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Abstract While the problem of planning production in the face of uncertain demand
has been studied in various forms for decades, there is still no completely satisfactory
solution approach. In this chapter we propose several heuristics based on chance-
constrained models for a simple single stage single product system with workload-
dependent lead times, which we compare to two-stage and multi-stage stochastic
programing formulations. Exploratory computational experiments show promising
performance for the heuristics, and raise a number of interesting issues that arise in
comparing solutions obtained by the different approaches.

1 Introduction

In today’s global supply chains, effective coordination of operations across space and
time is vital to capital-intensive industries like semiconductor manufacturing with
short product life cycles and rapidly changing market conditions. However, despite
the fact that problems related to the planning of production and inventories have
been the stock in trade of industrial engineering and operations research for the last
five decades, a comprehensive solution to the problem as faced in industry is still
unavailable [65]. Current research has followed the basic paradigms of determin-
istic mathematical programing and stochastic inventory models, resulting in highly
compartmentalized streams of research that each focus on certain aspects of the
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problem at the expense of others. In particular, the problem of planning production
releases and allocating production capacity among different products has ignored the
nonlinear congestion effects induced by capacitated resources subject to queueing,
and has been treated in isolation from the problem of maintaining service levels in
the face of stochastic demand.

This work is motivated by two basic limitations of the mathematical programing
models used for production planning in both industrial practice and academia. The
first of these is that the vast majority of these models fail to capture the nonlin-
ear relationships between work in process inventories (WIP), cycle times, and work
releases. Queueing models of production systems [17, 52] show that cycle times
increase nonlinearly with resource utilization, which in turn is determined by the
release plan produced by the planning system. Capital-intensive industries such as
semiconductor manufacturing, with long, complex production processes, must run at
high utilization to be profitable. Under these conditions small fluctuations in utiliza-
tion may cause large changes in cycle times, rendering the effects of this dependence
important to effective planning.

In addition to this nonlinear dependence, uncertain demand is a fact of life in
most supply chains, requiring the deployment of safety stocks to ensure desired
customer service levels. The production of these safety stocks, in turn, requires
the release of additional work, affecting cycle times, and hence the work release
and capacity allocation decisions made by planning models. It is thus notable that
the planning of safety stocks [43, 107] has largely been addressed separately from
capacity allocation, presumably due to the motivation for much inventory research
arising from retail and distribution applications.

The large size and stochastic nature of industrial supply chain planning prob-
lems renders their exact solution computationally prohibitive. Thus industrial prac-
tice requires efficient approximations with reliable solution quality. However, when
approximations are proposed, assessing the quality of their solutions is fraught with
all the difficulties encountered in evaluating the quality of heuristic solutions for
deterministic optimization problems [92]. There is thus a need to develop exact solu-
tion methods to provide insight into the structure of optimal solutions, as well as
benchmarks against which different approximation methods can be compared and
assessed.

This, in turn, presents additional complications. Problems of production planning
and control in the face of stochastic demand admit several different formulations
that often have quite different assumptions, advantages and drawbacks. Inventory
and queueing models [107], for instance, tend to produce optimal solutions under
steady-state conditions, but have difficulty in addressing transient solutions. Conven-
tional mathematical programing models [103] solve a deterministic approximation
to the actual stochastic problem, sometimes with inventory targets based on off-line
analysis included as constraints. Stochastic dynamic programming models, including
Markov decision processes [89], give state-based reactive decision rules that do not
directly consider information about future demand that may be available. Stochastic
programing [12] and chance-constrained models [87] make different assumptions
about recourse actions that can result in subtle theoretical and practical difficulties.
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A conclusive, unifying solution to these complex issues is clearly a long way in
the future. Our objective in this chapter is more modest and exploratory in nature. We
consider a simple single-stage single product production-inventory system subject to
workload-dependent lead times and stochastic demand. We then develop a number of
alternative formulations for this system, including two different chance-constrained
models, a two-stage stochastic programing model, and a multi-stage stochastic
programing approach. The multistage stochastic programing model is the only one
of these that has potential to yield an exact solution, and that conditional upon the
choice of scenarios; the other three are heuristics. We compare the solutions obtained
from these different models by subjecting them to a simulation of uncertain demand
realizations. Our exploratory computational experiments suggest that when parame-
ters are appropriately chosen, heuristics based on chance constrained models may
provide near-optimal solutions that are competitive with those from much larger
stochastic programing models, although the stochastic programing models consider
a very limited number of scenarios. Our results suggest a number of directions for
future work on improving the heuristics, and further experimentation aimed at elu-
cidating the strengths and limitations of the chance constraint-based heuristics.

2 Previous Related Work

A comprehensive review of the literature on production planning under uncertainty
is clearly beyond the scope of this chapter. Instead, we briefly review the literature
most relevant to this paper. Overviews of the production planning domain are given
by de Kok and Fransoo [27], Voss and Woodruff [103] and Missbauer and Uzsoy
[78].

Most deterministic production planning models establish optimal production,
inventory and release levels over a given finite planning horizon to meet the total
demand [16, 45, 50]. The planning horizon is divided into discrete periods during
which production and demand rates are assumed to be constant; the capacity of the
system is represented by the number of hours available on key resources in a plan-
ning period; and the production, inventory, WIP and demand associated with a period
are treated as continuous quantities. These models allocate capacity to products to
optimize a specified objective and satisfy aggregate constraints representing system
capacity and dynamics. However, models of this type are subject to the utilization-
lead time dependence discussed in Sect. 1. The estimates of cycle times used in
planning models are referred to as lead times.

The most common approximation in both the research literature and industrial
practice is to treat lead times as a fixed, exogenous quantity independent of resource
load. The Material Requirements Planning (MRP) approach [82] uses fixed lead
times in its backward scheduling step to determine job releases. Several authors have
suggested ways of adapting MRP to uncertain demand. Meal [73] and Grubbstrom
[39] derive component plans with safety stocks in the MRP records. Miller [75]
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proposes hedging of the master schedule to provide safety stocks within the system.
However, all these approaches assume fixed exogenous lead times.

Another common approach to production planning under fixed lead times and
deterministic demand is the use of linear(LP) and integer programing(IP) models, of
which a wide variety exist [42, 56, 103]. These represent capacity as a fixed upper
bound on the number of hours available at the resource in a period, and model input
and output time lags between stages. However, these time lags are independent of
workload.

Several authors have proposed enhanced models that address the dependency
between lead times and resource utilization to some degree. Lautenschlager and
Stadtler [69] suggest a model where the production in a given period becomes avail-
able over several future periods. Voss and Woodruff [103] propose a nonlinear model
where the function linking lead time to workload is approximated as a piecewise
linear function. Kekre et al. [63] and Ettl et al. [31] take a similar approach, adding
a convex term representing the cost of carrying WIP as a function of workload to
the objective function. Graves [37], Karmarkar [61], Missbauer [76], Anli et al. [2]
and Asmundsson et al. [5, 4] use nonlinear clearing functions to model the depen-
dency between workload and lead times. Several related models are proposed in the
recent book by Hackman [41]. Pahl et al. [83] and Missbauer and Uzsoy [78] review
production planning models with load-dependent lead times. We shall discuss clear-
ing functions, which are used in the models in this chapter, more extensively in the
next section.

Another approach to modeling the operational dynamics of the system has been
the use of detailed simulation or scheduling models in the planning process. Dauzere-
Peres and Lasserre [26] use a scheduling model to check whether the plans their IP
model develops are feasible. Other approaches use simulation models in the same
manner, e.g., Pritsker and Snyder [88]. The use of simulation or scheduling models
captures the operational dynamics of the system correctly. However, this approach
does not scale well, since simulation models of large systems are time-consuming
to run and analyze. An innovative approach to integrating simulation and LP is
that of Hung and Leachman [53]. Given initial lead-time estimates, an LP model
for production planning is formulated and solved. The resulting plan is fed into a
simulation model to estimate the lead-times the plan would impose on a real system.
If these lead-times do not agree with those used in the LP, the LP is updated with the
new lead-time estimates and resolved. This iteration is repeated until convergence.
Similar models have been proposed by others [6, 18, 19, 66, 95]. However, the
convergence of these methods is not well understood [55, 57]. The computational
burden of the simulation runs required is also a significant disadvantage for large
systems such as those encountered in semiconductor manufacturing.

Stochastic inventory models seek an optimal inventory policy (when to order,
and how much to order) for individual items in the face of different environmental
conditions (e.g. demand patterns, modes of shipment from suppliers) and constraints
(e.g. supply restrictions, budget limitations, and desired customer service levels).
Much of the work in this area [54, 59, 101, 102] is in the context of ordering from
suppliers, modeling demand carefully but treating supply as known and unlimited,
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generally with a fixed lead time. Many subsequent papers have addressed variations
of this basic problem [46, 47, 107]. However, the vast majority assume that a supplier
can supply any amount of material within the specified lead time, i.e., has unlimited
capacity.

