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An Overview of Decision Policies
for Production Networks

Karl G. Kempf

Abstract This chapter provides the reader with an overview of this volume from a
number of perspectives. First is an overview of the business problems addressed and
the decision policies required stretching from networks of machines in a factory to
networks of factories in a company to networks of companies in a supply chain. Next
there is a brief overview of each chapter with advice to the reader on useful sequences
of study depending on individual goals and tastes. Finally there is an overview of the
network of authors who contributed to this book.

1 Introduction

The economic systems that are the focus of this book involve manufacturing and
stretch from the suppliers’ suppliers to the customers’ customers. The network of
manufacturing companies involved is usually referred to as a supply chain. Within
each company there is often a network of geographically disperse but interconnected
factories taking in materials and putting out products. Within each factory there is
almost certainly a network of machines executing manufacturing processes.

On the one hand there are many similarities between these levels: variability in
supply and demand cause difficulty at all levels, at each level materials flow from
suppliers to customers increasing in value while becoming products, and money
generally flows from customers to suppliers with cost incurred at every intermediate
stop. On the other hand there are many differences between levels, principally in
physical, temporal, and financial scales as we will explore. In addition, information
flows upstream and downstream and between levels.

K. G. Kempf (B)
Decision Engineering Group, Intel Corporation,
5000 W. Chandler Boulevard, Chandler, AZ 85226-3699,USA
e-mail: karl.g.kempf@intel.com
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2 K. G. Kempf

For our purposes we refer collectively to these complex levels as “production
networks”. For the sustained business success of any production network, all levels
must function efficiently and effectively in an integrated manner. A failure at any
level radiates to the other levels with negative impact.

Over the past several decades a number of powerful influences have driven the
evolution of production networks. One is the demand generated by the end customer
who increasingly desires a product customized for a specific need, priced as though
it was produced in mass, and delivered overnight to a residential address. This is
compounded by the globalization of business. Hence the potential customer base
spans multiple cultures, geographies, and economic systems.

Another driver of the changes in production networks is the double effect of
the technology treadmill. Expanding technology supports the introduction of new
products through innovative materials and functions as well as production and distrib-
ution methods. At the same time, advancing technology provides faster, better support
for management through all facets of electronic commerce from data availability to
integrated decision-making.

A third influence is the ever-increasing level and pace of competition. A broader
more demanding customer base stimulates the profit motive to satisfy the needs.
A stronger, more versatile technology base raises the confidence that the needs can
be satisfied. Production networks compete for the perceived profit using every oppor-
tunity to gain an advantage.

In this evolutionary cycle it is difficult to separate cause and effect. Does demand
drive technology or technology drive demand? Does competition foster demand,
or vice-versa? Are technologies and markets related? The answers are, of course,
“Yes,” and it is clear that, to be competitive, the managers of any production network
must deal with all of these factors on a daily basis. It is equally clear that a primary
managerial tool in this effort is an efficient and effective set of decision policies. Such
a set can be the basis for a competitive edge through faster and better decision-making.
Components of this set ranging from simple heuristics to complex mathematical
algorithms are the focus of each chapter in this book.

From a technical perspective, production networks are dynamic systems with
many sources of nonlinearity and stochasticity. At every point in a production
network there is variability in both supply and demand with demand volatility
usually outpacing the responsiveness of the supply. Production networks involve
a wide variety of tradeoffs, and balances must be achieved in decision policies to
remain profitable including (at least) tactical versus strategic and local versus global.
In making production network management decisions, the appropriateness of the
metrics chosen as well as the availability, freshness, and accuracy of the data required
are critically important.

Since production networks change size and markets over time, the decision poli-
cies must easily scale and adapt to these changes. In addition the technical complex-
ities have been growing over time as production networks evolve and, if not held
in check, have a tendency to slow down network responsiveness. Over the same
time, business complexity in terms of market expectations and competitive pressures
has made forecasting much more difficult. Decision policies are intimately related
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to forecasting since decisions are made to influence some outcomes in the future.
Combining these complexities generates a disturbing scenario. From a control theo-
retic perspective, if your ability to look forward is diminishing at the same time your
speed of response is degrading, you will suffer serious consequences. The question
is not whether you will lose control, but rather when it will occur and if you will be
able to recognize it when it happens. This situation provides a rich set of research and
application opportunities for those interested in decision and control—specifically
those in academics and practitioners represented by the contributors to this book.

2 Advice to the Reader

Like most edited works, this volume can be approached and studied from many direc-
tions depending on the goals of the reader. The chapters are briefly summarized here
and are ordered roughly (a) from a focus on networks of machines to networks of
factories to networks of companies, (b) in increasing level of mathematical sophis-
tication, and (c) from methods proven in practice to topics of current research with
almost all chapters including worked examples.

The conventional approach of reading front to back (Chaps. “Modeling and
Control of Manufacturing Systems” through “The Production Planning Problem:
Clearing Functions, Variable Leads Times, Delay Equations and Partial Differential
Equations”) should certainly build a compelling story of developing decision policies
to control production networks. The reader who is less mathematically oriented or
more practically focused will probably spend more time studying the first six chap-
ters (Chaps. “Modeling and Control of Manufacturing Systems” through “A Control
Theoretic Evaluation of Schedule Nervousness Suppression Techniques for Master
Production Scheduling”). A more mathematically oriented or more research-focused
reader might study the last six chapters (Chaps. “A Control Theoretic Evaluation of
Schedule Nervousness Suppression Techniques for Master Production Scheduling”
through “The Production Planning Problem: Clearing Functions, Variable Leads
Times, Delay Equations and Partial Differential Equations”) in more detail.

Readers more interested in networks of companies could read from back to
front (Chaps. “Optimal Order and Distribution Strategies in Production Networks”–
“WIP-Oriented Dispatching in Complex Manufacturing Facilities”) working down
the levels ending at networks of machines. Of course each chapter stands on its own
as a description of one or more fundamentally important ideas about decision poli-
cies for production networks and can be read in any order. It is advised however that
non-conventional approaches all start by reading the basics in Chaps. “Modeling and
Control of Manufacturing Systems” and “” and end by reading Chap. “The Production
Planning Problem: Clearing Functions, Variable Leads Times, Delay Equations and
Partial Differential Equations” that synthesizes many of the ideas that are common
to many chapters.
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3 An Overview of the Chapters

Chapters “Modeling and Control of Manufacturing Systems” and “The Ongoing
Challenge for a Responsive Demand Supply Network: The Final Frontier Controlling
the Factory” provide an introduction to decision policies for production networks
from both an academic and a practical perspective.

Modeling and Control of Manufacturing Systems—Lefeber: This chapter
provides the basic framework for understanding modeling and control of manu-
facturing systems. It should be read as a tutorial that begins by introducing the
fundamental concepts. This is followed by descriptions of incrementally more
sophisticated models reflecting mass conservation in queuing systems and exploring
them via discrete event simulation culminating in decisions models based on model
predictive control (MPC). Along the way the very important concepts of effec-
tive process times (EPTs), fluid approximations, and clearing functions (CFs) are
explained. All of these are important concepts central to many of the later chapters.
Five worked example problems are provided illustrating the tutorial nature of this
chapter and building the fundamental themes of the book.

The Ongoing Challenge for a Responsive Demand Supply Network: The Final
Frontier—Controlling the Factory—Fordyce and Milne: This second tutorial
chapter is the counterpoint to Lefeber. The authors have spent years in the factory
and supply chain trenches. Staring Murphy (in the United States, Sod in Europe)
in the eye on a daily basis results in a very practical view of the basics. In this
chapter from two of the leading practitioners in the area we are taken down the
hierarchy of demand supply network planning, scheduling, and dispatch. Along the
way it becomes clear that there are different physical and temporal scales that are
important as well as increasing levels of detail in what is being decided. The set of
worked example problems at the end of the chapter generates a practical feel for the
problems encountered at the operational level in large industrial corporations at the
beginning of the twenty-first century.

Chapters “WIP-Oriented Dispatching in Complex Manufacturing Facilities” and
“Controlling a Re-Entrant Manufacturing Line via the Push–Pull Point” focus specif-
ically on networks of machines from the perspective of delivering products on time
in the face of supply and demand variability.

WIP-Oriented Dispatching in Complex Manufacturing Facilities—Rose and
Zhou: These authors provide a deep dive into the topic of dispatch in networks of
machines within a factory. After noting that different dispatch rules have different
performance objectives, they contrast due-date-oriented rules that focus on getting
work out of the factory on time with work-in-progress-oriented rules that focus on
controlling the workload in the factory. The latter approach often includes the release
of work into the factory. The contribution of this chapter is the development of a

http://dx.doi.org/10.1007/978-0-85729-644-3_2
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http://dx.doi.org/10.1007/978-0-85729-644-3_4
http://dx.doi.org/10.1007/978-0-85729-644-3_5
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blended workload balance and due-date control approach. Discrete event simulation
is used to analyze performance over a suite of metrics.

Controlling a Re-entrant Manufacturing Line Via the Push–Pull Point—
Perdaen, Armbruster, Kempf, and Lefeber: This chapter takes a different perspec-
tive on dispatch rules. While the previous chapter was concerned with the impact of
rules on the variation of factory performance or supply metrics, this chapter considers
rule impact on factory response to demand variability. The authors apply two simple
dispatch rules that are widely used in practice—push at the beginning of the produc-
tion line (aka first buffer first served) and pull at the end of the line (aka shortest
expected remaining processing time)—and then vary the point in the production
flow that push changes to pull—in conjunction with a material release policy at the
beginning of the line that maintains a constant workload in the factory (aka CONWIP
or only start material to balance work that exits the factory) . When analyzed using
a discrete simulation, such policies generate very good results in the most difficult
circumstance encountered in practice—high demand with high variance.

Chapters “JEDI: Just-in-Time Execution and Distribution Information Support
System for Automotive Stamping Operations” and “A Control Theoretic
Theoretic Evaluation of Schedule Nervousness Suppression Techniques for Master
Production Scheduling” continue the theme of managing supply and demand vari-
ability but highlight the problems with rapidly changing production schedules at the
equipment level or material release schedules at the internal supply chain level in
support of agility. The techniques presented can be used in an individual factory or
for a network of factories within a company.

JEDI: Just-in-Time Execution and Distribution Information Support System
for Automotive Stamping Operations—Gusikhin and Klampfl: In a complex
network of manufacturing activities, one approach to agility is continuous modifi-
cation to the factory production schedule. However, this requires collecting many
different types of data from a variety of sources. Maintaining the correctness, consis-
tency, and especially timeliness of the data is a daunting problem. The practitioner
authors of this chapter address this problem with a system for production personnel
that (a) consolidates and organizes relevant data, (b) makes each element easily trace-
able to its source for validation if required, (c) clearly identifies the decision problem
with visibility into supply, demand, and constraints, and (d) supports what-ifs and
sensitivity analysis. Including knowledgeable personnel in the process provides quick
solutions to routine problems and higher quality input to powerful optimization
algorithms for difficult problems.

A Control Theoretic Evaluation of Schedule Nervousness Suppression
Techniques for Master Production Scheduling—Braun and Schwartz: Another
approach to improve agility of production schedules is the continuous modifi-
cation of the master production schedule. However this can result in “schedule
nervousness” and large swings in production starts leading to excess setup costs,

http://dx.doi.org/10.1007/978-0-85729-644-3_6
http://dx.doi.org/10.1007/978-0-85729-644-3_6
http://dx.doi.org/10.1007/978-0-85729-644-3_7
http://dx.doi.org/10.1007/978-0-85729-644-3_7
http://dx.doi.org/10.1007/978-0-85729-644-3_7
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unnecessary staffing changes, disruptive order changes to suppliers, and unstable
inventory. The practitioner authors propose three possible remedies: frozen horizon
based on traditional control methods, move suppression borrowed from optimization-
based control, and an original contribution called schedule change suppression. Since
master production schedules are normally generated using linear programing tech-
niques, they evaluate the stability and performance of these decision polices using
an empirical stability analysis method.

Chapters “Chance-Constraint Based Heuristics for Production Planning in the Face
of Stochastic Demand and Workload-Dependent Lead Times” and “Traffic Flow
Models and Service Rules for Complex Production Systems” are research contribu-
tions addressing a number of the underlying issues in modeling complex production
networks and policies to control them. These issues have been mentioned in previous
chapters, but not in nearly the depth or mathematical sophistication contained here.

Chance-Constraint-Based Heuristics for Production Planning in the Face of
Stochastic Demand and Workload-Dependent Lead Times—Aouam and Uzsoy:
Although mathematical programing has been applied to a wide variety of prob-
lems in production networks, at least two basic limitations recur. On the one hand
these models fail to capture the nonlinear relationship between production starts,
work in progress, and manufacturing throughput times. “Clearing Functions” are
proposed as an effective solution to this deficiency. On the other hand uncertain
demand is not adequately represented in these models either. This chapter examines
several different chance constraint-based models as well as two-stage and multi-stage
stochastic programing formulations to address these deficiencies.

Traffic Flow Models and Service Rules for Complex Production Systems—
Ringhofer: Traffic flow models are extensions of rate equation and fluid models,
and an aggregation of discrete event simulation models. While they allow for a
more detailed description of transient phenomena than rate equations, they are not as
versatile as discrete event models in including decision policies. This chapter initially
introduces the derivation of traffic flow models based either on clearing functions (as
described in the previous chapter) or on mean field theories (borrowed from many
body physics). It goes on to model arbitrarily complex policies in the context of traffic
flow models, and concludes with numerical examples demonstrating the accuracy of
the approach against discrete event simulations.

Chapters “Autonomous Decision Policies for Networks of Production Systems” and
“Optimal Order and Distribution Strategies in Production Networks” deal with broad
network issues including production and transportation processes and the flow of
orders, products, and payments. Once again examples and case studies are presented
to aid the reader.

Autonomous Decision Policies for Networks of Production Systems—Scholz-
Reiter, Dashkowskiy, Görges, Jagalski, and Naujok: This chapter describes

http://dx.doi.org/10.1007/978-0-85729-644-3_8
http://dx.doi.org/10.1007/978-0-85729-644-3_8
http://dx.doi.org/10.1007/978-0-85729-644-3_9
http://dx.doi.org/10.1007/978-0-85729-644-3_9
http://dx.doi.org/10.1007/978-0-85729-644-3_10
http://dx.doi.org/10.1007/978-0-85729-644-3_11
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integration and coordination between production and transport processes as an
essential function of any operating production network. Different central planning
and scheduling functions for shop-floor and transport operations are presented.
The concepts of autonomous decision policies and autonomous cooperating processes
are described, modeled, and analyzed in mathematical terms and simulation appro-
aches. Based on the mathematical modeling approach, criteria for the stability of
production networks are derived and subsequently refined by simulations. Two exam-
ples for analyzing the stability and the performance of autonomous decision policies
in production networks are included.

Optimal Order and Distribution Strategies in Production Networks—Göttlich,
Herty, and Ringhofer: This chapter presents an abstract level of a production
network integrating the product flow with order and payment flows through the
network. It focuses on the dynamics of a production network where each entity
(a) receives orders for its output from other entities in the network and a final
customer, (b) orders its input from other entities in the network and a raw material
supplier, and (c) receives payments for delivered items and pays production costs for
each item produced. The authors introduce a coupled system of ordinary differential
delay equations where time-dependent distribution and order strategies of individual
manufacturers influence the flow of goods and the total revenue. Order and distribu-
tion strategies are degrees of freedom which can vary in time. They are determined
as solutions to an optimization problem where additionally economic factors such
as production and inventory costs and credit limits influence the maximization of
profit. A case study for a sample network is included.

Chapter “The Production Planning Problem: Clearing Functions, Variable Leads
Times, Delay Equations and Partial Differential Equations” closes the book and
addresses common problems encountered in many of the previous chapters.

The Production Planning Problem: Clearing Functions, Variable Leads Times,
Delay Equations and Partial Differential Equations—Armbruster: The produc-
tion planning problem addressing material release into a factory to generate a desired
production profile in the future is either explicitly or implicitly a major theme of
almost half of the chapters in this book. However, the common problem of deter-
mining the output of a production unit in a network (machine, factory, supply chain
node) is dealt with at very different levels of sophistication. This chapter connects the
approaches used and discusses their applicability and approximation errors. It also
addresses the practical questions of choosing an appropriate clearing function model
for a production planning problem. Finally it identifies the open questions associated
with the production planning problem in general and the clearing function approach
in particular.

http://dx.doi.org/10.1007/978-0-85729-644-3_12
http://dx.doi.org/10.1007/978-0-85729-644-3_12
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4 An Overview of the Authors

What may not be obvious is that the authors of this volume also form a network.
As you can see from the list of contributors as well as the references at the end of
each chapter: (a) some of us work at the same companies or teach at the same univer-
sities, (b) the companies fund some of the academic research and our institutions
collaborate, and (c) we collaboratively write papers together as well as refer to each
others’ papers.

There is an underlying reason for this broad and deep collaboration throughout
the authors’ network. Too often in academia research can focus on an apparently
interesting problem that simply is not encountered in practice. Too often in the haste
of practice a practical problem is tackled uninformed by research resulting in a weak
solution at best or a fundamentally flawed solution at worst. The astute reader will
notice that all of the research contributions in this book are directly motivated by
actual practical problems (albeit somewhat simplified for tractability) and all of the
applied contributions are directly built on strong theory (albeit somewhat relaxed to
account for the oddities of the specific application).



Modeling and Control of Manufacturing
Systems

Erjen Lefeber

Abstract In this chapter we provide a framework within which concepts from the
field of systems and control can be used for controlling manufacturing systems.
After introducing some basic notions from manufacturing analysis, we start with
the concept of effective process times (EPTs) which can be used for modeling a
manufacturing system as a large queuing network. Next, we restrict ourselves to
mass production, which enables us to model manufacturing systems by means of
a linear system subject to nonlinear constraints (clearing functions). These models
serve as a starting point for designing controllers for these manufacturing systems
using Model-based Predictive Control (MPC). Finally, the resulting controllers can be
implemented on the queuing network model, and ultimately at the real manufacturing
system.

1 Preliminaries

In this section we first recall a few basic notions and the main principles from
manufacturing system analysis.

1.1 Basic Notions from Manufacturing Analysis

The items produced by a manufacturing system are called lots. Also the words product
and job are commonly used. Other important notions are throughput, flow time, wip
and utilization. These notions are illustrated in Fig. 1 at factory and machine level.
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Fig. 1 Basic quantities for manufacturing systems

Raw process time t0 of a lot denotes the net time a machine needs to process
the lot. This process time excludes additions such as setup
time, breakdown, or other sources that may increase the
time a lot spends in the machine. The raw process time
is typically measured in hours or minutes.

Throughput δ denotes the number of lots per unit time that leaves the
manufacturing system. At a machine level, this denotes
the number of lots that leave a machine per unit time. At
a factory level it denotes the number of lots that leave the
factory per unit time. The unit of throughput is typically
lots/hour.

Flow time ϕ denotes the time a lot is in the manufacturing system. At
a factory level this is the time from the release of the lot
into the factory until the finished lot leaves the factory. At
a machine level this is the time from entering the machine
(or the buffer in front of the machine) until leaving the
machine. Flow time is typically measured in days, hours,
or minutes. Instead of flow time the words cycle time and
throughput time are also commonly used.

Work in process (wip) w denotes the total number of lots in the manufacturing sys-
tem, i.e., in the factory or in the machine. Wip is measured
in lots.

Utilization u denotes the fraction of time that a machine is not idle.
A machine is considered idle if it could start processing
a new lot. Thus process time as well as downtime, setup-
time and preventive maintenance time all contribute to the
utilization. Utilization has no dimension and can never
exceed 1.0.
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Fig. 2 Basic relations between basic quantities for manufacturing systems

Ideally, a manufacturing system should have both a high throughput and a low
flow time or low wip. Unfortunately, these goals are conflicting (cf. Fig. 2) and can
not both be met simultaneously. If a high throughput is required, machines should
always be busy. As from time to time disturbances like machine failures happen,
buffers between two consecutive machines are required to make sure that the second
machine can still continue if the first machine fails (or vice versa). Therefore, for a
high throughput many lots are needed in the manufacturing system, i.e., wip needs
to be high. As a result, if a new lot starts in the system it has a large flow time, since
all lots that are currently in the system need to be completed first.

Conversely, the least possible flow time can be achieved if a lot arrives at a
completely empty system and never has to wait before processing takes place. As
a result, the wip level is small. However, for most of the time machines are not
processing, yielding a small throughput.

When trying to control manufacturing systems, a trade-off needs to be made
between throughput and flow time, so the nonlinear (steady state) relations depicted
in Fig. 2 need to be incorporated in any reasonable model of manufacturing systems.
We return to this in Sect. 4.1 when discussing clearing functions.

1.2 Analytical Models for Steady-State Analysis

In order to get some insights in the steady-state performance of a given manufac-
turing system simple relations can be used. We first deal with mass conservation
for determining the mean utilization of workstations and the number of machines
required for meeting a required throughput. Furthermore, relations from queueing
theory are used to obtain estimates for the mean wip and mean flow time.
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Fig. 3 Manufacturing system with rework and bypassing

1.2.1 Mass Conservation (Throughput)

Using mass conservation the mean utilization of workstations can easily be deter-
mined.

Example 1 Consider the manufacturing system with rework and bypassing in Fig. 3.
The manufacturing system consists of three buffers and four machines. Lots are
released at a rate of λ lots/hour. The numbers near the arrows indicate the fraction of
the lots that follow that route. For instance, of the lots leaving buffer B1 90% goes to
machine M1 and 10% goes to buffer B3. The process time of each machine is listed
in the table in Fig. 3.

Let δMi and δBi denote the throughput of machine Mi (i = 1, 2, 3, 4) and buffer
Bi (i = 1, 2, 3), respectively. Using mass conservation we obtain

δM1 = 0.9δB1 δB1 = λ

δM2 = 0.2δB2 δB2 = δM1 + δM2

δM3 = 0.8δB2 δB3 = δM3 + 0.1δB1

δM4 = δB3 δ = δM4 .

Solving these linear relations results in:

δM1 = 0.9λ δB1 = λ

δM2 = 0.225λ δB2 = 1.125λ

δM3 = 0.9λ δB3 = λ

δM4 = λ δ = λ.

Using the process times of the table in Fig. 3, we obtain for the utilizations:

uM1 = 0.9λ · 2.0/1 = 1.8λ uM3 = 0.9λ · 1.8/1 = 1.62λ

uM2 = 0.225λ · 6.0/1 = 1.35λ uM4 = λ · 1.6/1 = 1.6λ.

Machine M1 has the highest utilization, therefore it is the bottleneck and the maximal
throughput for this line is λ = 1/1.8 = 0.56 lots per hour. ��

Using mass conservation, utilizations of workstations can be determined straight-
forwardly. This also provides a way for determining the number of machines required
for meeting a given throughput. By modifying the given percentages the effect of
rework or a change in product mix can also be studied.
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1.2.2 Queueing Relations (Wip, Flow time)

For determining a rough estimate of the corresponding mean flow time and mean
wip, basic relations from queueing theory can be used.

Consider a single machine workstation that consists of infinite buffer B∞ and
machine M (see Fig. 4). Lots arrive at the buffer with a stochastic interarrival time.
The interarrival time distribution has mean ta and a standard deviation σa which we
characterize by the coefficient of variation ca = σa/μa. The machine has stochastic
process times, with mean process time t0 and coefficient of variation c0. Finished lots
leave the machine with a stochastic interdeparture time, with mean td and coefficient
of variation cd. Assuming independent interarrival times and independent process
times, the mean waiting time ϕB in buffer B can be approximated for a stable system
by means of Kingman’s equation [10]:

ϕB = c2
a + c2

0

2
· u

1 − u
· t0 (1)

with the utilization u defined by: u = t0/ta. Equation 1 is exact for an M/G/1 system,
i.e., a single machine workstation with exponentially distributed interarrival times
and any distribution for the process time. For other single machine workstations it is
an approximation.

For a stable system, we have td = ta. We can approximate the coefficient of
variation cd by Kuehn’s linking equation [11]:

c2
d = (1 − u2) · c2

a + u2 · c2
0. (2)

This result is exact for an M/M/1 system. For other single machine workstations it
is an approximation. Having characterized the departure process of a workstation,
the arrival process at the next workstation has been characterized as well. As a result,
a line of workstations can also be described.

Example 2 (Three workstations in series) Consider the three workstation flow line
in Fig. 5. For the interarrival time at workstation 0 we have ta = 4.0 h and c2

a = 1.

The three workstations are identical with respect to the process times: t0,i = 3.0 h
for i = 0, 1, 2 and c2

0,i = 0.5 for i = 0, 1, 2. We want to determine the mean total
flow time per lot.

Since ta > t0,i for i = 0, 1, 2, we have a stable system and ta,i = td,i = 4.0 h
for i = 0, 1, 2. Subsequently, the utilization for each workstation is ui = 3.0/4.0 =
0.75 for i = 0, 1, 2.

Using (1) we calculate the mean flow time for workstation 0
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Fig. 5 Three workstation flow line

ϕ0 = ϕB+t0 = c2
a + c2

0

2
· u

1 − u
·t0+t0 = 1 + 0.5

2
· 0.75

1 − 0.75
·3.0+3.0 = 9.75 h.

Using (2), we determine the coefficient of variation on the interarrival time ca,1
for workstation W1

c2
a,1 = c2

d,0 = (1 − u2) · c2
a + u2 · c2

0 = (1 − 0.752) · 1 + 0.752 · 0.5 = 0.719

and the mean flow time for workstation 1

ϕ1 = 0.719 + 0.5

2
· 0.75

1 − 0.75
· 3.0 + 3.0 = 8.49 h.

In a similar way, we determine that c2
a,2 = 0.596, ϕ2 = 7.93 h. We then calculate

the mean total flow time to be

ϕtot = ϕ0 + ϕ1 + ϕ2 = 26.2 h.

Note that the minimal flow time without variability (c2
a = c2

0,i = 0) equals 9.0 h. ��
Equations 1 and 2 are particular instances of a workstation consisting of a

single machine. For workstations consisting of m identical machines in parallel the
following approximations can be used [8, 16]:

ϕB = c2
a + c2

0

2
· u

√
2(m+1)−1

m(1 − u)
· t0 (3)

c2
d = (1 − u2) · c2

a + u2 · c2
0 + √

m − 1√
m

, (4)

where the utilization u = t0/(m · ta). Notice that in case m = 1 these equations
reduce to (1) and (2).

Once the mean flow time has been determined, a third basic relation from queueing
theory, Little’s law [14], can be used for determining the mean wip level. Little’s law
states that the mean wip level (number of lots in a manufacturing system) w is equal
to the product of the mean throughput δ and the mean flow time ϕ, provided the
system is in steady state:

w = δ · ϕ. (5)
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An example illustrates how Kingman’s equation and Little’s law can be used.

Example 3 Consider the system of Example 2 as depicted in Fig. 5. From
Example 2 we know that the flow times for the three workstations are respectively

ϕ0 = 9.75 h, ϕ1 = 8.49 h, ϕ2 = 7.93 h.

Since the steady-state throughput was assumed to be δ = 1/ta = 1/4.0 = 0.25
lots/hour, we obtain via Little’s law

w0 = 0.25 · 9.75 = 2.44 lots,

w1 = 0.25 · 8.49 = 2.12 lots,

w2 = 0.25 · 7.93 = 1.98 lots. ��
The above mentioned relations are simple approximations that can be used for
getting a rough idea about the possible performance of a manufacturing system.
These approximations are fairly accurate for high utilizations but less accurate for
lower degrees of utilization. A basic assumption when using these approximations
is the independence of the interarrival times, which in general is not the case, e.g.,
for merging streams of lots. Furthermore, using these equations only steady state
behavior can be analyzed. For studying things like ramp-up behavior or for incor-
porating more details like operator behavior, more sophisticated models are needed,
as described next.

1.3 Discrete Event Models

A final observation of relevance for modeling manufacturing systems is the nature
of the system signals. In Fig. 6a characteristic graph of the wip at a workstation as
a function of time is shown. Wip always takes integer values with arbitrary (non-
negative real) duration. One could consider a manufacturing system to be a system
that takes values from a finite set of states and jumps from one state to the other as
time evolves. This jump from one state to the other is called an event. As we have a
countable (discrete) number of states, the name of this class of models is explained.

Manufacturing systems can be modeled as a network of concurrent processes. For
example, a buffer is modeled as a process that as long as it can store something is
willing to receive new products, and as long as it has something stored is willing
to send products. A basic machine is modeled as a process that waits to receive a
product; upon receipt it holds the product for a specified amount of time (delay).
Upon completion, the machine tries to send the product to the next buffer in the
manufacturing line. The machine keeps on doing these three consecutive things. The
delay used is often a sample from some distribution.

In particular in the design phase discrete event models are used. These discrete
event models usually contain a detailed description of everything that happens in
the manufacturing system under consideration, resulting into large models. Since in
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Fig. 6 A characteristic time-behavior of wip at a workstation

practice manufacturing systems are changing continuously, it is very hard to keep
these discrete event models up-to-date [4].

Fortunately, for a manufacturing system in operation it is possible to arrive at
more simple/less detailed discrete event models by using the concept of Effective
Process Times (EPTs) as discussed in the next section.

2 Effective Process Times (EPTs)

For the processing of a lot at a machine, many steps may be required. For example,
it could be that an operator needs to get the lot from a storage device, setup a specific
tool that is required for processing the lot, put the lot on an available machine, start
a specific program for processing the lot, wait until this processing has finished
(meanwhile doing something else), inspect the lot to determine if all went well,
possibly perform some additional processing (e.g., rework), remove the lot from the
machine and put it on another storage device and transport it to the next machine.
At all of these steps something might go wrong: the operator might not be available,
after setting up the machine the operator finds out that the required recipe cannot be
run on this machine, the machine might fail during processing, no storage device is
available anymore so the machine cannot be unloaded and is blocked, etc.

Even though one might build a discrete event model including all these
details, it is impossible to measure all sources of variability that might occur in
a manufacturing system. One might measure some of them and incorporate these in
a discrete event model. The number of operators and tools can be modeled explicitly
and it is common practice to collect data on mean times to failure and mean times to
repair of machines. Also schedules for (preventive) maintenance can be incorporated
explicitly in a discrete event model. Nevertheless, still not all sources of variability
are included. This is clearly illustrated in Fig. 7, obtained from [9]. The left graph
contains actual realizations of flow times of lots leaving a real manufacturing system,
whereas the right graph contains the results of a detailed discrete event simulation
model including stochasticity. It turns out that in reality flow times are much higher
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Fig. 7 A comparison

and much more irregular than simulation predicts. So, even if one endeavors to cap-
ture all variability present in a manufacturing system, still the outcome predicted by
the model is far from reality.

Hopp and Spearman [8] use the term Effective Process Time (EPT) as the time seen
by lots from a logistical point of view. In order to determine this Effective Process
Time, Hopp and Spearman assume that the contribution of the individual sources of
variability is known.

Instead of taking the bottom-up view of Hopp and Spearman, a top-down approach
can also be taken, as shown by Jacobs et al. [9], where algorithms have been intro-
duced that enable determination of Effective Process Time realizations from a list of
events. For these algorithms, the basic idea of the Effective Process Time to include
time losses was used as a starting point.

To illustrate this approach, we first deal with a workstation consisting of a single
machine, serving one lot type, using a First In First Out (FIFO) policy. Then we deal
with the more general case.

2.1 Single Machine, One Lot Type, FIFO Policy

Consider a workstation consisting of a single machine, serving one lot type, using a
First In First Out (FIFO) policy. Let the Gantt chart of Fig. 8 depict what happened
at this workstation during a certain time interval. At t = 0 the first lot arrives at the
workstation. After a setup, the processing of the lot starts at t = 2 and is completed at
t = 6. At t = 4 the second lot arrives at the workstation. At t = 6 this lot could have
been started, but apparently no operator was available, so only at t = 7 the setup for
this lot starts. Eventually, at t = 8 the processing of the lot starts and is completed at
t = 12. The fifth lot arrives at the workstation at t = 22, processing starts at t = 24,
but at t = 26 the machine breaks down. It takes until t = 28 before the machine
has been repaired and the processing of the fifth lot continues. The processing of the
fifth lot is completed at t = 30.
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Fig. 8 Gantt chart of 5 lots at
a single machine workstation
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Fig. 9 EPT realizations of
5 lots at a workstation
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If we take the point of view of a lot, what does a lot see from a logistical point of
view? The first lot arrives at an empty system at t = 0 and departs from this system
at t = 6. From the point of view of this lot, its processing took 6 time-units. The
second lot arrives at a non-empty system at t = 4. Clearly, this lot needs to wait.
However, at t = 6, if we forget about the second lot, the system becomes empty
again. So from t = 6 on the second lot does not need to wait anymore. At t = 12 the
second lot leaves the system, so from the point of view of this lot, its processing took
from t = 6 till t = 12; the lot does not know whether waiting for an operator and a
setup is part of its processing. Similarly, the third lot sees no need for waiting after
t = 12 and leaves the system at t = 17, so it assumes to have been processed from
t = 12 till t = 17. Following this reasoning, the resulting Effective Proces Times for
lots are as depicted in Fig. 9. Notice that only arrival and departure events of lots to
a workstation are needed for determining the Effective Process Times. Furthermore,
none of the contributing disturbances needs to be measured.

In highly automated manufacturing systems, arrival and departure events of lots
are being registered, so for these manufacturing systems, Effective Process Time
realizations can be determined rather easily. Next, these EPT realizations can be used
in a relatively simple discrete event model of the manufacturing system. This discrete
event model only contains the architecture of the manufacturing system, buffers
and machines. The process times of these machines are samples from their EPT-
distribution as measured from real manufacturing data. Machine failures, operators,
etc., do not need to be included as this is all included in the EPT-distributions.
Furthermore, the algorithms as provided in [9] are utilization independent. That
is, data collected at a certain throughput rate is also valid for different throughput
rates. Furthermore, since EPT-realizations characterize operational time variability,
they can be used for performance measuring. For more on this issue, the interested
reader is referred to [9].

Recently, the above mentioned EPT-model has been generalized. This general-
ization is presented next.
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(a) (b)

Fig. 10 a An example of a workstation. b The proposed aggregate model

2.2 Integrated Processing Workstations

Consider an integrated processing workstation consisting of m identical parallel
machines, each of which have l sequential integrated processes, cf. Fig. 10. We
replace the model of this workstation with a much simpler model, which is not
a true physical server anymore, i.e., the structure of the aggregate model differs
significantly from the real workstation. Nevertheless, the input/output behavior of
the aggregate model closely resembles the input/output behavior of the worksta-
tion it models. Lots arrive according to some arrival process to the queue of the
aggregate model. Lot i is defined as the i th arriving lot in this queue. The queue
consists of all lots that are currently in the system, including lots that are (supposed
to be) in process. Therefore, the queue is not a queue as in common queue-server
models. Lots are not physically processed, i.e., during “processing” lots stay in the
queue. Processing is modeled as a timer that determines when the next lot leaves the
queue. When the timer expires, i.e., the “process time” has elapsed, the lot that is
currently first in the queue leaves the system. Upon arrival of a new lot i , it is deter-
mined how many of the lots already present in the queue w are overtaken by lot i.
The number of lots to overtake K ∈ {0, 1, . . . , w} is sampled from a probability
distribution which depends on the number of lots w in the queue just before lot i
arrives. The arriving lot is placed on position w−K in the queue, where position 0
corresponds with the head of the queue. The timer starts when either a lot arrives to
an empty system, or a lot departs while leaving one or more lots behind. The duration
of the “process time” is sampled from a distribution which depends on the number of
lots w in the queue just after the timer starts, i.e., including a possibly newly arrived
lot. We model the server as a timer to allow newly arriving lots to overtake all lots
in the system while the timer is running. We need this to model the possibility that
a lot which arrives second to a multi-machine workstation leaves first.

Example 4 Consider the Gantt chart in Fig. 11 which depicts what happened at a
three machine workstation. At t = 1, the first lot arrives at the workstation, service
at machine 1 is started, and service is completed at t = 25. At t = 2, the second lot
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Fig. 11 Gantt chart of 4 lots
at a three machine
workstation, and the
corresponding realization for
the aggregate model

arrives at the workstation, service at machine 2 is started, and service is completed at
t = 14. At t = 4, the third lot arrives at the workstation. For some reason it is
not served at machine 3, but it waits to be served at machine 2. Its service at
machine 2 (effectively) starts at t = 14 and is completed at t = 20. Finally, the
fourth lot arrives at the workstation at t = 5, is served at machine 3, and leaves the
system at t = 9.

In the aggregate model we model the resulting input-output behavior of this system
differently. At t = 1, the first lot arrives and a timer is set, which expires at t = 9.

Meanwhile, the second lot arrives at t = 2 and is inserted at the head of the queue.
Next, the third lot arrives at t = 4, and is inserted in the middle of the queue, i.e.,
behind lot 2, but in front of lot 1. At t = 5, the fourth lot arrives which is inserted at
the head of the queue, i.e., it overtakes the three lots already in the queue. When the
timer expires at t = 9, the lot that is at the head of the queue leaves the system, i.e.,
lot 4 leaves the system. Then the timer is set again to expire at t = 14. Again, the
head of the queue leaves the system, which is lot 2. The timer is set again to expire
at t = 20, and lot 3 leaves the system. Next, the timer is set to ring at t = 25 and
finally lot 1 leaves the system.

For more details about this aggregate model for integrated processing worksta-
tions, including implementation issues and algorithms for deriving distributions from
real manufacturing data, the interested reader is referred to [19]. In that paper an
extensive simulation study and an industry case study demonstrate that the aggre-
gate model can accurately predict the cycle time distribution of integrated processing
workstations in semiconductor manufacturing.

Most importantly, EPTs can be determined from real manufacturing data and
yield relatively simple discrete event models of the manufacturing system under
consideration. These relatively simple discrete event models serve as a starting point
for controlling manufacturing systems.

3 Control Framework

In the previous section, the concept of Effective Process Times has been intro-
duced as a means to arrive at relatively simple discrete event models for manu-
facturing systems, using measurements from the real manufacturing system under
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Fig. 12 a Control framework (I). b Control framework (II)

consideration. This is the first step in a control framework. The resulting discrete
event models are large queueing networks which capture the dynamics reasonably
well. These relatively simple discrete event models are not only a starting point for
analyzing the dynamics of a manufacturing system, but can also be used as a starting
point for controller design. If one is able to control the dynamics of the discrete
event model of the manufacturing system, the resulting controller can also be used
for controlling the real manufacturing system.

Even though control theory exists for controlling discrete event systems, unfor-
tunately none of it is appropriate for controlling discrete event models of real-life
manufacturing systems. This is mainly due to the large number of states of a manu-
facturing system. Therefore, a different approach is needed.

If we concentrate on mass production, the distinction between lots is not really
necessary and lots can be viewed in a more continuous way. Instead of the discrete
event model we might consider an approximation model. This is the second step in the
control framework. Next, we can use standard control theory for deriving a controller
for the approximation model. These first three steps in the control framework are
illustrated in Fig. 12a. We elaborate on this second and third step in the next two
sections. For now it is sufficient to know that time is discretized into periods (e.g.,
shifts) and that the resulting controller provides production targets per shift for each
machine. So for now we assume that the derived controller behaves as desired on
the approximation model. As a fourth step this controller could be connected to the
discrete event model. This cannot be done directly, since the derived controller is
not a discrete event controller. The control actions still need to be transformed into
events. It might very well be that the optimal control action is to produce 2.75 lots
during the next shift. One still needs to decide how many lots to really start (2 or 3),
and also when to start them. This is the left conversion block in Fig. 12b. From this
figure, it can also be seen that a conversion is needed from discrete event model to
controller. In the remainder of this chapter we assume to sample the discrete event
model once every shift. Other strategies might be followed. For example, if at the
beginning of a shift a machine breaks down it might not be such a good idea to wait
until the end of the shift before setting new production targets. Designing proper
conversion blocks is the fourth step in the control framework.
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Fig. 13 A simple manufacturing system

After the fourth step, i.e., properly designing the two conversion blocks, a suitable
discrete event controller for the discrete event model is obtained, as illustrated in
Fig. 12b (dashed).

Eventually, as a fifth and final step, the designed controller can be disconnected
from the discrete event model, and attached to the manufacturing system.

4 An Approximation Model

The analytical approximations models of Sect. 1.2 are only concerned with steady
state, no dynamic behavior is included. This disadvantage is overcome by discrete
event models as discussed in Sect. 2, where each lot is modeled separately and
stochastically. In Sect. 2 we derived how less detailed discrete event models can be
built by abstracting from all kinds of disturbances like machine failure, setups, oper-
ator behavior, etc. By aggregating all disturbances into one Effective Process Time,
a complex manufacturing system can be modeled as a relatively simple queueing
network. Furthermore, the data required for this model can easily be measured from
manufacturing data.

Even though this approach considerably reduces the complexity of discrete event
models for manufacturing systems, this aggregate model is still unsuitable for
manufacturing planning and control. Therefore, in this section we introduce a next
level of aggregation, by abstracting from events. Using the abstraction presented in
Sect. 2 we can view a workstation as a node in a queueing network. In this section we
assume that such a node processes a deterministic continuous stream of fluid. That
is, we consider this queue as a so-called fluid queue.

For example, consider a simple manufacturing system consisting of two machines
in series, as displayed in Fig. 13. Let te,i denote the Effective Process Time of the
i th machine for i ∈ {1, 2}. Furthermore, let u0(t) denote the rate at which lots arrive
at the system at time t, ui (t) the rate at machine Mi starts lots at time t, xi (t) the
number of lots in buffer Bi at time t (i ∈ {1, 2}) and x3(t) the cumulative number of
lots produced by the manufacturing system at time t .

The rate of change of the buffer contents is given by the difference between the
rates at which lots enter and leave the buffer, taking into account the time-delay due
to processing:
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ẋ1(t) = u0(t) − u1(t),

ẋ2(t) = u1
(
t − te,1

) − u2(t),

ẋ3(t) = u2
(
t − te,2

)
.

(6)

In practice, manufacturing systems are often controlled by means of setting produc-
tion targets per shift. That is, time is divided into shifts for example, 8 or 12 h. For
this period of 8 or 12 h it is determined how many lots should be started on each
machine. The control problem then reduces to determining these production targets
per shift.

To that end, we sample the continuous time system (6) using a zero-order-hold
sampling, cf. [2]. Assuming that the longest Effective Process Time is less than
the duration of a shift, the resulting zero-order-hold sampling of the system in (6)
becomes
⎡

⎢⎢⎢⎢
⎣

x̄1(k + 1)

x̄2(k + 1)

x̄3(k + 1)

x̄4(k + 1)

x̄5(k + 1)

⎤

⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢
⎣

1 0 0 0 0
0 1 0 te,1

h 0
0 0 1 0 te,2

h
0 0 0 0 0
0 0 0 0 0

⎤

⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢
⎣

x̄1(k)

x̄2(k)

x̄3(k)

x̄4(k)

x̄5(k)

⎤

⎥⎥⎥⎥
⎦

+

⎡

⎢⎢⎢⎢
⎣

1 −1 0
0 h−te,1

h −1

0 0 h−te,2
h

0 1 0
0 0 1

⎤

⎥⎥⎥⎥
⎦

⎡

⎣
ū0(k)

ū1(k)

ū2(k)

⎤

⎦ (7)

where ū0(k) denotes the number of lots arriving at the system during shift k, ūi (k)

the number of lots started at machine Mi during shift k, x̄i (k) the number of lots in
buffer Bi at the beginning of shift k (i ∈ {1, 2}), and x̄3(k) the cumulative number of
lots produced by the manufacturing system at the beginning of shift k. Furthermore,
h denotes the sample period, e.g., 8 or 12 h. The auxiliary variables x̄4(k) and x̄5(k)

are required to remember the starts during the previous shift, in order to incorporate
the lots for which processing is started in shift k on machine M1 and M2 respectively
but completed in shift k+1. If the longest Effective Process Time exceeds the duration
of a shift, but not exceed the duration of two shifts, similarly auxiliary variables
x̄6(k), and x̄7(k) are required.
The model (6) and its discrete time equivalent (7) are also subject to constraints. We
present the constraints for the model (7). For the model (6), similar constraints hold.

The first constraint is a non-negativity constraint: buffer contents can never be
negative. Also production targets cannot become negative. Expressed mathematically
we have the following constraints:

x̄i (k) ≥ 0 i ∈ {1, 2, 3, 4, 5} ∀k (8a)

ū j (k) ≥ 0 j ∈ {1, 2, 3} ∀k (8b)

Furthermore, machines can produce at most at maximal capacity. That is, the total
time spent on serving the required number of lots during a shift cannot exceed the
duration of the shift:

te, j · ū j (k) ≤ h j ∈ {1, 2, 3} ∀k (8c)

where h again denotes the sample period or shift duration.
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Fig. 14 Effective clearing function of (9) with ca = ce = m = 1

4.1 Clearing Functions

The model (7) with constraints (8) describes the dynamics of a manufacturing sys-
tem well. By incorporating delays due to processing, the minimal flow time is also
taken into account. Furthermore, steady-state corresponds with the mass conserva-
tion results presented in Sect. 1.2.1.

Nevertheless, one property of manufacturing systems is not yet taken into account
in the model (7), (8). And that is the queueing relations (3).

In order not to lose the steady state queueing relation between throughput and
queue length, we include this relation as a system constraint.

Consider a workstation that consists of m identical servers in parallel that all
have a mean Effective Process Times te and coefficient of variation ce. Furthermore,
assume that the coefficient of variation of the interarrival times is ca and that the
utilization of this workstation is ρ < 1. Then we know from (3), (5) that in steady
state the mean number of lots in this workstation is approximately given by

x = c2
a + c2

e

2
· ρ

√
2(m+1)−1

m(1 − ρ)
+ ρ. (9)

In Fig. 14 this relation has been depicted graphically. In the left-hand side of this
figure one can clearly see that for an increasing utilization, the number of lots in this
workstation increases nonlinearly. By swapping axes, this relation can be understood
differently. Depending on the number of lots in the workstation, a certain utilization
can be achieved, or a certain throughput. This has been depicted in the right-hand
side of Fig. 14. This relation is also known as the clearing function as introduced
by [7].

For the purpose of production planning, this effective clearing function provides
an upper bound for the utilization of the workstation depending on the number of
lots in this workstation. Therefore, for the model (7), in addition to the constraints
(8) we also have (using ρ = ū · te/(h · m) and m = 1):
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c2
a,1 + c2

e,1

2
· u1(k)2

h
te,1

(
h

te,1
− u1(k)

) + te,1
h

u1(k) ≤ x̄1(k) ∀k

c2
a,2 + c2

e,2

2
· u2(k)2

h
te,2

(
h

te,2
− u2(k)

) + te,2
h

u2(k) ≤ x̄2(k) ∀k.

(10)

The clearing function model for production planning then consists of the model
(7) together with the constraints (8) and (10). When we want to use this clearing
function model for production planning, we need the parameters ce and ca. In Sect. 2
we explained how Effective Process Times can be determined for each workstation,
which provides us with the parameter ce for each workstation. Additionally, for
each workstation the interarrival times of lots can also be determined from arrival
events, which provides us with the parameter ca for each workstation. Therefore,
both parameters can easily be determined from manufacturing data.

We conclude this section with some remarks about the additional constraints (10).
The first remark is that these constraints are convex in the input u, so optimization
problems become “simple” convex optimization problems. A second remark is that
from a practical point of view, one can easily approximate each convex constraint by
means of several linear constraints. A third remark is that the constraints (10) only
hold for steady state, whereas our system is never in steady state. A more accurate
planning result is obtained by conditioning the expected throughput on the current
work in the buffer, resulting in so-called transient clearing functions. For the latter
subject, the interested reader is referred to [15].

5 Controller Design

In the previous section we derived a fluid model as an approximation for the discrete
event model derived earlier. The next step in the control framework presented in
Sect. 3 is to control the approximation model using standard techniques from control
theory.

Typically two control problems can be distinguished: the trajectory generation
problem and the reference tracking control problem. The solution of the first problem
serves as an input for the second problem.

To illustrate the difference between these two problems, consider the problem of
automatically flying an airplane from A to B by means of an autopilot. Then also two
problems are solved separately. The first problem is to determine a trajectory for the
airplane to fly which brings it from A to B. The resulting flight plan is a solution to
the trajectory generation problem. The second problem is the design of the autopilot
itself. Given an arbitrary feasible reference trajectory for this airplane, how to make
sure that it is tracked as well as possible, despite all kinds of disturbances. The latter is
the reference tracking control problem. We follow a similar approach for the control
of manufacturing systems.
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5.1 Trajectory Generation Problem

The trajectory generation problem is the problem of finding a feasible reference
trajectory for the system, also known as production planning. So for the example
considered previously, the problem is to find a trajectory

(
xr (k), ur (k)

)
which sat-

isfies (7) as well as the constraints (8) and (10). Clearly, many trajectories exist that
meet these requirements. Typically, “the best” trajectory is looked for. Therefore,
the trajectory generation or production planning problem is often formulated as an
optimization problem.

Example 5 Consider the system described by (7) together with the constraints (8) and
(10). Assume that ca,i = ce,i = 1, te,i = 1 (i = 1, 2), h = 2, and that the cumulative
demand is given by xr,3(k) = k. If one would like to satisfy this cumulative demand
while having a minimal number of jobs in the system, the trajectory generation
problem can be formulated as the following optimization problem:

min
ur (k),xr (k)

N∑

k=1
x1(k) + x2(k)

subject to xr,3 = k k = 1, . . . , N
(7), (8), (10) k = 1, . . . , N

The solution to this problem is given by

xr,1(k) = 1 ur,0(k) = 1 k = 1, . . . , N
xr,2(k) = 1 ur,1(k) = 1 k = 1, . . . , N
xr,3(k) = k ur,2(k) = 1 k = 1, . . . , N
xr,4(k) = 1 k = 1, . . . , N
xr,5(k) = 1 k = 1, . . . , N .

(11)

5.2 Reference Tracking: Model-Based Predictive Control (MPC)

For the reference tracking control problem, we assume that an arbitrary feasible
reference trajectory is given. So for the example considered before we assume that
a reference trajectory

(
xr (k), ur (k)

)
is given which satisfies (7) together with the

constraints (8) and (10). This could for example be the trajectory (11), but any other
feasible reference trajectory can be used as a starting point as well. The goal in the
reference tracking control problem is to find an input u(k) which guarantees that the
system tracks this reference input, while meeting the constraints (8) and (10).

In order to solve the reference tracking control problem, the tracking error dynam-
ics is considered. For the remainder of this section we assume that the system dynam-
ics is described by

x(k + 1) = Ax(k) + Bu(k)
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subject to the linear constraints

Ex(k) + Fu(k) ≤ g.

Without loss of generality this can be extended to nonlinear dynamics with nonlinear
constraints.

In addition, a feasible reference trajectory
(
xr (k), ur (k)

)
is given, i.e., a trajectory

which satisfies

xr (k + 1) = Axr (k) + Bur (k)

and

Exr (k) + Fur (k) ≤ g.

Next, one can define the tracking error x̃(k) = x(k)− xr (k), and the input correction
ũ(k) = u(k) − ur (k). Then the tracking error dynamics becomes

x̃(k + 1) = Ax̃(k) + Bũ(k) (12a)

subject to the constraints

E
(
x̃(k) + xr (k)

) + F
(
ũ(k) + ur (k)

) ≤ g

or

Ex̃(k) + Fũ(k) ≤ g − Exr (k) − Fur (k) (12b)

Using these error coordinates, the reference tracking control problem can be for-
mulated as to find an input correction ũ(k) which steers the error dynamics (12a)
toward 0, while satisfying the constraints (12b).

Since we have a system with constraints, the most suitable technique from standard
control theory is Model-based Predictive Control (MPC).

The basic idea of MPC is to use the model of the system (12a) to predict the state
evolution as a function of future inputs. Furthermore, a cost function is used which
penalizes the predicted future deviations from the reference trajectory. This cost
function is then minimized over the future inputs, subject to the constraints (12b).
This optimization takes place over a so-called prediction horizon p, i.e., the first
p inputs are determined in this optimization problem. The resulting control action
then consists of the first of these inputs. One time period later, the entire procedure is
repeated. Therefore, MPC is also called a receding horizon stategy. This is illustrated
in Fig. 15.

Assume that at time k, the tracking error x̃(k) = x̃(k|k) is measured. So we have
the tracking error x̃ at time k given that we are currently at time k. Using a horizon
of length p, we can define the input corrections for the times k, k + 1, . . . , k + p − 1
given that we are currently at time k: ũ(k|k), ũ(k + 1|k), . . . , ũ(k + p − 1|k).
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Fig. 15 The ingredients
of MPC
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By means of the model (12a) we are able to predict the resulting tracking errors as
a function of these future input corrections:

⎡

⎢
⎢⎢
⎣

x̃(k + 1|k)

x̃(k + 2|k)
...

x̃(k + p|k)

⎤

⎥
⎥⎥
⎦

=

⎡

⎢
⎢⎢
⎣

A
A2

...

Ap

⎤

⎥
⎥⎥
⎦

x(k|k) +

⎡

⎢⎢
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⎣

B 0 . . . 0

AB
. . .

. . .
...

...
. . .

. . . 0
Ap−1 B . . . AB B

⎤

⎥⎥
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⎦

⎡

⎢
⎢⎢
⎣

ũ(k|k)

ũ(k + 1|k)
...

ũ(k + p − 1|k)

⎤

⎥
⎥⎥
⎦

(13)

Next we define a cost function for having a non-zero tracking error. One of the
properties of our controlled system is that if we happen to be on the reference, we
should stay on the reference. In particular this implies that the cost function should
be such that costs are 0 if and only if the system stay in (x̃, ũ) = (0, 0).

In control theory often a quadratic cost function is used:

min
u(k|k),...u(k+p−1|k)

p∑

i=1

x(k+i |k)T Qx(k+i |k)+u(k+i −1|k)T Ru(k+i −1|k) (14)

with Q = QT ≥ 0 and R = RT > 0. But also other cost functions can be used,
e.g., linear cost functions. What is most important is that costs are 0 if and only if the
system stays in (x̃, ũ) = (0, 0). Clearly the minimization should take place subject
to the constraints (12b). Using a quadratic cost function as in (14) results in a QP
(quadratic program) to be solved each time instant, whereas a linear cost function
results in an LP (linear program), see e.g., [18].

The result from solving the above-mentioned optimization problem is a vector of
future input corrections ũ(k|k), ũ(k + 1|k), . . . , ũ(k + p − 1|k). At time k the input
ũ(k|k) is applied. Subsequently, at time k + 1 the whole procedure starts all over
again.

We conclude this section with some remarks. First, the stability of the MPC
approach is not guaranteed. At least not in the way as presented here. In order to
achieve guaranteed stability, one should take the horizon p = ∞. This is not desirable
from a practical point of view. A second way of achieving stability is by adding the
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terminal constraint that after the horizon, the system should be on the reference, i.e.,
one could add the constraint that x̃(k + p) = 0. Notice that in order to have a feasible
optimization problem, again one should take p large enough.

For more information about MPC, the interested reader is referred to [5].

6 Concluding Remarks

In this chapter we provided a framework within which concepts from the field of
systems and control can be used for controlling manufacturing systems. We presented
the concept of Effective Process Times (EPTs) which can be used for modeling a
manufacturing system as a large queuing network. Restricting ourselves to mass
production enabled us to model manufacturing systems by means of a linear system
subject to nonlinear constraints (clearing functions). These models then served as a
starting point for designing controllers for these manufacturing systems using Model-
based Predictive Control (MPC). Thoughout this chapter we provided examples
to illustrate the most important ideas and concepts. We also provided additional
references for the interested reader.

We presented MPC as a possible approach from control theory for controlling
manufacturing systems. But many more suitable approaches can be used, ranging
from classical control theory using z-transforms and transfer functions, dynamic
programming and optimal control, to robust control and approximate dynamic pro-
gramming. A good overview of these kinds of approaches for the dynamic modeling
and control of supply chains has been provided in the review paper [17].

But also the approximation model presented in Sect. 4 is only one of the possible
choices for modeling manufacturing systems. An overview on aggregate models
for manufacturing systems has been given in [13]. In the model presented here a
fluid approximation has been presented where the number of jobs was modeled
continuously, but the position in the factory was modeled discretely. Using a less
detailed model, we can even abstract from workstations and model manufacturing
flow as a real fluid using continuum models [1, 3, 6]. Optimal control of PDE models
for manufacturing systems has been presented in [12].

From the above it is clear that the modeling and control of manufacturing systems
has been, and still is, an open and active research area. In this chapter we provided
some of the basic models and standard control approaches, illustrated by examples
so that they can be applied straighforwardly.
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The Ongoing Challenge for a Responsive
Demand Supply Network: The Final
Frontier—Controlling the Factory

Kenneth Fordyce and R. John Milne

Abstract Over the past 20 years organizations have put significant energy into
making smarter decisions in their enterprise wide central planning and “available to
promise” processes to improve responsiveness (more effective use of assets and more
intelligent responses to customer needs and emerging opportunities). However, firms
have put only limited energies into factory floor decisions and capacity planning and
almost none into generating a tighter coupling between the factory and central plan-
ning. The bulk of the work to make “smarter factory decisions” has focused on two
simple metrics: increasing output and reducing cycle time—often without accom-
modating the need to run lots at different velocities and without recognizing how
the operating curve (trade-off between lead time and tool utilization—Appendix 3)
links them. In fact, many of the recent Lean initiatives have focused on eliminating
variability to induce simplicity to achieve improved output or cycle time without
concern for the impact on responsiveness or capacity. The purpose of this paper is to
(a) make clear the critical, and often overlooked, role of factory responsiveness with
respect to central planning; (b) explain how traditional factory planning and the cur-
rent application of Lean can severely impact the firm’s responsiveness; (c) elaborate
on touch points between central and factory planning demonstrating simple tacti-
cal methods that can improve responsiveness and protect the factory from churn;
(d) explain why smarter dispatch scheduling is critical to successful responsiveness;
and (e) outline the basics of smarter dispatch scheduling. Although the focus of this
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paper is the factory, many of the core concepts apply to a wide range of industries
from restaurants to health care delivery.

1 Positioning the Factory Within an Enterprise Wide
Demand-Supply Network

Organizations, from healthcare facilities to manufacturing giants to small restaurants,
can be viewed as an ongoing sequence of loosely coupled activities where current and
future assets are matched with current and future demand across the demand-supply
network.

These planning, scheduling, and dispatch decisions across a firm’s demand-supply
network are best viewed as a series of information flows and decision points organized
in a decision hierarchy or tiers and further classified by the type of supply chain
activity creating a grid for classification. The row dimension is the decision tier and
the column is the responsible unit (Fig. 1). Observe the decisions in each tier limit
and the options in the tiers below it.

The time frame for the first decision tier, strategic planning, is typically driven
by the lead time required for business planning, resource acquisition, new product
development and introduction, and to produce a product. Depending on the actual
lead times for these activities, decision makers are concerned with a set of problems
that are 3 months to 7 years into the future even with the same industry. For example,
acquiring and validating a new tool may only take 3 months and re-orientating the
product line takes 1 year. In both cases these decisions are removed from the
production and delivery of current product. Issues in this tier include, but are not
limited to, what markets the firm will be in, general availability of equipment and
skills, major process changes, risk assessment of changes in demand for exist-
ing products, required or expected incremental improvements in the production or
delivery process, and the lead times for adding additional equipment and skills.

The second tier, tactical planning, deals with aggregate level plans, estimates, and
commitments. The time frame can range from 1 week to 6 months and is typically
based on production lead times and the pace of change for demand and factory
performance. Estimates are made of yields and cycle times (lead times), the likely
profile of demand, productivity and reliability of equipment, etc. Decisions are made
about scheduling releases into the manufacturing line or staffing levels. Delivery
dates are estimated for orders or response times for various classes of patients are
estimated. Deployment of equipment and staffing is adjusted. The order release plan
is generated or regenerated, and (customer-requested) reschedules are negotiated.

