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Abstract Modern production and logistic systems are facing increasing market
dynamics: customers demand highly individualized goods, the adherence to due
dates becomes critical and stipulated delivery times are decreasing. Particularly
logistic networks, e.g. production networks or supply chains, are strongly affected
by this trend. On the other hand, production networks have to deal with inherent
internal dynamics, which are caused by e.g. machine breakdowns or rush orders.
The concept of autonomous control, coming from the theory of self-organization,
offers decentralized autonomous decision policies (ADPs), which enable logistic
objects to make and execute decision on their own. Due to this kind of decision
making, autonomous control aims at a distributed coping with dynamic complexity
and, at the same time, at an improvement of the logistic performance. This contri-
bution addresses the concept of autonomous control and the underlying autonomous
decision policies as a novel concept for the control of the material flows in networks
of coupled production facilities. Moreover, it shows different concepts of modeling
and analysis of autonomously controlled networks. To achieve this goal, a dual
approach including both, mathematical methods as well as simulation models, is
presented. Subsequently, the possibilities to analyze the dynamic behavior of the
autonomous logistic system are discussed, i.e., the system’s stability and its logistic
performance. Finally, this contribution presents an exemplary case of a production
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network to demonstrate the practicability of the approach of modeling and analysis
of autonomous control for production networks.

1 Introduction

Modern logistic systems are exposed to various dynamically changing parameters in
its internal and external environment. Especially logistic networks, e.g., production
networks or whole supply chains, are affected by dynamical changes [53, 56]. For
example, these dynamics are caused by customers’ increasing desires for individ-
ualized goods or the demand of decreasing delivery times and a strict adherence
to due dates. Moreover, internal factors can cause unfavorable dynamic behavior
of logistic networks, e.g., interdependencies between transportation and production
processes or machine breakdowns. Manufacturing enterprises have to adapt to these
changes rapidly. On the one hand, companies concentrate on their core competencies
to sustain competitiveness. On the other hand they establish close cooperations with
each other in order to satisfy the demand of their customers. In this context, several
cooperation concepts for interconnected logistic networks were developed in the past.
These concepts, for example virtual enterprises [7, 26] or production networks [57],
aim at enabling companies to react promptly to dynamics. Related to this, several
planning tasks for operating such networks occur in addition to classical production
planning and control (PPC) functions. Comprehensible examples of these new tasks
are the assignment of orders to production plants or the temporal coordination
between transport and production processes. Especially the temporal coordination in
geographically dispersed production networks gains importance [15, 40]. A lack of
reconciliation between production and transport processes can lead to increasing
throughput times, increasing tardiness of orders or underutilization of resources
[28, 37]. Thus the integrated planning of transport and production processes has
to ensure that an adequate quantity of raw material is supplied to the particular
production plant at the right time. Furthermore, a high work-in-process (WIP) level
should be avoided. A high level of WIP is unfavorable due to the resulting capital
lockup. However, in highly dynamic and volatile situations centralized planning
approaches, which solve the total planning problem incrementally, are not able to
cope with occurring dynamics and unforeseen disturbances [21, 24]. Decentralized
approaches, e.g., autonomous cooperating logistic processes, seem to be a suitable
counterpart to classical centralized planning methods. This concept aims at enabling
single logistic entities to make and execute operational decisions on their own.
According to this idea, intelligent logistic objects (e.g., parts, machines or trucks)
apply autonomous decision policies, in order to pursue their own logistic targets [59].
Due to the use of modern information and communication technologies (e.g., RFID,
GSM, GPS, etc.) these objects are able to interact with others. Based on these inter-
actions, logistic objects collect information about current local system states and
use this information for decentralized decision making. Autonomous cooperating
logistic processes aim at increasing the system’s robustness and its performance, due
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to autonomous and distributed decision making of intelligent logistic objects. The
implementation of autonomous decision policies (ADPs) in production systems and
entire production networks already showed promising results, in terms of an increased
logistic target achievement and the robustness against disturbances [45, 46].

However, this kind of autonomous decision making causes a decentralized system
behavior, which may affect the total logistic performance negatively or even leads to
instability of the system [34, 60]. Roughly speaking, stability means that the state of
a plant remains bounded over time, whereas instability of a network leads to infinite
states. A network with increasingly growing WIP can be called unstable.

This contribution aims at explaining the idea of autonomous cooperating logistic
processes and the fundamental concepts of ADPs in large-scale logistic networks to
practitioners. In the beginning the theoretical background will be outlined briefly.
The general focus of this contribution is set on describing how to implement ADPs in
production networks and furthermore how to determine key-indicators of the systems
using ADPs, such as logistic performance and stability. Therefore, this contribution is
structured as follows (Fig. 1): In Sect. 2 a general definition of production networks is
given, while Sect. 3 addresses operative planning problems of production networks.
It discusses classical central approaches in this context. The concept of autonomously
cooperating logistic processes and the underlying ADPs are presented in Sect. 4.

Concrete approaches for modeling, simulating and analyzing the performance and
the stability of ADPs in production networks are presented in Sect. 5. Subsequently,
the application of these modeling and analysis approaches is presented in Sect. 6 in
two examples of production network scenarios. Finally, Sect. 7 includes a summary
and an outlook.
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2 Production Networks

Relevant literature provides several definitions concerning networks of coupled
interconnected production systems. In the context of this contribution the term
production network is defined according to Wiendahl and Lutz [57], based on the
orientation at the integrated planning of logistic processes: Production networks are
company or cross-company owned networks of geographically dispersed production
facilities. They focus on the mutual use of common resources and integrated
planning of value adding processes in the network [57]. This allows achieving
economies of scale through the joint planning and the common use of production
resources. These types of networks may react promptly to internal or external
disturbances due to redundancies of resources. An integrated view on production
planning and transport planning requires additional tasks: Companies have to
generate concepts for identifying new network partners, the network design and
adjusting the PPC according to the network’s purpose [53]. However, this creates
complex interdependencies between PPC of plants and coordination of transports,
e.g., allocation problems between plants or planning of transport schedules and
transport capacity [2, 40, 52]. Besides these operational planning problems, which
concern a short-term time horizon, there are also several planning problems on the
tactical and strategic level. The supply chain planning matrix, introduced by Meyr
et al. [27], comprises all relevant planning problems for short-, mid- and long-
term time horizons. It covers all dimensions of corporate logistics: procurement,
production, distribution and sales. A classical problem of the long-term time horizon
is the strategic network planning, with tasks like selection of strategic partnerships
or localization of production plants [39]. In the mid-term time horizon, the so called
master planning describes tasks of coordinating all procurement production, distrib-
ution and sales activities, which are necessary to fulfill the customers’ demands. The
short-term time horizon concerns the operational level and contains classical tasks
such as production planning and control. Furthermore, the operational level addresses
the distribution and transport planning, as well as purchasing activities and material
requirements planning. It is assumed that these tasks are implemented in software
modules, which cover all of these planning problems [30]. Some authors argue that
an integrated planning method, which solves all problems in an incremental way,
may be challenged toughly by the occurrence of dynamics and unforeseen distur-
bances [21, 24]. Moreover, the structural complexity of large logistic networks is
another limiting factor for the application of centralized optimization methods in
the context of planning and operating such networks. At least single problems of
production and transport logistics are NP hard [17]. Accordingly, optimal solutions
can only be found for very small and simple instances in appropriate computational
time. Thus, heuristics are commonly used for these kinds of scheduling problems.
The following sections give a brief overview about different planning problems in
large-scale logistic networks with a special focus on operative planning problems.
These problem classes cover production logistics aspects, transport-related problems
as well as integrated problem formulations.
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3 Planning Problems in Production Networks

