positions Us-
ing Conformal Geometric Algebra shows how this problem can be cast and solved
fully in conformal geometric algebra, with compact simultaneous treatment of ori-
entational and positional aspects. In the process, some useful conformal geometric
algebra nuggets are produced, such as a closed-form formula for the point closest
to a set of lines, the inverse of a linear mapping constrained within a subspace, and
the derivative with respect to a motor of a scalar measure between an element and
a transformed element. It also shows how to convert the coordinate-free conformal
geometric algebra expressions into coordinate-based formulations that can be pro-
cessed by conventional software.

Part III: Image Processing

Apart from the obviously geometrical applications in tracking and 3D reconstruc-
tion, geometric algebra finds inroads in image processing at the signal description
level. It can provide more symmetrical ways to encode the geometrical properties
of the 2D or 3D domain of such signals.

Chapter 8: Quaternion Atomic Function for Image Processing deals with 2D
and 3D signals and shows us one way of incorporating the rotational structure into
a quaternion encoding of the signal, leading to monogenic rather than Hermitian

How to Read This Guide to Geometric Algebra in Practice ix

signals. Kernel processing techniques are developed for these signals by means of
atomic functions.

The facts that real 2-blades square to−1 and their direct correspondence to com-
plex numbers and quaternions have led people to extend classical Fourier transforms
by means of Clifford algebras. The geometry of such an algebraic analogy is not
always clear. In the field of color processing, the 3D color space does possess a per-
ceptual geometry that suggests encoding hues as rotations around the axis of grays.
For such a domain, this gives a direction to the exploration of Clifford algebra ex-
tensions to the complex 1D Fourier transform. Chapter 9: Color Object Recognition
Based on a Clifford Fourier Transform explores this and evaluates the effectiveness
of the resulting encoding of color images in an image retrieval task.

Part IV: Theorem Proving and Combinatorics

A recurrent theme in this book is how the right representation can improve encod-
ing and solving geometrical problems. This also affects traditionally combinatorial
fields like theorem proving, constraint satisfaction and even cycle enumeration. The
null elements of algebras turn out to be essential!

Chapter 10: On Geometric Theorem Proving with Null Geometric Algebra gives
a good introduction to the field of automated theorem proving, and a tutorial on the
authors’ latest results for the use of the null vectors of conformal geometric algebra
to make computations much more compact and geometrically interpretable. Espe-
cially elegant is the technique of dropping hypotheses from existing theorems to
obtain new theorems of extended and quantitative validity.

As a full description of geometric relationships, geometric algebra is potentially
useful and unifying for the data structures and computations in Computer Aided De-
sign systems. It is beginning to be noticed, and in Chap. 11: On the Use of Geometric
Algebra in Geometrical Constraint Solving the structural cleanup conformal geo-
metric algebra could bring is explored in some elementary modeling computations.

Part of the role geometric algebra plays as an embedding of Euclidean geome-
try is a consistent bookkeeping of composite constructions, of an almost Boolean
nature. The Grassmann algebra of the outer product, in particular, eliminates many
terms ‘internally’. In Chap. 12: On the Complexity of Cycle Enumeration for Simple
Graphs, that property is used to count cycles in graphs with n nodes, by cleverly
representing the edges as 2-blades in a 2n-dimensional space and their concatena-
tions as outer products. Filling the usual adjacency matrix with such elements and
multiplying them in this manner algebraically eliminates repeated visits. It produces
compact algorithms to count cycle-based graph properties.

Part V: Applications of Line Geometry

Geometric algebra provides a natural setting for encoding the geometry of 3D lines,
unifying and extending earlier representations such as Plücker coordinates. This is
immediately applicable to fields in which lines play the role of basic elements of

x How to Read This Guide to Geometric Algebra in Practice

expression, such as projective geometry, inverse kinematics of robots with transla-
tional joints, and visibility analysis.

Chapter 13: Line Geometry in Terms of the Null Geometric Algebra over R
3,3,

and Application to the Inverse Singularity Analysis of Generalized Stewart Plat-
forms provides a tutorial introduction on how to use the vectors of the 6D space
R

3,3 to encode lines and then applies this representation effectively to the analy-
sis of singularities of certain parallel manipulators in robotics. Almost incidentally,
this chapter also indicates how in the line space R

3,3, projective transformations be-
come representable as rotations. Since this enables projective transformations to be
encoded as rotors, this is a potentially very important development to the applica-
bility of geometric algebra to computer vision and computer graphics.

In Chap. 14: A Framework for n-Dimensional Visibility Computations, the au-
thors solve the long-standing problem of computing exact mutual visibility between
shapes, as required in soft shading rendering for computer graphics. It had been
known that a Plücker-coordinate-based approach in the manifold of lines offered
some representational clarity but did not lead to efficient solutions. However, the
authors show that when the full bivector space

∧2
(Rn+1) is employed, visibility

computations reduce to a convex hull determination, even in n-D. They can then be
implemented using standard software for CSG (Computational Solid Geometry).

Part VI: Alternatives to Conformal Geometric Algebra

The 3D conformal geometric algebra R4,1 is five-dimensional and often feels like a
slight overkill for the description of rigid body motion and other limited geometries.
This part presents several four-dimensional alternatives for the applications we saw
in Part I.

Embedding the common homogeneous coordinates into geometric algebra begs
the question of what metric properties to assign to the extra representational dimen-
sion. Naive use of a nondegenerate metric prevents encoding rigid body motions as
orthogonal transformations in a 4D space. Chapter 15: On the Homogeneous Model
of Euclidean Geometry updates results from classical 19th century work to modern
notation and shows that by endowing the dual homogeneous space with a specific
degenerate metric (to produce the algebra R

∗
3,0,1) one can in fact achieve this. The

chapter reads like a tutorial introduction to this framework, presented as a complete
and compact representation of Euclidean geometry, kinematics and rigid body dy-
namics.

To some in computer graphics, the 32-dimensional conformal geometric alge-
bra R4,1 is just too forbidding, and they have been looking for simpler geomet-
ric algebras to encode their needs. Chapter 16: A Homogeneous Model for Three-
Dimensional Computer Graphics Based on the Clifford Algebra for R

3 shows that a
representation of some operations required for computer graphics (rotations and per-
spective projections) can be achieved by rather ingenious use of R3 (the Euclidean
geometric algebra of 3-D space) by using its trivector to model mass points.

How to Read This Guide to Geometric Algebra in Practice xi

In Chap. 17: Rigid-Body Transforms Using Symbolic Infinitesimals, an alterna-
tive 4D geometric algebra is proposed to capture the structure of rigid body motions.
It is nonstandard in the sense that one of the basis vectors squares to infinity. The
authors show how this models Euclidean isometries. They then apply their algebra
to Bezier and B-spline interpolation of rigid body motions, through methods that
can be transferred to more standard algebraic models such as conformal geometric
algebra.

Chapter 18: Rigid Body Dynamics in a Constant Curvature Space and the
‘1D-up’ Approach to Conformal Geometric Algebra proposes yet another way to
representing 3D rigid body motion in the geometric algebra of a 4D space. It takes
the unusual approach of viewing Euclidean geometry as a somewhat awkward limit
case of a constant curvature space and analyzes such spaces first. The Lagrangian
dynamics equations take on an elegant form and lead to the surprising view of trans-
lational motion in real 3D space as a fast precession in the 4D representational space.
The author then compares this approach to that of Chap. 15, after first embedding
that into conformal geometric algebra; and the flat-space limit to the Euclidean case
is shown to be related to Chap. 17. Thus all those 1D up alternative representations
of rigid body motions are shown to be closely related.

Part VII: Towards Coordinate-Free Differential Geometry

Differential geometry is an obvious target for geometric algebra. In its classical de-
scription by means of coordinate charts, its structure easily gets hidden in notation,
and that limits its applications to specialized fields. Geometric algebra should be
able to do better, especially if combined with modern insights in the system of geo-
metrical invariants.

Chapter 19: The Shape of Differential Geometry in Geometric Calculus shows
how geometric algebra can offer a direct notation in terms of clear concepts such
as the tangent volume element (‘pseudoscalar’), attached at all locations of a vec-
tor manifold, and in terms of its derivative as the codification of ‘shape’ in all its
aspects. The coordinate-free formulation can always be made specific for any cho-
sen coordinates and is hence computational. The chapter ends with open questions,
intended as suggestions for research projects. The editors are grateful to have this
thought-provoking contribution by David Hestenes, the grandfather of geometric
algebra.

The field of “moving frames” has developed rapidly in the past decade, and struc-
tured algorithmic methods are emerging to produce invariants and their syzygy re-
lationships for Lie groups. We have invited expert Elisabeth Mansfield, in Chap. 20:
On the Modern Notion of Moving Frames, to write an introduction to this new field,
since we believe that its concretely abstract description should be a quite natural
entry to formulate invariants for the Lie groups occurring in geometric algebra. Be-
sides an introductory overview with illustrative examples and detailed pointers to
current literature, the chapter contains a first attempt to compute moving frames for
SE(3) in conformal geometric algebra.

xii How to Read This Guide to Geometric Algebra in Practice

Part VIII: Tutorial Appendix

In Chap. 21: Tutorial Appendix: Structure Preserving Representation of Euclidean
Motions through Conformal Geometric Algebra, we provide a self-contained tuto-
rial to the basics of geometric algebra in the conformal model.

Leo Dorst
Joan Lasenby

Contents

Part I Rigid Body Motion

1 Rigid Body Dynamics and Conformal Geometric Algebra 3
Anthony Lasenby, Robert Lasenby, and Chris Doran

2 Estimating Motors from a Variety of Geometric Data in 3D
Conformal Geometric Algebra . 25
Robert Valkenburg and Leo Dorst

3 Inverse Kinematics Solutions Using Conformal Geometric Algebra . 47
Andreas Aristidou and Joan Lasenby

4 Reconstructing Rotations and Rigid Body Motions from Exact
Point Correspondences Through Reflections 63
Daniel Fontijne and Leo Dorst

Part II Interpolation and Tracking

5 Square Root and Logarithm of Rotors in 3D Conformal Geometric
Algebra Using Polar Decomposition 81
Leo Dorst and Robert Valkenburg

6 Attitude and Position Tracking . 105
Liam Candy and Joan Lasenby

7 Calibration of Target Positions Using Conformal Geometric Algebra 127
Robert Valkenburg and Nawar Alwesh

Part III Image Processing

8 Quaternion Atomic Function for Image Processing 151
Eduardo Bayro-Corrochano and Eduardo Ulises Moya-Sánchez

9 Color Object Recognition Based on a Clifford Fourier Transform . . 175
Jose Mennesson, Christophe Saint-Jean, and Laurent Mascarilla

xiii

xiv Contents

Part IV Theorem Proving and Combinatorics

10 On Geometric Theorem Proving with Null Geometric Algebra 195
Hongbo Li and Yuanhao Cao

11 On the Use of Conformal Geometric Algebra in Geometric
Constraint Solving . 217
Philippe Serré, Nabil Anwer, and JianXin Yang

12 On the Complexity of Cycle Enumeration for Simple Graphs 233
René Schott and G. Stacey Staples

Part V Applications of Line Geometry

13 Line Geometry in Terms of the Null Geometric Algebra over RRR
3,3,

and Application to the Inverse Singularity Analysis of Generalized
Stewart Platforms . 253
Hongbo Li and Lixian Zhang

14 A Framework for n-Dimensional Visibility Computations 273
Lilian Aveneau, Sylvain Charneau, Laurent Fuchs, and Frederic Mora

Part VI Alternatives to Conformal Geometric Algebra

15 On the Homogeneous Model of Euclidean Geometry 297
Charles Gunn

16 A Homogeneous Model for Three-Dimensional Computer Graphics
Based on the Clifford Algebra for RRR

3 329
Ron Goldman

17 Rigid-Body Transforms Using Symbolic Infinitesimals 353
Glen Mullineux and Leon Simpson

18 Rigid Body Dynamics in a Constant Curvature Space and the
‘1D-up’ Approach to Conformal Geometric Algebra 371
Anthony Lasenby

Part VII Towards Coordinate-Free Differential Geometry

19 The Shape of Differential Geometry in Geometric Calculus 393
David Hestenes

20 On the Modern Notion of a Moving Frame 411
Elizabeth Mansfield and Jun Zhao

Part VIII Tutorial Appendix

21 Tutorial Appendix: Structure Preserving Representation of
Euclidean Motions Through Conformal Geometric Algebra 435
Leo Dorst

Index . 455

Contributors

Nawar Alwesh Industrial Research Limited, Auckland, New Zealand,
n.alwesh@irl.cri.nz

Nabil Anwer LURPA, École Normale Supérieure de Cachan, Cachan, France,
anwer@lurpa.ens-cachan.fr

Andreas Aristidou Department of Engineering, University of Cambridge, Trump-
ington Street, Cambridge CB2 1PZ, UK, aa462@cam.ac.uk

Lilian Aveneau XLIM/SIC, CNRS, University of Poitiers, Poitiers, France,
lilian.aveneau@xlim.fr

Eduardo Bayro-Corrochano Campus Guadalajara, CINVESTAV, Jalisco, Mex-
ico, edb@gdl.cinvestav.mx

Liam Candy The Council for Scientific and Industrial Research (CSIR), Meiring
Naude Rd, Pretoria, South Africa, lcandy@csir.co.za

Yuanhao Cao Key Laboratory of Mathematics Mechanization, Academy of Math-
ematics and Systems Science, Chinese Academy of Sciences, Beijing 100190,
P.R. China, ppxhappy@126.com

Sylvain Charneau XLIM/SIC, CNRS, University of Poitiers, Poitiers, France,
sylvain.charneau@xlim.fr

Chris Doran Sidney Sussex College, University of Cambridge and Geomerics
Ltd., Cambridge, UK, chris.doran@geomerics.com

Leo Dorst Intelligent Systems Laboratory, University of Amsterdam, Amsterdam,
The Netherlands, l.dorst@uva.nl

Daniel Fontijne Euvision Technologies, Amsterdam, The Netherlands,
d.fontijne@euvt.eu

Laurent Fuchs XLIM/SIC, CNRS, University of Poitiers, Poitiers, France,
laurent.fuchs@xlim.fr

Ron Goldman Department of Computer Science, Rice University, Houston, TX
77005, USA, rng@rice.edu

xv

mailto:n.alwesh@irl.cri.nz
mailto:anwer@lurpa.ens-cachan.fr
mailto:aa462@cam.ac.uk
mailto:lilian.aveneau@xlim.fr
mailto:edb@gdl.cinvestav.mx
mailto:lcandy@csir.co.za
mailto:ppxhappy@126.com
mailto:sylvain.charneau@xlim.fr
mailto:chris.doran@geomerics.com
mailto:l.dorst@uva.nl
mailto:d.fontijne@euvt.eu
mailto:laurent.fuchs@xlim.fr
mailto:rng@rice.edu

xvi Contributors

Charles Gunn DFG-Forschungszentrum Matheon, MA 8-3, Technisches Univer-
sität Berlin, Str. des 17. Juni 136, 10623 Berlin, Germany, gunn@math.tu-berlin.de

David Hestenes Arizona State University, Tempe, AZ, USA, hestenes@asu.edu

Anthony Lasenby Cavendish Laboratory and Kavli Institute for Cosmology, Uni-
versity of Cambridge, Cambridge, UK, a.n.lasenby@mrao.cam.ac.uk

Joan Lasenby Department of Engineering, University of Cambridge, Trumpington
Street, Cambridge CB2 1PZ, UK, jl221@cam.ac.uk

Robert Lasenby Department of Applied Mathematics and Theoretical Physics,
University of Cambridge, Cambridge, UK, robert@lasenby.org

Hongbo Li Key Laboratory of Mathematics Mechanization, Academy of Math-
ematics and Systems Science, Chinese Academy of Sciences, Beijing 100190,
P.R. China, hli@mmrc.iss.ac.cn

Elizabeth Mansfield School of Mathematics, Statistics and Actuarial Science,
University of Kent, Canterbury CT2 7NF, UK, E.L.Mansfield@kent.ac.uk

Laurent Mascarilla Laboratory of Mathematics, Images and Applications, Uni-
versity of La Rochelle, La Rochelle, France, laurent.mascarilla@univ-lr.fr

Jose Mennesson Laboratory of Mathematics, Images and Applications, University
of La Rochelle, La Rochelle, France, jose.mennesson@univ-lr.fr

Frederic Mora XLIM/SIC, CNRS, University of Limoges, Limoges, France,
frederic.mora@xlim.fr

Eduardo Ulises Moya-Sánchez Campus Guadalajara, CINVESTAV, Jalisco, Mex-
ico, emoya@gdl.cinvestav.mx

Glen Mullineux Innovative Design and Manufacturing Research Centre, De-
partment of Mechanical Engineering, University of Bath, Bath BA2 7AY, UK,
g.mullineux@bath.ac.uk

Christophe Saint-Jean Laboratory of Mathematics, Images and Applications,
University of La Rochelle, La Rochelle, France, christophe.saint-jean@univ-lr.fr

René Schott IECN and LORIA, Nancy Université, Université Henri Poincaré, BP
239, 54506 Vandoeuvre-lès-Nancy, France, schott@loria.fr

Philippe Serré LISMMA, Institut Supérieur de Mécanique de Paris, Paris, France,
philippe.serre@supmeca.fr

Leon Simpson Innovative Design and Manufacturing Research Centre, Depart-
ment of Mechanical Engineering, University of Bath, Bath BA2 7AY, UK,
l.c.simpson@bath.ac.uk

G. Stacey Staples Department of Mathematics and Statistics, Southern Illinois
University Edwardsville, Edwardsville, IL 62026-1653, USA, sstaple@siue.edu

mailto:gunn@math.tu-berlin.de
mailto:hestenes@asu.edu
mailto:a.n.lasenby@mrao.cam.ac.uk
mailto:jl221@cam.ac.uk
mailto:robert@lasenby.org
mailto:hli@mmrc.iss.ac.cn
mailto:E.L.Mansfield@kent.ac.uk
mailto:laurent.mascarilla@univ-lr.fr
mailto:jose.mennesson@univ-lr.fr
mailto:frederic.mora@xlim.fr
mailto:emoya@gdl.cinvestav.mx
mailto:g.mullineux@bath.ac.uk
mailto:christophe.saint-jean@univ-lr.fr
mailto:schott@loria.fr
mailto:philippe.serre@supmeca.fr
mailto:l.c.simpson@bath.ac.uk
mailto:sstaple@siue.edu

Contributors xvii

Robert Valkenburg Industrial Research Limited, Auckland, New Zealand,
r.valkenburg@irl.cri.nz

JianXin Yang Robotics and Machine Dynamics Laboratory, Beijing University of
Technology, Beijing, P.R. China, yangjx@tsinghua.org.cn

Lixian Zhang Key Laboratory of Mathematics Mechanization, Academy of Math-
ematics and Systems Science, Chinese Academy of Sciences, Beijing 100190,
P.R. China, shadowfly12@126.com

Jun Zhao School of Mathematics, Statistics and Actuarial Science, University of
Kent, Canterbury CT2 7NF, UK, J.Zhao-73@kent.ac.uk

mailto:r.valkenburg@irl.cri.nz
mailto:yangjx@tsinghua.org.cn
mailto:shadowfly12@126.com
mailto:J.Zhao-73@kent.ac.uk

Part I
Rigid Body Motion

The treatment of rigid body motion is the first algebraically advanced topic that the
geometry of Nature forces upon us. Since it was the first to be treated, it shaped the
field of geometric representation; but now we can repay our debt by using modern
geometric representations to provide more effective computation methods for mo-
tions. All chapters in this part use conformal geometric algebra to great advantage
in compactness and efficiency.

1Rigid Body Dynamics and Conformal
Geometric Algebra

Anthony Lasenby, Robert Lasenby, and Chris Doran

Abstract
We discuss a fully covariant Lagrangian-based description of 3D rigid body mo-
tion, employing spinors in 5D conformal space. The use of this space enables the
translational and rotational degrees of freedom of the body to be expressed via
a unified rotor structure, and the equations of motion in terms of a generalised
‘moment of inertia tensor’ are given. The development includes the effects of
external forces and torques on the body. To illustrate its practical applications,
we give a brief overview of a prototype multi-rigid-body physics engine imple-
mented using 5D conformal objects as the variables.

1.1 Introduction

Rigid body dynamics is an area which has been worked on for many years and has
sparked many new developments in mathematics, but for most people, it is still a
conceptually difficult subject, with many features which are non-intuitive.

By using Geometric Algebra, a more intuitive and conceptually appealing frame-
work is possible, and the success of its application to this case is a very good illus-
tration of the power of Geometric Algebra in physical and engineering problems.

A. Lasenby (�)
Cavendish Laboratory and Kavli Institute for Cosmology, University of Cambridge, Cambridge,
UK
e-mail: a.n.lasenby@mrao.cam.ac.uk

R. Lasenby
Department of Applied Mathematics and Theoretical Physics, University of Cambridge,
Cambridge, UK
e-mail: robert@lasenby.org

C. Doran
Sidney Sussex College, University of Cambridge and Geomerics Ltd., Cambridge, UK
e-mail: chris.doran@geomerics.com

L. Dorst, J. Lasenby (eds.), Guide to Geometric Algebra in Practice,
DOI 10.1007/978-0-85729-811-9_1, © Springer-Verlag London Limited 2011

3

mailto:a.n.lasenby@mrao.cam.ac.uk
mailto:robert@lasenby.org
mailto:chris.doran@geomerics.com
http://dx.doi.org/10.1007/978-0-85729-811-9_1

4 A. Lasenby et al.

This extends to both the dynamical side, the Euler equations, which look simpler
and more straightforward in the GA approach, and to kinematics, where the intro-
duction of a reference body, which is then rotated and translated to the actual body
in space, is a great help to picturing what is going on. The latter might be thought
to have nothing intrinsically to do with GA, but in fact there is a close parallel with
the geometrical picture which GA gives of quantum mechanics. Here Pauli or Dirac
spinors can be viewed as instructions on how to rotate a ‘fiducial’ frame of vectors
to a new frame of vectors (including the particle spin and velocity) attached to the
particle itself. The rigid body equivalent of this is of a ‘body’ frame of vectors which
is rotated to give the ‘space’ frame of vectors defining the orientation of the body at
its actual location.

This GA approach is undoubtedly very successful in relation to the rotational
degrees of freedom inherent in this process, since these can be described by time-
dependent 3D rotors. The aim in the following contribution is to show how the
successes of the rotor treatment can be extended to include the translational degrees
of freedom as well, via use of the Conformal Geometric Algebra (CGA). In this
approach, a single 5D rotor describes both the rotation and translation away from
the reference body, resulting in a conceptual unification of these two sets of degrees
of freedom. Such unifications have already been described by David Hestenes and
others (see e.g. [4]). A novelty here is that we will seek a covariant formulation
based on a Lagrangian action principle. This should guarantee that all our equations
are physically meaningful and mutually consistent.

This development will be taken through to the point of considering interactions
of multiple bodies, and we sketch the implementation of a CGA version of the Fast
Frictional Dynamics (FFD) approach [6] in which the equations of motion for large
numbers of such bodies, mutually in contact, can be integrated in real time for graph-
ical display.

We start this contribution with a description of the 3D GA approach to rigid
body motion already referred to and then show how it may be extended to 5D CGA
with the translation and rotational d.o.f. treated on an equal basis. We then discuss
some of the issues that must be addressed in implementing this method in a specific
algorithm—principally how the rotor update equations are carried out—and look
briefly at results obtained in a CGA implementation of the FFD algorithm.

1.2 Rigid Body Dynamics in 3D

We start by looking at the treatment of rigid body motion in ordinary 3D GA. (For
a fuller description, see Chap. 3 of [3].)

1.2.1 Kinematics

For a rigid body moving through space, the position y(t) of a particular point can be
specified by giving the location x of that point when the body is in some reference
configuration (conventionally with origin at the body’s centre of mass) and then

1 Rigid Body Dynamics and Conformal Geometric Algebra 5

Fig. 1.1 The configuration of a rigid body is described by the location x0 of its centre of mass, and
the orientation of the body relative to some reference configuration, parameterised by the rotor R

describing the transformation from the reference configuration to the actual config-
uration. This transformation can be expressed in terms of a rotor R(t) which rotates
the reference body to the orientation of the actual body, and the position x0(t) of the
body’s centre of mass (see Fig. 1.1).

Using this description, y(t) is given by

y(t)=R(t)xR̃(t)+ x0(t) (1.1)

Differentiating, the velocity of a point in the body v(t)= ẏ(t) is given by

ẏ(t)= ṘxR̃ +Rx
˙̃
R + ẋ0 (1.2)

Since RR̃ = 1, we have ṘR̃ +R
˙̃
R = 0, so

ẏ(t)= (ṘR̃)RxR̃ +RxR̃(R
˙̃
R)+ ẋ0 (1.3)

= (ṘR̃)RxR̃ −RxR̃(ṘR̃)+ ẋ0 (1.4)

= (RxR̃) ·Ω + ẋ0 (1.5)

where Ω =−2ṘR̃ is the angular velocity bivector. Defining the body angular veloc-
ity ΩB = R̃ΩR, i.e. the spatial-frame angular velocity rotated back to the reference
frame, we have the alternative expression

ẏ(t)=R(x ·ΩB)R̃ + ẋ0 (1.6)

1.2.2 Dynamics

To investigate the dynamics, we need to consider the angular momentum of the
body. Letting ρ(x) be the density of the body at location x in the reference config-
uration, and y(x, t) and v(x, t) be the corresponding spatial-configuration position
and velocity, the angular momentum bivector L is defined by

L(t)=
∫

d3x ρ(x)
(
y(x, t)− x0

)∧ v(x, t)

6 A. Lasenby et al.

=
∫

d3x ρ(x)(RxR̃)∧ (Rx ·ΩBR̃ + v0)

=R

(∫

d3x ρ(x)x ∧ (x ·ΩB)

)

R̃ (1.7)

where v0 = ẋ0, and the v0 term disappears by the definition of centre of mass.
From this we extract the inertia tensor

I (B)=
∫

d3x ρ(x)x ∧ (x ·B) (1.8)

and the angular momentum is obtained by rotating the body angular momentum to
the space frame:

L=RI (ΩB)R̃

From its definition we see that I (B) is a linear function mapping bivectors to
bivectors.

The dynamical equation of motion is L̇ = T , where T is the bivector torque in
the spatial frame, i.e. a force f applied at location y gives a torque (y − x0) ∧ f .
Evaluating this, we have

L̇= ṘI (ΩB)R̃ +RI (ΩB)
˙̃
R +RI (Ω̇B)R̃

=R

[

I (Ω̇B)− 1

2
ΩBI (ΩB)+ 1

2
I (ΩB)ΩB

]

R̃

=R
[
I (Ω̇B)−ΩB × I (ΩB)

]
R̃ (1.9)

Rotating back to the body frame, we have

I (Ω̇B)−ΩB × I (ΩB)= R̃T R (1.10)

which is the GA version of the Euler equations.
As an illustration of the power of the rotor approach, we can look at the solution

of these equations in the torque-free case for a symmetric top. We suppose that
i1 = i2 are the two equal moments of inertia, and i3 is the moment of inertia about
the symmetry axis. In this case the solution, which you are asked to verify in the
Exercises, is

R(t)= exp

(

−1

2
i−1
1 Lt

)

R(0) exp

(

−1

2
ω3(1− i3/i1)Ie3t

)

(1.11)

This corresponds to an ‘internal’ rotation in the e1e2 plane (a symmetry of the body),
followed by a rotation in the angular-momentum plane. The rotor sandwiched inbe-
tween, R(0), corresponds to the initial orientation of the body.

1 Rigid Body Dynamics and Conformal Geometric Algebra 7

1.3 Rigid Body Dynamics in 5D CGA

1.3.1 Introduction

We now pass to the Conformal Geometric Algebra (CGA) approach to rigid body
dynamics. The idea here is to work in an overall space that is two dimensions higher
than the base space, using the usual conformal Euclidean setup. The penalty for do-
ing this, i.e. using a Euclidean setup, is that the number of degrees of freedom is
not properly matched to the problem in hand, and we have to introduce additional
Lagrange multipliers to cope with this. The alternative, which is also worth explor-
ing and is discussed in Chap. 18, is to use a 1D-up approach, where there is a much
better match in terms of degrees of freedom, but where we have to work in a curved
space.

So our setup is the standard one with three positive square basis vectors, e1, e2,
e3, with two extra vectors adjoined, e and ē, satisfying e2 = +1, ē2 = −1. From
these we form the null vectors n= e+ ē and n̄= e− ē. The representation function
we will use has the origin as −n̄/2, i.e.1

X = 1

2λ2

(
x2n∞ + 2λx − λ2n̄

)
(1.12)

where x is the ordinary position vector in Euclidean 3-space, and λ is a constant
with dimensions of length (included to render X dimensionless). We note that X so
defined is covariantly normalised since it satisfies X · n∞ =−1.

The overall idea is to set up a Lagrangian which is covariant with respect to the
5D geometry (that is, which is invariant under appropriate 5D rotor transformations
of the 5D vectors and spinors involved) but for which the energy is just the ordinary
3D rigid body energy. Then we should get equations of motion which are correct at
the 3D level but covariantly expressed in 5D. Additionally, the way we will express
the current configuration of the rigid body is via a combined rotation/translation ro-
tor, so that translations and rotations are integrated as much as possible. Specifically,
the configuration is given by an element of the Euclidean group, which corresponds
to the subgroup of 5D rotors which preserve n∞. Any such rotor can be decomposed
as

R(t)=R1(t)R2(t) (1.13)

1Editorial note: This notation is used in [3]. Compared to the notation in the tutorial appendix
(Chap. 21), Eq. (21.1), by setting λ = 1, we find that n = n∞ and n̄ = −2no . Correspondingly,
e = 1

2 (n + n̄) = −no + 1
2n∞ = −σ+ and ē = 1

2 (n − n̄) = no + 1
2n∞ = σ−. Note that n̄ · n = 2

corresponds to no · n∞ = −1. As a compromise between the notation in this book and [3] that
avoids awkward factors, in this chapter we will use n̄ but replace n by n∞.

8 A. Lasenby et al.

where R2(t) is an ordinary 3D rotor, giving the attitude of the body, and R1(t) is a
translation rotor, which takes the origin of the reference copy of the body, presumed
to be the centre of mass, to where the centre of mass is actually located at time t .
Explicitly,

R1 = 1− 1

2λ
xc(t)n∞ (1.14)

where xc(t) is the 3D position of the centre of mass at time t .
If Xref represents the position of a point in the reference copy of the body, then

the null vector corresponding to the actual position of this point is

X =RXrefR̃ (1.15)

We now proceed in analogy to the usual GA treatment of rigid body dynamics in
3D. The body angular velocity bivector is defined by

ΩB =−2R̃Ṙ (1.16)

Using this, we get that the time derivative of the 5D null vector of position is

Ẋ =RXref ·ΩB R̃ (1.17)

which means

Ẋ2 = (Xref ·ΩB)
2 (1.18)

Now evaluating Ẋ explicitly, we have

Ẋ = 1

2λ2
(2x · ẋn∞ + 2λẋ) (1.19)

and therefore

Ẋ2 = ẋ2

λ2
(1.20)

This has therefore returned the 3D velocity squared, which is what we need to eval-
uate the kinetic energy. We can thus write

T = λ2

2

∫

d3xb ρ(Xref ·ΩB)
2 (1.21)

where the integration is over the 3D reference body, and ρ is the density (in general
a function of 3D position). Now

(Xref ·ΩB)
2 =−ΩB ·

(
Xref ∧ (Xref ·ΩB)

)
(1.22)

1 Rigid Body Dynamics and Conformal Geometric Algebra 9

and we thus have

T =−1

2
ΩB · I (ΩB) (1.23)

where

I (ΩB)= λ2
∫

d3xb ρXref ∧ (Xref ·ΩB) (1.24)

This is therefore our version of the moment of inertia tensor. Calculating its compo-
nents, if B is a spatial bivector, then

I (B)= 1

4λ2

∫

d3x ρ
(
x2n∞ + 2λx − λ2n̄

)

∧ ((x2n∞ + 2λx − λ2n̄
) ·B) (1.25)

= 1

4λ2

∫

d3x ρ
(
x2n∞ + 2λx − λ2n̄

)∧ (2λx ·B) (1.26)

= 2

4λ

∫

d3x ρ
(
x2n∞x ·B + 2λx ∧ (x ·B)− λ2n̄x ·B) (1.27)

= Irot(B)+ 1

4λ2
n∞
∫

d3x ρ x2x ·B (1.28)

where Irot is the 3D rotational moment of intertia, and if a is a spatial vector, then

I (n∞a)= 1

4λ2

∫

d3x ρ
(
x2n∞ + 2λx − λ2n̄

)

∧ ((x2n∞ + 2λx − λ2n̄
) · (n∞a)

)
(1.29)

= 1

4λ2

∫

d3x ρ
(
x2n∞ + 2λx − λ2n̄

)

∧ (−2λn∞x · a − 2λ2a
)

(1.30)

=− 1

2λ

∫

d3x ρ
(
λx2n∞a − 2λn∞x(x · a)

+ 4λ2x ∧ a − λ2n̄∧ n∞(x · a)− λ3n̄a
)

(1.31)

=−1

2
Mλ2n̄a − 1

2
n∞a

∫

d3x ρ x2 − 1

2
n∞
∫

d3x ρ x(x · a) (1.32)

where M = ∫ d3x ρ is the total mass of the body.
Note that, since R must be a Euclidean rotor, i.e. Rn∞R̃ = n∞, we have 0 =

d
dt
n∞ = d

dt
(Rn∞R̃)= Rn∞ ·ΩBR̃, and thus n∞ ·ΩB = 0. Therefore ΩB must be

of the form B+n∞a for some spatial bivector B and spatial vector a (we could also
have come to this conclusion by considering the explicit R =R1R2 expression), and
consequently the above-evaluated arguments for I are the only ones of interest.

10 A. Lasenby et al.

Below, we will see that the main quantity of interest in the equations of motion
is I (ΩB)∧ n∞, which has the simple form

I (B + n∞a)∧ n∞ = Irot(B)n∞ + 1

2
Mλ2an̄∧ n∞ (1.33)

1.3.2 Setting up the Lagrangian

We now wish to set up our 5D Lagrangian, working in analogy with the treatment
starting on page 425 of [3]. There, we worked with general 3D spinors ψ , which
were kept on the rotor manifold via use of a term μ(ψψ̃ − 1) in the Lagrangian.
(μ is used instead of the λ in the book, to avoid confusion with our length scale λ.)

Because we are working with 5D spinors, we need some further restrictions to
ensure that we are working with a rotor. In addition, we only want to include rotors
of a specific type, namely those that preserve the point at infinity n∞, since these
correspond to the rigid body motions we are considering. Our full Lagrangian is
thus taken as

L =
〈

−1

2
ΩB · I (ΩB)−μ(ψψ̃ − 1)− IUψψ̃ − V (ψn∞ψ̃ − n∞)

〉

(1.34)

where μ is a scalar, I the 5D pseudoscalar, and U and V are general 5D vectors.
Here ΩB is taken to be defined in terms of the (general) spinor ψ as follows:

ΩB =−ψ̃ψ̇ + ˙̃ψψ (1.35)

which can be seen to be always a bivector.
The function of the general grade 4 Lagrange multiplier IU is to ensure that the

grade 4 part of ψψ̃ is zero, and the function of V is to restrict to rigid body motions.
With all these restrictions in place, enforced by the multipliers, a general ψ turns
into a rotor of the desired form.

1.3.3 The Equations of Motion and Conservation Laws

We employ the usual techniques (see e.g. [8]) to get the equations of motion. These
are

I (Ω̇B)−ΩBI (ΩB)= μ+ I ψ̃Uψ + ψ̃V ψn∞ (1.36)

Assuming that ψ is of the desired form and restricting to the various grades, we
have

−ΩB · I (ΩB) = μ+ V · n∞ scalar part
I (Ω̇B)−ΩB × I (ΩB) = ψ̃(V ∧ n∞)ψ bivector part

−ΩB ∧ I (ΩB) = ψ̃IUψ grade 4 part
(1.37)

1 Rigid Body Dynamics and Conformal Geometric Algebra 11

The middle one of these is the direct analogue of the Euler equations. It shows us
that the effect of the Lagrange multiplier which is enforcing the restriction to rigid
body motions, is to introduce the ‘space torque’ V ∧n∞, which appears in the Euler
equation back-rotated to the body frame.

If we employ the techniques in [8] to find the angular momentum and the con-
servation law it satisfies, then under the change

ψ �→ eαB/2ψ, V �→ eαB/2V e−αB/2, U �→ eαB/2Ue−αB/2 (1.38)

where α is a scalar, and B is a constant bivector, we find that all the terms in the La-
grangian are invariant except the final one, V ·n∞. This leads to a non-conservation
of angular momentum, with the result

dL

dt
= V ∧ n∞ (1.39)

as already pre-figured in the identification of V ∧ n∞ as a torque operating on the
system. The angular momentum itself is given by

L=ψI (ΩB)ψ̃ (1.40)

in the usual way.
The conserved Hamiltonian is found to be simply the kinetic energy

H =−1

2
ΩB · I (ΩB) (1.41)

1.3.4 Solving the Equations

The appearance of V in the main Euler equation is awkward, firstly since we do not
have a dynamical equation for it, and secondly since it introduces an explicit ψ in
what should be the bivector update equation. A solution of this is to wedge both
sides of the bivector equation with n∞. This yields

(
I (Ω̇B)−ΩB × I (ΩB)

)∧ n∞ = 0 (1.42)

It is this equation which appears to give the required dynamics most quickly, since
it contains neither V nor ψ .

1.3.4.1 Counting Arguments
To see that even back at the level of the bivector equation we in fact have all the
necessary information for solution, we can use a counting argument.

Let the base space have dimension m. Then ΩB has m(m − 1)/2 ordinary ro-
tation bivectors in it, plus m translation bivectors, making m(m + 1)/2 in total.
V meanwhile, though a general vector in m+ 2 dimensions, only has m+ 1 effec-
tive components, since we are never going to recover the n∞ component of V —this

12 A. Lasenby et al.

is irrelevant to all the dynamics, and without loss of generality we can set it to zero.
The number of quantities we have to recover from the bivector equation is thus

m(m+ 1)

2
+ (m+ 1)= (m+ 1)(m+ 2)

2
(1.43)

This is equal to the number of bivector components in the overall (m + 2)-
dimensional space, so we do indeed have enough information to separately recover
the dynamics we want—encoded in ΩB—and V . However, Eq. (1.42) provides a
more direct way of updating ΩB , without reference to V or ψ .

1.3.5 An Example—The Dumbbell

To make the above concrete, we consider a simple example, a 2D dumbbell. This is
taken to consist of unit mass points at x = ±x0, y = z = 0, and be moving just in
the (x, y) plane. The inertia tensor is then just

I (ΩB)= λ2(X1 ∧ (X1 ·ΩB)+X2 ∧ (X2 ·ΩB)
)

(1.44)

where X1 =X(x = x0, y = 0, z= 0) and X2 =X(x =−x0, y = 0, z= 0).
As an example of how one could proceed, we parameterise ΩB as

ΩB = f (t)e1e2 + g(t)e1n∞ + h(t)e2n∞ (1.45)

which is the most general angular velocity bivector compatible with the constraints
on ψ and the fact the motion is two-dimensional.

Equation (1.42) reads

x2
0 ḟ e1e2n∞ − λ2((−ġ+ f h)e1 + (ḣ+ fg)e2

)
eē= 0 (1.46)

From this we can read off the solution f = const and

g(t)= c1 cos(f t)+ c2 sin(f t), h(t)= c2 cos(f t)− c1 sin(f t) (1.47)

which are the correct ‘angular velocities’ for a body moving with constant transla-
tional velocity (λc1, λc2) and rotating at constant rate f .

Going back to find the vector Lagrange multiplier V for this case, one finds that
its n̄ component is constant and equal to minus the translational kinetic energy. The
spatial part carries out a type of helical motion, at twice the underlying frequency f ,
looking rather like the ‘zitterbewegung’ which accompanies motion of the electron
when considered relativistically (see e.g. [5]). A plot for a case with some illustrative
values is shown in Fig. 1.2.

The other vector Lagrange multiplier U is not relevant to this case, since it turns
out ΩB ∧ I (ΩB) is zero here.

1 Rigid Body Dynamics and Conformal Geometric Algebra 13

Fig. 1.2 Plot of the locus of
the spatial part of the
Lagrange multiplier V for the
2D dumbbell case.
(V1(t),V2(t)) is plotted
against t . The n̄ component
of V is constant and equal to
minus the translational
kinetic energy

1.3.6 Including Moments and Forces

It is obviously an aim of the method that moments and forces should be included in a
unified way. A force acting at a point of contact has two actions: firstly to accelerate
the centre of mass—this effect does not depend on the point of contact. Secondly
it creates a moment, which does depend on the point of contact. Ideally both these
effects would come from a single ‘moment’ in the higher space, and also whatever
expression is involved should be covariant.

The following shows how both these aims can in fact be realised, in a simple
way. To demonstrate covariance, we need an extra concept first, however, in order
to properly represent forces. This is the concept of boundary points in Euclidean
space. It will turn out that the wedging with n∞ that occurs in the final equations
renders the distinction between these and ordinary Euclidean 3-vectors somewhat
redundant, but the conceptual unification afforded is useful, and the covariance is
not properly demonstrated without them, so we will follow this route.

The notion of boundary points in Euclidean space is introduced and discussed
in the paper [7]. The idea is basically to be able to represent ‘directions’, or ‘free
vectors’, in a covariant way. It entails enlarging the class of representative points to
include all 5D vectors Y (not just the null vectors X representing position), but with
the covariant requirement imposed that Y ·n∞ = 0. They are thus the Euclidean ana-
logue of the boundary of the Poincaré sphere, which are the set of points such that
Y ·e= 0. In the same way that in the non-Euclidean space, we found that the bound-
ary points represented momenta; here we also expect them to represent momenta,
but in Euclidean space. Taking the derivative with respect to time, our covariant
notion of a force is therefore an F satisfying F · n∞ = 0. Specifically we write

F = f + αn∞ (1.48)

where f is the normal Euclidean 3D force vector, and α is a multiplier, which in fact
we will never need to determine, due to the final wedging with n∞. The key point is
that under our rotor transformation ψ , we find (taking the back transformation for
reasons that will be clear shortly)

ψ̃Fψ = R̃2fR2 + βn∞ (1.49)

14 A. Lasenby et al.

where β is a combination of α together with the scalar product of f and the vector
through which R1 translates. Thus this back-transformed F is also a boundary point
(and therefore represents a force still), which has merely had its 3D direction ro-
tated, and with a different multiple of n∞ tacked on. We can see now why we need
to add a multiple of n∞ to the 3-force to make a covariant object—while we could
put the multiple to zero for a given force, transforming to a different frame induces
a non-zero n∞ component.

Our fundamental equation is as follows. For a force F acting on a body at the
contact position given by Xcont (note this is on the surface of the real body, not the
reference body), the total effect of this force is to produce the ‘moment’

Mspace = λXcont ∧ F (1.50)

Back-rotating this to the body frame, we see that the moment to be added to the
right-hand side of the bivector equation in (1.37) is

Mbody = λXcont
ref ∧ (ψ̃Fψ) (1.51)

Note that if the force is actually specified in the body frame (e.g. at constant angle
relative to the body), and of value Fbody, then the body moment is even simpler and
is just equal to

Mbody = λXcont
ref ∧ Fbody (1.52)

In terms of Eq. (1.42), we just need to add into the rhs, either of the last two quanti-
ties wedged with n∞. This will of course kill off the n∞ parts of the force, which is
why we do not need to determine them in practice. Thus, e.g. in the case where the
force is specified in the body frame, we get

Mbody ∧ n∞ = λXcont
ref ∧ f body ∧ n∞ (1.53)

The above is an assertion; we now need to see why it works. Consider the rhs of
the last equation. Decomposing Xref into its constituent parts, we have

λXcont
ref ∧ f body ∧ n∞ = λ(2λxref − λ2n̄)

2λ2
∧ f body ∧ n∞

= xref ∧ f body n∞ + λf bodyeē (1.54)

This is the spatial torque on the body times n∞, plus the spatial force on the body
times eē. The spatial force in the second term appears multiplied by λ, so that it
itself is like a moment and can be added (dimensionally) to the first term.

Rotating back to the space frame and taking the integral with respect to time of
this equation, we would conclude (schematically—all in the space frame):

(Total 5D angular momentum)∧ n∞ = (spatial angular momentum)n∞
+ λ(spatial momentum) eē (1.55)

1 Rigid Body Dynamics and Conformal Geometric Algebra 15

At this point we realise that what we have ended up with is virtually identical to
Eq. (6.19) in the paper on twistors [1].2 This gives the connection between a line
(or ray) in 3D space, represented in the CGA, and the physical observables of the
twistor associated with it. So this gives a very interesting connection, in this non-
relativistic case, with twistors.

What remains is to establish Eq. (1.55). We need to do this for an object which
has non-zero ‘spin’ angular momentum, and with (reference) centre of mass at the
origin. The simplest such object is the dumbbell above. By linearity, the identifi-
cation is then obliged to work for all objects with the same property (of reference
CoM at the origin). For the dumbbell, we indeed find

L∧ n∞ =
(
ψI (ΩB)ψ̃

)∧ n∞
= (orbital+ spin angular momentum) n∞
+ λ(spatial momentum) eē (1.56)

thus verifying what we need.

1.3.7 Adding in Gravity

It is pretty obvious how to add in gravity at the level of the equations of motion, but
as an exercise in Lagrangian dynamics, we will instead add it into the Lagrangian
and derive the extra term in the equation of motion from this.

Let g be the gravitational acceleration vector. Then the gravitational potential for
an object of total mass m is given by

V = “mgh”=−mg · xc =−λmXc · g
=
〈

−λmψ

(

− n̄

2

)

ψ̃g

〉

(1.57)

Since the Lagrangian is meant to be T − V , we obtain

Lgrav =
〈

−1

2
λmψn̄ψ̃g

〉

(1.58)

and therefore

∂ψLgrav =−λmn̄ψ̃g (1.59)

2See also [2], which contains further details.

16 A. Lasenby et al.

Following through to get the equations of motion reveals an extra bivector part
which should appear on the rhs of Eq. (1.37) of

1

2
λm(ψ̃gψ)∧ n̄ (1.60)

and wedging this with n∞, we obtain the following to be added to the rhs of (1.42):

λ R̃2(mg)R2 eē (1.61)

This is in precisely the form we would expect from (1.54), given that the gravi-
tational force does not exert any spatial torque in the body frame.

1.3.8 The Angular Velocity Bivector Update Equation

A central thing that will be needed for a numerical algorithm will be a way of up-
dating the body angular velocity bivector ΩB at each time step. Equation (1.42),
supplemented by a term for the external torques, gives us that

I (Ω̇B)∧ n∞ =
(
ΩB × I (ΩB)

)∧ n∞ + T (1.62)

where T is the sum of the trivector torques in the body frame. (The general form
of these has been discussed above, and the gravitational ‘torque’ (1.61) is a specific
example.) To recover ΩB , we need to invert the function F(B)≡ I (B)∧ n∞.

Recalling the results of Sect. 1.3.1 that ΩB · n∞ = 0, so in general ΩB is of the
form B+an∞ (B some spatial bivector, a some spatial vector), and from Eq. (1.33)
that

I (B + n∞a)∧ n∞ = Irot(B)n∞ + 1

2
Mλ2an̄∧ n∞ (1.63)

it is clear that, so long as Irot is non-singular, F will be invertible for bivectors of
the form B · n∞ = 0.

To illustrate how things go in the 2D dumbbell example above, we let E1 = e1e2,
E2 = e1n∞, E3 = e2n∞ be a basis for the appropriate space of bivectors and write
Fi = F(Ei). Then,

F1 = 2mx2
0e1e2n∞, F2 = 2mλ2e1eē, F3 = 2mλ2e2eē (1.64)

where each particle is taken as having mass m (they were taken as unit mass previ-
ously). The reciprocal frame to this, with Fi · Fj = δ

j
i , is

F 1 =− 1

4mx2
0

e1e2n̄, F 2 = 1

2mλ2
e1eē, F 3 = 1

2mλ2
e2eē (1.65)

1 Rigid Body Dynamics and Conformal Geometric Algebra 17

giving

F−1(B)= (B · F i
)
Ei (1.66)

The equation of motion can now be written as

Ω̇B = F−1((ΩB × I (ΩB)
)∧ n∞ + T

)
(1.67)

1.3.9 Collisions—One Body

We are now far enough along that we can attempt to take a first look at collisions.
The simplest case to consider will be where our object hits a perfectly reflecting
smooth surface. Then energy will be conserved, and we only need consider a normal
impulse from the surface.

Let Timp be the trivector impulsive torque that this gives rise to (we consider a
concrete example below, in case what is meant by this is not fully clear yet). We
then input this to the impulsive version of (1.67) to obtain

ΔΩB = Timp · F iEi (1.68)

Here ΔΩB is the sudden jump that will occur in ΩB due to the impulse. We note
that although ΩB changes, there will be no change in the rotor ψ—it is just the state
of motion that alters, not the position or orientation.

To calculate the value of the impulse, we can use energy conservation. Specifi-
cally, if Ωold

B is the value of ΩB just before the impulse, we require

−1

2

(
Ωold

B +ΔΩB

) · I(Ωold
B +ΔΩB

)=−1

2
Ωold

B · I
(
Ωold

B

)
(1.69)

This provides an equation which is in general quadratic in Timp. One solution,
however, is that Timp = 0, and so it turns out that the value we want is the root of
a linear equation, giving a nice simple answer. In a non-perfectly reflecting case,
where the energy changes, then we will have a full quadratic to solve.

As a concrete case, let us consider our 2D dumbbell, in a situation where this
is projected into the air, with a non-zero angular velocity, and then one of the two
point masses (say the one at x =−x0) strikes a perfectly reflecting smooth floor on
its descent under gravity, see Fig. 1.3.

The impulsive force will be of the form ΔP = p2e2 + p∞n∞, i.e. directed up-
wards, and the trivector torque we need is

Timp = λX2 ∧ (ψ̃ΔPψ)∧ n∞ (1.70)

This evaluates to

Timp =−x0p2 cos θe1e2n∞ + λp2(sin θe1 + cos θe2)eē (1.71)

18 A. Lasenby et al.

where θ is the rotation angle in

R2 = cos(θ/2)− e1e2 sin(θ/2) (1.72)

Putting the expression for Timp into (1.68) yields

ΔΩB = p2

2x0mλ

(−λ cos θe1e2 + x0(sin θe1 + cos θe2)n∞
)

(1.73)

Putting this in turn into (1.69) yields a quadratic in p2, with roots p2 = 0 (no
change) and the one we want, which using the parameterisation of ΩB given in
(1.45), is

p2 =− 4m

1+ cos2 θ
(λh cos θ + λg sin θ − x0f cos θ) (1.74)

We can then re-insert this into (1.73) to find the jump in ΩB in terms of parame-
ters which are all known at the point of contact, thus solving our problem.

To get a feeling for what p2 is in more conventional terms, we can note that quite
generally in 2D, the relation between ψ and ΩB means that

f (t)= θ̇

g(t)= 1

λ
(ẋc cos θ + ẏc sin θ) (1.75)

h(t)= 1

λ
(−ẋc sin θ + ẏc cos θ)

Inserting these into (1.74) yields

p2 = 4m

1+ cos2 θ
(x0θ̇ cos θ − ẏc) (1.76)

which is in a form that one can check against the result one would obtain via con-
ventional calculations.

1.3.10 Collisions—Two Bodies

We now move on to consider collisions between two bodies. We again do this in the
smooth (non-frictional) case, but it will turn out to be easy to consider the full range
from elastic to inelastic collisions.

When two smooth rigid bodies collide at a point, then the resulting impulsive
force must be along the joint normal to the two surfaces. That the normals at the
point of contact must agree (apart from one being the negative of the other) is obvi-
ous, except when one of the bodies has some sharp protuberance, i.e. a discontinuous
normal direction at that point. In this case we shall assume that the normal is defined

1 Rigid Body Dynamics and Conformal Geometric Algebra 19

Fig. 1.3 A representation of the motion of the 2D-dumbbell colliding with a frictionless floor,
computed in the 5D conformal algebra. The frames of an animation are shown simultaneously,
with the dumbbell projected upwards from a horizontal position at the left side of the plot. (Online
colour version shows different colours for each end of the dumbbell)

by the smooth surface. (If two sharp protuberances collide, we shall need another
rule.)

The example we shall work with is when two dumbbells collide. We assume that
the light rod joining the two ends of a dumbbell is smooth, and therefore, by the
above assumption, if the collision is where the point mass at one end of a dumbbell
impacts on the light rod portion of the other, then the impulse is wholly along the
direction normal to the light rod at that point.

Thus we can set up a situation, directly analogous to the case where one dumb-
bell hits a smooth floor, where during its descent under gravity a dumbbell hits the
rod part of another dumbbell whilst the second one is temporarily stationary, e.g. by
having been launched vertically upwards at some earlier point, in horizontal orien-
tation, and without spin.

The advantage of this setup (which by changing frames is pretty general anyway)
is that for the first dumbbell, it allows us to use all the formulae of the previous sec-
tion, apart from the value for p2, which will be different (and, we expect, smaller).

We assume that the second dumbbell is hit at a distance b out from the centre
towards the x = +x0 mass. The impulse on this will be equal and opposite to that
on the first dumbbell, and the impulsive torque equations tell us that

ΔΩ
(2)
B =−

p2

2mλx2
0

(
λbe1e2 + x2

0e2n∞
)

(1.77)

20 A. Lasenby et al.

ΔΩ
(1)
B is still given by the rhs of (1.73).

To fix p2, we no longer use energy, since we wish to consider inelastic as well
as elastic collisions. We parameterise the degree of elasticity in the usual way via a
coefficient of restitution, which we will call α (to avoid confusion with other uses
of e). This is meant to lie in the range 0 to 1, with α = 0 being totally inelastic and
α = 1 perfectly elastic.

The definition of α that we will use, will be the usual one in terms of the relative
velocities of the two bodies along the joint normal before and after impact. Specifi-
cally, let Ẋ(i)

cont, i = 1,2, be the 5D space velocities of the two points of contact; then
if n is the joint normal direction, we define α via

(
Ẋ

(1)
cont − Ẋ

(2)
cont
) · n∣∣after =−α

(
Ẋ

(1)
cont − Ẋ

(2)
cont
) · n∣∣before (1.78)

It is perhaps not obvious, given that the bodies have spin degrees of freedom,
as well as translational, that the value α = 1, defined this way, will coincide with
no loss of overall KE (translational + rotational), but this is indeed the case. For
α = 0, one finds that in this case with rotation, then even in the zero momentum
frame, the final KE is not zero. However, α = 0 is still the proper inelastic limit for
rigid bodies. Specifically, values lower than this would imply that interpenetration
occurs. The value of p2 going with α = 0 is therefore the minimum impulse that
prevents interpenetration, while the value that goes with α = 1 is the maximum
possible (consistent with energy conservation).

For the two dumbbell case, we can use (1.78) along with (1.17), which gives Ẋ

in terms of ΩB , to derive p2, with the result

p2 =−2mx2
0(1+ α)

λh cos θ + λg sin θ − x0f cos θ

x2
0 cos2 θ + 2x2

0 + b2
(1.79)

It is important to note as regards the way we have set things up here, that the f ,
g and h in this expression are those of the first object just before the moment of
contact. Substituting in the values of f , g and h from (1.75), we find

p2 = 2mx2
0(1+ α)

x2
0 cos2 θ + 2x2

0 + b2
(x0θ̇ cos θ − ẏc) (1.80)

in terms of more standard variables.
We see that p2 scales directly as 1+ α. The minimum impulse, needed to pre-

vent interpenetration, is thus half the maximum impulse (corresponding to energy
conservation). Note that if we work out the change in the total KE, we find that it
is given by a value independent of α times 1− α2. This seems very sensible, and
the fixed multiplier corresponds to the amount lost in the inelastic case. Note state-
ments about changes in KE are independent of reference frame, so we do not need
to worry about whether we are working in the zero momentum frame or not. Note
also that total L∧n∞, i.e. angular and linear momentum, is automatically conserved
throughout, since the impulse is equal and opposite on each body, and takes place at
the same space point (so has the same total moment).

1 Rigid Body Dynamics and Conformal Geometric Algebra 21

1.4 Implementation

As we have seen, the 5D CGA formulation gives us a new mathematical descrip-
tion of rigid body motion in 3D, which we can use as an alternative to the usual
position/rotation representation in numerical simulations. We now discuss the im-
plementation of this approach in a more challenging setting than considered above,
namely the development of a prototype multi-body physics engine using CGA oper-
ations. The overall simulation scheme used is basically separate from this represen-
tation choice, and we used the ‘Fast Frictional Dynamics’ approach of [6] to develop
the physics aspects needed additionally to those already discussed. Basically, these
come down to how to handle a potentially large number of simultaneously interact-
ing bodies in a way that scales favourably with the number of bodies involved.

The FFD approach has serious limitations (including non-conservation of en-
ergy) but is simple, fast, and provides an adequate demonstration of the underlying
CGA representation.

1.4.1 Overview

Our simulation tracks the configuration R and velocity Ṙ of each rigid body. To
update these over a time-step, we go through the following (schematic) routine:
1. Firstly, we update the position and velocity of each body, without regard to any

contact forces (but taking into account gravity and any other ‘non-contact’ forces,
e.g. a simulated rocket).

2. We then perform collision detection, seeing whether this update has caused any
interpenetration between rigid bodies.

3. If there are any collisions, we update the positions and velocities to fix these (also
taking into account the effects of friction).
Examples of operations we need to perform in this process include evolving the

position and velocity in the presence of external torques. The following sections go
through some of these details in the CGA approach.

1.4.2 Update Equations

1.4.2.1 Velocity Update
Recall that the equation of motion for a rigid body is

F(Ω̇B)= C + TB (1.81)

where C = (ΩB × I (ΩB)) ∧ n∞ is the ‘coriolis torque’, TB = R̃T R is the body
frame external torque, and F(B)= I (B)∧ n∞ is the inertia function.

In our simulation, we track the configuration and (generalised) velocity of the
body, and want to evolve these over time-steps. The most obvious approach is to
parameterise the body’s motion by R and ΩB—we can then use Ω̇B = F−1(C+TB)

22 A. Lasenby et al.

to do a first-order update for ΩB and a second-order update for R. Alternatively, we
can work directly with the angular momentum Ln =RF(ΩB)R̃. This changes as

L̇n = T =RTBR̃ (1.82)

i.e. in response to the spatial-frame trivector torque, so we can update this and then
obtain

Ω̇B = F−1(C + R̃L̇nR), ΩB = F−1(RL̃nR) (1.83)

with which we can perform the R update. The advantage of tracking Ln is that, for
free motion, Ln is conserved, whereas in general C �= 0, so ΩB evolves and has the
potential to wander off the correct shell. Even in the case of motion under gravity,
there is no rotational torque, so the rotational components of Ln do not change, and
we retain the most important part of the advantage.

1.4.3 Computer-Level Object Representation

If a software library implementing 5D CGA is available, then all of the quantities
referred to above can be used directly, providing a very simple programming expe-
rience. However, such libraries are often less efficient than lower-level implementa-
tion methods. One compromise is to use existing, optimised vector maths libraries
to build the CGA objects we need. For example, configuration rotors are of the form
R = (1− tn∞/2)Rs , where Rs is a spatial rotor, and t a spatial vector, so can be
written as

R = q1 + I3n∞q2 (1.84)

where qi = αi+Bi is a scalar plus spatial bivector object, that is, a quaternion. Thus,
configuration rotors can be represented as dual quaternions; this is useful because
many optimised vector mathematics libraries contain a quaternion data structure.
For example, the multiplication

R′R = (q ′1 + I3n∞q ′2
)
(q1 + I3n∞q2)= q ′1q1 + I3n∞

(
q ′1q2 + q ′2q1

)
(1.85)

can be implemented in terms of three quaternion multiplications. Extracting the
rotation and translation from R, we have Rs = q1, and t = 2I3〈q1q̃2〉2.

As another example, suppose that we have updated R, but that due to numerical
errors, it may not longer be a Euclidean rotor, i.e. RR̃ �= 1 (note that if R is of the
form R = q1 + I3n∞q2, then RR̃ = 1 implies that Rn∞R̃ = n∞). Write ψ as the
product of our update step—we want to set R = ψ/(ψψ̃)1/2, projecting back onto
the rotor manifold. Since

ψψ̃ = (q1 + I3n∞q2)(q̃1 + q̃2I3n∞)= q1q̃1 + 2I3n∞〈q1q̃2〉
= α + βI3n∞ (1.86)

1 Rigid Body Dynamics and Conformal Geometric Algebra 23

with α,β scalars, we have

(ψψ̃)1/2 = α1/2 + 1

2
α−1/2βI3n∞ (1.87)

and thus

(ψψ̃)−1/2 = α−1/2 − 1

2
α−3/2βI3n∞ (1.88)

so

R = ψ

(ψψ̃)1/2
= α−1/2ψ − 1

2
βα−3/2I3n∞q1 (1.89)

giving us our renormalisation equation.
It should be noted that we could, of course, represent the body configuration as a

(rotor, translation vector) pair, in exactly the same way as standard physics libraries
use a (normalised quaternion, translation vector) pair. This would be a perfectly
sensible choice, and the update equations we get would correspond exactly to those
in traditional approaches, though we may choose to derive them through the CGA
formalism. In this project, we used the dual quaternion representation since it is
slightly closer to the CGA formalism and allows the programming to reflect the
CGA equations more closely.

1.4.4 Results

The methods outlined above were used in constructing a prototype real-time rigid-
body physics engine, mainly with the goal of demonstrating the use of CGA-based
representations and algorithms in such an application. A few short movies of the
engine in action can be found at [9]. More complicated situations, especially those
involving quasi-static stacking of objects, are not well handled by the simple FFD
scheme implemented here, but this issue is orthogonal to the use of CGA, which
could equally well be employed alongside a more physically realistic simulation
approach.

1.5 Exercises

1.1 Show that for a symmetric top where i1 = i2 are the two equal moments of
inertia, and i3 is the moment of inertia about the symmetry axis e3, the inertia tensor
can be written

I (B)= i1B + (i3 − i1)(B ∧ e3)e3

1.2 Verify the rotor solution for a symmetric top given in Eq. (1.11).

24 A. Lasenby et al.

1.3 Show that the inertia tensors used in this paper are symmetric (i.e. I (B) · C =
B · I (C) for all bivectors B and C) and demonstrate the role this plays in proving
conservation of kinetic energy.

References

1. Arcaute, E., Lasenby, A., Doran, C.: Twistors in geometric algebra. Adv. Appl. Clifford Alge-
bras 18, 373–394 (2008)

2. Arcaute, E., et al.: A representation of twistors within geometric (Clifford) algebra. math-ph/
0603037v2 (unpublished)

3. Doran, C.J.L., Lasenby, A.N.: Geometric Algebra for Physicists. Cambridge University Press,
Cambridge (2003)

4. Hestenes, D.: New tools for computational geometry and rejuvenation of screw theory. In:
Bayro-Corrochano, E., Scheuermann, G. (eds.) Geometric Algebra Computing in Engineering
and Computer Science, p. 3. Springer, London (2010)

5. Hestenes, D.: Zitterbewegung in quantum mechanics. Found. Phys. 40, 1–54 (2010)
6. Kaufman, D.M., Edmunds, T., Pai, D.K.: Fast frictional dynamics for rigid bodies. ACM Trans.

Graph. 24(3), 946–956 (2005) (SIGGRAPH 2005)
7. Lasenby, A.N.: Recent applications of conformal geometric algebra. In: Li, H., Olver, P.J.,

Sommer, G. (eds.) Computer Algebra and Geometric Algebra with Applications. Lecture Notes
in Computer Science, p. 298. Springer, Berlin (2005)

8. Lasenby, A.N., Doran, C.J.L., Gull, S.F.: A multivector derivative approach to Lagrangian field
theory. Found. Phys. 23(10), 1295 (1993)

9. http://www.mrao.cam.ac.uk/~anthony/conformal_dynamics

http://arxiv.org/abs/math-ph/0603037v2
http://arxiv.org/abs/math-ph/0603037v2
http://www.mrao.cam.ac.uk/~anthony/conformal_dynamics

2Estimating Motors from a Variety
of Geometric Data in 3D Conformal
Geometric Algebra

Robert Valkenburg and Leo Dorst

Abstract
The motion rotors, or motors, are used to model Euclidean motion in 3D con-
formal geometric algebra. In this chapter we present a technique for estimating
the motor which best transforms one set of noisy geometric objects onto another.
The technique reduces to an eigenrotator problem and has some advantages over
matrix formulations. It allows motors to be estimated from a variety of geometric
data such as points, spheres, circles, lines, planes, directions, and tangents; and
the different types of geometric data are combined naturally in a single frame-
work. Also, it excludes the possibility of a reflection unlike some matrix formu-
lations. It returns the motor with the smallest translation and rotation angle when
the optimal motor is not unique.

2.1 Introduction

The motion rotors or motors, denoted M , are used to model Euclidean motions in
3D conformal geometric algebra (CGA). It is often useful to be able to estimate
a motor which best maps one data set onto another in some sense. The canonical
problem involves two sets of noisy points where one set is nominally a rotated and
translated version of the other. This situation arises frequently, for example when
two sets of reconstructed 3D points need to be merged and they share some common
points. Several solutions exist to minimise the squared distance between the points,
using matrix techniques based on SVD, polar decomposition, and quaternions [3].

R. Valkenburg (�)
Industrial Research Limited, Auckland, New Zealand
e-mail: r.valkenburg@irl.cri.nz

L. Dorst
Intelligent Systems Laboratory, University of Amsterdam, Amsterdam, The Netherlands
e-mail: l.dorst@uva.nl

L. Dorst, J. Lasenby (eds.), Guide to Geometric Algebra in Practice,
DOI 10.1007/978-0-85729-811-9_2, © Springer-Verlag London Limited 2011

25

mailto:r.valkenburg@irl.cri.nz
mailto:l.dorst@uva.nl
http://dx.doi.org/10.1007/978-0-85729-811-9_2

26 R. Valkenburg and L. Dorst

In addition to points, many other geometric objects such as lines, directions, and
planes provide useful information which can be used to help estimate the rigid body
relationship between the data sets.

In this chapter we present a technique for estimating the motor which best trans-
forms one set of noisy geometric objects onto another. The technique reduces to an
eigenrotator problem and has some advantages over matrix formulations. It allows
motors to be estimated from a wide variety of geometric data such as points, spheres,
circles, lines, planes, directions, and tangents; and the different types of geometric
data to be combined naturally in a single framework. Also, it does not admit the
possibility of a reflection as do some matrix formulations. It returns the motor with
the smallest translation and rotation angle when the optimal motor is not unique. To
assist the development, we will first examine some useful algebraic and differential
properties of the motors.

The following geometric algebra conventions are used in this chapter. The ge-
ometric algebra over R with signature (p, q) (p positive and q negative basis el-
ements) is denoted Rp,q . When q = 0 we write Rp . A pure Euclidean multivec-
tor in R3 is usually represented in boldface, such as V . The grade-r elements of
a geometric algebra Rp,q are denoted R

r
p,q . R

+
p,q and R

−
p,q refer to the even and

odd elements of Rp,q . The conformal geometric algebra (CGA) of the 3D space
R

3 is denoted by R4,1. The dual of X is denoted X∗ = X · I−1. The CGA vec-
tor no represents the origin and the CGA vector n∞ represents the point at in-
finity, with no · n∞ = −1. A CGA point or dual sphere s (which is an element
of R

1
4,1) is normalised if s · n∞ = −1, and a direct sphere (an element of R

4
4,1)

is normalised if S ∧ n∞ = −I4,1. A round R (including tangents) is normalised if
|R ∧ n∞| = 1, a flat (line or plane) F is normalised if |F | = 1, and a direction Δ is
normalised if |no ∧Δ| = 1. The notation 〈X〉i,j,...,k is used as an abbreviation for
〈X〉i + 〈X〉j + · · · + 〈X〉k .

2.2 The Linear Spaces MMM, BBB, and SSS

The 8D linear space M= span{1, e12, e13, e23, e1n∞, e2n∞, e3n∞, I3n∞} ⊂R4,1 is
the smallest linear space in which motors reside. It is convenient to restrict most
of the analysis to elements in M because many simplifications arise. Most of these
are consequences of the following split: if X ∈M, then X = R +Q where R ∈R

+
3

and Q ∈ R
−
3 n∞ = {V n∞ : V ∈ R

−
3 }. As QQ̃ = 0, 〈XX̃〉 = RR̃ ≥ 0, so |X|2 =

|〈XX̃〉| = 〈XX̃〉, and we can drop the absolute value. We will use the property that
M is closed under multiplication, so if X,Y ∈M, and then XY ∈M. This is clear by
simply multiplying the basis elements. If X,Y ∈M, then 〈XYỸ X̃〉 = 〈XX̃〉〈Y Ỹ 〉,
so |XY | = |X||Y |. In addition, X ∈M is invertible iff |X| �= 0. If X is invertible,
then 1= |X−1X| = |X−1||X| and |X| �= 0. Conversely, if |X| �= 0, then

X−1 = X̃

(〈XX̃〉 − 〈XX̃〉4
〈XX̃〉2

)

. (2.1)

2 Estimating Motors from a Variety of Geometric Data 27

The denominator of this is simplified because 〈XX̃〉24 vanishes. It is also conve-
nient to split X ∈M into symmetric and antisymmetric parts X = S + B where
S = 1

2 (X+ X̃)= 〈X〉0,4 and B = 1
2 (X− X̃)= 〈X〉2. The antisymmetric grade-2 el-

ements of M will be denoted B = span{e12, e13, e23, e1n∞, e2n∞, e3n∞}, and the
symmetric grade 0 and 4 elements will be denoted S = span{1, I3n∞}. The el-
ements of S are “symmetric” in the sense that for S ∈ S, we have S = S̃. S is
closed under multiplication: S1, S2 ∈ S ⇒ S1S2 ∈ S. Note that if X ∈ M, then
XX̃ = 〈XX̃〉 + 〈XX̃〉4. Therefore the condition XX̃ = 1 encodes two constraints:
〈XX̃〉 = 1 and 〈XX̃〉4 = 0 (there is only one grade-4 basis element in M). The fol-
lowing lemma uses these constraints to characterise how the 6D motor manifold M
sits in the 8D linear space M.

Lemma 2.1 X ∈M ⇔ X ∈M and XX̃ = 1.

Proof Let X =R+Q ∈M where R ∈R
+
3 and Q ∈R

−
3 n∞. XX̃ = 1 implies RR̃ =

1 and QR̃ = 〈QR̃〉2. Thus, R is a rotator, and X = R +QR̃R = (1+ 〈QR̃〉2)R =
T R where T = 1+ 〈QR̃〉2 is a translator. �

The space M is incomplete in the sense that, given a basis of M, we cannot find
a reciprocal basis that also lies in M. We can enlarge M to a complete space such as
M∪ span{e1no, e2no, e3no, Ĩ3no} or R

+
4,1 and then construct a reciprocal basis. The

subspace spanned by reciprocal vectors associated with elements in M is denoted
M = span{1, ẽ12, ẽ13, ẽ23, e1no, e2no, e3no, Ĩ3no}. Almost every result in M has a
counterpart in M. An element T = 1+ tno = s(1+ 1

2 tn∞)s represents a transversor
(reflection in the unit sphere s = no− 1

2n∞ followed by a translation 1+ 1
2 tn∞ and

another reflection in the unit sphere). It is the product of an even number of vectors
and satisfies T T̃ = 1, so it is a rotor. Let M̄ denote the rotors of the form M = T R

where T is a transversor and R a rotator. The counterpart to Lemma 2.1 takes the
form:

Lemma 2.2 X ∈ M̄ ⇔X ∈M and XX̃ = 1.

The intersection of M and M is R
+
3 . The rotators R lie in R

+
3 and are a subset of

both M and M̄ . The relationship between the spaces M, M , M, M̄ , R
+
3 , R, and

R
+
4,1 is shown in Fig. 2.1. We will sometimes want to project an element X ∈ R4,1

on M or M. Let {eJ } be a basis for M, and {eJ } be the associated reciprocal basis
in M. The projection on M is defined by

PM(X)=
∑

J

〈
eJX
〉
eJ .

28 R. Valkenburg and L. Dorst

Fig. 2.1 The relationship
between the manifolds of
motors M , rotators R, and
reciprocal motors M̄ and the
linear spaces M, R

+
3 , and M

they reside in

As 〈PM(X)Y 〉 =∑J 〈eJX〉〈eJ Y 〉 = 〈XP̄M(Y)〉, the adjoint is the projection onto M

given by

P̄M(Y)= P
M
(Y)=

∑

J

eJ 〈eJ Y 〉.

This can also be expressed using the multivector derivative ∂X =∑J eJ 〈eJ ∂X〉:
∂X〈XY 〉 =∑J eJ 〈eJ Y 〉 = P̄M(Y). When no ambiguity arises, it is convenient to
use the terse notation PX for the projection onto the basis of the linear space in
which the element X resides. For example, if X ∈M, then PX = PM, if R ∈ R

+
3 ,

then PR is a projection onto R
+
3 , and if Q ∈ R

−
3 n∞, then PQ is the projection onto

R
−
3 n∞ = span{e1n∞, e2n∞e3n∞, I3n∞}. Using the split X = R +Q ∈M, where

R ∈ R
+
3 and Q ∈ R

−
3 n∞, gives PM = PX = PR + PQ, and P̄M = P̄X = PR + P̄Q

because PR = P̄R .

2.3 Geometry of the Motors

The following constructions in M directly parallel constructions in matrix theory,
where M plays the role of the n × p Stiefel manifold, and S the symmetric pos-
itive definite matrices [4]. Refer to Fig. 2.2 which illustrates some of the concepts
introduced in this section. Consider the curve ψ(t) ∈M with M = ψ(0) and Δ=
ψ ′(0). Differentiating the constraint ψ̃(t)ψ(t) = 1 and evaluating at t = 0 gives
M̃Δ=−Δ̃M . As Δ ∈M, M̃Δ ∈M, and it follows that Δ=MB where B ∈ B. We
define the tangent space of M at M ∈M by TM =MB = {MB : B ∈ B} ⊂M.
Any element X ∈M can be split:

X =M(M̃X)=M〈M̃X〉2 +M〈M̃X〉0,4.

The first term in this split is in TM , while the second term is of the form MS

where S ∈ S. We define the normal space of M at M ∈M (restricted to M)
by NM = MS = {MS : S ∈ S}. If X = MB ∈ TM and Y = MS ∈ NM , then
〈XỸ 〉 = 〈MBSM̃〉 = 〈BS〉 = 0, and TM is orthogonal to NM , so M=TM ⊕NM .
From the split, for X ∈M we can define the projection on TM along NM by

PTM
(X)=M〈M̃X〉2.

2 Estimating Motors from a Variety of Geometric Data 29

Fig. 2.2 An intuitive sketch
of the geometry of motors M
in M showing the tangent
space TM and the normal
space NM at M , and the
projections onto TM , NM ,
and M

It is clear that PTM
is idempotent, onto TM , and has null-space NM . Similarly, for

X ∈M the projection on NM along TM is defined by

PNM
(X)=M〈M̃X〉0,4.

It is also clear that PNM
is idempotent, along TM , and onto NM . Closely related to

NM , we can define a polar decomposition for an element in M.

Lemma 2.3 An element X ∈M with |X| �= 0 has a unique polar decomposition
X =MS = SM where M ∈M , S ∈ S, and 〈S〉> 0.

Proof Suppose that MS =M ′S′ are two such decompositions. Then N = M̃ ′M =
S′S−1 is a symmetric motor (N = Ñ). Hence N = α + βI3n∞ and 1=N2 = α2 +
2αβI3n∞, so β = 0 and α = 1 because 〈S〉> 0 and 〈S′〉> 0. As MI3n∞M̃ = I3n∞,
we have MS = SM . The polar decomposition is given by

S = |X|
(

1+ 〈XX̃〉4
2〈XX̃〉

)

, M =XS−1 = X

|X|
(

1− 〈XX̃〉4
2〈XX̃〉

)

. (2.2)

�

As shown, given M ∈M , any X ∈M can be decomposed into components in
TM and NM giving X =MS +MB . The polar decomposition can be interpreted
as simply choosing M appropriately so that the component in TM vanishes leaving
X =MS ∈NM . The polar decomposition is applied to more general elements X ∈
R
+
4,1 in [1] (Chap. 5 in this book).
The polar decomposition on M provides a natural way to define the operation of

projection onto M in the same way as the polar decomposition on R
n×p defines a

projection onto the n× p orthogonal matrices in matrix theory. If X ∈M has polar
decomposition X =MS, we define the projection onto M by

P(X)=XS−1 ∈M .

The element S−1 ∈ S nudges X onto M . It is interesting to note that several other
situations arise where elements of S perform some useful transformation. The el-
ement S−2 ∈ S maps X̃ onto X−1 = X̃S−2 (refer to (2.1)). An element B ∈ B

can be split into two commuting blades using S− = 〈B̃B〉4/〈2B̃B〉 ∈ S and S+ =

30 R. Valkenburg and L. Dorst

1−S− ∈ S. If B+ = BS+ and B− = BS−, then B = B++B−, and B+B− = B−B+.
This split can be used to factor a motor in accordance with Chasles’s decomposition

M = exp

(

−1

2
B

)

= exp

(

−1

2
B+
)

exp

(

−1

2
B−
)

, (2.3)

where exp(−B+/2) is a generalized rotator about an axis, and exp(−B−/2) is a
translator along the axis. Using the polar decomposition, it is a simple matter to
show that for any element Y ∈ M with |Y | �= 0, we can find an element X =
log(Y) ∈M such that Y = exp(X). Let Y have a polar decomposition Y =MS′.
The motor M can be expressed M = exp(B) where B ∈ B (an expression for the
motor logarithm may be found in [2]). Also note that if S = α + Q ∈ S, then
exp(S) = exp(α)(1 + Q) = exp(α) + exp(α)Q because α and Q commute and
Q2 = 0. So if S′ = α′ +Q′ = exp(S), then we take α = lnα′ and Q=Q′/α′ giving
S = lnα′ +Q′/α′. As B and S commute, we can take X = B + S ∈M.

There is an equivalent polar decomposition for an element X ∈M with |X|> 0,
of the form X =MS, where M ∈ M̄ models a rotation and transversion, and S ∈
S̄= span{1, Ĩ3no}.

The rotators R are used to model rotation about the origin and lie in the lin-
ear space R

+
3 = span{1, e12, e13, e23}. All the ideas above simplify when restricted

to rotators. If X ∈ R
+
3 , then XX̃ = 〈XX̃〉, so the equation XX̃ = 1 imposes only

one constraint and is equivalent to the statement 〈XX̃〉 = 1. We will see that the
absence of the constraint 〈XX̃〉4 = 0 is an important simplification for rotator es-
timation. If R ∈ R, then NR = {Rs : s ∈ R} (i.e. just scalar multiples of R),
and the projection on NR is given by PNR

(X) = R〈R̃X〉. The tangent space
TR = {RB : B ∈ span{e12, e13, e23}}, and PTR

(X) = R〈R̃X〉2. The polar decom-
position takes the simple form X =Rs where R =X/|X| and s = |X| ∈R.

The translators are used to model translation and lie in the linear space T =
span{1, e1n∞, e2n∞, e3n∞}. A translator T = 1− 1

2 tn∞ has a constant scalar co-
efficient, so there are only three degrees of freedom, as required. If X ∈ T, then
〈X〉2 = XX̃ = 〈XX̃〉, so the equation XX̃ = 1 imposes only one constraint as
for rotators. Because 〈T〉2 is made up of null bivectors, significant simplifica-
tions arise. If T is a translator, then NT = {T s : s ∈ R} (i.e. just scalar multiples
of T), and the projection on NT is given by PNT

(X) = T 〈X〉. The tangent space
TT = span{e1n∞, e2n∞, e3n∞}, and PTT

(X) = 〈T̃ X〉2. The polar decomposition
takes the simple form X = T s where T =X/|X| and s = |X| = |〈X〉| ∈R.

2.4 Estimating Motors

We have two sets of noisy geometric data and wish to estimate the motor that opti-
mally maps one data set onto the other. To solve this problem, we need to be precise
about what optimal means, so we will define a measure that is used to determine if
two geometric objects are similar. For example, if P and Q are normalised points,
then 〈PQ〉 = − 1

2d
2 where d is the distance between the points. Two points are

2 Estimating Motors from a Variety of Geometric Data 31

considered similar if they are close together. We choose a similarity rather an error
measure only because it avoids a sign change for the most common case of points.
The inner product between points increases as the points get closer; hence it already
has the correct sign. To set the problem up so it has a simple closed-form solution
as an eigenrotator problem, we need to restrict the form of the similarity measure
as described in the next section. However, even with this restriction, not all possi-
bilities for object representation are admissible into the framework for estimating
motors. This is because one of the constraints 〈XX̃〉4 = 0 for an element X ∈M

to be a motor (recall Lemma 2.1) is awkward to handle, and we will only want to
consider object representations where it can be dropped so that we can estimate the
motor using linear methods. Surprisingly, this occurs quite often as we will see later.

2.4.1 Similarity Measures in CGA

In order to set the problem up as a eigenrotator problem, we need to restrict the sim-
ilarity measure between objects P and Q to the simple form 〈PQ̌〉, where the check
operator Q̌ is a grade-dependent sign change defined by Q̌ = 〈Q〉0,1,3 − 〈Q〉2,4,5.
Note that Q̌ = Q̃ if Q= 〈Q〉0,1,2 and Q̌=−Q̃ if Q= 〈Q〉3,4,5. This operation is
motivated by the requirements (i) 〈pq̌〉 = 〈PQ̌〉 where p = P ∗ and q = Q∗ and
(ii) 〈PQ̌〉 = cos(θ) when P,Q are flats (see below). This simple form is not as
much of a restriction as it may first seem. If we carefully consider the object rep-
resentation, many physically meaningful quantities can be expressed in this way.
Consider the following examples:

Points and Spheres We have already seen that if P and Q are normalised points
(grade-1), then

〈PQ̌〉 = 〈PQ〉 = −1

2
d2 (2.4)

where d is the distance between them. Points can be considered as dual spheres
with zero radius. When P = p − 1

2ρ
2
pn∞ and Q = q − 1

2ρ
2
qn∞ are dual spheres

(grade-1), we get

〈PQ̌〉 = 〈PQ〉 = 〈pq〉 + 1

2

(
ρ2
p + ρ2

q

)

=−1

2
d2 + 1

2

(
ρ2
p + ρ2

q

)
.

As the radii ρp and ρq are constant under rigid body motion, this effectively reduces
to the point case, and two spheres are considered similar if their centres are close.
When P and Q are normalised spheres (grade-4), we get exactly the same expres-
sion because of the way the check operator ˇ is defined. A physical interpretation of
〈PQ̌〉 in terms of a line segment joining the spheres is given in [2, Fig. 14.8, p. 418].

32 R. Valkenburg and L. Dorst

Fig. 2.3 Graph showing
cos(θ) and − 1

2 θ
2 + 1. As

cos(θ) (and sin2(θ)) turn up
so frequently in geometric
calculations, we should
embrace there advantages
over θ2

Flats Flats are objects like planes and lines. A flat can be modelled P = p ∧
V ∧ n∞, where p is a point on the flat and V is a Euclidean blade representing
the direction of the flat. If V is a Euclidean vector, then p ∧ V ∧ n∞ is grade-3
and represents a line. If V is a Euclidean bivector, then p ∧V∧ n∞ is grade-4 and
represents a plane. The other cases are less interesting in the current application: if
V= 1, then p∧n∞ is a flat point, and if V is a Euclidean trivector, then p∧V∧n∞
represents a volume but is both translation and rotation invariant. If P and Q are
normalised flats so that |P | = 1 and |Q| = 1, then

〈PQ̌〉 = cos(θ) (2.5)

where θ is the dihedral angle between them. Two flats are considered similar if the
angle between them is small. Note that for small θ , cos(θ)≈−θ2/2! + 1 as shown
in Fig. 2.3. There is no drawback in maximising cos(θ) as opposed to −θ2/2! for
many practical situations. Using cos(θ) can even have an added benefit. Because
cos(θ) ≥ −1, it restricts the influence of outliers, so we are more likely to get an
acceptable solution even with significant outliers. If required, we can then reject
outliers and refit until the fit is acceptable. One potential concern with the measure
is that it does not capture the distance between lines, only the angle. The distance
is usually regarded as the closest distance that the lines pass. It is a simple matter
to determine this distance, for example, by forming the motor PQ̃ and making use
of Chasles’s decomposition. It is not clear how to do this while keeping the simple
form of a scalar product 〈PQ̌〉. This is not so much of a concern with planes as they
will always intersect unless they are exactly parallel, so we are often only interested
in the angle between them. When there is a specific point of interest on a line or
plane, we should consider modelling it as a tangent instead of a flat as discussed
below.

Directions Directions are used to model 1D direction and attitude and can be rep-
resented in CGA in the form Δ = Vn∞ where V is a Euclidean blade. They are
translation invariant, so for translator T , we have TΔT̃ =Δ. The case where V is

2 Estimating Motors from a Variety of Geometric Data 33

grade-1 gives a 1D or line direction, and the case where V is grade-2 gives a 2D
or plane direction. The other cases (scalar and grade-3) are of no practical interest
here. For the scalar case, we get a scale multiple of n∞, and for the grade-3 case, we
get a scale multiple of I3n∞, both of which are translation and rotation invariant. If
Δp and Δq are two directions, then 〈ΔpΔ̌q〉 = 0, so we cannot use the directions
directly. We can construct a meaningful quantity by representing the directions as
flats no ∧Δ, dual flats no ·Δ∗, or Euclidean directions no ·Δ. If P and Q are two
normalised directions represented in one of the above three forms, then

〈PQ̌〉 = cos(θ) (2.6)

where θ is the dihedral angle between them. Two directions are considered similar
if the angle between them is small.

Tangents Tangents have both location and direction and can be used to model
various objects such as tangent planes on a surface, tangent lines on a curve, and
rays leaving a camera where the optical centre is the location. A tangent at location
p with normalised direction Δ= Vn∞ can be represented in CGA as a blade T ′ =
p∧ (p ·Δ̂). If Δ is a bivector, then T ′ is a tangent line, and if Δ is a trivector, then T ′
is a tangent plane. When Δ= n∞, then T ′ = p, and when Δ= I3n∞, then T ′ = p∗,
and we see that a point can be regarded as a degenerate tangent. Unfortunately,
except in the case of points, taking the inner product between two tangents in this
form does not give a particularly meaningful quantity. If we are prepared to consider
a broader range of representations than blades, then we can construct a meaningful
quantity using the measure. To be concrete, we will discuss the case of tangent lines
first. Let T = p+Λ be a flag (nested sequence of linear spaces) representation of the
tangent with grade-1 and 3 parts, where p is the tangent location, and Λ= T ′ ∧ n∞
is the carrier line with p∧Λ= 0. The representations T and T ′ are equivalent with
T ′ = 〈T 〉1 · T̂ and T = (1+ T̃ ′)(T ′ ∧n∞). If P = p+Λp and Q= q+Λq are two
tangent lines, then

〈PQ̌〉 = 〈pq〉 + 〈ΛpΛ̌q〉
= −1

2
d2 + cos(θ)

≈−1

2

(
d2 + θ2)+ 1,

where d is the distance between the tangent locations, and θ is the dihedral angle
between the tangent carriers. Two tangents are considered similar if their locations
are close and the angle between them is small. We can adjust ratio of the locational
and angular parts by encoding a weight in the line. For example, if w = |Λ|, then

〈PQ̌〉 = −1

2
d2 +w2 cos(θ)

≈−1

2

(
d2 +w2θ2)+w2.

34 R. Valkenburg and L. Dorst

Exactly the same construction works with tangent planes. Here we take P = p+Πp

and Q= q+Πq to be two tangent planes where Πp , Πq are planes with p∧Πp = 0
and q ∧Πq = 0.

Rounds Rounds are objects like spheres, circles, and point pairs. We have already
discussed spheres above, and we will now generalise this to include the remaining
round objects. A direct round can be represented in CGA as a blade of the form
R = s ∧ (s · Δ̂) where s is a dual sphere and Δ = Vn∞ is the direction. This is
the same expression as for tangents, and tangents can simply be regarded as rounds
with zero radius. A normalised direct round object R can also be represented as
a tangent-like flag object T = s + F where s is a dual sphere and F is a carrier
flat with s ∧ F = 0. Just as for tangents the two representations are equivalent with
T = (1+ R̃)(R ∧ n∞) and R = 〈T 〉1 · T̂ . If P = sp + Fp and Q= sq + Fq are two
rounds represented in this way, with radii ρp and ρq , respectively, then

〈PQ̌〉 = −1

2
d2 + cos(θ)+ 1

2

(
ρ2
p + ρ2

q

)
,

where d is the distance between the centres of the rounds, and θ is the dihedral
angle between the carrier flats. As mentioned when discussing spheres, the radii are
invariant under rigid body motion, so this effectively reduces to the tangent case.
If P and Q are direct spheres, then P ∧ n∞ = −I4,1 and Q ∧ n∞ = −I4,1 and
cos(θ)= 1, and it reduces further to the point case.

We have associated a physically meaningful measure with the basic objects avail-
able in CGA. Some objects, such as points, spheres, and flats, are represented in their
basic blade form, and we will refer to these as primitive objects. Other objects, such
as rounds and tangents, are represented in flag form and constructed using primitive
objects. The directions, on the other hand, are converted to a primitive object repre-
sentation. Other ways of representing the objects P and Q can be designed to give
different measures. The only structural requirement is that they are expressed in the
form 〈PQ̌〉.

2.4.2 Motor Estimation Problem Formulation

We are now in a position to formulate the estimation problem. Let Pk , k = 1, . . . , n,
be a set of normalised CGA objects before motion, and Qk , k = 1, . . . , n, be the set
of objects after motion, wk ∈R be scalar weights, and M ∈M . The total similarity
is given by the weighted sum of the symmetrised similarity between MPkM̃ and
Qk as follows:

E = 1

2

n∑

k=1

wk

(〈MPkM̃Q̌k〉 + 〈 ˜̌QkMP̃kM̃〉
)= 〈M̃LM〉, (2.7)

where

2 Estimating Motors from a Variety of Geometric Data 35

LX = 1

2

n∑

k=1

wk(Q̌kXPk + ˜̌QkXP̃k). (2.8)

Note that L satisfies the useful symmetry property 〈ÃLB〉 = 〈B̃LA〉 for all
A,B ∈ R4,1. If Pk and Qk have the same symmetry and are either both sym-
metric (i.e. A = Ã) or both antisymmetric (i.e. A = −Ã), then LX reduces to
LX =∑n

k=1 wkQ̌kXPk . This is clearly true when Pk and Qk are homogeneous
(and the same grade). However, in some mixed grade situations (e.g. for the flags
P = 〈P 〉1 + 〈P 〉3 and Q = 〈Q〉1 + 〈Q〉3) we require the full form given by (2.8).
The data Pk , k = 1, . . . , n, need not all be of the same object type but could contain
a variety of geometric objects such as points, spheres, flats, and directions. Clearly,
for a given k, Pk and Qk represent the same object type as one is simply a rotated
and translated version of the other. The magnitude of the weights wk can be used to
adjust the contribution a data element makes based on its reliability, or to introduce
attractive and repulsive contributions. We can now couch the problem of finding
an optimal motor more precisely as maximising 〈X̃LX〉 subject to X ∈M . Using
Lemma 2.1, we can rewrite this as

max
X∈M
〈X̃LX〉 subject to 〈XX̃〉 = 1 and 〈XX̃〉4 = 0. (2.9)

2.4.3 Optimal Rotator and Translator Estimation

First consider the simpler case of rotator estimation so that problem (2.9) reduces to

max
X∈R+3

〈X̃LX〉 subject to 〈XX̃〉 = 1 (2.10)

This has a simple solution which is captured in the following theorem.

Theorem 2.1 Let Pk and Qk , k = 1, . . . , n, be two sets of normalised conformal
objects in R4,1, wk ∈R be scalar weights, and L be defined by

LX = 1

2

n∑

k=1

wk(Q̌kXPk + ˜̌QkXP̃k).

Then the maximiser of 〈R̃LR〉 subject to R ∈R is an eigenrotator of PRL asso-
ciated with the largest eigenvalue, where PR is the projection onto R

+
3 .

Proof The Lagrange function associated with problem (2.10) is given by L(X) =
1
2 〈X̃LX〉 − α

2 (〈X̃X〉 − 1) where X ∈ R
+
3 . Using the first-order optimality condi-

tion ∂X̃L = 0 and noting that PRX = X gives PRLX = αX at the maximiser. In

36 R. Valkenburg and L. Dorst

addition, α = 〈X̃LX〉, so X is the eigenrotator of PRL associated with the largest
eigenvalue. �

The optimal rotator can be readily obtained by forming the matrix representative
of PRL as outlined in the following procedure:
1. Form an orthonormal basis ek, k = 1, . . . ,4, of R

+
3 (e.g. {1, e12, e13, e23}).

2. Form the 4× 4 symmetric matrix Lij = 〈̃eiPRL ej 〉 = 〈̃eiL ej 〉.
3. Calculate r ∈R

4, a unit eigenvector of L associated with the largest eigenvalue.
4. Calculate the optimal rotator R =∑k rkek ∈R.
If the dimension d of the eigenspace associated with the largest eigenvalue is greater
than one, then the optimal eigenrotator is not unique. This will happen in degenerate
situations such as estimating a rotator from a single pair of planes. The planes will
be made parallel, but any additional rotation about an axis normal to the planes is
permissible and will not affect the measure. A specific solution can be returned at
the expense of a small increase in complexity as follows. Let V ∈ R

4×d , d ≤ 4,
be an orthogonal matrix whose range is the eigenspace of L associated with the
largest eigenvalue. Any maximum unit eigenvector can be expressed as r = V x

for unit vector x ∈ R
d . Note cos(θ2) = 〈R〉 =

∑
k rk〈ek〉 = rT z where z ∈ R

4 with
zk = 〈ek〉, and θ is the angle of rotation. With the natural basis above we get z =
(1 0 0 0)T . Hence xT V T z can be identified with cos(θ2). Maximising xT V T z

subject to xT x = 1 gives the following enhancement to step 3 above:
3′. Calculate r = unit(V V T z) ∈ R

4, the unit eigenvector of L associated with the
largest eigenvalue and the smallest angle of rotation, where z ∈ R

4 with zk =
〈ek〉, k = 1, . . . ,4.

If d = 1, then there is no choice, and r = V or r =−V , as expected.
This approach has an advantage over the standard methods of estimating an or-

thogonal 3 × 3 matrix using polar decomposition (or SVD) because improper ro-
tations are excluded at the outset rather than removed at the end with a determi-
nant check [3]. This advantage can be achieved with a matrix formulation based
on quaternions [3]. However, the rotator formulation is also directly applicable to a
wider range of objects than just points, including spheres, flats, and directions, and
allows all these objects to be incorporated into a single framework.

The translator case is simpler because we can encode the constraint in the pa-
rameterisation of the translator. Let T = 1 +Q where Q = q1e1n∞ + q2e2n∞ +
q3e3n∞ ∈ R

1
3n∞. Let F+ denote the Moore–Penrose pseudo-inverse of a linear

transformation F .

Theorem 2.2 Let Pk and Qk , k = 1, . . . , n, be two sets of normalised conformal
objects in R4,1, wk ∈R be scalar weights, and L be defined by

LX = 1

2

n∑

k=1

wk(Q̌kXPk + ˜̌QkXP̃k).

Then the maximiser of 〈T̃L T 〉 subject to T being a translator is given by T = 1+Q

where Q=−(P̄QL PQ)+L 1.

2 Estimating Motors from a Variety of Geometric Data 37

Proof The objective function is given by L(T)= 〈T̃L T 〉 = 〈1L 1〉 + 2〈Q̃L 1〉 +
〈Q̃LQ〉 for T ∈ T. The first-order optimality condition ∂Q̃L= 0 gives P̄QLQ+
P̄QL 1= 0, so Q=−(P̄QL PQ)+L 1. �

The optimal translator can be obtained by forming the matrix representative of
P̄TL as outlined in the following procedure:
1. Form a basis ek, k = 1, . . . ,4, of T, where the first basis vector is scalar (e.g.
{1, e1n∞, e2n∞, e3n∞}).

2. Form the 4× 4 symmetric matrix Lij = 〈̃ei P̄TL ej 〉 = 〈̃eiL ej 〉 and break it into

sub-matrices L= (Lrr Lrq

Lqr Lqq

)
where Lrr ∈R and Lqq ∈R

3×3.

3. Calculate q =−L+qqLqr ∈R
3.

4. Form the full coefficient vector t = (1
q

) ∈R
4.

5. Calculate the optimal translator T =∑k tkek .
The use of the Moore–Penrose pseudo-inverse will ensure that the smallest trans-
lation q is returned when there is not a unique maximiser of 〈T̃L T 〉. This will
happen when no locational information is provided, for example, finding the trans-
lator between two sets of directions. In such a case the above procedure will return
an identity translator T = 1.

2.4.4 Optimal Motor Estimation as an Eigenrotator Problem

It is interesting to see that much of the structure for rotators and translators is pre-
served when we consider the more complex case of motor estimation. First note
that the key difference between the full motor problem (2.9) and the rotator problem
(2.10) is the addition of the extra constraint 〈XX̃〉4 = 0. We will show that by re-
stricting the representation of CGA objects the constraint 〈XX̃〉4 = 0 can be dropped
entirely, leaving a problem no more difficult than the rotator estimation problem.
The other difference between problems (2.9) and (2.10) is the linear space involved.
The motors lie in M, while the rotators lie in R

+
3 ⊂M. The only implication is that

M is incomplete in the sense discussed previously: we cannot construct a reciprocal
basis that also lies in M. The following lemma characterises those elements which
are nearly motors, where we have not enforced the constraint 〈XX̃〉4 = 0.

Lemma 2.4 X ∈M and 〈XX̃〉 = 1⇔ X =M + βMI3n∞, M ∈M , and β ∈R.

Proof Let X =MS be the polar decomposition of X ∈M with S = α+βI3n∞. Be-
cause 1= 〈X̃X〉 = 〈S2〉 = α2 and α ≥ 0, we have α = 1 and X =M + βMI3n∞. If
X =M +βMI3n∞ where M ∈M ⊂M, then X is the sum of products of elements
in M, so X ∈M, and 〈XX̃〉 = 〈MM̃〉 = 1. �

On the LHS of Lemma 2.4 we have the 8D space M with one constraint imposed,
and on the RHS we have the 6D motor manifold with an extra degree of freedom
added through β . It is convenient to use the notation Ψ = I3n∞ = Ψ̃ for the quad-
vector basis element of M as it is used frequently. In addition, we will denote the set

38 R. Valkenburg and L. Dorst

Fig. 2.4 Sketch showing the
2D normal space NM of M
at M (restricted to M).
Imposing the constraint
〈XX̃〉 = 1 restricts us the 1D
subspace of NM consisting
of elements of the form
M(1+ βI3n∞)

defined in Lemma 2.4 by M ′ = {M + βMΨ :M ∈M , β ∈ R}. One way to study
the problem is to consider the behaviour of the objective function 〈X̃LX〉 with ele-
ments X ∈M ′. This allows us to separate out the terms which result from relaxing
the constraint 〈XX̃〉4 = 0. When β = 0, X lies on the motor manifold M . As |β|
increases, X leaves M along a 1D subspace of NM . A sketch of the situation is
shown in Fig. 2.4. Note that M is both a point on M and a direction vector in NM .
Expanding the objective function at X =M + βMΨ ∈M ′ gives

〈X̃LX〉 = 〈M̃LM〉 + 2β
〈
M̃L (MΨ)

〉+ β2〈Ψ̃ M̃L (MΨ)
〉
. (2.11)

For a given M ∈M , this is a quadratic in β . We are interested in the cases where
the coefficient of β vanishes and coefficient of β2 is not positive, independently
of M . When the coefficient of β2 is negative, leaving M decreases the objective
function, and maximising 〈X̃LX〉 subject to X ∈M ′ will give us the optimal motor
which solves problem (2.9). If the coefficient of β2 vanishes, then the solution is not
unique, and if M ∈M is a solution, then so is M(1+ βΨ). In such situations we
can maximise 〈X̃LX〉 to give a solution, and then project the resulting X onto M
to get the optimal motor. We first make some general observations which help to
manipulate (2.11).

1. When LX = 1
2

∑n
k=1 wk(Q̌kXPk+ ˜̌QkXP̃k) is substituted in the coefficients of

β and β2, the term P ′k = P ′k(M)= M̃QkM turns up which has the same grades
as Qk and Pk . (It represents the same kind of object.)

2. The coefficient of β is made up of terms 〈Ψ (P̌ ′kPk + PkP̌
′
k)〉.

3. If Pk and Qk have the same symmetry, the coefficient of β reduces to 2〈Ψ P̌ ′kPk〉.
4. The coefficient of β2 is made up of terms 〈Ψ P̌ ′kΨPk〉.
5. 〈Ψ P̌ ′ΨP 〉 = −〈n∞P̌ ′n∞P 〉 for all P,P ′ ∈R4,1.
6. 〈X̃Q̌YP 〉 = 〈X̃q̌Yp〉 where p = P ∗ and q =Q∗ for all X,Y,P,Q ∈R4,1.
We will examine what conditions need to be imposed on Pk , Qk , and wk so that we
can ensure that the coefficient of β vanishes and the coefficient of β2 is not positive.
Let us first consider the cases where Pk and Qk are homogeneous and then extend
to mixed grade elements. We only need to provide proofs for scalars, vectors, and
bivectors because the trivector, quadvector, and pseudoscalar cases follow by obser-
vation 6 above. First examine the case where Pk and Qk are vectors or quadvectors.

2 Estimating Motors from a Variety of Geometric Data 39

Lemma 2.5 Let Pk and Qk , k = 1, . . . , n, be two sets of vectors or quadvectors.
Then 〈X̃LX〉 = 〈M̃LM〉 − β2〈n∞L n∞〉.
Proof As P̌ ′kPk has no grade-4 part, the coefficient of β vanishes. Also note that for
vector or quadvector Qk , we have n∞M̃QkMn∞ = M̃n∞Qkn∞M = n∞Qkn∞ so
〈n∞P̌ ′kn∞Pk〉 = 〈n∞Q̌kn∞Pk〉, and the coefficient of β2 is independent of M . �

Using Lemma 2.5, we can now provide the following useful results for nor-
malised points, spheres, and dual spheres; and planes and dual planes:

Lemma 2.6 Let Pk and Qk , k = 1, . . . , n, be two sets of normalised conformal
points, spheres, or dual spheres in R4,1, wk be scalar weights with

∑
k wk > 0, and

LX = 1

2

n∑

k=1

wk(Q̌kXPk + ˜̌QkXP̃k).

Then the maximiser of 〈X̃LX〉 subject to X ∈M and 〈X̃X〉 = 1 is a motor.

Proof Assume that X is not a motor, so X =M(1+ βΨ). For normalised spheres,
dual spheres, and points, we have 〈n∞Q̌kn∞Pk〉 = 2, so 〈n∞L n∞〉 = 2

∑
k wk >

0. By Lemma 2.5 we have 〈X̃LX〉 = 〈M̃LM〉 − 2β2∑
k wk , and X cannot be a

maximiser. �

It is interesting that only the sum of the weights
∑

k wk > 0 need be positive.
Some points can have a repulsive force as long as the sum of the attractive contribu-
tion is greater than the repulsive terms. The result for planes is as follows:

Lemma 2.7 Let Pk and Qk , k = 1, . . . , n, be two sets of normalised conformal
planes or dual planes in R4,1, and L be defined by (2.8). The maximum value of
〈X̃LX〉 subject to X ∈M and 〈X̃X〉 = 1 is obtained by a motor.

Proof For planes or dual planes Pk and Qk , we have 〈n∞Q̌kn∞Pk〉 = 0 so
〈n∞L n∞〉 = 0, and the coefficient of β2 also vanishes. �

This is a weaker result than for points and spheres since we can only state that the
maximum is obtained by a motor because the maximiser is not unique. If M ∈M
is a maximiser, then so is X =M + βMΨ . The case of bivectors and trivectors is
not quite as clean.

Lemma 2.8 Let Pk and Qk , k = 1, . . . , n, be two sets of bivectors or trivectors
such that n∞Pkn∞ = n∞Qkn∞ = 0. Then 〈X̃LX〉 = 〈M̃LM〉.
Proof n∞Pkn∞ = n∞Qkn∞ = 0 iff Qk and Pk have no terms of the form Vno
where V is a Euclidean blade. This precludes the appearance of a term Ĩ3no
in the product P̌ ′P ; hence 〈Ψ P̌kPk〉 = 0, and the coefficient of β vanishes. As
n∞Qkn∞ = 0, we have 〈Ψ P̌kΨPk〉 = 0, and the coefficient of β2 also vanishes. �

40 R. Valkenburg and L. Dorst

While Lemma 2.8 is somewhat restrictive, it is still sufficiently general to allow
the following useful result for lines, which is analogous to Lemma 2.7 for planes.

Lemma 2.9 Let Pk and Qk , k = 1, . . . , n, be two sets of normalised conformal lines
or dual lines in R4,1, and L be defined by (2.8). The maximum value of 〈X̃LX〉
subject to X ∈M and 〈X̃X〉 = 1 is obtained by a motor.

Proof If Pk and Qk are lines, then n∞Pkn∞ = n∞Qkn∞ = 0. �

For completeness, the case for scalars and grade-5 elements is also given but is
of limited interest as these elements are invariant to rigid body motion.

Lemma 2.10 If Pk and Qk , k = 1, . . . , n, are scalars or grade-5, then 〈X̃LX〉 =
〈M̃LM〉 =∑k wk〈PkQ̌k〉.

Proof If Pk and Qk are scalar, 〈Ψ P̌ ′kPk〉 = P̌ ′kPk〈Ψ 〉 = 0, and the coefficient of

β vanishes. Similarly 〈Ψ P̌ ′kΨPk〉 = P̌ ′kPk〈Ψ 2〉 = 0, so the coefficient of β2 also
vanishes. Also 〈M̃LM〉 =∑n

k=1 wk〈M̃Q̌kMPk〉 =∑n
k=1 wk〈Q̌kPk〉. �

The cases where P and Q are mixed grade can now be expressed in terms of
the homogeneous cases. We will only consider the mixed grade case where P =
〈P 〉1 + 〈P 〉r and Q = 〈Q〉1 + 〈Q〉r because this is all we currently require. The
coefficient of β will have terms of the form

〈
Ψ
(
P̌ ′P + P P̌ ′

)〉= 2
〈
Ψ
〈
P̌ ′
〉
1〈P 〉1
〉+ 2
〈
Ψ
〈
P̌ ′
〉
r
〈P 〉r
〉

+ 2
〈
Ψ
(〈
P̌ ′
〉
1 · 〈P 〉r + 〈P 〉1 ·

〈
P̌ ′
〉
r

)〉
. (2.12)

The first two terms involve a single grade and are handled by the homogeneous
cases. The last term can only make a contribution when r = 5. The coefficient of β2

will have terms of the form

〈
Ψ P̌ ′ΨP

〉=−〈n∞
〈
P̌ ′
〉
1n∞〈P 〉1

〉− 〈n∞
〈
P̌ ′
〉
r
n∞〈P 〉r

〉

− 〈n∞
〈
P̌ ′
〉
1n∞〈P 〉r

〉− 〈n∞〈P 〉1n∞
〈
P̌ ′
〉
r

〉
. (2.13)

Again the first two terms involve a single grade and are handled by the homogeneous
cases. If v = 〈v〉1, then n∞vn∞ = 2(v · n∞)n∞ is a scale multiple of n∞. The last
two terms can only make a contribution if r = 1, which has already been taken into
consideration by the first two terms. Let

LrX =
n∑

k=1

wk

(ˇ〈Qk〉rX〈Pk〉r +˜̌〈Qk〉rX〈̃Pk〉r
)

2 Estimating Motors from a Variety of Geometric Data 41

denote the restriction of L to the grade-r parts of Pk and Qk . We can summarise the
above discussion by stating that for mixed grade objects of the form Pk = 〈Pk〉1 +
〈Pk〉r , Qk = 〈Qk〉1 + 〈Qk〉r , where r �= 5, we have

〈X̃LX〉 = 〈X̃L1X〉 + 〈X̃LrX〉. (2.14)

Lemma 2.5 to Lemma 2.10, together with the comments of mixed grade cases,
tell us for which object representations we can ignore the constraint 〈X̃X〉4 = 0
during motor estimation. For convenience we, will refer to these objects as admissi-
ble, and we see immediately that all the objects represented earlier when discussing
measures are admissible. We wish to maximise 〈X̃LX〉 where X ∈M as stated
in problem (2.9). For admissible objects, we can neglect the awkward condition
〈X̃X〉4 = 0 and solve

max
X∈M
〈X̃LX〉 subject to 〈XX̃〉 = 1. (2.15)

Thus we can maximise 〈X̃LX〉 under the more relaxed constraints X ∈ M and
〈XX̃〉 = 1. This problem can be readily solved, and we can now present the gener-
alisation of Lemma 2.1 and Lemma 2.2 to the case of motors:

Theorem 2.3 Let Pk and Qk , k = 1, . . . , n be two sets of admissible normalised
conformal objects in R4,1, wk ∈R be scalar weights, and L be defined by

LX = 1

2

n∑

k=1

wk(Q̌kXPk + ˜̌QkXP̃k).

Then the maximiser of 〈M̃LM〉 subject to M ∈M is given by M = R +Q where
R is an eigenrotator of PRL ′ associated with the largest eigenvalue, L ′ =L −
L (P̄QL PQ)+L , and Q=−(P̄QL PQ)+LR.

Proof The Lagrange function associated with problem (2.15) is given by L(X) =
1
2 〈X̃LX〉− α

2 (〈X̃X〉− 1) for X ∈M. The first-order optimality condition ∂X̃L= 0
gives P̄MLX = αP̄MX. Let X =R+Q ∈M where R ∈R

+
3 and Q ∈R

−
3 n∞. Using

P̄M = PR + P̄Q, we can separate ∂X̃L= 0 into R and Q components as follows:

PRLR+ PRLQ= αR,

P̄QLR+ P̄QLQ= 0.

This is a standard form for quadratic minimisation with a homogeneous quadratic
constraint, and we can calculate Q from the second equation and then eliminate
Q from the first equation in the usual way. This gives PRL ′R = αR where L ′ =
L − L (P̄QL PQ)+L and Q = −(P̄QL PQ)+LR. At the maximum, α equals

42 R. Valkenburg and L. Dorst

〈X̃LX〉; therefore R is the eigenrotator of PRL ′ associated with the largest eigen-
value. �

We see that, as for the rotator case, the problem reduces to an eigenrotator prob-
lem. This motor estimation method is easily implemented by forming the matrix
representative of P̄ML as outlined in the following procedure:
1. Form a basis ek , k = 1, . . . ,8, of M, where the first four basis vectors are associ-

ated with R and orthonormal, and the last four are associated with Q in the split
X =R +Q (e.g. {1, e12, e13, e23, e1n∞, e2n∞, e3n∞, I3n∞}).

2. Form the 8×8 symmetric matrix Lij = 〈̃ei P̄ML ej 〉 = 〈̃eiL ej 〉 and break it into

4× 4 sub-matrices L= (Lrr Lrq

Lqr Lqq

)
.

3. Form the 4× 4 matrix L′ = Lrr −Lrq(L
+
qqLqr).

4. Calculate r = unit(V V T z) ∈ R
4, the unit eigenvector of L′ associated with the

largest eigenvalue and the smallest angle of rotation, where z ∈ R
4 with zk =

〈ek〉, k = 1, . . . ,4.
5. Calculate q =−(L+qqLqr)r ∈R

4.

6. Form the full coefficient vector m= (r
q

) ∈R
8.

7. Calculate the optimal motor M =∑k mkek ∈M .
The key steps of estimating R and estimating Q are both robust in the sense that a
reasonable value will be returned even if insufficient information is provided. Let
M = T R where T = 1 − 1

2 tn∞ is a translator and t is the Euclidean translation
vector. Note that Q = − 1

2 tRn∞, so we have |q| = |no ·Q| = 1
2 |t |. The use of the

Moore–Penrose pseudo-inverse will ensure that the smallest translation t is returned
when there is not a unique maximiser as discussed after the procedure for estimat-
ing translators. The estimated motor will maximise the measure and provide the
motor with the smallest translation and rotation angle when there is not a unique
maximiser.

2.5 Examples

In this section we provide some illustrations of the algorithm. The data is gener-
ated as follows. A random geometric object Pk is generated, such as a point, sphere,
line, circle, or tangent. Noise is added to the data Pk by perturbing it with a small
random motor Mk ≈ 1 before applying the general fixed rigid body transformation
Mo to give Qk = MoMkPkM̃kM̃o. The noise is sufficient to provide clear delin-
eation between the objects in the figures presented. The motor estimation procedure
is then applied to the data pairs (Pk,Qk), k = 1, . . . ,K , to obtain an optimal esti-
mate M of Mo. In the figures presented the dark data is the source data after the
action of the estimated motor Q′k =MPkM̃ , and the light data is the target data Qk .
The difference between the sets is the error remaining after applying the estimation
procedure and is due to the noise on the data. If no noise is present, the fit is perfect,
and the data sits exactly on top of each other.

2 Estimating Motors from a Variety of Geometric Data 43

Fig. 2.5 Two pairs of
spheres used to estimate the
rigid body motion. The
centres all lie on a line

First consider the problem of fitting spheres. As discussed earlier, the radius of
the spheres plays no role, as it is invariant to rigid body transformations, and the sit-
uation is identical to the case of noisy points. With just one pair of spheres, the fit is
perfect, and the centres of the spheres coincide. The rotational part vanishes because
the smallest angle of rotation is zero and the estimated motor is a pure translator.
With two pairs of spheres, the optimal motor makes their centres lie on the same
axis with equal separation as shown in Fig. 2.5. This example is a typical situation
where there is insufficient information to get a unique maximiser of 〈M̃LM〉. For
the estimated motor, the rotation about the axis is zero, and the rotation is in a plane
parallel with the axis through the points before and after motion. A more general
situation is shown in Fig. 2.6, where there are five pairs of noisy spheres.

The more complex example in Fig. 2.7 shows the algorithm being applied to five
pairs of different objects. We use spheres, lines, circles, and 1D and 2D tangents.
We have not included planes simply because, unlike lines, it is hard to visualise the
separation between planes in a figure.

Fig. 2.6 Five pairs of spheres used to estimate the rigid body motion

44 R. Valkenburg and L. Dorst

Fig. 2.7 Five pairs of different objects (spheres, lines, circles, 1D and 2D tangents) used to esti-
mate the rigid body motion

2.6 Discussion

We have presented a technique for estimating motors from noisy geometric data.
The data may comprise a variety of objects including points, rounds (point pairs,
circles, spheres), flats (lines, planes), tangents, and directions. To assist the devel-
opments, we first studied the geometry of the motors in the smallest linear embed-
ding space M. The estimation technique reduced to a small eigenrotator problem
and allowed the different types of geometric data to be combined naturally in a
single framework while excluding reflection. In order to formulate the problem,
we restricted the similarity measure between geometric objects P and Q to the
simple form 〈PQ̌〉 (with the aid of a grade dependent sign operator). In addition
we restricted the representation of objects to what we referred to as the admissi-
ble objects. These are representations that allow us to ignore the motor constraint
〈MM̃〉4 = 0 during optimisation. With these restrictions, we are able to associate a
physically meaningful measure to the primitive objects: points, spheres, lines, and
planes. Other objects such as circles, point pairs, and tangents were incorporated by
representing them as flags using sums of primitive objects. Directions were incor-
porated by representing them as associated flats. The estimation procedure reduced
to a standard constrained optimisation problem with a closed-form solution, which
could be expressed as an eigenrotator problem.

2.7 Exercises

2.1 Find a representation for spheres so that if P and Q are two spheres we get the
following measure 〈PQ̌〉 = − 1

2d
2 − 1

2 (ρp − ρq)
2 where d is the distance between

the centres, and ρp − ρq the difference in radii.

2 Estimating Motors from a Variety of Geometric Data 45

2.2 Show that for X,Y ∈M we have |XY | = |X||Y |.

2.3 Consider an object of the form F = p + Λ + Π , where p is a point, Λ a
line through p, and Π a plane through p. Show that if P = p + Λp + Πp and
Q= q +Λq +Πq have this form then 〈PQ̌〉 = − 1

2d
2 + cos(θ)+ cos(φ) where d

is the distance between the points, θ is the dihedral angle between the lines, and φ

the dihedral angle between the planes. Are objects of this form admissible? What if
Λ and Π are perpendicular?

Acknowledgements This work was supported by the New Zealand Foundation for Research,
Science and Technology.

References

1. Dorst, L., Valkenburg, R.: Square root and logarithm of rotors in 3D conformal geometric alge-
bra using polar decomposition. In: Dorst, L., Lasenby, J. (eds.) Guide to Geometric Algebra in
Practice. Springer, London (2011), Chap. 5 in this book

2. Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science: An Object-
Oriented Approach to Geometry. Morgan Kaufman, San Mateo (2007/2009)

3. Kanatani, K.: Geometric Computation for Machine Vision. Oxford University Press, Oxford
(1993)

4. Valkenburg, R.J., Kakarala, R.: Lower bounds for the divergence of orientational estimators.
IEEE Trans. Inf. Theory 47(6) (2001)

3Inverse Kinematics Solutions Using
Conformal Geometric Algebra

Andreas Aristidou and Joan Lasenby

Abstract
This paper describes a novel iterative Inverse Kinematics (IK) solver, FABRIK,
that is implemented using Conformal Geometric Algebra (CGA). FABRIK uses a
forward and backward iterative approach, finding each joint position via locating
a point on a line. We use the IK of a human hand as an example of implemen-
tation where a constrained version of FABRIK was employed for pose tracking.
The hand is modelled using CGA, taking advantage of CGA’s compact and ge-
ometrically intuitive framework and that basic entities in CGA, such as spheres,
lines, planes and circles, are simply represented by algebraic objects. This ap-
proach can be used in a wide range of computer animation applications and is not
limited to the specific problem discussed here. The proposed hand pose tracker
is real-time implementable and exploits the advantages of CGA for applications
in computer vision, graphics and robotics.

3.1 Introduction

This paper describes a fast iterative Inverse Kinematics (IK) solver which is im-
plemented using Conformal Geometric Algebra (CGA). Geometric Algebra (GA)
[1] provides a convenient mathematical notation for representing orientations and
rotations of objects in three dimensions. The conformal model of GA extends the
usefulness of the 3D GA by expanding the class of rotors to include translations,
dilations and inversions, as well as being able to express lines, planes, circles and
spheres as elements of the algebra. Rotors are more numerically stable and more

A. Aristidou (�) · J. Lasenby
Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ,
UK
e-mail: aa462@cam.ac.uk

J. Lasenby
e-mail: jl221@cam.ac.uk

L. Dorst, J. Lasenby (eds.), Guide to Geometric Algebra in Practice,
DOI 10.1007/978-0-85729-811-9_3, © Springer-Verlag London Limited 2011

47

mailto:aa462@cam.ac.uk
mailto:jl221@cam.ac.uk
http://dx.doi.org/10.1007/978-0-85729-811-9_3

48 A. Aristidou and J. Lasenby

efficient than rotation matrices, making GA popular for applications in computer
graphics and robotics. A more detailed treatment of GA can be found in [2].