The third tier, operational scheduling, deals with the daily execution and achieve-
ment of a weekly, biweekly, or monthly plan. Shipments are made, patients receive
treatments, customers are waited on, serviceability levels are measured, and recovery
actions are taken. Optimal capacity consumption and product output are computed.
The time frame is again dependent on the production lead time and the rate of change
in the factory.
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Fig. 1 Decision grid for demand-supply networks

Tier “3.5” straddles operational and real time response. For example, a monitoring
system might observe a lot has entered a “process time window” and its “urgency”
to be assigned has “increased.” A process time window is a sequence of activities
that must be accomplished within a certain time limit or the lot might need to be
scrapped due to some type of contamination. A non-factory example would be the
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“triage” system that occurs regularly in an emergency room where a patient is placed
in one of four or five categories based on urgency. Although this decision does not
directly assign the patient to a healthcare provider, it has a strong influence over the
type and urgency of the assignment.

The fourth tier, real-time response system, addresses the problems of the next
hour to a few weeks by responding to conditions as they emerge in relevant time.
Within the demand-supply network, relevant time response is often found in two
areas: manufacturing dispatch (assign lots to tools) and order commitment (available
to promise, or ATP). For the emergency room setting it would the initial assignment
of the patient to a health care professional and then a sequence of assignments based
on the initial review (for example go to X-ray, immediately call in the senior resident,
and run a blood test).

Within manufacturing, the decisions made across the tiers are typically handled by
groups with one of two responsibilities: maintaining an enterprise-wide global view
of the demand-supply network and ensuring that subunits (such as manufacturing
location, vendor, and warehouse) are operating efficiently. Ideally all planning would
be centralized; in practice complexity precludes this. Capacity planning is a good
example. At the enterprise level, capacity is modeled at some level of aggregation,
typically viewing a key tool set as a single capacity point. At the factory level, each
tool, or potentially each chamber within a tool, is modeled.

2 Challenges and Opportunities

Over the past 20 years organizations have put significant energy into making
smarter decisions in their enterprise-wide central planning and “available to promise”
process to improve responsiveness (more effective use of assets and more intelligent
responses to customer needs and emerging opportunities) [9]. However, firms have
put limited energy into factory floor decisions and capacity planning, and almost none
into a tighter coupling between the factory and central planning. Much of the recent
work to improve factory performance has attempted to implement Lean planning [6]
concepts of (a) elimination of variability, (b) establishing uniform flow (every part
every interval), (c) supermarket-like goods flow (kanbans), and (d) elimination of due
dates and on time delivery metrics. Clearly, every factory will run “better” with steady
output and predictable lead times—however, the real world always injects variability
that sets the price of implementing such methods as reduced responsiveness and/or
excess capacity.

The net result is that many factories still operate with the mind set: “establish a set
of starts for the month; set a fixed schedule with target outs; and measure actual outs
versus target outs.” For this approach to work, demand must be accurately forecasted
over an extended period of time and uniformly spread across time; all lots must travel
at the same speed; tool sets should operate with clockwork precision (never suffering
“surprises”); and the flow of parts in the line (even with stable capacity) must never
create “piles” or “gaps” due to the variations (for example batch versus single lot
tools) intrinsic in the manufacturing process. In today’s world, accurate detailed
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forecasts of demand remain an illusion; even the best factories which have “tool set
surprises” (breakdowns and quality excursions), product mix introduces variability in
speeds, and the competitive nature of the market precludes carrying excess capacity
and insists on responsiveness. Those demand-supply networks that can get their
factories more engaged in responsiveness while recognizing the importance of “tools”
and “output” will flourish. They will eliminate the variability that matters—a failure
to deliver a part on its committed date and the inability to capture a market opportunity
that could be handled with “intelligent” factory decisions.

Accomplishing this goal requires “retooling” the approaches for interaction with
central planning, near-term tactical planning, and dispatch scheduling to be more
adaptive without a loss in productivity. Bob Bixby observed—the optimization time
horizon is ever shrinking. The purpose of this paper is to (a) make clear the critical, and
often overlooked, role of the factory within central planning; (b) explain how tradi-
tional factory planning and the current application of Lean methodology can severely
impact the firm’s responsiveness; (c) elaborate on touch points between central and
factory planning demonstrating simple tactical methods can improve responsiveness
and protect the factory from churn; (d) explain why smarter dispatch scheduling is
critical to successful responsiveness; and (e) outline the basics of smarter dispatch
scheduling.

3 Basics of Enterprise-Wide End-to-End Central Planning

To understand how factory floor decisions can limit responsiveness in central plan-
ning, we need to review the key elements of central planning which are given in the
list below and in Fig. 2 [9, 31].

1. Create a demand statement
2. Gather and collect key supply information from the factory

2.1. Project the completion of WIP to a decision point (often completion of the
part).

2.2. Statement of capacity consumption rates and capacity available.
2.3. Statement of lead time or cycle time to complete a new start.

3. Create a model that captures key enterprise relationships of the demand-supply
network (Central Planning Engine—CPE).

4. Create an enterprise-wide central plan by matching current and future assets with
current and future demand using the CPE to create a future projected state of the
enterprise and the ability to soft peg the current position of the enterprise to the
projected future position. Information from the CPE model includes

4.1. Projected supply linked with exit demand
4.2. Identification of at risk customer orders either to a commit date or request

date
4.3. Synchronization signals across the enterprise
4.4. Capacity utilization levels
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4.5. Ability to trace each production and distribution activity that supports meet-
ing a demand.

5. Typically this is an iterative process where each iteration is done with different
assumptions and conditions, for example

5.1. Different assumptions about capacity available
5.2. Different business policies for protective stock
5.3. Different commit dates and/or demand priorities for orders

6. Execute the plan, that is,

6.1. Send signals to each manufacturing facility and distribution center
6.2. Send projected supply to available to promise (ATP)

4 Basics of Factory Planning and Dispatch

For central planning organizations, the plan (developing the plan, making the
customer commits, and monitoring conformance to the plan) is their primary end
product. For the factory, planning and dispatch are always secondary in importance
to successfully making the parts. Factories are foremost concerned about making a
product that works (yields), second keeping their tools operational, and third keeping
their output levels high (either operational outs or exit outs).

Dispatch refers to assigning a lot to a tool and requires balancing effective tool
utilization with stable delivery (either to the commit date on the lot or to the number
of exit lots per day or week). Factories see dispatch as important since it generates
the assignment of lots to tools and therefore impacts output. Typically there are
different camps with substantially different views on how to make this decision.
For example, manufacturing is looking to maximize output while the business team
is as concerned about the lots for key clients. Both groups are always suspicious
of the applications that do automated dispatch combining rules and models—either
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thinking the automated methods are too simple and they know best how to balance
complex trade-offs or “complaining” the automated decisions are too complicated
to understand.

Aggregate tool planning [1, 34, 38] is typically focused on assessing the ability
of the factory to satisfy certain demand (demand is stated as manufacturing starts
a.k.a. planned manufacturing releases) and creating the capacity inputs required by
central planning. The basic steps of aggregate factory planning are given below and
in Fig. 3:

1. Capturing representative product routes—sequence of operations, raw process
time for each operation, and tool set consumed for each key operation.

2. Capturing a specific factory load—typically given in starts.
3. Gathering data on tool set characteristics: number of tools, tool availability,

which operations the tool set handles, overlapping tool sets (shared operations
between toolsets called a cascade [1], and its operating curve (Appendix 3,
[2, 5, 12, 14, 15]) which establishes the trade-off between cycle time and tool
utilization/capacity available.

4. Allocation of tool sets to product parts or families either as user input or based
on history

5. A model that captures key relationships—often a spreadsheet based single itera-
tion model

6. Executing the model to determine how this load impacts toolsets

6.1. Required utilization levels
6.2. Capacity loss points (planned maintenance, high raw process time, etc.)

7. Providing information for central planning

7.1. High level statement of capacity based on starts or a few key tool sets fixed
for the specified cycle time to limit demand on the factory

7.2. How additional capacity enables the factory to handle more starts
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Near term tool planning (deployment) refers to determining which operations
each tool will be qualified to handle over the short term. Typically a tool can service
many operations, but a factory will limit the number of operations it is “allowed”
to service to reduce workload on manufacturing engineering and make dispatching
simpler by reducing options.

Observe the lack of influence of an order book on factory planning and decisions.

5 Current Interaction Between Factory and Enterprise: Factory
Limits Responsiveness—Opportunities Abound

Steps 3 and 4 in Sect. 3 on the central engine planning process (CPE) are often
viewed as the planning “hub” and the focus of making a firm more responsive through
“smarter” engines and better (quality and timeliness) data [9]. However, in Step 2 the
factory sets the boundaries of “responsiveness” [29]. The CPE relies on the factory
to provide

• Estimated completion date for each lot in the line (either to completion or staging
point)

• Statement of capacity available and required for each manufacturing start (typically
at an aggregate level)

• Estimated lead or cycle time to complete a start fixed for some time interval

Additionally,

• The central planning process cannot change the due date on the lot or the lot’s
priority without extensive manual negotiations with manufacturing

• Central planning has no control (and typically no knowledge) of the lot importance
metric used by the factory or how it balances utilization and delivery.

• Each piece of information supplied by the factory to the central planning process
is “fixed”—stripped of all of the information that enables trade-offs to be made.
For example, the following possibilities are invisible to central planning:

– Slowing one lot down to enable another lot to go faster
– Trade-offs between cycle time and capacity available based on the operating

curve
– Redeploying tools to handle a different mix of manufacturing processes or

products

Additionally, limiting “change or variation” within the “factory black box” to
improve responsiveness fits the factory culture and is reinforced by Lean principles.
Factories “dislike” change. Factories “like” steady rates of production referred to as
smooth flow. This has been reinforced with Lean initiatives that view variation as evil
and desperately attempt to create smooth demand and production flow with aggrega-
tion and kanbans or “super markets” that essentially serve as inventory replenishment
decision points to absorb variability and generate smooth (every part every interval)
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production flow in the factory [6]. They try justifying this by claiming all variability
can be eliminated and higher productivity will occur. The reality is this view

• Requires excess capacity to facilitate the “smoothing.”
• Is completely divorced from client needs, variability in production flows, and tool

availability.
• Has no inherent ability to allocate scarce capacity or project a supply line.
• Fails to account for the operating curve.

Despite the substantial forces to limit change, constant pressure from emerging
market opportunities to manufacturing quality excursions to inaccuracies in planning
(deviations between the plan and the actual) drive an ongoing sequence “off line one
of a kind” negotiations between the central planner and the factory planner to make
adjustments that rely on quasi-manual decision support tools with limited function.
For example

1. A client may need three lots 4 days earlier than committed and this can be accom-
modated by placing these lots on expedite.

2. The demand for product A requires 30 units of capacity from Tool Set A1 on
average each day. Tool Set A1 only has 25 units of capacity available. Tool Set
A2, which is not listed as a capacity option for product A, can service product A,
but it runs slower. A review of capacity utilization for Tool Set A2 indicates it will
be underutilized. A decision is made to qualify Tool Set A2 to handle product A.

3. A client has had a steady order for 10 units daily of product W with a cycle time
of 15 days where the constraining tool set is Tool Set W3. The business has
been able to achieve an on time delivery rate of 97%. The client would like to
increase its standing order from 10 to 12 units. Central planning initially rejects
this opportunity since the stated maximum daily capacity in their model for Tool
Set W3 is 10. However, when the two planners look at the details of the tool set
and its operating curve, the business decides it can commit to 12 per day if the
cycle time is increased to 16 days (or if the OTD commit percentage is lowered).

4. Assume a client has placed an order for five lots of “part A” per day with a cycle
time of 10 days. On average there are 50 lots of “part A” in WIP and the factory
completes five lots per day. The due date posted on each lot is the start date plus
10 days. For example, lots started on day 6 are due on day 16. Due dates on the lots
can only be changed manually by a factory planner. The factory has an abnormal
set of tool outages and goes 3 days without delivering any lots—it is past due
15 lots (= 3 × 5). It has continued to start five lots per day. At the start of the
fourth day the number of lots in the line is 65 (=50 normal + 15 past due). On
the evening of the third day the client and Central Planning meet about a recovery
strategy. The client determines demand has been soft for this part and agrees to
“forgive” five lots and have the remaining ten lots “caught” up at a pace of one
per day (in addition to the regular five per day). Therefore the new order book for
this client is six lots per day for the next 10 days and then returns to five per day.
Without changes to the due date on the lots in WIP, the factory continues to see
15 lots past due and will drive to “catch up” as quickly as possible. The factory
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may decide to delay lots for a second client to catch up all 15 past due lots for
the first client in 5 days. Therefore the factory planner has to manually change
the due dates on the lots to insure the factory floor has the correct guidance.

These examples make it clear that when central planning can make effective use of
the flexibility within the factory that is hidden from its traditional view—good things
can happen. The opportunity for improved responsiveness simply needs to “widen
and straighten” this trail with appropriate planning and dispatch tools, processes,
and protocols. Each one would be considered muda (wasteful) by Lean which would
say to eliminate them, not to build tools to make doing this more intelligence and
efficient. We contend a goal of any firm is to eliminate unnecessary complexity, but
ignoring the complexity that remains is like tackling snow storms in the north with
bald tires.

Additionally, such tools and processes can keep bad things from happening. For
example, if many lots are being “expedited” already there is no room for an additional
expedited lot. Tool W3 may be needed for engineering lots not in the central planning
data or it may have a history of time consuming qualifications making it too large
a risk. Just as the factory prefers “steady” and conservative, central planning often
fall preys to an overly optimistic mindset that is fine with constant churn. Tools for
improving factory/enterprise coordination fall into three groups

1. Direct interaction with central planning tools (for example WIP projection, expe-
dite decisions, demand pegging, and specialized capacity planning models for
flexibility in manufacturing)—Sect. 6

2. Tactical decision models (tool deployment, allocation of cycle time, or tool capac-
ity referred to as operational outs or moves)—Sect. 7

3. Dispatch scheduling (assigning lots to a tool)—Sect. 8

The following sections outline methods in each of these three areas that can
provide additional flexibility to the factory without destroying factory output and
cycle times. The differences in the length of the sections reflect the amount of detail
required to convey the core issues, rather than the relative importance of each area.

6 Dynamic Interaction Between Central Planning
and Factory Planning

As previously described in Sects. 3 and 4, the contact points between the factory and
central planning include:

• Accurate projection of when lots already in the factory (WIP) will arrive at stock
• Setting due date for lots.
• Changing the committed date or speed for lots.
• Capacity and cycle time information that influence planning manufacturing start

decisions and customer commits.

We will explore examples in each of these four areas.
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6.1 Smarter WIP Projections by Considering Capacity

Typically each part moves sequentially through a set of manufacturing steps (route)
that can be characterized by a raw process time (RPT) at each step, a cycle time
multiplier (CTM) that adjusts for the average wait time, total cycle time (TCT)
which is RPT×CTM, and the tool set that handles this manufacturing step or activity.
A sample route is provided in Table 1.

A factory planner typically uses one of two methods to project when a lot will
finish

• Use the commit date for the lot
• Add the remaining cycle time for the lot to the current date. For example if lot

101 was at step 04, we would project its completion date to be NOW + 91 h (=
40 + 41 + 10).

The following methods have proven effective in improving the quality of this
projection:

1. Status of the lot at the current step: Instead of solely using the TCT to estimate
the time a lot will spend at its current step, directly examine the number of lots
that are expected to be processed ahead of this lot at this step and adjust for
their processing times.

2. Different CTM estimators: Typically the CTM is based on a planned value. The
quality of this estimate can sometimes be improved using recent manufacturing
history to create an estimated CTM for the next 7–14 days.

3. WIP Projector on a Parcheesi Game Board: In this method [9] we project the
movement of each lot step-by-step according to its cycle time, but incorporate
capacity constraints by limiting the number of moves (i.e. number of operation
completions) (or time) per day allowed at certain tool sets and allocating these
moves based on lot importance. For example, assume LOT201 and LOT202 are
at Step 01 and LOT301 and LOT302 are at Step 05. All four lots are serviced by
the lion tool set for their present steps. LOT 201 is an expedited lot, LOT 302
is three days behind schedule, and the other two lots are on time. Additionally,
the lion tool set has a daily capacity limit of two lots per day. Only LOT201
and LOT302 would move to the next manufacturing step on the game board
today (LOT201 to Step 02 and LOT302 to Step 06). The other two lots would
have a chance to move tomorrow based on how their priorities rate relative to
the competition from other lots.

4. Queuing Network Equations: The most complicated, but also the most accurate
and flexible is to represent the route in its entirety as a system of queuing net-
work equations. This has been used successfully in some situations [5, 37, 38].

The caveat in each option is to avoid “thrashing” the estimate by over reacting
to the normal day-to-day variations in manufacturing flow. When a manufacturing
line has sufficient buffer capacity and is appropriately managed (e.g. not too many
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Table 1 Route or process steps to manufacture a part

Manufacturing Raw process Cycle time Total cycle time Tool set
step time (RPT) for multiplier (CTM) (TCT) for this step =

this step applied to RPT RPT∗ multiplier

Step 01 10.0 3.3 33.0 Lion
Step 02 15.0 3.8 57.0 Tiger
Step 03 8.0 4.0 32.0 Apple
Step 04 20.0 2.0 40.0 Furnance
Step 05 10.0 4.1 41.0 Lion
Step 06 5.0 2.0 10.0 Squirrel
Total / average 68.0 3.1 213.0

jobs being expedited, commitments are reasonable), most lots will complete at or
near their original commit date by reallocating capacity from lots that are ahead
of schedule to lots that are behind. The goals of the projection mechanisms are: to
identify when attempts to reallocate capacity so all due dates are met is not likely to
succeed; find lots that have fallen too far behind to finish by their commit date; and
issue an early warning when it is clear that the assumptions in the planning model are
at variance with reality—resulting in many lots finishing late (or early). The goal is
not to overreact to normal fluctuations, but catch systemic issues—especially since
factories are notorious for “convincing” themselves they will catch up next week
once tool availability stabilizes.

6.2 Dynamically Resetting Due Dates

In Sect. 5 we described a situation where the factory fell behind in meeting its com-
mitment to a client, the central planning organization worked with the client to reset
the demand, and then the factory planner needed to manually recalculate and reset
the due dates on the lots. This is one example of many where the actual “need” date
for a lot is different from the due date posted to the lot when the lot starts. A second
example occurs when a lot (LOT51) started on day five is placed on hold for 2 days
and another lot (LOT61) started on day six “passes” it. If we assume a cycle time
of 10 days, then LOT51 has an initial due date of 15, but is behind (further from
finishing than) LOT61 with a due date of day 16. This is called “leapfrogging.”

Typically when the demand driving that starts on a factory is a complex combi-
nation of fixed orders, loose orders, build to forecast, line stock replenishment, etc,
and the manufacturing process is long and complex the eventual need date will often
be different than the initial due date. A tool to dynamically reset the “due date” on
the lot to match real need improves responsiveness. The algorithm works essentially
as follows [9, 25].
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1. The factory must maintain a “demand” statement or order book on what the
business currently expects it to produce (part, quantity, and date). This is the
hardest part.

2. The lots of the same part are sorted according to raw process time remaining (low
to high).

3. The demand with the nearest (earliest) due date is assigned to the lot with the
least remaining raw process time remaining and the pattern continues.

4. Some adjustments need to be made if the lots have different quantities, some lots
are manufacturing expedites, etc.

This is a standard MRP algorithm that can and does enable the factory to appro-
priately focus energy on lots and facilitates early warning when a demand will not
be met on time. This is the same MRP that is constantly maligned by Lean advo-
cates. It would appear that having quality need dates would be an asset in any factory
concerned about on time delivery.

6.3 Committing Some Lots to Run a little Faster: Collateral
Impact

A common, yet manual, practice is for central planning to negotiate with factory plan-
ning to “speed” up certain lots to meet a customer request, overcome a manufacturing
delay, or compensate for a planning failure. Typically, the analysis is limited and ad
hoc with no comprehensive process as seen in central planning or tool planning.
There are rules of thumb such as:

• The number of “expedite” lots cannot exceed some fixed number N or a maximum
percentage of total lots.

• The fastest an expedite lot can run is some CTM less than that of the normal lots.
If normal lots have a CTM of five, expedite lots might have a CTM of three.

A closer look makes it clear the core of this decision is a reallocation of either
wait time or factory moves [23] that enables some lots to run faster by having others
run slower over some subset of the manufacturing line over some time duration. For
example, assume the factory has five lots (LOT01 . . . LOT05) in the last stage of
production; each lot requires four moves (manufacturing actions) to complete; the
maximum number of total moves (capacity) per day is five; and the most moves a lot
can have in 1 day is two. If capacity is allocated “fairly,” then each lot gets one move
per day and each lot finishes in 4 days. Now assume the business decides LOT01
and LOT02 must finish in 2 days, then each needs two moves per day for 2 days,
and therefore on each of these days two of the other three lots sit “idle” during these
2 days to enable this expedite.

Appendix 1 develops this allocation concept in more detail focusing on wait
time allocation instead of moves. In each case lots that look essentially the same
are required to run at different speeds on the factory floor. The planned speedup is
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worthless without successful factory execution. This places a substantial burden on
dispatch and precludes the use of simple methods (and Lean favorites) such as first
in first out (FIFO) and elapsed time. Again we see that Lean and responsiveness are
not in sync.

This topic is part of an area called General Plan Repair Process. In this process
central and factory planners identify actions to take that will enable orders that are
currently flagged as “late” to be met on time. Fordyce et al. [9] reviews this challenge
from the central planning perspective—only through increased intelligence on both
sides of the fence can responsiveness be improved.

6.4 Smarter Central Planning Through Better Modeling
of Factory Capacity

As we outlined before, the central planning process requires as critical inputs from
the factory: capacity (consumption rates and availability) and cycle times. Since
the 1980s manufacturing resource planning (MRP) and material balance equations
(MBE) in optimization formulations have been the two dominant methods used
in central planning [30]. In these methods the factory representation is “static” and
linear. The cycle times and capacity information are fixed across some time period and
handled with linear relationships. For detailed information about central planning,
the reader is referred to Refs. [9, 13, 20, 28, 31, 35, 36].

Historically intricacies of factory tool planning (availability, deployment deci-
sions, cascading, setup times, batching, et al.) and the dynamic interaction between
equipment utilization (effective capacity) and cycle time through the operating curve
have for the most part been ignored. This will not be sustainable in the future as the
burden on responsiveness resulting in under utilization or delivering products late is
increasingly unacceptable.

In Sect. 5 we described a situation where the client needed 30 units per day and
the initial central planning analysis determined the maximum the factory could make
was 25. Appendix 2 elaborates on the method to improve responsiveness by capturing
alternative deployments of tools to manufacturing operations.

In the same section we outlined that we could trade longer cycle time for more
tool capacity (and hence output) based on the operating curve. Appendix 3 contains
a simple example that makes it clear the assumption in typical central planning
processes that cycle time and capacity are independent is not correct—the two are
clearly coupled. We can view this as classical planning meets its uncertainty principle.
It is a rich ground for improved responsiveness and a headache for classical planners.
Since Lean advocates believe that all variation can be eradicated, it has no awareness
of an operating curve, and no methods to capture this opportunity. It is like attempting
to ignore special and general relativity and still produce GPS locations [26].
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For additional information about work that pushes beyond traditional methods for
handling capacity in central planning and factories see: [1, 7, 19, 22, 27, 38].

7 Tactical Decisions in the Factory: Only the Shadow Knows

There are series of ongoing tactical decisions in factories that fall well below interac-
tion with central planning and are not part of dispatch—but have a strong influence
on dispatch by constraining the available options to assign lots to tools. We refer
to these as the “shadow” decisions—powerful, but difficult to find and capable of
substantially restricting responsiveness.

One area is manufacturing engineering requirements (MER). Manufacturing
Engineering’s (ME) first concern is producing quality products (keeping high yields)
and in their zeal can create collateral damage. For example, assume tool A01 is being
qualified to run a new process called “yellow tiger”; ME might put in place two
rules:

• Only 25% of the total widgets produced over a 24 h period can run on tool A01
(the other 75% has to run on other tools in the tool set) in case tool A01 has quality
issues.

• Most of the other processes that can run on tool A01 are soft coded as not available
to tool A01 to insure enough widgets for the “yellow tiger” process visit this
tool.

On the surface, this sounds logical. In practice, especially when the factory is
busy, most simple dispatch decisions systems (automated or human) will initially
drive “yellow tiger” widgets to tool A01 and place other widgets on the other tools in
the toolset. However, quickly the ME “police” will shutoff assigning these widgets
to tool A01 since the 25% limit is met. Typically, there is no method to increase the
importance of running “yellow tiger” widgets on the other tools or dynamically alter
either rule. Some simple tactical models and dynamic guidance (defined in the next
section) will catch this imbalance before it becomes an issue that can, in the heat
of the “battle,” take days to find without the appropriate diagnostic tools. As Gary
Sullivan [33] observed—it is usually better to blow out the lighted match before
it gets to the gasoline unless you are measured by putting out fires as opposed to
preventing them!

A second area is called deployment decisions. Here the tools that make up a
group of similar tools (toolset) are allocated to the operations covered by this toolset.
Again this limits the dispatch options. Appendix 4 describes an approach that helps us
gauge near term the effectiveness of the deployment decisions for the WIP currently
waiting to be processed. A third area is the deployment of manufacturing operators.
Again, nothing in the Lean literature tackles these tough questions that live in the
shadows.
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8 Fundamentals of Dispatch Scheduling for Better Factory
Performance

As we observed in the prior sections, for the factory to be responsive, simple dis-
patch applications are insufficient to ensure planned actions are executed on the floor.
In addition, simple dispatch cannot handle the ever increasing complexity and
variability factories face on a daily basis—from manufacturing equipment whose
throughput is very sensitive to batch sizes and the sequence lots are placed on the
tool; diversity in the product mix and quantity which eliminates the ability to run
a fixed quantity per day and still meet client expectations; ever tighter boundaries
on quality control; competitive pressures that require factories to run at higher uti-
lization rates without an increase in cycle time, more specialty and design parts, etc.
Smarter dispatch is required to offset increases in variability and keep the operating
curve from shifting in an unfavorable direction.

Essentially, the factory is constantly balancing effective tool utilization with stable
delivery against a complex demand statement. This drives the requirement for intel-
ligent dispatch scheduling applications to optimally achieve these goals and limit the
quantity of variability the factory introduces into the system. This leads to simple
applications for dispatch scheduling being replaced with applications that make the
“complex” manageable. Some of the essential components of dispatch scheduling
are given in the next subsection. For a comprehensives review of this topic the reader
is referred to: [3, 8, 11, 16–18, 32, 33].

8.1 Basics of Dispatch Scheduling

The key inputs to dispatch scheduling can be broken down as follows:

1. Tool—Lot affinity (usually linked by the operation)

1.1. What lots can run on this tool? What tools can handle this lot?
1.2. What are preferred tools? What are preferred lots?
1.3. Manufacturing engineering requirements

1.3.1 Count limits (avoid too many lots on certain tools)
1.3.2 Time limits (tool requires re-qualification after a specified amount of

activity)
1.3.3 Process time windows (lot must finish a sequence of steps within a time

limit)
1.3.4 Special customer specifications

2. Global importance of the lot to the supply chain or business—priority
3. Pacing lot movement: fluctuation smoothing, flow balance cycle time allocation,

delta schedule, critical ratio
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4. Local tool characteristics and performance

4.1. Batching and operational trains
4.2. Setup times dependent on previous job run at the tool
4.3. Parallelization opportunities
4.4. Differences in raw process time
4.5. Multiple chambers within a tool
4.6. There may be ancillary equipment required at an operation in addition to the

core toolset and labor

5. Upstream and down stream requirements

5.1. Sending wafers to tools with limited WIP in queue in front of them
5.2. Avoiding tools with large piles of WIP in queue
5.3. Balancing across repeated levels which use the same tool set

The core dispatch decision-making activities can be divided into two primary
components: guidance and judgment (Fig. 4). Appendix 5 has additional details on
both components.
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9 Conclusion: Slow Steady Progress in Extending the Borders
of Bounded Rationality

Herbert Simon [29] observed, “As humans, we have ‘bounded rationality’ and
break complex systems into small manageable pieces.” The challenge for organi-
zations is to integrate information and decision technology to push boundaries out
and improve performance. Nick Donofrio [4], retired IBM Senior Vice President,
observed, “Access to computational capability will enable us to model things that
would never have believed before.” The challenge reaches beyond coding algorithms,
linking to data, and turning it on. Each decision-science team must execute its role as
“intelligent evolutionist” to ensure the organization adopts complex decision tech-
nology in a sustained incremental fashion. Each management must be willing to push
their organization beyond its comfort zone.

Little [21] observed: “Manufacturing systems are characterized by large, inter-
active complexes of people and equipment in specific spatial and organizational
structures. Because we often know the sub units already, the special challenge and
opportunity is to understand interactions and system effects. There are certainly
patterns and regularity here. It seems likely that researchers will find useful empiri-
cal models of many phenomena in these systems. Such models may not often have
the cleanliness and precision of Newton’s laws, but they can generate important
knowledge for designers and managers to use in problem solving.”

Improving responsiveness in the factory is one of the most difficult challenges in
the near-term horizon, but clearly one of the most important. For many firms substan-
tial gains in end-to-end supply chain responsiveness is limited by the modeling tools
and approaches in factories for matching assets with demand and flowing production
and the false illusion from Lean advocates that variability and complexity can be
eliminated.

Appendix 1: Committing Some Lots to Run
Faster—Collateral Impact

Deciding Which Lot are Candidates to Speed Up

Prior to any allocation decisions, the planners must first decide candidate lots to
speed up. This requires two critical pieces of information:

• An assessment of whether the lot is currently behind or ahead of schedule
• The exit demand supported by the lot

The second requirement places a burden on the central planning process to be able
to link each lot to a specific exit demand(s) and trace all intermediary manufacturing
steps. Since this linkage can and will change, creation of the linkage must be dynamic.
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This is called demand pegging or coverage analysis [9] and responsibility for this
foundation of factory responsiveness belongs to central planning.

Model 1: Expediting a Set of Lots from Release into the Line

Assume the factory makes two parts (A and B) with the following routes (Tables 2
and 3).

Each lot for Part A (Table 2) goes through six manufacturing steps and takes
20.7 time units to complete. Of this 20.7 units, 6.8 represent actual processing
time and 13.9 is wait time. Part A spends 67.1% (= 13.9/20.7) of its time wait-
ing and 32.9%(= 6.8/20.7) of its time being processed. Each lot for Part B (Table 3)
goes through four steps (different than Part A) and takes 15.8 time units. Of this
15.8 units, 4.0 represent actual processing time and 11.8 is wait time. Part B spends
74.7% (= 11.8/15.8) of its time waiting and 25.3% (= 4.0/15.8) of its time being
processed.

A move is defined as the completion of one manufacturing step. Part A accom-
plishes six moves in 20.7 units of time. Therefore it averages 0.290(= 6/20.7) moves
per unit time in the factory. Part B lots average 0.253 (= 4/15.8) moves per unit time.
The flow information for the average lot for each part is summarized in Table 4.

Table 4 also contains information on Part B∗ which is exactly the same as a
Part B lot, but travels faster (“fast track” or expedite lots). Each B∗ lot goes through
the same steps as a regular Part B lot and incurs the same RPT. The difference is
average wait time is smaller generating a smaller total cycle time (CT) and CTM. In
this example B∗ has a CTM of 2.50 (= 10/4). Since it moves faster than regular Bs,
its move per unit time is higher 0.400 (= 4/10) compared to 0.253. We will refer to
this set of parts with these cycle times as Case 1.

Of particular importance in Table 4 is the last column—average wait time per unit
time. It is the amount of wait time on average a lot sees per unit time. A lot is in one
of two states—waiting to be processed or being processed (a move). Therefore for
each part “actual process time (RPT) per unit time” (+) “wait time per unit time”
equals 1. In Table 4 we observe the sum of the last two columns for each part is 1.

Now assume the factory starts 10 Part A lots, 20 Part B lots, and 0 Part B∗ lots per
unit time. Then it has a total of 207(= 10×20.7 = starts per day× total cycle time)
Part A lots, 316 (= 20 × 15.8) Part B lots, and 0 (= 0 × 10) Part B∗ lots in the line.
The total accumulated wait time per unit time for Part A lots is 139 (= 207×0.671 =
total lots in the line for this part times average wait time per lot for this part per unit
time) and 236 (= 316 × 0.747) for Part B lots. Wait time for Part B∗ is 0, since no
Part B∗ lots were started. This information is summarized in Table 5.

Assume this load on the factory (10 starts per unit time of Part A at CTM = 3.04
and 20 starts per unit time of Part B at CTM = 3.95) leaves little unused capacity—
putting the factory on the steep part of the operating curve (Appendix 3 [14, 23]).
Therefore any attempt to make some lots run faster requires other lots to run slower.
The slower lots have to absorb wait time from the faster lots.
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Table 2 Route or process steps to manufacture a Part A

Manufacturing Raw process time Cycle time Total cycle time
step (RPT) for this multiplier (CTM) (TCT) fot this

step applied to RPT step = RPT∗ multiplier

Step 01 (for Part A)∗ 1.0 3.3 3.3
Step 02 1.5 3.8 5.7
Step 03 0.8 4.0 3.2
Step 04 2.0 2.0 4.0
Step 05 1.0 3.5 3.5
Step 06 0.5 2.0 1.0
Total / average 6.8 3.04 20.7
∗ Steps for Part A and Part B are not the same

Table 3 Route or process steps to manufacture a Part B

Manufacturing Raw process time Cycle time Total cycle time
step (RPT) for this multiplier (CTM) (TCT) fot this

step applied to RPT step = RPT∗ multiplier

Step 01 (for Part B)∗ 0.8 3.4 2.7
Step 02 1.4 4.5 6.3
Step 03 1.2 4.0 4.8
Step 04 0.6 3.3 2.0
Total / average 4.0 3.95 15.80
∗ Steps for Part A and Part B are not the same

One way to capture this constraint is to assume the total wait time for all lots in
the line per unit time is fixed (375 = 139 + 236). When we sum the wait time for all
lots in the line, it must be equal to this value. If I reduce wait time on one lot by two
units, another lot has to gain wait time by two units. With this constraint we can use
a model to gauge the impact of a decision to have some lots run faster. For example:

Assume Central Planning decides it needs five out of the 20 Part B lots started
each day to complete production in ten time units and makes them “fast track” Part
B∗ lots (Table 6). This is called Case 2. The total wait time burden per unit time
for the Part B∗ lots is 30. Five starts per day for 10 days puts 50 lots in the factory.
Each has an average wait time burden per unit time of 0.600 which results in a total
wait time burden for the 50 Part B∗ lots of 30 (= 50 × 0.6000). The remaining 15
B lots have a wait time burden of 177 (= 15 × 15.8 × 0.747). The total wait burden
on B (regular and fast track) is 207 (= 30 + 177) compared to the prior burden of
236 units. We are now “short” 29 time burden units (= 236–207)—some lots have
to gain waiting time.

Cycle time balance and wait time conservation require other lots in the line to
absorb the 29 units of wait time. There are many possible solutions; one is the
normal CTM for regular Part B lots increases from 3.95 to 4.44, which increases



The Ongoing Challenge for a Responsive Demand Supply Network 51

Ta
bl

e
4

Fl
ow

in
fo

rm
at

io
n

fo
r

av
er

ag
e

lo
tf

or
ea

ch
pa

rt
C

as
e

1

Pa
rt

To
ta

lR
PT

To
ta

lC
T

To
ta

lw
ai

t
tim

e
N

um
be

r
of

st
ep

s
A

ve
R

PT
pe

r
st

ep
A

ve
ra

ge
C

T
M

A
ve

ra
ge

w
ai

t
tim

e
pe

r
st

ep

M
ov

es
pe

r
tim

e
un

it
A

ct
ua

l
pr

oc
es

s
tim

e
(R

PT
)

pe
r

un
it

tim
e

W
ai

t
tim

e
pe

r
un

it
tim

e

Pa
rt

A
6.

8
20

.7
13

.9
6.

0
1.

13
3.

04
2.

31
0.

29
0

0.
32

9
0.

67
1

Pa
rt

B
4.

0
15

.8
11

.8
4.

0
1.

00
3.

95
2.

95
0.

25
3

0.
25

3
0.

74
7

Pa
rt

B
∗

4.
0

10
.0

6.
0

4.
0

1.
00

2.
50

1.
50

0.
40

0
0.

40
0

0.
60

0



52 K. Fordyce and R. John Milne

Table 5 Flow information on all lots in the line Case 1

Part Starts per Total lots Total moves Total process Total wait per
time unit in line per time unit time (RPT) unit time

per unit time

Part A 10 207 60 68 139
Part B 20 316 80 80 236
Part B∗ 0 0 0 0 0
Total 30 523 140 148 375

Table 6 Flow information on all lots in the line Case 2

Part Starts per Total lots Total moves Total process Total wait per
time unit in line per time unit time (RPT) unit time

per unit time

Part A 10 207 60 68 139
Part B 15 237 60 60 177
Part B∗ 5 50 20 20 30
Total 30 494 140 148 346

the normal cycle time to 17.8 from 15.8. This is called Case 3 and the details are in
Tables 7 and 8.

From this base the collateral impact can be estimated through trial and error
with a spreadsheet model or with an optimization formulation. It should be noted,
this approach makes some simplifying assumptions that are not a problem when
considering the impact of minor adjustments; major ones would require more elab-
orate models. The goal is to get the central planner and factory planner to develop
a process and formally recognize waiting time constraints and trade-offs.

Model 2: Expediting Lots Close to the End
of the Manufacturing Line

Often the decision to expedite does not occur for all of the lots of a certain part
or group in the manufacturing line, but only for selected lots in the final third of
their route. At this juncture planners have a reasonable sense of the likelihood these
lots will complete on time and their importance to clients. Planners will look to
selectively pick key lots to push faster (expedite) for four reasons: (a) attempt to
finish on time; (b) attempt to finish early to meet a customer request; (c) meet quarter
end revenue targets; or (d) build some buffer to insure the lots finishes on time. The
following example illustrates a simple methodology to organize this decision process.
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In this example (Table 9), the factory has six lots with only about 80 h of raw
process time remaining (REMRPT) until completion. At this juncture the planners
review these lots, assess whether are they are ahead or behind schedule to finish
on their commit date, and decide if certain lots should be “sped” up—which means
other lots have to slow down.

The “Due Time” column is the number of hours left between now and when the
lot is committed to be finished. D2_CTM (drive to cycle time multiplier) is how
fast (given as a multiple of REMRPT) the lot must travel to finish on time. For lot
A01, its D2_CTM is 3.08 (= 240/78) where 240 is “Due Time” and 78 is REMRPT.
FA_CTM is the average factory cycle time multiplier or the average factory speed
based on the factory load and its point on the operating curve. For this example
its value is 3.5. “Factory Time” is the time the lot will remain in the factory if it
travels at FA_CTM. For lot A01, this is 273 = 3.5 × 78. “Delta Schedule” is an
assessment of whether a lot is ahead or behind schedule. It is “Due Time” minus
“Factory Time.” Positive values indicate the lot is ahead of schedule and negative
values behind schedule. For lot A01, the delta schedule is −33(= 240 − 273).

The next to last column in Table 9 is “wait time burden.” Conceptually the expected
completion date for the lot depends on the “wait time burden” allocated to the lot plus
its remaining raw process time (REMRPT). The lot’s estimated exit (last column) is
REMPRT + Wait Burden. In Table 9, the wait burden initially assigned to each lot
is based on the lot traveling at speed of FA_CTM, where “Wait Burden” = “Factory
Time”—REMRPT. For lot A01, “wait burden” is 195(= 273 − 78). However, the
wait time burden assigned to each lot is a decision controlled by the planners based
on business needs and subject to some constraints—three are:

(1) System balance requires the sum of the wait time burden across all lots match the
current factory operating curve performance point which requires a fixed amount
of total wait time

(2) There is a minimum wait time burden no lot can avoid
(3) There are limits in diversity of wait time burden across lots

How do we calculate the total required wait time? Since the average factory
velocity stated at CTM is 3.5 and the RPT remaining for this group of lots is 478,
this establishes a fixed amount of total wait time that must be burdened across all
lots. This total wait time burden is 1195 (=(3.5×478)−478 = 2.5×478). Observe
this is the total for the “Wait Burden” column.

Table 10 provides an example of a simple “what if” spreadsheet-based tool, where
a planner can try out various wait burden allocations to lots and gauge the impact of
these decisions on the estimated completion time for each lot. The seventh column
(wait time allocation, shaded) is the decision variable. As planners try different
values, columns 8–10 (estimated finish, delta schedule, and required velocity) are
automatically updated. The total for wait time allocation must be greater than or
equal to 1195.

It is straightforward to enhance this modeling method to provide more automated
support for “what if” analysis and incorporate constraints (2) and (3). Additionally,
the model can be adapted to an optimization application.
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The Planned Speedup is Worthless Without Execution

Both previous examples require lots that look essentially the same to run at different
speeds on the factory floor. In the first example most of the Part B lots will run at a
velocity of 4.44 (the CTM), while a few will need to run substantially faster at 2.50.
In the second example, we observe six lots now must run at their required velocity
(RQ_CTM) instead of a standard factor velocity to meet the new business objectives.

This requirement places a substantial burden on factory floor execution, specif-
ically dispatch scheduling—assigning lots to tools. Simple methods such as FIFO
(first in first out) and elapsed time will not work (the lot that has been waiting at the
tool the longest or the lot whose wait time exceeds a certain threshold goes next),
since each inherently assumes equal wait time for all lots waiting to be processed at
a tool set.

Why? Let us look at the case referenced in Table 10. To achieve the planner’s goal
of equal lateness, lot A03 needs to travel at a speed of 3.8 (CTM) and lot A04 at
3.3. A04 must travel faster than A03, which means it needs to absorb less wait time
than A04.

Assume for a moment A03 and A04 are both waiting to be processed at tool LION,
A03 has been waiting at the tool for 185 h and A04 has been waiting at the tool for
176 h. If jobs are processed FIFO, then based on its longer elapsed time—A03 would
be selected for processing first. However, if we look at the allocation of wait time
burden, we see A04 at 176 is past its burden point of 175.7, while A03 at 180 is well
below its burden point of 228.7.

Simple dispatch rules such as FIFO and elapsed time worked when factories
made only a few products in large quantities with steady demand—a rare environ-
ment today. Therefore we observe factory responsiveness requires not just smarter
planning, but the ability to execute which requires smarter dispatch.

Appendix 2: Revisiting Capacity Allocation: a Rabbit Out
of the Hat

The core elements of resource allocation in central planning engines (CPE) are:
(a) linking a manufacturing activity to one or more resources; (b) establishing a
consumption rate for each unit of production by that manufacturing activity for the
selected resource; (c) providing the total available capacity for the resource; and
(d) connecting manufacturing releases (starts) to resource consumption with a linear
relationship. In Table 11, we see operations 101 and 151 can be handled by Tool A
or B. Operations 201, 202, 301, and 302 can be handled only by Tool A. Table 12
tells us the available capacity for Tool A and Tool B is 1152 working minutes per
time unit (for example per day).

Assume, we have a uniform start rate of one lot per day and each lot goes through
each operation (101, 151, 201, 202, 301, and 302) once. In steady state, each operation
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Table 11 Operation resource
linkage

Manufacturing activity Resource Consumption rate

Operation 101 Tool A 10
Operation 101 Tool B 10
Operation 151 Tool A 10
Operation 151 Tool B 10
Operation 201 Tool A 15
Operation 202 Tool A 15
Operation 301 Tool A 15
Operation 302 Tool A 15

Table 12 Available capacity Resource Consumption rate

Tool A 1152
Tool B 1152

would need to process one lot per day. The optimal way to allocate operations to tools
is to assign operations 101 and 151 to Tool B and the remaining four operations (201,
202, 301, and 302) to Tool A. This creates a load on Tool B of 20 (= 10+10) minutes
of processing and 60 (= 15 + 15 + 15 + 15) minutes on Tool A. Since Tool A has
1152 units available, the maximum number of lots per day is 19.2 (= 1152/60).

If the demand rises to 30 lots, the CPE would indicate this is not feasible and most
likely would push some production out in time showing the pieces being delivered
late.

However, the CPE lacks access to the tactical deployment detailed information
and therefore has no method to identify better solutions. That is a solution that enables
the enterprise to deliver lots on time. If the delivery delay is large and the customer
is important, the central planner will contact the factory planner and a review of
the detailed deployment decision will occur to “mine for capacity.” That is look for
opportunities to reallocate capacity to satisfy the demand on time. In many industries
a tool can potentially handle many different operations, but at a given point in time is
only actively deployed (linked) to a small subset of these operations. This “reduced”
deployment occurs for a number of reasons including:

• It is physically impossible for the tool to be “actively” ready for more than a small
number of operations. If we want the tool to handle an operation different than those
currently selected, the tool has to be brought down for a while, “reconfigured,” and
brought back up.

• There are manufacturing performance advantages to limit the number of operations
a tool is currently deployed to handle.

• The manufacturing team often uses deployment decision to attempt to “balance”
tool load by estimating future workload.

• The manufacturing team prefers to deploy its fastest tools to certain operations to
keep total cycle time low.

• Habit or prior practice.
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Table 13 Operation resource
linkage

Manufacturing activity Resource Consumption rate

Operation 101 Tool A 10
Operation 101 Tool B 10
Operation 151 Tool A 10
Operation 151 Tool B 10
Operation 201 Tool A 15
Operation 201 Tool C 30
Operation 202 Tool A 15
Operation 301 Tool A 15
Operation 301 Tool C 30
Operation 302 Tool A 15

Table 14 Available capacity Resource Consumption rate

Tool A 1152
Tool B 1152
Tool C 2000

The reality is the tactical deployment decision made by Manufacturing when
reflected in the capacity information sent to Central Planning understates the flexibil-
ity of Manufacturing to produce parts to meet an increase in demand. This flexibility
can only be uncovered through manual intervention when central planning presses
factory planning.

In our example, it might be Tool C can, after being retooled, be switched from
working on “gadgets” to “widgets”—specifically it could be re-configured to handle
operations 201 and 301. This change is reflected in Tables 13 and 14.

Additionally, the model in the central planning engine can be enhanced to accom-
modate:

• Differences in how effectively different tools can process work at a specified set
of operations. Typically these differences are speed (Tool A is faster than Tool B),
cost (Tool B’s unit cost is lower than Tool A), or yield (a manufacturing error).
For example, this might result in a view that operation 301 will be assigned to Tool
C only as a last resort.

• Minimum tool usage (if operation 301 is assigned to Tool C then it needs least two
units of work per day to remain qualified)

• Limitations of tool-operation pairings (Tool C can do work from Operation 301 or
201, but not both)

We might be tempted to state the old adage—garbage in garbage out—but that
would be wrong and fail to understand the environment that generated the “limited”
but accurate capacity information. In fact, the capacity information provided by
Manufacturing to the central supply chain model as reflected in Tables 11 and 12 was
accurate, but limited. It was limited to the current near-term production requirements
and the near-term ability to use the tools. Tool C can not be used for operations 201
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Cycle Time  versus Factory Capacity Utlization when M=1, offset = 0.9 alpha varies
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Fig. 5 Cycle time versus factory capacity for Morrison and Martin equation (2006)

and 301 until it is “retooled” and qualified. This may take a day or may take a
week—but Manufacturing cannot afford to “retool” on a daily basis.

Appendix 3: Recognizing the Trade-Off Between Capacity and
Cycle Time

Review of the Operating Curve

When variability exists either in arrivals or in services there is a trade-off between
server (tools, people) utilization and the lead time or cycle time to complete an activity
or service. The higher the server utilization, the longer the cycle time. Since higher
planned utilization translates to more effective output the trade-off can be reframed
as effective capacity available or ouput versus cycle time. The curve that describes
this trade-off is called the Operating Curve (OC). Lead time or Cycle time is often
measured as a cycle time multiplier (CTM), where CTM equals total elapsed cycle
time divided by raw process time (RPT). Typically the curve is almost flat for low
utilization levels, then spikes sharply upward from the steep part of the curve Fig. 5.

There are a number of equations that can generate this curve, but the one we will

use is CTM = 1 + offset + α
[

utilM

1−utilM

]
[24].
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• CTM is the cycle time multiplier of RPT—measure of cycle time as a function of
RPT.

• util is the fraction of utilization in the entity—facility, tool set, checkout clerks,
etc.

• Offset represents several aspects of the process that generate wait time and cannot
be eliminated. For example: travel time, hold hours, and post-processing hours
relative to total RPT. A common value for offset may be about 0.9. When offset is
0.9 this sets the minimum CTM at 1.9.

• M is the number of identical parallel machines or servers. Typically this value
ranges from 1 to 4 (even when the number of tools or servers exceeds 4) work best.

• α represents the amount of variation in the system and controls how long the curve
stays flat. The lower the value of α the less variation and longer the curve stays
flat. Common values for α range between 0.35 and 0.65 [10].

Solving for Util, we have Util =
(

CTM−(offset+1)

CTM−(offset+1)+α

) 1
m

Linking Capacity and Cycle Time

Assume that the product XYZ is processed five times by tool set AAA during its
production route. Each time a widget goes through tool set AAA it is referred to as
a “pass.” In this case product XYZ has five passes on tool set AAA. Additionally,
assume 100% process yields and that the average RPT for each XYZ widget on tool
set AAA is two units. In steady state, this makes for a total RPT required per day of
10 (= 5 × 2 units per widget of XYZ on tool set AAA. Assume we start one widget
per day and we have ten units of capacity, what would the cycle time be? The CTM
equation makes it clear the cycle time would be infinite since the capacity required
matches capacity available making tool utilization 100%.

The business states it wants to run this product with a CTM of 4.0. This requires
some portion of time that the tool set is available to produce, but does not have WIP.
How do we incorporate that into the planning process?

We calculate a burden or uplift factor (ULF) per widget based on the target CTM
and the specific characteristics of the Operating Curve for this tool set. Assume the
Operating Curve for this tool set has offset = 1, alpha = 0.5, and m = 1. Using
the above equation to solve for UTIL, the required utilization to achieve the CTM
target of 4.0 is 0.80 (80%). For each unit of raw capacity required, we need 1.25
units available to meet the CTM target. The value 1.25 is the uplift factor (ULF) and
determined by:

U L F = 1/tool_utili zation_meet_cycle_time_target_ f rom_opcurve.
If we have 250 units of capacity available per day, how many widgets can we start

per day at committed cycle time? The answer is 20 (= 250/(1.25 × 10)).

If the business wanted to achieve a cycle time of 3.5, how many widgets could it
start per day? Using the same equation for UTIL, the utilization required to achieve a
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Cycle Time Target versus uplift factor for capacity required per unit of production
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Fig. 6 Uplift in capacity consumption (required) based on cycle time commit

cycle time of 3.5 is 0.75 (75%). The ULF is 1.333 (= 1/0.75). The maximum number
of widgets per day at this cycle time commit is 18.75 (= 250/(1.333 × 10)). Shorter
cycle time equates to reduced widget starts.

Alternatively, instead of decreasing the capacity available, we can uplift the capac-
ity required per unit of production. For the 4.0 cycle time commit, we uplift the
capacity consumption rate of ten units per day per widget to 12.5 (= 10 × 1.25). For
the 3.5 commit, the ten units is uplifted to 13.33 (= 10×1.33). Figure 6 provides the
uplifted capacity consumption rates to input to the central planning process based
on the cycle time the business wishes to achieve.

This example makes it clear that the assumption in a typical central planning
process that cycle time and capacity are independent is not correct—the two are
clearly coupled. We can view this as classical planning meets its uncertainty principle
[10]. It is a rich ground for improved responsiveness and a headache for classical
planners. Since Lean advocates believe that all variation can be eradicated, they have
no awareness of an operating curve and no methods to capture this opportunity.
It is like attempting to ignore special and general relativity and still produce GPS
locations [26].
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Table 15 Deployment decision

Tool A Tool B Tool C No tools covering oper

Operation 1 1 1 1 3
Operation 2 1 1 0 2
Operation 3 0 1 0 1
Operation 4 0 0 1 1
Operation 5 1 1 1 3
Operation 6 1 0 0 1
Operation 7 1 0 0 1
Number opers tool covers 5 4 3

Table 16 RPT, lots, available capacity

Tool A Tool B Tool C # lots

Operation 1 4 20 5 40
Operation 2 15 20 9999999 30
Operation 3 9999999 15 9999999 10
Operation 4 9999999 9999999 20 60
Operation 5 5 5 5 10
Operation 6 8 9999999 9999999 200
Operation 7 10 9999999 9999999 200
Capac avl 720 1152 1296

Appendix 4: How Well Does the WIP Match the Tool
Deployment?

In this example we have three tools (A, B, and C) and seven operations (operation
1–7) to handle the current WIP at this tool set. Table 15 shows the current deployment
decisions made by the factory planner. In the table, a 1 means the tool (column) is
able to service the operation (row). For now these decisions are fixed.

Table 16 provides all of the key pieces of information for the model. The value in
operation / tool cell is the raw process time (RPT) that the tool requires to process one
lot at this operation. For example, the RPT for Tool A to process one lot at operation
1 is 4 time units. A value of 9,999,999 indicates this operation/tool combination
is not currently active, corresponding to a 0 in Table 15. The last column (# lots)
provides the number of lots requiring service of that operation at this point in time.
For example, there are 40 lots at operation 1 waiting to get on either Tool A, B, or C.
The last row (“capac avl”) provides the number of time units of capacity available
for that tool over the service period. Tool A has 720 units available.

Table 17 has the basic “what if” model. The value in each operation/tool cell is the
business decision- the number of lots the tool is assigned to handle for this operation
over some time period. For example, Tool B will handle 30 of the 40 lots that require
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Table 17 Allocation decision and results

Tool A Tool B Tool C Lots served Goal # lots Delta

Operation 1 0.0 30.0 10.0 40.0 = 40 0.0
Operation 2 3.0 0.0 0.0 3.0 = 30 −27.0
Operation 3 0.0 10.0 0.0 10.0 = 10 0.0
Operation 4 0.0 0.0 60.0 60.0 = 60 0.0
Operation 5 0.0 10.0 0.0 10.0 = 10 0.0
Operation 6 90.0 0.0 0.0 90.0 = 200 −110.0
Operation 7 0.0 0.0 0.0 0.0 = 200 −200.0
Cap used 765.0 800.0 1250.0 Total unmet dmd −337.0
Constraint < < <

Cap avl 720.0 1152.0 1296.0
Delta −45.0 352.0 46.0

service at operation 1, ten lots for operation 4, and ten lots for operation 5. These 21
values (cells) (7 operations by 3 tools) represent allocation decisions.

The results of these decisions are found in column 5 (lots served) and row 10
(cap used). The “lots served” column is the total number of lots served for this
operation across all tools. For example 40 lots at operation 1 will be served—0
on Tool A, 30 on Tool B, and 10 on Tool C (40 = 0 + 30 + 10). The row “cap
used” tells us how much capacity is used for each tool. This is the sum of the
product of the allocation times RPT (Table 16). For tool A, the cap used is 765
(=(0×4)+(3×15)+(0×9999999)+(0×9999999)+(0×5)+(90×8)+(0×10)).

The last component of the model is comparing the results of the business (alloca-
tion) decision made with the goals of the factory. The factory has two goals: service
as many lots as possible and use all available capacity.

The “lots served” goal comparison information is in columns 6 (goal type),
7 (target), and 8 (delta). Our goal is to service all lots waiting (=). The target is
the number of lots that are currently waiting (last column in Table 16). The result
is posted in the “delta” column which is simply “lots served” minus “target.” For
example, for operation 2 the value is −27, since our target was 30 and the actual
number of lots served was 3 (−27 = 3 − 30 ). This tells us the current allocation
decision leaves 27 lots waiting at operation 2 “still waiting.” The last value in the
delta column is the total unmet demand based on the current allocation decision. The
value −337 is simply the column sum.

The “capacity goal” information is in the last three rows (goal type, cap maximum,
and delta cap goal). It is a constraint—do not make allocation decisions that exceed
available capacity. The target is the capacity available for each tool (last row in
Table 16). The result is posted in the last “delta” row which is simply “cap used”
minus “cap maximum.” For example, for Tool B the value is 352, since the actual
capacity used was 800 and the maximum capacity was 1152 (352 = 1152 − 800).

This tells us the current allocation decision leaves 352 units of capacity at Tool B
idle.
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Table 18 Revised allocation decision and results

Tool A Tool B Tool C Lots served Goal # lots Delta

Operation 1 0.0 37.0 3.0 40.0 = 40 0.0
Operation 2 0.0 10.0 0.0 10.0 = 30 −20.0
Operation 3 0.0 10.0 0.0 10.0 = 10 0.0
Operation 4 0.0 0.0 60.0 60.0 = 60 0.0
Operation 5 0.0 10.0 0.0 10.0 = 10 0.0
Operation 6 90.0 0.0 0.0 90.0 = 200 −110.0
Operation 7 0.0 0.0 0.0 0.0 = 200 −200.0
Cap used 720.0 1140.0 1215.0 Total unmet dmd −330.0
Constraint < < <

Cap avl 720.0 1152.0 1296.0
Delta 0.0 12.0 81.0

This simple model enables planners to manually assess the quality of their
tentative deployment decisions and estimate the maximum number of lots that can be
serviced with this deployment. Typically a planner will try different allocation deci-
sions (leaving the deployment decision unchanged) to determine how to best allocate
WIP to tools to meet prioritized demand and then send guidelines to Manufacturing.
Table 18 shows an improved allocation plan eliminating overusing capacity on tool
A and reducing overall unmet demand from 337 to 330.

When capacity is highly utilized and tensions are high, most planners will wel-
come an upgrade to a small optimization model where the decision variables are the
allocation values, the constraints are not exceeding the capacity available, and the
objective is to minimize unmet prioritized demand. The extensions to handle integer
values, demand priorities, multiple periods, and partial deployments (which occur
during a phase in) are straightforward.

To enable the planner to model the impact of deployment decisions, we need to
couple the decisions made in Tables 15 and 17. He or she can change the deployment
decision (Table 15); then revisit the allocation decision (Table 17); then assess the
impact on the WIP waiting to be serviced. Again, optimization methods can be used
to reduce the workload on the analyst and handle demand priorities and multiple
time periods [1, 34].

The Planned Deployment Decision is Worthless
Without Execution

As with changing lot velocities, finding an allocation of WIP to tools is only the
first part of success for the factory. The second part is execution. This requirement
places a substantial burden on factory floor execution, specifically dispatch schedule
decision making—assigning lots to tools. Simple methods will not work.
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In this example (Table 18), the plan requires all of the lots for operation 5 to run
on Tool B even though all three tools are equally proficient (Table 16) at processing
operation 5. This decision was made because lots at operation 6 can only run on Tool
A and lots at operation 4 can only run on Tool C. However, on the factory floor doing
this type of analysis at best would be very difficult. Second, from the floor’s point
of view, the RPT for lots at operation 5 is the same (5) for all three tools. Therefore
a casual analysis would make the floor indifferent to which tool handled lots at
operation 5—with dire consequences to the factory! What dire consequences? If the
operator places the lots for operation 5 on tool A, then there is no tool available to run
lots for operation 6. The result would be lower utilization of Tool B and additional
delays for the lots at operation 6.

Appendix 5: Dispatch Scheduling Details on Guidance
and Judgment

Referring to Fig. 4, Guidance or advocate logic is the set of computational activities
(which may be a computer program or manual) to create information posted to some
location (often a table structure) that the assignment logic accesses or to trigger
an assignment module to execute. The most common example is a calculation to
determine whether a lot is ahead or behind its planned pace. Another example is the
updating of a fact base that may contain operation—tool preference based on static
information (such as difference in raw process times between tools executing the
same manufacturing action) or dynamic information (the amount of time will take to
set the tool up to handle this manufacturing action). Other types of guidance include
flow balance (avoid starving a tool set), manufacturing requirements (avoid running
all lots of a certain type on a single tool, but distribute them across three tools), and
process control time windows (lot must complete the next three steps within 5 h or
it will need to be scrapped due to contamination).

Judgment or assignment is the set of computational activities that when completed,
result in a change of state or action on the manufacturing floor. The judgment logic
must balance competing requirements such as meeting on time delivery, demand
priorities, improving throughput with batches and trains, current WIP position, and
tool status.