Sauer [40] describe planning tasks in supply or production networks as multi-
site scheduling problems. Multi-site scheduling problems are an integrated formu-
lation of production and transport problems, in terms of determining quantities
and schedules for particular production facilities as well as determining transport
schedules [9]. These approaches address three planning problems: the scheduling
of the shop-floor, planning of transport operations and their coordination on the
network level. The coordination in production networks comprises tasks of infor-
mation updating of successors and predecessors. Dunbar and Desa [14] investigate in
this context a distributed model adaptive control approach and compare it to a nominal
feedback policy. They point out that this approach outperforms the nominal policy
in situations with reliable demand forecasts. The MUST-architecture introduced by
Sauer [40] describes an approach based on a central coordination instance, which
creates a global schedule on the basis of locally generated schedules for all plants and
the corresponding transportation activities. This global schedule takes the solutions
of the sub-scheduling problems into account. Guinet [19] presents another centralized
approach, which divides the total planning problem into sub-problems on the network
level and on the shop-floor level. Shop-floor and transport problems will be charac-
terized and described in the following.

3.1 Shop-Floor Problems

Shop-floor scheduling problems are a well-known problem class in operations
research. The corresponding literature provides several comprehensive textbooks
(e.g., [31] or [13, 35]. Hence, this section aims at giving a brief overview about
different problem classes. Especially, the flexible flow shop problem will be discussed
in detail, due to its realistic assumptions and its widespread application in analysis
of autonomous controlled production systems.

General classification characteristics concerning shop-floor problems are: the
machine types/the arrangement of machines, characteristic of jobs and objective
functions. The machine types and the arrangement can be differentiated according
to three main classes: single machine problems, multiple identical parallel machine
problems and unrelated parallel machine problems [1, 36]. In contrast to single
machine problems the class of multiple machine problems addresses the assignment
of a job set to a set of multiple machines on one or more production stages. As a speci-
fication of parallel machine problems, unrelated parallel machines offer different
processing times and setup times for different job types. As mentioned above, the
flexible flow shop (FFS) problem is a special problem formulation of a shop-floor
scheduling problem [22]. The FFS comprises a variable number of production stages,
which contain a variable number of unrelated parallel machines per stage. Jobs
running through the system have to pass each stage once. Due to the unrelatedness,
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the machines offer different process and setup times to the jobs. Algorithms for
solving this problem type depend on the chosen logistic target system. Often
the makespan is chosen as objective function. This means the timespan between
the first order release time of the first job and the completion of the last job.
Jungwattanakit et al. [22] propose multiple coupled algorithms which construct
primarily a sequence for jobs on the first stage. Afterwards greedy algorithms assign
the jobs to the machines on a stage. The greedy algorithm is repeated, until all jobs
are assigned to stages. The contribution of Jungwattanakit et al. [22] shows that a
combination of these algorithms with a genetic algorithm improves the optimization
result.

The assumptions (different job types, unrelated parallel machines, variable number
of resources, etc.) in the FFS problem formulation can be considered to be realistic and
near to practice [1]. Thus, the FFS is often used for analyzing different autonomous
decision policies in the production logistic context.

3.2 Transport Problems

The planning of transports in geographically dispersed networks is a complex task.
Transport operation can be generally classified in short haul and long haul operations.
Short haul operations describe the aggregation of different transport orders, which
do not fully utilize the capacity of a transport carrier, to tours or round trips. Popular
planning problems related to this area are the traveling sales man problem (TSP),
the vehicle routing problem (VRP) or the pick-up and delivery problem (PDP) [54].
These problems and their derivatives focus on determining round tours starting and
ending in one point (depot) for one or more transport carriers (trucks) to deliver a
certain amount of goods to costumers.

Long haul planning addresses the delivery of goods over long distances with
less nodes. Usually, in long haul transports line operations are implemented [16].
Thus, the particular transport route gets already fixed in advance and the transport
operation takes place according to predefined policies. This type of transport initiation
is commonly used in production networks. This planning problem can be divided
in two sub-problems. The mid-term task of service network design includes the
choice of a transport carrier (road, rail, sea, etc) and the circulation of the transport
carriers [10]. The short-term planning aims at aggregating and assigning orders to
loads. The triggering of transports in a long haul operation can be done by several
policies. Usually, these transports are initiated in fixed frequencies according to a
predefined schedule [18]. Another type is the so-called “go-when-full” policy. This
policy implies that a truck starts a transport process, when a predefined loading
quantity is reached [5]. In real word practice a mix-form of both can be found.
This means, transports are initiated with predefined time windows, but within these
time windows there is the possibility to operate with a go-when-full policy. The
advantage of a go-when-full policy is an efficient utilization of the load carriers [10].
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Their capacity is fully used in this case. A drawback in this kind of policy is the
construction of loose schedules.

4 Autonomous Cooperating Logistic Processes

The idea of autonomous cooperating logistic processes is inspired by the theory of
self organization. This section presents the definition of autonomous control and
elaborates on autonomous decision policies.

4.1 Definition

According to the collaborative research center 637 “Autonomous cooperating Logistic
Processes: A Paradigm Shift and its Limitations”, the following definition of
autonomous cooperating logistic systems is given: “Autonomous control describes
processes of decentralized decision-making in heterarchical structures. It presumes
interacting elements in non-deterministic systems, which possess the capability and
possibility to render decisions independently. The objective of autonomous control
is the achievement of increased robustness and positive emergence of the total
system due to distributed and flexible coping with dynamics and complexity” [59].
According to this definition autonomous control is characterized by a shift of
decision-making capabilities from the total system to its elements, which allows
intelligent logistic objects to route themselves through a logistic network according
to their own objectives [60]. In the context of this definition intelligent logistic object
may be either physical objects (e.g., trucks, machines, etc.) or immaterial objects
(e.g., production orders or transport orders). Modern information and communication
technologies can provide an infrastructure, which enables an exchange of information
about current local system states between these objects. On this basis the objects are
able to generate decisions according to different autonomous decision policies. Due
to these multiple decentralized decisions the local and the global behavior should be
influenced in a positive manner, for example, in terms of improving the handling of
dynamics caused by unforeseen events (e.g., machine breakdowns) [60].

In the past, ADPs have been developed for all areas of the logistic chain: There
exist ADPs for transportation and route planning (e.g., [38]), production logistics
(e.g., [43]), transport collaborations [6], or production networks (e.g., [45]). In
the following, different ADPs for production systems and production networks are
presented.



242 B. Scholz-Reiter et al.

4.2 Autonomous Decision Policies

Generally, ADPs enable decision making of intelligent logistic objects. In the context
of production systems and networks all existing ADPs facilitate decision making of
parts or jobs (semi-finished products), to decide about possible routes through the
system. Scholz-Reiter et al. [48] propose a classification of ADPs according to local
information methods and information discovery methods. Information discovery
methods, i.e., the distributed logistics routing protocol (DLRP), collect information
from other objects. The DLRP is inspired by communication protocols of wireless
ad hoc networks. Intelligent logistic objects using the DLRP send requests into
the logistic network. By receiving replies, the object collects information about the
system, which is used for local decision making. This discovery does not cover the
whole system, but it is directed to information that is relevant for the actual decision.
The DLRP is designed for production environments [50] as well as for transport
logistic routing problems [38]. However, this contribution focuses on local infor-
mation methods. Local information methods enable jobs to decide about further
processing steps. Jobs using one of these methods only gather local information
about states of direct succeeding buffers and machines.