The CGA geometric representation and its algebraic richness offer great flexibil-
ity in the process of modelling virtual or mechanical objects. In this paper, a method
for solving the IK problem of a 3D human hand, which uses the CGA framework,
is presented. The model is highly constrained with both rotational and orientational
constraints, allowing motion only within a feasible set. Using data from a markered
optical motion capture system, the 3D hand pose was efficiently tracked and recon-
structed. It is important to note that this is not a system designed specifically for
the task of hand tracking and reconstruction, but rather to provide a framework for
many IK applications in computer vision and robotics. Both the IK solver and the
hand model are real-time implementable, and the system produces motion which is
smooth and natural.

3.2 Background

Inverse Kinematics is defined as the problem of determining a set of appropri-
ate joint configurations for which the end effectors move to desired positions as
smoothly, rapidly and as accurately as possible. Several models have been imple-
mented for solving the IK problem from different areas of study. A detailed review
of IK solvers is given in [3]. Most of the literature which uses CGA to address the
IK problem presents kinematic solutions which focus on the advantages that the
CGA model offers, rather than presenting a complete IK solver. For instance, [4]
gives a simple framework solution for a robot arm, underlining the generality and
the efficiency of the CGA mathematical model for solving the IK problem. Cor-
rochano and Kähler [5] used a language of points, lines and planes (which are later
replaced by spheres in [6]) to solve the IK problem of a specific robot arm. Similar
solutions were given by [7–10], where CGA was used to deal with forward kine-
matics, dynamics and projective geometry problems. In [11], a technique for the
combination of very efficient algorithms, based on two different optimisation ap-
proaches using Gaigen 2 and MAPLE, is presented. CGA therefore appears to be
a promising mathematical tool for computing the IK of a robot arm and solving
the problem of visually guided grasping. Recently, [12] described an application
of CGA to the analysis of a parallel manipulator with limited mobility. [13] gives
a brief introduction to CGA and describes basic geometric entities; it also gives a
synopsis of different IK framework solutions and grasping processes of a robot arm.
Finally, [14] proposed an optimised algorithm to provide IK solutions using recon-
figurable hardware, leading to very efficient implementations. In summary, most of
these methods are applied to the simple kinematic problems of a robot arm with 5
degrees of freedom (DoF). They mainly describe how to constrain the movement of
the arm to a feasible set within a framework rather than describing a solver itself. In
this paper we describe a heuristic algorithm that solves the IK problem in an iterative
fashion, akin to the popular CCD method [15]. FABRIK (Forward And Backward
Reaching Inverse Kinematics) is a reliable iterative algorithm that uses points, lines

3 Inverse Kinematics Solutions UsingConformal Geometric Algebra 49

and spheres to solve the IK problem. It divides the problem into two phases, a for-
ward and a backward reaching approach, and it can treat most of the joint types
and supports biomechanical constraints on chains with both single and multiple end
effectors. It is fast, computationally efficient and provides visually smooth results.

3.3 FABRIK: An Iterative Inverse Kinematics Solver

FABRIK uses the previously calculated positions of the joints to find the updates
in a forward and backward iterative manner. The proposed IK solver starts from
the last joint of the chain and works forwards, adjusting each joint along the way.
Thereafter, it works backwards in the same way, in order to complete a full iteration.

Therefore, assume that p1, . . . ,pn are the joint positions of a manipulator. For the
simple case where only a single end effector exists, take p1 as the root joint and pn

as the end effector. The target is t, and the initial base position is b. First calculate
the distances between each joint di = |pi+1 − pi | for i = 1, . . . , n − 1. Then, to
check whether the target is reachable or not, find the distance between the root and
the target, dist, and if this distance is smaller than the total sum of all the inter-joint
distances, dist <

∑n−1
1 di , the target is within reach; otherwise, it is unreachable.

If the target is within reach, a full iteration is constituted by two stages. In the first
stage, the algorithm estimates each joint position starting from the end-effector, pn,
moving inwards to the manipulator base, p1. So, let the new position of the end-
effector be the target position, p′n = t. The new position of the (n− 1)th joint, p′n−1,
is assigned as the nearest point on the sphere Σn−1, with centre the joint position p′n
and radii the distance dn−1 from the joint position pn−1. Similarly, the new position
of the (n− 2)th joint, p′n−2, is selected as the nearest point on sphere Σn−2, with
centre the joint position p′n−1 and radii the distance dn−2 from the joint pn−2. The
algorithm continues until all new joint positions are calculated, including the root,
p′1. The nearest point on a sphere from a point in space is clearly found by simply
taking a point along the line joining the centre of the sphere to the point, which has
distance from the centre equal to the sphere radius. An entirely CGA solution is also
given in Sect. 3.4.2.1.

A full iteration is completed when the same procedure is repeated but this time
starting from the root joint and moving outwards to the end effector. Thus, let the
new position for the first joint, p′′1, be its initial position b. Then, the new joint
position p′′2 is assigned as the nearest point on the sphere Σ1, with centre the p′′1
and radii the distance d1 from the joint p′2. This procedure is repeated for all the
remaining joints, including the end effector. FABRIK is illustrated in pseudo-code
in Algorithm 1, and a graphical representation of a full iteration of the algorithm is
demonstrated in Fig. 3.1.

The forward and backward procedure is then repeated for as many iterations as
needed, until the end effector is identical or close enough (to be defined) to the
desired target. FABRIK can easily handle end effector orientations and supports,
to the best of our knowledge, all chain classes. It can also cope with cases where
the model has multiple chains and end effectors and is applicable to problems with

50 A. Aristidou and J. Lasenby

Algorithm 1: A full iteration of the FABRIK algorithm using CGA.
Input: The joint positions pi for i = 1, . . . , n, the target position t and the

distances between each joint di = |pi+1 − pi | for i = 1, . . . , n− 1
Output: The new joint positions pi for i = 1, . . . , n.
% The distance between root and target1.1

dist= |p1 − t|1.2

% Check whether the target is within reach1.3

if dist > d1 + d2 + · · · + dn−1 then1.4

% The target is unreachable1.5

for i = 1, . . . , n− 1 do1.6

% Find the nearest point on sphere, with centre the joint position pi and radius1.7

the distance di , from a point is space, t
pi+1 = NearestPointSphere(pi , di , t);1.8

end1.9

else1.10

% The target is reachable; thus, set as b the initial position of the joint p11.11

b= p11.12

% Check whether the distance between the end effector pn and the target t is greater1.13

than a tolerance.

difA = |pn − t|1.14

while difA > tol do1.15

% STAGE 1: FORWARD REACHING1.16

% Set the end effector pn as target t1.17

pn = t1.18

for i = n− 1, . . . ,1 do1.19

% Find the nearest point on sphere, with centre the joint position pi+1 and1.20

radius the distance di , from a point is space, pi

pi = NearestPointSphere(pi+1, di,pi);1.21

end1.22

% STAGE 2: BACKWARD REACHING1.23

% Set the root p1 its initial position.1.24

p1 = b1.25

for i = 1, . . . , n− 1 do1.26

% Find the nearest point on sphere, with centre the joint position pi and1.27

radius the distance di , from a point is space, pi+1

pi = NearestPointSphere(pi , di ,pi+1);1.28

end1.29

difA = |pn − t|1.30

end1.31

end1.32

1.33

% Where the function NearestPointSphere(X,Y,Z), finds the nearest point on a sphere1.34

from a point in space. X is the sphere’s centre, Y is the sphere’s radii and Z is the point

in space.

3 Inverse Kinematics Solutions UsingConformal Geometric Algebra 51

Fig. 3.1 A full iteration of FABRIK for the case of a single target and 4 joints using CGA. (a) The
initial position of the manipulator and the target, (b) move the end effector p4 to the target, (c) find
the joint p′3 which is the intersection of the sphere Σ3 and the line l3 which passes through the
points p′4 and p3, (d) continue the algorithm for the rest of the joints, (e) the second stage of the
algorithm: move the root joint p′1 to its initial position, (f) repeat the same procedure but this time
start from the base and move outwards to the end effector. The algorithm is repeated until the
position of the end effector reaches the target or gets sufficiently close

closed loops. A reliable method for incorporating constraints is presented in [16];
the main idea is the repositioning and reorientation of the target to be within the
allowed range of motion. In this paper we give details of how these constraints
can be applied to a hand model, restricting the hand motion to a feasible set. It is
worth noting that FABRIK, as described in Fig. 3.1, can be implemented simply
by taking distances along lines rather than intersecting with spheres [16]. However,
when we wish to incorporate constraints, we often need the sphere-line information;
so we choose to work entirely in this unified framework. Also, the CGA framework
offers several algorithm optimisations such as for cases where the ‘end effector’ is
not positioned at the end of the chain (i.e. it is a leaf). For instance, assume that
the joint positions pi and pi−2 are known and that we want to estimate the joint
position pi−1. This can be done by finding the intersection of the spheres Σ1 and
Σ2 with centres the known joint positions pi and pi−2 and radii the distances di =
|pi−pi−1| and di−2 = |pi−2−pi−1|, respectively. If the intersection is a circle, then
the estimated joint position can be assigned as the nearest point on that circle from
its previous position (as described in Sect. 3.4.2.2). If the intersection is a single

52 A. Aristidou and J. Lasenby

Fig. 3.2 The hand’s model
geometry used in our
implementation

point, the estimated joint position is assumed to be that point; otherwise, if the two
spheres do not intersect, the estimated joint position is equal to pi−1 = pi+pi−2

2 .
Another simple optimisation is the direct construction of a line pointing towards the
target, when the latter is unreachable. In that case, each joint pi is assigned to be the
nearest point on the sphere, with centre the previous joint pi−1 and radii the distance
di−1 from the target.

3.4 Using FABRIK for Hand Pose Tracking

In this section, an example of FABRIK implementation and how it performs on
hand pose tracking is presented. The hand rotational and orientational limitations
have been incorporated using CGA. The proposed approach is an example of object
modelling for kinematic solutions, and we note that it can be adjusted to solve a
variety of different modelling problems.

3.4.1 The Hand Geometry

It is assumed that the hand geometry, meaning the initial joint configuration of the
hand, is known a priori. An example of a hand model is graphically represented in
Fig. 3.2. The proposed hand model consists of 25 joints and has in total 25 DoFs.
The end effector positions are captured using an optical motion capture rig, such
as the Phasespace Impulse System [17]. Since our hand model does not have a
mesh which defines its external shape, constraints such as self collisions are not
considered here. The markers are identified (e.g. in the Phasespace system, each

3 Inverse Kinematics Solutions UsingConformal Geometric Algebra 53

LED marker is pulsed at a different frequency) so that it is known a priori on which
finger each marker is placed. It is also important to know the orientation of the hand
in order to efficiently incorporate constraints. This can be achieved by attaching
two extra markers at specific positions, p and q , on the back of the hand (reverse
palm). Assuming that the palm is always flat, we can find the plane describing the
orientation of the hand using p, q and the position of the base root, r , which also
lies on the palm plane. For simplicity, markers p and q can be placed at the joint
positions F1,2 and F4,2 respectively, as shown in Fig. 3.2.

Before employing the IK solver, it is crucial to find the fingers’ orientations, the
chain roots and the end effectors for each chain; the target positions are assumed
to be known since they are tracked by the motion capture system. The procedure is
simple. Firstly, we estimate the hand orientation; thereafter, we calculate the palm
joints and the finger orientations at each time step. When each finger orientation
is known, the finger joints at the previous time step are translated and rotated in
such a way that all joints belong to the current finger plane. Finally, a constrained
version of FABRIK, with rotational limitations, is incorporated to fit the joints of
each finger. This procedure is given in detail in the following paragraphs.

The first step is to find the hand orientation; hence, by accepting that the hand
plane Φx is similar to the palm plane and that the markers p, q and r are lying
on that plane, the hand orientation, meaning the plane Φx , can be estimated. There-
fore,

P = 1

2

(
p2n∞ + 2p− n̄

)

Q= 1

2

(
q2n∞ + 2q − n̄

)
(3.1)

R = 1

2

(
r2n∞ + 2r − n̄

)

where P , Q and R are the 5D null vectors representing points p, q and r , respec-
tively, and n∞ and n̄ are the null vectors in CGA.1 The plane Φx is given by

Φx = P ∧Q∧R ∧ n∞ =
〈〈〈PQ〉2R

〉
3n∞
〉
4 (3.2)

Note that the form given on the right-hand side of (3.2), and other relevant equations,
is useful for implementation purposes and so is included here.

Calculating the Palm Joints The next step is to incorporate constraints to obtain
other palm joints. Thus, by assuming that the inter-joint distances (for the joints Fi,1
where i = 1, . . . ,5 and Fj,2 where j = 1, . . . ,4) are fixed over time and that all
these joints lie on the palm plane, we can easily locate them using basic geometric
entities such as planes, circles and spheres. An example of palm constraints is given

1Editorial note: Note here that in this chapter CGA equations are given in terms of n∞ and n̄,
where n̄=−2no .

54 A. Aristidou and J. Lasenby

Fig. 3.3 The palm plane
constraints: the hand plane
can be calculated using the
marker positions P , Q and R,
accepting that the markers lie
on that plane and that the
hand and palm planes are
similar. The rest of the palm
joints can be estimated,
assuming that the inter-joint
distances remain constant
over time, by intersecting the
spheres Σp and Σq with
centres at the marker
positions P and Q and radii
of the distance between their
centre and the joint position
we are looking for

in Fig. 3.3. For instance, the joint position we are working on can be estimated
by intersecting the spheres with centres being the marker positions p and q and
radii being the distance between the marker and that joint position (taken from the
model). Therefore, find the sphere with its centre at the marker position P and radius
equal to the distance between the marker P and the joint we are working on

Σp =
(

P − 1

2
ρ2

1n∞
)

I (3.3)

where ρ is the sphere radius. Similarly, find the sphere with centre the marker posi-
tion Q and radius equal to the distance between the marker Q and the joint we are
working on

Σq =
(

Q− 1

2
ρ2

2n∞
)

I (3.4)

The intersection of the two spheres gives a circle or a single point or no intersection.
The meet between the two spheres is given by

C =Σp ∨Σq =
[〈ΣpΣq〉2

]∗ (3.5)

• If C2 > 0, then C is a circle. In that case, the possible solutions are given by
intersecting the circle C and the palm plane Φx :

B = C ∨Φx =
[〈CΦx〉3

]∗ (3.6)

3 Inverse Kinematics Solutions UsingConformal Geometric Algebra 55

– If B2 > 0, the meet between C and Φx gives two points which can be extracted
via projectors, as described in [18]. The new joint position is assigned as the
point that is closer to the previous joint position (at time k− 1).

– If B2 = 0, the intersection is a single point X = Bn∞B .
– If B2 < 0, the intersection does not exist. For that instance, the new joint po-

sition is then taken as the nearest point on circle, C, from the previous joint
position (at time k − 1, see Sect. 3.4.2.2).

• If C2 = 0, the intersection is a single point X = Cn∞C.
• If C2 < 0, the two spheres do not intersect. In that case, the final joint position is

given by averaging the distance between the two markers, x = (p+ q)/2.

Calculating the Finger Joints In order to estimate the finger joints, we need to
find the finger planes Φi for i = 1, . . . ,4. Each Φi can be calculated using the known
joint positions Fi,2, the marker positions Fi,5 and by assuming that they are perpen-
dicular to the palm plane Φx (note that this does not hold for the thumb plane Φ5).
Since both points from each finger are known (the motion capture system tracks
the end effector positions Fi,5, and the finger roots Fi,2 lie on the palm plane with
constant distance from the attached markers p and q , as explained in previous para-
graphs), each finger plane can be estimated at the current time frame. The vector
that is perpendicular to the hand plane Φx is given by

n̂=Φ∗x −
1

2

(
Φ∗x · n̄
)
n∞ (3.7)

as explained in [18]. The finger planes can then be calculated as

Φi = Fi,2 ∧ Fi,5 ∧ n̂∧ n∞ =
〈〈〈Fi,2Fi,5〉2n̂

〉
3n∞
〉
4 for i = 1, . . . ,4 (3.8)

The thumb orientation Φ5 can be estimated using the marker position F5,4 and the
joint positions F1,2 and F5,2 that lie on the palm, assuming that when the thumb
bends to the ventral side of the palm, it always points at the joint F1,2 (approximately
true in practice).

The next step is to estimate the rotation between the previous and the current
frame of each finger plane. This can be done using rotors; the rotor R which ex-
presses the rotation between the plane in the previous frame and the plane in the
current frame, for each finger, can be found using the closed-form expression given
in [19].2 Then each finger joint at time k− 1 is translated and rotated in such a way
that all joints of a given finger lie on the plane of the current frame k, as demon-
strated in Figs. 3.4 and 3.5. Hence,

F̂ k
i,j =RFk−1

i,j R̃ (3.9)

2Editorial note: This is essentially (4.2) for n= 3.

56 A. Aristidou and J. Lasenby

Fig. 3.4 The joint positions
at times k− 1 and k. Each
finger joint at time k − 1
needs to be rotated in such a
way that all joints of that
finger lie on the plane of the
current frame k

where i = 1, . . . ,4 and j = 3,4,5 (except for the thumb where i = 5 and j =
2,3,4).

All joints now lie on plane Φk
i . Lastly, FABRIK is applied to each finger chain,

assuming that the root of the chain is Fk
i,2, the end effector is the rotated point F̂ k

i,5,

and the target is the current marker position Fk
i,5, as shown in Fig. 3.5. The inter-

joint distances are constant over time; thus, for computational efficiency, they can be
calculated and stored at the first frame. It is important here to note that the marker
occlusion problem is considered solved using constrained prediction algorithms,
such as [20].

The resulting posture can be further improved in accuracy and naturalness by
incorporating properties of the fingers, muscles, skin and individual joints via con-
straints [21].

3.4.2 Trigonometric Solutions

This section presents trigonometric solutions, using CGA, to problems which appear
during the implementation of the proposed methodology.

3.4.2.1 Nearest Point on a Sphere from a Point in Space
This section shows how to calculate the nearest point on a sphere from a point in
space using CGA. Assume that a sphere has centre c and radius ρ. The sphere Σ1
can be expressed as a blade in CGA as follows:

Σ1 =
(

c− 1

2
ρ2n∞
)

I (3.10)

where c= 1
2c

2n∞ + c− n̄
2 .

Assume a point in space q . In order to find the nearest point on the sphere from
that point, we need to find the intersection of the line L1 that passes through the
point q and the sphere centre c. Thus,

L1 =Q∧ c ∧ n∞ =
〈〈Qc〉2n∞

〉
3 (3.11)

3 Inverse Kinematics Solutions UsingConformal Geometric Algebra 57

Fig. 3.5 The current joint positions, after rotating them in order to lie on the current finger
plane Φk

i . The problem of orientation is therefore solved, and FABRIK can then be utilised as-

suming that the root of the chain is Fk
i,2, the end effector is the point F̂ k

i,5, and the target is the

current marker position Fk
i,5

where Q = H(q) is the Hestenes mapping of q . The intersection between the line
L1 and the sphere Σ1 always returns two possible solutions, which are given by the
bivector X1 ∧X2.

X1 ∧X2 = L1 ∨Σ1 (3.12)

Finally, the vectors X1 and X2 can be extracted from X1 ∧X2 using projectors.
Then, the nearest point on the sphere is assigned as the point that returns the mini-
mum distance from the point in space.

We note here that although the nearest point on a sphere from a point in space can
be found very easily using distance along lines, because we are working entirely in
the CGA framework (in order to easily incorporate constraints), it is generally more
computationally efficient to do all calculations in CGA.

X = arg
(
max(X1 ·X,X2 ·X)

)
(3.13)

3.4.2.2 Nearest Point on a Circle from a Point in Space
This section describes how to find the nearest point on a circle from a point in space.
In particular, the minimum distance on a circle from a point in space is related to
the projection of that point onto the plane Φ of the circle. This can be achieved by
reflecting the point in the plane and finding the mid-point of the reflected and the
original point. Hence, let the circle C =H(b)∧H(c)∧H(d), where b, c and d are
points that lie on the circle. The centre c of the circle C can be calculated as

c= Cn∞C (3.14)

and the plane Φ of the circle can be formulated as

Φ = C ∧ n∞ = 〈Cn∞〉4 (3.15)

Having the plane Φ and the point X = H(x) in space, the nearest point on the
circle can be found by reflecting that point in the plane Φ .

58 A. Aristidou and J. Lasenby

Fig. 3.6 The nearest point on circle to point in space. The point X is projected on the circle’s
plane Φ . A line is then formed through the midpoint of X and its projected counterpart and the
centre of the circle. The intersection between the line and the circle returns two possible solutions;
the one that is shorter to the point X is chosen

X′ =ΦXΦ (3.16)

The mid-point XP is then calculated as

X′P =XP + αn∞ =H

(
1

2

(
H−1(X′

)+ x
)
)

(3.17)

Then, a line, L, is formed through this midpoint and the centre of the circle,

L=XP ∧ c ∧ n∞ (3.18)

The intersection between line L and circle C will return a bivector, A ∧ B , which
represents the shortest and longest distances on the circle from the point in space.
The vectors X1 and X2 can be extracted from X1∧X2 using projectors. The nearest
point is then selected using a simple distance comparison method. This method is
also illustrated in Fig. 3.6.

(X1,X2) = L∨C

X = arg
(
max(X1 ·X,X2 ·X)

) (3.19)

3.5 Experimental Results

Experiments were carried out using a 10 camera Phasespace motion capture system,
capturing data at 100 Hz [17]. The implemented methodology was able to process
up to 70 frames per second, using MATLAB [22]. Our dataset comprises mark-
ered motion capture data; data captured using colour video cameras are also used
to compare the reconstruction quality between the estimated and the true hand pos-
tures. The reconstructed hand postures were visualised using a mesh deformation
algorithm.

The proposed method is real-time implementable, requiring only 1.43 ms per
frame for tracking and fitting 25 joints. FABRIK is able to fit the joints and recon-
struct the hand accurately; the rotational and orientational constraints ensure that

3 Inverse Kinematics Solutions UsingConformal Geometric Algebra 59

Fig. 3.7 An example of hand reconstruction using our methodology at a frame rate of 100 Hz.
(a) View of the hand from RGB camera 1, (b) a different view of the hand from RGB camera 2
and (c) the final visualised posture. The resulting poses are visually natural and biomechanically
correct

each finger movement remains normal without showing asymmetries, or irregular
bends and rotations.

The implemented system can smoothly track the hand movements. The recon-
struction quality can be checked visually by comparing the generated 3D hand an-
imations with the data captured using a colour video camera, as seen in Fig. 3.7.
It is difficult to illustrate the reconstruction quality in still images, but the resulting
motion does not suffer from oscillation or discontinuities, and each finger smoothly
moves to the target.

Despite the accuracy in performance, the resulting postures of our approach are
not unique; several possible poses could result from the 3D articulated hand track-
ing. However, the advantages of this method are its efficiency and ability to return

60 A. Aristidou and J. Lasenby

natural and feasible motion, which meets the user constraints, with low computa-
tional cost. It is also important to note here that FABRIK results in poses which are
closely related to previous states. Therefore, the final joint configuration might be
different when the IK problem is solved with the end effectors in different initial
positions but with similar final states. Nevertheless, these differences are minimal
causing only a small decrease in performance.

3.6 Conclusions and Future Work

In this paper, we presented an iterative Inverse Kinematics solver that was imple-
mented using CGA. Rotational and orientational constraints were then incorporated
for hand modelling; using a minimum number of available markers, we were able
to track the 25 DoF hand relying on optical motion capture data. One labelled opti-
cal marker was attached to the end of each finger, treated as an end effector, and 3
more markers were placed at strategic positions on the hand reverse-palm to help us
identify the root and orientation of the hand. The proposed methodology produced
smooth and natural hand postures over time; the required processing time remained
low enabling an effective real-time hand motion tracking and reconstruction system.
The results were precise, producing visually natural, smooth and biomechanically
correct movements, without oscillations or discontinuities.

This application exploits the advantages of CGA for incorporation of constraints
in IK problems and proves that it is a useful mathematical tool which can be suc-
cessfully used for applications in computer vision, graphics and robotics. In gen-
eral, CGA gives us the ability to describe algorithms in a geometrically intuitive
and compact manner. More particularly, it simplifies the mathematical model of the
IK solver, since basic entities, such as spheres, lines, planes and circles, are simply
represented by algebraic objects. In addition, the structure and elegance of CGA
leads to low computational cost and real-time performance.

In future work, a more sophisticated model will be implemented which takes
into consideration, in addition to the joint rotational and orientational restrictions,
physiological constraints such the flexion, inertia, abduction, the finger’s intradigital
and transdigital correlation, the rigidity and the friction of the hand, as described
in [21].

3.7 Exercises

3.1 What is the complexity of a simple unconstrained version of FABRIK for a
six-joint kinematic chain?

3.2 Similarly to finding the nearest point on a circle from a point in space, find
trigonometric solutions for: (a) the nearest point on a line from a sphere, (b) the
nearest point on a line from a circle.

3 Inverse Kinematics Solutions UsingConformal Geometric Algebra 61

3.3 Describe a model with joint constraints for a human arm using the FABRIK
Inverse Kinematics algorithm and CGA as the mathematical framework (hint: as-
sume that the shoulder and the joint connecting the palm with the arm are ball and
socket joints with rotational and orientation limits, and that elbow is a hinge joint.
For simplicity, the hand should be considered as a solid limb segment).

References

1. Hestens, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus: A Unified Language for
Mathematics and Physics. Reidel, Dordrecht (1984)

2. Doran, C., Lasenby, A.: Geometric Algebra for Physicists. Cambridge University Press, Cam-
bridge (2003)

3. Aristidou, A., Lasenby, J.: Inverse kinematics: a review of existing techniques and introduction
of a new fast iterative solver. Cambridge University Department of Engineering Technical
Report, CUED/F-INFENG/TR-632 (2009)

4. Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science: An Object-
Oriented Approach to Geometry. Morgan Kaufmann, San Mateo (2009)

5. Bayro-Corrochano, E., Kähler, D.: Motor algebra approach for computing the kinematics of
robot manipulators. J. Robot. Syst. 17(9), 495–516 (2000)

6. Bayro-Corrochano, E.: Robot perception and action using conformal geometric algebra. In:
Handbook of Geometric Computing, pp. 405–458, Chap. 13. Springer, Berlin (2005)

7. Zamora, J., Bayro-Corrochano, E.: Inverse kinematics, fixation and grasping using conformal
geometric algebra. In: Proceedings of the IEEE International Conference on Intelligent Robots
and Systems (IROS ’04), vol. 4, pp. 3841–3846 (2004). doi:10.1109/IROS.2004.1390013

8. Hildenbrand, D.: Tutorial: Geometric computing in computer graphics using conformal geo-
metric algebra. Comput. Graph. 29(5), 795–803 (2005)

9. Zamora, J., Bayro-Corrochano, E.: Kinematics and grasping using conformal geometric alge-
bra. In: Lenarčič, J., Roth, B. (eds.) Advances in Robot Kinematics, pp. 473–480. Springer,
Berlin (2006)

10. Hildenbrand, D., Zamora, J., Bayro-Corrochano, E.: Inverse kinematics computation in com-
puter graphics and robotics using conformal geometric algebra. Adv. Appl. Clifford Algebras
18, 699–713 (2008)

11. Hildenbrand, D., Fontijne, D., Wang, Y., Alexa, M., Dorst, L.: Competitive runtime perfor-
mance for inverse kinematics algorithms using conformal geometric algebra. In: Proceedings
of Eurographics Conference, 2006

12. Tanev, T.K.: Geometric algebra approach to singularity of parallel manipulators with limited
mobility. In Lenarcic, J., Wenger, P. (eds.) Advances in Robot Kinematics: Analysis and De-
sign, pp. 39–48. Springer, Dordrecht (2008)

13. Bayro-Corrochano, E., Zamora, J.: Differential and inverse kinematics of robot devices using
conformal geometric algebra. Robotica 25(1), 43–61 (2007)

14. Hildenbrand, D., Lange, H., Stock, F., Koch, A.: Efficient inverse kinematics algorithm based
on conformal geometric algebra (using reconfigurable hardware). In: Proceedings of the 3rd
International Conference on Computer Graphics Theory and Applications, Madeira, Portugal,
2008

15. Wang, L.-C.T., Chen, C.C.: A combined optimization method for solving the inverse kinemat-
ics problems of mechanical manipulators. IEEE Trans. Robot. Autom. 7(4), 489–499 (1991)

16. Aristidou, A., Lasenby, J.: FABRIK: a fast, iterative solver for the inverse kinematics problem.
Graph. Models 73(5), 243–260 (2011)

17. PhaseSpace Inc: Optical motion capture systems. http://www.phasespace.com
18. Lasenby, A.N., Lasenby, J., Wareham, R.: A covariant approach to geometry using geo-

metric algebra. Cambridge University Department of Engineering Technical Report, CUED/
F-INFENG/TR-483 (2004)

http://dx.doi.org/10.1109/IROS.2004.1390013
http://www.phasespace.com

62 A. Aristidou and J. Lasenby

19. Lasenby, J., Fitzgerald, W.J., Lasenby, A.N., Doran, C.J.L.: New geometric methods for com-
puter vision: an application to structure and motion estimation. Int. J. Comput. Vis. 26(3),
191–213 (1998)

20. Aristidou, A.: Tracking and modelling motion for biomechanical analysis. PhD Thesis, Uni-
versity of Cambridge, Cambridge, UK (October 2010)

21. Kaimakis, P., Lasenby, J.: Physiological modelling for improved reliability in silhouette-
driven gradient-based hand tracking. In: Proceedings of the International Conference on Com-
puter Vision and Pattern Recognition, Miami, USA, 25 June 2009, pp. 19–26

22. The Mathworks—MATLAB and Simulink for technical computing. http://www.mathworks.
com

http://www.mathworks.com
http://www.mathworks.com

4Reconstructing Rotations and Rigid
Body Motions from Exact Point
Correspondences Through Reflections

Daniel Fontijne and Leo Dorst

Abstract
We describe a new algorithm to reconstruct a rigid body motion from point cor-
respondences. The algorithm works by constructing a series of reflections which
align the points with their correspondences one by one. This is naturally and ef-
ficiently implemented in the conformal model of geometric algebra, where the
resulting transformation is represented by a versor. As a direct result of this algo-
rithm, we also present a very compact and fast formula to compute a quaternion
from two vector correspondences, a surprisingly elementary result which appears
to be new.

4.1 Introduction

Reconstructing rigid body motions from correspondences is a common problem in
geometry. The correspondences can be directions (when only looking for rotation)
or locations (when translation is also used). The applications range from satellite
tracking to registration of point clouds. Our own need is fast evaluation of the rigid
body motion of groups of features in a marker-less motion capture application.

In classical vector algebra, a straightforward method is to first compute the trans-
lation of the centroid (the average of all the points) and then to compute the rotation.
The rotation can be computed by solving a matrix equation A= RB , where A and
B are the matrices of the data vector correspondences, and R is the unknown 3× 3

This work was performed while the first author was at the University of Amsterdam

D. Fontijne (�)
Euvision Technologies, Amsterdam, The Netherlands
e-mail: d.fontijne@euvt.eu

L. Dorst
University of Amsterdam, Amsterdam, The Netherlands
e-mail: L.Dorst@uva.nl

L. Dorst, J. Lasenby (eds.), Guide to Geometric Algebra in Practice,
DOI 10.1007/978-0-85729-811-9_4, © Springer-Verlag London Limited 2011

63

mailto:d.fontijne@euvt.eu
mailto:L.Dorst@uva.nl
http://dx.doi.org/10.1007/978-0-85729-811-9_4

64 D. Fontijne and L. Dorst

rotation matrix. If the input is overdetermined or noisy, the Procrustes method [7]
can be used. This involves computing the singular value decomposition of a 3× 3
matrix.

In homogeneous coordinate approaches, rotation and translations are in principle
unified in a single rigid body motion matrix. Yet the computation of the motion
from data is based on a split of the translational and rotational parts, as in the vector
algebra method.

Geometric algebra contains all these algebras and hence all these solution meth-
ods. Until recently, rigid body motion reconstruction would proceed as in the ho-
mogeneous coordinate approach: compute the translation using the centroid method
and then use one of several compact geometric algebra methods to compute the rota-
tion. The advantage over homogeneous coordinates is then the natural incorporation
of quaternions (as ratios of real vectors) and the extendibility to n-D.

To compute the shortest rotation from one unit vector a to another unit vector b
in n-D, one would compute (see [9])

Q= 1+ ba, (4.1)

which can be normalized through dividing by
√

2(1+ b · a). This Q is an even ver-
sor, the motion representation that replaces matrices in geometric algebra since it
can transform any element X of the algebra through X �→QXQ−1. Unfortunately,
the equation has a singularity at 180 degrees (it returns the result Q = 0 when a
versor for a 180-degree rotation in an arbitrary plane might have been preferable).
Equation (4.1) also appears in quaternion literature, see e.g. [8].

Geometric algebra also has a formula to determine the rotation of a given frame
of vectors {ei} to a given rotated frame {fi} in n-D. One determines the reciprocal
frame (a.k.a. the dual basis) {fi} and the forms the rotation versor V from

V= 4− n+
3∑

i=1

fiei , (4.2)

where n is the dimension of the vector space (see e.g. [5, p. 257]). Equation (4.2) is a
generalization of (4.1). It has the same issues as (4.1): it is not normalized (though it
easily can be) and suffers from a singularity for 180-degree rotations. The frames do
not need to be orthonormal but then require the explicit computation of a reciprocal
frame, which is relatively expensive.1

Since our interest is specifically rigid body motions, we may expect an efficient
method in a geometric algebra specifically designed to represent such motions, the
conformal model [10] (referred to as CGA, for Conformal Geometric Algebra). In
that model, there is a much stronger unification of translations and rotations than
in the homogeneous coordinate approach (in fact, a unification of all conformal

1When applied within the conformal model, (4.2) can find pure rotations and pure translations, but
no general rigid body motions which require a grade-4 part in their versor.

4 Reconstructing Rotations and Rigid Body Motions 65

transformations, explaining the name). All such transformations in n-D turn out to
be representable as orthogonal transformations of an (n + 2)-dimensional space.
One would hope that a more compact method could therefore be designed using
CGA.

Recently, there have been efforts to find a unified and preferably closed-form so-
lution to rigid motions computation by conformal geometric algebra methods. One
result is the general method of [11] which can handle noisy data but is rather expen-
sive computationally as it involves finding a least-squares solution to a system of
2n linear equations.2 There is an n-D method for a closed solution in [4], based on
assembling linear equations for the various grades of the versor, but collecting the
data on the higher grades involves O(2n) combinations of the original data points,
and the method cannot guarantee to return a versor from noisy data. Another exact
method is [2], which can even handle general conformal transformations from un-
weighted point data (none of the others can); when the data is somewhat noisy, the
method will still return a versor, probably close to the noiseless result. The down-
side to this method is that it only works for the conformal model and, for rigid body
motions, is much less efficient than the method presented in this paper (which it
actually contains twice, to solve two subproblems).

This paper presents a new method for the retrieval of rigid body motions, as
the application of a more general algorithm for the determination of orthogonal
transformations from vector data. We present the algorithm in a geometric algebra
formulation independent of the CGA usage, making it applicable to efficient rotation
estimation as well (resulting in a new and compact quaternion formula).

Our algorithm is related to the Cartan–Dieudonné theorem, which states that in
n-D any orthogonal transformation can be represented as at most n planar reflec-
tions. A proof in terms of geometric algebra may be found in [1], which decomposes
a known orthogonal transformation into reflections. By contrast, we use reflections
to reconstruct an unknown n-D orthogonal transformation from vector correspon-
dences.

The input to the method must specify at least the minimal set of correspondences
which fully specifies the transformation. For rotations in 3D, this means that at least
two vector correspondences are required; for rigid body motions in 3D, at least
three point correspondences are required. In principle, the method is closed-form,
but checks need to be made to determine whether correspondences were degener-
ate; thus the end result is an algorithm instead of a closed-form equation. When the
correspondences are imprecise (e.g., due to noise), the algorithm will still give a
sensible result which is guaranteed to be a versor but not a certifiably optimal solu-
tion. This result may still be very useful as a seed for optimization or as a minimal
model for RANSAC. The algorithm can handle over-specified input but does not
benefit from it in a sense that the solution becomes neither more stable nor more
precise. The recent algorithm [12] is better suited for such situations.

2An extension of this method to n-D (with n > 6) may moreover be problematic since the La-
grangian constraints for the versor manifold are not yet known in general.

66 D. Fontijne and L. Dorst

The new method presented here can reconstruct several classes of transforma-
tions. First of all, it can reconstruct all orthogonal transformations in Euclidean
spaces of any dimension. Secondly, it can be used to find rigid body motions in
Euclidean spaces of any dimension using the conformal model. Finally, it can re-
construct any orthogonal transformation in spaces with arbitrary metric in any di-
mension, though with a caveat on degeneracy of the input data, which is discussed
later in Sect. 4.6.

The paper proceeds as follows: first we present the principle behind the method
using only elementary geometry. We then formalize the algorithm using geometric
algebra in Sect. 4.3. This is followed by the derivation of a new quaternion formula
for the 3D Euclidean rotation case in Sect. 4.4. Section 4.5 presents benchmarks
which compare the performance of some classical linear algebra and quaternion
approaches to our new geometric algebra approach. Section 4.6 primarily discusses
issues in the extended application of the algorithm.

4.2 Method for Reconstructing Rigid Body Transformations
from Point Correspondences Through Plane Reflections

In this section we illustrate the geometry behind our algorithm before we formalize
it using geometric algebra in the next section. We do so to allow the readers who
are less familiar with geometric algebra to understand the resulting procedure. Note
that for the purpose of illustration, we talk of ‘3D points’, ‘reflections in planes’ and
‘distances’ in this section, but the same principles apply to ‘vectors’, ‘reflections in
hyper-planes’, and ‘dot products’, respectively. For simplicity, degenerate cases are
ignored in this section.

Suppose that we have n points denoted by their position vectors pi and their
correspondences p′i . We want to find the orthogonal transformation F which relates
them,

p′i = F(pi).

Let us denote reflection in a plane R as R(·).
The algorithm works by finding successive reflections which align the points one

by one. The first reflection R1 aligns p1 with p′1, the second reflection R2 aligns
p2 with p′2 without affecting the already aligned p1, and so on, until all points have
been aligned. How many reflections are required depends on the dimension of the
vector space and the type of orthogonal transformation that has actually taken place.
The algorithm terminates when it detects that all points have been aligned.

It turns out that these reflections Ri can be found as bisector planes related to the
data. A bisector plane is defined as the plane consisting of points with equal distance
to two specified points. A trivial fact we need is that a point contained in a plane is
not affected by reflection in that plane.

In our algorithm, the first reflection plane R1 is the bisector plane of p1 and p′1,
see Fig. 4.1. For the second reflection plane R2, the bisector plane of R1(p2) and p′2
is used. Perhaps surprisingly, R2 does not move the already aligned point R1(p1),

4 Reconstructing Rotations and Rigid Body Motions 67

Fig. 4.1 Aligning points using plane-reflections. Note that p′1 = R1(p1) = R2(R1(p1)), p′2 =
R2(R1(p2)). The total transformation R2(R1(·)) is a rotation about the intersection of the planes
R1 and R2

for we can show that R1(p1) is contained in R2. We use the properties of the distance
preservation of the various reflections in the setup to establish the sequence:

distance(p1,p2)
correspondence= distance

(
p′1,p′2
)

R2 dist. pres.= distance
(
R2
(
p′1
)
,R2
(
p′2
))

definition of R2= distance
(
R2
(
p′1
)
,R1(p2)

)

R1 dist. pres.= distance
(
R1
(
R2
(
p′1
))
,p2
)
.

This should hold for any point p2; that is only possible if p1 equals R1(R2(p′1)).
Therefore p′1 =R1(p1)=R1(R1(R2(p′1)))=R2(p′1). Hence p′1 is not affected by a
reflection in the plane R2, and so it lies on it.

If more reflections would be required to align more points, the principle of this
proof still holds: earlier aligned points are not moved by subsequent reflections.
After processing of all data points, the total orthogonal transformation is effectively
represented as the series of reflection planes.

4.3 Formalization Using Geometric Algebra

Formalization of the ideas from the previous section is straightforward using (con-
formal) geometric algebra. In CGA, points of R

n are homogeneously represented
as null vectors of R

n+1,1. The difference between two such point representatives
p and q is a vector representing the (dual) bisector plane of the two points (when
they have equal homogeneous weight, and a dual sphere when not). This plane (or
sphere) vector can be used as a reflection operator R. Applying this ‘versor’ R to
a vector a is done using the well-known ‘sandwiching’ operation −RaR−1. The
versor R = p − q can be used to reflect p into q, or vice versa, as we will show
below.

However, the resulting algorithm works not only for points in CGA, but can
be applied to reconstruct orthogonal transformations in other spaces as well. See
Algorithm 1.

68 D. Fontijne and L. Dorst

Algorithm 1: Reconstruct Orthogonal Transformation.
Input:
• A set of n exact correspondences between vectors pi and p′i .• A small threshold ε.
Input requirement: The vectors must be related by an orthogonal transforma-
tion, i.e. p′i = (−1)grade(V)VpiV−1.
Output: the versor V.
1. Initialize a set A of active vectors ai← pi for i = 1, . . . , n.
2. Set V= 1.
3. While (|(ai − p′i)2| ≥ ε) for some ai in A do

a. Find in A a vector aj for which |(aj −p′j)2| ≥ ε. Preferably, this should

be the aj with the largest |(aj − p′j)2|.
b. Set reflector R← (aj − p′j).
c. Append R to current transformation V←RV.
d. Remove aj from A .
e. Reflect all remaining active vectors:

ak←−R ak R−1 for every ak in A .

The ‘preferable’ part of Step 3a is important for numerical stability. By purposely
searching for the vector which has a large distance to its correspondent, we avoid
accidentally using a vector which is very close (in terms of floating point precision)
to its correspondent, which would make the algorithm numerically unstable.

When one is sure that reflectors with R · R < 0 will never occur, it pays off to
normalize all reflectors in Step 3b. The advantage is that the inverse in Step 3e can be
avoided, and the algorithm will automatically return unit versors. This optimization
can be used in Euclidean metrics and for example in the conformal model when all
input vectors are unit-weight representations of points.

4.3.1 Proof of Correctness

To prove that the algorithm works correctly, we have to demonstrate
1. that the reflection computed in Step 3b properly aligns the active vector under

consideration with its correspondent;
2. that non-active vectors are indeed not moved from their final position by later

reflections, so that they can be excluded from transformation in Step 3e; and
3. that the test in Step 3 does not terminate the algorithm before V has been found.

Proof of 1 In any geometric algebra, the reflection of the vector a in the non-null
vector (a− p′) gives:

−(a− p′
)
a
(
a− p′
)−1 = (p′(a− p′

)− (a′2 − p′2
))(

a− p′
)−1

4 Reconstructing Rotations and Rigid Body Motions 69

= p′ − (a2 − p′2
)(

a− p′
)−1 (4.3)

∗= p′, (4.4)

where the final step marked with ∗ is only valid if a2 = p′2. But this precisely hap-
pens when p′ is obtained from a by some orthogonal transformation. This holds for
all active vectors, both initially and still after the repeated orthogonal transforma-
tions of Step 3e. �

Proof of 2 In Step 3e of the algorithm, we only reflect the remaining active vectors.
We show that this is permitted, since the vectors ai that were already aligned with
their correspondents p′i by the current V (so that ai = VpiV−1 = p′i) will not be
affected by the new reflection R. (This was essentially the intuitive motivation of
Sect. 4.2.)

Let a be the new vector from A selected by Step 3a of the current loop; note
that it is related to its original vector p by a = V p V−1, since all vectors in A
have effectively been reflected by V through application of Step 3e in every passage
through the loop thus far. Then R is the reflection R= a− p′, which is non-null (or
the algorithm would have terminated).

If we would use this R to reflect one of the previously aligned vectors ai , we
would find:

−RaiR−1 = ai − 2(ai ·R)R−1,

so this would not affect ai if and only if ai ·R= 0 (in conformal geometric algebra,
this is interpretable as the condition that point ai lies on the plane R). We compute:

ai ·R= p′i ·
(
a− p′
)

= p′i · a− p′i · p′
= (VpiV

−1) · (VpV−1)− p′i · p′
= pi · p− p′i · p′
= 0.

In the last two steps we use the inner product preservation of orthogonal transforma-
tions twice: once for V (being constructed of multiple reflections, it is an orthogonal
transformation) and once for the original transformation converting all pj into their
correspondents p′j . So indeed, the previously aligned vectors would remain aligned
by subsequent reflections. �

Proof of 3 Step 3 checks if there are still valid reflectors to apply. It does so by
checking the distance between the current value of all active vectors ai and their re-
spective target values p′i . Although this test may look sensible, its validity limits the
algorithm from being fully generally applicable to geometric algebras of arbitrary
metric signatures.

70 D. Fontijne and L. Dorst

When using a Euclidean metric, the test |(ai − p′i)2| = ‖ai − p′i‖2 ?= 0 is indeed

equivalent to ai
?= p′i . But when using a non-Euclidean metric, it may be true that

|(ai − p′i)2| = 0 while ai is not equal to p′i . This happens when (ai − p′i) is a null
vector (i.e. a non-zero vector with zero norm). Since the conformal model has a
non-Euclidean metric, it may be affected. For the application that motivated us: the
determination of rigid body motions based on point data, the test is still valid (the
norm of the difference of two vectors representing points which are related by a rigid
body motion is proportional to their squared distance; so indeed only zero when the
points are identical). But already for dilations in the conformal model, exceptional
data can be constructed that make the test fail, see Sect. 4.6. �

4.3.2 Reconstructing 3D Rigid Body Motions from Three Point
Correspondences

One would expect that three point correspondences are sufficient to reconstruct a
general 3D rigid body motion using conformal geometric algebra. However, in gen-
eral our algorithm reconstructs a rigid body motion with a negative determinant
using only three points, since three reflections are enough to map the points to their
images.

Fortunately, it is not required to use four points to avoid this situation. Applying
one extra reflection in the plane spanned by the three points results in the correct
rigid body motion. This is what the 4planes method benchmarked in Sect. 4.5.2
does.

4.4 Reconstructing a Quaternion from Two Vector
Correspondences

In the case of 3D Euclidean vector space, our algorithm reduces to a very simple and
efficient formula when reconstructing a rotor from two properly selected vectors x
and y and their transforms x′ and y′:

V= (y′ + y
) · (x′ − x

)+ (y′ − y
)∧ (x′ − x

)
, (4.5)

where x and y are the original vectors, and x′ and y′ their rotated counterparts. As a
quaternion Q, this would be written in terms of its scalar and vector components as

Q= ((y′ + y
) · (x′ − x

)
,
(
y′ − y
)× (x′ − x

))
. (4.6)

Computing this quaternion takes 9 multiplications and 14 additions. By comparison,
even for an orthonormal frame in 3D, (4.2) takes 27 multiplications and 19 additions.
The resulting quaternion is not necessarily a unit quaternion in general.

4 Reconstructing Rotations and Rigid Body Motions 71

Fig. 4.2 An example of a
degenerate configuration for
(4.5)

Equation (4.5) is derived as follows. Starting with the two reflection vectors

R1 = x− x′,
R2 =−R1yR−1

1 − y′,

multiply them into a single versor, leading to

V=R2R1 =
(−R1yR−1

1 − y′
)
R1

=−R1y− y′R1

=−(x− x′
)
y− y′
(
x− x′
)

=−(y′ + y
) · (x− x′

)− (y′ − y
)∧ (x− x′

)
. (4.7)

Unfortunately, there is a singularity where (4.5) fails [3]. When x∧ y is orthog-
onal to the plane of rotation, x− x′ is parallel to y− y′, and the grade 2 part of the
rotor will be 0 no matter what the rotation angle is.

The situation is illustrated in Fig. 4.2. The figure shows the top-view of a rotation
plane (shown as a disc) and the projections of vectors x and y and their images x′
and y′. x and y are in a plane perpendicular to the rotation plane. x and y do not have
to be collinear for the singularity to occur, but their projections onto the rotation
plane should be.

Note that the vectors x− x′ and y− y′ are parallel, so the grade 2 part of (4.5)
is zero. But the fundamental problem is that a single reflection (the dashed line in
the figure) can map x to x′ and y to y′. That is, the input data is degenerate, and
the general algorithm in Sect. 4.3 would return a grade 1 reflection versor. Thus,
the singularity occurs because the second reflection R2 =−R1 y R1

−1 − y′ is zero
because it is unnecessary to map the vectors to their correspondences.

However, using our prior knowledge that the returned answer should be a rota-
tion and not a reflection, a fix can be applied, suggested by Clawson [3]. The vector
z= (x∧ y)∗ orthogonal to both x and y will never be in the x∧ y-plane in this de-
generate situation. The vector z and its transformed correspondence z′ = (x′ ∧ y′)∗
can therefore be used in place of x or y in (4.5) to avoid the singularity. Thus, to be
able to handle degenerate input like the one in Fig. 4.2, we suggest Algorithm 2.

This is the algorithm that is benchmarked in the next section under the label Ours.

72 D. Fontijne and L. Dorst

Algorithm 2: Reconstruct 3-D Rotation.
Input:
• Two 3D vectors x and y and their correspondences x′ and y′.
• A small threshold ε.
Input requirement: The vectors must be related by a 3D rotation V.
Output: the versor V.
1. Compute V= (y′ + y) · (x′ − x)+ (y′ − y)∧ (x′ − x).
2. If (‖V‖< ε‖x‖‖y‖), apply the singularity fix:

a. Compute vectors z= x∧ y∗ and z′ = x′ ∧ y′ ∗.
b. Compute Vxz = (z′ + z) · (x′ − x)+ (z′ − z)∧ (x′ − x).
c. Compute Vzy = (y′ + y) · (z′ − z)+ (y′ − y)∧ (z′ − z).
d. Select from Vxz and Vzy the versor with the largest norm. Set V to that

versor.

4.5 Benchmarks

We performed benchmarks in order to compare the efficiency of our algorithm with
existing approaches. We did so for the two practical applications, reconstructing
rotations and reconstructing rigid body motions.

4.5.1 Performance for 3D Rotations

Reconstructing a rotation of a 3D frame is a common task in geometry. Two vectors
x and y and their rotated images x′ and y′ contain enough information to do so. We
benchmarked four different methods:
Ours Equation (4.5) using Algorithm 2.
Quat Applying quaternion equation (4.1) (Q = 1 + ba) twice. The first rotation

aligns x with x′. The second rotation should be about x′ axis, and align y with y′.
To enforce this, we project y and y′ onto the plane orthogonal to x′ before apply-
ing (4.1) the second time. By concatenating both rotations we reconstruct the full
rotation.

Mat Solving a system of equations A=RB where R is the desired rotation matrix.
The first column of A is x, the second column is y, and the third is set to x× y.
Likewise the columns of B are set to the x′, y′ and x′ × y′. The system is solved by
inverting B using Cramer’s rule (which is cheaper than Gaussian elimination for
this 3D case) and then computing R =AB−1.

Proc Using the Procrustes [7] method (essentially, using the SVD of the ma-
trix ABT to determine an optimal rotation matrix as R = UV T with UΣV T =
SVD(ABT)).

The first two methods are most natural in a quaternion or geometric algebra envi-
ronment, and the last two methods are natural in a matrix environment. We allow
each method to return the rotation in its own natural format. That is, Ours and Quat
return a rotor (quaternion), and Mat and Proc return a 3× 3 matrix.

4 Reconstructing Rotations and Rigid Body Motions 73

The Procrustes method involves computing a relatively expensive singular value
decomposition (SVD), but its advantage is that it computes the least-squares solu-
tion in the presence of noise. An implementation of the SVD was written specifically
for 3× 3 matrices following [6]. It is more than 10 times faster than Intel’s LAPack
(MKL) version which is optimized for large matrices.

As input to the benchmark, we created 10 million pairs of random 3-vectors that
are transformed by 10 million random rotations. The coordinates of the random 3-
vectors are uniformly distributed in the interval [−1,1]. The random rotations are
created by assigning random coordinates to the rotors and normalizing them.

We then measured how long each method took to reconstruct 10 million rotations
from the pairs of vectors and their transformed correspondences. The results are,
ordered from fast to slow:3

Method Time (s) Frequency (M/s)

Ours 0.79 12.7

Mat 1.29 7.6

Quat 3.46 2.9

Proc 7.50 1.3

Our new equation (4.5) Ours is the clear winner. The matrix-based method Mat
comes in second but is almost two times slower. What was most surprising is that the
quaternion method (based on applying (4.1) twice) is more than four times slower
than (4.5). This is due to the required normalizations and projections. It is very
likely that someone who is not aware of (4.5) would invent and apply this approach,
guided by the consensus that quaternions are efficient in treating rotations.

4.5.2 Performance for 3D Rigid Body Motions

One of the most interesting applications of our algorithm is reconstructing rigid
body motions (RBM) from measured points. In fact, this application was the reason
to develop the new algorithm in the first place.

As input to the RBM benchmark, we created 10 million triplets of points at ran-
dom locations and 10 million random rigid body motions. The coordinates of the
points were uniformly distributed in the interval [−1,1], i.e. they were in a cube of
size 2 around the origin. The random rigid body motions were created as the geomet-
ric product of two or four random reflection planes, following Cartan–Dieudonné.
In 20% of the cases, two planes were used, in all other cases, four planes were used.
The coordinates of these planes were uniformly distributed in the interval [−1,1].

3All benchmarks were performed on a 2.8-GHz Intel Core2Duo processor using 64-bit (double)
floating point precision.

74 D. Fontijne and L. Dorst

The planes were directly used to apply the random rigid body motions to the random
points.

We benchmarked five different methods to recover the rigid body motions. One
is our new algorithm as discussed in Sect. 4.3. This method is labeled 4planes be-
low. It finds four (or two, in degenerate cases) reflection planes. The planes are
multiplied (using the geometric product) to form a conformal versor which has 8
coordinates.

The four other methods differ only in the way they compute the rotation, as they
all determine the translation by computing the translation of the centroid of the
points. The different methods to compute the rotations are exactly the four methods
already benchmarked in Sect. 4.5.1 above.

Again each method returns the results in its own natural format. That is, Ours
and Quat return a quaternion and a translation vector, Mat and Proc return a 3× 3
rotation matrix and a translation vector, and 4planes returns a conformal rigid body
motion versor.

The results of the benchmark are, ordered from fast to slow:

Method Time (s) Frequency (M/s)

Centroid + Ours 1.11 9.0

Centroid + Mat 1.39 7.2

4planes 2.12 4.7

Centroid + Quat 3.74 2.7

Centroid + Proc 8.23 1.2

It is perhaps somewhat disappointing that the general version of our algorithm
4planes is about 50% slower than the matrix method Centroid + Mat. In return
for this performance loss, our algorithm solves for both rotation and translation in
one go. If you are willing to give up this stylistic advantage, then the Centroid +
Ours method easily beats the matrix method. Centroid + Ours uses the centroid
to compute the translation and our (4.5) to compute the rotation. The translation
and rotation are then combined into a single conformal versor, the same type of
representation that the 4planes method returns.

4.6 Discussion

Our algorithm has some limitations which make it unsuitable for certain applica-
tions. These are rather subtle, and not recognizing them may lead to unexpected
failure.

4 Reconstructing Rotations and Rigid Body Motions 75

4.6.1 Null Reflectors

The first limitation is the fact that the difference between two non-equal vectors may
be a null vector when using a non-Euclidean metric (like the conformal model). This
can cause the algorithm to terminate due to the test in Step 3 (i.e. ai − p′i may be
a null vector for all valid i). This problem cannot be fixed or worked around as a
null vector cannot be used as a reflector (it is never a factor of a versor). Hence
the algorithm has to terminate even though it can in principle detect (by using a
Euclidean norm) that it is not done yet.

The question is whether this limitation hampers practical application of the algo-
rithm. When using a Euclidean metric, there is no problem since no null vectors exist
in those metrics. Rigid body motions in the conformal model can be reconstructed
from point data without problems because the difference between two non-equal
unit-weight point representations is never a null vector. In other cases, one should
do an analysis of whether null vectors could arise as the difference of two vectors.

An example of a versor/data combination where our algorithm fails to retrieve the
versor in the conformal model is the following combination of a dilation (scaling)
versor S and sample vectors at the origin and infinity:

S= eno∧n∞ ,
p= no, p′ = SpS−1 ≈ 0.14no,

q= n∞, q′ = SqS−1 ≈ 7.39n∞.

Both potential reflectors p−p′ and q−q′ produced by the algorithm are null vectors
and thus cannot be used. This is a rather contrived example since the dilation center
and infinity are the only two points which are not moved by the dilation, but it shows
that care has to be taken to be sure that this situation can never arise in practice.

4.6.2 The Scaling of Vectors

Our algorithm determines an orthogonal transformation of vectors; this may only be
indirectly related to the transformation of the input data. An example is a dilation
versor in the conformal model, which works by scaling the no and n∞ coordinates
of points such that after normalization (i.e. dividing by the no coordinate), we in-
terpret the point as dilated. To reconstruct a dilation in the conformal model, one
has to feed points with correct homogeneous weights to the algorithm, which then
automatically produces the correct sphere reflectors to align the point representa-
tives. But to know these weights, one has to know the amount of dilation itself. So
far, only the algorithm in [2] can solve this chicken-and-egg problem, by using data
other than points as input (namely, a frame and a point). The limitation of that algo-
rithm is that it is designed only for the conformal model and that it is considerably
less efficient than the one described in this paper for correspondences with known
weights.

76 D. Fontijne and L. Dorst

4.6.3 The Determinant of the Reconstructed Versor

In many applications, the determinant of the reconstructed versor (+1 or−1) will be
known beforehand. That is, one knows whether a reflection or a rotation should be
reconstructed. As shown at the end of Sect. 4.4, there are input configurations where
there are multiple solutions: either a rotation or a reflection could be used to align
the data. The algorithm will then return the versor with the lowest number of factors.
In that case, one could force the reconstructed versor to the required determinant by
applying one extra reflection in the (hyper-)plane containing all data points p′i .

Also, in the case of noisy overdetermined data, the algorithm may compute an
extra reflection. This can be solved either by applying yet an extra reflection beyond
that or adjusting the algorithm to terminate at the required determinant. In any case,
more research is required to determine the effect of noisy data on the algorithm.
Rather than adapt our exact algorithm to the noisy input, one may prefer to use the
recent algorithm of [12] which was designed to process noisy and redundant data.4

4.7 Conclusion

We have presented a new algorithm to reconstruct orthogonal transformations from
exact vector correspondences. It is suitable for many applications, including recon-
structing rigid body motion and rotations.

Our benchmarks show that our new (4.5) is by far the most efficient method to
reconstruct 3D rotations, being 1.67× faster than the next best method. In the case of
rigid body motions, the algorithm is not the fastest possible, but it is still acceptable
(1.53× slower than a classical rotation matrix+centroid solution). The combination
of centroid+our rotation method beats that classical method by 25%.

For other potential applications beyond rigid body motions and rotations, the
algorithm has two main limitations, one fundamental and another practical. The
fundamental limitation is that in some metrics, with ill-chosen data, the algorithm
may abort early due to null reflectors. Fortunately, this does not affect its use for
the determination, from point data, of Euclidean rotations, or rigid body motions
in the conformal model. The practical limitation is that the algorithm needs vector
correspondences in the model algebra, including their weights, and that these cannot
always be retrieved from the actual input data. An example is the determination of
dilations in the conformal model, from point data. Again, this does not affect the
application to rotations and rigid body motions.

The algorithm can work with noisy input data and always returns an orthogonal
transformation (though not a least squares solution). In the case of noisy overdeter-
mined data, special care must be taken to ensure the correct sign of the determinant
of the transformation.

4Editorial note: Chapter 7 gives a related method designed for redundant data.

4 Reconstructing Rotations and Rigid Body Motions 77

4.8 Exercises

4.1 Using (4.7), do a hand computation of the rotation transforming e1 into e2 and
e3 into (e1 + e3)/

√
2.

4.2 Some point configurations are degenerate and do not require the full orthogo-
nal transformation of the space they reside in. Investigate what happens when the
algorithm is applied to the point pair e1 �→ e2 and e3 �→ e3.

4.3 If it was known that the point pairs in the previous problem were related by a
rotation (rather than a reflection), what more should you do to find its versor? (Hint:
see Sect. 4.6.3.)

4.4 If you use the above configuration e1 �→ e2 and e3 �→ e3 in (4.5), it fails to
produce the rotation versor. Invoke the Clawson correction of Sect. 4.4 to fix this.

4.5 As stated in the introduction, some methods have problems with 180-degree
rotations. Compute the results of our algorithm to determine the rotation with point
pairs e1 �→ −e1 and e2 �→ −e2.

Acknowledgements We acknowledge the support of NWO in the DASIS project (Discovery
of Articulated Structures in Image Sequences) for funding this work. We are indebted to Richard
Clawson who discovered and fixed the singularity in quaternion (4.5). For a more detailed descrip-
tion of the singularity, please refer to his write-up [3].

References

1. Aragon-Gonzalez, G., Aragon, J., Rodriguez-Andrade, M., Verde-Star, L.: Reflections, rota-
tions, and Pythagorean numbers. Adv. Appl. Clifford Algebras 19, 1–14 (2009)

2. Cibura, C., Dorst, L.: From exact correspondence data to conformal transformations in closed
form using Vahlen matrices. In: Proceedings of GraVisMa 2009, Plzen

3. Clawson, R.: Exceptional cases for Fontijne’s quaternion rotation formula. Personal
communication. Available at http://gmsv.kaust.edu.sa/people/postdoctoral_fellows/clawson/
clawson.html#clawson-publications

4. Dorst, L.: Determining a versor in n-D geometric algebra from the known transformation of
n vectors. In: Proceedings of GraVisMa 2009, Plzen

5. Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science: An Object Ori-
ented Approach to Geometry, revised edn. Morgan Kaufmann, San Mateo (2009)

6. Garcia, E.: Singular Value Decomposition (SVD): A Fast Track Tutorial. Retrieved 2009-11-
02 from http://www.miislita.com/information-retrieval-tutorial/singular-value-decomposition-
fast-track-tutorial.pdf

7. Golub, G., Van Loan, C.: Matrix Computations, 3rd edn. Johns Hopkins University Press,
Baltimore (1997)

8. Hanson, A.J.: Visualizing Quaternions. Morgan Kaufmann, San Mateo (2006)
9. Lasenby, J., Fitzgerald, W.J., Doran, C.J.L., Lasenby, A.N.: New geometric methods for com-

puter vision. Int. J. Comput. Vis. 191–213 (1998)
10. Li, H., Hestenes, D., Rockwood, A.: Generalized homogeneous coordinates for computational

geometry. In: Geometric Computing with Clifford Algebras. Springer Series in Information
Science (2001)

http://gmsv.kaust.edu.sa/people/postdoctoral_fellows/clawson/clawson.html#clawson-publications
http://gmsv.kaust.edu.sa/people/postdoctoral_fellows/clawson/clawson.html#clawson-publications
http://www.miislita.com/information-retrieval-tutorial/singular-value-decomposition-fast-track-tutorial.pdf
http://www.miislita.com/information-retrieval-tutorial/singular-value-decomposition-fast-track-tutorial.pdf

78 D. Fontijne and L. Dorst

11. Perwass, C.: Geometric Algebra with Applications in Engineering. Springer, Berlin (2008)
12. Richard, A., Fuchs, L., Charneau, S.: An algorithm to decompose n-dimensional rotations

into planar rotations. In: Computational Modeling of Objects Represented in Images. Lecture
Notes in Computer Science, vol. 6026, pp. 60–71. Spinger, Berlin (2010)

Part II
Interpolation and Tracking

Conformal geometric algebra can only reach its full potential in applications when
middle-level computational operations are provided. This part provides those for
recurring aspects of motion interpolation and motion tracking.

5Square Root and Logarithm of Rotors
in 3D Conformal Geometric Algebra
Using Polar Decomposition

Leo Dorst and Robert Valkenburg

Abstract
Conformal transformations are described by rotors in the conformal model of
geometric algebra (CGA). In applications there is a need for interpolation of
such transformations, especially for the subclass of 3D rigid body motions. This
chapter gives explicit formulas for the square root and the logarithm of rotors
in 3D CGA. It also classifies the types of conformal transformations and their
orbits. To derive the results, we employ a novel polar decomposition for the even
subalgebra of 3D CGA and an associated norm-like expression.

5.1 Rotor Interpolation for Conformal Motions

Euclidean rigid body motions and similarities are special cases of conformal trans-
formations (since they preserve angles). In applications like computer graphics, we
typically want to interpolate them, to perform a specified motion gradually.

In principle, geometric algebra offers a natural way to do this for all conformal
transformations. They are represented in conformal geometric algebra (CGA) as
rotors (even-graded versors that satisfy RR̃ = 1). Any rotor can be represented as
the exponential of a bivector R = eB , and a simple form of interpolation would split
this element into n equal parts through R1/n = n

√
R = eB/n. This ability to take nth

roots of rotors would enable the interpolation between two poses characterized by
rotors R1 and R2 by means of the intermediate rotors Ri = (R2/R1)

i/nR1. However,
the n-th root of a rotor in this procedure is not easy to extract in general geometric

L. Dorst (�)
Intelligent Systems Laboratory, University of Amsterdam, Amsterdam, The Netherlands
e-mail: L.Dorst@uva.nl

R. Valkenburg
Industrial Research Limited, Auckland, New Zealand
e-mail: r.valkenburg@irl.cri.nz

L. Dorst, J. Lasenby (eds.), Guide to Geometric Algebra in Practice,
DOI 10.1007/978-0-85729-811-9_5, © Springer-Verlag London Limited 2011

81

mailto:L.Dorst@uva.nl
mailto:r.valkenburg@irl.cri.nz
http://dx.doi.org/10.1007/978-0-85729-811-9_5

82 L. Dorst and R. Valkenburg

algebras, or even merely in the conformal model. To retrieve the required bivector B ,
one needs the logarithm B = log(R) of the rotor R, but the noncommutative nature
of rotors makes this nontrivial.

An alternative to this general nth-root interpolation would be ‘repeated halving’
of the transformations; this requires the square root

√
R of a rotor R. Such a square

root of a rotor could be simpler to extract than a logarithm, and it is also useful
when constructing rotors as the square root of ratios of suitably chosen geometric
elements.

In many applications we are specifically interested in rigid body motions in 3D;
their rotors in the conformal model R4,1 are sometimes called ‘motors’. For these
motors, the explicit logarithm was given in [2], but no square root. Moreover, for a
general rotor of R4,1, both logarithms and square roots appear to be lacking in the
literature. In this chapter, we provide both:
• A closed-form formula to compute the square root

√
R of a 3D conformal rotor R.

This is new and based on the development of a new polar decomposition for
certain elements of the even subalgebra R

+
4,1 which may be useful in its own

right. It employs a new normlike expression for multivectors of R4,1.
• A closed-form solution for the principal logarithm Log(R) of a 3D conformal ro-

tor R. Our solution here essentially extends a method from [3] to conformal rotors
and brings it into more compact form by means of the normlike expression. We
also give a geometrical interpretation of the Log in terms of locally perpendicular
orbits of simple rotors.

The results can be given in closed form because we restrict ourselves to spaces
of less than six dimensions; many of the principles will generalize, but this is not
explored in this chapter.

5.2 Rotor Roots Through Polar Decomposition

We first remark that the square root of a rotor always exists and is a rotor. This
follows simply from the exponential representation of a rotor: halving the bivector
exponent gives a square root. The square root is often not unique, even apart from
the obvious ± ambiguity.

We will also find that it is convenient to restrict our treatment to rotors for which
〈R〉 ≥ 0. Since −R acts the same as R, this does not lose any power of expression.

5.2.1 Sketch: How to Take the Square Root of a Rotor

When one wants to halve an angle in the plane, one forms an equal-sided parallel-
ogram on the two legs; the diagonal of that parallelogram is at the half angle. The
same method can easily be applied to planar Euclidean rotors (see Fig. 5.1) and
gives the rotor square root when used between the identity rotor 1 and the target
rotor R. (This gives the ‘principal square root’: taking its negative, and or adding

5 Square Root and Logarithm of Rotors 83

Fig. 5.1 Motivational
justification of the formula√
R ∝ (1+R)

multiples of 2π to the rotor angle will lead to other square roots.) A simple com-
putation shows that this principle may be extended to more general rotors; for the
rotor

√
R, a scaled version of the even multivector 1+R is very much like:

1+R =√R
(√

R
∼ +√R). (5.1)

The right-hand side is the product of the rotor
√
R with a quantity that is its own

reverse. In 3D CGA, that self-reverse element must be of the form ‘scalar + quad-
vector’. For a simple rotor

√
R (i.e., the exponential of a 2-blade), there is no grade

higher than 2 in
√
R, and the self-reverse factor is scalar. Denoting the scalar part of

R by 〈R〉, normalization of (1+ R) by the scalar ‖1+ R‖ =
√
(1+ R̃)(1+R) =√

2(1+ 〈R〉) (which exists since 〈R〉 ≥ 0 by assumption) produces the rotor of the
principal square root

√
R:

R simple rotor:
√
R = normalize[1+R] = 1+R√

2(1+ 〈R〉) . (5.2)

Many interesting rotors in 3D CGA, such as the motors, have a nonzero grade-4 part.
For such rotors, we propose to extend the concept of normalization of elements of
the even subalgebra, so that we may still write

√
R = normalize[1+R]. (5.3)

Ultimately, we do this through defining a polar decomposition of an element of
the even subalgebra R

+
4,1 into a rotor and a symmetric (self-reverse) element and

defining the rotor part as the outcome of the normalization. However, we can give
the result without knowing this background.

84 L. Dorst and R. Valkenburg

5.2.2 The Square Root of Rotors in 3D CGA

We give a closed-form expression for the square root of a rotor R, in terms of its
i-grade components denoted by Ri . There are two cases:
• If (1+R0)

2 �=R2
4 , a square root is:

√
R = (1+R)

1+R0 −R4

2((1+R0)2 −R2
4)

1+R0 +R4 +
√
(1+R0)2 −R2

4
√

1+R0 +
√
(1+R0)2 −R2

4

.

(5.4)

• If (1+R0)
2 =R2

4 , there is an infinity of square roots:

√
R =
(

1+R

2
+B

1−R

2

)

, (5.5)

where the 2-blade B should satisfy B2 =−1 and should commute with R4 (but
is otherwise arbitrary).
• Always ±√R are also square roots, and when R2

4 > 0, so are ±√RR4/‖R4‖.
When R = 1, any quadvector Q with square 1 is a square root.

Equation (5.4) is the regular case; (5.5) is the exception. It is actually only re-
quired in the truly exceptional cases ‘R = −1’ and ‘R = R4 with R2

4 = 1’. The
case R =−1 may be excluded without loss of applicability by treating only rotors
with nonnegative scalar part.

One may verify the correctness of these rather intimidating equations by direct
computation of their squares. But more insight in their construction and the nature of
the exceptions is obtained by relating them to a polar decomposition of elements of
R
+
4,1. We do so in the next, rather technical, sections. The reader who merely wants

to program the results may proceed to Sect. 5.2.8, where we treat some practical
issues followed by special cases.

5.2.3 Polar Decomposition of Invertible Even Elements in 3D CGA

As we have seen in (5.1), the even multivector 1 + R is proportional to
√
R by a

factor (
√
R
∼ + √R), which is in general non-scalar. Since

√
R must be a rotor,

we could retrieve it from 1+R by somehow enforcing a multiplicative ‘projection’
onto the rotor manifold. This is highly reminiscent of a standard technique in matrix
algebra called polar decomposition, in which a matrix is factored into an orthogonal
matrix and a symmetric matrix. The orthogonal matrices correspond to our rotors;
apparently, we should interpret ‘symmetry’ as ‘self-reverse’, at least in the even sub-
algebra R

+
4,1 of 3D CGA. Once we can make this decomposition, we can define the

‘normalize’ operation in (5.3) as ‘taking the rotor part of the polar decomposition’.
The justification for using the term ‘normalization’ is that in the case of a non-null

5 Square Root and Logarithm of Rotors 85

element X without 4-grade part in X̃X (such as versors), this operation reduces
to dividing X by ‖X‖ = √|〈X̃X〉|, which agrees with the classical normalization
procedure.

For our purposes in the even subalgebra of R
+
4,1 (or a subalgebra), we therefore

define the polar decomposition of an element X as the multiplicative decomposition
into a rotor U and a self-reverse element S:

polar decomposition: X =US with ŨU = 1 and S̃ = S. (5.6)

The existence and conditions for uniqueness of the polar decomposition for arbi-
trary elements of R

+
4,1 are rather involved, and we are preparing a paper on that.1

In this chapter we only need to apply the decomposition to elements X of the form
X = 1+R, with R a rotor, and this simplifies such issues. For instance, since (with
two exceptions detailed below) such elements are invertible, we may limit ourselves
to the polar decomposition of invertible elements. In the following sections, we first
treat some general properties of the symmetric element in the polar decomposi-
tion, to provide an explicit formula for the invertible case. We then apply that to
X = 1+R with R a rotor. Finally, we resolve some exceptional cases.

5.2.4 Determining the Square Root of a Symmetric Element

If an invertible element X has a polar decomposition as X = US, with U a rotor
and S a self-reverse element, then the quantity X̃X contains information on S only:

X̃X = (US)∼US = S̃ŨUS = S̃S = S2.

To establish formulas for the polar decomposition, we retrieve S from S2 by taking
a square root; this will turn out to be non-unique in some cases. Since S is invertible
because X is, for each S we can then uniquely find the associated U as U =XS−1.

A square root always has an ambiguity of sign. Let us call a square root of S2

with nonnegative scalar part a principal square root. We will treat square roots that
are pure quadvectors separately below.

Lemma 5.1 Let R
0,4
4,1 be the subalgebra of R

+
4,1 with symmetric (self-reverse) ele-

ments of the form 〈Σ〉 + 〈Σ〉4.
Consider an element Σ ∈R

0,4
4,1 for which 〈Σ〉2 ≥ 〈Σ〉24 and define

[[Σ]] =
√
〈Σ〉2 − 〈Σ〉24. (5.7)

Then Σ has

1Editorial note: Some more details on the polar decomposition for the linear space of motors in
3D CGA may be found in Sect. 2.3 of Chap. 2 in this volume.

86 L. Dorst and R. Valkenburg

• a unique principal square root in R
0,4
4,1 when 〈Σ〉 + [[Σ]]> 0, namely

√
Σ = Σ + [[Σ]]√

2
√〈Σ〉 + [[Σ]] ;

• exactly two distinct principal square roots in R
0,4
4,1 when 〈Σ〉− [[Σ]]> 0, namely

√
Σ = Σ + [[Σ]]√

2
√〈Σ〉 + [[Σ]] and

√
Σ = Σ − [[Σ]]√

2
√〈Σ〉 − [[Σ]] ;

• an infinite number of principal square roots when 〈Σ〉 + [[Σ]] = 0, namely any
quadvector Q such that Q2 =Σ ≤ 0.

For all other elements of R
0,4
4,1, no square root exists in R

0,4
4,1.

Proof Since quadvectors square to scalars in R
0,4
4,1, the square of Σ has to be a linear

combination of Σ and 1:

Σ2 = (Σ0 +Σ4)
2 = (2Σ0 − (Σ0 −Σ4)

)
Σ

= 2Σ0Σ −
(
Σ2

0 −Σ2
4

)= 2Σ0Σ − [[Σ]]2. (5.8)

Under the assumption of the lemma, [[Σ]] =
√
Σ2

0 −Σ2
4 is well-defined. Since the

square root
√
Σ is requested to be an element of R

0,4
4,1, it must be a linear combina-

tion of 1 and Σ4 (no other quadvector works due to their scalar squares), or rather

of 1 and Σ . Solving
√
Σ

2 = Σ with
√
Σ = α + βΣ for α and β gives two po-

tential solutions, conditional on whether
√〈Σ〉 ± [[Σ]] is well defined (i.e., if the

arguments of the square roots are positive):

√
Σ = Σ ± [[Σ]]√

2
√〈Σ〉 ± [[Σ]] . (5.9)

Both are principal square roots, since 〈√Σ〉=√(〈Σ〉 ± [[Σ]])/2 is nonnegative.
To verify the domain of validity of the main case of the lemma, let us study

when Σ can actually be the square of another element of R
0,4
4,1. To be specific, take

S = S0 + S4, the indices again denoting the grades. Then

S = S0 + S4 ⇒ S2 = (S2
0 + S2

4

)+ 2S0S4. (5.10)

Since

[[Σ]]2 =Σ2
0 −Σ2

4 =
(
S2

0 + S2
4

)2 − 4S2
0S

2
4 =
(
S2

0 − S2
4

)2 ≥ 0, (5.11)

[[Σ]] is indeed well defined for such obviously square elements. We now verify the
conditions of the principal roots in the lemma:

5 Square Root and Logarithm of Rotors 87

〈Σ〉 + [[Σ]] = S2
0 + S2

4 +
∣
∣S2

0 − S2
4

∣
∣

=
{

2S2
0 ≥ 0 if S2

0 ≥ S2
4 case (a)

2S2
4 ≥ 2S2

0 ≥ 0 if S2
0 ≤ S2

4 case (b),
(5.12)

while

〈Σ〉 − [[Σ]] = S2
0 + S2

4 −
∣
∣S2

0 − S2
4

∣
∣

=
{

2S2
0 ≥ 0 if S2

0 ≤ S2
4 case (c)

2S2
4 if S2

0 ≥ S2
4 case (d).

(5.13)

So 〈Σ〉 + [[Σ]] ≥ 0 for all Σ = S2, with the zero value occurring only when both
S0 = 0 and S2

4 ≤ 0 (then Σ is a nonpositive scalar). In contrast, 〈Σ〉 − [[Σ]] can
only be guaranteed to be non-negative when S2

0 ≥ S2
4 ≥ 0. When 〈Σ〉 − [[Σ]] = 0,

we have that 〈Σ〉+[[Σ]] = 2[[Σ]] ≥ 0, so that devolves to the+−root except when
〈Σ〉 = [[Σ]] = 0 (when it devolves to the exception of the +−root).

The only case for which a square root cannot be determined by either of the
above, even though we know it exists, is therefore when Σ is a non-positive scalar.
In that case, any quadvector Q for which Q2 =Σ is a permissible square root; the
original S is among the possibilities, but no longer the only one.

There are elements in R
0,4
4,1 for which the above does not provide any square root,

namely those for which 〈Σ〉 + [[Σ]]< 0 (which implies Σ2
4 > 0 and Σ0 ≤ 0), and

elements for which Σ2
4 >Σ2

0 (so that [[Σ]] does not exist). Neither are in fact the

square of any element of R
0,4
4,1: substitution of Σ = S2 gives equivalence with the

impossible ‘S2
0 + S2

4 < 0 while S2
4 > 0’ and ‘0 > (S2

0 − S2
4)

2’, respectively. �

In the cases (a) and (c) of (5.12) and (5.13), the square root
√
S2 of (5.9) evaluates

to (S0 + S4)S0/|S0|; in the cases (b) and (d), to (S0 + S4)S4/‖S4‖ (if S2
4 > 0 and

additionally S2
0 ≥ S2

4 in case (d)). In the cases (a) and (d), this therefore retrieves the
original S (making it a principal root by possibly flipping a sign on the scalar part).
In cases (b) and (d), it retrieves another root differing by a quadvector Q= S4/‖S4‖
squaring to 1. Such a quadvector Q is actually a rotor (since Q̃Q=Q2 = 1).

5.2.5 The Polar Decomposition of Invertible Elements of RRR
+
4,1

If X̃X = S2 is not a square in R
0,4
4,1, then X does not have a polar decomposition.

When it is a square, the norm of (5.7) is properly defined, and the formulas of the
lemma can be applied to retrieve a candidate S. For each invertible S, one then finds
U =XS−1.

Clearly, there is a sign ambiguity in any polar decomposition definition: both
(U,S) and (−U,−S) are legitimate polar decompositions of X. By choosing a prin-
cipal square root for S, we can resolve this. But when there are two distinct principal

88 L. Dorst and R. Valkenburg

square roots to X̃X, there would still be two distinct polar decompositions. How-
ever, as we have seen above, those two principal roots differ by a rotor S4/‖S4‖;
therefore we can choose only one root and have the rotor part of the decomposition
absorb or supply such a rotor factor. That has the advantage of making the polar
decomposition unique. We therefore define the ‘principal polar decomposition’ by
choosing the + case of the square root in (5.9) as follows.

Let X be an invertible element of R
+
4,1. If X̃X is such that 〈X̃X〉2 ≥ 〈X̃X〉24,

define

‖X‖ = 4
√
〈X̃X〉2 − 〈X̃X〉24. (5.14)

Note that this is related to (5.7) through ‖X‖2 = [[X̃X]]. For X for which 〈X̃X〉 +
‖X‖2 > 0, the principal polar decomposition of X is defined as:

U = X

X̃X

X̃X+ ‖X‖2

√
2
√
〈X̃X〉 + ‖X‖2

, and S = X̃X+ ‖X‖2

√
2
√
〈X̃X〉 + ‖X‖2

. (5.15)

For other elements X ∈R
+
4,1, we do not define a polar decomposition in this chapter.

Proof To prove the formula for U when X and hence S are invertible, it is enough
to verify that X =US. This is left as an exercise for the reader. �

5.2.6 The Square Root of a Rotor

Equation (5.1) shows that a factorization of 1+R is possible, splitting off a symmet-
ric element S =√R∼ +√R from a rotor part

√
R. The proof of Lemma 5.1 shows

that for such an S, the principal square root of S2 in the case (5.12) always exists. It
sometimes returns SS0/|S0| (namely in case (a): S2

0 > S2
4) and sometimes SS4/‖S4‖

(namely in case (b): S2
0 < S2

4). A problem appears to be that we cannot tell from our
data S2 which of these is the case: S2 = (S2

0 +S2
4)+2S0S4 is symmetrical in S0 and

S4 when S2
4 is just as positive as S2

0 can be.
However, precisely in that case, the ambiguous factor Q = S4/‖S4‖ is a rotor,

and a symmetry of our original problem. Since S4 in the polar decomposition can
only be proportional to R4, Q commutes with R, with 1+ R, and with

√
R. So if√

R is a square root of R, so is ±Q√R. When R2
4 > 0, the rotor R therefore has at

least four square roots (and even an infinity of them when moreover R0 = 0; see the
next section).

We remark that in the very special case R = 1, any quadvector Q with Q2 = 1 is
a square root. With those considerations, we have shown (5.4):

Lemma 5.2 A rotor R of R
+
4,1 for which 1+R is invertible has a principal square

root that can be determined from the principal polar decomposition as

5 Square Root and Logarithm of Rotors 89

√
R = 1+R

2+R + R̃

2+R + R̃ − ‖1+R‖2

√
2
√

2(1+ 〈R〉)− ‖1+R‖2

= 1+R

2(1+R0 +R4)

1+R0 +R4 +
√
(1+R0)2 −R2

4
√

1+R0 +
√
(1+R0)2 −R2

4

= (1+R)
1+R0 −R4

2((1+R0)2 −R2
4)

1+R0 +R4 +
√
(1+R0)2 −R2

4
√

1+R0 +
√
(1+R0)2 −R2

4

,

where Ri = 〈R〉i . Always −√R is also a square root. If R2
4 > 0, so are ±√R×

R4/‖R4‖. If R = 1, any quadvector Q for which Q2 = 1 is also a square root.

When 1 + R is noninvertible, the polar decomposition approach cannot be ap-
plied. The following section investigates and resolves the square root in that case.

5.2.7 Roots When 1 + R Is Noninvertible

By (5.1), the quantity 1 + R always can be written in the form US of a rotor
times a symmetric element, and the rotor part of each of such factorizations is
the square root of

√
R. When 1 + R is noninvertible, our treatment of the po-

lar decomposition does not apply to retrieve
√
R. This happens precisely when

‖1+ R‖ = √2 4
√
(1+R0)2 −R2

4 = 0, so when (1+ R0)
2 = R2

4 . Examples can be
found of 3D CGA rotors satisfying this, for instance R = −1 or R = e1e2e3e+.
Actually, those examples are prototypical, as we now prove.

We begin with a useful characterization of a rotor in terms of its grades.

Lemma 5.3 The element R of R
+
4,1 is a rotor iff R2

2 = (R0+R4)
2− 1 and R2R4 is

a bivector (where Ri is shorthand for 〈R〉i).

Proof The rotor R should satisfy

1=RR̃ = (R0 +R2 +R4)(R0 −R2 +R4)

= (R0 +R4)
2 −R2

2 + (R2R4 −R4R2).

The final term in brackets is a commutator of a bivector and a quadvector, and
therefore potentially a quadvector (it is self-reverse). We show that it is actually
zero. The rotor R can be written as the exponential of some bivector B . Since B2 =
B · B + B ∧ B , when we form the Taylor expansion R = exp(B), we can only
generate a grade-2 part R2 proportional to a linear combination of B and B(B ∧B),
and a grade-4 part R4 proportional to B ∧B . Then R2R4 −R4R2 is proportional to

90 L. Dorst and R. Valkenburg

a linear combination of the commutators B × (B ∧ B) and B × (B(B ∧ B)); and
both of these are easily seen to evaluate to zero using B ∧B = B2 −B ·B .

The statement R2R4 = R4R2 is equivalent to ‘R2R4 is a bivector’, since it leads
to (R2R4)

∼ =R4R̃2 =−R4R2 =−R2R4, and vice versa.
Conversely, when the grade relationships hold, it is immediate that R is even and

RR̃ = 1, so that R is a rotor. �

Lemma 5.4 The element 1+R, with R a rotor of R
+
4,1, is noninvertible iff ‘R =−1’

or ‘R = 〈R〉4 with R2 = 1’.

Proof Any rotor U satisfies UŨ = 1, which in less than 6D is equivalent to U2 =
2U(U0+U4)−1. Then stipulating U2 =R leads to a simple relationship between S

and some components of U : since for invertible U we have US = 1+R = 1+U2 =
2U(U0+U4), it follows that S = 2(U0+U4). As a consequence, U2

2 = (U0+U4)
2−

1= 1
4S

2 − 1. It also easily follows that R2 =U2S.
For noninvertible 1+R, the symmetric factor S = S0+ S4 is noninvertible. This

is equivalent to ‖S‖ = 0, which gives S2
0 = S2

4 . Substituting this gives S2 = 2S0S.
The case R =−1 is a trivial case of the lemma. Excluding it from here on, in the

noninvertible case we can still determine the principal root of S2 = 2(1+R0 +R4)

using (5.9) since 〈S2〉 = 2S2
0 > 0. It gives S = (1+R0 +R4)/

√
1+R0.

We must have R2
2 = (R0 +R4)

2 − 1 since R is a rotor, see Lemma 5.3. With the
expressions above, we can develop both sides in terms of R0 and R4. We find, on the
one hand, R2

2 =U2
2S

2 = (1
4S

2− 1)S2 = 2S0(S
2
0 − 1)S = 2R0(1+R0+R4), while,

on the other hand, (R0 + R4)
2 − 1 = R2

0 + R2
4 + 2R0R4 − 1 = 2R2

0 + 2R0R4 =
2R0(R0 + R4). Equating the two expressions results in R0 = 0. That in turn gives
R2

4 = 1, so that R2
2 = (R0 + R4)

2 − 1 = 0. It follows that R2 is a null blade that
should produce a bivector with the non-null quadvector R4. This is only possible
when R2 = 0. This noninvertible situation therefore reduces to a rotor that is a pure
quadvector R =R4 squaring to 1. � �

In these noninvertible cases, the square root is nonunique.

Lemma 5.5 A rotor R of R
+
4,1 for which 1 + R is noninvertible has a principal

square root of

√
R =
(

1+R

2
+B

1−R

2

)

, (5.16)

where B is any 2-blade commuting with 〈R〉4 such that B2 =−1. Moreover, −√R
and (when R �= −1) also ±R√R are square roots.

Proof With Lemma 5.4 circumscribing the invertible cases, verification of (5.16) is
a matter of straightforward computation by squaring and substituting R2 = 1. �

5 Square Root and Logarithm of Rotors 91

Since BR gives the same result as B , a 3-parameter family of square roots re-
sults. The multiplication by R4/‖R4‖ resulting in extra square roots here amounts
to R
√
R, which has the same effect as replacing B by −B , so the B-roots come in

conjugated pairs.
As we remarked before, we can limit ourselves to rotors with nonnegative scalar

part and treat R =−1 as R = 1, using Lemma 5.2 to find its square roots.

5.2.8 Interpolation

Since some rotors have multiple square roots, one may wonder what happens
in subsequent interpolation. Fortunately, the cases do not expand exponentially.
Where

√
R, −√R and, under the condition R2

4 > 0, also
√
R(R4/‖R4‖) and

−√R(R4/‖R4‖) are square roots of R, the fourth roots still only number two or
four, for the twofold or fourfold ambiguity of the various cases overlap.

In the case that R has infinitely many roots, only in the first interpolation step
does one need to break the symmetry by an arbitrary bivector B . Once that has been
done, the square roots have become regular rotors, with their regular multiple square
roots.

5.2.9 Special Cases of Rotor Roots

We treat some important special cases of rotor roots.
• Special Case Motors: Rigid Body Motions.

For the useful case of a motor M in R4,1, we can restrict ourselves to the
eight-dimensional linear space M from which the motors take their multivector
components [5] (Chap. 2 in this volume), with basis {1, ei ∧ ej , ein∞, I3n∞}.
It follows that all rotors M ∈ M have a null 4-grade part. We then compute
‖1 +M‖ = √〈(1+ M̃)(1+M)〉 = √2(1+ 〈M〉) (which is well defined since
〈M〉 ≥ −1). This ultimately gives:

square root of motor M:
√
M = 1+M√

2(1+ 〈M〉)
(

1− 〈M〉4
2(1+ 〈M〉)

)

. (5.17)

The formula explicitly shows how a self-reverse element consisting of only a
scalar and 4-vector part ‘nudges (1+M) back onto the motor manifold’. Treat
M =−1 as M = 1 to avoid problems; the other noninvertible case cannot occur:
since R2

4 �= 1, the quantity 1+M is always invertible for motors with nonnegative
scalar part.

Apart from a scalar normalization, (5.17) is, in essence,

√
M ∝ (1+M)

(

1+ 〈M〉 − 1

2
〈M〉4
)

,

which may be more efficient in some applications.

92 L. Dorst and R. Valkenburg

• Special Case Pure Rotations: The Square Root of a Quaternion.
A pure rotation R at the origin in 3D is a simple rotor (i.e., the exponential of a

2-blade). Therefore the motor has no grade-4 part, and the square root simplifies
further to:

square root of pure rotation R:
√

R= 1+R√
2(1+ 〈R〉) . (5.18)

You can use this formula to interpolate unit quaternions (which are after all me-
rely 3D rotors). In its explicit form in terms of the 2-blade I of the rotation plane
and the rotation angle φ, it becomes a straightforward trigonometric equality,

√
cos(φ/2)− I sin(φ/2)= 1+ cos(φ/2)− I sin(φ/2)√

2(1+ cos(φ/2))

= 2 cos2(φ/4)− 2I sin(φ/4) cos(φ/4)

2
√

cos2(φ/4)

=±(cos(φ/4)− I sin(φ/4)
)

(with the sign depending on that of cos(φ/4), to make the resulting rotor have a
non-negative scalar part). Using the correspondence between 3D rotor and unit
quaternion (see e.g. [2]), this applies directly to quaternion interpolation.
• Special Case Translations: Linear Interpolation.

A translation motor Tt = 1− 1
2 tn∞ is also a simple rotor. Therefore there is

no grade-4 part either. The square root formula now simplifies to:

square root of pure translation Tt:
√
Tt = 1

2
(1+ Tt), (5.19)

which is in agreement with the expected result
√
Tt = Tt/2.

5.3 Logarithms of Rotors in 3D CGA

A logarithm of a rotor R is a bivector L such that R = eL. Such a bivector exists
for every rotor. However, it may not be unique; a standard example is the 2π ad-
ditive freedom in a rotation angle. It is therefore customary to compute a principal
logarithm in a standard interval, and we will do so as well.

5.3.1 Logarithm of a Simple Rotor

Recall that a simple rotor R is the exponential of a 2-blade. Taking the 2-blade as
−B/2 and writing the rotor R out in its grade components, we find

R = e−B/2 = cosh(B/2)− sinh(B/2).

5 Square Root and Logarithm of Rotors 93

Here the cosh() and sinh() functions on 2-blades are defined in terms of their Tay-
lor series, as usual. Because a blade squares to a scalar, they can be mapped onto
hyperbolic and trigonometric functions on scalars. For sinh(), this is explicitly for a
2-blade A:

sinh(A)=A+ 1

3!A
3 + · · · =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

sinh(
√
A2)√

A2
A if A2 > 0

A if A2 = 0
sin(
√
−A2)√
−A2

A if A2 < 0.

(5.20)

One could define a function asinh() to invert this blade and apply it to the grade-2
part of the simple rotor R to retrieve A. Yet that does not work properly in the case
A2 < 0: an asinh() would have a range of [−π/2,π/2], but we really need the full
principal range (−π,π]. We can retrieve the proper quadrant by taking into account
the value (or the sign) of cosh(A). So we define an atanh2() function on 2-blades
to retrieve the correct value of A depending on a 2-blade argument s (the value of
sinh(A)) and a scalar argument c (the value of cosh(A)):

atanh2(s, c)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

asinh(
√
s2)√

s2
s if s2 > 0

s if s2 = 0
atan2(
√
−s2,c)√
−s2

s if − 1≤ s2 < 0.

(5.21)

In the s2 < 0 part, the range of atan2 is (−π,π] to provide the principal value. In
the s2 ≥ 0 parts, we have used simpler functions, since then c satisfies c ≥ 1 and is
not required to establish the correct quadrant.

With this function defined, the principal logarithm of a simple rotor is

Log(R)= atanh2
(〈R〉2, 〈R〉

)
.

For general rotors, we will need to do quite some preliminary work before we can
invoke the atanh2() to produce the logarithm.

5.3.2 The Split Structure of a Rotor

A general rotor is the exponential of a bivector, not a 2-blade. Following [3], we
realize that a bivector can always be decomposed into a sum of commuting blades.
In 3D CGA, which is 5D, two commuting 2-blades suffice, so we concentrate on
that case.

Consider a rotor R = exp(−B/2) with B a bivector. Imagine the rotor bivector
B split into two commuting blades B = B+ + B− with B+B− = B−B+. Since the
blades commute, so do their exponentials: Then

94 L. Dorst and R. Valkenburg

R = e−B/2 = e−(B++B−)/2 = e−B+/2e−B−/2

= cosh

(
1

2
B+
)

cosh

(
1

2
B−
)

−
(

cosh

(
1

2
B−
)

sinh

(
1

2
B+
)

+ cosh

(
1

2
B+
)

sinh

(
1

2
B−
))

+ sinh

(
1

2
B+
)

sinh

(
1

2
B−
)

. (5.22)

The three terms are of grades 0, 2 and 4, respectively. No longer are the sinh() and
cosh() values easily retrievable from R. Following [3], we study the curl of the rotor
mapping to find simpler expressions.

5.3.3 Exterior Derivative of a Rotor Transformation in 3D CGA

The exterior derivative (‘curl’) of the orthogonal transformation x �→RxR̃, charac-
terized by the rotor R, is defined as ∂x ∧ (RxR̃).

In the case of 3D CGA rotors (or rotors of any geometric algebra of a space with
less than six dimensions), the exterior derivative can be expressed simply in terms
of the grades Ri of R:

∂x ∧ (RxR̃)= 〈∂x(RxR̃)
〉
2

= 〈(∂x(R0 +R2 +R4)x
)
R̃
〉
2

= 〈(5R0 +R2 − 3R4)R̃
〉
2

= 〈(R + 4(R0 −R4)
)
R̃
〉
2

= 〈1+ 4(R0 −R4)R̃
〉
2

= 4(R4 −R0)R2, (5.23)

where we use the fact from Lemma 5.3 that 〈R4R2〉2 =R4R2.
We now define a bivector F from the rotor R as half the curl and compute:

F ≡ 1

2
∂x ∧ (RxR̃)= 2(R4 −R0)R2

= 2

(

cosh

(
1

2
B+
)

cosh

(
1

2
B−
)

− sinh

(
1

2
B+
)

sinh

(
1

2
B−
))

×
(

cosh

(
1

2
B−
)

sinh

(
1

2
B+
)

+ cosh

(
1

2
B+
)

sinh

(
1

2
B−
))

= · · · some straightforward rewriting · · ·
= sinh(B+)+ sinh(B−). (5.24)

5 Square Root and Logarithm of Rotors 95

The curl-based quantity F therefore contains the information on sinh(B±) much
more cleanly than R itself. By (5.20), these components sinh(B+) and sinh(B−) are
proportional to B+ and B−, respectively, and therefore also commuting 2-blades.
Given R, we can determine F and then determine the separate values of sinh(B+)
and sinh(B−) by performing a split of F into commuting 2-blades.

5.3.4 Split of a 3D CGA Bivector into Commuting 2-Blades

For 3D CGA, any bivector F splits into at most two commuting 2-blades.

Lemma 5.6 Consider a non-null bivector F in a space of five dimensions or less.
Define ‖F‖ = 4

√
(2〈F 2〉 − F 2)F 2 and assume that ‖F‖ �= 0. Then F can be split

into a sum of commuting 2-blades F = F+ + F− by

F± = 1

2
F

(

1± ‖F‖
2

F 2

)

. (5.25)

Proof Since F 2 is self-reverse, it is of the form ‘scalar plus quadvector’; and be-
cause the quadvector squares to a scalar, (F 2)2 should be expressible as a linear
combination of F 2 and 1. Following the derivation of (5.8), this equation can be
written as (F 2)2 − 2〈F 2〉F 2 + ‖F‖4 = 0, which defines ‖F‖4 analogously to (5.8)
and which gives the same reasons for existence of its square root ‖F‖2 as (5.11).
(Note that the lemma in fact involves ‖F‖ = [[F 2]] with [[·]] defined as in (5.7).)

To prove the lemma, we need to show that F+ + F− = F (which is trivial), that
F+ and F− commute (and they do, for they only involve scalars and powers of F),
and that they are 2-blades. According to [4], ‘if the square of a bivector is real, then
it is simple’, i.e. a 2-blade. For invertible F , we find

F 2± =
1

4
F

(

1± ‖F‖
2

F 2

)

F

(

1± ‖F‖
2

F 2

)

= 1

4

(

F 2 ± 2‖F‖2 + ‖F‖
4

F 2

)

= 1

4

(
F 2 ± 2‖F‖2 + (−F 2 + 2

〈
F 2〉))

= 1

2

(〈
F 2〉± ‖F‖2),

which is indeed scalar so that F± are blades. Incidentally, F−F+ = 1
2 〈F 2〉4. �

Equation (5.25) is identical to the formula for the bivector split in [3, p. 81],
merely compactly reformulated in terms of our new ‘norm’ of F .

We have excluded F 2 = 0 or ‖F‖2 = 0 from the lemma, but they do occur in
practice. As a consequence, there are several cases in producing a bivector split that
lead to branches in an implementation.

96 L. Dorst and R. Valkenburg

• If ‖F‖2 �= 0 and F 2 �= 0, (5.25) gives the bivector split. This is the regular case.
Notably, if F 2 = ‖F‖2 �= 0, then F is a 2-blade, and we find the sensible outcome
F+ = F and F− = 0 as the bivector split.
• If ‖F‖2 = 0 and F 2 = 0, (5.25) cannot be applied since F is not invertible. But

such null bivectors are all blades anyway, since they have a scalar square. There-
fore there is no need to apply any split, and we then simply return F+ = F and
F− = 0 if F 2 = 0, to correspond with the case where F is a non-null 2-blade.
• If ‖F‖2 = 0 but F 2 �= 0, F is noninvertible, and (5.25) would return the trivial

split F± = F/2. Although these bivectors are commuting and partition F , they
are only blades if F was already—which it is not, or F 2 would have been equal
to ‖F‖2.

In this case the noninvertible bivector F actually does have a split into two 2-
blades, but it is not unique. Two 2-blades in the split F+ and F− satisfy F 2+ = F 2−,
and [3, p. 83], shows that there is a one-parameter family of splits, obtained from
any member by application of a rotor that commutes with F . A rotor correspond-
ing to this kind of F is called an ‘isoclinic rotation’ or a ‘Clifford displacement’.
An example in 3D CGA is R = exp((e12 + e3+)φ/2).

We have not found a source that produces any candidate from which the one-
parameter family could be generated in this noninvertible case. But by a simple
trick we can still use (5.25): add a small random bivector to F to make it in-
vertible and then apply the formula (numerical stability may be an issue, though
simulations show surprisingly robust behavior).

In summary, a bivector split always exists, (5.25) produces it for invertible F , and
for noninvertible F , we have to take special measures.

5.3.5 The Principal Logarithm of a 3D CGA Rotor

The bivector split of half the curl F into F = S+ + S− gives us S± = sinh(B±)
(which is why we prefer to label the parts S± rather than F±). But as in the simple
rotor cases, to find B± properly, we also need the values C± = cosh(B±) (at least in
the case of negative B2±). These can be retrieved from R2 using S∓, as follows:

C± = cosh(B±)=
{
−〈〈R2〉2/S∓〉 if S2∓ �= 0

〈R2〉 if S2∓ = 0.
(5.26)

Proof Define sinh() on a bivector B as the power series sinh(B)= B+B3/3!+ · · ·,
giving the usual hyperbolic and trigonometric relationships. Then

−〈〈R2〉
2/S−
〉= 〈sinh(B)/S−

〉

= 〈(cosh(B+) sinh(B−)+ cosh(B−) sinh(B+)
)
/ sinh(B−)

〉

= cosh(B+),

5 Square Root and Logarithm of Rotors 97

where the final step uses the commutativity of B+ and B− to observe that no mixed
terms will contaminate the scalar part of the expression. The exceptional case of
(5.26) relies on 〈R2〉 = cosh(B+) cosh(B−), with one of the coshs equal to 1. Iso-
clinic rotations are to be resolved as suggested above. �

With the 2-blade and scalar values of sinh(B±) and cosh(B±) all available, we
can retrieve B+ and B− by employing atanh2() defined for blades in (5.21). This
yields:

Log(R)=−1

2
atanh2(S+,C+)− 1

2
atanh2(S−,C−). (5.27)

This explicitly solves the logarithm of a general conformal rotor in 3D CGA; the
most general case known before was the scaled rigid body motion in [2].

Our logarithm method uses F = 1
2∂x ∧ (RxR̃) and R2, which are both clearly

insensitive to a sign change in R. There is therefore an ambiguity in the loga-
rithm, resulting in an ambiguity of sign in the logarithm-based rotor reconstruction
exp(log(R)): we may reconstruct −R rather than R.

In fact, we always have that

〈
exp
(
Log(R)

)〉= cosh

(
1

2
B+
)

cosh

(
1

2
B−
)

≥ 0.

Proof When B2± < 0, the atan2() part of atanh2() will return bivector angles in
the range (−π,π] for the principal value of the logarithm. When exponentiating
their half angles, this produces a positive cosine in the scalar part. When B2± ≥
0, cosh(B±) is always positive. Together, this implies that grade(exp(Log(R))) =
cosh(1

2B+) cosh(1
2B−)≥ 0. �

Restriction to rotors with nonnegative scalar part eliminates this ambiguity of
reconstruction.

5.4 Geometrical Interpretation of the Logarithm

5.4.1 The 2-Blade Generators in the Bivector Split

Geometrically, 2-blades of 3D CGA are mostly point pairs, or rather 1-spheres with
a positive, negative or zero squared radius. The occurrence of the designated point
at infinity (n∞ in the case of Euclidean geometry) affects the geometrical interpreta-
tion, stretching the meaning of ‘point pair’ to include free vectors; see [2]. All cases
are sketched in Fig. 5.2, and they can all occur for F+ and F− obtained from the
exterior derivatives of rotor mappings.

98 L. Dorst and R. Valkenburg

More precisely,

B2− ≤ 0,

while B2+ can have any sign.

Proof Consider F± = sinh(B±), which have the same properties. Write the po-
lar decomposition of F as F = RS and note that F 2 = −F̃F = −S2. Observe
that ‖ − F 2‖2 = ‖F 2‖2, so that (taking the positive root) ‖ − F 2‖ = ‖F 2‖. Then
F 2± = 1

2 (−〈−F 2〉± ‖−F 2‖)= 1
2 (−〈S2〉± ‖S2‖)=− 1

2 (〈S2〉∓ ‖− S2‖). We have
shown in (5.12) that 〈S2〉+‖−S2‖ ≤ 0; therefore F 2− ≤ 0, so that B2− ≤ 0. No such
constraint can be given on F 2+ and B2+. �

In 2D and 3D, the split of the bivector into commuting 2-blades corresponds
geometrically to writing the bivector as the product of two orthogonal point pairs.
We have just seen that one of those is imaginary (or null), whereas the other may be
real, null or imaginary. The orthogonality of such points pairs is achieved by placing
them in a relative position, with an appropriate radius.

As an example, we compute the orthogonality condition for a real point pair P1
and an imaginary point pair P2. It is most easily derived in conveniently chosen
coordinates (with Tt denoting the application of a translation versor over t):

P1 = Tαe3/2

[(

no − 1

2
ρ2

1n∞
)

e1

]

,

P2 = T−αe3/2

[(

no + 1

2
ρ2

2n∞
)

e2

]

.

Then computation yields:

P1P2 = P2P1 ⇐⇒ α2 = 1

2

(
ρ2

1 − ρ2
2

)
.

By changing the sign of ρ2
1 and setting ρ2

1 or ρ2
2 to zero, one obtains the orthogo-

nality conditions for other cases where P1 and P2 can be written in the above forms
(such as the tangent vectors which are null). Not included are then the degenerate
forms of dual lines, null directions and flat points; some of the combinations can
never be orthogonal and will therefore not occur as bivector splits.

5.4.2 Orbits of Rotors

When a simple rotor (the exponential of a 2-blade −B/2) is applied repeatedly
to an initial point x, it will generate points that are on the 3-blade x ∧ B (this is
easily verified by writing out x ∧ B ∧ (e−B/2xeB/2) using e−B/2 = cosh(B/2) −
sinh(B/2)). That 3-blade is called the R-orbit of x. In 3D CGA, it is a circle (though
it may degenerate to a line when either x or B contain the point at infinity n∞).

5 Square Root and Logarithm of Rotors 99

Fig. 5.2 A geometrical classification of the orbits through a point x of simple rotors in CGA, char-
acterized by properties of their 2-blade B . The name of the resulting transformation is indicated in
italics. Color version of this figure online

We have shown how a general rotor in 3D CGA can be written as the product of
two commuting simple rotors by means of (5.22) and (5.27). The geometry of those
commuting rotors depends on the signature of their 2-blades B±. A full classifica-
tion of bivectors in 3D CGA and their orbits when used in a simple rotor is given in
Fig. 5.2.
• When B2 < 0, the rotor e−B/2 is a ‘toroidal rotation’ around a circle that is the

dual of B+. If that dual happens to be a line, this is an ordinary rotation.
• When B2 = 0, the rotor e−B/2 is a translation or a (translated) transversion.
• When B2 > 0, the rotor e−B/2 is a ‘hyperbolic scaling’ with source and sink

points corresponding to the two points in the point pair B .2 In the special case
that B is a flat point (when one of the points is n∞), the rotor is a uniform scaling
relative to the flat point location.

2It is the inversion of a uniform scaling with respect to an inversion sphere that has one of the

points of B at its center and the other on its shell; dually it is (B ±√B2)(n∞"B)+ 2B2n∞, with
n∞ the point at infinity.

100 L. Dorst and R. Valkenburg

Fig. 5.3 Conformal coordinate grids induced by some rotors, with orbits for a point x indicated.
See text for explanation

In (5.22), we have explicitly split the action of a general conformal rotor R into
that of two simple rotors. Therefore we can analyze the incremental action of R by
taking incremental steps along the circular (or line-shaped) orbits of these simple
rotors.

The commuting nature of the 2-blades of the logarithm implies that the orbits
of the corresponding simple rotors are orthogonal at each point (with a degenerate
ambiguity in the special and rare case of isoclinic rotations). Drawing those orbits
at successive steps of the incremental application of the rotor suggests a ‘conformal
coordinate grid’ for the submanifold in which the orbit of a given point resides; see
Fig. 5.3. The sketches in this figure clearly show that the orbits of general rotors are
more involved than the circles that can be generated by simple rotors, though they
can of course be composed from them incrementally.

As we will compute in Sect. 5.5.2, in the special case of motors, B− is a dual
line, B+ is the generator of a translation, and Chasles’ famous screw factorization
of rigid body motions results. The grid is then a set of equidistantly placed circles on
a cylinder scored by equidistant longitudinal lines; the composite orbits are screws
(top left in Fig. 5.3). Other rotors may give grids that rule a torus or a Dupin cycloid
(when we have two imaginary point pairs as generators; closed orbits are then typi-
cally knotted, top right); or that rule the inversion of a cone (for a real and imaginary
point pair; the orbits are equiangular spirals on that cone, bottom left), with a plane
as special case for coplanar point pairs (bottom right).

5 Square Root and Logarithm of Rotors 101

Table 5.1 Commutation of even versors in the conformal model. In the entries for V T and T V ,
A is the rotation/scaling formed by a rotation over (1+ vt)/‖1+ vt‖ combined with a scaling by
a factor 1/‖1+ vt‖2, see [1]

Rotation R Scaling S Translation T Transversion V

R RIφR =RRR̃IφR RSσ = SσR RTt = TRtR̃R RVv = VRvR̃R

S SσR =RSσ Sσ Sτ = Sτ Sσ Sσ Tt = Tσ tSσ Sσ Vv = Vv/σ Sσ

T TtR =RTR̃tR TtSσ = Sσ Tt/σ TtTs = TsTt TtVv =A−1Vv(1+tv)T(1+tv)−1t

V VvR =RVR̃vR VvSσ = Sσ Vσv VvTt =ATt(1+vt)V(1+vt)−1v VvVw = VwVv

5.5 Special Cases of the Rotor Logarithm

A general conformal transformation in R4,1 can be characterized as a sequence
of a transversion Vv = exp(nov), translation Tt = exp(−tn∞/2), a uniform scal-
ing Seγ = exp(γ no ∧ n∞/2) and a rotation RIφ = exp(−Iφ/2), in any order. The
following formula for half the exterior derivative of the particular sequence RST V

is convenient for theoretical derivations. A more general sequence can be converted
into this by commutation relationships, spelled out in [1] and summarized in Ta-
ble 5.1.

F = 1

2
∂ ∧ ((RIφSeγ TtVv)x(RIφSeγ TtVv)

−1)

= sin(φ)I+ v∧ (Rt/R)

− 1

2

(
eγ (1+ tv)(1+ vt)− e−γ

)
no ∧ n∞

+ (e−γ v+R
(
v+ v2t

)
/R
)∧ no

+ 1

2

(
eγ t+R

(
t+ eγ t2v

)
/R
)∧ n∞. (5.28)

The general logarithm of this form is awkward to express in the characterizing pa-
rameters v, t, γ and Iφ, though various special cases can be worked out in explicitly.
We treat a few.

5.5.1 Log(T S)

As a special case of the method to illustrate the use of the atanh2(), let us combine
a scaling with a translation to form the versor TaSeγ (to conform to the order in
[2]). We can use (5.28) above, setting R = 1 and v= 0 to obtain an expression for
Seγ Tt = Teγ tSeγ ; apparently we should set a= eγ t to obtain:

F =−1

2

(
eγ − e−γ

)
no ∧ n∞ + 1

2

(
1+ eγ

)
e−γ a∧ n∞

=
(

− sinh(γ)no + 1

2

(
1+ e−γ

)
a
)

∧ n∞. (5.29)

102 L. Dorst and R. Valkenburg

We find that F 2 is scalar, so that there is only a single 2-blade required—obviously,
since we have already shown F in factored form. When F 2 = (sinh(γ))2 > 0, we
get:

Log(TaSeγ)=−1

2
asinh(F)

=−1

2

asinh(| sinh(γ)|)
| sinh(γ)|

(

−
(

sinh(γ)no + 1

2

(
1+ e−γ

)
a
)

∧ n∞
)

=−1

2
γ

(

−no + 1+ e−γ

eγ − e−γ
a
)

∧ n∞

= 1

2
γ

(

no + 1

1− eγ
a
)

∧ n∞

= 1

2
γ no ∧ n∞ exp

(
a

1− eγ
n∞
)

.

This retrieves the result from [2], and the final form shows that it is a scaling by eγ

with center at a/(1− eγ).
When F 2 = (sinh(γ))2 = 0, we find Log(TaSeγ) = − 1

2 atanh2(F,1) = − 1
2F =

− 1
2 a∧ n∞, and indeed the rotor is then a pure translation since γ = 0.

5.5.2 Log(RST): Generalized Chasles Theorem for Euclidean
Similarities

We derive a generalized Chasles theorem for scaled rigid body motions (Euclidean
similarities). Those are represented in CGA by rotors of the form W = RIφSeγ Tt:
a general combination of rotation, scaling and translation.

We find that any such motion can be represented as a rotation around a specific
axis combined with a scaling relative to a specific point on that axis. Those two
operations commute. When the scaling is trivial, Chasles’ theorem results.

Specific steps in the computation are given. We define E = no ∧ n∞ for conve-
nience of expression. Equation (5.28) provides the starting point:

F = sin(φ)I+ sinh(γ)E + 1

2

(
eγ t+RtR̃

)
n∞

= sin(φ)I+ sinh(γ)E + t′n∞,

defining t′ = 1
2 (e

γ t + RtR̃). Applying the bivector split, we obtain with ‖F‖2 =
sin2(φ)+ sinh2(γ):

F− = sin(φ)I
(

1+ sin(φ)− sinh(γ)I

sin2(φ)+ sinh2(γ)

(
t′"I)n∞

)

= sin(φ)I exp(t‖n∞),

5 Square Root and Logarithm of Rotors 103

defining t‖ = sin(φ)−sinh(γ)I
sin2(φ)+sinh2(γ)

(t′"I), and

F+ =− sinh(γ)E

×
(

1− sin2(φ)/ sinh(γ)(t′ ∧ I)/I− sin(φ)(t′"I)+ sinh(γ)t′

sin2(φ)+ sinh2(γ)
n∞
)

=− sinh(γ)E exp
(
(t‖ + t⊥)n∞

)
,

defining t⊥ =−(t′ ∧ I)/I/ sinh(γ). Then the atanh2() function on those parts gives
the logarithm

Log(W)=−1

2
φI exp(t‖n∞)+ 1

2
γE exp

(
(t‖ + t⊥)n∞

)

This shows that W is indeed a rotation of φ around an axis with direction dual to I
located at t‖ (with t‖ as defined above), combined with a scaling by eγ with center
t‖ + t⊥. The two operations commute.

The expression above gives the logarithm of a rotor W = RST in terms of its
parameters γ , R, Iφ and a. These can be obtained from W as X = −no"(Wn∞),
γ = log(XX̃), S = eγE/2, R = Xe−γ /2, Iφ = −2 Log(R) and t = −2no"(S̃R̃W)

(see also [2]).
For motors (the rotors of rigid body motions), we have γ = 0, and this gives

some simplification. Now t′ = 1
2 (t+RtR̃), and

F− = sin(φ)I exp

(
t′"I

sin(φ)
n∞
)

,

F+ =
(
t′ ∧ I
)
/In∞,

Log(M)=−1

2
φI exp(t‖n∞)− 1

2

(
t′ ∧ I
)
/I∧ n∞.

This is Chasles’ theorem: the first term is a rotation around a translated axis, and
the second term a translation along that axis. The theorem is more commonly given
for a motor M = TaRIφ = RIφTR̃aR , so that we should put t = R̃aR. Substituting
this gives for the screw axis location t‖ and longitudinal motion vector t′⊥ (not to be
confused with t⊥ above),

t‖ = (a"I)R
2 sin(φ2)

= (a"I)/I
R

2〈R〉2 and t′⊥ = (a∧ I)/I,

after some rewriting. An alternative derivation is given in Chap. 6 of this volume.

104 L. Dorst and R. Valkenburg

5.5.3 Log(T V)

With the above techniques, it is possible to derive a closed-form expression for the
logarithm of a versor of the type T V (a combination of transversion and translation),
which was a case not tractable in [2]. We have done this. However, the resulting
expressions in terms of the characterizing parameters are rather unwieldy, much
more so than in the Chasles case above. In practice, it is probably better to apply the
computational algorithm to the total rotor at hand, rather than to a fairly arbitrary
parametric characterization of it.

5.6 Exercises

5.1 Verify that X =US in (5.15).

5.2 Show that in R4,1, a nonzero null bivector cannot be an eigenbivector of mul-
tiplication by a quadvector with which it commutes. (Required in the proof of
Lemma 5.4.)

5.3 Show that for a rotor R of R4,1, the condition R2 = 1 is equivalent to either
〈R〉2 = 1 or 〈R〉42 = 1. A corollary is that 〈R〉2 = 0.

5.4 A quadvector Q squaring to 1 is a rotor. It is easy enough to show that Q̃Q= 1,
but can you write Q as the exponent of a bivector? Do this for Q= (e−)∗ in R4,1.

5.5 Derive (5.29) using (5.23).

5.6 Work out the other cases in Sect. 5.4.1.

References

1. Dorst, L.: Conformal geometric algebra by extended Vahlen matrices. In: Skala, V., Hilden-
brandt, D. (eds.) GraVisMa 2009 Workshop Proceedings, pp. 72–79 (2009)

2. Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science: An Object
Oriented Approach to Geometry, Morgan Kaufmann, San Mateo (2007/2009). See www.
geometricalgebra.net

3. Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus. Reidel, Dordrecht
(1984/1999)

4. Lounesto, P.: Clifford Algebras and Spinors, 2nd edn. Cambridge University Press, Cambridge
(2001)

5. Valkenburg, R., Dorst, L.: Estimating motors from a variety of geometric data in 3D conformal
geometric algebra. In: Dorst, L., Lasenby, J. (eds.) Guide to Geometric Algebra in Practice.
Springer, London (2011). Chap. 2 in this book

http://www.geometricalgebra.net
http://www.geometricalgebra.net

6Attitude and Position Tracking

Liam Candy and Joan Lasenby

Abstract
Several applications require the tracking of attitude and position of a body based
on velocity data. It is tempting to use direction cosine matrices (DCM), for ex-
ample, to track attitude based on angular velocity data, and to integrate the linear
velocity data separately in a suitable frame. In this chapter we make the case for
using bivectors as the attitude tracking method of choice since several features
make their performance and flexibility superior to that of DCMs, Euler angles
or even rotors. We also discuss potential advantages in using CGA to combine
the integration of angular and linear velocities in one step, as the features that
make bivectors attractive for tracking rotations extend to bivectors that represent
general displacements.