Federgruen and Zipkin [32, 33] consider the capacitated inventory problem with
uncertain demand and explore the optimality of “modified” base stock policies when
the cost for the single period is convex in the base stock level. Tayur [99] extends this
work by discussing the computation of the optimal base stock level. However, these
models use simple capacity constraints that ignore the dependency between load and
lead times. Ciarallo et al. [23] describe the structure of optimal policies for prob-
lems with uncertain production capacity and a time-stationary demand distribution.
Anupindi et al. [3] provide bounds and heuristics for the problem with nonstationary
demand and stochastic lead times, where the lead time distribution is stationary over
time.

The idea of combining inventory and queueing models has attracted attention
from many researchers [17, 52, 91]. Zipkin [106] develops a queueing framework
to analyze supply chains facing a stationary demand distribution and where a (Q, r)
policy is used to release units onto the shop floor. Ettl et al. [31] develop an opti-
mization model combining queueing and inventory models to set base-stock levels
for a multi-item batch production system facing non-stationary demands. Liu et al.
[71] extend this approach.

One of the most popular frameworks for planning under uncertainty is stochastic
programing [12, 58, 87]. Uncertainty is represented by using a number of discrete sce-
narios to represent possible future states, which allows stochastic linear programs to
be modeled as large linear programing problems. Constraints are formulated requir-
ing that an optimal solution be feasible for all scenarios, and the objective function is
usually to minimize the expected value of the specified objective function. A number
of authors have formulated production planning problems as multi-stage stochastic
linear programs (M-SLPs) [48, 85], but the approach presents challenges.

A significant difficulty of M-SLPs is that the problem size tends to grow exponen-
tially with the number of possible realizations (scenarios) of uncertain parameters,
requiring solution methods that exploit their special structure. The scenario-based
structure of M-SLPs makes decomposition methods attractive. Most decomposition
methods exploit convexity of the recourse function to use outer linearization. Com-
monly used methods include Dantzig-Wolfe decomposition (inner linearization) and
Benders decomposition (outer linearization), which decompose the large-scale prob-
lem into a master problem and several independent subproblems. Dantzig-Wolfe
decomposition adds new columns to the master problem based on the suproblem
solutions [25]. Benders decomposition, on the other hand, proceeds by adding new
constraints (supporting hyperplanes known as optimality cuts) that are computed
using dual solutions to the subproblems (e.g., Lasdon [68]).

Van Slyke and Wets [100] extended Benders’ decomposition to solve two-stage
stochastic linear programs (2-SLPs) via the L-Shaped Method. M-SLPs are much
more challenging computationally than 2-SLPs. An extension of the L-shaped
method to more than two stages, called nested decomposition, was first proposed
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by Louveaux [72] for multi-stage quadratic programs and by Birge [11] for multi-
stage linear programs. The algorithm generates cuts for an ancestor scenario problem
that has feasible completion in all descendant scenarios. As in the L-shaped method,
nested decomposition achieves outer linearization by generating feasibility and opti-
mality cuts until it converges to an optimal solution. A number of different strategies
have been used to select the next subproblem for deterministic problems. Numerical
experiments by Gassmann [35] found that the fast-forward-fast-back procedure of
Wittrock [105] outperforms other strategies.

There have been recent attempts to model production planning problems using
robust optimization approaches [7, 10]. Leung et al. [70] develop a robust optimiza-
tion model to solve the aggregate production planning problem. Raa and el-Aghezzaf
[90] use robust optimization to obtain a dynamic planning strategy for the stochastic
lot-sizing problem.

Chance constrained programing dates back to the work of Charnes and Cooper
[20, 21, 22]. A more recent overview of these methods is given by Prékopa [87].
In chance constrained programing, constraints can be violated with a specified prob-
ability, which is quite useful to model, for instance, service levels in supply chain
problems [40]. Continuous probability distributions are often assumed on the uncer-
tain parameters. This approach achieves a substantial decrease in the size of the
model, and avoids the problem of defining the penalty function. However, it fails to
capture the cost consequences of constraint violations, which can result in anomalous
behavior [14].

Given that exact solutions to stochastic optimization problem are computation-
ally challenging, a number of approaches to obtain solutions via decision rules have
been proposed. These approaches classify decision variables according to whether
they are implemented before (first stage decisions), or after (second stage decisions)
an outcome of the random variable(s) is observed. However, in the decision rule-
based approach, the second stage recourse decisions are determined by a rule that
incorporates both the first stage decisions and the observed outcomes. A commonly
encountered example of such a rule that is in fact optimal in form is the well-known
base stock policy for inventory systems with unlimited capacity, deterministic replen-
ishment lead time and linear holding and backorder costs. However, as pointed out
by Garstka and Wets [34], the decision rule approach assumes a specific form for
the optimal solution to the stochastic program. Since very few multistage stochas-
tic programs yield a closed-form characterization of the optimal solution, solutions
obtained assuming decision rules cannot be guaranteed to be optimal in the vast
majority of cases.

A well-known family of decision rules are the Linear Decision Rules, where
the second stage recourse decision is a linear function of the first stage decision
variables and the observed outcomes. The pioneering Linear Decision Rule (LDR)
was developed by Holt, Modigliani, Muth and Simon (HMMS) in the mid 1950s
[49, 51]. Extensions to this rule have been proposed by several authors [8, 28, 36,
44, 84]. While the HMMS model and its variations incorporate demand uncertainty,
these models treat capacity, specifically workforce levels, as a decision variable that
can be varied continuously, which avoids the problem of workload-dependent lead
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times encountered under fixed capacity limits. In addition, the specific quadratic
form of the objective function adopted allows the construction of a deterministic
equivalent that simply replaces each random variable with its expectation. However,
it is well known that this approach does not yield optimal solutions in general.

In summary, a variety of models have been proposed that address the issues
of workload-dependent lead times and demand uncertainty separately at best, and
in many cases do not address either. The LP and MRP approaches do not address
workload-dependent lead times, and generally ignore stochastic demand. Most inven-
tory models focus on modeling demand, with simple models of replenishment that
do not consider workload-dependent lead times. The combined queueing-inventory
models capture the interaction between workload-dependent lead times and inven-
tory levels correctly, but assume specific inventory policies of the order up to
type, and make different assumptions about the representation of a production
unit. Stochastic programing approaches are hampered by their exponentially grow-
ing computational burden as the number of products and planning periods (stages)
increase. Our heuristics, in contrast, consider non-stationary demand distributions
to provide production plans over a finite planning horizon, taking available informa-
tion about future demand into account. The work in this paper is an initial step in
assessing the performance of this approach.

In the next section we present an overview of the clearing function concept that we
use to develop a LP model that addresses the load dependent lead time and demand
uncertainty aspects simultaneously for a single-product supply chain.

3 Clearing Function Basics

Clearing functions (CF) [37, 61, 78, 98], express the expected throughput of a capac-
itated resource over a given period of time as a function of some measure of WIP
level at the resource over that period, which in turn, is determined by the average
resource utilization over the period. We shall use the term “WIP” and the generic
variable W to denote any reasonable measure of WIP level over a planning period.

To motivate the use of a nonlinear CF, it is helpful to begin with a single resource
that can be modeled as a G/G/1 queueing system in steady state. The expected number
in system (i.e., expected WIP) for a single server is given by Medhi [74] as:

W = (c2
a + c2

s )

2

ρ2

(1 − ρ)
+ ρ

where ca and cs denote the coefficients of variation of service and interarrival times,
respectively andρ the utilization of the server. Setting c = (c2

a+c2
s )/2 and rearranging

(1) we obtain a quadratic in W whose positive root yields the desired ρ value. Solving
for ρ with c > 1, we obtain

ρ =
√

(W + 1)2 + 4W (c2 − 1) − (W + 1)

2(c2 − 1)
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Fig. 1 Examples of CFs (Karmarkar [61])

which has the desired concave form. When 0 ≤ c < 1, the other root of the quadratic
will always give positive values for ρ. When c = 1, the expression simplifies to yield
ρ= W/(1+W ), again of the desired concave form. If we use utilization as a surrogate
for output, we see that for a fixed c value, utilization, and hence throughput, increase
with WIP but at a declining rate. Utilization, and hence output, is decreasing in c due
to variability in service and arrival rates.