According to a classification introduced by Windt and Becker [58] local infor-
mation methods can be further divided into rational policies, bounded rational
strategies and mixed forms. Rational strategies use solely rational measures (e.g.,
throughput times or due dates) for the decision-making process. In contrast, biologi-
cally inspired strategies which belong to the class of bounded rational strategies, try to
transfer mechanisms from biological self-organizing systems to the decision-making
in production networks. Table 1 presents different ADPs, which can be applied to
production networks. It differentiates between shop-floor related and network-related
strategies and presents their main characteristics as well as a short overview about
the algorithmic scheme.

The QLE policy enables parts in a production system to estimate the waiting and
processing times of different alternative processing resources. It uses exclusively
local information to evaluate the states of the alternatives. The application of this
policy leads to a better system performance regarding throughput times compared to
classical scheduling algorithms in highly dynamic situations [50].

Similar to the QLE, the DUE policy estimates waiting and processing times.
While the QLE uses this information for minimizing part-related throughput times,
the DUE policy orientates at the tardiness of parts. A part using this policy decides
for an alternative resource which offers the lowest difference between estimated due
date and pre-planned due date [47].

In contrast, the PHE policy is a bio-inspired strategy. The approach is based on the
idea to imitate the process of ants marking possible routes to food sources. Ants leave
pheromone marks between the nest and food sources. Other ants can detect those
pheromones and will follow the trail with the highest concentration of pheromones
[32, 33]. This is transferred to logistic systems: During the production process, the
parts leave information about their processing and waiting times at a corresponding
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machine. Following parts entering a stage of the shop-floor compare this artificial
pheromone concentration by computing average value of the waiting time data of
the last five parts and choose a production line. Thus, the pheromone concentration
depends on waiting and processing times of previous parts. To model the evaporation
process of natural pheromones a moving average of waiting time data is used [3].

The honey bee algorithm (HBA) is another bio-inspired strategy. It uses the
foraging mechanisms of honey bees’ colonies. In nature bees advertise possible
food sources with a so-called ‘waggle dance’. The duration of this dance depends on
the ratio between energy consumption of the flight (between hive and food source)
and available energy of the source. The probability of bees recognizing the dance
of a dancing bee is proportional to the dancing duration. According to this principle
parts are able to advertise different alternative production resources by means of the
machining quality, which is determined by calculation of the benefit provided by a
particular machine and the throughput time needed for this step [44].

The natural process, which inspires the CHE policy, differs from the PHE and
the HBA policy. It is not inspired by coordination principals of social insects, but on
movement processes coming from micro-biology. Natural bacteria are able to direct
their movement according to the concentration of attractants (e.g., food substances)
or repellants (e.g., toxic substances). Therefore, bacteria perform a random biased
walk to find appropriate food sources. This basic movement principle is trans-
ferred to autonomous decision making by the CHE policy. Parts using this policy
decide according to the gradient of logistic target values of different decision alter-
natives [49].

All ADPs described above were implemented in the past for several production
logistic scenarios. In general, these policies can also be used for the decision making
on the network level. Currently, the QLE and the PHE policy have already been
transferred to decision making on the network level. The nQLE enables the decision
making on the network level similar to the QLE policy. The network-related version
enables an allocation decision of parts to plants. Therefore, the nQLE estimates,
similar to the QLE policy on the shop-floor level, the transport duration from one
plant to the next and estimates the processing times in the respective plant. The part
chooses the plant with the lowest estimated transport and processing times. The nPHE
policy is based on the same principles as the PHE policy. Intelligent parts choose
one of alternative succeeding plants according to information about the processing
and waiting times of previous parts. In contrast to the PHE policy this information is
not limited to the waiting times at the next machine, but is based on the time spent to
pass the transport system and the corresponding plant [50]. After processing in one
plant the part leaves this information as an artificial pheromone at the plant, which
can be detected by the following parts.

Concerning ADPs, Scholz-Reiter et al. [42] present a framework for choosing
the right policy for a particular production scenario. The underlying evaluation of
this framework applies evaluation methods, which will be presented in Sect. 5. This
contribution presents tools for evaluation of ADPs in production networks.
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5 Modeling and Analysis of ADPs in Production Networks

When dealing with production networks, it is self-evident to consider an integrated
modeling of production networks that covers both job-shop scheduling and transport
logistic problems from an integrated point of view. Such an integrated modeling
approach for production networks is presented in Sect. 5.1. The representation of time
in models of production networks varies throughout the literature: it can be distin-
guished between discrete event and continuous simulation models [29]. Sections 5.2
and 5.3 present different modeling and simulation approaches, i.e., a mathematical
approach and a discrete event simulation (DES) in order to validate the obtained
simulation results concerning ADPs in production networks against each other.
Production networks usually have to deal with dynamic variations, which can be
caused by internal factors or by the (external) environment. Hence, a pure static
analysis of logistic performance indicators seems to be not sufficient to cover the
effects and the interdependencies of these dynamics. Thus, Sect. 5.4 presents appro-
priate measures for analyzing production networks.

5.1 Integrated Modeling of Production Networks

For the purpose of analyzing autonomously controlled production networks a matrix-
like production network scenario was introduced by Scholz-Reiter et al. [45]. This
matrix-like model allows the analysis of the dynamical behavior, the stability and the
logistic performance of a multi echelon production network with detailed shop-floor
and transport models.

Figure 2 shows the generic structure of this model. It consists of a variable number
of network stages, which comprise a variable number of production plants per stage.
Furthermore, these production plants are represented as a shop-floor scenario. Each
of these shop-floors is a matrix-like model (similar to Scholz-Reiter et al. 2005).

Accordingly, different production resources (buffers and machines) are located
on a variable number of production stages. Figure 2 depicts this relation. Transport
systems connect the production plants on the network level with each other. The
network is able to process different job types. The arrival rate u(t) describes the input
of jobs to the network as a function of time. In order to model different demand
situations this function can be modeled as an arbitrary mathematical function. For
example, a sinusoidal function can be chosen for modeling seasonal demand fluctu-
ations (similar to [43, 45]). However, stochastic inputs can be chosen as well. All
transports in this model are direct deliveries, in terms of a door-to-door delivery. This
means that each transport between two plants is initiated and operated separately. The
model allows integrating different direct transport strategies, like a “go-when-full-
policy” or a “frequency-based-policy” with pre-defined departure times as described
by Crainic [10]. Trucks using the “go-when-full-policy” will depart at a particular
plant, whenever their total load capacity q is reached. In a “frequency-based-policy”



Autonomous Decision Policies for Networks 247

…

…

P11 P12 P1k

P21

Pj1 Pj2 Pjk

P2kP22

…

M21

B21

M22

B12

M2n

B2n

M11

B11

M12

B22

M1n

B1n

Mm1

Bm1

Mm2

Bm2

Mmn

Bmn

p

s

P2k

source

sink p

s

predecessor

sucessor Pjk plant

Bmn buffer

Mmn machine

material flow

legend

…

Production
Stage 1 (S1)

Transport
Stage 1 (T1)

Production
Stage 2 (S2)

Transport
Stage j-1 (Tj-1)

Production
Stage j (Sj)

…

Fig. 2 Generic production network model with kxj plants and mxn machines per plant (see [45])

all departure times are predefined and scheduled. This means that the transportation
starts at a certain time, which consequently may lead to variations in the trucks
load quantity q. Both transportation policies are commonly used in door-to-door
transports in long haul operations.