The real goal of any judgment application is make a sequence of decisions over
time that in aggregate improve the future position of the factory relative to its role in
the total supply chain or demand supply network. The decisions are based on impact
on the future state of the factory, not based on prior events. The sum total of the
prior events has resulted in the current state of the factory. All other measures are
attempts to create an interim goal that can be measured and decisions made against
that is a reasonable approximation of the ultimate goal. Additionally, under some
circumstances, these goals can be at odds with each other and the overall good of the
demand-supply network.
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Simple Judgment typically

• Does not consider the assignment of lots to other tools in the tool group
• Does not consider the assignment of lots over time
• Does not consider upstream or downstream conditions (WIP level and Tool status

and near term throughput rates)
• Uses simple rules of thumb for complex trade-offs
• Written with decision tree one iteration logic
• Generates a single decision, through a series of filters and if-then conditions
• Gives a reasonable (though myopic) decision
• Relies on manual intervention for process time windows
• Typically have to be rewritten for different WIP levels (static adjustment)

Advanced Judgment typically

• Looks across the tool set and upstream and downstream
• Handles all process time windows
• Establishes an anticipated sequence of assignments at all tools in a tool group over

time for lots at the tool or which will arrive soon
• Measures the quality of a proposed solution and anticipates impact on factory

performance
• Uses an iterative search process in judgment logic
• Dynamically adjusts for WIP levels and other business conditions
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WIP-Oriented Dispatching in Complex
Manufacturing Facilities

Oliver Rose and Zhugen Zhou

Abstract Most of the current dispatching approaches for complex manufacturing
facilities like semiconductor fabs are related to due dates. They are variants of
classical dispatching rules such as Critical Ratio (CR), Apparent Tardiness Cost
(ATC ), or Operation Due Date (ODD). Besides that there are a number of opera-
tional control policies which target the control of the inventory level of the work
centers such as Kanban, Starvation Avoidance, or Minimum Inventory Variability
Scheduler (MIVS). While the first set of dispatching rules does not primarily lead
to low inventory levels, the latter ones do not always lead to good on-time delivery
performance. We are currently developing an approach which combines both ideas,
i.e., keeping a low WIP level, avoiding bottleneck starvation, and meeting the due
dates. While due dates are usually given by the planning department, adequate WIP
levels usually have to be set appropriately by means of pilot studies or educated
guessing. As a consequence, an adaptive procedure to determine the adequate
inventory levels should be implemented. In our contribution, we provide an overview
of current dispatching approaches of both types and discuss their pros and cons. Then,
we present our approach in detail and compare its performance with the classical
approaches from the literature. Recently, we were able to outperform ODD with
respect to WIP levels while having the same on-time delivery performance. The
disadvantage is that the optimal target WIP levels (minimum and maximum workload
level for the work centers) had to be set experimentally. In our future study, we intend
to develop a back-propagation neural network for adaptive parameter setting.
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1 Introduction

Nowadays to survive in the global market with increasing and fierce competition, fast,
reliable product and service are the key to success for the companies. Inventory is one
of the most important performance measures in the factory because it has a major
influence on overall manufacturing costs. Excessive inventory requires additional
floor space, storage equipment, and handling system to transport and manage, which
increases the costs as non-value added. Furthermore, high WIP implies the risk of
quality degradation because it is difficult to detect the defects that result in high
rework and scraps. More importantly, according to the Little’s Law [13], a lower
work-in-process (WIP) level leads to a shorter production cycle time given the
same throughput, which has significant economic importance to respond to today’s
quick market change fashion. Besides that, due date commitment is another critical
factor, especially for the customer oriented company, to meet customer satisfaction.
A missed due date causes not only penalty to the company, but also confidence lost
to customer.

During the past 30 years, a number of researchers have investigated the perfor-
mance of various dispatching rules for complex manufacturing facilities like the ones
found in the semiconductor industry (flow shop or job shop). We refer the interested
reader to [1, 25] for details. Different dispatching rules have different performance
objectives. Some rules target due date control to achieve on-time delivery or at least
minimal tardiness. Some rules target WIP balance for operations or work centers
which can also lead to cycle time reduction. While the due date-oriented rules do not
primarily lead to low inventory levels, the WIP-balance rules do not always guarantee
a good on-time delivery performance.

1.1 Single Due Date-Oriented Rules

When the performance objective involves meeting a given due date, due date-oriented
dispatching rules are generally employed to minimize the proportion of tardy jobs,
mean tardiness of tardy jobs, and the like. They can be categorized into static rules
such as Earliest Due Date (EDD) and dynamic rules such as Least Slack Time (LST),
Critical Ratio (CR), Operation Due Date (ODD), and Modified Operation Due Date
(MOD). The EDD rule aims at meeting the due date, and gives the highest priority
to the job which has the earliest due date. Least Slack Time (LST) and Critical Ratio
(CR) are variants of EDD. Besides the due date information, LST and CR consider the
remaining raw processing-time of a job as well. The LST rule calculates the slack for
each job as: Slack = Due–Now–RemainingRPT, where Due is the due date of a job,
Now is the current time, and RemainingRPT denotes the remaining raw processing
time. The job with the smallest slack is favored. LST is an extension to EDD for the
reason that it tells us if two jobs have the same due date, the lot with longer remaining
raw processing time is more urgent because its due date allows less delay. The CR
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rule distinguishes job urgency by a ratio between remaining time to the due date
and remaining raw processing time, Critical Ratio = (Due-Now) / RemainingRPT,
instead of computing a difference like LST. A CR value <1 denotes a job which
falls behind schedule; a CR value =1 means that a job is on schedule, a CR value
>1 represents a job which is ahead of schedule and has slack time left. CR assigns
the highest priority to the job with the smallest CR value. Baker and Bertrand [4]
presented a simulation study of combining due date assignment rules with due date-
oriented dispatching rules. Considering minimizing Mean Tardiness as performance
measure, they concluded that compared with SLT and CR, Shortest Processing Time
(SPT) is effective with tight target due dates and EDD is superior with loose target
due dates. While considering Conditional Mean Tardiness as performance measure,
Muhlemann et al. [23] found out that CR outperforms EDD and LST. Rose [27]
presented a detailed study of the CR rule, and showed that CR leads to sudden
performance degradation when the target due date is too tight. This issue arises
because CR only focuses on the final due date and speeds up jobs which are close
to due date or already late. In contrast, the fresh jobs run out of their slack time and
have to wait in early operations.

The ODD rule [2, 28] succeeds to avoid the above problems of CR. ODD breaks
up the slack time into as many segments as the number of operations of a job,
which means ODD considers due dates for all intermediate operations, unlike CR
which only considers due date of the final processing operation. The ODD value of
operation i is defined as: ODD = Release Time + RPT(i) * FF, where RPT(i) denotes
the RPT for a sequence of processing steps or operations from operation 1 to operation
i (including operation i) and FF denotes the target due date flow factor which is the
ratio of target cycle time and raw processing time of a job. The ODD rule gives
priority to the job with the smallest ODD value. For the final operation of a job the
ODD is equal to the classical due date as it is used for CR, because slack times for
young jobs assigned by the ODD rule are smaller than in the CR case. Therefore they
do not have to let old jobs pass before they are processed. As a consequence, it is not
possible with the ODD rule that problems at operations at the end of the processing
sequence propagate back to the operations at the beginning. Once the operation due
date has been established, the jobs are strictly kept at the right pace to meet their due
date through the factory from the early operations on. Thus, the ODD rule is able to
minimize the variance of job lateness relative to the due date and typically also leads
to a low cycle time variance.

1.2 Composite Due Date-Oriented Rules

The performance of these due date-oriented dispatching rules is mainly affected by
how tight or loose the due date is set [9]. Some rules perform better with tight target
due dates like SPT, although SPT does not use any due date information, while
some rules perform better with loose target due dates such as EDD and ODD. By
noticing the complementary strengths of different rules working with different target
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due dates, Baker and Bertrand [3] presented the composite MOD rule which is a
combination of SPT and ODD. It performs like SPT if the target due date is tight and
like ODD if the target due date is loose. For each job in the queue of a work center at
time t MOD is calculated in the following way: MOD = Max (ODD, t + PT), where
ODD is the operation due date of the job at work center, t is current time, and PT
is the processing time of the job at the work center. The MOD rule gives priority to
the job with the smallest value of MOD. It tends to combine the advantages of SPT
and ODD and provides short cycle times and minimizes cycle time variance while
working with different target due date simultaneously.

There is another composite rule called Apparent Tardiness Cost heuristic (ATC)
[31]. The ATC rule combines the Weighted Shortest Processing Time (WSPT) rule
and the LST rule. There are two characteristics of this rule. Firstly, apart from
processing time, the ATC rule utilizes a look-ahead strategy and takes waiting time
estimates of jobs on downstream work centers into consideration to calculate the
slack time of each operation. Secondly, the ATC rule uses an exponential decay
function to calculate the weight/processing time to allocate priority to jobs. The
simulation results demonstrate that the ATC rule outperforms other due date-oriented
dispatching rules with regard to minimization of weighted tardiness penalties.
However, there are several user-defined parameters in the ATC rule. The application
and accuracy of ATC rule depend considerably on defining appropriate parameters.

Most of these due date-oriented dispatching rules above are local rules. They only
focus on the information of jobs which wait in the local work center buffer instead
of taking into account information from elsewhere in the shop about, e.g., machines
failures, machine utilizations, etc. Furthermore, they only work with due date infor-
mation and focus only on on-time delivery. Thereby, sometimes they are incapable to
handle WIP imbalances because of multiple re-entrant flows, machines breakdowns,
etc. Consequently, the shop runs at a high inventory level with considerable cycle
times.

1.3 WIP-Oriented Release Rules

In contrast to due date-oriented dispatching rules, WIP-oriented dispatching rules
focus on workload control [14] which is a combination of job release approaches
and dispatching/scheduling approaches used to control how jobs flow through work
centers to achieve WIP balance in the line. WIP-oriented rules are typically global
rules which utilize information not only from the local work center where the
dispatching decision is made, but also from upstream and downstream work centers.
Push and pull rules are two classical job release approaches for workload control. On
one hand, the push rule is a make-to-order approach and originated from Material
Requirements Planning (MRP) in the early 1970s [33, 29]. The product (job) release
is based on shop throughput targets. The weakness of the push approach is that
excessive WIP will cause considerable cycle times. On the other hand, the appearance
of Japanese manufacturing techniques such as Just-In-Time (JIT) supported the
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introduction of pull approaches in the early 1980s. With the pull approach product
(job) releases are based on the downstream shop status. A downstream work center
tries to pull a job from an upstream work center. The pull approach has been proven
to lead to less WIP congestion and to easier inventory control than the push approach
[29]. Kanban and CONstant Work In Process (CONWIP) are two popular represen-
tatives of the pull approach. For the Kanban approach [21, 22], there is a card set
between each pair of work centers, and the total system WIP level is limited to the
sum of the numbers of cards in all card set. A job is pulled by each work center
from the previous work center only if the job receives a card authorization. Kanban
controls the WIP at the individual workcenter level. In contrast to Kanban, CONWIP
[21, 30] only uses a single global set of cards to control the WIP level of the whole
shop. Every job seizes a card when it is released to the system for the first time. If all
cards are taken by jobs, a fresh job expecting to enter the system has to wait until a job
leaves the system and the corresponding card is released. Kanban pulls jobs between
each pair of work centers, while CONWIP pulls jobs only at the beginning of the
line. Recently there is a strong interest in CONWIP. Firstly, CONWIP is similar to an
input/output control rule. It is easy to understand and robust to control only requiring
understanding the relationship between WIP and throughput [14]; Secondary, due
to product mix changes, the bottleneck may shift over time. The Kanban approach
needs to adjust the number of cards in each card set to avoid bottleneck starvation
and make sure throughput. Therefore, the CONWIP approach is easier to manage
because there is no tight WIP control between each pair of work centers [20].

Due to the success of Kanban and the appearance of Theory of Constraint (TOC)
[17], the bottleneck-oriented pull approach was developed. Wein [32] introduced
a Workload Regulation (WR) input approach for job releases to the shop. For WR
a target workload of the bottleneck has to be defined. If the actual workload of the
bottleneck drops to the target workload, a new job is released into the shop. Wein
carried out a design of experiments which combines four job release approaches
(Poisson arrival, Constant arrival, CONWIP, and WR) with several dispatching rules.
He found out that the effects of specific dispatching rules rely considerably on both
the type of job release approach and the number of bottlenecks in the shop. The WR
approach is quite intuitive and only requires understanding the relationship between
the target workload of the bottleneck and the system throughput. Therefore, it has
been already widely adapted in real factory environments. However, setting the appro-
priate target workload is the key issue of WR. Currently, using a simulation model
or a queuing network approximation to estimate the target workload of bottleneck is
popular methods [14].

Glassey and Resende [16] presented another well-known bottleneck-oriented job
release approach called Starvation Avoidance (SA). They defined a virtual inventory
of the bottleneck which is used as a measure to keep a proper inventory level at the
bottleneck. The virtual inventory includes the total bottleneck processing time of the
next operations of all jobs which reach the bottleneck work center within a given lead
time plus the expected time to repair the bottleneck machines which are currently
broken down. The lead time is the sum of the processing times of all jobs required
to arrive at the bottleneck the first time after their release. Glassey and Resende [16]
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compared the SA rule with three other job release approaches (Uniform arrival, WR,
and CONWIP). They concluded that SA is more effective than the other job release
approaches concerning near-capacity throughput while maintaining lower average
job delays. However, compared to the WR approach, the SA approach requires more
conceptual understanding and considerable implementation effort because it requires
global inventory information about the whole shop.

1.4 WIP-Oriented Dispatching Rules

Although some researchers claimed that the job release approach is more important
regarding workload control than dispatching [16, 32], there is no doubt that
dispatching is still a powerful way to assist or improve the workload control, because
dispatching approaches have low computational requirements and an intuitive appeal.
In addition, they can be used to avoid machine starvation and they can handle
re-entrant flows to effectively balance the line.

A promising WIP-oriented dispatching rule named Minimum Inventory Variability
Scheduler (MIVS) was proposed by Li et al. [12]. MIVS considers both upstream
and downstream operations, and tries to keep the WIP of each operation close to an
average target WIP level. It gives highest priority to an operation which has a high
WIP level while its downstream operation has a low WIP level to avoid starvation
at downstream operations. In contrast, it gives the lowest priority to an operation
which has a low WIP level while its downstream operation has a high WIP level.
MIVS succeeds in adapting to the nature of re-entrant flows and in reducing the WIP
imbalance through pulling jobs into low WIP operations. The results are reduced WIP
variability and reduced cycle times. Collins and Palmeri [17] compared 1-step ahead
MIVS with K-steps ahead MIVS and concluded that there is no obvious evidence
that 3-step ahead MIVS outperforms 1-step ahead MIVS.

Based on MIVS, Ham and Fowler [19] introduced the Balanced Machine Workload
(BMW) dispatching approach. The BMW considers K-machines look ahead and
J-machines look back, while considering the WIP balance from the machine viewpoint
instead of operation viewpoint like MIVS. Similar to MIVS, Dabbas and Fowler [18]
proposed a global Line Balance (LB) algorithm with the objective of minimizing the
deviations of actual WIP to target WIP for each operation. Through calculating
throughput signals, cumulative signals, and unconstrained quantities, LB determines
portions of WIP at all operation stages required to be pushed forward to balance the
downstream operations. The main novelty and contribution of this approach is that
the authors considered LB as a global dispatching approach combined with several
local dispatching rules such as CR, Flow Control (FC) and Throughput (TP) into a
single rule, with the objective of optimizing different performance measures simulta-
neously. Defining an appropriate target WIP level is the key issue of applying MIVS
or LB. In general, as shown in previous studies [5, 8, 24], using simulation models
or queuing models to estimate the target WIP level is an appropriate way to estimate
target WIP levels. Kuo et al. [11] proposed a back-propagation neural network model
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to determine the target WIP level for the bottleneck and non-bottleneck work centers
instead of a queuing model with the purpose to guarantee a maximum throughput of
the bottleneck while achieving a minimum WIP level.

Perdaen et al. [26] proposed an interesting dispatching concept combining a push
policy (first in first out) and a pull policy (shortest remaining process time) together
via a push–pull point (PPP) to control a typical re-entrant manufacturing line, with
the objective to reduce the mismatch between the daily output and demand. The
novelty of this approach which has not been considered in the literature before is to
introduce the PPP to divide the line where push policy is applied in the upstream
of PPP and pull policy is employed in the downstream of PPP. Through simulation
experiment, they found out that when the PPP control works together with CONWIP
release policy, significant improvement was obtained for the high demand with high
variance compared with pure pull policy or pure push policy, or CONWIP combined
with pure pull policy. The next chapter of this book is dedicated to this approach.

2 Proposed Workload Balance and Due Date Control Approach

Facilitated by the complementary strength of due date-oriented and WIP-oriented
rules, we are currently developing an approach which combines WIP balance and
due date control. On the one hand, WIP balance leads to cycle time reduction. On
the other hand, focusing on due date control achieves better on-time delivery and
tardiness performance. We propose the following approach:

(1) Bottleneck workload control

According to TOC, the performance of the whole shop, e.g., its throughput
is mainly determined by the bottleneck performance [18]. It is necessary to
determine an adequate WIP level for the bottleneck buffer to avoid starvation
and to support the whole shop to achieve its maximum throughput while running
at the minimum WIP level. However, if the WIP level of bottleneck exceeds the
desired WIP level while achieving the maximum throughput of the whole shop,
the cycle time is degraded [10]. Jobs will spend a significant queue time in front
of the bottleneck work center, which will also cause a WIP imbalance of the
line. Similar to the WR rule, we define a minimum workload for the bottleneck
work center. If the actual workload of the bottleneck drops to the minimum
workload, the bottleneck is fed with jobs to prevent starvation. Besides that, a
maximum workload is also taken into account. If the actual workload of the
bottleneck is higher than the maximum workload, bottleneck feeding is stopped
to avoid extraordinary queue time, especially, when the bottleneck is broken
down. In this study, we only consider a single dynamic bottleneck in the shop
where the bottleneck is the work center with the highest utilization.
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(2) Feeding empty non-bottleneck work centers

Although the bottleneck is the most critical work center which determines the
performance of the whole shop, feeding empty non-bottleneck work centers can
also smooth the material flow, avoid capacity losses of machines, and improve
product cycle times. Therefore, a minimum workload is also defined for the
non-bottleneck work centers. If the workload of non bottlenecks drops to this
minimum workload level, lots are scheduled to feed it to avoid starvation.

(3) Acceleration of maximum tardiness lots

In general, any WIP balance algorithm tends to push jobs to work centers that
are running out of WIP without taking due dates into consideration. In this case,
overemphasizing WIP balance has a negative impact on on-time delivery. In
fact, sometimes it would be better to push a delayed job to a relative high WIP
work center instead of pushing an early job to a relative low WIP work center.
Because of customer commitments, keeping the due date is the first priority for
customer-oriented companies. Therefore, a compromise is necessary in order
to meet due dates and reduce tardiness. Pushing a delayed job despite WIP
balance requirements to downstream work centers can give the delayed job a
chance to speed up, to save cycle time, and reduce tardiness, although work
center capacity might be lost. The acceleration algorithm works as follows:

Step 1 In the queue of the upstream work center, we determine the job which
has the maximum tardiness ‘MaxTardinessUp’.
Step 2 Then, we identify the target downstream work center where the
‘MaxTardinessUp’ job will be processed. Next, we find the job which has the
maximum tardiness ‘MaxTardinessDown’ in the queue of the target downstream
work center (like in Step 1).
Step 3 If ‘MaxTardinessUP’ is greater than ‘MaxTardinessDown’, the job which
has ‘MaxTardinessUp’ is assigned a high priority in the upstream work center.

(4) Acceleration of jobs close to their due date

Acceleration of delayed jobs can only reduce tardiness instead of improving
on-time delivery performance. Thus, we propose to speed up the jobs which
are close to their due dates. This provides a mechanism for those jobs to catch
up with their due date. If there is still a predefined number of hours left for the
job to chase after the due date and the CR value of job is less than 1—which
means the job has already been close to its due date and possibly fallen behind
schedule—this job will obtain a higher priority since there is a high probability
that it will be late in the future.

In order to test our approach we extended a simplified version of the global
dispatching rule which is in use at Infineon Technologies AG Dresden, a German
semiconductor manufacturer, with our ideas. We call the rule Workload Balance &
Due Date Control (WB&DDC). In each queue of a work center, jobs are categorized
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into six classes in descending priorities according to their states. The following six
WB&DDC job priority classes were defined:

(1) Jobs waiting more than 48 h in the queue:

(1.1) Delayed job;
(1.2) Non-delayed job:

(1.2.1) Close to due date;
(1.2.2) On schedule.

(2) Acceleration of maximum tardiness jobs.
(3) Feeding empty bottleneck (Bottleneck workload control):

(3.1) Delayed job;
(3.2) Non-delayed job:

(3.2.1) Close to due date;
(3.2.2) On schedule.

(4) Feeding empty non-bottleneck work centers:

(4.1) Delayed job;
(4.2) Non-delayed job:

(4.2.1) Close to due date;
(4.2.2) On schedule.

(5) Jobs for non-empty non-bottleneck work centers:

(5.1) Delayed job;
(5.2) Non-delayed job:

(5.2.1) Close to due date;
(5.2.2) On schedule.

(6) Jobs for overloaded bottleneck (Bottleneck workload control):

(6.1) Delayed job;
(6.2) Non-delayed job:

(6.2.1) Close to due date;
(6.2.2) On schedule.

In the first priority class, jobs spending more than 48 h in the queue waiting for
processing have to be processed immediately to reduce the cycle time variability
of the operation. The delayed jobs which fulfill the criterion for accelerating of
maximum lateness jobs belong to second priority class. This priority class is more
critical than the priority class of the bottleneck workload control method and of
the feeding empty non-bottleneck method because customer commitment is more
important than WIP balance in our approach. Accelerating maximum tardiness jobs
is considered as a compromise to WIP balance. Therefore, the upstream work centers
would rather push the maximum tardiness job to downstream work centers which may
be highly loaded instead of pushing an early job to downstream work centers which
may be starved to maintain WIP balance. The maximum tardiness job has to be moved
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to the next operation to minimize delay. Feeding empty bottlenecks is more urgent
than feeding empty non-bottleneck work centers because the bottleneck determines
throughput of the whole shop. Jobs which are processed next at the overloaded
bottleneck belong to the lowest priority class, since overloaded bottlenecks are more
likely to be subject to congestion and breakdown than normal or even high-WIP
non-bottleneck work centers. In this case, long queues in front of the bottleneck will
result in an irregularity in the process flow. The consequence will be that the average
cycle time will increase considerably although the WIP of the whole factory stays
approximately on the same level. Except for the second priority class, jobs which
belong to the other five priority classes are divided into two sub classes which are
the delayed job class and the non-delayed job class. The delayed job class has higher
priority than non-delayed job class. Furthermore, the non-delayed job class is also
split into two sub classes which separate jobs close to their due dates from jobs on
schedule. According to the acceleration of jobs close to their due date method, jobs
which are close to their due date are more preferential than jobs on schedule. If jobs
belong to the same priority class, the ODD rule is applied as the dispatching rule.

3 Simulation Model

Wafer fabrication facilities (wafer fab) have been intensively studied by academic
and industrial researchers for many years. Scheduling a wafer fab is considered as
one of the most complicated scheduling problems encountered nowadays. There are
several features that differentiate wafer fabs from traditional flow shops or job shops:
(1) product mix (2) hundreds of processing steps for each product (3) reentrant flows
(4) tool dedication (5) batch processing (6) tool random failure and preventative
maintenance, etc. In a wafer fab, the reentrant nature requires that lots at different
processing operations have to compete with one another for the same tools, especially
for those expensive tools like photolithography. Additionally, there are hundreds of
tools in a wafer fab, and they are all subject to random failures and preventative
maintenance. In such an environment, WIP imbalance occurs rather often, some
tools are starved, while some tools are overloaded. This WIP imbalance phenomenon
has a great impact on cycle times and on-time delivery. Hence, customer-oriented
companies have to deal with the WIP imbalance carefully to achieve their customer
commitment. In this study, we choose wafer fab as the simulation model not only
because of its popularity, but also because it will provide an insight to understand
the importance of WIP balance and due date control in other complex manufacturing
environments.

We use the wafer fab dataset Measurement and Improvement of MAnufacturing
Capacities (MIMAC6) to test the proposed WB&DDC approach. MIMAC6 is a
typical 200 mm wafer fab model. The following list gives an overview of the main
characteristics of MIMAC6 model. For further detail about this model, please refer
to Fowler and Robinson [15].
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• Product profile:

– 9 products, 24 wafers of one lot size;
– Avg. mask layers: 30;
– Max. static capacity: 2,777 lots released per year (approx. 5,554 wafers per

month).

• Process flow:

– 9 process flows, max. 355 process steps;
– Avg. line yield: 93%.

• Tool group and operator:

– 104 tool groups, 228 tools;
– 46 single processing tool groups, 58 batch processing tool groups;
– 9 operator groups.

• Availability:

– Failures: clock time-based exponentially distributed random failures;
– Avg. downtime per tool: 13.6%;
– All downtimes are modeled as non-preemptive.

• Process time:

– Constant per wafer, per lot or per batch process times;
– Load and unload times;
– Transport times not modeled.

• Setup and batch:

– Setup avoidance to minimize setup time;
– Different batch IDs to form batches, minimum and maximum batch size.

4 Performance Analysis

We conducted the simulation with Factory Explorer from Wright Williams & Kelly
(WWK), a commercial simulation package for factory models. The simulation of
MIMAC6 was run for 18 months. The first 6 months were considered as warm-up
periods, and not taken into account for statistics. MIMAC6 was simulated with six
dispatching rules: the WB&DDC, MOD, ODD, CR, MIVS and FIFO under 75, 85
and 95% fab capacity loading and with target due date flow factor ranging from 1.5
to 2.9 in steps of 0.2 respectively. Seventy five percent fab loading is considered
as a low loading. In this situation, most of the work centers have a low WIP and
the lots go through the fab smoothly even though FIFO is applied as dispatching
rule, which means WIP may not need to be balanced at all. We are curious that
whether the WB&DDC can take effect to smooth the manufacturing process further



82 O. Rose and Z. Zhou

under this low fab loading case. In contrast, when the fab runs under a high loading
like 95% loading, the manufacturing environment is extremely complex, e.g. some
work centers like bottleneck have extraordinary long queue and the WIP fluctuates
oftentimes. Can the WB&DDC overcome the WIP imbalance and avoid high WIP
taking place? How much improvement can the WB&DDC achieve? These are what
we concern. Here the simulation results of 95% fab loading are analyzed in detail,
the simulation results of 75 and 85% fab loading are listed in the appendix with less
detail. We also present the best average cycle times, the best cycle time variances
and the best cycle time upper 95% percentiles of all rules under 75, 85, and 95% fab
loading, respectively.

In this study, the minimal workload level for all work centers and the maximal
workload level for the bottleneck with 95% fab loading are obtained as following:
(1) one year simulation runs of the factory model with 95% fab loading and
FIFO dispatching was carried out and the ‘minimum’ and ‘maximum’ workload
levels for each work center were acquired; (2) the ‘minimum’ workload was self-
increased and self-decreased from 2 to 20% in steps of 2% like ‘mimimum’
±2% × ‘mimimum′, ±4% × ‘mimimum′, ±6% × ‘mimimum′ . . . ± 20%×
‘mimimum’, and used as the minimum workload level for all work centers for
the WB&DDC approach. The maximum workload level for the bottleneck was
calculated the same as minimum workload level. By simulation experiment,
‘mimimum’-12%× ‘mimimum’ as minimum workload for each work centers and
‘maximum’-16%× ‘maximum’ as maximum workload for the bottleneck can achieve
the best performance for the WB&DDC approach in the following. The same
procedure was implemented to gain the target minimum and maximum workload
levels for the 75 and 85% fab loading.

Average cycle time. Table 1 shows the average cycle time and the respective half
width of the 95% confidence interval for each product. Figure 1 shows the average
cycle time evolution of the fab for different target due date flow factors with six
dispatching rules (WB&DDC, MOD, ODD, CR, MIVS and FIFO). We observe that
the average cycle time of ODD and CR is considerably large when the target due date
is set too tight. Especially for the CR rule, there is a cycle time degradation when the
due date flow factor is changed from 2.1 to 1.9. It also tells us that it is not a trivial
task to assign an appropriate target due dates for each product to facilitate applying
due-date oriented dispatching. The MOD succeeds in avoiding large cycle times with
tight target due dates. Because there is no due date control mechanism for MIVS and
FIFO, their curves do not change for different target due date values. It is evident that
MIVS succeeds in reducing cycle time compared to FIFO. Our proposed WB&DDC
has a similar trend as MOD. Furthermore, it outperforms MOD, MIVS and FIFO
for loose target due dates. At a due date flow factor of 2.1, it reaches its minimum
average cycle time which is better than all other rules. Therefore, the WB&DDC
approach is more robust than ODD, CR and MOD with respect to different target
due date flow factor settings and still superior to MIVS and FIFO with loose target
due date.



WIP-Oriented Dispatching in Complex Manufacturing Facilities 83

Ta
bl

e
1

A
ve

ra
ge

cy
cl

e
tim

e
co

m
pa

ri
so

n
fo

r
di

ff
er

en
tp

ro
du

ct
s

(9
5%

ca
pa

ci
ty

lo
ad

in
g)

D
ue

D
at

e
Fl

ow
Fa

ct
or

(D
D

FF
)

Pr
od

uc
t

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

B
5C

36
.9

±
1.

6
37

.0
±

1.
5

36
.3

±
1.

0
35

.9
±

0.
7

35
.6

±
0.

5
35

.8
±

1.
1

35
.8

±
0.

5
35

.8
±

0.
5

B
6H

F
35

.8
±

1.
9

35
.9

±
1.

7
34

.9
±

1.
3

34
.5

±
1.

2
34

.7
±

1.
0

34
.9

±
1.

4
35

.9
±

1.
3

35
.8

±
1.

4
W

B
&

C
4P

H
26

. 2
±

1.
4

25
.4

±
1.

4
23

.9
±

1.
0

22
.9

±
0.

8
22

.6
±

0.
8

22
.5

±
0.

8
22

.5
±

0.
8

22
.3

±
0.

7
D

D
C

C
5F

31
.9

±
1.

5
31

.7
±

1.
5

30
.8

±
1.

1
30

.7
±

0.
9

30
.1

±
0.

9
31

.9
±

1.
1

32
.7

±
1.

1
33

.3
±

1.
3

C
5P

26
.6

±
1 .

4
25

.9
±

1.
4

24
.5

±
1.

0
24

.9
±

0.
8

24
.7

±
0.

8
24

.8
±

0.
8

24
.9

±
0.

8
24

.9
±

0.
7

C
5P

A
30

.4
±

1.
5

29
.9

±
1.

5
27

.6
±

1.
2

27
.9

±
1.

0
27

.7
±

0.
9

27
.9

±
1.

0
28

.0
±

1.
0

28
.2

±
1.

0
C

6N
3

33
.3

±
1.

7
33

. 0
±

1.
7

30
.3

±
1.

4
29

.7
±

1.
3

29
.7

±
1.

1
29

.4
±

1.
1

30
.1

±
1.

1
30

.2
±

1.
2

C
6N

2
30

.2
±

1.
6

29
.5

±
1.

5
26

.9
±

1.
2

25
.5

±
1.

0
25

.3
±

0.
9

26
.3

±
0.

9
25

.5
±

0.
9

25
.6

±
1.

0
O

X
2

29
.3

±
1.

5
28

.8
±

1 .
5

27
.4

±
1.

1
26

.5
±

1.
0

26
.2

±
0.

8
26

.3
±

0.
9

26
.4

±
0.

8
26

.4
±

0.
7

Su
m

m
ar

y
30

.6
30

.2
28

.6
28

.1
27

.9
28

.1
28

.3
28

.5
B

5C
38

.4
±

1.
8

38
.1

±
1.

3
37

.8
±

1.
3

37
.7

±
1.

2
36

.9
±

0.
5

37
.2

±
0.

5
38

.9
±

0.
5

39
.1

±
0.

4
B

6H
F

34
.8

±
1.

5
34

.6
±

1.
3

34
. 8

±
1.

2
33

.4
±

1.
3

33
.5

±
1.

0
35

.9
±

0.
6

36
.1

±
0.

7
36

.9
±

1.
8

C
4P

H
26

.2
±

1.
6

25
.1

±
1.

3
24

.5
±

1.
1

24
.1

±
0.

9
23

.5
±

0.
9

23
.3

±
0.

8
23

.6
±

0.
8

23
.7

±
0.

7
C

5F
33

.8
±

1.
6

33
.6

±
1.

4
33

.6
±

1.
2

33
.3

±
1.

1
33

.2
±

0.
8

33
.6

±
0.

5
33

.8
±

0.
5

34
.7

±
0.

5
M

O
D

C
5P

28
.3

±
1.

4
27

.7
±

1.
3

27
.3

±
1.

1
26

.7
±

1.
1

25
.6

±
0.

8
25

.4
±

0.
7

26
.0

±
0.

8
26

.3
±

0.
7

C
5P

A
30

.1
±

1.
5

29
.3

±
1.

3
29

.1
±

1.
2

28
. 7

±
1.

1
27

.4
±

1.
1

28
.5

±
1.

1
29

.0
±

1.
2

29
.5

±
1.

2
C

6N
3

32
.9

±
1.

8
31

.4
±

1.
5

31
.0

±
1.

6
30

.8
±

1.
3

30
.5

±
1.

2
30

.7
±

1.
3

30
.6

±
1.

3
31

.6
±

1.
4

C
6N

2
29

.8
±

1.
6

28
.8

±
1.

4
27

.6
±

1.
3

27
.5

±
1 .

2
27

.1
±

1.
0

27
.0

±
1.

0
27

.3
±

1.
0

27
.4

±
1.

2
O

X
2

28
.1

±
1.

4
27

.2
±

1.
2

26
.8

±
1.

0
27

.0
±

0.
8

26
.5

±
0.

8
27

.0
±

0.
8

27
.5

±
0.

7
27

.7
±

0.
9

Su
m

m
ar

y
30

.9
30

.0
29

.7
29

.2
28

.7
28

.8
29

.4
29

.8
B

5C
55

.7
±

6.
5

43
.9

±
3.

4
38

.1
±

1.
6

36
.2

±
0.

9
35

.1
±

0.
6

35
.3

±
0.

4
36

.6
±

0.
5

37
.9

±
0.

4
B

6H
F

54
.7

±
6.

6
42

.8
±

4.
5

36
.9

±
1.

9
34

.9
±

1.
5

34
.2

±
1.

2
34

.5
±

1.
3

35
.8

±
1.

6
36

.9
±

1.
5

C
4P

H
46

.1
±

6.
5

33
.5

±
3.

4
27

.6
±

1.
9

24
.8

±
1.

2
23

.3
±

0.
8

23
.3

±
0.

6
23

.4
±

0.
7

23
.9

±
0.

8

(C
on

tin
ue

d)



84 O. Rose and Z. Zhou

Ta
bl

e
1

(C
on

tin
ue

d)

D
ue

D
at

e
Fl

ow
Fa

ct
or

(D
D

FF
)

C
5F

52
.6

±
6.

6
40

.3
±

3.
3

35
.6

±
1.

8
33

.6
±

1.
2

32
.9

±
0.

8
32

.9
±

0.
4

33
.5

±
0.

5
34

.6
±

0.
5

O
D

D
C

5P
48

.5
±

6.
6

35
.1

±
3.

3
29

.3
±

1.
9

26
.7

±
1.

2
25

.4
±

0.
8

25
.5

±
0.

6
25

.8
±

0.
6

26
.2

±
0.

7
C

5P
A

49
.8

±
6.

6
37

.5
±

3.
4

31
.9

±
1.

9
29

.4
±

1.
3

28
.2

±
1.

1
28

.3
±

1.
1

28
.7

±
1.

2
28

.6
±

1.
3

C
6N

3
52

.6
±

6.
6

39
.4

±
3.

5
33

.0
±

2.
0

31
.4

±
1.

5
30

.4
±

1.
2

30
.5

±
1.

2
30

.9
±

1.
3

30
.6

±
1.

4
C

6N
2

50
.1

±
6.

6
37

.6
±

3.
5

30
.9

±
2.

0
27

.2
±

1.
3

26
.9

±
1.

1
26

.7
±

0.
9

26
.9

±
1.

0
27

.3
±

1.
2

O
X

2
49

.8
±

6.
6

37
.3

±
3.

4
29

.7
±

1.
8

27
.1

±
1.

1
26

.2
±

0.
7

26
.8

±
0.

6
27

.2
±

0.
8

27
.9

±
0.

9
Su

m
m

ar
y

50
.8

38
.1

31
.9

29
.5

28
.5

28
.6

29
.1

29
.7

B
5C

74
.4

±
10

.5
71

. 4
±

10
.3

65
.0

±
9.

4
35

.7
±

1.
6

35
.1

±
0.

4
35

.8
±

0.
5

36
.9

±
0.

5
37

.9
±

0.
6

B
6H

F
72

.0
±

9.
9

69
.2

±
9.

9
61

.8
±

9.
4

34
.3

±
1.

9
33

.9
±

0.
9

34
.5

±
1.

1
34

.8
±

1.
4

35
.5

±
1.

7
C

4P
H

48
.1

±
6.

1
48

.3
±

6 .
2

43
.2

±
5.

6
23

.2
±

1.
0

23
.6

±
0.

6
24

.1
±

0.
7

25
.2

±
0.

8
28

.4
±

0.
9

C
R

C
5F

68
.0

±
10

.0
66

.1
±

9.
9

58
.7

±
8.

8
32

.3
±

1.
5

32
.5

±
0.

9
34

.9
±

1.
2

36
.1

±
1.

3
28

.7
±

1.
6

C
5P

62
.1

±
9.

6
58

.6
±

9.
6

51
.8

±
8.

5
25

.5
±

1.
1

25
.0

±
0.

5
26

.3
±

0.
7

28
.2

±
0.

8
30

.4
±

0.
9

C
5P

A
65

.1
±

9.
8

63
.5

±
9.

9
55

.7
±

8.
9

28
.2

±
1.

5
27

.8
±

0.
9

28
.5

±
1.

0
28

.6
±

1.
1

30
.3

±
1.

3
C

6N
3

71
.0

±
10

.7
69

.4
±

10
.7

60
.9

±
9 .

7
29

.2
±

2.
0

28
.7

±
1.

1
28

.4
±

1.
0

28
.9

±
1.

1
29

.3
±

1.
1

C
6N

2
66

.6
±

10
.1

63
.9

±
10

.1
54

.5
±

9.
1

26
.1

±
1.

6
26

.0
±

0.
9

25
.9

±
0.

8
25

.9
±

0.
9

28
.3

±
1.

0
O

X
2

62
.9

±
9.

7
61

.6
±

9.
8

53
.5

±
8.

6
25

. 7
±

1.
3

25
.9

±
0.

9
26

.9
±

0.
8

27
.5

±
0.

9
30

.3
±

0.
5

Su
m

m
ar

y
65

.5
63

.2
55

.6
28

.4
28

.2
28

.9
29

.6
30

.5
B

5C
34

.9
±

1.
6

34
.9

±
1.

6
34

.9
±

1.
6

34
.9

±
1.

6
34

.9
±

1.
6

34
.9

±
1.

6
34

.9
±

1.
6

34
.9

±
1.

6
B

6H
F

32
.3

±
1.

6
32

.3
±

1.
6

32
.3

±
1.

6
32

.3
±

1 .
6

32
.3

±
1.

6
32

.3
±

1.
6

32
.3

±
1.

6
32

.3
±

1.
6

C
4P

H
24

.7
±

1.
2

24
.7

±
1.

2
24

.7
±

1.
2

24
.7

±
1.

2
24

.7
±

1.
2

24
.7

±
1.

2
24

.7
±

1.
2

24
.7

±
1.

2
C

5F
31

.6
±

1.
5

31
.6

±
1.

5
31

.6
±

1.
5

31
.6

±
1.

5
31

.6
±

1.
5

31
.6

±
1.

5
31

.6
±

1.
5

31
.6

±
1.

5
M

IV
S

C
5P

25
.7

±
1.

0
25

.7
±

1.
0

25
.7

±
1.

0
25

.7
±

1.
0

25
.7

±
1.

0
25

.7
±

1.
0

25
.7

±
1.

0
25

.7
±

1.
0

(C
on

tin
ue

d)



WIP-Oriented Dispatching in Complex Manufacturing Facilities 85

Ta
bl

e
1

(C
on

tin
ue

d)

D
ue

D
at

e
Fl

ow
Fa

ct
or

(D
D

FF
)

C
5P

A
27

.6
±

1.
1

27
.6

±
1.

1
27

.6
±

1.
1

27
.6

±
1.

1
27

.6
±

1.
1

27
.6

±
1.

1
27

.6
±

1.
1

27
.6

±
1.

1
C

6N
3

30
.2

±
1.

3
30

.2
±

1.
3

30
.2

±
1.

3
30

.2
±

1.
3

30
.2

±
1.

3
30

.2
±

1.
3

30
.2

±
1.

3
30

.2
±

1.
3

C
6N

2
26

.8
±

1.
1

26
.8

±
1.

1
26

.8
±

1.
1

26
.8

±
1.

1
26

.8
±

1.
1

26
.8

±
1.

1
26

.8
±

1.
1

26
.8

±
1.

1
O

X
2

26
.4

±
1.

2
26

.4
±

1.
2

26
.4

±
1.

2
26

.4
±

1.
2

26
.4

±
1.

2
26

.4
±

1.
2

26
.4

±
1.

2
26

.4
±

1.
2

Su
m

m
ar

y
28

.5
28

.5
28

.5
28

.5
28

.5
28

.5
28

.5
28

.5
B

5C
37

.8
±

1 .
8

37
.8

±
1.

8
37

.8
±

1.
8

37
.8

±
1.

8
37

.8
±

1.
8

37
.8

±
1.

8
37

.8
±

1.
8

37
.8

±
1.

8
B

6H
F

32
.5

±
1.

7
32

.5
±

1.
7

32
.5

±
1.

7
32

.5
±

1.
7

32
.5

±
1.

7
32

.5
±

1.
7

32
.5

±
1.

7
32

.5
±

1.
7

C
4P

H
24

.2
±

1.
1

24
.2

±
1.

1
24

.2
±

1.
1

24
.2

±
1.

1
24

.2
±

1.
1

24
.2

±
1.

1
24

.2
±

1.
1

24
.2

±
1.

1
C

5F
33

.3
±

1.
7

33
.3

±
1.

7
33

.3
±

1.
7

33
.3

±
1.

7
33

.3
±

1.
7

33
.3

±
1.

7
33

.3
±

1.
7

33
.3

±
1.

7
FI

FO
C

5P
27

.0
±

1.
3

27
.0

±
1 .

3
27

.0
±

1.
3

27
.0

±
1.

3
27

.0
±

1.
3

27
.0

±
1.

3
27

.0
±

1.
3

27
.0

±
1.

3
C

5P
A

28
.0

±
1.

2
28

.0
±

1.
2

28
.0

±
1.

2
28

.0
±

1.
2

28
.0

±
1.

2
28

.0
±

1.
2

28
.0

±
1.

2
28

.0
±

1.
2

C
6N

3
31

.5
±

1.
4

31
.5

±
1.

4
31

. 5
±

1.
4

31
.5

±
1.

4
31

.5
±

1.
4

31
.5

±
1.

4
31

.5
±

1.
4

31
.5

±
1.

4
C

6N
2

28
.1

±
1.

1
28

.1
±

1.
1

28
.1

±
1.

1
28

.1
±

1.
1

28
.1

±
1.

1
28

.1
±

1.
1

28
.1

±
1.

1
28

.1
±

1.
1

O
X

2
25

.4
±

1.
1

25
.4

±
1.

1
25

.4
±

1.
1

25
.4

±
1.

1
25

.4
±

1.
1

25
.4

±
1.

1
25

.4
±

1.
1

25
.4

±
1.

1
Su

m
m

ar
y

29
.6

29
.6

29
.6

29
.6

29
.6

29
.6

29
.6

29
.6



86 O. Rose and Z. Zhou

Fig. 1 Average cycle time
comparison (95% capacity
loading)

WB&DDC vs. MOD vs. ODD vs. CR vs. MIVS vs. FIFO
(95% Capacity Loading)
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Cycle time variance. Table 2 shows the cycle time variance and the corresponding
half widths of 95% confidence intervals for each product. Figure 2 depicts the cycle
time variance performance. As we can see, the ODD rule has a smooth and excellent
cycle time variance curve which is consistent with previous studies. MOD provides
worse results than ODD for tight due dates and similar results as ODD for loose due
dates, because MOD performs like SPT for tight due dates and like ODD for loose
due dates. The CR rule seems to lose control because its cycle time variance curve
changes badly and ranges from 0.6 to 3.2. Because there is no special mechanism for
MIVS and FIFO to minimize cycle time variance both rules are worse than ODD.
The WD&DDC approach has the same control performance as ODD with respect
to cycle time variance because the ODD rule is integrated as an internal rule for
lots belonging to the same priority class. The WD&DDC approach achieves shorter
cycle times and, in addition, a precise prediction of the production completion time
as well. This is a promising result for customer-oriented companies because they
will be able to provide an accurate lead time commitment to their customers.

Cycle time upper percentile 95%. This performance measure provides a cycle time
value below which 95% of the lots’ cycle times fall. It is another important indicator
for cycle time distributions. Figure 3 looks quite similar to average cycle time curve
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WB&DDC vs. MOD vs. ODD vs. CR vs. MIVS vs. FIFO
(95% Capacity Loading)
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Fig. 2 Cycle time variance comparison (95% capacity loading)
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Fig. 3 Cycle time upper percentile 95% comparison (95% loading)

in Fig. 1. The WB&DDC approach shows superior results over MOD, ODD, CR,
and FIFO. However, it is outperformed by MIVS.

Percent tardy lots. Figure 4 illustrates the on-time delivery percentage performance.
If the target due date is defined too tight, 100% of lots are delayed. If the target due
date is too loose, there are no tardy lots. Therefore, we only focus on difference
of selected rule with due date flow factor 1.9, 2.1, and 2.3. For other flow factors,
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Fig. 4 Percent tardy lots comparison (95% capacity loading)

the on-time delivery percentage is either 100 or 0%. Starting from flow factor 1.9,
most of the rules drop from 100% of tardy lots. For flow factor 2.1, the WB&DDC
approach reduces the percentage of tardy lots remarkably compared to MOD, ODD,
MIVS, and FIFO except CR. When the flow factor is changed to 2.3, the percentage
of tardy lots of WB&DDC, MOD, ODD, and CR decreased to 0%, but MIVS and
FIFO still show some delayed lots.

Average tardiness for tardy lots. In Fig. 5, due to their sensitivity to tight due dates,
ODD and CR produce considerable tardiness for tardy lots with tight due date flow
factors of 1.5, 1.7, and 1.9. We see that the WB&DDC approach has a relatively flat
tardiness curve and that it has more robust behavior of the average tardiness for tardy
lots than most other rules (except MIVS and FIFO with tight due date flow factor 1.5
and 1.7). For a flow factor of 2.1, the CR rule has a better percentage of tardy lots
than WB&DDC, but WB&DDC has less tardiness than CR.

With regard to the 75 and 85% loading cases, in general, the results are to be similar
with 95% loading case. Considering the average cycle time, WB&DDC has the same
trend as MOD, ODD, and CR rules but outperforms them. If the target due date is too
tight or too loose, the average cycle time is relatively large compared to the medium
target due date case. Unlike 95% loading, WB&DDC only outperforms MIVS and
FIFO rules when the target due date is appropriate, because it seems that WB&DDC
takes care of the bottleneck more efficiently under 95% loading. Looking at the
cycle time variance, WB&DDC is always superior to MOD, CR, MIVS, and FIFO.
Although WB&DDC achieves a better average cycle time and cycle time variance
than MOD, it is quite interesting to see that WB&DDC is outperformed by MOD
with respect to the percentage of tardy lots and the average tardiness of tardy lots
for tight target due dates. When the target due date is tight, most of the lots tend to



92 O. Rose and Z. Zhou

WB&DDC vs. MOD vs. ODD vs. CR vs. MIVS vs. FIFO
(95% Capacity Loading)
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Fig. 5 Average tardiness of tardy lots comparison (95% capacity loading)

be late. In this situation, SPT plays a major role in MOD, which actually breaks up
the ties of operation due date and speeds up those lots with shorter process times
to achieve better cycle times and to yield a better tardiness performance. Especially
under a low fab loading, the WIP does not need to be balanced at all because lots
go through work centers quite smoothly anyways and due date control seems to be
more important.

5 Summary

Dispatching rules are the most common and popular techniques for operational
control of complex fabrication facilities. Different dispatching rules have different
performance objectives. While due date-oriented rules such as CR, ODD, and MOD
focus on on-time delivery and lateness performance, WIP-oriented rules such as
MIVS focus on WIP balance for specified operations or work centers, or even balance
the whole factory. There is no doubt that an appropriate target due date can achieve
shorter cycle time as well as on-time delivery. However, setting target due date is
not an easy task. The biggest issue for due date-oriented rules such as CR and ODD
is that they are not robust with respect to different due date flow factor values,
particularly when working with tight due dates. On the one hand, over emphasized
due date control may lead to tremendously high inventory level that causes worse
on-time delivery performance. On the other hand, WIP-oriented rules prefer WIP
balance over due date control that sometimes is not acceptable for customer-oriented
companies. Therefore, to achieve both low inventories and good due date perfor-
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mance simultaneously, a compromise between WIP balance and due date control is
necessary.

We propose an approach called Workload Balance & Due Date Control
(WB&DDC) which combines WIP balance and due date control with components for
bottleneck workload control, feeding non bottleneck, acceleration of delayed lots, and
lots close to their due dates. We compared WB&DDC with five classic dispatching
rules (MOD, ODD, CR, MIVS and FIFO) considering average cycle time, cycle time
variance, cycle time 95%percentile, percent tardy lots, and average tardiness of tardy
lots as major performance measures under 75, 85, and 95% fab loading with target due
date flow factors ranging from 1.5 to 2.9 in steps of 0.2, respectively. The simulation
results indicate that the WB&DDC approach is superior and robust to CR, ODD, and
MOD rules with regard to average cycle time, considering different target due date
flow factor changes. In contrast to ODD and CR, it is successful in avoiding high
inventory levels for tight due dates. WB&DDC also outperforms MIVS and FIFO
for average cycle times with appropriate target due date. In addition WB&DDC
achieves the same excellent cycle time variance as ODD, which is a major advantage
and better than all other rules. Although WB&DDC is not the best approach regarding
on-time delivery performance, it is still better than ODD. Furthermore, WB&DDC
produces less tardiness than other rules except of the tight due date case. Our proposed
WB&DDC approach achieves shorter cycle time, lower cycle time variance, better
on-time delivery, and lateness performance simultaneously. The disadvantage is that
the optimal target workload levels, for instance, the minimum workload level for
the non-bottleneck work centers, the minimum and maximum workload level for the
bottleneck work center have to be set experimentally based on the factory model
with FIFO dispatching described above. In our future study, we intend to develop
a back-propagation neural network to determine the target workload level for work
centers. Neural networks have the advantage of being trained with real or simulation
data instead of having to develop complex models and algorithms [6]. In this study,
one-year simulations of MIMAC6 are carried out with different dispatching rules
including FIFO, ODD, CR, EDD, and SPT to generate training data for the neural
network. From each simulation the following results are considered: (1) minimum
(maximum) wafer WIP, (2) coefficients of variation of work center inter-arrival
times, (3) coefficients of variation of process times, (4) numbers of tools in a work
center, (5) maximum process rates, and (6) percent online of work center. This data
forms the input to the back-propagation neural network to determine the minimum
and maximum workloads for all work centers.

Appendix

Figures 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 and 18
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Controlling a Re-entrant Manufacturing
Line via the Push–Pull Point

Dominique Perdaen, Dieter Armbruster, Karl G. Kempf
and Erjen Lefeber

Abstract A reduced model of a re-entrant semiconductor factory exhibiting all the
important features is simulated, applying a push dispatch policy at the beginning of
the line and a pull dispatch policy at the end of the line. A commonly used dispatch-
ing policy that deals with short-term fluctuations in demand involves moving the
transition point between both policies, the push–pull point (PPP) around. It is shown
that with a mean demand starts policy, moving the PPP by itself does not improve the
performance of the production line significantly over policies that use a pure push
or a pure pull dispatch policy, or a CONWIP starts policy with pure pull dispatch
policy. However, when the PPP control is coupled with a CONWIP starts policy,
then for high demand with high variance, the improvement becomes approximately
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a factor of 4. The unexpected success of a PPP policy with CONWIP is explained
using concepts from fluid dynamics that predict that this policy will not work for
perishable demand. The prediction is verified through additional simulations.

Keywords Re-entrant production · CONWIP · Dispatch policy

1 Introduction

A very important feature of the production of semiconductor wafers is the re-entrant
line: Wafers are produced in layers and hence after one layer is finished a wafer returns
to the same set of machines for processing of the next layer. Modern semiconductors
may have on the order of 20–30 such layers. It is typical for wafers to spend several
weeks in such a re-entrant production line, much of the time waiting for available
machines. Process control in such long production lines with thousands of wafer
and hundreds of processing steps making tens of different products is a special
challenge. Most of the time the demand fluctuates on a much faster timescale than
the factory cycle time, making it very difficult to use starts policies to react to the
demand fluctuations. Typically, for a product with a constant mean demand, the
mean demand is started. Due to stochasticity in the production and due to variation
in the demand there is nevertheless a large mismatch in daily outputs and demand. In
practice, to reduce the mismatch, production targets over a certain time horizon are
given and wafers at the end of the production process are sped up or slowed down
using dispatch policies. We are not concerned here with longer and larger fluctuations
that might require an adjustment of the starting rate to cover changes of the desired
WIP level as discussed in [14].

The combination of lot release and dispatching strategies is called Workload
(or Flow) Control. An overview of state-of-the-art published research on workload
control as applied to semiconductor industry is provided in [7]. A thorough overview
of the literature on order release as a flow control is provided in [4], whereas [12]
and [5] are two thorough surveys of the dispatching literature. Commonly used
dispatching policies include: First-In, First-Out (FIFO), Earliest Due Date (EDD),
Weighted Shortest Processing Time (WSPT), Least Slack (LS) and Least Setup Cost
(LSC). In the seminal paper [16] many of these lot sequencing rules as well as a variety
of input controls have been evaluated using simulation models of representative but
fictitious semiconductor fabs. The main conclusion was that order release is more
important than dispatching (30–40% change versus less than 10%), though there
is an important connection between these decisions. Dynamic scheduling studies
were done by [3] who implemented learning of dispatch rules in their simulation
environment. Pure push and pull dispatch policies were studied by [2].

Most of the time demand fluctuates on a much faster timescale than the fac-
tory cycle time. Unfortunately, almost no literature exists on how to deal with
the impact of a production surge or short-term increase in wafer starts that occurs
when unexpected orders are received by a fab that is operating close to its designed
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capacity. In [6, 9, 11] some preliminary investigations into the surge problem have
been done.

In order to deal with these short-term variations in demand we consider a dis-
patching policy which to the authors’ knowledge has not been considered in the
literature before, but which is used in practice. We simulate a reduced model of a
re-entrant semiconductor factory exhibiting all the important features, applying a
push (dispatch) policy at the beginning of the line and a pull (dispatch) policy at
the end of the line. Here a push (pull) policy refers to the fact that a machine that
is able to process more than one step gives priority to the earlier (later) step. Push
policies are also known as first-buffer-first-served and pull policies are known as
shortest-expected-remaining-process-time policies. We use a push policy upstream
and a pull policy downstream. The step at which we switch from a push to a pull
policy is called the push–pull point (PPP). Its dynamics is the control variable. Our
objective (metric) is to reduce the mismatch between daily outputs and demand over
a long time interval. We assume that over that time interval the demand has a constant
mean demand and varies stochastically around the mean. By focussing on the output,
this study complements the important work by [10] who were not concerned with
output but with the behavior of the mean and variance of the cycle times as a function
of different scheduling policies.

We show that with a policy that starts the mean demand, moving the PPP by itself
does not improve the performance of the production line significantly over a pure
push, a pure pull policy or a pure CONWIP starts policy [13] with pure pull dispatch.
However, when the PPP dispatch control is coupled with a CONWIP starts policy,
then for high demand with high variance, the improvement becomes approximately
a factor of 4. We explain the unexpected success of a PPP policy with CONWIP
using concepts from fluid dynamics that predict that this policy will not work for
perishable demand. We verify this prediction.

2 The Factory Model

Our basic factory model consists of 26 production steps executed on nine machine
sets. Table 1 contains all the specifications of this model. The first six machines are
called diff1, diff2, litho1, etch clean, etch1 and ion impl, corresponding to produc-
tion steps associated with diffusion, photolithography, etching and ion implantation
respectively. They are associated with the transistor section of the production line and
a wafer performs four loops through these machines in a specific order as indicated
in Table 1. The last three machine sets are called metal dep, litho2 and etch2, cor-
responding to production steps that generate metal layers for interconnection of the
transistors. The wafer loops through the metalization section of the production line
twice. The transistor and metal loops are completely disjoint and do not share equip-
ment. Rows 1–26 in Table 1 correspond to the 26 production steps. The entries in each
row indicates the machine set that performs the step and the processing time spent in
a machine in the set. For instance, step 3, 6, 10 and 14 are all performed on the pho-
tolithography machine litho1 with cycle times of 1, 1.25, 1 and 1.25 h, respectively.
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Table 1 Factory model

Diff 1 Diff 2 Litho 1 Etch cleanEtch 1 Ion impl Metal dep Litho 2 Etch 2

Step 0 1 2 3 4 5 6 7 8 Station #
1 0.25 Clean wafer
2 8.00 Grow a layer
3 1.00 Pattern it
4 1.00 Etch away some
5 6.00 Grow a layer
6 1.25 Pattern it
7 2.50 Implant ions
8 0.50 Remove mask
9 7.00 Grow a layer
10 1.00 Pattern it
11 1.00 Etch some away
12 0.25 Clean wafer
13 5.00 Grow a layer
14 1.25 Pattern it
15 3.50 Implant ions
16 0.50 Remove mask
17 1.50 Pattern contact
18 1.75 Etch contact
19 2.25 Layer metal
20 1.00 Pattern metal
21 2.25 Etch metal
22 1.50 Pattern contact
23 2.00 Etch contact
24 2.25 Layer metal
25 1.00 Pattern metal
26 2.50 Etch metal

15.00 11.00 4.50 1.50 2.00 6.00 4.50 5.00 8.50 Total hours
required per lot

750 550 900 300 400 1200 900 1000 1700 Total hours
needed per week

0.80 0.75 0.90 0.60 0.75 0.85 0.85 0.90 0.55 Average
availability

134.40 126.00 151.20 100.80 126.00 142.80 142.80 151.20 92.40 Total hours
avail per machine

5.58 4.37 5.95 2.98 3.17 8.40 6.30 6.61 18.40 Minimum num.
tools needed

1.25 1.25 1.00 1.25 1.50 1.10 1.25 1.05 1.10 Constraint
degree desired

6.98 5.46 5.95 3.72 4.76 9.24 7.88 6.94 20.24 Number of tools
needed

7 6 6 4 5 10 8 7 21 Number of tools
installed
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The second part of Table 1 is a spreadsheet calculation to determine the required
number of machines (tools) to have a production target of 200 lots per week, given
availability rates of the machines and desired levels of contraints for a given machine
set. Consider for instance the last 8 rows in the column litho1: A wafer spends a total
of 4.5 h in litho1. Hence to produce 200 wafers per week we need 900 h per week
of machine time. Assuming that a litho1 machine is 90% available and a work
week of 168 h this machine works for 151.2 h per week and hence we need 5.95
machines of that type. Since this is a very expensive machine, it is planned to be
the bottleneck and hence has a constraint factor of 1.0. As a result six machines will
be installed. Taking into account that the diffusion machines batch four wafers per
machine cycle we reach the installation targets in the last row in a similar way for
all columns.