Figure 1, derived from Karmarkar [61], depicts several examples of CFs con-
sidered in the literature, where X denotes the expected throughput in a planning
period. The horizontal line X = C represents a fixed upper bound on output over
the period, but without a lead-time constraint it implies that production can occur
without any WIP in the system if work input and production are synchronized. This
approach is implemented in most LP models but is supplemented with a fixed lead
time as described above. The linear CF of Graves [37] is represented by the X = W/L
line, which implies a lead time of L periods that is maintained independently of the
WIP level. If a fixed lead time is maintained up to a certain maximum output, we
have X = min{W/L , C}. When the parameters of the Graves CF are set such that
the lead time is equal to the average processing time, with no queueing delays at all,
we obtain the line X = W/p, where p denotes the average processing time. Assum-
ing that lead time is equal to the average processing time up to a maximum output
level gives the “Best Case” model X = min{W/p, C} of Hopp and Spearman [52].
The workload-independent fixed lead time in most LP models differs from the linear
CF of Graves in that the former does not link output to WIP, while the latter does
[81]. The CF always lies below the X = W/p and X = C lines. For most capacitated
production resources subject to congestion, limited capacity leads to a saturating
(concave) shape of the CF, for which Asmundsson et al. [4] and Selçuk et al. [96]
provide analytical support.

Several authors discuss the relationship between throughput and WIP levels in
the context of queueing analysis, focusing on the long-run steady-state expected
throughput and WIP levels. Agnew [1] studies this behavior in the context of optimal
control policies. Spearman [97] presents an analytic congestion model for a family
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of closed production systems that describes the relationship between throughput
and WIP. Srinivasan et al. [98] derives the CF for a closed queueing network with
a product form solution. Asmundsson et al. [4, 5] and Missbauer [77] study the
problem of estimating CFs from experimental data, obtained either from industry or
simulation models. Missbauer and Uzsoy [78] review the state of the art in this area.

An important advantage of CFs for our purposes is their ability to reflect dif-
ferent sources of variability in the production process. In queueing terms, this is
accomplished by basing the CF on the effective processing time at the resources,
which includes the effects of detractors such as uncertain yield, machine failures and
setups, as discussed in Chap. 8 of Hopp and Spearman [52]. The manner in which
these effects change the shape of the CF is described in Asmundsson et al. [4]. When
the CFs are estimated from empirical data, the effects of the variability induced by
detractors are present in the data to which the CF is fit, again capturing their effects.

Hence, given the current research on the derivation of CFs using both analytical
and empirical approaches, in this chapter we shall proceed on the assumption that
adequate methods of estimating CFs for different production systems will emerge
from ongoing work. We focus on using CFs to develop production models that
consider stochastic demand and the nonlinear relationship between workload and
cycle in an integrated manner. We introduce our approach in the next section.

4 A Deterministic Model Based on Clearing Functions

In this section we develop a LP model for aggregate planning under the effects of
congestion and demand uncertainty. We begin with a basic formulation prevalent
in the literature, discuss its weaknesses, and use these to motivate our formulations,
drawing heavily on the exposition in Bookbinder and Tan [15]. While there are clearly
many formulations in the literature that capture additional aspects such as multiple
stages, alternative production paths, etc., our focus is to find computationally tractable
formulations that allow us to treat both the nonlinear dynamics of utilization and lead
times and the stochastic nature of the demand as endogenous to the model. Hence
to isolate these aspects of the problem for study, we focus on a single-stage single
product system. The quantity of raw material released into the system in each time
period is the key decision variable in our models. These releases are then converted
into output according to different mechanisms defined by the models considered,
which will be discussed as we proceed.

Consider the production planning problem for such a single stage production
system producing a single product. The planning horizon is divided into T discrete
periods of equal length. Demand in each period is assumed to be stochastic with
known cumulative distribution function (CDF), and independent of demand in other
periods. Service level requirements to be met are prespecified, and are thus treated
as a constraint. We consider the simple objective of minimizing the sum of expected
costs of holding finished goods inventory (FGI) and work in process (WIP) over the
planning horizon. Following the literature, we do not consider the cost of stockouts
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in the objective function because we assume that the service level requirements
are sufficiently high that the cost of stockouts is negligible. This assumption will
be relaxed in our computational experiments. Clearly far more elaborate objective
functions are possible, but our emphasis is on representation of production capacity
and demand uncertainty.

To describe the models used in this paper we use three different classes of vari-
ables:
Decision or Control Variables: These variables represent the primary management
decisions in a plan. In order to be implementable, a plan must specify either specific
values for these variables, or specific rules by which they can be computed with the
information available at the time a decision must be made.
State Variables: These variables define the behavior of the system, and their values
are determined by the constraints determining the operational dynamics of the system
and the values of the decision variables. These variables may be either deterministic
or random.
Parameters: These are external inputs to the system and are prespecified in the
model. We will assume these are always deterministic.

The notation used in the formulations is given below. We use a bold font, e.g., X,
for a random variable and a normal font, e.g., X, for a deterministic variable.

Rt : Planned quantity of product released into the system during period t
Xt : Planned production quantity during period t
It : Inventory on hand at the end of period t. The initial inventory on hand at the start
of period 1 will be denoted by I0.

ht : Unit inventory holding cost for period t
Ct : Capacity, e.g., total number of machine hours available, in period t
α : Specified service level
G[t,t+k] : CDF of cumulative demand from period t to period t + k
Dt : Demand during period t. Throughout this paper we shall assume the demand in
each period t to be normally distributed with known mean μt and standard deviation
σt . In our experiments we will assume demands are independent by time periods.
However, the models presented remain valid for correlated demands as long as the
variance-covariance matrix is known, or can be estimated with reasonable accuracy.
Lt : Average lead time in period t. For simplicity of exposition in presenting the
models in this section we shall assume these are integer multiples of the planning
period length. Fractional Lt values can be accommodated in a straightforward man-
ner.

4.1 Basic Formulation

Most chance-constrained production planning models in the literature are similar to
that of Bookbinder and Tan [15] given below; a slightly different version is given in
Johnson and Montgomery [56]. Our model incorporates the following constraints:
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• Releases

Since the lead time is Lt in period t, whatever is released into the system in period
t is converted to output and available for consumption in period t + Lt . Hence the
relationship between release quantities and output is given by

Rt = Xt+Lt , for all t = 1, . . . , T − Lt

The primary decision variable is the amount of work Rt released in period t, which
must be specified at the start of the planning horizon. Hence both releases and pro-
duction are deterministic. Note that the Xt and Rt variables are redundant, and the
formulation can be written with only one of these two sets of variables.

In this model, work that is released into the production system at time t is in WIP
for Lt periods until it emerges as finished product. Most LP models do not explicitly
represent this quantity, or assign it a cost in the objective function, but it can easily
be estimated for any period t as the difference between the cumulative releases and
output up to a given period t.

• Inventory balance

The finished goods inventory on hand at the end of period t, It, is a random variable
for which the relationship

It = It−1 + Xt − Dt

holds for each time period t. Taking the expectation and repetitive substitution yields

E[It] = E[It−1] + Xt − E[Dt] =I0 +
t∑

i=1

Xi −
t∑

i=1

E[Di ]

=I0 +
t∑

i=1

Xi −
t∑

i=1

μi , for all t = 1, . . . , T .

All terms in this expression are now deterministic.

• Capacity

Xt ≤ Ct , for all t = 1, . . . , T .

Service level: This constraint requires that the service level, defined by the prob-
ability of It < 0, i.e., a stockout occurring, be less than (1 − α), implying

P{It ≥ 0} ≥ α ⇒ P

{

I0 +
t∑

i=1

Xi ≥
t∑

i=1

Di

}

≥ α, for all t = 1, . . . , T .

The service level measure fits the chance constraint approach well, since the latter
allows constraints to be violated with a certain probability. However, it does not
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Table 1 Basic formulation

min
T∑

t=1
ht {I0 +

t∑

i=1
Xi −

t∑

i=1
μi } subject to

P{I0 +
t∑

i=1
Xi ≥

t∑

i=1
Di} ≥ α for all t = 1, . . . , T (SERVICE LEVEL)

Xt ≤ Ct for all t = 1, . . . , T (CAPACITY)

Xt ≥ 0 for all t = 1, . . . , T (NONNEGATIVITY)

capture the degree to which the constraint is violated. Hence a production plan that
has stockouts in many periods, but falls short by a very small fraction of the demand
in each period, will appear to have a poor service level. To this end, we use the fill
rate, the fraction of total period demand met from inventory, as another performance
measure in our computational experiments. The basic formulation is summarized in
Table 1, using the production variables Xt .

While the basic formulation is intuitive, it suffers from the following disadvan-
tages:

• It ignores the effects of loading on WIP and lead times in a capacitated system
[4, 5, 37, 60] by considering lead times to be fixed exogenous values.

• It assumes that safety stock must be held in finished goods inventory, based on
the demand for each individual period. This is adequate when the lead times of
the production system, which correspond to the replenishment time of the finished
goods inventory, do not exceed one period, as in the models of Bookbinder and
Tan [15] and Johnson and Montgomery [56]. However, if lead times span multiple
periods, this becomes problematic. It is well known in the inventory literature [24]
that in the presence of nonzero lead times the optimal policy in many cases, and a
good heuristic in many more, is to set the inventory position, the sum of on-hand
inventory and outstanding orders, to the desired percentile of the demand over the
lead time (e.g., [29]). Hence this formulation fails to recognize that WIP can serve
some of the function of safety stock [38], and hence might hold more finished
goods inventory than required to maintain a given service level. We shall assume a
replenishment policy of this form, which is not optimal for the production system
we consider, in developing our heuristics.