The modeling of particular scenarios can be done by different modeling tools,
depending on the purpose of the analysis. This contribution introduces a mathematical
approach and an engineering-orientated simulation approach. The formulation of a
mathematical model, which is based on differential equations, is a suitable approach
to analyze the stability of a production network [12]. Moreover, the engineering-
orientated simulation approach can be used to refine and validate the results of a
mathematical stability analysis. It can be used to analyze the logistic performance of
ADPs in production network.

5.2 Mathematical Modeling and Stability Analysis

In order to analyze and to make statements about the dynamics of production
networks, the mathematical modeling by differential equations [20] can be used,
which can be called the macroscopic view. Each plant of a production network is
called subsystem. General production networks consist of n subsystems and each
subsystem is modeled by a differential equation that describes the incoming and
outgoing material or information flows as follows:
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ẋi (t) =
n∑

j=1, j �=i

ci j (x(t)) f̃ j (x j (t)) + ui (t) − c̃i i (x(t)) f̃i (xi (t)), i = 1, ..., n.

Here xi denotes the state of the ith subsystem and is a positive real value. The state
can be interpreted as the number of unprocessed parts of a subsystem, but one can
choose any other state variable such as the number of unsatisfied orders for example.
The state of the whole network is denoted by x = (x1, . . ., xn)T. The positive real
value t denotes the time of the system. The term ui represents an external input into
the subsystem, e.g., supply of raw material.

Each plant processes the material with a production rate c̃i i (x(t)) f̃i (xi (t)), where
c̃i i ∈ R+ and f̃i (xi (t)) is a continuous, positive definite and monotone increasing
function. The processed material is sent to the jth subsystem of the network with
the rate c ji (x(t)) f̃i (xi (t)), j �= i where c ji is a positive real value and represents
a distribution parameter for processed material from subsystem i to j. The term∑n

j=1, j �=i ci j (x(t)) f̃ j (x j (t)) is the internal input of material from other subsystems
to the subsystem i.

Denoting cii := −c̃i i the above equations can be rewritten as an interconnected
system, which represents the whole network in a vector form

ẋ(t) = C(x(t)) f̃ (x(t)) + u(t), (1)

where f̃ (x(t)) = ( f̃1(x1(t)), ..., f̃n(xn(t)))T , u = (u1, ..., un)T , C(x(t)) =
(ci j (x(t)))nxn .

ADPs are modeled by the production rate c̃i i (x(t)) f̃i (xi (t)) and the distribution
coefficients ci j . The production rate depends on the state of a subsystem and the
ability to adapt the production speed of a plant in a network can be modeled by an
appropriate choice of this rate. Namely, if there is a lot of unprocessed material, the
plant increases the production and, conversely, if there is less unprocessed material
the production speed goes down. For example, one can choose f̃i (xi (t)) = x2

i or
f̃i (xi (t)) = (1 − exp(−xi )).

By the distribution coefficients ci j a centralized or decentralized planning scenario
can be modeled, where constant coefficients are identified as central planning. For
example, the nQLE, nPHE or other ADPs can be implemented by the following
choices of the coefficients ci j :
for the nQLE

ci j :=
1

xi +ε∑
k

1
xk+ε

,

for the nPHE

ci j := (1 − vi )
f̃i (xi )∑

k f̃k(xk) + ε
+

∑

k �=i

vk
f̃k(xk)∑

q f̃q(xq) + ε
,
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for an integrated ADP

ci j :=
f̃i (xi )
xi +ε

∑
k

f̃k (xk )
xk+ε

,

where k and q are the indices of the subsystems, which get material from subsystem
j, vi are evaporation constants, i = 1, . . ., n and ε is a positive constant to assure that
the term ci j is well-defined.

So far, one important circumstance that occurs in production networks has been left
out: transportation times of material from one plant to another. These transportation
times can be modeled using time-delay systems as follows:

ẋi (t) =
n∑

j=1, j �=k

ci j (t) f̃i (x j (t − τi j )) + ui (t) − c̃i i (t) f̃i (xi (t)), i = 1, ..., n. (2)

Transportation times are represented as time-delays τi j ∈ R+, which denote the
time needed for transportation from subsystem j to i. In Eq. (2) the time-delays are
included in the terms which represent the inflow of material from other subsystems,
where ci j can also depend on a time-delay. In the terms which represent the external
input and the internal production rate no insertion of time-delays is necessary.

The consideration of transportation times makes the analysis of production
networks more complex, but more realistic too. Due to the abstract level of this
view, the model (1) or (2) is used to analyze the dynamics and make general
statements about the dynamics of production networks from a macroscopic view.
The results can be used to adapt the simulation model and, conversely, the results
can be refined by results of the simulation view. This will be explained with examples
in Sect. 5.4.

5.3 Simulation Models

Simulation approaches are often used for the analysis of stability of production
networks in order to refine the mathematically found stability regions. Furthermore,
they can be used to investigate different system aspects like logistic target achievement
for time-varying systems parameters. For the analysis of ADPs in production
networks, several simulation approaches were used in the past (e.g., [43]). These
simulation models can be classified according to their general function principle
concerning the representation of time in the simulation model. Continuous time
simulations represent the time of the simulation model as a real variable. All system
states in the simulation model change with dependence on the simulation time
variable. In contrast to this, in a discrete time simulation model the time elapses
in predefined equidistant time steps. A particular variant of discrete time models is
discrete event simulation models [4, 62]. Here, the time elapses in non-equidistant
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time steps. The states of the simulation model change according to events. In the
production logistic context these events describe the arrival of raw material in a
source or the end of a particular production step [25], for example. Besides the
representation of time, some authors discuss the purpose of analysis as a possible
classification characteristic. Morecroft and Robinson [29] describe differences in the
modeling representation and the interpretation between discrete event and continuous
simulation models. Accordingly, discrete event simulations are applied for the repre-
sentation of very detailed scenarios, which should be investigated with regard to
the interaction of single system elements, while continuous simulations are used for
investigations of general dynamic aspects of the system [8, 29]. The usage of different
modeling and simulation approaches helps to validate the obtained simulation results
concerning ADPs in production networks against each other. Possible differences or
mistakes can be detected easily. A comprehensible example for this approach is the
determination of stability regions of autonomously controlled production networks.
In Scholz-Reiter et al. [51] a discrete event simulation approach is used for the
refinement procedure.

5.4 Measures for Analysis

Production networks are steadily exposed to dynamic variations, caused by internal
reasons and by the external environment. Hence, a pure static analysis of logistic
performance indicators seems to be not sufficient to cover the effects and the
interdependencies of these dynamics. Nevertheless, classical logistic performance
indicators should not be neglected. According to Wiendahl [56] the logistic key
performance measures are throughput time (TPT), delivery liability, work-in-process
(WIP) and utilization. The throughput time is the time-span spent by a particular
product in a production system. From a customer’s point of view short TPTs are
desirable, due to the shorter possible delivery times. Another aspect of this customer’s
perspective is the delivery reliability, which means a delivery of goods to the customer
at the right time in the right quantity. The performance indicators WIP and utilization
belong to the logistic costs. A high level of WIP means that the buffers of the system
are filled with numerous semi-finished goods and raw material. This leads conse-
quently to high degree of capital lock-up. From an economical point of view the WIP
should be at a low level, while the system is fully utilized.