This model is implemented as a discrete event simulation in χ [15, 8] a specifica-
tion language developed at the Eindhoven University of Technology. Stochasticity
enters the simulation at various levels: The time that a machine is in service, and the
time that it is not, is distributed by a Weibull-distribution [8] with a mean "in service"
time of 10 process times and a variance of 50%. The demand is randomly generated
and is fixed for a simulation.

The actual processing times are pulled out of an Exponential-distribution [8] with
the mean equal to the process times in Table 1. Note that, while the raw processing
times of semiconductor processing machines are narrowly distributed, the unloading
of machines depends on the availability of human operators and is highly variable.
Nevertheless using an exponential distribution probably constitutes a worst case
scenario for a practical model. Overall the stochastic parameters are fixed in a way,
such that simulations of the model generate an outflux variance of 20% around the
nominal influx of 200 per week, i.e. the throughput varies between 160 and 240
wafers per week.

3 The Push–Pull Point Algorithm

The goal of the PPP policy is to reduce the mismatch between fluctuating demands and
the stochastically varying outflux of the factory. This policy divides the production
line in two parts. Upstream of the PPP, priorities are assigned using a push strategy,
downstream they are assigned according to a pull strategy. In conflicts across the
PPP we always give priority to the steps in the pull-part. Figure 1 shows a typical
priority assignment.

The PPP is moved depending on the demand: Given a demand period and a
distribution of the work in progress (WIP) over the queues of all production steps
(the WIP-profile), we place the PPP at such a point that the WIP downstream from
the PPP is equal to the demand in the chosen demand period. When the demand
increases, more products have to be pulled out of the line moving the PPP upstream.
When the demand decreases, the PPP will shift downstream.
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Fig. 1 The priority distribution when the PPP-policy is used

The possible success of such a strategy is based on three important facts:

• The clearing function [1], i.e. the throughput as a function of the load in the factory
in steady state is significantly higher for a production line run completely with a
push dispatch policy than for one run completely with a pull dispatch policy. Hence
by increasing or decreasing the part of the production line that is run in pull policy
we temporarily should increase or decrease the outflux. We show below the details
of this effect for our model production line.

• The location of the push–pull point determines the average shape of the WIP profile
in steady state. In particular, on average WIP decreases in the queues downstream
of the PPP and increases upstream from the PPP. Figure 1 shows this schematically
for the queues in front of the photolithography machines for a fixed PPP point.
Figure 2 shows that this is true to a large extent for simulations on average, even
when the PPP point is dynamically moved.

• The cycle time through the factory and the time between readjustments of the
PPP have to be related. In particular, if adjusting the PPP according to demand
on average places the PPP approximately in the middle of the production line
adjusting to higher and lower demand by changing the PPP should be feasible.

4 Results

To determine the effectiveness of the PPP strategy we compare it to simulations with
a starts policy of the mean demand and dispatch policies of pure push, pure pull
as well as a CONWIP starts strategy using a dispatch policy of pure pull. We have
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average position of the PPP plus/minus 2σ. As the PPP point moves upstream the WIP in the last
two photolithography steps decreases and the WIP in the first two photolithography steps increases

also combined the PPP strategy with CONWIP as a starts policy. In all simulations
we employ a FIFO policy within a given queue for a given production step. We run
500 simulations per data point. The demand d(t) for each simulation is generated
independently by choosing a demand for a two day period out of a normal distribution
(throwing away the rare events that gave negative demands) with an average of
180 lots per week. The demand is not perishable, which means that the backlog or the
inventory of the previous demand period is taken into account for the present demand
period. The PPP is adjusted every 2 days (one demand period). Since the cycle time for
our simulation factory is in the order of 5 days, the two day readjustment time places
the PPP well inside the production line. The simulation-time for every single run is
144 weeks. The different control strategies are compared using the absolute value
of the mismatch between output and demand over each demand period. Mismatch
m(t) and costs are given as

m(0) = 0 (1)

m(i) = m(i − 1) + d(i) − o(i) (2)
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Table 2 Variance of cost as a function of the variation of the demand

σdemand/μ 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

σ2
cost 3.0 3.7 6.6 7.9 9.7 27.8 75.1 216.6 578.1

cost(t) =
t∑

i

|m(i)|. (3)

Here o(t) is the output of the factory plus backlog and storage, i.e. over and under-
production cost the same 1$ per lot per demand interval (2 days).

Figure 3 shows the average costs over 500 simulations as a function of the variance
in the demand for all the different strategies. Table 2 shows the variances for the nine
simulation points in Fig. 3.

The results are surprising: Pure push, pure pull, regular PPP (all with mean demand
starts policy) and a CONWIP starts policy (pure pull dispatch policy) with a WIP
level of 119 lots all increase monotonically with the demand variation and have
very similar average cost. In contrast to that, a policy that combines the starts policy
of a CONWIP rule and a WIP of 150 lots with the PPP control policy has almost
constant costs over a wide range of demand variations. In addition the costs for high
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Fig. 4 Throughput as a function of total WIP for CONWIP policies with fixed push–pull points

demand variations are significantly lower for the PPP with CONWIP than for the
other policies—50$ versus more than 200$.

5 Analysis of the PPP-CONWIP Policy

Figure 4 begins to explain the success of the PPP-CONWIP policies. It shows the
clearing functions for CONWIP policies with different fixed push–pull points. The
curve indicated with ppp = 0, corresponding to a pure pull dispatch policy, gives
the highest throughput of all possible policies. The curve labeled ppp = 27 is a pure
push dispatch policy that gives the lowest throughput of all. The intermediate curves
indicated by ppp = x denote a dispatch policy where the push–pull point has been
fixed at step x. Note that for a complete push policy the throughput actually decreases
with an increase in WIP. This is the result of an interplay between the back loaded
WIP distribution of the push policy and the batching in the diffusion steps. Figure 4
also explains the choice of a CONWIP starts policy with a WIP level of 119 lots for
a pure pull dispatch policy used in Fig. 3: The top curve in Fig. 4 represents a pure
pull dispatch policy. The associated WIP level in steady state for a throughput of 180
lots/week is 119 lots which we use as the desired WIP level [14].
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These clearing functions suggests one reason for the success of the PPP-CONWIP
policy: By using a CONWIP starts policy with a high WIP level and switching the
PPP, we can change the outflux in the factory by a significant amount. For instance,
for the WIP level of 150 lots we can get throughputs between approximately 130
and 190 per week. Note also that there is no good push–pull point for a WIP level of
150 that creates the throughput of 180 per week that we are using for our simulations.
A PPP at stage 1–15 creates a throughput much higher and a PPP at stage
15–26 creates a throughput much lower than 180 per week. As a result, a completely
deterministic demand cannot use a fixed PPP even though the demand is constant
and hence has to jump back and forth, creating extra backlog or overproduction cost.
This is the reason for the slight increase in cost for the PPP-CONWIP policy with
WIP level 150 in Fig. 3 for low demand variation.

A different issue explains the failure of the pure PPP dispatch policy to be much
better than a regular pull dispatch policy. Assume a push–pull point in the middle of
the production line and an increase in demand. In response we will move the PPP
upstream and clear out more of the WIP than we usually do over the demand period.
However, we will only start the average amount. Consequently, WIP goes down
and a second increase in demand will move the PPP rapidly further upstream. As a
result we easily reach the point where the PPP is at the beginning of the line and the
policy becomes a pure push dispatch policy. We cannot further increase the outflux
than that. Similarly, a demand signal that has several periods below average will
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eventually move the PPP to the end of the factory and hence constitute a pull policy.
We cannot reduce the outflow further than that. A CONWIP starts policy reduces the
instances that the push–pull point is at one of the extremes of the production line by
instantaneously starting more when more was pulled out of the factory and starting
less if more was left in the factory. Figures 5 and 6 show the position of the PPP as
a function of time for a PPP-CONWIP and a free PPP policy, respectively. Clearly
the free PPP policy gets locked into pure push or pure pull policies much more often
than the PPP-CONWIP.

We can illustrate the difference between free PPP and PPP-CONWIP policies with
the following illustration based on fluid flows. For the purpose of this illustration let
us consider the average behavior of a large number of lots as they move through
the factory. We assume that the average speed v(t) of a lot for a factory that is in
steady state is constant over all production steps and depends on the dispatch policy.
In particular, the average cycle time for a lot under a pull (dispatch) policy is shorter
than for a lot produced under a push (dispatch) policy. Hence the associated average
velocity for a pull policy is higher than that for a push policy. Let us consider a
continuum of production steps and a continuum of lots such that we can define a
WIP density ρ(x, t) that describes the density of lots at stage x at time t. Then the
throughput of the factory becomes λ(x, t) = ρ(x, t)v. In steady state, the throughput
is constant and hence we get a constant WIP profile ρ(x) = λ

v
that does not depend on

t because we are looking at steady state and does not depend on x, because we assume
v to be constant. This is certainly not exactly true but a good approximation for the
purpose of this illustration. Now, for a PPP policy we can consider the upstream part
of the production line as a homogeneous push line and the downstream part as a
homogeneous pull line, each with its own constant velocity with vpush < vpull. Since
the throughput is the same everywhere and since ρv = λ has to hold, we get a jump
in the WIP profile at the push–pull point by the amount

ρpush

ρpull
= vpull

vpush
. (4)

Figure 7a shows the constant throughput and the discontinuous WIP profile.
Assume we now move the PPP upstream by an amount �x instantaneously. The

queues that were just upstream of the PPP and hence had the lowest priority on the
line now move up in priority and therefore speed up. In other words, part of the WIP
profile that used to be in the push region and had a high WIP level now is in the pull
region. As the velocity in the pull region is higher, the product of ρpushvpull > λ, i.e.
we create a flux bump. Similarly we create a flux dip by moving the PPP downstream.
The flux changes are

q · �x = λ
vpull

vpush
, (5)

q · �x = λ
vpush

vpull
, (6)
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Fig. 6 Time evolution of the push–pull point as a function of time for a free PPP policy

for the flux bump and flux dip, respectively. Keeping the PPP at its new location
the flux bump is downstream from the PPP and hence moves downstream with the
constant speed vpull pulling a WIP bump with it until they both exit the factory.
During the time they exit they will increase the outflux. Depending on the remaining
processing time from the push–pull point to the end of the production line, the increase
in outflux may or may not happen within the demand time interval. Figure 7b and c
show this time evolution. After the WIP/flux bump has exited, the total WIP in the
factory is lower and hence in order to satisfy the same demand, the push pull point
will have to move yet further upstream driving it toward the beginning of the factory.

In contrast, the time evolution of the flux bump for the PPP-CONWIP policy is
illustrated in Fig. 8.

As the CONWIP starts policy is implemented by matching the starts to the outflux,
once the WIP bump moves out of the factory, the starts will be increased to create a
new WIP bump. In that way, the total throughput will stay high until the PPP point
is moved downstream again. That will happen when the backlog has moved to zero
and the sum of actual backlog and actual demand has decreased. In that way we
have a policy that reverts all the time to a match between demand and outflux. This
explanation can be checked by running the simulation with a perishable demand
protocol: We only register whether there is a mismatch of the current outflux and
the current demand but do not try to make up for that mismatch on the next time
interval. For such a model the PPP-CONWIP policy should not be better than the
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Fig. 7 Stages of creating a flux-bump

free PPP policy. The only thing that matters is whether the flux bump or flux dip
that is created arrives at the end of the factory within the demand time window. Our
simulations confirm this: PPP and PPP-CONWIP policies behave very similarly and
do not improve the performance of the production line appreciably with perishable
demand.

6 Conclusion

We have studied process control in a reduced model of a re-entrant semiconductor
factory using discrete event simulations. We showed that when running a factory
with a push dispatch policy at the beginning of the factory and a pull dispatch policy
at the end of the factory while using an average demand starts policy, the transition
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Fig. 8 Stages of creating a flux-bump for a PPP-CONWIP policy

point (the PPP) can be used to reduce the mismatch between stochastic outfluxes of
the factory and stochastic demands.

We have two results that are of immediate practical interest:

1. A pure PPP dispatch policy that reaches into the factory from the end and pulls
out the desired demand will not significantly reduce the mismatch between
outflux and demand for a demand signal that has a constant average and varies
stochastically around that average.

2. A PPP dispatch policy coupled with a CONWIP starts policy adjusted for
a WIP level that allows maximal flux changes through moving the PPP will
significantly reduce the mismatch for a production with non-perishable demand.

Process control in these re-entrant production lines is very difficult since only starts
policies and dispatch rules are the obvious control actuators that influence the outflux
of the factory. However, as a byproduct of this study we have identified another control
parameter: The actual WIP profile will be very important for the success of a PPP
policy. It seems likely that very homogeneous WIP profiles are better for the control
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action of the PPP policy than the WIP profile that we have currently examined. Those
WIP profiles are determined by the level of constraint we are choosing for a particular
machine set. It will be an interesting further study to determine the interplay of the
constraint levels and the PPP policy.
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JEDI: Just-in-Time Execution and Distribution
Information Support System for Automotive
Stamping Operations

Oleg Gusikhin and Erica Klampfl

Abstract Stamping is one of the most complex operations in the automotive
supply chain, providing over 400 end items to dozens of assembly plants and ser-
vice facilities. This operation consists of a complex network of blankers, presses, and
subassemblies. Stamping is affected by much variability, such as unexpected machine
and tool down time, quality concerns, and customer requirement fluctuations. These
facilities typically run a tight schedule, and supply chain visibility is a critical factor
in efficient operations. The data pertaining to operations is distributed across several
systems including material requirements planning (MRP), plant floor automation,
and logistics management. As a result, decision makers are faced with too much
data and not enough information. This leads to time loss and effort spent in consoli-
dating and comprehending the data. This chapter describes the Just-in-time Execu-
tion and Distribution Information (JEDI) system that collects and integrates relevant
data from a set of disparate systems and generates a set of spreadsheet models that
represent the stamping production and supply chain status. JEDI not only presents
the information in an intuitive way, but also provides what-if analysis capability and
decision support for scheduling and distribution.

1 Introduction

This chapter addresses scheduling in a complex manufacturing environment
within the automotive supply chain. Specifically, we concentrate on the scheduling of
automotive stamping operations. The main goal of stamping operations is to
satisfy customer requirements posted using the electronic data interchange (EDI).
Demand for individual plant operations is propagated using material requirements
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planning (MRP). The plant strives to follow an optimized cycle plan using safety
stock to compensate for demand and production fluctuations. In the last decade, the
competitive pressure to become a just in time (JIT) manufacturer has resulted in a
substantial decrease in inventory at the plants that used to compensate for problems
common to the manufacturing environment, such as machine failure and quality
problems. In the absence of inventory cushions, plants need to rectify effects of such
events through changes in the schedule.

The data for scheduling and manufacturing execution control is scattered across
multiple corporate business and plant floor systems. These data may have inconsis-
tencies, errors, and may not reflect the latest changes in the inventory status. Plant
personnel typically manage the schedule with pencil and paper and utilize local
Excel files. This leads to time lost and effort spent in consolidating and comprehend-
ing the data. There were a number of attempts to implement automatic stamping
scheduling systems that were not successful because they overlooked the challenges
related to ensuring the quality of the input data and complexity and breadth of oper-
ational decisions available to plant schedulers. Besides the data accuracy itself, the
given input data might not warrant a feasible solution and might require devia-
tions from the normal business practices, such as overtime, premium freight, non-
optimal shipment batches, delaying shipment of service parts, outsourcing jobs, etc.
Capturing and formalizing all these decisions is either impossible or may lead to an
intractable model. In most cases, traditional scheduling approaches focus on opti-
mization or heuristic methods for finding a scheduling solution with a given set of
input data; however, in practice, establishing quality input data usually requires sub-
stantial user involvement. As a result, there is often a gap between the advancements
of optimization capabilities and existing plant floor scheduling practices.

A system for effective and efficient support of scheduling and manufacturing
execution must accomplish the following to close this gap:

• consolidate relevant data and organize it into meaningful information;
• support data validation and verification by making each input data element easily

traceable to the original source;
• provide an intuitive and clear representation of the actual decision-making envi-

ronment with visibility into the demand, supply chain, scheduling, and production
constraints;

• allow for what-if and sensitivity analysis;
• provide a highly interactive interface with immediate feedback on the effect of

decisions.

Then such a system can be an efficient front-end to powerful optimization
algorithms.

This chapter introduces the just-in-time execution and distribution information
(JEDI) system, which is a decision support system that allows plant floor personnel
to customize, visualize, and manipulate the scheduling data for supply chain visibil-
ity and what-if scenario analysis capability. JEDI provides visibility to the schedulers
so that they can interactively change the input data (e.g. part demand, or inventory
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counts) when appropriate to enable feasible scheduling. JEDI leverages the sched-
uler’s expertise and enhances the scheduler’s capabilities, by allowing simultaneous
analysis of the schedule and distribution options, such as using premium freight, and
immediate visualization of the impacts of the decisions on both the upstream and
downstream supply chain operations. JEDI also provides an interface to a number
of optimization algorithms that can be called on demand. The focus of this chapter,
however, is on the models to integrate and manipulate the data. For optimization
methods related to JEDI, refer to [1–4].

The chapter is organized as follows. We first present an overview of both the
automotive supply chain data flow and automotive stamping. Second, we present
the automotive supply chain spreadsheet model and its Excel implementation. Then,
we discuss the decision support interface illustrated with some usage scenarios.
Finally, we review how JEDI integrates with other stamping and enterprise-wide
systems. We conclude with a short summary and system benefits.

2 Automotive Supply Chain Data Flow

Successful relationships between Original Equipment Manufacturers (OEM)s and
suppliers are dependent on effectively communicating data between all levels of the
supply chain. Most suppliers are not dedicated to one OEM, and similarly OEMs
interact with multiple suppliers. Therefore, having a means for standard commu-
nication between all parties is required. The relationship between the automakers
and supply base is governed by a long-term contract, while individual transactions
are handled through an EDI. The key of EDI is that it follows a standard and can
be thought of as a language for communicating structured documents [15]. There
are two main standards: American National Standards Institute (ANSI) X12 and
Electronic Data Interchange For Administration, Commerce and Transport (EDI-
FACT). ANSI X12 is the EDI standard used in the United States, and EDIFACT is
the international EDI standard developed under the United Nations and used by most
of the rest of the world. For a comparison of the two see MEMA [14]. The North
American automotive EDI has been developed by the Automotive Industry Action
Group (AIAG), using the ANSI X12 format.

The following North American EDI transactions are related to scheduling,
manufacturing execution, and logistics: 1. Material Release — 830 [6, 10]; 2. Ship-
ping Schedule — 862 [8, 9]; and 3. Production Sequence — 866 [7] that supports
In-line vehicle sequencing (ILVS) [11]. These EDI transactions are critical in that
they describe how the demand information is posted into the supply chain.

The 830 provides the “weekly” or planning release that is calculated and issued
to suppliers weekly. It authorizes labor, materials, or other resources within a speci-
fied timeframe and provides the requirement forecast beyond that. The 862 provides
the “daily” or ship release schedule. It is calculated and issued to suppliers daily,
covering around two weeks of consecutive calendar days of requirements. This ship-
ping schedule transaction set enables customers to convey precise shipping schedule
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requirements to a supplier and supplements the planning schedule transaction set
(i.e., 830).

For suppliers who provide in-sequence parts, the 866 is calculated and issued to
suppliers daily, covering short-term requirements in the vehicle rotation sequence.
The use of 866 EDI transactions facilitate the JIT manufacturing practice by providing
OEMs with a mechanism to issue precise shipping sequence requirements.

For the first tier assembly plant suppliers, such as stamping, the customer releases
are generated from the assembly line schedule. An assembly plant has its own sched-
ule, which depends on customer orders, plant and supply chain constraints, etc. The
customer releases are generated based on this schedule and other inputs, such as
balance on hand (BOH), parts in transit, and logistics constraints. For scheduling of
stamping operations, the 862 release is a primary source for the customer require-
ments data, and the 830 release is required for planning beyond the 862 release
timeframe.

3 Automotive Stamping

Stamping is one of the most complex operations in the automotive supply chain.
Individual stamping plant daily requirements may include thousands of parts mak-
ing over 400 different end items (i.e., part type that represents a finished product
that is shipped to a customer) to dozens of assembly plants and service facilities.
In general, automotive stamping plants are comprised of three main areas: blankers,
presslines, and subassemblies. The blanking press uses a large sheet roll of metal
(e.g. steel, aluminum) to cut blanks, which are pieces of sheet metal slightly larger
than the desired part (see Fig. 1). These are then sent to the presslines (see Fig. 2),
which consists of several dies that form the three-dimensional part. Example parts
are inner and outer door panels and hoods. Once the parts are made, they are sent
to welding subassemblies (see Fig. 3) or directly as end items to be shipped to the
assembly plants or service facilities.

Figure 4 shows the complexity involving only one stamping part, the front floor
panel assembly, that must be shipped to six customers. Note that this assembly
consists of five subassemblies, three of which must also be shipped to three customers.
One can extrapolate from this figure for only one part the complexity in a stamping
environment with hundreds of parts.

The pressline area shown in Fig. 2 is the bottleneck operation since it has the
most binding constraints [1]. Each pressline is capable of making roughly 5–15
different parts, with some parts having the ability to be made on multiple presslines.
Small stamping facilities have around four presslines, where large stamping facilities
have over 50 presslines. There are usually long changeovers involving the need of
indirect labor for die changeover preparation. Typically, the pressline schedule is
implemented first, and blanker and assembly are subsequently scheduled. Ideally,
stamping would operate to a repeatable cycle plan that is optimized for the mini-
mum cost of inventory, direct labor, and indirect labor services die changeovers [3].
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Fig. 1 Blanker

Fig. 2 Pressline

However, the execution of this plan is often affected by problems typical for any
manufacturing operation, such as machine breakdowns, quality problems, etc. In the
absence of large inventory cushions, these problems must be compensated for by the
plant schedulers: they must modify the existing cycle plan, for example, by reducing
the batch sizes and working overtime. This type of change creates a ripple effect
through the complex supply chain network, such as the one in Fig. 4, and may lead
to the inability to satisfy assembly plant shipping requirements.
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Fig. 3 Welding assembly

The job of the scheduler is very difficult due to the complexity of stamping oper-
ations and the multitude of data that needs to be analyzed. The scheduler must first
get and consolidate data from many different systems, including the corporate MRP
3270 terminal emulator (e.g. Fig. 5), numerous plant floor systems, paper reports
from the plant floor, and radio and phone communication. The MRP screen in Fig. 5
shows how the data is available, but not in an integrated or easy to use and manipulate
interface. Hence, systems such as the MRP are not designed for decision support. As
a result, decision makers are faced with too much data and not enough information.
There is a need for a decision support system that will help to analyze and modify
the data and support the scheduling for all operations and specifically the presslines.
Additional complications arise because the bottleneck area, the press lines, is not
the last area in the process. Consequently, the build requirements for the press line
or blanker have to be exploded from customer releases through the bill of mate-
rial (BOM). The net demand generated by the MRP for individual parts does not
allow for distinguishing between actual assembly plant consumption demand from
the demand raised by the need for safety stock or transportation optimization. Thus,
the decision support system needs to combine scheduling support and MRP logic of
BOM explosion.

The JEDI system, discussed in this chapter, integrates and consolidates supply
chain and production data and generates decision support models as spreadsheet
models, which provide a natural representation for the multi-period, multi-product
scheduling problem at hand. JEDI implements MRP logic as a spreadsheet model
of basic functions; thus, it allows on-the-fly analysis of how changes in the input
data affect the scheduling demand in upstream operations. It is implemented using
Microsoft Excel, which is the most commonly used system at the plant, and hence
reduces the need for training and facilitates system acceptance.



JEDI: Just-in-Time Execution and Distribution Information Support System 125

3L
34

15
10

62
41

02

F
65

B
15

10
9A

68
57

6

F
75

B
15

10
41

47
68

F
75

B
15

10
68

45
11

X
L

34
15

11
14

07
97

X
L

34
18

11
14

07
92

5B
 F

N
D

R
 IN

R
S

 &
 C

R
S

 
M

B
R

   

X
L

34
15

10
9A

68
A

B

F
R

T
 B

D
Y

 P
L

R
S

   
   

   
   

 

2L
14

78
10

41
4A

A

2L
14

78
10

41
5A

A

S
H

E
E

T
 S

T
O

C
K

   
 

F
65

B
15

11
14

00
20

C
O

IL
 F

E
D

 L
IN

E
S

   
   

   
  

F
65

B
18

11
14

00
20

P
N

96
 F

R
T

 F
L

R
 

S
IL

L
 C

E
N

T
E

R
 

3L
34

15
10

59
8A

F

P
N

96
 F

R
T

 F
L

R
 C

R
 

S
IL

L
 A

S
S

Y

X
L

34
15

10
7A

94
A

B

Y
L

34
18

10
7A

94
A

A

P
N

96
 F

R
T

 C
R

S
 

M
B

R
/D

A
S

H
 R

H
 

2L
14

78
10

7A
22

A
B

P
N

96
 F

R
T

 C
R

S
 

M
B

R
/D

A
S

H
 R

H
 

2L
14

78
10

7A
23

A
C

C
R

S
 M

B
R

S
/ 

C
R

S
 S

IL
L

S
   

   

Y
L

34
15

10
68

4A
B

F
R

T
 F

L
R

 P
A

N
S

 / 
R

O
O

F
   

   
1L

34
15

11
14

0A
A

2L
34

18
11

14
0A

C

P
N

96
 F

R
T

 C
R

S
 

M
B

R
 A

S
S

Y
   

 

3L
34

15
10

69
2A

B
F

R
O

N
T

 F
L

O
O

R
 

P
A

N
 A

S
S

Y
 P

N
96

3L
34

15
11

13
5A

G

3L
34

18
11

13
5A

K

A
F

52
M

D
is

tr
ib

u
ti

o
n

 
C

en
te

r

3L
34

15
10

59
8A

F

2L
14

78
10

7A
22

A

2L
14

78
10

7A
23

A
C Y

L
34

15
10

68
4A

B

3L
34

15
10

69
2A

B

3L
34

15
11

13
5A

G

3L
34

18
11

13
5A

K

A
P

02
A

2L
14

78
10

7A
22

A
B

2L
14

78
10

7A
23

A
C

Y
L

34
15

10
68

4A
B

A
P

21
A

3L
34

15
11

13
5A

G

3L
34

18
11

13
5A

K

A
P

23
A

Y
L

34
15

10
68

4A
B

3L
34

15
11

13
5A

G

IE
0C

A

3L
34

15
11

13
5A

G

3L
34

18
11

13
5A

K

F
65

B
15

10
68

40
20

S
H

E
E

T
 S

T
O

C
K

 
B

L
A

N
K

E
R

   
   

H
O

O
D

 IN
R

, C
O

W
L

 
T

O
P

   
   

 
3L

34
15

10
62

4A
F

Fig. 4 Stamping complexity



126 O. Gusikhin and E. Klampfl

Fig. 5 Corporate MRP screen with 862 data

4 Spreadsheet Model of Automotive Stamping

As we stated previously, stamping is driven by the schedule of bottleneck operations
(e.g. presses), while the requirements for the press operations are driven by the
customer releases on the end items. To obtain press line parts requirements, the
customer releases on end items are propagated through the BOM explosion into
the net requirements for the make parts (i.e. components produced at a facility that
are used in a higher level items), running at the presses. Thus, our decision support
model needs to integrate BOM explosion calculus with the machine finite capacity
scheduling. In this section, we first describe the mathematical model that is based on
recursive calculations of the net requirements of the component parts at any level in
the BOM from the gross requirements of the parts in which they are used. Second,
we illustrate the implementation of this model in Excel and describe the algorithm
to automatically generate such a model.

4.1 BOM Explosion Calculus and Scheduling

To simplify the overview of the model, we make following assumptions:

• we assume zero lead time for all of the orders between shipping and presses, since
in most cases assembly can expedite the parts through the lines;

• part demand needs to be met by the end of each time bucket;
• the parts are assigned to a specific machine (i.e. the same part does not run on

different machines);
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• a part must run in a single batch in a given time bucket (i.e. there can not be more
than one changeover for a part in a given time bucket).

Note that the JEDI implementation addresses the cases where these assumptions are
not valid.

In the model we will use the following notation for the part, customer, machine,
and time bucket sets.

ρ = number of parts.
τ = number of time buckets.
ξ = number of customers.
μ = number of machines.
P = {1, . . . , ρ} set of parts.
T = {1, . . . , τ } set of time buckets.
C = {1, . . . , ξ} set of customers.
M = {1, . . . , μ} set of machines.
Ap ⊂ P

⋃
C = set of items for which the make part p is an immediate successor

in the BOM. For an end-item p it is the set of customers for part p.

Pm ∈ P = the set of parts assigned to machine m.

Then, we define the input values and introduce the calculated parameters that keep
track of the inventory position, the balance on hand, the machine capacity, and the
net demand.

rp = the hourly production rate to make part p.

hpt = the hours scheduled to make part p ∈ P in time bucket t ∈ T
lpt = the hours of changeover for part p ∈ P scheduled in time

bucket t ∈ T
Qmt = the number of hours available for machine m ∈ M in time

bucket t ∈ T
D p

t = the net demand for part p ∈ P in time bucket t ∈ T
G p

t = the gross demand for part p ∈ P in time bucket t ∈ T
B p

t = the balance for part p ∈ P in time bucket t ∈ T, which represents
either the projected inventory or demand in time bucket t.

S p
t = the scheduled quantity of part p ∈ P in time bucket t ∈ T

I p
t = the projected inventory on hand for part p ∈ P

in time bucket t ∈ T
Ī p
t = the inventory position for part p ∈ P in time bucket t ∈ T,

which represents either the projected inventory or cumulative
demand in time bucket t.

Ī p
0 = I p

0 = B p
0 = initial balance on hand for part p ∈ P.

The gross demand for part p ∈ P in time bucket t ∈ T equals the sum of the net
demands coming from all successors to part p: G p

t = ∑
p̃∈Ap

D p̃
t , where D p̃

t ≤ 0.

If part p is an end-item, then the demand D p
t is the customer release. However, if

p is a make part, then the gross demand will be the sum of net demands from the
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successor part in the BOM. In this case, the net demand for the part is be calculated
using BOM explosion calculus from the customer releases as follows.

We introduce B p
t to be the balance for part p ∈ P in bucket t ∈ T . We define

D p
t to be the net demand of part p ∈ P in bucket t ∈ T . Note that if there is any

net demand for a part in a given bucket, then the value is always less than or equal
to zero. That is,

D p
t =

{
B p

t if B p
t < 0

0 otherwise

This logic can be represented, for example, by the following formula:

D p
t = min(B p

t , 0). (1)

We define I p
t to be the projected inventory on hand for part p ∈ P in time bucket

i ∈ T : if there is any projected inventory on hand for a part in a given bucket, then
the value is always greater than or equal to zero. Hence,

I p
t =

{
B p

t if B p
t > 0

0 otherwise

Similar to (1), this logic can be represented, for example, by the following formula:

I p
t = max(B p

t , 0). (2)

B p
t can be thought of as the non-zero part balance, which will either be the net

demand or the projected inventory on hand and is calculated as

B p
t = I p

t−1 +
∑

p̃∈Ap

D p̃
t , (3)

where I p
t−1 ≥ 0 and

∑
p̃∈Ap

D p̃
t ≤ 0.

Using the formulas in (1) and (2), the material balance equation in (3) can be
reformulated as follows:

B p
t = max(B p

t−1, 0) +
∑

p̃∈Ap

min(B p̃
t , 0) (4)

Note that B p
0 is the existing balance on hand for every p ∈ P and is always

non-negative. Also, in the case that p ∈ P is an end-item, the net demand is the
customer release (i.e. 862) and is represented as a negative number.

We can recursively apply formula (4) to go from the customer demand to the
net requirements of the parts assigned to the machine that we will schedule. Then,
for each bucket t ∈ T , machine m ∈ M , and part p ∈ Pm (i.e. parts running on
machine m), we calculate the inventory position as
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Ī p
t = Ī p

t−1 + G p
t + S p

t , (5)

where Ī p
0 is the initial balance on hand for part p, and G p

t = ∑
p̃∈Ap

min(B p̃
t , 0) ≤ 0

is the gross demand for part p in time bucket t. S p
t is the quantity of parts p ∈ Pm

scheduled on machine m ∈ M in time bucket t ∈ T . The inventory position Ī p
t gives

the cumulative demand up to the current time bucket and takes into account parts
scheduled for the given time bucket, while B p

t gives the demand only for the given
time bucket.

The desired schedule should ensure that for any time buckets within the period
for which a schedule exists, Ī p

t is at least non-negative or ideally close to a preset
safety stock number. In other words, for any period in which we have a schedule, we
should not have any unsatisfied demand. If for a certain time bucket Ī p

t is negative
and Ī p

t+1 is non-negative, then this indicates that certain orders are potentially late
against the shipping demand and requires the scheduler’s attention.

The quantity S p
t of parts p ∈ Pm that can be scheduled in any time bucket t ∈ T

is bound by the finite capacity of machine m ∈ M . We let rp be the rate at which part
p ∈ Pm can be made per hour on machine m ∈ M and h pt be the hours scheduled to
make part p ∈ Pm on machine m ∈ M in time bucket t. Then, the quantity of parts
p ∈ Pm scheduled in time bucket t ∈ T on machine m ∈ M is

S p
t = h ptrp. (6)

We consider that each part is assigned to a dedicated machine, but we must
guarantee that in each time bucket every machine is not over its maximum capacity,
Qmt , defined by the number of hours available. If we let l pt be the hours of change-
over required for part p ∈ Pm in time bucket t ∈ T on machine m ∈ M , then we
can satisfy the condition that the machine’s maximum capacity is not exceeded by
the following constraint:

∑

p∈Pm

(h pt + l pt ) ≤ Qmt ∀ m ∈ M, t ∈ T . (7)

In addition to the above constraint, a valid schedule would need to satisfy other
constraints such as no overlapping jobs on the same machine in the same time bucket
and that the run hours are always preceded by changeover hours. These constraints can
be enforced through customized data input or highlighted through Excel conditional
formatting. Note that the goal of this model is not to serve as a basis for scheduling
optimization but to provide a visual representation of the relations between the data
and constraint violations in the decision support system, which we demonstrate in
the next sections.
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Fig. 6 Pegging tree for work
center Line 1
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4.2 Excel Implementation

For illustration purposes, consider the example presented in Fig. 6. Assume we have
two parts, C-1 and C-2, which run on work center Line 1. The first part, C-1, is a
component, which is required by another component, D-1. This part, in turn, is used
in two different end items, E-1 and E-2, which are shipped to several customers,
AP1, AP2, and SF1. The second part, C-2, is an end-item that is directly shipped
to two different customers, AP3 and SF1. The customers whose names begin with
“AP” are assembly plants, and those beginning with “SF” are service facilities.

Figure 7 shows the excel implementation of the model presented in Fig. 6. Note
that the parentheses are used to represent negative numbers. The rows associated
with the BOM structure for each of the parts assigned to the work center (e.g. C-1
and C-2) are grouped together. Rows 3–11 represent the demand chain rooted in
the part C-1, and rows 14–16 represent the demand chain rooted in the part C-2.
The customer demand is organized into daily buckets. The customer requirements,
the 862 shipping release, are populated in the cells corresponding to different time
buckets (see rows 3, 4, 6, 7, 8, 14, and 15 with a gray background).

The two end items E-1 and E-2 are associated with part C-1. Rows 5 and 9 contain
the demand net on-hand inventory for these end items, which is calculated from the
customer release and the existing on-hand inventory derived from equation (3) in
Sect. 4.1 . The existing on-hand inventory for these end items are in cells F5 and F9,
respectively. For example, the daily net demand on 7/31 in cell G5 is calculated using
equation (4) as “= MAX(F5,0) + MIN(G4,0) + MIN(G3,0),” where F5 corresponds
to the inventory in the previous period, G3 is the 862 shipping release associated
with the assembly plant AP1, and G4 is the shipping release to assembly plant AP2.
As a result, each cell associated with the demand of part E-1 will contain either the
projected inventory for the given day in the case of a positive number or the net
demand for this day in the case of a negative number.
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Fig. 7 Excel implementation of work-center Line 01

The combined demand from parts E-1 and E-2 constitute the gross demand for
part D-1. The net demand for D-1 is calculated in row 10 and is then used to calculate
the net demand for part C-1 in row 11. The net demand for part C-2 is calculated
directly from the shipping releases to service facility SF1 and assembly plant AP3
in rows 14 and 15, respectively.

Rows 12 and 17 contain the inventory positions for parts C-1 and C-2, respectively,
which are calculated using Eq. (5): this is the cumulative demand minus the inventory
on hand plus the cumulative parts scheduled up to this period that are assigned to the
given work center. The schedule for parts C-1 and C-2 are entered as the quantity of
run hours in rows 21 and 24 starting from column G. Run hours are converted into
the quantity of parts using the hourly rate in cells B21 and B24: for example, the
formula to calculate the number of parts of type Part C-1 scheduled in cell G13 is
“=B21* G21” that results in the value of 1,200.

We include in the schedule for any part the number of changeover and run hours.
For example, for parts C-1 and C-2, the number of changeover hours are in cells
C20 and C23, respectively, and the number of run hours are in cells B21 and B24,
respectively. The item associated with “Start” in column A is an informational field
containing the start time of the changeover if different from beginning of the day.
For example, cell G19 contains the start time of the changeover of part C-1 to be
at 15:00. Rows 25 and 26 provide a summary for the total changeover and total run
hours for the day, while row 27 summarizes the total work center hours scheduled
for the day to make sure that the hour limits are not exceeded, such as 24 hours for
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a three shift operation. To visualize the constraint violation for hours available, we
can implement conditional formatting that will change the cell background in row
27 to red when the value in the cells exceeds the number of hours available.

4.3 Automatic Model Generation

Generation by hand of such models described in the previous section would be
prohibitively time consuming and error prone. The way to address these issues from
manual generation is to automate the generation of such models from the MRP
data. In doing so, the models can be formatted and protected so that the users can
only modify the cells for which they have permission based on their job function.
Furthermore, this ensures the models would match predefined templates that would
allow storing all modified data back into the database.

As we can see in Fig. 6 , the data behind the model has a tree structure with a root
at the given make part and leaves associated with customers. The model is generated
using data from the MRP system, including the BOM, parts and their associated
work center, and end items and their associated customers shown in the tables in
Fig. 8. Based on these tables, we create a new table that defines a pegging tree for
each part by listing pairs of consecutive nodes in the tree structure with a root in the
given part. Figure 9 provides an example of such a table for parts C-1 and C-2. The
column Root has a reference to the part ID that defines the root of the tree. Other
columns are “Node” (i.e. a part or customer ID that is downstream from the root),
“Node Prev” (i.e. node that immediately precedes the specified Node), “lineage” (i.e.
concatenation of the unique node ids from the root to the given node, and “depth” (i.e.
how many levels are between the root and the given node). Then for the given work
center, we can create a query that includes all the rows from this table associated
with the parts at the given work center sorted in descending order by lineage. Sorting
this way guarantees that the order of the rows in the resulting set satisfies that the
calculations for the given row are derived from the values in the rows preceding the
given row in the result set.

At first we determine the maximum number of levels for the given set of parts and
determine the starting column in Excel to start generating the requirements. Figure 10
provides a schematic of the algorithm used to generate the model. The algorithm
reads one row at a time starting with the first customer, c4. The algorithm generates
an appropriate set of rows in Excel. For a row that is associated with customer
requirements, the cells are merely inputs that will be subsequently populated with
customer release data. For assembly plant customers, the algorithm will generate
additional rows for the assembly plant status.

After processing the initial row, the algorithm puts the references to the Excel row
in the last-in first-out stack and proceeds to the next row. The next two rows are other
customers, c3 and c2, for the same end item, p5. In this case, the algorithm generates
appropriate rows in Excel and puts the appropriate references to rows associated
with c3 and c2 in the stack. The next entry is part p5: the algorithm creates Excel
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Fig. 9 Pegging table containing the data set for Line 01
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rows associated with make part p5 and creates appropriate formulas by extracting
the reference to children nodes of p5 from the stack and generating a formula that
includes the sum of the net requirements from c4, c3, and c2. The algorithm puts
a reference to the p5 row in the stack. The two next entries in the data set are
the reference to the customers c3 and c2 for the end item p4. The algorithm follows
the above logic until it reaches the entry with part p3. Here, the algorithm extracts the
references to the children of p3, p4, and p5 and generates appropriate formulas with
gross demand of p3 as the sum of the net demands from p4 and p5. The algorithm
also builds a cross reference table that references the part numbers and customers
with the position in Excel. This table will be used to create a scheduling portion of the
spreadsheet model and to populate actual data from the systems. When the algorithm
finishes performing this logic for all the parts assigned to the workcenter, it then
generates the rows for schedule input using a cross-reference table. After generating
the rows and formulas, the algorithm performs post-processing that formats and
structures different elements of the spreadsheet to improve clarity and visibility of
the information as described in the next section.

5 Spreadsheet-Based Decision Support System

The type of model described in Sect. 4.2 could be too cumbersome for the scheduler,
especially when the number of parts assigned to a workcenter is relatively large (e.g.
10 or more parts). To address this, we exploit the Excel rich formatting capabilities
to modify the representation described in Sect. 4.2 to provide a clearer view of the
model together with supplemental information for decision support. First, we can
hide all rows for intermediate parts for which the user will not provide input (e.g.
rows 5, 9 and 10 in Fig. 7 ). Also, we use the Excel group function to group all rows
associated with the supply chain representation of the individual parts.

As a result, we can get a clear view of the work center load and schedule with
the capability to drill down on individual parts. For example, the Capacity view in
Fig. 11 shows Line 01 with 10 parts representing inventory positions for every part
and the schedule for parts. Different work centers are represented by individual excel
worksheets: for example, you can see in Fig. 11 worksheet tabs associated with fifteen
workcenters. The Capacity view shows all parts assigned to the given work center with
associated projected inventory positions (the first row for each part) and scheduled
quantity (second row for each part) grouped in daily buckets. The positive numbers in
the inventory position row represent the projected balance on hand for the given part,
while negative numbers denoted with parentheses represent the cumulative demand
exploded from customer requirements through the BOM structure and associated
inventory levels. The capacity view provides clear visualization of the capacity load
and potential problems that could impact satisfying customer demand for every part
in the work center.

The user can explore the individual parts in detail by clicking the ‘+’ next to the
part. The part information will expand to provide a supply chain and pegging view for
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Fig. 11 Capacity view

individual parts. Figure 12 presents a supply chain view together with the BOH for
every intermediate part: for example, we can see the expanded view for the part C-1
from Fig. 6. This view allows the scheduler to check and modify the BOH for every
part in the chain. For critical parts, the user can inquire after the latest information
on available parts from the floor (through radio) and modify the BOH in the model,
accordingly. In this representation, all hidden part names from the BOM structure
are defined in the comment field associated with appropriate cells and can be viewed
by mousing over: see the comment highlighted for part E-1 in Fig. 12 .

For assembly plant customers, the system provides more detailed information
pertaining to the given assembly plant status and consumption schedule. Specifi-
cally, this information includes the preferred transportation mode (e.g. rail or truck)
together with the transit time. It also provides the assembly plant status information,
such as

• days on hand: the number of days that can be covered by the existing assembly
plant BOH

• will not make: parts in transit that are deemed to be late
• pending cycle: the variance between a part’s physical count and the plant’s record
• BOH: parts at the assembly plant warehouse and parts in transit less parts that will

not make it on time.

If we look at the expanded view for part C-1, we first see the balance on hand for
part C-1 = 3312. Next we see the balance on hand for part D-1 = 861 and subsequently
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Fig. 12 Pegging supply chain view

the balance on hand for parts E-1 = 29 and E-2 = 190. Associated with the parts E-1
and E-2 is the information related to assembly plant demand and the 862 release
schedule. In this example, we are shipping part E-1 to assembly plants AP1 and
AP2. The rows with AP1 and AP2 in them contain the 862 release schedule. The
information related to the assembly plant consumption schedule is organized in three
rows above the 862 release schedule row. The first row shows the assembly plant
consumption schedule. The second row shows the consumption schedule net the
assembly plant BOH. Finally, the third row shifts the demand net inventory based on
the transportation time associated with the given part-customer combination. This
gives a base demand number (i.e., the minimum number of parts that a supplier
must provide to satisfy the assembly plant’s consumption) that can be compared to
the customer release on the next row. The transportation time shift is implemented
as a custom formula in Excel. We also implemented conditional formatting for the
assembly plant demand to highlight the cases when the cumulative base demand of the
assembly plant exceeds the cumulative customer release. This allows schedulers to
compare the shipping release against the actual consumption requirement to validate
the accuracy of the data and in case of shortages in capacity, modify the shipping
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release to non-optimal shipping alternatives that satisfy the assembly consumption
schedule.

Furthermore, looking at the first customer in Fig. 12 AP1 uses rail transportation
denoted by a “R” with a transportation time of 5.1 days. The inventory available
to the assembly plant covers 5.6 calendar days. Also, part Part C-1 has 3,000 parts
in transit to AP1 (in the “won’t make” column) that according to the transportation
records will not make it to the customer on time, which causes an inflated customer
release on the first two days. The user can analyze the details of this situation, which
could reveal that the delay will be only for few minutes and that all of the parts can
be considered “on time.” Based on this insight, the user can manually modify the
customer requirements and gain a completely different perspective for the demand
even before looking at the work center scheduling. The user can also analyze other
what-if scenarios, such as how would requirements change if we can use a truck with
1.2 days instead of rail with 5.1 days. This way, the scheduler can see the tradeoff
in shipping using a truck with less transportation time versus the existing preferred
rail mode of transportation requiring more transportation time and can modify the
original 862 release if the decision is for a transportation deviation.

In addition, Fig. 12 shows that customer AP2 for E-1 has 2,600 parts in pending
cycle. When booked, it will affect the assembly plant’s BOH with an immediate jump
in the customer’s shipping releases. This pending cycle column gives early warning
of potential part shortage and allows the scheduler to take preventive actions to
avoid overtime and premium freight for shipping, when possible. Our internal studies
showed that 70% of premium freight transportation is due to pending cycle booking
process.

This additional assembly plant information allows comparison between the actual
requirements by the assembly plant and the current MRP generated customer
releases: the scheduler can then correct potential errors in the BOH at the assembly
plant or for intermediate parts and conduct different what-if analysis. These scenario
analysis can address what happens if we use alternative faster modes of transporta-
tion, such as truck instead of rail or the effect from booking of pending cycle parts.
As a result of this detailed analysis, the scheduler can modify the original customer
release.

Finally, to improve editing and visibility into the daily schedule, we developed an
Excel add-in that can provide a block diagram for the schedule representation (see
Fig. 13). This add-in reads and interprets the data pertaining to the setup start time,
changeover duration, and run time. This chart shows the detailed time required for
changeover and to make each batch of parts. Each batch concatenates the changeover
hours followed by the production run hours. The changeover time is the first time
shown associated with a part number, and the second time associated with the same
part number is the time required to make that part. We refer to this detailed portion
of the scheduling chart as a “snake diagram” because as the length or position (i.e.,
start time) of the bars in the chart are modified, the bars instantly wrap around to the
next day. For example, part C-1 cannot be finished being made on Friday, and so the
needed time to make C-1 is reflected by the bar for that part on Monday, skipping
the weekend. The snake diagram automatically skips days when the plant is shut
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Fig. 13 Scheduling view

down as defined in the work center calendar, such as Sunday. If the plant wanted to
conduct a what-if scenario to see if they should run the plant on the weekend with
overtime, they could change Saturday or Sunday to be a working day, and the new
batch parts for Line 1 would be reflected in the snake diagram. Any changes in the
snake diagram are immediately connected to the appropriate Excel cells that show
on the fly how changes to the schedule affect the part demand and inventory.

6 System Integration

JEDI is an integral part of a suite of plant floor and enterprise business systems
that collectively assist in managing the stamping production. Figure 14 provides an
overview of the interactions of JEDI with other key systems. These seamless inter-
actions to and from JEDI provide the foundation for its success: all of the necessary
data is available to the scheduler in one location in an easy to use interface, and the
schedule information is automatically shared back to other systems reliant upon this
data.

As previously mentioned, JEDI relies on data from the corporate MRP, and in
turn, sends the schedule back to the MRP to drive the upstream supply chain. JEDI
uploads all of the data that is used to define the structure of the problem (e.g. the
BOM, customer, part: see Fig. 8) to build the model. This structural data is updated
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daily, comparing the the new data to the existing workcenter structure. If there are
no changes in the problem structure, JEDI keeps the model and will update only
the dynamic data (e.g. the BOH, demand, and schedule). If there are any changes,
regeneration of a new model is triggered for the workcenter. Changes to a workcenter
could include new part or customer introduction, part engineering level changes,
changes in the BOM structure, and the removal of obsolete parts. When the model
is completed, JEDI collects all relevant dynamic data from the MRP and plant floor
systems and updates the model. This data includes customer releases, assembly plant
consumption schedule and status, and parts in transit status.

Plant floor automation and inventory tracking systems provide up-to-date infor-
mation on the BOH and status of critical manufacturing resources. Keeping track of
the available inventory in a dynamically changing environment is a very challenging
task. The methodological approach to proper integration is outlined in [13]. Data
inaccuracies, incompleteness, and inconsistencies have to be rectified through intel-
ligent integration of the information [12]. In recent years, the maturity of the RFID
technology has tremendously helped improve plant floor data collection capabilities.
Fodor et al. [5] describes the approach to track stamping rack location utilizing a fork-
lift mobile RFID reader combined with forklift deadreckoning techniques. Directly
tracking the location of the racks tremendously improves the accuracy and timeliness
of the balance on hand data versus indirectly estimating it from production counts at
the given workcenters.

Furthermore, JEDI supports collaborative scheduling and decision support. It
allows schedulers for different areas of the plant (e.g. blankers, press, and assembly)
to verify the feasibility of the interdependent schedules and collectively address any
potential issues. For instance, we can substitute net demand exploded from customer
releases with the actual assembly schedule, and this will allow the scheduler to see
how the given press schedule supports the assembly schedule. Similarly, the blanker
schedule can load the schedule from presses.

JEDI also facilitates collaborative scheduling between material planning and
logistics and tool and die maintenance. When scheduling is done for preventive
maintenance of tools and dies, there must be enough inventory to satisfy customer
requirements while the die/tool is undergoing maintenance work. JEDI helps to coor-
dinate die/tool scheduling to ensure inventory requirements are met.
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The stamping complexity requires tight coordination between different shared
resources, such as direct labor that can be reallocated between different workcenters
based on the specific jobs and indirect labor services for die changeover, cranes, etc.
Thus, it is important that based on the expected customer demand for different job
types, we properly determine the needs for direct and indirect labor for upcoming time
buckets, identify the needs for overtime, allocate resources among different shifts,
and determine a feasible plan for each job and corresponding changeovers required. In
addition, we would like to find the most cost-efficient plan that optimizes the tradeoff
between labor cost and inventory: this is the goal of the cycle plan optimization
module [4]. JEDI takes this optimized plan as a roadmap for the upcoming time period
and develops corrective actions to compensate for events happening on the floor, such
as parts shortages, machine breakdowns, customer requirement fluctuations, etc.

JEDI also provides a web-based plant and business unit management dashboard.
The dashboards increase visibility of the stamping supply chain status, help quickly
identify and collectively address critical issues, and facilitate information sharing
between Material Planning and logistics, Manufacturing and Maintenance.

7 Summary

This chapter describes the JEDI support system designed and implemented for com-
plex automotive suppliers, such as automotive stamping. JEDI serves as an interactive
decision support system that allows schedulers to be an active part of the decision-
making process, providing them the information that they need, consolidated in one
location, available at the right time, and that can be manipulated within an intuitive
system. It has filled a critical need as a front-end decision support system for seamless
integration with scheduling optimization and other corporate systems.

The core element of JEDI is a spreadsheet model of the typical automotive supply
chain with inputs mapped to MRP and automotive EDI standards. As such, the system
and underlying model can be adapted to wide a range of automotive suppliers beyond
stamping, such as powertrain, plastics or climate control. The system implementation
leverages Microsoft Excel features of rich formatting and automation capabilities and
takes advantage of familiarity of Excel to the plant user community.

JEDI has enabled early identification of problems by around two to three hours,
allowing schedulers to address production problems in advance. JEDI is integrated
with other enterprise and plant floor systems and supports collaborative schedul-
ing between different interdependent manufacturing, distribution and maintenance
departments: this has facilitated an improvement in data accuracy in various corpo-
rate systems and has enhanced collaboration between multiple stakeholders. Another
important benefit is that it provides an efficient and effective interface to the mathe-
matical scheduling models, leveraging optimization technologies while keeping the
user in control of the solution.

The implementation of the system in a production environment has demonstrated
significant benefits resulting in substantial financial savings associated with reduction
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in premium freight, overtime, inventory, and excessive material handling. The savings
that are typically observed after the introduction of JEDI over the previous year are an
average 30% reduction in overtime and a premium transportation reduction of 40%
(which for some plants is over a million dollars a year). Some additional benefits that
result from the reduction of excess inventory include a reduction in obsolete parts
and excessive material handling and improved plant floor utilization.
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A Control Theoretic Evaluation of Schedule
Nervousness Suppression Techniques
for Master Production Scheduling

Martin W. Braun and Jay D. Schwartz

Abstract In manufacturing operations, a Master Production Schedule (MPS) can
be used to make mid-range planning decisions that not only influence the production
decisions for a manufacturing facility, but serve as input into other decision systems
to determine materials ordering, staffing, and other business requirements. With the
advance of computing and data acquisition technologies, an MPS can be recomputed
on a more frequent basis to make the production schedule more agile in meeting
customer needs. However, uncertainty in the demand forecast or production model
may also increase the possibility and/or severity of “schedule nervousness”. The
mitigation techniques of frozen horizon, move suppression, and schedule change
suppression are evaluated to determine the robust stability margins of each approach
at their performance-optimal tunings. Since an MPS is typically computed using
Linear Programming these techniques are formulated in this manner, and therefore
an empirical Nyquist stability analysis using Empirical Transfer Function Estimates
(ETFE) is employed. The technique of move suppression is shown to provide better
robust stability margins in the small-scale problem. Further evaluation is needed on
scheduling problems of industrial size.

1 Introduction

Master production scheduling is becoming a critical decision system in a wide range
of manufacturing industries, including high-tech [1, 2]. The main goal of an MPS
is to integrate information from expected sales forecasts (demand), manufacturing
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statistics (capacity, throughput times, utilization targets), and other business rules to
produce a build plan over a rolling horizon. Traditionally this technique assumes a
linear mass balance model to approximate inventory behavior. As the frequency of
MPS execution increases and the granularity of time periods in the horizon decreases
(smaller sampling intervals), it is possible that un-modeled nonlinear or time-varying
effects impact the quality of the supply model and resulting schedule. Furthermore,
new updates for demand forecasts and/or raw material supply forecasts may happen
more often due to new technology (e.g. inventory tracking with radio frequency
identification) and business emphasis on information sharing in the supply chain.
As a result, the phenomena of “schedule nervousness” may be observed. In this
chapter, three different approaches to mitigate schedule nervousness are discussed
and evaluated from a performance and robustness perspective using tools from control
theory. For the industrial practitioner this analysis illustrates the potential impact a
particular technique might have on the manufacturing system and allows the user to
make an informed choice given the level of modeling or forecast uncertainty.

Traditionally, in the MPS literature, a frozen horizon approach is used to lock
down the schedule over some period of time out into the future. At a minimum,
the length of the frozen horizon typically covers the cumulative throughput time of
the production system so that Work-In-Progress (WIP) is not impacted by schedule
changes. Beyond the frozen horizon, changes in the schedule are limited only by
business rules and mass balance constraints. A number of references have evaluated
the frozen horizon technique and the length of the frozen horizon in concert with
other variables to determine the effect on the schedule nervousness problem [3–5].

The use of move suppression is a common technique to robustify the closed-
loop response of an algorithm to uncertainty in the model or forecasted infor-
mation. Recently, stability and performance analysis of Model Predictive Control
algorithms based on a 1-norm linear program objective function has received atten-
tion. A particularly interesting aspect of Linear Programming Model Predictive
Control (LPMPC) is that if it is formulated as a sum of 1-norm penalties on the
move velocity and error to target, the resulting control law may exhibit idle behavior
or deadbeat behavior, depending on the location in the state-space of the closed-
loop system. By recasting the problem in terms of an ∞-norm criteria in both the
temporal and spatial dimensions (∞/∞) these behaviors are eliminated and the
desired robust behavior is achieved, yet without the need for a quadratic program
(QP) solver [6, 7]. By incorporating this method into the MPS formulation, it is
possible to explore move suppression as traditionally applied for real time process
control in the domain of production planning.

Schedule nervousness may be defined as excessive change in the production sched-
ule for a given period and item from one planning interval to the next. Schedule
nervousness has a number of deleterious effects, including excess setup costs, unnec-
essary staffing changes, and excessive order changes for materials suppliers. In the
MPS literature, a number of measures of schedule nervousness have been proposed
[8]. For the purposes of this paper, schedule stability will be measured as follows
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S =
N∑

i

|u(k + i|k) − u(k + i|k − 1)|, i = 2, . . . , N, (1)

where S is the schedule nervousness metric of interest, u(k) is a manipulated variable
such as factory starts at control interval k, u(k + i|k) is the plan for factory starts
during control interval k + i in the current MPS at control interval k, u(k + i|k − 1)

was the plan for factory starts at control interval k + i as was resolved in the previous
MPS in control interval k − 1. Therefore, u(k + i|k)− u(k + i|k − 1) is the change in
scheduled factory starts for interval k + i between the current MPS and the previous
MPS. N is the total number of time intervals in the time series.

The above metric also serves as motivation for a third method to explore, a move
suppression term designed to penalize the excess change in schedule for a particular
point in time, from solve epoch to solve epoch. The term schedule change suppression
is coined to describe this approach.

The goal of this chapter is to address the handling of schedule nervousness in a
Master Production Schedule through traditional means (the frozen horizon approach),
a formulation borrowed from optimization-based control theory (the move suppres-
sion approach), and a novel formulation (the schedule change suppression approach).
An evaluation of the stability and performance of these techniques is the focus of
this work.

In Sect. 2, the three different methods of mitigating schedule nervousness are
formally stated. In Sect. 3, the Empirical Transfer Function Estimate and how it can
be used for estimating robust stability bounds in the Nyquist stability framework are
discussed. Section 4 examines the effectiveness of this analysis in the context of a
simple single inventory problem. A case study is used to compare and contrast the
proposed methods in Sect. 5. Conclusions are drawn in Sect. 6. Last, a few items of
future work are discussed in Sect. 6.1.

2 Three Approaches for Mitigating Schedule Nervousness

To formulate the MPS problem as an LP, the parameters following the convention
of [7, 9] are now described with the aid of Fig. 1. The planning horizon refers to the
overall horizon for which the production schedule will be determined. The forecast
horizon is the horizon for which demand or other forecasted information is available.
The re-planning interval is the length of time changes in the incoming data to the MPS
process are allowed to accumulate before another MPS is solved. The cumulative
lead time is the sum of all serial lead times. The planning horizon is typically chosen
to be significantly longer than the cumulative lead time.

From a systems perspective, the incoming data to the MPS process can be classified
in several ways. For the purposes of this analysis, any data forecasted or measured
that impacts the inventory levels, WIPs, or other dependent variables but are not
directly manipulated can be classified as disturbances or disturbance forecasts, d.
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Fig. 1 Definitions for the
MPS frozen horizon
approach

Planning Horizon

Frozen
Horizon

Re-planning
Interval

Cumulative
Lead time

k-R k
time

Forecast Horizon

Examples include product end demand (forecasts or actual consumption), materials
or supply forecasts that the MPS does not control (forecasts or actual incoming
material counts). Inventory targets, manufacturing utilization targets, and similar are
treated as targets or setpoints T. Inventories, measures of WIP, in-transit shipments
may be considered outputs or controlled variables of the physical system y. In the
MPS problem, the distance of y from the corresponding target T is often minimized.
This minimization, subject to a plethora of constraints is achieved by manipulating
the input variables u to the physical system. These could be manufacturing starts,
shipment quantities, and potentially other discrete decision variables such as the
equipment type or even preventive maintenance cycles. The planning solve returns
these decisions to the MPS systems, but this information may not be executed exactly
and so the actual u used may be returned to the MPS at later intervals. The MPS system
may hold additional or historical information that constitute an estimate of the state
of the physical system x.