In the production-inventory context of this paper, outstanding orders are repre-
sented by material that has been released into the production line but has not yet
emerged as finished goods, i.e., WIP [38]. The inventory position, which will be
an important quantity for our development in the rest of this paper, will be defined
in more detail in the following section.

• The model makes all decisions for the entire planning horizon at the beginning of
the horizon, before any of the demands become known, and does not provide a
way to use information as it becomes available. In other words, there is no recourse
action.

In the rest of this section we extend this formulation to address these issues.
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4.2 Development of Integrated Model

An elegant way of capturing the effect of capacity loading on WIP and lead times
in production planning models is the use of clearing functions (CFs) as discussed in
Sect. 3. Recall that up to this point all variables are deterministic except the inventory
levels It. Hence, incorporating CFs in the model requires:

• Introduction of WIP balance equations. If Wt is defined to be the WIP at a given
time t, then the WIP balance equations are given as Wt = Wt−1 + Rt − Xt for
all periods t = 1, . . . , T . We treat Rt as a deterministic decision variable that is
specified at the start of the planning horizon by solution of the planning model,
and cannot be modified as uncertainty is realized.

• Replacing the original capacity constraint with a set of linear inequalities that
represent the outer linearization of the original CF [4, 5]. The set of inequalities
representing the CF is given by Xt ≤ ak Wt−1 + bk , for all periods t = 1, . . . , T
and line segments k = 1, . . . , n used to outer linearize the CF.

The use of CFs to represent the capacity of the production system takes a more
complex view of the relationship between the planned release quantity Rt in period t
and the planned output Xt of the system in that period. The releases in a period
determine the planned WIP level Wt at the end of the period, together with the
linearized CF represented by the constraints above, determines the planned system
output Xt+1 in the next period The release variables Rt are defined such that releases
are made at the end of period t, and hence cannot contribute to output during period t.
This is necessary because in later models, our linear decision rule observes the
realization of the random demand Dt in period t to determine the releases Rt at the
end of period t. This definition, together with the definition of the CF and the WIP
balance equations, is thus internally consistent.

In inventory theory an optimal or near-optimal policy, when there is no fixed
ordering cost and shortage and holding costs are linear, is to maintain the inventory
position, the sum of on-hand and on-order inventory, at a critical fractile of the
demand over the replenishment lead time [24]. Hence if IPt denotes the inventory
position at the end of period t, we have IPt = Wt +It, where Wt represents orders that
have been released to production but not yet completed. This analogy with inventory
models suggests a service level constraint requiring a probability α that IPt is at
least as great as the demand over the replenishment lead time [38]. Assuming this
replenishment lead time, corresponding to the cycle time of the production system
under study, is known to be Lt periods in period t, we have

P

{

IPt ≥
t+Lt∑

i=t+1

Di

}

≥ α ⇒ P

{

It + Wt ≥
t+Lt∑

i=t+1

Di

}

≥ α .

The Lt parameters on the right hand sides of our chance constraints define the
distribution of the lead time demand that will be used to set safety stock levels.
Noting that
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It = I0 +
t∑

i=1

Xi −
t∑

i=1

Di and

Wt = W0 +
t∑

i=1

Ri −
t∑

i=1

Xi

we obtain

IPt = It + Wt = (I0 + W0) +
t∑

i=1

Ri −
t∑

i=1

Di .

The chance constraint is now of the form

P{IPt ≥ 0} ≥ α ⇒ P

{

I0 + W0 +
t∑

i=1

Ri −
t+Lt∑

i=t+1

Di ≥
t∑

i=1

Di

}

≥ α

⇒ P{I0 + W0 +
t∑

i=1

Ri ≥
t+Lt∑

i=1

Di } ≥ α .

Following the approach of Charnes and Cooper [22] the deterministic equivalent of
the service level constraint can be written as

I0 + W0 +
T∑

i=1

Ri ≥ G−1
[1,t+Lt ](α), for all t = 1, . . . , T .

where G[1, t](·) denotes the cumulative distribution function (CDF) of the cumulative
demand random from periods 1 to t,

Replacing the probabilistic service level constraint with its deterministic equiva-
lent yields the Zero-Order Inventory Position (ZOIP) formulation shown in Table 2.
This formulation embodies a service level constraint on inventory position and a zero
order decision rule where all decision variables are specified irrevocably at the start
of the planning horizon.

It is important to note that there are two different lead times at work in the ZOIP
model. The first of these is the estimated replenishment lead time Lt used to establish
the inventory position required to approximately achieve the desired service levels.
The second lead time in question is that realized in the production system, the time
required for work released into the system to become available as finished product.
The workload-dependent nature of this realized lead time is explicitly represented by
the clearing function, whose effectiveness for this purpose we have demonstrated in
prior work [4, 5]. Ideally, the two lead times should be equal, with the replenishment
lead time used for setting inventory targets matching that realized by the production
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Table 2 ZOIP formulation

min
T∑

t=1
ht {I0 +

t∑

i=1
Xi −

t∑

i=1
μi + Wt } subject to

Wt = Wt−1 − Rt − Xt for all t = 1, . . . , T (WIP BALANCE)

I0 + W0 +
T∑

i=1
Ri ≥ G−1

[1,t+Lt ](α), for all t = 1, . . . , T (SERVICE LEVEL)

Xt ≤ ak Wt−1 + bk for all t = 1, . . . , T ; k = 1, . . . n (CAPACITY)

Xt , Rt , Wt ≥ 0 for all t = 1, . . . , T

system in the face of the release schedule recommended by the model. In other words,
in an ideal situation the Lt should be an output of the model. This would require
us to estimate Lt using Little’s Law as (Wt + Wt−1)/2Xt assuming the planning
periods are long enough for the law to apply; for the shorter periods some transient
version of Little’s Law such as those discussed by Bertsimas and Mourtzinou [9],
Whitt [104] and Riaño [95] would be required. Even the use of the classical stationary
version of Little’s Law yields a highly nonlinear constraint. Hence for the sake of
tractability we treat the replenishment lead time Lt on the right hand side of the
chance constraints as an exogenous parameter, which reduces the right hand sides
to constants that can be precomputed easily. Our model thus captures workload-
dependent lead times correctly in defining the relationship between releases Rt ,
planned WIP level Wt−1, and expected output Xt , but uses an exogenous parameter
to approximate the distribution of the lead time demand, which will be used to set the
safety stocks. Computational experiments indicate that the realized lead time may
deviate somewhat from the exogenously assumed value used to establish the chance
constraints when used in this manner, but results are still favourable over base stock
type models that do not consider clearing functions [94].

A full resolution of this issue appears to be challenging, and must be left for future
research. A promising approach is to use an iterative scheme, where we solve the
ZOIP model using an initial set of lead time estimates to obtain a release plan, i.e., a
set of Rt values. These Rt values are then used to compute the resulting state variables
Xt , Wt , and It , from which a new set of Lt values can be estimated as Lt = Wt/Xt .

These new Lt values are then substituted into the model and the process is repeated
until convergence is, hopefully, achieved. Orcun et al. [79] have implemented this
procedure with favourable results, but formal analysis of its convergence remains for
future work.

Up to this point we have developed a formulation that combines the modeling of
congestion and lead times in the production system with the explicit representation
of random demand using chance constraints. We now move on to adding flexibility
to the decision mechanism by utilizing information as it becomes available.
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4.3 A Linear Decision Rule

So far our formulations have zero order static decision rules, where the values of
all decision variables are determined at the beginning of the time horizon and there
is no recourse action after the outcomes are observed. We now follow Charnes and
Cooper [22] and propose a linear decision rule to introduce flexibility in the decision
mechanism, recalling that this approach does not yield an optimal solution. Since the
releases are the decision variables in the CF formulations, the decision rule is based
on releases.