6.1 Kinematics in Geometric Algebra

Several applications require attitude and position to be computed based on velocity
data. This is a simple kinematic problem: integration of angular velocity data yields
the total rotation, or attitude, of the body, and the integration of linear velocity data
yields the current position of the body. The primary application under consideration
in this chapter is that of inertial navigation. It is worth mentioning at the outset that
there is a distinction to be drawn between strapdown inertial navigation (SDINS),
where gyroscopes provide an output which is the integral of the angular velocity
over each time interval, and kinematics applications where instantaneous angular

L. Candy (�)
The Council for Scientific and Industrial Research (CSIR), Meiring Naude Rd, Pretoria, South
Africa
e-mail: lcandy@csir.co.za

J. Lasenby
Engineering Department, Cambridge University, Trumpington Street, Cambridge, UK
e-mail: jl221@cam.ac.uk

L. Dorst, J. Lasenby (eds.), Guide to Geometric Algebra in Practice,
DOI 10.1007/978-0-85729-811-9_6, © Springer-Verlag London Limited 2011

105

mailto:lcandy@csir.co.za
mailto:jl221@cam.ac.uk
http://dx.doi.org/10.1007/978-0-85729-811-9_6

106 L. Candy and J. Lasenby

velocity data is available at the interval boundaries. Here we will begin with the case
where instantaneous angular velocity data is available; however, the essential nature
of the problem in either case is the same, and the motivation for using bivectors as
our representation of rotations and as a basis for our integration schemes is generally
applicable.

This chapter deals initially with kinematic solutions in R
3. The focus here will

be on attitude computation in R
3 as it is possible to show that the accuracy with

which attitude is computed has the greatest impact on the overall kinematic solution.
This is intuitively clear when considering that any error in attitude results in the
linear velocity data being incorrectly transformed and the data being integrated in
the ‘wrong’ direction.

Following the discussion of the R
3 solution, we will move on to solving the atti-

tude and position equations simultaneously in conformal geometric algebra (CGA).

6.2 Attitude Computation and Kinematics in 3D

Several methods exist for representing attitude in order to allow for the transforma-
tion of vectors between frames. The most commonly encountered in engineering,
because they are covered in most undergraduate courses, are Euler angles and direc-
tion cosine matrices (DCM). Less common, but arguably superior, are quaternions
(Euler–Rodrigues parameters) and rotation vectors. In geometric algebra, the coun-
terparts to the quaternion and rotation vector are the rotor and rotation bivector.
The natural consideration when selecting an attitude representation for a kinematics
solution is computational efficiency. Other considerations are whether or not the so-
lution contains singularities as well as the extent to which it can be optimised—via
interpolation schemes for example. In all of these respects, not all attitude represen-
tations are created equal.

Table 6.1 provides a comparison of various attitude representations, most of
which will be familiar to the reader. It is worth noting that Euler angles and DCMs,
the most widely known attitude representations, are generally poor choices for han-
dling kinematics. For Euler angles, awkward algorithmic work-arounds are required
to ensure that singularities in the solution are avoided [17]. In the case of DCMs,
the fact that the integration is performed on a manifold in R

9 means that not only
is the integration computationally expensive, but some re-projection is required to
keep the solution on the manifold.

Quaternions and rotation vectors offer a far better alternative for handling atti-
tude kinematics in R

3. Both are computationally efficient, although quaternions do
require a normalisation/reprojection step. Rotation vectors in particular are not only
a minimal representation for rotations, but the kinematic equation lends itself well
to efficient interpolation-based integration schemes such as Miller’s algorithm [12].
Phillips and Haily [15] provide a comprehensive review of the attitude representa-
tions discussed up to this point.

Rotors and rotation bivectors, which will be introduced next, have all the advan-
tages of quaternions and rotation vectors and are also more general in the sense that
they are applicable to any dimension.

6 Attitude and Position Tracking 107

Table 6.1 Attitude representations

Representation DOF
(constraints)

Disadvantages Advantages

Euler angles 3 Solution contains singularity Outputs roll, pitch and yaw
directly

DCM 9 (6) Integration computationally
expensive

Ubiquitous

Requires
normalisation/reprojection

Quaternions 4 (1) Requires
normalisation/reprojection

Integration computationally
efficient

Rotation vectors 3 Integration very
computationally efficient
Minimal representation
Excellent optimisation with
interpolation

Rotors 4 (1) Requires
normalisation/reprojection

Integration computationally
efficient
Extends to nD
CGA allows solution for
general displacement

Bivectors 3 Integration very
computationally efficient
Minimal representation
Excellent optimisation with
interpolation
Extends to nD
CGA allows solution for
general displacement

6.2.1 Rotation Bivectors

In geometric algebra the usual method of tracking the attitude of a rigid body with
respect to some reference frame, would be to use the time dependent rotor R(t).
R(t) can be computed using the kinematic equation for rotors [6],

Ṙ =−1

2
ΩrR (6.1)

where Ωr is the angular velocity of the rigid body with respect to the reference
frame, expressed as a bivector in the reference frame (the bivector defines the plane
of rotation and has a magnitude equal to the rate of rotation). It is easy to show that
if we express the angular velocity of the body with respect to the reference frame as
a bivector in the body frame, Ωb , then (6.1) becomes

Ṙ =−1

2
RΩb (6.2)

108 L. Candy and J. Lasenby

Bivectors provide a natural way of representing rotations using a minimal set of
parameters. It is possible to specify any finite rotation in a unit plane, defined by the
unit bivector B , and through an angle α, using a rotation bivector,

Φ = αB (6.3)

From this rotation bivector the corresponding rotation generator, or rotor, is easily
obtained via

R = e−
Φ
2 = cos

α

2
−B sin

α

2
(6.4)

No assumption is made that the plane defined by B must be limited to R
3, and

(6.3) and (6.4) generalise to any dimension. For use in a kinematic solution, a kine-
matic equation for rotation bivectors is required. This kinematic equation is given
by

Φ̇ =Ω − 〈ΦΩ〉2
2
+
(|Φ|

2
cot
|Φ|
2
− 1

)[

Ω + (Ω ·Φ)Φ

|Φ|2
]

(6.5)

The proof for this result is given below.

Proof Given (6.3), (6.2) and (6.4), find Φ̇ in terms of Φ and the measured body
angular velocity Ω (where the superscript b has been dropped).

Differentiating (6.3) with respect to time gives

Φ̇ = αḂ + α̇B (6.6)

Expressions for Ḃ and α̇ in terms of the measured angular velocity Ω are now
obtained via grade-wise comparison of (6.2) and the time derivative of (6.4):

d

dt
R = d

dt

[

cos
α

2
−B sin

α

2

]

(6.7)

Finding an Expression for α̇ Equating the grade-0 components of (6.2) and (6.7)
gives:

〈RΩ〉 = α̇ sin
α

2
(6.8)

Noting that 〈RΩ〉 =Ω · 〈R〉2 and substituting for the bivector component of R:

α̇ =−Ω ·B (6.9)

6 Attitude and Position Tracking 109

Finding an Expression for Ḃ Equating the grade-2 components of (6.2) and (6.7)
gives:

〈RΩ〉2 = 2Ḃ sin
α

2
+ α̇B cos

α

2
(6.10)

Using the fact that 〈RΩ〉2 = 〈R〉Ω+〈〈R〉2Ω〉2 and substituting for 〈R〉 and 〈R〉2
from (6.4) and for α̇ from (6.9), we have:

2Ḃ sin
α

2
=Ω cos

α

2
− 〈BΩ〉2 sin

α

2
− α̇B cos

α

2

Ḃ = 1

2
cot

α

2

[
Ω + (Ω ·B)B

]− 〈BΩ〉2
2

(6.11)

Completing the Derivation It is now possible to substitute the expressions for Ḃ
and α̇ into the expression for Φ̇ in (6.6):

Φ̇ =Ω +
(
α

2
cot

α

2
− 1

)
[
Ω + (Ω ·B)B

]− α

2
〈BΩ〉2 (6.12)

Or, alternatively, by substituting for B = Φ
|Φ| and α = |Φ|, it is possible to write

(6.12) in terms of Φ only:

Φ̇ =Ω − 〈ΦΩ〉2
2
+
(|Φ|

2
cot
|Φ|
2
− 1

)[

Ω + (Ω ·Φ)Φ

|Φ|2
]

(6.13)

Equation (6.13) is the full kinematic equation for rotation bivectors, and its vector
analog is known as the Bortz equation in the navigation community [3]. �

Equation (6.6) shows that Φ̇ consists of two components: one in the plane of
rotation, α̇B , and a second component, αḂ , perpendicular to the plane of rotation.
Ḃ is ‘perpendicular’ to B in the sense that B · Ḃ = 0; this can be seen from the
fact that |B2| = 1 implies BḂ + ḂB = 0, and therefore B · Ḃ = 0. While the final
form of (6.5) does not keep these two perpendicular components separate, it is quite
easy to show that in the event that Ḃ = 0, which is to say there is no component of
angular velocity perpendicular to the rotation bivector, Φ̇ = Ω . The final form of
(6.5) is chosen because it can be shown [16] that

Φ̇ ≈Ω − 〈ΦΩ〉2
2

(6.14)

since the term (
|Φ|
2 cot |Φ|2 − 1)[Ω + (Ω·Φ)Φ

|Φ|2] is small and, in most practical algo-
rithms, is neglected.

Equation (6.5) provides a more general bivector analog to the kinematic equation
for rotation vectors since it generalises to n-D. The work of Bar-Itzhack [2] extends
Euler’s theorem to n-D, the Euler analogue in geometric algebra is given by (6.1),

110 L. Candy and J. Lasenby

Fig. 6.1 Sinusoidal body
frame oscillations with
magnitude a and angular
velocity ω that are out of
phase result in coning motion
where the third axis describes
a cone of half-angle a at
frequency ω

and is inherently general in n-D. This kinematic equation can be used directly in
engineering problems such as SDINS algorithms implemented using geometric al-
gebra. Alternatively, the traditional kinematic equation for rotation vectors can be
obtained by substitution of Ω = Iω, Φ = Iφ, multiplication of both sides by the
pseudoscalar of G 3, I , and simplification.

6.3 Practical Kinematics and Coning Motion

When performing experiments with gyroscopes on rate tables in the 1950s, re-
searchers noticed that the drift of their algorithms appeared to increase near the
resonant frequencies of the table supports [4]. What they had stumbled upon was the
worst-case scenario for attitude computation, coning motion. Coning occurs when
the b-frame experiences out of phase sinusoidal angular vibrations about any two
body axes. The result is that the body frame angular velocity vector traces out a cone
in space—hence the term coning motion. It is possible to show that the worst-case
performance for numerical integration of angular velocity is observed under coning
motion [5]. Since vibration is almost always present in mechanical systems, this
effect is significant and consequently important when trying to evaluate the perfor-
mance of attitude integration algorithms.

Coning motion is illustrated in Fig. 6.1. Here out of phase oscillations with mag-
nitude a about the be2 and be3 axes result in the be1 axis tracing out a cone with
half-angle a. The angular velocity vector (bivector dual shown as a dashed circle)
lies in the be23 plane and rotates about re1 at the coning frequency ω. The rotor and
its corresponding bivector that specify the transformation from the reference to the
body frame are given by

R = cos

(
a

2

)

− [sin (ωt)e12 − cos (ωt)e13
]

sin

(
a

2

)

(6.15)

Φ = a
[
sin(ωt)e12 − cos(ωt)e13

]
(6.16)

and the body angular velocity by

6 Attitude and Position Tracking 111

Ω = ω sin(a)
[
cos(ωt)e12 + sin(ωt)e13

]− 2ω sin2
(
a

2

)

e23 (6.17)

The discussion that follows will be limited to (6.5), but analogous problems ex-
ist when considering the integration of any of the other kinematic equations: for
quaternions, rotors, DCMs, etc.

The error of a numerical integration scheme will be dependent on some power of
the step size, h, as well as some higher-order derivative of the integral function, both
being dependent on the order of the integrator being used. Using the approximation
to (6.5), Φ̇ ≈Ω − 〈ΦΩ〉2

2 , and a simple Euler integrator, we have:

dΦ

dt
= f
(
t,Φ(t)

)
(6.18)

Then Φ(ti+1) is given by

Φ(ti+1)=Φ(ti)+ hf
(
ti ,Φ(ti)

)+ h2

2
Φ̈(ζi) (6.19)

where the second-order error term is h2

2 Φ̈(ζi), and ζ is some number in the interval
(ti , ti+1).

Computing the derivative of Φ̇ ≈Ω − 〈ΦΩ〉2
2 gives the expression for Φ̈:

Φ̈ = Ω̇ − 1

2

〈

ΦΩ̇ − 1

2
〈ΦΩ〉2Ω

〉

2
(6.20)

In the case where there is no coning component in the motion of the b-frame, the
axis of rotation is stationary—i.e. its direction is fixed in space—which implies that
Φ and Ω lie in the same plane, and so, ΦΩ = 〈ΦΩ〉 and, as a result,

Φ̈ = Ω̇ − 1

2
〈ΦΩ̇〉2 (6.21)

since 〈〈ΦΩ〉〉2 = 0 by definition.
Furthermore, since the plane of the angular velocity Ω is fixed, when there is

no coning motion, then not only do Φ and Ω lie in the same plane, but so does Ω̇ .
As a consequence, 〈ΦΩ̇〉2 = 0, leaving the error for the interval (ti , ti+1) as just
h2

2 Ω̇(ζi).
On the other hand, for coning motion, from a consideration of (6.16) and (6.17)

it is easy to show that the geometric product of Φ and Ω or any even-order deriva-
tive of Ω is a pure bivector, since Φ and Ω are perpendicular. Also, the geometric
product of Φ and any odd-order derivative of Ω contain both scalar and bivector
components. As a result, the error for the interval (ti , ti+1) for coning motion is
h2

2 [Ω̇(ζi)− 1
2 〈Φ(ζi)Ω̇(ζi)− 1

2 〈Φ(ζi)Ω(ζi)〉2Ω(ζi)〉2].

112 L. Candy and J. Lasenby

In short, in the case of pure rotation our error is only in the magnitude of the rota-
tion, whereas for any motion where the plane of rotation is changing, the numerical
integration results in an error in both the magnitude and plane of rotation. The worst-
case results are achieved in the case of coning motion where the orthogonality of Φ
and the odd-order derivatives of Ω maximise the error term.

Historically the explanation in the literature for the coning error has been that it is
due to the fact that finite rotations do not commute [1, 3, 4, 8–11, 13, 14, 17]. While
the observation that finite rotations do not commute is legitimate, there is a clear
absence in the literature explicitly linking this effect to the errors that are the result
of the direct integration of (6.1). In Titterton and Weston, for example, the scenario
of mixed order roll, pitch and yaw rotations is used to illustrate this effect, but it is
left entirely to the reader to deduce how this might be applicable to tracking attitude.
Here, however, we have shown that it is simply a numerical integration error.

6.3.1 Integration Schemes

The natural approach to solving a kinematics problem at this point would be to
take one of our attitude representations and apply some standard integration scheme
(Runge Kutta, for example). However, the ability to make sensible interpolations
using bivectors allows for far more accurate and computationally cheap integration.

Assume that we can represent our kinematic data over two intervals (three bound-
ary data points) by a quadratic polynomial, that is, Ω = At2 + Bt + C. This is al-
ways a reasonable assumption for smooth data as long as the sampling frequency is
sufficiently high when compared to the highest frequency components of the input
signal. We can then consider each interval pair independently, with the three sam-
ples Ω0, Ω1 and Ω2 at t = 0, t = T and t = 2T , respectively. This allows us to solve
for A, B , and C to obtain

A= 1

4T 2
(2Ω2 − 4Ω1 + 2Ω0) (6.22)

B = 1

2T
(−Ω2 + 4Ω1 − 3Ω0) (6.23)

C =Ω0 (6.24)

We can also easily show that at t = 0, we have Ω = C, Ω̇ = B , Ω̈ = 2A and
...
Ω = 0. Using this result along with the kinematic equation for bivectors, (6.14),
and the fact that for a given interval, we can set Φ(0)= 0, we can show that

Φ̇(0)= C (6.25)

Φ̈(0)= B (6.26)

Φ̈(0)= 2A+ 1

2
B ×C (6.27)

6 Attitude and Position Tracking 113

noting that for bivectors 〈AB〉2 = A× B . Using a Taylor expansion, we can write
the rotation bivector over two intervals as

Φ(2T)=Φ(0)+ 2T Φ̇(0)+ 4T 2

2
Φ̈(0)+ 8T 3

6
...
Φ(0)+ · · · (6.28)

Substituting into the above equation (6.25), (6.26) and (6.27), followed by (6.22),
(6.23) and (6.24), gives the update equation

Φ(2T)= T

(
1

3
Ω0 + 4

3
Ω1 + 1

3
Ω2

)

+ T 2

3
(Ω0 ×Ω2 − 4Ω0 ×Ω1) (6.29)

Equation (6.29) gives us a third-order approximation to the integral of the
quadratic that fitted our data. The equation only needs to be evaluated on every
second sample and has a computational complexity which is a fraction of that of an
RK4 algorithm, for example. This update equation also performs exceptionally well
as will be demonstrated in the next section.

It should be stressed that this equation, which is analogous to Miller’s algorithm
[12],1 can only be obtained because of the favourable interpolation properties of
bivectors.

6.3.2 Comparative Simulations

In order to illustrate how the various components of an attitude integration scheme
and b-frame motion impact on the accuracy of the computation, several comparative
simulations for coning motion and for mixed motion (coning motion with some
fixed axis angular velocity component) are presented in Fig. 6.2 and Fig. 6.3. In
all cases the coning angle is set at 1° and the input bandwidth is 50–100 Hz.2 In
all of the comparative simulations, identical integration schemes are used, except
for the interpolation schemes specified. For the instantaneous angular velocity data,
the integration scheme used is RK4, and for the gyroscope data, an Euler integrator
is used. All of the plots consider the drift error rate against coning frequency. The
angle through which the tracked body axes must be rotated to align them with the
true body axes is considered the attitude error at any given time, and the drift error
rate is the rate at which this error accumulates with time.

The first figure pair, Fig. 6.2, is for instantaneous velocity data. Figure 6.2(a) is
presented to demonstrate numerically that the integration of (6.2), (6.5) and (6.14)
produces virtually indistinguishable results. The qualifier here is that in our simula-
tions the use of a naive normalisation required in the case of (6.2) can be a source
of error, as we shall see in Fig. 6.3(b).

1Miller’s algorithm is used for computing the update rotation Φ directly from gyroscope data. This
algorithm is of order 5 and only has to be evaluated on every third sample.
2Modern gyroscope output bandwidths are typically 100–400 Hz.

114 L. Candy and J. Lasenby

Fig. 6.2 Figure (a) shows the performance of the rotor, bivector and truncated bivector equations
((6.2), (6.5) and (6.14), respectively) for coning motion as a function of coning frequency—RK4
integrators are used in all cases. It is clear that under pure coning motion these equations exhibit
almost identical performance. Figure (b) shows the impact that the sampling frequency has on per-
formance. The far superior performance of the simple integration scheme presented in Sect. 6.3.1
is also illustrated

6 Attitude and Position Tracking 115

Fig. 6.3 The results in this figure are for simulations based upon gyroscope data and illustrate
that the same relative performance of the different representations applies as in the case of instan-
taneous angular velocity data. Figure (a) is the counterpart to Fig. 6.2(b) for gyroscope data, the
primary difference being that Miller’s algorithm is a 5th-order interpolation scheme, as opposed to
the 3rd-order scheme employed for Fig. 6.2(b). Figure (b) presents results for a blend of coning
motion and fixed angular velocity. The most significant feature of this plot is the comparatively
poor performance of the kinematic equation for rotors at low coning frequencies

116 L. Candy and J. Lasenby

Unsurprisingly, the attitude tracking performance drops in all cases in the pres-
ence of significant coning (Fig. 6.2(a) and Fig. 6.2(b)), and an increase in perfor-
mance is seen at all coning frequencies when the input sampling frequency is in-
creased (Fig. 6.2(b)). Figure 6.2(b) also demonstrates the dramatic performance
increase to be gained from an interpolation-based integration scheme, which is
also substantially computationally cheaper to implement than the RK4 integration
against which it is being measured.

Figure 6.3 is for gyroscope data, i.e. the input data is the integral of the angular
velocity bivector Ωb . As before, for coning motion, there is a negligible difference
in performance for the rotor, bivector or truncated bivector kinematic equation in-
tegration. Figure 6.3(a) is a plot equivalent to Fig. 6.2(b) and is meant to illustrate
the dramatic performance gain of an interpolation-based integration scheme. In this
case Miller’s 5th-order interpolation scheme is used, which not only dramatically
outperforms the Euler or RK4 integrator, but is far computationally cheaper than
either (we need to evaluate an equivalent of a single commutator product per input
sample).

Figure 6.3(b) plots the drift error rate against coning angle for mixed motion
where the system is experiencing both a coning component and a component of
rotation in a fixed plane. The influence of the coning motion is varied by changing
the coning frequency; in other words, the right side of the plot shows a system
where the dominant component of rotation is pure coning, while the left side shows
a system where the motion is dominated by rotation in a fixed plane. Here it is clear
that the performance of the bivector kinematic equations is superior to rotors when
there is relatively little coning. Given that the bivector equations perform at least
as well in the presence of coning, this factor alone should make them a compelling
choice over rotors.

6.4 General Kinematics: Combining Rotation and Translation
with CGA

In the previous sections spatial rotations were represented using a rotation bivector
Φ = αB , where B is a unit bivector specifying the plane of rotation, and α is the an-
gle of rotation. In conformal geometric algebra (CGA), spatial translations can also
be represented by bivectors, where the bivector tn∞ is used to represent a transla-
tion t . As is the case for pure rotation, the rotor is formed by the exponentiation of
a bivector, which in this case is − tn∞

2 :

Rt = e−
tn∞

2 (6.30)

which, employing Taylor series expansion gives

Rt = 1− tn∞
2

(6.31)

6 Attitude and Position Tracking 117

Any general spatial displacement (rotation and translation) can now be repre-
sented by combining the rotation bivector and translation bivector: Φ̂ = αB + tn∞.
As before, the rotor is written as an exponentiated bivector

R = e−
Φ̂
2 (6.32)

In order to evaluate this function, it is easiest to split the bivector into a pair of

commuting blades, allowing e− Φ̂
2 to be written as the product of two simpler expo-

nential functions. Splitting Φ̂ into commuting blades F1 and F2 is always possible
[7]. The rotor can then be written as

R = e−
Φ̂
2 = e−

F1
2 e−

F2
2 (6.33)

It turns out that F1 = αB + t‖n∞ and F2 = t⊥n∞, where t‖ = 1
2 (t +BtB) is the

component of t that lies in the plane B , and t⊥ = 1
2 (t −BtB) is the component of t

that lies perpendicular to the plane B . Note that since t‖ anticommutes with B and
t⊥ commutes with B , it can be shown that F 2

1 =−α2 and F 2
2 = 0. The exponentials

in (6.33) can then be evaluated by using their Taylor expansions, giving

e−
F1
2 = cos

α

2
− sin

α

2

(

B + t‖n∞
α

)

(6.34)

and

e−
F2
2 = 1− t⊥n∞

2
(6.35)

By substituting (6.34) and (6.35) into (6.33) the expanded rotor equation is ob-
tained:

R = e−
Φ̂
2

=
[

cos
α

2
− sin

α

2

(

B + t‖n∞
α

)](

1− t⊥n∞
2

)

=
(

1− t ′‖n∞
2

)(

cos
α

2
−B sin

α

2

)(

1− t⊥n∞
2

)

=
(

1− t ′‖n∞
2

)

Rα

(

1− t⊥n∞
2

)

(6.36)

where t ′‖ = t‖sinc α
2 R̃α .

118 L. Candy and J. Lasenby

In other words, the rotor R formed by the exponentiated bivector Φ̂ = αB+ tn∞
is a generator of a translation by t⊥ followed by a rotation α in the plane B followed
by a second translation of t ′‖.3

It would be useful to be able to form a bivector Φ̂ knowing that the total rotation
will be defined by αB and the total translation by some vector s, in other words,
R = (1− sn∞

2)Rα . To find a relationship between s and t , R is written as

R =
(

1− t ′‖n∞
2

)(

1− t⊥n∞
2

)

Rα

since t⊥ is perpendicular to the plane of rotation B by definition, and therefore
Rα(1− t⊥n∞

2)R̃α = (1− t⊥n∞
2). So;

R =
(

1− sn∞
2

)

Rα =
(

1− (t⊥ + t ′‖
)n∞

2

)

Rα (6.37)

Therefore, s = t⊥ + t ′‖, or splitting s into its components perpendicular and par-
allel to the plane B ,

t⊥ = s⊥ (6.38)

and

t ′‖ = s‖

t‖sinc
α

2
R̃α = s‖ (6.39)

t‖ = s‖Rα

sinc α
2

where s‖ = 1
2 (s +BsB) and s⊥ = 1

2 (s −BsB).

6.4.1 Generalised Velocities

Consider a rotor R that takes vectors from some reference frame (r-frame) to some
body frame (b-frame). This rotor can be written as a rotation, followed by a transla-
tion in the reference frame,

3Which is effectively Chasles’ theorem; see also Chap. 5 in this volume.

6 Attitude and Position Tracking 119

Rb
r =RtRα (6.40)

where Rα = cos α
2 − B sin α

2 represents the rotational relationship between the

frames, and Rt = 1+ n∞sr

2 represents the translation between the frames in terms
of the r-frame reference displacement vector sr .

The kinematic equation that relates this rotor to a generalised velocity, Ω̂ , is
given by

Ṙb
r =−

1

2
Rb
r Ω̂

b
rb (6.41)

where Ω̂b
rb is the velocity of the b-frame, with respect to the r-frame, expressed as

a bivector in the b-frame. Upon rearranging this equation becomes

Ω̂b
rb =−2R̃b

r Ṙ
b
r (6.42)

and from (6.40) and (6.42) we see that

Ω̂b
rb =−2R̃b

r Ṙ
b
r

=−2R̃αR̃t (ṘtRα +RtṘα)

=−2R̃αR̃t ṘtRα − 2R̃αṘα (6.43)

Now, since Ωb
rb = −2R̃αṘα and R̃t Ṙt = n∞ ṡr

2 , it is possible to write, omitting
the frame indicating subscripts and superscripts for legibility,

Ω̂ =Ω − n∞R̃αṘtRα

=Ω − n∞(ṡ + s ·Ω) (6.44)

In other words, the generalised velocity Ω̂ is simply the sum of the body frame
referenced linear velocity bivector modified by a coriolis term and the rotational
velocity bivector.

6.4.2 A Conformal Kinematic Equation for Bivectors

At this point, all of the conformal tools are available to produce an analogous deriva-
tion for a bivector kinematic equation.

Given

Φ̂ = αB + tn∞ (6.45)

R =
[

cos
α

2
− sin

α

2

(

B + t‖n∞
α

)](

1− t⊥n∞
2

)

(6.46)

Ṙ =−1

2
RΩ̂ (6.47)

120 L. Candy and J. Lasenby

where Ω̂ =Ω − n∞(ṡ + s ·Ω), and the equations relating t to s,

t⊥ = s⊥ (6.48)

t‖ = s‖Rα

sinc α
2

(6.49)

find ˙̂Φ in terms of Φ̂ and the generalised velocity Ω̂ .
Taking the derivative of (6.45) gives

˙̂
Φ = α̇B + αḂ + ṫn∞ (6.50)

All that remains is to use (6.46) and (6.47) to find expressions for α̇ and Ḃ , and
(6.48) and (6.49) to find an expression for ṫ .

Finding Expressions for α̇ and Ḃ Taking the derivative of (6.46),

Ṙ = d

dt

[[

cos
α

2
− sin

α

2

(

B + t‖n∞
α

)](

1− t⊥n∞
2

)]

=
[

− α̇

2
sin

α

2
− α̇

2
cos

α

2

(

B + t‖n∞
α

)

− sin
α

2

(

Ḃ + αṫ‖n∞ − α̇t‖n∞
α2

)](

1− t⊥n∞
2

)

+
[

cos
α

2
− sin

α

2

(

B + t‖n∞
α

)]
ṫ⊥n∞

2
(6.51)

and substituting (6.46) into (6.47), we have

Ṙ =−1

2

[

cos
α

2
− sin

α

2

(

B + t‖n∞
α

)](

1− t⊥n∞
2

)
(
Ω − n∞(ṡr + s ·Ω)

)

(6.52)

Comparing the scalar components of (6.51) and (6.52),

− α̇

2
sin

α

2
= 1

2
〈BΩ〉 sin

α

2
α̇ =−B ·Ω (6.53)

giving an expression for α̇. Comparing the bivector components of (6.51) and (6.52)
that do not contain the special vector n∞, we get

− α̇

2
B cos

α

2
− Ḃ sin

α

2
=−1

2
Ω cos

α

2
+ 1

2
〈BΩ〉2 sin

α

2

Ḃ = 1

2
cot

α

2

(
Ω − (Ω ·B)B

)− 1

2
〈BΩ〉2 (6.54)

giving an expression for Ḃ .

6 Attitude and Position Tracking 121

The expressions for α̇ and Ḃ are the same as for the rotation only case. Compar-
ison of the bivector components and the 4-vector components of (6.51) and (6.52)
simply give a pair of identities that confirm that the equations are consistent.

Finding Expressions for ṫ Taking the derivative of t = t‖ + t⊥ where t‖ and t⊥
are given in (6.49) and (6.48), respectively,

ṫ = ṡ⊥ + Rα

2 sin α
2

(

α̇s‖ − α

2
cot

α

2
α̇s‖ + αṡ‖

)

+ 1

2 sin α
2

(αṘαs‖) (6.55)

Substituting for α̇, Ḃ and Ṙα from (6.53), (6.54) and (6.47),

ṫ = ṡ⊥ +
(
α

2
cot

α

2
− 1

)[
1

α
(B ·Ω)

αRαs‖
2 sin α

2

]

+ αRα

2 sin α
2

(

ṡ‖ − 1

2
Ωs‖
)

(6.56)

which after some manipulation we show to be

ṫ = ṡ + s ·Ω − 1

2

〈
αBṡ + αB(s ·Ω)+ tΩ

〉
1

+
(
α

2
cot

α

2
− 1

)[

ṡ + s ·Ω + 1

α2
(αB ·Ω)t

]

− 1

2
s⊥ ·Ω + α

2
B · (ṡ⊥ + s⊥ ·Ω)

−
(
α

2
cot

α

2
− 1

)[

ṡ⊥ + s⊥ ·Ω + 1

α
(B ·Ω)s⊥

]

(6.57)

Completing the Derivation Substituting (6.53), (6.54) and (6.57) into (6.50), af-
ter some manipulation, this gives:

˙̂
Φ = Ω̂ − 1

2
〈Φ̂Ω̂〉2 +

(|Φ̂|
2

cot
|Φ̂|
2
− 1

)[

Ω̂ + (Ω̂ · Φ̂)Φ̂

|Φ̂|2
]

−
(
α

2
cot

α

2
− 1

)[

ṡ⊥ + s⊥ ·Ω + 1

α
(B ·Ω)s⊥

]

n∞

− 1

2
(s⊥ ·Ω)n∞ + α

2
B · (ṡ⊥ + s⊥ ·Ω)n∞ (6.58)

This is the conformal kinematic equation for bivectors. Upon inspection, it is
clear that this is equivalent to

˙̂
Φ = B(Ω̂, Φ̂)+Θ(t) (6.59)

where B(Ω̂, Φ̂) has the form of the ordinary 3D kinematic equation (6.13), and
Θ(t) is a residual function of Φ̂ and Ω̂ .

122 L. Candy and J. Lasenby

As before, we can show numerically that good results are achieved when drop-
ping the majority of terms in (6.58). From the numerical simulations it is clear that
(6.59) without the Θ term, which we shall call the unmodified bivector equation,
i.e.

˙̂
Φ ≈ Ω̂ − 1

2
〈Φ̂Ω̂〉2 +

(|Φ̂|
2

cot
|Φ̂|
2
− 1

)[

Ω̂ + (Ω̂ · Φ̂)Φ̂

|Φ̂|2
]

(6.60)

produces excellent results, as does the truncated version that we used in R
3,

˙̂
Φ ≈ Ω̂ − 1

2
〈Φ̂Ω̂〉2 (6.61)

6.4.3 Simulation Results

As was the case for attitude computation in R
3, we would like to compare the vari-

ous update equations for computing both attitude and velocity—for the case where
the input is angular velocity and linear acceleration. For the purposes of the simu-
lations, we consider a system which is coning, since this is the worst case, and is
undergoing a linear acceleration along one axis. The coning angle is set at 1°, and
the input bandwidth is 100 Hz. The plots consider the drift error rate against coning
frequency for both attitude and velocity.

The series indicated as ‘3D Rotor’ in Fig. 6.4 is one of the conventional methods
of performing this computation. In this case the attitude is tracked using the con-
ventional kinematic equation for rotors. These rotors are then linearly interpolated
to provide a midpoint rotor for each time interval. This midpoint rotor is used to
transform the acceleration data, which is then integrated using an Euler integrator
scheme to compute velocity.

As is quite apparent from the figure, the conformal bivector update equations
(both the unmodified bivector equation and the truncated version of this) perform
very favourably when compared to the equation for rotors and the 3D computation.

6.5 Conclusion

In this chapter we have provided compelling reasons to favour the linear space of
bivectors over the rotor manifold for tracking attitude from velocity measurements.
We have also extended this approach to CGA, where the advantage of the bivector
update equations is also quite apparent. Aside from being computationally efficient,
we have shown how bivectors lend themselves to integration schemes with dramat-
ically improved performance and low computational load.

6 Attitude and Position Tracking 123

Fig. 6.4 This figure shows the relative performance of the CGA kinematic equations and the
conventional method of computing attitude only and then transforming the acceleration data for
the velocity integration. Figure (a) shows the essentially identical attitude performance of (6.47),
(6.60), (6.61) and the 3D method. This is unsurprising, as we can show that the attitude component
of the CGA equations is identical to the ordinary 3D case in Sect. 6.3.2. Also, it is worth noting
that the truncated bivector can be used for tracking quite successfully

124 L. Candy and J. Lasenby

6.6 Exercises

6.1 For the kinematic equation for bivectors, demonstrate that the term

(|Φ|
2

cot
|Φ|
2
− 1

)[

Ω + (Ω ·Φ)Φ

|Φ|2
]

is always small.

6.2 Show that αḂ = 1
|Φ|2 [|Φ|2Φ̇ + (Φ · Φ̇)Φ] and α2BḂ = 〈ΦΦ̇〉2.

6.3 Using the equation Ω =−2R̃Ṙ as a starting point, find the inverse of the kine-
matic equation for bivectors. In other words, find the equation which, given a set of
rotations Φ , will allow you to compute the angular velocities that cause the rota-
tions, Ω .

Hint: the relations in the previous question may come in handy.
Answer: Ω = Φ̇ + (

1−cos |Φ|
|Φ|2)〈ΦΦ̇〉2 − 1

|Φ|2 (1− sin |Φ|
|Φ|)[|Φ|2Φ̇ + (Φ · Φ̇)Φ].

6.4 Use the method outlined in Sect. 6.3.1 to show that

Φ =Θs + 0.4125(Θ1 ∧Θ3)+ 0.7125Θ2 ∧ (Θ3 −Θ1) (6.62)

where Θn =
∫ tn
tn−1

Ω dτ and Θs =Θ1 +Θ2 +Θ3.

This is Miller’s algorithm in geometric algebra.

Acknowledgements We would like to thank the Council for Scientific and Industrial Research
in South Africa for sponsoring this research.

References

1. Bar-Itzhack, I.Y.: Navigation computation in terrestrial strapdown inertial navigation systems.
IEEE Trans. Aerosp. Electron. Syst. 13, 679–689 (1977)

2. Bar-Itzhack, I.Y.: Extension of Eulers theorem to n-dimensional spaces. IEEE Trans. Aerosp.
Electron. Syst. 25, 903–909 (1989)

3. Bortz, J.E.: A new mathematical formulation for strapdown inertial navigation. IEEE Trans.
Aerosp. Electron. Syst. 7, 61–66 (1971)

4. Goodman, L.E., Robinson, A.R.: Effect of finite rotations on gyroscopic sensing devices.
J. Appl. Mech. 210–213 (June 1958)

5. Gusinsky, V.Z., Lesyuchevsky, V.M., Litmanovich, Yu.A.: New procedure for deriving opti-
mized strapdown attitude algorithms. AIAA J. Guid. Control Dyn. 20, 673–680 (1997)

6. Hestenes, D.: New Foundations for Classical Mechanics. Fundamental Theories of Physics.
Springer, Berlin (1999)

7. Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus: A Unified Language for
Mathematics and Physics. Reidel, Dordrecht (1984)

8. Ignani, M.B.: On the orientation vector differential equation in strapdown inertial navigation
systems. IEEE Trans. Aerosp. Electron. Syst. 30, 1076–1081 (1994)

6 Attitude and Position Tracking 125

9. Ignani, M.B.: New procedure for deriving optimized strapdown attitude algorithms. AIAA J.
Guid. Control Dyn. 20, 673–680 (1997)

10. Jiang, Y.F., Lin, Y.P.: On the rotation vector differential equation. IEEE Trans. Aerosp. Elec-
tron. Syst. 27, 181–183 (1991)

11. Jiang, Y.F., Lin, Y.P.: Improved strapdown coning algorithms. IEEE Trans. Aerosp. Electron.
Syst. 28, 448–490 (1992)

12. Miller, R.: A new strapdown attitude algorithm. AIAA J. Guid. Control Dyn. 6, 287–291
(1983)

13. Nazaroff, G.: The orientation vector differential equation. AIAA J. Guid. Control Dyn. 2,
351–352 (1979)

14. Onunka, C., Bright, G.: A study on Direction Cosine Matrix (DCM) for autonomous naviga-
tion. In: CAD/CAM Robotics and Factories of the Future (2010)

15. Phillips, W.F., Haily, C.E.: Review of attitude representations used for aircraft kinematics.
J. Aircr. 38, 718–737 (2001)

16. Savage, P.: Strapdown inertial navigation integration algorithm design, part 1: Attitude algo-
rithms. AIAA J. Guid. Control Dyn. 21, 19–28 (1998)

17. Titterton, D., Weston, J.: Strapdown Inertial Navigation Technology. 2nd revised edn. IEEE
Press, New York (2005)

7Calibration of Target Positions Using
Conformal Geometric Algebra

Robert Valkenburg and Nawar Alwesh

Abstract
This chapter describes an algorithm for calibrating the 3D positions of multi-
ple stationary point targets which form part of an optical positioning system.
A group of rigidly co-located calibrated cameras are moved to several positions
and images of the targets acquired. The target pixel coordinates are extracted
and transformed into 3D lines which are used as input data to the algorithm.
A nonlinear solution is developed using geometric algebra and geometric calcu-
lus and expressed in the conformal model of Euclidean 3D space. A coordinate
free approach to differentiating rotors is developed and used in the algorithm to
differentiate motion rotors. Experiments are performed to evaluate the algorithm,
and the results show that it performs well and is robust in the presence of noise.

7.1 Introduction

Measuring the position of many targets over a large area using a total station, for
example, is a time-consuming task. When this must be performed frequently, it can
be expensive.

This chapter describes a calibration algorithm to rapidly measure stationary point
target positions. A group of rigidly co-located calibrated cameras are moved to sev-
eral positions, and images of the targets are acquired. The target pixel coordinates
are extracted and transformed to lines which are used as input data to the algorithm
to estimate the 3D target locations. The targets and camera group comprise part of
a 6 degree of freedom (DoF) optical positioning system. Every time the positioning

R. Valkenburg (�) · N. Alwesh
Industrial Research Limited, Auckland, New Zealand
e-mail: r.valkenburg@irl.cri.nz

N. Alwesh
e-mail: n.alwesh@irl.cri.nz

L. Dorst, J. Lasenby (eds.), Guide to Geometric Algebra in Practice,
DOI 10.1007/978-0-85729-811-9_7, © Springer-Verlag London Limited 2011

127

mailto:r.valkenburg@irl.cri.nz
mailto:n.alwesh@irl.cri.nz
http://dx.doi.org/10.1007/978-0-85729-811-9_7

128 R. Valkenburg and N. Alwesh

Fig. 7.1 Camera group

system is deployed in a new site, the target positions must be determined, so it is
important that this can be done rapidly.

The algorithm is developed using the conformal model of Euclidean 3D space
and implemented with geometric algebra (GA). This chapter describes a re-
expression of an algorithm implemented in the homogeneous model [7] to the con-
formal model with additional improvements.

The following geometric algebra conventions are used in this chapter. The ge-
ometric algebra over R with signature (p, q) (p positive and q negative basis el-
ements) is denoted Rp,q . When q = 0, we write Rp , and when the signature and
dimension do not matter, we simply write G . G r denotes the grade r elements of an
algebra G , and G+ denotes the even-grade elements of G . If A ∈ G is a (possibly
singular) blade with reciprocal blade Ā (i.e. A · Ā= 1), then G (A) denotes the geo-
metric algebra generated by A and is defined as G (A)= {X ∈ G :X = (X · Ā) ·A}.
We work with the CGA basis {no, e1, e2, e3, n∞} where no = (−e+ + e−)/2 and
n∞ = e+ + e− are null vectors with no ·n∞ =−1. The vector no represents the ori-
gin, and n∞ represents the point at infinity. It is also convenient to define I4 = noI3,
Ī4 = I3n∞ (note I4 · Ī4 = 1) and E = no ∧ n∞ = e+e−. The motors (motion rotors)
are used to model rigid body motion, and the set of motors will be denoted M . In
addition, we will use the short-form notation eij = eiej for unit basis vectors ei and
ej , i �= j .

7 Calibration of Target Positions Using Conformal Geometric Algebra 129

Fig. 7.2 Point targets implemented using ultra bright LEDs

7.2 Problem Statement

We have a set of C rigidly co-located calibrated cameras, referred to as the camera
group (see Fig. 7.1, where C = 6). The cameras are organised to approximate an
omnidirectional camera with their optical centres as coincident as physically pos-
sible, and the image planes providing maximum coverage with as little overlap as
possible. The geometric relationship between each camera is known, so the camera
group can be characterised by a single moving coordinate system denoted CSM. For
example, CSM may be located at the centroid of the optical centres of all the cam-
eras and aligned with one of the cameras. The cameras are synchronised so that a
single frame capture event will grab C images. A world coordinate system, denoted
CSW, is defined in terms of stationary point targets qk ∈ R

1
4,1, k = 1, . . . ,K (e.g.

one target is at the origin, another on the x-axis, and another in the xy-plane). Refer
to Fig. 7.2, which shows targets implemented using ultra bright LEDs.

The camera group CSM is moved to N arbitrary positions in CSW. Let the motor
Mn ∈M represent the pose (orientation and position) of CSM in CSW for the
nth position as in Fig. 7.3. At each position, a set of C images of the targets are
captured (one from each camera). Not all the targets will necessarily be visible as
the sensor field-of-views (FOV) do not give complete coverage, and some targets
may also be occluded. Some targets may also be visible in more than one image
because of small amounts of FOV overlap. In addition, false targets may appear

130 R. Valkenburg and N. Alwesh

Fig. 7.3 Camera group
(CSM) moving to various
positions in CSW

(in the same or different sensors) due to reflections off shiny surfaces. A target pixel
location is extracted using a subpixel estimator and then backprojected through the
camera model to produce a normalised (unit norm) line in the camera coordinate
system pointing out of the camera toward the target. Using the known relationships
between each camera, the line is rotated and translated to provide a normalised line
Λo

j ∈R
3
4,1 in CSM ready for subsequent processing. For each line Λo

j , the associated
target index k = k(j) and camera group position index n = n(j) are known. Each
line Λo

j can then be transformed to CSW using the associated motor Mn and is given
by

Λj =MnΛ
o
jM̃n, n= n(j).

The problem can now be stated as: Given a set of measured normalised lines Λo
j ,

j ∈ J , in CSM captured from N positions, we wish to recover the position of the
targets qk , k = 1, . . . ,K , in CSW.

7.3 Solution Using Geometric Algebra

The solution involves three steps: (1) Calculate initial estimates of Mn, n =
1, . . . ,N , using a closed-form algorithm, (2) Calculate accurate estimates of Mn,
by nonlinear minimisation, (3) Reconstruct the target positions qk , k = 1, . . . ,K , in
CSW by triangulation using Λo

j and Mn.
Initially, all we have are the lines Λo

j expressed in CSM, we do not know the
location of the targets qk and so cannot define CSW, and also we do not know the
positions of CSM, Mn, expressed in some common coordinate system. Therefore
we may temporarily identify CSW with one position of CSM to avoid the obvi-
ous ambiguity when both CSW and CSM are unknown. When the target positions
are reconstructed, we can move CSW to a more suitable location as described in
Sect. 7.3.3.

7 Calibration of Target Positions Using Conformal Geometric Algebra 131

7.3.1 Initial Estimate of Poses

How the initial estimates are obtained depends greatly on the situation. Operational
constraints can be imposed which eliminate, or significantly simplify, the process
of obtaining an initial estimate. For example, by adding a compass and level to the
camera group, all the data can be captured with rotational components of Mn almost
constant.

One fairly general approach for obtaining an initial estimate is based on approxi-
mating the camera group by an idealised omnidirectional camera in which all the
optical centres are coincident and positioned at the origin of CSM. This allows
many standard results to be applied directly. These results can be expressed ele-
gantly in terms of GA. A line in CSM going through the origin no can be represented
Λ= no ∧ v ∧ n∞ =−Ev where v ∈R

1
3 is the direction vector.

Consider two positions of CSM, say CSM and CSM′. The direction vectors u,v′
from the two positions, associated with a common target, satisfy the so called co-
planarity constraint. This can be expressed u · E v′ = 0 where E =A R is the well-
known essential transformation [2]. Given sufficient vectors u and v′, an estimate
of E can be easily recovered. Orthogonal R, defined by v =Rv′ =Rv′R̃, encodes
the relative orientation R. Antisymmetric A , defined by A v = (v ∧ t) · I3 = v ·
(t · I3), encodes information about the relative position t . As E Ē =A ¯A = ¯A A ,
it follows that t · E Ē t = 0. Therefore, given E , an estimate of t (and hence A) can
be recovered up to a scale factor as the unit eigenvector associated with the smallest
eigenvalue of E Ē . Let {u1, u2, u3} be a basis of R

1
3. As RĒ = ¯A , the vectors Ē uk

and ¯A uk are related by R. It can be shown (see [6], which is Chap. 2 in this book)
that an estimate of R is given by the eigenrotator of L associated with the largest
eigenvalue, where L :R+3 →R

+
3 is defined by

LX =
3∑

k=1

(¯A uk)X(Ē uk).

By considering the lines at each position of CSM, estimates of the relative pose
(with unit translation) between the positions of CSM can be obtained. These can be
transformed into CSW to give initial estimates of Rn and the unit tn. Any known
distances (yardsticks) can be used to rescale tn to consistent values. The motors are
then given by Mn = TnRn where Tn = 1− 1

2 tnn∞.

7.3.2 Accurate Estimate of Poses

In this section we define a suitable objective (error) function and form its gradient so
that the problem can be formulated as a nonlinear optimisation. The lines associated
with a given target k will nearly intersect. Image noise and quantisation, calibration
errors, camera modelling errors, etc. will prevent them from intersecting exactly.
The objective function is based on finding the motors Mn to minimise the dispersion

132 R. Valkenburg and N. Alwesh

of the lines Λj about their nominal intersection point. First, we present a number
of useful general results about dual spheres and lines. It is worth noting that many
results are best expressed in terms of spheres rather than points, even though we are
only interested in a point location (given by the centre of the sphere). This is because
a point can be regarded as a sphere with zero radius, so an additional constraint has
to be imposed to enforce that the solution is a point. Considering spheres liberates
us from the need to impose such constraints and makes the analysis simpler.

The squared distance between the centre of a normalised dual sphere s ∈ R
1
4,1

and a line Λ ∈R
3
4,1 is given by

d2(s,Λ)= 〈sS(s,Λ)
〉
, (7.1)

where S(X,Y)=X− (X · Y) · Y−1 for X,Y ∈ G . To show this, let s = q − 1
2ρ

2n∞
be a dual sphere whose centre q is a distance d from Λ, so d2 =−(q ·Λ) · (q ·Λ−1).
Let PΛ(X)= (X ·Λ) ·Λ−1. Since PΛ(n∞)= n∞, we have

s · S(s,Λ)= s · s − s · PΛ(s)

= ρ2 − (q · PΛ(q)+ ρ2)

= ρ2 − (q ·Λ) · (q ·Λ−1)− ρ2 = d2.

If Λ is normalised, then Λ−1 = Λ, and S can be simplified to S(X,Y) = X −
(X · Y) · Y . We wish to triangulate a collection of lines which will make use of
the following result. It is slightly more general than is usually presented because
it allows us to express the inverse of a linear map without requiring an invertible
pseudoscalar for the domain or range.

Lemma 7.1 Let A be an r-blade, and B be an r-blade with reciprocal blade B̄ (so
B · B̄ = 1). If F : G (A)→ G (B) is an invertible linear operator, then

F−1(Y)= F̄ (Y · B̄) ·A
F̄ (B̄) ·A .

Proof Let Y = F(X). We have F(A)= αB , so α = F(A) · B̄ = F̄ (B̄) ·A, and we

can define an associated reciprocal blade for A by Ā= F̄ (B̄)

F̄ (B̄)·A . This gives

X = (X · Ā) ·A= (X · F̄ (B̄)) ·A
F̄ (B̄) ·A = F̄ (F (X) · B̄) ·A

F̄ (B̄) ·A . �

Lemma 7.2 Let Λj ∈ R
3
4,1, j ∈ J , be a set of lines, and S(x) =∑j∈J S(x,Λj)

for x ∈ R
1
4,1. If SI3 �= 0, then the point q ∈ R

1
4,1 closest to all the lines in the least

squares sense is given by the centre of the normalised dual sphere

7 Calibration of Target Positions Using Conformal Geometric Algebra 133

s =−〈S(I3)I4〉1
〈S(I3)I3〉 . (7.2)

The sum of squared distances d2 from each line Λj to q is given by

d2 =−〈S(I4)I4〉
〈S(I3)I3〉 . (7.3)

Proof The expression s ·S(s)=∑j∈J s ·S(x,Λj)=∑j∈J d2
j is the sum of squared

distances to all lines Λj , j ∈ J . We wish to minimise s ·S(s) subject to the constraint
that s is normalised (n∞ · s =−1). The Lagrangian

L(s,α)= 1

2
s · S(s)+ α(n∞ · s + 1)

gives rise to the following first-order optimality conditions:

∂sL= S(s)+ αn∞ = 0,

∂αL= n∞ · s + 1= 0.

Note that S(n∞)= 0, so S is not invertible on I , but we can restrict the domain of
S to I4 = noI3. Also note that S is symmetric, so for x ∈ R

1
4,1, 0 = S(n∞) · x =

n∞ · S(x), and the range of S is in Ī4 = I3n∞. Using Lemma 7.1 with A= B̄ = I4
gives

s =−αS(n∞ · I4) · I4

S(I4) · I4
= α

S(I3) · I4

S(I4) · I4
.

We have d2 = s · S(s) = α and −1 = n∞ · s = αn∞ · (S(I3) · I4)/(S(I4) · I4) =
α(S(I3) · I3))/(S(I4) · I4), so d2 = −(S(I4) · I4)/(S(I3) · I3) and s = −(S(I3) ·
I4)/(S(I3) · I3). �

The situation associated with Lemma 7.2 is shown in Fig. 7.4. The condition
SI3 = 0 will only occur under rare circumstances such as all the lines are parallel.
This result can be used directly to define a suitable objective function.

Each line Λj in CSW is obtained by rotating and translating the corresponding
measured line in CSM and is given by

Λj =MnΛ
o
jM̃n, n= n(j), (7.4)

where Mn is the pose of CSM in CSW associated with the j th line. Let d2
k =

d2
k (M1, . . . ,MN) be the sum of squared distances from the lines associated with

the kth target (Λj, j ∈ Jk). In general, d2
k will involve lines from each position of

134 R. Valkenburg and N. Alwesh

Fig. 7.4 The centre of the
dual sphere s gives the point
q closest to all the lines Λj

CSM, n= 1, . . . ,N , so d2
k depends on Mn, n= 1, . . . ,N . The objective function is

then defined by summing the errors for each target:

d2 = d2(M1, . . . ,MN)=
K∑

k=1

d2
k .

Note that the target positions do not appear in this function, which only depends
on the motors Mn and the measured lines Λo

j . When the number of targets K is
large compared with the number of positions N , this has a significant impact on the
dimensionality of the optimisation problem.

Next we consider the gradient of d2 which can be expressed in terms of the
multivector derivatives ∂Mnd

2 for each n = 1, . . . ,N . Note that the variable Mn ∈
M is constrained and satisfies MnM̃n = 1. The equation MnM̃n = 1 can be regarded
as a set of constraints. For example, if X ∈ R

+
4,1, then X̃X = 〈X̃X〉 + 〈X̃X〉4 =

1 gives six constraints: 〈X̃X〉 = 1 and 〈eJXX̃〉 = 0 where eJ is a basis for the
5D space of quadvectors. These constraints are incorporated into the derivative as
explained later. As

∂Mnd
2 =

K∑

k=1

∂Mnd
2
k , (7.5)

it suffices to initially consider the contribution of just the kth target. Let Sk(p) =∑
j∈Jk S(p,Λj) denote the sum associated with the kth target.

If we let Nk = 〈Sk(I4)I4〉 ∈R and Dk = 〈Sk(I3)I3〉 ∈R, then d2
k =−Nk/Dk . By

the product rule,

∂Mnd
2
k =−

∂MnNkDk −Nk∂MnDk

D2
k

. (7.6)

For clarity, we will temporarily drop the subscripts n and k by identifying M

with Mn, d2 with d2
k , J =⋃Jk with Jk , and S(p) with Sk(p). To calculate ∂Md2

it suffices to evaluate ∂MN and ∂MD which have similar structures. Recall that the

7 Calibration of Target Positions Using Conformal Geometric Algebra 135

lines depend on M ∈M as shown in (7.4). We could utilise the chain rule, but it
is often easier to simply algebraically manipulate the expression into a form that is
easy to differentiate, which is what we will do here.

We will make use of the following general result which applies immediately to
the structure of N with Ar = Cr = I4 and D with Ar = Cr = I3.

Lemma 7.3 Let S : G 1→ G 1 be a linear operator which depends on a multivec-
tor X. Let Ar =∧i∈I ai and Cr be r-blades independent of X, and define Ei so that
Ar = ai ∧Ei . Then

∂X
〈
S(Ar)Cr

〉=
∑

i∈I
∂̇X
〈
Ṡ(ai)
(
S(Ei) ·Cr

)〉
.

Proof For each k ∈ I , 〈S(Ar)Cr 〉 = 〈(S(ak)∧ S(Ek))Cr 〉. Hence,

∂X
〈
S(Ar)Cr

〉= ∂X

〈(∧

i∈I
S(ai)

)

Cr

〉

= ∂X

〈
∏

i∈I
S(ai)Cr

〉

=
∑

i∈I
∂̇X
〈(
Ṡ(ai)∧ S(Ei)

)
Cr

〉

=
∑

i∈I
∂̇X
〈
Ṡ(ai)
(
S(Ei) ·Cr

)〉
.

�

Applying Lemma 7.3 with S(x)=∑j∈J S(x,Λj) from Lemma 7.2 gives

∂M
〈
S(Ar)Cr

〉=
∑

j∈J

∑

i∈I
∂̇M
〈
Ṡ(ai,Λj)

(
S(Ei) ·Cr

)〉
.

Observe that v = S(Ei) ·Cr ∈R
1
4,1. If u,v ∈R

1
4,1 and Λ ∈R

3
4,1, then 〈S(u,Λ)v〉 =

u · v− (u ·Λ) · (v ·Λ), and we have

∂̇M
〈
Ṡ(u,Λ)v

〉= ∂̇M
〈
Λ̇B(u, v,Λ)

〉
, (7.7)

where

B(u, v,Λ)=−u∧ (v ·Λ)− v ∧ (u ·Λ) ∈R
3
4,1. (7.8)

To evaluate ∂̇M 〈Λ̇B〉 where Λ =MΛoM̃ we need to differentiate with respect to
M while enforcing the constraint that M is in the set of motors, denoted M . This
can be done in a coordinate-free manner by observing that the tangent space of M
at M ∈M , denoted TM , is simple to characterise in terms of M . The key concept

136 R. Valkenburg and N. Alwesh

is to define ∂M so that 〈A∂M 〉 = 〈PTM
(A)∂X〉 for all multivectors A, where PTM

is
a projection on TM , and ∂X is the derivative with respect to an unconstrained mul-
tivector X ∈ X where TM ⊂ X. As 〈PTM

(A)∂X〉 = 〈AP̄TM
(∂X)〉 for all A, where

P̄TM
is the adjoint of PTM

, we define

∂M = P̄TM
(∂X). (7.9)

In order to calculate PTM
and P̄TM

, we first establish the form of TM . It is
convenient to define some additional linear spaces at the outset. Note that a mo-
tor lies in the 8D linear space M = sp{1, e12, e13, e23, e1n∞, e2n∞, e3n∞, I3n∞},
with reciprocal space M = sp{1, e21, e31, e32, e1no, e2no, e3no, Ĩ3no}, and that if
X ∈M and Y ∈M, then XY ∈M. The bivector subspace of M will be denoted
B= sp{e12, e13, e23, e1n∞, e2n∞, e3n∞}.

Let ψ(s) be a curve in M (a motor-valued function of a scalar), M =ψ(0) ∈M
and Δ=ψ ′(0). Differentiating ψ̃ψ = 1 and evaluating at s = 0 gives M̃Δ=−Δ̃M .
As Δ ∈M, it follows that M̃Δ ∈M and the tangent space of M at M ∈M is
given by TM =MB. It is natural to define the normal space of M at M (restricted
to M) by the orthogonal complement of TM in M, so NM = sp{M,MI3n∞} and
M=TM ⊕NM .

For any element X ∈ M, M̃X ∈ M, so X can be expressed X = MM̃X =
M〈M̃X〉2 +M(〈M̃X〉 + 〈M̃X〉4). The first term is in TM , and the second is in
NM . For X ∈M, we can define the projection on TM along NM by PTM

(X) =
M〈M̃X〉2. It is clear that this is idempotent, onto TM , and has null space NM . This
can be extended to R4,1 by first projecting into M:

PTM
(X)=M

〈
M̃PM(X)

〉
2.

With PTM
expressed in this form, we can easily find an expression for its adjoint

P̄TM
,

〈
PTM

(X)Y
〉= 〈M 〈M̃PM(X)

〉
2Y
〉

= 〈PM(X)〈YM〉2M̃
〉= 〈XP̄M

(〈YM〉2M̃
)〉
,

giving

P̄TM
(Y)= P̄M

(〈YM〉2M̃
)
.

This is expressed in terms of P̄M which can be efficiently calculated and, depend-
ing on exactly how the algebra is implemented, usually involves zeroing out some
coordinates and a few additions.

Now consider applying ∂M . Note that if f (M) ∈ R is a scalar valued function,
then

∂Mf = P̄TM
(∂X)f = P̄TM

(∂Xf), (7.10)

7 Calibration of Target Positions Using Conformal Geometric Algebra 137

so we can differentiate as if the variable X ∈ X is unconstrained and then project
on TM . As previously mentioned, TM ⊂X, so, for example, X could be M, R

+
4,1 or

R4,1.
We wish to differentiate ∂M 〈MAM̃B〉, and (7.10) suggests we should first con-

sider ∂X〈XAX̃B〉. If X ∈X= sp{eI } and {eI } is an associated reciprocal basis, then

∂X〈XA〉 =
∑

I

eI 〈eI ∂X〉〈XA〉 =
∑

I

eI 〈eIA〉 = P̄X(A), (7.11)

from which we get

∂X〈XAX̃B〉 = P̄X(AX̃B + ÃX̃B̃). (7.12)

Normally PX and its adjoint P̄X are the same, for example when X= R
+
4,1 or R4,1.

However situations occur when this is not the case. This is because natural linear
spaces X arise where we cannot find a reciprocal basis which also spans X, so we
must look outside of X. For example, we have already seen that M �=M. Such lin-
ear spaces occur often with the introduction of null basis elements in CGA because
important objects (e.g. lines and planes) and operations (e.g. motors) involve n∞.
Closely related, note also that ∂X , as in (7.11), is expressed in terms of the direc-
tional derivatives 〈eI ∂X〉 (and not 〈eI ∂X〉) as the direction vectors eI must be in X.
There is no need to make a distinction when eI and eI span the same space.

We can now evaluate (7.7). From (7.10) and (7.12), noting that P̄TM
P̄X = P̄TM

,
we get

∂M 〈MAM̃B〉 = P̄TM

(
∂X〈XAX̃B〉)∣∣

X=M
= P̄TM

(AM̃B + ÃM̃B̃). (7.13)

If A and B are homogeneous (and of the same grade if the result is to be non-zero),
which is by far the most common situation, we have ÃX̃B̃ = AX̃B , and (7.13)
reduces to

∂M 〈MAM̃B〉 = 2P̄TM
(AM̃B)= 2P̄TM

(
M̃A′B

)
, (7.14)

where A′ = A′(M) = MAM̃ is the transformed A. This derivative turns up fre-
quently, so it is convenient that it has such a simple form.

It is interesting to digress and examine how this relates to another way of differ-
entiating 〈XAX̃B〉 with respect to motors and rotators. Consider the behaviour of
the function G(X) = 〈XAX−1B〉 for X ∈M as we move out from M ∈M along
the normal space NM . Let Ψ = I3n∞ and N =M(α + βΨ) ∈NM . If A,B are
homogeneous, we get

G(M + τN)= 〈MAM̃B〉 − τ 2β2

(1+ τα)2
〈ΨMAM̃ΨB〉.

138 R. Valkenburg and N. Alwesh

As the linear term in τ vanishes, the directional derivative 〈N∂X〉〈XAX−1B〉|X=M =
0. Now examine the behaviour of G(X) on TM . Let T ∈ TM and note that
(M + τT)−1 ≈ M̃ + τ T̃ to first order because T M̃ =−MT̃ . This gives

G(M + τT)= 〈MAM̃B〉 + τ 〈T AM̃B〉 + τ 〈MAT̃ B〉 +O
(
τ 2).

Here we have linear terms in τ , and they are the same linear terms that would arise if
G were replaced by 〈XAX̃B〉, so 〈T ∂X〉〈XAX−1B〉|X=M = 〈T ∂X〉〈XAX̃B〉|X=M .
Thus, the directional derivatives of G vanish on NM and coincide with the di-
rectional derivatives of 〈XAX̃B〉 on TM . It follows that ∂X〈XAX−1B〉|X=M =
∂M 〈MAM̃B〉 for X ∈M and A, B homogeneous. For the simpler case of rotators,
denoted R, we can even drop the restriction that A and B are homogeneous. As for
motors, consider the behaviour of G for X ∈ G+3 as we move out from R ∈R along
the normal space NR . If N =Rα ∈NR and A,B are general multivectors, we get

G(R + τN)= 〈R(1+ τα)A(1+ τα)−1R̃B
〉= 〈RAR̃B〉.

Now the quadratic term also vanishes, and G is constant on NR . Therefore, for gen-
eral multivectors A, B , and X ∈ G+3 , we have ∂X〈XAX−1B〉|X=R = ∂R〈RAR̃B〉.
This has been exploited in [4] to provide a procedure for estimating rotators from
pairs of points.

Returning to the original problem, we can use (7.14) to evaluate (7.7),

∂̇M 〈Λ̇B〉 = 2P̄TM
(M̃ΛB), (7.15)

which gives the following result:

Lemma 7.4 Let S be defined as in Lemma 7.2, and Ar , Cr , ai and Ei be defined
as in Lemma 7.3. If Λj, j ∈ JM , is the set of lines which depend on M , then

∂̇M
〈
Ṡ(Ar)Cr

〉= 2
∑

j∈JM
P̄TM

(M̃ΛjBj),

where Bj =∑i∈I B(ai, S(Ei) ·Cr,Λj) ∈R
3
4,1, and B is defined in (7.8).

Let Jkn denote the set of lines associated with the kth target and nth position. For
each target, only a few lines will be associated with a specific motor Mn. Normally
there will be just one. If the target was occluded or located where there was no image
coverage, there will be none. If it is located in a region of overlap, there might be
two or more. Hence Jkn will only have a few elements. Reintroducing the subscripts
n and k and applying Lemma 7.4 to Nk = 〈Sk(I4)I4〉 with Cr = I4 and Ar = I4 =
ei ∧Ei (i.e. E0 = I3, E1 =−no ∧ e2 ∧ e3, E2 = no ∧ e1 ∧ e3, E3 =−no ∧ e1 ∧ e2)
gives

7 Calibration of Target Positions Using Conformal Geometric Algebra 139

∂MnNk = 2
∑

j∈Jkn
P̄TMn

(M̃nΛjBkj),

Bkj =
3∑

i=0

B
(
ei, Sk(Ei) · I4,Λj

) ∈R
3
4,1. (7.16)

Calculating the derivatives ∂MnNk is implemented efficiently by iterating over all
lines j ∈ J =⋃Jk and updating the derivatives ∂MnNk where n= n(j). Similarly
applying Lemma 7.4 to Dk = 〈Sk(I3)I3〉 with Cr = I3 and Ar = I3 = ei ∧Ei gives

∂MnDk = 2
∑

j∈Jkn
P̄TMn

(M̃nΛjBkj),

Bkj =
3∑

i=1

B
(
ei, Sk(Ei) · I3,Λj

) ∈R
3
4,1. (7.17)

Using (7.5), (7.6), (7.16), and (7.17), we can calculate ∂Mnd
2, n= 1, . . . ,N .

7.3.2.1 Constraints
Because the optical centres of the cameras are very close, the distances between
them do not provide effective yardsticks to scale the problem. This can be remedied
by adding additional larger yardsticks such as the distance between two targets or
the distance between two poses.

Distance Between Two Targets Let do
kl be the measured distance between the kth

and lth targets. The normalised dual sphere s with centre q in Lemma 7.2, repre-
senting the closest point to all the lines, has radius |q|. It follows that the distance
between the kth and lth targets is given by dkl = |tkl | where tkl = sk − sl , and we
can impose the constraint

εkl = dkl − do
kl = 0.

To evaluate the derivative ∂Mnε
2
kl , we make use of the following result:

Lemma 7.5 Let F(X) be a multivector-valued function of a multivector X such
that |F |2 = 〈FF̃ 〉. Then

∂X|F | = ∂̇X〈Ḟ Ũ 〉 where U = F

|F | .

Proof ∂X|F |2 = 2|F |∂X|F | and ∂X|F |2 = ∂X〈FF̃ 〉 = 2∂̇X〈Ḟ F̃ 〉. �

The condition |F |2 = 〈FF̃ 〉 will clearly be met if F is Euclidean. As tkl ∈R
1
3 is

Euclidean, Lemma 7.5 gives

140 R. Valkenburg and N. Alwesh

∂Mnε
2
kl = 2εkl∂Mn |tkl |
= 2εkl ∂̇Mn〈ṫklu〉
= 2εkl

(
∂̇Mn〈ṡku〉 − ∂̇Mn〈ṡlu〉

)
,

where u= tkl|tkl | . Note that

〈sku〉 = 〈Sk(I3)(u · I4)〉
〈Sk(I3)I3〉 = Nk

Dk

.

Using the product rule, we can express ∂̇Mn〈ṡku〉 in terms of ∂MnNk and ∂MnDk .
Using Lemma 7.4 with Ar = I3 = ei ∧Ei and Cr = u · I4 or Cr = I3 gives

∂MnNk = 2
∑

j∈Jkn
P̄TMn

(M̃nΛjBkj), Bkj =
3∑

i=1

B
(
ei, Sk(Ei) · (u · I4),Λj

)
,

∂MnDk = 2
∑

j∈Jkn
P̄TMn

(M̃nΛjBkj), Bkj =
3∑

i=1

B
(
ei, Sk(Ei) · I3,Λj

)
.

Similarly ∂̇Mn〈ṡlu〉 can be computed by replacing Sk with Sl in the above equations.

Distance Between Two Poses Similarly, a measured distance do
kl between two

poses Mk = TkRk and Ml = TlRl can be used to scale the problem. The relative
pose is given by M = M̃kMl = R̃kT̃kTlRl . We can factor this as M = T R where
T = R̃kT̃kTlRk and R = R̃kRl . The distance between the two poses can be written
as dkl = 2|no ·M| = |tk − tl |, and we can impose the constraint

εkl = dkl − do
kl = 0.

As |Q|2 = 〈QQ̃〉 where Q= no ·M , Lemma 7.5 gives

∂Mnε
2
kl = 4εkl∂Mn |no ·M|
= 4εkl ∂̇Mn

〈
(no · Ṁ)Ũ

〉

with U = Q
|Q| . As 〈(no ·M)Ũ 〉 = 〈noMŨ 〉, we get 〈(no ·M)Ũ 〉 = 〈MlŨnoM̃k〉 =

〈MknoUM̃l〉. It follows that

∂Mk
ε2
kl = 4εkl P̄TMk

(noUM̃l),

∂Ml
ε2
kl = 4εkl P̄TMl

(ŨnoM̃k).

7 Calibration of Target Positions Using Conformal Geometric Algebra 141

7.3.2.2 Parameterisation
These multivector derivatives are not suitable for using directly with standard op-
timisation tools such as the NAG library which make use of information such as
gradient vectors and Jacobian matrices. However we can easily interface with such
tools using the chain rule. Let X(α) ∈ G , where α ∈ R

p , be a parameterisation of
a multivector, s(X) ∈ R be a scalar-valued function of a multivector, and define
g :Rp→R by g(α)= s(X(α)). The gradient ∇αg is given by

[∇αg]i = ∂αi g =
〈
∂αiX(α)∂Xs(X)

〉
.

A parameterisation of a motor M : R
6 → M ⊂ R4,1 is given by M(α) =

exp(− 1
2B(α)) where B(α)=∑I αIBI and BI ∈ {e12, e13, e23, e1n∞, e2n∞, e3n∞}.

Making use of Chasles’s theorem allows M = exp(− 1
2B) and B = −2 lnM to be

efficiently calculated [1]. We have

∂αIM(α)=−1

2
∂αI B(α) ∗ ∂B ′ exp

(
B ′
)∣
∣
B ′=− 1

2B(α)

=−1

2
BI ∗ ∂B ′ exp

(
B ′
)∣
∣
B ′=− 1

2B(α).

To evaluate this, we make use of the following result:

Lemma 7.6 Let A and B be bivectors. Then

A ∗ ∂BeB = eBF (A,B), (7.18)

where F(A,B) is bivector-valued function given by

F(A,B)=
∑

k

2kTk/(k + 1)!

and Tk = 〈Tk−1B〉2 = 〈〈· · · 〈〈AB〉2B〉2 · · ·〉2B〉2 with T0 =A.

This can be easily proved using (2.31) from [3] on the left-hand side of (7.18),
expanding the right-hand side, and comparing terms. By observing that AB2 = B2A

for A,B ∈ B the function F(A,B) can be expressed as

F(A,B)=A+ 1

2

(
1− 2B − e−2B)B−2〈BA〉2,

which makes Lemma 7.6 of practical interest. Thus we have ∂αIM(α)=MF(− 1
2BI ,

− 1
2B). If α ∈R

6 are the parameters associated with Mn =Mn(α), then the gradient
component ∇αd2 associated with Mn is given by

[∇αd2]
i
= 〈∂αiM∂Xnd

2〉= 〈∂αiM∂Mnd
2〉.

142 R. Valkenburg and N. Alwesh

The last equality holds because, by definition, ∂αiM(α) ∈TM and for any Δ ∈TM ,
we have 〈Δ∂X〉 = 〈PTM

(Δ)∂X〉 = 〈ΔP̄TM
(∂X)〉 = 〈Δ∂M 〉. In this way the multivec-

tor derivatives ∂Mnd
2, n= 1, . . . ,N , can be used to form a 6N gradient vector. An

important point is that the derivative of the parameterisation is completely decou-
pled from the multivector derivative and the exact choice of parameterisation can be
delayed and easily changed.

It is apparent that, in the current situation, d2 could simply have been differen-
tiated with respect to unconstrained M ∈M, rather than constrained M ∈M (by
constraining the derivative to TM) as this would have still given rise to ∇αd2 when
the scalar products are formed with ∂αiM(α). Indeed we could have differentiated
d2 with respect to any variable X ∈ X ⊃ TM because 〈Δ∂X〉 = 〈Δ∂M 〉. However,
we ultimately wish to optimise directly using elements of the algebra, and in this
case we will want to step in the tangent space.

Given the objective function, constraints, their gradients, and an initial estimate,
the problem can be formulated in a standard way as a constrained optimisation, or
an optimisation with barrier functions.

7.3.3 Reconstructing the Target Positions

Given the lines Λo
j in CSM and poses Mn, n = 1, . . . ,N , of CSM in CSW, it is a

simple matter to reconstruct target positions in CSW. First the lines are mapped into
CSW using (7.4):

Λj =MnΛ
o
jM̃n, n= n(j).

The lines associated with the kth target, Λj , j ∈ Jk , are then triangulated using
(7.2) in Lemma 7.2:

qk =−1

2
skn∞sk = sk + 1

2
s2
k n∞, sk =−〈Sk(I3)I4〉1

〈Sk(I3)I3〉 .

Several target calibrations of the same target field, made at different times for ex-
ample, can be merged into a single optimal (as defined below) set of targets. Each
calibration γ = 1, . . . ,Γ will give rise to a set of target points qo

k,γ , k = 1, . . . ,K ,
each in a different coordinate system. As with the line data (compare (7.4)), we can
transform the points to bring them into a common coordinate system

qk,γ =Mγq
o
k,γ M̃γ , k = 1, . . . ,K.

Ideally, when Mγ are chosen correctly, qk,γ , γ = 1, . . . ,Γ , will coincide, but mea-
surement noise on qk,γ will prevent this from happening exactly.

In general, given several measurements of a point qγ , γ = 1, . . . ,Γ , the mean
q = 1

Γ

∑Γ
γ=1 qγ is an imaginary dual sphere

7 Calibration of Target Positions Using Conformal Geometric Algebra 143

q = q+ no + 1

2
q2n∞

= q+ no + 1

2
q2n∞ − 1

2

(
q2 − q2

)
n∞.

The squared radius of this mean sphere is the variance of the points about their
centroid

d2 =−q2 = q2 − q2.

We can use this to merge the points by minimising the sum of these errors for all
targets

d2 = d2(M1, . . . ,MΓ)=−
∑

k

q2
k.

The multivector derivative ∂Mγ d
2 can also be calculated:

∂Mγ d
2 =−

∑

k

∂Mγ q
2
k

=−2
∑

k

∂̇Mγ 〈q̇kqk〉

= − 2

Γ

∑

k

∂̇Mγ

〈
Mγq

o
k,γ M̃γ qk

〉

=− 4

Γ
P̄TMγ

(

M̃γ

∑

k

qk,γ qk

)

.

With the derivatives ∂Mγ d
2, we can minimise d2 over Mγ , γ = 1, . . . ,Γ , to obtain

a merged data set. The new targets are then taken as qk =− 1
2qkn∞qk .

As previously mentioned, CSW was temporarily identified with one of the po-
sitions of CSM. The motor M representing the pose of the temporary CSW in the
actual CSW can now be calculated, and the target positions mapped into the true
CSW,

q ′k =MqkM̃, k ∈K.

Exactly how M is obtained is application specific and depends on how the true
CSW is defined. For example, three or more targets, say qo

k , k ∈K ′, may have been
surveyed in the true CSW. M can then be easily estimated from {qk, qo

k }, k ∈K ′, as a
small 4D eigenrotator problem (see [6], which is Chap. 2 in this book). Alternatively,
one target qo may be assigned to the origin, another on the x-axis qx , and another in
the xy-plane qxy . Again the motor can be easily calculated. Recall that the targets
and camera group comprise a 6-DoF optical positioning system. Another approach

144 R. Valkenburg and N. Alwesh

Fig. 7.5 Model of laboratory
showing targets as small
spheres and positions of
camera group as coordinate
systems (axis length is 1 m)

is to move the camera group to a position in space that we wish to define as CSW.
Some line data can be gathered and the motor M estimated by recovering the pose
CSM in the temporary CSW.

7.4 Results

The algorithm has been used in practice for a number of years to calibrate targets for
an optical positioning system when it is deployed in new locations. In this section
we test the algorithm on some measured line data in a laboratory. The camera group
comprised C = 6 calibrated cameras mounted on a mechanical rig so that the image
planes were parallel with the faces of a cube as shown in Fig. 7.1. Each camera
had an image size of 640 × 480 pixels with a field of view of approximately 90°
across the larger image dimension. The intrinsic parameters of each camera were
accurately calibrated. As we used wide angle lenses, a lens distortion model which
includes three radial distortion terms and two decentering terms was used. In ad-
dition, the pose of each camera in CSM was accurately calibrated using conformal
geometric algebra as described in [5]. The procedure is quite similar to the current
algorithm for target calibration. The K = 32 targets were located on the walls and
ceiling of a laboratory with dimensions 8.7 meters long by 5.1 meters wide by 2.9
meters high. Figure 7.5 shows a model of the laboratory with the targets shown as
small spheres.

The camera group was moved to N = 28 positions in the laboratory (an example
is shown as coordinate systems in Fig. 7.5) and line data Λo

j , j ∈ J =⋃K
k=1 Jk ,

gathered as described in Sect. 7.2. A constraint was introduced by measuring the
distance between a pair of poses. The acquisition for a single position takes about
0.8 seconds, and the total acquisition for all positions takes a few minutes. This
procedure was repeated four times to give four independent sets of line data. The
algorithm was then applied to each of these four sets of data.

7 Calibration of Target Positions Using Conformal Geometric Algebra 145

Table 7.1 Error between the measured lines and reconstructed target positions (m)

avg rms max

lines and targets (m) 0.001797 0.002123 0.007908

Table 7.2 Standard deviation of target estimates about their centroids

avg rms max

target std. dev. (m) 0.000668 0.000813 0.003121

Table 7.3 Error between measured and model positions of CSM

avg rms max

distance error (m) 0.00012 0.00014 0.00034

The results presented in Table 7.1 are consolidated for all four data sets. It gives
an indication of model fit adequacy by summarising how close the lines came to the
reconstructed target positions. To get a feel for repeatability, the four sets of recon-
structed target positions were merged together into a single set of target positions by
minimising the dispersion associated with each target, as described in Sect. 7.3.3.
Table 7.2 shows the dispersion of the target sets about the optimal merged target
set. It is difficult to obtain a reference measurement of the target positions with,
for example, a total station because the target LEDs are not ideal for measuring
(the light penetrates into them). Flat retro-reflective targets would have been bet-
ter suited for this task. We can however estimate target location accuracy indirectly
by using the system as a 6-DoF positioning sensor. We translated the system to 12
equally spaced positions along a linear stage and calculated the motors Mn at each
position with respect to the target locations. Ideally the origin of CSM given by the
data points po

n = M̃nnoMn will fall exactly on a line and be equally separated by the
known amount. A perfect model of 12 equally spaced points pn on a line was fitted
to the data po

n in the total least squares sense, and the results are presented in Ta-
ble 7.3. The results shown in Table 7.1 to Table 7.3 are typical for multiple runs with
the same camera group and approximate target configuration. Ideally we would like
the measured line data Λj ∈ Jk to pass exactly through their associated targets qk .
The quality of the measured line data is affected by several factors which can be
broadly separated into noise errors and modelling errors. The subpixel estimates
of the target locations will not be perfect, and camera sensor noise, quantisation,
imperfect (wide angle) optics, etc. will contribute to the error. These estimates are
backprojected through the camera model to provide lines in the camera coordinate
system. The accuracy of this step is affected by the quality of the camera intrinsic
calibration. The lines are then rotated and translated into CSM to give the data Λj ,
and this step is affected by the quality of pose calibration for each camera in CSM.
The intrinsic camera parameters are easy to calibrate to very high accuracy. Based
on the quantity of data used and the residuals obtained during camera intrinsic cali-
bration, we can eliminate this as a significant source of error. The camera poses are

146 R. Valkenburg and N. Alwesh

Fig. 7.6 Regions of interest from an image showing a target: (left) from centre image; (right) from
bottom right of image showing significant distortion

more difficult to determine, but if we gather enough data (by moving to 200 or more
positions), we can again eliminate this as a significant source of error. However, the
camera lenses are very wide angle and exhibit some large aberrations in the outer
field. This results in significant deformation of the target image shape with small
circular targets becoming comet shaped (see Fig. 7.6). We are investigating better
lenses and expect improvements to the results when they have been incorporated.
The repeatability results are influenced by three targets which are responsible for
the six largest errors. Removing these three targets brings the maximum error down
to just over a millimetre (and the average and root mean square values drop accord-
ingly). The three targets are in geometrically poor positions. For example, the worse
errors came from the target in the bottom right in Fig. 7.5. Because of the shape of
the laboratory, this target can only be viewed from a narrow range of angles.

Recall that CSW is temporarily identified with a position of CSM as described
in Sect. 7.3. This avoided over-parameterisation in the system model by fixing one
of the motors at a constant value (Mn′ = 1). If this was not done, we could mul-
tiply all the motors Mn, n = 1, . . . ,N , by an arbitrary motor M and get the same
error. However, with many optimisers this step of fixing a motor is unnecessary and
actually counter-productive. We observed the optimiser converged approximately
30% faster if we did not fix a motor, and the error was the same as expected. This
can be explained as follows. By fixing Mn′ = 1, all other motors Mn must adjust
a little further to find the solution. When Mn′ is also allowed to adjust, a solution
in the “middle” is found which is closer to all motors on average. Even though the
problem is overdetermined, the optimiser has no difficultly terminating.

7.5 Conclusions

In this chapter an algorithm for calibrating the 3D position of multiple stationary
point targets has been presented. The targets and camera group form part of an op-
tical 6-DoF positioning system. The algorithm is developed in the conformal model
of Euclidean space, expressed in terms of the Geometric Algebra R4,1.

7 Calibration of Target Positions Using Conformal Geometric Algebra 147

The conformal model proved very useful for the theoretical and practical de-
velopment of the calibration algorithm. In general, expressions were simpler than
those for the homogeneous model [7]. The ability to differentiate with respect to
a motor (rather than a rotator and a translation vector) significantly simplified the
implementation of the gradient. The choice of parameterisation can be delayed and
readily changed without affecting ∂Mnd

2. The ability to represent many objects and
operators (e.g. vectors, points, lines, dual spheres, motors) as elements of a single
algebra simplified the software implementation of the algorithm. The extension of
linear operators to multivectors via outermorphism allowed a compact representa-
tion of results (e.g. (7.2) and (7.3)). Expressing inversion in terms of duality sim-
plified expressions involving inverses, and in particular allowed them to be more
easily differentiated. For example, (7.2) for the closest point to a number of lines
is expressed in terms of duality. This formulation is more elegant than equivalent
formulation in terms of matrix theory, where it is most natural to involve a matrix
inverse.

The error function used in the algorithm is simple and elegant but does not accu-
rately reflect the sources of noise in the measured data such as the subpixel image
locations of the targets. It would be useful to develop new error functions which
better model noise and compare the results.

7.6 Exercises

7.1 Show that ∂R〈RAR̃B〉 = ∂X〈XAX−1B〉|X=R where X ∈R
+
3 , A,B are general

multivectors, and R ∈R ⊂ R
+
3 is a rotator, without resorting to directional deriva-

tives as in the text. Consider only the derivative ∂Y 〈YAY−1B〉 and note that the
relevant projections satisfy P

R
+
3
(Y)= P̄TR

(Y)+ 〈YR〉R̃ for any multivector Y .

7.2 In the text the necessary derivatives are developed largely by algebraically ma-
nipulating the expressions into a form which is easily to differentiate. Compare this
approach to direct application of the multivector chain rule.

7.3 In Lemma 7.2 we find the optimal dual sphere s using constrained optimisation.
Show that you can arrive at the first-order optimality condition S(s) + αn∞ = 0
directly from geometric considerations. If we project a dual sphere on all the lines
and take the average, we get a new dual sphere. Consider finding the dual sphere
whose centre is at the same position as its associated average sphere. This gives
1
N

∑
j∈J PΛj

(s)= s+ 1
N
d2n∞. From this we also recover the value of the Lagrange

multiplier as d2.

Acknowledgements This work was supported by the New Zealand Foundation for Research,
Science and Technology.

148 R. Valkenburg and N. Alwesh

References

1. Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science, An Object-
Oriented Approach to Geometry. The Morgan Kaufman Series in Computer Graphics. Elsevier,
Amsterdam (2007)

2. Faugeras, O.: Three-Dimensional Computer Vision: A Geometric Viewpoint. MIT Press, Cam-
bridge (1993)

3. Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus. Reidel, Dordrecht (1984)
4. Lasenby, J., Lasenby, A.N., Doran, C.J.L., Fitzgerald, W.J.: New geometric methods for com-

puter vision: an application to structure and motion estimation. Int. J. Comput. Vis. 36(6), 191–
213 (1998)

5. Valkenburg, R.J., Alwesh, N.: Calibration of the relative poses of multiple cameras. In: Image
and Vision Computing New Zealand 2009. Wellington, New Zealand, 2009

6. Valkenburg, R., Dorst, L.: Estimating motors from a variety of geometric data in 3D conformal
geometric algebra. In: Dorst, L., Lasenby, J. (eds.) Guide to Geometric Algebra in Practice.
Springer, London (2011), Chap. 2 in this book

7. Valkenburg, R., Lin, X., Klette, R.: Self-calibration of target positions using geometric algebra.
In: Proceedings of Image and Vision Computing New Zealand, pp. 221–226 (2004)

Part III
Image Processing

Apart from the obviously geometrical applications in tracking and 3D reconstruc-
tion, geometric algebra finds inroads in image processing at the signal description
level. It can provide more symmetrical ways to encode the geometrical properties
of the 2D or 3D domain of such signals.

8Quaternion Atomic Function for Image
Processing

Eduardo Bayro-Corrochano and Eduardo Ulises Moya-Sánchez

Abstract
In this work we introduce a new kernel for image processing called the atomic
function. This kernel is compact in the spatial domain, and it can be adapted to
the behavior of the input signal by broadening or narrowing its band ensuring a
maximum signal-to-noise ratio. It can be used for smooth differentiation of im-
ages in the quaternion algebra framework. We discuss the role of the quaternion
atomic function with respect to monogenic signals. We then propose a steerable
quaternion wavelet scheme for image structure and contour detection. Making
use of the generalized Radon transform and images processed with the quaternion
wavelet atomic function transform, we detect shape contours in color images. We
believe that the atomic function is a promising kernel for image processing and
scene analysis.

8.1 Introduction

This work introduces the atomic function for grey scale and color image processing
using the quaternion algebra framework. The goal of this book is to present appli-
cations of geometric algebra techniques; for example, conformal geometric algebra
has been recently used in neural computing and robot vision. The quaternion algebra
is a sub-algebra of the 3D Euclidean geometric algebra, 4D motor algebra and the
3D conformal geometric algebra. This chapter shows how quaternion atomic filters
can be used as smoothing and differentiator filters to carry out differential geometry
on the visual manifold. These techniques can be further extended to compute, for

E. Bayro-Corrochano (�) · E.U. Moya-Sánchez
Campus Guadalajara, CINVESTAV, Jalisco, Mexico
e-mail: edb@gdl.cinvestav.mx

E.U. Moya-Sánchez
e-mail: emoya@gdl.cinvestav.mx

L. Dorst, J. Lasenby (eds.), Guide to Geometric Algebra in Practice,
DOI 10.1007/978-0-85729-811-9_8, © Springer-Verlag London Limited 2011

151

mailto:edb@gdl.cinvestav.mx
mailto:emoya@gdl.cinvestav.mx
http://dx.doi.org/10.1007/978-0-85729-811-9_8

152 E. Bayro-Corrochano and E.U. Moya-Sánchez

example, Riemannian differential geometry. In this regard the quaternion atomic fil-
ters appear to be useful for differential geometry. A practical example is their use for
optical flow detection which, together with epipolar geometry, makes possible the
development of very useful algorithms for 3D robot vision. Thus our chapter con-
tributes to this book by presenting a novel filter for image processing which brings
geometric computing into play.

The atomic function AF was introduced in the 1970s by V.L. and V.A. Rvachev.
Since then, it has given rise to new research areas in mathematical analysis, sig-
nal processing, numerical methods, and so forth [7, 18, 20]. This work presents the
theory and some applications of the quaternion atomic function Qup in image pro-
cessing as a novel quaternionic wavelet. We use the AF because it is versatile, easy
to differentiate (simply shift), compact in the spatial domain, and can represent any
polynomial by means of its translations [9, 12, 18, 20]. We developed the Qup(x)
using the quaternion algebra H. The quaternion atomic function permits us to extract
the phase information from the image [1, 3, 11]. In this work we also discuss the role
of the quaternion atomic function with respect to monogenic signals. Furthermore,
we propose a steerable quaternion wavelet scheme for image structure detection.
Using the generalized Radon transform and images processed with the quaternion
wavelet atomic function, we look for contours in color images, showing that the
atomic function is a promising kernel for image processing and scene analysis.

We structure this work as follows: Sect. 8.2 is devoted to presenting the AF
and the main characteristics; the subject of Sect. 8.3 is the quaternion algebra;
Sect. 8.4 introduces the quaternion atomic function. In Sect. 8.5, we briefly com-
ment on monogenic signals and atomic functions. Section 8.6 describes the quater-
nion wavelet atomic function transform. In Sect. 8.7, we outline the generalized
Radon transform, explaining how we detect shape contours using images processed
with the quaternion wavelet atomic function transform. In Sect. 8.8, we present the
applications; finally, in Sect. 8.9, we present the conclusions.

8.2 Atomic Functions

Atomic functions are compactly supported, infinitely differentiable solutions of dif-
ferential equations with a shifted argument [12, 18], namely,

Lf (x)= λ

M∑

k=1

c(k)f
(
ax − b(k)

)
, |a|< 1, (8.1)

where L= dn

dxn
+ a1

dn−1

dxn−1 + · · · + an is a linear differential operator with constant
coefficients. In the AF class, the function up(x) is the simplest and, at the same time,
most useful primitive function to generate other kinds of atomic functions [12]. It
satisfies the equation

f (x)′ = 2
(
f (2x + 1)− f (2x − 1)

)
(8.2)

8 Quaternion Atomic Function for Image Processing 153

Fig. 8.1 Atomic function up(x) and the Fourier transform of up(x)

with compact support. The main characteristics of this function are well described
in [7, 12, 20]. The function up(x) is infinitely differentiable, up(0)= 1, up(−x)=
up(x). Other types of AF satisfying (8.1) are fupn(x), Ξn(x), ha(x) [7]. In this work
we only use the functions up(x) and dup(x), see (8.6).

8.2.1 The Atomic Function up(x)

In general, the atomic function up(x) is generated by infinite convolutions of rect-
angular impulses. The function up(x) has the following representation in terms of
the Fourier transform [7, 18, 20]:

up(x)= 1

2π

∫ ∞

∞
eiux

∞∏

k=1

sin(u2−k)
u2−k

du. (8.3)

Figure 8.1 shows the up(x) and its Fourier transform F(up(x)). Atomic windows
were compared with classic ones [7, 12] by means of a system of parameters such
as the equivalent noise bandwidth, the 50% overlapping region correlation, the par-
asitic modulation amplitude, the maximum conversion losses (in decibels), the max-
imum side lobe level (in decibels), the asymptotic decay rate of the side lobes (in
decibels per octave), the window width at the six-decibel level, and the coherent
gain. The properties of all atomic windows exceed those of the classic ones show-
ing higher asymptotic decay rate [7, 12].

154 E. Bayro-Corrochano and E.U. Moya-Sánchez

The main properties of the up(x) are as follows: up(x) is even, its maximum
value is up(0)= 1,

∫ 1
−1 up(x)= 1, the support domain or supp up(x)= [−1,1], and

the first derivative has a simple expression.

8.2.2 The Differentiator Atomic Function dup(x)

Some mask operators, such as the Sobel, Prewitt, and Kirsch, are used to process
images. A common drawback to these approaches is that it is impossible to ensure
the required characteristics over a wide range of the working band of the processed
signals and difficult to retune to adapt to the signal parameters [9]. This means
that adaptation of the differential operator to the behavior of the input signal by
broadening or narrowing its band is desirable, in order to ensure a maximum signal-
to-noise ratio [9].

This problem reduces to the synthesis of infinitely differentiable finite functions
with small-diameter carriers that are used for constructing the weighting windows
[7, 9, 18]. One of the most effective solutions is obtained with the help of the atomic
functions [9]. The AF can be used in two ways: for the construction of a window
in a certain frequency region to improve the properties of the impulse response or
the direct synthesis based in (8.1) [9]. Therefore, the function up(x) satisfies the
functional (8.2), and if we compute the Fourier transform of (8.2), we obtain

iuFup(2u)=
(
eiu − e−iu

)
Fup(2u), (8.4)

F
(
dup(x)

)= 2i sin(u)F
(
up(2x)

)
, (8.5)

with dup(·) introduced below.
Therefore, the function up(x) satisfies (8.2) and also satisfies (8.1), as mentioned.

Upon differentiating (8.2) term by term, we obtain the derivatives of up(x) called
d(n)up(x) [18]:

d(n)up(x)= 2n(n+1)/2
2n∑

k=1

δkup
(
2nx + 2n + 1− 2k

)
, (8.6)

where δ2k =−δk , δ2k−1 = δk , δ2k = 1. We abbreviate this family of derivative func-
tions as dup(x). They provide a good window in the spatial frequency regions since,
in this case (frequency), the side lobes have been completely eliminated [9]. Fig-
ure 8.2 illustrates the first derivative, dup (8.2) in 1D and 2D, and also shows the
2D convolution with a test image. This differentiator, dup, can also be used as an
oriented line detector via simple rotation.

8.3 Quaternion Algebra

The quaternion algebra H was invented by W.R. Hamilton in 1843 [8]. It is an
associative, non-commutative, four-dimensional algebra

8 Quaternion Atomic Function for Image Processing 155

Fig. 8.2 Convolution of
dup(x, y) with the test image:
(upper row) dup(x); (middle
row) dup(x, y); (lower row)
(a) test image; results of
convolutions with dup(x, y)
oriented at (b) 0°; (c) 45°;
(d) 135°

H= {q= s + xi + yj + zk | s, x, y, z ∈R}, (8.7)

where the orthogonal imaginary numbers i, j , and k obey the following multiplica-
tive rules:

i2 = j2 =−1, k = ij =−ji→ k2 =−1. (8.8)

The conjugate of a quaternion is given by

q̄= s − xi − yj − zk. (8.9)

For the quaternion q, we can compute its partial angles as

argi (q) = arctan2(x, s), argj (q)= arctan2(y, s),

argk(q) = arctan2(z, s),
(8.10)

156 E. Bayro-Corrochano and E.U. Moya-Sánchez

and its partial moduli and its projections on its imaginary axes as

modi (q)=
√
s2 + x2, modj (q)=

√

s2 + y2,

modk(q)=
√
s2 + z2, modi (q) exp

(
i argi (q)

)= s + xi,

modj (q) exp
(
j argj (q)

)= s + yj,

modk(q) exp
(
k argk(q)

)= s + zk.

(8.11)

The concept of a quaternionic Hermitian function is very useful for the computation
of any kind of inverse quaternionic transforms using the quaternionic analytic signal.
As an extension of the Hermitian function f : R→ C with f (x) = f ∗(−x) for
every x ∈R, we regard f :R2→H as a quaternionic Hermitian function if it fulfills
the following nontrivial involution rules:

f (−x, y) = −jf (x, y)j :=Tj

(
f (x, y)

)
,

f (x,−y) = −if (x, y)i :=Ti

(
f (x, y)

)
,

f (−x,−y) = −if (−x, y)i =−i(−jf (x, y)j
)
i

= (−i − j)f (x, y)(j i)

= −kf (x, y)k :=Tk

(
f (x, y)

)
.

(8.12)

Similar to the complex numbers, which can be expressed in a polar representation,
we can also represent a quaternion q= r + xi + yj + zk in a polar form:

q= |q|eiφekψejθ , (8.13)

where the phase ranges are delimited as follows:

(φ, θ,ψ) ∈ [−π,π[×
[

−π

2
,
π

2

[

×
[

−π

4
,
π

4

]

.

For a unit quaternion q= q0+qxi+qyj+qzk, |q| = 1, its phase can be evaluated
first by computing

ψ =−arcsin(2(qxqy − q0qz))

2
(8.14)

and then by checking that it adheres to the following rules:

• If ψ ∈]−π
4 ,

π
4 [, then φ = argi (qTj (q̄))

2 and θ = argj (Ti (q̄)q)
2 .

• If ψ = ±π
4 , then select either φ = 0 and θ = argj (Tk(q̄)q)

2 or θ = 0 and φ =
argi (qTk(q̄))

2 .
• If eiφekψejθ =−q and φ ≥ 0, then φ→ φ − π .
• If eiφekψejθ =−q and φ < 0, then φ→ φ + π .

8 Quaternion Atomic Function for Image Processing 157

8.4 Quaternion Atomic Function Qup(x)

The up(x) function is easily extendible to two dimensions. Since a 2D signal can be
split into even (e) and odd (o) parts [3],

f (x, y)= fee(x, y)+ foe(x, y)+ feo(x, y)+ foo(x, y), (8.15)

one can then separate the four components of (8.3) and represent them as a quater-
nion as follows:

Qup(x, y)= up(x, y)
[
cos(wx) cos(wy)+ i sin(wx) cos(wy)

+ j cos(wx) sin(wy)+ k sin(wx) sin(wy)
]

=Qupee(x, y)+ iQupoe(x, y)+ jQupeo(x, y)+ kQupoo(x, y)

=Φq(x, y)+ iΨ
q
i (x, y)+ jΨ

q
j (x, y)+ kΨ

q
k (x, y). (8.16)

Note that in (8.16) we rename Qup as Φ and Ψ , because we want to use a simi-
lar notation to that used for multiresolution wavelet pyramids. Figure 8.3 shows a
quaternion atomic function Qup in the space and frequency domains with its four
components: the real part Qupee and the imaginary parts Qupeo, Qupoe , and Qupoo.
We can clearly see the differences in each part of our filter.

Next we show the performance of Qup to detect edge changes using the phase
concept. In Fig. 8.4, we see the phase changes along a transversal cut of an image
with straight edges. Figure 8.5 shows the quaternionic phases by three transverse
lines along a circle, a square, and a group of squares. We can see that the phases
yield very useful information about shape contour changes.

8.5 Monogenic Signal and the Atomic Function

First we will outline the concept of a monogenic signal introduced by Felsberg,
Bülow, and Sommer [5]. If we embed R

3 into a subspace of H spanned by just
{1, i, j} according to

q = (i, j,1)x= x3 + x1i + x2j, (8.17)

and further embed the vector field g as follows:

gH = (−i,−j,1)g= g3 − g1i − g2j, (8.18)

then & × g(x) = 0 and & · g(x) = 0 are equivalent to the generalized Cauchy–
Riemann equations from Clifford analysis [2, 16]. All functions that fulfill these
equations are known as monogenic functions. Using the same embedding, the mono-
genic signal can be defined in the frequency domain as follows:

158 E. Bayro-Corrochano and E.U. Moya-Sánchez

Fig. 8.3 Quaternion atomic function, elongated by sx = 0.3, sy = 0.25 (see (8.28)), and oriented at
45°. (a) In the frequency domain, the magnitude and the three imaginary quaternionic components;
(b) in the spatial domain, the magnitude and the three imaginary quaternionic components; (c) 3D
shapes of the quaternionic components in the spatial domain

FM(u)=G3(u1, u2,0)− iG1(u1, u2,0)− jG2(u1, u2,0)

= F(u)− (i, j)FR(u)= |u| + (1, k)u
|u| F(u), (8.19)

where the inverse Fourier transform of FM(u) is given by

fM(x)= f (x)− (i, j)fR(x)= f (x)+ hR � f (x), (8.20)

8 Quaternion Atomic Function for Image Processing 159

Fig. 8.4 (From up to bottom) Image; image of a transverse cut; quaternionic phases with respect
to the transverse cut

Fig. 8.5 Quaternionic phases by three transversal lines along (a) a circle; (b) a square; and
(c) a group of squares

160 E. Bayro-Corrochano and E.U. Moya-Sánchez

Fig. 8.5 (continued)

8 Quaternion Atomic Function for Image Processing 161

Fig. 8.5 (continued)

where fR(x) stands for the Riesz transform [4] obtained by taking the inverse trans-
form of FR(u) as follows:

FR(u)= iu
|u|F(u)=HR(u)F (u)←→ fR(x)=− x

2π |x|2 � f (x)

= hR(x) � f (x), (8.21)

where � stands for the convolution operation. Note that here the Riesz transform
is the generalization of the 1D Hilbert transform. Using the fundamental solution
of the 3D Laplace equation restricted to the open half-space z > 0 with boundary
condition, the solution is defined as

fM(x, y, z)= hP � f (x, y, z)+ hP � hR � f (x, y, z)

= hP � (1+ hR�)f (x, y, z), (8.22)

where hP stands for the 2D Poisson kernel. Setting in fM(x, y, z) the variable z

equal to zero, we obtain the so-called monogenic signal. Some authors have used the
Gauss kernel instead of the Poisson kernel, because the Poisson kernel establishes a
linear scale space similar to the Gaussian scale space.

The atomic function is also an LSI operator; therefore, it appears that its use en-
sures a computation in a linear scale space as well. In a paper to appear elsewhere,
we will give the theoretical foundations to prove that the AF satisfies a set of neces-
sary axioms.

162 E. Bayro-Corrochano and E.U. Moya-Sánchez

The monogenic functions are the solutions of generalized Cauchy–Riemann
equations or Laplace-type equations. The atomic function can be used to compute
compactly supported solutions of functional differential equations, for example,
(8.1). Conditions under which the type of equations (8.1) have solutions with com-
pact support and explicit form were obtained by Kravchenko et al. [12]. Compactly
supported solutions of equations of the type (8.1) are called atomic functions.

Now, for the case of 2D signal processing, we can apply the wavelet steerability
and the Riesz transform. In this regard we will utilize the quaternion wavelet atomic
function, which will be discussed in more depth in the next section.

8.6 Quaternion Wavelet Atomic Function Transform

The word wavelet was used for the first time in the thesis of Alfred Haar in 1909.
Surprisingly, the wavelet transform (WT) has become a useful signal processing tool
only in the last few decades, mainly due to the contributions in the areas of applied
mathematics and signal processing [10, 13–15]. Generally speaking, the WT is an
approach that overcomes the shortcomings of the windowed Fourier transform as the
WT detects changes in both in the spatial and in the frequency domains. Thanks to
the development of the quaternion Fourier transform (QFT) [3], the generalization
of the real and complex wavelet transform to the Quaternion Wavelet Transform
(QWT) was straightforward.

The QWT is a natural extension of the real and complex wavelet transform,
taking into account the axioms of the quaternion algebra, the quaternionic analytic
signal [3], and its separability property. The QWT can be applied to signals of 2D
or higher dimensions.

Multi-resolution analysis can also be straightforwardly extended to the quater-
nionic case; we can therefore improve the power of the phase concept, which is not
possible in real wavelets and, in the case of complex wavelets, is limited to only
one phase. Thus, in contrast to the similarity distance used in the complex wavelet
pyramid [19], we favor the quaternionic phase concept for top–down parameter es-
timation.

For the quaternionic versions of the wavelet scale function h and the wavelet
function g, in general we choose two quaternionic modulated filters in quadrature
as follows:

hq = h(x, y,σ1, ε) exp

(

i
c1ω1x

σ1

)

exp

(

j
c2εω2y

σ1

)

= h
q
ee + h

q
oei + h

q
eoj + h

q
ook,

gq = g(x, y, σ2, ε) exp

(

i
c̃1ω̃1x

σ2

)

exp

(

j
c̃2εω̃2y

σ2

)

= g
q
ee + g

q
oei + g

q
eoj + g

q
ook,

(8.23)

8 Quaternion Atomic Function for Image Processing 163

where the parameters σ1, σ2, c1, c2, c̃1, c̃2, w1, w2, w̃1, w̃2 are selected for the
fulfillment of the requirements of bandwidth and cut frequency. Note that the hor-
izontal axis x is related to i and the vertical axis y is related to j ; both imaginary
numbers of the quaternion algebra fulfill the equation k = ji.

The right-hand sides of (8.23) and (8.23) obey a natural decomposition of a
quaternionic analytic function: the subindex ee is an even–even symmetric filter,
eo even–odd or oe odd–even are both unsymmetrical filters, and oo odd–odd is also
an unsymmetrical filter. Thus, we can clearly see that hq and gq of (8.23) and (8.23)
are powerful filters for disentanglement of the symmetries of 2D signals.

In the Fourier transform of a 2D signal, the phase component carries the main part
of image information. We use this phase information in the quaternionic wavelet
multi-resolution analysis. This technique can be easily formulated in terms of the
quaternion AF mother wavelet; for a more detailed explanation, see [1]. For the 2D
image function f (x, y), a quaternionic wavelet can be written as

f (x, y)=A
q
nf +

n∑

α=1

[
D

q

α,1f +D
q

α,2f +D
q

α,3f
]
. (8.24)

The upper index q indicates a quaternion 2D signal. We can characterize each ap-
proximation function A

q
αf (x, y) and the difference components D

q
α,pf (x, y) for

p = 1,2,3 via a 2D scaling function Φq(x, y) and its associated wavelet functions
Ψ

q
p(x, y) as follows:

Aq
αf (x, y) =

+∞∑

β=−∞

+∞∑

γ=−∞
aα,β,γ Φ

q
α,β,γ (x, y),

D
q
α,pf (x, y) =

+∞∑

β=−∞

+∞∑

γ=−∞
dα,p,β,γ Ψ

q
α,p,β,γ (x, y),

(8.25)

where

Φ
q
α,β,γ (x, y) =

1

2α
Φq

(
x − β

2α
,
y − γ

2α

)

, (α,β, γ) ∈Z3,

Ψ
q
α,p,β,γ (x, y) =

1

2α
Ψ

q
p

(
x − β

2α
,
y − γ

2α

)

,

(8.26)

and

aα,β,γ (x, y) =
〈
f (x, y),Φ

q
α,β,γ (x, y)

〉
,

dα,p,β,γ =
〈
f (x, y),Ψ

q
α,p,β,γ (x, y)

〉
.

(8.27)

In order to carry out a separable quaternionic multi-resolution analysis, using (8.16)
and considering the separability of the atomic function, we decompose the scaling

164 E. Bayro-Corrochano and E.U. Moya-Sánchez

Fig. 8.6 Abstraction of two levels of the quaternionic wavelet pyramid

function Φq(x, y)α and the wavelet functions Ψ
q
p(x, y)α for each level α as fol-

lows:

Φq(x, y)α = φi(x)αφ
j (y)α = sxsyup(x, y)α cos(wx)α cos(wy)α,

Ψ
q

1(x, y)α = φi(x)jψ
j (y)α = sxsyup(x, y)α cos(wx)α sin(wy)α,

Ψ
q

2(x, y)α = ψi(x)jφ
j (y)α = sxsyup(x, y)α sin(wx)α cos(wy)α,

Ψ
q

3(x, y)α = ψi(x)jψ
j (y)α = sxsyup(x, y)α sin(wx)α sin(wy)α,

(8.28)

where φi
α(x) = sxup(x)α cos(x)α and ψ(x)iα = sxup(x)α sin(x)α are the 1D com-

plex filters applied along the rows and columns, respectively. Note that in φ and ψ ,
we use the imaginary numbers i, j of quaternions.

By using these formulas, we can build quaternionic atomic wavelet function
pyramids. Figure 8.6 shows the two primary levels of the pyramid (fine to coarse).
According to (8.28), the approximation after the first level Aq

1f (x, y) is the output
of Φq(x, y)1, and the differences Dq

1,1f,D
q

1,2f,D
q

1,3f are the outputs of Ψ
q

1,1(x, y),

Ψ
q

1,2(x, y), and Ψ
q

1,3(x, y). The procedure continues through the j levels, deci-
mating the image at the outputs of the levels (indicated in Fig. 8.6 within the cir-
cle).

The quaternionic atomic function wavelet analysis from level α−1 to level α cor-
responds to the transformation of one quaternionic approximation to a new quater-
nionic approximation and three quaternionic differences, i.e.,

{
A

q

α−1

}→ {Aq
α,D

q
α,p,p = 1,2,3

}
. (8.29)

Note that we do not use the idea of a mirror tree [1]. As a result, the quaternionic
wavelet tree is a compact and economic processing structure that can be used for
n-dimensional multi-resolution analysis.

8 Quaternion Atomic Function for Image Processing 165

The procedure for quaternionic wavelet multi-resolution analysis depicted par-
tially in Fig. 8.6 is as follows:
• Convolve the 2D real signal at level n and convolve it with the scale and wavelet

filters Hq
α and G

q
α along the rows of the 2D signal. The latter filters are the discrete

versions of those filters given in (8.23).
• H

q
α and G

q
α are convolved with the columns of the previous responses of the

filters H
q
α and G

q
α .

• Subsample the responses of these filters by a factor of two (↓ 2).
• The real part of the approximation at level j is taken as input at the next level αα.

This process continues through all the levels α = 1, . . . , n, repeating steps 1→4.

8.7 Radon Transform of Functionals

The aim of this section is to put in context of the Radon transform (RT) theory the
use of the QWT for the detection of contours of arbitrary shapes using either grey
scale or color images. Some essential concepts are outlined briefly, however we give
enough references of the literature for any reader interested to go into much more
detail about these theoretic issues.

The Radon transform (RT), introduced by J. Radon in 1917, describes a function
in terms of its (integral) projections [17]. The RT can be seen as the mapping from
the function onto the projections of the Radon transform. The original formulation
of the RT was given by

R{I }(d,φ)=
∫

R

I (d cosφ − s sinφ,d sinφ + s cosφ)ds, (8.30)

which represents the projections of the function I along the lines cl(d,φ). The in-
verse of the RT corresponds to the back-reconstruction of the function from the
projections. Furthermore, one can use the RT to detect the shape; for this purpose,
one reformulates (8.30) to detect lines

R{I }(d,φ)=
∫

x on cl (d,φ)

I (x, y) dx dy

=
∫

R

δ(x cosφ + y sinφ − d)dx dy. (8.31)

The generalization of the RT to detect arbitrary shape’s contours cl(d,φ) appears
now to be straightforward, so let us consider the following formulas:

Rc(p){I }(p)=
∫

x on c(p)

I (x) dx

=
∫

RN

I
(
c(s;p))

∥
∥
∥
∥
∂c(s)
∂s

∥
∥
∥
∥ds

=
∫

RD

I (x)δ
(
C(x;p))dx. (8.32)

166 E. Bayro-Corrochano and E.U. Moya-Sánchez

The first formulation is aimed at assigning votes at the point p of the Radon pa-
rameter space based on the integral of I (x) for points lying on the shape’s contour
c(p). The second formulation is the same following the absolute value of the gradi-
ent ∂c(s)

∂s along the segment of contour c(s), and the third votes for points along
a contour described by the null constraint formulated in terms of a Dirac delta
function; for more details, see [6]. The RT builds in the Radon parameter space
a function P(p) having peaks for those parameter vectors p for which the corre-
sponding shape c(p) is present in the image. As a result, the problem of shape
detection has been simplified to a task of peak detection. The third formulation
of the RT stresses the importance of the use of generalized functions. In fact,
we can recognize the form of a linear integral (Fredholm) operator LC with ker-
nel C:

(LCI)(p)=
∫

RD

C(p,x)I (x) dx. (8.33)

In (8.32), the kernel C is of the form C(p,x) = δ(C(x;p)). With respect to
shape detection, the role of the operator LC is to compute via the inner prod-
uct the match between the image shape and a template C for a given param-
eter set p. Note the close connection between the Radon transform and tem-
plate matching. Since the matching criterion is the inner product between the
template T = δ(C(x;p)) and the image I , (8.32) can be rewritten with re-
spect to a parameter vector p as a parameter response function P(p) as fol-
lows:

P(p)=
∫

RD

T (x,p)I (x) dx. (8.34)

Although this technique can be used to detect gray-value blobs in I , usually this
equation is applied to an edge/line map E(x), which contains the contours of the
shapes instead of being applied directly to the image I (x, y). In this regard, (8.34)
reads

P(p)=
∫

(x,y,ϕ) on c[ϕ](x;p)
I [ϕ](x, y,ϕ) dx dy dϕ, (8.35)

where ϕ indicates the edge orientation. Finally, if we use the quaternionic
wavelet atomic function for curves parameterized in terms of the quaternionic pa-
rameters c[ϕ(φ,θ)](s;p) = (x(s;p), y(s;p), ϕ(φ(s;p), θ(s;p))), the standard RD
equation can be formulated using the 2D quaternionic phase concept as fol-
lows:

P(p)=
∫

(x,y,φ) on c[ϕ(φ,θ)](x;p)
I [ϕ(φ,θ)](x, y,ϕ) dx dy dϕ. (8.36)

8 Quaternion Atomic Function for Image Processing 167

Fig. 8.7 Convolution of the test image with the qup. (Upper row, from left to right) Original
image, after convolution follow: real-part; i-part; j-part; k-part; (lower row) magnitude; and the
phases φ; θ ; ϕ

In fact, (8.34) is equivalent to (8.30) of the RT of the H-embedded Riesz transform
fR(x) = (i, j)fr(x) of a 2D signal f (x) given by the Hilbert transform (h1(t)) of
the RT of f (x) according to

R{IR}(d, θ)= (i, j)nθh1(t) ∗R{f }(t, θ), (8.37)

where the IR is the Riesz transform of the image. This equation is the RT of the H-
embedded Riesz transform and is computed with respect to a line with orientation
θ and Hesse distance d .

8.8 Applications of the Quaternion Atomic Function Qup(x)

This section presents applications of the Qup(x) as a filter and for multi-resolution
analysis. In certain levels of the multiresolution pyramid, one can compute the RT
for extracting shapes.

8.8.1 Convolution with an Image

Figure 8.7 shows the original image and four resulting images after convolution with
components of the filter. This figure illustrates how the Qup filter works in different
directions, such as the vertical direction in Fig. 8.7.c, the horizontal in Fig. 8.7.d, and
a combination of both for diagonal detection in Fig. 8.7.e. The direct convolution
with the image is sensitive to the contrast of the image. Figure 8.7 also shows the
amplitude (f) (real part) and the three phases (φ, θ,ϕ). The phase information is
immune to changes of the contrast. This experiment clearly shows how the phase
information can be used to localize and extract more information independently of
the contrast of the image. Additionally, we show in Fig. 8.8 the application of a Qup
using its quaternionic phases to detect the circle structure. Note how each phase
detects edge phase changes around the circles.

168 E. Bayro-Corrochano and E.U. Moya-Sánchez

Fig. 8.8 (From the left) Test image filtered with a quaternionic wavelet atomic function elongated
by sx = 0.3, sy = 0.25 and oriented at 45°: (first group) in space domain: magnitude and quater-
nionic components; (second group) in frequency domain: magnitude and quaternionic phases of
the filtered image (φ, θ,ϕ)

8.8.2 Multi-resolution Analysis Using the Quaternion Wavelet
Atomic Function

The Qup kernel was used as the mother wavelet in the multi-resolution pyramid.
Figure 8.9 presents the three quaternionic phases at two scale levels of the pyramid.
The bottom row shows the phases after thresholding to enhance the phase structure.
You can see how vertical lines and crossing points are highlighted.

The Qup mother wavelet kernel was steered: elongation sx = 0.3 and sy = 0.25
and angles {0°, 22.5°, 45°, 77.25°, 90°} through the multi-resolution pyramid. Fig-
ure 8.10 shows the detected structure.

8.8.3 Radon Transform for Circle Detection in Color Images Using
the Quaternion Atomic Functions

First the circles image of Fig. 8.11 was filtered to round the sharp contours, then
Gaussian noise was added to distort the circle contours, and salt and pepper noise
was added to each of the r, g, and b color image components. The image was then

8 Quaternion Atomic Function for Image Processing 169

Fig. 8.9 (Upper row) Thresholded quaternionic phases (φ, θ,ϕ) at the first scale of resolution.
(Second row) Thresholded quaternionic phases (φ, θ,ϕ) at the next scale

filtered by steering a quaternion wavelet atomic function, and at a certain level of
the multi-resolution pyramid we applied the RD. Figure 8.11 shows how the cyan
circle was extracted. For the extraction and the RT transform, we used as parameters
the color and a combination of phase values.

Finally, one can improve performance of the multi-resolution approach by apply-
ing the RT from coarse to fine levels to identify possible shape contours in the upper
level. Then the shapes are oversampled and overlapped with the next-lower level to
improve the definition of the shapes. At the finest level, one gets the parameters of
all well-supported contours.

8.9 Conclusion

This paper introduces the theory and some applications of the quaternion atomic
function wavelet in image processing. We comment on the relevance of the atomic
function with respect to the theory of monogenic signals. Since the information
from the three phases is independent of illumination changes, algorithms using the
quaternion atomic function wavelet can be less sensitive than those using metric
tensors, which are affected by illumination changes. We also present the use of the
quaternionic atomic function wavelet for multi-resolution analysis. Making use of
the generalized Radon transform and images processed with the quaternion wavelet
atomic function transform, we also detect shape contours in color images. We hope
that this work will encourage computer scientists and practitioners to use quaternion

170 E. Bayro-Corrochano and E.U. Moya-Sánchez

Fig. 8.10 (Three columns) Thresholded quaternionic phases (φ, θ,ϕ), filter elongation sx = 0.3,
sy = 0.25, steering angles for each row are: 0°, 22.5°, 45°, 77.25°, 90°

8 Quaternion Atomic Function for Image Processing 171

Fig. 8.11 (Upper row)
Image of two circles in color
and gray scales; (the next four
images) the magnitude |Iq |
and the quaternionic phases
of the filtered image (φ, θ,ϕ)

and (the next four images) the
quaternion components after
the convolution I � AFr ,
I �AFi , I �AFj and I �AFk ;
(lower row) gray scale image,
its log FFT and the filtered
contour of the cyan circle
(larger circle). Color version
of this figure online

172 E. Bayro-Corrochano and E.U. Moya-Sánchez

Fig. 8.11 (continued)

wavelet atomic functions to tackle various problems in image processing and scene
analysis.

8.10 Exercises

8.1 Prove that an atomic function is compact. Discuss its properties in the frequency
and spatial domains.

8.2 Compare the quaternion atomic function with the monogenic signal (Pois-
son kernel and Riesz transform). Can the quaternion atomic function be used for
smoothing the scale space and steered wavelet image processing? Justify.

8.3 Derive a sort of quaternion Harris detector for color image processing using the
quaternion atomic filter which only detects corners of a selected color.

8.4 Derive an algorithm for RT using color images and quaternion atomic filter to
detect lines, circles and ellipsoids of one particular color.

8.5 Apply a conformal transformation to map the color image plane to the sphere,
then using a quaternion atomic filter derive a line and circle detector on the sphere
which detects with respect to only a particular color.

Acknowledgements We want to thank the financial support of the SEP/CONACYT - 2007-1
82084 grant.