Windt et al. (2008) developed a vector-based approach which allows one to weight
these targets according to the subjective preferences and to aggregate these weighted
targets in one performance indicator, called logistic target achievement. This value
depends on pre-defined targets, the operative target achievement and weight factors.
The total logistic target achievement gives information about the performance as a
percentage value. By applying this approach, different configurations of production
systems can be compared easily. For the objective of the analysis of autonomously
controlled production systems, this vector-based approach can be used to compare
different ADPs in a defined way (e.g., [46]). Furthermore, Windt et al. [58] introduce
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an autonomous control application matrix (ACAM), which proposes an evaluation
of different scenarios with ADPs on the basis of this vector-based approach.

Additionally, the identification of stability regions is generally crucial for planning
and operating logistic networks as an aspect of the dynamic systems behavior. In
this context, mathematical models are often used to determine stability regions.
Typical examples of unstable behavior are unbounded growth of unsatisfied orders
or unbounded growth of the queue of the workload to be processed by a plant or a
machine. This causes high inventory costs and loss of customers. To avoid instability
of a network it is worth to investigate its behavior in advance.

Stability means, roughly speaking, that the number of unsatisfied orders or the
number of unprocessed parts remains bounded over time. More precisely, the local
input-to-state stability (LISS) property from control theory is used and by the means
of LISS the state of a system can be estimated. More details about this property can
be found in Dashkovskiy and Rüffer [11].

A useful tool to verify the LISS property of a system is a Lyapunov function, which
is positive definite and radially unbounded and can be interpreted as the energy of the
systems state. A LISS Lyapunov function Vi of the ith subsystem has the property
that if Vi (xi ) ≥ max

{
max j �=i γi j (Vj (x j )), γi (|ui |)

}
holds, where the gains γi j and

γi are positive definite, zero at zero and strictly increasing functions, then the energy
decreases. If Vi (xi ) < max

{
max j �=i γi j (Vj (x j )), γi (|ui |)

}
then the energy of the

system is bounded by the expression on the right side of the previous inequality.
Overall, the trajectory of a system is bounded. More details can be found in [11].

By the gains, statements about the behavior of the system can be made. For
example, they offer information about the upper bound of the trajectory of a system
or in other words about the highest inventory level of a system. This information is
helpful for plant owners, because they can plan the size of the inventory in advance
and they can also design their plant in a way to assure stability.

The tool of a Lyapunov function can be used for the stability analysis in the
following way:

Consider a network consisting of n subsystems and assume that each subsystem
has a LISS Lyapunov function, i.e., each subsystem has the LISS property. Then, the
overall network has the LISS property provided that the small-gain condition (SGC)
is satisfied (see [11]).

Simply speaking, the SGC states that along every existing circle in the network
the composition of the corresponding gains is less than the identity (see [11]).

Concluding this, to verify if a system is stable, one has to find LISS Lyapunov
functions for the subsystems, the corresponding gains and to check the SGC, then
stability is verified. Otherwise, one has to find other LISS Lyapunov functions candi-
dates and gains. If all efforts are not successful, then no statement about stability is
possible.

To assure the stability of a network by using the properties of the Lyapunov
functions and the SGC one gets conditions on relevant system parameters, as the
production or distribution rates and the external inputs. Using the model (1) in
Sect. 5.2 describing general production networks and assuming that the distribution
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coefficients are bounded, the following condition for unbounded production rates
can be derived:

If there exist a ∈ R
n, ai > 0 and ε ∈ R

n, εi > 0, i = 1, ..., n, such that

C(t)a < ε

holds, then the whole network (1) has the ISS property, which is the global variant
of LISS.

For production rates, which are bounded up to a certain limit αi := supxi

{
f̃i (xi )

}

the condition

C(t)α + ‖u‖∞ < ε,

can be derived to assure that a network has the LISS property, where α = (α1, ...αn)T

and ‖u‖∞ denotes the essential supremum norm of the external input. Taking trans-
portation times into account one gets similar conditions to assure stability of a
production network modeled by the equations as in (2).

These conditions form a stability region: for parameter constellations (i.e., set of
parameters) within this region, stability is guaranteed. For parameter constellations
outside this region the tool of a Lyapunov function does not offer a statement about
stability. At this stage, simulations are performed to refine the stability region.

By the analysis using Lyapunov functions a large set of parameter constella-
tions which assure stability are identified. Only few parameter constellations have
to be simulated. To identify stable or unstable parameter constellations a truncation
criterion needs to be defined. Then, the simulation results refine the stability region.

This dual approach using the analytical and the simulation model has the
advantage of less time consumption to identify stability regions in contrast to a
pure simulation approach. This is especially relevant since the time needed for a
simulation run increases exponentially as the number of plants, links and parts in
a network are increased. To identify parameter constellations which assure stability
and to make statements about the inventory levels of the plants of a complex network
with a large number of plants is a problem which cannot be solved in an acceptable
time. The dual approach presented helps to derive and refine parameter constellations
in reasonable time by assuring stability (see [51]) and is presented in the following
Fig. 3, where a scheme of a stability analysis is displayed.

6 Examples of ADP Implementation

This section presents the approach of modeling and analyzing autonomous decision
policies in two exemplary cases of production networks. The first focuses on stability
analysis and a refinement of stability regions of a relatively simple network. The
second is used to demonstrate the performance evaluation of different autonomous
decision strategies (for the structure see Fig. 4). The first network consists of three
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Fig. 3 Scheme of the
stability analysis (similar
to [51])
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plants, the second has six plants. In the first example a macroscopic view is
considered; the second example is investigated in detail representing the shop-floor
of the plants, consisting of 3 × 3 machines (see Fig. 4).

6.1 Stability Analysis

According to Fig. 4a the material flow between the plants is defined as follows:
The input of raw material arrives at plant 1 and plant 3. All material produced in plant 1
is delivered to plant 2. From here 50% of the goods are delivered to the customers
and 50% for further processing to plant 3. Plant 3 sends 50% of its output to plant 1
and plant 2 each. In order to model seasonal demand fluctuations both inputs to plant 1
and plant 3 are modeled as a sinusoidal function ui (t):

ui (t) := AVi · (sin(t) + 1) + 5, i = 1, 3.

The parameter AVi determines the intensity of the fluctuations in terms of
the amplitude. In this example this parameter is used to generate different input
situations. The plants are able to decide autonomously about their current production
rate f̃i at the time point t. It is assumed that this decision depends on the actual
workload in the following form:

f̃i (xi (t)) := αi (1 − exp(−xi (t))), i = 1, 2, 3., αi ∈ R+
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Fig. 4 a Production network scenario with three plants. b Production network scenario with six
plants

This means that the production rate of plant i depends on the WIP of the plant.
According to this equation, the production rate will be very low in cases of low WIP
in the plant. Otherwise the production rate will be set to its maximum αi for a high
WIP level.

This example aims at determining the lowest possible values of αi or a certain
input situation, which depends on AVi . To do so, the internal structure of the plants is
neglected in a first step. Stability conditions will be derived only macroscopically on
the network level. These results will be subsequently refined by a simulation model.