We use a simple rule closely following that described in Johnson and Montgomery
[56] that allows the releases to be modified as uncertain demand is observed, ren-
dering them random variables. We define auxiliary variables Yt that represent the
change in planned inventory position from period t − 1 to period t, implying that
Rt = Yt + Dt. Thus Yt represents the amount of work released in period t over and
above that necessary to replenish the inventory position after that period’s demand
has been withdrawn; note that it may be negative, if demand is decreasing in a given
time interval. This decision rule thus represents a base stock policy, and it is straight-
forward to show that Yt = I Pt − I Pt−1 for specified values of IPt and IPt−1. Our
heuristic establishes chance constraints that set the planned inventory position at the
end of period t, IPt, to a percentile of the lead time demand distribution as described
below. The releases Rt are now random variables derived from the Yt and the realized
demand Dt. Thus the WIP variables Wt are now also random. Since the production
Xt in a given period depends on the realized WIP level Wt−1 at the start of that
period, Xt is also a random variable. We have the relation

E[Wt ] = E[Wt−1 + Rt − Xt ] = E[Wt−1 + Yt + Dt − Xt ]

= W0 +
t∑

i=1

(Yi + μi − Xi )

Since the release quantities are now random variables, there exists a possibility that
they may be negative. To prevent this, we use the chance constraint

P{Rt ≥ 0} ≈ 1 ⇒ P{Yt + Dt ≥ 0} ≈ 1 ⇒ Yt + Dmin
t ≥ 0,

where Dmin
t is a value of demand in period t such that the probability of demand falling

below this level is deemed by management to be extremely small. This is clearly an
approximation when demand follows a distribution with unbounded support, like the
normal distribution we assume, and is unlikely to be binding except when there is a
very sudden, large decline in demand from one period to another.

We again define the event of a stockout as the event that the total lead time demand
exceeds the inventory position IPt = Wt + It, yielding the chance constraint

W0 + I0 +
t∑

i=1

Yi ≥ G−1
[t+1,t+Lt ](α).
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Table 3 DYNIP formulation

min
T∑

t=1
ht {I0 +

t∑

i=1
Xi −

t∑

i=1
μi +

W0 +
t∑

i=1
(Yi + μi − Xi )} subject to

W0 + I0 +
t∑

i=1
Yi ≥ G−1

[t+1,t+Lt ](α) for all t = 1, . . . , T (SERVICE LEVEL)

Xt ≤ ak(W0 + I0 +
t−1∑

i=1
Yi ) + bk for all t = 1, . . . , T ; k = 1, . . . n; (CAPACITY)

Yt + Dmin
t ≥ 0 for all t = 1, . . . , T (REL. NON-NEG.)

Xt , Yt ≥ 0 for all t = 1, . . . , T

Since releases, WIP and production are all interrelated, all decision variables are
now random variables except the Yt , creating difficulties in establishing a tractable
formulation. Hence for tractability in the solution procedure, we will assume that
the production variables Xt and the auxiliary variables Yt are determined at the start
of the planning horizon, with the Wt, It, and Dt remaining as random variables.
The assumption here is that when a production target Xt is in danger of not being
met, the system will take extraordinary measures to meet it, such as running an
extra shift or buying from an outside source. The cost of this is not captured in the
models, but is, of course, considered in our computational experiments, where we
assume the production system has no outside recourse when planned production
levels cannot be achieved. This ensures that all models are treated similarly in the
computational experiments. Incorporating this rule in the ZOIP formulation gives us
our final Dynamic Inventory Position (DYNIP) formulation summarized in Table 3.

The models presented above have been analyzed by Ravindran et al. [93]. They
compare the performance of the ZOIP and DYNIP models with a static base stock
policy and find that DYNIP performs significantly better in terms of backorders.
They also analyze the structure of optimal solutions to the model under the linear
clearing function of Graves. These results indicate that the ZOIP model will overstock
consistently, while DYNIP will not.

5 Stochastic Programing Models

For comparison with the chance constrained models, we develop two different sto-
chastic programing models along with their implementation strategies. We first
present a two-stage stochastic programing model. A multi-stage stochastic program-
ing formulation is also presented along with static and dynamic implementation
strategies.
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5.1 The Two-Stage Model (2-SP)

As in the rest of the paper, we assume the primary source of uncertainty is the
demand in each period, and consider the simple objective of minimizing the sum of
expected WIP holding, FGI holding and backorder costs over the planning horizon of
T periods. We assume that the demand evolves as a discrete time stochastic process
with a finite probability space. This information structure can be interpreted as a
scenario tree, where the nodes in stage t of the tree constitute the states of the world
that can be distinguished by information available up to period t. The size of the
scenario tree is clearly exponential in the number of periods T, and depends on the
number of possible demand realizations considered at each stage.

The computational burden of any model based on scenario trees will rapidly
become impractical. Therefore even for relatively small problem instances used to
benchmark our heuristics, some means of reducing the size of the scenario tree must
be devised. To this end, we shall follow Escudero et al. [30] and consider a two-
stage formulation which consists of specifying a number of scenarios ξ composed
of demand realizations for all periods. The first-stage problem involves deciding the
production, release, and planned WIP levels for all periods, regardless of the state
of the world. The second stage determines the FGI and backlog levels at the end of
each period subject to the realized state. Thus the Xt , Rt , and Wt variables are only
indexed by time periods (since they do not change with the realized state) while FGI
variables I ξ

t and backorder Bξ
t at the end of period are indexed by the scenario ξ.

The model can be stated as follows:

Min
T∑

t=1

ht Wt + Eξ[Q(Xt , ξ)]

subject to

Wt = Wt−1 + Rt − Xt for all t = 1, . . . , T

Xt ≤ f (Wt ), for all t = 1, . . . , T

Xt , Rt , Wt ≥ 0 for all t = 1, . . . , T

where Q(Xt , ξ) denotes the recourse function which is defined as

Q(Xt , ξ) = min
T∑

t=1

(ht I ξ
t + bt Bξ

t )

subject to

I ξ
t − Bξ

t = I ξ
t−1 − Bξ

t−1 + Xt − Dξ
t , for all t = 1, . . . , T



Chance-Constraint-Based Heuristics for Production Planning 191

I ξ
t − Bξ

t ≥ 0, for all t = 1, . . . , T

Unlike DYNIP, this model assumes no recourse for the Rt variables. In fact under the
two-stage model the first stage decision variables Xt , Rt , and Wt are determined
at the beginning of the planning horizon, while the second stage problem simply
computes the realized FGIs and backorders after demands are realized. This model
has the advantage that the size of the model grows linearly with the number of
scenarios considered, and that it has complete recourse, in that all first-stage decisions
are feasible for the second stage. The disadvantage is that it does not allow recourse
action to be taken as demand is realized, placing it on a par with the ZOIP model in
this regard.

In order to determine a 2-SP production planning strategy, one has to generate
multiple scenarios, each consisting of demand realizations for periods 1, . . . , T . The
2-SP model is then solved and the optimal decisions (R∗

t , X∗
t , W ∗

t ), t = 1, . . . , T
yield a production plan that is completely defined at the beginning of the planning
horizon.

5.2 The Multi-Stage Model (M-SP)

A natural extension of the two-stage model is to allow recourse actions as demand is
observed. This is accomplished by representing the demand process {Dt } as a scenario
tree. Each node n in the tree represents a demand realization in the corresponding
period t (n) with a probability qn . The root node (n=1) of the tree represents the
current demand, i.e. D1. Node a(n) is the direct ancestor of node n. The direct
descendants of node n are called the children of node n. The subtree with root node n
is denoted by T (n). A path from the root node to a node n describes one realization
of the stochastic process from the present (period 1) to period t (n). The set of all the
nodes on this path is denoted as P(n). A full evolution of the demand process over
the entire planning horizon, i.e., the path from the root node to a leaf node, is called
a scenario.

The scenario tree representation of the demand process is an approximation of
the actual demand distribution due to its use of a finite number of possible demand
outcomes in each period. Also, generally the size of scenario tree increases exponen-
tially with increasing time horizon. The cumulative demand, production, and releases
for the partial realization of the demands represented by a path from the root node 1
to a node n in the tree are given by

D(1, n) =
∑

m∈P(n)
Dm

X (1, n) =
∑

m∈P(n)
Xm

R(1, n) =
∑

m∈P(n)
Rm
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The stochastic programing formulation of the production planning problem with
congestion is given by the following model:
(MSP):

min
∑

n∈T (1) qn[ht (n)(In + Wn) + bt (n) Bn]
s.t. Wn = W0 − X (1, n) + R(1, n)

In = I0 + X (1, n) − D(1, n) + Bn ∀n
Xn ≤ f (Wa(n)) ∀n
Rn, Xn, In, Wn, Bn ≥ 0 ∀n

The objective in the M-SP model is to minimize the expected cost over the planning
horizon, which includes the present cost determined by the root node decisions and
the expected future cost. In any given period t, the release, WIP, and production
can be determined before the knowledge of demand, and are hence called first-stage
decisions. On the other hand inventory and backorder are recourse decisions because
they depend on the first-stage decisions as well as the realization of the uncertain
parameter (demand). In our implementation, the constraints related to the clearing
function are piecewise linearized as in Asmundsson et al. [4] for computational
convenience.

The MSP model has considerable similarities to the Model Predictive Control
approach deployed in the engineering disciplines. The similarities between con-
trol theoretic and mathematical programing approaches were noted early on by
Kleindorfer et al. [67] and their application to supply chain management problems
has been discussed by Kempf [64].