References

1. Bayro-Corrochano, E.: Geometric Computing for Wavelet Transforms, Robot Vision, Learn-
ing, Control and Action. Springer, Berlin (2010)

2. Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis. Pitman, Boston (1982)
3. Bülow, T.: Hypercomplex spectral signal representations for the processing and analysis of

images. PhD thesis, Christian-Albert, Kiel University (1999)
4. Delanghe, R.: Clifford analysis: history and perspective. In: Computational Methods and

Function Theory, vol. 1, pp. 107–153 (2001)

8 Quaternion Atomic Function for Image Processing 173

5. Felsberg, M., Sommer, G.: The monogenic signal. IEEE Trans. Signal Process. 49(2), 3136–
3144 (2007)

6. Gelf’and, M.I., Graev, M.I., Vilenkin, N.Ya.: Generalized Functions, vol. 5, Integral Geometry
and Representation Theory. Academic Press, San Diego (1966)

7. Guyaev, Yu.V., Kravchenko, V.F.: A new class of WA-systems of Kravchenko–Rvachev func-
tions. Moscow Dokl. Math. 75(2), 325–332 (2007)

8. Hamilton, W.R.: Elements of Quaternions. Chelsea, New York (1969). Longmans Green, Lon-
don (1866)

9. Gorshkov, A., Kravchenko, V.F., Rvachev, V.A.: Estimation of the discrete derivative of a
signal on the basis of atomic functions. Izmer. Tekh. 1(8), 10 (1992)

10. Kingsbury, N.: Image processing with complex wavelets. Philos. Trans. R. Soc. Lond. A 357,
2543–2560 (1999)

11. Kovesi, P.: Invariant measures of images features from phase information. PhD thesis, Univer-
sity of Western Australia (1996)

12. Kravchenko, V.F., Perez-Meana, H.M., Ponomaryov, V.I.: Adaptive Digital Processing of Mul-
tidimensional Signals with Applications. Fizmatlit, Moscow (2009)

13. Magarey, J.F.A., Kingsbury, N.G.: Motion estimation using a complex-valued wavelet trans-
form. IEEE Trans. Image Process. 6, 549–565 (1998)

14. Mallat, S.: A theory for multiresolution signal decomposition: the wavelet representation.
IEEE Trans. Pattern Anal. Mach. Intell. 11(7), 674–693 (1989)

15. Mitrea, M.: Clifford Waveletes, Singular Integrals and Hardy Spaces. Lecture Notes in Math-
ematics, vol. 1575. Springer, Berlin (1994)

16. Nabighian, M.N.: Toward a three-dimensional automatic interpretation of potential field data
via generalized Hilbert transforms: fundamental relations. Geophysics 49(6), 780–786 (1984)

17. Radon, J.: Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Man-
nigfaltigkeiten. Ber. Sächs. Akad. Wiss., Leipzig. Math.-Phys. Kl. 69, 262–277 (1917)

18. Rvachev, V.A.: Compactly supported solution of functional–differential equations and their
applications. Russ. Math. Surv. 45(1), 87–120 (1990)

19. Pan, H.-P.: Uniform full information image matching complex conjugate wavelet pyramids.
In: XVIII ISPRS Congress, vol. XXXI, Vienna, July 1996

20. Kolodyazhnya, V.M., Rvachev, V.A.: Atomic functions: generalization to the multivariable
case and promising applications. Cybern. Syst. Anal. 43(6), 893–911 (2007)

9Color Object Recognition Based
on a Clifford Fourier Transform

Jose Mennesson, Christophe Saint-Jean, and Laurent Mascarilla

Abstract
The aim of this chapter is to propose two different approaches for color object
recognition, both using the recently defined color Clifford Fourier transform. The
first one deals with so-called Generalized Fourier Descriptors, the definition of
which relies on plane motion group actions. The proposed color extension leads
to more compact descriptors, with lower complexity and better recognition rates,
than the already existing descriptors based on the processing of the r , g and b

channels separately. The second approach concerns color phase correlation for
color images. The idea here is to generalize in the Clifford framework the usual
means of measuring correlation from the well-known shift theorem. Both meth-
ods necessitate to choose a 2-blade B of R4 which corresponds to an analysis
plane in the color space. The relevance of proposed methods for classification
purposes is discussed on several color image databases. In particular, the influ-
ence of parameter B is studied regarding the type of images.

9.1 Introduction

Most of already existing works on image recognition make use of discriminative
and invariant descriptors. Among them, moment-based descriptors [7] such as Hu
invariants, Legendre moments or Zernike moments are well known. Beside these ap-
proaches, SIFT (Scale-Invariant Feature Transform) descriptors are a popular choice

J. Mennesson (�) · C. Saint-Jean · L. Mascarilla
Laboratory of Mathematics, Images and Applications, University of La Rochelle,
La Rochelle, France
e-mail: jose.mennesson@univ-lr.fr

C. Saint-Jean
e-mail: christophe.saint-jean@univ-lr.fr

L. Mascarilla
e-mail: laurent.mascarilla@univ-lr.fr

L. Dorst, J. Lasenby (eds.), Guide to Geometric Algebra in Practice,
DOI 10.1007/978-0-85729-811-9_9, © Springer-Verlag London Limited 2011

175

mailto:jose.mennesson@univ-lr.fr
mailto:christophe.saint-jean@univ-lr.fr
mailto:laurent.mascarilla@univ-lr.fr
http://dx.doi.org/10.1007/978-0-85729-811-9_9

176 J. Mennesson et al.

giving very good results [11]. An alternative to these methods is to define descrip-
tors in the frequency domain. In this framework, our chapter concerns two exten-
sions of existing methods based on a Fourier transform. Clearly, Fourier coefficients
do not respect the classical invariances (translation, rotation and scale) and must be
processed to obtain invariant descriptors. This chapter proposes an extension of a re-
cent advance concerning invariant Generalized Fourier Descriptors (GFD) defined
by F. Smach et al. [15]. The extension of these descriptors to color images is gener-
ally based on a marginal processing of the three channels (r, g, b). Then, descriptors
extracted from each channel are concatenated to form the description vector. In or-
der to avoid this marginal processing, our proposal is to extract descriptors from a
color Clifford Fourier transform as defined by Batard et al. [1]. A second proposal is
the extension of the classical color phase correlation by means of the same Fourier
transform.

9.2 A Clifford Fourier Transform for Color Image Processing

As relating to color image processing, the usual Fourier transform corresponds in
fact to three two-dimensional Fourier transforms applied on each color channel,
that is a marginal processing. To emphasize the role of color, several authors have
proposed to embed the color space in a more pertinent and meaningful geometric
space such as the space of quaternions. For instance, Ell and Sangwine [6] propose a
luminance/chrominance Fourier analysis replacing the imaginary complex i by the
quaternion μ = i+j+k√

3
corresponding to the gray-level axis. It already appears in

this work that one has to focus on an analysis direction (here given by μ).
Recently, Batard et al. [1] have defined a Fourier transform for L2(Rm;Rn) func-

tions. This one is mathematically rigorous and clarifies relations between the Fourier
transform and the action of the translation group through an action of a spinor group.
They show that the previously proposed generalizations for color images (i.e. n= 3,
the number of color channels) are particular cases of their definition. In this chapter,
only the particular case m= 2 and n= 3 is considered and described briefly in the
following. Firstly, in the equation of the classical 2D Fourier transform,

f̂ (u1, u2)=
∫

R2
f (x1, x2)e

−i(u1x1+u2x2) dx1 dx2 (9.1)

the term e−i(u1x1+u2x2) (= e−i〈u,x〉 with u = (u1, u2) and x = (x1, x2)) rotates
f (x1, x2) in the complex plane C. From a mathematical point of view, it corre-
sponds to the action of the group S1 on C which can be identified as the group
action of SO(2) on R

2. In order to generalize this principle to color images, one
has to consider the action of the matrix group SO(3) on R

3. As described in [1],
a general and elegant expression may be written if the function corresponding to the
color image is embedded in the Clifford algebra R4:

f (x, y)= r(x, y)e1 + g(x, y)e2 + b(x, y)e3 + 0e4

9 Color Object Recognition Basedon a Clifford Fourier Transform 177

Within this framework, the rotation of a vector v by the angle −θ , in the plane
generated by a unitary 2-blade B is given by the action s−1vs of a spinor s and can
be written as

v→ s−1vs = e
θ
2 Bve−

θ
2 B

For this type of functions, the following Fourier transform is considered:

f̂B(u)=
∫

R2
e
〈u,x〉

2 I4Be
〈u,x〉

2 Bf (x)e−
〈u,x〉

2 Be−
〈u,x〉

2 I4B dx (9.2)

where I4 is the pseudo-scalar of R4, I4B is a unitary 2-blade orthogonal to B ,
u = (u1, u2) and x = (x1, x2). From the geometric point of view, two independent
rotations in orthogonal planes are acting on f (x). As these rotations are of the same
angle, the chosen Fourier transform involves isoclinic rotations of f in R

4 [10]. Let
us emphasize that considering more general rotations in R

4 leads to other definitions
of the Fourier transform and yields additional parameters which are hard to set in
practice.

9.2.1 The Shift Theorem for the Clifford Fourier Transform

The color phase correlation subsequently proposed relies on the Fourier shift theo-
rem which states that a translation in the spatial domain induces a phase shift in the
frequency domain. By construction, this property still holds for our transform and
takes the following form.

Theorem 9.1 Let f,g ∈ L2(R2,R3), B be a unit 2-blade in R4, and Δ= (Δ1,Δ2)

the vector containing the translation parameters.
If g(x)= f (x+Δ), then

ĝB(u)= e−
〈u,Δ〉

2 I4Be−
〈u,Δ〉

2 Bf̂B(u)e
〈u,Δ〉

2 Be
〈u,Δ〉

2 I4B (9.3)

Proof The proof is essentially based on the fact that rotations in orthogonal planes
can commute. Let xΔ = x+Δ.

ĝB(u)

=
∫

R2
e
〈u,x〉

2 (B+I4B)f (x+Δ)e−
〈u,x〉

2 (B+I4B) dx

=
∫

R2
e
〈u,(xΔ−Δ)〉

2 (B+I4B)f (xΔ)e−
〈u,(xΔ−Δ)〉

2 (B+I4B) dxΔ

=
∫

R2
e−
〈u,Δ〉

2 (B+I4B)e
〈u,xΔ〉

2 (B+I4B)f (xΔ)e−
〈u,xΔ〉

2 (B+I4B)e
〈u,Δ〉

2 (B+I4B) dxΔ

178 J. Mennesson et al.

= e−
〈u,Δ〉

2 (B+I4B)

(∫

R2
e
〈u,xΔ〉

2 (B+I4B)f (xΔ)

× e−
〈u,xΔ〉

2 (B+I4B) dxΔ

)

e
〈u,Δ〉

2 (B+I4B)

= e−
〈u,Δ〉

2 (B+I4B)f̂B(u)e
〈u,Δ〉

2 (B+I4B) (9.4)

�

Even if (9.4) is more compact than (9.3), this formulation emphasizes that two
independent rotations apply. Simpler equations can be obtained using the decompo-
sition of f as the sum of its parallel projection f‖B on the plane defined from B and
its perpendicular projection f⊥B on the plane defined from I4B (see later for de-
tails on the decomposition). Skipping some technical details, (9.2) can be rewritten
following this decomposition as

f̂B(u)= f̂‖B(u)+ f̂⊥B(u) (9.5)

where

f̂‖B(u)=
∫

R2
e
〈u,x〉

2 Bf‖B(x)e−
〈u,x〉

2 B dx=
∫

R2
f‖B(x) e−〈u,x〉B dx (9.6)

f̂⊥B(u)=
∫

R2
e
〈u,x〉

2 I4Bf⊥B(x)e−
〈u,x〉

2 I4B dx=
∫

R2
f⊥B(x) e−〈u,x〉I4B dx (9.7)

Later on, (9.6) and (9.7) will provide a practical and efficient way to implement our
transform. According the same decomposition, Lemma 9.1 becomes:

Theorem 9.2 Let f,g ∈ L2(R2,R3), and B be a unit 2-blade in R4.
If g(x)= f (x+Δ), then

ĝ‖B(u)= e−
〈u,Δ〉

2 Bf̂‖B(u)e
〈u,Δ〉

2 B = f̂‖B(u)e〈u,Δ〉B (9.8)

ĝ⊥B(u)= e−
〈u,Δ〉

2 I4Bf̂⊥B(u)e
〈u,Δ〉

2 I4B = f̂⊥B(u)e〈u,Δ〉I4B (9.9)

A unit 2-blade B can be obtained from the geometric product of two unit orthog-
onal vectors as B = c ∧ e4 or B = c1 ∧ c2 (where c, c1 and c2 are RGB colors).
These two settings appear to be analogous up to a sign change since the dualization
I4B of B gives also a 2-blade of the other form. In the following, only the choice
B = c∧ e4 will be considered in the experiments.

9.2.2 Computation of the Clifford Fourier Transform

The Clifford Fourier transform can be efficiently computed using two complex
FFTs. Whereas {c, e4} is a trivial basis for the plane given by B , an orthonormal
basis {v,w} for the plane generated by I4B has to be constructed. A possible solu-

9 Color Object Recognition Basedon a Clifford Fourier Transform 179

Fig. 9.1 Illustration of the basis {c, e4,v,w} of I4 using GABLE [4]

tion is to choose a unit vector μ with no e4 component and different from c.1 Vector
v is taken as the rejection of μ on c and w as an orthogonal vector to v in subspace
represented by blade I4B (see Fig. 9.1). Then, the function f can decomposed as

f (x)= f‖B(x)+ f⊥B(x)

= c
[(
f (x) · c)+ (f (x) · cB)B]+ v

[(
f (x) · v)

+ (f (x) · vI4B
)
I4B
]

(9.10)

Each of the two square brackets can identified as a complex number since BB =
I4BI4B = −1. The computation of f̂B is now reduced to the computation of two
usual Fourier transforms of a real function and of a complex function.

Depending on the intended application, it is not always necessary to reconstruct
f̂B from f̂‖B and f̂⊥B .2 If so, the following properties of the vectorial function f̂B

̂
(
f‖B(x)

)
B
= c
[(
f̂B(x) · c

)+ (f̂B(x) · cB
)
B
]

(9.11)

̂
(
f⊥B(x)

)
B
= v
[(
f̂B(x) · v

)+ (f̂B(x) · vI4B
)
I4B
]

(9.12)

give a set of four linear equations with four unknowns.

1A typical setting for μ is (e1 + e2 + e3)/
√

3, which corresponds to select the achromatic axis.
2More precisely, the two functions in the square brackets in (9.10).

180 J. Mennesson et al.

9.3 Generalized Color Fourier Descriptors

In this section, we propose an extension of the Generalized Fourier Descriptors of
Smach et al. (initially dedicated to grayscale images) to color images.

9.3.1 Generalized Fourier Descriptors (GFD)

Generalized Fourier descriptors introduced by [15] are defined from the group action
of M2. This group is composed of translations and rotations on the plane. Two kinds
of descriptors have been defined:
• “Spectral densities”-type invariants:

I r1 (f)=
∫ 2π

0

∣
∣f̂ (r, θ)

∣
∣2 dθ

• “Shift of phases”-type invariants:

I ξ1,ξ2(f)=
∫ 2π

0
f̂
(
Rθ(ξ1 + ξ2)

)
f̂
(
Rθ(ξ1)

)
f̂
(
Rθ(ξ2)

)
dθ

where f is the image, f̂ (r, θ) is the Fourier transform expressed in polar coordinates
in the frequency plane, ξ1 and ξ2 are variables of the frequency plane, and Rθ is a
rotation of angle θ . It must be emphasized that, by construction, I r1 and I ξ1,ξ2 are
strictly invariant in R

2 with respect to the action of M2.
Then, the descriptor vector for the first family of invariants, namely I r1 , is defined

as follows:

GFD1(f)=
{

I 0
1 (f)= ∣∣f̂ (0,0)

∣
∣2,

I 1
1 (f)

I 0
1 (f)

, . . . ,
Im1 (f)

I 0
1 (f)

}

where m is the number of computed descriptors. In the same way, we define the
GFD2 descriptor vector from the second family of invariants I ξ1,ξ2 .

9.3.2 Generalized Color Fourier Descriptors (GCFD)

In order to deal with color images, a commonly used approach consists in comput-
ing descriptors on each color channel separately. Then, they are concatenated into a
unique vector (e.g. [15]). This method implies three FFTs and three sets of descrip-
tors. However, this marginal processing induces a loss of colorimetric information
that can be avoided by using the color Clifford Fourier transform.

Equation (9.5) shows that the Clifford Fourier transform can be decomposed into
two parts. So, two descriptor vectors are defined: GCFD1‖B and GCFD1⊥B , each
of them implying two complex FFTs. According to the definition of f‖B :

9 Color Object Recognition Basedon a Clifford Fourier Transform 181

GCFD1‖B(f)=
{

I 0‖B(f)= ∣∣f̂‖B(0,0)
∣
∣2,

I 1‖B(f)

I 0
‖B(f)

, . . . ,
Im‖B(f)

I 0
‖B(f)

}

where I r‖B(f)= ∫ 2π
0 |f̂‖B(r, θ)|2 dθ , and m is the number of computed descriptors.

Similarly, GCFD1⊥B is defined thanks to f̂⊥B . Finally, the descriptor vector length
is 2×m:

GCFD1B(f)= {GCFD1‖B(f),GCFD1⊥B(f)
}

The same construction based on I ξ1,ξ2 leads to GCFD2B .

9.4 Color Phase Correlation

In the literature, phase correlation [14] is a well-established method that is used
for a lot of applications such as image recognition, video stabilization, motion esti-
mation, stereo disparity analysis, vector flow analysis [5]. As it is based on a direct
application of the Fourier shift theorem, its definition depends on the chosen Fourier
transform. Before presenting what can be a phase correlation method for color im-
ages, we recall now the principle of this method for grayscale images.

9.4.1 Phase Correlation for Grayscale Images

Let f and g be two grayscale images which are spatial shifted version of each one
another. According to the Fourier shift theorem,

ĝ(u)= f̂ (u) ei〈u,Δ〉 (9.13)

Ideally, it is possible to extract the phase shift between f̂ and ĝ through the compu-
tation of their cross-power spectrum

R(u)= f̂ (u) ĝ(u)

|f̂ (u)ĝ(u)| =
f̂ (u)f̂ (u)e−i〈u,Δ〉

|f̂ (u)f̂ (u) e−i〈u,Δ〉|
= |f̂ (u)|2e−i〈u,Δ〉

||f̂ (u)|2e−i〈u,Δ〉| =
e−i〈u,Δ〉

|e−i〈u,Δ〉| = e−i〈u,Δ〉 (9.14)

where the operator ¯ is the usual complex conjugate. Ideally again, the exact transla-
tion Δ= (Δ1,Δ2) can be obtained by taking the inverse Fourier transform of R(u):

r(x)= Ř(u)= δ−Δ (9.15)

where δ is the Dirac distribution.

182 J. Mennesson et al.

In practice, the best estimated translation and correlation score ρ are given by

Δ=− argmax
x

(∣
∣r(x)
∣
∣
)
, ρ =max

x

(∣
∣r(x)
∣
∣
)

The coefficient ρ should be equal to 1 when g is a translated version of f , and it
could be used as a similarity index between images in a recognition process. Note
that the phase correlation method is invariant under translations but not under ro-
tations. The invariance under rotations can be achieved by converting images in
log-polar domain, but it will not be discussed here.

9.4.2 Phase Correlation for Color Images

Phase correlation for color images is much more difficult than for grayscale images.
A first tentative approach is to work directly on the relation between f̂B and ĝB .
According to (9.3) and for any unit 2-blade B , ĝB is ideally obtained by an isoclinic
rotation of f̂B . After some calculations similar to those of (9.14), it should be pos-
sible to obtained this rotation as a spinor represented by a multivector containing
non vectorial terms. Unfortunately, definitions of the Fourier transform and Fourier
inverse transform are not yet available for general multivectorial functions. So, an
easier approach is to use the decompositions of f̂B and ĝB with respect to B .

According to (9.8) and (9.9), the phase correlation now relies on the detection of
simultaneous Dirac at the same location:

R‖B(u)= f̂‖B(u) ĝ‖B(u)
|f̂‖B(u)ĝ‖B(u)|

= e−〈u,Δ〉B ⇒ r‖B(x)= δ−Δ (9.16)

R⊥B(u)= f̂⊥B(u)ĝ⊥B(u)
|f̂⊥B(u)ĝ⊥B(u)|

= e−〈u,Δ〉I4B ⇒ r⊥B(x)= δ−Δ (9.17)

In practice, one has to cope with the aggregation of r‖B and r⊥B . The experimental
section, Sect. 9.5, gives some results for different aggregation criteria. The whole
process is illustrated in Fig. 9.2.

There are many rotations in R
4 which map f̂B(u) to ĝB(u). Among these, one

can choose the unique one that leaves invariant the plane generated by f̂B(u) and
ĝB(u). This leads to the spinor τ(u) such that gB�(u)= τ(u)fB�(u)τ−1(u):

τB(u)= exp

[
θ(u)

2

gB
�(u)∧ fB

�(u)

|gB�(u)∧ fB
�(u)|
]

= 1+ gB
�(u)fB�(u)

√
2(1+ gB�(u) · fB�(u))

(9.18)

where fB
�(u)= f̂B(u)/|f̂B(u)| and gB

�(u)= ĝB(u)/|ĝB(u)|. This rotation is clas-
sified as a simple rotation by Lounesto [10]. Such an approach deviates from the
conditions of the shift theorem by relaxing the constraint on the type of rotation
between vectors f̂B and ĝB . Here again, the inverse Fourier transform of τ(u) is

9 Color Object Recognition Basedon a Clifford Fourier Transform 183

Fig. 9.2 Image similarity as a score aggregation

not accessible. However, it is possible to neglect the bivectorial part of the spinor by
transforming it to a constant bivector identifiable with complex imaginary i. A cor-
relation score ρB then can be built on θ(u):

RB(u)= eiθ(u) ⇒ ρB =max
x

(|rB(x)|
)

(9.19)

where rB(x)= ŘB(u). An alternative formulation of such a criterion is given by the
cosine between f̂B and ĝB :

((RB(u)
)= cos

(
f̂B(u), ĝB(u)

)= f̂B(u) ∗ ˜̂gB(u)
|f̂B(u)||ĝB(u)|

(9.20)

where˜ and ∗ denote the reverse operator and the Hestenes scalar product [8].

9.5 Experiments

Our goal is to evaluate if the proposed descriptors are good at classifying images.
More precisely, the unique label of the request image is predicted from an entire set
of labeled images. Both synthetic and standard image databases are considered, and
the choice of the 2-blade is discussed.

184 J. Mennesson et al.

9.5.1 Image Database

The databases used in this section are COIL-100, color FERET and, to check ro-
bustness again noise, a noisy version of this last dataset.
• COIL-100 (Columbia Object Image Library) database [12] is composed of 7200

color images of size 128 × 128 of 100 different objects. Each picture has been
taken with a black background and 72 different angles of view. This database,
used in similar works [15], can be qualified as “easy” from an image classification
context as every image background is removed.
• Color FERET database [13] is composed of face images of 1408 different per-

sons, taken from different angles of view. In our tests, a set of 2992 images con-
taining 272 persons equally represented by 11 pictures is selected, and the size of
images is reduced to 128 × 128. This database is more difficult than the first one
due to background illumination changes.
• Noisy color FERET database is derived from the color FERET database, but

Gaussian noise is added to each color plane of the images. The parameter θ is
fixed to 0.23, which is the maximum noise level used in [15].

9.5.2 Descriptors Extraction

Regarding the GFD, 64 descriptors are extracted for each color channel. For GFD1,
it consists of 64 values of radius r in I r1 , and GFD2 is built from equally spaced
values of ξ2 in its polar domain [0,2π] × [1,8] and ξ1 set to (0,1). As it is argued
in [15], such ξ1 and ξ2 choices allow us to take into account low frequencies of
the image, i.e. the shape. For GCFD1 and GCFD2, the length of the descriptor
vectors are 64× 2 (parallel and orthogonal part of the Clifford Fourier transform).
Regarding the phase correlation, one score corresponding to the correlation peak is
extracted for each image pair. Two cases are considered: either phase correlation is
computed from parallel and orthogonal parts of the Clifford Fourier transform, and
the two correlation scores, ρ‖B and ρ⊥B , are aggregated to obtain a single score, or
the correlation ρB is computed from reconstructed Fourier transform.

9.5.3 Classification

The classification step is performed using a standard SVM (Support Vector Ma-
chine) [2]. As GFD and GCFD are vector descriptors, they can directly be used as
input for such a kernel based classifier. In this chapter, an RBF kernel is selected, and
the value of the two parameters θ and C are empirically determined to maximize the
recognition rates for each database. The phase correlation methods directly result in
a real-valued score assessing the matching quality, and this similarity measure can-
not be used as input in a standard SVM. Various solutions to address such cases have
been proposed in the literature (see [3] for a recent review). Fortunately, in the phase
correlation case, one can slightly modify the SVM algorithm by replacing the inner

9 Color Object Recognition Basedon a Clifford Fourier Transform 185

product values of the Gram matrix by a symmetric similarity measure ensuring its
semi-positive definiteness. Such a property is guaranteed by taking as a measure the
mean value of the correlation scores between f̂B and ĝB and between ĝB and f̂B .
Validation of the classification results is done by a 10-fold cross-validation.

9.5.4 Evaluation of the GCFD

In this section, the Generalized Clifford based Fourier Descriptors, GCFD1 and
GCFD2, are evaluated to assess their classification performance relatively to the
usual Generalized Fourier Descriptors, GFD1 and GFD2. The classification perfor-
mance of GFD and GCFD is tested on the COIL-100, the color FERET and the
noisy color FERET database. Each database (see Table 9.1, Table 9.2, Table 9.3) is
processed using the same choices of 2-blades, one 2-blade per row of the tables. The
first one, denoted by Br , is obtained using a red vector (i.e. Br = r ∧ e4), the three
next 2-blades Bg , Bb , Bμ respectively refer to green, blue colors and the achromatic
axis. The next row gives the best classification rate, the mean and standard deviation
of classification rates obtained by randomly choosing 100 2-blades. These five first
rows provide results for single 2-blades, while the last two concern triple-size 2-
blades. The first one, denoted by Br +Bg+Bb , uses as descriptor the concatenation
of descriptors computed from Br , Bg and Bb (descriptors of size 384). The last row,
denoted by B1+B2+B3, provides results obtained by using an automatic selection
algorithm to select the three 2-blades maximizing the classification rate. This so-
called “SFFS” (Sequential Floating Forward Selection) algorithm is a suboptimal
selection procedure that avoids exhaustive search in the feature space, here defined
by the space of the c normalized color vectors. An interested reader can refer to [9]
for comparison to similar optimization techniques.

COIL-100 being an easy dataset from a classification point of view, any descrip-
tor provides excellent results, very close to 100%. In Table 9.1, the descriptors’
size is recalled for each method, and the best results for each method are bold-
faced. The bold-faced values in the upper part (resp. the lower part) of Table 9.1
show the best results for one 2-blade (resp. for three 2-blades [obtained by con-
catenation or by the SFFS procedure]). It must be noted that such a classification
rate validates the choice of Fourier descriptors on this kind of image where color
background is homogeneous and similar for all images considered. The standard
deviations obtained for Brand are small and suggest little influence of the 2-blade
choice on this database, and consequently experiments were not carried further in
that direction.

Regarding the color FERET dataset, it can be checked that the GCFD1 outper-
forms both GFD1 and GFD2 in terms of classification rate for any 2-blade choice.
GCFD2 while providing better results than GFD1 and GFD2 is not better than
GCFD1. This may be due to the choice of the ξ1 and ξ2 parameters, but none of
our experiments led to an improvement in that respect. Anyway, these results clearly
show the added benefit of the Clifford Fourier transform with regard to classifica-
tion. Concatenation (Br + Bg + Bb) of 2-blades improves the results for GFD but

186 J. Mennesson et al.

Table 9.1 COIL-100: Recognition rates in % with GFD1, GCFD1, GFD2 and GCFD2

Bivectors COIL-100
GFD1
(64 desc.)

GCFD1
(128 desc.)

GFD2
(64 desc.)

GCFD2
(128 desc.)

Br 98.04 99.83 98.69 99.81

Bg 98.06 99.56 99.39 99.85

Bb 96.90 99.86 94.03 99.85

Bμ 98.49 99.25 99.40 99.47

Brand(×100) 98.42± 0.3 99.54± 0.3 98.88± 0.82 99.82± 0.1

max. 98.87 99.89 99.47 99.96

192 desc. 384 desc. 192 desc. 384 desc.

Br +Bg +Bb 99.9 99.92 99.89 99.87

B1 +B2 +B3 (SFFS) 99.86 99.96 99.89 99.96

Table 9.2 Color FERET: Recognition rates in % with GFD1, GCFD1, GFD2 and GCFD2

Bivectors Color FERET
GFD1
(64 desc.)

GCFD1
(128 desc.)

GFD2
(64 desc.)

GCFD2
(128 desc.)

Br 76.70 87.90 77.31 84.42

Bg 73.66 79.65 77.37 80.01

Bb 70.49 84.49 75.87 82.31

Bμ 73.03 78.10 77.30 82.12

Brand(×100) 73.72± 1 85.34± 2.92 77.54± 0.69 84.50± 2.06

max. 76.14 90.37 78.91 89.57

192 desc. 384 desc. 192 desc. 384 desc.

Br +Bg +Bb 88.03 85.53 84.26 82.55

B1 +B2 +B3 (SFFS) 85.46 93.15 82.89 90.07

not for GCFD. This is probably due to the better information encoding done by the
Clifford Fourier transform, and GCFD descriptors obtained for various 2-blades are
probably more redundant than the marginal GFD. This is confirmed by the SFFS
method: selection of three “optimal” 2-blades pushes GCFD to the best results. In
the random 2-blade choice experiment, GCFD1 and GCFD2 standard deviations
are quite important compared to the ones of GFD1 and GFD2. This clearly reveals
that the GCFD depends on the choice of the 2-blade. To inspect its influence, the
random experiment results are detailed in Fig. 9.3. Color of each dot denotes the c
color chosen to define the 2-blade, and best ones are mostly blue. Visual inspection
of the database confirms that this color corresponds to the background color of most
images. As the 2-blade is unique for a given database, it must be chosen either ac-

9 Color Object Recognition Basedon a Clifford Fourier Transform 187

Fig. 9.3 Color FERET: Recognition rates with GCFD1 for 100 random 2-blades

Table 9.3 Noisy color FERET: Recognition rates in % with GFD1, GCFD1, GFD2 and GCFD2

Bivectors Noisy color FERET
GFD1
(64 desc.)

GCFD1
(128 desc.)

GFD2
(64 desc.)

GCFD2
(128 desc.)

Br 45.32 71.05 73.46 83.49

Bg 46.83 61.99 75.26 78.64

Bb 48.49 73.46 74.77 81.78

Bμ 55.28 62.03 77.34 80.98

Brand(×100) 54.23± 1.75 69.64± 3.21 76.59± 0.74 82.56± 1.80

max. 57.55 77.27 78.41 87.00

192 desc. 384 desc. 192 desc. 384 desc.

Br +Bg +Bb 73.16 72.16 83.25 81.12

B1 +B2 +B3 (SFFS) 71.52 80.62 83.36 88.24

cording to some prior knowledge or according to an empirical search method like
SFFS.

Noisy color FERET: Influence of noise on classification rate is given in Table 9.3.
GFD1 is the most sensitive to noise, and, as expected (see [15]), GFD2 is much
more robust.

188 J. Mennesson et al.

Fig. 9.4 Synthetic data:
rectangles of color c1 and c2

Table 9.4 Correlation scores between image 1 and 2 for various choices of c2 and B . From image
1 to 2, the rectangle has color changed from c1 = rgb(66,154,77) to c2, and a translation is applied

c2 B

Bμ Br Bg Bb Bc1

ρ‖B ρ⊥B ρB ρ‖B ρ⊥B ρB ρ‖B ρ⊥B ρB ρ‖B ρ⊥B ρB ρ‖B ρ⊥B ρB

c1 1 1 1 1 1 1 1 1 1 1 1 1 1 – 1

rgb(66,0,0) 1 1 0.43 1 – 0.36 – 1 0.55 – 1 0.91 1 – 0.36

rgb(0,154,0) 1 1 0.84 – 1 0.93 1 – 0.83 – 1 0.91 1 – 0.84

rgb(0,0,77) 1 1 0.50 – 1 0.93 – 1 0.55 1 – 0.42 1 – 0.42

μ 1 – 0.93 1 1 0.96 1 1 0.93 1 1 0.97 1 – 0.93

9.5.5 Evaluation of the Phase Correlation

In this chapter, two methods have been proposed to compute phase correlation for
color images, both depending on a 2-blade Bc, where c is the chosen color. The first
one depends on two correlation scores, ρ‖Bc and ρ⊥Bc , given by the parallel and
orthogonal part of the Clifford Fourier transform and requires an aggregation step
to give final score. The second one, denoted ρBc , does not require such a processing.

Synthetic data: Two simple images (see Fig. 9.4) are considered; they contain the
same shape (a rectangle) on a black background, but the second is translated, and its
color c2 changed from experiments to experiments. Bivectors Bμ, Br and Bc1 , where
c1 is the color of the first rectangle, are used to compute the correlation scores. In
Table 9.4, the ‘–’ symbol denotes a value that cannot be computed because the par-
allel (resp. orthogonal) part is null. Taking the example in which c2 = rgb(66,0,0),
one can see that ρ‖Bc2

= ρ⊥Bc2
= 1. This is not conclusive as two rectangles which

have different colors must be considered as different. However, the correlation score
ρBc2

computed from the reconstructed Clifford Fourier transform gives scores lower
than one and depends on the amount of color that the two rectangles have in com-
mon. The same remarks apply to c2 taken equal to rgb(0,154,0) or rgb(0,0,77).
The behavior for the gray axis level, μ, is different as ρBμ is always high: unsurpris-
ingly, it mostly depends on the shape without taking into account color information.

9 Color Object Recognition Basedon a Clifford Fourier Transform 189

Table 9.5 COIL-100: Recognition rates in % with the phase correlation for color images

ρ

94.96

ρ‖B ρ⊥B ρmin‖,⊥B ρmax‖,⊥B ρmean‖,⊥B ρB

Br 95.38 96.33 96.46 96.14 96.58 97.50

Bg 95.29 96.79 96.68 95.90 96.68 97.49

Bb 95.08 96.58 96.60 95.89 96.51 97.49

Bci 95.33 83.92 82.60 96.08 95.50 97.53

Table 9.6 Color FERET: Recognition rates in % with the phase correlation for color images

ρ

66.37

ρ‖B ρ⊥B ρmin‖,⊥B ρmax‖,⊥B ρmean‖,⊥B ρB

Br 66.51 66.00 67.64 68.05 69.15 66.74

Bg 66.00 67.91 67.31 66.95 67.51 66.41

Bb 65.57 67.41 68.01 66.95 67.71 66.81

Bci 66.34 74.50 76.84 71.52 78.38 66.94

COIL-100: Results with Br , Bg , Bb and Bci 2-blades are given. Notice that ci
corresponds to the choice of one 2-blade per request image, this color being the
dominant color of the image. Table 9.5 clearly shows that the correlation com-
puted from the reconstructed Clifford Fourier transform is the best method for this
database. It has more discriminative power for color objects than other methods,
and more importantly, it seems to be quite insensitive to the 2-blade choice. One
can also see that most of color phase correlation methods give better recognition
rates than the classical phase correlation for grayscale images. The different choices
of 2-blades or aggregation functions do not give really improve the results; nev-
ertheless recognition rates are high. One can see on Table 9.6 that the results for
the color FERET database are quite different. Indeed, ρBr is not the best method
anymore, but still very stable. This relatively low performance is due to confusions
induced by the different colors constituting the background. So, if the reconstructed
Clifford Fourier transform is considered, all the color information is aggregated.
Hence the choice of one 2-blade per request image, corresponding to the dominant
color, separates the background and the foreground. This choice is the best among
Br , Bg and Bb and gives the best recognition rate using the mean as an aggregation
function.

9.6 Conclusion

Two descriptors for color object recognition based on Clifford Fourier transform
and with the viewpoint of group actions are proposed. Better classification results
than those of analogous marginal methods are provided. Specially, Clifford Fourier
descriptors enhance Generalized Fourier Descriptors with lower computation cost
and size (only two FFT instead of three). Mathematically sound phase correlation
computation for color images would imply an inverse Clifford Fourier transform of

190 J. Mennesson et al.

a spinor which is not available for now. Although some workarounds are proposed
in this chapter, future work will give more efficient and consistent solutions.

9.7 Exercises

9.1 Verify (9.5) and develop the construction of elements B , I4B , v, w for the
choice c= (e1 + e2)/

√
2 (see Sect. 9.2.2).

9.2 Verify that for a bivector B = c1 ∧ e4, I4B is proportional to c2 ∧ c3, where c1,
c2 and c3 are RGB colors. Conclude that the choice of the form c1 ∧ e4 or c2 ∧ c3
for B are equivalent up to a sign change.

9.3 Give the MATLAB® code for computing the parallel and orthogonal parts of
the color Clifford Fourier transform using the basis {e1, e4} for the plane generated
by the bivector B = e1 ∧ e4 and the basis {e3, e2} for the plane generated by I4B =
e3 ∧ e2. (Hint: in this particular case, the projection on the bases is obvious.)

9.4 Give the MATLAB® code for computing the phase correlation on the parallel
and orthogonal part of the Clifford Fourier transform using the previous code and
taking the maximum operator as aggregation criterion.

9.5 Using the trigonometric rule cos(θ)= 2 cos2(θ/2)− 1, verify (9.18).

Acknowledgements This work is partially supported by the ONR Grant N00014-09-1-0493 and
“La Région Poitou-Charentes”.

References

1. Batard, T., Berthier, M., Saint-Jean, C.: Clifford Fourier transform for color image processing.
In: Bayro-Corrochano, E., Scheuermann, G. (eds.) Geometric Algebra Computing in Engi-
neering and Computer Science, pp. 135–161. Springer, Berlin (2010), Chap. 8

2. Chang, C.C., Lin, C.J.: Libsvm: a library for support vector machines (2001). Software avail-
able at http://www.csie.ntu.edu.tw/cjlin/libsvm

3. Chen, Y., Garcia, E.K., Gupta, M.R., Rahimi, A., Cazzanti, L.: Similarity-based classification:
concepts and algorithms. J. Mach. Learn. Res. 10, 747–776 (2009)

4. Dorst, L., Mann, S., Bouma, T.: GABLE: A Matlab tutorial for geometric algebra (2002)
5. Ebling, J., Scheuermann, G.: Clifford Fourier transform on vector fields. IEEE Trans. Vis.

Comput. Graph. 11, 469–479 (2005)
6. Ell, T.A., Sangwine, S.J.: Hypercomplex Fourier transforms of color images. IEEE Trans.

Image Process. 16(1), 22–35 (2007)
7. Flusser, J., Suk, T., Zitova, B.: Moments and Moment Invariants in Pattern Recognition. Wiley,

New York (2009)
8. Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus. Reidel, Dordrecht (1984)
9. Jain, A., Zongker, D.: Feature-selection: evaluation, application, and small sample perfor-

mance. IEEE Trans. Pattern Anal. Mach. Intell. 19(2), 153–158 (1997)
10. Lounesto, P.: Clifford Algebras and Spinors, 2nd edn. Cambridge University Press, Cambridge

(2001)

http://www.csie.ntu.edu.tw/cjlin/libsvm

9 Color Object Recognition Basedon a Clifford Fourier Transform 191

11. Lowe, D.G.: Object recognition from local scale-invariant features. In: International Confer-
ence on Computer Vision 99, pp. 1150–1157 (1999)

12. Nene, S.A., Nayar, S.K., Murase, H.: Columbia object image library (coil-100). Technical
Report CUCS-006-96 (1996)

13. Phillips, P.J., Wechsler, H., Huang, J., Rauss, P.: The FERET database and evaluation proce-
dure for face recognition algorithms. Image Vis. Comput. 16(5), 295–306 (1998)

14. Reddy, B., Chatterji, B.: An FFT-based technique for translation, rotation, and scale-invariant
image registration. IEEE Trans. Image Process. 5(8), 1266–1271 (1996)

15. Smach, F., Lemaître, C., Gauthier, J.P., Miteran, J., Atri, M.: Generalized Fourier descriptors
with applications to objects recognition in SVM context. J. Math. Imaging Vis. 30(1), 43–71
(2008)

Part IV
Theorem Proving and Combinatorics

A recurrent theme in this book is how the right representation can improve encod-
ing and solving geometrical problems. This also affects traditionally combinatorial
fields like theorem proving, constraint satisfaction and even cycle enumeration. The
null elements of algebras turn out to be essential!

10On Geometric Theorem Proving
with Null Geometric Algebra

Hongbo Li and Yuanhao Cao

Abstract
The bottleneck in symbolic geometric computation is middle expression swell.
Another embarrassing problem is geometric explanation of algebraic results,
which is often impossible because the results are not invariant under coordinate
transformations. In classical invariant-theoretical methods, the two difficulties
are more or less alleviated but stay, while new difficulties arise.
In this chapter, we introduce a new framework for symbolic geometric computing
based on conformal geometric algebra: the algebra for describing geometric con-
figuration is null Grassmann–Cayley algebra, the algebra for advanced invariant
manipulation is null bracket algebra, and the algebra underlying both algebras is
null geometric algebra. When used in geometric computing, the new approach
not only brings about amazing simplifications in algebraic manipulation, but can
be used to extend and generalize existing theorems by removing some geometric
constraints from the hypotheses.

10.1 Introduction

In algebraic approaches to geometric computing, the general procedure is as fol-
lows [19]: first, the geometric configuration, including both the hypotheses and the
conclusion, is translated into an algebraic formulation in a prerequisite algebraic
language; second, algebraic computations are carried out to the conclusion by uti-
lizing the computational rules of the algebra and the given hypotheses; third, the
result of the computations is translated back to geometry or, in other words, is given

H. Li (�) · Y. Cao
Key Laboratory of Mathematics Mechanization, Academy of Mathematics and Systems Science,
Chinese Academy of Sciences, Beijing 100190, P.R. China
e-mail: hli@mmrc.iss.ac.cn

Y. Cao
e-mail: ppxhappy@126.com

L. Dorst, J. Lasenby (eds.), Guide to Geometric Algebra in Practice,
DOI 10.1007/978-0-85729-811-9_10, © Springer-Verlag London Limited 2011

195

mailto:hli@mmrc.iss.ac.cn
mailto:ppxhappy@126.com
http://dx.doi.org/10.1007/978-0-85729-811-9_10

196 H. Li and Y. Cao

a geometric interpretation. In geometric reasoning and theorem proving, the input
of a geometric problem is formulated by a set of symbols and their algebraic rela-
tions, and the algebraic computing, if geometrically meaningful, is called “symbolic
geometric computation” [18].

The most commonly used algebraic formulation is Cartesian coordinates and its
variations. In this setting, geometric relations are represented by polynomial equal-
ities of coordinates. When coordinates are used in geometric computation, two typ-
ical difficulties occur:
1. Middle expression swell [1]: It is quite often that both the input and output are

small but the polynomials in middle steps are huge. Some computations are thus
possible only theoretically, at least for the current publicly available PCs and
computer algebra systems.

2. Geometric inexplicability [19]: The result of algebraic computation is usually
difficult to explain geometrically. In fact, most results produced do not have any
geometric meaning—they are not invariant under coordinate transformations and
thus are geometrically meaningless.
In the second half of the 19th century, several algebras of geometric covariants

and invariants were proposed. When used in geometric computing, such algebras
may help alleviating the difficulties, because they keep more geometry within their
algebraic structures [16].

Classical invariant theory deals with invariance under the transformation group
GLn(K). The corresponding geometry is projective geometry. The correspond-
ing algebra of covariants for describing projective incidence relations is called
“Grassmann–Cayley algebra.” This is an algebra equipped with two products that
are dual to each other: the outer product as in exterior algebra represents the exten-
sion of geometric entities, and the meet product represents the intersection of the
entities.

In classical invariant theory, the algebra of invariants is the algebra of determi-
nants of homogeneous coordinates, called “bracket algebra” [18]. For example, let
1,2,3 be three points in the 2D projective plane, let their homogeneous coordinates
be (xi, yi, zi) for i = 1,2,3, respectively. Then

[123] =
∣
∣
∣
∣
∣
∣

x1 y1 z1
x2 y2 z2
x3 y3 z3

∣
∣
∣
∣
∣
∣
. (10.1)

Obviously, the bracket is multilinear and antisymmetric with respect to its compo-
nents 1,2,3. The two properties, however, do not suffice to define bracket algebra
completely.

In bracket algebra, people do not resort to Laplace expansions of the brackets;
instead they use the brackets as basic indeterminates and take the algebraic relations
among the brackets as “syzygies” [16]. Again take as example the 2D projective ge-
ometry. Let there be five points 1,2,3,4,5 in the projective plane. The 3D bracket
algebra generated by the five points is the bracket polynomials with C3

5 = 10 inde-
terminates

10 On Geometric Theorem Provingwith Null Geometric Algebra 197

[123], [124], [125], . . . , [345].

The ten brackets are not algebraically independent. They satisfy five algebraic
relations which generate all other relations:

[123][145] − [124][135] + [125][134] = 0,

[123][245] − [124][235] + [125][234] = 0,

[123][345] − [134][235] + [135][234] = 0,

[124][345] − [134][245] + [145][234] = 0,

[125][345] − [135][245] + [145][235] = 0.

(10.2)

These generating relations are the syzygies defining the bracket algebra, called
the “Grassmann–Plücker syzygies” of the five coplanar points [16]. These syzygies
are still not algebraically independent from each other. For example, among the five
syzygies in (10.2), only three are algebraically independent, e.g., the first three. They
form a “bracket basis” of the syzygies.

Brackets have obvious representational advantage over coordinates. For five
points 1 to 5 in the projective plane, the corresponding bracket algebra contains
monomials like [123][145] and binomials like [123][145] + [124][135]. In coordi-
nates, however, their expanded forms are much longer:

[123][145]
= x2z1y3x1y4z5 − x2z1y3x1z4y5 − x2z1y3x4y1z5 + x2z

2
1y3x4y5

− x1y2z3x4y1z5 + x1y2z3x4z1y5 + x1y2z3x5y1z4 − x1y2z3x5z1y4

− x3z1y2x1y4z5 + x3z1y2x1z4y5 + x3z1y2x4y1z5 − x3z
2
1y2x4y5

+ x3z
2
1y2x5y4 + x2

1y2z3y4z5 − x2
1y2z3z4y5 − x1z2y3x5y1z4

+ x1z2y3x5z1y4 − x2y1z3x1y4z5 + x2y1z3x1z4y5 + x2y
2
1z3x4z5

− x2y1z3x4z1y5 − x2y
2
1z3x5z4 + x2y1z3x5z1y4 + x2z1y3x5y1z4

− x2z
2
1y3x5y4 + x3y1z2x1y4z5 − x3y1z2x1z4y5 − x3y

2
1z2x4z5

+ x3y1z2x4z1y5 + x3y
2
1z2x5z4 − x3y1z2x5z1y4 − x2

1z2y3y4z5

+ x2
1z2y3z4y5 + x1z2y3x4y1z5 − x1z2y3x4z1y5 − x3z1y2x5y1z4,

[123][145] + [124][135]
= −x1y2z4x3y1z5 − x1y2z4x5z1y3 + x2

1z2y4z3y5

− x1z2y4x5y1z3 − x2y1z4x1y3z5 + x2y
2
1z4x3z5 − x2y1z4x3z1y5

+ 2x2z1y3x1y4z5 − x2z1y3x1z4y5 − x2z1y3x4y1z5 + x2z
2
1y3x4y5

198 H. Li and Y. Cao

− x1y2z3x4y1z5 + 2x1y2z3x4z1y5 + 2x1y2z3x5y1z4 − x1y2z3x5z1y4

− x3z1y2x1y4z5 + 2x3z1y2x1z4y5 + 2x3z1y2x4y1z5 − 2x3z
2
1y2x4y5

+ x3z
2
1y2x5y4 + x2

1y2z3y4z5 − 2x2
1y2z3z4y5 − x1z2y3x5y1z4

+ 2x1z2y3x5z1y4 − x2y1z3x1y4z5 + 2x2y1z3x1z4y5 + x2y
2
1z3x4z5

− x2y1z3x4z1y5 − 2x2y
2
1z3x5z4 + 2x2y1z3x5z1y4 + 2x2z1y3x5y1z4

− 2x2z
2
1y3x5y4 + 2x3y1z2x1y4z5 − x3y1z2x1z4y5 − 2x3y

2
1z2x4z5

+ 2x3y1z2x4z1y5 + x3y
2
1z2x5z4 − x3y1z2x5z1y4 − x4z1y2x1y3z5

− x4z1y2x5y1z3 + x4z
2
1y2x5y3 − 2x2

1z2y3y4z5 + x2
1z2y3z4y5

+ 2x1z2y3x4y1z5 − x1z2y3x4z1y5 − x3z1y2x5y1z4 + x2
1y2z4y3z5

− x4y1z2x1z3y5 + x4y
2
1z2x5z3 − x4y1z2x5z1y3 − x2z1y4x1z3y5

− x1z2y4x3z1y5 − x2z1y4x3y1z5 + x2z
2
1y4x3y5. (10.3)

The representational advantage of brackets does not necessarily lead to any ma-
nipulational advantage. Since the brackets are not algebraically independent, one
may consider using only a minimum set of algebraically independent brackets and
representing all other brackets by elements in the minimum set. If brackets are used
in this way, then they are equivalent to coordinates. For example, in (10.2) the first
three syzygies form a bracket basis. If only such syzygies are used, then the fol-
lowing algebraically independent brackets can represent the other brackets via the
syzygies and are such a minimum set:

[123], [124], [125], [234], [235], [134], [135]. (10.4)

Then essentially points 1,2,3 are taken as a basis of the 3D vector space realizing
the 2D projective plane, and (10.4) is composed of the volume [123] of the basis
and the homogeneous coordinates of points i= 4,5 with respect to the basis

xi = [12i]
[123] , yi = [13i]

[123] , zi = [23i]
[123] .

Let us see how invariants are manipulated in classical invariant theory. Classi-
cal invariant-theoretical method employs a Gröbner basis of the ideal generated by
the Grassmann–Plücker syzygies in bracket algebra, called “straightening syzygies”
[16]. All bracket polynomials form a Z -module with elements in the straightening
syzygies as a basis. Any bracket polynomial can be written in a unique manner as
a linear combination of the basis elements with integer coefficients. The latter is
the “normal form” of the bracket polynomial. In the procedure of normalization,
a non-straightened bracket monomial is “exploded” into many terms many times.
This procedure does not have any control to the middle expression swell.

10 On Geometric Theorem Provingwith Null Geometric Algebra 199

Geometric interpretation is also a problem for bracket algebra. Although each
bracket, as a determinant of homogeneous coordinates of the constituent points, can
be interpreted in affine geometry as the signed volumes of the simplex spanned by
the points as vertices, a bracket polynomial is by no means easily interpretable with
geometric terms. If the polynomial can be written as a rational monomial in a suit-
able covariant algebra in which the basic elements and their products are geometri-
cally meaningful, then the polynomial finds its geometric interpretation. According
to a theorem by Sturmfels [17], theoretically this procedure is always successful,
called “Cayley factorization.” However, there is no algorithm to produce this fac-
torization, except for the simplest case where every point in the bracket polynomial
occurs only once [18].

So in the setting of classical invariant theory, the two major problems faced by the
coordinate approach are still alive, although in some special cases the algebraic ma-
nipulations can be simplified because of the simplicity in algebraic representation.
Due to the algebraic dependencies among brackets, new difficulties arise, which are
by no means easy to handle. In invariant-theoretical methods, people do not get rid
of algebraic dependencies; otherwise it becomes a traditional coordinate method.
The following are some newly invoked problems [4, 11]:
• Representation: A geometric entity or relation often has many representations in

invariant algebra. How to choose a suitable one in computation? Can the comput-
ing be made robust against the choice?

This problem has never been studied before. A typical example is a conic
formed by five points in the projective plane. It has fifteen equal but different
forms when represented as a degree-four binomial of brackets. Different choice
of the representation can lead to drastic difference in complexity in subsequent
algebraic manipulations.
• Contraction: Reduce the number of terms of a bracket polynomial.

This problem does not exist in polynomials of coordinates. In bracket algebra
this problem is wide open: people do not know how to judge and how to find a
minimum-sized form for a bracket polynomial.
• Expansion: The reverse procedure of Cayley factorization is called “Cayley ex-

pansion” [11]. It is to translate a scalar-valued expression of the algebra of co-
variants into a polynomial in the algebra of invariants.

This problem turns out to be rather complicated. A simple example is the
bracket [aa′a′′] formed by three intersections of pairs of lines in the projective
plane:

a= 12∩ 34, a′ = 1′2′ ∩ 3′4′, a′′ = 1′′2′′ ∩ 3′′4′′.

To compute the bracket, by substituting the expressions of the a’s in Grassmann–
Cayley algebra into it, we get

[{
(1∧ 2)∨ (3∧ 4)

}{(
1′ ∧ 2′

)∨ (3′ ∧ 4′
)}{(

1′ ∧ 2′
)∨ (3′ ∧ 4′

)}]
.

It has 16847 different expansion results.

200 H. Li and Y. Cao

It is an appalling fact that classical invariant-theoretical method is far from be-
ing well developed for symbolic computation. Basic computing tasks like choosing
optimal representations in the procedure of computing, different expansions of co-
variant expressions, contraction of invariant expressions, and factorization in both
invariant and covariant algebras, are either open or overlooked. The bottleneck in
symbolic computing, i.e., middle expression swell, is not taken care of. Because of
this, although invariant algebra can provide simplification in algebraic description,
its cost is significantly high complexity in algebraic manipulation.

When it comes to Euclidean geometry, the algebra of basic invariants is “inner-
product bracket algebra” [3]. This algebra contains, besides brackets, the inner prod-
ucts of vectors as basic elements. In its defining syzygies there is a polynomial of
the form

[i1i2 · · · in][j1j2 · · · jn] − det(ik · jl)k,l=1,...,n,

which equates the product of two determinants to the determinant of the inner prod-
ucts of the constituent column vectors of the two determinants. This syzygy contains
as many as n! + 1 terms. So the task to control the limit of middle expression swell
is much heavier. Further to people’s dismay, the invariants and covariants in geo-
metric computing are often complicated rational polynomials of basic ones. This
suggests that basic invariants are too low-level. As a result, symbolic computation
in Euclidean geometry with inner-product bracket algebra is much more difficult
than in projective geometry.

This is the background of our research in recent years on invariant symbolic com-
putation in classical geometry. In the course of eight years, we have proposed a new
invariant framework, called “null geometric algebra,” and a new guideline for com-
putation, called “BREEFS” [6–10, 12, 13, 15]. The former is a system of monomial
representations of Euclidean incidence geometric constructions and an associated
hierarchy of infinitely graded advanced invariants grown out of Clifford multipli-
cation, and the latter is a stepwise size control strategy based on syzygies of the
invariant algebra. The new framework and guideline can help achieving significant
simplification in invariant algebraic manipulation and thus lead to much better com-
putation both in efficiency (size control) and in quality (geometric interpretation),
as follows:
• In projective geometry and Euclidean geometry, generally the size of an expres-

sion being computed is controlled to within two terms.
• Some geometric computing tasks, which have proved to be very hard if using

only coordinates or basic invariants, can be finished with our new system.
This chapter intends to provide an introduction to the new system. This is done

in Sect. 10.2. Section 10.3 is a practical application of the new system to the prob-
lem of “geometric factorization, decomposition, and theorem completion,” that is,
to explore the quantitative and geometric relationship between the hypotheses and
the conclusion of a geometric theorem, and to explore and discover geometrically
meaningful new conclusions by reducing the number of hypotheses in the theo-
rem.

10 On Geometric Theorem Provingwith Null Geometric Algebra 201

10.2 Null Grassmann–Cayley Algebra and Null Bracket Algebra

10.2.1 Grassmann–Cayley Algebra, Bracket Algebra and
Inner-Product Bracket Algebra

First recall the definition of Grassmann–Cayley algebra [18]. Let V n be an nD line-
ar space over a field of characteristic not 2. Let Λ(V n) be the Grassmann space over
the base space V n. Define in Λ(V n) the following meet product, which is dual to
the outer product: for any A,B ∈Λ(V n), their meet product A∨B is defined by [9]

(A∨B)∗ := B∗ ∧A∗, (10.5)

where “∗” is the dual operator in Grassmann algebra, and “∧” is the outer product.
Grassmann–Cayley algebra is a language for describing projective incidence

constructions. Any vector of V n represents a point of (n − 1)D projective space,
and the representation is homogeneous in that it is unique up to scale: any two vec-
tors represent the same projective point if and only if they differ by scale only. The
line extended by two points is represented by their outer product, and the plane
extended by three points is represented by the outer product of any three vectors
representing the three points. In projective space, the intersection of a line and a
plane is represented by their meet product.

Let there be m projective points. An nD bracket algebra generated by a sequence
S of m symbols 1,2, . . . ,m representing the points, where m> n+ 1, is the poly-
nomial ring generated by all subsequences of S of length n, denoted by square
brackets, modulo the ideal generated by the left side of the following identity, called
“Grassmann–Plücker syzygies”:

n+1∑

k=1

(−1)k+1[i1i2 · · · in−1jk][j1j2 · · · ǰk · · · jn+1] = 0, (10.6)

where the i’s and j’s are symbols in S , and ǰk denotes that jk does not occur in the
subsequence. By requiring antisymmetry among them, the elements in each bracket
do not need to follow their original order in the sequence 1,2, . . . ,m.

The proof of (10.6) is trivial: expand

(i1 ∧ i2 ∧ · · · ∧ in−1)∨ (j1 ∧ j2 ∧ · · · ∧ jn+1) (10.7)

using the “shuffle formula” in Grassmann–Cayley algebra [16] to distribute the j’s
to the sequence i1i2 · · · in−1, once for each j but with alternating signs. That (10.7)
equals zero follows from the fact that any n+ 1 vectors in an nD vector space are
linearly dependent, so their outer product equals zero. Thus,

j1 ∧ j2 ∧ · · · ∧ jn+1 = 0.

The meet product of zero with any element is zero. This proves (10.6).

202 H. Li and Y. Cao

Bracket algebra is established for projective geometry and, after some revision,
for affine geometry. For Euclidean geometry, a new structure called inner product
is needed. A bracket algebra supplemented by an inner product is an inner-product
bracket algebra [3]. Formally, an nD inner-product bracket algebra generated by
a sequence S of m symbols of vectors 1,2, . . . ,m, where m ≥ n, is the quotient
of the polynomial ring generated by two classes of subsequences of S of length 2
and n, denoted by dot and square bracket, respectively, modulo the ideal generated
by the following syzygies:
• GP1:

n+1∑

k=1

(−1)k+1i · jk[j1j2 · · · ǰk · · · jn+1]. (10.8)

• GP2:

[i1i2 · · · in][j1j2 · · · jn] − det(ik · jl)k,l=1,...,n. (10.9)

The order of elements in the subsequences can be violated by requiring that the dot
structure is symmetric while the bracket structure is antisymmetric.

The proof of the syzygies is also trivial. (10.8) is the expansion of the inner
product

i · (j1 ∧ j2 ∧ · · · ∧ jn+1), (10.10)

which equals zero because the outer product of the n+ 1 j’s is zero. (10.9) follows
from

[i1i2 · · · in][j1j2 · · · jn]
= (i1 ∧ i2 ∧ · · · ∧ in)∗(j1 ∧ j2 ∧ · · · ∧ jn)∗

= ((i1 ∧ i2 ∧ · · · ∧ in) · (jn ∧ jn−1 ∧ · · · ∧ j1)
)

= det(ik · jl)k,l=1,...,n,

where the e’s are a basis of the nD vector space defining the dual operator, and
the dot denotes the inner product in geometric algebra. The Grassmann–Plücker
syzygies (10.6) can be obtained from (10.9) directly.

To obtain geometrically explicitly meaningful results, one needs to resort to ad-
vanced algebraic invariants. An algebraic invariant is a polynomial function of
finitely many geometric entities, each represented by coordinates, such that un-
der all kinds of coordinate transformations specified by the defining group of the
geometry, the function remains either invariant or rescaled by a power of the deter-
minant of the transformation. It is a classical theorem that all projective algebraic
invariants are generated by brackets and that all Euclidean algebraic invariants are
generated by brackets and inner products of vector pairs. Conversely, it is clear that

10 On Geometric Theorem Provingwith Null Geometric Algebra 203

Fig. 10.1 Basic invariants in
2D Euclidean geometry

all brackets are projective invariants and all inner products are Euclidean invari-
ants.

Brackets and inner products of vector pairs are basic Euclidean invariants. For
example, in 2D Euclidean geometry the two basic Euclidean invariants are shown
in Fig. 10.1: the distance between two points a1 = (x1, y1), a2 = (x2, y2):

|a1 − a2|2 = (x1 − x2)
2 + (y1 − y2)

2

= x2
1 + x2

2 − 2x1x2 + y2
1 + y2

2 − 2y1y2, (10.11)

and twice the signed volume of a simplex spanned by vertexes aj = (xj , yj) for
1≤ j ≤ 3:

[
(a1 − a2)(a1 − a3)

]=
∣
∣
∣
∣
∣

x1 − x2 x1 − x3

y1 − y2 y1 − y3

∣
∣
∣
∣
∣

= x1y2 − x2y1 − x1y3 + x3y1 + x2y3 − x3y2. (10.12)

All other algebraic invariants are polynomial functions of the basic ones.
An invariant has three different forms of appearance: the coordinate form such

as the right side of (10.12); the expanded form such as the right side of

[
(a1 − a2)(a1 − a3)

]= [a1a2] − [a1a3] + [a2a3]; (10.13)

and the compact form such as [(a1 − a2)(a1 − a3)]. Obviously, the compact form
is the most convenient in reading out geometric interpretation. On the other hand,
without expanding the parentheses in a compact form, algebraic manipulations are
much more complicated.

An advanced invariant is an algebraic invariant having a compact form that is
a monomial in a geometric algebra. The geometric interpretation of an advanced
invariant is immediate from the compact form. Advanced invariant theory studies
the geometric and algebraic properties of advanced invariants. CGA (conformal ge-
ometric algebra) provides a natural tool to construct advanced Euclidean invariants.

10.2.2 From Conformal Geometric Algebra to Null
Grassmann–Cayley Algebra and Null Bracket Algebra

To start with, consider the expansion of (10.11), i.e., the squared length of line seg-
ment a1a2:

204 H. Li and Y. Cao

d2
ab = |a1 − a2|2 = (a1 − a2) · (a1 − a2)

= a1 · a1 + a2 · a2 − 2a1 · a2. (10.14)

A geometric point can be represented by the vector drawn from the origin of the
coordinate frame to the point; so a1 · a1 represents the squared distance between
the origin and the point. When the coordinate frame changes, so does the squared
distance. Hence, a1 · a1 is geometrically meaningless, and so is each term on the
right side of (10.14). We are confronted with a bunch of geometrically meaningless
terms when expanding a squared distance.

To avoid such expansions, a natural idea is to introduce a new inner product such
that if vectors a1,a2 represent two geometric points, then a1 · a2 is a geometric
quantity relying on the two points only. Any such a candidate must be a function of
the distance between the two points.

Then a1 · a1 has to be independent of a1, because it has to be a function of the
distance zero between a point and itself. The simplest choice is to set a1 · a1 = 0,
i.e., vector a1 is null. Then from (10.14) we get

a · b=−d2
ab

2
. (10.15)

To realize nD Euclidean geometry in an inner-product space having property
(10.15), the smallest dimension is n + 2, and the space is Minkowski. Such a re-
alization, called the conformal model, has its root in the work of Wachter (1830s)
and later occurred in S. Lie’s dissertation (1870s). For n = 3, the null-vector rep-
resentation of a point (x, y, z) ∈ R

3 in Minkowski space R
4,1 is the following: let

(e1, e2, e3) be a basis of R
3, and let (e1, e2, e3,n∞,n0) be a basis of R

4,1 with
inner-product matrix

⎛

⎜
⎜
⎜
⎝

1
1

1
0 −1
−1 0

⎞

⎟
⎟
⎟
⎠
; (10.16)

then

(x, y, z) ∈R
3 �→
(

x, y, z,1,−x2 + y2 + z2

2

)

∈R
4,1 (10.17)

is an isometry. When x2 + y2 + z2 →∞, the right side of (10.17) tends to the
direction of vector n∞. So n∞ represents a unique point at infinity compactifying a
Euclidean space.

The classical conformal model of nD Euclidean space is the following set:

Nn∞ =
{
x ∈Rn+1,1 |x · x= 0, x · n∞ =−1

}
. (10.18)

10 On Geometric Theorem Provingwith Null Geometric Algebra 205

Here n∞ is a null vector in the (n + 2)D Minkowski space Rn+1,1. Elements in
Nn∞ are in one-to-one correspondence with points in nD Euclidean space. Let null
vector n0 ∈Ne be the origin. In the conformal model, a point x in Rn is represented
by the null vector

−→x = n0 + x+ x2

2
n∞. (10.19)

Because they never occur simultaneously, later on, both a Euclidean vector and its
null vector representation are denoted by the same letter without arrow top.

From the definition, it is clear that the conformal model depends on the choice
of the origin n0. The homogeneous model [3] is a more general formulation of the
classical conformal model. The model is composed of the set of null vectors

N = {x ∈Rn+1,1 |x · x= 0
}

(10.20)

and a null vector n∞ ∈N . An element x ∈N represents a finite point if and only
if x ·n∞ �= 0. Two elements in N represents the same point if and only if they differ
by scale. This representation is homogeneous, and the model is conformal instead of
isometric. Because of this, it can represent classical geometries of different metrics,
where the “point at infinity” n∞ remains a nonzero vector, but not necessarily a null
vector. To unclutter the formulas, we will denote it by e in the remainder of this
chapter.

The geometric algebra established upon the homogeneous model is called con-
formal geometric algebra (CGA).1 It is the covariant algebra for Euclidean inci-
dence relations, including collinearity, cocircularity, parallelism, perpendicularity,
and tangency. CGA provides the following algebraic representations for incidence
geometric constructions in Euclidean geometry:

(1) The line passing through two points a,b is represented by e ∧ a ∧ b, where
the vectors representing points are null. A circle passing through three points a,b, c
is represented by a∧ b∧ c.

(2) The above constructions are “extension constructions” based on points.
Duality provides intersection constructions. The intersection of two circles/lines
A1 = a1 ∧ b1 ∧ c1 and A2 = a2 ∧ b2 ∧ c2 is a 0D circle represented by the meet
product A1 ∨A2.

Besides geometric constructions based on points, CGA also provides represen-
tations of geometric constructions based on symmetry generators. There are three
kinds of nonzero vectors in a Minkowski space: positive, null, and negative. They
are vectors whose inner product with itself is positive, zero, and negative, respec-
tively. We have seen that a null vector represents in Euclidean geometry a point or
the point at infinity. Below we introduce the other two kinds of vectors as symmetry
generators.

1Editorial note: This characterization of CGA is more restrictive than elsewhere in this book, where
(10.19) is employed.

206 H. Li and Y. Cao

Fig. 10.2 Reflection,
inversion, and antipodal
inversion. Left: x �→ x′,
reflection. Right: x �→ x′,
inversion; x �→ x′′, antipodal
inversion

Any positive vector in Minkowski space R
n+1,1 can be written up to scale as ei-

ther n+δe or c−ρ2e/2, where n ∈R
n is a unit vector, c is a null vector representing

a point, and δ,ρ ∈R.
Let x be a null vector representing a point. Let s be a positive vector. Then x ·s= 0

iff point x is on the hyperplane or sphere represented by s∗. When s= n+ δe, where
δ =−(a ·n)/(a ·e) for a vector a ∈N representing a point, then s∗ is the hyperplane
normal to n and passing through point a; when s= c− ρ2e/2, then s∗ is the sphere
centering at c with radius |ρ|.

When x ·s �= 0, then x∧s represents a pair of points: x and the reflection/inversion
of x with respect to hyperplane/sphere s∗, as shown in Fig. 10.2.

Any negative vector t ∈R
n+1,1 can be written up to scale as c+ ρ2e/2, where c

is a null vector representing a point, and ρ ∈R
+. Let x be a null vector representing

a point. Let t be a negative vector. Then x∧ t represents a pair of points, x and the
antipodal inversion of x with respect to sphere (c, ρ). As shown in Fig. 10.2 (right):
x is mapped to x′′ such that −→ox′′ = −ρ−→ox−1.

Hence in CGA, the extension product is generalized to include not only gener-
ating objects (e.g., points), but also symmetries (e.g., reflection, inversion, and an-
tipodal inversion) of the resulting object. Dually, the intersection of two geometric
objects can be their common symmetry. CGA extends Grassmann’s original exten-
sion of linear (flat) objects to include not only round objects, but also symmetries.

Now consider the simplest 2D case and the representations of points of intersec-
tion. Let ab1c1 and ab2c2 be two circles/lines. Their intersection is a pair of points,
one of which may be the point at infinity:

(a∧ b1 ∧ c1)∨ (a∧ b2 ∧ c2)= a∧ ([ab1c1c2]b2 − [ab1c1b2]c2
)

= a∧ ([ab1b2c2]c1 − [ac1b2c2]b1
)
. (10.21)

The point other than a at the intersection is called the second point of intersection.
Suppose that we are already given one point of intersection a, and we want to

have an expression for the second point of intersection. First of all, the expression
is neither vector [ab1c1c2]b2− [ab1c1b2]c2 nor vector [ab1b2c2]c1− [ac1b2c2]b1,
because both vectors are not null. Second, the second point of intersection must be
of the form [ab1c1c2]b2 − [ab1c1b2]c2 + λa or [ab1b2c2]c1 − [ac1b2c2]b1 + μa,
where λ,μ are scalars to make the whole expression into a null vector. In order to
obtain a monomial and symmetric representation with respect to ab1c1 and ab2c2,
we need to introduce a new meet product to unify the two different forms, and
another product to convert a non-null vector into a null one.

10 On Geometric Theorem Provingwith Null Geometric Algebra 207

Hence, to represent the second intersection point by a null vector multiplicatively
in a monomial manner, we need to introduce two more products into CGA, the
reduced meet product and the nullification product. The reduced meet product of
b1 ∧ c1 and b2 ∧ c2 with base a is denoted by (b1 ∧ c1)∨a (b2 ∧ c2) and defined by

a∧ {(b1 ∧ c1)∨a (b2 ∧ c2)
}= (a∧ b1 ∧ c1)∨ (a∧ b2 ∧ c2). (10.22)

The above identity indicates that the reduced meet product defined in the CGA
over R

3,1 with base a is unique only modulo a, i.e., if both u,v ∈R
3,1 satisfy

a∧ u= a∧ v= (a∧ b1 ∧ c1)∨ (a∧ b2 ∧ c2), (10.23)

then u= v+ λa for some scale λ. Despite the uncertainty, a{(b1 ∧ c1)∨a (b2 ∧ c2)}
and {(b1 ∧ c1)∨a (b2 ∧ c2)}a are both fixed.

An important property of the Minkowski plane is that it has two and only two null
directions, and the two directions can be interchanged by any reflection in the plane.
Since in Geometric Algebra a reflection is generated by the graded adjoint action of
an invertible vector [2], the second intersection of circles/lines ab1c1 and ab2c2 can
be represented by reflecting vector a with respect to vector (b1 ∧ c1)∨a (b2 ∧ c2):

1

2

{
(b1 ∧ c1)∨a (b2 ∧ c2)

}
a
{
(b1 ∧ c1)∨a (b2 ∧ c2)

}
. (10.24)

In CGA, the nullification product of a by b is defined by

Nb(a) := 1

2
aba. (10.25)

An nD null Grassmann–Cayley algebra refers to a Grassmann–Cayley algebra
whose generating vectors are null and whose algebraic operators include not only
the outer product, meet product, dual and bracket operators, but also i-grading op-
erators where i takes values in {0,1, n− 1, n}, the reduced meet product, and the
nullification product.

Null Grassmann–Cayley algebra is a language for describing Euclidean inci-
dence constructions. For example, in the plane there are three points 1,2,3. The
line passing through point 1 and parallel to line 23 has the following monomial
representation:

e∧ 1∧ 〈e23〉1, (10.26)

where 〈e23〉1 is a vector describing the direction of line 23. As a second exam-
ple, the line passing through point 1 and perpendicular to line 23 has the following
monomial representation:

e∧ 1∧ 〈e23〉∗3, (10.27)

where 〈e23〉∗3 is a vector describing the normal direction of line 23.

208 H. Li and Y. Cao

Fig. 10.3 Geometric
interpretations of 〈a1a2a3a4〉
and [a1a2a3a4]

CGA also provides a hierarchy of advanced invariants for geometric comput-
ing. In the previous subsection, we have shown that there are two basic invariants,
〈a1a2〉 = a1 · a2 = 〈a1a2〉0, and [a1a2 · · ·an] = (a1 ∧ · · · ∧ an)∗ = 〈a1a2 · · ·an〉∗n,
where 〈 〉0 and 〈 〉n are grading operators of grade 0 and n, respectively. The geo-
metric product prolongs the two basic invariants to the following two sequences of
advanced invariants: for any k, l ≥ 0,

〈a1a2 · · ·a2k〉 := 〈a1a2 · · ·a2k〉0,
[a1a2 · · ·an+2l] := 〈a1a2 · · ·an+2l〉∗n.

(10.28)

The two kinds of advanced invariants have nice geometric interpretations and
algebraic properties. For example, if the ai are null vectors representing points such
that ai · e=−1, then

〈a1a2 · · ·a2k〉 = 1

2
〈−−→a1a2

−−→a2a3 · · ·−−−−−→a2k−1a2k
−−−→a2ka1〉,

[a1a2 · · ·an+2l] = (−1)n
1

2
[−−→a1a2

−−→a2a3 · · ·−−−−→an+2la1].
(10.29)

Here −−→aiaj denotes the displacement vector from point ai to point aj in Euclidean
geometry. In particular, when n= 2, k = 2, and l = 1, then

〈a1a2a3a4〉 = −da1a2da2a3da3a4da4a1

2
cos(∠a1a2a3 +∠a3a4a1),

[a1a2a3a4] = −da1a2da2a3da3a4da4a1

2
sin(∠a1a2a3 +∠a3a4a1),

(10.30)

where dab denotes the Euclidean distance between points a, b.
In the plane, if a1,a2,a4,a3 are the sequence of vertexes of a quadrilateral

(Fig. 10.3(a)), then ∠a1a2a3,∠a3a4a1 have opposite signs; if a1,a2,a3,a4 are the
sequence of vertexes of a quadrilateral (Fig. 10.3(b)), then ∠a1a2a3,∠a3a4a1 have
the same sign. By (10.30), [a1a2a3a4] = 0 iff ∠a1a2a3 + ∠a3a4a1 = 0 mod π or,
equivalently, iff points a1,a2,a3,a4 are on the same circle or line.

The two advanced invariants have the following reversion symmetries and shift
symmetries:

〈a1a2 · · ·a2k〉 = 〈a2ka2k−1 · · ·a1〉 = 〈a2ka1a2 · · ·a2k−1〉,
[a1a2 · · ·an+2l] = (−1)

n(n−1)
2 [an+2l · · ·a2a1] = (−1)n−1[an+2la1 · · ·an+2l−1].

(10.31)

10 On Geometric Theorem Provingwith Null Geometric Algebra 209

Clifford bracket algebra [3] is the algebra of advanced invariants generated by
the above two kinds of brackets. The elements are naturally graded by their lengths.
Formally, an nD Clifford bracket algebra generated by a sequence S of m symbols
of vectors 1,2, . . . ,m, where m≥ n, is the quotient of the polynomial ring generated
by (1) subsequences of length n, denoted by square brackets, (2) symmetric pairs
of vectors, denoted by angular brackets, (3) repeatable permutations of vectors of
length n+ 2k for k > 0, denoted by square brackets, (4) another group of repeatable
permutations of vectors of length 2l + 2 for l > 0, denoted by angular brackets,
modulo the ideal generated by GP1 in (10.8), GP2 in (10.9), where the dot products
are replaced by angular brackets of length two, and the following SB and AB:
• SB:

[i1i2 · · · in+2k] −
∑

1≤σ≤n+2k

sign(σ, σ̌)〈iσ(1)iσ(2) · · · iσ(2k)〉

× [iσ̌ (1)iσ̌ (2) · · · iσ̌ (n)], (10.32)

where σ, σ̌ run over all permutations of 1,2, . . . , n+ 2k such that σ(1) < σ(2) <
· · ·< σ(2k) and σ̌ (1) < σ̌ (2) < · · ·< σ̌(n).
• AB:

〈i1i2 · · · i2l〉 −
2l∑

k=2

(−1)k〈i1ik〉 〈i2 · · · ǐk · · · i2l〉. (10.33)

In fact, 〈i1i2 · · · i2l〉 is just the Pfaffian of the i’s, and (10.33) is the recursive rela-
tion of Pfaffians. (10.32) is the nth-grade Caianiello expansion [5] of the geometric
product of the i’s. The term Pfaffian was introduced by A. Cayley, who used the
term in 1852 to honor of the German mathematician J. Pfaff [14].

The Clifford bracket algebra generated by points and the point at infinity e in
conformal geometric algebra is null bracket algebra [7]. It is an (n+ 2)D Clifford
bracket algebra with the special requirement that all symbolic vectors are null, i.e.,
the following null syzygies:

〈ii〉 = 0. (10.34)

10.3 Applications: Geometric Factorization, Decomposition,
and Theorem Completion

In this section, we present an example of automated discovering of new geometric
theorems to show the essential role played by null geometric algebra. The scenario is
as follows [7]: for a geometric theorem, if one of its hypotheses is removed, then the
conclusion is no longer true. However, the conclusion should contain the removed

210 H. Li and Y. Cao

hypothesis as a factor. If the other factors of the conclusion are all geometrically
meaningful, the factorization of the conclusion is called geometric.

If more than one hypothesis is removed, by Hilbert’s Nullstellensatz, some power
of the conclusion can be written as a linear combination of the removed hypothe-
ses. If the coefficients in the combination are geometrically meaningful, then this
decomposition is called geometric. However, a geometric decomposition does not
provide any clear geometric interpretation to the conclusion other than the quan-
titative contribution of each hypothesis to the conclusion in geometrical terms. If
instead the conclusion can be written in some suitable covariant algebra into the
form f = 0 where f is a monomial, then it has clear geometric interpretation, and
a new theorem is created (or discovered), called the geometric completion of the
original theorem. It generalizes an existing theorem by reducing its hypotheses.

In the following example, first the geometric factorization is carried out by re-
moving one hypothesis, then a geometric completion is reached by removing one
more hypothesis, and finally a geometric decomposition is obtained by expanding
the completion. The original theorem is very easy:

Example 10.1 In the plane two circles intersect at points 1,1′, respectively. Draw
two secant lines through them, which intersect the two circles at points 2,3 and
2′,3′, respectively, then 22′//33′. See Fig. 10.4 (left).

The first question is this: if one constraint is absent, say 1,1′,2,2′ are no longer
cocircular (see Fig. 10.4 (right)), then how far are lines 22′ and 33′ away from being
parallel?

A beautiful formula is obtained with null bracket algebra:

1

2

[e22′e33′]
(e · 2)(e · 2′)(3 · 3′) =

[e13]
[e12]

[e131′]
[e31′2′]

[11′22′]
(1 · 1′)(1 · 3) . (10.35)

Its geometric interpretation follows the list below:

(1) e · 2= e · 2′ = −1;

(2) 3 · 3′ = d33′

2
, 1 · 1′ = d11′

2
, 1 · 3= d13

2
;

(3)
[
e13′1′
]= 2S131′ ,

[
e31′2′
]= 2S31′2′ ;

(4)
[
e22′e33′

]=−2
(
23× 2′3′

);

(5)
[e13]
[e12] =

d13

d12
ε123.

Here (a) S131′ denotes the signed area of triangle 131′ with respect to the orien-

tation of the plane; (b)
−→
22′ × −→33′ denotes the signed length of the vector product of

vectors
−→
22′,
−→
33′ with respect to the unit normal of the plane; (c) ε123 = 1 if point 1

is inside line segment 23 and −1 otherwise.

10 On Geometric Theorem Provingwith Null Geometric Algebra 211

Fig. 10.4 Left: the original
theorem; right: one
hypothesis removed

The computing of (10.35) is executed by a general algorithm as follows:

Input (1) Geometric objects constructed sequentially, with free objects first.
(2) Target conc= [e22′e33′], which is a Clifford algebraic expression.

The construction sequence of the configuration is as follows:
Free points 1,2,1′,2′.
Semifree point 3 on line 12.
Intersection 3′ = 1′e2′ ∩ 1′13.
This means that 1′,3′ are the intersection of circle 1′13 and line 1′2′.

Output conc/conc′ after canceling their common factors, where conc′ is an ex-
pression to homogenize conc, and for which we choose 3 · 3′. Below we explain the
term “homogenization.”

In the homogeneous model, any geometric relation occurs as a homogeneous
equality. Unfortunately, this is no longer true in algebraic representations of geomet-
ric entities. For example, let a be the intersection of lines 12 and 1′2′. In Grassmann–
Cayley algebra,

a= (1∧ 2)∨ (1′ ∧ 2′
)
. (10.36)

Obviously, this is not a homogeneous relation. The five vectors can be scaled arbi-
trarily and independently, so the equality can only be understood as an equality up
to an arbitrary scale. When we compute the quantitative relations among geometric
objects, we certainly do not want a result with arbitrary scale.

There is a remedy for this. For example, in a rational expression in which the
degree of point a in the numerator equals that in the denominator, the substitution
of (10.36) into the expression does not cause any arbitrary scaling. If we compute
like this:

[abc]
[ab′c′] =

(1∧ 2)∨ (1′ ∧ 2′)∨ (b∧ c)
(1∧ 2)∨ (1′ ∧ 2′)∨ (b′ ∧ c′)

,

then we get an equality invariant under the scaling of a.
Homogenization is to change a nonhomogeneous equality into a homogeneous

one. To achieve this, we need to compute a second expression conc′ containing the
same constrained vector variables with their degrees inclusive as those in conc. Then
we compute conc/conc′.

212 H. Li and Y. Cao

Part 1. Elimination (1) Eliminate the last entity from conc. Expand and simplify
the result. (2) Go to the beginning of Step 1 if conc contains any constrained entity.

In this example there are two constructions, the second point of intersection

3′ = 1

2

{(
e∧ 2′
)∨1′ (1∧ 3)

}
1′
{(

e∧ 2′
)∨1′ (1∧ 3)

}
(10.37)

and a free point 3 on line 12; from e∧ 1∧ 2∧ 3= 0 we get the following Cramer’s
rule:

[e12]3= [123]e− [e23]1+ [e13]2, (10.38)

where the brackets are based on the 3D space spanned by e,1,2,3.
The eliminations are made by substituting the expressions of the constructions

into the conclusion expression and then making simplification:

[
e22′e33′

] eliminate 3′= 1

2

[
e22′e3

{(
e∧ 2′
)∨1′ (1∧ 3)

}
1′
{(

e∧ 2′
)∨1′ (1∧ 3)

}]

expand= 1

2

[
e31′2′
][

e131′
]

︸ ︷︷ ︸

[
e22′e311′2′

]

simplify= e · 2′︸︷︷︸
[
2′2e311′

]

eliminate 3= [e13]
[e12]
︸ ︷︷ ︸

[
2′2e211′

]

simplify= 2 (e · 2)
︸ ︷︷ ︸

[
121′2′
]
. (10.39)

Explanation:
(1) Step 1 substitutes the expression of 3′ into conc.
(2) Step 2 expands the reduced meet products in a monomial manner: since

(
e∧ 2′
)∨1′ (1∧ 3)= [1′e2′3

]
1− [1′e2′1

]
3

= [1′e13
]
2′ − [1′2′13

]
e mod 1′,

if 3′ occurs in an expression where 3′ is neighbor to either null vector 1 or
null vector 3, by selecting the first expansion one can control the conclusion
expression to be 1-termed. Alternatively, if 3′ is neighbor to either e or 2′ in the
conclusion expression, then choosing the last expansion leads to a monomial
result. This is called monomial expansion in null Grassmann–Cayley algebra.

In the above computing, the first meet product in the expression is neighbor
to 3, while the second is neighbor to e by shift symmetry, so up to scale, the two
meet products are replaced by vectors 1 and 2′, respectively. The under braced
factors in the result do not participate in further eliminations and simplifications,
and are removed from succeeding computing procedure.

10 On Geometric Theorem Provingwith Null Geometric Algebra 213

Fig. 10.5 Two hypotheses
removed

(3) Step 3 is simplification after expansions and is based on the symmetries

[
e22′e311′2′

]=−[2′e22′e311′
]= [2′e2′2e311′

]

and monomial expansion 2′e2′ = 2(e · 2′)2′.
(4) Step 4 substitutes the expression of 3 from Cramer’s rule into conc.
(5) The last step is based on 2e2= 2(e · 2)2 and antisymmetry within a bracket of

length n+ 2= 4.

Part 2. Homogenization Use the algorithm in Part 1 to compute conc′ = 3 · 3′.

3 · 3′ eliminate 3′= 1

2

〈
3
{(

e∧ 2′
)∨1′ (1∧ 3)

}
1′
{(

e∧ 2′
)∨1′ (1∧ 3)

}〉

expand= 1

2

[
e31′2′
]2

︸ ︷︷ ︸

〈
311′1
〉

simplify= (
1 · 1′)(1 · 3).

The ratio conc/conc′ gives the desired identity (10.35), which is an extended
theorem. It provides a quantization of the dependency of the conclusion upon the
cocircularity of points 1,2,1′,2′.

In the above computing procedure, the conclusion expression remains 1-termed.
The result is naturally in factored form containing the desired factor [121′2′]. Fur-
thermore, (10.35) is a quantitative description of the conclusion.

Next, we remove one more hypothesis. We remove straight line 123. The
new configuration, as shown in Fig. 10.5, has only two constraints: cocircularity
[131′3′] = 0 and collinearity [e1′2′3′] = 0 in the homogeneous model.

The new configuration can be constructed as follows: points 1,2,3,1′,2′ are free
in the plane, and points 1′,3′ are at the intersection of line 1′2′ and circle 131′. In
(10.39), we have already obtained the result of eliminating 3′ after the third step.
Again, choose conc′ = 3 · 3′. We have

conc

conc′
= [e22′e33′]

3 · 3′ = e · 2′[e131′][e311′2′2]
(1 · 1′)(1 · 3)[e31′2′] . (10.40)

(10.40) is the geometric completion of the original theorem under the constraints
that 1,3,1′,3′ are cocircular and 1′,2′,3′ are collinear. Its geometric meaning is
immediate from

214 H. Li and Y. Cao

[
e311′2′2

]= 1

2
d31d11′d1′2′d2′2 sin

(
∠
(−→
31,
−→
11′
)+∠
(−→
1′2′,
−→
2′2
))
. (10.41)

The geometric decomposition of [e22′e33′] with respect to the two removed hy-
potheses [121′2′] = 0 and [e123] is obtained by the following rational binomial
expansion [9] of [e311′2′2]:
[
e311′2′2

]=−[2e311′2′
]

=− 1

2(1 · 2)
[
2e31211′2′

]

=− 1

2(1 · 2)
(〈2e31〉[211′2′

]+ 〈211′2′
〉[2e31]). (10.42)

An algebraic proof is said to be a monomial (or binomial) one if throughout the
proving procedure, the expressions in process are monomials (or binomials at most).
By now we have tested over 100 theorems in Euclidean geometry involving circles
and angles. About two thirds are given binomial proofs, and about one third are
given monomial proofs.

10.4 Conclusion

In symbolic geometric computation, the bottleneck is middle expression swell,
which makes many computations possible only theoretically. Another problem is
geometric explanation of algebraic results. Often this is impossible if using coordi-
nates, especially when the results are not invariant under coordinate transforms. In
classical invariant-theoretical methods the two problems remain, and new difficul-
ties arise.

In this chapter, we introduce a new invariant framework based on Clifford alge-
bra and the homogeneous model of classical geometry. In geometric computing, the
advanced invariants introduced in this framework bring about amazing simplifica-
tions in algebraic manipulations. The proofs generated by such advanced invariants
have the features that the symbolic manipulations are easy and succinct, the input
and output are both geometrically meaningful, and the proofs provide quantitative
descriptions of the relations among the conclusion and the hypotheses.

Still this is just the beginning. A variety of open problems, old and new, are
waiting there for us to solve. Their solving may ultimately lead to a revolution in
symbolic geometric computing, which is a revitalization of synthetic covariant ap-
proach to classical geometry.

10.5 Exercises

10.1 Using the nullification product show that Ne(a) for a non-null vector a repre-
senting a sphere is proportional to the point at the center of the sphere (remembering
that e represents the point at infinity).

10 On Geometric Theorem Provingwith Null Geometric Algebra 215

10.2 Verify the geometric interpretation of (10.30).

10.3 Verify the geometric interpretation of all factors in (10.35).

10.4 Verify the geometric interpretation of all factors in (10.40) using hint (10.42).

Acknowledgements Both authors are supported partially by NSFC 10871195, NSFC 60821002/
F02 and NKBRSF 2011CB302404.

References

1. Chou, S.-C., Gao, X.-S., Zhang, J.-Z.: Machine Proofs in Geometry. World Scientific, Singa-
pore (1994)

2. Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus. Reidel, Dordrecht (1984)
3. Li, H.: Automated theorem proving in the homogeneous model with Clifford bracket alge-

bra. In: Dorst, L., et al. (eds.) Applications of Geometric Algebra in Computer Science and
Engineering, pp. 69–78. Birkhäuser, Boston (2002)

4. Li, H.: Algebraic representation and elimination and expansion in automated geometric theo-
rem proving. In: Winkler, F. (ed.) Automated Deduction in Geometry, pp. 106–123. Springer,
Heidelberg (2004)

5. Li, H.: Automated geometric theorem proving, Clifford bracket algebra and Clifford expan-
sions. In: Qian, T., et al. (eds.) Trends in Mathematics: Advances in Analysis and Geometry,
pp. 345–363. Birkhäuser, Basel (2004)

6. Li, H.: Clifford algebras and geometric computation. In: Chen, F., Wang, D. (eds.) Geometric
Computation, pp. 221–247. World Scientific, Singapore (2004)

7. Li, H.: Symbolic computation in the homogeneous geometric model with Clifford algebra.
In: Gutierrez, J. (ed.) Proceedings of International Symposium on Symbolic and Algebraic
Computation 2004, pp. 221–228. ACM Press, New York (2004)

8. Li, H.: A recipe for symbolic geometric computing: long geometric product, BREEFS and
Clifford factorization. In: Brown, C.W. (ed.) Proc. ISSAC 2007, pp. 261–268. ACM Press,
New York (2007)

9. Li, H.: Invariant Algebras and Geometric Reasoning. World Scientific, Singapore (2008)
10. Li, H., Huang, L.: Complex brackets balanced complex differences, and applications in sym-

bolic geometric computing. In: Proc. ISSAC 2008, pp. 181–188. ACM Press, New York
(2008)

11. Li, H., Wu, Y.: Automated short proof generation in projective geometry with Cayley and
Bracket algebras I. Incidence geometry. J. Symb. Comput. 36(5), 717–762 (2003)

12. Li, H., Wu, Y.: Automated short proof generation in projective geometry with Cayley and
Bracket algebras II. Conic geometry. J. Symb. Comput. 36(5), 763–809 (2003)

13. Li, H., Hestenes, D., Rockwood, A.: Generalized homogeneous coordinates for computational
geometry. In: Sommer, G. (ed.) Geometric Computing with Clifford Algebras, pp. 27–60.
Springer, Heidelberg (2001)

14. Muir, T.: A Treatise on the Theory of Determinants. Macmillan & Co., London (1882)
15. Sommer, G. (ed.): Geometric Computing with Clifford Algebras. Springer, Heidelberg (2001)
16. Sturmfels, B.: Algorithms in Invariant Theory. Springer, Wien (1993)
17. Sturmfels, B., White, N. (eds.): Invariant-Theoretic Algorithms in Geometry. Special Issue.

J. Symb. Comput. 11 (5/6) (2002)
18. White, N. (ed.): Invariant Methods in Discrete and Computational Geometry. Kluwer, Dor-

drecht (1994)
19. Wu, W.-T.: Mathematics Mechanization. Kluwer and Science Press, Beijing (2000)

11On the Use of Conformal Geometric
Algebra in Geometric Constraint
Solving

Philippe Serré, Nabil Anwer, and JianXin Yang

Abstract
To model a geometrical part in Computer Aided Design systems, declarative
modeling is a well-adapted solution to declare and specify geometric objects
and constraints. In this chapter, we are interested in the representation of geo-
metric objects and constraints using a new language of description and represen-
tation, Geometric Algebra (GA). GA is used here in association with the confor-
mal model of Euclidean geometry (CGA) which requires two extra dimensions
comparing to the usual vector space model. Topologically and Technologically
Related Surfaces (TTRS) Theory is introduced here as a unified framework for
geometric objects representation and geometric constraints solving. Based on
TTRS, this chapter shows the capability of the CGA to represent geometric ob-
jects and geometric constraints through symbolic geometric constraints solving
and algebraic classification.

P. Serré (�)
LISMMA, Institut Supérieur de Mécanique de Paris, Paris, France
e-mail: philippe.serre@supmeca.fr

N. Anwer
LURPA, École Normale Supérieure de Cachan, Cachan, France
e-mail: anwer@lurpa.ens-cachan.fr

J. Yang
Robotics and Machine Dynamics Laboratory, Beijing University of Technology, Beijing,
P.R. China
e-mail: yangjx@tsinghua.org.cn

L. Dorst, J. Lasenby (eds.), Guide to Geometric Algebra in Practice,
DOI 10.1007/978-0-85729-811-9_11, © Springer-Verlag London Limited 2011

217

mailto:philippe.serre@supmeca.fr
mailto:anwer@lurpa.ens-cachan.fr
mailto:yangjx@tsinghua.org.cn
http://dx.doi.org/10.1007/978-0-85729-811-9_11

218 P. Serré et al.

11.1 Declarative Modeling of Geometric Systems

The aim of declarative modeling in mechanical design is to provide high-level tools
and methods to assist the designer to solve technical problems and find suitable
solutions. The associated geometric problem can be described through a set of vari-
ables on geometrical objects, and design requirements as a set of constraints related
to those variables. In contrast with procedural and rule-based modeling, declarative
modeling explicitly describes properties of designed objects but not how to construct
them.

From a formal point of view, declarative modeling consists of a set of variables
and constraints, which state properties and requirements by defining relations be-
tween variables. The model does not specify how to satisfy those constraints, but
rather a constraint solver is used to determine values for the variables such that all
constraints are satisfied [20]. In general, there can be no, one or many solutions.

Declarative modeling can be divided in three phases [8, 21].
• The description step defines the interaction language that allows the designer to

provide properties and relations between the design objects. Global (total descrip-
tion of the model) and incremental (partial description based on trial and error
strategy) approaches are used during this phase.
• The generation step performs an exploration of the solution space (totally or par-

tially) to find one, several or all the solutions that match the properties given by
the designer. Different constraint solving methods have been investigated such as
Constraint Satisfaction Problem (CSP) techniques. If no solution can be found
that satisfies all constraints, the generation step should provide more intelligence
on problem solving thanks to automated deduction, training or user preferences.
• The lookup step allows the designer to visualize the results. Most declarative

modelers choose to present only one solution to the designer. When no solution
can be provided, it is necessary to detect and explain the causes of the failure
so that the designer can make some modifications. When several solutions are
generated, specially adapted tools are required in order to help the designer to
determine the most appropriate solution.

The three phases described above are suited to the geometric design of mechanical
systems by declarative modeling when following specific processes largely embed-
ded in parametric Computer-Aided Design (CAD) systems. The geometric model-
ing of mechanical systems relies on the description of a set of primitives related to
shapes (geometric objects) and geometric constraints that define size, position and
orientation of geometric objects.

11.2 Geometric Constraint Solving

Geometric Constraint Solving is considered as a critical function of modern CAD
systems. Most of CAD systems provide parametric and feature-based modeling
methods to enable the designer semantic-based and intuitive interactivity for dig-
ital models and to support frequent model changes. The geometric objects and con-

11 On the Use of Conformal Geometric Algebra 219

straints at the description step mentioned in the previous section have a significant
impact on how easily a design can be constructed and modified.

A typical geometric constraint problem requires finding a configuration of points,
lines and planes with prescribed pair-wise constraints between these geometric ob-
jects. A pair-wise constraint may be the distance or the angle between them.

Betig [2] characterized Geometric Constraint Solving as follows:

Given a set of geometric objects, such as points, lines and circles; given a set of constraints,
such as distance and angle; and given an embedding space, such as the Euclidean plane
or the Euclidean 3D space; assign coordinates to the geometric objects such that the con-
straints are satisfied, or report that no such assignment has been found.

Geometric constraint solving methods can be classified in three broad categories:
graph-based, logic-based and algebraic-based [1, 12, 13]. Solving a geometric con-
straint problem can be also considered a problem of automated proving of geometric
theorems.

The graph-based geometric constraint solving methods works in two steps. First
the geometric problem is translated into a graph whose vertices represent the set
of geometric elements and whose edges are the constraints. Then the constraint
problem is solved by decomposing the graph into a collection of sub-graphs each
representing a standard problem [13]. The typical problems solved by these methods
are ruler and compass constructive problems.

The Rule-based geometric constraint solving methods rely on the predicates for-
mulation considering a set of geometric assertions and axioms and an inference
engine is used to derive the solution by exhaustively applying rules. Although
they provide a qualitative study of geometric constraints, their exhaustive searching
and matching computations make them inappropriate for real-world CAD applica-
tions.

The Algebraic-based geometric constraint solving methods translate the con-
straint problem into a set of equations. The equations are in general nonlinear. The
problem can then be solved using any of the known methods for solving nonlinear
equations. The main advantages of algebraic solvers are their generality, dimension
independence and the ability to deal with symbolic constraints in a natural way. Al-
gebraic methods can be further classified according to the specific technique used
to solve the system of equations, namely into numerical and symbolic methods. Nu-
merical methods have the potential to solve large nonlinear systems, while symbolic
methods can be used only for small systems.

The geometric objects considered in our work, based on TTRS model, are em-
bedded in 2D or 3D Euclidean space. They are defined by a list of elements chosen
among the point, the line and the plane (Minimum Geometrical Reference Element),
and 13 pair-wise constraints are then defined among them [7]. An initial digital rep-
resentation is needed to initialize the topology of the object to be created. Obviously,
this initial digital representation does not respect all the constraints, and there is no
request to find an exact solution of the given problem, but the processing time should
be shortened as is currently the case with the existing solvers in CAD.

220 P. Serré et al.

11.3 Topologically and Technologically Related Surfaces (TTRS)

Rigid body motions are fundamental for the design of mechanical systems. The
classification of three-dimensional surfaces according to their invariant properties
under the action of rigid motions was investigated in mechanisms theory by Hervé
[9] and, in the context of Geometric Dimensioning and Tolerancing, by Clément
and Srinivasan [6, 19]. The Geometrical Product Specification (GPS) program under
ISO TC213 [4] also adopted the classification of three-dimensional surfaces based
on their invariance under the action of rigid motions.

In Topologically and Technologically Related Surfaces (TTRS) Theory [7],
three-dimensional surfaces or features are classified according to their respective
degree of invariance under the action of rigid motions. Basically, seven main fea-
tures equivalent to kinematic lower pairs are identified: planar feature, cylindrical
feature, revolution feature, spherical feature, prismatic feature, helicoidal feature
and complex feature. Each main feature is then described by a unique minimum
geometrical reference element (MGRE) allowing the positioning in the Euclidean
space. An MGRE is set as a combination of elementary geometrical objects: Point,
Line and Plane. TTRS Theory has been adopted by ISO TC213 and successfully
implemented in the CATIA v5 CAD system to manage assembly constraints and
tolerance annotations.

The classification described above can be also applied to a collection of two
surfaces, resulting in a composed surface again classifiable according to the classi-
fication of the two previous surfaces. All the possible combinations of elementary
surfaces or features are then reduced to only 28 situations. 13 reclassifying cases
between Points, Lines and Planes have been defined.

11.3.1 Lie Algebra of the Group of Rigid Motions

From a theoretical point of view, the above classification derives from the properties
of the twelve connected Lie subgroups of T (3)× SO(3) (the group of translations
and rotations in the three-dimensional Euclidean space). A comprehensive system
of Lie subalgebras and corresponding Lie subgroups for rigid body motion was
presented by Hervé [10]. The most general formulation of the rigid body motion is
the screw motion. According to Lie’s theory of continuous groups, an infinitesimal
motion or displacement is represented by an operator acting on the points of the
three-dimensional Euclidean space. This operator includes a field of moments called
screws which are a six-dimensional vector that combines rotational and translational
motions and velocities of a rigid body. Screws are elements of the Lie algebra of the
group of rigid motions [16].

The classification of three-dimensional surfaces based on their invariance under
the action of the Lie group of rigid motions is extremely powerful but needs more
mathematical formalization and computability [5].

11 On the Use of Conformal Geometric Algebra 221

11.3.2 Geometric Algebra Considerations

Geometrical representations of Points, Lines and Planes, the group of rigid body mo-
tions, the Lie algebra of this group and screw theory have already been investigated
using Geometric and Clifford Algebras [16, 17]. According to Hestenes, the con-
formal model is becoming a standard for applications of Euclidean Geometry and
will promote a rejuvenation of screw theory [11]. Just like the resurrection of screw
theory, the prosperity of Geometric Algebra in kinematics needs some time [15].

11.4 CGA for Geometric Constraint Solving

In the following sections, we study the capability of the conformal model to repre-
sent the geometric objects (here Point, Line and Plane) and geometric constraints
between them. Two examples are presented to demonstrate practical applications of
CGA in the field of declarative modeling of geometric system for CAD applications.

11.4.1 Example of Symbolic Solving

In this section, we will illustrate the usage of CGA to solve symbolically geometric
problems defined by constraints. The aim of the development presented below is to
highlight the three steps of the algebraic treatment. The first step is the represen-
tation of geometric elements. The second step is to write equations that define the
geometric constraints. The third step is the symbolic solving itself.

The development presented is the case study given in Fig. 11.1. It is a problem
defined by four geometric elements and five constraints between them. Geometric
elements are: two points M1 and M2, line L and plane P . Geometric constraints
are: three incidence relations between M1 and L, between M2 and L, between M1
and P , one distance constraint between M2 and P and one angular constraint be-
tween L and P . The distance is equal to d . The angle is equal to α.

Blades of CGA are used to represent geometric elements. Geometric constraints
are expressed by algebraic relations between vectors. The geometric problem is
symbolically solved step by step by algebraic operations. The complete sequence
is described in the following.

11.4.1.1 Representation of Geometric Elements
The method begins with the declaration of geometric objects. Each of them is rep-
resented by CGA elements.
1. The four points M1, M2, M3 and M4 are represented by null vectors called m1,

m2, m3 and m4;
2. The line L passes through M3 with unit direction vector t. L is represented by

the CGA 3-blade L,

L=m3 ∧ t∧ n∞. (11.1)

Let a point X be represented by the CGA vector x; then ∀x ∈ L, x ∧L= 0;

222 P. Serré et al.

Fig. 11.1 Case study

3. The plane P passes through M4 with unit direction bivector B. P is represented
by the CGA 4-blade P ,

P =m4 ∧B∧ n∞. (11.2)

Let a point X be represented by the CGA vector x; then ∀x ∈ P, x ∧ P = 0.

11.4.1.2 Representation of Geometric Constraints
The second step is to define the algebraic relations between the CGA elements.
Some of them are given in [18].
1. C1 constraint: M1 and L are incident. This translates into the following algebraic

relation:

m1 ∧L= 0. (11.3)

2. C2 constraint: M2 and L are incident. This translates into the following algebraic
relation:

m2 ∧L= 0. (11.4)

3. C3 constraint: M1 and P are incident. This translates into the following algebraic
relation:

m1 ∧ P = 0. (11.5)

4. C4 constraint: The distance between M2 and P is equal to d . This translates into
the following algebraic relation:

11 On the Use of Conformal Geometric Algebra 223

m2 ∧ P = εdI5 (11.6)

with ε =±1 and I5 = no ∧ e1 ∧ e2 ∧ e3 ∧ n∞ the pseudoscalar of CGA space.
This relation indicates that m2 ∧ P is proportional to I5. Because P is a unit

4-blade, the norm of m2 ∧ P is equal to the distance between M2 and P . The
sign of ε defines whether M2 is above or below P .

5. C5 constraint: The angle between P and L is equal to α. This translates into the
following algebraic relation:

t∧B= sinαI3 (11.7)

with α ∈ [−π
2 ,

π
2].

This relation indicates that t ∧ B is proportional to I3 = e1 ∧ e2 ∧ e3, the
pseudoscalar of Euclidean space. Because t is a unit vector and B a unit bivector,
the norm of t∧B is the sinus of the angle between L and P .
The relations are now known, and the last step is to solve them symbolically.

11.4.1.3 Symbolic Solving
In this section, we detail the symbolic resolution of the five previous relations. Ini-
tially, the 3-blade L is expressed in terms of m3 and t. The first operation is to
express L in terms of m1 and t. Because the constraint C1 implies Eq. (11.3), we
have:

m1 ∧L= 0 ⇒
{m1 =m3 + x+ γ1n∞

x∧ t= 0

⇒
{m3 =m1 − x− γ1n∞

x∧ t= 0

(11.8)

with a Euclidean vector x collinear with t and a real number γ1 such that γ1 = 1
2 m1

2.
By replacing m3 in Eq. (11.1),

L=m3 ∧ t∧ n∞
= (m1 − x− γ1n∞)∧ t∧ n∞
=m1 ∧ t∧ n∞ (11.9)

because x∧ t vanishes.
Initially, the 4-blade P is expressed in terms of m4 and B. The second operation

is to express P in terms of m1 and B. Because C3 constraint implies Eq. (11.5), we
have:

m1 ∧ P = 0 ⇒
{
m1 =m4 + y+ γ2n∞
y∧B= 0

⇒
{
m4 =m1 − y− γ2n∞
y∧B= 0

(11.10)

224 P. Serré et al.

with a Euclidean vector y coplanar with B and a real number γ2 such that γ2 =
1
2 m1

2.
By replacing m4 in Eq. (11.2),

P =m4 ∧B∧ n∞
= (m1 − y− γ2n∞)∧B∧ n∞
=m1 ∧B∧ n∞ (11.11)

because y∧B vanishes.
The third operation is to establish relation between m1 and m2, because they

belong to the same line. Because C3 constraint implies Eq. (11.4) and thanks to
Eq. (11.9), we have:

m2 ∧L= 0 ⇒
{m2 =m1 + z+ γ3n∞

z∧ t= 0
(11.12)

with a Euclidean vector z collinear with t and a real number γ3 such that γ3 = 1
2 m2

2.
The fourth operation is to expand the term m2 ∧ P using expression (11.12) for

m2 and expression (11.11) for P :

m2 ∧ P = (m1 + z+ γ3n∞)∧ P

= (m1 + z+ γ3n∞)∧ (m1 ∧B∧ n∞)

= z∧m1 ∧B∧ n∞
=−m1 ∧ z∧B∧ n∞. (11.13)

Because z and t are vectors and z∧ t= 0, so z= λt with λ a real number. Therefore
Eq. (11.13) becomes

m2 ∧ P =−λ(m1 ∧ t∧B∧ n∞). (11.14)

Development of expression (11.14) continues, replacing t∧B. Because C5 con-
straint implies Eq. (11.7), we have:

m2 ∧ P =−λ sinα(m1 ∧ I3 ∧ n∞)

=−λ sinα(no ∧ I3 ∧ n∞)

=−λ sinαI5. (11.15)

The last operation is to eliminate m2 ∧ P in Eqs. (11.15) and (11.6). To do that,
C4 constraint is used.

{
m2 ∧ P =−λ sinαI5

m2 ∧ P = εdI5
⇒ εdI5 =−λ sinαI5. (11.16)

11 On the Use of Conformal Geometric Algebra 225

Fig. 11.2 Association
between Li and Lj

Finally, the following scalar relation encapsulates the geometric problem

λ= ε
d

sinα
. (11.17)

Solving the preceding relation permits to construct in the 3D affine space, a geo-
metric object consistent with the constraints. If the reference frame of the 3D affine
space is defined by the point O and the Euclidean coordinate frame (e1, e2, e3),
a possible geometric construction is: point M1 is the origin O , P is the (e1, e2)

plane, and L is coplanar with the (e2, e3) plane. Vector t is defined by the coordi-
nates (0, cosα, sinα). Point M2 is defined by the coordinates ε d

sinα (0, cosα, sinα).
Fortunately, the outcome of the computation for this example is as expected. The

authors do not claim to have given a general solution to the problem of the symbolic
resolution of geometric problems defined by constraints, because the model chosen
and the proposed sequence are not unique. A detailed study of this domain lies in
the research works of Shang-Ching Chou on automated geometry theorem proving
[3] and Hongbo Li on automatic symbolic simplification [14] (see also Chap. 10 of
this volume).

11.4.2 Example of Geometric Classification

The objective of this section is to present the role of CGA to classify the association
of two elementary geometric objects. One result of TTRS theory is the classifica-
tion of two lines in three different cases: coincident, parallel or general. We will
describe a solution using CGA to obtain algebraically the classification of two lines
Li and Lj .

11.4.2.1 Representation of Geometric Elements
Figure 11.2 indicates the geometric elements used in the development. Lines are
drawn in arbitrary position.

226 P. Serré et al.

Point Mi (resp. Mj) is represented by the null vector called mi (resp. mj). Line
Li (resp. Lj) of direction ti (resp. tj) passing through a point mi (resp. mj) is
represented by the 3-blade: Li =mi ∧ ti ∧ n∞ (resp. Lj =mj ∧ tj ∧ n∞).

Association between two lines is represented by a new CGA element called
TTRS5. This new element is the geometric product of Li and Lj :

TTRS5 = LiLj . (11.18)

11.4.2.2 Geometric Interpretation of TTRS5
Equation (11.18) is easily expandable by remarking that geometric product of
(mi ∧ ti)n∞ and n∞(mj ∧ tj) vanishes because n∞ is a null vector. Therefore,

(mi ∧ ti)n∞n∞(mj ∧ tj)= 0 ⇒ (Li + ti)(Lj − tj)= 0. (11.19)

By replacing LiLj in Eq. (11.19), TTRS5 is represented by the following expression:

TTRS5 = titj +Litj − tiLj . (11.20)

It reveals a rotor titj that carries out the angular specification between the two lines.
The expression Litj − tiLj is more difficult to interpret. An algebraic rewriting
enables to compute the Euclidean vectors p and dij . p is the position of the common
perpendicular L of the two lines. dij is the direction of L. The norm of dij is the
distance between the two lines. These elements are drawn in Fig. 11.3.

Litj − tiLj = tj ·Li − ti ·Lj − tj ∧Li − ti ∧Lj

= tj ·Li − ti ·Lj +
(
(mj −mi)∧ ti ∧ tj ∧ n∞

)
. (11.21)

This can be written in the form

Litj − tiLj =
(
(ti · tj)dij + (ti ∧ tj)p+ (dij ∧ ti ∧ tj)

)∧ n∞, (11.22)

where p and dij are Euclidean vectors. We will show that this specifies them com-
pletely and that their semantics is as in Fig. 11.3.

From here and for practical reasons, TTRS5 is rewritten as

TTRS5 =X+Y∧ n∞ (11.23)

with X= TTRS5 − (no · TTRS5)∧ n∞ and Y= no · TTRS5.
Because X is a sum of a scalar and 2-blade, and Y is a sum of 1-blade and 3-

blade, Eq. (11.23) can be expanded as

TTRS5 = 〈X〉0 + 〈X〉2 + 〈Y〉1 ∧ n∞ + 〈Y〉3 ∧ n∞. (11.24)

Therefore, expressions of dij and p are given in terms of X and Y:

11 On the Use of Conformal Geometric Algebra 227

Fig. 11.3 Geometric
interpretation of α, p and dij

dij = 〈Y〉3〈X〉2 ,

p = 〈X〉0〈Y〉3 − 〈Y〉1〈X〉2〈X〉22
.

(11.25)

This study shows that the CGA multivector TTRS5 embeds the geometrical con-
straints of distance and angle between the two lines. It can be used as a conceptual
model of the geometrical constraint between two lines.

11.4.2.3 Classification of TTRS5
Now is the time to find algebraically the classification proposed by the TTRS theory.
Recall that TTRS5 =X+Y∧ n∞.

First, assume that the lines are coincident. Then Li is proportional to Lj , and the
geometric product between them is a scalar. Therefore, expression of TTRS5 is:

TTRS5 = 〈X〉0 + 〈X〉2 + 〈Y〉1 ∧ e∞ + 〈Y〉3 ∧ n∞
= 〈X〉0. (11.26)

Second, assume that the lines are parallel. In this case, the terms 〈X〉2 and 〈Y〉3
vanish because ti and tj are collinear:

TTRS5 = 〈X〉0 + 〈X〉2 + 〈Y〉1 ∧ e∞ + 〈Y〉3 ∧ n∞
= 〈X〉0 + 〈Y〉1 ∧ n∞. (11.27)

Third, assume that the lines are coplanar. In this case, the term 〈Y〉3 vanishes be-
cause dij , ti and tj are coplanar.

TTRS5 = 〈X〉0 + 〈X〉2 + 〈Y〉1 ∧ n∞ + 〈Y〉3 ∧ n∞
= 〈X〉0 + 〈X〉2 + 〈Y〉1 ∧ n∞. (11.28)

In the general case, no terms vanish.

228 P. Serré et al.

Fig. 11.4 Opposite chirality
for same geometric constraint

We see from this example that CGA gives an algebraic solution to classify the re-
lationship of geometric objects. This is possible because TTRS5 contains the metric
and the orientation that characterize the association. In further work, we must study
the generality of this representation for other TTRS.

11.5 Open Problems

To improve characteristics of existing solvers, it is possible to act in several direc-
tions. We have chosen to present two improvements that concern the declaration
phase. If they were made, they would be of benefit for the designers of mechanical
systems. The first is related to the specification of the chirality. The second is related
to the specification of the mobility.

11.5.1 Chirality Specification

Today, in case of iso-constrained geometric problem, existing solvers generate only
one solution even if the geometric problem has several. Generally, this is not trou-
blesome for CAD applications except when the solver generates a symmetric so-
lution to that expected by the designer. For instance, the designer defines the geo-
metric object drawn in Fig. 11.4 with distance and angle constraints between the
holes. The solver generates the left solution while the designer wants the right
one.

Given this situation, the designer cannot change the generated solution inter-
actively as he did with an under-constrained problem. The practical solution is to
remove one or more constraints and modify interactively the generated solution that
is now under-constrained. The new form is closer to that desired. Finally, he must
reactivate suppressed constraints and solve again, hoping that this time the solver
generates the expected solution.

This method is not suitable, because the same problem can occur several times
during the design process. A better solution would be that the designer specifies
what solution he wants. It could be done using the chirality constraint. We believe
that CGA could represent this new kind of constraint, as we have seen previously
with TTRS5. In this case, the signs of 〈Yleft〉3 and 〈Yright〉3 are opposite.

11 On the Use of Conformal Geometric Algebra 229

Fig. 11.5 Bennett linkage

11.5.2 Mobility Specification

Geometric constraint solvers used today do not allow designers to specify the mo-
bility of desired solutions.

Consider the over-constrained mechanism shown in Fig. 11.5, called a Bennett
linkage. It is a spatial single degree of freedom mechanism consisting of four bars
connected by revolute joints. Each of the bars is specified by two geometric param-
eters, the common perpendicular length between the revolute joints axes and the
angle between these axes. If a designer uses a GCS to construct this system, the
generated solution will be mostly the rigid structure presented in Fig. 11.6 and very
rarely the expected mechanism of Fig. 11.5. Distances, angles of bars and geometric
constraints between them are respected, but not the mobility because the designer
can not specify it.

It is a weakness of GCS modules because it is a common request in the field
of mechanical design. Today, the solution adopted is to use specific applications of
kinematic synthesis as Lincages-20001 or Synthetica.2 However, there is a lack of
the interoperability between these systems and CAD software.

A better solution would be that the designer specifies the number of degree of
freedom that the geometric system should have. It could be done using the mobility
constraint. We believe that CGA could represent this new kind of constraint, because
rotor and geometric constraints can be described in the same space.

1http://www.me.umn.edu/labs/lincages/new.html.
2http://www.umbc.edu/engineering/me/vrml/research/software/synthetica/index.html.

http://www.me.umn.edu/labs/lincages/new.html
http://www.umbc.edu/engineering/me/vrml/research/software/synthetica/index.html

230 P. Serré et al.

Fig. 11.6 Example of
solution generated by GCS
solver

11.6 Conclusion

This chapter has shown that Geometric Algebra language and Conformal Geometric
Algebra (CGA) enable to model geometric objects and constraints by a system of
algebraic relations. This result is central for the development of a declarative mod-
eling approach for mechanical systems in the context of Computer-Aided Design of
mechanical parts.

CGA has been successfully implemented for symbolic geometric constraints
solving and algebraic classification. Open problems were also discussed through
CGA perspectives. The main interest of CGA is to support a coordinate free for-
mulation and to develop a new geometric framework for TTRS models and their
underlying Lie algebras and screw-based representations. Geometric reasoning and
automatic symbolic simplification based on CGA can be also considered as a per-
spective direction of the work presented here.

Finally, the scope of geometric algebra is its universality to model all the physical
sciences as was clearly demonstrated by D. Hestenes. This chapter has shown that,
with this mathematical tool, we could model CAD geometric artifacts. Thus, we
pave the way for the creation of general declarative models for Mechatronics. These
models will represent physical phenomena that interact with geometry (mechanical,
electrical, electromagnetism, . . .).

11.7 Exercises

11.1 Interpreting Eq. (11.25), show that dij and p are Euclidean vectors and have
the semantics of Fig. 11.1.

11.2 The association between two planes is represented by a CGA element called
TTRS9. This element is the geometric product of Pi and Pj ,

TTRS9 = PiPj .

11 On the Use of Conformal Geometric Algebra 231

We know that Pi =mi ∧Bi ∧ n∞ and Pj =mj ∧Bj ∧ n∞. Give the expression for
TTRS9 in terms of Pi , Pj , Bi and Bj .

11.3 The association between a line and a plane is represented by two CGA ele-
ments called TTRS6 and TTRS8, depending on the order. These two elements are the
geometric product of Pi and Lj :

TTRS6 = LiPj ,

TTRS8 = PiLj .

We know that Pi =mi ∧Bi ∧ n∞ and Li =mi ∧ ti ∧ n∞. Give the expressions for
TTRS6 and TTRS8 in terms of Li , Lj , ti , ti , Pi , Pj , Bi and Bj .

11.4 Consider the example of Fig. 11.1. Add a point N and a line L2, and specify
four new geometric constraints: C6 is an incidence between L2 and M1, C7 is an
incidence between L2 and N , C8 is a distance constraint between P and N called
d2, and finally C9 is a distance constraint between L and N called d3.

If the unit direction vector of L2 is t2, show that:
1. n∧L=−λ2(n∧ t2 ∧ t∧ n∞) with λ2 a real number.
2. n∧ P =−λ2(n∧ t2 ∧B∧ n∞) with λ2 the same real number.
3. Let the angle between P and L2 be denoted as θ , and the angle between L and

L2 be denoted as ω. Give the expression for θ in terms of ω, d2 and d3.
4. Give the semantics of the Euclidean bivector t∧ t2.