In this first step the network is modeled by differential equations:

ẋ1(t) = u1(t) + 0.5 · f̃3(x3(t)) − f̃1(x1(t)),
ẋ2(t) = f̃1(x1(t)) + 0.5 · f̃3(x3(t)) − f̃2(x2(t)),
ẋ3(t) = u3(t) + 0.5 · f̃2(x2(t)) − f̃3(x3(t)).

These equations describe the change of WIP in the three plants and consider the
transport connections and quantities as well as the current production rate of a plant.
According to the scheme in Fig. 3 the next step is to derive stability conditions using
Lyapunov functions and gains. A very detailed technical description for this can be
found in Scholz-Reiter et al. [51]. For this network the following stability conditions
can be calculated:
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Fig. 5 Calculated and simulated stability regions for plant three

α1 > 0.5 · α3 + maxt {u1(t)}, α2 > 0.5 · α3 + α1, α3 > 0.5 · α2 + maxt {u3(t)}.

By solving this system of inequalities, the maximal production rate for that
stability can be guaranteed and can be calculated for the corresponding value of
AVi . For example, choosing AVi ≡ 5 leads to:

α1 > 37.5, α2 > 60, α3 > 40.

From a mathematical point of view the stability of the production network can be
guaranteed for the values indicated. This does not mean that the network is unstable
for values that violate these inequalities. To illustrate this, a continuous simulation
of the differential equation model is conducted.

For different values of AVi the production rate of all plants is reduced stepwise in
several simulation runs. The simulation model is considered to be unstable, whenever
the WIP of a plant starts to rise continuously about 10% in a time period of 30 days.
Figure 5 depicts the results of the simulation model for plant 3 and compares it with
the calculated results.

These results show that the simulation model is still stable in this case, even if
the production rate is below the calculated stability boundary. Using simulations, the
calculated stability region can thus be refined.

Figure 6 clarifies this. It presents simulation results for different values of αi

and AVi ≡ 5 taken from the calculated stability region, the simulated stability
region and the simulated instability region. The WIP remains bounded over time
for the calculated stability region and the simulated stability region. By contrast the
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WIP grows continuously in plant P1, P2 and plant P3. The WIP in P1 increases
continuously about 0.049, in P2 about 0.02 and in P3 about 0.029 units per time unit.

According to the results presented in Fig. 6, the mathematical determination of a
stability region provides a good starting point for the refinement. Hence, this approach
allows the identification of the border of the stability region with less time efforts
than a pure trial and error simulation approach.

In general, different simulation approaches can be applied for the refinement.
Scholz-Reiter et al. [51] successfully applied a discrete event simulation and a
continuous time simulation based on differential equations for the refinement of
stability regions. It was shown that the refinement results of both simulation
approaches provide similar stability results.
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Table 2 Weighted adjacency
matrix

From plant To plant

P1 P2 P3 P4 P5 P6

P1 – 200 200
P2 – 200 200
P3 – 200 200
P4 – 200
P5 – 200
P6 –

6.2 Implementation and Evaluation of Different Autonomous
Decision Policies

The second example presents the modeling and implementation of different ADPs
on the shop-floor and on the network level. Therefore, the network depicted in Fig. 4b
is considered. In order to keep this example simple, only one logistic target measure
is considered. This example focuses on the total throughput time, which denotes the
time spent by the parts to pass through the entire network.

This scenario has six different plants on four network stages. On stage one and
on stage four there is only one plant. On stage two and three there are two parallel
plants each. Additionally, every plant consists of a shop-floor with 3 × 3 machines.
The distances between the plants are summarized in Table 2.

The transports between plants are triggered by a “frequency-based” policy. This
means that a transport starts in pre-defined time intervals. The interval in this example
is set to 15 h.

There are three different job types in this scenario. These job types differ in their
processing times on the shop-floor level in every plant. The processing times are
summarized in Table 3.

As in the first example, the arrival rate of jobs in this scenario is set to a sine
function in order to model demand fluctuations:

u(t) = λ + AV · sin(t + ϕ)

This function has a phase shift ϕ = 1/3 of a period for each job type, so that the
maximal arrival rates of all job types are not simultaneous. The variable λ defines
the mean arrival rate and is set to 0.4 1/h in all simulation runs. The second variable
AV determines the intensity of the arrival rate fluctuation, as in example 1, AV is set
to 0.125 1/h.

The purpose of this example is to describe how to choose an applicable combi-
nation of different ADPs for this particular network configuration. Therefore, the
ADPs QLE, PHE, nQLE and nPHE are implemented on the shop-floor and the
network level to a simulation model, exemplarily. Table 4 shows the different combi-
nations of ADPs and summarizes the results of the simulation runs in a form which
is comparable to the ACAM described above.
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Table 3 Processing times (h:mm)

P1; P6 P2; P4 P3; P5

Type / line 1 2 3 1 2 3 1 2 3
Type A 2:00 3:00 2:30 3:00 4:00 3:30 5:00 6:00 5:30
Type B 2:30 2:00 3:00 3:30 3:00 4:00 5:30 5:00 6:00
Type C 3:00 2:30 2:00 4:00 3:30 3:00 6:00 5:30 5:00

Table 4 Simulation results

ADP
(shop-
floorlevel)

ADP
(network
level)

Logistic performance
mean total throughput
time (h)

Standard deviation of
mean total throughput
time (h)

Rank

QLE nQLE 86.59 5.21 2
QLE nPHE 85.84 3.23 1
PHE nQLE 110.85 10.67 3
PHE nPHE 117.95 12.37 4

This relatively simple example demonstrates that a detailed analysis of different
combination of network-related and shop-floor-related ADPs is necessary. In this
example the combination of QLE and nPHE performs best with respect to mini-
mizing the total throughput time (TTPT), which is the time span needed by a part
to pass through the entire network. On the other hand the combination of PHE and
nPHE seems not to be suitable for this particular network. This combination leads
to the highest mean TTPT.

Figure 7 depicts these results in more detail. It presents the TTPT against the
simulation time of each possible combination. The nPHE leads to smoother patterns
in the TTPT compared to the combination of the QLE/nQLE (Fig. 7a, 7b). A
comparison of the corresponding standard deviations confirms this. In combination
with the shop-floor-related QLE method the best result of mean TTPT (85.84 h) is
realized.

A similar curve shape is observed for the combination of the PHE/nQLE, but
the absolute values differ: in this case the mean TTPT is 21.89% higher than in
the first case. This can be explained by the time horizon used by the methods. The
pheromone-based method uses data from past events, while the QLE is based on
actual information. In the case at hand, the data on the shop-floor level used by
the PHE method does not represent the current situation properly, which leads to
unsuitable autonomous decisions on the shop-floor level and consequently to a longer
TTPT.

The results of the network-related pheromone-based approach are different.
In combination with the shop-floor-related QLE method the lowest mean TTPT
(85.84 h) is realized.

Figure 7d presents the TTPT of the PHE/nPHE combination. Again, the shop-
floor-related pheromone-based method leads to high throughput times in the plants,
which corresponds to the effects discussed concerning the PHE/nQLE combination.
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Fig. 7 Total throughput time against simulation time: a combination QLE/nQLE, b combination
QLE/nPHE, c combination PHE/nPHE, d combination PHE/nPHE

Additionally to this, the nPHE method uses the information of the throughput times in
the plants for the autonomous decision making on the network level. Due to the time-
varying and imprecise information allocation decisions made by the nPHE method
are not suitable in this situation. Consequently, this combination leads to the highest
TTPT value.