5.3 Implementation Strategies for the M-SP Model

Based on the multi-stage stochastic programming model (M-SP) we develop two
production planning strategies to satisfy future demand over the planning horizon.
The first strategy is a static strategy (MSP) and the second is a dynamic strategy
(MSP-DYN).

5.3.1 A Static Strategy (MSP)

MSP is a static strategy, which specifies completely the release, production, and
WIP decisions for all future periods at the beginning of the planning horizon. Once
demands are realized, the FGI and backorders can be determined and the performance
of the solution evaluated, in a manner similar to that used for ZOIP. The primary
difference between ZOIP and MSP lies in the manner they model the uncertainty
in the demand process. ZOIP assumes a known demand distribution in each period,
and establishes constraints that may be violated with a prespecified probability. MSP,
on the other hand, captures the uncertainty of demand through a limited number of
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demand values in each period. Another important difference between ZOIP and MSP
is that ZOIP assumes no recourse action is possible as uncertain demand is revealed.

In order to determine the MSP strategy, i.e., the production planning decisions for
all periods, we follow the procedure below. Note that all the steps are performed at
the beginning of the planning horizon.

For t = 1, we construct a scenario tree T (1), set the first period demand to the
current demand and the initial inventories to some preset initial values, then solve
the MSP model. We obtain the optimal production decisions for all the nodes in
the tree, i.e., (Rn, Xn, Wn)∗. However we only save the root node decisions, which
correspond to the decisions to be implemented in period 1, (R1, X1, W1)

∗, under the
MSP strategy. Also, (I1, W1)

∗ serve as initial inventories for the next period.
For t = 2, we construct a scenario tree T (2) over the periods 2, . . . , T , set the

root node demand to μ2 and solve the M-SP. Here μ2 is the forecast of period 2
demand available to us in the beginning of the planning horizon.

The root node optimal decisions are recorded as (R2, X2, W2)
∗ and will be

implemented in the second period under the MSP strategy. Repeat the same for
t = 3, . . . , T . The optimal decisions (Rt , Xt , Wt )

∗, t = 1, . . . , T constitute the
MSP production plan that is completely defined at the beginning of the planning
horizon.

5.3.2 A Dynamic Strategy (MSP-DYN)

As pointed out in Powell et al. [86], a model is dynamic if “it incorporates explicitly
the interaction of activities over time”. A model is applied dynamically if “the model
is solved repeatedly as new information is received”. Under this definition, DYNIP is
a dynamic model, while MSP-DYN presented below is a model applied dynamically.

In the MSP-DYN, the multi-stage SP model is applied dynamically over the
planning horizon and only the decisions of the first period are implemented.
As new information about demand becomes available the model is resolved and
the release, production, and WIP decisions are made. Therefore, at the beginning of
the planning horizon only period 1 decisions are known and future decisions will
only be determined once the corresponding demand is realized. More specifically,
we proceed as follows:

For the current period, t = 1, we construct a scenario tree T (1), set the first
period demand to the current demand and the initial inventories to some pre-set initial
values, then solve the MSP model. We obtain the optimal production decisions for
the root node decisions to be implemented in period 1, (R1(D1), X1(D1), W1(D1))

∗ ·
(I1, W1)

∗ serve as initial inventories for the next period.
The current period is t = 2, the demand of period 2 is now realized and cor-

responds to the root node demand in a scenario tree to be constructed for periods
2, . . . , T . The MSP model is solved and the root node decisions (R2(D2), X2(D2),

W2(D2))
∗ are implemented. This process is repeated for t = 3, . . . , T . At the end

of the planning horizon the values (Rt (Dt ), Xt (Dt ), Wt (Dt ))
∗, for t = 1, . . . , T

constitute the MSP-DYN production plan.
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6 Computational Experiments

In this section, we present a computational study where we compare the performance
of the ZOIP, DYNIP, 2-SP, MSP, and MSP-DYN models considering various demand
profiles and based on Fill Rate and Inventory Position. The former is a proxy for the
level of customer service provided, while the latter serves as a proxy for the average
inventory holding cost, considering both WIP and finished goods inventory levels.
The models have been implemented in GAMS and solved using CPLEX 11.0. We
begin by discussing the experimental design and then present the results and analysis.

Demand Profiles: Demand is forecasted over a horizon of three months, each con-
sisting of four working weeks (T = 12 weeks). Demand in each period is independent
and normally distributed. However, the means and variances of demand are allowed
to vary across periods. Three possible levels of mean demand in a given month are
considered: H (High = 140), M (Medium = 100), and L (Low = 60). Based on
these levels, seven demand profiles are constructed by considering different levels for
each month (i.e., four week subinterval): LLL, MMM, HHH, LMH, HML, LHL, and
HLH. For example, demand profile LMH represents an increasing monthly demand,
where demand from week 1 to week 4 is 60, from week 5 to week 8 is 100, and
from week 9 to week 12 is 140. These profiles show how the mean values of the
demand distributions vary over the planning horizon. In all these profiles, we assume
a constant coefficient of variation ρt = σt/μt = 0.25 for the demand distributions
in every period. This yields very small probability of negative demands; in the few
cases in our experiments in which they arose, negative demands were set to zero.

In order to implement the stochastic programs 2-SP and M-SP, scenario trees
based on the various demand profiles must be constructed. For the 2-SP model, three
scenarios are considered, Low, Medium, and High, with demand in each period t is
set to each of the values μt −σt ,μt , and μt +σt , respectively. The probabilities of the
three demand realizations are assumed to be 0.25, 0.5, and 0.25, respectively. This
is clearly a limited representation of the demand uncertainty, and we shall return to
this issue in our discussion of our computational results.

In the case of the M-SP model, successive stochastic programs (one in each period)
have to be solved in order to obtain a production plan for the entire horizon. Therefore,
in each period t a binary scenario tree starting from period t up to the end of the horizon
is constructed. In each period we consider two possible demand realizations, Low
Demand (μt − σt ) and High Demand (μt + σt ), with equal probabilities. Thus in
any given period t, a M-SP is formulated and solved with a scenario tree containing
2T −t+1 − 1 nodes and 2T −t scenarios (number of leaf nodes).

The capacity of the production system is represented by a clearing function which
captures the effect of congestion as discussed in Sect. 3. Following Karmarkar [61],
we assume the form of the clearing function to be

f (W ) = K1W

K2 + W
,
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Fig. 2 Clearing function used in experiments

Table 4 Clearing function approximation

Segment Intercept Slope

1 0.0 0.5
2 136.0 0.069
3 154.8 0.036
4 161.8 0.023
5 180 0

where K1 = 200 is the production capacity, and K2 = 80 measures the curvature of
the CF.
The resulting CF is shown in Fig. 2. Our piecewise linearization of this CF is given
in Table 4.

There are clearly many specific issues involved in the estimation and piecewise
linearization of CFs which are beyond the scope of this paper. These issues have
been discussed extensively in Missbauer and Uzsoy [78]; specific approaches are
illustrated in Asmundsson et al. [4], Missbauer [77], and Selcuk et al. [96], among
others. Extensive experimentation in the course of this work has shown that the
specific manner in which an appropriately fitted CF is piecewise linearized does not
have much effect on the quality of the resulting production plans, although it does
affect the estimates of the dual prices obtained for the associated constraints [62].
Since the primary purpose of this paper is to compare the solutions obtained from
different formulations of the production planning problem with stochastic demand,
all the models compared use the same piecewise linearized function. Hence the
quality of the fit of the CF is not a factor in this study.

The values of Lt , i.e. the lead times in period t = 1, .., T used in the formulations
were chosen to be the same for all periods. This value, based on Little’s Law, was
chosen to be L = W/μ, where μ is the average of all the demand means over the
planning horizon and W the WIP value corresponding to a throughput of μ on the CF.
This represents the behavior of a practitioner establishing a model based on historical
data. The choice of values for I0 and W0 can be arbitrary, but the values we use are
those recommended by Graves [38], setting W0 = Lμ, and I0 = zασ

√
L .
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To compare the performance of the production planning models, ZOIP, DYNIP,
2-SP, and M-SP (including the MSP and MSP-DYN strategies) we evaluate their
optimal production plans in the face of simulated demand scenarios. For each demand
profile, the evaluation procedure is as follows:

For ZOIP, 2-SP, and MSP

– Step 1 : Solve the four models for each demand profile and obtain the optimal
values of the variables (Rt , Xt , Wt ) for all periods to be specified at the beginning
of the horizon before any actual demand has been observed, i.e. the first stage
decision variables. These constitute the optimal production plan.

– Step 2 : Generate N = 100 demand scenarios from the normal distribution for
each period and simulate the production plans for the models for each scenario.
For each scenario a realization of inventories and backorders is obtained.

– Step 3 : Compute the performances for each model i.e., average and variance of
backorders, fill rate, inventory position, and holding cost.