References

1. Ait-Aoudia, S., Bahriz, M., Salhi, L.: 2D geometric constraint solving: an overview. In: Pro-
ceedings of 2nd International Conference in Visualisation (VIZ), Barcelona (Spain), July 15–
17, 2009, pp. 201–206. IEEE Comput. Soc., Los Alamitos (2009)

2. Bettig, B., Hoffmann, C.M.: Geometric constraint solving in parametric computer-aided de-
sign. doi:10.1115/1.3593408

3. Chou, S.-C.: Mechanical Geometry Theorem Proving. Springer, Berlin (1988)
4. Chiabert, P., Orlando, M.: About a cat model consistent with iso/tc 213 last issues. Achieve-

ments in Mechanical and Materials Engineering Conference. J. Mater. Process. Technol. 157–
158, 61–66 (2004)

5. Chiabert, P., Lombardi, F., Vaccarino, F.: Analysis of kinematic methods for invariants based
classification in the ISO/TC213 framework. In: Proceedings of the 10th CIRP International
Seminar on Computer-Aided Tolerancing, Erlangen (Germany), March 21–23, 2007

6. Clément, A., Rivière, A., Temmerman, M.: Cotation tridimensionnelle des systèmes mé-
caniques – Théorie et pratique. PYC, Ivry-sur-Seine (1994)

7. Clément, A., Rivière, A., Serré, P., Valade, C.: The TTRS: 13 constraints for dimensioning
and tolerancing. In: Proceedings of the 5th CIRP International Seminar on Computer-Aided
Tolerancing, pp. 28–29 (1997)

8. Gaildrat, V.: Declarative modelling of virtual environments, overview of issues and appli-
cations. In: Plemenos, D., Miaoulis, G. (eds.) Proceedings of International Conference on
Computer Graphics and Artificial Intelligence (3IA), Athens (Greece), May 30–31, 2007

9. Hervé, J.-M.: The mathematical group structure of the set of displacements. Mech. Mach.
Theory 29(1), 73–81 (1994)

http://dx.doi.org/10.1115/1.3593408

232 P. Serré et al.

10. Hervé, J.-M.: The Lie group of rigid body displacements, a fundamental tool for mechanism
design. Mech. Mach. Theory 34(5), 719–730 (1999)

11. Hestenes, D.: New tools for computational geometry and rejuvenation of screw theory. In:
Bayro-Corrochano, E., Scheuermann, G. (eds.) Geometric Algebra Computing, pp. 3–33.
Springer, London (2010)

12. Hoffmann, C.M., Joan-Arinyo, R.: A brief on constraint solving. Comput-Aided Des. Appl.
2(5), 655–663 (2005)

13. Joan-Arinyo, R.: Basics on geometric constraint solving. In: Proceedings of 13th Encuentros
de Geometrfa Computacional (EGC09), Zaragoza (Spain), June 29–July 1, 2009

14. Li, H.: Invariant Algebras and Geometric Reasoning. World Scientific, Singapore (2008)
15. Luo, Z., Dai, J.S.: Mathematical methodologies in computational kinematics. In: 14th Biennial

Mechanisms Conference, Chong Qing (China), 2004
16. Selig, J.M., Bayro-Corrochano, E.: Rigid body dynamics using Clifford algebra. Adv. Appl.

Clifford Algebras 20, 141–154 (2010)
17. Selig, J.M.: Clifford algebra of points, lines and planes. Robotica 18(5), 545–556 (2000)
18. Serré, P., Moinet, M., Clément, A.: Declaration and specification of a geometrical part in

the language of geometric algebra. In: Advanced Mathematical and Computational Tools
in Metrology and Testing VIII. Series on Advances in Mathematical for Applied Sciences,
vol. 78, pp. 298–308 (2009)

19. Srinivasan, V.: A geometrical product specification language based on a classification of sym-
metry groups. Comput. Aided Des. 31(11), 659–668 (1999)

20. van der Meiden, H.A., Bronsvoort, W.F.: A constructive approach to calculate parameter
ranges for systems of geometric constraints. Comput. Aided Des. 38(4), 275–283 (2006)

21. Zaragoza, J., Ramos, F., Orozco, H.R., Gaildrat, V.: Creation of virtual environments through
knowledge-aid declarative modeling. In: LAPTEC, pp. 114–132 (2007)

12On the Complexity of Cycle Enumeration
for Simple Graphs

René Schott and G. Stacey Staples

Abstract
We show how a number of combinatorial problems, such as determining the num-
ber of cycles in graphs, can be recast using a graded commutative algebra con-
structed within a real Grassmann exterior algebra. The computational complexity
of this approach is then measured by considering operations at the basis blade
level of the algebra. In particular, the worst-case time complexity of counting
arbitrary length cycles in simple n-vertex graphs via nilpotent adjacency matrix
methods is shown to be O(nα+12n), where α ≤ 3 is the exponent representing
the complexity of matrix multiplication. The storage complexity of the nilpotent
adjacency matrix approach is O(n22n). A probabilistic model is used to describe
a class of graphs in which the average-case time complexity of cycle enumera-
tion is O(n3(1 + q)n) for fixed 0 < q < 1. For reference, experimental results
detailing computation times (in seconds) are compared with algorithms based on
the approaches of Bax and Tarjan.

12.1 Introduction

The complexity of a number of NP-class combinatorial problems can be solved
using only a polynomial number of multivector operations in a 2n-dimensional al-
gebra generated by n mutually commuting null-squares, as we have shown in [5]. In
particular, by defining a “nilpotent adjacency matrix” associated with a finite graph

R. Schott
IECN and LORIA, Nancy Université, Université Henri Poincaré, BP 239, 54506
Vandoeuvre-lès-Nancy, France
e-mail: schott@loria.fr

G.S. Staples (�)
Department of Mathematics and Statistics, Southern Illinois University Edwardsville,
Edwardsville, IL 62026-1653, USA
e-mail: sstaple@siue.edu

L. Dorst, J. Lasenby (eds.), Guide to Geometric Algebra in Practice,
DOI 10.1007/978-0-85729-811-9_12, © Springer-Verlag London Limited 2011

233

mailto:schott@loria.fr
mailto:sstaple@siue.edu
http://dx.doi.org/10.1007/978-0-85729-811-9_12

234 R. Schott and G.S. Staples

on n vertices, the problem of enumerating cycles of length k requires O(nα log k)
multivector operations in the algebra, where α ≤ 3 denotes the exponent associated
with matrix multiplication. While α < 3 for ordinary matrix multiplication (see [2]),
such algorithmic speedups do not necessarily hold for matrices whose elements are
multivectors.

In this chapter, the computational complexity of enumerating cycles of arbitrary
length in graphs is studied in greater detail by counting algebraic operations at the
basis blade level of the algebra as opposed to the multivector level. For practical
reference, the theoretical complexity of this approach is compared to that of the
algorithms of Bax and Tarjan. Moreover, experimental comparisons using MATHE-
MATICA illustrate practical advantages of the nilpotent adjacency matrix approach,
particularly in the case of sparse graphs.

The algebra used in the construction can be regarded as a commutative subalge-
bra of the exterior algebra

∧
R

2n. Its generators commute and square to zero so that
linear combinations of the generators are nilpotent. This nilpotent nature is the key
to combinatorial applications.

All MATHEMATICA examples were computed on a 2.4 GHz MacBook Pro with
4 GB of 667 MHz DDR2 SDRAM running MATHEMATICA 6 for MAC OS X
with the Combinatorica package. Cycle enumeration is accomplished using the
nilpotent adjacency matrix approach, Bax’s approach, and the HamiltonianCycle
procedure found in the MATHEMATICA package Combinatorica. Time plots com-
paring the three approaches are included. MATHEMATICA code used to gener-
ate examples can be found online through the second-named author’s web page,
http://www.siue.edu/~sstaple.

12.2 Essential Background

A graph G= (V ,E) is a collection of vertices V and a set E of unordered pairs of
vertices called edges. Two vertices vi, vj ∈ V are said to be adjacent if there exists
an edge eij = {vi, vj } ∈E. In this case, the vertices vi and vj are said to be incident
with eij .

A k-walk {v0, . . . , vk} in a graph G is a sequence of vertices in G with initial
vertex v0 and terminal vertex vk such that there exists an edge (vj , vj+1) ∈ E for
each 0 ≤ j ≤ k − 1. A k-walk contains k edges. A k-path is a k-walk in which no
vertex appears more than once. A closed k-walk is a k-walk whose initial vertex is
also its terminal vertex. A k-cycle is a closed k-path with v0 = vk .

The diameter of a graph G is defined to be the length of the longest path in G.
The girth and circumference of a graph are defined to be the lengths of the graph’s
shortest and longest cycles, respectively. If the graph has no cycles, its girth and
circumference are defined to be∞.

If G= (V ,E) is a graph, A is its adjacency matrix, and S ⊆ V , define the modi-
fied adjacency matrix AS by

[AS]ij =
{
Aij if i ∈ S and j ∈ S,

0 otherwise.

http://www.siue.edu/~sstaple

12 On the Complexity of Cycle Enumeration for Simple Graphs 235

Theorem 12.1 (Bax) Each main diagonal element of

∑

S⊆V
(−1)|V |−|S|(AS)

|V |

contains the number of Hamiltonian cycles in G if |V |> 0.

Bax’s approach to cycle enumeration uses powers of a graph’s adjacency ma-
trix with the principle of inclusion–exclusion to count all Hamiltonian cycles in
O(2npoly(n)) time and poly(n) storage [1]. Enumerating only those cycles of
length k is accomplished by applying Bax’s algorithm to all k-vertex subgraphs.
For fixed k, this is O(poly(n)) since

(
n
k

)≤ nk for all n≥ k. For k increasing with n,
the complexity remains O(2npoly(n)), which can be verified by a rearrangement of
Bax’s formula (cf. Exercise 12.1).

Tarjan’s algorithm (based on pruning with look-ahead) enumerates all cycles in
a graph on n vertices with time complexity O((n+ |E|)(C + 1)) when applied to
a graph with C cycles [7]. The storage complexity is O(n+ |E| + S), where S is
the sum of the lengths of all cycles. Note that the number of cycles on a k-vertex
subgraph is potentially of order k! while the number of subgraphs supporting such
cycles is of order

(
n
k

)
.

A convenient and practical Tarjan-type implementation is the HamiltonianCy-
cle procedure found in the MATHEMATICA package Combinatorica. The algorithm
uses backtracking and look-ahead to enumerate all Hamiltonian cycles in a graph
on n vertices. The implementation utilized for the examples in this paper enumer-
ates cycles of length k in an n-vertex graph G by applying HamiltonianCycle to all
k-vertex subgraphs of G. Implementations of this Tarjan-like approach are referred
to henceforth as “CombiTarjan.” Tarjan’s algorithm actually lists cycles, which can
result in O(n!) space complexity.

12.3 Technical Considerations

Fix positive integer n and let γ = {ei : 1≤ i ≤ 2n} be an orthonormal basis for R
2n.

Note that the pair (γ,∧) generates a nonabelian semigroup A of order 22n. Let

Z = {e2i−1 ∧ e2i : 1≤ i ≤ n} ⊂A, (12.1)

and note that the pair (Z,∧) generates an abelian subsemigroup RΨn of A. It should
be clear that all elements of Ψn square to zero.

Definition 12.1 Let RΨn denote the real abelian semigroup algebra of Ψn. For
convenience, the generators of Ψn are rewritten as ζi = e2i−1 ∧ e2i , and henceforth
the wedge operator is implicit.

Remark 12.1 The algebra RΨn is isomorphic to the n-particle zeon algebra C n
nil

appearing in the earlier work [5].

236 R. Schott and G.S. Staples

It is evident that the dimension of RΨn is 2n and that an arbitrary element u ∈
RΨn can be expanded as

u=
∑

I∈2[n]
uI ζI , (12.2)

where I ∈ 2[n] is a subset of [n] = {1,2, . . . , n} used as a multiindex, uI ∈ R, and
ζI =∏ι∈I ζι.

A canonical basis element ζI is referred to as a blade. The number of elements
in the multiindex I is referred to as the grade of the blade ζI .

The scalar sum evaluation of an element u ∈RΨn, denoted 〈〈u〉〉, is defined by

〈〈u〉〉 =
〈〈 ∑

I∈2[n]
uI ζI

〉〉

=
∑

I∈2[n]
uI . (12.3)

Definition 12.2 Let G be a graph on n vertices, either simple or directed with
no multiple edges, and let {ζi}, 1 ≤ i ≤ n, denote the nilpotent generators of RΨn.
Define the nilpotent adjacency matrix associated with G by

Aij =
{
ζj if (vi, vj) ∈E(G),
0 otherwise.

(12.4)

Recalling Dirac notation, the ith row of A will be conveniently denoted by
〈vi |A , while the j th column will be denoted by A |vj 〉.

A graph-theoretic interpretation of the nilpotent adjacency matrix can be stated
thusly: 〈vi |A |vj 〉 = ζj if and only if one can reach vj from vi in one step. Moreover,
that “step” algebraically corresponds to multiplication by the null-square genera-
tor ζj . Extending by induction, nonzero terms of 〈vi |A k|vj 〉 correspond to k-step
walks from vi to vj in which each walk is “accomplished” in the algebra by com-
puting a product of null-square generators. The null-square property then naturally
“sieves out” walks on distinct generators, i.e., self-avoiding walks. This is all made
precise in the next theorem.

Theorem 12.2 Let A be the nilpotent adjacency matrix of an n-vertex graph G.
For any k > 1 and 1≤ i, j ≤ n,

〈
vi |A k|vj

〉=
∑

(w1,...,wk)∈V k

(wk=vj)∧(m �= ⇒wm �=w)

ζ{w1,...,wk} =
∑

I⊆V
|I |=k

ωI ζI , (12.5)

where ωI denotes the number of k-step walks from vi to vj visiting each vertex in I

exactly once when initial vertex vi /∈ I , and revisiting vi exactly once when vi ∈ I .
In particular, for any k ≥ 3 and 1≤ i ≤ n,

12 On the Complexity of Cycle Enumeration for Simple Graphs 237

〈
vi |A k|vi

〉=
∑

I⊆V
|I |=k

ωI ζI , (12.6)

where ωI denotes the number of k-cycles on vertex set I based at vi ∈ I .

Proof Because the generators of RΨn square to zero, a straightforward inductive ar-
gument shows that the nonzero terms of 〈vi |A k|vj 〉 are multivectors corresponding
to two types of k-walks from vi to vj : self-avoiding walks (i.e., walks with no re-
peated vertices) and walks in which vi is repeated exactly once at some step but are
otherwise self-avoiding. Walks of the second type are zeroed in the kth step when
the walk is closed. Hence, terms of 〈vi |A k|vi〉 represent the collection of k-cycles
based at vi . �

In light of this theorem, the name “nilpotent adjacency matrix” is justified by the
following corollary.

Corollary 12.1 Let A be the nilpotent adjacency matrix of a simple graph on n

vertices. For any positive integer k ≤ n, the entries of A k are homogeneous elements
of grade k in RΨn. Moreover, A k = 0 for all k > n.

Another immediate corollary is that

〈〈
tr
(
A k
)〉〉= k

∣
∣{k-cycles in G}∣∣, (12.7)

since each k-cycle appears with k choices of base point along the main diagonal
of A k .

In earlier work (see [5, 6]), the authors defined complexity in terms of the number
of multivector operations in C n

nil, or “C ops”, required. In contrast, this chapter
work considers complexity at the level of the basis blades of RΨn

∼= C n
nil.

Definition 12.3 A blade operation in RΨn is defined as computing the sum or prod-
uct of two basis blades. In particular, for multiindices I and J , each of the following
computations is regarded as a blade operation:

(aζI)(bζJ)=
{

0 if I ∩ J �= ∅,
(ab)ζI∪J otherwise;

(12.8)

aζI + bζJ =
{
(a + b)ζI if I = J ,

aζI + bζJ otherwise.
(12.9)

Recalling the correlation between subsets of [n] and bit strings of length n, each
basis blade ζI is uniquely associated with a binary string I . The cost of a basis blade
multiplication in RΨn is then equal to that of computing first the bitwise AND and
then the bitwise OR of two n-bit words, which is known to be O(n). Summing a
pair of basis blades is similarly O(n).

238 R. Schott and G.S. Staples

Given arbitrary elements u,v ∈RΨn and letting νu and νv denote the respective
numbers of nonzero coefficients in the canonical expansions of u and v, the number
of blade multiplications required to compute uv is then νuνb . The number of blade
additions is similarly O(νuνv). Taking the costs of the blade operations themselves
into consideration, the complexity of expanding the product uv is thus seen to be
O(n νuνv).

The MATHEMATICA implementation of RΨn used in the examples contained
herein is based on subset operations rather than binary representations of subsets and
bit operations. The additional overhead is offset by the relatively low dimensions of
the examples.

12.4 Theoretical Complexity

Lemma 12.1 Enumerating cycles in a simple graph on n vertices using nilpotent
adjacency matrix methods has storage complexity O(n22n).

Proof The nilpotent matrix method requires construction of n× n matrices whose
entries are elements of a 2n-dimensional algebra; i.e., in the worst case, O(2n) co-
efficients must be associated with each matrix entry. Consequently, the space com-
plexity is O(n22n). �

Theorem 12.3 The worst-case time complexity of enumerating cycles of arbitrary
length in a graph on n vertices using the nilpotent adjacency matrix method is
O(nα+12n).

Proof In light of Theorem 12.2, for any k ≤ n, computing A k =A k−1A requires
computing

〈
vi |A k|vj

〉=
n∑

 =1

〈
vi |A k−1|v

〉〈v |A |vj 〉 (12.10)

for all 1 ≤ i, j ≤ n. Entries of A k−1 are homogeneous grade-(k − 1) elements
of Zn. Moreover, terms in the canonical expansion of 〈vi |A k−1|v 〉 must be in-
dexed by subsets containing v , while in all cases, 〈v |A |vj 〉 is either 0 or ζvj .

Thus, the maximum number of blade multiplications performed in computing the
product 〈vi |A k−1|v 〉〈v |A |vj 〉 is

(
n−1
k−2

)
for each 1≤ ≤ n.

Computing the product A k−1A then requires at most nα
(
n−1
k−2

)
blade multiplica-

tions. Applying this result recursively, computing A k requires

nα
k∑

 =2

(
n− 1

 − 2

)

< nα2n−1 (12.11)

12 On the Complexity of Cycle Enumeration for Simple Graphs 239

blade multiplications. Since each blade multiplication is of complexity O(n), the
result follows. �

Note that an immediate consequence of the theorem is that the worst-case com-
plexity of computing the girth and circumference of a graph on n vertices is also
O(nα+12n).

Recalling that the diameter of a graph is defined as the length of the graph’s
longest path, another corollary is obtained.

Corollary 12.2 The worst-case time complexity of computing the diameter of a
graph on n vertices using the nilpotent adjacency matrix method is O(nα+12n).

Proof Letting Δ be the n × n diagonal matrix whose main diagonal entries are
Δii = ζi , it can be shown that the off-diagonal entries of ΔA k are homogeneous
grade-(k+1) multivectors corresponding to k-paths in the graph associated with A .
The effect of left multiplication by Δ is to account for the initial vertex of any walk.
Hence, the diameter of the graph is given by the largest positive integer k for which
ΔA k is not the zero matrix. �

Note that the complexity of computing A k may vary depending on various meth-
ods of computing powers. The iterated method requires k − 1 matrix products to
compute

A k :=
{

A if k = 1,

A k−1A otherwise.
(12.12)

Given the binary representation of positive integer k, the successive squares
method requires .log2 k" matrix products and matrix sums to compute. In partic-
ular, letting k be a set of nonnegative integers such that k =∑ ∈k 2 , then

A k =
∑

 ∈k
A 2 . (12.13)

While the successive squares method is generally more efficient than the iterated
method, the application to nilpotent adjacency matrices is not straightforward. All
discussion is henceforth restricted to the iterated method.

Example 12.1 Computation times in seconds are given for enumerating .n/2"-
cycles in randomly generated n-vertex graphs in Fig. 12.1. The experimental results
illustrate practical advantages of the nilpotent adjacency matrix approach.

240 R. Schott and G.S. Staples

Fig. 12.1 Times (in seconds) required to enumerate .n/2"-cycles in randomly generated n-vertex
graphs having equiprobable edges (p = 0.25)

12 On the Complexity of Cycle Enumeration for Simple Graphs 241

12.4.1 Average-Case Complexity in “Suitably Sparse” Graphs

Discussion now turns to the average-case complexity of cycle enumeration in ho-
mogeneous random graphs. A homogeneous random graph G= Gn,p is a graph on
n vertices with independent equiprobable edges of probability p. That is, each pair
of vertices in the graph has equal probability p of being adjacent.

The next example illustrates the role of graph sparseness in the algorithmic com-
parisons. For fixed values of n and k, the time required to count k-cycles in an n-
vertex graph depends on graph density for the CombiTarjan and nilpotent adjacency
matrix methods, but is essentially constant for Bax’s algorithm.

Example 12.2 Mean run times over 20 trials of counting .n/2"-cycles in simple
graphs are compared in Fig. 12.2 (top). In Fig. 12.2 (bottom), the number of vertices
is fixed at 10, and edge existence probability varies from p = 0.1 to p = 0.5.

The next theorem describes a class of random graphs for which the nilpotent
adjacency matrix method is more efficient than O(2npoly(n)).

Theorem 12.4 Let q ∈ (0,1) be fixed. Let n be a positive integer, and let 3 ≤
k ≤ n. Let Gn,p be a homogeneous random graph on n vertices with independent
equiprobable edges of probability p ≤ q

k−1 . Then, the average-case complexity of
enumerating cycles of length less than or equal to k in Gn,p using the nilpotent
adjacency matrix method is O(n3(1+ q)n).

Proof As in the proof of Theorem 12.3, the result is obtained by considering the
number of nonzero coefficients in A k . To consider the average-case complexity,
we consider expected numbers of nonzero coefficients according to the probabil-
ity model indicated. In particular, the average number of blade multiplications per-
formed in computing

〈
vi |A k|vj

〉=
n∑

 =1

〈
vi |A k−1|v

〉〈v |A |vj 〉

is the product of the expected numbers of nonzero coefficients in the canonical ex-
pansions of 〈vi |A k−1|v 〉 and 〈v |A |vj 〉.

Let G= Gn,p be a homogeneous random graph on n vertices with independent
equiprobable edges of nonzero probability p ≤ q

k−1 for fixed q ∈ (0,1).

Claim Let n ≥ 3, and let 2 ≤ k ≤ n. For any 1 ≤ i, j ≤ n, the expected number of
nonzero coefficients in the canonical expansion of 〈vi |A k|vj 〉 satisfies the following
inequality:

E
(
�{nonzero coefficients})≤ qk−1

(
n− 1

k − 1

)

. (12.14)

242 R. Schott and G.S. Staples

Fig. 12.2 Top: Mean run times over 20 trials enumerating .n/2"-cycles in randomly generated
n-vertex graphs having equiprobable edges (p = 0.25). Bottom: 20-Run mean run times of count-
ing 5-cycles in 10-vertex graphs with edge probabilities running from p = 0.1 to p = 0.5. Plot-
markers: B—Bax, C—CombiTarjan, •—RΨn

Proof of Claim By Theorem 12.2, the expected number of nonzero coefficients in
the canonical expansion of 〈vi |A k|vj 〉 is equal to the expected number of k-vertex
subsets I ⊆ V such that there exists a k-step walk from vi to vj ∈ I visiting each
vertex of I exactly once when vi /∈ I and revisiting vi exactly once when vi ∈ I .

The special case k = 2 is treated first. The expected number of nonzero coeffi-
cients in the canonical expansion of 〈vi |A 2|vj 〉 is equal to the expected degree of vi
when i = j and equal to the expected number of two step walks on distinct vertices
vi→ v → vj when i �= j ; i.e.,

E
(
�{nonzero coefficients})=

{
p(n− 1) i = j ,

p2(n− 2) otherwise.
(12.15)

12 On the Complexity of Cycle Enumeration for Simple Graphs 243

The desired inequality for k = 2 is then established by observing that p < q , whence

p2(n− 2) < p(n− 1) < q(n− 1)= qk−1(n− 1). (12.16)

Turning now to the more general case 2 < k ≤ n, the expected number of vertex
sets I on which k-walks vi→ vj exist with no repeated vertices except possibly vi
at an intermediate step is determined by partitioning the collection of these walks
into two classes: (i) walks on k edges and (ii) walks on k − 1 edges (in which case,
vertex vi is revisited on the second step).

Unless otherwise indicated, k-walks will refer only to those walks w : vi → vj
with no revisited vertex except possibly vi exactly once at an intermediate step.

Note that the total number of k-walks w : vi → vj in Kn revisiting no vertex
except possibly vi at an intermediate step is given by

W = (k − 1)!
(
n− 1

k − 1

)

(12.17)

since these walks are specified by ordered k-tuples of vertices with vj in the kth
position. Hence, k − 1 intermediate vertices visited are chosen from V \ {vj } with
(k − 1)! possible permutations.

Denote as Class I those walks on k independent equiprobable edges. Class I
walks either revisit no vertices or may revisit vi at some step other than the second
step. Let W1 denote the total number of these walks in Kn. Denote as Class II those
walks on k − 1 independent equiprobable edges. Class II walks revisit vertex vi at
the second step. Let W2 denote the number of Class II walks in Kn.

Note first that W =W1 +W2. Given a homogeneous random graph G= Gn,p , it
is now evident that

E
(
�{k-walks w : vi→ vj in G})

= E
(
�{Class I k-walks w : vi→ vj in G})

+E
(
�{Class II k-walks w : vi→ vj in G}). (12.18)

When a collection of k-walks vi → vj exists on k independent equiprobable
edges,

E
(
�{Class I k-walks w : vi→ vj }

)=
∑

Class I k-walks w:vi→vj

P(w exists)

= pkW1. (12.19)

Similarly,

E
(
�{Class II k-walks w : vi→ vj }

)= pk−1W2. (12.20)

244 R. Schott and G.S. Staples

Together, (12.18), (12.19), and (12.20) give

E
(
�{k-walks w : vi→ vj in G})= pkW1 + pk−1W2

≤ pk−1(W1 +W2)= pk−1W. (12.21)

The expected number of vertex subsets supporting these walks therefore satisfies
the following inequality:

E
(
�{I : ∃ k-walk w : vi→ vj }

)≤ pk−1W. (12.22)

With the assumption p ≤ q
k−1 for fixed q > 0 and substitution of W from (12.18),

one thereby obtains

E
(
�{I : ∃k-walk w : vi→ vj }

)≤ qk−1

(k − 1)k−1
W ≤ qk−1

(k − 1)!W

= qk−1
(
n− 1

k− 1

)

. (12.23)

This completes the proof of the claim. �

By considering the expected number of nonzero coefficients in the canonical
expansion of 〈vi |A k−1|vj 〉 for 3≤ k ≤ n, it is now evident that the expected number
of blade multiplications performed in computing 〈vi |A k−1A |vj 〉 is bounded above
by

n∑

 =1

qk−2
(
n− 1

k− 2

)

p = npqk−2
(
n− 1

k − 2

)

≤ qk−1 n

k− 1

(
n− 1

k− 2

)

= qk−1
(

n

k − 1

)

. (12.24)

Hence, the expected number of blade multiplications performed in computing the
matrix product A k = A k−1A is bounded above by n2qk−1

(
n

k−1

)
. Applying this

result recursively, the average number of blade multiplications required to compute
A k is found to be bounded above by n2∑k−1

 =1 q

(
n

)
.

Observing that

k−1∑

 =1

q

(
n

)

≤
n∑

 =0

q

(
n

)

= (1+ q)n, (12.25)

cycle enumeration is of average-case complexity O(n2(1+ q)n) in terms of blade
operations required. Recalling the O(n) complexity of blade operations thus com-
pletes the proof. �

12 On the Complexity of Cycle Enumeration for Simple Graphs 245

Fig. 12.3 Top: Counting cycles of random length k ∈ {3, . . . ,max({3, n/2})} in n-vertex graphs
with edge probability p = q/(k − 1). The continuous curve is y = cn3(1 + q)n, where q = 0.7
and c = 2.4862 · 10−9, obtained by least squares method. Bottom: Counting cycles of length
k ∈ {3, . . . ,max(3, .n/2")} in n-vertex graphs with edge probability p = q/(k−1), where q = 0.7.
Plotmarkers: B—Bax, C—CombiTarjan, •—RΨn

Example 12.3 Average computation times (over 200 trials) of enumerating cycles
of length k ∈ {3, . . . ,max({3, n/2})} in homogeneous random graphs satisfying the
conditions of Theorem 12.4 with constant q = 0.7 are depicted in Fig. 12.3 (top).
Also plotted is the curve y = cn3(1 + q)n with c = 2.4862 · 10−9 determined by
least squares.

Example 12.4 A comparison of average computation times (over 20 trials) for the
three methods of enumerating cycles of length k ∈ {3, . . . ,max({3, n/2})} in ho-
mogeneous random graphs satisfying the conditions of Theorem 12.4 with constant
q = 0.7 are depicted in Fig. 12.3 (bottom).

246 R. Schott and G.S. Staples

As the next theorem shows, the fixed cycle length case is very well-behaved in
terms of complexity.

Theorem 12.5 For fixed k ∈N, the worst-case complexity of enumerating k-cycles
in an n-vertex graph by the nilpotent adjacency matrix method is O(nα+k−1).

Proof The case k = 3 is clear from the special case in the proof of Theorem 12.4.
When k > 3, the maximum number of nonzero coefficients in the canonical expan-

sion of 〈vi |A k−1|vj 〉 is
(
n−1
k−2

)
. Asymptotically,

(
n−1
k−2

) ≈ (n−1)k−2

(k−2)! = O(nk). Hence,

computing A k requires computing at most

nα
k−2∑

 =0

(
n− 1

)

=O
(
nαnk−2)=O

(
nk+(α−2)) (12.26)

blade products. �

12.5 Implementation Notes

In general, coding the geometric product (or any noncommutative operation) in
MATHEMATICA is most reliably done using one of MATHEMATICA’s undefined
symbols. However, since the product in RΨn is commutative, a much more efficient
implementation is possible. The nilpotent adjacency matrix approach was imple-
mented herein by overloading the Times operator of MATHEMATICA to facilitate
multiplication of blades from RΨn. Figure 12.4 details MATHEMATICA code for
implementing the multiplication in RΨn.

Once the RΨn multiplication is implemented, the algorithm for counting cycles
is very straightforward. The corresponding code is seen in Fig. 12.5.

Bax’s algorithm is implemented using the formula obtained in Exercise 12.1.
Counting all k-cycles in a graph G having adjacency matrix A is accomplished by
computing the quantity

k�{k-cycles in G} = Tr

(∑

S⊆V
|S|≤k,S �=∅

(
n− |S|
k − |S|

)

(−1)k−|S|(AS)
k

)

. (12.27)

The corresponding code is seen in Fig. 12.6.
The CombiTarjan method was implemented by first extracting all k-vertex sub-

graphs and summing recovered numbers of Hamiltonian cycles on them. The code
appears in Fig. 12.7.

The comparisons seen in Fig. 12.1, Fig. 12.3, and Fig. 12.2 were generated as
follows: For any given trial, a random simple graph is first generated by constructing
a random symmetric binary matrix. The corresponding nilpotent adjacency matrix
is then constructed.

12 On the Complexity of Cycle Enumeration for Simple Graphs 247

Fig. 12.4 MATHEMATICA code defining RΨn multiplication by overloading the Times operator

Fig. 12.5 MATHEMATICA code for counting k-cycles via nilpotent adjacency matrix method

Fig. 12.6 MATHEMATICA code for counting k-cycles via algorithm of Bax

Fig. 12.7 MATHEMATICA implementation of “CombiTarjan” approach

The MATHEMATICA system cache was cleared before counting by each method.
The system time was stored in a variable, the appropriate method was called, and
the subsequent system time was stored in another variable. Relevant data were then
appended to a table. Test points were incorporated after each method to ensure that
all three methods were returning the same results.

248 R. Schott and G.S. Staples

12.6 Conclusion

Leslie Valiant first defined the complexity class �P when dealing with the complex-
ity of counting solutions to NP decision problems [8]. The problem of deciding
whether or not a graph contains a Hamiltonian cycle is one such decision prob-
lem [3].

Generally, the problem of counting cycles in finite graphs is known to be �P -
complete, and no polynomial-time algorithm is known to exist for solving this prob-
lem. Algorithms with O(2npoly(n)) time complexity and O(poly(n)) space com-
plexity are known to exist (see [1, 4]).

The time complexity of Tarjan’s algorithm is proportional to the number of cy-
cles contained in the graph. Unlike Bax’s algorithm, which simply counts cycles,
Tarjan’s algorithm actually lists the cycles. As a result, the storage and time com-
plexity of Tarjan’s algorithm are potentially factorial rather than exponential.

The nilpotent adjacency matrix method, like Bax’s algorithm, counts cycles with-
out listing them, providing an advantage over Tarjan’s approach in terms of storage-
complexity (assuming the counting of cycles is all that is required). Unlike Bax’s
algorithm, which has time complexity O(2npoly(n)) in all cases, the average-case
complexity is significantly less when dealing with “suitably-sparse” graphs. The
storage complexity of the nilpotent adjacency matrix approach lies between Bax
and Tarjan, since it is proportional to the number of vertex subsets supporting cy-
cles in the graph.

As illustrated by the experimental results, the nilpotent adjacency matrix method
often has computational advantages over other classical algorithms. Much work re-
mains to be done in characterizing theoretical complexity on various families of
graphs.

12.7 Exercises

12.1 Let A be the adjacency matrix of a simple graph G on n vertices as seen in
Theorem 12.1. Show that for any vertex vi in G and positive integer k ≤ n,

�{k-cycles at vi} =
[
∑

S⊆V
|S|≤k,S �=∅

(
n− |S|
k− |S|

)

(−1)k−|S|(AS)
k

]

ii

. (12.28)

12.2 For positive integer n, let Z = {e2i−1 ∧ e2i : 1≤ i ≤ n} as in (12.1). Prove that
the pair (Z,∧) forms an abelian semigroup.

12.3 Let u ∈RΨn be an element of the form u= a1ζ1 + a2ζ2, where a1 and a2 are
nonzero scalars. Show that u2 �= 0 and u3 = 0.

12 On the Complexity of Cycle Enumeration for Simple Graphs 249

Fig. 12.8 A simple graph on
14 vertices

12.4 Suppose that n and k are positive integers satisfying 1 < k ≤ n and u ∈ RΨn

is an element of the form u =∑k
i=1 aiζi where ai �= 0 for i = 1, . . . , k. Prove the

following:
i. uk = k!a1 · · ·akζ{1,...,k}

ii. um = 0 for all m> k.

12.5 Construct a nilpotent adjacency matrix A for the graph appearing in Fig. 12.8
and count the 7-cycles contained therein by computing A 7. Verify your result by
hand as well as by applying the Bax and CombiTarjan algorithms.

References

1. Bax, E.: Algorithms to count paths and cycles. Inf. Process. Lett. 52, 249–252 (1994)
2. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions. J. Symb.

Comput. 9, 251–280 (1990)
3. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Com-

putations, pp. 85–103. Plenum, New York (1972)
4. Karp, R.: Dynamic programming meets the principle of inclusion and exclusion. Oper. Res.

Lett. 1, 49–51 (1982)
5. Schott, R., Staples, G.S.: Computational complexity reductions using Clifford algebras. In:

Bayro-Corrochano, E., Scheuermann, G. (eds.) Geometric Algebra Computing for Engineering
and Computer Science, pp. 431–453. Springer, Berlin (2010)

6. Schott, R., Staples, G.S.: Reductions in computational complexity using Clifford algebras. Adv.
Appl. Clifford Algebras 20, 121–140 (2010)

7. Tarjan, R.: Enumeration of the elementary circuits of a directed graph. SIAM J. Comput. 2,
211–216 (1973)

8. Valiant, L.: The complexity of computing the permanent. Theor. Comput. Sci. 8, 189–201
(1979)

Part V
Applications of Line Geometry

Geometric algebra provides a natural setting for encoding the geometry of 3D lines,
unifying and extending earlier representations such as Plücker coordinates. This is
immediately applicable to fields in which lines play the role of basic elements of
expression, such as projective geometry, inverse kinematics of robots with transla-
tional joints, and visibility analysis.

13Line Geometry in Terms of the Null
Geometric Algebra over R

3,3,
and Application to the Inverse Singularity
Analysis of Generalized Stewart Platforms

Hongbo Li and Lixian Zhang

Abstract
In this chapter, the classical line geometry is modeled in R3,3, where lines are
represented by null vectors, and points and planes by null 3-blades. The group
of 3D special projective transformations SL(4) when acting upon points in space
induces a Lie group isomorphism, with SO(3,3) acting upon lines.
As an application of the use of the R3,3 model of line geometry, this chapter
analyzes the inverse singularity analysis of generalized Stewart platforms, using
vectors of R

3,3 to encode the force and torque wrenches to classify their singular
configurations.

13.1 Introduction

H. Grassmann (1844) and J. Plücker (1865) are the co-founders of line geometry
[5]. A line in space is the extension of two points. For two points with homoge-
neous coordinates (x0, x1, x2, x3) and (y0, y1, y2, y3), the line they extend can be
represented by the outer product of their homogeneous coordinates. In coordinate
form, this outer product has the following Plücker coordinates:

(l01, l02, l03, l23, l31, l12), (13.1)

where lij = xiyj − xjyi . If we denote x= (x1, x2, x3)
T and y= (y1, y2, y3)

T , then
the line xy has the Plücker coordinates

H. Li (�) · L. Zhang
Key Laboratory of Mathematics Mechanization, Academy of Mathematics and Systems Science,
Chinese Academy of Sciences, Beijing 100190, P.R. China
e-mail: hli@mmrc.iss.ac.cn

L. Zhang
e-mail: shadowfly12@126.com

L. Dorst, J. Lasenby (eds.), Guide to Geometric Algebra in Practice,
DOI 10.1007/978-0-85729-811-9_13, © Springer-Verlag London Limited 2011

253

mailto:hli@mmrc.iss.ac.cn
mailto:shadowfly12@126.com
http://dx.doi.org/10.1007/978-0-85729-811-9_13

254 H. Li and L. Zhang

(l, l̄) := (x0y− y0x,x× y). (13.2)

In affine geometry, (l, l̄) describes an affine line if and only if l �= 0. When this
is satisfied, then the direction of the line is its point at infinity, also called its ideal
point: (0, l). Let (1,x) be an affine point on the line; then l̄ = x× l is the moment
vector. Obviously, we have l · l̄= 0 or, in the coordinate form,

l01l23 + l02l31 + l03l12 = 0. (13.3)

This equality is called the Grassmann–Plücker relation of the line. It states that
all lines are points on a quadratic surface in the 5D projective space of 6-tuples of
homogeneous coordinates. Plücker’s theorem states that the converse is also true: if
a point in the 5D projective space is on the Klein quadric defined by (13.3), then it
must be the Plücker coordinates of a spatial line.

Classical line geometry studies invariant properties of line complexes under 3D
projective, affine, or Euclidean transformations. Nowadays it has important applica-
tions in computer aided design, geometric modeling, scientific visualization, com-
puter aided manufacturing, and robotics. The design of efficient algorithms involv-
ing lines can be greatly simplified if it is based on the right geometric model.

For example, a ruled surface is simply a curve of lines, whose study is much
easier in line geometry. In studying developable surfaces, line geometry contributes
to simplifying the computing of medial axes, rational curves with rational offsets,
and cyclographic mapping. Line congruences arise in collision problems in five-axis
milling, and rational congruences of line complexes are related to geometric optics.
Line geometry not only provides tools for visualization, but also has interesting links
to planar and spherical motions, rational curves on quadratic surfaces, and problems
of surveying [4, 12, 15, 18, 22–24].

Various algebraic structures can be introduced to Plücker coordinates in geomet-
ric computing. Study (1903) considered introducing a dual element ε, which is a
nilpotent element that commutes with everything, such that a line (l, l̄) can be de-
scribed by dual vector l+ εl̄. If there is another line m+ εm̄, let l,m be unit vectors,
and let

θ = ∠(l,m),

n = unit vector along l×m,

δ = signed distance between the two lines along direction n,

n̄ = moment vector of the common perpendicular of the two lines.

(13.4)

Then
{
(l+ εl̄) · (m+ εm̄)= cos(θ + εδ),

(l+ εl̄)× (m+ εm̄)= (n+ εn̄) sin(θ + εδ).
(13.5)

The angle, distance, and common perpendicular of the two lines can all be read from
their inner product and cross product.

13 Line Geometry and Generalized Stewart Platforms 255

Fig. 13.1 Stewart platform

In this chapter, we introduce a nondegenerate inner product structure to the
Plücker coordinates of lines and convert them to null vectors of a 6D real vector
space of signature (3,3). After classifying all 2-blades and 3-blades generated by
null vectors in the 6D space R

3,3 and presenting their geometric interpretations in
line geometry, we point out that all points and planes in space can be represented by
null 3-blades, i.e., 3-blades with completely degenerate inner product structure. On
one hand, any special projective transformation in space, i.e., special linear trans-
formation in the 4D vector space realizing the 3D projective space, induces a special
orthogonal transformation in R

3,3; on the other hand, any element in SO(3,3) in-
duces a special projective transformation in the 3D projective space of null 3-blades
representing projective points in space. We further point out that all dualities in 3D
projective geometry, i.e., linear mappings between the 4D vector space representing
projective points and the dual 4D vector space representing projective planes, can be
realized by orthogonal transformations of determinant −1 in R

3,3 via their actions
upon lines in space.

Hence, the Lie group isomorphism between SL(4) and SO(3,3) is realized via
the R

3,3 model of line geometry. Since SO(3,3) can be covered by Spin(3,3), and
the latter has an algebraic representation in R3,3, we can use R3,3 to construct not
only all kinds of special projective transformations, but a hierarchy of advanced
projective invariants.

As a specific application of the classification of blades generated by null vectors
in R

3,3, we consider the problem of analyzing the inverse singular configurations of
generalized Stewart platforms. The topic is important in that in an inverse singular
configuration, the end-effector may still possess certain degrees of freedom after
all the actuators are locked, which may incur some unexpected damages such as
collapse [2, 11, 14, 17, 20, 29].

Parallel robots have various advantages over serial robots, such as high accuracy,
high payload-to-weight ratio, and high rigidity. They also have a few drawbacks, the
most important of which is failure in or close to a singular configuration. A famous
parallel manipulator is a Stewart platform (or Gough–Stewart platform) [25], as
shown in Fig. 13.1. It is a 6-dof parallel manipulator composed of a static platform
and a moving platform, and controlled by six distance constraints between six point
pairs.

256 H. Li and L. Zhang

Fig. 13.2 Generalized
Stewart platforms actuated by
Left: six distance constraints
between three points and
three lines; Right: 6 distance
constraints between 6 lines
and 3 planes

Historically, line geometry is closely related to machine mechanism and kine-
matics, because lines are supports of forces and moments [1, 26, 28]. The theory
of screws [27] is closely related to line geometry. Some previous works on singu-
larity analysis of a Stewart platform include [3, 13, 19, 21]. In particular, Merlet
[19] described the singularity configurations as degeneracies of the line complexes
spanned by the six lines representing the linear actuators of the platform. This ap-
proach has the advantage of avoiding complicated computing of the Jacobian ma-
trix.

A natural idea to generalize the 6-dof parallel structure of a Stewart platform is
to replace some of the point-pair distance actuators by distance and angle actuators
between pairs of linear objects such as points, lines, and planes. Gao et al. [10] pro-
posed six new types of limb actuators by distances between point/point, point/line,
point/plane, line/line, line/plane, and plane/plane, and three types of limb actuators
by angles between line/line, line/plane, and plane/plane. A 6-dof parallel manipu-
lator controlled by such constraints is called a generalized Stewart platform (GSP).
Figure 13.2 shows two GSPs containing limb actuators by point/line and line/plane
distances.

For a GSP, the actuator of a limb corresponds to either a force or a couple, which
is unanimously referred to as a driving wrench. We deduce by the virtual work
principle the following new conclusion: for any GSP, the inverse Jacobian is the
transpose of the matrix composed of the Plücker coordinates of the driving wrenches
and common constraint wrenches of the six limbs. An inverse singularity occurs
when the rank of the wrench matrix is less than six. While for a classical Stewart
platform the matrix is a 6× 6 square, for a GSP, the matrix often has more than six
columns. Its singularities are dramatically different from those of a classical Stewart
platform.

This chapter is organized as follows. Section 13.2 introduces line geometry by
formulating it in the null geometric algebra over R

3,3. Section 13.3 relates inverse
singularity with degeneracy of wrench matrix. Section 13.4 classifies the inverse
singularities of some typical GSPs.

13 Line Geometry and Generalized Stewart Platforms 257

13.2 Line Geometry with Null Geometric Algebra

In the projective space, all projective lines form a Grassmann variety. In the Grass-
mann space

∧
(V 4) over the 4D vector space V 4 realizing 3D projective geometry,

all bivectors form a 6D vector subspace, denoted by
∧2

(V 4). A bivector A rep-
resents a projective line if and only if it satisfies the so-called Grassmann–Plücker
relation,1

A∧A= 0. (13.6)

If we define the following symmetric bilinear function in
∧2

(V 4):

A ·B := [AB], (13.7)

where the bracket is in the Grassmann algebra
∧

(V 4), then the function defines a
nondegenerate real inner product of signature (3,3).

This property can be proved as follows. Let e0, e1, e2, e3 be a basis of V 4. Then
the eij = ei∧ej for 0≤ i < j ≤ 3 are the induced basis of

∧2
(V 4). For any nonzero

element A ∈∧2
(V 4), at least one of its coordinates, say its coordinate a01 in e01, is

nonzero. Then [Ae23] = a23 �= 0. This proves that if A · B= 0 for all B ∈∧2
(V 4),

then A= 0. The inner product is thus nondegenerate. Since e01, e02, e03 are pairwise
orthogonal to each other, and they are all basis elements, the 6D inner-product space
has a 3D subspace that is null: the subspace spanned by e01, e02, e03 has the property
that any two vectors in it are orthogonal to each other. This property leads to the
conclusion that the signature of the inner product is (3,3). Henceforth we denote
the 6D inner product space by R

3,3.
By Plücker’s theorem, any nonzero vector in R

3,3 represents a projective line
if and only if it is null. The representation of a line is unique up to scale, i.e., is
homogeneous. The geometry of projective lines can thus be described by the geo-
metric algebra generated by null vectors in R

3,3, called the null geometric algebra
of spatial lines.

First consider the geometric meaning of the inner product between two null vec-
tors in R

3,3. Let e0, e1, e2, e3 be a basis of the 3D affine space V 4 such that e0
represents the origin, and e1, e2, e3 are points at infinity.

Notation In this section, the outer product in
∧

(V 4) has to be denoted by jux-
taposition of elements, and the outer product in

∧
(R3,3) is denoted by the wedge

symbol.

Consider a line A passing through point e0+x and point at infinity l, and a second
line B passing through point e0 + y and point at infinity m, where x,y, l,m ∈R

3 ⊂
V 4. Then

1Editorial note: See also Chap. 14.

258 H. Li and L. Zhang

A= (e0 + x)l, B= (e0 + y)m, (13.8)

so

A ·B= (e0l) · (ym)+ (xl) · (e0m)= [lym] + [mxl] = [lm(x− y)
]
, (13.9)

where the bracket is with respect to e1e2e3 in
∧

(R3).
When B is a line at infinity, let B=m1m2 where m1,m2 ∈ R

3, and let A be an
affine line as in (13.8); then

A ·B= (e0l) · (m1m2)= [lm1m2]. (13.10)

Given two directed lines A= (e0 + x, l) and B= (e0 + y,m), the signed volume
of A and B is defined as the signed volume of the parallelepiped formed by vectors
x− y, l,m:

VA,B := [xlm] + [yml] = [(x− y)lm
]
. (13.11)

It is symmetric in A and B. We have thus proved the following conclusion:

When A,B are affine lines, then A · B is their signed volume. When one is a
line at infinity, then A · B is the signed volume of the parallelepiped formed
by their components at infinity, a 1D direction and a 2D direction.

In particular, two lines intersect if and only if their representative null vectors are
orthogonal. If the lines are written in the Plücker coordinate form, A = (f, f̄) and
B= (g, ḡ), then

A ·B= f · ḡ+ g · f̄. (13.12)

Next we classify all 2-spaces and 3-spaces of R
3,3 spanned by null vectors, i.e.,

2D and 3D linear extensions of null vector generators. There are only two kinds of
such 2-spaces, R

1,1,0 and R
0,0,2. Below all points, lines, and planes are projective

ones in space.
• R

1,1,0 (2-space with metric diag(1,1,0)): Its 1D null subspaces represent a pair
of noncoplanar lines, as shown in Fig. 13.3 (left).
• R

0,0,2 (2-space with metric diag(0,0,2)): Its 1D null subspaces represent all the
lines incident to a fixed point and a fixed plane, as shown in Fig. 13.3 (right). All
such lines form a 1D algebraic variety, called a 1D concurrent pencil of lines or a
single-wheel pencil. The point of concurrency is called the center.
In R

3,3, there are three kinds of 3-spaces spanned by null vectors: R
1,2,0 or

R
2,1,0, R

1,1,1, and R
0,0,3.

13 Line Geometry and Generalized Stewart Platforms 259

Fig. 13.3 Left: null vectors
in R

1,1,0, a pair of
noncoplanar lines. Right: null
vectors in R

0,0,2, a 1D pencil
of lines concurrent at point o
and on plane aoc

Fig. 13.4 Null vectors in
R

1,2,0 or R
2,1,0: a 1D regulus

pencil

Fig. 13.5 Null vectors in
R

1,1,1: a 1D couple-wheel
pencil; the axis is line ab

• R
1,2,0 or R

2,1,0 (3-space with metric diag(1,2,0) or diag(2,1,1)): Its 1D null
subspaces represent a 1D regulus pencil of lines, i.e., a 1-parameter family of
straight-line generators of a hyperboloid of one sheet, as shown in Fig. 13.4.
• R

1,1,1 (3-space with metric diag(1,1,1)): Its 1D null subspaces represent two 1D
concurrent pencils of lines sharing a unique common line, as shown in Fig. 13.5.
Such a pencil is called a 1D couple-wheel pencil; the common line is called the
axis.
• R

0,0,3 (3-space with metric diag(0,0,3)): Its 1D null subspaces represent either
all the lines concurrent at the point, called a 2D concurrent pencil of lines, or
equivalently, the point of concurrency, or all the lines lying on the same plane,
called a 2D coplanar pencil of lines, or equivalently, the supporting plane of the
lines. Figure 13.6 shows both cases.
We see that in the R

3,3 model of line geometry, points and planes are both repre-
sented by null 3-blades. Algebraically they cannot be distinguished from each other.
We need to introduce an affine structure to make the distinction.

260 H. Li and L. Zhang

Fig. 13.6 Null vectors in
R

0,0,3. Left: a 2D concurrent
pencil, or a point. Right: a 2D
coplanar pencil, or a plane

In the Grassmann algebra
∧

(V n) over V n, for an r-blade Ar and an s-blade Bs ,
their 0th-level intersection refers to Ar ∨Bs . Their ith-level intersection [16] refers
to

Ar ∨(i) Bs :=
∑

(n−s−i,r+s−n+i)0Ar

[Ar(1)Bs]Ar(2), (13.13)

if their j th-level intersection is zero for all 0≤ j < i. Here (n−s− i, r+s−n+ i) 0
Ar denotes bipartitioning the r vectors whose outer product equals Ar into two
subsequences of lengths n− s − i and r + s − n+ i, with Ar(1) denoting the outer
product of the first subsequence, and Ar(2) denoting the outer product of the second
subsequence. The bracket is set up upon the (n− i)D subspaces spanned by vectors
in Ar and Bs .

Now return to line geometry. Fix a null 3-space of R
3,3, and let I3 be its 3-blade

representation. Define the plane at infinity to be the set of lines in space whose
representative null vectors are in I3. A vector x ∈ V 4 denotes an affine point in 3D
affine geometry if and only if for any vector X ∈ I3, we have xX �= 0 in

∧
(V 4).

Then I3 introduces a 3D affine structure to the underlying 4D vector space V 4 of
3D projective geometry.

The following properties can be easily established. Let A3 be a null 3-blade of∧
(R3,3) linearly independent of I3.
• If A3 ∨ I3 �= 0, then A3 represents an affine point.
• If A3 ∨ I3 = 0 but A3 ∨(1) I3 �= 0, then A3 represents an affine plane.
• If both A3 ∨ I3 = 0 and A3 ∨(1) I3 = 0, then A3 represents a point at infinity.

Let A3,B3 be points (including points at infinity), and let A∗3,B∗3 be planes (in-
cluding the plane at infinity). Then A3 ∨(1) B3 is the line connecting the two points,
and A∗3 ∨(1) B∗3 is the line of intersection of the two planes. A line represented by
null vector X passes through point A3 if and only if X∧A3 = 0; a line X is on plane
A∗3 if and only if X∧A∗3 = 0.

Consider the relationship between a point x = e0 + x1e1 + x2e2 + x3e3 and a
plane passing through a point y= e0 + y1e1 + y2e2 + y3e3. Without loss of gener-
ality, assume that the plane has normal direction e3. In

∧
(R3,3), the point has the

representation

A3 = xe1 ∧ xe2 ∧ xe3, (13.14)

and the plane has the representation

B3 = ye1 ∧ ye2 ∧ e1e2. (13.15)

13 Line Geometry and Generalized Stewart Platforms 261

So with respect to pseudoscalar e01 ∧ e02 ∧ e03 ∧ e12 ∧ e13 ∧ e23,

A3 ∨B3 = (x3 − y3)
2 (13.16)

is the squared distance between the point and the plane, or in affine terms, the
squared volume of the parallelepiped formed by vectors x − y, e1, e2. Similarly,
we get

A3 ·B3 =A3 ∨B3 = (x3 − y3)
2. (13.17)

Now fix another null 3-space of R
3,3 such that it forms a direct sum decompo-

sition with the plane at infinity I3. Let J3 be a null 3-blade representing this 3D
null subspace, such that if I3 = E1 ∧ E2 ∧ E3, then J3 = −E∗1 ∧ E∗2 ∧ E∗3, where
E∗i ·Ej = δij for 1≤ i, j ≤ 3. The E∗i are called the reciprocal basis of the Ej . Ge-
ometrically, J3 represents an affine point. It is called the origin of the affine space.

For example, let e0, e1, e2, e3 be a basis of the 3D affine space V 4 such that e0
represents the origin, and e1, e2, e3 are an orthonormal basis of the plane at infinity.
In
∧

(V 4), denote

eij := eiej . (13.18)

Then in
∧

(R3,3), we can choose

I3 = e12 ∧ e13 ∧ e23, J3 = e01 ∧ e02 ∧ e03. (13.19)

The decomposition

R
3,3 = I3 ⊕ J3 (13.20)

is called a symplectification of R
3,3. Let E1,E2,E3 be a basis of I3, and let

E∗1,E∗2,E∗3 be the corresponding reciprocal basis of J3. Define the symplectic form
of the symplectification as

K2 = E1 ∧E∗1 +E2 ∧E∗2 +E3 ∧E∗3. (13.21)

It can be proved that K2 is invariant under different choices of the basis elements.

Notation In this section, the duality of A ∈ ∧(I3) in I3 is denoted by AI3 ; the
duality of B ∈∧(J3) in J3 is denoted by BJ3 . The duality of C in

∧
(V 4) is denoted

by C†.

Consider a point e0+x= e0+x1e1+x2e2+x3e3. Its null 3-blade representation
is

A= (e0 + x)e1 ∧ (e0 + x)e2 ∧ (e0 + x)e3

= J3 − (e0x)∧K2 + (e0x)∧ (e0x)†I3, (13.22)

262 H. Li and L. Zhang

where (e0x)†I3 denotes ((e0x)†)I3 . This is a quadratic mapping from R
3 to the space

of null 3-blades representing affine points.
When x tends to infinity, (13.22) represents a point at infinity. So the point at

infinity x has the null 3-blade representation

(e0x)∧ (e0x)†I3 . (13.23)

Consider an affine plane with 2D direction L2 ∈∧2
(R3) and passing through a

point x. Its 3-blade representation in
∧

(V 4) is (e0+x)L2. When the plane does not
pass through the origin e0, then xL2 �= 0. Rescale L2 so that the 3-blade representa-
tion of the plane in

∧
(V 4) becomes

e1e2e3 + e0L2. (13.24)

Let L2 = y1e2e3 − y2e1e3 + y3e1e2. The intersections of plane (13.24) with planes
e0e1e2, e0e1e3, e0e2e3 are respectively

P3 = −y2e01 + y1e02 + e12,

P2 = −y3e01 + y1e03 + e13,

P1 = −y3e02 + y2e03 + e23.

(13.25)

So the null 3-blade representation of the plane is

B= P3 ∧ P2 ∧ P1 = I3 −L2 ∧K2 +L2 ∧L†J3
2 . (13.26)

When L2 tends to infinity, (13.26) represents a plane passing through the origin.
So the plane passing through the origin with 2D direction L2 has the null 3-blade
representation

L2 ∧L†J3
2 . (13.27)

A linear transformation f in V 4 induces another linear transformation f in
∧2

(V 4), and the mapping

1 : f ∈GL(4) �→ f ∈GL(6) (13.28)

is a group monomorphism. Let A1,A2, . . . ,A6 be bivectors in
∧

(V 4). They are
also vectors in R

3,3. Then [f (A1)f (A2) . . . f (A6)] = det(f)3[A1A2 . . .A6]. So 1
is also a group monomorphism from SL(4) to SL(6).

By the definition of the inner product in R
3,3, any special linear transformation in

V 4 induces a special orthogonal transformation in R
3,3. After some mathematical

reasoning, it can be proved that 1 : SL(4)−→ SO(3,3) is a Lie group isomorphism.

13 Line Geometry and Generalized Stewart Platforms 263

Let SL−(4) be the set of linear transformations in V 4 of determinant −1. Let
Sproj(3)= SL(4) ∪ SL−(4). Then Sproj(3) is a Lie group. Similarly, let O(3,3)=
SO(3,3) ∪ SO−(3,3), where SO−(3,3) are the orthogonal transformations in R

3,3

of determinant −1. Both Sproj(3) and O(3,3) have two connected components,
and their connected components containing the identity are isomorphic under 1.
However, any element of SL−(4) maps points to points, maps planes to planes,
but reverses the sign of the inner product in R

3,3. On the contrary, any element
of SO−(3,3) keeps the sign of the inner product in R

3,3 but interchanges points and
planes in space. Thus, (13.28) does not provide an isomorphism between Sproj(3)
and O(3,3).

Now take a retrospect at the R
3,3 model of line geometry. When we identify

O(3,3) as the geometric transformation group and check for its action on the null
vectors in R

3,3, we find that for two linearly dependent null vectors, their relative
scale (or ratio) is preserved by O(3,3). Indeed, this scale measures the signed length
of the vector representing the direction of the line. A vector with a spatial line as
its support is called a spear. In fact, O(3,3) describes the volume-preserving spear
geometry in space.

With the spin group representation of the orthogonal transformations, all special
projective transformations can be classified by their spinor generators. This chapter
has no room left for further discussion.

13.3 Inverse Singularity Analysis by Wrench Matrix

In screw theory [1], any nonzero vector in R
3,3 is called a screw when describing

the geometry of lines, called a twist when describing Euclidean motion, and called
a wrench in statics. The general form of a nonzero vector in R

3,3 is of the form

S= (λs, λr× s+μs), (13.29)

where s is a unit vector in R
3, (s, r× s) are the Plücker coordinates of a line with

direction s and passing through point r, and λ,μ are scalars that cannot be zero
simultaneously. The scalar h = μ/λ is called the pitch of the screw (or twist, or
wrench).

In statics, a force acting on a rigid body is a force wrench F= (f, r× f), where
r points to the supporting line of the force. A system of forces acting upon a rigid
body can be described by a wrench consisting of a certain force and a torque whose
supporting plane is perpendicular to the force. If (13.29) represents a wrench, s is
the direction of the force in the wrench, and λ is the scale of the force. When λ= 0,
then h =∞, and the wrench is the sum of two forces of the same magnitude but
of opposite direction. Its action leads to a rotation about an axis along the direction
of f. Such a wrench is called a pure torque. When h= 0, the wrench is a pure force.

An infinitesimal Euclidean motion in space can be described by a vector in the
Lie algebra of the 3D Euclidean group, say 6D vector S = (s, s̄ + t), where (s, s̄)
is a spear on the axis of the infinitesimal rotation and generating the latter, and t is

264 H. Li and L. Zhang

Fig. 13.7 Left: a limb of
stretchable length L with two
ball joints. Right: the 7 twists
of the limb

a vector generating the infinitesimal translation. By Charles’ theorem, s and t are
linearly dependent for any infinitesimal Euclidean motion.

A rigid body is said to receive a twist about a screw if it rotates uniformly about
the screw, and at the same time translates uniformly along the screw through a dis-
tance equal to the product of the pitch and the angle of rotation. If (13.29) represents
a twist, then s is the direction of the rotation axis, r points to the axis, λ is the angle
of rotation, and μ is the distance of translation.

In (13.29), when λ= 0, then h=∞, and the motion is a pure translation along
the axis. When μ= 0, the twist reduces to a pure rotation around the axis. A twist
generating an infinitesimal motion is called an infinitesimal motion twist or velocity
twist.

The virtual work done by a wrench W to a twist S is their inner product in R
3,3.

A wrench and a twist are said to be reciprocal to each other if they have zero virtual
work. If the work done by a wrench of a mechanism to a velocity twist is zero, the
wrench is called a constraint of the mechanism. If a wrench is reciprocal to all twists
of a mechanism, it is called a common constraint of the mechanism.

The R
3,3 model of line geometry provides vector representation to the driving

wrenches of 1-dof kinematic pairs such as revolute pairs, prismatic pairs, and screw
pairs. It provides bivector representation to the driving wrenches of 2-dof kinematic
pairs such as cylindrical pairs.

In R
3,3, the common constraints are the orthogonal complement of the kinematic

screw (twist) system of a mechanism [8, 9, 19]. Figure 13.7 is a typical example of a
limb used in parallel manipulators. It has a stretchable length L, and its two ends are
ball joints. Let e1, e2, e3 be an orthonormal basis of the space such that e3 is along
the limb. The kinematic screw system of the limb is composed of the following,
where 0 denotes the zero vector in R

3:
1. The three infinitesimal rotation generators of the base ball joint:

S1 = (e1,0)T , S2 = (e2,0)T , S3 = (e3,0)T . (13.30)

2. The infinitesimal translation generator along the shaft of the limb:

S4 = (0, e3)
T . (13.31)

13 Line Geometry and Generalized Stewart Platforms 265

Fig. 13.8 Left: a limb of
stretchable length L and
variable angle θ between two
revolute joint axes. Right: the
6 twists of the limb

3. The three infinitesimal rotation generators of the moving ball joint:

S5 = (e1,Le2)
T , S6 = (e2,−Le1)

T , S7 = (e3,0)T . (13.32)

Since the above seven vectors span R
3,3, their orthogonal complement is zero, and

the limb does not have any common constraint.
Traditionally, inverse singularities of a Stewart platform are defined to be the

singularities of the Jacobian mapping the velocity of the end-effector to the joint
velocities. In [6], it is shown that the columns of the Jacobian matrix are zero-pitch
or infinite-pitch wrenches (i.e., pure forces or pure torques) acting upon the moving
platform. The inverse singularities can thus be interpreted as configurations where
the lines of actions are linearly dependent [7].

By (13.30) to (13.32), for a Stewart platform, in the course of motion there does
not occur any common constraint. For a GSP, however, things are quite different.
Figure 13.8 is a GSP limb connecting two lines where either the distance L or
the angle θ between the two lines is used to drive the mechanism. Let e1, e2, e3
be an orthonormal basis where e2 is along the lower revolute joint axis, and e3 is
along the shaft of the limb. Let the direction of the upper revolute joint axis be
e4 = (cos θ, sin θ,0). The kinematic screw system of the limb is composed of the
following:
1. The infinitesimal rotation generator and translation generator of the base revolute

joint:

S1 = (0, e2)
T , S2 = (e2,0)T . (13.33)

2. The infinitesimal rotation generator and translation generator of the limb shaft:

S4 = (0, e3)
T , S3 = (e3,0)T . (13.34)

3. The infinitesimal rotation generator and translation generator of the upper revo-
lute joint:

S6 = (e4,Le5)
T , S5 = (0, e4)

T , (13.35)

where e5 = e3 × e4 = (− sin θ, cos θ,0).

266 H. Li and L. Zhang

When cos θ = 0, i.e., the two revolute joint axes are parallel to each other, then
e4 = ±e2 and e5 = ∓e1. So (e1,0)T is not spanned by the above six vectors in
R

3,3; since (0, e1)
T spans the orthogonal complement of them, it is the common

constraint of the limb. It is a pure torque that should result in a virtual rotation of
some part of the limb around an axis in the direction of e1 but fails to make it due to
the perpendicularity of the whole structure to e1.

The occurrence of common constraints can compensate for the linear degeneracy
of driving wrenches to make a configuration nonsingular. If we stick to the original
Jacobian map from the velocity of the end-effector to the joint velocities, we get
wrong conclusions on the singularity of the configuration. For a GSP, we need to
consider the following more general Jacobian map J .

In a parallel manipulator, let there be all together n driving wrenches and lin-
early independent common constraint wrenches. For a GSP, n ≥ 6. Each driving
wrench Pi when executed leads to a virtual displacement qi along the wrench. Let
the end-effector velocity be denoted by vector X# ∈ R

3,3, where “#” is the linear
transformation in R

3,3 changing X= (x,y) to (y,x) for any x,y ∈R
3. Let

Q = (q1, q2, . . . , q6,0,0, . . . ,0
︸ ︷︷ ︸

n−6

)T , (13.36)

where the n− 6 zeroes denote the virtual displacements of the n− 6 linearly inde-
pendent common constraints. Now the parallel manipulator is in singular configu-
ration if and only if the following matrix J defined for arbitrary X is of rank less
than 6:

J X=Q. (13.37)

Below we prove that J can be represented by the matrix of driving wrenches
and common constraint wrenches. This conclusion holds not only for GSPs, but for
all parallel robots of at most 6 degrees of freedom.

Each driving wrench or common constraint wrench is a vector Pi in R
3,3. The

wrench matrix of the system refers to the following 6× n matrix:

W = [P1 P2 . . . Pn]. (13.38)

In a force statical equilibrium of the end-effector, the external force and torque
wrench E equals the sum of the driving wrenches and common constraint wrenches:

E=W F , (13.39)

where F is an nD vector whose components are the force scales of the driving
wrenches and common constraint wrenches.

The virtual work done by E equals the virtual work done by F , so

F T δQ = E · δX# = ET δX, (13.40)

13 Line Geometry and Generalized Stewart Platforms 267

Fig. 13.9 A limb driven by
line/plane angle

where the dot symbol denotes the inner product in R
3,3. By (13.37), (13.39), and

(13.40), F T J δX=F T W T δX for arbitrary F and δX; hence

J =W T . (13.41)

A GSP is in singular configuration if and only if its driving wrenches and constraint
wrenches span a linear subspace of dimension less than 6.

13.4 Singular Configurations of GSPs

According to the driving parameters of a GSP, all GSPs can be divided into four
classes: (1) 3D3A: 3 distance control parameters and 3 angle control parameters,
(2) 4D2A, (3) 5D1A, (4) 6D. There cannot be more than three angle control pa-
rameters due to the fact that a rigid body needs at most three angle constraints to
determine its orientation.

Figure 13.9 illustrates a limb of fixed length L and driven by line/plane angle θ .
Let e3 be along the shaft, and e2 be normal to the plane. The upper revolute line is
in direction e4 = (cos θ, sin θ,0). Let e5 = (− sin θ, cos θ,0). The kinematic screw
system of the limb is the following:
1. The infinitesimal translation generators of the base plate:

S1 = (0, e1)
T , S2 = (0, e3)

T . (13.42)

2. The infinitesimal rotation generator of the limb shaft:

S3 = (e3,0)T . (13.43)

3. The infinitesimal translation generator and rotation generator of the upper revo-
lute axis:

S4 = (0, e4)
T , S5 = (e4,Le5)

T . (13.44)

268 H. Li and L. Zhang

Fig. 13.10 A limb driven by
plane/plane angle

The above five twists span a 5D subspace of R
3,3 when sin θ �= 0, i.e., when the

upper revolute axis is not parallel to the base plate. Its 1D orthogonal complement is
spanned by a vector (0, e5)

T , which represents the common constraint of the limb.
When θ = 0 mod π , the orthogonal complement is 2D, and is spanned by vectors
(0, e2)

T and (e2,−Le1)
T .

Figure 13.10 shows a limb of fixed length L and driven by plane/plane an-
gle θ . Let e3 be along the limb shaft, and e2 be normal to the plane. Let e4 =
(cos θ, sin θ,0)T . The kinematic screw system of the limb is the following:
1. The infinitesimal translation generators of the base plate:

S1 = (0, e1)
T , S2 = (0, e3)

T . (13.45)

2. The infinitesimal rotation generator of the limb shaft:

S3 = (e3,0)T . (13.46)

3. The infinitesimal translation generators of the upper plate:

S4 = (0, e4)
T , S5 = S2. (13.47)

When sin θ �= 0, i.e., when the two plates are not parallel to each other, then the
above five twists span a 4D subspace of R

3,3, whose 2D orthogonal complement
is spanned by vectors (0, e1)

T and (0, e2)
T , which represent two linearly indepen-

dent common constraints of the limb. When the two plates are parallel, the twists
span a 3D subspace, whose 3D orthogonal complement has a third vector generator
(e2,0)T .

We have computed the common constraints of all the limbs used in GSPs, four
of which have been shown in this chapter so far. The following list summarizes the
number of linearly independent common constraint wrenches of a limb in GSP:
#= 0 (1) point to point (or point to line, or point to plane) distance drive; (2) non-
parallel line/line distance or angle drive.

13 Line Geometry and Generalized Stewart Platforms 269

Fig. 13.11 A 5D1A-type
GSP

#= 1 (1) line to parallel line distance or angle drive; (2) line to plane distance drive;
(3) line to nonparallel plane angle drive.
In the above three cases, the common constraint wrench is a null vector in R

3,3

representing a pure torque.
#= 2 (1) line to parallel plane angle drive; (2) plane/plane distance drive; (3) non-
parallel plane/plane angle drive.
In the first case, the common constraint wrenches form a 2D subspace R

1,1 in R
3,3,

whose two null 1-subspaces represent a pure force and a pure torque, respectively.
In the latter two cases, the common constraint wrenches form a 2D null subspace
whose null 1-subspaces represent pure torques.

#= 3 parallel plane/plane angle drive.
In this case, the common constraint wrenches form a 3D subspace R

1,1,1 in R
3,3,

where the unique null 1-subspace orthogonal to the whole R
1,1,1 represents a pure

force, and the two null 2-subspaces both represent pure torques.
Below consider the 5D1A-type GSP shown in Fig. 13.11. It is actuated by five

distance constraints between point pairs and one angle constraint between two lines.
There are only three ball joints linking the moving platform: B1,2,B3,4, and B5.
Lines B1,2B3,4 and A2A3 are connected by a revolute limb S of stretchable length.
This GSP has the following kinds of singularities:

Singularity type 1 The five lines supporting the driving wrenches of the limbs
between point pairs are linearly independent, while the driving wrench and possible
common constraint wrench of the limb S between two lines are both within the 5D
subspace spanned by the five lines.

Figure 13.12 shows such a singular configuration. Line A5B5 meets line
B1,2B3,4, and lines A2A3 ‖ B1,2B3,4. The five limbs between point pairs all have
their supporting lines intersecting line B1,2B3,4 but are otherwise arbitrary, so they
form a 5D subspace of R

3,3 with degenerate inner product.
Let e1 be along B1,2B3,4, and e2 be along S. Let B1,2 be the origin of the coor-

dinate system. Now limb S has a driving torque (0, e2)
T and a common constraint

wrench (0, e3)
T , and both are orthogonal to (e1,0)T , i.e., both when taken as lines

intersect line B1,2B3,4. So all seven wrenches have their supporting lines intersect-
ing a common line, i.e., their representative null vectors orthogonal to the same null
vector in R

3,3. Hence the configuration is singular.

270 H. Li and L. Zhang

Fig. 13.12 A configuration
of singularity type 1

Fig. 13.13 A configuration
of singularity type 3

Singularity type 2 The five lines between point pairs are linearly dependent, and
the two lines connected by the angle-driven limb S are not parallel.

Singularity type 3 The five lines between point pairs span a 4D linear subspace,
the two lines of limb S are parallel, and the 4D subspace has nonempty intersection
with the 2D subspace spanned by the driving wrench and common constraint wrench
of limb S.

Figure 13.13 shows such a singular configuration. All points except for B5 lie in
the same plane, and A2A3 ‖ B1,2B3,4. Since lines A1B1,2, A2B1,2, A3B3,4, A4B3,4
are in the same plane, and the line at infinity of the plane supports the common
constraint wrench of S, the rank of the five lines is 3, and the rank of the 6 × 7
wrench matrix is 5.

Singularity 4 The five lines between point pairs span a linear subspace of dimen-
sion at most 3.

Figure 13.14 shows another type of 5D1A GSP in a configuration where the
matrix of driving wrenches is singular but the whole wrench matrix is not, and hence
the configuration is nonsingular.

In the configuration, lines A5B5, A2B1,2, A3B3, A4B4 intersect at the same
point O , and A3A4 ‖ B3B4. Let e1 be along B3B4, and e2 be along the shaft of the
limb S connecting two lines. Let O be the origin of the coordinate system. Then

13 Line Geometry and Generalized Stewart Platforms 271

Fig. 13.14 A nonsingular
configuration whose matrix of
driving wrenches is singular

limb S has a driving torque (0, e2)
T and a common constraint wrench (0, e3)

T , and
limbs A5B5, A2B1,2, A3B3, A4B4 span a null 3-space of R

3,3 with basis (e1,0)T ,
(e2,0)T , and (e3,0)T . So to limb A1B1,2, let s be its direction, and let r be the vector
from O to B1,2. Then as long as the three vectors r, s, e1 are linearly independent,
the wrench matrix is nonsingular. On the contrary, the matrix of driving wrenches is
always singular.

13.5 Conclusion

The R
3,3 model of line geometry is ideal for analyzing line complexes and design-

ing line-based surfaces. Spinor representation of 3D special projective transforma-
tions casts new light on geometric construction and decomposition of projective
transformations. This model thus carries the hope of many GAers in improving the
performance of GA in projective geometry.

13.6 Exercises

13.1 Investigate which lines are represented by the nonline element E = e03 ∧ e12

in R
3,3 if the original 3D space is Euclidean. Probe with L = (e0 + d)u (where

d · u= 0) in two ways, related dually: solve L ·E = 0, and solve L∧E = 0.

13.2 (Continued from previous): You should have found e3 · (u(1∓ d∗)), where ∗
denotes the dual in the 3D space. Interpret these sets of lines geometrically.

13.3 Following the hints at the end of Sect. 13.2, show that exp(1
2τe12 ∧ e31) rep-

resents the translation versor for a translation over τe1.

13.4 Following the hints at the end of Sect. 13.2, show that exp(1
2γ e01 ∧ e23) rep-

resents the scaling versor for a scaling relative to the origin by eγ along the e1-
direction.

272 H. Li and L. Zhang

13.5 (Continued from previous): Provide versors for the remaining projective trans-
formations.

References

1. Ball, R.: The Theory of Screws: A Study in the Dynamics of a Rigid Body. Hodges, Foster
(1876)

2. Basu, D., Ghosal, A.: Singularity analysis of platform-type multi-loop spatial mechanism.
Mech. Mach. Theory 32, 375–389 (1997)

3. Ben-Horin, P., Shoham, M.: Singularity analysis of a class of parallel robots based on
Grassmann–Cayley algebra. Mech. Mach. Theory 41, 958–970 (2006)

4. Busemann, H.: Projective Geometry and Projective Metrics. Academic Press, New York
(1953)

5. Cayley, A.: On the six coordinates of a line. Trans. Camb. Philos. Soc. 5, 290–323 (1869)
6. Collins, C., Long, G.: Singularity analysis of an in-parallel hand controller for force-reflected

teleoperation. IEEE J. Robot. Autom. 11, 661–669 (1995)
7. Dandurand, A.: The rigidity of compound spatial grids. Struct. Topol. 10, 41–56 (1984)
8. Fang, Y., Tsai, L.: Structure synthesis of a class of 4-DoF and 5-DoF parallel manipulators

with identical limb structures. Int. J. Robot. Res. 21, 799–810 (2002)
9. Featherstone, R.: Robot Dynamics Algorithms. Springer, Berlin (1987)

10. Gao, X., Lei, D., Liao, Q., Zhang, G.: Generalized Stewart–Gough platforms and their direct
kinematics. IEEE Trans. Robot. Autom. 21, 141–151 (2005)

11. Gosselin, C., Angeles, J.: Singularity analysis of closed-loop kinematic chains. IEEE Trans.
Robot. Autom. 6, 281–290 (1990)

12. Hodge, W., Pedoe, D.: Methods of Algebraic Geometry, vol. 1. Cambridge University Press,
Cambridge (1952)

13. Huang, Z., Chen, L., Li, W.: The singularity principle and property of Stewart parallel manip-
ulator. J. Robot. Syst. 20, 163–176 (2003)

14. Hunt, K.: Kinematic Geometry of Mechanisms. Oxford University Press, Oxford (1978)
15. Jenner, W.: Rudiments of Algebraic Geometry. Oxford University Press, Oxford (1963)
16. Li, H.: Invariant Algebras and Geometric Reasoning. World Scientific, Singapore (2008)
17. Long, G.: Use of the cylindroid for the singularity analysis of rank 3 robot manipulator. Mech.

Mach. Theory 32, 391–404 (1997)
18. Maxwell, E.: General Homogeneous Coordinates in Spaces of Three Dimensions. Cambridge

University Press, Cambridge (1951)
19. Merlet, J.: Singular configurations of parallel manipulators and Grassmann geometry. Int. J.

Robot. Res. 8, 45–56 (1989)
20. Merlet, J.: Parallel Robots. 2nd edn. Springer, Heidelberg (2006)
21. Park, F., Kim, J.: Singularity analysis of closed kinematics chains. J. Mech. Des. 121, 32–38

(1999)
22. Pottmann, H.: Computational Line Geometry. Springer, Heidelberg (2001)
23. Semple, J., Roth, L.: Introduction to Algebraic Geometry. Oxford University Press, Oxford

(1949)
24. Sommerville, D.: Analytic Geometry of Three Dimensions. Cambridge University Press,

Cambridge (1934)
25. Stewart, D.: A platform with six degrees of freedom. Proc. Inst. Mech. Eng. 180, 371–378

(1965)
26. Study, E.: Geometrie der Dynamen. Leipzig (1903)
27. Woo, L., Freudenstein, F.: Application of line geometry to theoretical kinematics and the kine-

matic analysis of mechanical systems. J. Mech. 5, 417–460 (1970)
28. Yang, A.: Calculus of screws. In: Spillers, W. (ed.) Basic Questions of Design Theory. Else-

vier, Amsterdam (1974)
29. Zlatanov, D., Fenton, R., Benhabib, B.: Identification and classification of the singular config-

urations of mechanisms. Mech. Mach. Theory 33, 743–760 (1998)

14A Framework for n-Dimensional Visibility
Computations

Lilian Aveneau, Sylvain Charneau, Laurent Fuchs, and Frederic Mora

Abstract
This chapter introduces global visibility computation using Grassmann Algebra.
Visibility computation is a fundamental task in computer graphics, as in many
other scientific domains. While it is well understood in two dimensions, this does
not remain true in higher-dimensional spaces.
Grassmann Algebra allows to think about visibility at a high level of abstraction
and to design a framework for solving visibility problems in any n-dimensional
space for n≥ 2. Contrary to Stolfi’s framework which allows only the represen-
tation of geometric lines, its algebraic nature deals means general applicability,
with no exceptional cases.
This chapter shows how the space of lines can be defined as a projective space
over the bivector vector space. Then line classification, a key point for the visibil-
ity computation, is achieved using the exterior product. Actually, line classifica-
tion turns out to be equivalent to point vs. hyperplane classification relative to a
nondegenerate bilinear form. This ensures it is well defined and computationally
robust.
Using this, the lines stabbing an n-dimensional convex face are characterized.
This set of lines appears to be the intersection of the decomposable bivectors
set (i.e., bivectors that represent a line) and a convex polytope. Moreover, this

L. Aveneau (�) · S. Charneau · L. Fuchs
XLIM/SIC, CNRS, University of Poitiers, Poitiers, France
e-mail: lilian.aveneau@xlim.fr

S. Charneau
e-mail: sylvain.charneau@xlim.fr

L. Fuchs
e-mail: laurent.fuchs@xlim.fr

F. Mora
XLIM/SIC, CNRS, University of Limoges, Limoges, France
e-mail: frederic.mora@xlim.fr

L. Dorst, J. Lasenby (eds.), Guide to Geometric Algebra in Practice,
DOI 10.1007/978-0-85729-811-9_14, © Springer-Verlag London Limited 2011

273

mailto:lilian.aveneau@xlim.fr
mailto:sylvain.charneau@xlim.fr
mailto:laurent.fuchs@xlim.fr
mailto:frederic.mora@xlim.fr
http://dx.doi.org/10.1007/978-0-85729-811-9_14

274 L. Aveneau et al.

convex polytope is proved to be minimal. This property allows useful algorithmic
improvements.
To illustrate the use of our framework in practice, we present the computation of
soft shadows for three-dimensional illuminated scenes.

14.1 Problem Statement

14.1.1 About Visibility

Visibility is a fundamental problem in computer graphics. All rendering algorithms
aim at simulating the light transfer in a virtual environment, which strongly depends
on the mutual visibility of each element in the scene. This is clearly illustrated by
the following well-known rendering equation:

L(x,ω)=E(x,ω)+
∫

y

ρ(x,ω,x→ y)L(x, x→ y)
cos θx cos θy
|x − y|2 V (x, y) dy.

The radiance L leaving a point x in the direction ω is the sum of the emitted radiance
E at x, plus the reflected light as the sum of the incoming radiance from all the points
y in the scene, according to the surface property ρ and the incident angles. In this
equation, V (x, y) is the visibility function, whose value is 1 if x and y are mutually
visible and 0 otherwise.

As a consequence, the accuracy of the visibility solution has a direct impact on
the quality of the result. This explains why visibility is a central question. And it
goes beyond the scope of computer graphics: Other domains, such as electromag-
netism or acoustics, for instance, derive algorithms to simulate wave propagation.

There are many visibility problems. The simplest one is between two points.
A classical solution uses a visibility ray, which works in any dimension where such
a ray approach is available [9]. But visibility queries can be more complicated. For
example: “What parts of the scene can be seen from this point?” or “What parts of
the scene can be seen from this region?” In the latter case, the visibility problem
becomes very complex. Contrary to the point-to-point visibility query, it is not suf-
ficient to answer “It is visible” or “It is invisible.” The challenge is to compute the
whole visibility set, i.e., a global visibility information between two continuous sets
of points. This implies to study all the discontinuities in the visibility that may oc-
cur because of occluders lying between the sets of points. Visibility discontinuities,
sometimes called visibility events, happen at the occluder boundaries. They are the
frontiers where the visibility changes.

For simplifying global visibility problems, a common approach consists of first
to sample the continuous sets of points and then to perform successive point-to-point
visibility queries. However, this sampling step introduces noise, altering the quality
of the result. Increasing the sampling density helps to minimize the problem but may
badly affect the computation time. In addition, notice that a sampling strategy may

14 A Framework for n-Dimensional Visibility Computations 275

be unusable. Considering the following problem: “Prove that two continuous sets of
points are not mutually visible,” an infinite number of samples would be required!

This illustrates the need for algorithms able to solve exactly any global visibility
problem: On the one hand, it ensures high quality results in applications; on the
other hand, it is the only way to solve some visibility problems.

14.1.2 The Dimension Problem

Global visibility problems take place in line-space. For example, the visibility of
two continuous sets of points corresponds to the lines intersecting the two sets with-
out intersecting their occluders. Thus, visibility discontinuities correspond to lines
incident to occluder boundaries. As a consequence, the complexity of a visibility
problem is strongly related to the dimension of its underlying line-space.

In a two-dimensional space, the line-space is also two-dimensional. Global visi-
bility in 2D has been studied for convex objects through the visibility complex [16]
and used in different applications such as radiosity computation [14]. Using another
line parameterization, Bittner et al. [4] focus on the visibility from a region in the
plane.

In a three-dimensional space, the line-space is not three-dimensional, but of di-
mension 5. As a consequence, visibility problems are much more difficult to appre-
hend, and the generalization of two-dimensional visibility algorithms is not possible.
So, dedicated algorithms were proposed. F. Durand has developed the 3D visibility
complex [7], a data structure that encodes the global visibility by tracking all the dis-
continuities generated by the vertices, edges, and faces of a polygonal environment.
This data structure illustrates the complexity of the three-dimensional visibility but
is not practicable due to robustness issues. The visibility skeleton [6] is a deriva-
tive of the 3D visibility complex. It is a multipurpose visibility tool, but it does not
encode all the visibility data.

A line in 3D has four degrees of freedom, but a 4D parameterization is not pos-
sible without singularities (for instance, we can consider the bounding sphere of
the scene; then any line intersects the sphere in two different points, and since the
sphere is a surface of degree 2, then a line can be defined using four parameters;
however, singularities remain at the poles: the azimuthal coordinate can take any
value, leading to different coordinates describing a same line). This can make algo-
rithms sensitive to numerical stability. To avoid this problem, other approaches use
the Plücker line parameterization. The Plücker space is a five-dimensional projec-
tive space embedding all the 3D lines in a four-dimensional manifold. It is useful to
group lines according to the objects they intersect. Pellegrini [15] uses this formal-
ism to find upper bounds on geometric problems involving three-dimensional lines.
In the Plücker space, lines stabbing a sequence of convex polygons can be repre-
sented as a convex polytope set. This property is used by Teller [18] for computing
visibility through a sequence of portals or convex transparent polygons. Nirenstein
[13] and Bittner [3] take into account occlusion to compute from-region visibility,
further improved by Haumont [8] and Mora [10, 11].

276 L. Aveneau et al.

The first practicable global visibility algorithms in three-dimensional space are
quite recent. This area of research is still being investigated. If it is quite difficult to
apprehend visibility in a three-dimensional space, it is worse in a four-dimensional
space, e.g., in dynamic environments. At present, we are not aware of any practica-
ble algorithms dedicated to 4D space.

14.1.3 Toward a Global Visibility Framework

This brief overview highlights several difficulties. At first, visibility algorithms are
dependent on the geometrical space dimension. The gap of complexity, for example,
from two-dimensional to three-dimensional space, prevents a general approach. In
addition, since global visibility is expressed in a line space, the parameterization
choice greatly affects the algorithm design, properties, and robustness.

Geometry algebra gives the opportunity to think about visibility at a higher level
of abstraction. It allows one to analyze problems and to design their solutions re-
gardless of the dimension of space, using a single approach.

In this chapter, we propose a global visibility framework based on a n-
dimensional line space, defined using Grassmann Algebra [5]. While this is a clas-
sical definition of lines in mathematics, it remains uncommon in computer graphics.
Thanks to this formalism, we prove a major theorem on the representation of a set of
lines by a convex polytope. Next, we propose a generalization of Mora’s work [10]
into an n-dimensional visibility framework. Finally, as an application, we explain
how it can be used to compute very high quality soft shadows in the rendering of
artificial scenes.

14.2 Line Spaces

For computing visibility between objects, let us denote Gn the n-dimension geo-
metrical space of the geometric objects. It is embedded into the projective space P

n.
As P

n is built from R
n+1, linear subspaces of P

n can be represented by elements of∧
(Rn+1).

14.2.1 n-Dimensional Lines

Whatever the dimension of the space it belongs to, a line is a one-dimensional sub-
space. It expresses a dependency between two distinct points. So, we can formulate
the following definition:

Definition 14.1 An n-dimensional line, passing through two projective points A

and B of Gn with respective 1-vector coordinates a and b, is represented by the
exterior product a ∧ b.

14 A Framework for n-Dimensional Visibility Computations 277

Example 14.1 As an example, let us consider in two dimensions the line going
through the points of homogeneous coordinates (1,0,1) and (2,1,1). Using the
exterior product, it follows that the expression of this line in

∧
(R3) is e0 ∧ e1 −

e1 ∧ e2 − e2 ∧ e1, where the 1-vectors (e0, e1, e2) form the basis of
∧1

(R3).

Example 14.2 In computer graphics, the three-dimensional lines are most known
using Plücker coordinates. In fact, they can be retrieved using Definition 14.1. Using
again a homogeneous notation, a point P is denoted by four coordinates using the
vector: p = (x, y, z,w)T . The line going through A and B with respective coordi-
nates (xa, ya, za,1) and (xb, yb, zb,1) is known as [15]

⎛

⎜
⎜
⎜
⎜
⎜
⎝

xb − xa
yb − ya
zb − za

yazb − ybza
zaxb − zbxa
xayb − xbya

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

With our definition, the same line through A and B is defined, using the Grassmann
exterior product, as ΠAB = a ∧ b—see Exercise 14.1. Then, it is quite easy to show
that Plücker coordinates are coordinates in

∧2
(R4).

14.2.2 From Line to Line Space

The elements of
∧k

(Rn+1) for k ≤ n are homogeneous: If K ∈∧k
(Rn+1) repre-

sents a subspace of R
n+1, then K ′ = λK for λ ∈R

∗ represents the same subspace.

Hence, P(
n+1
k)−1 = P(

∧k
(Rn+1)) is the space of the 1-subspaces of

∧k
(Rn+1).

Each point of P(
n+1
k)−1 represents a unique linear manifold of Gn. This leads to the

following definition of the line space Ln of Gn:

Definition 14.2 The space of lines of Gn, denoted by Ln, is the projective space
P(
∧2

(Rn+1)).

From this definition, the line space is a projective space of dimension
(
n+1

2

)− 1.

With G2, the line space is of dimension
(3

2

)−1= 2, while with G3, it corresponds to
the classical Plücker space of dimension 5. This is directly related to the dimension
problem, as presented in Sect. 14.1.2.

Considering again Example 14.1, the line passing through the points with ho-
mogeneous coordinates (1,0,1) and (2,1,1) has coordinates (1,−1,−1) using the
basis (e0 ∧ e1, e1 ∧ e2, e2 ∧ e0) of

∧2
(R3).

278 L. Aveneau et al.

14.2.3 About the Grassmannian

From previous works on visibility computations [13, 19], it is well known that three-
dimensional Plücker lines do not fill all the linear space L3. The mapping of three-
dimensional lines to the Plücker space is not surjective. Indeed, a line must pass
through at least two distinct points and then is represented as a 2-blade. They are
all located on the Grassmannian (manifold) GR(2,4) in the linear space

∧2
(R4),

defined as the set of all 2-subspaces of R
4. It is also the set of all decomposable

bivectors, or 2-blades. In dimension n, the set of geometric lines are located on the
Grassmannian GR(2, n+ 1) within the linear space

∧2
(Rn+1).

For deciding if a given point of Ln is on the Grassmannian, and so is a geometric
line, it is sufficient to verify that it is a decomposable vector. The following theorem
gives an easy way to solve this.

Theorem 14.1 Let
∧

(Rn+1) be the Grassmann algebra. A nonzero bivector M

from
∧

(Rn+1) is a 2-blade—a decomposable vector—if and only if M ∧M = 0.

Proof If M is a 2-blade, then there exist two linearly independent vectors m1 and
m2 from R

n+1 such that M =m1 ∧m2 �= 0. Then, M ∧M =m1 ∧m2 ∧m1 ∧m2,
and using the antisymmetry property of the exterior product, M ∧M = 0.

Now, assuming that M is not decomposable, by definition it can be written as
a finite sum of linearly independent 2-blades:

∑p

i=1 Mi ,
(
n+1

2

) ≥ p ≥ 2. It follows
that

M ∧M =
(

p∑

i=1

Mi

)

∧
(

p∑

j=1

Mj

)

(14.1)

= 2
p∑

i≤j
Mi ∧Mj . (14.2)

Since all these terms are linearly independent 4-vectors, M ∧M �= 0. �

This theorem helps for computing the intersection between a set of lines in Ln

and the Grassmannian, for instance, to decide if it contains at least one geometric
line or can be dropped in future computations.

14.2.4 Line Orientation

Previous works on visibility computation use line orientation as a key element. In
Grassmann algebra, it is expressed using the exterior product, which expresses the
dependency between vector subspaces.

Property 14.1 Let M and M ′ be two projective linear subspaces of Gn. Their in-
tersection is nonempty if and only if M ∧M ′ = 0.

14 A Framework for n-Dimensional Visibility Computations 279

This property can be applied to a bivector L and an (n−1)-vector F of
∧

(Rn+1),
allowing us to check if a line is incident to the boundary of an occluder, i.e., an
(n− 2)-variety or flat. For instance, as proposed in Exercise 14.3, in three dimen-
sions it is possible to check that the Plücker relation corresponds to the test L∧H ,
where H is also a line since n− 1= 2. A particular case of this first property is the
following:

Property 14.2 Let M and M ′ be respectively a k-vector and an (n− k+ 1)-vector,
representing two projective linear subspaces of Gn. Their relative orientation is de-
noted by the sign of λ ∈R using the exterior product M ∧M ′ = λI , where I is the
pseudo-scalar in

∧
(Rn+1).

For instance, in two dimensions, it allows us to check if a directed line turn
clockwise or counterclockwise with respect to a point. This property is essential for
computing the line stabbing a convex (n− 1) face, as presented in Sect. 14.3.1.

In order to work with lines in Ln, we need a similar product using only bivectors.
Moreover, we want a robust solution, working with geometric lines, but also with
any bivector. In fact, it is possible to express Property 14.2 into the line space, using
only bivectors and the inner product. This is based on the duality between

∧2
(Rn+1)

and
∧n−1

(Rn+1).

Theorem 14.2 Let δ be an isomorphism from
∧2

(Rn+1) to
∧n−1

(Rn+1) such that
δ(l) = l"In+1, where " denotes the left contraction, and In+1 is the pseudoscalar
over
∧

(Rn+1). Then, the inner product between any bivectors L1 and L2 is equiv-
alent to check the orientation of the line L1 with a (n− 2)-flat:

L1 ·L2 ≡ L1 ∧ δ(L2)

up to an identification of pseudoscalars and scalars in
∧

(Rn+1).1

From this result, two immediate and important properties follow:
1. Since the inner product is nondegenerate, there is no singularity. It asserts that

the line orientation test is always defined, whatever the line and the flat are.
2. The duality does not depend on the Grassmannian: The previous property is also

valid for nondecomposable bivectors and (n− 1)-vectors, or equivalently, when
they do not respectively represent a line and an (n− 2)-flat.

The first property plays a fundamental role in our visibility framework. Firstly, it
explains that the visibility computations work for all dimensions and all configura-
tions, without any singularity, ensuring the generality of this approach. Secondly,

1Editorial note: The δ is a dualization in
∧

(Rn+1). If one would have a geometric algebra for
R

n+1, this would be proportional to multiplication by the pseudoscalar, see Chap. 21 and their
2D example below. In a nonmetric Grassmann algebra, the dualization is necessarily introduced
somewhat more abstractly.

280 L. Aveneau et al.

it is computationally simple, as is it reduced to evaluations of a particular scalar
product of vectors of dimension

(
n+1

2

)
, and this ensures its robustness.

The n-dimensional proof of this theorem is left to the reader, but we illustrate it
in two dimensions. Let (e0, e1, e2) be an orthogonal basis of R

3, and e0 ∧ e1 ∧ e2
be the pseudoscalar for

∧
(R3). Let (e1 ∧ e2, e2 ∧ e0, e0 ∧ e1) be a basis of

∧2
(R3).

We know that any two-dimensional line can be represented using three coordinates
in such a basis. The left contraction is used to define the isomorphism δ :∧2

(R3) �→
∧1

(R3) as:

δ(e1 ∧ e2) = (e1 ∧ e2)"(e0 ∧ e1 ∧ e2)= e0,

δ(e2 ∧ e0) = (e2 ∧ e0)"(e0 ∧ e1 ∧ e2)= e1,

δ(e0 ∧ e1) = (e0 ∧ e1)"(e0 ∧ e1 ∧ e2)= e2.

So, any two-dimensional line can be mapped to a 1-vector using δ, and conversely
with δ−1. Without loss of generality, let A : (α0, α1, α2) and B : (β0, β1, β2) be two
lines, i.e., bivectors. Using the anticommutativity of the exterior product, it follows
that

A∧ δ(B)= (α0e1 ∧ e2 + α1e2 ∧ e0 + α2e0 ∧ e1)∧ (β0e0 + β1e1 + β2e2)

= (α0β0 + α1β1 + α2β2)e0 ∧ e1 ∧ e2

≡A ·B.

Using any isomorphism between R
3 and
∧3

(R3), the obtained expression can be
recognized as a classical inner product in

∧2
(R3).

14.2.5 Dual Line Representation

Theorem 14.2 has a nice and useful interpretation in the line-space Ln.
As a classical result of vector algebra, in a vector space E of dimension m, it is

well known that the set of vectors orthogonal to any other vector x (the set of v such
that v · x = 0, where · is the inner product) describes a vector subspace of dimen-
sion m− 1 in E, i.e., a hyperplane. Transposed to our problem, this classical result
means that each (n− 1)-vector (i.e., δ(L2) in the theorem statement) can be dually
associated to a hyperplane in

∧2
(Rn+1) (the set of bivectors L orthogonal to L2 in

∧2
(Rn+1), i.e., such that L ·L2 = 0), which corresponds to a projective hyperplane

in the line-space Ln. In dimension 2, it can be remarked that some similarities exist
between this model of line-space L2 with the well-known dual plane where lines
map to points and conversely points map to lines. This reveals that classifying a line
L against an (n − 2)-flat F , by computing the sign of the product L ∧ F for the
bivector L and the (n− 1)-vector F , can always be seen as determining in which
half-space is the point L of Ln, according to the oriented hyperplane δ−1F associ-
ated to F in Ln. The product is zero if and only if L is a point on the hyperplane F ∗.

14 A Framework for n-Dimensional Visibility Computations 281

This interpretation will be particularly helpful in Sect. 14.3.2, to give a geometri-
cal significance to the global visibility computation and representation, which only
makes sense in the line-space.

14.3 Visibility in Ln

14.3.1 Lines Stabbing a Convex (n − 1)-Face

The following theorem unambiguously characterizes the set of lines stabbing a con-
vex face in any dimension n.

Theorem 14.3 Let F be a convex (n− 1)-face in Gn, supported by the hyperplane
HF (i.e., an (n−1)-flat in Gn) and bounded by the (n−2)-flats fi for i ∈ [1, . . . , r].
The flats fi have two orientations such that for any line L, L∩HF �= L, L stabs F
if and only if one of the following two properties is verified:

∀i ∈ [1, . . . , r], L∧ fi ≥ 0, (14.3)

∀i ∈ [1, . . . , r], L∧ fi ≤ 0. (14.4)

Let SF be the set of lines stabbing the face F.

The proof of the theorem is based on the following remarks. Firstly, F is a con-
vex polytope, delimited by the flats fi and restricted to the hyperplane HF in Gn.
Secondly, when a line L does not lie on HF , it has one and only one intersection
point with HF , at infinity if L is parallel to HF . Thirdly, L stabs the face F if and
only if its intersection point with HF is in F.

Proof The line L corresponds to a 2-vector, and the hyperplane HF to an n-vector
in
∧

(Rn+1). Since n+2 > n+1, then L∧HF = 0. So, there is always an intersec-
tion between L and HF , either of dimension 1 (a point) or 2 (L itself). This allows
us to propose the following lemma:

Lemma 14.1 Every line L in Gn intersects HF in a unique point, except if L lies
in HF .

Let P∩ be the intersection of L with HF . Assuming that L does not lie on HF ,
P∩ is a nonzero 1-vector. Obviously, L stabs F if and only if P∩ is inside F. Let P�∩
be any other point on L out of HF such that P�∩ ∧HF > 0, i.e., P�∩ is in the positive
half-space of HF . We can write L= P∩ ∧ P�∩. It follows that

∀i ∈ [i, . . . , r], P∩ ∧ P�∩ ∧ fi = P∩ ∧ (P�∩ ∧ fi).

By hypothesis, P�∩ is not incident to fi , and the n-vector P�∩ ∧ fi �= 0 represents
a hyperplane in Gn. The sign of the pseudoscalar P∩ ∧ (P�∩ ∧ fi) indicates in which
half-space of the hyperplane P�∩ ∧ fi the point P∩ is.

282 L. Aveneau et al.

Let P be the polytope generated by F and the vertex P�∩. Since F is convex, so
is P : It is the intersection between H +

F and the positive half-spaces associated to
the hyperplanes P�∩ ∧ fi, i ∈ [1, . . . , r], for a particular but consistent orientation
of them. By hypothesis, P�∩ ∧HF is a nonzero pseudoscalar. The orientation of
each hyperplane P�∩ ∧ fi can be determined from any point PF into F, such that
PF ∧ (P�∩ ∧ fi) are only positively oriented pseudoscalars. Since PF ∧ (P�∩ ∧ fi)=
−P�∩∧PF∧fi and PF∧fi generates the flat HF , PF∧fi has an opposite orientation
than the one of HF since ∀i ∈ [1, . . . , r], PF ∧ fi = λF , λ < 0. This shows that the
orientations of the flats fi can be determined uniquely from those of HF and the
position of P�∩ relatively to HF .

The orientation of the flats fi allows us to state that a point P of Gn is in the
polytope P if and only if P ∧HF ≥ 0 and P ∧ (P�∩ ∧ fi) > 0 ∀i ∈ [1, . . . , r]. In
particular, this concerns every point in F, including P∩. Then, P∩ is a point of P if
and only if:

P∩ ∧ (P�∩ ∧ fi)≥ 0 ∀i ∈ [1, . . . , r].

In other words, L stabs the face F if and only if

L∧ fi ≥ 0 ∀i ∈ [1, . . . , r].

Considering the opposite line L′ = P�∩ ∧ P∩, obviously it stabs F if and only if

L′ ∧ fi ≤ 0 ∀i ∈ [1, . . . , r].

This result does not depend on P�∩ with respect to the sign of the half-space associ-
ated to the hyperplane HF ; it remains valid for all lines L not in HF .

Changing the orientation of some but not all of the flats fi makes the previous
result false. On the contrary, changing the orientation of all of them—or equivalently
the orientation of HF or the position of P�∩ relatively to HF —only interchanges all
signs in the in-equations, and so the result remains true. This means there are only
two valid orientations for the flats fi . �

Theorem 14.3 has a fundamental consequence: It gives an algebraic method for
determining whether or not a line stabs a given face in any n-dimensional space.
This method has no singularity, since our algebraic framework also handles flats at
infinity. However, the lines lying on the hyperplane HF are excluded, since they
cannot properly “stab” F. But this distinction does not impact the visibility compu-
tation, both from a theoretical and an algorithmic point of view.

Moreover, this theorem has a useful interpretation in Ln. It first reveals what
the visibility computation through faces relies on, geometrically, and then indicates
what kind of data-structures and algorithms can be used to compute the visibility in
practice. The following section aims to explain this interpretation.

14 A Framework for n-Dimensional Visibility Computations 283

14.3.2 Convex Cells and Visibility Events in the Line-Space

14.3.2.1 Interpretation in Ln and Consequences
Theorem 14.3 has a suitable geometrical meaning in Ln. By duality, every flat
fi bounding the face F can be associated to an unique hyperplane f ∗i in Ln

∀i ∈ [1, . . . , r]. Then, by choosing a positive orientation for the flats, Theorem 14.3
implies that SF, the set of lines stabbing F in Ln, is the intersection between
GR(2, n + 1) and the convex polytope defined as the intersection of the positive
half-spaces delimited by the hyperplanes f ∗i . This is a useful result, as convex poly-
topes have the following well-known properties in computational geometry:
• They have multiple representations: A hyperplane set, a vertex set, and a face

lattice.
• It can easily be determined if a point is either inside or outside a polytope.
• It can be easily determined if two polytopes intersect each other.
• Boolean operations are expressed as geometrical computations, such as split, in-

tersections, etc.
Nevertheless, a single face F is not sufficient to define a polytope: The hyper-

planes f ∗i , i ∈ [1, . . . , r], delimit a region in Ln partially bounded by infinity. This
is stated by the dimension of Ln (see Sect. 14.2.3): While at least 2n − 1 hyper-
planes are required to define a simplex in Ln, an (n− 1)-face can only have n facets
in general (i.e., independent) positions, for instance, those of an (n − 1)-simplex
in Gn. As a consequence of this closure by the infinity in Ln, it becomes impossible
to determine a convex-hull representation of the polytope SF.

While this interpretation leads to some interesting properties, it also illustrates
the fundamental role of the Grassmannian GR(2, n + 1) and its embedding line-
space Ln. Indeed, the polytope representing the lines stabbing some faces also con-
tains points outside the Grassmannian. Then, representing the lines stabbing faces
in Gn by a convex polytope in Ln is only possible by considering the whole line-
space Ln, but not the Grassmannian GR(2, n+ 1) alone. This mainly explains why
the Stolfi framework [17], which only represents points located on the Grassman-
nian, is not suitable for computing the global visibility. On the contrary, by en-
abling computations on nondecomposable multivectors, geometric algebras make
the global visibility computation sum up to boolean operations on convex polytopes
in Ln.

14.3.2.2 Global Visibility in Gn as Convex Cells in Ln

Extending this representation to two or more faces is straightforward. In the example
depicted in Fig. 14.1, A, B, and O are three edges in G2, with bounding vertices i ∈
[1, . . . ,6]. In G2, these vertices are associated to hyperplanes that subdivide the line-
space into cells, grouping together the lines stabbing the same edges. Figure 14.1
shows two such cells: PAB representing lines stabbing A and B but missing O;
and PAOB representing lines stabbing A, O, and B. It must be noticed that PAB
completely describes the global visibility between A and B by taking into account
the occlusion by O. This example shows that visibility in G2 can be described in L2
by a set of convex polytopes, obtained using Theorem 14.3.

284 L. Aveneau et al.

Fig. 14.1 (Color online) Visibility computation and representation. Left: In G2, the edges A and B
are partly hidden by O. Right: In L2, the lines stabbing the three edges are the convex cell PAOB,
while the lines stabbing A and FB but not O are represented by the convex cell PAB . These two
cells or polytopes are obtained from the intersection of the positive half-spaces associated to the
six vertices bounding the edges

Since Theorem 14.3 does not depend on the geometric space dimension, it can
be applied to compute the visibility in Gn: Visibility through some faces in Gn

can always be represented by a subdivision of Ln in cells which group together the
lines stabbing the same faces. The boundary of the cells are then the hyperplanes
associated to the (n− 2)-flats which bound the objects in Gn.

However, we show in Sect. 14.4.2 that some special configurations prevent
grouping two or more faces in only one convex cell or polytope in Ln. The dis-
tinction and description of these degenerate cases come as a part of the proof of the
minimal polytope solution. They give a precise understanding of how lines in the
line-space subdivision are grouped together.

14.3.2.3 Visibility Events in Ln

According to Durand [6], a visual event is defined as the locus where visibility
changes in Gn. This notion is central in many approaches concerning visibility com-
putation, since both the visibility modification and knowledge of topology are suf-
ficient to fully describe the visibility. In practice, a visual event appears as a line
tangent to a finite number of geometrical objects. The degree of freedom gives sup-
plementary information, leading to the k-visual event notion.

As depicted in Fig. 14.1, vertex 5 is a locus with important visibility variations.
The red lines 15 and 54 are two examples of visual events that separate the visibility
for all the lines passing through 5. In L2, they become two 1-vectors that form a
part of the cells PAOB and PAB , as they lie on a common 2-vector, the dual of 5.
Obviously, this is a general rule: The visual events are located on the cell boundaries.
It comes from the visual event definition and Theorem 14.3.

In n dimensions, only the real visual events are of interest, so the whole cell
boundary is not interesting. In Gn, the visual events are located on the Grassmannian
too. Then, a k-visual event is a k-submanifold located at the intersection between
GR(2, n+ 1) and a cell in Ln. This shows that the visibility is fully described using
a partition in Ln.

14 A Framework for n-Dimensional Visibility Computations 285

14.4 The Minimal Polytope

14.4.1 Minimal Polytope Interest

All the previous approaches fail to give the minimal set of lines stabbing two convex
faces in Gn for n > 2. The Grassmann algebra allows us to define and to compute
the minimal polytope enclosing this set of lines. This is a key for our visibility
framework, as it ensures computation efficiency.

Let us enumerate some properties and goals of a minimal polytope representation
from both the theoretical and practical points of view:
1. It procures a vertex representation of the polytope containing the lines stabbing

two faces. This is useful for applications needing to split polytopes, to detect
collisions between them or to classify them according to some hyperplanes in
the line-space.

2. By splitting the minimal polytope with hyperplanes, such a vertex representation
can be extended for representing lines stabbing more than two faces.

3. The minimal polytope is a general solution, in any dimension, to the open prob-
lem stated in three dimensions [13]. It is also the most appropriate to avoid the
splittings leading to polytopes that do not represent any line in Gn, i.e., that do
not intersect the Grassmannian in Ln.

4. From the polytope vertices, all the faces in the polytope boundary (edges, hyper-
planes, . . .), and their incidences can be computed.

5. It unveils the case where a single polytope cannot be used to represent the vis-
ibility through two polygons. These degenerate cases appear in previous three-
dimensional works [13] and are generalized in Gn in this chapter.

14.4.2 The Minimal Polytope for Two Convex Faces

Let A and B be two convex (n− 1)-faces in Gn, and a1, . . . , aq and b1, . . . , br their
respective vertices.

Definition 14.3 The minimal polytope, denoted M B
A , represents the set of lines

S B
A stabbing A and B in Ln. It is the convex polytope with the following properties:

1. S B
A ⊆M B

A .
2. M B

A ∩GR(2, n+ 1)⊆S B
A .

3. If PB
A is a convex set in Ln such that S B

A ⊆PB
A , then M B

A ⊆PB
A .

Properties 1 and 2 mean that the polytope M B
A is a representation of S B

A in Ln,
i.e., a line L stabs A and B if and only if its representation in Ln is contained in
M B

A . The third property indicates that M B
A is the minimal polytope: There does not

exist another convex polytope representing S B
A and contained in M B

A .
The following theorem gives a computational characterization of the minimal

polytope for two faces in some canonical configurations and indicates the nonexis-
tence of any polytope for the other configurations.

286 L. Aveneau et al.

Theorem 14.4 Let HA and HB be respectively the supporting planes of the faces
A and B. If HA and HB do not respectively intersect the faces B or A, or only
on their boundary, then the minimal polytope M B

A is the convex hull of the lines
Lij = ai ∧ bj , (i, j) ∈ [1, . . . , q]× [1, . . . , r] from the vertices of A to the ones of B.
Otherwise, the set of lines stabbing A and B cannot be represented by any convex
polytope in Ln.

14.4.3 Proof of the Minimal Polytope Solution

To prove Theorem 14.4, we consider the two (n− 1)-faces A and B, with respective
vertices a1, . . . , aq and b1, . . . , br . We suppose that these faces are supported by
the hyperplanes HA and HB , and bounded by the (n − 2)-flats f a

1 , . . . , f
a
s and

f b
1 , . . . , f

b
t , respectively.

The proof is decomposed into three steps:
1. If the polytope M B

A exists, then it is minimal.
2. If the hyperplanes HA and HB do not intersect the faces B and A, respectively,

or only their boundary, then:
a. S B

A ⊂M B
A ;

b. M B
A ∩GR(2, n+ 1)⊂S B

A .
3. If the polytope M B

A is not defined, then the lines S B
A cannot be represented by

only one convex polytope.

14.4.3.1 If the Polytope M B
AM B
AM B
A Exists, then It Is Minimal

Let M B
A be the polytope defined as the convex hull of the vertices ai ∧bj , according

to Theorem 14.4. Assuming that this polytope represents lines S B
A stabbing A and

B, its vertices, i.e., the points in Ln associated to the lines ai∧bj ∀i ∈ [1, . . . , q], j ∈
[1, . . . , r], are in S B

A .
Let P be a convex polytope strictly contained in M B

A . Obviously, any convex
polytope containing all the vertices of M B

A also contains their convex hull M B
A .

Then, it follows that P does not contain at least one of the vertices of M B
A . Since

those vertices are in S B
A , we deduce that P does not represent all the lines stabbing

A and B, proving that M B
A is minimal.

14.4.3.2 Proof of S B
AS B
AS B
A ⊆M B

AM B
AM B
A

Let us assume that HA and HB do not intersect the inside of A or B, respectively.
The set S B

A in Gn contains lines defined by any couple of points on A and B such
that the point of A is not on HB , and conversely the point of B is not on HA.

Let a ∈ A and b ∈ B be two such points. Since A and B are convex, then the
homogeneous representation of a and b in Gn+1 can be represented by combinations
of the vertices of A and B, respectively. For instance,2

2Using homogeneous coordinates, the sum of the coefficients does not need to be normalized to
unity, as it is usually done in computational geometry.

14 A Framework for n-Dimensional Visibility Computations 287

a =
q∑

i=1

αiai, αi ≥ 0 ∀i ∈ [1, . . . , q], and

b=
r∑

j=1

βjbi, βj ≥ 0 ∀j ∈ [1, . . . , r].

So, the line D = a ∧ b is:

D = a ∧ b

=
(

q∑

i=1

αiai

)

∧
(

r∑

j=1

βjbi

)

=
q∑

i=1

r∑

j=1

αiβjai ∧ bj

=
∑

i∈[1,...,q],j∈[1,...,r]
γij ai ∧ bj .

By hypothesis, since αi ≥ 0 and βj ≥ 0, we have γij = αiβj ≥ 0. This shows that
any line D in S B

A is a convex combination of the points ai∧bj in Ln ∀ i ∈ [1, . . . , q]
and j ∈ [1, . . . , r]. These points are precisely the vertices of M B

A . This proves that
S B

A is contained in M B
A .

14.4.3.3 Proof of M B
AM B
AM B
A ∩ GRRR(2,n + 1) ⊆S B

AS B
AS B
A

By hypothesis, since HA (resp. HB) does not split the inside of B (resp. A), all the
vertices bj , j ∈ [1, . . . , r] (resp. ai , i ∈ [1, . . . , q]) are in a same half-space delimited
by HA (resp. HB).

From this remark and Theorem 14.3, it can deduced that there is a unique orien-
tation of the flats f a

i , i ∈ [1, . . . , s], and f b
j , j ∈ [1, . . . , t], verifying the following

inequalities:

ai ∧ bj ∧ f a
k > 0 ∀(i, j, k) ∈ [1, . . . , q] × [1, . . . , r] × [1, . . . , s],

ai ∧ bj ∧ f b
l > 0 ∀(i, j, l) ∈ [1, . . . , q] × [1, . . . , r] × [1, . . . , t].

Let D =∑i∈[1,...,q],j∈[1,...,r] γij ai ∧ bj , γij ≥ 0 for all (i, j) in [1, . . . , q] ×
[1, . . . , r], be any point inside M B

A . It follows that:

∀k ∈ [1, . . . , s], D ∧ f a
k =

∑

i∈[1,...,q],j∈[1,...,r]
γij ai ∧ bj ∧ f a

k ,

∀ l ∈ [1, . . . , t], D ∧ f b
l =

∑

i∈[1,...,q],j∈[1,...,r]
γij ai ∧ bj ∧ f b

l .

Since all γij , ai ∧ bj ∧f a
k and ai ∧ bj ∧f b

l are positive scalars or pseudoscalars,
we have:

288 L. Aveneau et al.

Fig. 14.2 Degenerate case
in G2, where it is not possible
to determine an orientation of
the boundary of both the
faces A and B, in order to
characterize consistently all
the lines stabbing the two
polygons: the lines l+ and l−
need opposite orientations

D ∧ f a
k ≥ 0 ∀k ∈ [1, . . . , s],

D ∧ f b
l ≥ 0 ∀l ∈ [1, . . . , t].

Let us assume that D is in the Grassmannian GR(2, n + 1) and HA and HB .
Then, by Theorem 14.3, D is in S B

A . By the hypothesis, D lies on one of the hy-
perplanes HA and HB if and only if it is incident to the (n− 2)-flat fi , defined as
the intersection of the two hyperplanes HA and HB in Gn. This (n− 2)-flat cor-
responds in Ln to a hyperplane f ∗i that bounds the polytope M B

A . Thus, the lines
incident to fi can be easily excluded from the polytope M B

A by considering it open
on the boundary corresponding to the hyperplane f ∗i .

Since the previous results are proved for any point in M B
A and on the Grassman-

nian GR(2, n+ 1), we deduce that M B
A ∩GR(2, n+ 1)⊆S B

A .

14.4.3.4 When the Hyperplane HBHBHB or HAHAHA Intersects the Inside of A or B
Assuming that the hyperplane HB intersects the inside of A, there are at least two
vertices ai1 and ai2 of A which are in the two opposite half-spaces delimited by HB

(see Fig. 14.2).
Let b be a point of B, and let D1 = ai1 ∧ b and D2 = ai2 ∧ b be two lines in S B

A .
Assuming that the flats f a

i , i ∈ [1, . . . , s], are correctly oriented if D1 ∧ f a
i are

only positive pseudoscalars for all i ∈ [1, . . . , s], the D2 ∧ f a
i are also positive, and

conversely. This comes from the pseudoscalar sign which only depends on which
half-space delimited by HA the point b lies (see the proof of Theorem 14.3).

On the contrary, supposing the flats f b
j for j ∈ [1, . . . , t] correctly oriented, since

the vertices ai1 and ai2 do not lie on the same half-space, according to HB , if D1 ∧
f b
j is a positive pseudoscalar, then D2 ∧ f b

j will be a negative pseudoscalar, and
conversely.

Reversing the orientation of one of the two lines, for instance, D2, is not a solu-
tion: The pseudoscalars D1 ∧ f a

i and −D2 ∧ f a
i still have an opposite sign.

This proves that it is not possible to point the flats f a
i and f b

j , i ∈ [1, . . . , s] and
j ∈ [1, . . . , t], such that the classification against those flats of all the lines stabbing
both A and B only results in positive pseudoscalars. In other words, it is not possible
to group together the lines S B

A in only one convex polytope. �

14 A Framework for n-Dimensional Visibility Computations 289

14.4.3.5 Dealing with Degenerate Cases
In this chapter, we talk about a degenerate case for two faces when at least one
of the two faces has an intersection with the hyperplane that extends the second
face. From this definition, two different kinds of degenerate cases can be specified:
Firstly, when the intersection is limited to a boundary part of a face; secondly, when
the intersection also concerns the inside of a face.

From Theorem 14.4 we know that there exists a minimal polytope representing
the lines stabbing the two faces for the first kind of degeneracy, whereas there is not
for the second one. However, this latter case can always be transformed in the former
one, splitting the two faces along their intersection with the hyperplane supporting
the opposite one. This split allows us to divide the initial degenerate configuration in
two or four configurations of the first type, depending on whether one or both faces
are split.