With the nomenclature of the production planning problem described, the presen-
tation of the three methods of suppressing schedule nervousness can begin.

2.1 The Frozen Horizon Approach

One way to dampen schedule nervousness is to use a frozen horizon approach,
in which the linear program (LP) is enhanced with constraints that force the
manufacturing starts or inventory build targets to remain at the same values over
a certain number of time periods known as the frozen horizon. In the case the
LP is solving for a build plan, the frozen horizon is chosen at least as long as the
manufacturing throughput time and potentially significantly longer. This eliminates
the need for in-line product rate adjustments for current Work-In-Progress (WIP).
Extending the frozen horizon beyond the throughput time may be necessary for
further dampening of schedule instability brought about by demand uncertainty,



Evaluation of Schedule Nervousness Suppression Techniques 147

materials supply uncertainty, or other concerns. Figure 1 depicts the moving horizon
and definitions for the frozen horizon approach.

This is equivalent to the following formulation

min
u

p∑

n=1

|Tk+n|k − yk+n|k| (2)

s.t. yk+1 = yk + uk−TPT − dk (3)

uk+i|k − uk+i|k−1 = 0, i = 1, . . . , f (4)

uk+i|k ≥ 0, i = 1, . . . , m (5)

yk+n|k ≥ 0, i = 1, . . . , p (6)

The production schedule u is a vector of manipulated variables that the optimization
procedure adjusts to achieve the minimization objective. Tk+n|k is the inventory
target for control interval k + n, as understood by the current MPS in interval k.
yk+n|k is the projected inventory level for interval k + n, as estimated during the
current sampling interval k. The minimization problem seeks to minimize the sum
of the absolute values of the inventory deviations over the planning horizon p. The
minimization problem is subject to multiple constraints. Equation (3) represents the
mass balance constraint where yk+1 is the projected inventory for the next control
interval, yk is the measured inventory in the current interval, uk−TPT is the factory
material that has finished processing and will be added to inventory in the current
interval (TPT representing the cumulative lead time of the manufacturing system),
and dk is demand during the current interval. Equation (4) is the frozen horizon
constraint, that no schedule changes are allowed within the frozen horizon. Equation
(5) states that factory starts must be positive. Equation (6) enforces the constraint
that inventory values must be positive. f is the frozen horizon parameter. m is the
move horizon over which the solver will make factory starts decisions.

This MPS technique is typically employed in a receding horizon fashion. An
advantage of the frozen horizon approach is that it is easy to understand and imple-
ment. The only real decision the user has to make is how long to make the frozen
horizon window. One potential drawback is the impact freezing the horizon has on the
ability of the decision variables to respond to near-term customer demand changes.
Another potential drawback is that while the decision variables remain frozen, the
magnitude of the change from one time period to the next is still unlimited by the
problem formulation and a slew-rate constraint (a.k.a maximum move constraint or
linearity constraint) may be needed. The variation in demand forecasts could still
thrash the decision variables, yet the timing of the changes in the decision variables
is stale when the solution is actually used by manufacturing.
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2.2 The Move Suppression Approach

A classic approach to stabilize control laws is to employ a penalty on the change in
value from one interval uk−1 to the next uk in a receding horizon. As mentioned in the
introduction, this can be employed using LP or Quadratic Programming (QP) problem
formulations and has been successful in Model Predictive Control formulations in
many industries. The user can adjust the speed of response of the closed-loop system
by adjusting the weighting for this penalty. A larger weight slows the response of
the closed-loop system and provides additional robustness to plant-model mismatch.
Reducing the value of the weight enables the closed-loop system to respond in a
more agile fashion, with the added risk of under damped or unstable behavior. Using
the ∞/∞ approach, this formulation can be written as an LP

min
u

θ (7)

s.t. yk+1 = yk + uk−TPT − dk (8)

|Tk+n|k − yk+n|k| ≤ θ (9)

|QΔuΔuk+i|k| ≤ θ (10)

where

Δuk+i|k = uk+i|k − uk+i−1|k (11)

The optimization seeks to minimize the parameter θ , which itself is the maximum
of the absolute inventory deviation and absolute weighted manipulated variable
change over the planning interval. Equation (8) represents the mass balance con-
straint where yk+1 is the projected inventory for the next control interval, yk is
the measured inventory in the current interval, uk−TPT is the factory material that
has finished processing and will be added to inventory in the current interval (TPT
representing the cumulative lead time of the manufacturing system), and dk is demand
during the current interval. Tk+n|k is the inventory target for control interval k +n, as
understood by the current MPS in interval k. yk+n|k is the projected inventory level
for interval k + n, as estimated during the current sampling interval k. Equation (9)
enforces the constraint that the maximum absolute inventory deviation over the plan-
ning horizon is less than θ. Equation (10) enforces the constraint that the maximum
absolute weighted starts change is less than θ. QΔu is the weight used to penalize
factory starts changes. Applying a value of 0 would lead to aggressive inventory
control, but high levels of factory thrash. Increasing the penalty reduces thrash at the
expense of greater inventory deviations from targets. Equation (11) explicitly defines
the concept of a factory starts change (or thrash), the difference between uk+i and
uk+i−1 in the current MPS during interval k.

One advantage of this approach is that it directly reduces the “thrash” or dramatic
changes in build plan that manufacturing personnel prefer to avoid. The effects on
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the closed-loop system of applying move suppression can be readily understood
through simple simulation examples or case studies. For demand scenarios where
ABC Analysis or similar are being used, this technique must be carefully applied to
be sure that the schedule remains agile in serving A grade customers/products, while
potentially smoothing the response to B/C grade customers/products.

A significant concern with using an ∞-norm instead of a 2-norm is that the
∞-norm may be particularly sensitive to outliers in forecast data. The optimization
may choose to modify the decision variables to reduce as much as possible the effect
of a few spurious data, whereas using a 2-norm would still enable the optimization
routine to reduce the effects of other demand data or disturbances in the system in
addition to the effort on the spurious data. In practice, one may use a number of
outlier detection methods to reduce the impact of outlier data.

2.3 The Schedule Change Suppression Approach

This approach is a slight twist on the move suppression approach in that it penalizes
changes in the schedule for a given period from one plan to the next. Conceptually, it
is this quantity that manufacturing operations would like to minimize the most since
it most closely matches the definition of schedule nervousness.

min
uk

θ (12)

s.t. yk+1 = yk + uk−TPT − dk (13)

|Tk+n|k − yk+n|k| ≤ θ (14)

|Qδuδuk+i|k| ≤ θ (15)

where

δuk+i|k = uk+i|k − uk+i|k−1 (16)

While intuitively this method is appealing due to its similarity with the schedule
nervousness metric, it may not achieve the schedule stability in the strict sense that
a hard constraint (frozen horizon) might. In this way, it may not fully meet the
needs of manufacturing for a stiff schedule, yet it may not provide the robustness
of the move suppression approach. Similar to the move suppression approach, this
formulation seeks to minimize the parameter θ. However, θ in this formulation is
defined as the maximum of the absolute inventory deviation and absolute weighted
schedule change. Schedule change is defined in Eq. (16), essentially the change in
MPS between the previous production schedule and the one we are computing. Qδu

is the weight for penalizing schedule changes. Setting the value to 0 would minimize
inventory deviations at the expense of high levels of schedule nervousness. Increasing
the penalty would reduce schedule nervousness at the expense of greater inventory
deviations.
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3 Empirical Robust Stability Analysis

From a control theoretic standpoint, there is always the fundamental tradeoff between
robustness and performance. By moving more aggressively, a control policy is likely
to provide better performance with the assumption it was built with an accurate model
of the system it will control. However, there is always some level of uncertainty of
how well the model describes the actual system. Additionally, external disturbances
act on the system, forecasted information may be inaccurate, and lastly noise or
delayed updates may impact the quality of the measurements of signals the policy
is trying to control (in our case, inventories). An interesting aspect of working with
inventory systems is that they also require a minimum level of agility in the planning
system in order to stabilize what is an open-loop unstable system. Therefore, the
MPS must be aggressive enough to respond to supply/demand rate imbalances, yet
not too aggressive as to become closed-loop unstable due to model or supply/demand
forecast uncertainty.

To help understand this tradeoff for our three different planning policies, it is
proposed to empirically examine the closed-loop robust stability margins. In practice,
one cannot perturb the planning policies actually being used in production to assess
the impact on the stability of the inventory levels and customer satisfaction. Instead
simulation studies can be employed to determine the robustness properties of the
planning policies. While it is possible to increase the plant-model mismatch until
the system is observed to go unstable, this is potentially quite time consuming for
simulations of industrially relevant size. In this section, a method is proposed to
empirically determine the robust stability margins for the closed-loop simulations
under study.

3.1 The Empirical Transfer Function Estimate

For non-parametric identification of a dynamical model, consider the Empirical
Transfer Function Estimate (ETFE) [10]. For a given input to a system u(k), resulting
in output y(k), over time interval k from 1...N, the ETFE can be written

Ĥ(eiω) = YN (ω)

UN (ω)
(17)

where YN (ω) and UN (ω) are simply the Discrete Fourier Transform of y(k), and u(k),
for k = 1...N, respectively. While the ETFE provides an unbiased estimate of the
frequency response of the system, the variance in the estimate for a given frequency
asymptotically approaches the noise-to-input signal ratio as N increases.

In order to gain more resolution of the low frequencies of the ETFE, and
provide some smoothing of the estimate albeit with the potential risk of biasing the
estimate, it is also possible to apply the Blackman-Tukey method [11]. This proce-
dure involves computing the cross spectrum of the output and input �̂YU(ω), and
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the power spectrum of the input �̂U(ω), and taking the ratio thereof

Ĥ(eiω) = �̂YU(ω)

�̂U(ω)
(18)

The power spectra can be computed with additional emphasis on particular frequen-
cies, and windowed in a way to reduce error variance in tradeoff with potential bias
error. Where necessary in this chapter, the Blackman-Tukey method is employed
via the spafdr command in MATLAB�. Additional methods exist for smoothing
the estimate. For the purposes of this analysis, an unbiased though noisy estimate
is preferred to graphically assess the closed-loop stability bounds of the system. As
a result, the additional process of order selection/model reduction is avoided. This
is the main attractive point in using a non-parametric method for transfer function
identification.

3.2 The Nyquist Stability Criterion

A number of methods exist for determining the robustness margins for discrete
closed-loop system models (e.g. Lyupanov analysis, pole-zero analysis in the
z-domain, etc.). Nyquist stability analysis is chosen since it does not require explicit
computation of the poles of the closed-loop transfer function. Consider the closed-
loop system shown in Fig. 2. In order to analyze the stability of the system the
“broken” closed-loop transfer function L(z−1) is computed,

L(z−1) = Hc(z
−1)Hp(z

−1). (19)

The Nyquist diagram is plotted in the z-domain to examine the relationship with the
critical point (−1, 0). Inventory systems generally contain integrators in their transfer
functions which results in open-loop system poles on but not outside of the unit circle
in the z-domain. In the analysis in this work, the technique of differencing the input
and output data is employed to provide a stationary data set of the ETFE analysis
and provide a more clear identification of the stability boundaries. This also has the
effect of removing the pure integrators in the system, leaving the unmodeled, yet
stationary dynamics. Therefore, the special Nyquist stability criterion for open-loop
stable systems may be used.

Theorem 1 Special Nyquist Stability Criterion: The feedback system is asymptoti-
cally stable if the Nyquist curve does not encircle the critical point (−1, 0).

There are a number of metrics that can be used to measure the robust stability
bounds in a Nyquist plot. The Gain Margin (GM) is the multiplicative factor by
which L(z−1) can be amplified in the Nyquist plot before it exceeds the critical
point. The Phase Margin is the reduction in phase of L(z−1) before L(z−1) exceeds
the critical point. For a simple production/inventory system with a cumulative lead
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Fig. 2 Block diagram for
development of the Nyquist
stability criteria
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time of 2 time units (Hp = z−2/(1 − z−1)) and with a proportional controller
(K = 0.5) making factory starts decisions, Fig. 3 illustrates the gain and phase
margin. Additional discussion on Nyquist stability analysis can be found in [13].
The Nyquist plots in this section contain the Nyquist curve for both the positive and
negative frequency range, hence the symmetry about the x-axis.

To provide a single measure of robust stability, it is also possible to measure
the shortest distance from the critical point to L(ejω). In the case of systems with
constraints on the input variables (aka control signal saturation), there are also addi-
tional considerations for global asymptotic stability in the Nyquist plot. Specifically,
as a sufficient condition for global asymptotic stability the curve L(ejω) must not
cross a boundary line of slope m in the Nyquist, whereas m may be arbitrarily defined
although some authors have chosen values of m as discussed in [14]. When apply-
ing this criteria for systems with input signal constraints, only the Nyquist curve
corresponding to the positive frequencies is plotted. As mentioned in the introduc-
tion, the LP nature of the objective function may in fact make the closed-loop system
response nonlinear, and this analysis may not identify special cases of nonlinear
instability. For the purposes of this analysis, the initial conditions are chosen such
that the inventory levels are exceedingly high and the input signal saturations should
be of minor impact to the performance of the systems under study, and the special
Nyquist criteria above may be used.
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Fig. 4 Inventory time series results and analytical Nyquist plots for system (Hp = z−2/(1 − z−1))

with a proportional controller (K = 0.5)

3.3 Combining the Empirical Transfer Function Estimate
and the Nyquist Stability Criterion to Empirically
Determine Robust Stability Measures

The ETFE can be analyzed with the Nyquist Stability Criterion in order to determine
Gain Margin, Phase Margin, and the shortest distance to the critical point. This
method of analysis is readily applicable to data collected from simulations of the
combined planning policy, and inventory model.

Consider again, the system described in Fig. 3. When this system is controlled
with a controller gain K of values 0.5, 1.0, and 2.0, the system is determined to be
stable, marginally stable, and unstable, respectively. This is demonstrated with the
simulation results shown in Fig. 4. The left plot shows the inventory levels over the
simulation horizon; the right plot shows the analytically derived Nyquist plots for
each of the three gain values. Notice that at a gain of 1.0, the system is on the border
of instability, as predicted by the Nyquist plots in both Figs. 3 and 4. In Fig. 5, the
Nyquist curve generated from the ETFE analysis proposed above demonstrates the
effectiveness of the proposed approach. The Nyquist plots shown in Fig. 5, being
generated from an empirical model, have more noise than their analytical counterparts
but are still useful for analysis. This method for generating the Nyquist plots from
ETFE data will be used throughout the remainder of the chapter.

In this particular example, the controller proportional gain was deliberately
chosen to exceed the stability criteria and to demonstrate the potential for a closed-
loop unstable system. In the next subsection, the three proposed approaches will be
evaluated on the same example system, but with significant plant-model mismatch to
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Fig. 5 ETFE Nyquist plot
for system
(Hp = z−2/(1 − z−1)) with
a proportional controller
(K = 0.5)

assess the inherent robustness properties of the proposed approaches and verify the
applicability of this stability analysis before it is applied to a more realistic system.

4 Analysis of the Three Approaches on a Single Input
Single Output (SISO) System

Although real manufacturing systems exhibit nonlinear behavior, intuition can
be formed by evaluating simple linear production-inventory systems. Consider
again the production/inventory system with a cumulative lead of 2 time units
Hp = z−2/(1 − z−1). In this subsection, the three schedule nervousness mitiga-
tion approaches will be examined for their abilities to attain performance-optimal
metrics in spite of deterministic plant-model mismatch. Gain mismatch and delay
mismatch will be introduced separately into a simulation. An exhaustive search was
employed to determine tuning values which yielded the lower bound of stability, the
performance-optimal tuning, and the upper bound of stability.

Because Hp is an integrating system, there is a minimum bandwidth requirement
for the planning policy to meet in order for the system to be closed-loop stable.
Due to the plant-model mismatch introduced, there will also be an upper bound on
the bandwidth of the planning policy, beyond which the closed-loop system will
exhibit instability. The planning policies subjected to noise in the inventory target
signal drawn from a normal distribution with a mean of zero and a standard deviation
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of unity; the metrics for inventory tracking, factory thrash, and schedule thrash are
computed across the entire simulation run. Note that varying the inventory target has
effectively the same effect as varying the demand since these policies are not multi-
degree-of-freedom policies (i.e. they will fundamentally respond to target changes
and demand changes in the same manner).

The performance-optimal tunings are found by evaluating a range of tuning para-
meters for each of the policies and selecting the tuning that minimizes the ∞-norm
of the target tracking error. All policies have a planning horizon of 10 intervals and
a forecast horizon of 11 intervals. The frozen horizon is set to a value of 9 intervals
in the frozen horizon policy. The schedule change suppression approach suppresses
the changes over a horizon of 9 intervals as well.

The following subsections present simulation results with key control system
performance metrics. ||T − y||1 is the 1-norm of the inventory deviation signal,
or the sum of the absolute values of the inventory deviations over the course of
the simulation. ||T − y||2 is the 2-norm of the inventory deviation signal, or the
square root of the sum of the squared inventory deviation values. ||T − y||∞ is
the maximum absolute inventory deviation value that occurs during the simulation.
Comparable metrics are also reported for factory thrash ||Δu|| and schedule ner-
vousness ||uk + 1|k − uk + 1|k − 1||. In all cases, lower values indicate improved per-
formance. A value of zero indicates perfection: no inventory deviation, factory thrash,
or schedule nervousness.

4.1 Delay Plant-Model Mismatch

In the first set of simulation results, the plant delay is set to four units (i.e. Hp =
z−4/(1 − z−1)), while the model in the planning policies is configured with a value
of six. The simulation results for the frozen horizon approach show that while there
are no schedule changes within the frozen horizon, the closed-loop system quickly
becomes unstable as demonstrated in Fig. 6. Closer inspection of the results reveals
that while the schedule remains frozen up to nine time periods into the horizon, the
schedule change after the frozen horizon is essentially unconstrained and the policy
will make what it thinks are optimal moves. Since there is no filtering action, the
schedule that gets frozen is still aggressive, hence the unstable closed-loop response.

With move suppression, the planning policy is able to provide a stable closed-
loop response, and achieve a somewhat sluggish tracking of the inventory targets.
The performance-optimal tuning of QΔu = 30 produces the time series shown in
Fig. 7. The plot shows how factory starts are adjusted over time to keep the inventory
tracking its moving target. The move suppression effectively attenuates the effect of
the error the algorithm observes between the expected response of the inventory and
the actual response of the inventory. In this way the algorithm is acting robustly as
expected from a control theoretic viewpoint.
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Fig. 6 Time series of the frozen horizon policy with delay plant-model mismatch of +50%

In Fig. 8, given the unstable result from the frozen horizon simulation, an unex-
pected result is found. The schedule change suppression approach is in fact able to
produce a stable closed-loop response with a tuning Qδu = 3. By enabling small
but penalized changes, the schedule change suppression approach is able to provide
some degree of filtering within the receding horizon, and mitigate some of the impact
of the delay mismatch between the plant and the planning policy. The time series
show how the schedule change suppression approach provides a more responsive
inventory profile than the move suppression approach, however the inventory levels
are still substantially out of phase with the inventory targets specified.

To compare the metrics of the move suppression approach vs. the schedule change
suppression approach, consider Table 1. The metrics for the frozen horizon approach
are not reported since the values are so large as to be of no comparative value. The
inventory tracking metric is the maximum absolute inventory deviation value, the
factory thrash metric is the maximum absolute change in factory starts from one
interval to the next, and the schedule thrash metric is the maximum absolute change
in value of scheduled starts for a particular time period from one solve epoch to the
next. All metrics are computed in total over the simulation. The performance-optimal
tuning (measured via the ∞-norm of the inventory deviation) and the range of stable
tuning values were obtained via an exhaustive search. Tuning values were tested



Evaluation of Schedule Nervousness Suppression Techniques 157

Fig. 7 Time series of the move suppression policy with delay plant-model mismatch of +50%

at increments of 0.1 for values less than 1, increments of 0.5 for values between 1
and 10, and increments of 5 for values above 10. The move suppression approach
outperforms the schedule change suppression approach in every metric. It also has a
wider range of tuning parameter values under which a stable result may be achieved.

To further examine the stability margin of the move suppression and sched-
ule change suppression approaches, a Nyquist analysis was performed on simu-
lation data of length 217. To further enhance the resolution in the low frequency
portions of the curve, the Blackman-Tukey spectral analysis with frequency-depen-
dent resolution was employed. The planning policies were run with the performance-
optimal tunings as noted in Table 1. Figure 9 shows the result for the schedule change
suppression approach. Note that in this case, the analysis suggests that the policy
may in fact be closed-loop unstable. It is clear that the schedule change suppression
approach encircles the critical point −1. Figure 10 shows the Nyquist analysis for the
move suppression approach. As shown the move suppression approach has substan-
tially more stability margin than the schedule change suppression approach. One can
conclude from the data presented in Table 1 and the Nyquist analysis that not only
does move suppression provides a more performance-optimal solution, but it also
does so with a greater stability margin.



158 M. W. Braun and J. D Schwartz

Fig. 8 Time series of the schedule change suppression policy with delay plant-model mismatch
of +50%

Table 1 Delay plant-model mismatch: move suppression versus schedule change suppression
metrics

Method Stable? Q ‖y − r‖∞ ‖Δu‖∞ ‖δu‖∞
Move suppression Boundary 1.5 5.6 2.5 1.8

Yes 30 3.1 0.1 0.4
Boundary 765 4.4 0.1 0.8

Schedule change suppression Boundary 1.5 7.1 12.4 5.7
Yes 3 5.5 8.5 1.7
Boundary 12 8.4 15.0 11.1

4.2 Gain Plant-Model Mismatch

Consider a plant-model mismatch in the gain parameter. For these results, a gain of
one is used in the planning policies, and the plant model in the simulator will be
configured with a value of two (i.e. Hp = 2 · z−2/(1 − z−1)). In this way, a gain
plant-model mismatch of −50 % is introduced into the closed-loop response.
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Fig. 9 Nyquist analysis for a
schedule change suppression
policy with delay
plant-model mismatch of
+50%
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Fig. 10 Nyquist analysis for
a move suppression policy
with delay plant-model
mismatch of +50%
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In this scenario, the frozen horizon approach produces an unstable closed-loop
system, however the extent of instability as shown in Fig. 11 is much more gradual
compared to the result observed in the case of delay mismatch. The inventory level
grows in an underdamped, oscillatory manner until it exceeds the inventory target
variance by approximately a factor of 50. The oscillatory behavior is also observed
in the factory starts signal as well.

The move suppression approach provides stability for this system, with the
performance-optimal result shown in Fig. 12. As before, this result shows a
sluggish response in inventory to changes in the inventory target, however the result
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Fig. 11 Time series of the frozen horizon policy with gain plant-model mismatch of −50%

remains stable, and tracks the low frequency trend of the inventory target variation.
As expected, the response in the factory starts is smooth.

The schedule change suppression approach also is capable of producing a stable
result. Figure 13 illustrates how the schedule change suppression approach dramat-
ically overshoots the inventory target due to the gain mismatch, and the values at
times appear out of phase with the inventory target variation.

Table 2 provides a summary of the metrics for each approach. This time the metrics
for the frozen horizon approach are included for comparison. The performance-
optimal tuning (measured via the ∞-norm of the inventory deviation) and the range
of stable tuning values were obtained via an exhaustive search. Tuning values were
tested at increments of 0.1 for values less than 1, increments of 0.5 for values between
1 and 10, and increments of 5 for values above 10. Again the move suppression
approach is able to achieve better metrics than the other two approaches. What is
particularly surprising is the ability of the move suppression approach to maintain
a lower schedule change metric given the fact that this is not explicitly part of the
optimization criteria for this policy.

What makes this particular example challenging is that the configured gain in the
planning policies is smaller than the actual gain. In general, the planning policy will
think that it needs to make larger adjustments than is actually needed in order to bring
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Fig. 12 Time series of the move suppression policy with gain plant-model mismatch of −50%

the inventory to target. The system responds with substantially more material. Then,
the policy may over react again as is demonstrated in the frozen horizon results. By
having some filtering action in place, instability is avoided as demonstrated by the
other two approaches.

To provide some additional perspective on the robust stability properties of these
three approaches, Nyquist stability analysis is again employed. For these results
the ETFE analysis is used for the Frozen Horizon approach (Fig. 14), and the
Blackman-Tukey with Frequency resolution is employed for the schedule change
suppression and move suppression policies (Figs. 15 and 16). In this scenario, the
instability of the frozen horizon approach is confirmed by the encirclement of the
critical point at (−1, 0). What is interesting is that the Nyquist analysis suggests that
the stability margin, as measured by the distance from the critical point, is greater
for the schedule suppression policy as opposed to the move suppression approach.
This is inconsistent with the previous result and inconsistent with the fact that the
move suppression has a much wider range of stable tunings as shown in Table 2.
This warrants additional analysis not contained in this chapter.
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Fig. 13 Time series of the schedule suppression policy with gain plant-model mismatch of −50%

Table 2 Gain plant-model mismatch: frozen horizon versus move suppression versus schedule
change suppression metrics

Method Stable? Q ‖y − r‖∞ ‖Δu‖∞ ‖δu‖∞
Frozen horizon No · ∞ ∞ 0
Move suppression Boundary 25 6.4 0.2 0.5

Yes 140 4.6 0.0 0.2
Boundary 735 9.0 0.2 0.2

Schedule change suppression Boundary 0.5 13.5 10.9 4.6
Yes 12 6.0 11.8 0.4
Boundary 90 15.6 24.1 0.2

5 Multiple-Input-Multiple-Output (MIMO) Case Study

5.1 System Topology

For the purposes of this study, the bill of materials (BOM), and system properties
described in [12] are used. Consider the block diagram in Fig. 17. The discrete-time
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Fig. 14 Nyquist analysis for
a frozen horizon policy with
gain plant-model mismatch
of −50%
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Fig. 15 Nyquist analysis for
a schedule change
suppression policy with gain
plant-model mismatch
of −50%
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transfer functions can be written as

i1(k) = z−3

1 − z−1 f1(k) − z−1

1 − z−1 min(�f5(k)�, �0.5f4(k)�) (20)

i2(k) = z−2

1 − z−1 f2(k) − z−1

1 − z−1 min(�f5(k)�, �0.5f4(k)�) (21)

i3(k) = z−2

1 − z−1 f3(k) − z−1

1 − z−1 f2(k) (22)
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Fig. 16 Nyquist analysis for
a move suppression policy
with gain plant-model
mismatch of −50%
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i4(k) = − z−1

1 − z−1 f6(k) + z−2

1 − z−1 min(�f5(k)�, �0.5f4(k)�) (23)

Note that the stoichiometry is two f4 for one f5 to produce one i4. min refers to the
minimum of either argument; �·� refers to the floor function.

While production-inventory simulations can be useful for obtaining insight into
the advantages and disadvantages of the proposed policies, it is desirable to evaluate
their efficacy against realistic supply chain scenarios. In the following subsections the
policies are simulated and subjected to varying levels of gain and delay plant-model
mismatch.

5.2 Delay Plant-Model Mismatch

In the following simulations the supply-chain operates under steady-state conditions
and no plant-model mismatch until shift 100. At this time the throughput time of
Factory u1 is increased by 1 shift, but the internal model is not updated to reflect
this change. The result is one time unit of delay mismatch. The process is repeated
at shifts 400 and 700, allowing one to see how the policy performs under increasing
levels of delay mismatch. The demand for this system is randomly varied uniformly
between zero and 100 units. The policies have visibility into the demand forecasts.
The policies are tuned with the performance-optimal tunings from the prior section,
to present a realistic scenario where stale settings are used.

The frozen horizon policy exhibits steady-state offsets from the inventory targets,
particularly inventories y1 and y2 (Fig. 18). With the move suppression policy, the
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Fig. 17 Multi-item, multi-level BOM from Dolgui and Prodhon [12]

Fig. 18 Time series for a MIMO frozen horizon policy with varying levels of delay plant-model
mismatch

inventories are on target average and the variance remains relatively constant through-
out the simulation (Fig. 19). The move suppression provides less schedule change,
and less move change as compared to the schedule change suppression approach,
however the deviation from target is substantially more than the schedule change
suppression approach (Fig. 20).
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Fig. 19 Time series for a MIMO move suppression policy with varying levels of delay plant-model
mismatch. QΔu = 30

5.3 Gain Plant-Model Mismatch

In this section, the multi-item BOM topology is simulated with increasing gain
mismatch to illustrate an increasingly stale yield estimate. The simulations begin
with the supply-chain operating under steady-state conditions and no plant-model
mismatch until shift 100. At this time the gain of Factory u1 is increased by 0.5, but
the internal model is not updated to reflect this change. The result is a gain mismatch
of −33% . The process is repeated at shifts 400 and 700, allowing one to see how
the policy performs under increasing levels of gain mismatch.

In Fig. 21, the frozen horizon policy remains stable throughout the entire simu-
lation, however the inventories are not kept to target. Inventories y1 and y3 increase
substantially through interval 700 and level out. Inventory y2 drops substantially
to almost zero. Figures 22 and 23 show the results for the move suppression and
schedule change suppression approaches, respectively. As in the prior subsection the
schedule change suppression provides better performance in keeping the inventory
to target since its tuning is less conservative. y1 in this case does exhibit a steady-state
offset in both the move suppression and schedule change suppression results, par-
ticularly toward the end of the simulation. The move suppression approach provides
substantially reduced schedule change and move change metrics.
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Fig. 20 Time series for a MIMO schedule change suppression policy with varying levels of delay
plant-model mismatch. Qδu = 3

This example is interesting because it demonstrates the performances of the
proposed approaches in a more complex BOM scenario, along with stale tunings,
and increasing plant-model mismatch. This is not unlike what one might experience
in an industrial setting. Certainly the move suppression approach could be retuned
to be more aggressive, but given the shallow region of convergence for the sched-
ule change suppression approach it is unlikely the schedule nervousness could be
mitigated with a more conservative tuning.

6 Conclusions

Industrial practitioners, especially supply chain managers and planners, who are
seeking to reduce the costs of frequent and/or large schedule changes must consider
the advantages and disadvantages of the three decision techniques presented in this
chapter: frozen horizon, move suppression, and schedule change suppression. The
frozen horizon technique does have utility as a technique to explicitly freeze the
schedule and therefore eliminate changes to the WIP which might increase tool
changeover or personnel costs. However, it is not able to provide filtering against the
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Fig. 21 Time series for a MIMO frozen horizon policy with varying levels of gain plant-model
mismatch

effects of model or forecast inaccuracies. Left unchecked the uncertainty results in
unnecessary swings in product starts, and in the worst case the result is an unstable
inventory system. Move suppression as traditionally employed in process control
systems is able to filter the effects of uncertainty and maintain system stability to a
much higher degree. There is a cost in system agility. However this is the classic,
fundamental tradeoff between agility and robustness of a system operating under
uncertainty, that is only truly addressed through better models, forecasts, and reduced
system throughput times. Lastly, the approach of schedule change suppression was
examined. This approach provides a very modest ability to filter against the effects of
uncertainty, and certainly does not fully freeze the schedule to eliminate changeover
or personnel costs. Only in the last discussion of the results section was it able to
outperform the move suppression case in inventory targeting metrics, but that was due
to the particulars of this stale tuning example. In reality, with auto-tuning systems it
would be possible for the move suppression policy to re-tune the policy, and provide
better performance with a better stability margin.
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Fig. 22 Time series for a MIMO move suppression policy with varying levels of gain plant-model
mismatch QΔu = 140

This chapter also presented a novel approach for evaluating the stability of tactical
decision policies for supply chain management. Non-parametric empirical transfer
functions were computed from simulated data and Nyquist stability analysis was
performed to confirm the stability observations made from the time series data col-
lected in the simulations. While the analysis was qualitatively helpful at best, it is
fundamentally challenging to compute precise stability bounds with this analysis for
these closed-loop systems under LP-based decision policies. Practitioners seeking to
perform stability analysis might consider this as a useful addition to a suite of tools.

6.1 Future Work

In addition to gain and delay mismatch, manufacturing systems experience a wide
variety of sources of uncertainty. Additional sources to examine include data
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Fig. 23 Time series for a MIMO schedule change suppression policy with varying levels of gain
plant-model mismatch Qδu = 12

system integration mismatch (i.e. the data systems providing data for one part of the
system topology may be out-of-sync with the other), demand or supply forecast error,
and lastly impartial data. Further evaluation of the proposed methods would enable
the practitioner to make a more informed choice of what methods to use for their
particular scheduling problem.

Upon reflection, two additional methods readily become apparent for evaluation
and may be examined in the future. One being the use of hard constraints on the
changes in schedule from one time epoch to the next (a.k.a. “linearity constraints”).
The other being a hybrid of the frozen horizon approach and the move suppression
approach. This idea involves using the frozen horizon approach, but augmenting the
logic to include move suppression in the remaining portion of the receding horizon.
In this way it may be possible to meet the need for manufacturing to work from a
fixed schedule in the WIP horizon, yet still provide stabilizing schedule changes.



Evaluation of Schedule Nervousness Suppression Techniques 171

References

1. Stadtler H (2005) Supply chain management and advanced planning—basics overview and
challenges. Eur J Oper Res 163:575–588

2. Law KMY, Gunasekaran A (2009) A comparative study of schedule nervousness among high-
tech manufacturers across the Straits. Int J Prod Res 20:31–39

3. Sridharan V, Berry WL, Udayabhanu V (1987) Freezing the master production schedule under
rolling planning horizons. Manag Sci 33(9):1137–1149

4. Zhao X, Lee TS (1993) Freezing the master production schedule for materials requirements
planning systems under demand uncertainty. J Oper Manag 11:185–205

5. Tang O, Grubbström RW (2002) Planning and replanning the master production schedule under
demand uncertainty. Int J Prod Econ 78:323–334

6. Saffer DR, Doyle FJ (2004) Analysis of linear programming in model predictive control.
Comput Chem Eng 28:2749–2763

7. Campo PJ, Morari M (1986) ∞-Norm formulation of model predictive control problems.
American control conference, June 1986, pp 339–343

8. Pujawan IN (2004) Schedule nervousness in a manufacturing system: A case study. Prod
Planning In: Control 15(5):515–524

9. Sahin F, Robinson EP, Gao L (2008) Master production scheduling policy and rolling schedules
in a two-stage make-to-order supply chain. Int J Prod Econ 115:528–541

10. Ljung L (1999) System identification: theory for the user, 2nd edn. Prentice-Hall, Upper Saddle
River

11. Blackman RW, Tukey JW (1958) The measurement of power spectra. Dover Publications,
New York

12. Dolgui A, Prodhon C (2007) Supply planning under uncertainties in MRP environments: A
state of the art. Ann Rev Control 31:269–279

13. Haugen F (2005) Discrete-time signals and systems. Tutorial, http://techteach.no/adm/fh/
14. Plummer AR, Ling CS (2000) Stability and robustness of discrete-time systems with control

signal saturation. Proc Inst Mech Eng part I: J Syst Control Eng 214(1):65–76

http://techteach.no/adm/fh/


Chance-Constraint-Based Heuristics for
Production Planning in the Face of Stochastic
Demand and Workload-Dependent Lead Times

Tarik Aouam and Reha Uzsoy

Abstract While the problem of planning production in the face of uncertain demand
has been studied in various forms for decades, there is still no completely satisfactory
solution approach. In this chapter we propose several heuristics based on chance-
constrained models for a simple single stage single product system with workload-
dependent lead times, which we compare to two-stage and multi-stage stochastic
programing formulations. Exploratory computational experiments show promising
performance for the heuristics, and raise a number of interesting issues that arise in
comparing solutions obtained by the different approaches.

1 Introduction

In today’s global supply chains, effective coordination of operations across space and
time is vital to capital-intensive industries like semiconductor manufacturing with
short product life cycles and rapidly changing market conditions. However, despite
the fact that problems related to the planning of production and inventories have
been the stock in trade of industrial engineering and operations research for the last
five decades, a comprehensive solution to the problem as faced in industry is still
unavailable [65]. Current research has followed the basic paradigms of determin-
istic mathematical programing and stochastic inventory models, resulting in highly
compartmentalized streams of research that each focus on certain aspects of the
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problem at the expense of others. In particular, the problem of planning production
releases and allocating production capacity among different products has ignored the
nonlinear congestion effects induced by capacitated resources subject to queueing,
and has been treated in isolation from the problem of maintaining service levels in
the face of stochastic demand.

This work is motivated by two basic limitations of the mathematical programing
models used for production planning in both industrial practice and academia. The
first of these is that the vast majority of these models fail to capture the nonlin-
ear relationships between work in process inventories (WIP), cycle times, and work
releases. Queueing models of production systems [17, 52] show that cycle times
increase nonlinearly with resource utilization, which in turn is determined by the
release plan produced by the planning system. Capital-intensive industries such as
semiconductor manufacturing, with long, complex production processes, must run at
high utilization to be profitable. Under these conditions small fluctuations in utiliza-
tion may cause large changes in cycle times, rendering the effects of this dependence
important to effective planning.

In addition to this nonlinear dependence, uncertain demand is a fact of life in
most supply chains, requiring the deployment of safety stocks to ensure desired
customer service levels. The production of these safety stocks, in turn, requires
the release of additional work, affecting cycle times, and hence the work release
and capacity allocation decisions made by planning models. It is thus notable that
the planning of safety stocks [43, 107] has largely been addressed separately from
capacity allocation, presumably due to the motivation for much inventory research
arising from retail and distribution applications.

The large size and stochastic nature of industrial supply chain planning prob-
lems renders their exact solution computationally prohibitive. Thus industrial prac-
tice requires efficient approximations with reliable solution quality. However, when
approximations are proposed, assessing the quality of their solutions is fraught with
all the difficulties encountered in evaluating the quality of heuristic solutions for
deterministic optimization problems [92]. There is thus a need to develop exact solu-
tion methods to provide insight into the structure of optimal solutions, as well as
benchmarks against which different approximation methods can be compared and
assessed.

This, in turn, presents additional complications. Problems of production planning
and control in the face of stochastic demand admit several different formulations
that often have quite different assumptions, advantages and drawbacks. Inventory
and queueing models [107], for instance, tend to produce optimal solutions under
steady-state conditions, but have difficulty in addressing transient solutions. Conven-
tional mathematical programing models [103] solve a deterministic approximation
to the actual stochastic problem, sometimes with inventory targets based on off-line
analysis included as constraints. Stochastic dynamic programming models, including
Markov decision processes [89], give state-based reactive decision rules that do not
directly consider information about future demand that may be available. Stochastic
programing [12] and chance-constrained models [87] make different assumptions
about recourse actions that can result in subtle theoretical and practical difficulties.
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A conclusive, unifying solution to these complex issues is clearly a long way in
the future. Our objective in this chapter is more modest and exploratory in nature. We
consider a simple single-stage single product production-inventory system subject to
workload-dependent lead times and stochastic demand. We then develop a number of
alternative formulations for this system, including two different chance-constrained
models, a two-stage stochastic programing model, and a multi-stage stochastic
programing approach. The multistage stochastic programing model is the only one
of these that has potential to yield an exact solution, and that conditional upon the
choice of scenarios; the other three are heuristics. We compare the solutions obtained
from these different models by subjecting them to a simulation of uncertain demand
realizations. Our exploratory computational experiments suggest that when parame-
ters are appropriately chosen, heuristics based on chance constrained models may
provide near-optimal solutions that are competitive with those from much larger
stochastic programing models, although the stochastic programing models consider
a very limited number of scenarios. Our results suggest a number of directions for
future work on improving the heuristics, and further experimentation aimed at elu-
cidating the strengths and limitations of the chance constraint-based heuristics.

2 Previous Related Work

A comprehensive review of the literature on production planning under uncertainty
is clearly beyond the scope of this chapter. Instead, we briefly review the literature
most relevant to this paper. Overviews of the production planning domain are given
by de Kok and Fransoo [27], Voss and Woodruff [103] and Missbauer and Uzsoy
[78].

Most deterministic production planning models establish optimal production,
inventory and release levels over a given finite planning horizon to meet the total
demand [16, 45, 50]. The planning horizon is divided into discrete periods during
which production and demand rates are assumed to be constant; the capacity of the
system is represented by the number of hours available on key resources in a plan-
ning period; and the production, inventory, WIP and demand associated with a period
are treated as continuous quantities. These models allocate capacity to products to
optimize a specified objective and satisfy aggregate constraints representing system
capacity and dynamics. However, models of this type are subject to the utilization-
lead time dependence discussed in Sect. 1. The estimates of cycle times used in
planning models are referred to as lead times.

The most common approximation in both the research literature and industrial
practice is to treat lead times as a fixed, exogenous quantity independent of resource
load. The Material Requirements Planning (MRP) approach [82] uses fixed lead
times in its backward scheduling step to determine job releases. Several authors have
suggested ways of adapting MRP to uncertain demand. Meal [73] and Grubbstrom
[39] derive component plans with safety stocks in the MRP records. Miller [75]
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proposes hedging of the master schedule to provide safety stocks within the system.
However, all these approaches assume fixed exogenous lead times.

Another common approach to production planning under fixed lead times and
deterministic demand is the use of linear(LP) and integer programing(IP) models, of
which a wide variety exist [42, 56, 103]. These represent capacity as a fixed upper
bound on the number of hours available at the resource in a period, and model input
and output time lags between stages. However, these time lags are independent of
workload.

Several authors have proposed enhanced models that address the dependency
between lead times and resource utilization to some degree. Lautenschlager and
Stadtler [69] suggest a model where the production in a given period becomes avail-
able over several future periods. Voss and Woodruff [103] propose a nonlinear model
where the function linking lead time to workload is approximated as a piecewise
linear function. Kekre et al. [63] and Ettl et al. [31] take a similar approach, adding
a convex term representing the cost of carrying WIP as a function of workload to
the objective function. Graves [37], Karmarkar [61], Missbauer [76], Anli et al. [2]
and Asmundsson et al. [5, 4] use nonlinear clearing functions to model the depen-
dency between workload and lead times. Several related models are proposed in the
recent book by Hackman [41]. Pahl et al. [83] and Missbauer and Uzsoy [78] review
production planning models with load-dependent lead times. We shall discuss clear-
ing functions, which are used in the models in this chapter, more extensively in the
next section.

Another approach to modeling the operational dynamics of the system has been
the use of detailed simulation or scheduling models in the planning process. Dauzere-
Peres and Lasserre [26] use a scheduling model to check whether the plans their IP
model develops are feasible. Other approaches use simulation models in the same
manner, e.g., Pritsker and Snyder [88]. The use of simulation or scheduling models
captures the operational dynamics of the system correctly. However, this approach
does not scale well, since simulation models of large systems are time-consuming
to run and analyze. An innovative approach to integrating simulation and LP is
that of Hung and Leachman [53]. Given initial lead-time estimates, an LP model
for production planning is formulated and solved. The resulting plan is fed into a
simulation model to estimate the lead-times the plan would impose on a real system.
If these lead-times do not agree with those used in the LP, the LP is updated with the
new lead-time estimates and resolved. This iteration is repeated until convergence.
Similar models have been proposed by others [6, 18, 19, 66, 95]. However, the
convergence of these methods is not well understood [55, 57]. The computational
burden of the simulation runs required is also a significant disadvantage for large
systems such as those encountered in semiconductor manufacturing.

Stochastic inventory models seek an optimal inventory policy (when to order,
and how much to order) for individual items in the face of different environmental
conditions (e.g. demand patterns, modes of shipment from suppliers) and constraints
(e.g. supply restrictions, budget limitations, and desired customer service levels).
Much of the work in this area [54, 59, 101, 102] is in the context of ordering from
suppliers, modeling demand carefully but treating supply as known and unlimited,
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generally with a fixed lead time. Many subsequent papers have addressed variations
of this basic problem [46, 47, 107]. However, the vast majority assume that a supplier
can supply any amount of material within the specified lead time, i.e., has unlimited
capacity.

Federgruen and Zipkin [32, 33] consider the capacitated inventory problem with
uncertain demand and explore the optimality of “modified” base stock policies when
the cost for the single period is convex in the base stock level. Tayur [99] extends this
work by discussing the computation of the optimal base stock level. However, these
models use simple capacity constraints that ignore the dependency between load and
lead times. Ciarallo et al. [23] describe the structure of optimal policies for prob-
lems with uncertain production capacity and a time-stationary demand distribution.
Anupindi et al. [3] provide bounds and heuristics for the problem with nonstationary
demand and stochastic lead times, where the lead time distribution is stationary over
time.

The idea of combining inventory and queueing models has attracted attention
from many researchers [17, 52, 91]. Zipkin [106] develops a queueing framework
to analyze supply chains facing a stationary demand distribution and where a (Q, r)
policy is used to release units onto the shop floor. Ettl et al. [31] develop an opti-
mization model combining queueing and inventory models to set base-stock levels
for a multi-item batch production system facing non-stationary demands. Liu et al.
[71] extend this approach.

One of the most popular frameworks for planning under uncertainty is stochastic
programing [12, 58, 87]. Uncertainty is represented by using a number of discrete sce-
narios to represent possible future states, which allows stochastic linear programs to
be modeled as large linear programing problems. Constraints are formulated requir-
ing that an optimal solution be feasible for all scenarios, and the objective function is
usually to minimize the expected value of the specified objective function. A number
of authors have formulated production planning problems as multi-stage stochastic
linear programs (M-SLPs) [48, 85], but the approach presents challenges.

A significant difficulty of M-SLPs is that the problem size tends to grow exponen-
tially with the number of possible realizations (scenarios) of uncertain parameters,
requiring solution methods that exploit their special structure. The scenario-based
structure of M-SLPs makes decomposition methods attractive. Most decomposition
methods exploit convexity of the recourse function to use outer linearization. Com-
monly used methods include Dantzig-Wolfe decomposition (inner linearization) and
Benders decomposition (outer linearization), which decompose the large-scale prob-
lem into a master problem and several independent subproblems. Dantzig-Wolfe
decomposition adds new columns to the master problem based on the suproblem
solutions [25]. Benders decomposition, on the other hand, proceeds by adding new
constraints (supporting hyperplanes known as optimality cuts) that are computed
using dual solutions to the subproblems (e.g., Lasdon [68]).

Van Slyke and Wets [100] extended Benders’ decomposition to solve two-stage
stochastic linear programs (2-SLPs) via the L-Shaped Method. M-SLPs are much
more challenging computationally than 2-SLPs. An extension of the L-shaped
method to more than two stages, called nested decomposition, was first proposed
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by Louveaux [72] for multi-stage quadratic programs and by Birge [11] for multi-
stage linear programs. The algorithm generates cuts for an ancestor scenario problem
that has feasible completion in all descendant scenarios. As in the L-shaped method,
nested decomposition achieves outer linearization by generating feasibility and opti-
mality cuts until it converges to an optimal solution. A number of different strategies
have been used to select the next subproblem for deterministic problems. Numerical
experiments by Gassmann [35] found that the fast-forward-fast-back procedure of
Wittrock [105] outperforms other strategies.

There have been recent attempts to model production planning problems using
robust optimization approaches [7, 10]. Leung et al. [70] develop a robust optimiza-
tion model to solve the aggregate production planning problem. Raa and el-Aghezzaf
[90] use robust optimization to obtain a dynamic planning strategy for the stochastic
lot-sizing problem.

Chance constrained programing dates back to the work of Charnes and Cooper
[20, 21, 22]. A more recent overview of these methods is given by Prékopa [87].
In chance constrained programing, constraints can be violated with a specified prob-
ability, which is quite useful to model, for instance, service levels in supply chain
problems [40]. Continuous probability distributions are often assumed on the uncer-
tain parameters. This approach achieves a substantial decrease in the size of the
model, and avoids the problem of defining the penalty function. However, it fails to
capture the cost consequences of constraint violations, which can result in anomalous
behavior [14].

Given that exact solutions to stochastic optimization problem are computation-
ally challenging, a number of approaches to obtain solutions via decision rules have
been proposed. These approaches classify decision variables according to whether
they are implemented before (first stage decisions), or after (second stage decisions)
an outcome of the random variable(s) is observed. However, in the decision rule-
based approach, the second stage recourse decisions are determined by a rule that
incorporates both the first stage decisions and the observed outcomes. A commonly
encountered example of such a rule that is in fact optimal in form is the well-known
base stock policy for inventory systems with unlimited capacity, deterministic replen-
ishment lead time and linear holding and backorder costs. However, as pointed out
by Garstka and Wets [34], the decision rule approach assumes a specific form for
the optimal solution to the stochastic program. Since very few multistage stochas-
tic programs yield a closed-form characterization of the optimal solution, solutions
obtained assuming decision rules cannot be guaranteed to be optimal in the vast
majority of cases.

A well-known family of decision rules are the Linear Decision Rules, where
the second stage recourse decision is a linear function of the first stage decision
variables and the observed outcomes. The pioneering Linear Decision Rule (LDR)
was developed by Holt, Modigliani, Muth and Simon (HMMS) in the mid 1950s
[49, 51]. Extensions to this rule have been proposed by several authors [8, 28, 36,
44, 84]. While the HMMS model and its variations incorporate demand uncertainty,
these models treat capacity, specifically workforce levels, as a decision variable that
can be varied continuously, which avoids the problem of workload-dependent lead
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times encountered under fixed capacity limits. In addition, the specific quadratic
form of the objective function adopted allows the construction of a deterministic
equivalent that simply replaces each random variable with its expectation. However,
it is well known that this approach does not yield optimal solutions in general.

In summary, a variety of models have been proposed that address the issues
of workload-dependent lead times and demand uncertainty separately at best, and
in many cases do not address either. The LP and MRP approaches do not address
workload-dependent lead times, and generally ignore stochastic demand. Most inven-
tory models focus on modeling demand, with simple models of replenishment that
do not consider workload-dependent lead times. The combined queueing-inventory
models capture the interaction between workload-dependent lead times and inven-
tory levels correctly, but assume specific inventory policies of the order up to
type, and make different assumptions about the representation of a production
unit. Stochastic programing approaches are hampered by their exponentially grow-
ing computational burden as the number of products and planning periods (stages)
increase. Our heuristics, in contrast, consider non-stationary demand distributions
to provide production plans over a finite planning horizon, taking available informa-
tion about future demand into account. The work in this paper is an initial step in
assessing the performance of this approach.

In the next section we present an overview of the clearing function concept that we
use to develop a LP model that addresses the load dependent lead time and demand
uncertainty aspects simultaneously for a single-product supply chain.

3 Clearing Function Basics

Clearing functions (CF) [37, 61, 78, 98], express the expected throughput of a capac-
itated resource over a given period of time as a function of some measure of WIP
level at the resource over that period, which in turn, is determined by the average
resource utilization over the period. We shall use the term “WIP” and the generic
variable W to denote any reasonable measure of WIP level over a planning period.

To motivate the use of a nonlinear CF, it is helpful to begin with a single resource
that can be modeled as a G/G/1 queueing system in steady state. The expected number
in system (i.e., expected WIP) for a single server is given by Medhi [74] as:

W = (c2
a + c2

s )

2

ρ2

(1 − ρ)
+ ρ

where ca and cs denote the coefficients of variation of service and interarrival times,
respectively andρ the utilization of the server. Setting c = (c2

a+c2
s )/2 and rearranging

(1) we obtain a quadratic in W whose positive root yields the desired ρ value. Solving
for ρ with c > 1, we obtain

ρ =
√

(W + 1)2 + 4W (c2 − 1) − (W + 1)

2(c2 − 1)
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Fig. 1 Examples of CFs (Karmarkar [61])

which has the desired concave form. When 0 ≤ c < 1, the other root of the quadratic
will always give positive values for ρ. When c = 1, the expression simplifies to yield
ρ= W/(1+W ), again of the desired concave form. If we use utilization as a surrogate
for output, we see that for a fixed c value, utilization, and hence throughput, increase
with WIP but at a declining rate. Utilization, and hence output, is decreasing in c due
to variability in service and arrival rates.

Figure 1, derived from Karmarkar [61], depicts several examples of CFs con-
sidered in the literature, where X denotes the expected throughput in a planning
period. The horizontal line X = C represents a fixed upper bound on output over
the period, but without a lead-time constraint it implies that production can occur
without any WIP in the system if work input and production are synchronized. This
approach is implemented in most LP models but is supplemented with a fixed lead
time as described above. The linear CF of Graves [37] is represented by the X = W/L
line, which implies a lead time of L periods that is maintained independently of the
WIP level. If a fixed lead time is maintained up to a certain maximum output, we
have X = min{W/L , C}. When the parameters of the Graves CF are set such that
the lead time is equal to the average processing time, with no queueing delays at all,
we obtain the line X = W/p, where p denotes the average processing time. Assum-
ing that lead time is equal to the average processing time up to a maximum output
level gives the “Best Case” model X = min{W/p, C} of Hopp and Spearman [52].
The workload-independent fixed lead time in most LP models differs from the linear
CF of Graves in that the former does not link output to WIP, while the latter does
[81]. The CF always lies below the X = W/p and X = C lines. For most capacitated
production resources subject to congestion, limited capacity leads to a saturating
(concave) shape of the CF, for which Asmundsson et al. [4] and Selçuk et al. [96]
provide analytical support.

Several authors discuss the relationship between throughput and WIP levels in
the context of queueing analysis, focusing on the long-run steady-state expected
throughput and WIP levels. Agnew [1] studies this behavior in the context of optimal
control policies. Spearman [97] presents an analytic congestion model for a family



Chance-Constraint-Based Heuristics for Production Planning 181

of closed production systems that describes the relationship between throughput
and WIP. Srinivasan et al. [98] derives the CF for a closed queueing network with
a product form solution. Asmundsson et al. [4, 5] and Missbauer [77] study the
problem of estimating CFs from experimental data, obtained either from industry or
simulation models. Missbauer and Uzsoy [78] review the state of the art in this area.

An important advantage of CFs for our purposes is their ability to reflect dif-
ferent sources of variability in the production process. In queueing terms, this is
accomplished by basing the CF on the effective processing time at the resources,
which includes the effects of detractors such as uncertain yield, machine failures and
setups, as discussed in Chap. 8 of Hopp and Spearman [52]. The manner in which
these effects change the shape of the CF is described in Asmundsson et al. [4]. When
the CFs are estimated from empirical data, the effects of the variability induced by
detractors are present in the data to which the CF is fit, again capturing their effects.

Hence, given the current research on the derivation of CFs using both analytical
and empirical approaches, in this chapter we shall proceed on the assumption that
adequate methods of estimating CFs for different production systems will emerge
from ongoing work. We focus on using CFs to develop production models that
consider stochastic demand and the nonlinear relationship between workload and
cycle in an integrated manner. We introduce our approach in the next section.

4 A Deterministic Model Based on Clearing Functions

In this section we develop a LP model for aggregate planning under the effects of
congestion and demand uncertainty. We begin with a basic formulation prevalent
in the literature, discuss its weaknesses, and use these to motivate our formulations,
drawing heavily on the exposition in Bookbinder and Tan [15]. While there are clearly
many formulations in the literature that capture additional aspects such as multiple
stages, alternative production paths, etc., our focus is to find computationally tractable
formulations that allow us to treat both the nonlinear dynamics of utilization and lead
times and the stochastic nature of the demand as endogenous to the model. Hence
to isolate these aspects of the problem for study, we focus on a single-stage single
product system. The quantity of raw material released into the system in each time
period is the key decision variable in our models. These releases are then converted
into output according to different mechanisms defined by the models considered,
which will be discussed as we proceed.

Consider the production planning problem for such a single stage production
system producing a single product. The planning horizon is divided into T discrete
periods of equal length. Demand in each period is assumed to be stochastic with
known cumulative distribution function (CDF), and independent of demand in other
periods. Service level requirements to be met are prespecified, and are thus treated
as a constraint. We consider the simple objective of minimizing the sum of expected
costs of holding finished goods inventory (FGI) and work in process (WIP) over the
planning horizon. Following the literature, we do not consider the cost of stockouts
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in the objective function because we assume that the service level requirements
are sufficiently high that the cost of stockouts is negligible. This assumption will
be relaxed in our computational experiments. Clearly far more elaborate objective
functions are possible, but our emphasis is on representation of production capacity
and demand uncertainty.

To describe the models used in this paper we use three different classes of vari-
ables:
Decision or Control Variables: These variables represent the primary management
decisions in a plan. In order to be implementable, a plan must specify either specific
values for these variables, or specific rules by which they can be computed with the
information available at the time a decision must be made.
State Variables: These variables define the behavior of the system, and their values
are determined by the constraints determining the operational dynamics of the system
and the values of the decision variables. These variables may be either deterministic
or random.
Parameters: These are external inputs to the system and are prespecified in the
model. We will assume these are always deterministic.

The notation used in the formulations is given below. We use a bold font, e.g., X,
for a random variable and a normal font, e.g., X, for a deterministic variable.

Rt : Planned quantity of product released into the system during period t
Xt : Planned production quantity during period t
It : Inventory on hand at the end of period t. The initial inventory on hand at the start
of period 1 will be denoted by I0.

ht : Unit inventory holding cost for period t
Ct : Capacity, e.g., total number of machine hours available, in period t
α : Specified service level
G[t,t+k] : CDF of cumulative demand from period t to period t + k
Dt : Demand during period t. Throughout this paper we shall assume the demand in
each period t to be normally distributed with known mean μt and standard deviation
σt . In our experiments we will assume demands are independent by time periods.
However, the models presented remain valid for correlated demands as long as the
variance-covariance matrix is known, or can be estimated with reasonable accuracy.
Lt : Average lead time in period t. For simplicity of exposition in presenting the
models in this section we shall assume these are integer multiples of the planning
period length. Fractional Lt values can be accommodated in a straightforward man-
ner.

4.1 Basic Formulation

Most chance-constrained production planning models in the literature are similar to
that of Bookbinder and Tan [15] given below; a slightly different version is given in
Johnson and Montgomery [56]. Our model incorporates the following constraints:
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• Releases

Since the lead time is Lt in period t, whatever is released into the system in period
t is converted to output and available for consumption in period t + Lt . Hence the
relationship between release quantities and output is given by

Rt = Xt+Lt , for all t = 1, . . . , T − Lt

The primary decision variable is the amount of work Rt released in period t, which
must be specified at the start of the planning horizon. Hence both releases and pro-
duction are deterministic. Note that the Xt and Rt variables are redundant, and the
formulation can be written with only one of these two sets of variables.

In this model, work that is released into the production system at time t is in WIP
for Lt periods until it emerges as finished product. Most LP models do not explicitly
represent this quantity, or assign it a cost in the objective function, but it can easily
be estimated for any period t as the difference between the cumulative releases and
output up to a given period t.

• Inventory balance

The finished goods inventory on hand at the end of period t, It, is a random variable
for which the relationship

It = It−1 + Xt − Dt

holds for each time period t. Taking the expectation and repetitive substitution yields

E[It] = E[It−1] + Xt − E[Dt] =I0 +
t∑

i=1

Xi −
t∑

i=1

E[Di ]

=I0 +
t∑

i=1

Xi −
t∑

i=1

μi , for all t = 1, . . . , T .

All terms in this expression are now deterministic.

• Capacity

Xt ≤ Ct , for all t = 1, . . . , T .

Service level: This constraint requires that the service level, defined by the prob-
ability of It < 0, i.e., a stockout occurring, be less than (1 − α), implying

P{It ≥ 0} ≥ α ⇒ P

{

I0 +
t∑

i=1

Xi ≥
t∑

i=1

Di

}

≥ α, for all t = 1, . . . , T .

The service level measure fits the chance constraint approach well, since the latter
allows constraints to be violated with a certain probability. However, it does not
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Table 1 Basic formulation

min
T∑

t=1
ht {I0 +

t∑

i=1
Xi −

t∑

i=1
μi } subject to

P{I0 +
t∑

i=1
Xi ≥

t∑

i=1
Di} ≥ α for all t = 1, . . . , T (SERVICE LEVEL)

Xt ≤ Ct for all t = 1, . . . , T (CAPACITY)

Xt ≥ 0 for all t = 1, . . . , T (NONNEGATIVITY)

capture the degree to which the constraint is violated. Hence a production plan that
has stockouts in many periods, but falls short by a very small fraction of the demand
in each period, will appear to have a poor service level. To this end, we use the fill
rate, the fraction of total period demand met from inventory, as another performance
measure in our computational experiments. The basic formulation is summarized in
Table 1, using the production variables Xt .