For DYNIP

– Step 1 : Solve the model for each demand profile and obtain the optimal values of
the variable Yt for all periods to be specified at the beginning of the horizon before
any actual demand has been observed, i.e. the first stage decision variables.

– Step 2 : Generate N = 100 demand scenarios. For each scenario, once demand is
realized in a given period, the corresponding (R, X, W) are determined and hence,
the inventory and backlogs can be computed.

– Step 3 : Compute the performances for each model i.e., average and variance of
backorders, fill rate, inventory position, and holding cost.

For MSP-DYN

– Step 1 : Generate 100 demand scenarios. For each scenario, once demand is real-
ized in a given period t, solve a M-SP model for the periods t, . . . , T and implement
the first period decisions, i.e., the (R, X, W) are determined as well as the ending
inventory (I) and backlogs (B).

– Step 2 : Compute the performances for each model i.e., average and variance of
backorders, fill rate, inventory position, and holding cost.

Since the chance constrained models ZOIP and DYNIP and the stochastic programing
models 2SP, MSP and MSP-DYN use rather different modeling assumptions, care
must be exercised when making comparisons. The chance constrained models assume
a form for the demand distribution in each period, and do not consider shortage costs.
However, it can be argued that an implicit judgement on the relative magnitude of
holding and shortage costs is made in the specification of the required service level α,
which also serves as the probability of constraint violation. The chance constrained
models do not specify any particular recourse action when constraints are violated; in
our computational experiments we assume any missed demands can be backlogged.
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We thus consider three levels of the service level in our experiments: 90, 95 and
99.9%.

The stochastic programs, on the other hand, do not represent the demand distri-
bution in a closed form. Instead, they use a discrete set of scenarios of outcomes to
represent the uncertain nature of demand. Hence the effectiveness of these models is
clearly linked to the number and degree of representativeness of the scenarios used
to obtain the solutions. Another interesting issue is that stochastic programing mod-
els provide, by their nature, values for the decision variables corresponding to first
stage decisions that must be made at the present time, as well as decision variables
corresponding to each of the scenarios considered. However, since the scenarios con-
sidered in the model represent only a sample of possible realizations of the demand
process, it is highly likely that in the future we will face a demand realization that
does not match any of the scenarios used in obtaining them unless the stochastic
program is solved on a rolling horizon basis. Since the size of the formulation to
be solved for the stochastic programs is directly driven by the number of scenarios
considered, this raises some interesting questions.

The performance of the stochastic programs (2-SP, MSP and MSP-DYN) is mainly
affected by the magnitude of the backorder cost relative to the holding cost. We
assume a unit production cost of c = $100, and set the holding cost to h = 0.2 c and
consider three levels for b the backorder cost: 0.5c, c, and 4c.

7 Results of Experiments

In order to facilitate a fair comparison between the different models, we have taken
the approach of multiobjective optimization. The solution produced by any model
represents a tradeoff between shortage and holding costs as that model perceives
them, subject to the specific parameter settings used. The issue is further complicated
by the different definitions of shortage that are possible. The chance constrained
models require the specification of a maximum stockout probability. However, there
is clearly a practical difference between a solution that stocks out by a large amount
in one period, and one that stocks out by very small amounts in several.

We shall thus examine the issue in stages. We shall first consider the tradeoff
between average inventory position, defined as the total finished goods and work in
process inventory, and the fill rate, which is the fraction of demand in each period met
from inventory. We shall then examine the difference between the planned and real-
ized service levels in the chance constraint models, and also explore their sensitivity
to errors in the estimation of the demand distributions used.

7.1 Inventory Position-Fill Rate Tradeoff

In order to examine the performance of the different models in terms of their trade-
off between inventory position and fill rate, we shall compute the scaled inventory
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Fig. 3 Average performance of models over all demand configurations

position for each algorithm under each of our seven demand configurations. Let
IP(i, k) denote the average inventory position realized under model i under demand
configuration k. Then we define the Scaled IP(i, k) = IP(i, k)/min j {IP( j, k)}. This
quantity indicates the level of inventory position of a given model relative to the
model with the lowest average inventory position obtained by any model for that
demand configuration.

Figure 3 depicts the tradeoff between the models based on average performance
across all demand configurations. The fill rate is plotted on the horizontal axis and
the scaled inventory position on the vertical. Since we want fill rate to be high, and
scaled IP to be low, the efficient frontier is to the bottom right of the plots.

Figure 3 yields a number of interesting insights. The ZOIP model is completely
dominated, as we would expect. This is due to its complete lack of a recourse action,
leaving it unable to react to the realized demand after it is observed. In particular, this
leaves the model unable to react to demand that is lower than expected, causing it to
overstock by a significant amount, as indicated by Ravindran et al. [93]. The two-stage
stochastic program 2SP is also dominated. The efficient frontier is made up entirely
of DYNIP and the static multistage model MSP, while the dynamic implementation
of the M-SP, MSP-DYN, is also dominated.

Two salient features emerge from these results. The first and most encouraging
from our perspective is the excellent performance of DYNIP. This model is highly
competitive at service levels of 0.90 and 0.95, although it is dominated for a service
level of 0.999. The relatively small difference in fill rate between the three service
levels suggests that the model overstocks to some degree. There are two possible
reasons for this behavior. One is that the assumptions of the chance constrained
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model are violated in the simulations we use, constituting an interesting direction
for future work in understanding the sources of this behavior. Another possibility is
that the lead time estimate used to set the safety stock levels is too high. The success
of DYNIP over ZOIP is due to its incorporation of a dynamic recourse action—it
can modify releases based on observed demand in the past, while ZOIP fixes all
decisions at the start of the planning horizon; note that ZOIP and DYNIP use the
same information about the demand process.

The comparison between DYNIP and MSP is more interesting. The results indicate
that DYNIP obtains the same performance as MSP for a specific choice of service
levels corresponding to a choice of parameters for MSP lying between b = 100
and b = 400. Given the very limited recourse action incorporated in DYNIP, this
seems surprising at first sight; one would expect MSP to perform considerably better.
However, we need to bear in mind that DYNIP is using a complete characterization
of the demand distribution in each period, while MSP characterizes the demand
uncertainty through the use of scenarios. Thus the number and choice of scenarios
is critical for the MSP to obtain a good solution.

However, this is also where the size of the competing formulations needs to be
taken into account. For a planning horizon of T periods, the DYNIP model requires
O(T ) decision variables and constraints. Assuming two possible realizations for
demand in each period as we do in this study, the scenario tree for MSP has O(2T −1)

nodes, implying that number of decision variables for what is a minimal amount of
information on demand uncertainty. These results hold out the encouraging possibil-
ity that a minimal number of well-chosen scenarios may be sufficient for a stochastic
program to make near-optimal decisions. However, the sheer size of the scenario
trees required to model an industrial problem with multiple products, each with their
own different demand processes, suggests that scaling conventional stochastic pro-
graming models up to solve industrial-sized problems poses substantial challenges.

Another interesting observation from Fig. 3 is the fact that the static MSP outper-
forms the dynamic version, MSP-DYN. The latter differs from the former in that the
M-SP model is resolved at each period in the planning horizon, using the information
from the realized demand in previous periods. Hence the recourse action taken at
each period is to resolve the M-SP in the light of previously realized demand.

This result is particularly interesting since implementation on a rolling horizon
or dynamic basis has been held up as a solution to the problem of uncertain demand
in production planning for decades; the assumption is that only the decisions in the
next period matter, and as long as we can revise decisions in the light of observed
information we can obtain good results. However, some recent results suggest that our
faith in this insight may be misplaced, at least under some circumstances. Orcun and
Uzsoy [80] have shown that when the planning model does not accurately represent
the behavior of the production system under study, rolling horizon implementations
can result in undesirable oscillatory behavior similar to the nervousness discussed in
the Material Requirements Planning (MRP) literature (e.g., [13]). What is striking
in this case is that the extremely simple recourse action used in DYNIP yields just
as good results as the far more sophisticated recourse action in MSP-DYN. This
may well be due in part to the very limited demand information used in M-SP,
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as discussed above, which could potentially be remedied by including additional
scenarios in the M-SP model. However, this would come at the cost of increasing
the size of an already very large model. It is important to note that in the current
experiments, the planning horizon T is fixed and does not recede into the future,
which will cause ending effects to arise in decisions towards the end of the planning
horizon. In particular, the limited planning horizon may cause the models to take
decisions that are very good within the current horizon, but have very unfavorable
consequences outside the current planning horizon. This issue clearly needs to be
more carefully examined in future work.

7.2 Effect of Estimation Errors

In order to further explore the performance of DYNIP relative to MSP, we conducted
two additional experiments in which the mean of the demand distribution used in
the DYNIP models are perturbed by a random error uniformly distributed between
0 and 0.2 times the mean, representing a situation where demand is systematically
overestimated. Our second case represents the case when demand is underestimated,
represented by an error uniformly distributed between −0.2 and 0. The standard devi-
ations are subjected to a random error uniformly distributed between −0.2 and 0.2.
The purpose of this experiment is to examine the sensitivity of DYNIP to errors in
the estimation of the demand distributions used.