14.5 An Application Example: Soft Shadows Computation

14.5.1 The n-Dimensional Visibility Framework Implementation

As presented in previous sections, the set of lines intersecting two convex n−1 faces
A and B in Gn can be represented as an

(
n+1

2

)
-dimensional convex polytope PAB

in P(
n+1

2). Denoting by Oi , 1≤ i ≤m, the m occluding (n− 1)-faces, the visibility
between A and B is

PAB −
m⋃

i=1

POi
= PAB −

m⋃

i=1

PAOi
= PAB −

m⋃

i=1

POiB.

This can be computed using Computational Solid Geometry operations: Each poly-
tope PAOi

(or POiB) has to be subtracted from PAB . All n-dimensional CSG oper-
ations can be implemented using Binary Space Partitioning trees [12]. The core of
this method requires to split an n-dimensional convex polytope against an (n− 1)-
dimensional hyperplane. Two different approaches can be used:
1. An enumeration algorithm such as [1] can solve the linear system induced both

by the splitting hyperplane and the bounding polytope hyperplanes (the so-called
H-representation). However, such an approach is prone to numerical errors, es-
pecially in higher dimensions as noticed by Bittner [3], whose method relies on
a similar algorithm.

2. Bajaj et al. [2] propose a more robust method relying on the relative position of
a point and a hyperplane. Nirenstein [13] or Mora [11] use this algorithm. We
also choose this technique because robustness is crucial in image synthesis. In
particular, even a small error always leads to a blatant visual artifact.

As a result, this allows us to implement the n-dimensional visibility framework
whatever n ≥ 2 is, contrary to previous works which are only correct in 2D or 3D
space. In addition, our framework takes advantage of the minimal polytope theo-
rem to optimize CSG computations, whereas previous works construct nonminimal

290 L. Aveneau et al.

polytopes, increasing the vertex number and thus the complexity of the CSG opera-
tions.

The visibility framework can be considered as a black box and easily plugged
into any applications that need to perform visibility queries.

14.5.2 Soft Shadow Computations

In computer graphics, soft shadows are very important to render realistic pictures,
because they unveil the relative positions of the objects in the scene. But it is a
difficult problem, since it requires to compute the visibility of an area light source
from any point in the scene, which is very time consuming. In this section, we
explain how the visibility framework can be used to solve exactly the visibility of
an area light source and to speed up the computation.

14.5.2.1 Application Overview
We consider a 3D environment made of convex polygons and precompute their vis-
ibility with an area light source L. Denoting T a polygon in the scene, this leads
to compute, for each pair (L,T), a 6D BSP tree whose inner nodes are 5D projec-
tive hyperplanes corresponding to the duals of occluders’ edges and whose leaves
are polytopes representing a visible or invisible set of lines. Such a tree is an exact
and coherent representation of the visibility of L from any point on T . As a con-
sequence, it is used during the rendering step to query the visibility of L for each
point on T visible from the camera. A simple algorithm to perform such a query
is presented in [10]. It provides an exact polygonal subdivision of the visible parts
of L from a given point. This result is then used to compute the direct illumination
received by the point.

We compare our approach to the solution commonly used in production render-
ing software: A stratified sampling of the area light source. In this case, the visibility
of L from a given point is evaluated by shooting shadow rays toward each sample
on L. The quality of the result increases with the number of samples and the com-
putation time.

14.5.2.2 Results
All tests are run on an Intel Core 2 Duo at 2.4 GHz with 3 Gb of memory. For
comparison purposes, all pictures are rendered at 800× 600 on one thread without
anti-aliasing. The comparison method uses 256 samples per area light source, since
this number is usually considered sufficient for producing quality results. The ray
tracer is an implementation of [20], taking advantage of SSE instructions to trace
four rays at a time.

Figure 14.3 presents the pictures. The first scene, Eagle, is a model with a mod-
erate shadow complexity, while the second scene, Panther, is a more complex case.
Despite the high number of samples used by the comparison method, noise remains
in soft shadows as illustrated by the close-ups. Using our visibility framework, the
soft shadows quality is optimal, whatever the zooming is, since the visibility queries

14 A Framework for n-Dimensional Visibility Computations 291

Fig. 14.3 The left column presents the pictures with soft shadows computed using our exact visi-
bility framework. The right column presents the differences’ images of the same pictures computed
using a classical sampling strategy. The close-ups underline the significant differences in soft shad-
ows

292 L. Aveneau et al.

Table 14.1 Result details for the two test scenes, Eagle and Panther, with one area light source.
The first column gives the number of polygons in a scene. The second column presents the total
number of inner nodes for all precomputed BSP trees. The third column indicates the time spent for
precomputing all BSP trees. The fourth column gives the time spent in soft shadows computation
using our framework, whereas the last column gives this time using the comparison method

Polygons BSP-tree Ptime Rtime Ctime

Eagle 5520 19 154 9 min 34 s 2.9 s 1 min 24 s

Panther 12 993 47 684 54 min 12 s 4.1 s 1 min 45 s

are exact. It is worth underlying that we were not able to precompute correctly the
visibility on the Panther scene using a nonminimal polytope like in [13] or [10]: Be-
cause of numerical instabilities, errors occur in the visibility data, leading to visual
artifacts in soft shadows. Using the minimal polytope, we avoid to perform useless
CSG operations, improving robustness.

Table 14.1 presents the computation details. The size of the BSP-trees illustrates
their compactness and ability to efficiently encode the visibility data. The precom-
putation times are significant since CSG operations in high dimensions are time
consuming. However the method remains practicable, and it does not depend on
the point of view. As a consequence, it can be computed once then stored into files
to be reused later. Finally, the time spent in soft shadows computation during the
rendering step clearly shows the efficiency of the visibility framework. Indeed, the
visibility queries used on the BSP trees depend on their average depth and compact-
ness. Thus, the benefit from the precomputation step is really important.

In this application, our visibility framework manages to reconcile accuracy and
efficiency, often considered as two opposite qualities in computer graphics.

14.6 Exercises

14.1 Prove that Plücker’s coordinates correspond to the coordinates of a bivector
in
∧2

(R4).

14.2 From the parametric equation of a line (i.e., tP + (1− t)Q, where P and Q

are n-dimensional points), find a 2-blade that represents it.

14.3 The Plücker relation between two lines expressed with their six Plücker co-
ordinates (Π0, . . . ,Π5) and (Δ0, . . . ,Δ5) is Π0Δ3 + Π1Δ4 + Π2Δ5 + Π3Δ0 +
Π4Δ1 +Π5Δ2. Show that it is equivalent to the inner product in L3.

14.4 Let A, B , and C be three Euclidean points in G3, with respective coordinates
(1,0,0), (2,1,1), and (1,0,2). Let F be the triangle (A,B,C). Let P , Q, and R

be three Euclidean points in G3 with respective coordinates (0,1,1), (2,0,2), and
(4,0,4). Do the lines (PQ) and (RP) stab the face F ? Same question for the lines
(PR) and (QP), but without any new computations.

14 A Framework for n-Dimensional Visibility Computations 293

14.5 Find a bivector that is not decomposable, i.e., that is not a 2-blade. Show that
this bivector cannot represent a line into the space of the geometric objects. (Hint:
consider dimension 4.)

14.6 Prove Theorem 14.2. Notice that the duality cannot be expressed easily directly
in
∧

(Rn+1). The left contraction allows us to express it, and so the difficulty only
resides in dimension n.

14.7 Consider two faces A and B . Show that any line that is outside the minimal
polytope cannot cross A and B .

References

1. Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Appl. Math. 65, 21–46 (1996)
2. Bajaj, C.L., Pascucci, V.: Splitting a complex of convex polytopes in any dimension. In: Pro-

ceedings of the Twelfth Annual Symposium on Computational Geometry (ISG ’96), pp. 88–
97, ACM, New York (1996)

3. Bittner, J.: Hierarchical techniques for visibility computation. PhD thesis, Department of
Computer Science and Engineering, Czech Technical University in Prague (2002)

4. Bittner, J., Prikryl, J., Slavík, P.: Exact regional visibility using line space partitioning. Com-
put. Graph. 27(4), 569–580 (2003)

5. Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science: An Object-
Oriented Approach to Geometry. The Morgan Kaufmann Series in Computer Graphics. Mor-
gan Kaufmann, San Francisco (2007)

6. Durand, F., Drettakis, G., Puech, C.: The visibility skeleton: a powerful and efficient multi-
purpose global visibility tool. In: Proceedings of the 24th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’97, pp. 89–100 (1997)

7. Durand, F., Drettakis, G., Puech, C.: The 3d visibility complex. ACM Trans. Graph. 21, 176–
206 (2002)

8. Haumont, D., Makinen, O., Nirenstein, S.: A low dimensional framework for exact polygon-
to-polygon occlusion queries. In: Rendering Techniques, pp. 211–222 (2005)

9. Möller, T., Trumbore, B.: Fast minimum storage ray–triangle intersection. J. Graph. GPU
Game Tools 2(1), 21–28 (1997)

10. Mora, F., Aveneau, L.: Fast exact direct illumination. In: Proceedings of the Computer Graph-
ics International 2005, pp. 191–197 (2005)

11. Mora, F., Aveneau, L., Mériaux, M.: Coherent exact polygon-to-polygon visibility. In:
WSCG’05, pp. 87–94 (2005)

12. Naylor, B.F., Amanatides, J., Thibault, W.C.: Merging BSP trees yields polyhedral set opera-
tions. In: SIGGRAPH, pp. 115–124 (1990)

13. Nirenstein, S., Blake, E.H., Gain, J.E.: Exact from-region visibility culling. In: Rendering
Techniques, pp. 191–202 (2002)

14. Orti, R., Durand, F., Rivière, S., Puech, C.: Using the visibility complex for radiosity compu-
tation. In: WACG, pp. 177–190 (1996)

15. Pellegrini, M.: Ray shooting and lines in space. In: Goodman, J.E., O’Rourke, J. (eds.) Hand-
book of Discrete and Computational Geometry, 2nd edn., pp. 839–856. Chapman & Hall/CRC
Press, Boca Raton (2004)

16. Pocchiola, M., Vegter, G.: The visibility complex. Int. J. Comput. Geom. Appl. 6(3), 279–308
(1996)

17. Stolfi, J.: Oriented Projective Geometry: A Framework for Geometric Computations. Aca-
demic Press, San Diego (1991)

294 L. Aveneau et al.

18. Teller, S.J.: Computing the antipenumbra of an area light source. In: Proceedings of the
19th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’92,
pp. 139–148. ACM, New York (1992)

19. Teller, S.J., Séquin, C.H.: Visibility preprocessing for interactive walkthroughs. In: Proceed-
ings of the 18th Annual Conference on Computer Graphics and Interactive Techniques, SIG-
GRAPH ’91, pp. 61–70. ACM, New York (1991)

20. Wald, I., Slusallek, P., Benthin, C., Wagner, M.: Interactive rendering with coherent ray trac-
ing. Comput. Graph. Forum 20(3), 153–164 (2001)

Part VI
Alternatives to Conformal Geometric Algebra

The 3D conformal geometric algebra R4,1 is five-dimensional and often feels like a
slight overkill for the description of rigid body motion and other limited geometries.
This part presents several four-dimensional alternatives for the applications we saw
in Part I.

15On the Homogeneous Model of Euclidean
Geometry

Charles Gunn

Abstract
We attach the degenerate signature (n,0,1) to the dual Grassmann algebra of
projective space to obtain a real Clifford algebra which provides a powerful, ef-
ficient model for Euclidean geometry. We avoid problems with the degenerate
metric by constructing an algebra isomorphism between the Grassmann alge-
bra and its dual that yields non-metric meet and join operators. We focus on the
cases of n= 2 and n= 3 in detail, enumerating the geometric products between
k-blades and m-blades. We identify sandwich operators in the algebra that pro-
vide all Euclidean isometries, both direct and indirect. We locate the spin group,
a double cover of the direct Euclidean group, inside the even subalgebra of the
Clifford algebra, and provide a simple algorithm for calculating the logarithm of
group elements. We conclude with an elementary account of Euclidean kinemat-
ics and rigid body motion within this framework.

15.1 Introduction

The work presented here was motivated by the desire to integrate the work of
Study [28] on dual quaternions into a Clifford algebra setting. The following ex-
position introduces the modern mathematical structures—projective space, exterior
algebra, and Cayley–Klein metrics—required to imbed the dual quaternions as the
even subalgebra of a particular Clifford algebra, and shows how the result can be
applied to Euclidean geometry, kinematics, and dynamics. Those interested in more
details, exercises, and background material are referred to an extended on-line ver-
sion [13].

C. Gunn (�)
DFG-Forschungszentrum Matheon, MA 8-3, Technisches Universität Berlin,
Str. des 17. Juni 136, 10623 Berlin, Germany
e-mail: gunn@math.tu-berlin.de

L. Dorst, J. Lasenby (eds.), Guide to Geometric Algebra in Practice,
DOI 10.1007/978-0-85729-811-9_15, © Springer-Verlag London Limited 2011

297

mailto:gunn@math.tu-berlin.de
http://dx.doi.org/10.1007/978-0-85729-811-9_15

298 C. Gunn

15.2 The Grassmann Algebra(s) of Projective Space

Real projective n-space RPn is obtained from the (n + 1)-dimensional Eu-
clidean vector space R

n+1 by introducing an equivalence relation on vectors
x,y ∈ R

n+1 \ {0} defined by: x∼ y ⇐⇒ x= λy for some λ �= 0. That is, points in
RPn correspond to lines through the origin in R

n+1.

Grassmann Algebra The Grassmann, or exterior, algebra
∧

(Rn), is generated
by the outer (or exterior) product ∧ applied to the vectors of R

n. The outer product
is an alternating bilinear operation. The product of a k- and m-vector is a (k +m)-
vector when the operands are linearly independent subspaces. An element that can
be represented as a wedge product of k 1-vectors is called a simple k-vector, or k-
blade. The k-blades generate the vector subspace

∧k
(Rn), whose elements are said

to have grade k. This subspace has dimension
(
n
k

)
, and hence the total dimension

of the exterior algebra is 2n.
∧n

(Rn) is one-dimensional, generated by a single
element I, sometimes called the pseudo-scalar.

Simple and Nonsimple Vectors A k-blade represents the subspace of R
n spanned

by the k vectors which define it. Hence, the exterior algebra contains within it a
representation of the subspace lattice of R

n. For n > 3, there are also k-vectors
which are not blades and do not represent a subspace of R

n. Such vectors occur as
bivectors when n= 4 and play an important role in the discussion of kinematics and
dynamics, see Sect. 15.6.

Projectivized Exterior Algebra The exterior algebra can be projectivized using
the same process defined above for the construction of RPn from R

n+1 but ap-
plied to the vector spaces

∧k
(Rn+1). This yields the projectivized exterior algebra

W := P(
∧

(Rn+1)). The operations of
∧

(Rn+1) carry over to W , since, roughly
speaking, “Projectivization commutes with outer product.” The difference lies in
how the elements and operations are projectively interpreted. The k-blades of W

correspond to (k − 1)-dimensional subspaces of RPn. All multiples of the same
k-blade represent the same projective subspace and differ only by intensity [31,
§16–17]. 1-blades correspond to points; 2-blades to lines; 3-blades to planes, etc.

Dual Exterior Algebra The dual algebra W ∗ := P(
∧

R
(n+1)∗) is formed by pro-

jectivizing the exterior algebra of the dual vector space (Rn+1)∗. Details can be
found in the excellent Wikipedia article [32], based on [7]. W ∗ is the alternating
algebra of k-multilinear forms and is naturally isomorphic to W ; again, the differ-
ence lies in how the elements and operations are interpreted. Like W , W ∗ represents
the subspace structure of RPn, but turned on its head: 1-blades represent projective
hyperplanes, while n-blades represent projective points. The outer product a ∧ b
corresponds to the meet rather than join operator. In order to distinguish the two
outer products of W and W ∗, we write the outer product in W as ∨, and leave the
outer product in W ∗ as ∧. These symbols match closely the affiliated operations of
join (union ∪) and meet (intersection ∩), respectively.

15 On the Homogeneous Model of Euclidean Geometry 299

15.2.1 Remarks on Homogeneous Coordinates

We use the terms homogeneous model and projective model interchangeably, to
denote the projectivized version of Grassmann (and, later, Clifford) algebra.

The projective model allows a certain freedom in specifying results within the
algebra. In particular, when the calculated quantity is a subspace, then the answer
is only defined up to a non-zero scalar multiple. In some literature, this fact is rep-
resented by always surrounding an expression x in square brackets [x] when one
means “the projective element corresponding to the vector space element x.” We do
not adhere to this level of rigor here, since in most cases the intention is clear.

Some of the formulas introduced below take on a simpler form which take ad-
vantage of this freedom, but they may appear unfamiliar to those used to working in
the more strict vector-space environment. On the other hand, when the discussion
later turns to kinematics and dynamics, then this projective equivalence is no longer
strictly valid. Different representatives of the same subspace represent weaker or
stronger instances of a velocity or momentum (to mention two possibilities). In such
situations terms such as weighted point or “point with intensity” will be used. See
[31, Book III, Chap. 4].

15.2.2 Equal Rights for W and W ∗

From the point of view of representing RPn, W and W ∗ are equivalent. There is no
a priori reason to prefer one to the other. Every geometric element in one algebra
occurs in the other, and any configuration in one algebra has a dual configuration in
the other obtained by applying the Principle of Duality [9] to the configuration. We
refer to W as a point-based algebra and W ∗ as a plane-based algebra.

Depending on the context, one or the other of the two algebras may be more
useful. Here are some examples:
• Joins and meets. W is the natural choice to calculate subspace joins and W ∗ to

calculate subspace meets. See (15.2) and (15.3).
• Spears and axes. Lines appear in two aspects: as spears (bivectors in W) and axes

(bivectors in W ∗). See Fig. 15.2 and its discussion.
• Euclidean geometry. W ∗ is the correct choice to use for modeling Euclidean ge-

ometry. See Sect. 15.3.2.
• Reflections in planes. W ∗ has advantages for kinematics, since it naturally allows

building up rotations as products of reflections in planes. See Sect. 15.4.2.

Bases and Isomorphisms for W and W ∗ Our treatment differs from other ap-
proaches (for example, Grassmann–Cayley algebras) in explicitly maintaining both
algebras on an equal footing rather than expressing the wedge product in one in
terms of the wedge product of the other (as in the Grassmann–Cayley shuffle prod-
uct) [23, 26]. To switch back and forth between the two algebras, we construct an
algebra isomorphism that, given an element of one algebra, produces the element
of the second algebra which corresponds to the same geometric entity of RPn. We
show how this works for the case of interest n= 3.

300 C. Gunn

Fig. 15.1 Fundamental
tetrahedron with dual
labeling. Entities in W have
superscripts; entities in W ∗
have subscripts. Planes are
identified by labeled angles
of two spanning lines.
A representative sampling of
equivalent elements is shown

The Isomorphism J Each weighted subspace S of RP 3 corresponds to a unique
element SW of W and to a unique element SW ∗ of W ∗. We seek a bijection J :
W →W ∗ such that J (SW)= SW ∗ . If we have found J for the basis k-blades, then
it extends by linearity to multivectors. To that end, we introduce a basis for R

4 and
extend it to a basis for W and W ∗ so that J takes a particularly simple form. Refer
to Fig. 15.1.

The Canonical Basis A basis {e0, e1, e2, e3} of R
4 corresponds to a coordinate

tetrahedron for RP 3, with corners occupied by the basis elements.1 Use the same
names to identify the elements of P(

∧1
(R4)) which correspond to these projective

points. Further, let I0 := e0 ∨ e1 ∨ e2 ∨ e3 be the basis element of P(
∧4

(R4)), and
10 be the basis element for P(

∧0
(R4)). Let the basis for P(

∧2
(R4)) be given by

the six edges of the tetrahedron,

{
e01, e02, e03, e12, e31, e23}

where eij := ei ∨ ej represents the oriented line joining ei and ej .2 Finally, choose
a basis {E0,E1,E2,E3} for P(

∧3
(R4)) satisfying the condition that ei ∨ Ei = I0.

This corresponds to choosing the ith basis 3-vector to be the plane opposite the ith
basis 1-vector in the fundamental tetrahedron, oriented in a consistent way.

We repeat the process for the algebra W ∗, writing indices as subscripts. Choose
the basis 1-vector ei of W ∗ to represent the same plane as Ei . That is, J(Ei)= ei .
Let I0 := e0 ∧ e1 ∧ e2 ∧ e3 be the pseudoscalar of the algebra. Construct bases for
grade-0, grade-2, and grade-3 using the same rules as above for W (i.e., replacing
subscripts by superscripts). The results are represented in Table 15.1.

1We use superscripts for W and subscripts for W ∗ since W ∗ will be the more important algebra
for our purposes.
2Note that the orientation of e31 is reversed; this is traditional since Plücker introduced these line
coordinates.

15 On the Homogeneous Model of Euclidean Geometry 301

Table 15.1 Comparison of W and W ∗

Feature W W ∗

0-Vector Scalar 10 Scalar 10

Vector Point {ei} Plane {ei}
Bivector “Spear” {eij } “Axis” {eij }
Trivector Plane {Ei} Point {Ei}
4-Vector I0 I0

Outer product Join ∨ Meet ∧

Given this choice of bases for W and W ∗, examination of Fig. 15.1 makes clear
that, on the basis elements, J takes the following simple form:

J
(
ei
) :=Ei, J

(
Ei
) := ei, J

(
eij
) := ekl (15.1)

where in the last equation, (ijkl) is an even permutation of (0123).3

Furthermore, J(10)= I0 and J(I0)= 10 since these grades are one-dimensional.
To sum up: the map J is grade-reversing and, considered as a map of coordinate-
tuples, it is the identity map on all grades except for bivectors. What happens for
bivectors? In W , consider e01, the joining line of points e0 and e1 (refer to Fig. 15.1).
In W ∗, the same line is e23, the intersection of the only two planes which contain
both of these points, e2 and e3. See Fig. 15.2. Since J−1 is obtained from the defi-
nition of J by swapping superscripts and subscripts, we can consider J :W ↔W ∗
as a defined on both algebras, with J2 the identity. The full significance of J will
only become evident after metrics are introduced (Sect. 15.3.3). We now show how
to use J to define meet and join operators valid for both W and W ∗.

Projective Join and Meet Knowledge of J allows equal access to join and meet
operations. We define a meet operation ∧ for two blades A,B ∈W by

A∧B = J
(
J(A)∧ J(B)

)
(15.2)

and extend by linearity to the whole algebra. There is a similar expression for the
join ∨ operation for two blades A,B ∈W ∗:

A∨B := J
(
J(A)∨ J(B)

)
(15.3)

We turn now to another feature highlighting the importance of maintaining W

and W ∗ as equal citizens.

3Editorial note: The reader may find the alternative coordinate-free construction in Sect. 18.3 en-
lightening.

302 C. Gunn

Fig. 15.2 A line in its dual
nature as spear, or point
range; and as axis, or plane
pencil

There Are No Lines, Only Spears and Axes! Given two points x and y ∈W , the
condition that a third point z lies in the subspace spanned by the 2-blade l := x∨ y
is that x∨ y∨ z= 0, which implies that z= αx+βy for some α,β not both zero. In
projective geometry, such a set is called a point range. We prefer the more colorful
term spear. Dually, given two planes x and y ∈W ∗, the condition that a third plane z
passes through the subspace spanned by the 2-blade l := x∧y is that z= αx+βy. In
projective geometry, such a set is called a plane pencil. We prefer the more colorful
term axis.

Within the context of W and W ∗, lines exist only in one of these two aspects: of
spear—as bivector in W—and axis—as bivector in W ∗. This naturally generalizes to
nonsimple bivectors: there are pointwise bivectors (in W), and planewise bivectors
(in W ∗). Many of the important operators of geometry and dynamics we will meet
below, such as the polarity on the metric quadric (Sect. 15.3.1) and the inertia tensor
of a rigid body (Sect. 15.6.2.2), map 〈W 〉2 to 〈W ∗〉2 and hence map spears to axes
and vice-versa. Having both algebras on hand preserves the qualitative difference
between these dual aspects of the generic term “line.”

We now proceed to describe how to introduce metric relations.

15.3 Clifford Algebra for Euclidean Geometry

The outer product is antisymmetric, so x ∧ x = 0. However, in geometry there are
important bilinear products which are symmetric. We introduce a real-valued inner
product on pairs of vectors x · y which is a real-valued symmetric bilinear map.
Then, the geometric product on 1-vectors is defined as the sum of the inner and
outer products:

xy := x · y+ x∧ y

How this definition can be extended to the full exterior algebra is described else-
where [10, 15]. The resulting algebraic structure is called a real Clifford algebra.
It is fully determined by its signature, which describes the inner product structure.

15 On the Homogeneous Model of Euclidean Geometry 303

The signature is a triple of integers (p,n, z) where p+n+ z is the dimension of the
underlying vector space, and p, n, and z are the numbers of positive, negative, and
zero entries along the diagonal of the quadratic form representing the inner product.
We denote the corresponding Clifford algebra constructed on the point-based Grass-
mann algebra as P(Rp,n,z) and that based on the plane-based Grassmann algebra as
P(R∗p,n,z).

The discovery and application of signatures to create different sorts of metric
spaces within projective space goes back to a technique invented by Arthur Cay-
ley and developed by Felix Klein [20]. The so-called Cayley–Klein construction
provides models of the three standard metric geometries (hyperbolic, elliptic, and
Euclidean)—along with many others!—within projective space. This work provides
the mathematical foundation for the inner product as it appears within the homoge-
neous model of Clifford algebra. Since the Cayley–Klein construction for Euclidean
space has some subtle points, is relatively sparsely represented in the current litera-
ture, and is crucial to what follows, we describe it below.

15.3.1 The Cayley–Klein Construction

For simplicity, we focus on the case n = 3. To obtain metric spaces inside RP 3,
begin with a symmetric bilinear form Q on R

4. The quadric surface associated to Q

is then defined to be the points {x |Q(x,x)= 0}. For nondegenerate Q, a distance
between points A and B can be defined by considering the cross ratio of the four
points A, B , and the two intersections of the line AB with Q. Such a Q is charac-
terized by its signature, there are two cases of interest for n= 3: (4,0,0) yielding
elliptic geometry and (3,1,0) yielding hyperbolic geometry. These are point-based
metrics; they induce an inner product on planes, which, as one can show, is identical
to the original signatures. By interpolating between these two cases, one is led to
the degenerate case in which the quadric surface collapses to a plane, or to a point.
In the first case, one obtains Euclidean geometry; the plane is called the ideal plane.
The signature breaks into two parts: for points, it is (1,0,3), and for planes, it is
(3,0,1). The distance function for Euclidean geometry is based on a related lim-
iting process. For details, see [20] or [13]. Warning: in the projective model, the
signature (n,0,0) is called the elliptic metric, and Euclidean metric refers to these
degenerate signatures.

Polarity on the Metric Quadric For a Q and a point P, define the set P⊥ := {X |
Q(X,P) = 0}. When P⊥ is a plane, it is called the polar plane of the point. For a
plane a, there is also an associated polar point defined analogously using the “plane-
based” metric. Points and planes with such polar partners are called regular. In the
Euclidean case, the polar plane of every finite point is the ideal plane; the polar point
of a finite plane is the ideal point in the normal direction to the plane. Ideal points
and the ideal plane are not regular and have no polar partner. The polar plane of a
point is important since it can be identified with the tangent space of the point when
the metric space is considered as a differential manifold. Many of the peculiarities

304 C. Gunn

of Euclidean geometry may be elegantly explained due to the degenerate form of
the polarity operator. In the Clifford algebra setting, this polarity is implemented by
multiplication by the pseudoscalar.

Free Vectors and the Euclidean Metric As mentioned above, the tangent space
at a point is the polar plane of the point. Every Euclidean point shares the same polar
plane, the ideal plane. In fact, the ideal points (points of the ideal plane) can be iden-
tified with Euclidean free vectors. A model for Euclidean geometry should handle
both Euclidean points and Euclidean free vectors. This is complicated by the fact
that free vectors have a natural signature (3,0,0). However, since the limiting pro-
cess (in Cayley–Klein) that led to the degenerate point metric (1,0,3) only effects
the nonideal points, it turns out that the original nondegenerate metric, restricted to
the ideal plane, yields the desired signature (3,0,0). As we will see in Sect. 15.4.1
and Sect. 15.5.2, the model presented here is capable of mirroring this subtle fact.

15.3.2 A Model for Euclidean Geometry

As noted above, the Euclidean inner product has signature (1,0,3) on points and
(3,0,1) on planes. If we attach the first signature to W , we have the following
relations for the basis 1-vectors:

(
e0)2 = 1; (

e1)2 = (e2)2 = (e3)2 = 0

It is easy to see that these relations imply that, for all basis trivectors Ei , E2
i = 0. But

the trivectors represent planes, and the signature for the planewise Euclidean metric
is (3,0,1), not (0,0,4). Hence, we cannot use W to arrive at Euclidean space. If
instead, we begin with W ∗ and attach the plane-wise signature (3,0,1), we obtain:

(e0)
2 = 0; (e1)

2 = (e2)
2 = (e3)

2 = 1

It is easy to check that this inner product, when extended to the higher grades, pro-
duces the proper behavior on the trivectors, since only E0 = e1e2e3 has nonzero
square, producing the pointwise signature (0,1,3) (equivalent to the signature
(1,0,3)). Hence, W ∗ is the correct choice for constructing a model of Euclidean
geometry.

Counterspace What space does one obtain by attaching the signature (3,0,1)
to W ? One obtains a different metric space, sometimes called polar-Euclidean space
or counterspace. Its metric quadric is a point along with all the planes passing
through it (dual to the Euclidean ideal plane and all the points lying in it).4 See
[8, pp. 71ff.], for a related discussion.

4Blurring the distinction between these two spaces may have led some authors to incorrect conclu-
sions about the homogeneous model of Euclidean geometry, see [21, p. 11].

15 On the Homogeneous Model of Euclidean Geometry 305

We retain W , the point-based algebra, solely as a Grassmann algebra, primarily
for calculating the join operator. All Euclidean metric operations are carried out
in W ∗. Or equivalently, we attach the metric (0,0,4) to W , forcing all inner products
to zero. Due to the more prominent role of W ∗, the basis element for scalar and
pseudoscalar in W ∗ will be written without index as 1 and I; we may even omit 1
when writing scalars, as is common in the literature.

15.3.3 J, Metric Polarity, and the Regressive Product

We can now appreciate better the significance of J :W →W ∗. Consider the map
Π :W →W defined analogously to J in (15.1):

Π
(
ei
) :=Ei, Π

(
Ei
) := ei, Π

(
eij
) := ekl (15.4)

Π is the same as J, but interpreted as a map to W instead of W ∗. It is easy to see that
Π is the polarity on the elliptic metric quadric with signature (4,0,0). Many authors
(see [15]) define the meet operation between two blades A,B ∈ W (also known
since Grassmann as the regressive product) via Π(Π(A) ∧Π(B)), where ∧ is the
exterior product in W . One can define a similar join operator in W ∗. We prefer to use
J for this purpose (see (15.2)) since it provides a projective solution for a projective
(incidence) problem, and it is useful on its own (see, for example, Sect. 15.6.2.2),
while Π, being a foreign entity, must always appear in the second power so that
it has no side-effects. To distinguish the two approaches, we suggest calling Π the
metric polarity and J, the duality operator, consistent with mathematical literature.
For an n-dimensional discussion and proof, see Appendix 1 of [13].

15.4 The Euclidean Plane via P(RRR∗
2,0,1)

Due to the combination of unfamiliar concepts involved in the algebras P(R∗n,0,1)—
notably the dual construction and the degenerate metric—we begin our study with
the Clifford algebra for the Euclidean plane: P(R∗2,0,1). Then, when we turn to the
3D case, we can focus on the special challenges which it presents, notably the ex-
istence of nonsimple bivectors. A basis for the full algebra of P(R∗2,0,1) is given
by

{1 := 10, e0, e1, e2, E0 := e1e2, E1 := e2e0, E2 := e0e1, I := e0e1e2}
with the relations {e2

0 = 0; e2
1 = e2

2 = 1}.

Consequences of Degeneracy The pseudoscalar I satisfies I2 = 0. Hence, I−1 is
not defined. Many standard formulas of geometric algebra are, however, typically
stated using I−1 [10, 15], since that can simplify things for nondegenerate metrics.
As explained in Sect. 15.2.1, many formulas remain projectively valid when I−1 is
replaced by I; in such cases this is the solution we adopt.

306 C. Gunn

Table 15.2 Geometric product in P(R∗2,0,1)

1 e0 e1 e2 E0 E1 E2 I

1 1 e0 e1 e2 E0 E1 E2 I

e0 e0 0 E2 −E1 I 0 0 0

e1 e1 −E2 1 E0 e2 I −e0 E1

e2 e2 E1 −E0 1 −1 e0 I E2

E0 E0 I −e2 e1 −1 −E2 E1 −e0

E1 E1 0 I −e0 E2 0 0 0

E2 E2 0 e0 I −E1 0 0 0

I I 0 E1 E2 −e0 0 0 0

Notation We denote 1-vectors with bold small letters and 2-vectors with bold cap-
ital letters. We will use the term ideal to refer to geometric elements contained in
projective space but not in Euclidean space. Then e0 is the ideal line of the plane,
e1 is the line x = 0, and e2 the line y = 0. E0 is the origin (1,0,0), while E1 and E2

are the ideal points in the x- and y-directions, respectively. Points and lines which
are not ideal are called finite, or Euclidean.

We write the natural embedding of a Euclidean position x = (x, y) as i(x) =
E0 + xE1 + yE2. A Euclidean vector v= (x, y) corresponds to an ideal point (see
Sect. 15.3.1); we denote its embedding with the same symbol i(v)= xE1+yE2. We
sometimes refer to such an element as a free vector. Conversely, a bivector wE0 +
xE1+ yE2 with w �= 0 corresponds to the Euclidean point (x

w
,
y
w
). We refer to w as

the intensity or weight of the bivector, and we write A to refer to i−1(A). The line
ax + by + c = 0 maps to the 1-vector ce0 + ae1 + be2. A line is Euclidean if and
only if a2 + b2 �= 0.

The multiplication table is shown in Table 15.2. Inspection of the table reveals
that the geometric product of a k- and l-vector yields a product that involves at most
two grades. When these two grades are |k− l| and k+ l, we can write the geometric
product for two arbitrary blades A and B as

AB=A ·B+A∧B

where · is the generalized inner product, defined to be 〈AB〉|k−l| [15]. The only
exception is (l, k)= (2,2) where the grades |k − l| = 0 and |k − l| + 2= 2 occur.
Following [15], we write the grade-2 part as

A×B := 〈AB〉2 = 1

2
(AB−BA)

where A and B are bivectors. This is called the commutator product. Since all vec-
tors in the algebra are blades, the above decompositions are valid for the product of
any two vectors in our algebra.

15 On the Homogeneous Model of Euclidean Geometry 307

Fig. 15.3 A selection of the
geometric products between
various k-blades. Points and
lines are assumed to be
normalized. Ideal points are
drawn as vectors, distances
indicated by norms

15.4.1 Enumeration of Various Products

We want to spend a bit of time now investigating the various forms which the geo-
metric product takes in this algebra. For this purpose, define two arbitrary 1-vectors
a and b and two arbitrary bivectors P and Q with

a= a0e0 + a1e1 + a2e2, etc.

These coordinates are of course not intrinsic, but they can be useful in understanding
how the Euclidean metric is working in the various products. See the companion
diagram in Fig. 15.3.

1. Norms. It is often useful to normalize vectors to have a particular intensity.
There are different definitions for each grade:
• 1-vectors. a2 = a · a = a2

1 + a2
2 . Define the norm of a to be ‖a‖ := √a · a.

Then a
‖a‖ is a vector with norm 1, defined for all vectors except e0 and its mul-

tiples. In particular, all Euclidean lines can be normalized to have norm 1.
Note that when a is normalized, then so is −a. These two lines represents
opposite orientations of the line.5

• 2-vectors. P2 = P · P = p2
0E2

0 = −p2
0. Define the norm of P to be p0 and

write it ‖P‖. Note that this can take positive or negative values, in contrast to√
P · P. Then P

‖P‖ is a bivector with norm 1, defined for all bivectors except
where p0 = 0, that is, ideal points. In particular, all Euclidean points can be
normalized to have norm 1. This is also known as dehomogenizing.
• 3-vectors. Define S : P(∧3

R
3∗)→ P(

∧0
R

3∗) by SαI= α1. This gives the
scalar magnitude of a pseudoscalar in relation to the basis pseudoscalar I. We
sometimes write 1

I (αI) for the same. In a nondegenerate metric, the same can
be achieved by multiplication by I−1.

2. Inverses. a−1 = a
a·a and P−1 = −P

P·P for Euclidean a and P.
3. Euclidean distance. For normalized P and Q, ‖P∨Q‖ is the Euclidean distance

between P and Q.

5Orientation is an interesting topic which lies outside the scope of this article.

308 C. Gunn

4. Free vectors. For an ideal point V (that is, a free vector) and any normalized

Euclidean point P, ‖V‖∞ := ‖V ∨ P‖ =
√
v2

1 + v2
2 is the length of V. Then

V
‖V‖∞ is normalized to have length 1.

5. a∧P= (a0p0+a1p2+a2p2)I vanishes only if a and P are incident. Otherwise,
when a and P are normalized, it is equal to the signed distance of the point to
the line times the pseudoscalar I.

6. P · a = (p2a1 − p1a2)e0 + p0a2e1 − p0a1e2 is a line which passes through P
and is perpendicular to a. Reversing the order changes the orientation of the
line.

7. a ∧ b=: T is the intersection point of the lines a and b. For normalized a and
b, ‖T‖ = sinα where α is the angle between the lines. Reversing the order
reverses the orientation of the resulting point.

8. a · b= cosα for normalized vectors a and b. Which of the two possible angles
is being measured here depends on the orientation of the lines.

9. P∨Q is the joining line of P and Q.
10. P×Q=: T is the ideal point in the direction perpendicular to the direction of

the line P∨Q.
11. aI = a1E1 + a2E2 is the polar point of the line a: the ideal point in the per-

pendicular direction to the line a. All lines parallel to a have the same polar
point.

12. PI = p0e0 is the polar line of the point P: for finite points, the ideal line,
weighted by the intensity of P. Ideal points have no polar line.

13. I2 = 0. This is equivalent to the degeneracy of the metric. Notice that this fact
has no effect on the validity of the above calculations.6

For a variety of exercises, see [13].

15.4.2 Euclidean Isometries via Sandwich Operations

One of the most powerful aspects of Clifford algebras for metric geometry is the
ability to realize isometries as sandwich operations of the form7

X→ gXg−1

where X is any geometric element of the algebra, and g is a specific geometric
element, unique to the isometry. g is in general a versor, that is, it can be written as
the product of 1-vectors [15]. Let us explore whether this works in P(R∗2,0,1).

6In fact, the validity of most of the above calculations requires that I2 = 0.
7The presence of a minus sign (or “the factor (−1)nk”) in some literature arises from the fact
that the desired reflection is in the hyperplane orthogonal to the 1-vector appearing in the sand-
wich. Since 1-vectors represent hyperplanes here, in the dual algebra, no such correction factor is
required.

15 On the Homogeneous Model of Euclidean Geometry 309

Reflections Let a := e0 − e1 (the line x = 1), and P a normalized point E0 +
xE1+yE2. Simple geometric reasoning shows that reflection in the line a sends the
point (x, y) to the point (2− x, y). Alternatively, the reader is encouraged to verify
the missing steps of the following computation:

P′ := aPa−1 = aPa= · · ·
= (x − 2)E1 −E0 − yE2

= E0 + (2− x)E1 + yE2

This algebra element corresponds to the Euclidean point (2− x, y), so the sand-
wich operation is the desired reflection in the line a. We leave it as an exercise for
the interested reader to carry out the same calculation for a general line.

Direct Isometries By well-known results in plane geometry, the composition of
two reflections yields a rotation around the common point of the two lines. Trans-
lating this into the language of the Clifford algebra, the composition of reflections
in lines a and b will look like:

P′ = b(aPa)b

= TPT̃

where we write T := ba, and T̃ is the reversal of T.
Note that the intersection of the two lines will be fixed by the resulting isometry.

There are two cases: the point is ideal, or it is Euclidean. In the case of an ideal
point, the two lines are parallel, and the composition is a translation. Let us look at
an example.

Retaining a as above, define the normalized line b := 2e0−e1, the line x = 2. By
simple geometric reasoning, the composition “reflect first in a, then in b” should be
the translation (x, y)→ (x + 2, y). Defining T := ba, the sandwich operator looks
like TPT̃. Calculate the product T= 1−E2 and TPT̃= E0+ (2+ x)E1+E2. This
shows that TPT̃ is the desired translation operator. One can generalize the above
to show that a translation by the vector (x0, y0) is given by the sandwich operation
TPT̃ where

T := 1+ 1

2
(y0E1 − x0E2) (15.5)

It is interesting to note that TP and PT̃ are both translations of (x, y)→ (x + 1, y),
so one does not need a sandwich to implement translations, but for simplicity of
representation, we continue to do so.

Rotations Similar remarks apply to rotations. A rotation around a normalized
point R by an angle θ is given by T = cos(θ2) + sin(θ2)R. This can be checked
by substituting into (15.5) and multiplying out. We will explore a method for con-
structing such rotators using the exponential function in the next section. See [13]

310 C. Gunn

for a more detailed discussion, including constructions of glide reflections and point
reflections.

15.4.3 Spin Group, Exponentials, and Logarithms

We have seen above in (15.5) that Euclidean rotations and translations can be
represented by sandwich operations in P(R∗2,0,1), in fact, in the even subalgebra

P(R∗+2,0,1).

Definition 15.1 The spin group Spin(2,0,1) consists of elements g of the even
subalgebra P(R∗+2,0,1) such that gg̃ = 1. An element of the spin group is called a
rotor.

Write g = s1+M where M = 〈g〉2 = m0E0 +m1E1 +m2E2. Then gg̃ = s2 +
m2

0 = 1. There are two cases.
• m0 �= 0, so M is a Euclidean point. Then there exists θ �= 0 such that s = cos(θ)

and m0 = sin(θ), yielding g= cos(θ)+ sin(θ)N, where N= M
sin θ is a normalized

point, hence N2 =−1. Thus, the formal exponential etN can be evaluated to yield:

etN =
∞∑

i=0

(tN)i

i!
= cos(t)+ sin(t)N

Hence, the rotor g can be written as an exponential: g= eθN.
• m0 = 0, so M is an ideal point. Then we can assume that s = 1 (if s =−1, take

the element−g with the same sandwich behavior as g). Also, M=m1E1+m2E2.
Again, the formal exponential etM can be evaluated to yield:

etM =
∞∑

i=0

(tM)i

i!
= 1+ tM

So in this case, too, g= eM has an exponential form.
The above motivates the following definitions:

Definition 15.2 A rotator is a rotor whose bivector part is a Euclidean point.
A translator is a rotor whose bivector part is an ideal point.

Definition 15.3 The logarithm of a translator g= s1+M ∈ P(R∗2,0,1) is M, since

eM = g.

15 On the Homogeneous Model of Euclidean Geometry 311

Definition 15.4 Given a rotator g = s1 + m0E0 + m1E1 + m2E2 ∈ Spin(2,0,1).
Define θ := tan−1(m0, s) and N := M

‖M‖ . Then the logarithm of g is θN, since

eθN = g.

Lie Groups and Lie Algebras The above remarks provide a realization of the
two-dimensional Euclidean direct isometry group se(2) and its Lie algebra se(2)
within P(R∗+2,0,1). The Spin group Spin(2,0,1) forms a double cover of SE(2) since

the rotors g and −g represent the same isometry. Within P(R∗+2,0,1), the spin group
consists of elements of unit norm; the Lie algebra consists of the pure bivectors
plus the zero element. The exponential map X→ eX maps the latter bijectively onto
the former. This structure is completely analogous to the way the unit quaternions
sit inside P(R∗+3,0,0) and form a double cover of SO(3). The full group including
indirect isometries is also naturally represented in P(R∗2,0,1) as the group generated
by reflections in lines, sometimes called the Pin group.

15.4.4 Guide to the Literature

There is a substantial literature on the four-dimensional even subalgebra P(R∗+2,0,1)
with basis {1,E0,E1,E2}. In an ungraded setting, this structure is known as the pla-
nar quaternions. The original work appears to have been done by Study [27, 28];
this was subsequently expanded and refined by Blaschke [4]. Study’s parameteriza-
tion of the full planar Euclidean group as “quasi-elliptic” space is worthy of more
attention. Modern accounts include [22].

15.5 P(RRR∗
3,0,1) and Euclidean Space

The extension of the results in the previous section to the three-dimensional case
P(R∗3,0,1) is mostly straightforward. Many of the results can be carried over virtually
unchanged. The main challenge is due to the existence of nonsimple bivectors; in
fact, most bivectors are not simple! (See Sect. 15.5.1 below.) This means that the
geometric interpretation of a bivector is usually not a simple geometric entity, such
as a spear or an axis, but a more general object known in the classical literature
as a linear line complex, or null system. Such entities are crucial in kinematics and
dynamics; we will discuss them below in more detail.

Notation As a basis for the full algebra, we adopt the terminology for the exterior
algebra W ∗ in Section 15.2.2, interpreted as a plane-based algebra. We add an ad-
ditional basis 1-vector satisfying e2

3 = 1. e0 now represents the ideal plane of space,
and the other basis vectors represent the coordinate planes. E0 is the origin of space,
while E1 = e0e3e2 is the ideal point in the x-direction, similarly for E2 and E3.
The bivector e01 is the ideal line in the x = 0 plane, and similarly for e02 and e03.
e23, e31, and e12 are the x-, y-, and z-axes, respectively. We use i again to denote

312 C. Gunn

the embedding of Euclidean points, lines, and planes, from RP 3 into the Clifford
algebra.

We continue to denote 1-vectors with bold small Roman letters a; trivectors will
be denoted with bold capital Roman letters P; and bivectors will be represented with
bold capital Greek letters Ξ .8

We leave the construction of a multiplication table as an exercise. Once again,
most of the geometric products of two vectors obey the pattern AB =A ·B+A∧B .
Two new exceptions involve the product of a bivector with another bivector, and with
a trivector:

ΞΦ =Ξ ·Φ +Ξ ×Φ +Ξ ∧Φ (15.6)

ΞP=Ξ · P+Ξ × P (15.7)

Here, as before, the commutator product A×B := 1
2 (AB −BA).

We now describe in more detail the nature of bivectors. We work in W ∗, since that
is the foundation of the metric. As a result, even readers familiar with bivectors from
a point-based perspective will probably benefit from going through the following
plane-based development.

15.5.1 Properties of Bivectors

We begin with a simple bivector Ξ := a ∧ b where a and b are two planes with
coefficients {ai} and {bi}. The resulting bivector has the coefficients

pij := aibj − ajbi
(
ij ∈ {01,02,03,12,31,23})

These are the plane-based Plücker coordinates for the intersection line (axis) of a
and b. Clearly Ξ ∧Ξ = 0. Conversely, if

Ξ ∧Ξ = 2(p01p23 + p02p31 + p03p12)I= 0

for a bivector Ξ , the bivector is simple [16].
Given a second axis Φ = c∧d, the condition Ξ∧Φ = 0 implies they have a plane

in common, or, equivalently, they have a point in common. For general bivectors,

Ξ ∧Φ = (p01q23 + p02q31 + p03q12 + p12q03

+ p31q02 + p23q01)I (15.8)

The parenthesized expression is called the Plücker inner product of the two lines and
is written 〈Ξ ,Φ〉P . With this inner product, the space of bivectors P(

∧2
(R4)∗) is

the Cayley–Klein space B := P(R3,3), and the space of lines is the quadric surface

8A convention apparently introduced by Klein, see [18].

15 On the Homogeneous Model of Euclidean Geometry 313

L3,3 = {Ξ | 〈Ξ ,Ξ〉P = 0} ⊂B. When (15.8) vanishes, the two bivectors are said to
be in involution.

Null System A line which is in involution with a given bivector Ξ is called a null
line of Ξ . Through every point and in every plane of space, lies a line pencil of null
lines. In the case of a nonsimple Ξ , this sets up an polarity9 between the points and
planes of space called the null polarity determined by Ξ : the null plane of a point
is the plane in which the null lines of the point lie, and vice-versa. Section 15.5.2
shows how the null plane and null point can be expressed in the Clifford algebra. We
will meet the null system again in Sect. 15.6 since it is fundamental to understanding
rigid body mechanics.

Metric Properties of Bivectors Write the bivector Ξ as the sum of two simple
bivectors Ξ =Ξ∞ +Ξo:

Ξ∞ := p01e01 + p02e02 + p03e03

Ξo := p12e12 + p31e31 + p23e23

This is the unique decomposition of Ξ as the sum of a line lying in the ideal plane
(Ξ∞) and a Euclidean part (Ξo). We sometimes write Ξ = (Ξ∞;Ξo). Ξo∧Ξ∞ =
0 ⇐⇒ Ξ is simple. Ξo is invariant under Euclidean translations, while Ξ∞ is not
(exercise). We say that a bivector is ideal if Ξo = 0; otherwise it is Euclidean. Ξo is
a line through the origin, whose direction is given by the ideal point Q := e0Ξo =
p23E1 + p31E2 + p12E3. We call Q the direction vector of the bivector.

Guide to the Literature [17] and [19] are older, classical treatments. [30] is an
excellent introduction to Study’s approach to the subject. [24] is a modern treatment
providing many useful details. See also Chap. 13 in this volume.

15.5.2 Enumeration of Various Products

All the products described in Sect. 15.4.1 have counter-parts here, obtained by leav-
ing points alone and replacing lines by planes. We leave it as an exercise to the
reader to enumerate them. Here we focus on the task of enumerating the products
that involve bivectors. For that purpose, we extend the definition of a, b, P, and Q to
have an extra coordinate and introduce two arbitrary bivectors, which may or may
not be simple:

1. Inner product. Ξ ·Φ = −(p12g12 + p31g13 + p23g23) = − cos(α) where α is
the angle between the direction vectors of the two bivectors (see Sect. 15.5.1
above). Ξ ·Φ is a symmetric bilinear form on bivectors, called the Killing form.
We sometimes write Ξ ·Φ = 〈Ξ ,Φ〉k . Note that just as in the 2D case, the ideal
elements play no role in this inner product. This angle formula is only valid for
Euclidean bivectors.

9A polarity is an involutive projectivity that swaps points and planes.

314 C. Gunn

2. Norm. There are two cases:
a. Euclidean bivectors. For Euclidean Ξ , define the norm ‖Ξ‖ = √−Ξ ·Ξ .

Then Ξ
‖Ξ‖ has norm 1; we call it a normalized Euclidean bivector.

b. Ideal bivectors. As in Sect. 15.4.1, we get the desired norm on an ideal line
Ξ by joining the line with any Euclidean point P and taking the norm of the
plane: ‖Ξ‖∞ = ‖Ξ ∨ P‖. We normalize ideal bivectors with respect to this
norm.

3. Distance. Verify that the Euclidean distance of two normalized points P and Q
is still given by ‖P∨Q‖, and the norm of an ideal point V (i.e., vector length)
is given by ‖V∨ P‖ where P is any normalized Euclidean point.

4. Inverses. For Euclidean Ξ , define Ξ−1 = Ξ
Ξ ·Ξ . Inverses are unique.

5. Ξ ∧Φ = 〈Ξ ,Φ〉P I is the Plücker inner product times I. When both bivectors
are simple, this is proportional to the Euclidean distance between the two lines
they represent (exercise).

6. Commutator. Ξ × Φ is a bivector which is in involution to both Ξ and Φ

(exercise). We will meet this later in the discussion of mechanics (Sect. 15.6)
as the Lie bracket.

7. Null point. a∧Ξ for simple Ξ is the intersection point of Ξ with the plane a;
in general, it is the null point of the plane with respect Ξ .

8. Null plane. P ∨Ξ for simple Ξ is the joining plane of P and Ξ ; in general, it
is the null plane of the point with respect to Ξ .

9. a ·Ξ for simple Ξ is a plane containing Ξ whose intersection with a is perpen-
dicular to Ξ .

10. ΞI= (p23e01 + p31e02 + p12e03) is the polar bivector of the bivector Ξ . It is
an ideal line which is orthogonal (in the elliptic metric of the ideal plane, see
Sect. 15.3.1) to the direction vector of Ξ . (Ξ∞;Ξo)I= (Ξo;0).

15.5.3 Dual Numbers

We call a number of the form a + bI for a, b ∈ R a dual number, after Study
[28]. Dual numbers are similar to complex numbers, except that I2 = 0 rather than
i2 =−1. We will need some results on dual numbers to calculate rotor logarithms
below. Dual numbers commute with other elements of the Clifford algebra. Given a
dual number z= a+bI, we say that z is Euclidean if a �= 0; otherwise z is ideal. De-
fine the conjugate z= a− bI. Then zz= a2. Define the norm ‖a+ bI‖ :=√zz= a.
For Euclidean z, define the inverse (a + bI)−1 = 1

a2 (a − bI). The inverse is the
unique dual number w such that zw= 1. Given a Euclidean dual number a+bI, de-
fine c=√a and d = b

2
√
a

. Then w := c+dI satisfies w2 = z, and we write w=√z.

Dual Analysis Just as one can extend real power series to complex power series
with reliable convergence properties, power series with a dual variable have well-
behaved convergence properties. See [28] for a proof. In particular, the power series
for cos(x + yI) and sin(x + yI) have the same radii of convergence as their real
counterparts. One can use the addition formulae for cos and sin to show that:

15 On the Homogeneous Model of Euclidean Geometry 315

cos(x + yI)= cosx − sinx(yI)

sin(x + yI)= sinx + cosx(yI)

The Axis of a Bivector Working with Euclidean bivectors is simplified by iden-
tifying a special line, the axis, the unique Euclidean line in the linear span of Ξ∞
and Ξo. The axis Ξx is defined by Ξx = (a + bI)Ξ for a dual number a + bI. In
fact, one can easily check that the choice a : b =−2〈Ξ ,ΞI〉P : 〈Ξ ,Ξ〉P yields the
desired simple bivector. We usually normalize so that Ξ2

x = −1. The axis appears
later in the discussion of Euclidean isometries in Sect. 15.5.5, since most isometries
are characterized by a unique invariant axis.

15.5.4 Reflections, Translations, Rotations, and . . .

The results of Sect. 15.4.2 can be carried over without significant change to 3D:
1. For a 1-vector a, the sandwich operation P→ aPa is a Euclidean reflection in

the plane represented by a.
2. For a pair of 1-vectors a and b such that g := ab, P→ gPg̃ is a Euclidean isom-

etry. There are two cases:
a. When 〈g〉2 is Euclidean, it is a rotation around the line represented by 〈g〉2 by

twice the angle between the two planes.
b. When 〈g〉2 is an ideal line p01e01 + p02e02 + p03e03, it is a translation by the

vector (x, y, z)= 2(p01,p02,p03).
A rotor responsible for a translation (rotation) is called, as before, a translator (ro-
tator). There are however other direct isometries in Euclidean space besides these
two types.

Definition 15.5 A screw motion is an isometry that can be factored as a rotation
around a line Ξ followed by a translation in the direction of Ξ . Ξ is called the axis
of the screw motion.

Like the linear line complex, a screw motion has no counterpart in 2D. In fact, 〈g〉2 is
a nonsimple bivector ⇐⇒ g is the rotor of a screw motion. To show this, we need
to extend 2D results on rotors.

15.5.5 Rotors, Exponentials and Logarithms

As in Sect. 15.4.3, the spin group Spin(3,0,1) is defined to consist of all elements
g of the even subalgebra P(R∗+3,0,1) such that gg̃ = 1. A group element is called a
rotor. In this section we seek the logarithm of a rotor g. Things are complicated by
the fact that the even subalgebra includes the pseudo-scalar I. Dual numbers help
overcome this difficulty.

316 C. Gunn

Write g= sr + sdI+Ξ . Then

gg̃= s2
r + 2sr sdI−Ξ2 = 1

Suppose Ξ2 is real. Then Ξ is simple, sd = 0, and Ξ2 = s2
r −1. If Ξ2 < 0, then find

real λ such that ΞN := λΞ satisfies Ξ2
N =−1 and evaluate the formal exponential

etΞN as before (Sect. 15.4.3) to yield

etΞN = cos(t)+ sin(t)ΞN (15.9)

We can use this formula to derive exponential and logarithmic forms for rotations as
in the 2D case (exercise). If Ξ2 = 0, Ξ is ideal, and the rotor is a translator, similar
to the 2D case (exercise). This leaves the case sd �= 0. Let Φ = (a+bI)Ξ be the axis
of Ξ (see Sect. 15.5.3 above). Since the axis is Euclidean, a �= 0, and the inverse
c+ dI := (a + bI)−1 exists:

(c+ dI)Φ =Ξ (15.10)

Replace the real parameter t in the exponential with a dual parameter t+uI, replace
Ξ with Φ , substitute Φ2 =−1, and apply the results above on dual analysis:

e(t+uI)Φ = cos(t + uI)+ sin(t + uI)Φ (15.11)

= cos(t)− u sin(t)I+ (sin(t)+ u cos(t)I
)
Φ (15.12)

We seek values of t and u such that g equals the RHS of (15.12):

g = sr + sdI+ (c+ dI)Φ = cos(t)− u sin(t)I+ (sin(t)+ u cos(t)I
)
Φ

(15.13)

We solve for t and u, doing our best to avoid numerical problems that might arise
from cos(t) or sin(t) alone:

t = tan−1(c, sr)

u=
{

d
cos(t) if | cos(t)|> | sin(t)|
−sd

sin(t) otherwise

Definition 15.6 Given a rotor g ∈ Sp(3,0,1) with nonsimple bivector part, the
bivector (t + uI)Φ defined above is the logarithm of g.

Theorem 15.1 Let (t + uI)Φ be the logarithm of the rotor g (= sr + sdI + Ξ)

with sd �= 0. Then u �= 0, t �= 0, and g represents a screw motion along the axis Φ

consisting of rotation by angle 2t and translation by distance 2u.

15 On the Homogeneous Model of Euclidean Geometry 317

Proof Φ commutes with Ξ and with g (exercise). Hence gΦg̃= Φ is fixed by the
sandwich. Write the sandwich operation on an arbitrary blade x as the composition
of a translation followed by a rotation:

gxg̃= e(t+uI)Φxe−(t+uI)Φ

= etΦ
(
euIΦxe−uIΦ)e−tΦ

This makes clear the decomposition into a translation through distance 2u (exer-
cise), followed by a rotation around Φ through an angle 2t . One sees that the trans-
lation and rotation commute by reversing the order. �

We have succeeded in showing that the bivector of a rotor is nonsimple if and
only if the associated isometry is a nondegenerate screw motion. This result closes
our discussion of P(R∗3,0,1). For a fuller discussion, see [13].

15.6 Case Study: Rigid Body Motion

The remainder of the article shows how to model Euclidean rigid body motion us-
ing the Clifford algebra structures described above. It begins by showing how to
use the Clifford algebra P(R∗3,0,1) to represent Euclidean motions and their deriva-
tives. Dynamics is introduced with Newtonian particles, which are collected to con-
struct rigid bodies. The inertia tensor of a rigid body is derived as a positive definite
quadratic form on the space of bivectors. Equations of motion in the force-free case
are derived. In the following, we represent velocity states by Ω , momentum states
by Π, and forces by Δ. Due to space limitations, results are compressed. For a fuller
discussion, see [13].

15.6.1 Kinematics

Definition 15.7 A Euclidean motion is a C1 path g : [0,1] → Spin(3,0,1) with
g(0)= 1.

Theorem 15.2 g̃ġ is a bivector.

Proof g̃ġ is in the even subalgebra. For a bivector X, X̃ = −X; for scalars and
pseudoscalars, X̃ =X. Hence it suffices to show ˜̃gġ=−g̃ġ:

g̃g= 1
˙(g̃g)= 0

˙̃gg+ g̃ġ= 0
˜̇gg+ g̃ġ= 0

˜̃gġ=−g̃ġ �

318 C. Gunn

Fig. 15.4 Two examples of a
point P, its null plane
(P∨Ξ), and the null plane’s
polar point

Define Ω := ġ(0); by the theorem, Ω is a bivector. We call Ω a Euclidean veloc-
ity state. For a point P, the motion g induces a path P(t), the orbit of the point P,
given by P(t)= g(t)Pg̃(t). Taking derivatives of both sides and evaluating at t = 0
yields:

Ṗ(t)= ġ(t)Pg̃(t)+ g(t)P ˙̃g(t)
Ṗ(t)= ġ(t)Pg̃(t)+ g(t)P ˜̇g(t)
Ṗ(0)=ΩP− PΩ

= 2(Ω × P)

The last step follows from the definition of the commutator product of bivectors. In
this formula we can think of P as a normalized Euclidean point which is being acted
upon by the Euclidean motion g. From Sect. 15.5.2 we know that Ω × P is a ideal
point, that is, a free vector. We sometimes use the alternative form Ω×P= (Ω∨P)I
(exercise). The vector field vanishes wherever Ω ∨ P= 0. This only occurs if Ω is
a line and P lies on it. The picture is consistent with the knowledge, gained above,
that in this case etΩ generates a rotation (or translation) with axis Ω . Otherwise, the
motion is an instantaneous screw motion around the axis of Ω , and no points remain
fixed.

Null Plane Interpretation In the formulation Ṗ = 2(Ω ∨ P)I, we recognize the
result as the polar point (with respect to the Euclidean metric) of the null plane of
P (with respect to Ω). See Fig. 15.4. Thus, the vector field can be considered as the
composition of two simple polarities: first the null polarity on Ω , then the metric
polarity on the Euclidean quadric. This leads to the somewhat surprising result that
regardless of the metric used, the underlying null polarity remains the same.

15.6.2 Dynamics

With the introduction of forces, our discussion moves from the kinematic level to
the dynamic one. We begin with a treatment of statics. We then introduce Newtonian
particles, build rigid bodies out of collection of such particles, and state and solve
the equations of motions for these rigid bodies.10

10Editorial note: This approach to dynamics may be compared to Chap. 1 and Chap. 18 elsewhere
in this volume.

15 On the Homogeneous Model of Euclidean Geometry 319

3D Statics Traditional statics represents 3D a single force F as a pair of 3-vectors
(V ,M), where V = (vx, vy, vz) is the direction vector, and M = (mx,my,mz) is
the moment with respect to the origin (see [12, Chap. 2]). The resultant of a system
of forces Fi is defined to be the sum of the corresponding direction vectors Vi and
moment vectors Mi . The forces are in equilibrium if both terms of the resultant are
zero.

If P is a normalized point on the line carrying the force, define H(F) := P∨ i(V).
We call H(F) the homogeneous form of the force and verify that

H(F)=mxE01 +myE02 +mzE03 + vzE12 + vyE31 + vxE23

If F is the resultant of a force system {Fi}, then H(F)=∑i H(Fi). Hence, a sys-
tem of forces {Fi} is the null force ⇐⇒ ∑i H(Fi)= 0. Furthermore, H(F) is an
ideal line ⇐⇒ the system of forces reduces to a force-couple, and H(F) is a sim-
ple Euclidean bivector ⇐⇒ F represents a single force. Notice that the intensity
of a bivector is significant, since it is proportional to the strength of the correspond-
ing force. For this reason, we sometimes say forces are represented by weighted
bivectors.

15.6.2.1 Newtonian Particles
The basic object of Newtonian mechanics is a particle P with mass m located at
the point represented by a trivector R. Stated in the language of ordinary Euclidean
vectors, Newton’s law asserts that the force F acting on P is F =mR̈.

Definition 15.8 The spear of the particle is Λ :=R∨ Ṙ.

Definition 15.9 The momentum state of the particle is Π :=mΛ.

Definition 15.10 The velocity state of the particle is Γ :=ΛI.

Definition 15.11 The kinetic energy E of the particle is

E := m

2
‖Ṙ‖2∞ =−

m

2
Λ ·Λ=−1

2
SΓ ∧Π (15.14)

Remarks Since we can assume that R is normalized, Ṙ is an ideal point. Π is a
weighted bivector whose weight is proportional to the mass and the velocity of the
particle. Γ is ideal, corresponding to the fact that the particle’s motion is translatory.
Up to the factor m, Γ is the polar line of Π with respect to the Euclidean metric.
It is straightforward to verify that the linear and angular momentum of the particle
appear as Πo and Π∞, respectively, and that the definition of kinetic energy agrees
with the traditional one (exercise). The second and third equalities in (15.14) are
also left as an exercise.

We consider only force-free systems. The extension to include external forces is
straightforward but lies outside the scope of this introduction.

320 C. Gunn

Theorem 15.3 If F = 0, then Λ, Π, Γ , and E are conserved quantities.

Proof F = 0 implies R̈= 0. Then:
• Λ̇= (Ṙ∨ Ṙ+R∨ R̈)= 0
• Π̇ =mΛ̇= 0
• Γ̇ = (Λ̇)I= 0
• Ė = 1

2 (SΓ̇ ∧Π + SΓ ∧ Π̇)= 0. �

Inertia Tensor of a Particle Assume the particle is “governed by” a Euclidean
motion g with associated Euclidean velocity state Ω := ġ(0). Then Π, Γ , and E

depend on Ω as follows:

Ṙ= 2(Ω ×R) (15.15)

Π =m
(
R∨ 2(Ω ×R)

)
(15.16)

Γ = (R∨ 2(Ω ×R)
)
I (15.17)

E =−m

2
S
((

R∨ 2(Ω ×R)
)
I
)∧ (R∨ 2(Ω ×R)

)
(15.18)

=−SΩ ∧Π (15.19)

The step from (15.18) to (15.19) is described in more detail in [13].
Define a real-valued bilinear operator A on pairs of bivectors:

A(Ω,Ξ) := −m

2
S
((

R∨ 2(Ω ×R)
)
I
)∧ (R∨ 2(Ξ ×R)

)
(15.20)

= m

2

(
R∨ 2(Ω ×R)

) · (R∨ 2(Ξ ×R)
)

(15.21)

where the step from (15.20) to (15.21) can be deduced from Sect. 15.5.2. (15.21)
shows that A is symmetric since · on bivectors is symmetric: Λ · Δ = Δ · Λ. We
call A the inertia tensor of the particle, since E =A(Ω,Ω)=−SΩ ∧Π. We over-
load the operator and write Π =A(Ω) to indicate the polar relationship between Π

and Ω . We will construct the inertia tensor of a rigid body out of the inertia tensors
of its particles below.

15.6.2.2 Rigid Body Motion
Begin with a finite set of mass points Pi ; for each, derive the velocity state Γ i , the
momentum state Πi , and the inertia tensor Ai .11 Such a collection of mass points
is called a rigid body when the Euclidean distance between each pair of points is
constant.

11We restrict ourselves to the case of a finite set of mass points, since extending this treatment to
a continuous mass distribution presents no significant technical problems; summations have to be
replaced by integrals.

15 On the Homogeneous Model of Euclidean Geometry 321

Extend the momenta and energy to the collection of particles by summation:

Π :=
∑

Πi =
∑

Ai (Ω) (15.22a)

E :=
∑

Ei =
∑

Ai (Ω,Ω) (15.22b)

Since for each single particle, these quantities are conserved when F = 0, this is
also the case for the aggregate Π and E defined here.

We introduce the inertia tensor A for the body:

Definition 15.12 A :=∑Ai .

Then Π =A(Ω) and E =A(Ω,Ω); neither formula requires a summation over
the particles: the shape of the rigid body has been encoded into A. One can proceed
traditionally and diagonalize the inertia tensor by finding the center of mass and
moments of inertia (see [2]). Due to space constraints, we omit the details. Instead,
we sketch how to integrate the inertia tensor more tightly into the Clifford algebra
framework.

Clifford Algebra for Inertia Tensor We define a Clifford algebra CA based on
P(
∧2

R
4∗) by attaching the quadratic form A as the inner product.12 We denote

the pseudoscalar of this alternative Clifford algebra by IA, and the inner product
of bivectors by 〈·, ·〉A. We use the same symbols to denote bivectors in W ∗ as 1-
vectors in CA. Bivectors in W are represented by 5-vectors in CA. Multiplication
by IA swaps 1-vectors and 5-vectors in CA; we use J (lifted to CA) to convert
5-vectors back to 1-vectors as needed. The following theorem, which we present
without proof, shows how to obtain Π directly from IA in this context:

Theorem 15.4 Given a rigid body with inertia tensor A and velocity state Ω , the
momentum state Π =A(Ω)= J(ΩIA).

Conversely, given a momentum state Π, we can manipulate the formula in the the-
orem to deduce:

Ω =A−1(Π)= (J(Π)I−1
A

)

In the sequel we denote the polarity on the inertia tensor by A(Ω) and A−1(Π),
leaving open whether the Clifford algebra approach indicated here is followed.

12It remains to be seen if this approach represents an improvement over the linear algebra approach,
which could also be maintained in this setting.

322 C. Gunn

15.6.2.3 The Euler Equations for Rigid Body Motion
In the absence of external forces, the motion of a rigid body is completely deter-
mined by its momentary velocity state or momentum state at a given moment. How
can one compute this motion? First we need a few facts about coordinate systems.

The following discussion assumes that we observe a system as it evolves in time.
All quantities are then potentially time dependent; instead of writing g(t), we con-
tinue to write g and trust the reader to bear in mind the time-dependence.

We use the subscripts Xs and Xc
13 to distinguish whether the quantity X be-

longs to the space or the body coordinate system. The conservation laws of the
previous section are generally valid only in the space coordinate system, for exam-
ple, Π̇s = 0. On the other hand, the inertia tensor will be constant only with respect
to the body coordinate system, so, Πc = A(Ωc). When we consider a Euclidean
motion g as being applied to the body, then the relation between body and space
coordinate systems for any element X ∈ P(R∗3,0,1), with respect to a motion g, is
given by the sandwich operator:

Xs = gXcg̃

Definition 15.13 The velocity in the body Ωc := g̃ġ, and the velocity in space Ωs :=
gΩcg̃.

Definition 15.14 The momentum in the body Πc := A(Ωc), and the momentum in
space Πs := gΠcg̃.

We derive a general result for a time-dependent element (of arbitrary grade) in
these two coordinate systems:

Theorem 15.5 For time-varying X ∈ P(R∗3,0,1) subject to the motion g with velocity
in the body Ωc,

Ẋs = g
(
Ẋc + 2(Ωc ×Xc)

)
g̃

Proof

Ẋs = ġXcg̃+ gẊcg̃+ gXc
˙̃g

= g(g̃ġXc + Ẋc +Xc
˙̃gg)g̃

= g(ΩcXc + Ẋc +XcΩ̃c)g̃

= g(Ẋc +ΩcXc −XcΩc)g̃

= g
(
Ẋc + 2(Ωc ×Xc)

)
g̃

13From corpus, Latin for body.

15 On the Homogeneous Model of Euclidean Geometry 323

The next-to-last equality follows from the fact that for bivectors, Ω̃ =−Ω ; the last
equality is the definition of the commutator product. �

We will be interested in the case Xc is a bivector. In this case, Xc and Ωc can be
considered as Lie algebra elements, and 2(Ωc ×Xc) is called the Lie bracket. It ex-
presses the change in one (X) due to an instantaneous Euclidean motion represented
by the other (Ω).

15.6.2.4 Solving for the Motion
Since Ωc = g̃ġ, ġ= gΩc , a first-order ODE. If we had a way of solving for Ωc , we
could solve for g. If we had a way of solving for Πc, we could apply Theorem 15.4
to solve for Ωc. So, how to solve for Πc?

We apply the corollary to the case of force-free motion. Then Π̇s = 0: the mo-
mentum of the rigid body in space is constant. By Theorem 15.5,

0= Π̇s = g
(
Π̇c + 2(Ωc ×Πc)

)
g̃ (15.23)

The only way the RHS can be identically zero is that the expression within the
parentheses is also identically zero, implying:

Π̇c = 2Πc ×Ωc

Use the inertia tensor to convert velocity to momentum yields a differential equation
purely in terms of the momentum:

Π̇c = 2Πc ×A−1(Πc)

When the inner product is written out in components, one arrives at the well-
known Euler equations for the motion [2, p. 143].

The complete set of equations for the motion g are given by the pair of first-order
ODEs:

ġ= gΩc (15.24)

Π̇c = 2Πc ×Ωc (15.25)

where Ωc =A−1(Πc). When written out in full, this gives a set of 14 first-order lin-
ear ODEs. The solution space is 12 dimensions; the extra dimensions corresponds
to the normalization gg̃= 1. At this point the solution continues as in the traditional
approach, using standard ODE solvers. Our experience is that the cost of evaluat-
ing (15.24) is no more expensive than traditional methods. For an extension to the
presence of external forces, see [13].

324 C. Gunn

Comparison The projective Clifford algebra approach outlined here exhibits sev-
eral advantages over other approaches to rigid body motion. The representation of
kinematic and dynamic states as bivectors rather than as pairs of ordinary 3-vectors
(linear and angular velocity, momentum, etc.) provides a framework free of the spe-
cial cases which characterize the split approach (for example, translations are rota-
tions around an ideal line, a force couple is a single force carried by an ideal line,
etc.). The Clifford algebra product avoids cumbersome matrix formulations and, as
seen in Theorem 15.5, yields formulations which are valid for points, lines, and
planes uniformly. The inertia tensor of a rigid body can be represented as a separate
(positive definite) Clifford algebra defined on the space of bivectors. Finally, the
treatment of Newtonian particles reveals an underlying velocity–momentum polar-
ity in bivector space analogous to that of rigid bodies.

15.7 Guide to the Literature

The work presented here, in its conceptual basis, is derived from [28]. This sem-
inal book worked out in impressive detail the structure which in modern form ap-
pears as the even subalgebra P(R∗+3,0,1). Study avoided using the term quaternion; the
structure he described has nonetheless become known as the dual quaternions. His
parameter ε maps to the pseudoscalar I. A full description of the correspondence
between the two systems lies outside the scope of this work, nor is the full scope
of [28] reflected in material presented here. [33] gives an excellent survey of the
historical development that led up to Study’s work. Möbius, Plücker, Hamilton, and
Klein were Study’s most important predecessors; he and Ball [3] had a relationship
based on mutual appreciation. Weiss, a student of Study’s, wrote a concise introduc-
tion [30] to Study’s investigations which can be recommended. For beginners, [6]
provides a simpler introduction to Study’s approach.

Study’s contribution in the direction of mechanics was developed further in [29]
and [5]. The former was hampered by the awkward matrix notation required for
stating transformation laws. These, on the other hand, are “built in” to the Clifford
algebra approach and simplify the approach considerably. [5] concentrated on the
non-Euclidean case.

The modern legacy of this work is varied. Some modern literature, such as [12],
use spatial vectors to model rigid body motion; these are 6D vectors equivalent to
our bivectors, but developed within a linear algebra framework reminiscent of [29].
While the dual quaternions have developed a following in robotics and other applied
areas [22], their embedding as the even subalgebra of P(R∗3,0,1) has not received
widespread acceptance. Modern sources using P(R∗3,0,1) include [25] and [26]. An
advanced treatment of the structure of spin groups in degenerate Clifford algebras
can be found in [1]. Much contemporary work in mechanics which uses Clifford
algebra methods applied to physics and engineering uses the conformal model [11,
14, 23] rather than the homogeneous model presented here. Our handling of rigid
body motion owes much to the spirit of [2].

15 On the Homogeneous Model of Euclidean Geometry 325

Study himself appears to be aware of the possibility of extending his work within
a more comprehensive algebraic structure. He remarked at the end of [28] (p. 595,
translated by the author):

The elementary geometric theory, that hovers thus before us, will surpass the construction
possibilities of the quaternions to the same degree that the geometry of dynamen [linear line
complexes] surpasses the addition of vectors. The accessory analytic machinery will consist
of a system of compound quantities, with eight, or better yet, with sixteen units. {Study’s
italics!}

It seems likely that P(R∗3,0,1) is in fact the 16-dimensional algebraic realizations of
Study’s prophetic inkling.

15.8 The Homogeneous Model: A Serious Alternative

How does the theory developed so far—geometric, kinematic, dynamic—compare
with alternative models for the same purposes? In many respects—for example,
geometric expressiveness, efficiency of computation, fidelity of isometry group rep-
resentation, calculation of rotor logarithms, and succinctness of kinematic and dy-
namic models—the homogeneous theory is a serious competitor to the other mod-
els presented in this book. For application areas with purely Euclidean content it
may have advantages over higher dimensional models with regard to computational
efficiency, ease of representation, and numerical integration. The excellent results
obtained with this model are not surprising, as the previous section shows that the
mathematicians involved with rigid body motion in the projective model (Klein,
Clifford, Study, and others) were the same ones who laid the foundations for mod-
ern Clifford algebras.

15.9 Non-Euclidean Extension

The work presented here is part of a forthcoming dissertation which includes also
the non-Euclidean geometries of elliptic and hyperbolic space. A full theory of these
non-Euclidean spaces has been developed in the same dual projectivized Clifford al-
gebra setting used for the present Euclidean treatment, based on the Cayley–Klein
construction (Sect. 15.3.1), and including kinematics and rigid body motion. Space
considerations made a detailed inclusion here impractical. Readers interested in
learning more can consult [13] (Sect. 7). Chapter 18 in this volume also addresses
this topic, taking a different perspective.

15.10 Conclusion

We have established that P(R∗n,0,1) is a model for Euclidean geometry. By using
a mixture of projective, ideal, and properly Euclidean elements, we have avoided
the problems traditionally associated with degenerate metrics. The result provides a

326 C. Gunn

complete and compact representation of Euclidean geometry, kinematics and rigid
body dynamics. We hope that this work will stimulate others working in these fields
to consider the homogeneous model as a practical solution to their problem domain
and to deepen and extend these initial results.

15.11 Exercises

15.1 In analogy to Table 15.2, construct the multiplication table for P(R∗3,0,1). De-
fine a norm for points, vectors, and planes in analogy to those given in Sect. 15.4.1.
Translate the products a · b,P · Q,a ∧ P,a · P,P ∨ Q,P × Q,aI, and PI from
Sect. 15.4.1 into this setting.

15.2 Projecting a point onto a line, and vice-versa. For Euclidean P and Euclidean
simple Ξ , show:
1. Q := (P · Ξ)Ξ−1 is the point of Ξ closest to P. Q ∨ P is the line through P

cutting Ξ at right angles.
2. (P ·Ξ)P−1 is a line parallel to Ξ passing through P.

15.3 The common normal of two lines. Let Ξ and Φ be two simple Euclidean
bivectors.
1. Show that Θ :=Ξ ×Φ is a bivector which is in involution to both Ξ and Φ .
2. Show that the axis Θx of Θ is a line perpendicular to both Ξ and Φ .
3. Calculate the points where Θx intersects Ξ and Φ . (Hint: consider where the

plane spanned by NΘ := e0Θx (the direction vector of Θx) and Φ cuts Ξ .)

15.4 3D rotations and translations. Handle the case sd = 0 (g = sr + Ξ) from
Sect. 15.5.5 to obtain exponential forms for 3D rotations and translations. Define
the corresponding logarithms. What does the case sr = sd = 0 represent? (Hint:
cos (π2)= 0.)

15.5 Find the rotator corresponding to a rotation of π
3 radians around the line

through the origin and the point (1,1,1).

15.6 From the proof of Theorem 15.1:
1. Show that Φ commutes with Ξ and with g.
2. Define T := −2uNΦ , where NΦ is the direction vector of the axis Φ . Show that

the translation part of g moves a point X to X+T, hence a distance of 2u. [Hint:
Expand (euIΦXe−uIΦ) using (IΦ)2 = 0, and Φ2 =−1 implies ‖IΦ‖∞ = 1.]

References

1. Ablamowicz, R.: Structure of spin groups associated with degenerate Clifford algebras.
J. Math. Phys. 27, 1–6 (1986)

15 On the Homogeneous Model of Euclidean Geometry 327

2. Arnold, V.I.: Mathematical Methods of Classical Physics. Springer, New York (1978), Ap-
pendix 2

3. Ball, R.: A Treatise on the Theory of Screws. Cambridge University Press, Cambridge (1900)
4. Blaschke, W.: Ebene Kinematik. Teubner, Leipzig (1938)
5. Blaschke, W.: Nicht-euklidische Geometrie und Mechanik. Teubner, Leipzig (1942)
6. Blaschke, W.: Analytische Geometrie. Birkhäuser, Basel (1954)
7. Bourbaki, N.: Elements of Mathematics, Algebra I. Springer, Berlin (1989)
8. Conradt, O.: Mathematical Physics in Space and Counterspace. Verlag am Goetheanum,

Goetheanum (2008)
9. Coxeter, H.M.S.: Projective Geometry. Springer, New York (1987)

10. Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science. Morgan Kauf-
mann, San Francisco (2009)

11. Doran, C., Lasenby, A.: Geometric Algebra for Physicists. Cambridge University Press, Cam-
bridge (2003)

12. Featherstone, R.: Rigid Body Dynamics Algorithms. Springer, Berlin (2007)
13. Gunn, C.: On the homogeneous model for Euclidean geometry: extended version. http://

arxiv.org/abs/1101.4542 (2011)
14. Hestenes, D.: New tools for computational geometry and rejuvenation of screw theory. In:

Bayro-Corrochano, E.J., Scheuermann, G. (eds.) Geometric Algebra Computing: In Engineer-
ing and Computer Science, pp. 3–35. Springer, Berlin (2010)

15. Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus. Fundamental Theories of
Physics. Reidel, Dordrecht (1987)

16. Hitchin, N.: Projective geometry. http://people.maths.ox.ac.uk/hitchin/hitchinnotes/Projective_
geometry/Chapter_3_Exterior.pdf (2003)

17. Jessop, C.M.: A Treatise on the Line Complex. Chelsea, New York (1969). Original 1903,
Cambridge

18. Klein, F.: Über Liniengeometrie und metrische Geometrie. Math. Ann. 2, 106–126 (1872)
19. Klein, F.: Vorlesungen Über Höhere Geometrie. Chelsea, New York (1927)
20. Klein, F.: Vorlesungen Über Nicht-euklidische Geometrie. Chelsea, New York (1949). Origi-

nal 1926, Berlin
21. Li, H.: Invariant Algebras and Geometric Algebra. World Scientific, Singapore (2008)
22. McCarthy, J.M.: An Introduction to Theoretical Kinematics. MIT Press, Cambridge (1990)
23. Perwass, C.: Geometric Algebra with Applications to Engineering. Springer, Berlin (2009)
24. Pottmann, H., Wallner, J.: Computational Line Geometry. Springer, Berlin (2001)
25. Selig, J.: Clifford algebra of points, lines, and planes. Robotica 18, 545–556 (2000)
26. Selig, J.: Geometric Fundamentals of Robotics. Springer, Berlin (2005)
27. Study, E.: Von den bewegungen und umlegungen. Math. Ann. 39, 441–566 (1891)
28. Study, E.: Geometrie der Dynamen. Teubner, Leipzig (1903)
29. von Mises, R.: Die Motorrechnung Eine Neue Hilfsmittel in der Mechanik. Z. Rein Angew.

Math. Mech. 4(2), 155–181 (1924)
30. Weiss, E.A.: Einführung in die Liniengeometrie und Kinematik. Teubner, Leipzig (1935)
31. Whitehead, A.N.: A Treatise on Universal Algebra. Cambridge University Press, Cambridge

(1898)
32. Wikipedia. http://en.wikipedia.org/wiki/Exterior_algebra
33. Ziegler, R.: Die Geschichte Der Geometrischen Mechanik im 19. Jahrhundert. Franz Steiner

Verlag, Stuttgart (1985)

http://arxiv.org/abs/1101.4542
http://arxiv.org/abs/1101.4542
http://people.maths.ox.ac.uk/hitchin/hitchinnotes/Projective_geometry/Chapter_3_Exterior.pdf
http://people.maths.ox.ac.uk/hitchin/hitchinnotes/Projective_geometry/Chapter_3_Exterior.pdf
http://en.wikipedia.org/wiki/Exterior_algebra

16A Homogeneous Model
for Three-Dimensional
Computer Graphics Based
on the Clifford Algebra for R

3

Ron Goldman

Abstract
We construct a homogeneous model for Computer Graphics using the Clifford
Algebra for R

3. To incorporate points as well as vectors within this model, we
employ the odd-dimensional elements of this graded eight-dimensional alge-
bra to represent mass-points by exploiting the pseudoscalars to represent mass.
The even-dimensional elements of this Clifford Algebra are isomorphic to the
quaternions, which operate on the odd-dimensional elements by sandwiching.
Along with the standard sandwiching formulas for rotations and reflections, this
paradigm allows us to use sandwiching to compute perspective projections.

16.1 Introduction

Although the everyday visual world is three-dimensional, present-day Computer
Graphics typically uses four coordinates to represent points and vectors, and 4× 4
matrices to represent the standard transformations in the graphics pipeline [4]. Four
coordinates and 4× 4 matrices are necessary in order to represent perspective pro-
jection using matrix multiplication because perspective projection is not a linear
transformation in three dimensions; rather in three dimensions, perspective projec-
tion is a rational linear (i.e., a projective) transformation. Therefore in contemporary
Computer Graphics a fourth coordinate is introduced to represent the denominators
introduced by perspective projections.

The four coordinates (x, y, z,w) correspond to the affine point in three dimen-
sions located at the point with rectangular coordinates (x/w,y/w, z/w) provided
that w �= 0. The fourth coordinate w can be interpreted as a weight or mass (possi-
bly negative) associated with this affine point. Thus the natural domain for everyday
Computer Graphics is not R

3, but rather R
4: three of the dimensions are spatial, and

the fourth dimension is due to the mass.

R. Goldman (�)
Department of Computer Science, Rice University, Houston, TX 77005, USA
e-mail: rng@rice.edu

L. Dorst, J. Lasenby (eds.), Guide to Geometric Algebra in Practice,
DOI 10.1007/978-0-85729-811-9_16, © Springer-Verlag London Limited 2011

329

mailto:rng@rice.edu
http://dx.doi.org/10.1007/978-0-85729-811-9_16

330 R. Goldman

Fig. 16.1 Mass-points
represented as vectors in four
dimensions. Here O

represents the origin for the
affine points in R3, and Ω

represents the zero vector in
R3 which is also the origin
in R4

These four coordinates are sometimes called homogeneous coordinates, but in
order not to confuse these coordinates with the homogeneous coordinates for the
points in three-dimensional projective space, we prefer to call the objects in this
four-dimensional vector space mass-points. The three-dimensional vectors reside in
this space as objects with zero mass, while the affine points are embedded in this
space as mass-points with unit mass (see Fig. 16.1). For a more detailed explanation
of the four-dimensional vector space of mass-points, see [5].

A homogeneous model for Clifford Algebra that deals directly with mass-points
has indeed been constructed. This model is called the Conformal Model and is a
Clifford Algebra for R

5 [1, 2, 9]. Thus this algebra is a vector space with 25 = 32 di-
mensions. This 32-dimensional algebra has many convenient properties. For exam-
ple, not only lines and planes but also circles and spheres are included as primitive
objects in this model; moreover all conformal transformations on R

3 including in-
versions in the sphere are represented in this algebra. Nevertheless, the dimension of
this algebra seems excessively high and the algebra itself unnecessarily complicated
for contemporary Computer Graphics. The purpose of this chapter is to develop a
simpler, lower-dimensional Clifford Algebra for investigating the four-dimensional
space of mass-points.

Our goal is to make four principal contributions:
1. To show how to apply the standard Clifford Algebra for R

3 to represent mass-
points by taking advantage of the pseudoscalars to represent mass;

2. To present novel ways to understand the effect of sandwiching on points and
vectors in three dimensions based on insights from the algebra and geometry of
complex numbers and quaternions. Thus this chapter is a companion to [6];

3. To develop more intuitive proofs of the sandwiching formulas for rotations and
reflections in three dimensions by studying simple rotations in four dimensions;

4. To demonstrate how to use sandwiching to compute perspective projections.
This chapter is organized in the following fashion. We begin in Sect. 16.2 with a

brief review of the standard model for the Clifford Algebra of R
3. Here we establish

our sign conventions and review some basic formulas. In Sect. 16.3 we introduce

16 A Homogeneous Model for 3-Dimensional Computer Graphics 331

the operators and operands—mass-points and quaternions—by exploiting the pseu-
doscalars to represent mass. Section 16.4 is devoted to studying the action of the
unit quaternions on the space of mass-points, and Sect. 16.5 shows how to apply the
sandwiching operators to compute rotation, reflection, and perspective projection
on points as well as on vectors. Most of the results in Sects. 16.5.1 and 16.5.2 for
rotation and reflection will already be known to readers familiar with Clifford Al-
gebra, but our point of view is quite different from the standard approach of versors
and rotors, and the material on perspective projection in Sect. 16.5.3 appears to be
completely new. We close in Sect. 16.6 with a short summary our principal results
along with a brief discussion of the main limitations of our model.

16.2 The Standard Model of the Clifford Algebra for Three
Dimensions

The Clifford Algebra associated with the three-dimensional vector space R
3 is an

eight-dimensional vector space. We shall endow R3 with the usual dot product and
let e1, e2, e3 be an orthonormal basis for R

3. Then the eight canonical generators
for the Clifford Algebra of R

3 are denoted by the products:

1 scalars

e1, e2, e3 vectors

e1e2, e2e3, e3e1 bivectors · · ·
e1e2e3 pseudoscalars.

The formal algebra of this eight-dimensional vector space is defined by the fol-
lowing rules:

i. multiplication is associative;
ii. multiplication distributes through addition;

iii. 1 is the identity for multiplication;

iv.

e2
1 = e2

2 = e2
3 =−1; (16.1)

v.

e2e1 =−e1e2, e3e2 =−e2e3, e1e3 =−e3e1. (16.2)

The minus sign on the right-hand side of Eq. (16.1) is somewhat arbitrary. This sign
is chosen here for convenience so that (e1e2e3)

2 = 1. This minus sign also has the
following ramifications.

Consider the Clifford product of two arbitrary vectors u = u1e1 + u2e2 + u3e3
and v = v1e1 + v2e2 + v3e3. Since multiplication distributes through addition, it
follows from Eqs. (16.1) and (16.2) that

332 R. Goldman

uv = (u1e1 + u2e2 + u3e3)(v1e1 + v2e2 + v3e3)

=−(u1v1 + u2v2 + u3v3)

+ (u1v2 − u2v1)e1e2 + (u2v3 − u3v2)e2e3 + (u3v1 − u1v2)e3e1.

Let

u∧ v = (u1v2 − u2v1)e1e2 + (u2v3 − u3v2)e2e3 + (u3v1 − u1v3)e3e1.

Then

uv =−u · v+ u∧ v. (16.3)

Notice the minus sign, instead of a plus sign, adjacent to the dot product.
Duality is quite convenient with our choice of signs. Consider the pseudoscalar

O =−e1e2e3. (16.4)

By Eqs. (16.1) and (16.2),

Oe1 = e2e3 = e1O, Oe2 = e3e1 = e2O,

Oe3 = e1e2 = e3O,
(16.5)

Oe1e2 = e3 = e1e2O, Oe2e3 = e1 = e2e3O,

Oe3e1 = e2 = e3e1O.
(16.6)

In particular,

O(u∧ v)= u× v = (u∧ v)O, (16.7)

O(u× v)= u∧ v = (u× v)O. (16.8)

Thus in this algebra, duality is mediated by multiplication with the pseudoscalar O .
The pseudoscalar O shares many properties with the scalar 1. For example, it

follows easily from Eqs. (16.5) and (16.6) that O commutes with every element p
of the Clifford Algebra, that is,

Op = pO. (16.9)

Moreover, by Eqs. (16.1) an (16.2),

O2 = 1. (16.10)

16 A Homogeneous Model for 3-Dimensional Computer Graphics 333

16.3 Operands and Operators: Mass-Points and Quaternions

The Clifford Algebra of R
3 is a real eight-dimensional vector space. This vector

space splits conveniently into two four-dimensional subspaces: one consisting of
the even-dimensional elements, which we shall see shortly are isomorphic to the
quaternions, and one consisting of the odd-dimensional elements, which we shall
identify with the mass-points.

16.3.1 Odd Order: Mass-Points

The ambient geometric space underlying contemporary Computer Graphics is the
four-dimensional vector space of mass-points [5]: three of the dimensions are spa-
tial; the fourth dimension is due to the mass. Let MP denote this four-dimensional
space of mass-points. We are going to represent the space of mass-points MP as a
four-dimensional subspace of the eight-dimensional Clifford Algebra for R

3. Since
the fourth dimension is mass-like rather than spatial, we should expect that our rep-
resentation for the fourth dimension would be qualitatively somewhat different from
our representation for the three spatial dimensions.

In the Clifford Algebra associated to R
3, every vector v can be expressed

uniquely in terms of our fixed orthonormal basis:

v = v1e1 + v2e2 + v3e3.

But in the standard geometric interpretation of the Clifford Algebra for R
3, there is

no way to represent points, let alone mass-points. Therefore we shall now adopt a
nonstandard interpretation.

We need to represent one more dimension, the dimension corresponding to mass.
For this purpose, we will adopt the pseudoscalars. We shall represent the mass m by
scalar multiples of the pseudoscalar

O =−e1e2e3,

and we shall identify the pseudoscalar O with the point (or more precisely with the
vector in four dimensions representing the point) at the origin of a three-dimensional
coordinate system. Note that with this interpretation O represents a point, not a
vector in three dimensions; the origin of the coordinate system is not the same as
the zero vector (see Fig. 16.1).1

Classically the pseudoscalar e1e2e3 is used to represent an element of unit vol-
ume. Here we are going to use −e1e2e3 to represent a point. Denote by Cl(R3)

the Clifford Algebra for R3. Letting the pseudoscalar −e1e2e3 represent a point is
essentially equivalent to invoking a vector space isomorphism

1Editorial note: The reader may find the geometrical view of Gunn (in Chap. 15, this volume)
enlightening: the basis vectors represent normal vectors of coordinate planes, and the point at the
origin is then the trivector representing the intersection of those three coordinate planes.

334 R. Goldman

T : Cl
(
R3)odd→MP,

where

T (e1)= e1, T (e2)= e2, T (e3)= e3, T (−e1e2e3)=O.

The minus sign is inserted in −e1e2e3 to make the signs turn out right when we
multiply the pseudoscalars by other elements of the Clifford Algebra. For example,
by Eqs. (16.7) and (16.8),

O(u∧ v)= u× v = (u∧ v)O,

O(u× v)= u∧ v = (u× v)O.

We shall often abuse notation and use the symbol O to represent both the pseu-
doscalar −e1e2e3 in the Clifford Algebra Cl(R3) and the origin of the coordinate
system in MP. The correct interpretation will be clear from the context.

Now every mass-point p can be represented uniquely in the Clifford Algebra for
R3 as the sum of a vector v and the fixed point O times a mass m, that is,

p =mO + v

(see Fig. 16.1). This formula means that p has mass m and is located at the point
p/m=O + v/m, provided that m �= 0. We shall write

mO + v ≡O + v/m

to indicate that the mass-point mO + v is located at the affine point O + v/m.
To summarize: we shall use the odd-dimensional elements of the Clifford Al-

gebra to represent mass-points. Elements of dimension one are vectors; elements of
dimension three have mass. The sum of an element of dimension one and an element
of dimension three is a mass-point.

An algebra is only an algebra. The formal rules of the Clifford Algebra are fixed.
But the geometric interpretation we assign to elements of this algebra is completely
up to us, constrained only by consistency and applicability.

16.3.2 Even Order: Quaternions

The algebra generated by the even-dimensional basis elements {1, e1e2, e2e3, e3e1}
of the Clifford Algebra for R3 is isomorphic to the algebra of quaternions. Indeed,
let

i = e2e3, j = e3e1, k = e1e2. (16.11)

16 A Homogeneous Model for 3-Dimensional Computer Graphics 335

Then by Eqs. (16.1) and (16.2) it is easy to verify that

i2 = j2 = k2 =−1, (16.12)

ij = k, jk = i, ki = j, (16.13)

which is the standard algebra of quaternion multiplication. We shall use the clas-
sical notation H to denote the quaternion algebra, represented here by the even-
dimensional elements of the Clifford Algebra.

Let π represent multiplication in the Clifford Algebra Cl(R3). Then by Eqs. (16.1)
and (16.2),

π : Cl(R)even ⊕Cl
(
R3)odd→ Cl

(
R3)odd

or equivalently

π :H ⊕MP→MP.

Thus we can think of the even-dimensional elements of the Clifford Algebra, the
quaternions, as acting by multiplication on the odd-dimensional elements of the
Clifford Algebra, the mass-points. Notice that H acts on MP on both the left and
the right, but these actions are not identical since Clifford multiplication is not com-
mutative. We are going to exploit this noncommutativity in Sect. 16.5 to develop
sandwiching formulas for rotation, reflection, and perspective projection.

16.4 Decomposing Mass-Points into Two Complementary
Planes

Relative to any fixed bivector b spanned by two direction vectors,2 the four-
dimensional space of mass-points can be decomposed into two complementary
planes: the plane of vectors determined by b, and the two-dimensional subspace of
the four-dimensional space of mass-points determined by the pseudoscalar O and
the vector bO . To avoid confusion between the bivector b and the plane determined
by the bivector b, we will denote by b‖ the plane of vectors determined by the bivec-
tor b. Similarly, we will denote by b⊥ the mass-points in the plane determined by
O and bO . Note that by Eq. (16.7), the vector bO is perpendicular to the plane b‖,
because in three dimensions every bivector b can be written as u∧ v for some vec-
tors u,v. Since O and bO are linearly independent (they have different grades), and
both lie outside the plane b‖, clearly MP ∼= b‖ ⊕ b⊥. Here and elsewhere we use

2Editorial note: Since this chapter uses the algebra R3, bivectors from its 3-D space R
3 are always

also 2-blades, but the author prefers to use the term ‘bivector’. In contrast, he describes the planes
in the 4-D representational space consistently as ‘planes’, giving their spanning 4-D vectors but
not representing them algebraically.

336 R. Goldman

Fig. 16.2 (a) The plane of vectors (mass-points) b⊥ spanned by {O,bO} in four dimensions is
equivalent to (b) the line of affine points in three dimensions passing through the point O in the
direction of the vector bO . This line is actually two-dimensional, but the second dimension is
mass-like not spatial, so this dimension is not visible in (b)

the term plane to denote any two-dimensional subspace of the space of mass-points,
rather than a physical plane in R3.

Indeed, although b‖ and b⊥ both represent planes in four dimensions, the geo-
metric interpretations of these two planes in terms of mass-points in three dimen-
sions are markedly different: the plane b‖ represents a plane of vectors in three
dimensions, but in three dimensions, the plane b⊥ represents a line of points.

Consider first the plane b‖ spanned by the vectors {u,v}, where b= u∧ v. Since
u and v are linearly independent vectors in R3, the vectors

w = αu+ βv

spanned by {u,v} represent a two-dimensional plane of vectors in R3.
In contrast, consider the plane b⊥ spanned by {O,bO}. In three dimensions,

O represents a point, not a vector. Thus the mass-points

P = cO + sbO

spanned by {O,bO} actually represent a line in three dimensions: the line through
the point O in the direction of the vector bO (see Fig. 16.2). In fact,

P ≡O + s

c
bO,

that is, P is a mass-point with mass c on the line P(t)=O+ tbO . (If c= 0, then P

is a vector sbO parallel to the line P(t).) The plane b⊥ spanned by {O,bO} does
have two dimensions, but only one dimension is spatial; the other dimension, the
coefficient of O , represents mass, not length.

We are now going to study the geometric effect of multiplying an arbitrary mass-
point p in MP by a unit quaternion

16 A Homogeneous Model for 3-Dimensional Computer Graphics 337

q(b, θ)= cos(θ)+ sin(θ)b

in H , where b is a unit bivector, that is, where b represents a planar segment with
unit area. We shall proceed by investigating the geometric effects of this multiplica-
tion in the two complementary planes b‖ and b⊥.

16.4.1 Action of q(b, θ) on b‖

Let v be a unit vector in the plane represented by the bivector b. Then the vectors v,
bv are an orthonormal basis for b‖ . This observation can be proved in the following
fashion.

Lemma 16.1 Let b be a bivector, and let v be a vector in the plane b‖. Then
i. bv = bO × v,

ii. vb= v× bO .

Proof By Eqs. (16.10), (16.9), and (16.3),

bv = (bv)O2 = ((bO)v
)
O = (−(bO · v)+ (bO ∧ v)

)
O.

But

bO · v = 0

because bO is orthogonal to the plane b‖. By Eq. (16.7),

(bO ∧ v)O = bO × v.

Therefore,

bv = bO × v.

Similarly,

vb= v× bO. �

Corollary 16.1 Let b be a bivector, and let v be a vector in the plane b‖. Then
i. bv is a vector in the plane b‖.

ii. bv⊥ v.
iii. |bv| = |b||v|.
iv. vb=−bv.
Thus if |b| = |v| = 1, then v, bv is an orthonormal basis for b‖.

338 R. Goldman

Fig. 16.3 The plane
b⊥ = span{O,bO} in the
space of mass-points MP
(left) and the plane
b‖ = span{v, bv} in the space
of mass-points MP (right)

Proof These results follow immediately from Lemma 16.1. �

Let v be a vector in b‖. Using the orthonormal basis v, bv for b‖, we can now
analyze the effect of multiplication by q(b, θ) on vectors v in the plane b‖.

Corollary 16.2 The effect of multiplication by q(b, θ) on the left on vectors v in
the plane b‖ is just counterclockwise rotation through the angle θ in the plane b‖.
Moreover, since

vb=−bv,

multiplication by q(b, θ) on the right on vectors in b‖ rotates these vectors clockwise
through the angle θ in the plane b‖.

Proof It is enough to prove this result for unit vectors v in b‖. Now

q(b, θ)v = (cos(θ)+ sin(θ)b
)
v = cos(θ)v + sin(θ)(bv).

Therefore, since by Corollary 16.1 v, bv is an orthonormal basis for b‖, multiplica-
tion by q(b, θ) on the left rotates the vector v counterclockwise by the angle θ in the
plane b‖ (see Fig. 16.3, right). Similarly, since vb=−bv, multiplication by q(b, θ)

on the right rotates the vector v clockwise by the angle θ in the plane b‖. �

16.4.2 Action of q(b, θ) on b⊥

Multiplication by O is a vector space isomorphism from the subspace of the quater-
nions H spanned by {1, b} to the subspace of the mass-points MP spanned by
{O,bO}. Hence to understand how the unit quaternions q(b, θ) act on b⊥, we
first need to understand how multiplication works on the subspace of quaternions
spanned by {1, b}. We begin with the following lemma.

Lemma 16.2 b2 =−|b|2.

16 A Homogeneous Model for 3-Dimensional Computer Graphics 339

Proof In three dimensions, every bivector b is a blade, that is, b = u ∧ v for some
choice of vectors u, v. Moreover, by definition,

|b| = |u∧ v| = area(u, v)= |u× v|.

Now by Eqs. (16.7), (16.9), and (16.10),

b2 = b2O2 = (bO)(bO)=−(bO) · (bO)=−|u× v|2 =−|b|2. �

Here is the key observation. By Lemma 16.2,

|b| = 1⇒ b2 =−1.

Therefore the quaternion plane spanned by {1, b} is isomorphic to the complex
plane.

Now we know how multiplication works in the complex plane:

eiθ · eiφ = ei(θ+φ) = eiφ · eiθ .

Thus multiplication is commutative, and angles add. Therefore we have analogous
results for multiplication in the plane b⊥.

Lemma 16.3 Let b be a unit bivector. Then
i. q(b, θ)q(b,φ)= q(b, θ + φ).

ii. q(b, θ)q(b,φ)= q(b,φ)q(b, θ).

Proof To prove i, we simply apply the fact that b2 =−1 and use the trigonometric
identities for the sine and the cosine of the sum of two angles:

q(b, θ)q(b,φ)= (cos(θ)+ sin(θ)b
)(

cos(φ)+ sin(φ)b
)

= (cos(θ) cos(φ)− sin(θ) sin(φ)
)

+ (sin(θ) cos(φ)+ cos(θ) sin(φ)
)
b

= cos(θ + φ)+ sin(θ + φ)b

= q(b, θ + φ).

ii. Follows immediately from i. �

A complex number eiθ acts on vectors in the plane R2 by rotating the vectors
by the angle θ . Similarly, we would like to interpret the action of the quaternions
q(b, θ) on vectors in the plane b⊥ as rotation by the angle θ . But although we started
with a metric on R3, the plane b⊥ is not yet endowed with a metric, since O ∈ b⊥,
but O /∈ R3. Thus to interpret multiplication by q(b, θ) as rotation in b⊥, we need
to extend our metric from R3 to MP ∼= R3 ⊕ span{O}. One natural way to extend

340 R. Goldman

the metric from R3 to MP is to set O⊥R3 and let ‖O‖ = 1 (see Fig. 16.1). Now in
analogy with Corollary 16.2, we have the following result.

Corollary 16.3 The effect of multiplication by q(b, θ) on the mass-points in the
plane b⊥ is just counterclockwise rotation through the angle θ in the plane b⊥.
Moreover, since

Ob= bO,

multiplication by q(b, θ) on the left and the right has the same effect on the elements
in b⊥.

Proof It is enough to consider mass-points p represented by four-dimensional vec-
tors of unit length in the plane b⊥ = span{O,bO}. Since O , bO is an orthonormal
basis for b⊥, there is an angle φ such that

p = cos(φ)O + sin(φ)(bO)= q(b,φ)O

(see Fig. 16.3, left). Therefore, by Lemma 16.3,

q(b, θ)p = q(b, θ)q(b,φ)O = q(b, θ + φ)O

= cos(θ + φ)O + sin(θ + φ)(bO).

Thus the effect of multiplication by q(b, θ) on the mass-points in the plane b⊥ =
span{O,bO} is just counterclockwise rotation through the angle θ . �

16.4.3 Sandwiching

To facilitate our future discussions, we introduce the following notation. Let q be a
quaternion, and let p be a mass-point. Then
• Lq(p)= qp left multiplication by q ,
• Rq(p)= pq right multiplication by q ,
• Tq(p)= qpq = LqRq((p)) sandwiching p between two copies of q ,
• Sq(p)= qpq∗ = Lq(Rq∗(p)) sandwiching p between q and q∗.
Here for each quaternion q = c1 + c2e1e2 + c3e2e3 + c4e3e1, the conjugate q∗ is
defined by q∗ = c1 − c2e1e2 − c3e2e3 − c4e3e1. In particular, if q(b, θ)= cos(θ)+
sin(θ)b, then

q∗(b, θ)= cos(θ)− sin(θ)b= q(b,−θ). (16.14)

The functions Lq(p) and Rq(p) are linear transformations on the vector space of
mass-points because multiplication distributes through addition. The sandwiching
operators Tq(p) and Sq(p) are also linear transformations because they are com-
posites of linear transformations.

16 A Homogeneous Model for 3-Dimensional Computer Graphics 341

We now summarize the geometric effects of left and right multiplication by the
unit quaternions

q(b, θ)= cos(θ)+ sin(θ)b

on vectors in the plane b‖ and on mass-points in the complementary plane b⊥.

Proposition 16.1 (Left Multiplication)
i. Lq(b,θ)(v)= q(b, θ)v rotates vectors v ∈ b‖ by the angle θ in the plane b‖.

ii. Lq(b,θ)(p)= q(b, θ)p rotates mass-points p ∈ b⊥ by the angle θ in the plane b⊥.

Proof These results follow immediately from Corollaries 16.2 and 16.3. �

Proposition 16.2 (Right Multiplication)
i. Rq(b,θ)(v)= vq(b, θ) rotates vectors v ∈ b‖ by the angle −θ in the plane b‖.

ii. Rq(b,θ)(p) = pq(b, θ) rotates mass-points p ∈ b⊥ by the angle θ in the
plane b⊥.

Proof These results also follow immediately from Corollaries 16.2 and 16.3. �

By Propositions 16.1 and 16.2 both left and right multiplication by the unit
quaternion q(b, θ) represent double isoclinic rotations in the four-dimensional space
of mass-points, that is, there are two mutually orthogonal planes in four dimensions
where vectors are rotated by the same angle θ [8]. For left multiplication, the rota-
tions in both planes are counterclockwise, but for right multiplication, the rotation
in one plane is counterclockwise, while the rotation in the other plane is clock-
wise; thus left and right multiplication by the unit quaternions q(b, θ) generate left
and right screws in the four-dimensional space of mass-points [3]. To generate sim-
ple rotations—rotations in a single plane—in the four-dimensional space of mass-
points, we need to use sandwiching.

Proposition 16.3 (Sandwiching by Sq(b,θ))
i. Sq(b,θ)(v)= q(b, θ)vq∗(b, θ) rotates vectors v ∈ b‖ by the angle 2θ in the plane

b‖.
ii. Sq(b,θ)(p)= q(b, θ)pq∗(b, θ) is the identity on mass-points p ∈ b⊥.

Proof These results follow immediately from Propositions 16.1 and 16.2 and
Eq. (16.14). �

Proposition 16.4 (Sandwiching by Tq(b,θ))
i. Tq(b,θ)(v)= q(b, θ)vq(b, θ) is the identity on vectors v ∈ b‖.

ii. Tq(b, θ)(p)= q(b, θ)pq(b, θ) rotates mass-points p ∈ b⊥ by the angle 2θ in the
plane b⊥.

Proof These results follow immediately from Propositions 16.1 and 16.2. �

342 R. Goldman

16.5 Rotation, Reflection, and Perspective Projection

Applying sandwiching to compute rotation and reflection on vectors is a well-known
technique in Clifford Algebra. Since our model of Clifford Algebra includes points
as well as vectors, here we shall also extend these standard results on rotation and
reflection from vectors to points. Our proofs, however, are more intuitive than the
standard proofs, since we shall take advantage of what we already know about the
simple effects of the sandwiching maps Tq(b,θ) and Sq(b,θ) on the planes b‖ and b⊥.
Using sandwiching to compute perspective projection seems to be new. We are able
to employ sandwiching to perform perspective projection only because we have
adopted a rather unconventional interpretation of the pseudoscalars and because in
addition to the classical sandwiching maps Sq(b,θ), we also have available the sand-
wiching maps Tq(b,θ).

16.5.1 Rotation

Rotations in three dimensions are typically specified by an axis of rotation and
an angle of rotation. But in R3 planes are dual to vectors, so instead of speci-
fying an axis of rotation, we can specify a plane of rotation, a plane perpendic-
ular to the axis of rotation. Rotation mostly occurs in this rotation plane, since
a vector is rotated around an axis of rotation by rotating its orthogonal pro-
jection in the plane of rotation. In Clifford Algebra, planes are represented by
bivectors. Therefore here we shall specify a rotation by a bivector b and an an-
gle θ . The plane of rotation is the plane b‖, and the axis of rotation is the vec-
tor bO .

To rotate a vector v around the axis vector bO , we shall decompose v into two
components v‖ and v⊥ such that

v = v‖ + v⊥,

where

v‖ = component of v in b‖,
v⊥ = component of v perpendicular to b‖

(see Fig. 16.4(a)). Since v⊥ is perpendicular to the plane of rotation b‖, the vector
v⊥ is not altered by rotation. Hence, after rotation,

vnew⊥ = v⊥.

Thus, to compute the effect of rotation on v, we need only compute the ef-
fect of rotation on v‖. Now v‖ lies in the plane b‖; moreover, we showed in
Sect. 16.4.1 that bv‖ is perpendicular to v‖, has the same length as v‖, and

16 A Homogeneous Model for 3-Dimensional Computer Graphics 343

Fig. 16.4 (a) Decomposing
a vector v into components
parallel (v‖) and
perpendicular (v⊥) to the
plane of rotation (left); and
(b) rotation in the plane of
rotation (right)

also lies in the plane b‖ (see Fig. 16.3, right). Hence, after rotation by the an-
gle θ ,

vnew‖ = (cos θ)v‖ + (sin θ)bv‖

(see Fig. 16.4(b)). Therefore, by linearity, after rotation,

vnew = vnew⊥ + vnew‖ = v⊥ + (cos θ)v‖ + (sin θ)bv‖. (16.15)

To rotate points, let O be a point on the axis of rotation. The choice of the origin
is arbitrary, so we shall identify O with the origin of our coordinate system. Since
P =O + (P −O), by linearity, after rotation,

P new =Onew + (P −O)new =O + (P −O)new. (16.16)

Now let us interpret these results in the four-dimensional space of mass-points.
In the space of mass-points, the axis line is represented by the plane of b⊥ spanned
by {O,bO}, since every mass-point

p = cO + sbO ≡O + s

c
bO

in this plane in four dimensions lies on the line through the point O in the direction
of the vector bO in three dimensions (see Sect. 16.4). The plane of vectors in three
dimensions perpendicular to the axis vector bO is represented by the plane b‖ in
four dimensions.

To rotate points or vectors in three dimensions around the line through the point
O parallel to the axis vector bO , we need to keep the plane b⊥ fixed (since the point
O and the axis vector bO are fixed by rotation) and to rotate vectors in the plane
b‖ by the angle θ (since these vectors are perpendicular to the axis vector in three
dimensions). But by Proposition 16.3 these results are precisely the effects of the
sandwiching map Sq(b,θ/2). Thus we are led to the following theorem.

344 R. Goldman

Theorem 16.1 (Sandwiching with Conjugates Rotates Points and Vectors in 3-D)
Let
• b= a unit bivector,
• v = a vector in three dimensions,
• P = a point in three dimensions.
Then
i. Sq(b,θ/2)(v)= q(b, θ/2)vq∗(b, θ/2) rotates v by the angle θ around the axis bO .

ii. Sq(b,θ/2)(P) = q(b, θ/2)Pq∗(b, θ/2) rotates P by the angle θ around the line
passing through the point O parallel to the vector bO .

Proof To prove i, let v‖ be the component of v in b‖, and let v⊥ be the component
of v perpendicular to b‖. Then, by Proposition 16.3,
• Sq(b,θ/2)(v⊥)= q(b, θ/2)v⊥q∗(b, θ/2)= v⊥,
• Sq(bθ/2)(v‖) = q(b, θ/2)v‖q∗(b, θ/2) = cos(θ)v‖ + sin(θ)bv‖ rotates v‖ by the

angle θ in the plane b‖.
Therefore, since Sq(b,θ/2) is a linear transformation and v = v⊥ + v‖,

Sq(b,θ/2)(v)= Sq(b,θ/2)(v⊥)+ Sq(b,θ/2)(v‖)= v⊥ + cos(θ)v‖ + sin(θ)bv‖.

Hence by Eq. (16.15) sandwiching has the same effect on v as rotating v in three
dimensions by the angle θ around the axis vector bO .

To prove ii, observe that since P is a point in affine space,

P =O + (P −O).

But
• Sq(b,θ/2)(O)=O (Proposition 16.3),
• Sq(bθ/2)(P − O) rotates the vector P − O by the angle θ around the axis bO

(part i).
Therefore, since Sq(b,θ/2) is a linear transformation and P =O + (P −O),

Sq(b,θ/2)(P)=O + Sq(b,θ/2)(P −O).

Hence, by part i and Eq. (16.16), sandwiching has the same effect on P as rotating
P in three dimensions by the angle θ around the line passing through the point O
parallel to the vector bO . �

16.5.2 Mirror Image

Suppose that we want to mirror a vector v in a plane specified by a bivector b. To
compute the effect of this reflection on the vector v, we once again decompose v

into two components v‖ and v⊥ where
• v‖ = component of v parallel to b‖,
• v⊥ = component of v perpendicular to b‖.

16 A Homogeneous Model for 3-Dimensional Computer Graphics 345

Since v‖ lies in the mirror plane, the vector v‖ is not altered by reflection. Hence,
after reflection,

vnew‖ = v‖.

Thus to compute the effect of reflection on v, we need only compute the effect of
reflection on v⊥. But reflection simply reverses the direction of v⊥, so

vnew⊥ =−v⊥.

Therefore, by linearity, after reflection,

vnew = v‖ − v⊥. (16.17)

To find the mirror image of points in a plane, let O be a point in the mirror plane.
Again since the choice of the origin is arbitrary, we shall identify O with the origin
of our coordinate system. Since P =O + (P −O), by linearity, after reflection,

P new =Onew + (P −O)new =O + (P −O)new. (16.18)

To reflect vectors in three dimensions in the plane b‖, we need to keep vectors
in the plane b‖ fixed and negates vectors perpendicular to the plane b‖. But notice
that by Proposition 16.4 the maps Tq(b,θ) are the identity on vectors in the plane b‖.
Therefore, to compute the mirror image of vectors in the plane b‖, we need only
find an angle θ for which Tq(b,θ) maps the normal vector bO to −bO (or equiva-
lently rotates bO by the angle π). Since by Proposition 16.4 the map Tq(b,θ) rotates
mass-points in the plane b⊥ = span{O,bO} by the angle 2θ , the angle we seek is
θ = π/2. But

q(b,π/2)= cos(π/2)+ sin(π/2)b= b.

Therefore we are led directly to the following result.

Theorem 16.2 (Sandwiching with Unit Bivectors Reflects Vectors in 3-D) Let
• b= a unit bivector,
• v = a vector in three dimensions.
Then
• Tb(v)= bvb=−Sb(v) is the mirror image of v in the plane b‖.

Proof Let v‖ be the component of v in b‖, and let v⊥ be the component of v perpen-
dicular to b‖. Since b = cos(π/2)+ sin(π/2)b = q(b,π/2), it follows by Proposi-
tion 16.4 that
• Tb(v⊥)= bv⊥b= q(b,π/2)v⊥q(b,π/2)= Tq(b,π/2)(v⊥)=−v⊥,
• Tb(v‖)= bv‖b= q(b,π/2)v‖q(b,π/2)= Tq(b,π/2)(v‖)= v‖.
Therefore, since Tb is a linear transformation and v = v‖ + v⊥,

Tb(v)= Tb(v‖)+ Tb(v⊥)= v‖ − v⊥.

346 R. Goldman

Hence by Eq. (16.17) sandwiching with b has the same effect on v as reflecting v in
three dimensions in the plane b‖. �

Since by Theorem 16.1 the sandwiching maps Sq(b,θ/2) can be used to rotate
points as well as vectors in three dimensions around lines through the origin O ,
Theorem 16.2 seems to invite us to use the sandwiching maps Tb to compute the
mirror image of points in planes b‖ passing through the origin O . But recall that
unlike the transformations Sq(b,θ/2), the maps Tb are not the identity on the plane
b⊥ in four dimensions spanned by {O,bO}. Indeed, even though the map Tb is the
identity on the vectors v in the plane b‖, we find that

Tb(O)= bOb=−O �=O.

Therefore Tb(P) is not the identity on the affine plane in three dimensions through
the point O is perpendicular to the vector bO . Thus, perhaps contrary to intuition,
sandwiching a point P with the unit bivector b is not the mirror image in three
dimensions of the point P in the plane b‖ passing through the origin O . Rather by
linearity,

Tb(P)= Tb
(
O + (P −O)

)= Tb(O)+ Tb(P −O)=−O + b(P −O)b,

so

Tb(P)≡O − b(P −O)b=O + b(P −O)b∗ = Sq(b,π/2)(P).

Hence, by Theorem 16.2, sandwiching a point P between two copies of a bivector
b rotates the point P through the angle π around the line passing through the point
O parallel to the vector bO .