While the basic formulation is intuitive, it suffers from the following disadvan-
tages:

• It ignores the effects of loading on WIP and lead times in a capacitated system
[4, 5, 37, 60] by considering lead times to be fixed exogenous values.

• It assumes that safety stock must be held in finished goods inventory, based on
the demand for each individual period. This is adequate when the lead times of
the production system, which correspond to the replenishment time of the finished
goods inventory, do not exceed one period, as in the models of Bookbinder and
Tan [15] and Johnson and Montgomery [56]. However, if lead times span multiple
periods, this becomes problematic. It is well known in the inventory literature [24]
that in the presence of nonzero lead times the optimal policy in many cases, and a
good heuristic in many more, is to set the inventory position, the sum of on-hand
inventory and outstanding orders, to the desired percentile of the demand over the
lead time (e.g., [29]). Hence this formulation fails to recognize that WIP can serve
some of the function of safety stock [38], and hence might hold more finished
goods inventory than required to maintain a given service level. We shall assume a
replenishment policy of this form, which is not optimal for the production system
we consider, in developing our heuristics.

In the production-inventory context of this paper, outstanding orders are repre-
sented by material that has been released into the production line but has not yet
emerged as finished goods, i.e., WIP [38]. The inventory position, which will be
an important quantity for our development in the rest of this paper, will be defined
in more detail in the following section.

• The model makes all decisions for the entire planning horizon at the beginning of
the horizon, before any of the demands become known, and does not provide a
way to use information as it becomes available. In other words, there is no recourse
action.

In the rest of this section we extend this formulation to address these issues.
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4.2 Development of Integrated Model

An elegant way of capturing the effect of capacity loading on WIP and lead times
in production planning models is the use of clearing functions (CFs) as discussed in
Sect. 3. Recall that up to this point all variables are deterministic except the inventory
levels It. Hence, incorporating CFs in the model requires:

• Introduction of WIP balance equations. If Wt is defined to be the WIP at a given
time t, then the WIP balance equations are given as Wt = Wt−1 + Rt − Xt for
all periods t = 1, . . . , T . We treat Rt as a deterministic decision variable that is
specified at the start of the planning horizon by solution of the planning model,
and cannot be modified as uncertainty is realized.

• Replacing the original capacity constraint with a set of linear inequalities that
represent the outer linearization of the original CF [4, 5]. The set of inequalities
representing the CF is given by Xt ≤ ak Wt−1 + bk , for all periods t = 1, . . . , T
and line segments k = 1, . . . , n used to outer linearize the CF.

The use of CFs to represent the capacity of the production system takes a more
complex view of the relationship between the planned release quantity Rt in period t
and the planned output Xt of the system in that period. The releases in a period
determine the planned WIP level Wt at the end of the period, together with the
linearized CF represented by the constraints above, determines the planned system
output Xt+1 in the next period The release variables Rt are defined such that releases
are made at the end of period t, and hence cannot contribute to output during period t.
This is necessary because in later models, our linear decision rule observes the
realization of the random demand Dt in period t to determine the releases Rt at the
end of period t. This definition, together with the definition of the CF and the WIP
balance equations, is thus internally consistent.

In inventory theory an optimal or near-optimal policy, when there is no fixed
ordering cost and shortage and holding costs are linear, is to maintain the inventory
position, the sum of on-hand and on-order inventory, at a critical fractile of the
demand over the replenishment lead time [24]. Hence if IPt denotes the inventory
position at the end of period t, we have IPt = Wt +It, where Wt represents orders that
have been released to production but not yet completed. This analogy with inventory
models suggests a service level constraint requiring a probability α that IPt is at
least as great as the demand over the replenishment lead time [38]. Assuming this
replenishment lead time, corresponding to the cycle time of the production system
under study, is known to be Lt periods in period t, we have

P

{

IPt ≥
t+Lt∑

i=t+1

Di

}

≥ α ⇒ P

{

It + Wt ≥
t+Lt∑

i=t+1

Di

}

≥ α .

The Lt parameters on the right hand sides of our chance constraints define the
distribution of the lead time demand that will be used to set safety stock levels.
Noting that
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It = I0 +
t∑

i=1

Xi −
t∑

i=1

Di and

Wt = W0 +
t∑

i=1

Ri −
t∑

i=1

Xi

we obtain

IPt = It + Wt = (I0 + W0) +
t∑

i=1

Ri −
t∑

i=1

Di .

The chance constraint is now of the form

P{IPt ≥ 0} ≥ α ⇒ P

{

I0 + W0 +
t∑

i=1

Ri −
t+Lt∑

i=t+1

Di ≥
t∑

i=1

Di

}

≥ α

⇒ P{I0 + W0 +
t∑

i=1

Ri ≥
t+Lt∑

i=1

Di } ≥ α .

Following the approach of Charnes and Cooper [22] the deterministic equivalent of
the service level constraint can be written as

I0 + W0 +
T∑

i=1

Ri ≥ G−1
[1,t+Lt ](α), for all t = 1, . . . , T .

where G[1, t](·) denotes the cumulative distribution function (CDF) of the cumulative
demand random from periods 1 to t,

Replacing the probabilistic service level constraint with its deterministic equiva-
lent yields the Zero-Order Inventory Position (ZOIP) formulation shown in Table 2.
This formulation embodies a service level constraint on inventory position and a zero
order decision rule where all decision variables are specified irrevocably at the start
of the planning horizon.

It is important to note that there are two different lead times at work in the ZOIP
model. The first of these is the estimated replenishment lead time Lt used to establish
the inventory position required to approximately achieve the desired service levels.
The second lead time in question is that realized in the production system, the time
required for work released into the system to become available as finished product.
The workload-dependent nature of this realized lead time is explicitly represented by
the clearing function, whose effectiveness for this purpose we have demonstrated in
prior work [4, 5]. Ideally, the two lead times should be equal, with the replenishment
lead time used for setting inventory targets matching that realized by the production
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Table 2 ZOIP formulation

min
T∑

t=1
ht {I0 +

t∑

i=1
Xi −

t∑

i=1
μi + Wt } subject to

Wt = Wt−1 − Rt − Xt for all t = 1, . . . , T (WIP BALANCE)

I0 + W0 +
T∑

i=1
Ri ≥ G−1

[1,t+Lt ](α), for all t = 1, . . . , T (SERVICE LEVEL)

Xt ≤ ak Wt−1 + bk for all t = 1, . . . , T ; k = 1, . . . n (CAPACITY)

Xt , Rt , Wt ≥ 0 for all t = 1, . . . , T

system in the face of the release schedule recommended by the model. In other words,
in an ideal situation the Lt should be an output of the model. This would require
us to estimate Lt using Little’s Law as (Wt + Wt−1)/2Xt assuming the planning
periods are long enough for the law to apply; for the shorter periods some transient
version of Little’s Law such as those discussed by Bertsimas and Mourtzinou [9],
Whitt [104] and Riaño [95] would be required. Even the use of the classical stationary
version of Little’s Law yields a highly nonlinear constraint. Hence for the sake of
tractability we treat the replenishment lead time Lt on the right hand side of the
chance constraints as an exogenous parameter, which reduces the right hand sides
to constants that can be precomputed easily. Our model thus captures workload-
dependent lead times correctly in defining the relationship between releases Rt ,
planned WIP level Wt−1, and expected output Xt , but uses an exogenous parameter
to approximate the distribution of the lead time demand, which will be used to set the
safety stocks. Computational experiments indicate that the realized lead time may
deviate somewhat from the exogenously assumed value used to establish the chance
constraints when used in this manner, but results are still favourable over base stock
type models that do not consider clearing functions [94].

A full resolution of this issue appears to be challenging, and must be left for future
research. A promising approach is to use an iterative scheme, where we solve the
ZOIP model using an initial set of lead time estimates to obtain a release plan, i.e., a
set of Rt values. These Rt values are then used to compute the resulting state variables
Xt , Wt , and It , from which a new set of Lt values can be estimated as Lt = Wt/Xt .

These new Lt values are then substituted into the model and the process is repeated
until convergence is, hopefully, achieved. Orcun et al. [79] have implemented this
procedure with favourable results, but formal analysis of its convergence remains for
future work.

Up to this point we have developed a formulation that combines the modeling of
congestion and lead times in the production system with the explicit representation
of random demand using chance constraints. We now move on to adding flexibility
to the decision mechanism by utilizing information as it becomes available.
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4.3 A Linear Decision Rule

So far our formulations have zero order static decision rules, where the values of
all decision variables are determined at the beginning of the time horizon and there
is no recourse action after the outcomes are observed. We now follow Charnes and
Cooper [22] and propose a linear decision rule to introduce flexibility in the decision
mechanism, recalling that this approach does not yield an optimal solution. Since the
releases are the decision variables in the CF formulations, the decision rule is based
on releases.

We use a simple rule closely following that described in Johnson and Montgomery
[56] that allows the releases to be modified as uncertain demand is observed, ren-
dering them random variables. We define auxiliary variables Yt that represent the
change in planned inventory position from period t − 1 to period t, implying that
Rt = Yt + Dt. Thus Yt represents the amount of work released in period t over and
above that necessary to replenish the inventory position after that period’s demand
has been withdrawn; note that it may be negative, if demand is decreasing in a given
time interval. This decision rule thus represents a base stock policy, and it is straight-
forward to show that Yt = I Pt − I Pt−1 for specified values of IPt and IPt−1. Our
heuristic establishes chance constraints that set the planned inventory position at the
end of period t, IPt, to a percentile of the lead time demand distribution as described
below. The releases Rt are now random variables derived from the Yt and the realized
demand Dt. Thus the WIP variables Wt are now also random. Since the production
Xt in a given period depends on the realized WIP level Wt−1 at the start of that
period, Xt is also a random variable. We have the relation

E[Wt ] = E[Wt−1 + Rt − Xt ] = E[Wt−1 + Yt + Dt − Xt ]

= W0 +
t∑

i=1

(Yi + μi − Xi )

Since the release quantities are now random variables, there exists a possibility that
they may be negative. To prevent this, we use the chance constraint

P{Rt ≥ 0} ≈ 1 ⇒ P{Yt + Dt ≥ 0} ≈ 1 ⇒ Yt + Dmin
t ≥ 0,

where Dmin
t is a value of demand in period t such that the probability of demand falling

below this level is deemed by management to be extremely small. This is clearly an
approximation when demand follows a distribution with unbounded support, like the
normal distribution we assume, and is unlikely to be binding except when there is a
very sudden, large decline in demand from one period to another.

We again define the event of a stockout as the event that the total lead time demand
exceeds the inventory position IPt = Wt + It, yielding the chance constraint

W0 + I0 +
t∑

i=1

Yi ≥ G−1
[t+1,t+Lt ](α).
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Table 3 DYNIP formulation

min
T∑

t=1
ht {I0 +

t∑

i=1
Xi −

t∑

i=1
μi +

W0 +
t∑

i=1
(Yi + μi − Xi )} subject to

W0 + I0 +
t∑

i=1
Yi ≥ G−1

[t+1,t+Lt ](α) for all t = 1, . . . , T (SERVICE LEVEL)

Xt ≤ ak(W0 + I0 +
t−1∑

i=1
Yi ) + bk for all t = 1, . . . , T ; k = 1, . . . n; (CAPACITY)

Yt + Dmin
t ≥ 0 for all t = 1, . . . , T (REL. NON-NEG.)

Xt , Yt ≥ 0 for all t = 1, . . . , T

Since releases, WIP and production are all interrelated, all decision variables are
now random variables except the Yt , creating difficulties in establishing a tractable
formulation. Hence for tractability in the solution procedure, we will assume that
the production variables Xt and the auxiliary variables Yt are determined at the start
of the planning horizon, with the Wt, It, and Dt remaining as random variables.
The assumption here is that when a production target Xt is in danger of not being
met, the system will take extraordinary measures to meet it, such as running an
extra shift or buying from an outside source. The cost of this is not captured in the
models, but is, of course, considered in our computational experiments, where we
assume the production system has no outside recourse when planned production
levels cannot be achieved. This ensures that all models are treated similarly in the
computational experiments. Incorporating this rule in the ZOIP formulation gives us
our final Dynamic Inventory Position (DYNIP) formulation summarized in Table 3.

The models presented above have been analyzed by Ravindran et al. [93]. They
compare the performance of the ZOIP and DYNIP models with a static base stock
policy and find that DYNIP performs significantly better in terms of backorders.
They also analyze the structure of optimal solutions to the model under the linear
clearing function of Graves. These results indicate that the ZOIP model will overstock
consistently, while DYNIP will not.

5 Stochastic Programing Models

For comparison with the chance constrained models, we develop two different sto-
chastic programing models along with their implementation strategies. We first
present a two-stage stochastic programing model. A multi-stage stochastic program-
ing formulation is also presented along with static and dynamic implementation
strategies.
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5.1 The Two-Stage Model (2-SP)

As in the rest of the paper, we assume the primary source of uncertainty is the
demand in each period, and consider the simple objective of minimizing the sum of
expected WIP holding, FGI holding and backorder costs over the planning horizon of
T periods. We assume that the demand evolves as a discrete time stochastic process
with a finite probability space. This information structure can be interpreted as a
scenario tree, where the nodes in stage t of the tree constitute the states of the world
that can be distinguished by information available up to period t. The size of the
scenario tree is clearly exponential in the number of periods T, and depends on the
number of possible demand realizations considered at each stage.

The computational burden of any model based on scenario trees will rapidly
become impractical. Therefore even for relatively small problem instances used to
benchmark our heuristics, some means of reducing the size of the scenario tree must
be devised. To this end, we shall follow Escudero et al. [30] and consider a two-
stage formulation which consists of specifying a number of scenarios ξ composed
of demand realizations for all periods. The first-stage problem involves deciding the
production, release, and planned WIP levels for all periods, regardless of the state
of the world. The second stage determines the FGI and backlog levels at the end of
each period subject to the realized state. Thus the Xt , Rt , and Wt variables are only
indexed by time periods (since they do not change with the realized state) while FGI
variables I ξ

t and backorder Bξ
t at the end of period are indexed by the scenario ξ.

The model can be stated as follows:

Min
T∑

t=1

ht Wt + Eξ[Q(Xt , ξ)]

subject to

Wt = Wt−1 + Rt − Xt for all t = 1, . . . , T

Xt ≤ f (Wt ), for all t = 1, . . . , T

Xt , Rt , Wt ≥ 0 for all t = 1, . . . , T

where Q(Xt , ξ) denotes the recourse function which is defined as

Q(Xt , ξ) = min
T∑

t=1

(ht I ξ
t + bt Bξ

t )

subject to

I ξ
t − Bξ

t = I ξ
t−1 − Bξ

t−1 + Xt − Dξ
t , for all t = 1, . . . , T
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I ξ
t − Bξ

t ≥ 0, for all t = 1, . . . , T

Unlike DYNIP, this model assumes no recourse for the Rt variables. In fact under the
two-stage model the first stage decision variables Xt , Rt , and Wt are determined
at the beginning of the planning horizon, while the second stage problem simply
computes the realized FGIs and backorders after demands are realized. This model
has the advantage that the size of the model grows linearly with the number of
scenarios considered, and that it has complete recourse, in that all first-stage decisions
are feasible for the second stage. The disadvantage is that it does not allow recourse
action to be taken as demand is realized, placing it on a par with the ZOIP model in
this regard.

In order to determine a 2-SP production planning strategy, one has to generate
multiple scenarios, each consisting of demand realizations for periods 1, . . . , T . The
2-SP model is then solved and the optimal decisions (R∗

t , X∗
t , W ∗

t ), t = 1, . . . , T
yield a production plan that is completely defined at the beginning of the planning
horizon.

5.2 The Multi-Stage Model (M-SP)

A natural extension of the two-stage model is to allow recourse actions as demand is
observed. This is accomplished by representing the demand process {Dt } as a scenario
tree. Each node n in the tree represents a demand realization in the corresponding
period t (n) with a probability qn . The root node (n=1) of the tree represents the
current demand, i.e. D1. Node a(n) is the direct ancestor of node n. The direct
descendants of node n are called the children of node n. The subtree with root node n
is denoted by T (n). A path from the root node to a node n describes one realization
of the stochastic process from the present (period 1) to period t (n). The set of all the
nodes on this path is denoted as P(n). A full evolution of the demand process over
the entire planning horizon, i.e., the path from the root node to a leaf node, is called
a scenario.

The scenario tree representation of the demand process is an approximation of
the actual demand distribution due to its use of a finite number of possible demand
outcomes in each period. Also, generally the size of scenario tree increases exponen-
tially with increasing time horizon. The cumulative demand, production, and releases
for the partial realization of the demands represented by a path from the root node 1
to a node n in the tree are given by

D(1, n) =
∑

m∈P(n)
Dm

X (1, n) =
∑

m∈P(n)
Xm

R(1, n) =
∑

m∈P(n)
Rm
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The stochastic programing formulation of the production planning problem with
congestion is given by the following model:
(MSP):

min
∑

n∈T (1) qn[ht (n)(In + Wn) + bt (n) Bn]
s.t. Wn = W0 − X (1, n) + R(1, n)

In = I0 + X (1, n) − D(1, n) + Bn ∀n
Xn ≤ f (Wa(n)) ∀n
Rn, Xn, In, Wn, Bn ≥ 0 ∀n

The objective in the M-SP model is to minimize the expected cost over the planning
horizon, which includes the present cost determined by the root node decisions and
the expected future cost. In any given period t, the release, WIP, and production
can be determined before the knowledge of demand, and are hence called first-stage
decisions. On the other hand inventory and backorder are recourse decisions because
they depend on the first-stage decisions as well as the realization of the uncertain
parameter (demand). In our implementation, the constraints related to the clearing
function are piecewise linearized as in Asmundsson et al. [4] for computational
convenience.

The MSP model has considerable similarities to the Model Predictive Control
approach deployed in the engineering disciplines. The similarities between con-
trol theoretic and mathematical programing approaches were noted early on by
Kleindorfer et al. [67] and their application to supply chain management problems
has been discussed by Kempf [64].

5.3 Implementation Strategies for the M-SP Model

Based on the multi-stage stochastic programming model (M-SP) we develop two
production planning strategies to satisfy future demand over the planning horizon.
The first strategy is a static strategy (MSP) and the second is a dynamic strategy
(MSP-DYN).

5.3.1 A Static Strategy (MSP)

MSP is a static strategy, which specifies completely the release, production, and
WIP decisions for all future periods at the beginning of the planning horizon. Once
demands are realized, the FGI and backorders can be determined and the performance
of the solution evaluated, in a manner similar to that used for ZOIP. The primary
difference between ZOIP and MSP lies in the manner they model the uncertainty
in the demand process. ZOIP assumes a known demand distribution in each period,
and establishes constraints that may be violated with a prespecified probability. MSP,
on the other hand, captures the uncertainty of demand through a limited number of
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demand values in each period. Another important difference between ZOIP and MSP
is that ZOIP assumes no recourse action is possible as uncertain demand is revealed.

In order to determine the MSP strategy, i.e., the production planning decisions for
all periods, we follow the procedure below. Note that all the steps are performed at
the beginning of the planning horizon.

For t = 1, we construct a scenario tree T (1), set the first period demand to the
current demand and the initial inventories to some preset initial values, then solve
the MSP model. We obtain the optimal production decisions for all the nodes in
the tree, i.e., (Rn, Xn, Wn)∗. However we only save the root node decisions, which
correspond to the decisions to be implemented in period 1, (R1, X1, W1)

∗, under the
MSP strategy. Also, (I1, W1)

∗ serve as initial inventories for the next period.
For t = 2, we construct a scenario tree T (2) over the periods 2, . . . , T , set the

root node demand to μ2 and solve the M-SP. Here μ2 is the forecast of period 2
demand available to us in the beginning of the planning horizon.

The root node optimal decisions are recorded as (R2, X2, W2)
∗ and will be

implemented in the second period under the MSP strategy. Repeat the same for
t = 3, . . . , T . The optimal decisions (Rt , Xt , Wt )

∗, t = 1, . . . , T constitute the
MSP production plan that is completely defined at the beginning of the planning
horizon.

5.3.2 A Dynamic Strategy (MSP-DYN)

As pointed out in Powell et al. [86], a model is dynamic if “it incorporates explicitly
the interaction of activities over time”. A model is applied dynamically if “the model
is solved repeatedly as new information is received”. Under this definition, DYNIP is
a dynamic model, while MSP-DYN presented below is a model applied dynamically.

In the MSP-DYN, the multi-stage SP model is applied dynamically over the
planning horizon and only the decisions of the first period are implemented.
As new information about demand becomes available the model is resolved and
the release, production, and WIP decisions are made. Therefore, at the beginning of
the planning horizon only period 1 decisions are known and future decisions will
only be determined once the corresponding demand is realized. More specifically,
we proceed as follows:

For the current period, t = 1, we construct a scenario tree T (1), set the first
period demand to the current demand and the initial inventories to some pre-set initial
values, then solve the MSP model. We obtain the optimal production decisions for
the root node decisions to be implemented in period 1, (R1(D1), X1(D1), W1(D1))

∗ ·
(I1, W1)

∗ serve as initial inventories for the next period.
The current period is t = 2, the demand of period 2 is now realized and cor-

responds to the root node demand in a scenario tree to be constructed for periods
2, . . . , T . The MSP model is solved and the root node decisions (R2(D2), X2(D2),

W2(D2))
∗ are implemented. This process is repeated for t = 3, . . . , T . At the end

of the planning horizon the values (Rt (Dt ), Xt (Dt ), Wt (Dt ))
∗, for t = 1, . . . , T

constitute the MSP-DYN production plan.
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6 Computational Experiments

In this section, we present a computational study where we compare the performance
of the ZOIP, DYNIP, 2-SP, MSP, and MSP-DYN models considering various demand
profiles and based on Fill Rate and Inventory Position. The former is a proxy for the
level of customer service provided, while the latter serves as a proxy for the average
inventory holding cost, considering both WIP and finished goods inventory levels.
The models have been implemented in GAMS and solved using CPLEX 11.0. We
begin by discussing the experimental design and then present the results and analysis.

Demand Profiles: Demand is forecasted over a horizon of three months, each con-
sisting of four working weeks (T = 12 weeks). Demand in each period is independent
and normally distributed. However, the means and variances of demand are allowed
to vary across periods. Three possible levels of mean demand in a given month are
considered: H (High = 140), M (Medium = 100), and L (Low = 60). Based on
these levels, seven demand profiles are constructed by considering different levels for
each month (i.e., four week subinterval): LLL, MMM, HHH, LMH, HML, LHL, and
HLH. For example, demand profile LMH represents an increasing monthly demand,
where demand from week 1 to week 4 is 60, from week 5 to week 8 is 100, and
from week 9 to week 12 is 140. These profiles show how the mean values of the
demand distributions vary over the planning horizon. In all these profiles, we assume
a constant coefficient of variation ρt = σt/μt = 0.25 for the demand distributions
in every period. This yields very small probability of negative demands; in the few
cases in our experiments in which they arose, negative demands were set to zero.

In order to implement the stochastic programs 2-SP and M-SP, scenario trees
based on the various demand profiles must be constructed. For the 2-SP model, three
scenarios are considered, Low, Medium, and High, with demand in each period t is
set to each of the values μt −σt ,μt , and μt +σt , respectively. The probabilities of the
three demand realizations are assumed to be 0.25, 0.5, and 0.25, respectively. This
is clearly a limited representation of the demand uncertainty, and we shall return to
this issue in our discussion of our computational results.

In the case of the M-SP model, successive stochastic programs (one in each period)
have to be solved in order to obtain a production plan for the entire horizon. Therefore,
in each period t a binary scenario tree starting from period t up to the end of the horizon
is constructed. In each period we consider two possible demand realizations, Low
Demand (μt − σt ) and High Demand (μt + σt ), with equal probabilities. Thus in
any given period t, a M-SP is formulated and solved with a scenario tree containing
2T −t+1 − 1 nodes and 2T −t scenarios (number of leaf nodes).

The capacity of the production system is represented by a clearing function which
captures the effect of congestion as discussed in Sect. 3. Following Karmarkar [61],
we assume the form of the clearing function to be

f (W ) = K1W

K2 + W
,
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Table 4 Clearing function approximation

Segment Intercept Slope

1 0.0 0.5
2 136.0 0.069
3 154.8 0.036
4 161.8 0.023
5 180 0

where K1 = 200 is the production capacity, and K2 = 80 measures the curvature of
the CF.
The resulting CF is shown in Fig. 2. Our piecewise linearization of this CF is given
in Table 4.

There are clearly many specific issues involved in the estimation and piecewise
linearization of CFs which are beyond the scope of this paper. These issues have
been discussed extensively in Missbauer and Uzsoy [78]; specific approaches are
illustrated in Asmundsson et al. [4], Missbauer [77], and Selcuk et al. [96], among
others. Extensive experimentation in the course of this work has shown that the
specific manner in which an appropriately fitted CF is piecewise linearized does not
have much effect on the quality of the resulting production plans, although it does
affect the estimates of the dual prices obtained for the associated constraints [62].
Since the primary purpose of this paper is to compare the solutions obtained from
different formulations of the production planning problem with stochastic demand,
all the models compared use the same piecewise linearized function. Hence the
quality of the fit of the CF is not a factor in this study.

The values of Lt , i.e. the lead times in period t = 1, .., T used in the formulations
were chosen to be the same for all periods. This value, based on Little’s Law, was
chosen to be L = W/μ, where μ is the average of all the demand means over the
planning horizon and W the WIP value corresponding to a throughput of μ on the CF.
This represents the behavior of a practitioner establishing a model based on historical
data. The choice of values for I0 and W0 can be arbitrary, but the values we use are
those recommended by Graves [38], setting W0 = Lμ, and I0 = zασ

√
L .
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To compare the performance of the production planning models, ZOIP, DYNIP,
2-SP, and M-SP (including the MSP and MSP-DYN strategies) we evaluate their
optimal production plans in the face of simulated demand scenarios. For each demand
profile, the evaluation procedure is as follows:

For ZOIP, 2-SP, and MSP

– Step 1 : Solve the four models for each demand profile and obtain the optimal
values of the variables (Rt , Xt , Wt ) for all periods to be specified at the beginning
of the horizon before any actual demand has been observed, i.e. the first stage
decision variables. These constitute the optimal production plan.

– Step 2 : Generate N = 100 demand scenarios from the normal distribution for
each period and simulate the production plans for the models for each scenario.
For each scenario a realization of inventories and backorders is obtained.

– Step 3 : Compute the performances for each model i.e., average and variance of
backorders, fill rate, inventory position, and holding cost.

For DYNIP

– Step 1 : Solve the model for each demand profile and obtain the optimal values of
the variable Yt for all periods to be specified at the beginning of the horizon before
any actual demand has been observed, i.e. the first stage decision variables.

– Step 2 : Generate N = 100 demand scenarios. For each scenario, once demand is
realized in a given period, the corresponding (R, X, W) are determined and hence,
the inventory and backlogs can be computed.

– Step 3 : Compute the performances for each model i.e., average and variance of
backorders, fill rate, inventory position, and holding cost.

For MSP-DYN

– Step 1 : Generate 100 demand scenarios. For each scenario, once demand is real-
ized in a given period t, solve a M-SP model for the periods t, . . . , T and implement
the first period decisions, i.e., the (R, X, W) are determined as well as the ending
inventory (I) and backlogs (B).

– Step 2 : Compute the performances for each model i.e., average and variance of
backorders, fill rate, inventory position, and holding cost.

Since the chance constrained models ZOIP and DYNIP and the stochastic programing
models 2SP, MSP and MSP-DYN use rather different modeling assumptions, care
must be exercised when making comparisons. The chance constrained models assume
a form for the demand distribution in each period, and do not consider shortage costs.
However, it can be argued that an implicit judgement on the relative magnitude of
holding and shortage costs is made in the specification of the required service level α,
which also serves as the probability of constraint violation. The chance constrained
models do not specify any particular recourse action when constraints are violated; in
our computational experiments we assume any missed demands can be backlogged.
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We thus consider three levels of the service level in our experiments: 90, 95 and
99.9%.

The stochastic programs, on the other hand, do not represent the demand distri-
bution in a closed form. Instead, they use a discrete set of scenarios of outcomes to
represent the uncertain nature of demand. Hence the effectiveness of these models is
clearly linked to the number and degree of representativeness of the scenarios used
to obtain the solutions. Another interesting issue is that stochastic programing mod-
els provide, by their nature, values for the decision variables corresponding to first
stage decisions that must be made at the present time, as well as decision variables
corresponding to each of the scenarios considered. However, since the scenarios con-
sidered in the model represent only a sample of possible realizations of the demand
process, it is highly likely that in the future we will face a demand realization that
does not match any of the scenarios used in obtaining them unless the stochastic
program is solved on a rolling horizon basis. Since the size of the formulation to
be solved for the stochastic programs is directly driven by the number of scenarios
considered, this raises some interesting questions.

The performance of the stochastic programs (2-SP, MSP and MSP-DYN) is mainly
affected by the magnitude of the backorder cost relative to the holding cost. We
assume a unit production cost of c = $100, and set the holding cost to h = 0.2 c and
consider three levels for b the backorder cost: 0.5c, c, and 4c.

7 Results of Experiments

In order to facilitate a fair comparison between the different models, we have taken
the approach of multiobjective optimization. The solution produced by any model
represents a tradeoff between shortage and holding costs as that model perceives
them, subject to the specific parameter settings used. The issue is further complicated
by the different definitions of shortage that are possible. The chance constrained
models require the specification of a maximum stockout probability. However, there
is clearly a practical difference between a solution that stocks out by a large amount
in one period, and one that stocks out by very small amounts in several.

We shall thus examine the issue in stages. We shall first consider the tradeoff
between average inventory position, defined as the total finished goods and work in
process inventory, and the fill rate, which is the fraction of demand in each period met
from inventory. We shall then examine the difference between the planned and real-
ized service levels in the chance constraint models, and also explore their sensitivity
to errors in the estimation of the demand distributions used.

7.1 Inventory Position-Fill Rate Tradeoff

In order to examine the performance of the different models in terms of their trade-
off between inventory position and fill rate, we shall compute the scaled inventory
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Fig. 3 Average performance of models over all demand configurations

position for each algorithm under each of our seven demand configurations. Let
IP(i, k) denote the average inventory position realized under model i under demand
configuration k. Then we define the Scaled IP(i, k) = IP(i, k)/min j {IP( j, k)}. This
quantity indicates the level of inventory position of a given model relative to the
model with the lowest average inventory position obtained by any model for that
demand configuration.

Figure 3 depicts the tradeoff between the models based on average performance
across all demand configurations. The fill rate is plotted on the horizontal axis and
the scaled inventory position on the vertical. Since we want fill rate to be high, and
scaled IP to be low, the efficient frontier is to the bottom right of the plots.

Figure 3 yields a number of interesting insights. The ZOIP model is completely
dominated, as we would expect. This is due to its complete lack of a recourse action,
leaving it unable to react to the realized demand after it is observed. In particular, this
leaves the model unable to react to demand that is lower than expected, causing it to
overstock by a significant amount, as indicated by Ravindran et al. [93]. The two-stage
stochastic program 2SP is also dominated. The efficient frontier is made up entirely
of DYNIP and the static multistage model MSP, while the dynamic implementation
of the M-SP, MSP-DYN, is also dominated.

Two salient features emerge from these results. The first and most encouraging
from our perspective is the excellent performance of DYNIP. This model is highly
competitive at service levels of 0.90 and 0.95, although it is dominated for a service
level of 0.999. The relatively small difference in fill rate between the three service
levels suggests that the model overstocks to some degree. There are two possible
reasons for this behavior. One is that the assumptions of the chance constrained
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model are violated in the simulations we use, constituting an interesting direction
for future work in understanding the sources of this behavior. Another possibility is
that the lead time estimate used to set the safety stock levels is too high. The success
of DYNIP over ZOIP is due to its incorporation of a dynamic recourse action—it
can modify releases based on observed demand in the past, while ZOIP fixes all
decisions at the start of the planning horizon; note that ZOIP and DYNIP use the
same information about the demand process.

The comparison between DYNIP and MSP is more interesting. The results indicate
that DYNIP obtains the same performance as MSP for a specific choice of service
levels corresponding to a choice of parameters for MSP lying between b = 100
and b = 400. Given the very limited recourse action incorporated in DYNIP, this
seems surprising at first sight; one would expect MSP to perform considerably better.
However, we need to bear in mind that DYNIP is using a complete characterization
of the demand distribution in each period, while MSP characterizes the demand
uncertainty through the use of scenarios. Thus the number and choice of scenarios
is critical for the MSP to obtain a good solution.

However, this is also where the size of the competing formulations needs to be
taken into account. For a planning horizon of T periods, the DYNIP model requires
O(T ) decision variables and constraints. Assuming two possible realizations for
demand in each period as we do in this study, the scenario tree for MSP has O(2T −1)

nodes, implying that number of decision variables for what is a minimal amount of
information on demand uncertainty. These results hold out the encouraging possibil-
ity that a minimal number of well-chosen scenarios may be sufficient for a stochastic
program to make near-optimal decisions. However, the sheer size of the scenario
trees required to model an industrial problem with multiple products, each with their
own different demand processes, suggests that scaling conventional stochastic pro-
graming models up to solve industrial-sized problems poses substantial challenges.

Another interesting observation from Fig. 3 is the fact that the static MSP outper-
forms the dynamic version, MSP-DYN. The latter differs from the former in that the
M-SP model is resolved at each period in the planning horizon, using the information
from the realized demand in previous periods. Hence the recourse action taken at
each period is to resolve the M-SP in the light of previously realized demand.

This result is particularly interesting since implementation on a rolling horizon
or dynamic basis has been held up as a solution to the problem of uncertain demand
in production planning for decades; the assumption is that only the decisions in the
next period matter, and as long as we can revise decisions in the light of observed
information we can obtain good results. However, some recent results suggest that our
faith in this insight may be misplaced, at least under some circumstances. Orcun and
Uzsoy [80] have shown that when the planning model does not accurately represent
the behavior of the production system under study, rolling horizon implementations
can result in undesirable oscillatory behavior similar to the nervousness discussed in
the Material Requirements Planning (MRP) literature (e.g., [13]). What is striking
in this case is that the extremely simple recourse action used in DYNIP yields just
as good results as the far more sophisticated recourse action in MSP-DYN. This
may well be due in part to the very limited demand information used in M-SP,



200 T. Aouam and R. Uzsoy

as discussed above, which could potentially be remedied by including additional
scenarios in the M-SP model. However, this would come at the cost of increasing
the size of an already very large model. It is important to note that in the current
experiments, the planning horizon T is fixed and does not recede into the future,
which will cause ending effects to arise in decisions towards the end of the planning
horizon. In particular, the limited planning horizon may cause the models to take
decisions that are very good within the current horizon, but have very unfavorable
consequences outside the current planning horizon. This issue clearly needs to be
more carefully examined in future work.

7.2 Effect of Estimation Errors

In order to further explore the performance of DYNIP relative to MSP, we conducted
two additional experiments in which the mean of the demand distribution used in
the DYNIP models are perturbed by a random error uniformly distributed between
0 and 0.2 times the mean, representing a situation where demand is systematically
overestimated. Our second case represents the case when demand is underestimated,
represented by an error uniformly distributed between −0.2 and 0. The standard devi-
ations are subjected to a random error uniformly distributed between −0.2 and 0.2.
The purpose of this experiment is to examine the sensitivity of DYNIP to errors in
the estimation of the demand distributions used.

The results of these experiments are shown in Fig. 4. The suffix “H” denotes the
results for the case with overestimated demand, and “L” for the case with under-
estimated demand. The results for MSP are included for comparison. The results
are quite intuitive. The impact of errors in demand estimation increases with the
required service level. When α = 0.90, the scaled IP varies between 1.12 and 1.21;
for α = 0.95, from 1.14 to 1.24; and for α = 0.999, from 1.3 to 1.47. The changes
in fill rate are all less than 1%. The MSP results are dominated except for MSP-4.0,
which achieves a higher service level than DYNIP-0.999 and DYNIP-0.999-H with
lower inventory position. These results together suggest that DYNIP is relatively
robust to errors in demand estimation, while at the same time supporting the earlier
evidence that it tends to overstock relative to the desired service level.

The tradeoff between fill rate and scaled IP for the individual demand configu-
rations was also examined, although detailed results are not presented for brevity.
Comparing the HHH, LLL and MMM results indicates that for LLL and MMM,
DYNIP dominates MSP, while for HHH MSP enters the efficient frontier, obtain-
ing slightly lower fill rates with substantially lower inventory position than MSP,
although DYNIP-0.90 and DYNIP-0.95 remain on the efficient frontier. In all demand
configurations except HML, DYNIP is represented in the efficient frontier; in that
configuration MSP dominates all the DYNIP models, obtaining both higher fill rate
and lower inventory position. Interestingly, the converse is true for the LHL config-
uration, where MSP is dominated by the DYNIP models.
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Taken as a whole, these results suggest that DYNIP is at least a contender as a
solution technique for the planning problem considered in this paper. While it exhibits
some weaknesses in the face of high demand variability, its performance appears to
be relatively robust to errors in the estimation of the demand distributions it uses, and
it consistently achieves a position on the efficient frontier of the fill rate—inventory
position tradeoff. It appears to have a tendency to overstock, which is likely due to
the discrepancy between the assumptions of the model and the environment in which
the simulations take place.

7.3 Service Level-Fill Rate Comparison

An interesting comparison that sheds some additional light on the behavior of the
different models is to compare the average service levels and fill rates. The entries
in Table 5 are computed by taking the average over all periods in each realization,
and then taking the grand average of these over all realizations of a specific demand
configuration. It is immediately apparent that the service levels realized by DYNIP
are higher than the planned service levels, resulting in even higher fill rates. The
reason for this behavior is very likely that the lead time being used to compute
the inventory targets is higher than the average lead time that is realized in the
simulations. Interestingly, even though the same lead time parameters are used in the
ZOIP model, ZOIP’s service level is markedly worse than that of DYNIP. ZOIP and
DYNIP appear to perform better when the demand distribution is time-stationary
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Table 5 Realized fill rates and service levels

LLL MMM HHH LMH HML LHL HLH

2SP-0.5 SL 0.580 0.580 0.618 0.662 0.558 0.616 0.583
FR 0.815 0.815 0.828 0.839 0.791 0.812 0.806

2SP-1.0 SL 0.935 0.944 0.948 0.954 0.967 0.966 0.948
FR 0.978 0.979 0.979 0.978 0.991 0.990 0.978

2SP-4.0 SL 0.983 0.992 1.000 0.996 0.978 0.994 0.993
FR 0.998 0.999 1.000 1.000 0.995 0.999 0.999

DYNIP-0.90 SL 1.000 0.992 0.958 0.950 0.833 0.983 0.892
FR 1.000 1.000 0.993 0.987 0.931 0.999 0.969

DYNIP-0.95 SL 1.000 1.000 0.967 0.975 0.833 0.983 0.908
FR 1.000 1.000 0.995 0.991 0.934 1.000 0.973

DYNIP-0.999 SL 1.000 1.000 0.983 0.983 0.875 1.000 0.925
FR 1.000 1.000 0.998 0.999 0.952 1.000 0.980

MSP-0.5 SL 0.885 0.892 0.898 0.832 0.869 0.742 0.788
FR 0.966 0.967 0.969 0.938 0.950 0.872 0.896

MSP-1.0 SL 0.917 0.926 0.951 0.883 0.903 0.884 0.884
FR 0.979 0.980 0.985 0.965 0.971 0.957 0.960

MSP-4.0 SL 0.965 0.983 0.997 0.951 0.957 0.971 0.973
FR 0.994 0.997 0.999 0.989 0.989 0.993 0.995

MSP-DYN-0.5 SL 0.846 0.846 0.713 0.667 0.775 0.633 0.658
FR 0.939 0.937 0.879 0.837 0.897 0.728 0.782

MSP-DYN-1.0 SL 0.917 0.929 0.971 0.817 0.892 0.863 0.879
FR 0.980 0.986 0.995 0.932 0.964 0.950 0.970

MSP-DYN-4.0 SL 0.917 0.929 0.983 0.842 0.887 0.896 0.921
FR 0.980 0.986 0.996 0.937 0.965 0.970 0.986

ZOIP-0.90 SL 0.858 0.858 0.650 0.697 0.668 0.772 0.660
FR 0.964 0.964 0.877 0.909 0.858 0.912 0.880

ZOIP-0.95 SL 0.801 0.737 0.655 0.713 0.682 0.795 0.666
FR 0.925 0.910 0.881 0.915 0.863 0.921 0.883

ZOIP-0.999 SL 0.776 0.748 0.684 0.738 0.732 0.848 0.656
FR 0.920 0.913 0.891 0.925 0.887 0.933 0.878

(demand configurations LLL, MMM, and HHH) than when it is not. In contrast,
MSP maintains a consistent level of fill rate across all scenarios. The fact that the fill
rate is consistently higher than the service level for the chance constrained models
(ZOIP and DYNIP) suggests that even though stockouts occur, the amount of the
stockout is quite modest in most cases.
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8 Conclusions and Future Directions

Acknowledging at the outset the exploratory nature of this chapter, our results raise
some interesting issues. Planning procedures with recourse (MSP, MSP-DYN and
DYNIP) consistently outperform those without recourse (ZOIP and 2SP) as one
would expect. However, the performance of DYNIP suggests that when appropriately
parameterized it may be able to compete effectively, in terms of producing near-
optimal solutions in reasonable CPU time, with far larger multi-stage stochastic
programing models that employ a limited number of scenarios to capture demand
uncertainty—at least under certain conditions. It also appears to be relatively robust
to errors in estimation of the demand distribution used to construct the model. On
the other hand, the MSP model appears to be able to produce good solutions with a
minimal number of demand scenarios, considering only two possible values in each
planning period. Even so, the MSP approach results in very large models relative
to DYNIP. Finally, a dynamic, rolling horizon implementation of MSP yielded no
apparent advantage over the static procedure. This finding is interesting in itself, since
a rolling implementation is widely held to be the remedy for demand uncertainty.

Given the limited number of experiments carried out, these findings raise more
questions than they answer, suggesting several directions for future work to clarify
or confirm these findings. Clearly future work needs to focus on procedures with
recourse, such as MSP and DYNIP. The reason why DYNIP appears to consistently
overstock needs to be understood, and methods found to alleviate this issue if possible.
It may be as simple as setting the lead time parameter used to compute the inventory
targets more accurately, but it may also be related to the fact that the assumptions
used in developing the model are violated in the experimental environment. If the
latter is the case, careful mathematical analysis must be carried out to reveal the
reason, and suggest an approach to correct the problem. The sensitivity of DYNIP
to errors in estimating the demand distributions, and approaches for using it in the
face of very limited demand information also need to be explored.

The MSP model used in this work highlights the primary issue with multistage
stochastic programing when applied to production planning: the size of the scenario
tree grows very rapidly, resulting in very large formulations even when a very limited
number of different demand realizations are considered in each period. There needs
to be a systematic investigation of how many scenarios need to be considered to
provide a reasonably good solution (however that is to be defined, which is another
complex issue), and possible solution methods that will allow a scaling up of these
approaches to problems of industrial size.

Finally, as we have noted in our analysis, the chance constrained and stochastic
programing models make quite different assumptions in formulating the models. The
chance constrained models ignore shortage costs, and require a specified stockout
probability. The stochastic programing models require a number of scenarios that
describe the demand uncertainty and explicit holding and shortage costs. These dif-
ferent assumptions have been shown in the literature to lead to paradoxical behavior
for the chance constrained models under certain circumstances, such as a negative
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value of the expected value of perfect information [14]. While the mathematical exis-
tence of such behavior is well documented, it may yet remain the case that chance
constrained models, when appropriately formulated and parameterized, can provide
effective heuristics for the problem of production planning under uncertain demand.
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Traffic Flow Models and Service Rules
for Complex Production Systems

Christian Ringhofer

Abstract We present an overview over recent developments of traffic flow
models for production networks. Particular emphasis is given to the implementation
of service rules for complex systems, involving multiple product types and re-entrant
loops. A rather general scheduling concept is introduced and demonstrated on some
numerical experiments.

1 Introduction

This article gives an overview over recent developments in traffic flow type models
for complex production systems. Traffic flow models represent, in some sense, an
intermediate stage between simple rate equations (or so called fluid models) [1, 8, 22]
and a detailed discrete event simulation (DES) [7]. They allow for a more detailed
description of transient phenomena than rate equations, and represent the many body
mean field limit of multi-agent models. The price to be paid for this detail is that
they involve not only the solution of systems of ordinary differential equations, but
also the solution of systems of (in general hyperbolic) conservation laws. While all
these macroscopic approaches will never be able to recapture the detail provided
by discrete event simulation or multi-agent models, they do have some significant
advantages.

• They are scalable. That is, they compute a density of parts in the production system.
A large number of parts does not require a larger number of agents, but simply
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results in higher densities. This means that the computational effort required is
independent of the number of parts considered.

• Since they involve differential equations they readily render themselves to
optimization and optimal control algorithms, where a function of the system is
optimized, and the dynamics of the system enter as constraints [16, 19].

• Discrete event simulations usually suffer from a model maintenance problem.
A complex production system is not a physical system that is governed by a few
basic laws. So, by the time all the details of a complex system are entered in the
discrete event simulator, they probably have changed already, negating the advan-
tage of the detailed description. So we are dealing with transport in a constantly
evolving medium.

In general, traffic flow models are much better able to predict the dynamic response
of a production system than fluid models. So, they are more capable to describe
non-equilibrium situations, such as temporary overloads or breakdowns. They are,
in some sense, a generalization of fluid models, since they will in general reduce
to fluid models (rate equations) if only one computational cell is used in the spatial
direction.

The main disadvantage of macroscopic descriptions, such as fluid or traffic flow
models, lies in their lack of versatility. While it is relatively simple to modify the
rules of a discrete event simulation or multi-agent model, this requires usually a
major modeling step in the macroscopic model. This paper tries to give an overview
over recent approaches to address this problem.

In Sect. 2 we give a brief introduction to traffic flow models and to possible
approaches to their derivation. These approaches generally fall into two categories.
The first is the use of clearing functions [15]. That is, we use methods of steady
state queueing theory to compute the actual dynamic response of a stochastic system.
This necessarily results in a quasi-steady-state theory, with all the obvious limitations.
The second approach is to use mean field theories, borrowed from many body physics.
While this is in some sense much more rigorous (capturing the actual dynamics) it
is limited to a certain set of relatively simple interaction mechanisms. (The same
argument could be made, of course, for or against the clearing functions derived
from queuing theory.)

One of the main obstacles to use macroscopic models, such as fluid or traffic
flow models, is the inclusion of policies and service rules. A complex production
system, producing more than one product type and exhibiting a re-entrant topology,
will require rules which product to serve first at what stage of a re-entrant loop in the
production cycle. While, again, the implementation of such rules is rather straight
forward in multi-agent or DES models, the implementation in macroscopic models,
based on differential equations, represents a challenge. In Sect. 3 we give a general
outline—or a recipe—how to model more or less arbitrarily complex service rules
in the context of traffic flow models. The key ingredient is to attach a, dynamically
changing, vector-valued attribute to each type of part. We implement an arbitrarily
general service rule by defining a priority function, which determines, depending on
the attribute, which part is served first.
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Section 4 is devoted to numerical examples, which demonstrate the use of this
strategy, and which verify its accuracy against discrete event simulations.

2 Clearing Functions and Fluid Models

Fluid models or rate equations based on clearing functions, are a relatively inexpen-
sive way to model the behavior of queueing systems. The basic idea of a clearing
function [15] is to consider a simple system, consisting of a queue and a server. Parts
arrive in random intervals at the end of the queue, and the server processes them at
a (in general random) rate. The clearing function gives the expectation of the time τ

it takes for a part to pass through the system in terms of the expectation of the Work
in Progress (WIP) W, i.e. the number of parts in the queue plus the number of parts
currently processed. So, it is of the form τ = τ(W ). The clearing function τ(W ) is
derived from steady state queuing theory, and its form depends obviously on the type
of arrival and service processes under consideration [15]. An alternative for more
complex systems with multiple servers and multiple queues, is to fit the clearing
function to either observed data or detailed discrete event simulations (DESs) [4, 7].
Using Little’s law [12], the outflux of the system is then given, in steady state, by
φ = W

τ(W )
. A fluid model [1] represents then a simple rate equation of the form

d

dt
W (t) = λ(t) − φ(t) = λ(t) − W

τ(W )
, (1)

for the evolution of the expected WIP W (t). Here λ(t) denotes the mean arrival
rate. Note, that λ and W are now time-dependent, whereas the derivation of of the
outflux φ = W

τ
relies on what is essentially a steady state theory. Herein lies the basic

problem and most of the limitation of clearing functions. We note, that the term fluid
model—although generally used in the literature—is a bit unfortunate, since the
simple rate Eq. (1) involves none of the properties usually associated with a physical
fluid, other than simple mass conservation. However, because they are so simple, they
allow for the efficient simulation of large coupled systems of individual queue—
server molecules. They also render themselves readily to optimization algorithms
and therefore allow the design of optimal policies for large systems.

The inconsistency of using a steady flux function in a time-dependent model
becomes apparent in the following observation: A sudden change in the influx λ

in (1) will produce an immediate response in the outflux φ = W
τ

, i.e. the change
in λ will instantaneously change the WIP W, and therefore instantaneously change
the outflux. In the actual system a sudden change in the arrival rate will only have
an impact on the outflux, once this change has worked itself through the queue. So
the response will be time delayed. This time delay is neglected in the fluid model,
since it is valid essentially only close to the equilibrium situation where the outflux
f almost equals the influx λ and the mean WIP W only varies relatively slowly in
time. A more accurate model, producing a time delayed response, would have to
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make the outflux φ dependent not only on the current WIP W (t), but in some way
on the history of the evolution of W. This would replace the fluid model (1) by a
delay differential equation with a distributed delay, and the question arises how to
construct such an equation. One simple way to produce a delayed response in the
system is to replace the ordinary differential equation (1) by a conservation law for a
density. In this approach, the WIP W (t) is replaced by a part density ρ(x, t), where
the additional independent variable x is an artificial construct denoting the degree of
completion or a continuous stage of the process. So a part enters the system at x = 0
and leaves the system at x = S. ρ(x, t) denotes the density of parts per stage and
the WIP W (t) is related to ρ(x, t) by

W (t) =
∫ S

0
ρ(x, t) dx .

The density ρ(x, t) satisfies the conservation law

∂tρ(x, t) + ∂x [vρρ] = 0. (2)

Here, vρ(x, t) denotes the velocity (measured in stages/time) with which parts move
through the artificial stages (depending, in some functional form, on the density ρ),
and integrating (2) from x = 0 to x = S gives

d

dt
W (t) = vρ(0, t)ρ(0, t) − vρ(S, t)ρ(S, t).

So, the arrival rate λ(t) in (1) has to equal the term vρ(0, t)ρ(0, t), giving a boundary
condition for the conservation law (2) at stage x = 0. The outflux φ(t) is now given
by φ(t) = vρ(S, t)ρ(S, t), i.e. not by a simple functional relation in terms of the
WIP W (t), but in terms of the density ρ, which encodes the history of the WIP W.
An instantaneous change in the arrival rate λ = vρ(0, t)ρ(0, t) will now produce
a time delayed change in the outflux, because any information in (2) is transported
with a velocity vρ(x, t). The cardinal question is, of course, how to construct the
velocity vρ.

2.1 Traffic Flow Models Based on Clearing Functions

A First Order Model
The simplest, somewhat heuristic way to construct the velocity vρ(x, t) is to essen-
tially linearly interpolate the cycle time, given by the clearing function τ(W ). To
this end, we split τ(W ) into two parts, setting τ(W ) = τq(W ) + τ(0), τq(W ) =
τ(W ) − τ(0). Here, τ(0) denotes the pure processing time of a part arriving at an
empty system, and τq(W ) denotes the time the part has to wait until being processed.
Breaking down the system into an infinite number of identical parts gives for a part at
stage x, who still has to cover a distance S − x in order to reach the end, the formula
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τ(x, t) = τq

(∫ S

x
ρ(z, t) dz

)
+ S − x

S
τ(0) = τ

(∫ S

x
ρ(z, t) dz

)
− x

S
τ(0).

Here the term
∫ S

x ρ(z, t) dz denotes the number of parts in front of the part at stage
x, and the pure processing time τ(0) is equidistributed over the interval [0, S]. This
gives for the velocity vρ(x, t) in (2) the formula

vρ(x, t) = S − x

τ(x, t)
= S − x

τ(
∫ S

x ρ(z, t) dz) − x
S τ(0)

vρ(S, t) = S

τ(0) + Sτ ′(0)ρ(S, t)

Lagrangian Methods Based on Clearing Functions
The natural way of implementing the clearing function into the conservation law
model is to start from the Lagrangian picture of fluid dynamics, where the coordinates
of individual particles (parts) are used as the primary variables, instead of the spatial
density ρ. We start from the following picture:

• A part arrives in the system at time t = a.

• We estimate the cycle time τ by using the clearing function. Thus, we determine a
velocity η = S

τ
at the time the part enters the system, which we keep constant for

this particular part, and move the part with the velocity η from x = 0 to x = S.

Numbering the parts by a continuous index y, and denoting the position of part
number y at time t by x = ξ(y, t), this gives the model

∂tξ(y, t) = η(y), ξ(y, a(y)) = 0. (3)

Here a(y) denotes the arrival time of part number y in the system. The velocity η(y)

is determined at the time the part enters the system. So η(y) = τ(W (a(y))) holds
(where we still have to relate the ensemble of coordinates ξ to the WIP W). The
relation between the part coordinates ξ(y, t) the WIP W (t) and the density ρ(x, t)
is established by a simple counting argument. Counting all the parts in the interval
[0, S] gives

W (t) =
∫

[H(ξ(y, t)) − H(ξ(y, t) − S)] dy. (4)

Here H(x) denotes the usual Heaviside function, with H(x) = 1 for x > 0 and
H(x) = 0 for x < 0. The function H(ξ(y, t)) − H(ξ(y, t) − S) equals unity for
0 < ξ < S and zero else. So the formula (4) counts the number of parts in the interval
[0, S] (the number currently in the system). Similarly, if we count the number of parts
in a given interval [x, x + 	x], we have

∫ x+	x

x
ρ(z, t) dz =

∫
[H(ξ(y, t) − x) − H(ξ(y, t) − x − 	x)] dy.
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Dividing by 	x and letting 	x → 0, we obtain

ρ(x, t) =
∫

δ(ξ(y, t) − x) dy, (5)

where δ denotes the Dirac δ-function (i.e. the derivative of the Heaviside function
H). The conservation law (2) is then obtained in the following way: The velocity
vρ(x, t) of a part remains constant for this particular part for all times. So, we set

vρ(ξ(y, t), t) = η(y), ∀y, t. (6)

Differentiating (6) with respect to time gives (because ∂tξ = η holds)

∂t vρ(x, t) + η(y)∂x vρ(x, t)|x=ξ(y,t) = 0,

and therefore we obtain the equation

∂t vρ(x, t) + vρ∂x vρ(x, t) = 0, (7)

for the velocity vρ. Although the transport equation for vρ is independent of the
density ρ, the velocity vρ still depends on ρ through the boundary conditions, since
we have

vρ(0, a(y)) = vρ(ξ(y, a(y)), a(y)) = η(y) = S

τ(W (a(y)))
,

giving the boundary condition

vρ(0, t) = S

τ(W (t))
, W (t) =

∫ S

0
ρ(x, t) dx . (8)

This means, that the velocity vρ is chosen once at the entrance at x = 0, and
then transported along the particle trajectories according to Eq. (7). To obtain the
conservation law (2), we differentiate the definition (5) for ρ(x, t) with respect to
time, and obtain

∂tρ(x, t) =
∫

δ′(ξ(y, t) − x)∂tξ(y, t)dy = −∂x

[∫
δ(ξ(y, t) − x)η(y) dy

]

= −∂x

[∫
δ(ξ(y, t) − x)v(ξ(y, t), t) dy

]

= −∂x

[
v(x, t)

∫
δ(ξ(y, t) − x) dy

]
= −∂x [vρρ(x, t)]

or

∂tρ + ∂x [vρρ] = 0 (9)
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We still have to determine a boundary condition for the density ρ(x, t) in terms of
the influx λ(t). Integrating the conservation law (9) from x = 0 to x = S gives

d

dt
W (t) =

∫ S

0
∂tρ(x, t) dx = −

∫ S

0
∂x [vρρ(x, t)] dx = vρρ(0, t) − vρρ(S, t)

= λ(t) − φ(t).

So the influx λ(t) enters the conservation law picture via the boundary conditions

vρρ(0, t) = λ(t) (10)

and the outflux φ(t) in the fluid model is replaced by φ(t) = vρρ(S, t). We conclude
by mentioning how the arrival distribution time a(y) is related to the influx λ(t).
Given, that the parts move with a constant velocity η, the solution of (3) is given by

ξ(y, t) = η(y)(t − a(y)),

which implies

vρρ(x, t) =
∫

ηδ(η(t − a(y)) − x) dy =
∫

δ

(
t − a(y) − x

η

)
dy.

So, in particular

λ(t) = vρρ(0, t) =
∫

δ(t − a(y)) dy.

The term
∫

δ(t − a(y)) dy is nothing else but the derivative of the functional inverse
of a. Given that a(y) is a monotonically increasing function, there exists an inverse
function a−1(t) satisfying a(y) = t ⇐⇒ y = a−1(t). Substituting y = a−1(s) in
the integral, we obtain

λ(t) =
∫

δ(t − s)(a−1)′(s) ds = (a−1)′(t).

So, in order to compute the arrival times a(y) in the particle model (3), given an
arrival rate λ, we first have to compute the cumulative arrivals a−1(t) = ∫ t

0 λ(s) ds,
and form the inverse of this function.

Equations (7) and (9) constitute the equations of pressureless gas dynamics, and
the clearing function enters the model through the boundary conditions (8) and (10).

2.2 Mean Field Models

An alternative to use steady state queueing theory to derive the flux function
for a conservation law is to directly model the velocity of parts via mean field
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theory [6, 9]. This proceeds in general according to the following approach: Given
a certain interaction rule between parts we first derive an evolution equation for the
trajectories ξ1(t), . . . , ξN (t) of N parts. This trajectory equations consist usually of
rather simple ODE systems, and replicate more or less a discrete event simulation.
One then derives immediately an transport equation for the probability density

f(x1, . . . , xN , t) = dP

dx1, . . . , xN
[ξ1 = x1, . . . , ξN = xN ]. (11)

The density function in (11) is of course a rather complicated object, since it depends
on N (the number of parts in the system) independent variables. So, in physics terms,
we really treat the N—body problem. It is therefore not usable in direct computations.
The basic idea of a mean field model is that, for a large number of parts, the correlation
between two randomly chosen parts can be assumed to be small. Neglecting the
correlation and assuming identical parts the ansatz

f(x1, . . . , xN , t) =
N∏

n=1

f (xn, t)

is made for the probability density in (11). Integrating out the variables x2, . . . , xN

yields a transport for the effective single part probability density f (x, t) which then
can—up to a scaling factor—be identified with the part density ρ(x, t). It should
be noted that this approach depends heavily on the type of part interaction, and
the process of integrating out all but one variables is usually not an easy task.
It is, however, the standard way to derive gas dynamics equations from microscopic
physics models and, in this case, rigorously establishes the link between multi-agent
models and macroscopic PDE models.

A Deterministic Automaton
We first start with a deterministic agent-based model with a rather simple rule:

• Each server is located in an interval of length 	x .

• Each server has a processing time of 	x
V time units (where the velocity V is already

measured in stages/time).
• Each server can handle p parts at the same time. So it accepts a new part every 	x

pV

time units, yielding a maximum capacity of c = pV
	x parts per time.