The results of these experiments are shown in Fig. 4. The suffix “H” denotes the
results for the case with overestimated demand, and “L” for the case with under-
estimated demand. The results for MSP are included for comparison. The results
are quite intuitive. The impact of errors in demand estimation increases with the
required service level. When α = 0.90, the scaled IP varies between 1.12 and 1.21;
for α = 0.95, from 1.14 to 1.24; and for α = 0.999, from 1.3 to 1.47. The changes
in fill rate are all less than 1%. The MSP results are dominated except for MSP-4.0,
which achieves a higher service level than DYNIP-0.999 and DYNIP-0.999-H with
lower inventory position. These results together suggest that DYNIP is relatively
robust to errors in demand estimation, while at the same time supporting the earlier
evidence that it tends to overstock relative to the desired service level.

The tradeoff between fill rate and scaled IP for the individual demand configu-
rations was also examined, although detailed results are not presented for brevity.
Comparing the HHH, LLL and MMM results indicates that for LLL and MMM,
DYNIP dominates MSP, while for HHH MSP enters the efficient frontier, obtain-
ing slightly lower fill rates with substantially lower inventory position than MSP,
although DYNIP-0.90 and DYNIP-0.95 remain on the efficient frontier. In all demand
configurations except HML, DYNIP is represented in the efficient frontier; in that
configuration MSP dominates all the DYNIP models, obtaining both higher fill rate
and lower inventory position. Interestingly, the converse is true for the LHL config-
uration, where MSP is dominated by the DYNIP models.
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Taken as a whole, these results suggest that DYNIP is at least a contender as a
solution technique for the planning problem considered in this paper. While it exhibits
some weaknesses in the face of high demand variability, its performance appears to
be relatively robust to errors in the estimation of the demand distributions it uses, and
it consistently achieves a position on the efficient frontier of the fill rate—inventory
position tradeoff. It appears to have a tendency to overstock, which is likely due to
the discrepancy between the assumptions of the model and the environment in which
the simulations take place.

7.3 Service Level-Fill Rate Comparison

An interesting comparison that sheds some additional light on the behavior of the
different models is to compare the average service levels and fill rates. The entries
in Table 5 are computed by taking the average over all periods in each realization,
and then taking the grand average of these over all realizations of a specific demand
configuration. It is immediately apparent that the service levels realized by DYNIP
are higher than the planned service levels, resulting in even higher fill rates. The
reason for this behavior is very likely that the lead time being used to compute
the inventory targets is higher than the average lead time that is realized in the
simulations. Interestingly, even though the same lead time parameters are used in the
ZOIP model, ZOIP’s service level is markedly worse than that of DYNIP. ZOIP and
DYNIP appear to perform better when the demand distribution is time-stationary
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Table 5 Realized fill rates and service levels

LLL MMM HHH LMH HML LHL HLH

2SP-0.5 SL 0.580 0.580 0.618 0.662 0.558 0.616 0.583
FR 0.815 0.815 0.828 0.839 0.791 0.812 0.806

2SP-1.0 SL 0.935 0.944 0.948 0.954 0.967 0.966 0.948
FR 0.978 0.979 0.979 0.978 0.991 0.990 0.978

2SP-4.0 SL 0.983 0.992 1.000 0.996 0.978 0.994 0.993
FR 0.998 0.999 1.000 1.000 0.995 0.999 0.999

DYNIP-0.90 SL 1.000 0.992 0.958 0.950 0.833 0.983 0.892
FR 1.000 1.000 0.993 0.987 0.931 0.999 0.969

DYNIP-0.95 SL 1.000 1.000 0.967 0.975 0.833 0.983 0.908
FR 1.000 1.000 0.995 0.991 0.934 1.000 0.973

DYNIP-0.999 SL 1.000 1.000 0.983 0.983 0.875 1.000 0.925
FR 1.000 1.000 0.998 0.999 0.952 1.000 0.980

MSP-0.5 SL 0.885 0.892 0.898 0.832 0.869 0.742 0.788
FR 0.966 0.967 0.969 0.938 0.950 0.872 0.896

MSP-1.0 SL 0.917 0.926 0.951 0.883 0.903 0.884 0.884
FR 0.979 0.980 0.985 0.965 0.971 0.957 0.960

MSP-4.0 SL 0.965 0.983 0.997 0.951 0.957 0.971 0.973
FR 0.994 0.997 0.999 0.989 0.989 0.993 0.995

MSP-DYN-0.5 SL 0.846 0.846 0.713 0.667 0.775 0.633 0.658
FR 0.939 0.937 0.879 0.837 0.897 0.728 0.782

MSP-DYN-1.0 SL 0.917 0.929 0.971 0.817 0.892 0.863 0.879
FR 0.980 0.986 0.995 0.932 0.964 0.950 0.970

MSP-DYN-4.0 SL 0.917 0.929 0.983 0.842 0.887 0.896 0.921
FR 0.980 0.986 0.996 0.937 0.965 0.970 0.986

ZOIP-0.90 SL 0.858 0.858 0.650 0.697 0.668 0.772 0.660
FR 0.964 0.964 0.877 0.909 0.858 0.912 0.880

ZOIP-0.95 SL 0.801 0.737 0.655 0.713 0.682 0.795 0.666
FR 0.925 0.910 0.881 0.915 0.863 0.921 0.883

ZOIP-0.999 SL 0.776 0.748 0.684 0.738 0.732 0.848 0.656
FR 0.920 0.913 0.891 0.925 0.887 0.933 0.878

(demand configurations LLL, MMM, and HHH) than when it is not. In contrast,
MSP maintains a consistent level of fill rate across all scenarios. The fact that the fill
rate is consistently higher than the service level for the chance constrained models
(ZOIP and DYNIP) suggests that even though stockouts occur, the amount of the
stockout is quite modest in most cases.
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8 Conclusions and Future Directions

Acknowledging at the outset the exploratory nature of this chapter, our results raise
some interesting issues. Planning procedures with recourse (MSP, MSP-DYN and
DYNIP) consistently outperform those without recourse (ZOIP and 2SP) as one
would expect. However, the performance of DYNIP suggests that when appropriately
parameterized it may be able to compete effectively, in terms of producing near-
optimal solutions in reasonable CPU time, with far larger multi-stage stochastic
programing models that employ a limited number of scenarios to capture demand
uncertainty—at least under certain conditions. It also appears to be relatively robust
to errors in estimation of the demand distribution used to construct the model. On
the other hand, the MSP model appears to be able to produce good solutions with a
minimal number of demand scenarios, considering only two possible values in each
planning period. Even so, the MSP approach results in very large models relative
to DYNIP. Finally, a dynamic, rolling horizon implementation of MSP yielded no
apparent advantage over the static procedure. This finding is interesting in itself, since
a rolling implementation is widely held to be the remedy for demand uncertainty.

Given the limited number of experiments carried out, these findings raise more
questions than they answer, suggesting several directions for future work to clarify
or confirm these findings. Clearly future work needs to focus on procedures with
recourse, such as MSP and DYNIP. The reason why DYNIP appears to consistently
overstock needs to be understood, and methods found to alleviate this issue if possible.
It may be as simple as setting the lead time parameter used to compute the inventory
targets more accurately, but it may also be related to the fact that the assumptions
used in developing the model are violated in the experimental environment. If the
latter is the case, careful mathematical analysis must be carried out to reveal the
reason, and suggest an approach to correct the problem. The sensitivity of DYNIP
to errors in estimating the demand distributions, and approaches for using it in the
face of very limited demand information also need to be explored.

The MSP model used in this work highlights the primary issue with multistage
stochastic programing when applied to production planning: the size of the scenario
tree grows very rapidly, resulting in very large formulations even when a very limited
number of different demand realizations are considered in each period. There needs
to be a systematic investigation of how many scenarios need to be considered to
provide a reasonably good solution (however that is to be defined, which is another
complex issue), and possible solution methods that will allow a scaling up of these
approaches to problems of industrial size.

Finally, as we have noted in our analysis, the chance constrained and stochastic
programing models make quite different assumptions in formulating the models. The
chance constrained models ignore shortage costs, and require a specified stockout
probability. The stochastic programing models require a number of scenarios that
describe the demand uncertainty and explicit holding and shortage costs. These dif-
ferent assumptions have been shown in the literature to lead to paradoxical behavior
for the chance constrained models under certain circumstances, such as a negative
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value of the expected value of perfect information [14]. While the mathematical exis-
tence of such behavior is well documented, it may yet remain the case that chance
constrained models, when appropriately formulated and parameterized, can provide
effective heuristics for the problem of production planning under uncertain demand.
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