Thus sandwiching with b does not reflect points P in the plane b‖ passing
through the origin O . Nevertheless we can compute the mirror image of points in
this plane by sandwiching using the following approach.

Theorem 16.3 (Sandwiching P − 2O with the Bivector b Reflects P in the Plane
b‖ Passing Through the Point O) Let
• b= a unit bivector,
• P = a point in three dimensions.
Then
• Tb(P − 2O) = b(P − 2O)b is the mirror image of the point P in the plane b‖

passing through the point O .

Proof Clearly,

P − 2O = (P −O)−O.

Now

16 A Homogeneous Model for 3-Dimensional Computer Graphics 347

• Tb(−O)=−bOb=−b2O =O ,
• Tb(P −O)= b(P −O)b.
Therefore, since Tb is a linear transformation and P − 2O = (P −O)−O ,

Tb(P − 2O)=O + b(P −O)b,

which by Theorem 16.3 and Eq. (16.18) is the mirror image of the point P in the
plane b‖ passing through the point O . �

If we introduce rectangular coordinates, then P = (p1,p2,p3,1) and O =
(0,0,0,1), so

P − 2O = (p1,p2,p3,−1).

Thus, by Theorem 16.3, to find the mirror image of a point P in the plane b‖ passing
through the point O , we simply negate the fourth coordinate, the mass, of P , and
sandwich the resulting mass-point between two copies of b.

Notice that in Theorems 16.2 and 16.3, to compute reflections, we sandwich
points and vectors between two copies of the bivector b rather than, as traditional
in most presentations of Clifford Algebra, between two copies of the normal vector
bO . That is, we invoke simple rotations in four dimensions represented by bivectors
instead of reflections in three dimensions represented by versors. Of course, these
results are equivalent because by Eqs. (16.9) and (16.10)

bvb= (bO)v(bO).

Nevertheless, our focus is on simple rotations in four dimensions as the primary op-
erators, whereas the traditional approach emphasizes reflections (versors) in three
dimensions as the primary operators. In our approach, reflections in three dimen-
sions are special rotations in four dimensions; in the traditional approach, rotations
in three dimensions (rotors) are products of reflections (versors) in three dimensions.

Next we shall display the full power of our approach by using our understanding
of simple rotations in four dimensions to represent perspective projections in three
dimensions.

16.5.3 Perspective Projection

So far we have investigated the maps Tq(b,θ)(v) that sandwich the vector v between
two copies of the unit quaternion q(b, θ) only when q(b, θ) = b, that is, only for
θ = π/2. By Theorem 16.2, Tb(v) is the mirror image of the vector v in the plane b‖.
We are now going to study the maps Tq(b,θ) for θ �= π/2.

By Proposition 16.4, Tq(b,θ) is the identity on the plane b‖. Therefore we should
expect that the map Tq(b,θ) represents some kind of projection into the plane b‖. We
shall now show that the maps Tq(b,θ) can be used to compute perspective projections

348 R. Goldman

in three dimensions onto a plane parallel to b‖. The angle θ parameterizes the dis-
tance d = |csc(θ)| ≥ 1 from the eye point to the plane of projection. When θ = π ,
the eye recedes to infinity, and the map Tq(b,−θ/2)(v)= T−b(v) computes the mirror
image of the vector v in the plane b‖ (see Sect. 16.5.2).

The following proposition is stated and proved only for a special position of the
eye point and the plane of projection. In Theorem 16.4 we shall generalize this result
to arbitrary positions of the eye point and the plane of projection.

Proposition 16.5 (Sandwiching Vectors to the Eye with q(b,−θ) Gives Perspec-
tive) Suppose that 0 < θ < π , and let
• b= a unit bivector,
• E(b, θ)=O + (cot(θ)− csc(θ))bO = eye point,
• P = a point in three dimensions.
Then
• Tq(b,−θ/2)(P −E)= q(b,−θ/2)(P −E)q(b,−θ/2) is a mass-point, where:

– the point is located at the perspective projection of the point P from the
eye point E(b, θ) onto the plane b‖(θ) passing through the point O +
cot(θ)(bO)≡ Tq(b,−θ)(bO);

– the mass is equal to d sin(θ), where d is the distance of the point P from the
plane through the eye point E(b, θ) perpendicular to the vector bO .

Proof Let P − E = d(bO) + v, where d is a scalar and v ⊥ bO (see Fig. 16.5).
Since by Proposition 16.4 the map Tq(b,−θ/2) rotates mass-points in the plane b⊥ =
span{O,bO} by the angle −θ :

Tq(b,−θ/2)
(
d(bO)

)= d cos(π/2− θ)O + d sin(π/2− θ)(bO)

= d sin(θ)O + d cos(θ)(bO).

Moreover, again by Proposition 16.4, the map Tq(b,−θ/2) is the identity on vectors
in the plane b‖, so

Tq(b,−θ/2)(v)= v.

Therefore, by linearity,

Tq(b,−θ/2)(P −E)= Tq(b,−θ/2)
(
d(bO)+ v

)

= d sin(θ)O + d cos(θ)(bO)+ v

≡O + cot(θ)(bO)+ csc(θ)
v

d
.

Since by construction

O + cot(θ)(bO)=E(b, θ)+ csc(θ)(bO),

16 A Homogeneous Model for 3-Dimensional Computer Graphics 349

Fig. 16.5 By similar
triangles, the point
P new =O + cot(θ)(bO)+
csc(θ) v

d
=E + csc(θ)(bO)+

csc(θ) v
d

is the perspective
projection of the point P
from the eye point E onto the
plane b‖ passing through the
point Q=O + cot(θ)(bO)

it follows by similar triangles (see Fig. 16.5) that the point corresponding to the
mass-point Tq(b,−θ/2)(P −E) is the perspective projection of the point P from the
eye point E(b, θ) onto the plane b‖(θ) passing through the point O + cot(θ)bO .
Moreover, the mass is d sin(θ), where d is the distance of the point P from the
plane through the eye point E(b, θ) perpendicular to the vector bO . �

Notice that since the mass of the mass-point that we compute with sandwiching
is a constant (sin(θ)) times the distance d from the point P to the plane through the
eye E parallel to the plane of projection, we can use this sandwiching formula for
perspective projection to detect hidden surfaces: if two points project to the same
point, then the smaller the mass, the closer the surface point is to the eye. Thus even
though we are projecting a point onto a plane in three dimensions, no information is
actually lost: distance is simply converted into mass. Since sandwiching represents
a simple rotation in four dimensions, this general sandwiching formula for perspec-
tive projection allows us to use 4× 4 orthogonal matrices to compute perspective
projection; for details, see [7].

Proposition 16.5 is stated and proved only for a special configuration of the eye
point E(b, θ) and the plane of projection b‖(θ). We shall call this position of the eye
point E and the plane of projection b‖ the canonical position for the angle θ and the
unit bivector b. Now the rather astonishing observation is that a simple variant of
Proposition 16.5 remains valid even if the eye point E and the plane of projection
b‖ are in arbitrary rather than in canonical position.

Projecting a scene from an eye point E into a plane S and then translating the
projection by a vector v into the plane S + v is equivalent to first translating the
eye and the entire scene by the vector v and then projecting from the translated
eye point E + v into the translated plane S + v. Thus translation and projection
commute. Therefore we have the following generalization of Proposition 16.5.

Theorem 16.4 (Sandwiching Vectors to the Eye with q(b,−θ/2) Gives Perspective)
Suppose that 0 < θ < π , and let
• E = eye point,
• S = plane of projection parallel to a bivector b,

350 R. Goldman

• d = csc(θ) = distance from the eye point to the plane of projection along the
normal bO ,
• P = a point in three dimensions.
Then
• Tq(b,−θ/2)(P −E)= q(b,−θ/2)(P −E)q(b,−θ/2) is a mass-point, where:

– the point is located at the perspective projection of the point P from the eye
point E onto the plane S translated by the vector E(b, θ)−E to the canonical
plane b‖(θ);

– the mass is equal to d sin(θ), where d is the distance of the point P from the
plane through the eye point E perpendicular to the unit normal bO .

Proof This result follows immediately from Proposition 16.5 and the observation
that translation and projection commute. �

By Theorem 16.4, if we display the points generated by the sandwiching trans-
formation

Tq(b,−θ/2)(P −E)= q(b,−θ/2)(P −E)q(b,−θ/2),

the scene will appear in perspective. But the scene materializes in the canonical
plane rather than in the specified plane of projection. Thus for fixed values of the
unit bivector b and the scalar distance d = csc(θ), the scene always appears in the
identical plane independent of the absolute position of the eye point E and the plane
of projection S. Only the relative positions of E and S matter, not their absolute lo-
cations relative to a fixed coordinate system. Typically we are interested only in
viewing the scene in perspective; translating the plane of perspective does not mat-
ter. Thus we can hard code the location of the viewing plane b‖(θ), depending only
on the values of b and θ and not worry about the absolute locations of the eye point
E and the plane of projection S.3

16.6 Summary

In the standard approach to the Clifford Algebra for three dimensions the basic
operations are reflections: every rotation (rotor) in three dimensions is the product of
two reflections (versors) in three dimensions. In our homogeneous model of Clifford
Algebra, rotations in three dimensions still factor into pairs of reflections in three
dimensions. Nevertheless, in our homogeneous model, the basic operations are not
reflections in three dimensions, but rather simple rotations in four dimensions.

3Editorial note: Note that this chapter gives a geometric algebra description of a perspective pro-
jection onto a plane. For a geometric algebra representation of a general projective transformation
in 3-D, the reader is referred to Chap. 13 in this volume, which uses R

3,3.

16 A Homogeneous Model for 3-Dimensional Computer Graphics 351

For any bivector b, rotations in four dimensions that leave the plane b⊥ fixed
correspond to rotations in three dimensions in the plane b‖; rotations in four dimen-
sions that leave the plane b‖ fixed correspond to either reflections or perspective
projections in three dimensions. Thus in our homogeneous model of Clifford Al-
gebra rather than think of reflections as the basic operations, it is more natural to
think of reflections in three dimensions as special rotations in four dimensions. The
main strength of our technique is that this approach allows us to model perspective
projections as basic operations in the Clifford Algebra.

The main weakness of our method is that our approach does not model transla-
tions. In the conformal model, every translation is the product of two reflections in
parallel planes. But in our model there is no way to represent translation. Indeed,
our model is not translation invariant; the pseudoscalar O =−e1e2e3 is rotation in-
variant, but O is not translation invariant. In effect, we have traded the capacity to
perform translations for the ability to perform perspective projections.

16.7 Exercises

16.1 Let L be an axis of rotation through the origin O parallel to the unit vector u.
Using Theorem 16.1 from Sect. 16.5.1, derive the following Formula of Rodrigues
for rotating a vector v or a point P around the axis line L through the angle θ :

vnew = (cos θ)v+ (1− cos θ)(v · u)u+ (sin θ)u× v,

P new =O + (cos θ)(P −O)+ (1− cos θ)
(
(P −O) · u)u

+ (sin θ)u× (P −O).

[Hint: Let b be the bivector representing the plane of rotation through the ori-
gin O , perpendicular to the axis line L. Then u= bO .]

16.2 Let M be a mirror plane through the origin O perpendicular to the unit vec-
tor u. Using Theorem 16.2 from Sect. 16.5.2, show that the mirror image of a vector
v or a point P in the plane M is given by:

vnew = v− 2(v · u)u,
P new =O + 2

(
(P −O) · u)u.

[Hint: Let b be the bivector representing the mirror plane through the origin O ,
perpendicular to the unit vector u. Then u= bO .]

16.3 Suppose that the eye is located along the z-axis at the point E = (0,0,1), and
the perspective plane S is the xy-plane. Using Proposition 16.5 from Sect. 16.5.3,
show that in this case perspective projection maps the point P = (x, y, z) to the
point P new = (x

1−z ,
y

1−z ,0).

352 R. Goldman

Acknowledgements I would like to thank Leo Dorst and Steve Mann for reading a preliminary
draft of this manuscript and providing valuable comments, criticisms, and suggestions. I would also
like to thank the anonymous referees for their constructive criticisms. This work is much improved
as a result of the observations of these people. Any mistakes that still remain are, of course, entirely
my own.

References

1. Doran, C., Lasenby, A.: Geometric Algebra for Physicists. Cambridge University Press, Cam-
bridge, UK (2003)

2. Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science: An Object-
Oriented Approach to Geometry. Morgan Kaufmann, Amsterdam (2007)

3. Du Val, P.: Homographies, Quaternions and Rotations. Oxford Mathematical Monographs.
Clarendon, Oxford (1964)

4. Foley, J., van Dam, A., Feiner, S., Hughes, J.: Computer Graphic: Principles and Practice, 2nd
edn. Addison Wesley, Reading (1990)

5. Goldman, R.: On the algebraic and geometric foundations of computer graphics. Trans. Graph.
21, 1–35 (2002)

6. Goldman, R.N.: Understanding quaternions. Graph. Models 73, 21–49 (2011)
7. Goldman, R.N.: Modeling perspective projections in 3-dimensions by rotations in 4-

dimensions. Trans. Vis. Comput. Graph. (2010, to appear)
8. Mebius, J.E.: A matrix based proof of the quaternion representation theorem for four-

dimensional rotations. http://arXiv:math/0501249v1 [math.GM] (2005)
9. Perwass, C.: Geometric Algebra with Applications in Engineering. Springer, Berlin (2009)

http://arXiv:math/0501249v1

17Rigid-Body Transforms Using Symbolic
Infinitesimals

Glen Mullineux and Leon Simpson

Abstract
There is a requirement to be able to represent three-dimensional objects and
their transforms in many applications, including computer graphics and mech-
anism and machine design. A geometric algebra is constructed which can model
three-dimensional geometry and rigid-body transforms. The representation is ex-
act since the square of one of the basis vectors is treated symbolically as being
infinite. The non-zero, even-grade elements of the algebra represent precisely all
rigid-body transforms. By allowing the transform to vary, smooth motions are
obtained. This can be achieved using Bézier and B-spline combinations of even-
grade elements.

17.1 Introduction

There are a number of applications, including computer graphics, machine design
and robotics, where there is a need to represent physical objects and to be able to
manipulate these. The objects lie in three-dimensional Euclidean space, and manipu-
lation is often done in terms of transforms of the space. As the objects do not distort,
these transformations are combinations of rotations and translations. By varying the
displacements correctly, smooth spatial motions of objects can be obtained.

A number of techniques are available [3]. One well-established approach is to
represent geometry in terms of vectors, using homogeneous coordinates. This allows
transformations of 3D Euclidean space to be created using 4×4 matrices, which are
used to multiply the vectors.

G. Mullineux (�) · L. Simpson
Innovative Design and Manufacturing Research Centre, Department of Mechanical Engineering,
University of Bath, Bath BA2 7AY, UK
e-mail: g.mullineux@bath.ac.uk

L. Simpson
e-mail: l.c.simpson@bath.ac.uk

L. Dorst, J. Lasenby (eds.), Guide to Geometric Algebra in Practice,
DOI 10.1007/978-0-85729-811-9_17, © Springer-Verlag London Limited 2011

353

mailto:g.mullineux@bath.ac.uk
mailto:l.c.simpson@bath.ac.uk
http://dx.doi.org/10.1007/978-0-85729-811-9_17

354 G. Mullineux and L. Simpson

If objects are required to move, this can be achieved by applying a varying trans-
form [1, 10]. In particular, B-spline techniques can be applied to create matrix func-
tions to generate motions [10].

The requirement of speed and stability for some computer-generated motions,
particularly in the games industry, has seen a revival of interest in alternative repre-
sentations. Quaternions have mathematical properties which allow them to handle
smooth rotations [11, 17, 23]. In particular, they are commonly used to model me-
chanical systems involving revolute joints [4, 9]. They are closely related to screw
displacements and Plücker coordinates [5] which have additionally been used to
generate motions by extending Bézier and related techniques for smooth curves [6,
8, 16].

However, quaternions do not easily represent translations and ways to extend
them have been investigated. Dual quaternions [20] can be created by introducing
an additional element whose square is zero.

Quaternions lie naturally within (suitably formulated) geometric algebras. In
such an algebra [2], double quaternions can be defined and translations handled
as rotations dependent upon a large radius R, chosen to be sufficiently large that the
error in the approximation is less than a prescribed tolerance value. An alternative
approach [18] is to define the square of one of the basis vectors of the algebra to
be zero (which provides the geometric algebra R3,0,1). This gives a representation
of three-dimensional space together with transforms but has the disadvantage that
vectors in the algebra correspond to planes (rather than points).1

In this chapter, interest is in obtaining a more natural representation of three-
dimensional Euclidean space and its rigid-body transforms by use of a geometric
algebra. To this end, an algebra, G4, is created with four basis vectors so that a
representation of the projective space RP

3 is obtained. It is effectively this space
which is used when describing transforms in terms of 4× 4 matrices.

Section 17.2 discusses the construction of G4. One of its basis vectors is chosen
to have a square which is infinite (so that G4 behaves as a dual of R3,0,1), and
this is achieved by defining it to be the reciprocal of a small quantity ε. This is
treated symbolically through required calculations, so that the scalars involved are
essentially power series in ε.

Section 17.3 discusses the representation of geometry and transforms, and shows
that the non-zero even-grade elements generate isometries of three-dimensional
space. These are seen to be precisely combinations of rotations and translations
in Sect. 17.4, which also discusses the relation to Chasles’s theorem.

Since a Bézier or B-spline combination of even-grade elements is again of even
grade, this opens the possibility of creating continuously varying transforms and
hence smooth motions of objects [13]. This is presented in Sect. 17.5, which also
gives properties of first degree Bézier motions which form the basic step in the de
Casteljau algorithm.

1Editorial note: However, this representation is explored in detail in Chap. 15 (this volume).

17 Rigid-Body Transforms Using Symbolic Infinitesimals 355

17.2 Geometric Algebra G4G4G4

This section considers the construction of the geometric algebra, here called G4,
which is used to model the projective space RP

3. The approach used extends to
other dimensions, but, for simplicity, it is here restricted to representing the space
which relates to three-dimensional Euclidean geometry.2

The starting point for the construction is a real vector space of dimension four.
Suppose that a basis consists of the vectors e0, e1, e2, e3. The space is extended to
allow a multiplication of the basis vectors to be defined. The new basis is defined
comprising the 16 vectors eσ , where σ is a subset of the set {0,1,2,3}. Strictly
speaking, σ is an ordered subset, but, if σ and τ are two such subsets with the same
members, then eσ and eτ are taken as being identical if τ is an even permutation
of σ , and eτ = −eσ if it is an odd permutation. The multiplication is then defined
by saying that eσ is the product of the ei with i ∈ σ , with the ordering implied by σ

preserved. Thus, for example,

e123 = e1e2e3.

Note that the multiplication is not generally commutative. In particular, for original
basis vectors ei and ej with i �= j ,

ej ei = eji =−eij =−eiej .
One of the new basis elements is e∅ where ∅ is the empty set. The multiplication

defines e∅eσ to be eσ . Thus e∅ acts as the identity, and it is regarded as being the
same as the real number 1.

The typical member a of the geometric algebra G4 is a linear combination,

a =
∑

σ

aσ eσ , (17.1)

of the basis elements where the aσ are scalars. Addition of such elements is carried
out in the obvious way, and their multiplication is the natural extension from the
definition for the basis elements.

One thing remains to be considered and that is the squares of the original basis
vectors. For three of these, their squares are taken to be unity:

e2
1 = e2

2 = e2
3 = 1.

The case of e0 is special. Taking e2
0 = 1 means that the algebra represents four-

dimensional Euclidean space. An alternative, which yields a projective space, is to
take e2

0 to be zero [18]. However, in this representation, the original basis vectors

2Editorial note: In its basic definitions of geometric algebra, this chapter repeats some of the ele-
mentary constructions given in given in the tutorial (Chap. 21) in this volume. Since the anomalous
element e0 changes some of the details crucially, we kept this re-explanation.

356 G. Mullineux and L. Simpson

e1, e2, e3 correspond to planes rather than points which seems unnatural. (Addition-
ally, in the presentation in [18], a form of the “Hodge star” operator needs to be
introduced when some geometric objects are combined; the corresponding manipu-
lation in G4 can be done entirely using the defined multiplication without the need
for new operators.) So the approach used here is to try to take e2

0 to be infinite. This
is achieved by setting

e2
0 = ε−1,

where ε is a (vanishingly) small real quantity.3

This means that ε regularly appears in manipulations of expressions and it needs
to be carried through these. Once a calculation is complete, higher powers of ε can
be disregarded, and this is often equivalent to setting ε equal to zero. An alternative
view is to regard the scalars aσ in the typical element, Eq. (17.1), as being a power
series in ε of the form

aσ =
∞∑

i=m
αiε

i, (17.2)

where the αi are real, and m is a finite (possibly negative) integer.
Elements whose squares are very small or large have been used elsewhere to

describe motions. For example, dual quaternions [17, 20] have an element whose
square is zero, and double quaternions [2, 17] approximate translations by rotations
acting over a large radius. This raises the question of how large is “large”. The im-
plementation used here overcomes this by treating ε as a symbol. The coefficients
aσ are regarded as formal power series and are implemented computationally as ar-
rays of the real numbers αi in Eq. (17.2). Addition, subtraction and multiplication of
such arrays is straightforward on a term-by-term basis. Division is achieved by use
of the power series expansion of (1+ x)−1. Entries corresponding to high powers
of ε are allowed to “drop off” the end of the array as the corresponding terms in the
series are small.

The definition of multiplication in G4 is now complete and the following are
some examples:

(1− e12)(e0 + e1)(1+ e12)

= (1− e12)(e0 + e0e12 + e1 + e1e12)

= e0 + e0e12 + e1 + e1e12 − e12e0 − e12e0e12 − e12e1 − e12e1e12

= e0 + e012 + e1 + e2 − e012 + e0 + e2 − e1

= 2(e0 + e2),

3Editorial note: This somewhat unusual construction may find its motivation in a limiting proce-
dure from curved spaces to flat Euclidean space, see Chap. 18.

17 Rigid-Body Transforms Using Symbolic Infinitesimals 357

(e0 − e1 + e23)(1+ εe01 + e123)

= e0 + εe2
0e1 + e0e123 − e1 − εe1e01 − e1e123 + e23 + εe23e01 + e23e123

= e0 + e1 + e0123 − e1 + εe0 − e23 + e23 + εe0123 − e1

= (1+ ε)e0 − e1 + (1+ ε)e0123

3 e0 − e1 + e0123.

Here, the symbol 3 is used to indicate that there is equality of the expressions in
the limit as ε tends to zero; the expressions on either side of the symbol differ by
terms involving (positive) powers of ε, and these have been ignored since they are
small.

The grade of the basis element eσ is the size of the subset σ . If a general element
of G4 is a combination only of basis elements of a single grade, then that is also the
grade of the element. Elements of grade 1 are called vectors, elements of grade 2
are bivectors, and those of grade 3 are trivectors. Note that the parity of the grade
behaves naturally under multiplication. So, for example, the product of two elements
of odd grade has even grade.

The only elements in G4 of grade 4 are scalar multiples of the basis element e0123.
This basis vector is called the pseudoscalar, and, for convenience, it is denoted by I .
The set of elements of the form α + βI , where α and β are scalars, is closed under
addition and multiplication. An element of this form is called a pseudoscalar.4

The reverse of the basis element eσ is the element obtained by reversing the
order of the entries in the subset σ . The effect is to leave the element unchanged if
its grade is 0, 1 or 4, and to change its sign if the grade is 2 or 3.

More generally, the reverse of the typical element a of G4, Eq. (17.1), is obtained
by reversing each of the basis elements. The reverse of a is denoted by ã. The
following gives an example:

(e1 + εe01 + e23 + e123)
∼ = e1 + εe10 + e32 + e321

= e1 − εe01 − e23 − e123.

If a and b are two elements, then the reverse of their product is the product of their
reverses in the other order:

(̃ab)= b̃ã.

An inner and outer product are now introduced. It should be noted that the definition
of the outer product taken here is different to the one used by other authors (in that
it does not extract the component of highest grade). The versions given here take the
expressions for the products of a pair of vectors [7, 21] and use them for any pair
of elements. They are used because of their simplicity (they are purely algebraic

4Editorial note: This deviates from the usage of the term “pseudoscalar” in an n-D algebra else-
where in this book, where it is restricted to pure n-blades.

358 G. Mullineux and L. Simpson

combinations) and the fact that they have proved useful in dealing with G4 (due
partly to its low dimension).

The inner and outer products of two elements a and b are defined respectively by
the following expressions:

a · b= 1

2
(ab+ ba),

a ∧ b= 1

2
(ab− ba).

These have the expected distributive properties when additive combinations of ele-
ments are used, as in the following example:

(e0 − 3e1)∧ (e0 + e2)= (e0 ∧ e0)− 3(e1 ∧ e0)+ (e0 ∧ e2)− 3(e1 ∧ e2)

= 3e01 + e02 − 3e12.

The definitions allow the ordinary products of a and b to be expressed in terms of
the new products:

ab= (a · b)+ (a ∧ b), (17.3)

ba = (a · b)− (a ∧ b). (17.4)

Finally in this section, it is noted that G4 contains other well-known sets of numbers.
In fact these all lie within the “finite” part of G4, that is the set E3 consisting of
combinations of the eight basis elements which do not involve e0. Since e∅ = 1,
the real numbers form a subset of G4. Elements of the form α + βe12, where α and
β are scalars, form a subset isomorphic to the complex numbers with e12 taking
the role of the square root of −1. In this case, the reverse operation is the same as
complex conjugation. Lastly, the even grade elements of G4 which do not involve e0
are isomorphic to the ring of quaternions with the following correspondences for the
unit quaternions: i = e12, j = e31 =−e13, k = e23, so that, as required, the product
ijk becomes

ijk =−e12e13e23 =−e1e2e1e3e2e3 =−e1e1e2e2e3e3 =−1.

17.3 Geometry and Transforms

The vector p = p0e0 + p1e1 + p2e2 + p3e3 in G4 is used to represent the point
in three-dimensional space whose coordinates are (p1/p0,p2/p0,p3/p0). This as-
sumes of course that p0 is non-zero; if not, then what is represented is an ideal point
(that is a point at infinity). Clearly any (non-zero) scalar multiple of p represents the
same point. It is often convenient to assume that p0 = 1. Note that p0, and the other
coefficients, may not be just simply numbers, but instead combinations of powers

17 Rigid-Body Transforms Using Symbolic Infinitesimals 359

of ε as in Eq. (17.2). There may even be occasions when all the coefficients are
multiples of a power of ε which then cancels out when division by p0 takes place.

If p and q are two vectors in G4, then the bivector p∧q represents the line joining
the corresponding points [7, 12, 18]. This idea is not pursued further here except to
note that it enables the distance between the two points to be found. Suppose that
p = e0 + p1e1 + p2e2 + p3e3 and q = e0 + q1e1 + q2e2 + q3e3. Then

p ∧ q = (q1 − p1)e01 + (q2 − p2)e02 + (q3 − p3)e03

+ (p1q2 − p2q1)e12 + (p1q3 − p3q1)e13 + (p2q3 − p3q2)e23.

The inner product of p∧q with itself can now be formed. If d(p,q) is the Euclidean
distance between the points corresponding to p and q , then it is found that

d(p,q)2 = (q1 − p1)
2 + (q2 − p2)

2 + (q3 − p3)
2

=−ε(p ∧ q) · (p ∧ q). (17.5)

More generally, when the coefficients of e0 are not necessarily unity, the relation
becomes

d(p,q)2 = (p ∧ q) · (p ∧ q)/p · q.

Now consider transforms. Let S be any element of even grade. A map, FS , can
be defined whose action on any p ∈ G4 is given by

FS : p �→ S̃pS.

In the case where p is a vector, its image is an element of odd grade which is
equal to its own reverse. Hence the image is again a vector. So FS maps vectors to
vectors and hence induces a transform on three-dimensional space. Two examples
are now given.

Example Take S = c + se12, where c = cos θ and s = sin θ for some angle θ , and
let p be e0 + xe1 + ye2 + ze3. Manipulation shows that

S̃pS = e0 +
[(
c2 − s2)x − 2csy

]
e1 +
[
2csx + (c2 − s2)y

]
e2 + ze3

= e0 +
[
(cos 2θ)x − (sin 2θ)y

]
e1

+ [(sin 2θ)x + (cos 2θ)y
]
e2 + ze3, (17.6)

and the transform is a rotation through 2θ about the z-axis.

Example Now take S = 1+εe0u, where u ∈ E3 is a vector (not involving e0). Again
let p = e0 + q where q = xe1 + ye2 + ze3 ∈ E3; then

360 G. Mullineux and L. Simpson

S̃pS = (1− εu2 − εu · q)e0 + q + 2u− εuqu

3 p+ 2u. (17.7)

The terms which are multiples of ε are ignored in the final result since they are small
compared to other terms and they multiply elements within E3. The corresponding
transform is seen to be the translation given by twice the components of u.

When S = α+ εβI is a pseudoscalar, with α non-zero, the transform it generates
is the identity. This is because for any vector p ∈ G4,

S̃pS = (α + εβI)p(α + εβI)

= (α + εβI)(α − εβI)p

= (α2 − εβ2)p, (17.8)

which is a simply a scalar multiple of p and so represents the same point as p in
three-dimensional space.

The typical even-grade element of G4 has the form

S = c+ sb+ e0v+ γ I,

where c, s, γ are scalars, and b, v ∈ E3 are a bivector and vector respectively, with
b normalised so that b̃b= 1. Then

S̃S = (c2 + s2)− 2se0(b · v)+ 2cγ I − ε−1v2 + ε−1Iγ 2,

which is clearly non-finite (as ε tends to zero) unless both v and γ are multiples
of ε.

So instead take the following as the typical even-grade element:

S = c+ sb+ εe0v+ εγ I (17.9)

and then

S̃S = (c2 + s2)− 2εse0(b · v)+ 2εcγ I − εv2 + εIγ 2

3 (c2 + s2)− 2εse0(b · v)+ 2εcγ I. (17.10)

Thus S̃S is equivalent to the identity transform as in Eq. (17.8), and hence S̃

generates the inverse transform to S. Note that there is no need to assume that S̃S is
unity or indeed that it is purely scalar. It is however possible to normalise S so that
this becomes true. Suppose S̃S = λ+ εμI with λ= c2 + s2 > 0. Set

S1 = 1√
λ

[

1− εμI

2λ

]

S,

17 Rigid-Body Transforms Using Symbolic Infinitesimals 361

which is of even grade and has the property that S̃1S1 = 1. Since S1 is the product
of S and a pseudoscalar, S1 and S generate the same transform of three-dimensional
space.

In the exceptional case where λ= c2 + s2 = 0, both c and s are zero, and hence
IS = γ − I3v where I3 = e123. So IS is a combination of a scalar and a bivector
from E3 and can be normalised as before (unless γ = v = 0, in which case S is
zero).

The form of the map FS defined by S means that it preserves products. Assume
for simplicity that S̃S = 1, which also means that SS̃ = 1. Then the images of the
product of two elements a and b becomes

FS(ab)= S̃abS = S̃aSS̃bS = FS(a)FS(b),

which is the product of the images of the two elements.
Now suppose that p and q are two vectors in which the coefficients of e0 are

unity. Equation (17.5) says that (p ∧ q) · (p ∧ q) is scalar. This means that it is
unchanged by FS since S̃S = 1. Then, since products are preserved by FS ,

(p ∧ q) · (p ∧ q)= FS

(
(p ∧ q) · (p ∧ q)

)

= (FS(p)∧ FS(q)
) · (FS(p)∧ FS(q)

)
.

Equation (17.5) is again used and shows that the distance between p and q is the
same as that between their images. Thus FS preserves distances and so is an isome-
try.

This idea is further investigated in the next section where it is seen that the isom-
etry is a combination of a rotation and a translation and hence is a rigid-body trans-
form.

17.4 Rotations and Translations

In this section, the typical even-grade element S given by Eq. (17.9) is investigated.
Let I3 be the basis element e123 and set a =−bI3 so that a is a vector and b= aI3.
Recall that b is a unit bivector so that b̃b = 1. This means that a2 = 1. Since I3
commutes with all elements of E3, Eq. (17.10) becomes

S̃S = (c2 + s2)− 2εse0(a · v)I3 + 2εcγ I = (c2 + s2)− 2ε
[
cγ − s(a · v)]I.

It is assumed that S has been normalised so that S̃S = 1, and hence

c2 + s2 = 1, (17.11)

s(a · v)= cγ. (17.12)

In particular, this means that c= cos θ and s = sin θ for some angle θ .

362 G. Mullineux and L. Simpson

Consider the case in which v and γ are both zero, so that

S = c+ sb= c+ saI3. (17.13)

Its action on the vector p = e0 + λa where λ is a scalar is

S̃pS = (c− saI3)(e0 + λa)(c+ saI3)

= c2e0 − csae0I3 + λc2a + λcsI3 + csae0I3 + s2e0 − λcsI3 + λs2a

= e0 + λa = p,

so that p is unchanged by S. Now p represents the typical point on a line through the
origin. The transform leaves fixed every point on this line, and hence it is rotation
with the line as its axis. Further investigation shows that the angle of rotation is 2θ
(cf. Eq. (17.6)). This is the extension of the idea that, in complex numbers, exp(Iφ)
creates a rotation of the plane (through an angle φ). Indeed the element S given by
Eq. (17.13) can be written as S = exp(bθ).

A rotation about an axis through a general point e0+p is now constructed where
p ∈ E3. This is achieved by translating e0 + p to the origin, performing the rotation
and then translating back. The element P for the translation of the origin to p is
P = 1+ 1

2e0p (as in Eq. (17.7)), and so the rotation required needs the following
even-grade element:

R = P̃ (c+ sb)P

= c+ 1

2
εce0p+ sb+ 1

2
εse0bp− 1

2
εce0p

+ 1

4
εcp2 − 1

2
εse0pb+ 1

4
εspbp

3 c+ sb+ εse0(b ∧ p). (17.14)

This represents a general rotation. The typical translation is given by

T = 1+ εe0t, (17.15)

where t lies in E3, and the translation is over 2t (cf. Eq. (17.7)).
The two products of R and T evaluate as follows:

RT = c+ sb+ εe0
[
s(b ∧ p)+ ct + sbt

]
,

T R = c+ sb+ εe0
[
s(b ∧ p)+ ct + stb

]
.

So R and T commute if t and b commute, that is if b ∧ t = 0, or equivalently if
a ∧ t = 0. The last equation here is the condition that the directions represented by
a and t are parallel, and these are the directions of the axis of rotation and of the

17 Rigid-Body Transforms Using Symbolic Infinitesimals 363

translation. Assume that there is commutativity and that t = λa for a scalar λ. The
above expression for RT becomes the following:

RT = (c+ saI3)+ ε
[
s(a ∧ p)I + λce0a

]+ ελsI.

It is now shown that any even-grade element S with S̃S = 1 can be written as a
product RT = T R.

Starting with Eq. (17.9), assume first that s �= 0 and set λ= γ /s. Vector p needs
to be found such that

s(a ∧ p)I + λce0a = e0v.

Assume that p can be chosen with a · p = 0. Then, by Eq. (17.3), a ∧ p = ap and

e0v = se0apI3 + λce0a.

Further manipulation, using Eq. (17.12), yields

p =
[
v ∧ a

s

]

I3.

The exceptional case is where s = 0. Equation (17.11) says that c2 = 1, and
without loss of generality take c= 1. Then Eq. (17.12) shows that γ = 0, and hence
S has the form of Eq. (17.15) and represents a pure translation.

There is an alternative way of dealing with the axis. The outer product of two
points (in any geometric algebra) gives the bivector which represents the line joining
them. In the above, e0 + p is one point on the axis; another is e0 + p + a (which
is unit distance away). So the axis is represented by the (unitised) line = (e0 +
p+ a)∧ (e0 + p)= (a ∧ e0)+ (a ∧ p). Since a =−bÎ3, manipulation shows that
a ∧ e0 = bI and a ∧ p =−(b ∧ p)Î3. It follows that ε I = b+ εe0(b ∧ p) and so

R = c+ s(ε I),

which is a simpler form for R than Eq. (17.14) relating it directly to the axial line.
To summarise the results of this section, Eqs. (17.14) and (17.15) give the forms

of even-grade elements representing a general rotation and translation. Further, any
even-grade element S can be expressed as a product of a rotation R and a translation
T which commute. As shown at the end of Sect. 17.3, this element, being of even-
grade, represents an isometry. It now follows that it cannot involve a reflection and
so the isometry is a rigid-body transform. The commuting of R and T implies that
the direction of translation is along the axis of rotation. This is Chasles’s theorem.

Two examples are now given illustrating the decomposition of an even-grade
element S. In both cases S is normalised so that S̃S = 1.

364 G. Mullineux and L. Simpson

Example S = 1√
2
[1+e12+εe01−εe02+εe03+e0123]. In the previous notation, the

following values are identified: c= s = γ = 1/
√

2, b= e12, v = (e1− e2+ e3)/
√

2,
a = e3, λ= 1, t = e3, and p = e1 + e2. Hence S = RT = T R, where R = 1√

2
[1+

e12 + εe01 − εe02] and T = 1+ εe03.

Example S = 1
2 [1 + e12 + e13 + e23 + εe01 + εe02 + εe03 + εe0123]. This time:

c= γ = 1/2, s =√3/2, b= (e12+ e13+ e23)/
√

3, v = (e1+ e2+ e3)/2, a = (e1−
e2+ e3)/

√
3, λ= 1/

√
3, t = (e1− e2+ e3)/3, and p = 2(−e1+ e3)/3. The rotation

and translation are given by R = 1
6 [3+3e12+3e13+3e23+2εe01+4εe02+2εe03]

and T = 1
3 [3+ εe01 − εe02 + εe03].

17.5 Motions

The previous section looks at even-grade elements and the rigid-body transforms
they represent. Given an object (defined in its own local coordinate system), a pose
is a transform which maps the body from its own local space to a position and
orientation in world space. Suppose that the pose corresponds to the even-grade
element S. If S = S(t) is regarded as a function of a parameter t , then as t varies, so
does the pose, and this gives a motion to the body [22].

How can smooth motions be generated? One approach is via the slerp operation.
In its basic form, this performs an interpolation between a pair of transforms [11].
If these transforms are S0 and S1, they are combined to give S(t)= S0[S̃0S1]t . This
has the property that S(0)= S0 and S(1)= S1, and, for 0≤ t ≤ 1, the motion passes
between the given poses. However the evaluation of non-integer powers requires
the use of logarithmic and exponential functions [14, 15, 19] and is not dealt with
further here. Instead attention is given to linear combinations of transforms.

The advent of computer graphics in the 1960s has led to a number of ways of
representing smooth curves and surfaces for numerical processing. Chief among
these are the Bézier and B-spline approaches [3].

Consider the case of the Bézier curve segment (similar properties apply to B-
spline segments). Suppose that a number, n+1, of position vectors r0, r1, . . . , rn are
given. These are called control points, and they are combined to form the following
function:

r(t)=
n∑

i=0

(
n

i

)

t i (1− t)n−iri ,

where
(
n
i

)
is one of the binomial coefficients. This is a polynomial of degree n in t .

Further r(0) = r0 and r(1) = rn. So as t varies between 0 and 1, r(t) creates a
smooth curve between these end points. The arrangement of the Bézier form allows
properties of some of the other control points to be identified. In particular, the curve
segment (for 0 ≤ t ≤ 1) lies within the convex hull of the control points, the initial
tangent is along the line joining r0 and r1, and the final tangent along the line joining

17 Rigid-Body Transforms Using Symbolic Infinitesimals 365

Fig. 17.1 Bézier quadratics:
left—curve; right—motion

rn−1 and rn. Figure 17.1 shows, on the left, a Bézier quadratic segment with its three
control points.

These ideas can be extended to motions. Suppose that n + 1 control poses are
given S0, S1, . . . , Sn. The equivalent combination is the following:

S(t)=
n∑

i=0

(
n

i

)

t i (1− t)n−iSi .

This is a combination of even-grade elements and so is itself of even grade. Hence
it represents a rigid-body transform (unless it happens to be zero). As expected, S(t)
varies smoothly between S0 and S1 for 0≤ t ≤ 1. On the right of Fig. 17.1 is shown
a quadratic Bézier motion with its three control poses. (This is called quadratic since
S(t) is of degree two; note however that the path followed by any point in the body
is a parametric curve of degree four since S(t) appears twice in the map.)

A Bézier curve has the property that it can be transformed as a whole by applying
the transform to each of the control points. A similar invariance property holds for a
Bézier motion. The image of a point p under the pose transform Si is S̃ipSi . If each
of these images is transformed by element U , the new images are Ũ S̃ipSiU . Effec-
tively, the pose transform Si has been replaced by SiU . The new motion transform
is then SU = S(t)U , and the typical point p transforms to S̃UpSU = Ũ (S̃pS)U .
Thus the result is to transform the entire motion by U .

The case of a Bézier segment of degree one is now explored. In view of the
above invariance, the control poses can be post-multiplied by S̃0 so that it can be
assumed, without loss, that S0 = 1, and S(t) takes the form S(t) = (1 − t) + tU ,
where U = S1S̃0. The image of the typical point p is

S̃pS = (1− t)2p+ 2t (1− t)q + t2ŨpU where q = 1

2
[Ũp+ pU].

(17.16)

Here q is an element of odd degree and is equal to its own reverse, so q represents
a point. This means that Eq. (17.16) is a Bézier quadratic combination of three
points, namely p, q and ŨpU . So any point in the body follows a quadratic curve,
and this curve is planar, lying in the plane defined by the three points.

Suppose that U = RT = T R is the decomposition of U as the product of a ro-
tation and a translation, with R̃R = 1. The effect of S on a point p on the axis of
the rotation is now considered. In Eq. (17.16), the image of p is a combination of
three terms. The first and last certainly lie on the axis. Since R fixes p, R̃pR = p,
and hence R commutes with p. So R commutes also with q and hence fixes it as

366 G. Mullineux and L. Simpson

Fig. 17.2 General Bézier
linear motion around
cylindrical surface

well. This means that q also lies on the axis. Thus the image of p is a combination
of three points on the axis and so also lies on the axis. Hence S maps the axis onto
itself and so is also the product of a rotation about that axis and a translation along
it.

It follows that the path traced out by any point in the body lies on a cylinder
whose axis is along the axis of rotation as suggested in Fig. 17.2. The path is ellipti-
cal, lying on a planar slice through the cylinder (and is therefore not exactly part of
a helix).

One way to form Bézier curves is via the de Casteljau algorithm [3]. The signif-
icance of motions of first degree is that they form basic step in the algorithm when
applied to poses. Consider the case of a Bézier cubic motion with control poses S0,
S1, S2, S3. Additional poses are created according to the pattern

S0
S01

S1 S012
S12 S0123

S2 S123
S23

S3

where each new pose is a linear combination of the two poses to its left, so that,
for example, S012 = (1− t)S01 + tS12. The same value of the parameter t is used
throughout. Each new pose lies on the first-degree motion interpolating the two
poses which define it. An example is shown on the left in Fig. 17.3. The first-degree
motions are the curves shown. The pose S0123 becomes the value of S(t) for that
value of t and hence represents a pose along the cubic motion. This motion is shown
as the dashed curve on the left in the figure, and the full motion is shown on the right.

In particular, when t is close to 0 or 1, the motion is approximately the first-
degree motion defined by the first or last pair of control poses. The criterion for two
Bézier curve segments to join together smoothly is that their end-tangents align. The
condition for two Bézier motions to join smoothly is that the next segment must
start with the same cylindrical motion (defined by its first pair of control poses) with
which the previous segment finishes (defined by its last pair of control poses).

17 Rigid-Body Transforms Using Symbolic Infinitesimals 367

Fig. 17.3 Cubic Bézier motion: left—de Casteljau construction; right—resultant motion with
control poses

17.6 Conclusions

It is possible to construct a 4D geometric algebra which represents exactly three-
dimensional Euclidean space and its rigid-body transforms. To do this, the square
of one of the basis vectors is treated as being infinite by defining it to be the recip-
rocal of a (vanishingly) small number ε. This is carried (symbolically) through any
calculations and then allowed to become zero. An alternative view is to regard the
scalars of the algebra as being power series in ε.

The vectors of the algebra then correspond (projectively) to the points of Eu-
clidean space, and the even-grade elements of the algebra represent rigid-body trans-
forms, and vice versa. This means that a (non-zero) linear combination of even-
grade elements is also a transform and hence Bézier (and B-spline) combination of
control poses can be used to represent smooth motions.

17.7 Exercises

17.1 The following elements of G4 are given: R = e12; T = 1 + εe03; S = RT ;
p = e0 + e1; and q = e0 + e2. By multiplying out, show that the following are true:

S = e12 + εe0123,

S = T R,

S̃pS = (1− ε)e0 − (1+ ε)e1 + 2e3,

S̃qS = (1− ε)e0 − (1+ ε)e2 + 2e3.

17.2 A even-grade element S defines the map FS : p �→ S̃pS for p ∈ G4, generating
a transform which is a rotation about the z-axis through a right angle followed by a
translation through two units in the x direction. Show that S is (1+ εe01 − εe02 +
e12)/

√
2 (or possibly a multiple of it by a pseudoscalar). Check that the images of

the origin and points unit distance along each coordinate axis are as expected. Show
that S4 3−1; what transform does this element create?

368 G. Mullineux and L. Simpson

17.3 For an even-grade element S, let FS denote the map FS : p �→ S̃pS for p ∈ G4.
Set α = S̃S. Check that α is a pseudoscalar and so commutes with every even-
grade element of G4. Check also that α = SS̃. Show that FS preserves the inner
and outer products in the sense that αFS(a · b)= FS(a) · FS(b) and αFS(a ∧ b)=
FS(a)∧ FS(b).

17.4 Starting with S = (1+ εe01+ εe02+ e12)/
√

2, use the method of Sect. 17.4 to
write S as a product of commuting elements R and T which represent respectively a
rotation and a translation. In particular, deduce that S corresponds to a pure rotation
about an axis in the z-direction through the point e0 + e1 + e2.

17.5 What transforms are generated by the even-grade elements S0 = 1+ εe01 and
S1 = εe02 + e12? Let S(t) = (1 − t)S0 + tS1 be the Bézier combination of unit
degree. Show that S̃(t)e0S 3we0+ xe1+ ye2 where w = 1− 2t + 2t2, x = 2− 4t ,
and y = 4t − 4t2. Check that (x/2)2 + (y/2)2 − w2 = 0. Deduce that, under the
motion generated by S(t), the image of the origin, e0, moves along a semicircle of
radius 2 as t varies between 0 and 1.

Acknowledgements The work reported in the paper was carried within the Innovative Design
and Manufacturing Research Centre at the University of Bath, and the second author is funded
by a studentship provided via the Centre. The Centre is funded by the Engineering and Physical
Sciences Research Council (EPSRC), and this support is gratefully acknowledged.

References

1. Belta, C., Kumar, V.: An SVD-based projection method for interpolation on SE(3). IEEE
Trans. Robot. Autom. 18, 334–345 (2002)

2. Etzel, K.R., McCarthy, J.M.: Interpolation of spatial displacements using the Clifford algebra
of E4. J. Mech. Des. 121, 39–44 (1999)

3. Farin, G.: Curves and Surfaces for CAGD: A Practical Guide, 5th edn. Morgan Kaufmann,
San Francisco (2001)

4. Gan, D., Liao, Q., Wei, S., Dai, J.S., Qiao, S.: Dual quaternion-based inverse kinematics of
the general spatial 7R mechanism. Proc. Inst. Mech. Eng., Part C, J. Mech. Eng. Sci. 222,
1593–1598 (2008)

5. Ge, Q.J.: On the matrix realization of the theory of biquaternions. J. Mech. Des. 120, 404–407
(1998)

6. Ge, Q.J., Ravani, R.: Geometric construction of Bézier motions. J. Mech. Des. 116, 749–755
(1994)

7. González Calvet, R.: Treatise of Plane Geometry Through Geometric Algebra. Cerdanyola del
Vallès (2007)

8. Hofer, M., Pottmann, H., Ravani, B.: From curve design algorithms to the design of rigid body
motions. Vis. Comput. 20, 279–297 (2004)

9. Jin, Z., Ge, Q.J.: Computer aided synthesis of piecewise rational motions for planar 2R and
3R robot arms. J. Mech. Des. 129, 1031–1036 (2007)

10. Jüttler, B., Wagner, M.G.: Computer-aided design with spatial rational B-spline motions.
J. Mech. Des. 118, 193–201 (1996)

11. Leeney, M.: Fast quaternion slerp. Int. J. Comput. Math. 86, 79–84 (2009)
12. Mullineux, G.: Clifford algebra of three dimensional geometry. Robotica 20, 687–697 (2002)

17 Rigid-Body Transforms Using Symbolic Infinitesimals 369

13. Mullineux, G.: Modelling spatial displacements using Clifford algebra. J. Mech. Des. 126,
420–424 (2004)

14. Özgören, M.K.: Kinematics analysis of spatial mechanical systems using exponential rotation
matrices. J. Mech. Des. 129, 1144–1152 (2007)

15. Perez-Garcia, A., McCarthy, J.M.: Kinematic synthesis of spatial serial chains using Clifford
algebra exponentials. Proc. Inst. Mech. Eng., Part C, J. Mech. Eng. Sci. 220, 953–968 (2006)

16. Purwar, A., Jin, Z., Ge, Q.J.: Rational motion interpolation under kinematic constraints of
spherical 6R closed chains. J. Mech. Des. 130 062301 (2008)

17. Röschel, O.: Rational motion design—a survey. Comput. Aided Des. 30, 169–178 (1998)
18. Selig, J.M.: Clifford algebra of points, lines and planes. Robotica 20, 545–556 (2000)
19. Simpson, L., Mullineux, G.: Exponentials and motions in geometric algebra. In: Vaclav, S.,

Hildenbrand, D. (eds.) International Workshop on Computer Graphics, Computer Vision and
Mathematics (GraVisMa), pp. 9–16. Union Agency, Plzen (2009)

20. Srinivasen, L.N., Ge, Q.J.: Fine tuning of rational B-spline motions. J. Mech. Des. 120, 46–51
(1998)

21. Vince, J.: Geometric Algebra for Computer Graphics. Springer, London (2008)
22. Wareham, R., Lasenby, J.: Mesh vertex pose and position interpolation using geometric al-

gebra. In: Perales, F.J., Fisher, R.B. (eds.) Articulated Motion and Deformable Objects, 5th
International Conference, AMDO 2008, pp. 122–131. Springer, Berlin (2008)

23. Wu, W., You, Z.: Modelling rigid origami with quaternions and dual quaternions. Proc. R.
Soc. A 466, 2155–2174 (2010)

18Rigid Body Dynamics in a Constant
Curvature Space and the ‘1D-up’ Approach
to Conformal Geometric Algebra

Anthony Lasenby

Abstract
We discuss a ‘1D up’ approach to Conformal Geometric Algebra, which treats
the dynamics of rigid bodies in 3D spaces with constant curvature via a 4D
conformal representation. All equations are derived covariantly from a 4D La-
grangian, and definitions of energy and momentum in the curved space are given.
Some novel features of the dynamics of rigid bodies in these spaces are pointed
out, including a simple non-relativistic version of the Papapetrou force in Gen-
eral Relativity. The final view of ordinary translational motion that emerges is
perhaps surprising, in that it is shown to correspond to precession in the 1D up
conformal space. We discuss the alternative approaches to Euclidean motions
and rigid body dynamics outlined by Gunn in Chap. 15 and Mullineux and Simp-
son in Chap. 17 of this volume, which also use only one extra dimension, and
compare these with the Euclidean space limit of the current approach.

18.1 Introduction

In Chap. 1, we examined rigid body dynamics using a Conformal Geometric Alge-
bra (CGA) approach. This adjoins two extra vectors to the 3D base space and thus
allows translations, rotations and dilations in Euclidean space to be expressed via a
unified rotor structure. It is also possible to add just one extra dimension and still be
able to express both rotations and translations within a unified rotor structure. The
‘penalty’ for this is that one then needs to work in a curved space. This study of
the curved space dynamics is interesting in itself, but also the decrease in dimension
and therefore number of elements that need to be operated upon may make this a
useful approach in practice, even for Euclidean space dynamics. We will see that

A. Lasenby (�)
Cavendish Laboratory and Kavli Institute for Cosmology, University of Cambridge, Cambridge,
UK
e-mail: a.n.lasenby@mrao.cam.ac.uk

L. Dorst, J. Lasenby (eds.), Guide to Geometric Algebra in Practice,
DOI 10.1007/978-0-85729-811-9_18, © Springer-Verlag London Limited 2011

371

mailto:a.n.lasenby@mrao.cam.ac.uk
http://dx.doi.org/10.1007/978-0-85729-811-9_18

372 A. Lasenby

some interesting issues of principle come forward in this approach and show how a
force on a spinning body in curved space, normally only considered in a full general
relativistic context and called there the Papapetrou force [6], can be derived in an
elementary fashion in the non-relativistic context described here.

A ‘1D up’ approach to Euclidean geometry is considered elsewhere in this vol-
ume, in the chapters by Gunn (Chap. 15), Goldman (Chap. 16) and Mullineux and
Simpson (Chap. 17). Here we discuss the relationship with the work of Gunn, since
this also has a focus on the dynamics of rigid bodies, and also comment briefly on
the relationship of the curved space approach to that of Mullineux and Simpson.

18.2 The ‘1D up’ approach

As discussed in Chap. 1, we know that in the setup we use for CGA, we adjoin to
ordinary 3D space two further vectors:

e : e2 =+1

ē : ē2 =−1

and that this allows us to create1

{
n= e+ ē the point at infinity n∞
n̄= e− ē proportional to the point at the origin no

Euclidean geometry is basically the geometry obtained by keeping n∞ constant.
Now as discussed e.g. in [4], it turns out we can do spherical geometry by instead
keeping ē constant and hyperbolic geometry by keeping e constant. Since these
vectors (respectively, in the different geometries) are constant, there is the potential
of a ‘1D up’ approach where we drop them from the CGA space and work in a space
of one less dimension. The same comment could be made about Euclidean geometry
as well of course—why do not we just drop n∞, since it is constant under rigid body
transformations? The difference lies with the form of the translation rotors in the two
cases. In the Euclidean case these look like

Ta = 1+ n∞a

2
(18.1)

where a is the 3D vector corresponding to the displacement, whereas in e.g. the
spherical case, where we keep ē constant, the translation rotor is

1Editorial note: The notation n and n̄ is used in [4]. When we compare to the notation used else-
where in this volume we find that n = n∞ and n̄ = −2no . Correspondingly, e = 1

2 (n + n̄) =
−no + 1

2n∞ and ē = 1
2 (n − n̄) = no + 1

2n∞. Note that n̄ · n = 2 corresponds to no · n∞ = −1.
As a compromise between the notation in this book and [4] that avoids awkward factors, in this
chapter we will use n̄, but replace n by n∞.

18 Rigid Body Dynamics in a Constant Curvature Space 373

Ta = λ+ ae√
λ2 + a2

(18.2)

where λ is a length scale related to the ‘radius of curvature’ of the space, and which
is introduced to keep everything dimensionally homogeneous.2

Thus with e as origin and by applying the translation rotor with a = x, to get the
representative of a general 3D position x, we will never obtain a vector including ē.
Since it appears neither in the vectors nor the rotors, ē can be dropped from the
algebra. In contrast, in the Euclidean case, the invariant point at infinity appears in
both the rotors and the points, and cannot be dropped, at least not in this way.

We note that the explicit form of representation in the case where we take e as
the origin is

Ŷ =
(

2λ

λ2 + x2

)

x +
(
λ2 − x2

λ2 + x2

)

e (18.3)

and that this satisfies the (covariant) normalisation Ŷ 2 = 1.
All the advantages of translations and rotations being unified in a rotor structure

are still present in this treatment, and since we are working in a constant curva-
ture space, the notion of a ‘rigid body’ displacement still makes sense. Specifically
a rigid-body translation or rotation maintains the geodesic distance between two
points as being constant, and this is guaranteed by the rotor structure, since for
points represented by 4D vectors Ŷ1 and Ŷ2, this distance is a function of Ŷ1·Ŷ2 and
the rotors preserve this dot product (see [4]). For an example of a rigid translation
in 2D hyperbolic space, see Fig. 18.1.

An interesting point of using such an approach for rigid bodies is that the count-
ing of degrees of freedom is now exactly right. Translations and rotations in 3D
have altogether six d.o.f., and this matches the number of bivectors, and therefore
generators of motion, in 4D (i.e. in 1D up).

This works generally—to describe rotation in m dimensions, we need 1
2m(m−1)

components to describe rotation, whilst position needs another m. Therefore the
total is 1

2m(m + 1), which is the same as the number of bivector (and therefore
independent rotor) components in m+ 1 dimensions.

A further motivation for working in such spaces effectively comes from physics:
does the notion of the dynamics of a rigid body even make sense in a curved space?
This may seem esoteric, but it should not be forgotten that the current space we
are living in is probably curved. It is certainly curved near gravitating objects, but
also, on cosmological scales it is clear that we are heading asymptotically towards
a final de Sitter phase of the universe and this has constant curvature everywhere at
all positions and times.

2Those interested might like to know that if we extend this work to the space–time, rather than
the purely spatial case, then the positive curvature version of the space we obtain is called de Sit-
ter space, and λ is related to the usual cosmological constant, Λ (as measured in inverse metres
squared), by Λ= 12/λ2. (See e.g. [3].)

374 A. Lasenby

Fig. 18.1 A rigid body
translation in 2D hyperbolic
space. The representation
used is the Poincaré disc, and
the circle is its boundary. The
geodesic distance between
each pair of points is
maintained in the motion

We now show that the CGA, in the 1D-up approach, provides a self-consistent
and sensible framework in which to study this question. This question as to whether
dynamics of a rigid body can be formulated sensibly in a constant curvature space
has a long history (see e.g. [2] for a first attempt), but it is not clear to the present
author that the particular equations and solutions given here have ever been given
before.

In a final section of this chapter, we ask the question of whether, by taking the
limit as the curvature scale λ→∞ at the end of the calculation, we can recover a
description of Euclidean space motion which preserves the advantages of a confor-
mal GA description but is operating with only one extra dimension compared to 3D.
As discussed above, we then compare and contrast this approach with those taken
by Gunn (Chap. 15) and Mullineux and Simpson (Chap. 17) in this volume, seeking
an overall consensus on the usefulness of this approach.

18.2.1 Equations and Solutions for Rigid Body Motion in Spherical
Space

For definiteness, we will work in spherical space, so that the metric is (+,+,+,+).
Note that in this space the pseudoscalar I = e1e2e3e squares to +1 and anticom-
mutes with all vectors.

In setting up a Lagrangian for this case, there are a number of subtleties we must
deal with, and to begin with we start with the much simpler case of the motion of a
single point particle.

18 Rigid Body Dynamics in a Constant Curvature Space 375

18.2.1.1 Point Particle Motion in Curved Space
One of the forms of Lagrangian that can be used for the free non-relativistic motion
of a point particle in ordinary 3D space is

L = 1

2
mẋ2 (18.4)

where x is the 3D position. This is obviously just the standard kinetic energy. This
form generalises to a curved space, with interval and metric given by

ds2 = gμν dx
μ dxν (18.5)

as

L = 1

2
mgμνẋ

μẋν (18.6)

where ẋμ ≡ dxμ

dτ
, and τ is an affine parameter along the path. (Note that this La-

grangian differs from the more usual one that would be used in General Relativity,
namely L =m

√
gμν(dxμ/ds)(dxν/ds), but nevertheless successfully reproduces

the desired geodesics. We use it here since it has an obvious connection with non-
relativistic energy.)

We can find the metric in our curved 3D spherical base space via the route
sketched out in Sect. 3 of [3], which can be easily adapted from the de Sitter case
considered there to the positive curvature 3-space considered here. This yields:

ds2 = λ4

(λ2 + r2)2

(
dx2 + dy2 + dz2) (18.7)

where r2 = x2 + y2 + z2.
We could go on to use (18.6) to find the geodesics in this metric, which would

be the paths followed by free point-particles. However, we would like to understand
how these paths can be derived from an equivalent formulation in the ‘1D up’ con-
formal space, since this will hopefully show us the route to the correct rigid-body
Lagrangian in this space.

This topic is discussed in [5], and the net result is that if we equip the ‘1D up’
space with a conformal metric in which the conformal factor is the simple function
1/Y 2, where Y is the position vector in the conformal space, then the geodesics in
this space will (after projecting down) be geodesics in the 3D curved base space as
well.

This means that the point particle Lagrangian equivalent to (18.6) we should take
in this space is

L =L (Y, Ẏ)= 1

2
m
λ2

4

Ẏ 2

Y 2
(18.8)

376 A. Lasenby

where we have inserted λ2/4 to keep the dimensions as those of energy (the 1/4
will be explained later), and the ˙ derivative from here on corresponds to choosing
the ordinary non-relativistic time as the affine parameter.

Now the Euler–Lagrange equations we get from (18.8) are fairly easy to work
out. We get the neat form

Ÿ = 2Y ·Ẏ Ẏ − Y Ẏ 2

Y 2
= Ẏ Y Ẏ

Y 2
(18.9)

An important step now is to note that if Y and Ẏ are orthogonal at some given
time, then they remain orthogonal thereafter. This follows from

d

dt
(Y ·Ẏ)= Ẏ ·Ẏ + Y ·Ÿ = 2

(Y ·Ẏ)2

Y 2
(18.10)

where we have used (18.9) for Ÿ . We can thus specialise our Y representation to
the case we are expecting in the ‘1D up approach’, namely that our representation
points have unit norm, and this will be preserved along the geodesics. The geodesic
equation is now, for normalised Ŷ ,

¨̂
Y =− ˙̂Y 2Ŷ (18.11)

and we see that the acceleration is now radial. In fact we can interpret this equation
as simply the centripetal acceleration −v2/r necessary to move on the 3D spherical
‘surface’! From now on, to avoid a multiplicity of ‘hats’, we will henceforth assume
that all Y points are normalised.

An interesting feature of the geodesic motion is that the specific angular momen-
tum

L= Y∧Ẏ = Y Ẏ (18.12)

is automatically conserved (which is not surprising), but also that L simultaneously
acts both as a generator of the motion, via

Ẏ = L·Y (18.13)

and as the ‘1D up’ conformal representation of the ‘d-line’ along which the motion
happens. Specifically, for any two points on such a d-line, with representative 4D
points Y1 and Y2, then L is a multiple of Y1∧Y2. This dual role is discussed further
in [4]. Furthermore the action of L on the velocity is to give the acceleration:

Ÿ = L·Ẏ (18.14)

18 Rigid Body Dynamics in a Constant Curvature Space 377

We thus start to build up a picture of the motion as being represented by a particle
with three axes sticking out of it, Y , Ẏ and Ÿ . The Y axis tells us where the (actual)
particle is, the Ẏ axis what its velocity is and the Ÿ axis its acceleration. In this
trivial case of free motion, the Ÿ axis is not distinct from the Y axis, but it would
be in the presence of forces, and in this case, the generator L would no longer be
constant.

18.2.1.2 Rigid Body Motion in Curved Space
We can now generalise these considerations to the case of a rigid body. To avoid
complications with volume elements in the curved space, we are going to restrict
attention to a rigid body consisting of an assemblage of point particles. We thus
write as Lagrangian

L =
∑

i

1

2
mi

λ2

4

Ẏi

Y 2
i

(18.15)

where of course here, since we want the Lagrangian to work properly, we mean the
full Y s, not just unit vector equivalents.

What now takes the place of the generator L is the angular velocity bivector Ω .
Letting Yref be the position vector within the reference copy of the body, R be the
4D rotor taking these positions to the actual position in 4D space, and defining
ΩB = R̃ΩR as usual, we have that

Ẏ = Y ·Ω =RYref·ΩBR̃ (18.16)

We thus have

Ẏi

Y 2
i

= (Yrefi ·ΩB)
2

Yref
2
i

=−ΩB ·
(
Ŷrefi∧(Ŷrefi ·ΩB)

)
(18.17)

In this form, we recognise that we are back on the familiar territory of Chap. 1
and can now write the inertia tensor in 4D as

I (ΩB)=
∑

i

mi

λ2

4

(
Ŷrefi∧(Ŷrefi ·ΩB)

)
(18.18)

We note that transforming this to the space frame correctly gives a version of the
angular momentum in this case (with the correct units):

RI (ΩB)R̃ =
∑

i

mi

λ2

4
Ŷi∧ ˙̂Y i (18.19)

From this point, we can now copy quite a bit from what we have already done in
the Euclidean 2-up approach in Chap. 1, but now adapted to the case where ψ is a
4D rather than 5D spinor. This means that there are fewer degrees of freedom to fix

378 A. Lasenby

in order to turn ψ into a rotor, and we can use scalar rather than vector Lagrangian
multipliers in the Lagrangian, as follows:

L =
〈

−1

2
ΩB ·I (ΩB)−μ(ψψ̃ − 1)− νIψψ̃

〉

Here μ and ν are scalars, ψ a general spinor in 4D, and ΩB is again a bivector
function of ψ defined by

ΩB =−ψ̃ψ̇ + ˙̃ψψ (18.20)

The equations of motion derived from this Lagrangian are similar to those of
Chap. 1, and we obtain

I (Ω̇B)−ΩBI (ΩB)= μ+ νI (18.21)

and projecting onto the various grades, we have

−ΩB ·I (ΩB) = μ twice the kinetic energy

I (Ω̇B)−ΩB × I (ΩB) = 0 Euler equation

−ΩB∧I (ΩB) = νI grade-4 part

(18.22)

As in Chap. 1, the grade-4 part is somewhat mysterious, and in the examples we
have tried vanishes. The identification of the Lagrangian multiplier μ with twice the
K.E. is a consequence of the above discussion, but of course we will need to show
that it reduces to something sensible in the limit as the curvature scale λ→∞ and
also that it is conserved.

This is indeed true, but for now we want to consider the main equation of mo-
tion (the ‘Euler equation’) and will seek to derive an explicit solution for a case of
interest, namely the same ‘dumbbell’ model as considered in Chap. 1, but this time
moving in curved space.

18.2.1.3 The Dumbbell Motion
A dumbbell provides the simplest example of an extended rigid body system, and
by studying its motion in curved space we can uncover some interesting features
which will also apply to more complicated objects.

We assume that our dumbbell consists of equal masses m positioned at 3D space
coordinates (±x0,0,0) in the reference copy of the body. For simplicity, we con-
sider (as in the flat space cases) motion which takes place just in the x, y plane in
3D. This means that the only parts of the inertia tensor we need consider are its
actions on the rotation bivector e1e2 and the translation bivectors e1e and e2e. Let
us call these bivectors R3, T1 and T2 respectively. Calculating the moment of iner-
tia tensor on these, we find that I (B) as given by (18.18) is purely diagonal with
moments of inertia defined by:

18 Rigid Body Dynamics in a Constant Curvature Space 379

−R3·I (R3)= i3 = 2mλ4x2
0

(λ2 + x2
0)

2

−T1·I (T1)= i1 = mλ2

2
(18.23)

−T2·I (T2)= i2 = mλ2(λ2 − x2
0)

2

2(λ2 + x2
0)

2

We see that in general these are unequal but that if the size of the rigid body
(∼ x0) is small compared to the curvature scale of the space (∼ λ), then the two
translation moments of inertia are approximately equal, and we have a 3D symmet-
ric top! Moreover we see that under these conditions, i34 i1 ≈ i2, i.e. it is a highly
prolate top. (Note that this ‘prolateness’ is nothing to do with the prolateness of the
dumbbell model—the third direction here is not e3 but e.)

The fact that for most applications of interest we will have (to a very good ap-
proximation) a symmetric top in the 3D space spanned by e1, e2 and e, all of which
have positive square, means that the rotor solution for a symmetric top in ordinary
3D Euclidean space, discussed back in Sect. 1.2 of Chap. 1, can be directly applied
here. However, we first continue with attempting an exact solution. Since this still
maps onto a 3D Euclidean case, viz the 3D asymmetric top, this is a well-worked
area analytically, and at least at the level of solving the Euler equations for the an-
gular velocity bivector, we can get an analytical solution.

Let us parameterise ΩB as

ΩB = f (t)R3 + g(t)T1 + h(t)T2 (18.24)

Here f , g and h are scalar functions of time, and this is the most general form we
need for our assumed form of motion (restricted to the (x, y) plane in 3D real space).
Inserting ΩB into the Euler equation and using the moments of inertia in (18.23),
we get the surprisingly simple results

ḟ = gh, ġ = f h
(λ2 + 2λx0 − x2

0)(λ
2 − 2λx0 − x2

0)

(λ2 + x2
0)

2
, ḣ=−fg (18.25)

The f and h derivatives tell us that f 2 + h2 is constant, suggesting a parameterisa-
tion of the form

f = ω cos
(
ε(t)
)
, g =−ε̇(t), h= ω sin

(
ε(t)
)

(18.26)

for some function ε(t) and scalar constant ω (called this since it is in fact the ordi-
nary angular velocity of the body in 3D space).

If we insert this, then the remaining equation to solve is

ε̈+ α sin
(
2ε(t)
)= 0 (18.27)

380 A. Lasenby

where

α = ω2(λ2 + 2λx0 − x2
0)(λ

2 − 2λx0 − x2
0)

2(λ2 + x2
0)

2
(18.28)

is a constant.
We can see that our ε parameter (or more specifically ε/2) satisfies the same

equation as the amplitude of an exact, or ‘spherical’, pendulum. Not surprisingly,
therefore, the solution can expressed in terms of the Jacobi amplitude function
am(u|m). A convenient form, incorporating two constants of integration, is

ε(t)= am

(

a(t − t0)

∣
∣
∣
∣

√
2α

a

)

(18.29)

This solves (18.27) for arbitrary t0 and a. We can fix these values of course from the
initial conditions.

With ε(t) found, f , g and h then follow immediately, and for example the con-
stancy of f 2 + h2 can be understood via the elliptic function identity

cn2(u)+ sn2(u)= 1 (18.30)

Having found an analytic form for ΩB , the question arises as to whether we can
get an analytic expression for the 4D ‘attitude spinor’ ψ . If ψψ̃ = 1, then we can
rewrite (18.20) as

ψ̇ =−1

2
ψΩB (18.31)

which is therefore the dynamical equation for ψ . We note, moreover, that this
equation implies that ψψ̃ is constant, so that ψ is maintained as a rotor by the
equations if it starts as one. Examining the literature, it is not clear if this equa-
tion has been solved analytically in the case we are currently interested in, which
(in conventional terms) corresponds to finding the attitude spinor of a general
non-symmetric top in 3D. Of course, conventionally, this would be phrased not
in terms of an attitude spinor, but probably via rotation matrices—the question
still stands, however, has an analytic solution been found for this level of the mo-
tion?

Leaving this as a pending question, we can proceed either exactly, by integrat-
ing the equations numerically, or by making approximations. As already discussed
shortly after Eq. (18.23), an obvious approximation to make, applicable to the case
where the linear dimensions of the rigid body are much smaller than the curva-
ture scale of the space, is to treat the moments of inertia as those of a symmetric
top, rather than the general non-symmetric case. We already have the full analytic
solution for ψ for this case, which is given by Eq. (1.11) in Chap. 1, i.e. we just

18 Rigid Body Dynamics in a Constant Curvature Space 381

Fig. 18.2 Actual motion of
centre of mass of the
dumbbell in the numerical
example used (small circle)
versus geodesic motion with
equivalent starting conditions
(great circle)

use the ordinary GA solution in 3D space! For convenience, we repeat the solution
here:

R(t)= exp

(

−1

2
i−1
1 Lt

)

R(0) exp

(

−1

2
ω3(1− i3/i1)Ie3t

)

(18.32)

Of course there are some details we need to go through as to exactly how to perform
the approximations required—i3 is unambiguous, but given that in fact i1 is not
exactly equal to i2, what should we take for i1 in this formula, and what should we
take for ω3 and L?

Once having made these choices, which are not critical, we can integrate the
rotor equations both numerically and via the analytical approximation, and very
good agreement is found. Now we get to a key observation, regarding the motion of
the centre of mass of the dumbbell. Naively, we would expect this centre of mass
motion to be along a geodesic in the curved space.

However, this is not what happens! In Fig. 18.2 we show the actual motion of the
centre of mass of the dumbbell in our numerical example, versus the geodesic mo-
tion that would correspond to the same starting conditions. The expected geodesic
motion is of course a great circle spanning the equator of the sphere. The actual
motion is (to a good approximation) a small circle going through the same starting
point and tangent to the great circle. How ‘tight’ this circle is, is a function of how
fast the object is spinning and of the ratio of the length of dumbbell to the total
radius of curvature of the space.

Given our analytic approximation to the rotor solution, it is easy to find out what
is happening. The centre of mass of the dumbbell in 2D real space is determined
by where the vector e is rotated to by Ψ . How does this manage to acquire a y

component, given that the dumbbell is spinning in the (x, y) plane and projected
with an x velocity only? The answer, of course, is precession! The motion of the
transformed e vector about a small circle is just exactly the expected precession
behaviour of a symmetric top, where the 3-axis of the top, as we know, will trace
out a cone in space. The novel thing here, is that all real-space motion is in the
(x, y) plane only, and the 3-axis of our top is actually moving in the conformal
space, where the direction it points is indicating position in 2D space!

382 A. Lasenby

The observed manifestation of this precession behaviour in 2D real space is that
there is an apparent y-directed component of force on the spinning object, when
it is projected in the x-direction. We interpret this as a non-relativistic analogue of
the force on spinning objects in general relativity, first described by Papapetrou [6].
Using our analytic approximation, it is possible to work out the magnitude of this
force in our approach and indeed to generalise it to a general velocity and angular
momentum. We find, in conventional 3D vector algebra notation,

F = 4

λ2
 × v (18.33)

Here v is the object velocity, and is its 3D angular momentum. A clear exposition
of the relativistic form of coupling expected can be found in [1], where it is shown
that the expected contribution to the ‘geodesic equation’ is

v·R(S) (18.34)

where v is the 4D velocity of the object, S is its ‘spin bivector’, and R(B) is the Rie-
mann tensor of the space (which in a geometric algebra formulation, maps bivectors
to bivectors, see Chap. 19).

Now the Riemann tensor for a space of constant curvature, of the type we have
set up, is

R(B)=− 4

λ2
B (18.35)

(see e.g. [3]). Thus we can see that the two expressions match up precisely (in fact
one can show that even the overall sign agrees).

As a final interesting point, we can think about the case where this force is
weak, and the centre of mass of the body moves approximately along the expected
geodesic, the great circle path. We can now understand that even this case is an ex-
ample of precession. In fact the precession is even more extreme than in the preced-
ing case! Technically, it would probably be called ‘fast precession’ and corresponds
to the case where the top has more or less tipped over by 90°, and the small circle
of precession is almost a great circle.

So, in this picture, the translational motion of a rigid body actually corresponds
to fast precession in the 1D up conformal space! This is quite a surprising picture
and seems a long way removed from what we may have expected at the start, but is
nevertheless quite appealing as a new way of thinking about motion.

18.3 Comparison with Charles Gunn’s Work on Euclidean Rigid
Body Motion

In Chap. 15, Charles Gunn discusses a homogeneous model of Euclidean Geometry
and applies the techniques developed to Rigid Body Dynamics. His work is also em-
bedded in a curved space framework, see Chap. 15, Sect. 15.11. We are considering

18 Rigid Body Dynamics in a Constant Curvature Space 383

it here in the context of using a unified rotor treatment of rigid body dynamics in a
‘1D-up’ space.

Here we discuss an alternative ‘1D-up’ approach to Euclidean geometry within
the framework of CGA, noting similarities and differences to Gunn’s approach.

One essential aspect of the Gunn approach is to use two homogeneous (i.e.
1D up) spaces, instead of one. These are denoted W ∗ and W . Their formal defi-
nitions are that W is the projectivised exterior algebra of R

m+1, and W ∗ is the pro-
jectivised exterior algebra of the dual space R

m+1∗. The latter, W ∗, is ‘Cliffordised’
by equipping it with the metric (m,0,1), i.e. m basis vectors with positive square,
none with negative, and one with zero square.

Specialising to the case of 3D Euclidean geometry, positions are represented via
the trivectors of W ∗, and transformations on them via the rotors of W ∗. The reasons
for having both spaces W ∗ and W available are discussed in Sect. 15.2.2. One uses
W ∗ to calculate the meet operation; while W is used for the join operator. Unlike
in non-degenerate metrics, the join of two points also provides a way to calculate
the distance between the two points. In the model presented below, the point of
having the additional space W available is because without it various quantities
which we want to form in W ∗, such as the Euclidean distance between points, or
various wedge products, would end up as 0, due to the zero norm vector present in
the basis.

By using an operator J , which transforms between the two spaces, one is able to
carry out the operations in W instead, where they reduce to just an outer product,
and then use J to transform the (non-zero) result back again.

The operator J plays a crucial role in this approach and is defined in Chap. 15 in
a non-metric way. Section 15.3.3 of Chap. 15 contrasts this non-metric approach to
duality with the more familiar metric approach using pseudoscalar multiplication.
Our approach, described below, also involves pseudoscalar multiplication, but maps
from one space to another rather than one space to itself, hence we call it Ĵ .

18.3.1 Translation into CGA

Here we describe two algebras, Ŵ and Ŵ ∗, which play roles analogous to the al-
gebras W and W ∗ in the Gunn approach. The vector corresponding to the origin
in the CGA is a multiple of n̄. Since Ŵ ∗ is the space where dual Euclidean points
are meant to live, and Ŵ is its dual, we assume that the zero square vector of Ŵ ,
denoted e0 in Chap. 15, is in fact n̄/2, the 1

2 being for ease of future normalisation.
Concentrating on representing 3D Euclidean geometry, so working with m= 3, the
full basis of vectors for Ŵ is thus e0 = n̄/2, e1, e2 and e3, with the ei being our
usual basis vectors with positive square, i.e. ei = ei , i = 1,2,3. We define the pseu-
doscalar of this space as Iu = e0e1e2e3.

We now assign Ŵ ∗ a basis which is the reciprocal frame for the eμ, μ= 0, . . . ,3,
just defined, befitting its role as a dual space. This reciprocal frame eμ satisfies

eμ·eν = δνμ (18.36)

384 A. Lasenby

The ei are already a (self-)reciprocal frame, so we just need to find e0. The spe-
cific assignment which works is e0 = n∞. So in this approach, Ŵ ∗ just differs from
Ŵ by using the point at infinity, n∞ as its zero vector, rather than the origin n̄/2.

We define the pseudoscalar in Ŵ ∗ as Id = e3e2e1e0. This sign choice yields
Iu·Id = 1. We note that both pseudoscalars square to 0, and this is the basic ori-
gin for why we need the two spaces to work with. The two spaces in the current
model are treated on an equal footing (indeed they are part of the same 5D space
with metric coming from that). This contrasts with the Gunn approach, where it is
found that it is only possible to attach a metric to W ∗, and not W (see Sect. 15.3.2).

Equipped with these two pseudoscalars, we can give an explicit construction for
the operator Ĵ , which maps between the spaces. Generalising temporarily to the
m-dimensional case, this operation is

Ĵ
(
A∗r
) = 〈A∗r I u

〉
m+1−r

Ĵ (Ar) = 〈ArId〉m+1−r
(18.37)

where A∗r is a homogeneous grade-r element of Ŵ ∗, and Ar a homogeneous grade-
r element of Ŵ . We can see that combining with the pseudoscalar of the opposite
space converts any entity into a member of the opposite space, dualising it in the
process.

Applying Ĵ twice, we find

Ĵ 2(A∗r
) = A∗r

Ĵ 2(Ar) = Ar

(18.38)

or in shorthand, Ĵ 2 = 1. This means that Ĵ satisfies the same set of properties as J ,
although Ĵ is defined metrically while J is defined non-metrically.

The application to enable products in Ŵ ∗ to be carried out instead in Ŵ is sum-
marised in the definition of the join: if A and B are two homogeneous grade objects
in Ŵ ∗, we define

A∨B = Ĵ
(
Ĵ (A)∧Ĵ (B)

)
(18.39)

This produces the same result as obtained in Chap. 15, Eq. (15.3).

18.3.2 Applications to the Euclidean Model and Rigid Bodies

With these elements of the translation in place, which we can see involve the full
5D CGA (since we need both of the extra basis vectors e and ē, in the combinations
n∞ and n̄), we can now seek to understand the relationship with the treatment of the
Euclidean model and rigid body dynamics in the CGA.

18 Rigid Body Dynamics in a Constant Curvature Space 385

Firstly, we can see that since the Euclidean points are represented by their du-
als (in the Gunn approach), then the object in Ŵ ∗ representing the origin will be
Ĵ (n̄/2)= e1e2e3, which we can denote as I3.

The rotors used for moving points around in Ŵ ∗ are exactly the same as used
in Chap. 1 in the five-dimensional approach, i.e. a combination of the usual spatial
rotors, built out of even combinations of 1 and the ei , and translation rotors of the
form Rt = 1− 1

2 tn∞, where t is the 3D spatial vector through which we translate.
Starting from the ‘origin’, therefore, and applying a translation, we reach:

RtI3R̃t =Rt Ĵ
(
e0)R̃t =Rt

〈
1

2
n̄Id

〉

3
R̃t

=Rt

1

2
n̄·IdR̃t =

(

Rt

1

2
n̄R̃t

)

·Id (18.40)

with the last equality following since Id , containing a factor n∞, is left invariant
under Rt .

We can now recognise that (up to a sign) we have found out that the represen-
tative of a Euclidean point in the Gunn approach is the usual 5D CGA null vector
representative, dotted with the grade-4 object Id . This follows since if we let t be
the 3D position vector x, then we are translating minus the null vector representing
the origin in the CGA, to position x, thereby achieving the vector representative (in
our usual notation) −X. The trivector representing Euclidean position in the Gunn
approach is thus −X·Id . Since Id contains a factor n∞, this kills off the x2n∞ part
of X, and we get a dualised form of 1

2 n̄ − x. It is not immediately clear that it is
useful to lose the quadratic part of X, but since Id is invariant under rotations and
translations, dotting it with X is at least a covariant operation (as long as we are not
concerned with dilations, which for rigid body motion we are not).

If we have two 3D points p and q , then we know that in the CGA, the Euclidean
distance between them is got simply from

d(p,q)=−1

2
P ·Q (18.41)

To recover this distance once we have lost the quadratic part is more complicated
but can be done. Forming−P ·Id and taking Ĵ of this yields 1

2 n̄−p. Doing the same
with Q yields 1

2 n̄− q , and so the outer product of these is

Ĵ (−P ·Id)∧Ĵ (−Q·Id)= p∧q − (p− q)
1

2
n̄ (18.42)

If we take Ĵ of this again, thus forming overall the ‘join’ (−P ·Id)∨ (−Q·Id), this
will make the p∧q part of the product null, and the p − q part non-null, meaning
that the square is just proportional to (p− q)2, recovering the distance.

386 A. Lasenby

The remaining concept we need before passing to rigid body motion is the no-
tion of a ‘free vector’. In Chap. 1 it was argued that this corresponds to a ‘boundary
point’, in which we lose the n̄ part of a 5D null vector. Here therefore we would ex-
pect we should lose both the n̄ and n∞ parts, so that a free vector is just the dualised
version of the 3D vector, i.e. of the form Ĵ (p), with p a 3D vector. A typical free
vector would be the velocity of a particle, ẋ. In Chap. 15, the crucial construction for
rigid body dynamics is the generalised momentum of a particle, defined by mR∨ Ṙ,
where R is the dualised (therefore trivector) representation of the Euclidean posi-
tion x. Adopting our translation, this is just the dual of

Lhp = x∧(mẋ)− 1

2
n̄mẋ (18.43)

which, as we can see, does indeed encode both the linear and angular momentum
(the ‘hp’ subscript is meant to indicate the ‘homogeneous space’ particle angular
momentum).

18.3.3 Comparison with the Curved Space Approach

Finally, we look at the comparison between the ‘1D up’ curved space approach, dis-
cussed in the bulk of this chapter, with the approach by Gunn. To apply the curved
space approach to motion in Euclidean space, we need to take the limit as the radius
of curvature of the space tends to infinity. As a point of comparison, we therefore
look at the expansion of the curved space point particle generalised angular momen-
tum

Lcp =m
λ2

4
Ŷ∧ ˙̂Y (18.44)

as an asymptotic expansion in λ. This yields

Lcp ≈ p − λ

2
pe (18.45)

where p is the ordinary Euclidean space angular momentum of the particle, and
p its 3-space momentum. Comparing to Lhp above, we note two things: (i) the
homogeneous space version above is in fact dimensionally inhomogeneous, whereas
Lcp has the correct units of angular momentum throughout, and (ii) the role of n̄ in
the Lhp expression is taken over by e in Lcp. This of course is why we do not need to
have recourse to a ‘join’ operation (which necessitates using the full 5D algebra) in
working in the curved space approach—we do not have to deal with a basis element
squaring to zero.

We see that in the flat limit of the curved approach, we have a sensible version
of generalised angular momentum, provided that we keep a factor of λ in place to
provide dimensional homogeneity. Once we have taken the limit of course, this λ

18 Rigid Body Dynamics in a Constant Curvature Space 387

could in principle take any length value we wish—in numerical work it would not
be necessary to ‘unbalance’ the dynamical scale of different parts of expressions
by using a very large value for λ. However, the same apparently does not apply to
translation rotors: we can approximate these (in the flat space limit) via

Rt ≈ 1+ 1

2λ
te (18.46)

and these will have approximately the right effect in moving points, but only if
the ratio |t |/λ is small. An obvious way of removing this limitation, whilst still
being compatible with having λ appearing in the expression for generalised angular
momentum, is to have a rule that terms which are second order in the expansion
parameter 1/λ are set to zero. This then means that the above approximation to Rt

translates e through exactly t . Applying this systematically to all products, we will
be able to represent Euclidean motions exactly in 4D and also be able to deal with
Euclidean rigid body dynamics in the same setting. This method appears to coincide
with that proposed elsewhere in Chap. 17 by Mullineux and Simpson, although the
full correspondence needs further investigation.

18.4 Conclusions

We have considered a ‘one dimension up’ approach to conformal geometric alge-
bra, where the advantages of the unification of translations and spatial rotation into a
common rotor structure are maintained, but where, particularly with regard to rigid
body motion, we have a better match between the degrees of freedom and the el-
ements of the algebra than occurs in the ‘two dimensions up’ approach of the full
CGA.

This necessitates working in a curved space, and this prompted an examination of
the motion of a spinning, translating rigid body in such a space, where it was shown
that an extra ‘force’ occurs as compared to motion in flat space, perpendicular to
both the angular momentum and the velocity, and affording a simple non-relativistic
derivation of what is called the Papapetrou force in General Relativity. As the radius
of curvature of the space becomes larger, this force goes to zero, but there is still
a non-trivial effect of working within a curved space, in that ordinary translational
motion is revealed as precessional motion in the higher space. In 2D this is an exact
equivalence, in that the standard 3D solutions for a precessing top may be used to
find the motion of a spinning rigid body in a 2D curved space.

We then carried out a comparison with the approach to Euclidean geometry and
rigid body motion discussed by Charles Gunn in this volume. This revealed that an
analogous treatment was possible in CGA, and explicit analogues were given for
the crucial ‘J ’ operation, and for the definition of the ‘join’. The full (5D) CGA
is necessary to realise this analogy, in which, corresponding to Gunn’s W and W ∗,
we constructed two spaces Ŵ and Ŵ ∗, each one just ordinary 3D Euclidean space,
supplemented by either the CGA origin (n̄/2) or point at infinity (n∞) respectively.

388 A. Lasenby

We emphasise that this is only a possible translation of Gunn’s work into CGA,
motivated by the apparent correspondence of the results obtained in this way, and
that establishing the exact relationship between the two approaches remains a topic
for further work.

The use of the two partial spaces, rather than the full CGA, makes the construc-
tion of certain things more difficult, such as the Euclidean distance between two
points, or the generalised angular momentum, but it appears the same information
is present, albeit packaged in a different way. This would not apply in an obvious
way to various other desirable features of the full CGA, such as ability to deal with
the full conformal group, and to be able to construct and intersect geometric objects
transcending simple lines and planes; however these lie outside what rigid body
dynamics strictly needs.

Finally, the flat space (large curvature scale) limit of the curved space approach
was discussed and compared briefly with both the Gunn work and the approach
of Mullineux and Simpson. For the latter, it is likely that retaining only first-order
terms in an expansion in the reciprocal curvature scale makes the methods coincide,
although the full correspondence needs further investigation.

18.5 Exercises

18.1 Let I = e1e2e3e be the pseudoscalar for 4D ‘spherical’ space. Show that I 2 =
+1 and that it commutes with all vectors in the space.

Now define the two objects

P+ = 1

2
(1+ I), P− = 1

2
(1− I)

Show that these are orthogonal projectors, i.e. satisfy

P 2+ = P+, P 2− = P−, P+P− = P−P+ = 0

Using these, we can define a basis of bivectors in the 4D space as

ξ1 = e2e3P+, η1 = e2e3P−
ξ2 = e3e1P+, η2 = e3e1P−
ξ3 = e1e2P+, η3 = e1e2P−

Show that ξi and ηi both have ‘structure constant’ relations of the form

[ξi, ξj] = εijkξk

where [a, b] is the commutator ab− ba. Show also that [ξi, ηj] = 0 (all i, j).
By expanding each of the ξi and ηi explicitly, show that their exponentials cor-

respond to screw motions in which there is a rotation accompanied by a translation
about the same axis, and give an interpretation of each geometrically.

18 Rigid Body Dynamics in a Constant Curvature Space 389

18.2 For spherical space, what do the d-lines (geodesics) look like in 3D?
Show that if Ŷ1 and Ŷ2 are the 4D representatives of two points on the d-line L,

then Y3 = αŶ1 + βŶ2, where α and β are real scalars, also lies on it.
Use this to show why L·Ŷ1 (suitably normalised) can be interpreted as the unit

tangent vector to the line at Ŷ1.

18.3 Show, using the CGA translation of the Gunn approach, that the norm of a free
vector with Ŵ ∗ representative V is given by the norm of V∨ P for any normalised
Euclidean point P. Why can’t we just take ‖V‖?

References

1. Doran, C.J.L., Lasenby, A.N., Challinor, A.D., Gull, S.F.: Effects of spin-torsion in gauge the-
ory gravity. J. Math. Phys. 39(6), 3303–3321 (1998)

2. Heath, R.S.: On the dynamics of a rigid body in elliptic space. Philos. Trans. R. Soc. Lond. 175,
281–324 (1884)

3. Lasenby, A.N.: Conformal geometry and the Universe. Unpublished paper available on the site
http://www.mrao.cam.ac.uk/~clifford/publications (2003)

4. Lasenby, A.N.: Recent applications of conformal geometric algebra. In: Li, H., Olver, P.J.,
Sommer, G. (eds.) Computer Algebra and Geometric Algebra with Applications. Lecture Notes
in Computer Science, p. 298. Springer, Berlin (2005)

5. Lasenby, A.N.: Some results in the conformal geometry approach to the Dirac equation, elec-
tromagnetism and gravity (2011, in preparation)

6. Papapetrou, A.: Spinning test-particles in general relativity. I. Philos. Trans. R. Soc. Lond. A
209, 248–258 (1951)

http://www.mrao.cam.ac.uk/~clifford/publications

Part VII
Towards Coordinate-Free Differential

Geometry

Differential geometry is an obvious target for geometric algebra. In its classical de-
scription by means of coordinate charts, its structure easily gets hidden in notation,
and that limits its applications to specialized fields. Geometric algebra should be
able to do better, especially if combined with modern insights in the system of geo-
metrical invariants.

19The Shape of Differential Geometry
in Geometric Calculus

David Hestenes

Abstract
We review the foundations for coordinate-free differential geometry in Geomet-
ric Calculus. In particular, we see how both extrinsic and intrinsic geometry of
a manifold can be characterized by a single bivector-valued one-form called the
Shape Operator. The challenge is to adapt this formalism to Conformal Geomet-
ric Algebra for wide application in computer science and engineering.

19.1 Introduction

Geometric Algebra (GA) enabled the development of several new methods for
coordinate-free differential geometry on manifolds of any dimension in [8]. In the
most innovative of these methods, both extrinsic and intrinsic geometry of a man-
ifold are characterized by a single bivector-valued one-form called the shape op-
erator, which is essentially the derivative of the tangent space pseudoscalar as it
slides along the manifold. I regard creation of this approach to differential geome-
try as some of my best work, so I am rather disappointed that, apart from one fine
application [15], it has not been further exploited by me or anyone else.

As abundantly demonstrated in this volume and elsewhere [2, 7], Conformal Ge-
ometric Algebra (CGA) has recently emerged as an ideal tool for computational
geometry in computer science and engineering. My purpose here is to prepare the
way for integrating the Shape Operator into the CGA tool kit for routine applica-
tions of differential geometry. I hope this will stimulate others to deal with practical
implementation and applications.

D. Hestenes (�)
Arizona State University, Tempe, AZ, USA
e-mail: hestenes@asu.edu

L. Dorst, J. Lasenby (eds.), Guide to Geometric Algebra in Practice,
DOI 10.1007/978-0-85729-811-9_19, © Springer-Verlag London Limited 2011

393

mailto:hestenes@asu.edu
http://dx.doi.org/10.1007/978-0-85729-811-9_19

394 D. Hestenes

19.2 Geometric Calculus—Basic Concepts

Geometric Algebra is essential to formulate the basic concepts of “vector deriva-
tive” and “directed integral.” Their initial formulations in [3] raised questions about
relations to the Cartan’s concept of “differential forms” [5]. That stimulated devel-
opment of the Geometric Calculus (GC) in Chaps. 4–7 of [8].

To elucidate the structure of Geometric Calculus, its basic concepts are listed
here, and their unique features are described in subsequent sections. The purpose is
to explain how GC enables differential geometry without coordinates.
• Universal Geometric Algebra—arbitrary dimension and signature
• Vector manifolds—for representing any manifold
• Directed integrals and differential forms
• Vector derivative and the fundamental theorem of calculus
• Differentials and codifferentials for mappings and fields
• Shape and curvature for differential geometry

19.3 Differentiable Manifolds as Vector Manifolds

A (differentiable) manifold Mm of dimension m is a set on which differential and
integral calculus is well defined. The standard definition requires covering the man-
ifold with overlapping charts of local coordinates. Calculus is then done indirectly
by local mappings to R

m = R⊗R⊗ · · · ⊗R. Proofs are then required to establish
that results are independent of coordinates.

In contrast, a vector manifold Mm = {x} of dimension m is defined as a set of
vectors (called points) in GA that generates at each point x a tangent space with
unit pseudoscalar Im(x). Any other manifold can then be defined as a set that is
isomorphic to a vector manifold.

Thus, GC enables a concept of manifold that is manifestly coordinate-free. As
we shall see, calculus can then be done directly with algebraic operations on points,
and geometry is completely determined by derivatives of the pseudoscalar. It should
be noted that a vector manifold can be defined without assuming that it is embedded
in a vector space of specified dimension, though embedding theorems can no doubt
be proved therefrom.

Though GC enables a coordinate-free approach to manifolds, it also provides a
very efficient formalism for handling coordinates. That is worth reviewing briefly,
because it facilitates direct connection to the standard literature and, of course, use
of coordinates when appropriate.

The vector-valued function x = x(x1, x2, . . . , xm) represents a patch of Mm pa-
rameterized by scalar coordinates (Fig. 19.1). The inverse mapping into R

m is given
by coordinate functions xμ = xμ(x). A coordinate frame {eμ = eμ(x)} is defined
by

eμ = ∂μx = ∂x

∂xμ
= lim

6x
6xμ

19 The Shape of Differential Geometry in Geometric Calculus 395

Fig. 19.1 Coordinate curves

with pseudoscalar

e(m) = e1 ∧ e2 ∧ · · · ∧ em = |e(m)|Im.

It is interesting to note that Elie Cartan used the expression eμ = ∂μx in an intuitive
way at the foundation of his approach to differential geometry. Thus, GC provides
the means to give it a more rigorous formulation.

Calculations with frames are greatly facilitated by employing a reciprocal frame
{xμ}, often defined implicitly by the equations eμ · eν = δ

μ
ν , which have the solution

eμ = (e1 ∧ · · · ()μ ∧ · · · ∧ em
)
e−1
(m),

where the μth vector is omitted from the product. This can be used for a coordinate
definition of the vector derivative, that is, the derivative with respect to the point x:

∂ = ∂x = eμ∂μ where ∂μ = eμ · ∂ = ∂

∂xμ
. (19.1)

Consequently, the reciprocal vectors can be expressed as gradients:

eμ = ∂xμ.

The question remains: How can the vector derivative be defined without coordi-
nates? The answer is given by first defining integration on vector manifolds, to
which we now turn.

19.4 Directed Integrals and the Fundamental Theorem

Let F = F(x) be a multivector-valued function on the manifold M = Mm

(Fig. 19.2) with a directed measure dmx = |dmx|Im(x). The measure can be ex-
pressed in terms of coordinates by

dmx = d1x ∧ d2x ∧ · · · ∧ dmx = e1 ∧ e2 ∧ · · · ∧ em dx1 dx2 . . . dxm,

where dμx = eμ(x) d
μx (no sum). Accordingly, the usual scalar-valued volume el-

ement of integration is given by

∣
∣dmx
∣
∣= |e(m)|dx1 dx2 . . . dxm.

396 D. Hestenes

Fig. 19.2 Vector manifold

The directed integral of F can now be expressed as a standard multiple integral:

∫

M
dmx F =

∫

M
e(m) dx

1 dx2 . . . dxm.

This establishes contact with standard integration theory. It is worth mentioning that
there are many practical and theoretical advantages to defining and evaluating the
directed integral without reducing it to a multiple integral with scalar coordinates,
though that cannot be addressed here.

Now we are equipped to formulate the fundamental theorem of calculus in the
powerful general form that GC makes possible. We shall see that this leads us to
a coordinate-free definition of the vector derivative in terms of the directed inte-
gral that reduces proof of the fundamental theorem to a near triviality. In addition,
it generalizes the definition of derivative through (19.1) to apply to discontinuous
functions (such as occur at the boundaries of material media in physics).

It is enlightening to begin with the important special case of a manifold em-
bedded in a vector space: M =Mm ⊂ V n. Let ∇ = ∇x denote the derivative of
a point in the vector space V n. The derivative of any field F = F(x) can then be
decomposed algebraically into

∇F =∇ · F +∇ ∧ F.

Thus GC unifies the familiar concepts of “divergence” and “curl” into a single vector
derivative, which could well be dubbed the “gradient,” as it reduces to the usual
gradient when the field is scalar-valued.

Now we can formulate the first generalization of the fundamental theorem of
calculus made possible by GC:

∫

M

(
dmx
) · ∇F =

∫

∂M
dm−1x F. (19.2)

As explained in [3] when this was first written down, all the integral formulas of
standard vector calculus (including those attributed to Gauss, Stokes, and Green)
are included as special cases of this formula.

I was puzzled for a while by the role of the inner product on the left side of (19.2).
Then I realized that its function is to project the derivative ∇ to a derivative on the
submanifold M , as expressed by

19 The Shape of Differential Geometry in Geometric Calculus 397

∂ = ∂x = I−1
m (Im · ∇).

Hence, one can write dmx ∂ = (dmx) · ∂ = (dmx) · ∇ , so the theorem (19.2) can be
written in the form:

∫

M
dmx∂F =

∫

∂M
dm−1xF, (19.3)

which has no explicit reference to the embedding space. That observation inspired
the following coordinate-free definition for the vector derivative with respect to x

in M without reference to any embedding space:

∂F = lim
dω→0

1

dω

∮

dσF, (19.4)

where dω = dmx and dσ = dm−1x. I called this the “tangential derivative,” when
I first proposed it, to emphasize that it is determined by the restriction of the variable
x to M . One consequence of that is that the operator ∂ = ∂x is itself a function of x,
so, for example, the theorem ∇ ∧ ∇ = 0, which holds for derivatives on a vector
space (a “flat manifold”), does not apply for derivatives on a curved manifold, where
∂ ∧ ∂ �= 0 in general. That property is essential for the formulation of differential
geometry with GC, as we see below.

This is not the place to discuss limit processes for defining the vector derivative
(19.4) and proving the fundamental theorem (19.3). However, the method of sim-
plices in [16] deserves mention, because it provides a practical approach to finite
element approximations.

Now we are prepared to explain how GC generalizes Cartan’s theory of differ-
ential forms. For k ≤ m, a differential k-form L = L(dkx, x) on a manifold Mm

is a multivector-valued k-form, that is, it is a linear function of the k-vector dkx at
each point x. The simplest example is the volume element dkx, which is a k-vector-
valued k-form. Another example is the (m− 1)-form dm−1xF(x) on the right side
of (19.3).

In Cartan’s terminology, the exterior differential of the k-form L is a (k+1)-form
dL defined here by

dL≡ L̇
(
dk+1x · ∂̇)= L

(
dk+1x · ∂̇, ẋ),

where the overdot indicates the variable differentiated. Cartan’s abbreviated notation
dL suppresses the dependence on the volume element dk+1x that is explicit in this
definition. Note that the term “differential” as used here refers to the fact that the
form is a linear function of a “volume element” intended to reside under an integral
sign. In the next section we use the term “differential” in a different sense related to
transformations. However, the two senses are intertwined when the transformation
is applied to a form, which is just a particular kind of tensor.

398 D. Hestenes

Now we can express the Fundamental Theorem of Geometric Calculus in its most
general form by the equation

∫

M
dL=
∮

∂M
L. (19.5)

This looks identical to the “Generalized Stokes’ Theorem” in Cartan’s calculus of
differential forms. However, Cartan’s forms are limited by being scalar-valued and
lacking the complete algebraic structure of GC. More specifically, Cartan’s theory
is limited to functions of the form L= 〈dkxF (x)〉 = (dkx) · F(x), where the angu-
lar brackets indicate scalar part, and the center-dot applies if F is k-vector-valued.
Accordingly, the exterior differential becomes

dL= 〈dk+1x∂F (x)
〉= 〈dk+1x∂ ∧ F

〉= (dk+1x
) · (∂ ∧ F).

Thus, Cartan’s exterior differential is equivalent to the curl in GC, though its use in
applications is more limited. When it is used to formulate Maxwell’s equations, for
example, the implicit volume element is just excess baggage, except when integra-
tion is intended.

The GC generalization to multivector-valued differential forms has profound ap-
plications. For example, it follows immediately from (19.3) that, with simple provi-
sos,

∂F = 0 ⇐⇒
∫

∂M
dm−1xF = 0.

For m = 2, this can be recognized as Cauchy’s Theorem for complex variables,
so it gives a straight-forward generalization of that theorem to higher dimensions.
Similarly, a generalization of the justly famous Cauchy Integral formula can easily
be derived from (19.5), as explained elsewhere [5, 8].

19.5 Mappings and Transformations

With the concept of vector derivative in hand, we are prepared to see how Geomet-
ric Calculus enables coordinate-free transformations of multivector fields on a given
manifold or in mappings from one manifold to another. The power of this formal-
ism is amply demonstrated in an elegant new approach to General Relativity called
Gauge Theory Gravity [1, 11].

Let f be a an invertible diffeomorphism from one region of a given manifold to
another, as expressed by

f : x→ x′ = f (x), so that x = f−1(x′
)
.

19 The Shape of Differential Geometry in Geometric Calculus 399

Fig. 19.3 Induced
transformations of vector
fields

This transformation induces a linear transformation f of the tangent space at each
point called the differential of f . Accordingly, each vector field a = a(x) undergoes
a transformation (Fig. 19.3) defined by

f : a = a(x)→ a′ = f (a)≡ a · ∂f, so that a = f−1(a′
)
.

The adjoint f of the transformation is an induced linear transformation (Fig. 19.3)
in the reverse direction:

f : b′ = b′
(
x′
)→ b= f

(
b′
)≡ ∂xf (x) · b′.

For applications, one needs the theorem that the adjoint of the inverse transformation
is the inverse of the adjoint:

f−1 = f
−1 : b(x)→ b′

(
x′
)= f−1

[
b
(
f
(
x′
))]

.

Note the complementary roles of directional derivative and gradient in the defini-
tions of differential and adjoint. Also note that no notion of “differential as infinites-
imal displacement” is involved.

To relate the GC approach to standard tensor calculus, consider a rank-2 tensor
(field) T (a, b′) that is a linear function of vector fields a and b′. If these fields
transform according to the differential and adjoint laws respectively, the tensor is
said to be contravariant in the first argument and covariant in the second.

The unique power of GC is manifest in the concept of outermorphism: the unique
extension of a linear transformation defined on a vector space to a linear transfor-
mation that preserves the outer product and hence defined on the entire GA gener-
ated by the vector space [4, 8]. For a pair of vector fields, the outermorphism of the
differential gives us

f : a ∧ b→ f (a ∧ b)= f (a)∧ f (b),

as illustrated in Fig. 19.4. By linearity, this property generalizes easily to the out-
ermorphism of any multivector field [8]. In particular, it follows that the outermor-
phism of the pseudoscalar I = I (x) is

f : I→ f (I)= Jf I so that Jf = detf = I−1f (I),

400 D. Hestenes

Fig. 19.4 Outermorphism of
the differential

which shows that the Jacobian of the transformation, Jf , is just a scale factor in-
duced by the outermorphism of the pseudoscalar.

A generalization of the familiar chain rule for differentiation is given by the
transformation law for the vector derivative:

f : ∂ ′ → ∂ = f
(
∂ ′
)

or ∂x = f (∂x′).

This implies invariance of the directional derivative:

a · ∂ = a · f (∂ ′)= f (a) · ∂ ′ = a′ · ∂ ′. (19.6)

Note that this applies whether a is a vector field or just a single vector in a given
tangent space. For example, if x = x(τ) is a curve with tangent ẋ = dx/dτ , then
(19.6) implies invariance of the chain rule for differentiating fields:

d

dτ
= ẋ · ∂x = ẋ · f (∂x′)= f (ẋ) · ∂x′ = ẋ′ · ∂x′ .

Now we have all the necessary tools in hand for addressing the main subject of
this chapter: coordinate-free differential geometry.

19.6 Shape and Curvature

My purpose here is to explain how the differential geometry of a given vector
manifold M = {x} is completely determined by properties of its pseudoscalar
I = I (x). For an oriented manifold, the pseudoscalar is a single-valued field de-
fined on the manifold. It can be visualized at each point (Fig. 19.5) as the tangent
space (which it determines). Actually, as we have seen, it is a defining property
of the manifold. For an unoriented manifold like a Möbius strip, the pseudoscalar
is double-valued, as the orientation (algebraic sign) can be reversed by sliding it
smoothly along a closed curve. But that is a minor point that will not concern
us.

Let a = a(x) be a vector-valued function defined on the manifold. We say that it
is a vector field if its values lie in the tangent space at each point of the manifold.
This property is definitively determined by the pseudoscalar. Thus projection into
the tangent space is a linear function defined by P(a) ≡ (a · I)I−1 ≡ a‖, while

19 The Shape of Differential Geometry in Geometric Calculus 401

Fig. 19.5 Manifold
pseudoscalar

rejection from the tangent space is defined by P⊥(a)≡ (a ∧ I)I−1 ≡ a⊥. Whence
we derive the obvious result

a = (a · I + a ∧ I)I−1 = P(a)+ P⊥(a)= a‖ + a⊥.

Of course, a vector field has the tangency properties a ∧ I = 0 and a = P(a).
The differential Pb(a) of the manifold projection operator is given by straight-

forward differentiation:

Pb(a)≡ b · ∂̇Ṗ (a)= b · ∂P (a)− P(b · ∂a).

Note that b · ∂ = [P(b)] · ∂ , that is, the inner product of any vector with the vector
derivative projects that vector into the tangent space, so differentials are always
taken with respect to tangent vectors or vector fields.

As we are not interested in the specific vector direction b, we can differentiate it
out to get the shape tensor:

S(a)≡ ∂̇Ṗ (a)= ∂bPb(a)= ∂̇ ∧ Ṗ (a)+ ∂̇ · Ṗ (a).

It is easy to prove the following theorems:

∂̇ ∧ Ṗ (a)= S(a‖) ⇒ ∂̇ ∧ Ṗ (a⊥)= 0,

∂̇ · Ṗ (a)= S(a⊥) ⇒ ∂̇ ∧ Ṗ (a‖)= 0.

Consequently, we can decompose the shape tensor into bivector and scalar parts:

S(a)= Sa +N · a,

where

Sa ≡ ∂̇ ∧ Ṗ (a)= S
[
P(a)
]= S(a‖) (19.7)

and

N ≡ Ṗ (∂̇)= ∂aSa. (19.8)

402 D. Hestenes

Fig. 19.6 Shape and spur

By virtue of (19.7), the shape bivector Sa could well be called the curl of the mani-
fold M . It follows that P(Sa)= 0, so the bivector-valued tensor Sa is not a field, as
its values are not in the tangent algebra of M .

The vector N is called the spur (of M), see Fig. 19.6. It follows from (19.8) that
N · P(a) = N · a‖ = 0, so N is not a vector field, as it is everywhere orthogonal
to the tangent algebra of M . As far as I know, the spur was not identified as a sig-
nificant geometrical concept until it was first formulated in GC. We will not pursue
it here. Rather, we aim to see how the shape tensor relates to standard concepts of
differential geometry.

The shape bivector has a simple geometric interpretation with great intuitive ap-
peal. It is easy to prove from its definition above that the shape bivector is the
rotational velocity of the pseudoscalar as it slides along the manifold; formally,

Sa = I−1a · ∂I.

Alternatively,

∂I = ISa = I × Sa,

where the symbol × denotes the commutator product, and the last inequality is a
consequence of I · Sa = 0 and I ∧ Sa = 0.

The curvature of the manifold is given by the shape commutator, defined for
vectors a and b by

C(a ∧ b)≡ Sa × Sb = P(Sa × Sb)+ P⊥(Sa × Sb). (19.9)

The right side shows that the full curvature decomposes into distinct intrinsic and
extrinsic parts. It can be proved that the intrinsic part is the usual Riemann curvature,
which can accordingly be defined by

R(a ∧ b)≡ P(Sa × Sb).

Readers may be surprised that this simple expression does not involve the usual
“coefficients of connexion.” The moral is that the treatment of intrinsic geometry
can be simplified by coordinating it with extrinsic geometry!—a striking claim that

19 The Shape of Differential Geometry in Geometric Calculus 403

surely deserves close scrutiny. Supported by the power of GC, the shape tensor
provides the means for investigating this claim.

Extension of the derivative concept to “covariant derivative” is at the heart of
standard differential geometry. GC generalizes this to extension of the vector deriva-
tive ∂ = ∂x to a coderivative D =Dx defined, for action on any multivector-valued
function A=A(x), by

DA≡ P(∂A)=D ∧A+D ·A.

It follows that

∂A=DA+ S(A),

where the shape tensor for A is given by

S(A)≡ ∂̇Ṗ (A)= ∂̇ ∧ Ṗ (A)+ ∂̇ · Ṗ (A)= S(A‖)+ S(A⊥).

For any tangent field A= P(A)=A(x), the cocurl is given by

D ∧A= P(∂ ∧A)= ∂ ∧A− S(A),

while the codivergence is given by

∂ ·A=D ·A= [D ∧ (AI)
]
I−1.

Many valuable differential identities can be derived from these definitions, such as

D ∧D ∧A= P(∂ ∧ ∂ ∧A)= 0,

D · (D ·A)= ∂ · (∂ ·A)= 0.

The equivalent of the covariant derivative is the directional coderivative (or cod-
ifferential) defined by

δaA≡ a ·DA≡ P(a · ∂A).

The commutator of codifferentials is determined by the intrinsic curvature:

(δaδb − δbδa)A=A×R(a ∧ b).

404 D. Hestenes

Fig. 19.7 The normal and its
differential

The Riemann curvature is a bivector function of a bivector variable with the fol-
lowing (mostly well-known) properties of great importance in General Relativity
Theory:

Symmetry: (a ∧ b) ·R(c ∧ d)= (c ∧ d) ·R(a ∧ b)

Ricci Identity: a ·R(b ∧ c)+ b ·R(c ∧ a)+ c ·R(a ∧ b)= 0

Ricci tensor: R(b)≡ ∂aR(a ∧ b)=−D · Sb
Scalar curvature: R ≡ ∂bR(b)= ∂ ·N
Bianchi identity: Ḋ ∧ Ṙ(a ∧ b)= 0

Einstein tensor: G(a)≡R(a)− 1

2
aR

This should suffice to clarify how the shape tensor relates to conventional formu-
lations of differential geometry. For important examples of manifold geometry, we
turn to the special case of manifolds that are hypersurfaces in a given manifold.

19.7 Hypersurfaces and Classical Geometry

The shape tensor generalizes the original approach to classical differential geometry
developed by Gauss, who characterized surfaces (2D manifolds) in terms of their
normals. The straightforward generalization of his approach to hypersurfaces of any
dimension has been formulated in modern terms by [10]. Let us see how to do it
with GC.

Let M =Mm be an m-dimensional hypersurface in Em+1. Let i = 〈i〉m+1 =
constant be the unit pseudoscalar for Em+1. Then the pseudoscalar for M is given
by I = ni, where n= n(x) is the unit normal. The function n= n(x) is often called
the “Gauss map” to support the intuition that it is a mapping of the manifold onto
a unit sphere. Instead, we describe the normal sliding on the hypersurface in terms
of its differential n(a) = a · ∂n. Then the shape of the hypersurface reduces to a
function of the normal and its differential, see Fig. 19.7:

Sa = I−1a · ∂I = nn(a)= n∧ n(a).

19 The Shape of Differential Geometry in Geometric Calculus 405

Fig. 19.8 Ellipsoidal
equipotentials

It is now straightforward to reduce geometric quantities in the previous section to
functions of the normal and its differential:

Curvature: R(a ∧ b)= P(Sa × Sb)= n(a)∧ n(b)= n(a ∧ b)

Mean Curvature: H ≡ 1

m
∂an(a),with ∂an(a)= trn= ∂ · n=−n ·N

Scalar Curvature: R = (∂b ∧ ∂a) · n(a)∧ n(b)= (trn)2 − trn2

Gaussian Curvature: κ = I−1 · n(I)

For m= 2, the Gaussian curvature can be written κ = I−1 ·R(I), so it is equivalent
to the Riemann curvature, which has only one component. It is worth noting that the
extrinsic component of the curvature (19.9) gives the classical Codazzi–Mainardi
equations for extrinsic geometry of a hypersurface, but we will no go into that.

The rest of this section is devoted to surfaces in E3, since that is the case of
greatest practical interest to engineering and computer graphics. Interested readers
are invited to compare the present approach to the classical treatment in [17] using
vector calculus. Rather than review examples in [8], let me discuss an important
classical example with a new twist.

According to Coulomb’s law, the electric potential of a finite line charge of length
L and charge density λ is given by the integral

V (x)=
∫

k dq(s)

|x− x′(s)| =
∫ L/2

−L/2

kλds

|x− se| ≡ kλϕ(x).

Remarkably, a simple expression for the value of this integral was overlooked until
recently when Rowley [14] discovered

ϕ(x)= ln

(
r+ + r− +L

r+ + r− −L

)

, where r± = |r±| =
∣
∣
∣
∣x±

1

2
Le

∣
∣
∣
∣.

The equipotentials compose a family of confocal ellipsoids (Fig. 19.8). The eccen-
tricity ε and directrix d of each ellipsoid is given by ε ≡ tanh(ϕ/2) < 1, so that

406 D. Hestenes

1+ ε

1− ε
= eϕ = r+ + r− +L

r+ + r− −L
,

d = (r+ + r−)2 −L2

2L
= (ε−2 − 1

)L

2
,

r+ + r− = L

ε
.

The electric field (for kλ= 1) is given by

E=−∇ϕ = r̂+ + r̂−
d

.

Here is the surprising new geometric fact that Rowley discovered: The unit normal
n at each point of an ellipse or ellipsoid is given by

r̂+ + r̂− = ∇(r+ + r−)=Λn, Λ2 = (r̂+ + r̂−)2 = 2(1+ r̂+ · r̂−).

Of course, the difference of the unit coradius vectors is a tangent vector r̂+ − r̂− ≡
2t. All this gives us a simple and perspicuous expression for the differential of the
normal: For any tangent vector a= P(a),

n(a)≡ a · ∇n= λ
[
a− (a · t)t] with λ=

(
1

r+
+ 1

r−

)
1

Λ
= L

εr+r−Λ
.

Note that the tangent vector t is an eigenvector of the differential n.
It is now a simple matter to compute all geometric properties of an ellipsoid of

revolution using the apparatus developed above. Since ellipsoids have many prac-
tical applications and the present approach is new, it is worth recording the main
results for future reference. For an m-dimensional ellipsoid of revolution, we find

tr n= λ
(
m− t2),

n2(a)= λ
[
n(a)− tt · n(a)]= λ2[a+ (a · t)(t2 − 2

)
t
]
,

tr n2 = λ2[m+ (t2 − 2
)
t2]= λ2

4

(
4m− 3− 5r̂+ · r̂− + 2(r̂+ · r̂−)2).

Therefore:

Shape: Sa = nn(a)= λn
[
a− (a · t)t]

Curvature: R(a∧ b)= n(a)∧ n(b)= n(a∧ b)

= λ2(a∧ b− t∧ [t · (a∧ b)
])

Mean Curvature: H ≡ 1

m
tr n= λ

m

(
m− t2).

19 The Shape of Differential Geometry in Geometric Calculus 407

For the case m= 2, we have the particular results:

Curvature: R(a∧ b)= κa∧ b

Gaussian Curvature: κ = λ2(1− t2)= 1

2
λ2(1+ r̂+ · r̂−)

Mean Curvature: H = 1

2
tr n= λ

(

1− 1

2
t2
)

= 1

2
λ

(
3

2
+ r̂+ · r̂−

)

.

All this has some obvious generalizations, for example, to a general ellipsoid with
an orthonormal set of tangent vectors, which, like t, are eigenvectors of the differ-
ential n.

Now let us turn to a general question of great interest and utility: What is the
“shape” of a curve embedded in a manifold? Shape and curvature are not defined
for a curve, because it is a one-dimensional manifold. Instead, shape and curvature
bivectors are replaced by the Darboux bivector [8], which completely characterizes
the geometry of the curve. Let us address our question for curves in E3 embedded in
some surface, since that is the case of greatest practical interest. The GC apparatus
we are using makes generalization to higher dimensions (and even mixed signature)
fairly straightforward. In deference to that possibility, we drop the convention of
boldface type for vectors in Euclidean space.

Let x = x(s) be a curve with arc length s. Then its “velocity” is a unit tangent
vector v = dx/ds ≡ ẋ. All derivatives of v are determined by the Darboux bivector
Ωv . In particular, the acceleration is given by the Frenet equation

v̇ =Ωv · v.

Its magnitude is called the first curvature κτ = |v̇|.
The condition that the curve is embedded in a surface with normal n = n(x) is

that v = P(v) is a tangent vector and

Sv = P⊥(Ωv)= nn(v)= n∧ n(v).

This decomposes the “Darboux” into two parts:

Ωv = Sv +ωv = P⊥(Ωv)+ P(Ωv),

where ωv = P(Ωv) is the rotation rate of the curve within the surface. This decom-
position can be characterized by two bending invariants [17], the normal curvature
κv = v ·n(v) and the geodesic (tangential) curvature κg =−I ·ωv = u ·ωv ·v = u · v̇,
where u= Iv is a unit vector orthogonal to v. Obviously, κ2

g =−S2
v and κ2

g =−ω2
v .