In [2, 5] it has been shown that—in the limit of a large number of servers and a large
number of parts—the resulting limiting fluid model is of the form

∂tρ + ∂xΦ = 0, Φ(x, t, ρ) = vρρ = min{c, Vρ}. (12)

Equation (12) models a purely deterministic behavior, i.e. an automaton. It simply
states that the velocity is of a part moving through the stages is given by V as long as
there is no buildup of queues. The total flux, however, can never exceed the capacity
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Fig. 1 Capacity of one server, generated from a Markov process for breakdowns and repairs.
Average availability: 75%

of the servers given by c. If the servers are not identical, the V and c have to be made
dependent of the stage variable x.
Random Breakdowns
We modify the above model by making the capacities c not only dependent on the
stage variable x, but on time as well. Temporal fluctuations in the capacity model
the breakdown of servers. These breakdowns occur in random intervals, making
c(x, t) not only time-dependent but also a random variable. In the simplest case
we assume that each server has only two modes, namely up when c(x, t) = μ(x)

(the on capacity) or down, when c(x, t) = 0.For each server we create an independent
time series of capacities. Figure 1 shows the randomly generated capacity of one
particular server which is down 25% of the time. In [11] it has been shown that—
again under the assumption of many parts and many servers—the long time behavior
of the system obeys the equation

∂tρ + ∂xΦ = 0, Φ(x, t, ρ) = vρρ = a(x)μ

[
1 − exp

(
Vρ

μ

)]
. (13)

The flux function (13) is the generalization of the deterministic case in (12) in the
following sense: For ρ → 0 (in the case when the system is almost empty) we
recuperate the flux Φ = Vρ. In the same way for ρ → ∞ (for full queues) we again
have the flux given by the maximum ‘on’ capacity μ. In both cases the flux has to be
multiplied by the availability a the ratio

Tup
Tup+Tdown

of the mean up and down times,
since the breakdowns will affect the throughput regardless of the size of the density.
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3 Policies and Service Rule

When considering a more complex system [13, 14] than just a simple queue, it
becomes necessary to consider policies [3, 10]. The need for policies arises when
one and the same server serves more than one product or, in the case of re-entrant
systems, the same product at different stages of the production cycle. In this case
service rules have to be established, determining in what order the parts are processed.
One possibility is to simply give a type of part or part priority over the other: As a part
arrives it is put into a buffer or queue serving only its type. The buffers are served in
order of their priority, that is queue number two is served only when queue number
one is empty and so on. From the point of implementation in the actual physical
system, the simplest service rule is first in–first out, or first come–first serve (FIFO),
where the parts are simply processed in the order of their arrival. Alternative rules,
also sometimes employed, are first in system first out (FISFO) and last in system
first out (LISFO), scheduling to due date, i.e. each part has a certain delivery date
and parts with the closest delivery date are processed first. In practice, an arbitrarily
complicated combination of these rules is possible.

While it is rather straight forward to implement these rules in a discrete event
simulator, implementation in a fluid model, or in a model based on PDE conservation
laws, as discussed in the previous section, is not so simple. In the following, we try
to give a rather general recipe to implement what can be almost arbitrarily complex
service rules into PDE conservation law models and rate equations.

We start with a linear chain of servers. We assume that we have decided on
a conservation law model, using any of the approaches discussed in the previous
section. We therefore have a model for the total flux of the form

∂tρ + ∂x [vρρ] = 0, x ∈ [0, S], t ≥ 0, vρρ(0, t) = λ(t). (14)

We note, that it might be necessary to solve an auxiliary differential equation
(as in (7)) to actually compute the velocity vρ in (14). This has, however, no conse-
quence for the following, and we omit the possible auxiliary equation for the velocity.
The function λ(t) in (14) denotes the total influx into the system.

3.1 Scheduling by Type

This is, from the point of conservation laws, the service rule which by far the easiest
to implement. We assume that the total density ρ, and therefore the total WIP W (t) =∫ S

0 ρ(x, t) dx, consists of N different types of parts which are processed in the order
of their importance. So we have

ρ(x, t) =
N∑

n=1

ρn(x, t), λ(x, t) =
N∑

n=1

λn(t)
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in (14). We number the individual densities ρn such that ρ1 is the density of parts
with the highest priority and ρN the one with the lowest priority. The challenge is
now to model the velocities and fluxes of the individual components ρn . To this end,
we define the flux Φ(x, t, ρ) = vρρ. We will derive a system of conservation laws
for the individual densities ρn of the form

∂tρn + ∂x Fn(x, t, ρ1, . . . , ρN ) = 0,

where the individual fluxes will have to satisfy

N∑

n=1

Fn(x, t, ρ1, . . . , ρN ) = Φ

(

x, t,
N∑

n=1

ρn

)

= vρρ

The basic principle is rather simple: The parts of type 1 are basically not aware of
the other parts, since they are always served first, i.e. their flux will not be influenced
by ρ2, . . . , ρN . So, we set

F1(x, t, ρ1, . . . , ρn) = Φ(x, t, ρ1).

Now, the flux of the cumulative density ρ1 +ρ2 of the part types with the two highest
priorities will again not be influenced by ρ3, . . . , ρN , giving

∂tρ1 + ∂xΦ(x, t, ρ1) = 0, F1(x, t, ρ1, . . . , ρN ) = Φ(x, t, ρ1),

∂t (ρ1 + ρ2) + ∂x [Φ(x, t, ρ1 + ρ2)] = 0, Φ(x, t, ρ1 + ρ2)

= F1(x, t, ρ1, . . . , ρN ) + F2(x, t, ρ1, . . . , ρN ).

Repeating the argument gives the system

∂t

m∑

n=1

ρn + ∂xΦ

(

x, t,
m∑

n=1

ρn

)

= 0, m = 1 : N

Φ

(

x, t,
m∑

n=1

ρn

)

=
m∑

n=1

Fn(x, t, ρ1, . . . , ρN ), m = 1 : N .

In a first-order model, where the velocity vρ and the flux F are simple local functions
of ρ, the individual fluxes Fn can simply be computed by the recursion

Fn = Φ

(

x, t,
n∑

k=1

ρk

)

−
n−1∑

k=1

Fk, n = 1 : N .

In a second-order model, where the velocities are given by an auxiliary differential
equation, it is necessary to solve this auxiliary equation for the cumulative velocities
vρ1+···+ρn , n = 1 : N . In either case, the basic principle is, that the lower priority
parts receive the components of the flux left over by the higher priority parts.
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Fig. 2 Schematic diagram of a simple re-entrant system. Servers 1–3 are used in steps 1–3 and
again in steps 4–6

3.2 Re-entrant Systems

In practice, the need for service rules arises not only when different product types
have to be considered, but also when one and the same server is used at different
stages of the production process. In Fig. 2 we schematically depict a process with
a simple re-entrant loop. Servers 1–3 are used in steps 1–3, but then again in steps
4–6. The remaining six servers then just form a linear chain. Producing only a single
product, the first three servers still require a rule on whether to treat parts in their
first or their second pass preferentially.

There are basically two approaches to translating this scenario into a fluid model.
The first one is to introduce artificial product types. That is we treat the loop, given
by servers 1–3 separately, and solve a system of the form

(a) ∂tρ1 + ∂x F1 = 0, 0 < x < S1, F1(0, t, ρ1, ρ2) = λ (15)
(b) ∂tρ2 + ∂x F2 = 0, 0 < x < S1, F2(0, t, ρ1, ρ2) = F1(S1, t, ρ1, ρ2)

(c) ∂tρ3 + ∂x F3 = 0, S1 < x < S, F3(S1, t, ρ3) = F2(S1, t, ρ1, ρ2).

So, the interval [0, S1] corresponds to the first three servers in Fig. 2 and the interval
[S1, S] to the last six servers. The density ρ1 is the density of parts on their first pass
through the loop and ρ2 is the density on the second pass. The densities are linked
via their boundary conditions. So the outflux of ρ1 at x = S1 gives the influx at
x = 0 for ρ2, and the outflux of ρ2 at x = S1 gives the influx for ρ3. If parts in their
the second pass receive preferential treatment, which establishes a so-called PULL
policy, we have, given a flux function F(x, t, ρ) = vρρ,

F2(x, t, ρ2) = Φ(x, t, ρ2), F1(x, t, ρ1, ρ2) = Φ(x, t, ρ1+ρ2)−Φ(x, t, ρ2),
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F3(x, t, ρ3) = Φ(x, t, ρ3).

Conversely, if parts in their the first pass receive preferential treatment, which estab-
lishes a so called PUSH policy, we have

F1(x, t, ρ1) = Φ(x, t, ρ1), F2(x, t, ρ1, ρ2) = Φ(x, t, ρ1+ρ2)−Φ(x, t, ρ1),

F3(x, t, ρ3) = Φ(x, t, ρ3).

The second approach, which is actually preferable in the case of a more complex
topology of the system is to introduce virtual processors instead of artificial product
types. We ‘stratify’ the graph in Fig. 2, and now the spatial variable x denotes the
actual 12 stages of the process mapped into the interval [0, S]. We assign the first
three stages to the interval [0, S1], the second three stages to the interval [S1, 2S1],
and the last six stages to the interval [2S1, S]. There is now only one density equation
of the form

∂tρ + ∂x F = 0, F(x, t, ρ) = vρρ, F(0, t, ρ) = λ(t).

However, we have to account for the fact that the interval [S1, 2S1] actually corre-
sponds to the same physical servers as the interval [0, S1]. So, the interval [S1, 2S1]
corresponds to virtual processors, and we have to make sure that the flux in the
physical servers is given by the correct total flux. This makes the definition of the
flux function nonlinear. Again, if, in a PUSH policy parts in their first pass receive
preferential treatment, then the definition of the flux F is given by

F(x, t, ρ) =
⎛

⎝
Φ(x, t, ρ(x, t)) for 0 < x < S1

Φ(x, t, ρ(x − S1, t) + ρ(x, t)) − Φ(x, t, ρ(x − S1, t)) for S1 < x < S2

Φ(x, t, ρ(x, t)) for S2 < x < S

⎞

⎠ .

Conversely, if, in a PULL policy parts in their second pass receive preferential treat-
ment, then the definition of the flux F is given by

F(x, t, ρ) =
⎛

⎝
Φ(x, t, ρ(x, t) + ρ(x + S1, t)) − Φ(x, t, ρ(x + S1, t)) for 0 < x < S1

Φ(x, t, ρ(x, t)) for S1 < x < S2

Φ(x, t, ρ(x, t)) for S2 < x < S

⎞

⎠ .

3.3 General Policies

We now generalize the concept from Sects. 3.1 and 3.2 to more general policies.
Assume that each part has a certain number K of attributes which we collect in the
vector Y = (y1, . . . , yK ). We now serve the parts in a sequence determined by a
priority function p(x, Y ). That is, we group the parts into N bins, according to their
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Y−values. Let Y (n), n = 1 : N denote the (in general vector valued) attributes
of the parts in bin number n. Parts in bin number m have priority over parts in bin
number n if p(x, Y (m)) > p(x, Y (n)) holds. We write pn = p(x, Yn) for short.
Combining this with the flux splitting idea of Sect. 3.1 gives the ordering

Φ(x, t,
∑

pn<pm

ρn(x, t)) =
∑

pn<pm

Fn(x, t, ρ1, . . . , ρN ), m = 1 : N .

Clearly, this reduces to the model in Sect. 3.1 if we consider only one (K = 1)
discretely distributed attribute, namely the type Y = y1 ∈ {1, . . . , N }. The policy
function in this case would be given by p(x, Y ) = −y1, guaranteeing that type 1
has the highest priority.

For a more general policy function p(x, Y ) this gives rise to the following
algorithm [21]:

Priority Algorithm (16)

• Given the bin—densities ρ1, . . . , ρn and the bin attributes Y (1), . . . , Y (N ).

• Compute the priorities pn = p(x, Y (n)), n = 1 : N .

• Reorder the bins. That is find a permutation σ of the numbers {1, . . . , N }, such
that pσ(1) > pσ(2) > · · · > pσ(N ) holds.

• Compute the individual bin fluxes Fn, n = 1 : N according to the rule

Φ

(

x, t,
m∑

n=1

ρσ(n)(x, t)

)

=
m∑

n=1

Fσ(n)(x, t, ρ1, . . . , ρN ), m = 1 : N ,

or, equivalently, solve the recursion

Fσ(n)(x, t, ρ1, . . . , ρN ) = Φ

(

x, t,
m∑

n=1

ρσ(n)(x, t)

)

−
m−1∑

n=1

Fσ(n)(x, t, ρ1, . . . , ρN ),

m = 2 : N

Fσ(1)(x, t, ρ1, . . . , ρN ) = Φ(x, t, ρσ(1)(x, t))

The algorithm 16 does, in itself, not represent much of a generalization of the model
in Sect. 3.1, except for the fact that we now can consider a more complicated attribute
than just the type. The additional key ingredient is to be able to make the choice of
policy function as well as the evolution of the attributes dynamic.

We let the attributes in a each of the bins evolve dynamically. So, for a part in bin
number n with position x = ξn(t), the attribute vector Y (n) evolves according to the
differential equation

dY (n)

dt
= En



Traffic Flow Models and Service Rules 223

Since the part in bin number n moves itself with a velocity vρ,n = Fn
ρn

, this yields a
spatially dependent attribute density Y (n, x, t), which evolves according to

d

dt
Y (n, ξn(t), t) = En

or

∂t Y (n, x, t) + vρ,n∂x Y (n, x, t) = En . (17)

Equation (17) simply states, that the attribute vector Y is moved along with the part
flow, i.e. for En = 0 a part retains its attribute when moving through the system.
The form of En will dependent on the type of attribute considered. We can make En

dependent on the density ρ itself if so desired, since this information is available in
the system. In addition we might want to make the policy, i.e. the way we dynamically
order the bins dependent on the stage of the process as well as on the density itself.

For numerical reasons it is best to replace (17) by an equation for the vector
valued variables Z(n, x, t) = ρnY (n, x, t). So the vector Z denotes the density of
parts with attribute Y [17]. The reason for this is, that the theory of numerical methods
for first-order hyperbolic equations is developed largely for conservation laws, and
the equation for Z can be written in conservative form. Given, that ρn satisfies the
conservation law ∂tρn + ∂x Fn = 0 with Fn = vρ,nρn we compute the combined
evolution equation for the density ρn and the vector Z as

(a) ∂tρn + ∂x Fn = 0 (18)

(b) ∂t Z(n, x, t) + ∂x

[
Fn

ρn
Z(n, x, t)

]
= ρn En .

In order to shed a little more light on this construction, let us revisit the example in
Sect. 3.2 with a somewhat more complicated policy.

• Up to some point, we use a PUSH policy, giving priority to parts in the first pass
of the loop.

• This policy has the disadvantage that, in the case of overload, there will be no
output for prolonged periods of time. If the first three processors work at capacity
in the first pass, there is no capacity left for the second pass, and there will be no
outflux from the whole system until the the total influx λ sinks below capacity.

• We therefore use a PULL policy (priority for the second pass) for those parts which
have spent more than a certain amount T of time in the system.

• This requires the monitoring of the time elapsed since parts have entered the system.

In the interval [0, S] in (15) wetherefore have two bins and two attributes, one being
the pass number, which does not change within the interval [0, S] and can therefore
being identified with the bin number. The other attribute is the time elapsed since the
part entered the system. This attribute changes dynamically according to
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d

dt
y2(ξ, t) = 1 = E2

Equation (15) must therefore be augmented by

(a) ∂tρ1 + ∂x F1 = 0, 0 < x < S1, F1(0, t, ρ1, ρ2) = λ (19)

(b) ∂tρ2 + ∂x F2 = 0, 0 < x < S1, F2(0, t, ρ1, ρ2) = F1(S1, t, ρ1, ρ2)

(c) ∂tρ3 + ∂x F3 = 0, S1 < x < S, F3(S1, t, ρ3) = F2(S1, t, ρ1, ρ2).

(d) ∂t z2(n, x, t) + ∂x

[
Fn

ρn
z2(n, x, t)

]
= ρn, n = 1 : 2

(e)
F1

ρ1
z2(1, 0, t) = 0, ( f )

F2

ρ2
z2(2, 0, t) = F1

ρ1
z2(1, S, t)

The boundary condition (19)(e) starts the clock at t = 0 on influx and the boundary
condition (19)(f) expresses the fact that the attribute y2 is preserved in the transition
form the first to the second pass. The policy function p(y1, y2) = p(n, y2) is now
given by

p(n, y2) =
(−n for y2 < T

n for y2 > T

)
,

which just means that in the algorithm (16) the permutation σ is chosen as

σ =
( {1, 2} for y2 < T

{2, 1} for y2 > T

)
,

and the fluxes are computed accordingly.

4 Numerical Experiments

In order to demonstrate the applicability and accuracy of the conservation law models
in Sect. 2 and the models for the service rules in Sect. 3, perform some numerical
experiments on a relatively simple test case. We verify the model discrete event
simulations in the deterministic as well as the stochastic case, including random
breakdown of individual nodes. Section 4.2 deals with a straight First In System
First Out (FISFO) policy and Sect. 4.3 uses a more complex mixed policy.
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4.1 The Basic Setup

The service rules considered below require the monitoring of three attributes, namely
the time elapsed since a part enters the system, the time left to a certain delivery due
date, and the type of the part. Thus, we transport a three dimensional attribute vector
Y. The elapsed cycle time grows linearly in time, whereas the time to the due date
decays linearly, giving for the vector E in (17)

E(x, t) =
⎛

⎝
E1
E2
E3

⎞

⎠ =
⎛

⎝
1
−1
0

⎞

⎠.

Since the third component (the type) does not change dynamically, it can be identified
with the bin number n. So, for N types of parts, we solve, according to (17)–(18),
a system of hyperbolic conservation laws of the form

(a) ∂tρn + ∂x Fn = 0, (b) ∂t Y (n, x, t) + Fn

ρn
∂x Y (n, x, t) = En =

(
1
−1

)
, n = 1 : N ,

(20)
where the individual bin fluxes Fn have to be computed, according to a service rule,
by the algorithm (16), using a priority function p(x, Y, t), such that

N∑

n=1

Fn = Φ

(

x, t,
N∑

n=1

ρn

)

holds, for a given total flux model using the flux function Φ(x, t, ρ). The boundary
conditions for the Eq. (20) are of the form

Fn(x = 0, t) = λn(t), Yn(0, t) =
(

0
dn

)
, n = 1 : N ;

i.e. parts of type n enter according to the influx λn with zero elapsed cycle time and
a certain time to due date dn . Writing the system (20) into conservative form, setting
Zn = ρnYn, gives

(a) ∂tρn + ∂x Fn = 0, (b) ∂t Z(n, x, t) + ∂x

[
Fn

ρn
Z(n, x, t)

]
= ρn En, n = 1 : N ,

(21)

(c) Fn(x = 0, t) = λn(t), (d) Zn(0, t) =
(

0
ρn(0, t)dn

)
, n = 1 : N .

The examples below deal with the case of two different types of parts (N = 2),

and will use either the simplest deterministic flux model (for verification) or the flux
model from Sect. 2 modeling servers which break down randomly according to a
Markov process. So we have
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Φ(x, t, ρ) = min{c(x, t), Vρ} or Φ(x, t, ρ) = a(x, t)

[
1 − exp

(
− Vρ

μ

)]

Numerically, the system (21) is solved by a standard Lax–Wendroff scheme [20].

4.2 Verification for a FISFO Policy

We first verify the the multi-phase approximation of Sect. 3 against a discrete event
simulation, i.e. a stochastic automaton. The discrete event simulation is briefly
described as follows:

• Parts move linearly through a chain of M identical servers.
• Each server has a capacity μ, meaning it can serve μ parts at the same time. So,

it accepts a new part every 1
μ

time units.

• Each server takes a processing time 	x
V time units to process a part, with 	x = S

M .

• Servers break down and are repaired according to a Markov process. So, once up,
they remain running for a time interval Tup, exponentially distributed according to
dP[Tup = t] = 1

τup
exp(− t

τup
) dt, and once down, they remain down for a time

interval Tdown, distributed according to dP[Tdown = t] = 1
τdown

exp
(
− t

τdown

)
dt,

with τup and τdown the respective means of the up- and down times.

It has been shown [3] that in the deterministic case (τdown = 0, the servers are always
running), the system can, in the limit for the number of parts to ∞, be described by
the conservation law

∂tρ + ∇xΦ = 0, Φ(x, t, ρ) = min{μ, Vρ} (22)

for the total density of parts. In the stochastic case (τdown > 0) it can be shown [11]
that the expectation Eρ of the part density satisfies the limiting equation

∂t Eρ + ∇xΦ = 0, Φ(x, t, Eρ) = τupμ

τup + τdown

[
1 − exp

(
− V Eρ

μ

)]
(23)

The System
We consider a chain of forty processors (M = 40, 	x = S

M ), processing N = 2
different types of parts. Each processor has a throughput time 	x

V = 1, except for
processors 11:20, which have a throughput time 	x

V = 2. Each processor can handle

30 parts at the same time. This yields a bottleneck capacity of μ(x) = 15 parts
time for

processors 11:20 and a capacity μ(x) = 30 parts
time for the rest. Figure 3 shows the

influx for both species. So, the total influx (the sum of both curves in Fig. 3) exceeds
the bottleneck capacity in the interval 40 < t < 80. In the case of a pure FISFO
policy the priority is given just by the elapsed cycle time, and therefore we choose
the priority function as
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Fig. 3 Influx, + = species 1, solid = species 2

p(x, Y, t) = Y1.

The Deterministic Case
We first test the deterministic case. So, we set the mean down times τdown in the
discrete event simulator equal to zero (or choose Tdown = 0 deterministically, which
reduces the discrete event simulation to a simple automaton). We compare this to
the multi-phase solution, using the deterministic flux function from (l6.3) and the
FISFO priority function p(x, Y, t) = Y1. Figure 4 shows the quantity 	xρ, i.e.
the number of parts corresponding to each processor (those in the queue and the
processor itself), for one of the species. To give a more quantitative comparison,
we plot the density over time at various stages. Figure 5 shows the densities of the
two species in processor 5 (before the bottleneck) processor 11 (the first bottleneck
stage) and stage 21 (after the bottleneck). The right panel shows the densities for
the sum of both species. We see a temporary buildup of density in the bottleneck
stage at server 11, since the total influx temporarily exceeds the bottleneck capacity.
The buildup is higher for species 2, since the parts of type 1 have arrived earlier (see
Fig. 3), and have therefore a higher priority at the bottleneck. The purpose of Fig. 5 is
to demonstrate the accuracy of the policy model. The agreement of the total densities
in the right panel is perfect, as has to be expected. The agreement of the individual
species densities in the left two panels at the bottleneck at server 11 is reasonably
good. The moderate error is explained by the fact, that, in the discrete event simulator
individual parts arrive with individual arrival times, while in the conservation law
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Fig. 4 Parts per processor comparison between the deterministic automaton and the deterministic
conservation law for species 2. Left panel automaton (contour plot). Right panel traffic flow model

model they are lumped together and all parts arriving within the same time step
receive the same arrival time.

The Random Case
Next we test the multi-phase solution on the stochastic system. So, in the discrete
event simulator, we generate time series for the capacities from a Markov process
using the means 〈τup〉 = 3	x

V and 〈τdown〉 = 	x
V . So each processor runs on average

for three cycle times, and then shuts down for the next cycle time, giving an average
availability of a = 0.75. We compute 300 realizations of the discrete event simula-
tion, compute the means, and compare this to the mean field multi-phase solution,
using the flux function from (23). As in the deterministic case, we compare the quan-
tity 	xρ, for one of the species in Fig. 6. To give a more quantitative comparison
again, we plot the density over time at stages 5, 11, 21 in Fig. 7. At first glance, it
is surprising that the present approach is able to accurately simulate the effects of
the FISFO policy on the expectation of the density, since we apparently have inter-
changed the evaluation of the expectation operator with the evolution of a nonlinear
stochastic dynamical system. However, as shown in [11], we are using the correct
conservation law for the expectation of the density ρ of the whole ensemble, and the
process of re-ordering the parts according to the elapsed cycle time can apparently
be commuted with the expectation operator.
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Fig. 5 Parts per processor comparison between the deterministic automaton and the deterministic
conservation law for stages 5, 11 and 21. Left panel species 1. Middle panel species 2. Right panel
both species. solid line = traffic flow model. + = automaton

4.3 A More Complex Policy

We conclude the numerical experiments with a numerical study of the influence of
different policies. We consider the same system as in Sect. 4.2. Each species now
has a ‘due-date’ [18], i.e. a certain limit on the cycle time, after which it is delivered
late. This models essentially the production of a perishable good which is spoiled
and worthless after spending too much time in the system. We compare the FISFO
policy from Sect. 4.2, where the priority is set to p(Y ) = Y1, to a more complex
policy with a priority function of the form

p(Yn) = Y1 H

(
Y2 − 1

2
d(n)

)
− Y2 H

(
1

2
d(n) − Y2

)
. (24)

The policy given by the priority function (24) is interpreted as follows:

• We schedule according to FISFO, using Y1, until the time to due date Y2
has reached half its limiting value d(n), where d is dependent on the species
number n. From this point on we switch policies, prioritizing the parts according
to the time until the part becomes worthless.
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Fig. 6 Parts per processor comparison between the average over 300 realizations of the stochastic
automaton and the mean field conservation law for species 2. Left panel the mean field traffic flow
solution (contour plot). Right panel average over 300 DES realizations

• We choose as the as maximal acceptable cycle times d(1) = 75, d(2) = 200.

So species one ‘spoils’ after 150% of the raw throughput time, while species
number two can spend 400% of the raw throughput time in the system before
spoiling.

The left panel in Fig. 8 shows result for the FISFO policy, and the right panel for the
policy corresponding to the priority function (24). The top row shows the cycle time
Y (1)

k (x = 40, t), k = 1 : 2 at exit, i.e. the total time parts have spent in the system.

The middle row shows the cycle time Y (2)
k (x = 40, t), k = 1 : 2 at exit, i.e. the time

to due date for each system at the exit.

• The cycle times at exit for FISFO (top, left panel in Fig. 8) are identical for both
species, as they should be, using a pure FISFO policy.

• Using just FISFO, there is a significant amount of spoiled parts of species 1 at
the exit. That is the curve in the middle left panel of Fig. 8 for species 1 dips
significantly below 0. Using the policy given by (24), essentially all parts of both
species can be delivered on time, as seen in the middle right panel of Fig. 8.

• Note, that the attributes vanish for certain periods of time. This is an artifact of the
conservative discretization (21)(b) of the attribute equations. The primary variable
used in the code is Zn = ρnYn and the attributes in the top two panels of Fig. 8 are
computed as ρnYn

ρn
. So, if there are no parts (ρn = 0,) the attribute Yn is meaningless.
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Fig. 7 Parts per processor comparison between 300 realizations of the stochastic automaton and
the mean field conservation law for stages 5, 11 and 21. Left panel species 1. Middle panel species
2. Right panel both species. solid line = mean field traffic flow solution. + = average over 300
DES realizations
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• The bottom panel of Fig. 8 shows the average attribute ρnYn for each species, for
the FISFO policy and the policy given by (24). This represents a measure of the
cost.
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5 Conclusions

The evolution of parts in a supply chain, governed by a quite general class of
service rules based on prioritizing attributes, can be modeled by a set of hyperbolic
conservation laws. These conservation laws yield an exact solution to the underlying
kinetic equations, as long as the level sets of parts of equal priority form a set of
measure zero in a sufficiently high dimensional attribute space. This situation can be
created by artificially inflating the attribute space, essentially breaking down parts
of equal priority into subgroups. The resulting macroscopic model can even be used
to model stochastic systems as long as the correct flux function for the evolution of
the expectation of the whole ensemble is known.
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Autonomous Decision Policies for Networks
of Production Systems

Bernd Scholz-Reiter, Sergey Dashkowskiy, Michael Görges,
Thomas Jagalski and Lars Naujok

Abstract Modern production and logistic systems are facing increasing market
dynamics: customers demand highly individualized goods, the adherence to due
dates becomes critical and stipulated delivery times are decreasing. Particularly
logistic networks, e.g. production networks or supply chains, are strongly affected
by this trend. On the other hand, production networks have to deal with inherent
internal dynamics, which are caused by e.g. machine breakdowns or rush orders.
The concept of autonomous control, coming from the theory of self-organization,
offers decentralized autonomous decision policies (ADPs), which enable logistic
objects to make and execute decision on their own. Due to this kind of decision
making, autonomous control aims at a distributed coping with dynamic complexity
and, at the same time, at an improvement of the logistic performance. This contri-
bution addresses the concept of autonomous control and the underlying autonomous
decision policies as a novel concept for the control of the material flows in networks
of coupled production facilities. Moreover, it shows different concepts of modeling
and analysis of autonomously controlled networks. To achieve this goal, a dual
approach including both, mathematical methods as well as simulation models, is
presented. Subsequently, the possibilities to analyze the dynamic behavior of the
autonomous logistic system are discussed, i.e., the system’s stability and its logistic
performance. Finally, this contribution presents an exemplary case of a production
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network to demonstrate the practicability of the approach of modeling and analysis
of autonomous control for production networks.

1 Introduction

Modern logistic systems are exposed to various dynamically changing parameters in
its internal and external environment. Especially logistic networks, e.g., production
networks or whole supply chains, are affected by dynamical changes [53, 56]. For
example, these dynamics are caused by customers’ increasing desires for individ-
ualized goods or the demand of decreasing delivery times and a strict adherence
to due dates. Moreover, internal factors can cause unfavorable dynamic behavior
of logistic networks, e.g., interdependencies between transportation and production
processes or machine breakdowns. Manufacturing enterprises have to adapt to these
changes rapidly. On the one hand, companies concentrate on their core competencies
to sustain competitiveness. On the other hand they establish close cooperations with
each other in order to satisfy the demand of their customers. In this context, several
cooperation concepts for interconnected logistic networks were developed in the past.
These concepts, for example virtual enterprises [7, 26] or production networks [57],
aim at enabling companies to react promptly to dynamics. Related to this, several
planning tasks for operating such networks occur in addition to classical production
planning and control (PPC) functions. Comprehensible examples of these new tasks
are the assignment of orders to production plants or the temporal coordination
between transport and production processes. Especially the temporal coordination in
geographically dispersed production networks gains importance [15, 40]. A lack of
reconciliation between production and transport processes can lead to increasing
throughput times, increasing tardiness of orders or underutilization of resources
[28, 37]. Thus the integrated planning of transport and production processes has
to ensure that an adequate quantity of raw material is supplied to the particular
production plant at the right time. Furthermore, a high work-in-process (WIP) level
should be avoided. A high level of WIP is unfavorable due to the resulting capital
lockup. However, in highly dynamic and volatile situations centralized planning
approaches, which solve the total planning problem incrementally, are not able to
cope with occurring dynamics and unforeseen disturbances [21, 24]. Decentralized
approaches, e.g., autonomous cooperating logistic processes, seem to be a suitable
counterpart to classical centralized planning methods. This concept aims at enabling
single logistic entities to make and execute operational decisions on their own.
According to this idea, intelligent logistic objects (e.g., parts, machines or trucks)
apply autonomous decision policies, in order to pursue their own logistic targets [59].
Due to the use of modern information and communication technologies (e.g., RFID,
GSM, GPS, etc.) these objects are able to interact with others. Based on these inter-
actions, logistic objects collect information about current local system states and
use this information for decentralized decision making. Autonomous cooperating
logistic processes aim at increasing the system’s robustness and its performance, due
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to autonomous and distributed decision making of intelligent logistic objects. The
implementation of autonomous decision policies (ADPs) in production systems and
entire production networks already showed promising results, in terms of an increased
logistic target achievement and the robustness against disturbances [45, 46].

However, this kind of autonomous decision making causes a decentralized system
behavior, which may affect the total logistic performance negatively or even leads to
instability of the system [34, 60]. Roughly speaking, stability means that the state of
a plant remains bounded over time, whereas instability of a network leads to infinite
states. A network with increasingly growing WIP can be called unstable.

This contribution aims at explaining the idea of autonomous cooperating logistic
processes and the fundamental concepts of ADPs in large-scale logistic networks to
practitioners. In the beginning the theoretical background will be outlined briefly.
The general focus of this contribution is set on describing how to implement ADPs in
production networks and furthermore how to determine key-indicators of the systems
using ADPs, such as logistic performance and stability. Therefore, this contribution is
structured as follows (Fig. 1): In Sect. 2 a general definition of production networks is
given, while Sect. 3 addresses operative planning problems of production networks.
It discusses classical central approaches in this context. The concept of autonomously
cooperating logistic processes and the underlying ADPs are presented in Sect. 4.

Concrete approaches for modeling, simulating and analyzing the performance and
the stability of ADPs in production networks are presented in Sect. 5. Subsequently,
the application of these modeling and analysis approaches is presented in Sect. 6 in
two examples of production network scenarios. Finally, Sect. 7 includes a summary
and an outlook.
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2 Production Networks

Relevant literature provides several definitions concerning networks of coupled
interconnected production systems. In the context of this contribution the term
production network is defined according to Wiendahl and Lutz [57], based on the
orientation at the integrated planning of logistic processes: Production networks are
company or cross-company owned networks of geographically dispersed production
facilities. They focus on the mutual use of common resources and integrated
planning of value adding processes in the network [57]. This allows achieving
economies of scale through the joint planning and the common use of production
resources. These types of networks may react promptly to internal or external
disturbances due to redundancies of resources. An integrated view on production
planning and transport planning requires additional tasks: Companies have to
generate concepts for identifying new network partners, the network design and
adjusting the PPC according to the network’s purpose [53]. However, this creates
complex interdependencies between PPC of plants and coordination of transports,
e.g., allocation problems between plants or planning of transport schedules and
transport capacity [2, 40, 52]. Besides these operational planning problems, which
concern a short-term time horizon, there are also several planning problems on the
tactical and strategic level. The supply chain planning matrix, introduced by Meyr
et al. [27], comprises all relevant planning problems for short-, mid- and long-
term time horizons. It covers all dimensions of corporate logistics: procurement,
production, distribution and sales. A classical problem of the long-term time horizon
is the strategic network planning, with tasks like selection of strategic partnerships
or localization of production plants [39]. In the mid-term time horizon, the so called
master planning describes tasks of coordinating all procurement production, distrib-
ution and sales activities, which are necessary to fulfill the customers’ demands. The
short-term time horizon concerns the operational level and contains classical tasks
such as production planning and control. Furthermore, the operational level addresses
the distribution and transport planning, as well as purchasing activities and material
requirements planning. It is assumed that these tasks are implemented in software
modules, which cover all of these planning problems [30]. Some authors argue that
an integrated planning method, which solves all problems in an incremental way,
may be challenged toughly by the occurrence of dynamics and unforeseen distur-
bances [21, 24]. Moreover, the structural complexity of large logistic networks is
another limiting factor for the application of centralized optimization methods in
the context of planning and operating such networks. At least single problems of
production and transport logistics are NP hard [17]. Accordingly, optimal solutions
can only be found for very small and simple instances in appropriate computational
time. Thus, heuristics are commonly used for these kinds of scheduling problems.
The following sections give a brief overview about different planning problems in
large-scale logistic networks with a special focus on operative planning problems.
These problem classes cover production logistics aspects, transport-related problems
as well as integrated problem formulations.
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3 Planning Problems in Production Networks

Sauer [40] describe planning tasks in supply or production networks as multi-
site scheduling problems. Multi-site scheduling problems are an integrated formu-
lation of production and transport problems, in terms of determining quantities
and schedules for particular production facilities as well as determining transport
schedules [9]. These approaches address three planning problems: the scheduling
of the shop-floor, planning of transport operations and their coordination on the
network level. The coordination in production networks comprises tasks of infor-
mation updating of successors and predecessors. Dunbar and Desa [14] investigate in
this context a distributed model adaptive control approach and compare it to a nominal
feedback policy. They point out that this approach outperforms the nominal policy
in situations with reliable demand forecasts. The MUST-architecture introduced by
Sauer [40] describes an approach based on a central coordination instance, which
creates a global schedule on the basis of locally generated schedules for all plants and
the corresponding transportation activities. This global schedule takes the solutions
of the sub-scheduling problems into account. Guinet [19] presents another centralized
approach, which divides the total planning problem into sub-problems on the network
level and on the shop-floor level. Shop-floor and transport problems will be charac-
terized and described in the following.

3.1 Shop-Floor Problems

Shop-floor scheduling problems are a well-known problem class in operations
research. The corresponding literature provides several comprehensive textbooks
(e.g., [31] or [13, 35]. Hence, this section aims at giving a brief overview about
different problem classes. Especially, the flexible flow shop problem will be discussed
in detail, due to its realistic assumptions and its widespread application in analysis
of autonomous controlled production systems.

General classification characteristics concerning shop-floor problems are: the
machine types/the arrangement of machines, characteristic of jobs and objective
functions. The machine types and the arrangement can be differentiated according
to three main classes: single machine problems, multiple identical parallel machine
problems and unrelated parallel machine problems [1, 36]. In contrast to single
machine problems the class of multiple machine problems addresses the assignment
of a job set to a set of multiple machines on one or more production stages. As a speci-
fication of parallel machine problems, unrelated parallel machines offer different
processing times and setup times for different job types. As mentioned above, the
flexible flow shop (FFS) problem is a special problem formulation of a shop-floor
scheduling problem [22]. The FFS comprises a variable number of production stages,
which contain a variable number of unrelated parallel machines per stage. Jobs
running through the system have to pass each stage once. Due to the unrelatedness,
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the machines offer different process and setup times to the jobs. Algorithms for
solving this problem type depend on the chosen logistic target system. Often
the makespan is chosen as objective function. This means the timespan between
the first order release time of the first job and the completion of the last job.
Jungwattanakit et al. [22] propose multiple coupled algorithms which construct
primarily a sequence for jobs on the first stage. Afterwards greedy algorithms assign
the jobs to the machines on a stage. The greedy algorithm is repeated, until all jobs
are assigned to stages. The contribution of Jungwattanakit et al. [22] shows that a
combination of these algorithms with a genetic algorithm improves the optimization
result.

The assumptions (different job types, unrelated parallel machines, variable number
of resources, etc.) in the FFS problem formulation can be considered to be realistic and
near to practice [1]. Thus, the FFS is often used for analyzing different autonomous
decision policies in the production logistic context.

3.2 Transport Problems

The planning of transports in geographically dispersed networks is a complex task.
Transport operation can be generally classified in short haul and long haul operations.
Short haul operations describe the aggregation of different transport orders, which
do not fully utilize the capacity of a transport carrier, to tours or round trips. Popular
planning problems related to this area are the traveling sales man problem (TSP),
the vehicle routing problem (VRP) or the pick-up and delivery problem (PDP) [54].
These problems and their derivatives focus on determining round tours starting and
ending in one point (depot) for one or more transport carriers (trucks) to deliver a
certain amount of goods to costumers.

Long haul planning addresses the delivery of goods over long distances with
less nodes. Usually, in long haul transports line operations are implemented [16].
Thus, the particular transport route gets already fixed in advance and the transport
operation takes place according to predefined policies. This type of transport initiation
is commonly used in production networks. This planning problem can be divided
in two sub-problems. The mid-term task of service network design includes the
choice of a transport carrier (road, rail, sea, etc) and the circulation of the transport
carriers [10]. The short-term planning aims at aggregating and assigning orders to
loads. The triggering of transports in a long haul operation can be done by several
policies. Usually, these transports are initiated in fixed frequencies according to a
predefined schedule [18]. Another type is the so-called “go-when-full” policy. This
policy implies that a truck starts a transport process, when a predefined loading
quantity is reached [5]. In real word practice a mix-form of both can be found.
This means, transports are initiated with predefined time windows, but within these
time windows there is the possibility to operate with a go-when-full policy. The
advantage of a go-when-full policy is an efficient utilization of the load carriers [10].
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Their capacity is fully used in this case. A drawback in this kind of policy is the
construction of loose schedules.

4 Autonomous Cooperating Logistic Processes

The idea of autonomous cooperating logistic processes is inspired by the theory of
self organization. This section presents the definition of autonomous control and
elaborates on autonomous decision policies.

4.1 Definition

According to the collaborative research center 637 “Autonomous cooperating Logistic
Processes: A Paradigm Shift and its Limitations”, the following definition of
autonomous cooperating logistic systems is given: “Autonomous control describes
processes of decentralized decision-making in heterarchical structures. It presumes
interacting elements in non-deterministic systems, which possess the capability and
possibility to render decisions independently. The objective of autonomous control
is the achievement of increased robustness and positive emergence of the total
system due to distributed and flexible coping with dynamics and complexity” [59].
According to this definition autonomous control is characterized by a shift of
decision-making capabilities from the total system to its elements, which allows
intelligent logistic objects to route themselves through a logistic network according
to their own objectives [60]. In the context of this definition intelligent logistic object
may be either physical objects (e.g., trucks, machines, etc.) or immaterial objects
(e.g., production orders or transport orders). Modern information and communication
technologies can provide an infrastructure, which enables an exchange of information
about current local system states between these objects. On this basis the objects are
able to generate decisions according to different autonomous decision policies. Due
to these multiple decentralized decisions the local and the global behavior should be
influenced in a positive manner, for example, in terms of improving the handling of
dynamics caused by unforeseen events (e.g., machine breakdowns) [60].

In the past, ADPs have been developed for all areas of the logistic chain: There
exist ADPs for transportation and route planning (e.g., [38]), production logistics
(e.g., [43]), transport collaborations [6], or production networks (e.g., [45]). In
the following, different ADPs for production systems and production networks are
presented.
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4.2 Autonomous Decision Policies

Generally, ADPs enable decision making of intelligent logistic objects. In the context
of production systems and networks all existing ADPs facilitate decision making of
parts or jobs (semi-finished products), to decide about possible routes through the
system. Scholz-Reiter et al. [48] propose a classification of ADPs according to local
information methods and information discovery methods. Information discovery
methods, i.e., the distributed logistics routing protocol (DLRP), collect information
from other objects. The DLRP is inspired by communication protocols of wireless
ad hoc networks. Intelligent logistic objects using the DLRP send requests into
the logistic network. By receiving replies, the object collects information about the
system, which is used for local decision making. This discovery does not cover the
whole system, but it is directed to information that is relevant for the actual decision.
The DLRP is designed for production environments [50] as well as for transport
logistic routing problems [38]. However, this contribution focuses on local infor-
mation methods. Local information methods enable jobs to decide about further
processing steps. Jobs using one of these methods only gather local information
about states of direct succeeding buffers and machines.

According to a classification introduced by Windt and Becker [58] local infor-
mation methods can be further divided into rational policies, bounded rational
strategies and mixed forms. Rational strategies use solely rational measures (e.g.,
throughput times or due dates) for the decision-making process. In contrast, biologi-
cally inspired strategies which belong to the class of bounded rational strategies, try to
transfer mechanisms from biological self-organizing systems to the decision-making
in production networks. Table 1 presents different ADPs, which can be applied to
production networks. It differentiates between shop-floor related and network-related
strategies and presents their main characteristics as well as a short overview about
the algorithmic scheme.

The QLE policy enables parts in a production system to estimate the waiting and
processing times of different alternative processing resources. It uses exclusively
local information to evaluate the states of the alternatives. The application of this
policy leads to a better system performance regarding throughput times compared to
classical scheduling algorithms in highly dynamic situations [50].

Similar to the QLE, the DUE policy estimates waiting and processing times.
While the QLE uses this information for minimizing part-related throughput times,
the DUE policy orientates at the tardiness of parts. A part using this policy decides
for an alternative resource which offers the lowest difference between estimated due
date and pre-planned due date [47].

In contrast, the PHE policy is a bio-inspired strategy. The approach is based on the
idea to imitate the process of ants marking possible routes to food sources. Ants leave
pheromone marks between the nest and food sources. Other ants can detect those
pheromones and will follow the trail with the highest concentration of pheromones
[32, 33]. This is transferred to logistic systems: During the production process, the
parts leave information about their processing and waiting times at a corresponding
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machine. Following parts entering a stage of the shop-floor compare this artificial
pheromone concentration by computing average value of the waiting time data of
the last five parts and choose a production line. Thus, the pheromone concentration
depends on waiting and processing times of previous parts. To model the evaporation
process of natural pheromones a moving average of waiting time data is used [3].

The honey bee algorithm (HBA) is another bio-inspired strategy. It uses the
foraging mechanisms of honey bees’ colonies. In nature bees advertise possible
food sources with a so-called ‘waggle dance’. The duration of this dance depends on
the ratio between energy consumption of the flight (between hive and food source)
and available energy of the source. The probability of bees recognizing the dance
of a dancing bee is proportional to the dancing duration. According to this principle
parts are able to advertise different alternative production resources by means of the
machining quality, which is determined by calculation of the benefit provided by a
particular machine and the throughput time needed for this step [44].

The natural process, which inspires the CHE policy, differs from the PHE and
the HBA policy. It is not inspired by coordination principals of social insects, but on
movement processes coming from micro-biology. Natural bacteria are able to direct
their movement according to the concentration of attractants (e.g., food substances)
or repellants (e.g., toxic substances). Therefore, bacteria perform a random biased
walk to find appropriate food sources. This basic movement principle is trans-
ferred to autonomous decision making by the CHE policy. Parts using this policy
decide according to the gradient of logistic target values of different decision alter-
natives [49].

All ADPs described above were implemented in the past for several production
logistic scenarios. In general, these policies can also be used for the decision making
on the network level. Currently, the QLE and the PHE policy have already been
transferred to decision making on the network level. The nQLE enables the decision
making on the network level similar to the QLE policy. The network-related version
enables an allocation decision of parts to plants. Therefore, the nQLE estimates,
similar to the QLE policy on the shop-floor level, the transport duration from one
plant to the next and estimates the processing times in the respective plant. The part
chooses the plant with the lowest estimated transport and processing times. The nPHE
policy is based on the same principles as the PHE policy. Intelligent parts choose
one of alternative succeeding plants according to information about the processing
and waiting times of previous parts. In contrast to the PHE policy this information is
not limited to the waiting times at the next machine, but is based on the time spent to
pass the transport system and the corresponding plant [50]. After processing in one
plant the part leaves this information as an artificial pheromone at the plant, which
can be detected by the following parts.

Concerning ADPs, Scholz-Reiter et al. [42] present a framework for choosing
the right policy for a particular production scenario. The underlying evaluation of
this framework applies evaluation methods, which will be presented in Sect. 5. This
contribution presents tools for evaluation of ADPs in production networks.
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5 Modeling and Analysis of ADPs in Production Networks

When dealing with production networks, it is self-evident to consider an integrated
modeling of production networks that covers both job-shop scheduling and transport
logistic problems from an integrated point of view. Such an integrated modeling
approach for production networks is presented in Sect. 5.1. The representation of time
in models of production networks varies throughout the literature: it can be distin-
guished between discrete event and continuous simulation models [29]. Sections 5.2
and 5.3 present different modeling and simulation approaches, i.e., a mathematical
approach and a discrete event simulation (DES) in order to validate the obtained
simulation results concerning ADPs in production networks against each other.
Production networks usually have to deal with dynamic variations, which can be
caused by internal factors or by the (external) environment. Hence, a pure static
analysis of logistic performance indicators seems to be not sufficient to cover the
effects and the interdependencies of these dynamics. Thus, Sect. 5.4 presents appro-
priate measures for analyzing production networks.

5.1 Integrated Modeling of Production Networks

For the purpose of analyzing autonomously controlled production networks a matrix-
like production network scenario was introduced by Scholz-Reiter et al. [45]. This
matrix-like model allows the analysis of the dynamical behavior, the stability and the
logistic performance of a multi echelon production network with detailed shop-floor
and transport models.

Figure 2 shows the generic structure of this model. It consists of a variable number
of network stages, which comprise a variable number of production plants per stage.
Furthermore, these production plants are represented as a shop-floor scenario. Each
of these shop-floors is a matrix-like model (similar to Scholz-Reiter et al. 2005).

Accordingly, different production resources (buffers and machines) are located
on a variable number of production stages. Figure 2 depicts this relation. Transport
systems connect the production plants on the network level with each other. The
network is able to process different job types. The arrival rate u(t) describes the input
of jobs to the network as a function of time. In order to model different demand
situations this function can be modeled as an arbitrary mathematical function. For
example, a sinusoidal function can be chosen for modeling seasonal demand fluctu-
ations (similar to [43, 45]). However, stochastic inputs can be chosen as well. All
transports in this model are direct deliveries, in terms of a door-to-door delivery. This
means that each transport between two plants is initiated and operated separately. The
model allows integrating different direct transport strategies, like a “go-when-full-
policy” or a “frequency-based-policy” with pre-defined departure times as described
by Crainic [10]. Trucks using the “go-when-full-policy” will depart at a particular
plant, whenever their total load capacity q is reached. In a “frequency-based-policy”
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Fig. 2 Generic production network model with kxj plants and mxn machines per plant (see [45])

all departure times are predefined and scheduled. This means that the transportation
starts at a certain time, which consequently may lead to variations in the trucks
load quantity q. Both transportation policies are commonly used in door-to-door
transports in long haul operations.

The modeling of particular scenarios can be done by different modeling tools,
depending on the purpose of the analysis. This contribution introduces a mathematical
approach and an engineering-orientated simulation approach. The formulation of a
mathematical model, which is based on differential equations, is a suitable approach
to analyze the stability of a production network [12]. Moreover, the engineering-
orientated simulation approach can be used to refine and validate the results of a
mathematical stability analysis. It can be used to analyze the logistic performance of
ADPs in production network.

5.2 Mathematical Modeling and Stability Analysis

In order to analyze and to make statements about the dynamics of production
networks, the mathematical modeling by differential equations [20] can be used,
which can be called the macroscopic view. Each plant of a production network is
called subsystem. General production networks consist of n subsystems and each
subsystem is modeled by a differential equation that describes the incoming and
outgoing material or information flows as follows:
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ẋi (t) =
n∑

j=1, j �=i

ci j (x(t)) f̃ j (x j (t)) + ui (t) − c̃i i (x(t)) f̃i (xi (t)), i = 1, ..., n.

Here xi denotes the state of the ith subsystem and is a positive real value. The state
can be interpreted as the number of unprocessed parts of a subsystem, but one can
choose any other state variable such as the number of unsatisfied orders for example.
The state of the whole network is denoted by x = (x1, . . ., xn)T. The positive real
value t denotes the time of the system. The term ui represents an external input into
the subsystem, e.g., supply of raw material.

Each plant processes the material with a production rate c̃i i (x(t)) f̃i (xi (t)), where
c̃i i ∈ R+ and f̃i (xi (t)) is a continuous, positive definite and monotone increasing
function. The processed material is sent to the jth subsystem of the network with
the rate c ji (x(t)) f̃i (xi (t)), j �= i where c ji is a positive real value and represents
a distribution parameter for processed material from subsystem i to j. The term∑n

j=1, j �=i ci j (x(t)) f̃ j (x j (t)) is the internal input of material from other subsystems
to the subsystem i.

Denoting cii := −c̃i i the above equations can be rewritten as an interconnected
system, which represents the whole network in a vector form

ẋ(t) = C(x(t)) f̃ (x(t)) + u(t), (1)

where f̃ (x(t)) = ( f̃1(x1(t)), ..., f̃n(xn(t)))T , u = (u1, ..., un)T , C(x(t)) =
(ci j (x(t)))nxn .

ADPs are modeled by the production rate c̃i i (x(t)) f̃i (xi (t)) and the distribution
coefficients ci j . The production rate depends on the state of a subsystem and the
ability to adapt the production speed of a plant in a network can be modeled by an
appropriate choice of this rate. Namely, if there is a lot of unprocessed material, the
plant increases the production and, conversely, if there is less unprocessed material
the production speed goes down. For example, one can choose f̃i (xi (t)) = x2

i or
f̃i (xi (t)) = (1 − exp(−xi )).

By the distribution coefficients ci j a centralized or decentralized planning scenario
can be modeled, where constant coefficients are identified as central planning. For
example, the nQLE, nPHE or other ADPs can be implemented by the following
choices of the coefficients ci j :
for the nQLE

ci j :=
1

xi +ε
∑

k
1

xk+ε

,

for the nPHE

ci j := (1 − vi )
f̃i (xi )

∑
k f̃k(xk) + ε

+
∑

k �=i

vk
f̃k(xk)

∑
q f̃q(xq) + ε

,
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for an integrated ADP

ci j :=
f̃i (xi )
xi +ε

∑
k

f̃k (xk )
xk+ε

,

where k and q are the indices of the subsystems, which get material from subsystem
j, vi are evaporation constants, i = 1, . . ., n and ε is a positive constant to assure that
the term ci j is well-defined.

So far, one important circumstance that occurs in production networks has been left
out: transportation times of material from one plant to another. These transportation
times can be modeled using time-delay systems as follows:

ẋi (t) =
n∑

j=1, j �=k

ci j (t) f̃i (x j (t − τi j )) + ui (t) − c̃i i (t) f̃i (xi (t)), i = 1, ..., n. (2)

Transportation times are represented as time-delays τi j ∈ R+, which denote the
time needed for transportation from subsystem j to i. In Eq. (2) the time-delays are
included in the terms which represent the inflow of material from other subsystems,
where ci j can also depend on a time-delay. In the terms which represent the external
input and the internal production rate no insertion of time-delays is necessary.

The consideration of transportation times makes the analysis of production
networks more complex, but more realistic too. Due to the abstract level of this
view, the model (1) or (2) is used to analyze the dynamics and make general
statements about the dynamics of production networks from a macroscopic view.
The results can be used to adapt the simulation model and, conversely, the results
can be refined by results of the simulation view. This will be explained with examples
in Sect. 5.4.

5.3 Simulation Models

Simulation approaches are often used for the analysis of stability of production
networks in order to refine the mathematically found stability regions. Furthermore,
they can be used to investigate different system aspects like logistic target achievement
for time-varying systems parameters. For the analysis of ADPs in production
networks, several simulation approaches were used in the past (e.g., [43]). These
simulation models can be classified according to their general function principle
concerning the representation of time in the simulation model. Continuous time
simulations represent the time of the simulation model as a real variable. All system
states in the simulation model change with dependence on the simulation time
variable. In contrast to this, in a discrete time simulation model the time elapses
in predefined equidistant time steps. A particular variant of discrete time models is
discrete event simulation models [4, 62]. Here, the time elapses in non-equidistant
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time steps. The states of the simulation model change according to events. In the
production logistic context these events describe the arrival of raw material in a
source or the end of a particular production step [25], for example. Besides the
representation of time, some authors discuss the purpose of analysis as a possible
classification characteristic. Morecroft and Robinson [29] describe differences in the
modeling representation and the interpretation between discrete event and continuous
simulation models. Accordingly, discrete event simulations are applied for the repre-
sentation of very detailed scenarios, which should be investigated with regard to
the interaction of single system elements, while continuous simulations are used for
investigations of general dynamic aspects of the system [8, 29]. The usage of different
modeling and simulation approaches helps to validate the obtained simulation results
concerning ADPs in production networks against each other. Possible differences or
mistakes can be detected easily. A comprehensible example for this approach is the
determination of stability regions of autonomously controlled production networks.
In Scholz-Reiter et al. [51] a discrete event simulation approach is used for the
refinement procedure.

5.4 Measures for Analysis

Production networks are steadily exposed to dynamic variations, caused by internal
reasons and by the external environment. Hence, a pure static analysis of logistic
performance indicators seems to be not sufficient to cover the effects and the
interdependencies of these dynamics. Nevertheless, classical logistic performance
indicators should not be neglected. According to Wiendahl [56] the logistic key
performance measures are throughput time (TPT), delivery liability, work-in-process
(WIP) and utilization. The throughput time is the time-span spent by a particular
product in a production system. From a customer’s point of view short TPTs are
desirable, due to the shorter possible delivery times. Another aspect of this customer’s
perspective is the delivery reliability, which means a delivery of goods to the customer
at the right time in the right quantity. The performance indicators WIP and utilization
belong to the logistic costs. A high level of WIP means that the buffers of the system
are filled with numerous semi-finished goods and raw material. This leads conse-
quently to high degree of capital lock-up. From an economical point of view the WIP
should be at a low level, while the system is fully utilized.

Windt et al. (2008) developed a vector-based approach which allows one to weight
these targets according to the subjective preferences and to aggregate these weighted
targets in one performance indicator, called logistic target achievement. This value
depends on pre-defined targets, the operative target achievement and weight factors.
The total logistic target achievement gives information about the performance as a
percentage value. By applying this approach, different configurations of production
systems can be compared easily. For the objective of the analysis of autonomously
controlled production systems, this vector-based approach can be used to compare
different ADPs in a defined way (e.g., [46]). Furthermore, Windt et al. [58] introduce
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an autonomous control application matrix (ACAM), which proposes an evaluation
of different scenarios with ADPs on the basis of this vector-based approach.

Additionally, the identification of stability regions is generally crucial for planning
and operating logistic networks as an aspect of the dynamic systems behavior. In
this context, mathematical models are often used to determine stability regions.
Typical examples of unstable behavior are unbounded growth of unsatisfied orders
or unbounded growth of the queue of the workload to be processed by a plant or a
machine. This causes high inventory costs and loss of customers. To avoid instability
of a network it is worth to investigate its behavior in advance.

Stability means, roughly speaking, that the number of unsatisfied orders or the
number of unprocessed parts remains bounded over time. More precisely, the local
input-to-state stability (LISS) property from control theory is used and by the means
of LISS the state of a system can be estimated. More details about this property can
be found in Dashkovskiy and Rüffer [11].

A useful tool to verify the LISS property of a system is a Lyapunov function, which
is positive definite and radially unbounded and can be interpreted as the energy of the
systems state. A LISS Lyapunov function Vi of the ith subsystem has the property
that if Vi (xi ) ≥ max

{
max j �=i γi j (Vj (x j )), γi (|ui |)

}
holds, where the gains γi j and

γi are positive definite, zero at zero and strictly increasing functions, then the energy
decreases. If Vi (xi ) < max

{
max j �=i γi j (Vj (x j )), γi (|ui |)

}
then the energy of the

system is bounded by the expression on the right side of the previous inequality.
Overall, the trajectory of a system is bounded. More details can be found in [11].

By the gains, statements about the behavior of the system can be made. For
example, they offer information about the upper bound of the trajectory of a system
or in other words about the highest inventory level of a system. This information is
helpful for plant owners, because they can plan the size of the inventory in advance
and they can also design their plant in a way to assure stability.

The tool of a Lyapunov function can be used for the stability analysis in the
following way:

Consider a network consisting of n subsystems and assume that each subsystem
has a LISS Lyapunov function, i.e., each subsystem has the LISS property. Then, the
overall network has the LISS property provided that the small-gain condition (SGC)
is satisfied (see [11]).

Simply speaking, the SGC states that along every existing circle in the network
the composition of the corresponding gains is less than the identity (see [11]).

Concluding this, to verify if a system is stable, one has to find LISS Lyapunov
functions for the subsystems, the corresponding gains and to check the SGC, then
stability is verified. Otherwise, one has to find other LISS Lyapunov functions candi-
dates and gains. If all efforts are not successful, then no statement about stability is
possible.

To assure the stability of a network by using the properties of the Lyapunov
functions and the SGC one gets conditions on relevant system parameters, as the
production or distribution rates and the external inputs. Using the model (1) in
Sect. 5.2 describing general production networks and assuming that the distribution
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coefficients are bounded, the following condition for unbounded production rates
can be derived:

If there exist a ∈ R
n, ai > 0 and ε ∈ R

n, εi > 0, i = 1, ..., n, such that

C(t)a < ε

holds, then the whole network (1) has the ISS property, which is the global variant
of LISS.

For production rates, which are bounded up to a certain limit αi := supxi

{
f̃i (xi )

}

the condition

C(t)α + ‖u‖∞ < ε,

can be derived to assure that a network has the LISS property, where α = (α1, ...αn)T

and ‖u‖∞ denotes the essential supremum norm of the external input. Taking trans-
portation times into account one gets similar conditions to assure stability of a
production network modeled by the equations as in (2).

These conditions form a stability region: for parameter constellations (i.e., set of
parameters) within this region, stability is guaranteed. For parameter constellations
outside this region the tool of a Lyapunov function does not offer a statement about
stability. At this stage, simulations are performed to refine the stability region.

By the analysis using Lyapunov functions a large set of parameter constella-
tions which assure stability are identified. Only few parameter constellations have
to be simulated. To identify stable or unstable parameter constellations a truncation
criterion needs to be defined. Then, the simulation results refine the stability region.