This example illustrates the potentials of the application of autonomous decision
policies in production networks. Combined autonomous decision policies on the
network level and on the shop-floor level may lead to an acceptable logistic perfor-
mance. However, the underlying dynamics and their consequences should not be
neglected. In the case at hand the combination of the PHE/nPHE method leads to
a dynamic interplay between network and shop-floor-related decisions which are
undesirable and consequently decreases the logistic performance. Thus, the design
and implementation of autonomous control strategies in production networks should
be integrated in an intensive analysis of relevant system properties such as stability
and systems performance.
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7 Summary

This contribution described the integrated coordination between production and
transport processes as an essential task of operating production networks. Different
central planning and scheduling functions for shop-floor and transport operations
were presented. In this context, different ADPs and the concept of autonomous
cooperating processes were introduced as a novel approach to coordinated logistic
processes in production networks. Several ADPs were introduced and described.
Additionally, approaches for modeling and analyzing ADPs in production networks
were presented and discussed in mathematical terms and via simulative approaches.
Based on the mathematical modeling approach, criteria for the stability of production
networks can be derived, which subsequently can be refined by simulations. Finally,
two examples for analyzing the stability and the performance of autonomous decision
policies in production networks were given.

Acknowledgments This research is funded by the German Research Foundation (DFG) as part of

the Collaborative Research Centre 637 ‘Autonomous Cooperating Logistic Processes: A Paradigm

Shift and its Limitations’.

References

1. Allahverdi A, Ng CT, Cheng TCE, Kovalyov M (2008) A survey of scheduling problems with
setup times or costs. Eur J Oper Res 187(3):985–1032

2. Alvarez E (2007) Multi-plant production scheduling in SMEs. Robotics Comput Integr Manuf
23(6):608–613

3. Armbruster D, de Beer C, Freitag M, Jagalski T, Ringhofer Ch (2006) Autonomous control of
production networks using a pheromone approach. Physica A 363(1):104–114

4. Banks J, Carson JS, Nelson BL, Nicol DM (2010) Discrete-event system simulation. Prentice
Hall, Upper Saddle River

5. Bertazzi L, Speranza MG (2005) Worst-case analysis of the full load policy in the single link
problem. Int J Prod Econ 93–94:217–224.

6. Bloos M, Kopfer H (2009) Efficiency of transport collaboration mechanisms. Commun SIWN
6(1):23–28

7. Camarinha-Matos L, Afsarmanesh H (2003) Elements of a base VE infrastructure. Comput
Ind 51:139–163

8. Chahal K, Eldabi T (2010) A multi-perspective comparison for selection between system
dynamics and discrete event simulation. Int J Bus Inf Syst Arch 6(1):4–17

9. Comelli M, Gourgand M, Lemoine D (2008) A review of tactical planning models. J Syst Sci
Syst Eng 17(2):204–229

10. Crainic TG (2000) Service network design in freight transportation. Eur J Oper Res 122(2):
272–288

11. Dashkovskiy S, Rüffer B (2010) Local ISS of large-scale interconnections and estimates for
stability regions. Syst Control Lett 59(3):241–247

12. Dashkovskiy S, Görges M, Naujok L (2009) Local input to state stability of production
networks. In: Proceedings of 2nd international conference on dynamics in logistics (LDIC
2009). Springer, Bremen

13. Domschke W, Scholl A, Voß S (1997) Produktionsplanung. Springer, Berlin



Autonomous Decision Policies for Networks 261

14. Dunbar WB, Desa S (2007) Distributed MPC for dynamic supply chain management.
Assessment and future directions of nonlinear model predictive control. Lect Notes Control
Inf Sci 358:607–615

15. Erengünc SS, Simpson NC, Vakharia AJ (1999) Integrated production/distribution planning in
supply chains. Eur J Oper Res 115(2):219–236

16. Fleischmann B, Gietz M (2008) Transport- und Tourenplanung. In: Arnold D, Isermann H,
Kuhn A, Tempelmeier H (eds) Handbuch Logistik, Springer, Heidelberg pp 137–152

17. Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of
NP-completeness, Freeman, San Francisco

18. Gudehus T (2005) Logistik. Springer, Berlin
19. Guinet A (2001) Multi-site planning: a transshipment problem. Int J Prod Econ 74(3):21–32
20. Hinrichsen D, Pritchard AJ (2005) Mathematical systems theory I. series: texts in applied

mathematics, vol 48. Springer, Berlin
21. Ivanov D (2009) An adaptive framework for aligning (re)planning decisions on supply chain

strategy, design, tactics, and operations. Int J Prod Res 48(13):3999–4017
22. Jungwattanakit J, Reodecha M, Chaovalitwongse P, Werner F (2008) Algorithms for flexible

flow shop problems with unrelated parallel machines, setup times, and dual criteria. Int J Adv
Manuf Technol 37(3):354–370

23. Jungwattanakit J, Reodecha M, Chaovalitwongse P, Werner F (2009) A comparison of
scheduling algorithms for flexible flow shop problems with unrelated parallel machines, setup
times, and dual criteria, Comput Oper Res 36(2):358–378, Scheduling for Modern Manufac-
turing, Logistics, and Supply Chains

24. Kim J–H, Duffie NA (2004) Backlog control for a closed loop PPC system. Ann CIRP
53(1):357–360

25. Kuhn A., Wenzel S (2008) Simulation logisitscher systeme. In: Arnold D, Isermann H,
Kuhn A, Tempelmeier H (eds) Handbuch Logistik. Springer, Berlin, pp 73–92

26. Martinez MT, Fouletier P, Park KH, Favrel J (2001) Virtual enterprise organisation, evolution
and control. Int J Prod Econ 74(1–3):225–238

27. Meyr H, Wagner M, Rohde J (2005) Structure of advanced planning systems. In: Stadtler H,
Kilger C (eds) Supply chain management and advanced planning. Springer, Berlin, pp 109–115

28. Min H, Zhou G (2002) Supply chain modeling: past, present and future. Comput Ind Eng
43(2):231–249

29. Morecroft J, Robinson S (2006) Comparing discrete-event simulation and system dynamics:
modelling a fishery. In: Proceedings of the operational research society simulation workshop
2006. Operational research society, Birmingham, pp 137–148

30. Müller F, Otto A (2007) Anwendungsarchitekturen in supra-adaptiven Logistik-netzwerken.
In: Günthner WA (eds) Neue Wege in der Automobillogistik: die Vision der Supra-Adaptivität;
mit 14 Tabellen. Springer, Berlin, pp 149–166

31. Muth JF, Thompson GL (1963) Industrial scheduling. Prentice-Hall, Englewood Cliffs
32. Parunak HV (1997) Go to the ant: engineering principles from natural multi-agent systems.