This completes our answer to the question about the “shape” of an embedded
curve.

408 D. Hestenes

Fig. 19.9 Triangular domain
for the Gauss–Bonnet
formula

We can use what we have just learned to understand the beautiful and profound
Gauss–Bonnet Formula:
∫

M
κ dA+

∮

C
κg ds +

∑

i

αi = 2π. (19.10)

This applies to any simply connected surface M bounded by a piecewise differ-
entiable closed curve C = ∂M with outer normal u = Iv and exterior angles αi ,
as illustrated in Fig. 19.9. As before, κ = I−1R(I) is the Gaussian curvature, and
κg = u · v̇ =−u̇ · ẋ is the geodesic curvature. In GC terms, using the Riemann cur-
vature R(d2x)= κ d2x with directed area element d2x = I dA, the formula can be
written
∫

M
I−1R
(
d 2x
)−
∮

C
u̇ · dx +

∑

i

αi = 2π. (19.11)

Proof of the Gauss–Bonnet formula is a nice application of the Fundamental The-
orem [17]. Generalization of the formula to higher dimensions is highly nontrivial
[8], and it involves the Riemann curvature in the way it appears in (19.11). No doubt,
there is more to be learned about this generalization and variations on the theme.

Now consider an important special case. The bounding curves are geodesics if
κg = 0, and the figure in Fig. 19.9 is a geodesic triangle. For a sphere of radius r ,
the Gaussian curvature is r2; whence the first term in (19.10) and (19.11) is the
solid angle subtended by the region M . An elegant expression for this solid angle
in terms of the vectorial endpoints is derived in [8], which uses GA to describe the
geometry of human body movement. Therein is discussed the amazing fact that the
human eye has learned to implement this theorem to keep the retinal image upright
in saccadic motion. That is the import of the psychophysical discovery known as
Listing’s Law.

19.8 Challenges

Let me conclude this review with a few challenges for further development of the
theory and applications.

19 The Shape of Differential Geometry in Geometric Calculus 409

• Extension to Conformal Geometric Algebra. The concept of vector manifold is so
general that there should be no problem in applying it to the case where all points
are null vectors as required for CGA. I would recommend concentrating first on
the geometry of hypersurfaces using the conformal split [7] with the normal at
each point x given by the unit bivector E = x ∧ e∞.
• Finite Element Differential Geometry. There is an abundant literature on this sub-

ject with many examples worth translating into GA and CGA. Reference [16]
should be especially helpful for discrete versions of the vector derivative and fun-
damental theorem. Regge Calculus is an elegant approach to discretizing Rieman-
nian geometry developed for applications to General Relativity [12, 13]. Transla-
tion and adaptation to GC should be fairly easy and enlightening. Applications to
engineering and computer science as well as physics look promising.
• Geometry of Movement. Using CGA to rework and extend the approach in [6] has

great potential for robotics as well as biomechanics.
• Elasticity. The geometry of material media, including constitutive relations as

well as stresses, strains and deformations should be a fertile domain for GC ap-
plications.
• Tangent cones for discontinuities. So far our approach to differential geometry

has ignored discontinuities and singularities of all kinds. GC is well suited to
handle such issues, especially in concert with the finite element approach to ge-
ometry proposed above. But here is another approach worth investigating. My
father developed the concept of tangent cone as a portion of the tangent space at a
point wherein convergence to a limit obtains, and he applied it with great success
to rigorous treatment of singularities in calculus of variations [9]. We have char-
acterized the geometry of a manifold by properties of the pseudoscalar for the
tangent space. My suggestion is to meld this notion with the tangent cone idea by
using a more general multivector to describe limit structure in the tangent space
at points that lie on creases, edges, corners and other discontinuities. I regard this
as a hard problem, because it is not well defined and I do not really know how to
approach it.

19.9 Exercises

19.1 Suppose that the geodesic triangle in Fig. 19.9 lies on a unit sphere with ver-
tices at a, b, c, so a2 = b2 = c2 = 1. Parallel transfer of a vector p around the triangle
can be calculated as follows: The tangent vector p at a is transferred to a tangent
vector ApA−1 at b by the spinor A= 1+ ba. It can subsequently be transferred to
the point c by B = 1+ cb and back to a by C = 1+ ac. The net result is rotation by
a spinor T = CBA. Show that

1

2
T = 1+ a · b+ b · c+ c · a+ a (c∧ b∧ a),

so p is rotated about the axis a through an angle φ given by

410 D. Hestenes

tan

(
1

2
φ

)

= a · (b× c)
1+ a · b+ b · c+ c · a .

How does this angle relate to the area of the triangle?

19.2 Use the result of the previous exercise to explain how the eye must rotate
during saccades in order to keep the image on the retina erect. See [6] for details.

19.3 Generalize Rowley’s potential φ(x) for an ellipsoid of revolution to an ellip-
soid with axes a, b, c. Calculate the shape and curvature tensors.

19.4 Find an explicit expression for the Darboux bivector of a geodesic on an el-
lipsoid. Calculate its normal and geodesic curvatures. How do these relate to the
curvatures of the ellipsoid?

19.5 Apply the Fundamental Theorem of Geometric Calculus to prove the Gauss–
Bonnet Formula (19.10).

References

1. Doran, C., Lasenby, A.: Geometric Algebra for Physicists. The University Press, Cambridge
(2003)

2. Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science. Morgan Kauf-
mann, San Francisco (2007)

3. Hestenes, D.: Space–Time Algebra. Gordon and Breach, New York (1966)
4. Hestenes, D.: The design of linear algebra and geometry. Acta Appl. Math. 23, 65–93 (1991)
5. Hestenes, D.: Differential forms in geometric calculus. In: Brackx, F. et al. (eds.) Clifford

Algebras and Their Applications in Mathematical Physics, pp. 269–285. Kluwer, Dordrecht
(1993)

6. Hestenes, D.: Invariant body kinematics: I. Saccadic and compensatory eye movements and
II. Reaching and neurogeometry. Neural Netw. 7, 65–88 (1994)

7. Hestenes, D.: New tools for computational geometry and rejuvenation of screw theory. In:
Bayro-Corrochano, E., Scheuermann, G. (eds.) Geometric Algebra Computing for Engineer-
ing and Computer Science. Springer, London (2009)

8. Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus, a Unified Language for
Mathematics and Physics, 4th printing 1999. Kluwer, Dordrecht (1984)

9. Hestenes, M.R.: Calculus of Variations and Optimal Control Theory. Wiley, New York (1966)
10. Hicks, N.: Notes on Differential Geometry. Van Nostrand, New York (1965)
11. Lasenby, A., Doran, C., Gull, S.: Gravity, gauge theories and geometric algebra. Philos. Trans.

R. Soc. Lond. A 356, 161 (2000)
12. Miller, W.: The geometrodynamic content of the Regge equations as illuminated by the bound-

ary of a boundary principle. Found. Phys. 16(2), 143–169 (1986)
13. Regge, T.: General relativity without coordinates. Nuovo Cimento 19, 558–571 (1961)
14. Rowley, R.: Finite line of charge. Am. J. Phys. 74, 1120–1125 (2006)
15. Sobczyk, G.: Killing vectors and embedding of exact solutions in general relativity. In:

Chisholm, J., Common, A. (eds.) Clifford Algebras and Their Applications in Mathematical
Physics, pp. 227–244. Reidel, Dordrecht (1986)

16. Sobczyk, G.: Simplicial calculus with geometric algebra. In: Micali, A., Boudet, R., Helmstet-
ter, J. (eds.) Clifford Algebras and Their Applications in Mathematical Physics, pp. 227–244.
Kluwer, Dordrecht (1992)

17. Struik, D.: Lectures on Classical Differential Geometry. Addison Wesley, Reading (1961)

20On the Modern Notion of a Moving
Frame

Elizabeth Mansfield and Jun Zhao

Abstract
A tutorial on the modern definition and application of moving frames, with a
variety of examples and exercises, is given. We show three types of invariants;
differential, joint and integral, and the running example is the linear action of
SL(2) on smooth surfaces, on sets of points in the plane, and path integrals over
curves in the plane. We also give details of moving frames for the group of rota-
tions and translations acting on smooth curves, and on discrete sets of points, in
the conformal geometric algebra.

20.1 Introduction

This chapter gives a tutorial on the modern definition of moving frames and details
a range of examples. The mathematical context is that of Lie group actions and their
invariants. On spaces of smooth curves and surfaces, we obtain differential invari-
ants and invariant differential operators. More generally, we can speak of integral
invariants, difference invariants, differential-difference invariants, and so on.

The notion of a moving frame is associated with Élie Cartan [2], who used it to
solve equivalence problems in differential geometry, relativity, and so on. Moving
frames were further developed and applied in a substantial body of work, in par-
ticular to differential geometry and (exterior) differential systems, see for example
papers by Green [7] and Griffiths [10]. From the point of view of symbolic com-
putation, a breakthrough in the understanding of Cartan’s methods came in a series
of papers by Fels and Olver [4, 5], Olver [22, 23], Hubert [11–13], Hubert and Ko-

E. Mansfield (�) · J. Zhao
School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury CT2
7NF, UK
e-mail: E.L.Mansfield@kent.ac.uk

J. Zhao
e-mail: J.Zhao-73@kent.ac.uk

L. Dorst, J. Lasenby (eds.), Guide to Geometric Algebra in Practice,
DOI 10.1007/978-0-85729-811-9_20, © Springer-Verlag London Limited 2011

411

mailto:E.L.Mansfield@kent.ac.uk
mailto:J.Zhao-73@kent.ac.uk
http://dx.doi.org/10.1007/978-0-85729-811-9_20

412 E. Mansfield and J. Zhao

gan [14, 15], which provide a coherent, rigorous and constructive moving frame
method free from any particular application, and hence applicable to a huge range
of examples, from classical invariant theory to numerical schemes.

The definition of moving frames we use is frameless in the sense that the ex-
amples are not restricted to the classical examples where the group actions were
applied to frames of vectors on curves and surfaces. However we show how the
modern definition applies to the classical examples.

One of the main results of the Fels and Olver papers is the derivation of symbolic
formulae for differential invariants and their invariant differentiation. The textbook
[21] contains a detailed exposition of the calculations for the resulting symbolic
invariant calculus. Applications are to the integration of Lie group invariant differ-
ential equations, and in the Calculus of Variations to the computation of invariant
Euler–Lagrange equations and the conservation laws guaranteed by Noether’s The-
orem (see also [9, 19]).

Integral invariants are conjectured to play a significant role in computer vision
and graphics. For example, recent software for handwriting recognition [8] uses
integral invariants developed in [6] to “quotient out” the effects of translations, rota-
tions and shear. Indeed, it is not hard to see that trying to study pixellated images via
difference analogues of Euclidean curvature (for example) leads to processes that
are highly sensitive to noise. Even the differential invariants computed by Gaussian
derivatives in the scale space approach, while less sensitive, are usually limited to
third order because of noise problems. Integrals, on the other hand, are far more
stable under small fluctuations in (digitised) curves and surfaces.

Finally, moving frames are being used to incorporate known symmetries of dif-
ferential systems into numerical schemes designed to integrate them [3, 16–18].
These methods are claimed to give better results regarding singularities and “blow
up” of solutions, as well as being able to incorporate first integrals.

20.2 Invariants

We take for our running example the linear action of SL(2) on the (u, v) plane, given
by1

g ·
(
u

v

)

=
(
au+ bv

cu+ dv

)

, (20.1)

where

g =
(
a b

c d

)

, ad − bc= 1.

1Editorial note: In this chapter only, the ‘·’ does not denote the dot product, but function composi-
tion; this can also be used for a function ‘acting on’ its argument.

20 On the Modern Notion of a MovingFrame 413

As given, there are no invariants which is unsurprising as we have a three-parameter
group acting on a two-dimensional space. In the applications, the action is extended
in several different ways, and the actions on the extended spaces do have invariants:
differential, integral and joint.

20.2.1 Differential Invariants and Their Syzygies

The first extension of the action in (20.1) is to declare that u = u(s, t), v = v(s, t)

are smooth functions of the parameters (s, t), so that we are really considering the
action of SL(2) on two-dimensional smooth surfaces, and we use the chain rule to
induce an action on derivatives, so that if K is a multi-index and

uK = ∂ |K|u
∂sK1∂tK2

,

then

g ·
(
uK

vK

)

=
(
auK + bvK

cuK + dvK

)

. (20.2)

Historically known invariants of this extended action include

uvs − vus, uvt − vut , uvss − vuss .

Indeed, for any two multi-indices, uKvJ − uJ vK is invariant. For example,

g · (uvs − vus) = (g · u)(g · vs)− (g · us)(g · v)
= (au+ bv)(cus + dvs)− (cu+ dv)(aus + bvs)

= (ad − bc)(uvs − vus)

= (uvs − vus)

and similarly for the others. Implicitly, s and t are both invariant, and hence the
operators ∂/∂s and ∂/∂t map differential invariants to differential invariants, for
example

∂

∂s
(uvs − vus)= uvss − vuss .

Further there are differential relations or syzygies between these invariants. If we set
IK,J = uKvJ − uJ vK =−IJ,K , then we have, for example,

∂

∂s
I0,t − ∂

∂t
I0,s − 2Is,t = 0,

which is easily verified.

414 E. Mansfield and J. Zhao

In order to ease computations that are naturally expressed in terms of these in-
variants and manipulate them in a symbolic computation environment, it is natural
to ask questions such as:

given a Lie group action, how to compute, algorithmically, a (small) finite set
of generators of the differential algebra of differential invariants and of the
module of their syzygies?

20.2.2 Integral Invariants

Not all applications use differential invariants; integral invariants on curves are far
less subject to noise and are more stable under small perturbations of curves. Thus,
a second extension is to consider curves t �→ (u(t), v(t)) in the plane that satisfy,
say, (u(0), v(0))= (0,0). The action can be induced on integrals of the form

∫

umvn du :=
∫ t

0
umvnuτ dτ,

∫

umvn dv,

and by extension to their sums with polynomial (in u and v) coefficients. Using
integration by parts,

∫

umvn du= 1

m+ 1

(

um+1vm − n

∫

um+1vn−1 dv

)

, (20.3)

so it is only necessary to consider integrals with respect to dv. The induced action
is g · (umvn)= (g · u)m(g · v)n and

g ·
∫

umvn dv =
∫ t

0
(g · u)m(g · v)n(g · v)τ dτ.

Some simple invariants are the well-known area integral

I1 =
∫

udv− 1

2
uv (20.4)

and also

I2 = u

∫

uv dv− 1

2
v

∫

u2 dv− 1

6
u2v2. (20.5)

There are a countably infinite set of integral invariants for this action [6].
To show that the area integral I1 in (20.4) is invariant, we need to show that

g · I1 = I1:

20 On the Modern Notion of a MovingFrame 415

g ·
(∫

udv− 1

2
uv

)

=
∫
(
(au+ bv)(cut + dvt)

)
dt − 1

2
(au+ bv)(cu+ dv)

= ac

(∫

udu− 1

2
u2
)

+ bd

(∫

v dv− 1

2
v2
)

+ ad

(∫

udv− 1

2
uv

)

+ bc

(∫

v du− 1

2
uv

)

= ad

(∫

udv− 1

2
uv

)

+ bc

(
1

2
uv−
∫

udv

)

= (ad − bc)

(∫

udv− 1

2
uv

)

=
∫

udv− 1

2
uv.

In this case, a natural question is:

What is a generating set of integral invariants, in the sense that any invariant
involving such integrals can be written as a sum (product, quotient, . . .) of
invariants in my generating set?

20.2.3 Joint Invariants

A third extension of the action (20.1) is to N copies of the plane or, equivalently,
to (ordered) sets of N points in the (u, v) plane. The action is extended component
wise: if zi = (ui, vi), then we define the joint action to be

g · (z1, z2, . . . , zN)= (g · z1, g · z2, . . . , g · zN). (20.6)

It is not hard to see that the quantities

ujvk − ukvj

are invariant. Indeed,

g · (uj vk − ukvj)= (auj + bvj)(cuk + dvk)− (auk + bvk)(cuj + dvj)

= (ad − bc)(uj vk − ukvj)

= ujvk − ukvj .

Further, it is not hard to imagine mix-and-match invariants such as joint differential
invariants and joint integral invariants.

In the following, we will show how moving frames allow one to write down
generating sets of invariants in all these situations.

416 E. Mansfield and J. Zhao

20.3 Moving Frames

For many applications, what is wanted is:

Given the Lie group action, derive the invariants and their relationships al-
gorithmically, that is, without prior knowledge of 100 years of differential
geometry, and with minimal effort.

The modern definition of a moving frame, as used and developed by Fels and
Olver and further developed by Hubert, provides a conceptually simple path to solv-
ing the problem of finding sets of generators of Lie group actions. The one catch is
that the Lie group action must be regular and free in an open domain in the space on
which the Lie group acts. For many actions, this is not as restrictive as it sounds, as
there are ways and means of extending the space on which the group acts to achieve
regularity and freeness, most notably by prolongation to higher and higher order
derivatives (see §9 of [5], where conditions on the action are given that guarantee
that a sufficiently high prolongation of the action will be free and regular on dense
open subsets of the relevant jet bundle), or by taking multiple copies [1].

20.3.1 The Definition of a Moving Frame

Our starting point is a (left) action by a Lie group G on some space M . This is given
as a map

G×M→M, (g, z) �→ g · z
which satisfies2

g · (h · z)= (gh) · z.
A moving frame can be defined where the group action is regular and free; see

Fig. 20.1. This means that:
• the group orbits foliate the space on which the group acts,
• given a surface K transverse to the orbits, the intersection of K with an orbit is

a unique point, and
• given z lying in the orbit O(z), such that k =O(z)∩K , there is a unique element

h of the group such that k = h · z.
Typically, moving frames exist only locally, that is, in some open domain in M .

Definition For the group action G ×M →M , a moving frame is an equivariant
map ρ :M→G; for a left action, the equivariance of a right frame is given by

ρ(g · z)= ρ(z)g−1. (20.7)

2A right action satisfies g · (h · z)= (hg) · z. The moving frame theory for right actions is entirely
equivalent.

20 On the Modern Notion of a MovingFrame 417

Fig. 20.1 The picture for a
free and regular group action

Fig. 20.2 A moving frame is
an equivariant map,
ρ(g · z)= ρ(z)g−1

Fig. 20.3 The classical idea
of a moving frame: at each
point on the curve, there is a
“frame” of vectors, (e1, e2)

which has the same
information as a translation
and a rotation

Consider Fig. 20.2. For z ∈M , let h be the unique element of G that satisfies
h ·z= k ∈K , and define ρ(z)= h. Since we have a left action, hg−1 takes g ·z to k;
indeed, (hg−1) · (g ·z)= (hg−1g) ·z= h ·z= k. In other words, ρ(g ·z)= ρ(z)g−1.

If instead we took the inverse h−1 to be the frame, we would obtain a so-called
left frame, for which the equivariance is ρ(g ·z)= gρ(z). However, the method used
to calculate a frame given in Sect. 20.3.2 yields a right frame, so we stick with that.

To see how this modern definition of a moving frame includes the classical
examples, consider Fig. 20.3. The space M is the set of smooth curves in the
plane, and the group G is the three-parameter group of rotations and translations
in the plane. The action is extended to curves pointwise, and to tangent vectors
and higher-order derivatives via the chain rule. We think of M as having coordi-
nates (x,u,ux,uxx, uxxx, . . .). The classical frame consists, at any given point of
the curve, of the unit tangent and unit normal vectors of the curve. These are given
as

418 E. Mansfield and J. Zhao

e1 =
(

1
√

1+ u2
x

,
ux
√

1+ u2
x

)

, e2 =
(

− ux
√

1+ u2
x

,
1

√
1+ u2

x

)

.

While it is difficult to visualise the orbits in such a high-dimensional space,
we can easily visualise a transverse section K , which is the plane given as the
locus of the equations, x = 0, u = 0, ux = 0. Thus the group element taking
(x,u,ux,uxx, uxxx, . . .) to K is the translation taking (x,u) to the origin, followed
by the rotation that takes the unit vector e1 to (1,0).3 In parameter form, the angle
and the vector of translation are

ρ(x,u,ux)=
(− arctan(ux),−(x,u)

)
.

20.3.2 The Calculation of a Moving Frame

In practice, one specifies K , the cross-section, as the locus of a system of equations
Φ(z) = 0. These are known as the normalisation equations. Then the frame h =
ρ(z) solves Φ(h · z) = 0. If the Lie group depends on r independent parameters,
one has r equations

φj (g · z)= 0, j = 1, . . . , r = dim(G)

for the r independent parameters describing g. The requirements that the group ac-
tion be free and regular amount to requiring the hypotheses of the Implicit Function
Theorem (IFT) to hold.4 Since the solution is guaranteed by the IFT to be unique, it
must be that

ρ(g · z)= ρ(z) · g−1

since both solve Φ(h · (g · z))= 0 for h. Thus, this method solves for a right frame,
as in (20.7). Invoking the Implicit Function Theorem means that the moving frame
holds only locally. For researchers committed to symbolic, algebraic processes, this
is a non-constructive step. In response to this, Hubert and Kogan [14, 15] formulated
a way of constructing a moving frame for algebraic group actions acting rationally.
In this development, the Implicit Function Theorem is replaced by an equally pow-
erful result in commutative algebra.

We now demonstrate a moving frame for two of the three extended SL(2) actions
detailed above. Integral invariants will be discussed in Sect. 20.4.3.

3Editorial note: To relate to a standard term in robotics, in Cartan’s examples moving frames
simplify to ‘the group element that sends the frame of vectors at a point to a reference frame of
vectors at the origin’.
4For any z ∈K , if one stacks the tangent vectors to K at z and the tangent vectors of the orbit
at z as columns in a matrix, then the matrix must have n = dimM columns and have full rank.
The tangent vectors to the orbits can be obtained by differentiating g · z with respect to the group
parameters at g = e, the identity of the group.

20 On the Modern Notion of a MovingFrame 419

20.3.2.1 A Frame for the Action on Derivatives
Consider the action (20.1) of SL(2), as prolonged to (20.2). If we take the equations
for the transverse cross-section to the orbits to be

g · u= 1, g · v = 0, g · ux = 0,

then solving these for (a, b, c), the independent parameters of the group, yields

a = −vx
uxv− uvx

, b= ux

uxv− uvx
, c=−v. (20.8)

In matrix form, we have

ρ(u, v,ux, vx)=
(−vx

uxv−uvx
ux

uxv−uvx−v u

)

.

To demonstrate the equivariance, we have

ρ(g · u,g · v,g · ux, g · vx)
=
(−g·vx

g·ux g·v−g·ug·vx
g·ux

g·uxg·v−g·ug·vx−g · v g · u
)

=
(−(cux+dvx)

uxv−uvx
aux+bvx
uxv−uvx

−(cu+ dv) (au+ bv)

)

=
(−vx

uxv−uvx
ux

uxv−uvx−v u

)(
d −b
−c a

)

= ρ(u, v,ux, vx)g
−1,

since the denominators appearing in ρ are invariant.

20.3.2.2 A Frame for the Joint Action
Consider the action (20.6). If we take the normalisation equations to be

g ·
(
u1

v1

)

=
(

1

0

)

, g ·
(
u2

v2

)

=
(

0

�
)

,

where � means undetermined (by the normalisation equations, we only need three
equations for the three independent parameters), then we have

a = v2

u1v2 − v1u2
, b= −u2

u1v2 − v1u2
, c=−v1, d = u1 (20.9)

in a calculation strongly resembling that for (20.8). The proof of equivariance is also
similar.

420 E. Mansfield and J. Zhao

20.4 Invariants via Moving Frames

By definition, a function F which is constant on orbits, F(g · z) = F(z), is an in-
variant of the group action. Considering Fig. 20.1, an invariant is determined by its
values on any transverse cross-section K . Indeed, if F(k) = c, then F(z) = c for
every z on the orbit of G through k. Since we have k = ρ(z) · z for all z on the orbit
through k in the domain U of the frame, we can see that any invariant on U is a
function of ρ(z) · z.

Conversely, we obtain the following result:

Theorem 20.1 If z ∈M is in the domain of a moving frame ρ, then the components
of I (z)= ρ(z) · z are invariant.

Proof The proof that I (z) is invariant looks simple:

I (g · z)= ρ(g · z) · (g · z)= ρ(z)g−1g · z= ρ(z) · z.

In practice, the invariance of expressions obtained via this method can look miracu-
lous, as the examples show. �

Given any function F on the domain U of a moving frame ρ in M , we say
F(ρ(z) · z) is the invariantisation of F on U . If z= (z1, . . . , zn) in co-ordinates, let
I (z)= (I (z1), . . . , I (zn)) define the invariantised co-ordinate functions I (zi). As a
rule, invariantisation of co-ordinates via a moving frame leads to complete sets of
invariants. The reason is the following result.

Theorem 20.2 (Replacement Theorem) If F is an invariant function defined in the
domain U of a moving frame ρ, then

F(z1, . . . , zn)= F
(
I (z1), I (z2), . . . , I (zn)

)
.

Proof

F(z1, . . . , zn)= F(g · z1, . . . g · zn) for all g

= F(g · z1, . . . g · zn)|g=frame

= F(I (z1), . . . , I (zn)). �

The Replacement Theorem implies that the I (zi) form a generating set of invari-
ants, in the sense that any invariant is a function of these. Note that the invarianti-
sation of the normalisation equations give rise to functional relations between the
I (zi), so the I (zi) are not functionally independent.

A second use of the Replacement Theorem is in cases where we cannot solve
for the frame, but invariants are known either historically or from geometrical con-
siderations. In this case, it may be possible to obtain enough information to solve

20 On the Modern Notion of a MovingFrame 421

for the distinguished symbolic invariants I (zj) in terms of known invariants. This
can be important, especially in the case of differential invariants, since a great deal is
known about symbolic calculation with the I (zj), which has been coded in software
such as Maple.

We now turn to the examples to illustrate these results.

20.4.1 Joint Invariants via Moving Frames

Recall that in Sect. 20.2.3 we defined the action on N copies of the plane (or equiv-
alently, sets of N points in the plane), given in (20.6). Our running example is the
group SL(2) acting linearly, as given in (20.1), for which a frame ρ was defined in
(20.9). The frame maps (u1, v1) to (1,0) and u2 to 0, so that I (u1)= 1, I (v1)= 0
and I (u2)= 0. We then have I (v2)= (cu2 + dv2)|ρ =−v1u2 + u1v2, and indeed,
for all j , we have

I (uj)= (auj + bvj)|ρ = ujv2 − vju2

u1v2 − v1u2
,

I (vj)= (cuj + dvj)|ρ =−v1uj + u1vj .

To verify the Replacement rule, we have for the invariant ujvk − vkuj that

I (uj)I (vk)− I (uk)I (vj)

= ujv2 − vju2

u1v2 − v1u2
(−v1uk + u1vk)− ukv2 − vku2

u1v2 − v1u2
(−v1uj + u1vj)

= (uj vk − ukvj)

−v1uj + u1vj
(−v1uj + u1vj)

= ujvk − ukvj ,

as required.
It can be seen that if S is the shift operator, S (j) = j + 1, S uj = uj+1, and

so on, then

S
(
I (uj)
)= uj+1v3 − vj+1u3

u2v3 − v2u3
�= I (S uj)= uj+1v2 − vj+1u2

u1v2 − v1u2
.

Therefore applications of moving frames to the study of finite difference schemes
for differential systems with a Lie group symmetry have involved defining a frame
ρn for each index n, see for example [3, 17].

20.4.2 Differential Invariants via Moving Frames

When considering prolonged actions on derivatives, the co-ordinates of the space
are (xi, u

α,uαx , . . . , u
α
K, . . .). In this case, the components of I (z) are

422 E. Mansfield and J. Zhao

g · xi |g=frame = I (xi), g · uαK |g=frame = IαK.

Other notations in use are ι(uαK) and ῑuαK . Since in general I (ux) �= ∂I (u)/∂x, an
equivalent numerical multi-index for K is often used, for example I (uxxy)= Iu112,
and so on.

All differential invariants are functions of the IαK by the version of the Replace-
ment Theorem adapted to this case:

Theorem 20.3 (Replacement—differential case) If F(xi, u
α, . . . , uαK, . . .) is an in-

variant, then

F
(
xi, u

α, . . . , uαK, . . .
)= F
(
g · xi, g · uα, . . . , g · uαK, . . .

)
for all g

= F
(
g · xi, g · uα, . . . , g · uαK, . . .

)∣
∣
g=frame

= F
(
I (xi), I

α, Iα1 , . . . , I uK, . . .
)
.

To illustrate the generation of the invariants and the Replacement Theorem in the
running example, we consider the linear SL(2) action (20.1) prolonged to derivatives
in (20.2). A frame for this action was calculated in (20.8) using the normalisation
equations

g · u= 1, g · v = 0, g · ux = 0.

We obtain, for example,

I (vx)= I v1 = (cux + dvx)|frame,

= −vux + uvx

I (uxx)= Iu11 = (auxx + bvxx)|frame

= −vx
uxv − uvx

uxx + ux

uxv− uvx
vxx

= −vxuxx + uxvxx

uxv− uvx
,

while in general,

I vK = −vuK + uvK,

IuK =
−vxuK + uxvK

uxv − uvx
.

We then note that, for example, using the replacement rule on IuK yields

I (uK)= −I (vx)I (uK)+ I (ux)I (vK)

I (ux)I (v)− I (u)I (vx)
= −I (vx) · I (uK)+ 0 · I (vK)

0 · 0− 1 · I (vx) ,

20 On the Modern Notion of a MovingFrame 423

as required, while for the general invariant,

IuKIvJ − IuJ I
v
K =

−vxuK + uxvK

uxv − uvx
(−vuJ + uvJ)

− −vxuJ + uxvJ

uxv− uvx
(−vuK + uvK)

= uKvJ − uJ vK

uxv− uvx
(uxv− uvx)

= uKvJ − uJ vK,

as expected.
Differential invariants are related to each other using invariant differentiation.

A maximal set of distinguished invariant differential operators may be defined by
the same process of invariantisation, namely

Dj = ∂

∂(g · xj)
∣
∣
∣
g=frame

=
∑

j

∂xk

∂(g · xj)
∣
∣
∣
g=frame

∂

∂xk
.

In our examples in this chapter, we take both independent variables to be invariant,
and thus Dx = ∂/∂x and Dy = ∂/∂y. In general, the Dj are linear operators with
non-constant coefficients. While they may not commute, we have, however,

[Dj ,Dk] =
∑

A
jkD

where the A
jk are invariants. Formulae for the A

jk in terms of the normalisation
equations and the group action appear in [5].

Perhaps the most striking result by Fels and Olver in [5] is the proof that there
exist “correction”, or “error” terms, Mα

Kj such that

Dj I
α
K = IαKj +Mα

Kj ; (20.10)

moreover, formulae for their calculation are given.5 Indeed, the Mα
Kj can be ob-

tained, as expressions in the IαK , simply from knowing the normalisation equations
for the frame and the group action: it is not necessary to have solved for the frame.
This result means that a symbolic invariant calculus is possible, since one can obtain
all the relations, both functional and differential, between the distinguished invari-
ants {I (xi), Iα, IαK}, even when these are only known symbolically.

5The formulae are fully explained in terms of undergraduate multi-variable calculus in [21], while
the Fels and Olver papers use (nontrivial) exterior calculus.

424 E. Mansfield and J. Zhao

Fig. 20.4 In standard
differential algebra, the entire
set of derivative terms {uαK } is
generated by uα , shown here
for two independent variables

In Fig. 20.4 is shown the standard structure of the set of derivative terms and how
they are related via differentiation. In this case, the partial derivative operators com-
mute, there are no functional relations relating the uαK , and all differential equations
connecting them are in terms of the trivial relations, ∂KuαJ = ∂J u

α
K = uαJK .

By contrast, when we invariantise, a radically different picture emerges. In
Fig. 20.5, we see the diagrams for the invariantised derivatives I (uK)= IuK and I vK ,
which stand, in general, for complex differential expressions. Equation (20.10)
shows that the invariant derivatives of IαK involve IuKj as well as additional terms,
so that arrows in these diagrams indicate merely, for example, that Dj I

u
K “involves”

IuKj rather than “equals” IuKj .

Next, we note that if IαK has been normalised to a constant, say, then it is not
necessarily the case that IαKj is zero, merely that the error term Mα

Kj will cancel the
IαKj term.

Finally, the existence of non-zero error terms means that eliminating6 IαKJ = IαJK
in the equations

DKIαJ = IαKJ +Mα
JK,

DJ I
α
K = IαKJ +Mα

KJ

yields the differential relation or syzygy,

DKIαJ −DJ I
α
K =Mα

JK −Mα
KJ .

In general, Mα
JK �=Mα

KJ so these syzygies will be non-trivial.
When the normalisation equations are relatively simple, diagrams such as

Fig. 20.5 can be used to locate the most important syzygies. For example, it can
be seen that Iu2 = I (uy) can be differentiated twice with respect to x, producing an
expression with Iu112 and additional terms, similarly Iu11 can be differentiated once

6We have IαKJ = IαJK since they are equal to the invariantisation of uαKJ = uαJK respectively.

20 On the Modern Notion of a MovingFrame 425

Fig. 20.5 In invariantised
differential algebra, more
than one generator may be
needed to obtain the complete
set of invariants IαK for each
dependent variable uα . The
picture here is for the running
example with a linear SL(2)
action, see (20.2), with frame
determined by the
normalisation equations
Iu = 1, Iu1 = 0, I v = 0

with respect to y to produce an expression with Iu112 in it. Subtracting, and rewriting
the result in terms of the generating invariants

κ1 = Iu11, κ2 = Iu2 , σ1 = I v1 , σ2 = I v2

to ease the appearance of the formula yields

D2
x κ2 −Dyκ1 = 1

σ 2
1

(2κ1σ2Dxσ1 − σ1σ2Dxκ1 − 2σ1κ1Dxσ2 + σ1κ2Dxσ1).

(This expression was obtained using the Maple package, Indiff that encodes the
invariant differentiation formulae [20].) In this case, we know the invariants explic-
itly, and this result can be verified by direct calculation. The basic syzygy for v is
much simpler, it is DyI

v
1 −DxI

v
2 = 2I v1 I

u
2 or

Dyσ1 −Dxσ1 = σ1κ2.

426 E. Mansfield and J. Zhao

For more general kinds of normalisation equations, the complete result concern-
ing which syzygies generate the set of all syzygies was obtained by Hubert [12].

To summarise the main differences of invariantised differential algebra from the
standard differential algebra, we have:
• More than one generator may be needed to obtain the complete set of the IαK

under invariant differentiation.
• There exist functional relations between the IαK , namely the normalisation equa-

tions.
• There exist non-trivial differential syzygies between the IαK .
• The Dj are non-commuting in general.

20.4.3 Moving Frames for Integral Invariants

We first consider the group SO(2)⊂ SL(2) which has only one parameter, the angle
θ of rotation, acting linearly on (u, v) as

θ · u= cos θu− sin θv, θ · v = sin θu+ cos θv.

We assume our set of curves all begin at (0,0). Bearing in mind that
∫
un du =

un+1/(n+ 1) and the integration by parts formula, (20.3), we take the co-ordinates
of our space to be w(0,0),w(0,1), . . . , z(1,0), z(1,1), . . . , where

w(m,n)= umvn, z(m,n)=
∫

umvn dv.

We include the monomials in our co-ordinates since they appear naturally in the cal-
culations. The action on the monomials is the standard action induced on functions:

θ ·w(m,n)= (cos θ u− sin θ v)m(sin θ u+ cos θ v)n,

the right-hand side of which expands to a sum in the w(i, j). The action on the
integrals is obtained as follows:

θ · z(1,0) =
∫

(cos θ u− sin θ v)(sin θ du+ cos θ dv)

= cos θ sin θ

(∫

udu−
∫

v dv

)

− sin2 θ

∫

v du+ cos2 θ

∫

udv

= 1

2
cos θ sin θ

(
u2 − v2)− sin2 θ

(

uv−
∫

udv

)

+ cos2 θ

∫

udv

= 1

2
cos θ sin θ

(
w(2,0)−w(0,2)

)− sin2 θ w(1,1)+ z(1,0),

and similarly for the other z(i, j). In words, we apply the action to the integral in the
standard way, expand and put into “normal form” by performing integrations where
possible and applying integration by parts to remove any integrations with respect
to u. It is helpful to write a procedure in Maple (for example) to do this.

20 On the Modern Notion of a MovingFrame 427

We need only one normalisation equation to obtain the frame, and we take
g · v = 0. Thus the frame is ρ = arctan(−v/u) or more helpfully,

cos θ = u√
u2 + v2

, sin θ = −v√
u2 + v2

.

Applying the frame to the w(i, j) leads either to 0 or 1; however, we are interested
in the integral invariants. Applying the frame to z(1,0) yields

I
(
z(1,0)

)=−1

2

uv(u2 − v2)

u2 + v2
− v2(uv)

u2 + v2
+ z(1,0)=−1

2
uv+ z(1,0),

thus recovering the well-known area invariant,

I
(
z(1,0)

)=
∫

udv− 1

2
uv,

which is the area between the curve and the diagonal t �→ (u(t), v(t)) in the (u, v)

plane, on the t-interval implicit in the integration. Applying the method to the
z(i, j), i �= 0 in turn yields a countably infinite set of integral invariants. For ex-
ample,

I
(
z(1,1)

)=−1

6

u2v2

√
u2 + v2

− 1

2

v√
u2 + v2

∫

u2 dv+ u√
u2 + v2

∫

uv dv.

Turning now to the full linear SL(2) action, we have that the action on the mono-
mials is

g · umvn = (au+ bv)m(cu+ dv)n,

while for integrals, we begin with

g · z(m,n)=
∫

(au+ bv)m(cu+ dv)n(c du+ d dv)

and then expand the right-hand side, performing integrations where possible and
integration by parts to remove all integrals with respect to u. The use of symbolic
software to perform the calculations is recommended.

Since there are now three independent parameters in the group, we need three
normalisation equations. As above, we can take g · u = 1, g · v = 0, and then we
need one other, so we can take g · z(2,0) = 0. It is not possible to normalise with
an equation for z(1,0), as the action is not free in (u, v, z(1,0)) space. The frame
obtained is then

a = 2uv2 − 6z(1,1)

u2v2 + 3z(2,0)− 6uz(1,1)
, b= −u2v + 3z(2,0)

u2v2 + 3z(2,0)− 6uz(1,1)
,

c=−v, d = u,

where we have written the expressions in terms of the z(i, j) for ease of reading.

428 E. Mansfield and J. Zhao

Applying the frame to the z(i, j) yields a countably infinite set of integral invari-
ants, for example, I (z(1,1))=− 1

6u
2v2 − 1

2v z(2,0)+ uz(1,1) or

I
(
z(1,1)

)=−1

6
u2v2 − 1

2
v

∫

u2 dv+ u

∫

uv dv.

The invariants rapidly become complex with increasing powers of u and v in the
integrand, but are nevertheless straightforward to obtain.

20.5 Moving Frames for the SE(3) Action in Conformal
Geometric Algebra

Finally we consider the standard linear action of SE(3), the group of rotations and
translations in three dimensions. We discuss the standard Serret–Frenet frame act-
ing on vectors in R

3, since this is the classically defined, well-known frame in com-
mon use for the standard action of SE(3) on curves. We show how one may write
this frame in the language of conformal geometric algebra. However, we conjec-
ture that a different frame, more “native” to CGA, will exist that offers improved
computational ease and better geometric properties than the Serret–Frenet frame for
calculations in CGA.

Given two non-parallel vectors a and b, which we can assume have been nor-
malised to have unit length, at a point P in R

3, the standard Serret–Frenet frame is
the group action that translates P to the origin, followed by the rotation that takes
both a to the x-axis and b to the (x, y)-plane. It is not hard to see that the rotation
matrix given by

Ra,b =
(a
(a× b)× a

a× b

)

satisfies the two requirements; further, it is overtly equivariant. The quaternionic
form of this rotation matrix seems complex, nor is it obviously equivariant; the axis
of rotation of R =Ra,b is

e1 × e2 +R(e1 × e2)+ e1 ×R(e2)+R(e1)× e2,

where e1 and e2 are the unit vectors on the x and y axes respectively, and while
the angle of rotation is easily calculated, the formula seems uninformative. Perhaps
a different frame, defined by a different cross-section to the group orbits, might
be more natural in the context of conformal geometric algebra; however, in what
follows, we show that we can write the Serret–Frenet frame in a natural way as a
product.

The two standard applications are the differential case, where we wish to con-
struct this frame relative to the vectors a= x′(t) and b= x′′(t) at the point x(t), so
that the frame depends on t , and the discrete case, where we are given three non-
collinear points p, p1 and p2 so that a= p1 − p and b= p2 − p. In what follows

20 On the Modern Notion of a MovingFrame 429

we restrict ourselves to the discrete case, as the differential case follows mutatis
mutandis.

20.5.1 The Serret–Frenet Frame in CGA

In this section, we will use the notation

g · z= z′

to ease the appearance of the formulae.
In conformal geometric algebra, the generic elements are points

pi = pi + 1

2
p2
i n∞ + no,

where pi denotes the position vector of the ith point. Consider the group SE(3)
acting as

pi
′ = g · pi = (RT)pi(RT)∼ = p′i +

1

2

(
p′i
)2
n∞ + no, (20.11)

where T and R are the unit translator and rotor, and (RT)∼ denotes the reverse of
RT .

We construct the moving frame for the action on three non-collinear points, or
equivalently two vectors defined at one point, in space. We illustrate the construction
by taking the three points related to a sphere as follows. Let a sphere be given as

S = p− 1

2
ρ2n∞ = p+ 1

2

(
p2 − ρ2)n∞ + no.

From this expression we obtain a point p (centre) and an invariant ρ (radius). After
the group action, we obtain:

S′ = p′ − 1

2
ρ2n∞ = p′ + 1

2

(
p′ 2 − ρ2)n∞ + no.

We move the centre of the sphere to the origin, and this gives three normalisation
equations for the translation part of the group action. We will need two more points
in order to determine all the six parameters in SE(3). Let the first point be a point
p1 on the surface of the sphere, and the second point p2 on the end of any one unit
tangent vector to the sphere at p1. Now define three vectors,

E2 = p1 − p, E3 = (p1 − p)× (p2 − p), E1 =E2 ×E3.

430 E. Mansfield and J. Zhao

After the translation T , the group element R2R1 =R ∈ SO(3) will act on our sphere
and will take both E2 to ‖E2‖e2, and the plane whose normal is E3 to the xy-plane,
whose normal is e3.

Firstly we apply R1 to the sphere which takes the plane spanned by p1 − p and
p2 − p to the e2e1 plane (xy-plane). We then apply R2, which is a rotation in the
e2e1 plane and will take g ·E2 =E2

′ to e2 (y-axis). Thus,

R1 = cos

(
θ

2

)

+ sin

(
θ

2

)

l1, R2 = cos

(
α

2

)

+ sin

(
α

2

)

l2,

where

l1 = E3 ∧ e3

‖E3 ∧ e3‖ , θ = cos−1
(〈E3, e3〉
‖E3‖

)

are the rotation axis and angle of R1; and

l2 = Ê2 ∧ e2

‖Ê2 ∧ e2‖
, α = cos−1

(〈Ê2, e2〉
‖Ê2‖

)

are the rotation axis and angle of R2, where Ê2 = R1E2R̃1, with R̃1 the reverse
of R1, and 〈·,·〉 represents the inner product between two vectors.

Hence our normalisation equations are

E2
′ = ‖E2‖e2, E3

′ = ‖E3‖e3.

To show an example, let a sphere be given as

S =
(

e1 + e2 + e3 +
√

3

2
n∞ + no

)

− 1

2
n∞,

with centre at p = e1 + e2 + e3 + (
√

3/2)n∞ + no and radius 1. Choose the other
two points as p1 = e1 + e2 + 2e3 + (

√
6/2)n∞ + no and p2 = 2e1 + 2e2 + 2e3 +√

3n∞ + no. The parameters of the frame can be then calculated as follows:

E2 = e3, E3 = e2 − e1, l1 = 1√
2
(e2e3 − e1e3),

θ = π

2
, l2 = e1e2, α = π

4
.

Hence the translator and the rotors are:

T = 1+ p
2
n∞, R1 = cos

(
θ

2

)

+ sin

(
θ

2

)

l1, R2 = cos

(
α

2

)

+ sin

(
α

2

)

l2.

20 On the Modern Notion of a MovingFrame 431

Fig. 20.6 An animation of the action of the moving frame taking the sphere to its normalised
position, t = 0 (left), t = 0.5 (middle) and t = 1 (right)

Figure 20.6 shows that the moving frames of SE(3) act on a sphere at the time of
t = 0, t = 0.5 and t = 1 in an animation of the action of the moving frame taking
the sphere to its normalised position.

20.5.2 Going Co-ordinate Free

By taking more general normalisation equations for the frame, we can see how the
frame can be defined in a more co-ordinate free way. Let two points be v1, v2 ∈R

4,1,
and two other points be w1,w2 ∈ R

4,1. The group element g ∈ SO(3) acts on our
points as

g · vi = (R2R1)vi(R2R1)
∼.

Now let

E2 = v1, E3 = v1 × v2, E1 =E2 ×E3,

and

F2 =w1, F3 =w1 ×w2, F1 = F2 × F3.

Our normalisation equations are:

E2
′ = ‖E2‖
‖F2‖F2, E3

′ = ‖E3‖
‖F3‖F3.

Then the parameters of the moving frame can be calculated without using any co-
ordinates:

R1 = cos

(
θ

2

)

+ sin

(
θ

2

)

l1, R2 = cos

(
α

2

)

+ sin

(
α

2

)

l2,

where

432 E. Mansfield and J. Zhao

l1 = E3 × F3

‖E3 × F3‖ , θ = cos−1
(〈E3,F3〉
‖E3‖‖F3‖

)

are rotation axis and rotation angle for R1, and

l2 = Ê2 × F2

‖Ê2 × F2‖
, θ = cos−1

(〈Ê2,F2〉
‖Ê2‖‖F2‖

)

,

where Ê2 =R1E2R̃1, are the rotation axis and rotation angle for R2.

20.6 Exercises

20.1 Verify that the integral invariant I2 in (20.5) is indeed an invariant under the
action of SL(2) given in (20.2). Using the method of Sect. 20.4.3, verify the calcu-
lations of I (z(1,1)) for the given frames and find I (z(2,0)) for both the SO(2) and
SL(2) actions.

20.2 (This exercise is preliminary to the next, in that the calculations required are
similar but for a much simpler action.) Let the group action of R

+
� R on smooth

curves in the plane parameterised as (x,u(x)) be given by

(λ, a) · (x,u(x))= (x,λu(x)+ a
)
.

Show that the frame defined by u′ = 0, ux ′ = 1 is

ρ(x,u,ux)=
(

1

ux
,− u

ux

)

,

which is valid, provided that ux > 0. If we set un = dnu/dxn, show that In =
un
′|ρ = un/ux and that d/dx(In)= In+1 − InI2. If the group is represented as

(λ, a) �→
(
λ a

0 1

)

,

show that

ρxρ
−1 =
(−I2 −1

0 0

)

. (20.12)

Note: equations for ρ in the form of (20.12) can always be obtained from the nor-
malisation equations, even when one cannot solve these for the frame explicitly; see
[21], Chap. 5, with an application to solving Lie group invariant ODEs in Chap. 6.

20 On the Modern Notion of a MovingFrame 433

20.3 If M is the set of smooth curves in a CGA parameterised by s (say), and
H the group of quaternions with the standard action on M , define a right frame
ρ : H ×M → M . Show that ρsρ

−1 is an element of the Lie algebra of H with
invariant components. What is the geometric meaning of the invariants appearing
in the components of ρsρ−1? (Note: for the Serret–Frenet frame ρSF , the non-zero
components of ρSF,sρ

−1
SF are the curvature and torsion of the curve.)

References

1. Boutin, M.: On orbit dimensions under a simultaneous Lie group action on n copies of a
manifold. J. Lie Theory 12, 191–203 (2002)

2. Cartan, E.: Oeuvres complètes. Gauthier-Villars, Paris (1952–1955)
3. Chhay, M., Hamdouni, A.: A new construction for invariant numerical schemes using moving

frames. C. R. Acad. Sci. Mec. 338, 97–101 (2010)
4. Fels, M., Olver, P.J.: Moving coframes I. Acta Appl. Math. 51, 161–213 (1998)
5. Fels, M., Olver, P.J.: Moving coframes II. Acta Appl. Math. 55, 127–208 (1999)
6. Feng, S., Kogan, I., Krim, H.: Classification of curves in 2D and 3D via affine integral signa-

tures. Acta Appl. Math. (2010). doi:10.1007/s10440-008-9353-9
7. Green, M.L.: The moving frame, differential invariants and rigidity theorems for curves in

homogeneous spaces. Duke Math. J. 45, 735–779 (1978)
8. Golubitsky, O., Mazalov, V., Watt, S.M.: Toward affine recognition of handwritten mathemat-

ical characters. In: Proc. International Workshop on Document Analysis Systems (DAS 2010),
Boston, USA, June 9–11 2010, pp. 35–42. ACM, New York (2010)

9. Gonçalves, T.M.N., Mansfield, E.L.: On moving frames and Noether’s conservation laws.
arxiv.org/abs/1006.4660 (2010)

10. Griffiths, P.: On Cartan’s methods of Lie groups and moving frames as applied to uniqueness
and existence questions in differential geometry. Duke Math. J. 41, 775–814 (1974)

11. Hubert, E.: Differential algebra for derivations with nontrivial commutation rules. J. Pure
Appl. Algebra 200(1–2), 163–190 (2005)

12. Hubert, E.: Differential invariants of a Lie group action: syzygies on a generating set. J. Symb.
Comput. 44(4), 382–416 (2009)

13. Hubert, E.: Generation properties of Maurer–Cartan invariants, preprint [hal:inria-00194528]
(2009)

14. Hubert, E., Kogan, I.A.: Smooth and algebraic invariants of a group action. Local and global
constructions. Found. Comput. Math. 7(4), 345–383 (2007)

15. Hubert, E., Kogan, I.A.: Rational invariants of a group action. Construction and rewriting.
J. Symb. Comput. 42(1–2), 203–217 (2007)

16. Kim, P., Olver, P.J.: Geometric integration via multi-space. Regul. Chaotic Dyn. 9(3), 213–226
(2004)

17. Kim, P.: Invariantization of numerical schemes using moving frames. BIT Numer. Math. 47(3),
525 (2007)

18. Kim, P.: Invariantization of the Crank–Nicolson method for Burgers’ equation. Physica D:
Nonlinear Phenomena 237(2), 243 (2008)

19. Kogan, I.A., Olver, P.J.: Invariant Euler–Lagrange equations and the invariant variational bi-
complex. Acta Appl. Math. 76, 137–193 (2003)

20. Mansfield, E.L.: Indiff a Maple package to calculate with differential expressions referred
to a moving frame. Available from http://www.kent.ac.uk/ims/personal/elm2 (2001)

21. Mansfield, E.L.: A Practical Guide to the Invariant Calculus. Cambridge University Press,
Cambridge (2010)

22. Olver, P.J.: Joint invariant signatures. Found. Comput. Math. 1, 3–67 (2001)

http://dx.doi.org/10.1007/s10440-008-9353-9
http://arxiv.org/abs/1006.4660
http://www.kent.ac.uk/ims/personal/elm2

434 E. Mansfield and J. Zhao

23. Olver, P.J.: Moving frames—in geometry, algebra, computer vision, and numerical analysis.
In: DeVore, R., Iserles, A., Suli, E. (eds.) Foundations of Computational Mathematics. Lon-
don Math. Soc. Lecture Note Series, vol. 284, pp. 267–297. Cambridge University Press,
Cambridge (2001)

21Tutorial Appendix: Structure Preserving
Representation of Euclidean Motions
Through Conformal Geometric Algebra

Leo Dorst

Abstract
Using conformal geometric algebra, Euclidean motions in n-D are represented as
orthogonal transformations of a representational space of two extra dimensions,
and a well-chosen metric. Orthogonal transformations are representable as multi-
ple reflections, and by means of the geometric product this takes an efficient and
structure preserving form as a ‘sandwiching product’. The antisymmetric part of
the geometric product produces a spanning operation that permits the construc-
tion of lines, planes, spheres and tangents from vectors, and since the sandwich-
ing operation distributes over this construction, ‘objects’ are fully integrated with
‘motions’. Duality and the logarithms complete the computational techniques.
The resulting geometric algebra incorporates general conformal transformations
and can be implemented to run almost as efficiently as classical homogeneous co-
ordinates. It thus becomes a high-level programming language which naturally
integrates quantitative computation with the automatic administration of geomet-
ric data structures.
This appendix provides a concise introduction to these ideas and techniques.
Editorial note: This appendix is a slightly improved version of (Dorst in: Bayro-
Corrochano, E., Scheuermann, G. (eds.) Geometric Algebra Computing for En-
gineering and Computer Science, pp. 457–476, 2011). We provide it to make this
book more self-contained.

21.1 Introduction

“Doing geometry” in computer science or engineering requires at least the following
ingredients in a practical computational framework:
• descriptive primitives: such as points, lines, planes, circles, spheres, tangents

L. Dorst (�)
Intelligent Systems Laboratory, University of Amsterdam, Amsterdam, The Netherlands
e-mail: l.dorst@uva.nl

L. Dorst, J. Lasenby (eds.), Guide to Geometric Algebra in Practice,
DOI 10.1007/978-0-85729-811-9_21, © Springer-Verlag London Limited 2011

435

mailto:l.dorst@uva.nl
http://dx.doi.org/10.1007/978-0-85729-811-9_21

436 L. Dorst

• basic constructions: connections, intersections, parametric specification
• motions: translation, rotation, reflection, projection
• properties: size, location, orientation
• practical numerics: approximation, estimation, interpolation, linearization
These ingredients should interweave seamlessly. Notably, the framework should be
structure preserving, in the sense that constructions and properties of primitives
should be covariant under motions. For instance, when moving a circle determined
by three points, it should not be necessary to decompose the circle back into the
points, move those, and then reconstruct; rather, the circle should be a basic element
of computation with an associated motion operator (which should moreover prefer-
ably be identical to that for points). Also, all ingredients should be specifiable in a
sufficiently high-level programming language, which avoids coordinates as specifi-
cation level though it may revert to them when executing the operations. The usual
linear algebra tools have neither of these desirable properties, not even when us-
ing homogeneous coordinates. Yet a practical computational framework exists that
can do all of the above. It is called “conformal geometric algebra” (CGA), and
this appendix briefly exposes its essential structure. We will explain all elements of
Fig. 21.1, and more.

21.2 Conformal Geometric Algebra

21.2.1 Trick 1: Representing Euclidean Points in Minkowski Space

Let us focus on a 3D space in which we want to perform Euclidean rigid body
motions. We can consider it as a 3D vector space and use a position vector x to
denote a point X relative to an (arbitrary) origin. This is naive practice, and not
very convenient, since Euclidean motions are then not even linear transformations.
A commonly used improvement is the homogeneous model, in which the space is
augmented with an extra dimension eo, and the point X at x represented as eo + x.
Now Euclidean motions are linear transformations but still not structure preserving.
More is required.

In CGA, we introduce two extra dimensions for representational purposes, thus
constructing a five-dimensional space. We introduce two basis vectors for these ex-
tra dimensions, no and n∞, and the specific metric given below. As we will see,
the null vectors in this extended space (i.e., the vectors x satisfying x · x = 0 in
the chosen metric) represent weighted points in the Euclidean space (though one
usually employs unit weight points satisfying x · n∞ = −1). Such vectors repre-
senting points have algebraic properties which enable to construct other elements in
a coordinate-free, invariant manner.

In this introductory appendix, we simply use an explicit expression for such a
vector x representing a point X, relating it to the “classical” Euclidean position
vector x of the point relative to the chosen origin through

x = no + x+ 1

2
‖x‖2n∞. (21.1)

21 Tutorial Appendix: Structure Preserving Representation 437

Fig. 21.1 An example of the ease of CGA (from [3]). A circle C is generated from three points
c1, c2, c3 as C = c1 ∧ c2 ∧ c3. A line is given as a 3-blade L. The circle C is to be rotated around
the line L, producing RCR−1, with R specified as R = exp(L∗φ/2). The rotation is interpolated
in k steps using R1/k . Then the whole scene is reflected in the plane π given by a normal vector n
and a point p on it as π = p · (n∧ n∞); any element X is reflected as X �→ (−1)grade(X)πXπ−1.
In appropriate software such as [4], these coordinate-free formulas are the literal specification of a
computer program producing the scene

If we ignore the component for n∞, we recognize in no + x just the homogeneous
model trick. In that model, the extra dimension eo represents the point at the origin;
and the same interpretation holds for no in CGA (set x = 0). We see that the term
with n∞ dominates as x gets large. In fact, n∞ can be interpreted consistently as the
point at infinity which is used in mathematics to “compactify” Euclidean space to
remove special cases from its algebra.

The Big Trick of CGA is the choice of a specific metric for the 5D represen-
tational space. We extend the dot product x · x for Euclidean vectors to the new
dimensions according to the multiplication table

· no x n∞
no 0 0 −1

x 0 x · x 0

n∞ −1 0 0

where the bold elements are purely Euclidean and borrow the 3D Euclidean dot
product. This table shows that the usual Euclidean metric holds for the bold vectors,
but a strange metric applies to the two additional dimensions no and n∞, which
are moreover “orthogonal” to the Euclidean part of the representational space since
they have dot product zero with Euclidean vectors. (In fact, the full 5D space now
has a Minkowski metric, as can be seen by considering the alternative basis vectors

438 L. Dorst

σ+ = no− 1
2n∞ and σ− = no+ 1

2n∞ that have squared norms of+1 and−1, respec-
tively.) Since there are thus four orthogonal basis vectors squaring to +1, and one
basis vector that squares to −1, we will denote this space by R

4,1, and its geometric
algebra by R4,1.

This metric is introduced to give a sensible real world meaning to the dot product
of two point representatives x and y:

x · y =
(

no + x+ 1

2
‖x‖2n∞

)

·
(

no + y+ 1

2
‖y‖2n∞

)

=
(

0+ 0− 1

2
‖y‖2
)

+ (0+ x · y+ 0)+
(

−1

2
‖x‖2 + 0+ 0

)

=−1

2
(x− y) · (x− y)

=−1

2
‖x− y‖2. (21.2)

The dot product in conformal space therefore encodes the (squared) Euclidean dis-
tance of the original points! Since points have distance zero to themselves, they are
represented by null vectors. Since Euclidean rigid body motions should preserve the
inter-point distance, they should preserve the dot product.1

Euclidean transformations are represented as orthogonal transformations

This is more specific than their representation as a certain strange class of linear
transformations in the usual homogeneous model, and it permits us to design a more
effective computational framework tailored to this property. Matrices are actually
not that great for representing orthogonal transformations, but fortunately there is
something better, as we will see in the next section.

First, let us determine what the vectors in the 5D representation space signify
geometrically. Suppose that we want to represent a sphere with center C and radius
ρ in Euclidean space. A point X on such a sphere would satisfy ‖x−c‖2 = ρ2 (using
Euclidean vectors). Using (21.2), this can be written in terms of the dot product
of the representative vectors x and c as x · c = − 1

2ρ
2. Using −n∞ · x = 1, we

can even group into x · (c − 1
2ρ

2n∞) = 0. The vector σ = α(c − 1
2ρ

2n∞), with
α ∈ R, is the most general vector we can make in the conformal space (it has five
parameters), and written in this form, we recognize it as representing a sphere with
center c, radius ρ and “weight” α through the equation x · σ = 0. You may verify
that ‖σ‖2 = α2ρ2 (even “imaginary spheres” with ρ2 < 0 are included) and that
a point is just a sphere with radius zero, represented by a null vector (for which

1We have simplified slightly; the general representation of a point at x in CGA is a scalar multiple
of x in (21.1); the scalar factor is the scalar−n∞·x (as you may verify), and this can be consistently
interpreted as the weight of the point. The squared distance between weighted points is computed
by normalizing first as (x/(−n∞ · x)) · (y/(−n∞ · y)). Euclidean transformations should then not
affect this formula; this implies that they are the specific orthogonal transformations that preserve
the special vector n∞.

21 Tutorial Appendix: Structure Preserving Representation 439

‖x‖2 = 0). A plane is the degenerate case of a sphere, and it is represented by a
vector of the form π = α(n + δn∞) (which has no no-component and therefore
satisfies n∞ · π = 0). Here n is the unit normal vector of the plane, δ is its oriented
distance from the origin, and α a weight. So:

the vectors in conformal space represent weighted spheres and planes.

In this tutorial, we will mostly use unit weights, focusing on the merely geometrical
aspects of the representation. In our notation, we will use bold for the elements of the
conformal model that are in its n-D Euclidean subspace and nonbold for elements
residing in the full (n+ 2)-D representational space or its geometric algebra. Since
there is a clear correspondence between elements of Euclidean geometry and their
conformal representation, we will drop the distinction between X and x, and talk
about a point x at location x.

21.2.2 Trick 2: Orthogonal Transformations as Multiple Reflections
in a Sandwiching Representation

In mathematics, the Cartan–Dieudonné theorem states that all orthogonal transfor-
mations can be represented as multiple reflections. In linear algebra, this fact is not
used much, since reflections are represented awkwardly and therefore unsuitable as
atoms of representation. If we want to reflect a Euclidean vector x in a plane through
the origin with normal vector a, this is the linear transformation

x �→ x− 2(x · a)a/(a · a). (21.3)

It does not look elementary at all, and within linear algebra the dot products cannot
be simplified.

We now introduce a clever trick: we consider the dot product (which is symmet-
ric) as merely the symmetrical part of a more fundamental product between vectors.
That product (invented by Clifford in 1872) is called the geometric product and
denoted by a space. So we rewrite:

a · x= 1

2
(ax+ xa). (21.4)

This more fundamental product is defined to be bilinear and associative but not nec-
essarily commutative. We see that ‖x‖2 = x · x = xx = x2, so that the square of a
vector under the geometric product is a scalar. We extend the geometric product to
scalars (and later to other elements). Scalars commute under the geometric product,
so αx= xα for vector x and scalar α. A vector x has a unique inverse x−1 under the
geometric product, defined through xx−1 = 1= x−1x and therefore found explicitly
as

inverse of a vector: x−1 = x/
(
x2).

440 L. Dorst

Now we see how this simplifies the reflection representation:

reflection in origin hyperplane with normal a: x �→ x− 2(x · a)a/(a · a)
= x− (xa+ ax)a−1

= −axa−1. (21.5)

The reflection of x in the origin hyperplane with normal vector a is therefore simply
a “sandwiching” of x by a and a−1 (with a minus sign). In this form, the fundamental
nature of reflections for the representation of transformations is more obvious than
it was in (21.3).

You may rightly object that we have not really reflected a point x, but only its
Euclidean part x. Let us try to extend the formula to the point x, using the ex-
plicit representation (21.1). Postulating distributivity of the geometric product, we
get −axa−1 =−a(no + x+ 1

2‖x‖2n∞)a−1 =−anoa−1 − axa−1− 1
2‖x‖2an∞a−1.

Evaluating this requires computing what −anoa−1 and −an∞a−1 are. We re-
alize from the definition of (21.4) and the dot product table that −anoa−1 =
−(ano)a−1 = −(2a · no − noa)a−1 = 0 + noaa−1 = no. Of course, you would
expect this geometrically: the point at the origin does not change after the re-
flection. Similarly for n∞, as you may verify. Further realize that ‖−axa−1‖2 =
(−axa−1)(−axa−1) = axxa−1 = x2(aa−1) = ‖x2‖—obviously, since reflection is
an orthogonal transformation. Combining all this, we find −axa−1 = no− axa−1+
1
2‖−axa−1‖2n∞, which is precisely the representation of a point at the reflected lo-
cation. Therefore a point x is reflected by transfer of the Euclidean formula (21.5),
as x �→ −axa−1. This structural principle may be illustrated as the commutative
diagram

position x

embed in CGA

normal vector a

embed in CGA

as reflector
position −axa−1

embed in CGA

point x
origin plane a as reflector

point−axa−1

If we perform a second reflection in another origin hyperplane, with normal vec-
tor b, this should be the mapping

x �→=−b
(−axa−1)b−1 = (ba)x(ba)−1,

using the associativity of the geometric product in the rewriting. Geometrically,
a double reflection is a rotation (see Fig. 21.2), so the operator (ba) represents a
rotation operator (in an axis through the origin, determined as the intersection of
the planes a and b). In this manner, we can generate all orthogonal transformations
as sandwiching products by elements that are themselves the geometric product of
vectors. These elements are called versors, or (when normalized) rotors. A delight-
ful property of versors is that they do not only apply to vectors, but also directly to

21 Tutorial Appendix: Structure Preserving Representation 441

Fig. 21.2 A reflection in two
successive planes is
equivalent to a rotation over
double their separating angle,
around the line of their
intersection (in 3D)

other geometric elements like lines and circles. Let us first make those geometric
elements part of our algebra.

21.2.3 Trick 3: Constructing Elements by Anti-symmetry

When we introduced the geometric product for vectors, we used only its symmetric
part (that was the dot product). But of course there is an anti-symmetric part as well.
Let us denote that by ∧ and call it the outer product. For vectors, it is defined as

x∧ a= 1

2
(xa− ax).

It is clear that x∧ a=−a∧ x, so that x∧ x= 0.
To interpret this new element x∧a geometrically, let us use some classical linear

algebra and take x and a as direction vectors. If we take an orthonormal basis {e1, e2}
in the plane spanned by x and a, and choose it such that x= ‖x‖e1, then a can be
written as a= ‖a‖(cos(φ)e1+ sin(φ)e2) with φ the angle from x to a. We evaluate:

x∧ a= (‖x‖e1
)∧ (‖a‖(cos(φ)e1 + sin(φ)e2

))

= ‖x‖‖a‖(cos(φ)e1 ∧ e1 + sin(φ)e1 ∧ e2
)

= ‖x‖‖a‖ sin(φ)e1 ∧ e2,

for, being the sum of two bilinear products, the outer product is itself bilinear. We
recognize in ‖x‖‖a‖ sin(φ) the signed area of the oriented parallelogram spanned
by x and a (in that order) and can therefore interpret e1 ∧ e2 as the algebraic spec-
ification of the unit area element in the (e1, e2)-plane. We call this a unit 2-blade.
We then interpret the 2-blade x ∧ a of direction vectors as the full specification of
the geometric area element spanned by x and a (in that order) in terms of its mag-
nitude, orientation and geometrical attitude (i.e., spatial stance). Only the shape of
the element is not determined uniquely, for you can easily verify that, for instance,

442 L. Dorst

x ∧ (a+ λx) = x ∧ a so that x and a+ λx span the same element as x and a. For
parallel direction vectors x and a, the outer product x∧a is zero, so the commutativ-
ity relationship xa= ax is the algebraic way of expressing parallelness of vectors.
Orthogonality of vectors is expressed as xa=−ax, or x · a= 0.

The outer product can be extended over more vector terms, always as the anti-
symmetric sum. This is done by permuting the geometric products and endowing
even permutations with a plus and odd permutations with a minus. For instance:

a∧ b∧ c= 1

3! (abc− bac+ bca− cba+ cab− acb) (21.6)

(but this algebraic equation is a very inefficient way of computing the value of the
outer product; the equivalent a∧ b∧ c= 1

2 (abc− cba) is already better). It can be
shown that the outer product thus defined is associative and multilinear. To make
it fully defined over all elements, we can extend it to scalars simply by defining
α ∧ a= αa for scalar α and vector a.

The outer product of k vector factors is called a k-blade, and the number of vector
factors k is called its grade. Geometrically, a k-blade is a quantitative representation
of a weighted, oriented k-dimensional subspace of the space its vectors reside in,
and its signed magnitude is an oriented hypervolume. For instance, if you would
compute the outer product of three direction vectors in 3D space, you would find
that the coordinates of the vectors combine to a familiar signed scalar multiple of
the unit volume: a ∧ b ∧ c = det([[abc]])e1 ∧ e2 ∧ e3. This volume is zero when
the vectors are co-planar, and therefore x ∧ (a ∧ b) = 0 can be solved for x as
x= λa+μb. Again, the 2-blade a∧ b is seen to be a single computational element
representing the plane spanned by the direction vectors a and b.

In the conformal model, the outer product of vectors representing points a and
b takes on a different geometric interpretation, even though its algebra is the same.
In CGA, the blade a ∧ b represents an oriented point-pair, in the sense that the
set of points x satisfying x ∧ a ∧ b = 0 is either x = a or x = b. (Comparing to
the derivation just given, we do get x = λa + μb, as before. Yet to be a point in
CGA, x has to satisfy x · x = 0 by (21.2), as do a and b. Some algebra then leads to
λμ(a · b)= 0, and this implies λ= 0 and/or μ= 0.) Similarly, a ∧ b ∧ c represents
the oriented circle through the points a, b and c, and the outer product of four points
a ∧ b ∧ c ∧ d represents an oriented sphere. We call these elements rounds. If the
points are in degenerate positions, or if one of them is the point at infinity n∞, an
oriented flat results (in 3D, these are: a line a ∧ b ∧ n∞, a plane a ∧ b ∧ c ∧ n∞, or
a “flat point” a ∧ n∞). Showing these facts without too much computation requires
the technique of dual representation, introduced next.

21.2.4 Trick 4: Dual Specification of Elements Permits Intersection

A subspace can be characterized by the outer product, but it is often convenient
to take a “dual” approach, not specifying the vectors in it but instead the vectors
orthogonal to it. We have already seen this for spheres: the orthogonality demand

21 Tutorial Appendix: Structure Preserving Representation 443

x · (c− 1
2ρ

2n∞)= 0 is equivalent to x lying on a sphere with center c and radius ρ.
Duality is a fundamental concept of geometric algebra and requires no more than
complementation relative to the volume of the vector space, through division.2

An n-dimensional vector space cannot have nonzero blades of a grade exceed-
ing n. A nonzero blade of the maximum grade n is called a pseudoscalar for the
space. It is common to normalize this to a unit pseudoscalar and to denote it by
In or In. The choice of the sign of the unit pseudoscalar amounts to choosing
a reference orientation for the space. In a 3D Euclidean space of direction vec-
tors with an orthonormal basis, I3 = e1 ∧ e2 ∧ e3(= e1e2e3) picks the standard
“right-handed” orientation. In the conformal model space, a suitable pseudoscalar is
I4,1 = no ∧ I3 ∧ n∞. The inverse of the unit pseudoscalar in 3D Euclidean space is
I−1

3 =−I3 (verify that I3I−1
3 = 1!). In the conformal space, I−1

4,1 = no ∧ I−1
3 ∧n∞ =

−I4,1.
One can find the blade representing the orthogonal complement of any subspace

through right-dividing its blade A by the pseudoscalar, as AI−1
n . This is called the

dual of A and denoted A∗:

dualization: A∗ =AI−1
n . (21.7)

For instance, the dual of the 2-blade e1∧e2 in 3D-space is (e1∧e2)(e1 ∧ e2 ∧ e3)
−1=

− (e1e2)(e1e2e3)= e3. This is indeed the normal vector of the (e1, e2)-plane using
the right-hand rule. The familiar 3D cross product of vectors can be made in CGA
as x× a= (x∧ a)I−1

3 , though its use should be avoided.
Duality permits us to intersect subspaces. Let us denote the intersection (or meet)

of blades A and B as A∩B; then we can define it in terms of outer product and dual
as

dual specification of meet: (A∩B)∗ = B∗ ∧A∗, (21.8)

where the duality is to be taken relative to the smallest-grade blade containing both
A and B (this is known as their join, and the intersection as their meet). If one
simply takes duality relative to the full space, a meet can become zero in degenerate
situations.

An extension of the inner product beyond vector arguments can be developed as
a product in its own right, with its own set of algebraic rules. When done properly,
it is consistent with the rest of the framework in the sense that

extension of inner product: (A ·B)∗ ≡ (A∧B∗
)
, (21.9)

with duality relative to a blade containing the join (one usually takes the pseu-
doscalar In).3 This inner product has properties like

2Editorial note: Since duality sometimes plays nonmetric roles, others prefer to introduce it differ-
ently, see for instance Chap. 14 and Chap. 15.
3This inner product is called the left contraction and denoted “"” in [3] and some chapters of this
book. It differs in details from the inner product used in [1].

444 L. Dorst

Fig. 21.3 The proof that a∧b∧c∧d represents a sphere involves the intersection of the midplanes
b− a, c− a and d − a

x · (a ∧ b)= (x · a)b− (x · b)a. (21.10)

When the arguments of the inner product are blades of the same grade, the result
coincides with the scalar product A ∗ B . For general arguments, that is defined as
the scalar part of the geometric product AB and denoted 〈AB〉; it is symmetric.

The inner product is especially convenient to define orthogonal projection of
subspaces as

orthogonal projection of X onto B: X �→ (X ·B−1) ·B.

For flats, this corresponds to the usual orthogonal projection, but it is more general:
for instance, in CGA projecting a line onto a sphere produces a great circle.

Knowing duality also permits us to interpret elements like a∧ b. In CGA, a and
b are the dual representations of planes through the origin, for the points on these
planes satisfy x · a= 0 and x · b= 0. Therefore by (21.8), the 2-blade a∧ b should
be the dual representation of their intersection line. Points x on that line then satisfy
x · (a ∧ b)= 0, and the point at infinity n∞ also is on the line (see the exercises in
Sect. 21.9).

We now have enough to show that in CGA, S = a ∧ b ∧ c ∧ d represents the
sphere through the four points a, b, c, d . The geometry is illustrated in Fig. 21.3.
By antisymmetry of ∧, we can subtract any factor from the others without changing
the value of S. We pick a and produce S = a ∧ (b− a)∧ (c− a)∧ (d − a). To find
out what (b− a) represents, solve x · (b− a)= 0. This evaluates to x · a = x · b, and
because of (21.2), this means that x has the same distance to a and b. So (b − a)

is the dual representation of the midplane between a and b. Therefore (b − a) ∧
(c − a) ∧ (d − a) is the dual representation of the intersection of three midplanes.
These planes intersect in two points: the center of the sphere m and the point at
infinity n∞, so (b− a)∧ (c− a)∧ (d − a) is proportional to (m∧ n∞)∗. Then we
find S ∝ a ∧ (m∧ n∞)∗ = (a · (m∧ n∞))∗ = (m− 1

2ρ
2n∞)

∗
with a ·m = − 1

2ρ
2.

21 Tutorial Appendix: Structure Preserving Representation 445

So indeed S is the dual of a dual sphere representation and therefore a sphere. This
also gives a very compact way to compute center and radius of a sphere given by
four points: they are simply the appropriate components of (a ∧ b ∧ c ∧ d)∗.

21.3 Bonus: The Elements of Euclidean Geometry as Blades

Closure of the operations of outer product and duality produces a suite of blades
representing recognizable elements of Euclidean geometry. We have seen many ex-
amples of this already, and the full list is given in this table from [3] (where n is
the dimension of the Euclidean space, E a purely Euclidean element of appropriate
grade, E� denotes the Euclidean dual EI−1

n , and Tp denotes the translation versor
over p, see (21.12)). Care has been taken to orient the blades and their duals consis-
tently.

Element Standard form X Defining properties

Direction E∧ n∞ n∞ ∧X = 0; n∞ ·X = 0

Dual direction −E� ∧ n∞ n∞ ∧X = 0; n∞ ·X = 0

Flat Tp(no ∧E∧ n∞)T −1
p n∞ ∧X = 0; n∞ ·X �= 0

Dual flat Tp(E�(−1)n−grade(E))T −1
p n∞ ∧X �= 0; n∞ ·X = 0

Tangent Tp(no ∧E)T −1
p n∞ ∧X �= 0; n∞ ·X �= 0; X2 = 0

Dual tangent Tp(no ∧E�(−1)n)T −1
p n∞ ∧X �= 0; n∞ ·X �= 0; X2 = 0

Round Tp((no + 1
2ρ

2n∞)∧E)T −1
p n∞ ∧X �= 0; n∞ ·X �= 0; X2 �= 0

Dual round Tp((no − 1
2ρ

2n∞)∧E�(−1)n)T −1
p n∞ ∧X �= 0; n∞ ·X �= 0; X2 �= 0

The square of a normalized round gives its radius squared, and this may be nega-
tive. Such “imaginary rounds” occur naturally, for instance when intersecting two
spheres that are further apart than the sum of their radii. Because only the squared
radius occurs in the conformal model, these elements are tractable in a real alge-
bra. Tangents are in fact rounds of zero radius, indicative of their infinitesimal size.
A tangent 2-blade occurs for instance as the grade 3 element that is the meet of two
touching spheres. In this context, a weighted point may be viewed as a localized
tangent scalar.

It is especially notable that the various uses and meanings of “vector with direc-
tion u” from applied linear algebra get their own “algebraic data structures”:
• a point at location u is represented by the CGA vector no + u+ 1

2 u2n∞
• a free vector is represented by the translation invariant 2-blade u∧ n∞
• a normal vector is the vector p · (u∧ n∞) and can move on a localized plane
• a force vector is represented by the 3-blade p ∧ u ∧ n∞ and can move along a

line
• a tangent vector u at p is the localized 2-blade p · (p ∧ u∧ n∞)

446 L. Dorst

All these automatically move appropriately under Euclidean versors, without a pro-
grammer needing to specify that they should (by explicitly giving them their own
“classes” and “methods”, as is required in common practice in classical software,
even when based on homogeneous coordinates).

21.4 Bonus: Rigid Body Motions Through Sandwiching

We have seen how all orthogonal transformations can be made as multiple reflec-
tions and that a single reflection is represented by an invertible vector a as the
transformation x �→ −axa−1. Now that we know what the vectors in the conformal
model represent, we can easily generate the versors for common motions. Euclidean
motions are generated by multiple reflections in planes, and we have seen that those
are dually represented by vectors of the form π = n+ δn∞; they satisfy n∞ ·π = 0.
• Rotation in a plane through the origin: If we take two unit dual planes at the

origin n1 and n2 with a relative angle of φ/2 from n1 to n2, the double reflection
first in n1 and then in n2 is represented as

RIφ = n2n1 = n2 · n1 + n2 ∧ n1 = cos(φ/2)− I sin(φ/2). (21.11)

When used in a sandwiching operation, this is a rotation over the angle φ around
the dual line given by the unit 2-blade I (proportional to n1 ∧ n2). Such a 2-blade
has the property I2 =−1. To show this, introduce an orthonormal basis {e1, e2},
write I= e1 ∧ e2 = e1e2 and compute using the associativity property of the ge-
ometric product: (e1 ∧ e2)(e1 ∧ e2)= (e1e2)(e1e2)=−e2e1e1e2 =−e2e2 =−1.
In this real geometric algebra, we therefore naturally get elements that square to
−1. In 3D, there is a basis for 2-blades consisting of the elements I = e1 ∧ e2,
J= e2 ∧ e3 and K= e3 ∧ e1, each squaring to −1 and having multiplicative rela-
tionships like IJ=−JI=−K. These are of course isomorphic to the elementary
quaternions which have proven so useful for 3D rotation computations. In geo-
metric algebra, they are introduced in a real manner as products of vectors, fully
integrated with the real elements they operate on. We will soon see that they can
rotate any element and derive the versor for a rotation around a general line in
Sect. 21.6.
• Translation: A translation over a vector t is generated by reflection in two dual

planes separated by a vector t/2, resulting in the element: (t+ 1
2 t · tn∞)t= t2(1−

tn∞/2). Since a scalar multiple generates the same motion in the sandwiching
product with the inverse, we prefer to define

versor for translation over t: Tt ≡ 1− 1

2
tn∞. (21.12)

You can check that the point representation (21.1) is indeed related to the point at
the origin no by translation over x, since x = TxnoT

−1
x .

21 Tutorial Appendix: Structure Preserving Representation 447

• General rigid body motion: A general rigid body motion can be constructed in
the usual manner as a rotation followed by a translation. The resulting versors
are often called ‘motors’ rather than ‘rotors’. In CGA, an alternative is to make it
directly as the reflection in four planes. When two of those are chosen perpendic-
ular to the other two, this produces Chasles’ screw motion representation (see [3],
and Chap. 5 and Chap. 6 in this book).
• Uniform scaling: Although not strictly a rigid body motion, the Euclidean simi-

larity transformation of uniform scaling can be made by subsequent reflection in
two dual spheres at the origin such as no− 1

2ρ
2
1n∞ and no− 1

2ρ
2
2n∞. After some

simplification, the scaling versor for a uniform scaling by eγ is found to be

Sγ ≡ cosh(γ /2)+ sinh(γ /2)no ∧ n∞.

More versors can be generated by reflection in spheres. Since these reflections can
change n∞ to a finite point, they can convert between lines and circles, and between
planes and spheres. Ultimately, all even conformal transformations can be generated
from a combination of translation, rotation, scaling and transversion (reflection in
two touching equal radius spheres)—details may be found elsewhere [3].

21.5 Bonus: Structure Preservation and the Transfer Principle

All constructions of elements were based on the linear combinations of geometric
products, since the other products are ultimately expressible in that manner. There-
fore, when we act on them with a versor V in the sandwiching product, all construc-
tions transform covariantly. For the outer product, this means that equations hold
like the following:

V (a ∧ b)V −1 = (V aV −1)∧ (V bV −1).

The same structure-preserving property holds for all operations we introduced, be
they spanning, inner product or duality (relative to a transformed pseudoscalar). In
words: “the transformation of a construction equals the construction of the trans-
formed elements”. This fact is very convenient, for it implies that we can simply
construct something at the origin and then move it into place to find the general
form (hence our preference for origin-based specification in the table above). And
composite elements move by the same versor as points do: the translation versor
Tt universally translates points, lines, planes, spheres or tangent elements. As we
mentioned, there is no longer any need for data structures distinguishing between
“position vectors” which feel translations, and “direction vectors” which do not; all
is automatically administrated in the algebraic behavior of the corresponding ele-
ments. This is an enormous advantage relative to the classical homogeneous model
for the development of structural code, either by hand or using a code generator [4].

This principle is also extremely useful in derivations. Let us for instance use it
to prove the general formula for the reflection of a line Λ in a dual plane π as
Λ �→ −πΛπ−1, simply from the 1D direction reflection formula (21.5). A line Λ0

448 L. Dorst

with direction u through the origin is given as Λ0 = no ∧ u∧ n∞, and a dual plane
π0 through the origin with normal vector n as π0 = n. The reflection of the direction
u is affected by (21.5) as u �→ u′ ≡ −nun−1 =−π0uπ0

−1. The reflected line is then
Λ′0 = no ∧ u′ ∧ n∞. Now we note that due to the algebraic commutation (i.e., the
geometric orthogonality) of the bold Euclidean and the nonbold extra dimensions no
and n∞, we have −π0noπ0

−1 =−nnon−1 = no and −π0n∞π0
−1 =−nn∞n−1 =

n∞. Therefore we can “pull out” the reflection operator to act on the whole line Λ0
by (21.5):

Λ′0 =
(−π0noπ0

−1)∧ (−π0uπ0
−1)∧ (−π0n∞π0

−1)

=−π0(no ∧ u∧ n∞)π0
−1 =−π0Λ0π0

−1.

This is still only true at the origin, but we can move this construction by a mo-
tion versor V to an arbitrary location. All elements change to their general form
π = Vπ0V

−1, Λ= VΛ0V
−1, and the reflection transformation preserves its struc-

ture since VΛ′0V −1 = (V π0V
−1)(VΛ0V

−1)(V π0V
−1) = πΛπ−1. Therefore the

general reflection formula of a line in a plane is simply:

reflection of a line Λ in the dual plane π : Λ �→ −πΛπ−1.

This includes all aspects of location, direction and orientation. Note that this com-
putation reflects a general line in a general plane without computing its intersection
point—try doing that using linear algebra! (If you need the intersection point of line
and plane, it is π ·Λ, by straightforward application of the universal meet operation
(21.8) and duality (21.7), (21.9).)

direction u

embed in GA

normal vector a

embed in GA

as reflector
direction u−2(u·a)a/‖a‖2)

embed in GA

direction u

embed in CGA

normal vector a

embed in CGA

as reflector
direction u′=−aua−1

embed in CGA

origin line Λo=no∧u∧n∞

Euclidean versor

dual no-plane
πo

Euclidean versor

as reflector
origin line Λ′o=−πoΛoπo

−1

Euclidean versor

general line Λ=VΛoV
−1

conformal versor

dual plane
π

conformal versor

as reflector
general line Λ′=−πΛπ−1

conformal versor

general circle K=VΛV−1 dual sphere
σ as invertor

general circle K ′=−σKσ−1

We can even apply an arbitrary conformal versor and change the reflecting dual
plane π into a dual sphere σ , and the line L into a circle K ; the result is a spherical
inversion operation. (As a further extension, another application of the structure

21 Tutorial Appendix: Structure Preserving Representation 449

preservation property shows that the reflection in σ of a general element X is X �→
(−1)grade(X)σXσ−1.)

The conformal model renders all transitions trivial in this transfer, all the way
from a reflection of a Euclidean direction vector at the origin to the inversion of
a general circle in a general sphere. Such is the power of a structure-preserving
framework!

21.6 Trick 5: Exponential Representation of Versors

Even-graded versors, made by an even number of reflections, represent motions that
can be performed continuously and in small amounts. In Euclidean and Minkowski
spaces, all even-graded versors can be written as the exponentials of bivectors. The
bivector specification of an even versor is often more directly related to the geometry
of the situation than the “product of vectors” method.

As an example of the exponential rewriting, take the rotation RIφ over the an-
gle φ, parallel to the I-plane as treated in (21.11):

RIφ = cos

(
1

2
φ

)

− sin

(
1

2
φ

)

I= e−Iφ/2.

It is the property I2 =−1 that makes the exponential rewriting permitted:

e−Iφ/2 = 1+ 1

1!
(

− Iφ
2

)1

+ 1

2!
(

− Iφ
2

)2

+ · · ·

=
(

1− 1

2!
(
φ

2

)2

+ · · ·
)

+
(

1

1!
(
φ

2

)1

− 1

3!
(
φ

2

)3

+ · · ·
)

I

= cos

(
1

2
φ

)

− sin

(
1

2
φ

)

I.

The translation versor of (21.12) can also be written in this exponential form; but
since it involves the bivector t ∧ n∞, the expansion truncates after two terms (fun-
damentally due to n2∞ = 0):

Tt = 1− 1

2
t∧ n∞ = e−t∧n∞/2.

A rotation around a general 3D unit line Λ over φ is now generated by the versor:

rotation around Λ over φ: RΛ,φ = eΛ
∗φ/2.

Proof This follows from the simply derived structural property

V exp(B)V −1 = exp
(
VBV −1),

450 L. Dorst

and the transfer property applied as follows. First recognize that the rotation axis of
the origin rotation RIφ is the line Λ0 = I∗, so the origin rotation is exp(Λ0

∗φ/2).
Then transfer this by a translation T to the actual location of the desired axis Λ,
which changes Λ0

∗ to T (Λ0
∗)T −1 = (T Λ0T

−1)/(T I4,1T
−1)=Λ∗ since the pseu-

doscalar I4,1 involved in the dualization is translation invariant. Done. �

General rigid body motions can of course also be made, for instance by the usual
method of combining an origin rotation with a translation. You find that the re-
sult can be written as the exponential of a general conformal bivector on the basis
{e1∧ e2, e2∧ e3, e3∧ e1, e1∧n∞, e2∧n∞, e3∧n∞}, giving the six degrees of free-
dom required. Since this space of bivectors is linear, it can be used for motion inter-
polation. To interpolate between two poses characterized by the versors M0 and M1,
find their bivectors B0 = log(M0) and B1 = log(M1). Now apply a standard vector
interpolation method to smoothly change B0 into B1 through intermediate bivec-
tors Bi ; then use the versors exp(Bi) to generate the interpolated poses. To execute
this procedure, one needs to find the bivector corresponding to a given versor; such
“versor logarithms” are treated in Chap. 5. Effective use of the bivectors for motion
tracking may be found in Chap. 6. The linear space of motors (versors of rigid body
motions) is studied in great detail in Chap. 2.

21.7 Trick 6: Geometric Calculus

Linearization of versor motions for extrapolation or estimation is also possible and
requires geometric calculus. When performed (see [1]), the first-order change in an
element X that is moved by a changing versor V (τ) from a standard element X0 as
X(τ)= V (τ)X0V (τ)−1 is

X(τ + ε)=X(τ)+ (Ω(τ)X(τ)−X(τ)Ω(τ)
)
ε

with Ω(τ)=
(

d

dτ
V (τ)

)

V (τ)−1.

If V is normalized, Ω is a bivector, and its ‘commutator product’ with X(τ) (half
the second term above) preserves the grade. This linearization of geometrical per-
turbations is very useful in applications, see Fig. 21.4.

The full geometric calculus is truly powerful, and one can differentiate relative
to an arbitrary element of the algebra (such as a blade or a versor). The main differ-
ence with classical differentiation is that such geometric differentiation, denoted by
∂X , also has the scalar aspects of a “derivative operator”, but that these are now tied
to directions in space. The geometric product makes the scalar aspects commute,
but not their geometric factors. Because of the noncommutativity of the geometric
product, we cannot always move the geometric differentiation operator next to the
element it acts on. This leads to additional refinement of the classical results in the

21 Tutorial Appendix: Structure Preserving Representation 451

Fig. 21.4 The mirror plane
Π rotates an angle φ round a
line Λ, and a line X is
reflected in it. Using a local
first-order linearization of the
reflection versor, one can
derive the perturbation of the
reflected line to second order
(in black) to be the rotation
with versor
exp(−φ((Λ ·Π)/Π)∗),
i.e. around the projection of
Λ onto Π with angle
2φ cos(Π,Λ). For details, see
[3]

derivative results, with interpretable geometrical significance. It has become con-
vention to denote the differentiation action by an overdot, giving expressions like

∂XAB = ∂̇XȦB + ∂̇XAḂ

for the product rule of geometric differentiation.
We give a few derivatives that come up in this book (notably in Chaps. 1, 2 and 7).

In typical applications, one probes a parameterized multivector by a variation in one
of its parameters. The two elements need not lie in the same unrestricted space;
usually X is on a manifold in some embedding space from which A can take its
values. We denote by P[·] the projection from the embedding space to the local
tangent space of the X-manifold, and assume that to be m-dimensional. Then:

(A ∗ ∂X)X = P[A], (21.13)

∂XX =m, (21.14)

∂X〈XA〉 = P[A]. (21.15)

For a vector x and an α-blade A, a result required in Chap. 5 is

∂x(Ax)= (−1)α(m− 2α)P[A] with α = grade(A). (21.16)

We cannot treat more on differentiation here, and the reader is referred to introduc-
tions like [1] and [3]. According to David Hestenes, geometric algebra can provide
compact new tools for practical coordinate-free differential geometry; he gives hints
and tips in Chap. 19 of this volume.

452 L. Dorst

21.8 Trick 7: Sparse Implementation at Compiler Level

Implementation of CGA may seem to be expensive. After all, to treat a 3D space, we
embed into a 5D representational space R

4,1 and use the geometric algebra R4,1 of
that, which involves a 25-D basis of constructible elements of all grades. Yet the use
we make of this space is restricted, and the elements are therefore somehow sparse.

Ultimately, the main purpose of the algebraic organization is to keep track auto-
matically of the administration of the meaning of the coordinates of points, lines,
planes, spheres, etc., simultaneous with performing the quantitative computations.
That is in a sense a Boolean selection task of the algebra, which one would intu-
itively expect not to be too expensive. Indeed it has proved possible to limit the
overhead of the use of CGA to about 10% relative to the best available coordinate
code programmed classically. For the computer science techniques that achieve this,
consult [3] and [4]. A warning: before you start using CGA in commercial applica-
tions, be aware that it is covered by a US patent [5].

21.9 Exercises

21.1 Show that the point at infinity n∞ is preserved by a reflection in a plane
through the origin characterized by normal vector a. Then show it is preserved by
reflection in any plane.

21.2 Compute the reflection of the point at infinity n∞ in a (dual) sphere σ =
c− 1

2ρ
2n∞. (Hint: what do you expect it to be?)

21.3 Show that a ∧ b ∧ c= 1
2 (abc− cba), with the outer product defined through

(21.6).

21.4 In 4D space, show that the bivector e1 ∧ e2 + e3 ∧ e4 is not a 2-blade.

21.5 With a and b Euclidean direction vectors in 3D, (a∧ b)∗ is a line. Investigate
which line, by finding all points x such that x · (a ∧ b)= 0. Show that the point at
infinity also satisfies this equation. (Hint: use (21.10).)

21.6 Check that the point representation (21.1) is indeed related to the point at the
origin no by the translation versor Tx, defined as in (21.12).

21.7 Show that the intersection point of a general line Λ with the dual plane π is
π ·Λ. Interpret its weight geometrically.

21.8 Many of the structural tricks that make CGA work can be used in other models
of geometry. Chapter 15 presents an alternative “homogeneous model”. Identify
which CGA tricks are similar, and which are resolved differently.

21 Tutorial Appendix: Structure Preserving Representation 453

References

1. Doran, C., Lasenby, A.: Geometric Algebra for Physicists. Cambridge University Press, Cam-
bridge (2000)

2. Dorst, L.: Tutorial: Structure preserving representation of Euclidean motions through confor-
mal geometric algebra. In: Bayro-Corrochano, E., Scheuermann, G. (eds.) Geometric Algebra
Computing for Engineering and Computer Science, pp. 457–476. Springer, Berlin (2011)

3. Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science: An Object-
Oriented Approach to Geometry. Morgan Kaufman, San Mateo (2007/2009). See www.
geometricalgebra.net

4. Fontijne, D.: Efficient Implementation of Geometric Algebra. University of Amsterdam, Ams-
terdam (2007), ISBN: 13 978-90-889-10-142, online at www.science.uva.nl/~fontijne

5. Hestenes, D., Rockwood, A., Li, H.: System for encoding and manipulating models of objects.
U.S. Patent 6,853,964, February 8, 2005

http://www.geometricalgebra.net
http://www.geometricalgebra.net
http://www.science.uva.nl/~fontijne

Index

A
Algebra

bracket, 196, 201
Clifford bracket, 209
Grassmann, 233, 257
Grassmann–Cayley, 196, 201
inner-product bracket, 202
quaternion, 154

Angular bracket, 209
Atomic function, 152, 153
Automated theorem proving, 195

B
Bennett linkage, 229
Bézier curve, 364
Bivector

angular momentum, 5
angular velocity, 16
exponentials of, 449
kinematic equation, 121
line representation, 278
logarithm of rotor, 93
representing line, 278
rotation, 107
shape, 402
split, 29, 95, 117

Blades
semantics in CGA, 445

Bracket algebra, 196, 201
Bracket basis, 197

C
Caianiello expansion, 209
Calibration, 127
Cartan–Dieudonné theorem, 65, 439
Cauchy–Riemann equations, 157
Cayley expansion, 199
Cayley factorization, 199
CGA, 128, 436

implementation, 452

similarity in, 31
tutorial introduction, 436

CGA applications
constraint solving, 221
curved space dynamics, 372
inverse kinematics, 47
motion interpolation, 81
motion reconstruction, 64
motor estimation, 25
moving frames, 428
pose kinematics, 116
rigid body dynamics, 7
target calibration, 130
theorem proving, 203

Chasles’ theorem, 30, 103, 118, 141, 363
Circle, 442

nearest point on, 57
Classical invariant theory, 196
Clifford bracket algebra, 209
Collisions, 17
Color image processing, 168, 176
Computer graphics, 290, 329
Computer vision, 176, 412
Conformal geometric algebra, 205, 436
Conformal model, 204
Coning motion, 110
Contraction, 199, 443
Curve, 407
Cycle enumeration, 235

D
Declarative modeling, 218
Decomposition

bivector split, 29, 95, 117
polar, 85

Differential form, 397
Differential geometry, 400
Differentiation

bivector, 141
exterior of CGA rotor, 94

L. Dorst, J. Lasenby (eds.), Guide to Geometric Algebra in Practice,
DOI 10.1007/978-0-85729-811-9, © Springer-Verlag London Limited 2011

455

http://dx.doi.org/10.1007/978-0-85729-811-9

456 Index

Differentiation (cont.)
interface to libraries, 141
motor, 137

Dual, 443
Dualization, 443
Dumbbell, 12, 16, 17, 378
Dynamics, 5

E
Elimination, 211
Equations of motion, 10
Euclidean geometry, 438
Euler equations, 6
Euler–Lagrange equations, 376

F
Flag, 33
Frame

moving, 416
reciprocal, 64, 132, 137, 261, 383, 384, 395

G
Geometric algebra

conformal, 436
Geometric calculus, 134, 394
Geometric constraint solving, 218
Geometric decomposition, 210
Geometric factorization, 210
Geometric product, 439
Graph, 234
Graphics, 412
Grassmann–Cayley algebra, 196, 201
Grassmann–Plücker syzygies, 197, 201
Grassmannian, 278
Gröbner basis, 198

H
Hand tracking, 52
Hilbert’s Nullstellensatz, 210
Hodge star, 356
Homogeneous coordinates, 330
Homogeneous model, 204
Homogenization, 211

I
Implementation, 21
Inertia tensor, 377
Inner-product bracket algebra, 200, 201

Invariants
differential, 413
integral, 414
joint, 415

Isoclinic rotation, 96, 97, 177, 182, 341

J
Jacobian, 266, 400
Join, 384, 443

K
Kernel

Gauss, 161
Poisson, 161

Kinematic lower pairs, 220
Kinematics, 4, 105, 220

inverse, 47

L
Lagrangian, 10, 378
Lie group, 411, 416
Line, 442

distance from sphere, 132
stabbing a face, 281

Lines
bivector representaion, 278
common normal, 326
least squares intersection, 132
pencil of, 258
relationship of, 226
relative orientation, 279

Logarithm, 326
of 3D CGA rotor, 97

M
Mass point, 333
Meet product, 201, 443
Middle expression swell, 196
Miller’s algorithm, 124
Monogenic signal, 157
Motor, 25

estimation, 34
geometry, 28
grade-4 constraint, 10, 35, 37, 41, 378
manifold, 27
normal space, 28, 136
space, 26
tangent space, 28, 136

Index 457

Moving frames, 411
Multivector derivative, 134

N
Normal form, 198
Null bracket algebra, 209
Null syzygies, 209

P
Perspective transformation, 347
Pfaffian, 209
Phase correlation, 181
Plane, 442
Plücker coordinates, 253, 275, 277
Point

flat, 442
Point

pair, 442
Polar decomposition, 85
Product

inner, 443
outer, 441
scalar, 444

Projection
orthogonal, 444
perspective, 347

Projective transformation, 263

Q
Quaternion, 154, 334, 446

atomic function, 157
dual, 356
interpolation, 92
phases, 156
reconstruction, 70
wavelet transform, 162

Quaternionic Hermitian function, 156
QWT, 162

R
Radon transform, 165
Reflection, 344, 440
Riesz transform, 161, 167
Rigid body, 446
Rigid body dynamics, 4, 7
Rigid body motion, 63, 220, 354, 364, 373,

428, 436
estimation, 73

Rodrigues’ formula, 351
Rotor, 440

grade characterization, 89
logarithm in 3D CGA, 97
logarithm of simple, 93

simple, 83
square root, 82

S
Sandwiching, 340, 440
Scalar product, 444
Screw motion, 388
Shape bivector, 402
Similarity, 102

in CGA, 31
Smooth motion, 364
Spear, 263
Sphere, 442

as point average, 142
center, 214
distance to point, 44
distance to line, 132
nearest point on, 56
vs point, 132

Spherical geometry, 374
Square bracket, 209
Stewart platform, 255, 265
Straightening syzygies, 198
Symbolic geometric computation, 195, 196
Symmetric top, 6, 379
Syzygy, 196, 209, 413

T
Theorem completion, 210
Tracking

hand, 48
Transform

Clifford Fourier, 177
Radon, 165
Riesz, 161

Transversion, 99
Twistors, 15

V
Vector

force, 445
free, 13, 386, 445
tangent, 445

Vector derivative, 395
Vector manifold, 394
Versor, 440

as exponential, 449
Visibility, 274

458 Index

W
Wavelet, 162

multi-resolution pyramid, 168
quaternion transform, 162

quaternionic analysis, 164
quaternionic atomic function, 166
quaternionic pyramid, 164

Wrench, 256, 263

	Guide to Geometric Algebra in Practice
	How to Read This Guide to Geometric Algebra in Practice
	 Part I: Rigid Body Motion
	 Part II: Interpolation and Tracking
	 Part III: Image Processing
	 Part IV: Theorem Proving and Combinatorics
	 Part V: Applications of Line Geometry
	 Part VI: Alternatives to Conformal Geometric Algebra
	 Part VII: Towards Coordinate-Free Differential Geometry
	 Part VIII: Tutorial Appendix

	Contents
	Contributors

	Part I: Rigid Body Motion
	Chapter 1: Rigid Body Dynamics and Conformal Geometric Algebra
	1.1 Introduction
	1.2 Rigid Body Dynamics in 3D
	1.2.1 Kinematics
	1.2.2 Dynamics

	1.3 Rigid Body Dynamics in 5D CGA
	1.3.1 Introduction
	1.3.2 Setting up the Lagrangian
	1.3.3 The Equations of Motion and Conservation Laws
	1.3.4 Solving the Equations
	1.3.4.1 Counting Arguments

	1.3.5 An Example-The Dumbbell
	1.3.6 Including Moments and Forces
	1.3.7 Adding in Gravity
	1.3.8 The Angular Velocity Bivector Update Equation
	1.3.9 Collisions-One Body
	1.3.10 Collisions-Two Bodies

	1.4 Implementation
	1.4.1 Overview
	1.4.2 Update Equations
	1.4.2.1 Velocity Update

	1.4.3 Computer-Level Object Representation
	1.4.4 Results

	1.5 Exercises
	 References

	Chapter 2: Estimating Motors from a Variety of Geometric Data in 3D Conformal Geometric Algebra
	2.1 Introduction
	2.2 The Linear Spaces M, B, and S
	2.3 Geometry of the Motors
	2.4 Estimating Motors
	2.4.1 Similarity Measures in CGA
	Points and Spheres
	Flats
	Directions
	Tangents
	Rounds

	2.4.2 Motor Estimation Problem Formulation
	2.4.3 Optimal Rotator and Translator Estimation
	2.4.4 Optimal Motor Estimation as an Eigenrotator Problem

	2.5 Examples
	2.6 Discussion
	2.7 Exercises
	 References

	Chapter 3: Inverse Kinematics Solutions Using Conformal Geometric Algebra
	3.1 Introduction
	3.2 Background
	3.3 FABRIK: An Iterative Inverse Kinematics Solver
	3.4 Using FABRIK for Hand Pose Tracking
	3.4.1 The Hand Geometry
	Calculating the Palm Joints
	Calculating the Finger Joints

	3.4.2 Trigonometric Solutions
	3.4.2.1 Nearest Point on a Sphere from a Point in Space
	3.4.2.2 Nearest Point on a Circle from a Point in Space

	3.5 Experimental Results
	3.6 Conclusions and Future Work
	3.7 Exercises
	 References

	Chapter 4: Reconstructing Rotations and Rigid Body Motions from Exact Point Correspondences Through Reflections
	4.1 Introduction
	4.2 Method for Reconstructing Rigid Body Transformations from Point Correspondences Through Plane Reflections
	4.3 Formalization Using Geometric Algebra
	4.3.1 Proof of Correctness
	4.3.2 Reconstructing 3D Rigid Body Motions from Three Point Correspondences

	4.4 Reconstructing a Quaternion from Two Vector Correspondences
	4.5 Benchmarks
	4.5.1 Performance for 3D Rotations
	4.5.2 Performance for 3D Rigid Body Motions

	4.6 Discussion
	4.6.1 Null Reflectors
	4.6.2 The Scaling of Vectors
	4.6.3 The Determinant of the Reconstructed Versor

	4.7 Conclusion
	4.8 Exercises
	 References

	Part II: Interpolation and Tracking
	Chapter 5: Square Root and Logarithm of Rotors in 3D Conformal Geometric Algebra Using Polar Decomposition
	5.1 Rotor Interpolation for Conformal Motions
	5.2 Rotor Roots Through Polar Decomposition
	5.2.1 Sketch: How to Take the Square Root of a Rotor
	5.2.2 The Square Root of Rotors in 3D CGA
	5.2.3 Polar Decomposition of Invertible Even Elements in 3D CGA
	5.2.4 Determining the Square Root of a Symmetric Element
	5.2.5 The Polar Decomposition of Invertible Elements of R4,1+
	5.2.6 The Square Root of a Rotor
	5.2.7 Roots When 1+R Is Noninvertible
	5.2.8 Interpolation
	5.2.9 Special Cases of Rotor Roots

	5.3 Logarithms of Rotors in 3D CGA
	5.3.1 Logarithm of a Simple Rotor
	5.3.2 The Split Structure of a Rotor
	5.3.3 Exterior Derivative of a Rotor Transformation in 3D CGA
	5.3.4 Split of a 3D CGA Bivector into Commuting 2-Blades
	5.3.5 The Principal Logarithm of a 3D CGA Rotor

	5.4 Geometrical Interpretation of the Logarithm
	5.4.1 The 2-Blade Generators in the Bivector Split
	5.4.2 Orbits of Rotors

	5.5 Special Cases of the Rotor Logarithm
	5.5.1 Log(TS)
	5.5.2 Log(RST): Generalized Chasles Theorem for Euclidean Similarities
	5.5.3 Log(TV)

	5.6 Exercises
	 References

	Chapter 6: Attitude and Position Tracking
	6.1 Kinematics in Geometric Algebra
	6.2 Attitude Computation and Kinematics in 3D
	6.2.1 Rotation Bivectors
	Finding an Expression for alpha
	Finding an Expression for B
	Completing the Derivation

	6.3 Practical Kinematics and Coning Motion
	6.3.1 Integration Schemes
	6.3.2 Comparative Simulations

	6.4 General Kinematics: Combining Rotation and Translation with CGA
	6.4.1 Generalised Velocities
	6.4.2 A Conformal Kinematic Equation for Bivectors
	Finding Expressions for alpha and B
	Finding Expressions for t
	Completing the Derivation

	6.4.3 Simulation Results

	6.5 Conclusion
	6.6 Exercises
	 References

	Chapter 7: Calibration of Target Positions Using Conformal Geometric Algebra
	7.1 Introduction
	7.2 Problem Statement
	7.3 Solution Using Geometric Algebra
	7.3.1 Initial Estimate of Poses
	7.3.2 Accurate Estimate of Poses
	7.3.2.1 Constraints
	Distance Between Two Targets
	Distance Between Two Poses

	7.3.2.2 Parameterisation

	7.3.3 Reconstructing the Target Positions

	7.4 Results
	7.5 Conclusions
	7.6 Exercises
	 References

	Part III: Image Processing
	Chapter 8: Quaternion Atomic Function for Image Processing
	8.1 Introduction
	8.2 Atomic Functions
	8.2.1 The Atomic Function up(x)
	8.2.2 The Differentiator Atomic Function dup(x)

	8.3 Quaternion Algebra
	8.4 Quaternion Atomic Function Qup(x)
	8.5 Monogenic Signal and the Atomic Function
	8.6 Quaternion Wavelet Atomic Function Transform
	8.7 Radon Transform of Functionals
	8.8 Applications of the Quaternion Atomic Function Qup(x)
	8.8.1 Convolution with an Image
	8.8.2 Multi-resolution Analysis Using the Quaternion Wavelet Atomic Function
	8.8.3 Radon Transform for Circle Detection in Color Images Using the Quaternion Atomic Functions

	8.9 Conclusion
	8.10 Exercises
	 References

	Chapter 9: Color Object Recognition Based on a Clifford Fourier Transform
	9.1 Introduction
	9.2 A Clifford Fourier Transform for Color Image Processing
	9.2.1 The Shift Theorem for the Clifford Fourier Transform
	9.2.2 Computation of the Clifford Fourier Transform

	9.3 Generalized Color Fourier Descriptors
	9.3.1 Generalized Fourier Descriptors (GFD)
	9.3.2 Generalized Color Fourier Descriptors (GCFD)

	9.4 Color Phase Correlation
	9.4.1 Phase Correlation for Grayscale Images
	9.4.2 Phase Correlation for Color Images

	9.5 Experiments
	9.5.1 Image Database
	9.5.2 Descriptors Extraction
	9.5.3 Classification
	9.5.4 Evaluation of the GCFD
	9.5.5 Evaluation of the Phase Correlation

	9.6 Conclusion
	9.7 Exercises
	 References

	Part IV: Theorem Proving and Combinatorics
	Chapter 10: On Geometric Theorem Proving with Null Geometric Algebra
	10.1 Introduction
	10.2 Null Grassmann-Cayley Algebra and Null Bracket Algebra
	10.2.1 Grassmann-Cayley Algebra, Bracket Algebra and Inner-Product Bracket Algebra
	10.2.2 From Conformal Geometric Algebra to Null Grassmann-Cayley Algebra and Null Bracket Algebra

	10.3 Applications: Geometric Factorization, Decomposition, and Theorem Completion
	Input
	Output
	Part 1. Elimination
	Part 2. Homogenization

	10.4 Conclusion
	10.5 Exercises
	 References

	Chapter 11: On the Use of Conformal Geometric Algebra in Geometric Constraint Solving
	11.1 Declarative Modeling of Geometric Systems
	11.2 Geometric Constraint Solving
	11.3 Topologically and Technologically Related Surfaces (TTRS)
	11.3.1 Lie Algebra of the Group of Rigid Motions
	11.3.2 Geometric Algebra Considerations

	11.4 CGA for Geometric Constraint Solving
	11.4.1 Example of Symbolic Solving
	11.4.1.1 Representation of Geometric Elements
	11.4.1.2 Representation of Geometric Constraints
	11.4.1.3 Symbolic Solving

	11.4.2 Example of Geometric Classification
	11.4.2.1 Representation of Geometric Elements
	11.4.2.2 Geometric Interpretation of TTRS5
	11.4.2.3 Classification of TTRS5

	11.5 Open Problems
	11.5.1 Chirality Specification
	11.5.2 Mobility Specification

	11.6 Conclusion
	11.7 Exercises
	 References

	Chapter 12: On the Complexity of Cycle Enumeration for Simple Graphs
	12.1 Introduction
	12.2 Essential Background
	12.3 Technical Considerations
	12.4 Theoretical Complexity
	12.4.1 Average-Case Complexity in "Suitably Sparse" Graphs

	12.5 Implementation Notes
	12.6 Conclusion
	12.7 Exercises
	 References

	Part V: Applications of Line Geometry
	Chapter 13: Line Geometry in Terms of the Null Geometric Algebra over R3,3, and Application to the Inverse Singularity Analysis of Generalized Stewart Platforms
	13.1 Introduction
	13.2 Line Geometry with Null Geometric Algebra
	13.3 Inverse Singularity Analysis by Wrench Matrix
	13.4 Singular Configurations of GSPs
	Singularity type 1
	Singularity type 2
	Singularity type 3
	Singularity 4

	13.5 Conclusion
	13.6 Exercises
	 References

	Chapter 14: A Framework for n-Dimensional Visibility Computations
	14.1 Problem Statement
	14.1.1 About Visibility
	14.1.2 The Dimension Problem
	14.1.3 Toward a Global Visibility Framework

	14.2 Line Spaces
	14.2.1 n-Dimensional Lines
	14.2.2 From Line to Line Space
	14.2.3 About the Grassmannian
	14.2.4 Line Orientation
	14.2.5 Dual Line Representation

	14.3 Visibility in Ln
	14.3.1 Lines Stabbing a Convex (n-1)-Face
	14.3.2 Convex Cells and Visibility Events in the Line-Space
	14.3.2.1 Interpretation in Ln and Consequences
	14.3.2.2 Global Visibility in Gn as Convex Cells in Ln
	14.3.2.3 Visibility Events in Ln

	14.4 The Minimal Polytope
	14.4.1 Minimal Polytope Interest
	14.4.2 The Minimal Polytope for Two Convex Faces
	14.4.3 Proof of the Minimal Polytope Solution
	14.4.3.1 If the Polytope MAB Exists, then It Is Minimal
	14.4.3.2 Proof of SABMAB
	14.4.3.3 Proof of MABGR(2,n+1) SAB
	14.4.3.4 When the Hyperplane HB or HA Intersects the Inside of A or B
	14.4.3.5 Dealing with Degenerate Cases

	14.5 An Application Example: Soft Shadows Computation
	14.5.1 The n-Dimensional Visibility Framework Implementation
	14.5.2 Soft Shadow Computations
	14.5.2.1 Application Overview
	14.5.2.2 Results

	14.6 Exercises
	 References

	Part VI: Alternatives to Conformal Geometric Algebra
	Chapter 15: On the Homogeneous Model of Euclidean Geometry
	15.1 Introduction
	15.2 The Grassmann Algebra(s) of Projective Space
	Grassmann Algebra
	Simple and Nonsimple Vectors
	Projectivized Exterior Algebra
	Dual Exterior Algebra
	15.2.1 Remarks on Homogeneous Coordinates
	15.2.2 Equal Rights for W and W*
	Bases and Isomorphisms for W and W*
	The Isomorphism J
	The Canonical Basis
	Projective Join and Meet
	There Are No Lines, Only Spears and Axes!

	15.3 Clifford Algebra for Euclidean Geometry
	15.3.1 The Cayley-Klein Construction
	Polarity on the Metric Quadric
	Free Vectors and the Euclidean Metric

	15.3.2 A Model for Euclidean Geometry
	Counterspace

	15.3.3 J, Metric Polarity, and the Regressive Product

	15.4 The Euclidean Plane via P(R*2,0,1)
	Consequences of Degeneracy
	Notation
	15.4.1 Enumeration of Various Products
	15.4.2 Euclidean Isometries via Sandwich Operations
	Reflections
	Direct Isometries
	Rotations

	15.4.3 Spin Group, Exponentials, and Logarithms
	Lie Groups and Lie Algebras

	15.4.4 Guide to the Literature

	15.5 P(R*3,0,1) and Euclidean Space
	Notation
	15.5.1 Properties of Bivectors
	Null System
	Metric Properties of Bivectors
	Guide to the Literature

	15.5.2 Enumeration of Various Products
	15.5.3 Dual Numbers
	Dual Analysis
	The Axis of a Bivector

	15.5.4 Reflections, Translations, Rotations, and …
	15.5.5 Rotors, Exponentials and Logarithms

	15.6 Case Study: Rigid Body Motion
	15.6.1 Kinematics
	Null Plane Interpretation

	15.6.2 Dynamics
	3D Statics
	15.6.2.1 Newtonian Particles
	Remarks
	Inertia Tensor of a Particle

	15.6.2.2 Rigid Body Motion
	Clifford Algebra for Inertia Tensor

	15.6.2.3 The Euler Equations for Rigid Body Motion
	15.6.2.4 Solving for the Motion
	Comparison

	15.7 Guide to the Literature
	15.8 The Homogeneous Model: A Serious Alternative
	15.9 Non-Euclidean Extension
	15.10 Conclusion
	15.11 Exercises
	 References

	Chapter 16: A Homogeneous Model for Three-Dimensional Computer Graphics Based on the Clifford Algebra for R3
	16.1 Introduction
	16.2 The Standard Model of the Clifford Algebra for Three Dimensions
	16.3 Operands and Operators: Mass-Points and Quaternions
	16.3.1 Odd Order: Mass-Points
	16.3.2 Even Order: Quaternions

	16.4 Decomposing Mass-Points into Two Complementary Planes
	16.4.1 Action of q(b,theta) on b||
	16.4.2 Action of q(b,theta) on b
	16.4.3 Sandwiching

	16.5 Rotation, Reflection, and Perspective Projection
	16.5.1 Rotation
	16.5.2 Mirror Image
	16.5.3 Perspective Projection

	16.6 Summary
	16.7 Exercises
	 References

	Chapter 17: Rigid-Body Transforms Using Symbolic Infinitesimals
	17.1 Introduction
	17.2 Geometric Algebra G4
	17.3 Geometry and Transforms
	17.4 Rotations and Translations
	17.5 Motions
	17.6 Conclusions
	17.7 Exercises
	 References

	Chapter 18: Rigid Body Dynamics in a Constant Curvature Space and the `1D-up' Approach to Conformal Geometric Algebra
	18.1 Introduction
	18.2 The `1D up' approach
	18.2.1 Equations and Solutions for Rigid Body Motion in Spherical Space
	18.2.1.1 Point Particle Motion in Curved Space
	18.2.1.2 Rigid Body Motion in Curved Space
	18.2.1.3 The Dumbbell Motion

	18.3 Comparison with Charles Gunn's Work on Euclidean Rigid Body Motion
	18.3.1 Translation into CGA
	18.3.2 Applications to the Euclidean Model and Rigid Bodies
	18.3.3 Comparison with the Curved Space Approach

	18.4 Conclusions
	18.5 Exercises
	 References

	Part VII: Towards Coordinate-Free Differential Geometry
	Chapter 19: The Shape of Differential Geometry in Geometric Calculus
	19.1 Introduction
	19.2 Geometric Calculus-Basic Concepts
	19.3 Differentiable Manifolds as Vector Manifolds
	19.4 Directed Integrals and the Fundamental Theorem
	19.5 Mappings and Transformations
	19.6 Shape and Curvature
	19.7 Hypersurfaces and Classical Geometry
	19.8 Challenges
	19.9 Exercises
	 References

	Chapter 20: On the Modern Notion of a Moving Frame
	20.1 Introduction
	20.2 Invariants
	20.2.1 Differential Invariants and Their Syzygies
	20.2.2 Integral Invariants
	20.2.3 Joint Invariants

	20.3 Moving Frames
	20.3.1 The Definition of a Moving Frame
	20.3.2 The Calculation of a Moving Frame
	20.3.2.1 A Frame for the Action on Derivatives
	20.3.2.2 A Frame for the Joint Action

	20.4 Invariants via Moving Frames
	20.4.1 Joint Invariants via Moving Frames
	20.4.2 Differential Invariants via Moving Frames
	20.4.3 Moving Frames for Integral Invariants

	20.5 Moving Frames for the SE(3) Action in Conformal Geometric Algebra
	20.5.1 The Serret-Frenet Frame in CGA
	20.5.2 Going Co-ordinate Free

	20.6 Exercises
	 References

	Chapter 21: Tutorial Appendix: Structure Preserving Representation of Euclidean Motions Through Conformal Geometric Algebra
	21.1 Introduction
	21.2 Conformal Geometric Algebra
	21.2.1 Trick 1: Representing Euclidean Points in Minkowski Space
	21.2.2 Trick 2: Orthogonal Transformations as Multiple Reflections in a Sandwiching Representation
	21.2.3 Trick 3: Constructing Elements by Anti-symmetry
	21.2.4 Trick 4: Dual Specification of Elements Permits Intersection

	21.3 Bonus: The Elements of Euclidean Geometry as Blades
	21.4 Bonus: Rigid Body Motions Through Sandwiching
	21.5 Bonus: Structure Preservation and the Transfer Principle
	21.6 Trick 5: Exponential Representation of Versors
	21.7 Trick 6: Geometric Calculus
	21.8 Trick 7: Sparse Implementation at Compiler Level
	21.9 Exercises
	 References

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