Ann Oper Res 15:69–101
33. Peeters P, van Brussel H, Valckenaers P, Wyns J, Bongaerts L, Kollingbaum M, Heikkilä T

(2001) Pheromone based emergent shop floor control system for flexible flow shops. Artif Intell
Eng 15(4):343–352

34. Philipp T, de Beer C, Windt K, Scholz-Reiter B (2007) Evaluation of autonomous logistic
processes—analysis of the influence of structural complexity. In: Hülsmann M, Windt K (eds.)
Understanding autonomous cooperation and control in Logistics—the impact on management,
information and communication and material flow. Springer, Berlin, pp 303–324

35. Pinedo ML (2008) Scheduling—theory, algorithms, and systems. Springer, New York
36. Quadt D, Kuhn H (2007) A taxonomy of flexible flow line scheduling procedures. Eur J Oper

Res 178(3):686–698



262 B. Scholz-Reiter et al.

37. Rabelo L, Helal M, Lertpattarapong C, Moraga R, Sarmiento A (2008) Using system dynamics,
neural nets, and eigenvalues to analyse supply chain behaviour. A case study. Int J Prod Res
46(1):51–71

38. Rekersbrink H, Makuschewitz T, Scholz-Reiter B (2009) A distributed routing concept for
vehicle routing problems. Logist Res 1(1):45–52

39. Rohde J, Meyr H, Wagner M (2000) Die supply chain planning matrix. PPS Manag 5:10–15
40. Sauer J (2006) Modeling and solving multi-site scheduling problems. In: van Wezel W,

Jorna R, Meystel A (eds.) Planning in intelligent systems: aspects, motivations and method.
Wiley, Hoboken, pp 281–299

41. Scholz-Reiter B, Freitag M, de Beer C, Jagalski T (2005) Modelling and analysis of autonomous
shop floor control. In: Proceedings of 38th CIRP International Seminar on Manufacturing
Systems. Universidade Federal de Santa Catarina, Florianopolis

42. Scholz-Reiter B, Böse F, Jagalski T, Windt K (2007) Selbststeuerung in der betrieblichen Praxis
- Ein Framework zur Auswahl der passenden Selbststeuerungsstrategie. Industrie Management
23(3):7–10

43. Scholz-Reiter B, de Beer C, Freitag M, Jagalski T (2008) Bio-inspired and pheromone-based
shop-floor control. Int J Comput Integr Manuf 21(2):201–205

44. Scholz-Reiter B, Jagalski T, Bendul J (2008) Autonomous control of a shop floor based on bee’s
foraging behaviour. In: Haasis, H-D, Kreowski H-J, Scholz-Reiter B (eds.) First international
conference on dynamics in logistics. LDIC 2007, Springer, Berlin, pp. 415–423

45. Scholz-Reiter B, Mehrsai A, Görges M (2009) Handling the dynamics in logistics - adoption
of dynamic behavior and reduction of dynamic effects. Asian Int J Sci Technol Prod Manuf
Eng (AIJSTPME) 2(3):99–110

46. Scholz-Reiter B, Görges M, Philipp T (2009) Autonomously controlled production systems—
Influence of autonomous control level on logistic performance. CIRP Ann Manuf Technol
58(1):395–398

47. Scholz-Reiter B, Görges M, Jagalski T, Mehrsai A (2009) Modelling and analysis of
autonomously controlled production networks. In: Proceedings of the 13th IFAC symposium
on information control problems in manufacturing (INCOM 09). Moscow, Russia, pp 850–855

48. Scholz-Reiter B, Rekersbrink H, Görges M (2010) Dynamic flexible flow shop problems -
scheduling heuristics vs. autonomous control. CIRP Ann Manuf Technol 59(1):465–468

49. Scholz-Reiter B, Görges M, Jagalski T, Naujok L (2010) Modelling and analysis of an
autonomous control method based on bacterial chemotaxis. In: 43rd CIRP international
conference on manufacturing systems (ICMS 2010). Neuer Wissenschaftlicher Verlag, Wien,
pp 699–706

50. Scholz-Reiter B, Lensing T, Görges M, Dickmann, L (2010) Classification of dynamical
patterns in autonomously controlled logistic simulations using echo state networks. In: Inter-
national conference on Harbor, Maritime and Multimodal Logistics Modelling and Simulation
(HMS 2010). DIPTEM University of Genova, Genova, pp 85–92

51. Scholz-Reiter B, Dashkovskiy S, Görges M, Naujok L (2011) Stability analysis
of autonomously controlled production networks. Int J Prod Res 49(16).
DOI:10.1080/00207543.2010.505215

52. Stadtler H (2005) Supply chain management and advanced planning-basics, overview and
challenges. Eur J Oper Res 163(3):575–588

53. Sydow J (2006) Management von Netzwerkorganisationen—zum Stand der Forschung.
In: Sydow J (ed) Management von Netzwerkorganisationen, Gabler, Wiesbaden pp 385–469

54. Toth P, Vigo D (2002) An overview of vehicle routing problems. In: Toth P, Vigo D (eds.)
The vehicle routing problem, SIAM monographs on discrete mathematics and applications,
Philadelphia

55. Wagner B (2006) Hub & Spoke-Netzwerke in der Logistik, Deutscher Universitäts-
Verlag/GWV-Fachverlage GmbH, Wiesbaden

56. Wiendahl H-P (2008) Betriebsorganisation für Ingenieure. München, Hanser
57. Wiendahl H-P, Lutz S (2002) Production in networks. Ann CIRP Manuf Technol 51(2):1–14



Autonomous Decision Policies for Networks 263

58. Windt K, Becker T (2009) Applying autonomous control methods in different logistic
processes—a comparison by using an autonomous control application matrix. In: Proceedings
of the 17th mediterranean conference on control and automation. Thessaloniki, Greece

59. Windt K, Hülsmann M (2007) Changing paradigms in logistics—understanding the shift from
conventional control to autonomous cooperation and control. In: Hülsmann M, Windt K (eds.)
Understanding autonomous cooperation and control—the impact of autonomy on management,
information, communication, and material flow. Springer, Berlin, pp 4–16

60. Windt K, Böse F, Philipp T (2005) Criteria and application of autonomous cooperating
logistic processes. In: Gao JX, Baxter DI, Sackett PJ (eds) Proceedings of the 3rd inter-
national conference on manufacturing research. Advances in manufacturing technology and
management, Cranfield

61. Windt K, Philipp T, Böse F (2008) Complexity cube for the characterization of complex
production systems. Int J Comp Integr Manuf 21(2):195–200

62. Zeigler BP, Praehofer H, Kim TG (2007) Theory of modeling and simulation—integrating
discrete event and continuous complex dynamic systems, second edn (reprint). Academic Press,
Amsterdam


	 
敳敲癥搠䁤 㴀 ⨀䁬整䁴潫敮 ⨀ⴀ㄀瀀挀 䄀甀琀漀渀漀洀漀甀猀 䐀攀挀椀猀椀漀渀 倀漀氀椀挀椀攀猀 昀漀爀 一攀琀眀漀爀欀猀  漀昀 倀爀漀搀甀挀琀椀漀渀 匀礀猀琀攀洀猀�
	1 Introduction
	2 Production Networks
	3 Planning Problems in Production Networks
	3.1 Shop-Floor Problems
	3.2 Transport Problems

	4 Autonomous Cooperating Logistic Processes
	4.1 Definition
	4.2 Autonomous Decision Policies

	5 Modeling and Analysis of ADPs in Production Networks
	5.1 Integrated Modeling of Production Networks
	5.2 Mathematical Modeling and Stability Analysis
	5.3 Simulation Models
	5.4 Measures for Analysis

	6 Examples of ADP Implementation
	6.1 Stability Analysis
	6.2 Implementation and Evaluation of Different Autonomous Decision Policies

	7 Summary
	References