This dual approach using the analytical and the simulation model has the
advantage of less time consumption to identify stability regions in contrast to a
pure simulation approach. This is especially relevant since the time needed for a
simulation run increases exponentially as the number of plants, links and parts in
a network are increased. To identify parameter constellations which assure stability
and to make statements about the inventory levels of the plants of a complex network
with a large number of plants is a problem which cannot be solved in an acceptable
time. The dual approach presented helps to derive and refine parameter constellations
in reasonable time by assuring stability (see [51]) and is presented in the following
Fig. 3, where a scheme of a stability analysis is displayed.

6 Examples of ADP Implementation

This section presents the approach of modeling and analyzing autonomous decision
policies in two exemplary cases of production networks. The first focuses on stability
analysis and a refinement of stability regions of a relatively simple network. The
second is used to demonstrate the performance evaluation of different autonomous
decision strategies (for the structure see Fig. 4). The first network consists of three
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Fig. 3 Scheme of the
stability analysis (similar
to [51])

Modeling

Mathematical
StabilityAnalysis

Identification of
StabilityRegion

Simulations

Refinement of the
StabilityRegion

Reducedset of
parameter constellations

plants, the second has six plants. In the first example a macroscopic view is
considered; the second example is investigated in detail representing the shop-floor
of the plants, consisting of 3 × 3 machines (see Fig. 4).

6.1 Stability Analysis

According to Fig. 4a the material flow between the plants is defined as follows:
The input of raw material arrives at plant 1 and plant 3. All material produced in plant 1
is delivered to plant 2. From here 50% of the goods are delivered to the customers
and 50% for further processing to plant 3. Plant 3 sends 50% of its output to plant 1
and plant 2 each. In order to model seasonal demand fluctuations both inputs to plant 1
and plant 3 are modeled as a sinusoidal function ui (t):

ui (t) := AVi · (sin(t) + 1) + 5, i = 1, 3.

The parameter AVi determines the intensity of the fluctuations in terms of
the amplitude. In this example this parameter is used to generate different input
situations. The plants are able to decide autonomously about their current production
rate f̃i at the time point t. It is assumed that this decision depends on the actual
workload in the following form:

f̃i (xi (t)) := αi (1 − exp(−xi (t))), i = 1, 2, 3., αi ∈ R+
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Fig. 4 a Production network scenario with three plants. b Production network scenario with six
plants

This means that the production rate of plant i depends on the WIP of the plant.
According to this equation, the production rate will be very low in cases of low WIP
in the plant. Otherwise the production rate will be set to its maximum αi for a high
WIP level.

This example aims at determining the lowest possible values of αi or a certain
input situation, which depends on AVi . To do so, the internal structure of the plants is
neglected in a first step. Stability conditions will be derived only macroscopically on
the network level. These results will be subsequently refined by a simulation model.

In this first step the network is modeled by differential equations:

ẋ1(t) = u1(t) + 0.5 · f̃3(x3(t)) − f̃1(x1(t)),
ẋ2(t) = f̃1(x1(t)) + 0.5 · f̃3(x3(t)) − f̃2(x2(t)),
ẋ3(t) = u3(t) + 0.5 · f̃2(x2(t)) − f̃3(x3(t)).

These equations describe the change of WIP in the three plants and consider the
transport connections and quantities as well as the current production rate of a plant.
According to the scheme in Fig. 3 the next step is to derive stability conditions using
Lyapunov functions and gains. A very detailed technical description for this can be
found in Scholz-Reiter et al. [51]. For this network the following stability conditions
can be calculated:
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Fig. 5 Calculated and simulated stability regions for plant three

α1 > 0.5 · α3 + maxt {u1(t)}, α2 > 0.5 · α3 + α1, α3 > 0.5 · α2 + maxt {u3(t)}.

By solving this system of inequalities, the maximal production rate for that
stability can be guaranteed and can be calculated for the corresponding value of
AVi . For example, choosing AVi ≡ 5 leads to:

α1 > 37.5, α2 > 60, α3 > 40.

From a mathematical point of view the stability of the production network can be
guaranteed for the values indicated. This does not mean that the network is unstable
for values that violate these inequalities. To illustrate this, a continuous simulation
of the differential equation model is conducted.

For different values of AVi the production rate of all plants is reduced stepwise in
several simulation runs. The simulation model is considered to be unstable, whenever
the WIP of a plant starts to rise continuously about 10% in a time period of 30 days.
Figure 5 depicts the results of the simulation model for plant 3 and compares it with
the calculated results.

These results show that the simulation model is still stable in this case, even if
the production rate is below the calculated stability boundary. Using simulations, the
calculated stability region can thus be refined.

Figure 6 clarifies this. It presents simulation results for different values of αi

and AVi ≡ 5 taken from the calculated stability region, the simulated stability
region and the simulated instability region. The WIP remains bounded over time
for the calculated stability region and the simulated stability region. By contrast the
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WIP grows continuously in plant P1, P2 and plant P3. The WIP in P1 increases
continuously about 0.049, in P2 about 0.02 and in P3 about 0.029 units per time unit.

According to the results presented in Fig. 6, the mathematical determination of a
stability region provides a good starting point for the refinement. Hence, this approach
allows the identification of the border of the stability region with less time efforts
than a pure trial and error simulation approach.

In general, different simulation approaches can be applied for the refinement.
Scholz-Reiter et al. [51] successfully applied a discrete event simulation and a
continuous time simulation based on differential equations for the refinement of
stability regions. It was shown that the refinement results of both simulation
approaches provide similar stability results.
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Table 2 Weighted adjacency
matrix

From plant To plant

P1 P2 P3 P4 P5 P6

P1 – 200 200
P2 – 200 200
P3 – 200 200
P4 – 200
P5 – 200
P6 –

6.2 Implementation and Evaluation of Different Autonomous
Decision Policies

The second example presents the modeling and implementation of different ADPs
on the shop-floor and on the network level. Therefore, the network depicted in Fig. 4b
is considered. In order to keep this example simple, only one logistic target measure
is considered. This example focuses on the total throughput time, which denotes the
time spent by the parts to pass through the entire network.

This scenario has six different plants on four network stages. On stage one and
on stage four there is only one plant. On stage two and three there are two parallel
plants each. Additionally, every plant consists of a shop-floor with 3 × 3 machines.
The distances between the plants are summarized in Table 2.

The transports between plants are triggered by a “frequency-based” policy. This
means that a transport starts in pre-defined time intervals. The interval in this example
is set to 15 h.

There are three different job types in this scenario. These job types differ in their
processing times on the shop-floor level in every plant. The processing times are
summarized in Table 3.

As in the first example, the arrival rate of jobs in this scenario is set to a sine
function in order to model demand fluctuations:

u(t) = λ + AV · sin(t + ϕ)

This function has a phase shift ϕ = 1/3 of a period for each job type, so that the
maximal arrival rates of all job types are not simultaneous. The variable λ defines
the mean arrival rate and is set to 0.4 1/h in all simulation runs. The second variable
AV determines the intensity of the arrival rate fluctuation, as in example 1, AV is set
to 0.125 1/h.

The purpose of this example is to describe how to choose an applicable combi-
nation of different ADPs for this particular network configuration. Therefore, the
ADPs QLE, PHE, nQLE and nPHE are implemented on the shop-floor and the
network level to a simulation model, exemplarily. Table 4 shows the different combi-
nations of ADPs and summarizes the results of the simulation runs in a form which
is comparable to the ACAM described above.
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Table 3 Processing times (h:mm)

P1; P6 P2; P4 P3; P5

Type / line 1 2 3 1 2 3 1 2 3
Type A 2:00 3:00 2:30 3:00 4:00 3:30 5:00 6:00 5:30
Type B 2:30 2:00 3:00 3:30 3:00 4:00 5:30 5:00 6:00
Type C 3:00 2:30 2:00 4:00 3:30 3:00 6:00 5:30 5:00

Table 4 Simulation results

ADP
(shop-
floorlevel)

ADP
(network
level)

Logistic performance
mean total throughput
time (h)

Standard deviation of
mean total throughput
time (h)

Rank

QLE nQLE 86.59 5.21 2
QLE nPHE 85.84 3.23 1
PHE nQLE 110.85 10.67 3
PHE nPHE 117.95 12.37 4

This relatively simple example demonstrates that a detailed analysis of different
combination of network-related and shop-floor-related ADPs is necessary. In this
example the combination of QLE and nPHE performs best with respect to mini-
mizing the total throughput time (TTPT), which is the time span needed by a part
to pass through the entire network. On the other hand the combination of PHE and
nPHE seems not to be suitable for this particular network. This combination leads
to the highest mean TTPT.

Figure 7 depicts these results in more detail. It presents the TTPT against the
simulation time of each possible combination. The nPHE leads to smoother patterns
in the TTPT compared to the combination of the QLE/nQLE (Fig. 7a, 7b). A
comparison of the corresponding standard deviations confirms this. In combination
with the shop-floor-related QLE method the best result of mean TTPT (85.84 h) is
realized.

A similar curve shape is observed for the combination of the PHE/nQLE, but
the absolute values differ: in this case the mean TTPT is 21.89% higher than in
the first case. This can be explained by the time horizon used by the methods. The
pheromone-based method uses data from past events, while the QLE is based on
actual information. In the case at hand, the data on the shop-floor level used by
the PHE method does not represent the current situation properly, which leads to
unsuitable autonomous decisions on the shop-floor level and consequently to a longer
TTPT.

The results of the network-related pheromone-based approach are different.
In combination with the shop-floor-related QLE method the lowest mean TTPT
(85.84 h) is realized.

Figure 7d presents the TTPT of the PHE/nPHE combination. Again, the shop-
floor-related pheromone-based method leads to high throughput times in the plants,
which corresponds to the effects discussed concerning the PHE/nQLE combination.
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Fig. 7 Total throughput time against simulation time: a combination QLE/nQLE, b combination
QLE/nPHE, c combination PHE/nPHE, d combination PHE/nPHE

Additionally to this, the nPHE method uses the information of the throughput times in
the plants for the autonomous decision making on the network level. Due to the time-
varying and imprecise information allocation decisions made by the nPHE method
are not suitable in this situation. Consequently, this combination leads to the highest
TTPT value.

This example illustrates the potentials of the application of autonomous decision
policies in production networks. Combined autonomous decision policies on the
network level and on the shop-floor level may lead to an acceptable logistic perfor-
mance. However, the underlying dynamics and their consequences should not be
neglected. In the case at hand the combination of the PHE/nPHE method leads to
a dynamic interplay between network and shop-floor-related decisions which are
undesirable and consequently decreases the logistic performance. Thus, the design
and implementation of autonomous control strategies in production networks should
be integrated in an intensive analysis of relevant system properties such as stability
and systems performance.
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7 Summary

This contribution described the integrated coordination between production and
transport processes as an essential task of operating production networks. Different
central planning and scheduling functions for shop-floor and transport operations
were presented. In this context, different ADPs and the concept of autonomous
cooperating processes were introduced as a novel approach to coordinated logistic
processes in production networks. Several ADPs were introduced and described.
Additionally, approaches for modeling and analyzing ADPs in production networks
were presented and discussed in mathematical terms and via simulative approaches.
Based on the mathematical modeling approach, criteria for the stability of production
networks can be derived, which subsequently can be refined by simulations. Finally,
two examples for analyzing the stability and the performance of autonomous decision
policies in production networks were given.

Acknowledgments This research is funded by the German Research Foundation (DFG) as part of

the Collaborative Research Centre 637 ‘Autonomous Cooperating Logistic Processes: A Paradigm

Shift and its Limitations’.

References

1. Allahverdi A, Ng CT, Cheng TCE, Kovalyov M (2008) A survey of scheduling problems with
setup times or costs. Eur J Oper Res 187(3):985–1032

2. Alvarez E (2007) Multi-plant production scheduling in SMEs. Robotics Comput Integr Manuf
23(6):608–613

3. Armbruster D, de Beer C, Freitag M, Jagalski T, Ringhofer Ch (2006) Autonomous control of
production networks using a pheromone approach. Physica A 363(1):104–114

4. Banks J, Carson JS, Nelson BL, Nicol DM (2010) Discrete-event system simulation. Prentice
Hall, Upper Saddle River

5. Bertazzi L, Speranza MG (2005) Worst-case analysis of the full load policy in the single link
problem. Int J Prod Econ 93–94:217–224.

6. Bloos M, Kopfer H (2009) Efficiency of transport collaboration mechanisms. Commun SIWN
6(1):23–28

7. Camarinha-Matos L, Afsarmanesh H (2003) Elements of a base VE infrastructure. Comput
Ind 51:139–163

8. Chahal K, Eldabi T (2010) A multi-perspective comparison for selection between system
dynamics and discrete event simulation. Int J Bus Inf Syst Arch 6(1):4–17

9. Comelli M, Gourgand M, Lemoine D (2008) A review of tactical planning models. J Syst Sci
Syst Eng 17(2):204–229

10. Crainic TG (2000) Service network design in freight transportation. Eur J Oper Res 122(2):
272–288

11. Dashkovskiy S, Rüffer B (2010) Local ISS of large-scale interconnections and estimates for
stability regions. Syst Control Lett 59(3):241–247

12. Dashkovskiy S, Görges M, Naujok L (2009) Local input to state stability of production
networks. In: Proceedings of 2nd international conference on dynamics in logistics (LDIC
2009). Springer, Bremen

13. Domschke W, Scholl A, Voß S (1997) Produktionsplanung. Springer, Berlin



Autonomous Decision Policies for Networks 261

14. Dunbar WB, Desa S (2007) Distributed MPC for dynamic supply chain management.
Assessment and future directions of nonlinear model predictive control. Lect Notes Control
Inf Sci 358:607–615

15. Erengünc SS, Simpson NC, Vakharia AJ (1999) Integrated production/distribution planning in
supply chains. Eur J Oper Res 115(2):219–236

16. Fleischmann B, Gietz M (2008) Transport- und Tourenplanung. In: Arnold D, Isermann H,
Kuhn A, Tempelmeier H (eds) Handbuch Logistik, Springer, Heidelberg pp 137–152

17. Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of
NP-completeness, Freeman, San Francisco

18. Gudehus T (2005) Logistik. Springer, Berlin
19. Guinet A (2001) Multi-site planning: a transshipment problem. Int J Prod Econ 74(3):21–32
20. Hinrichsen D, Pritchard AJ (2005) Mathematical systems theory I. series: texts in applied

mathematics, vol 48. Springer, Berlin
21. Ivanov D (2009) An adaptive framework for aligning (re)planning decisions on supply chain

strategy, design, tactics, and operations. Int J Prod Res 48(13):3999–4017
22. Jungwattanakit J, Reodecha M, Chaovalitwongse P, Werner F (2008) Algorithms for flexible

flow shop problems with unrelated parallel machines, setup times, and dual criteria. Int J Adv
Manuf Technol 37(3):354–370

23. Jungwattanakit J, Reodecha M, Chaovalitwongse P, Werner F (2009) A comparison of
scheduling algorithms for flexible flow shop problems with unrelated parallel machines, setup
times, and dual criteria, Comput Oper Res 36(2):358–378, Scheduling for Modern Manufac-
turing, Logistics, and Supply Chains

24. Kim J–H, Duffie NA (2004) Backlog control for a closed loop PPC system. Ann CIRP
53(1):357–360

25. Kuhn A., Wenzel S (2008) Simulation logisitscher systeme. In: Arnold D, Isermann H,
Kuhn A, Tempelmeier H (eds) Handbuch Logistik. Springer, Berlin, pp 73–92

26. Martinez MT, Fouletier P, Park KH, Favrel J (2001) Virtual enterprise organisation, evolution
and control. Int J Prod Econ 74(1–3):225–238

27. Meyr H, Wagner M, Rohde J (2005) Structure of advanced planning systems. In: Stadtler H,
Kilger C (eds) Supply chain management and advanced planning. Springer, Berlin, pp 109–115

28. Min H, Zhou G (2002) Supply chain modeling: past, present and future. Comput Ind Eng
43(2):231–249

29. Morecroft J, Robinson S (2006) Comparing discrete-event simulation and system dynamics:
modelling a fishery. In: Proceedings of the operational research society simulation workshop
2006. Operational research society, Birmingham, pp 137–148

30. Müller F, Otto A (2007) Anwendungsarchitekturen in supra-adaptiven Logistik-netzwerken.
In: Günthner WA (eds) Neue Wege in der Automobillogistik: die Vision der Supra-Adaptivität;
mit 14 Tabellen. Springer, Berlin, pp 149–166

31. Muth JF, Thompson GL (1963) Industrial scheduling. Prentice-Hall, Englewood Cliffs
32. Parunak HV (1997) Go to the ant: engineering principles from natural multi-agent systems.

Ann Oper Res 15:69–101
33. Peeters P, van Brussel H, Valckenaers P, Wyns J, Bongaerts L, Kollingbaum M, Heikkilä T

(2001) Pheromone based emergent shop floor control system for flexible flow shops. Artif Intell
Eng 15(4):343–352

34. Philipp T, de Beer C, Windt K, Scholz-Reiter B (2007) Evaluation of autonomous logistic
processes—analysis of the influence of structural complexity. In: Hülsmann M, Windt K (eds.)
Understanding autonomous cooperation and control in Logistics—the impact on management,
information and communication and material flow. Springer, Berlin, pp 303–324

35. Pinedo ML (2008) Scheduling—theory, algorithms, and systems. Springer, New York
36. Quadt D, Kuhn H (2007) A taxonomy of flexible flow line scheduling procedures. Eur J Oper

Res 178(3):686–698



262 B. Scholz-Reiter et al.

37. Rabelo L, Helal M, Lertpattarapong C, Moraga R, Sarmiento A (2008) Using system dynamics,
neural nets, and eigenvalues to analyse supply chain behaviour. A case study. Int J Prod Res
46(1):51–71

38. Rekersbrink H, Makuschewitz T, Scholz-Reiter B (2009) A distributed routing concept for
vehicle routing problems. Logist Res 1(1):45–52

39. Rohde J, Meyr H, Wagner M (2000) Die supply chain planning matrix. PPS Manag 5:10–15
40. Sauer J (2006) Modeling and solving multi-site scheduling problems. In: van Wezel W,

Jorna R, Meystel A (eds.) Planning in intelligent systems: aspects, motivations and method.
Wiley, Hoboken, pp 281–299

41. Scholz-Reiter B, Freitag M, de Beer C, Jagalski T (2005) Modelling and analysis of autonomous
shop floor control. In: Proceedings of 38th CIRP International Seminar on Manufacturing
Systems. Universidade Federal de Santa Catarina, Florianopolis

42. Scholz-Reiter B, Böse F, Jagalski T, Windt K (2007) Selbststeuerung in der betrieblichen Praxis
- Ein Framework zur Auswahl der passenden Selbststeuerungsstrategie. Industrie Management
23(3):7–10

43. Scholz-Reiter B, de Beer C, Freitag M, Jagalski T (2008) Bio-inspired and pheromone-based
shop-floor control. Int J Comput Integr Manuf 21(2):201–205

44. Scholz-Reiter B, Jagalski T, Bendul J (2008) Autonomous control of a shop floor based on bee’s
foraging behaviour. In: Haasis, H-D, Kreowski H-J, Scholz-Reiter B (eds.) First international
conference on dynamics in logistics. LDIC 2007, Springer, Berlin, pp. 415–423

45. Scholz-Reiter B, Mehrsai A, Görges M (2009) Handling the dynamics in logistics - adoption
of dynamic behavior and reduction of dynamic effects. Asian Int J Sci Technol Prod Manuf
Eng (AIJSTPME) 2(3):99–110

46. Scholz-Reiter B, Görges M, Philipp T (2009) Autonomously controlled production systems—
Influence of autonomous control level on logistic performance. CIRP Ann Manuf Technol
58(1):395–398

47. Scholz-Reiter B, Görges M, Jagalski T, Mehrsai A (2009) Modelling and analysis of
autonomously controlled production networks. In: Proceedings of the 13th IFAC symposium
on information control problems in manufacturing (INCOM 09). Moscow, Russia, pp 850–855

48. Scholz-Reiter B, Rekersbrink H, Görges M (2010) Dynamic flexible flow shop problems -
scheduling heuristics vs. autonomous control. CIRP Ann Manuf Technol 59(1):465–468

49. Scholz-Reiter B, Görges M, Jagalski T, Naujok L (2010) Modelling and analysis of an
autonomous control method based on bacterial chemotaxis. In: 43rd CIRP international
conference on manufacturing systems (ICMS 2010). Neuer Wissenschaftlicher Verlag, Wien,
pp 699–706

50. Scholz-Reiter B, Lensing T, Görges M, Dickmann, L (2010) Classification of dynamical
patterns in autonomously controlled logistic simulations using echo state networks. In: Inter-
national conference on Harbor, Maritime and Multimodal Logistics Modelling and Simulation
(HMS 2010). DIPTEM University of Genova, Genova, pp 85–92

51. Scholz-Reiter B, Dashkovskiy S, Görges M, Naujok L (2011) Stability analysis
of autonomously controlled production networks. Int J Prod Res 49(16).
DOI:10.1080/00207543.2010.505215

52. Stadtler H (2005) Supply chain management and advanced planning-basics, overview and
challenges. Eur J Oper Res 163(3):575–588

53. Sydow J (2006) Management von Netzwerkorganisationen—zum Stand der Forschung.
In: Sydow J (ed) Management von Netzwerkorganisationen, Gabler, Wiesbaden pp 385–469

54. Toth P, Vigo D (2002) An overview of vehicle routing problems. In: Toth P, Vigo D (eds.)
The vehicle routing problem, SIAM monographs on discrete mathematics and applications,
Philadelphia

55. Wagner B (2006) Hub & Spoke-Netzwerke in der Logistik, Deutscher Universitäts-
Verlag/GWV-Fachverlage GmbH, Wiesbaden

56. Wiendahl H-P (2008) Betriebsorganisation für Ingenieure. München, Hanser
57. Wiendahl H-P, Lutz S (2002) Production in networks. Ann CIRP Manuf Technol 51(2):1–14



Autonomous Decision Policies for Networks 263

58. Windt K, Becker T (2009) Applying autonomous control methods in different logistic
processes—a comparison by using an autonomous control application matrix. In: Proceedings
of the 17th mediterranean conference on control and automation. Thessaloniki, Greece

59. Windt K, Hülsmann M (2007) Changing paradigms in logistics—understanding the shift from
conventional control to autonomous cooperation and control. In: Hülsmann M, Windt K (eds.)
Understanding autonomous cooperation and control—the impact of autonomy on management,
information, communication, and material flow. Springer, Berlin, pp 4–16

60. Windt K, Böse F, Philipp T (2005) Criteria and application of autonomous cooperating
logistic processes. In: Gao JX, Baxter DI, Sackett PJ (eds) Proceedings of the 3rd inter-
national conference on manufacturing research. Advances in manufacturing technology and
management, Cranfield

61. Windt K, Philipp T, Böse F (2008) Complexity cube for the characterization of complex
production systems. Int J Comp Integr Manuf 21(2):195–200

62. Zeigler BP, Praehofer H, Kim TG (2007) Theory of modeling and simulation—integrating
discrete event and continuous complex dynamic systems, second edn (reprint). Academic Press,
Amsterdam



Optimal Order and Distribution Strategies
in Production Networks

Simone Göttlich, Michael Herty and Christian Ringhofer

Abstract Production networks are usually defined as a set of processes utilized to
efficiently integrate suppliers, manufacturers, and customers so that goods are pro-
duced and distributed in the right quantities, to the right locations, and at the right
time and in order to reduce costs while satisfying delivery conditions. We focus on
a network of suppliers or producers which order goods from each other, process
a product according to orders, and receive payments according to a pricing strat-
egy. Modeling manufacturing systems is characterized by many different scales and
several different mathematical approaches. We follow a dynamic approach: we are
interested in the time behavior of the entire system. Therefore we introduce a coupled
system of ordinary differential delay equations, where time-dependent distribution
and order strategies of individual manufacturers influence the flow of goods and the
total revenue. We also allow manufacturers to face bankruptcy. All order and distri-
bution strategies are degrees of freedom which can vary in time. We determine them
as solution to an optimization problem where additionally economic factors such as
production and inventory costs and credit limits influence the maximization of profit.
Instead of using a simulation-based optimization procedure, we derive an efficient
way to transform the original model into a mixed-integer programing problem.

S. Göttlich (B)
School of Business Informatics and Mathematics, University of Mannheim, 68131 Mannheim,
Germany
e-mail: goettlich@uni-mannheim.de

M. Herty (B)
Department of Mathematics, RWTH Aachen University, Templergraben 55, 52056 Aachen,
Germany
e-mail: herty@mathc.rwth-aachen.de

C. Ringhofer
School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ
85287-1804, USA
e-mail: ringhofer@asu.edu

D. Armbruster and K. G. Kempf (eds.), Decision Policies for Production Networks, 265
DOI: 10.1007/978-0-85729-644-3_11, © Springer-Verlag London 2012



266 S. Göttlich et al.

1 Introduction

A supply chain consists of suppliers, manufacturers, warehouses, and stores where
parts are produced and distributed among different production facilities.
Mathematical models are used to monitor cost- efficient distribution of parts and to
measure current business processes. Naturally, depending on the scale, these models
are characterized by several approaches which are either discrete or continuous. The
main difference between these two mathematical concepts is the description of parts
as individuals at discrete time instances or as a dynamic flow (measured as parts per
unit time).

Simulations in general represent a powerful computing technique to analyze man-
ufacturing systems while performing numerical experiments of the models. Most of
the mathematical approaches are discrete and based on considerations of individual
parts, e.g., discrete event simulations [2, 11, 13], queueing theory [16, 22, 36, 63],
mixed integer models [14, 54, 60, 65, 66], and the references therein. In case of
discrete event simulations the evolution of the system is viewed as a sequence of
significant changes in time, also called events, for each part separately. For instance,
consider a supply chain consisting of numerous consecutive facilities, where parts
arrive, get processed and depart when their production is completed. The transporta-
tion of parts from one production step to another is characterized by dynamic events
that can be easily evaluated using performance measures such as the number of
parts in the system, the individual waiting times, and so forth. Discrete event simula-
tions serve as one level of description of interacting part-based systems but with the
drawback of exponentially increasing computational time for large-scale systems.

A well-known class of stationary models are queuing theory models. These models
permit the derivation and calculation of several performance measures including the
mean waiting time of parts in the system, the proportion of time the processors are
busy and the probability of encountering the system in particular states.

An alternative modeling approach is differential equations. In contrast to the
discrete event simulation, the evolution of averaged quantities are predicted and
dynamics inside the different production steps is included. To derive accurate
continuous models as many features as possible of the detailed and complex dis-
crete model have to be transfered to the continuous level of the differential equation.
This will be achieved dynamic flows, i.e., parts per time unit, instead of individual
parts. Since numerical schemes for differential equations allow for fast simulation,
production problems with multiple manufacturers and thousands of parts are solved
in a cost-effective way. Differential equations furthermore allow to apply optimiza-
tion methods as shown below. An advantage of continuous models is the possibility
to easily include nonlinearities, see e.g., Sect. 2 of this contribution.

In recent years these continuous models have been intensively investigated. Con-
tinuous models such as [2, 4, 7, 20, 25, 27, 36, 40, 45, 54, 55, 59, 60, 63–65] use
partial differential equations to model production flow in an aggregate way, lead-
ing to deterministic coarse-grained and fast models. The fundamental setup will
be described in detail in Sect. 2.1. A high-volume multi-stage production line is
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considered and the time evolution of the lot-density ρ(t, x) is used to describe the
current work in progress (WIP) at time t at a position x. Here the position x is the
degree of completion in a production process. The basic equation is a conservation
law

∂ρ

∂t
+ ∂F

∂x
= 0. (1)

Typical models for F are given in [5] or clearing function approaches as in [7, 20,
36, 40, 54, 55, 59, 60, 63–65] and will also be discussed in the next section.

Recently those models based on scalar conservation laws have been reformulated
in the framework of network models where the dynamics on the arcs is governed by
a partial differential equation (PDE); see [30, 37–39]. This approach is inspired by
other recent discussions on other problems on networks; see, e.g., [9, 10, 24, 30, 43,
46, 47, 49].

We consider a problem modeled by PDEs on a network of suppliers. Each supplier
receives orders for its output from the other suppliers in the network, as well as from
a final customer. Each supplier orders its input from a select set of other suppliers in
the network as well as from a raw material supplier. Each supplier receives payments
for delivered items at a certain fixed set of prices and has to pay production costs
at certain rates for each item produced. This setup is similar to the ones studied in
[8, 12, 21], where it is shown that the resulting dynamics can exhibit quite complicated
behavior.

The modeling of the payments allows for the definition of capital flows through the
network and consequently, for the occurrence of bankruptcies if the capitalization of
a node in the network falls below a certain threshold. We consider in the last section
the optimization of profits, i.e., given a set of production costs, to choose ordering
strategies to maximize income.

2 The Mathematical Model

In this section we introduce a macroscopic model (1) for a production network with
orders. We focus on deterministic models and assume that a description similar to
the gas dynamics context is reasonable [4, 26]. This assumption is reasonable if the
number of parts is large and the number of machines is large, too [2, 5]. We refer
to [2] for a rigorous mathematical derivation of a continuum model from produc-
tion dynamics. Here we assume that the macroscopic model is given by a scalar,
one-dimensional nonlinear partial differential equation. Before giving the details of
the modeling of the order process we give some introductory comments in Sect. 2.1 on
the relation of the solution to this differential equation and models used in production
planning. The full model is then introduced in Sect. 2.2.

The use of a model based on partial differential equations is motivated by some
observations. First, starting from a discrete event model description and consid-
ering a formal limit for a large number of parts and large number of machines a
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partial differential equation could be rigorously derived [2]. Details of this mathe-
matical justification in various situations can be found for example in [1, 3, 5, 6, 31].
Second, assuming the validity of the partial differential equation we recover a class of
proposed production models [34, 36, 54, 60, 63–65] as shown below. This is related
to the fact that all production models obviously assume the conservation of parts or
processed items. This fact, also present in gas dynamics, already allows to write the
conservation law (1). The crucial part which is subject to modeling is then the precise
definition of the flux function F, which is called clearing function in the literature
on production planning [7, 40, 41, 52, 55]. From the partial differential equation’s
point of view many properties can be deduced without the precise knowledge on
F—only monotonicity or curvature properties need to be specified. The use of a par-
tial differential equation necessarily implies a temporal dynamic of the production
line. The need of a temporal grid or epochs is not present until numerical computations
need to be performed. This allows to keep nonlinearities in the clearing function and
can also be useful when applying gradient-based optimization procedures (see e.g.
[50, 57]). However, additional modeling features such as stochastic demands or ser-
vice levels are more difficult to include into the original model. Further, the numerical
solution of the partial differential equation might lead to a nonlinear formulation of
the discrete problem instead of LP models. The latter aspect is discussed in Sect. 3.
Here we present one possibility to reduce the complexity of the nonlinear discretiza-
tion using a mixed-integer problem. However, this approach depends heavily on the
specific choice of the clearing function.

2.1 Preliminary Discussion and Relation to Existing Models

As outlined previously we model a deterministic, dynamic single production line for
a single product using a partial differential equation. The basic quantity in the model
is the product density ρ(t, x) ≥ 0 describing the number of parts in process per unit
length at time t and position x. The position x in the production line can be seen as
measure of the percentage of completion of the product (stage) within production
line. We therefore normalize x such that 0 ≤ x ≤ 1. Here ρ(t, 0) describes the parts
at stage x = 0 entering the production line and ρ(t, 1) the leaving parts. Clearly, in
many applications only these two quantities are relevant and we describe below the
relation of ρ to inventories, demands, and supplies. In the production engineering
context the work-in-progress (WIP) [55, 59–61] is often used to measure properties of
the production line. In the context of the partial differential equation the WIP denotes
the number of parts in the line. The relation to the product density is therefore

WIP =
∫ 1

0
ρ(t, x)dx. (2)
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The partial differential equation states that in the transition from x = 0 to x = 1
over time no parts are lost:

∂tρ(t, x) + ∂xF(t, x, ρ(t, x)) = 0 (3)

Here F is called flux function. The flux F has the unit of parts per time and is also
called the throughput. In the production engineering context a function F is called
clearing function (CF) if it depends on the work-in-progress W only. If F(t, x, ρ)

is independent of (t, x), then the steady states of (3) satisfy F(ρ) = const yield-
ing ρ = const. In this case only and only in this case WIP and production den-
sity are equal due to (2). However, in the following we call the function F(t, x, ρ)

clearing function even if it depends on t and x. From now on we consider only
CFs such that F = F(ρ) = F(WIP). The CF therefore expresses the throughput
of parts depending on the WIP level of the factory. Several choices for the shape
of the CF have been presented in the literature [7, 20, 40, 55, 59, 60]. Without
giving a complete list examples are due to Graves [40–42], Asmundsson et al. [7],
Karmarkar [55], or Hopp and Spearman [52]. The constants τ and μ are lead time
and the maximal capacity, respectively. All the previously mentioned functions are
nonnegative, montone and concave. In our notation e.g. the CF of Graves [40] reads
F(ρ) = ρ/τ or the ‘best case’ model of Hopp et al. [52], e.g. F(ρ) = min{ρ/τ, μ}.
A similar shape is also obtained by models using capacitated production and limited
capacity, see Asmundsson et al. [7] and Selcuk et al. [62]. Note that in the context
of gas dynamics the CF is typically written as F(ρ) = ρv(ρ) with the interpreta-
tion of v as velocity of the transported parts. Hence, in the above examples we find
1
τ

= v(ρ) or min 1
τ
,

μ
ρ

= v(ρ). Since the production line is parameterized by [0,1]
we observe that τ corresponds to the time the parts need to travel through the pro-
duction line. Typically, L is called lead time [42] in production engineering and is
obtained from (3) by computing 1

v(ρ)
. As discussed in many references on production

models, the first choice F(ρ) = ρ/τ leads to lead times independent on the WIP
(or equivalenty) the density of the production factory. Hence, the parts are produced
without a workload dependence. Again, using Eq. (3) and F(ρ) = ρ/τ we observe
that

∂tρ + 1

τ
∂xρ = 0 ⇔

(
1
1
τ

)
· ∇ρ(t, x) = 0.

Hence,ρ(t, x) is constant along (t, x−t/τ) and therefore parts entering the production
line at x = 0 leave the production line at x = 1 after time t = τ. This is consistent
with the notion of lead time of the parts. However, this linear CF does not reflect
observed behavior of production processes and therefore nonlinear CFs have been
proposed and also analytically investigated. For a more detailed discussion refer for
example to [55, 59, 62]. In the following we will focus the discussion on the particular
choice of a combined CF [44, 62] with saturation [7, 59] at level μ

F(ρ) = min{ρv, μ}. (4)
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Here μ describes a maximal throughput (also called capacity) and v = 1
τ

is the
velocity or the inverse of a fixed lead time below a certain maximum throughput.
The throughput F is WIP or density dependent. The function F is piecewise linear.

If we integrate (3) with respect to x we obtain

∂tWIP = ∂t

∫ 1

0
ρ(t, x)dx = F(ρ(t, 0)) − F(ρ(t, 1)), (5)

i.e., a first version of an inventory model: the change in the WIP is given by the
inflow to the production line minus the outflow. A further discretization in time with
time steps of length Δt leads to

WIP(t) − WIP(t − Δt) = Δt (F(ρ(t, 0)) − F(ρ(t, 1)) .

Using a linear CF with lead time τ we further obtain

WIP(t) − WIP(t − Δt) = Δt(F(ρ(t, 0)) − F(ρ(t − τ/Δt, 0)).

If we choose Δt = 1 and denote by ψ(t) = F(ρ(t, 0)) (released parts to the pro-
duction line or influx) and by φ(t) = F(ρ(1, t)) (planned production quantity or
outflux) we obtain the basic formulation of some planning models in the literature
[44, 60, 62]:

WIP(t) = WIP(t − 1) + ψ(t) − φ(t) and φ(t + τ) = ψ(t). (6)

In particular, the relation φ(t + τ) = ψ(t) is not valid, if F is a piecewise linear
CF since the lead time depends on the WIP. One possibility is to drop the equal-
ity and a so-called outer linearization representing a nonlinear CF by line segments
[29, 62]. Additional inequalities are introduced as constraints on the planned pro-
duction quantity φ(t). In the following we discuss an approach to treat the CF (4)
using the continuous formulation (3). The function (4) is monotone increasing and
therefore Eq. (3) is well posed provided boundary conditions for ρ at x = 0 are pre-
scribed. Given the release rate ψ in parts per time, the desired boundary condition
to determine ρ(t, 0) is

ψ(t) = F(ρ(t, 0)). (7)

However, if the influxψ exceeds the maximal possible throughput (ψ > μ), then (7)
cannot be solved. In the following, we derive a mathematically well posed formula-
tion of Eqs. (3) and (7). It turns out that this formulation can be seen as an inventory
model. We proceed as follows. An Upwind [50, 58] discretization in x by the method
of lines yields

d

dt
ρj + 1

Δx

(
Fj − Fj−1

) = 0, Fj = min{vρj, μ}, j = 1, . . . , J, F0 = ψ . (8)

Here Δxρj is the content of cell number j, located in (xj−1, xj) and Δx is a (uniform)
spatial cell size such that JΔx = 1. Since the flux Fj−1 into cell j is limited by μ, we
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have vρj ≤ μ for all cells, except in the first cell j = 0, where the release rate is given
by ψ . Hence, we can drop the constraint on the maximal capacity in the interior(!)
cells and the solution to (8) and (3) coincide if we define the cell fluxes Fj as

Fj(ρ) :=
⎛

⎝
ψ j = 0

min{vρj, μ} j = 1
vρj j = 2, . . . , J

⎞

⎠ . (9)

Now, we rewrite (8) and obtain

d

dt
(Δxρ1) = ψ − min{vρ1, μ} (10)

and

d

dt
ρj = 1

Δx

(
vρj − vρj−1

)
, j = 2, . . . , J. (11)

Note that Δxρ1 has the unit of a parts and is located at the beginning of the production
process. Therefore, we call from now on p := Δxρ1 the input inventory. Its dynamics
(9) are well defined even ifψ exceeds μ. Further, Eq. (11) is an Upwind discretization
of the partial differential equation with linear CF F̄ and lead time 1

v .

∂tρ + ∂xF̄ = 0, F̄ = vρ, ρ(t, 0) = min
{

v
p

�x
, μ

}
. (12)

Denoting by ε := Δx
v we summarize the previous computations: using a numerical

discretization of (3) and (7) and properties of the transport process we observe that
formally Eqs. (10) and (17) are equivalent to

d

dt
p = ψ − min

{p

ε
, μ

}
, ∂tρ + ∂xF̄ = 0, ρ(t, 0) = min

{p

ε
, μ

}
. (13)

The formulation (11) therefore can be seen as different possibility to treat the dynam-
ics of the piecewise linear CF. Here the piecewise linearity of the CF only appears
in the equation for the input inventory p. In fact, the previous equations allow for
some additional interpretation: since F̄ is a linear CF independent of the WIP ρ, it
can be solved as described above and we obtain ρ(1, t) = ρ(0, t − 1

v ). The ingoing
product density ρ(0, t) is defined by the outflux min{ p

ε
, μ} of the input inventory.

The inventory equation itself is piecewise and reads

d

dt
p = ψ − min

{p

ε
, μ

}
= max

{
ψ − μ,ψ − p

ε

}
(14)

In the previous derivation the value of ε is supposed to be small since it is related
to the formal spatial discretization in space. Hence, if there is inventory p > 0 the
change in the inventory will be proportional toψ−μ and the outflux of the inventory
released to the factory is μ. However, if the inventory level is decreasing (ψ−μ < 0),
the inventory in (12) decays until p ≤ εμ holds, i.e. until the inventory is almost
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empty. From this point on Eq. (12) reads dp
dt = ψ − p

ε
and the inventory level decays

exponentially toψ on an O( 1
ε
) time scale. Hence, Eq. (12) can be seen as a smoothed

version of the ordinary differential equation

d

dt
p =

(
ψ − μ p > 0
ψ p = 0

)
. (15)

The second line in (13) guarantess that the inventory p is positive. Hence, restating
(11) on a time discrete level we obtain the following production line model for a
CF given by Eq. (4). The release rate is ψ(t), the planning production or outflux is
φ(t), the difference in the time steps is Δt = 1, the constant lead time τ := 1

v , the
maximal throughput μ, and the inventory buffer is at time t is p(t) :

p(t + 1) = p(t) + ψ(t) − min
{p(t)

ε
, μ

}
, φ(t + τ) = min

{p(t)

ε
, μ

}
. (16)

Hence, using the properties of the partial differential equation (3) and (4) lead to
Eq. (13). This might be seen as alternative formulation of the effect of a nonlinear CF
on the production dynamics. In contrast to other approaches based on a piecewise
linear outer approximation of the CF and additional constraints on the throughput
only a single evaluation of the function min{ p(t)

ε
, μ} is required at every time step.

The lead time τ is then constant and and the transport equation can be solved exactly.
A possibility to evaluate min{ p(t)

ε
, μ} within a production planning problem is

presented in Sect. 3. Therein, the key idea is summarized in Lemma 2 using a
reformulation of the minimum function with binary variables.

We have a final remark on the outflux or planned production. Since F in (3) is
assumed to be monotone increasing the solution at x = 1 to the partial differential
equation is uniquely defined by initial and boundary conditions. Hence, φ is defined
by the release rate of the input inventory. This quantity is then linked toward the
clearing function and the release rate by inequality relations. In the more refined
model introduced below a different strategy is proposed. There, the outflux is defined
through the release rate of the inventory according to the dynamics of the partial
differential equation. However, the process does not necessarily deliver this outflux
to another processor, but stores the outflux in an yet to be defined output inventory.
Other producers then access the output inventory. Details will be given in Sect. 2.2.

Summarizing, we model a production line by assuming the validity of the
partial differential equation (3). This equation allows for more general clearing func-
tions and therefore WIP-dependent lead times. It further might be viewed as a time-
continuous version of basic production models in the following sense: the differential
equation describes the balance of local production densities or upon integration of
local inventories (9). The presented introductory model is simple in the sense that it
only states the WIP balance. No stochastic effects, no service levels, no release rate
rules are present, and many further important production properties are absent. How-
ever, the basic model allows for non-constant lead times and using the above com-
putations yields a reformulation of the WIP balance without the necessity to include
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piecewise linear capacity constraints as commonly used in the production engineer-
ing context.

In the remaining part of the presentation we include a few further modeling
aspects into the basic model. We plan to present one possibility to extend the above
model to a production network with orders. We consider a clearing function of
type (4) and therefore our starting point will be the reformulated inventory
equation (13).

2.2 A Production Model Based on a Partial Differential Equation

We repeat the basic setup for convenience: p denotes the number of parts at time
t in the input inventory to a production process. The maximal throughput of the
production process is μ. ε is a smoothing factor supposed to be small compared to
the inventory level. The lead time of the production process is denoted by τ. The
clearing function is WIP-dependent and is given by (4), i.e.,

F = min
{ 1

τ
ρ, μ

}
(17)

The inflow or release rate to the process is ψ(t). Having the previous discussion in
mind we may consider Eq. (12) for describing the input inventory, i.e.,

dp

dt
= max

{
Ψ (t) − μ,Ψ (t) − p(t)

ε

}
, (18)

and denote by

φ(t) = min
{
μ,

1

ε
p(t − τ)

}

the outflux of the process. The previous computations have shown that these two
equations describe the same process as the WIP balance for the piecewise linear
clearing function. This is the continuous analog to Eq. (6) for WIP-dependent lead
times.

Next, we introduce a possible modeling of an extension of production line to a
network of processors. There are many possibilities to extend the dynamics of a single
production line to a production network leading to possibly different formulations
and models. We present an approach based on the following simplifying assumptions

• A production network is modeled as a connected graph G(J, K) where the set of
arcs is denoted by J and the set of nodes by K. Each node k ∈ K is a processor and
has an input inventory pk and an output inventory qk (not present before) and a
possible time delay τk (lead time). The inventories are connected to allow for the
distribution of items.

• Each process is described by a clearing function of the shape (4) with possibly
different maximal processing rates μk and lead times τk .
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• The output inventory delivers parts according to received orders Ωk .

• The distribution parts between output inventory k and input inventories l is deter-
mined by the placed orders.

We introduce now the full model by discussing the implications of the previous set of
assumptions and discuss thereby possible extensions and modifications. We assumed
to have K nodes, i.e., processors. Items are taken from the input inventory, processed
by the given constant lead time τk , put into the output inventory and instantaneously
delivered according to received orders Ωk . We assume that each node k ∈ K therefore
has two inventories: a front-end (or input) inventory with an inventory level pk(t)
(number of parts), and a back-end (or output) inventory with inventory level qk(t).
The dynamics are given by the reformulated partial differential equation in order to
fulfill the dynamics induced by the piecewise linear clearing function.

The input inventory pk of node number k =1 :K receives an influx ψk , and has an
outflux determined by the processing rate μk and hence (12) reads at processor k :

dpk

dt
= max

{
ψk − μk,ψk − pk

ε

}
= ψk − min

{
μk,

pk

ε

}
= ψk − φk . (19)

As discussed before, the output inventory is given by φk(t −τk), i.e. the time-delayed
outflux of the input inventory. The evolution of the output inventory level qk is then
modeled in the same way by

dqk

dt
= max

{
φk(t−τk)−Ωk, φk(t−τk)−qk

ε

}
= φk(t−τk)−min

{
Ωk,

qk

ε

}
= φk−fk

(20)

with Ωk the rate of orders received by processor k, and fk the total outflux of node
number k. Again, fk cannot exceed Ωk , and node number k cannot deliver at a faster
rate than orders are received. Once again, we stretch the fact that in this simple model
the inventory releases parts at constant rate to the factory. The only control is due to
the orders with the imposed policies. Summarizing, Eqs. (16) and (17) provide the
underlying order and distribution model.

Given the evolution of the input and output inventories, defined previously, we
have to define the interaction of the different nodes in the production network. We
define the influx ψk of node number k in (14) in terms of the outfluxes fk of the
other nodes, given by (15), and we have to decide on a rule for the order rates Ωk in
(15). One of the key mechanisms governing the dynamics of the system is obviously
the policy of placing orders. In general, we will denote with Ωjk the rate at which
node number j places orders to node number k, and the total rate of orders received by
node number k in (15) is given by Ωk = ∑

j Ωjk . Concerning the rules governing the
node policies we also refer to recent literature on the theory of traffic flow and internet
traffic. Therein, similar problems appear and a suitable definition of the distribution
of parts or vehicles among input and output inventories has to be modeled. Obviously,
a wide variety of choices exist. We refer to [15, 17, 18, 19, 23, 28, 35, 37, 49] for
more details. Here we model a very simple distribution policy. We define by Fjk
the flux from node k into node j. Consequently, fk = ∑

j Fjk is the total outflux of
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node number k. Because of (15) we already have that fk ≤ Ωk holds. The need for a
distribution policy arises when fk is actually strictly less than Ωk , i.e. node number
k cannot satisfy all its orders and has to make a decision how to distribute its limited
resources.

We write the flux from node number k to node number j as Fjk = Ajkfk , where the
matrix A = {Ajk} is a Markov matrix, i.e. a matrix with non-negative entries whose
column sums equal unity. For any admissible distribution policy, the matrix A should
satisfy the following two criteria:

• Fjk = Ajkfk ≤ Ωjk, i.e. node k cannot deliver more to node j than node j is ordering
from node k.

• If fk = Ωk holds in (15), then Fjk = Ωjk should hold, i.e. if node number k can
satisfy all its orders, then it will do so.

This assumption is also found in the traffic and internet traffic flow literature, see
e.g. [23, 49, 51]. It is also well known that, in addition, we have to define an external
supplier of raw materials and a final customer. For simplicity, we assume a single raw
material supplier, defined as node number k = 0, and a single customer, defined as
node number k = K +1. So Ωj0 denote the rates at which raw materials are ordered,
ΩK+1,k denote the rates at which the final customer orders, and FK+1,k are the rates
at which product is delivered to the customer.

There are many different ways to define a distribution policy, i.e. a matrix A,
satisfying the two criteria above. The precise choice of the distribution policy is a
modeling choice and depends on the production facility at hand. An example is choos-
ing the flux distribution proportional to the place orders. This policy implies that, if
not all orders can be satisfied, node number k distributes the product proportionally
according to the orders received. Mathematically, the policy reads

Ajk := Ωjk

Ωk
, j = 1 : K + 1, k = 1 : K, Ωk :=

K+1∑

j=1

Ωjk, k = 1 : K . (21)

Equation (18) satisfies the previous admissibility criteria since, by definition,

Fjk = Ωjk fk
Ωk

holds. Since fk ≤ Ωk the inequality.
In summary, the dynamics of the flow of the network is given by Eqs. (16) and

(17) for all processor nodes k = 1 : K , where the influx functions ψk in (16) are
determined by the outflux rates fk in (17) through the connectivity matrix A = {Ajk}.
So

ψ j =
K∑

k=1

Ajkfk + Ωj0, j = 1 : K (22)

holds. Ωj0 denote the external inputs into the system, from the raw material sup-
plier which, assuming an unlimited supply, equal the orders placed to the raw
material supplier. After choosing an order matrix Z = {Ωjk, j = 1 : K+1, k = 0 : K}
the dynamics of the system are therefore completely defined. However, the system
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(16)–(19) represents an open system, i.e. mass is not conserved, due to the external
influx and outflux at the supplier and the customer node. For analytical purposes, it
will be convenient to replace the open system by a closed system by introducing an
artificial ‘recycling step’. That is we artificially identify the raw material supplier with
the customer, and feed the delivered product back into the system as raw material.
So, Ωj0 still denote the order rates from the raw material supplier and Ω0k = ΩK+1,k
denote now the rates at which the customer orders. With this change in notation, (18)
and (19) become

(a) Ajk = Ωjk

Ωk
, j = 0 : K, k = 0 : K, Ωk =

K∑

j=0

Ωjk, k = 0 : K, (23)

(b) ψ j =
K∑

k=0

Ajk fk, j = 0 : K .

ψ0, the influx into the raw material supplier/customer is now the rate at which final
product is delivered. The advantage of this notational trick is that it allows for a
uniform treatment of all the nodes and yields a mass conserving system. In order
not to change the dynamics of the system we have to design node number k = 0
in such a way, that there is a limitless supply. This is easily done by giving the
raw material supplier/customer formally an infinite production capacity and a zero
processing time, and by making its output inventory large enough at the beginning
such, that it never runs dry, i.e. we set formally μ0 = ∞, τ0 = 0 in (16) and make
q0(0) sufficiently large. This has the effect that all the product delivered to the final
customer immediately goes to the output inventory, and the system is fed from this
(sufficiently large) output inventory q0, i.e. we have φ0 = ψ0, f0 = Ω0 in (16).
Alternatively, we could simply change the definition of the fluxes in (16) and (17)
for the node k = 0 to

φ0 = ψ0, f0 = Ω0,

allowing the output inventory q0 to become negative. The system is now closed and
the total product is conserved, since the columns of the square matrix
A = {Ajk, j, k = 0 : K} all add up to unity. If we define the contents of the proces-
sor number k at time t by rk(t) its evolution is given according to (16)–(17) by
drk
dt = φk(t) − φk(t − τk), and the evolution of the total mass in the system is given

by

d

dt

K∑

k=0

(pk + qk + rk) =
K∑

k=0

ψk − fk = 0.

We note that this modification of the system is done only for technical convenience,
and that, if the initial supply inventory q0(0) is chosen large enough, the dynamics
of the network remain unchanged.



Optimal Order and Distribution Strategies in Production Networks 277

We refer [39, 48] to have for more details concerning the mathematical analysis
of the proposed model. We summarize the results briefly. In [48] it has been shown
that the model describing a network of suppliers and a nonlinear, monotone, concave
clearing function describing the inventory is well posed. Therefore, there exists a
solution for L1–initial data. In [39] some conclusions concerning the steady-state
solutions to the previous model are obtained: in the steady-state case the influx into
each node equals its outflux. The condition ψk = fk implies, that the fluxes fk are
eigenvectors of the connectivity matrix A , i.e., Af = f . Due to eqution (20) all
entries of the matrix A are non-negative entries and its column sums equal unity. The
matrix A furthermore possess an eigenvalue λ̄ equal to unity and the eigenvector z to
that eigenvalue has only non-negative elements. For given matrix A this eigenvector
z defines all possible steady-states of the system. However, in the previous model
we only obtain steady-states provided that the production capacities are sufficiently
large, which in general, might not be the case. We therefore continue in the following
with the numerical treatment of the dynamical process.

3 A Mixed-Integer Programing Approach

An important question in the context of production networks are optimal order and
distribution strategies. Depending on the model, many aspects will be of interest:
inventory and production costs, distribution of goods, and supply and demand. Here
we introduce a special cost functional and choose the distribution matrix A and the
order matrix Z dynamically to optimize the functional. The solution to this problem
can of course only be given numerically. We start, by discretizing the dynamical
system defined in Sect. 2. On the discrete time level, the dynamics will actually
appear as a large set of piecewise linear constraints for a given cost functional. There
are essentially two ways to treat the the resulting constrained optimization problem:
either the constraints are formulated on a continuous level using an adjoint calculus
to compute a restricted gradient direction as in [50, 56], or a nonlinear programming
approach is used, introducing additional binary variables. The latter leads to a mixed
integer program MIP [33].

3.1 Numerical Discretization

We start with a proper discretization of the differential equations (16) and (17)
for the inventories pk and qk . We discretize on a uniform mesh in time setting
pn

k = pk(nΔt), n = 0 : N with T = NΔt the final time of the simulation. As is
almost always the case in relaxation models, we have introduced an artificial O( 1

ε
)

time scale in the system, and thus artificially created a stiff system. In order not
to impose too severe a restriction on the time step Δt we discretize equation (14)
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implicitly, giving

pn
k = pn−1

k + Δt max
{
ψn−1

k − μk,−pn
k

ε

}
, n = 1 : N, (24)

withψn−1
k the influx at the previous time step. Equation (21) can be inverted explicitly

for pn
k , by using the following

Lemma 1 The function u(x) = min{ax + b, cx + d} is invertible for a > 0, c > 0.

This inverse is given by u−1(y) = max{ y−b
a ,

y−d
c }.

Reordering Eq. (21), we have

min
{

pn
k − Δt(ψn−1

k − μk),
(

1 + Δt

ε

)
pn

k

}
= pn−1

k

and therefore, setting a=1, b = −Δt(ψn−1
k − μk), c=1 + Δt

ε
, d = 0 in Lemma 1,

we obtain

pn
k = max

{
pn−1

k +Δt(ψn−1
k −μk),

pn−1
k

1 + Δt
ε

}
= pn−1

k +Δt max
{
ψn−1

k −μk, − 1

ε + Δt
pn−1

k

}

which we write as

pn
k = pn−1

k + Δt(ψn−1
k − φn−1

k )
with

φn−1
k = min

{
μk,ψ

n−1
k + 1

ε + Δt
pn−1

k

}
(25)

Therefore the implicit discretization of Eq. (16) can be written in explicit form as

pn
k = pn−1

k + Δt(ψn−1
k − φn−1

k )

with the numerical outflux φn−1
k given by (22). Note, that this eliminates any restric-

tion on the time step, since the flux function φn−1
k , as defined in (22), is well defined

in the limit ε → 0. We employ the same implicit discretization strategy for the
evolution of the output inventory qk in (17). To avoid any additional interpolation
procedure, we assume that all the processing times τk, k = 0 : K are integer multiples
of the time step Δt. So τk

Δt ∈ N holds. Thus, we obtain, setting

ψn
k → φ

n−τk/Δt
k , μk → Ωn−1

k ,

(a) qn
k = qn−1

k + Δt(φn−τk/Δt
k − f n−1

k ), (26)

(b) f n−1
k = min

{
Ωn−1

k , φ
n−τk/Δt
k + 1

ε + Δt
qn−1

k

}
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Any optimization problem, involving the discretization of the dynamical system, as
formulated above, will still be piecewise linear due to Eqs. (22) and (23). The goal
of this section is to formulate an optimization problem for the dynamics defined in
Sect. 2 in a framework close to a linear programing problem, i.e. as a mixed-integer
programing problem. A mixed-integer program is a linear program which includes
binary switches, i.e. variables taking only values in {0, 1}. The advantage of linear-
and mixed- integer programing approaches is that they are capable of dealing with
an enormous amount of free variables. The basic tool to convert an optimization
problem involving the piecewise linear flux functions (22, 23) into a MIP is given
by the following Lemma (see [33]):

Lemma 2 Let ξ ∈ {0, 1} be a binary variable. Let M > |a − b| be a sufficiently
large constant. Then, for a given constant M, the solution of the inequalities

a − Mξ ≤ φ ≤ a, b − M(1 − ξ) ≤ φ ≤ b (27)
is given by

φ = min{a, b}.

Using Lemma 2, we replace the definition (22), (23) of the fluxes φn
k , f n

k by the
constraints

(a) μk − Mξn
k ≤ φn

k ≤ μk, (28)

(b) ψn
k + pn

k

ε + Δt
− M(1 − ξn

k ) ≤ φn
k ≤ ψn

k + pn
k

ε + Δt

(c) Ωn
k − Mηn

k ≤ f n
k ≤ Ωn

k ,

(d)φ
n−τk/Δt
k + qn

k

ε + Δt
− M(1 − ηn

k ) ≤ f n
k ≤ φ

n−τk/Δt
k + qn

k

ε + Δt

with the binary variables ξn
k , ηn

k ∈ {0, 1}, k = 0 : K, n = 0 : N , and a constant M,
chosen a priori sufficiently large.

Remark 1 For some special models it is even possible to derive a linear programing
model (LP) instead of mixed-integer one. In [32], a complete proof can be found.

The MIP approach allows us to optimize the order strategies, given by the matrix Z.
In order to encode the topology of the network, we define the elements of the order
matrix Z as Ωn

jk = θjkΩ̃
n
jk , where the matrix Θ = {θjk, j, k = 0 : K} denotes the

adjacency matrix of the graph defining the network topology, i.e. θjk = 1 if node
number j can order from node number k, and θjk = 0 otherwise. Similarly, we define
Fn

jk = θjkF̃n
jk for the fluxes. In the context of the MIP approach, the orders and fluxes

Ω̃n
jk, F̃n

jk at each time step are treated as free variables to be optimized. In order to
guarantee conservation of product, we have to add the constraint



280 S. Göttlich et al.

f n
k =

K∑

j=0

θjkF̃n
jk, ψn

k =
K∑

j=0

θkjF̃
n
kj, k = 0 : K, n = 0 : N, (29)

and in order to guarantee that fluxes cannot exceed orders, we enforce the constraints

0 ≤ F̃n
jk ≤ Ω̃n

jk, k = 0 : K, n = 0 : N . (30)

Of course, only the orders and fluxes for adjacent nodes, i.e. for nodes j and k for
which θjk = 1 holds, have to be used in the actual program. The solution of the
MIP implicitly defines an, adaptive and time dependent, distribution policy matrix
A, given by

An
jk = θjkF̃n

jk

f n
k

,

and the amount of orders received by node number k, which is used in the constraint
(25b), is given by

Ωn
k =

∑

j

θkjΩ̃
n
kj. (31)

So, altogether, the external variables, which have to be supplied to the MIP, are

• μk the processor capacities.
• θjk the adjacency matrix of the graph.
• Ω̃n

Kj the time-dependent orders of the final customer.

• p0
k, q0

k , the initial inventory levels.
• φn

k , n = −τk/Δt : 0, the past influx of the processors, defining the processor
contents at time t = 0.

The free variables to be optimized consist of

• Ω̃n
jk, j = 1 : K − 1, k = 1 : K : the internal orders

• F̃n
jk, f n

k ,ψn
k, φ

n
k ,Ωn

k : the partial and total fluxes and total orders received for each

node, given in terms of the Ω̃n
kj by the constraints (25)–(28)

• ξn
k , ηn

k : the auxiliary binary variables used in the MIP formulation.

There are various possible goals to be followed when defining the cost functional to
be optimized. A general cost functional might be of the form

K∑

k=1

N∑

n=1

J (pn
k, qn

k), (32)
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where J is a function depending on the queue-loads pn
k and qn

k . For example, think
of the minimization of storing costs or the maximization of fluxes. Combining all
discretization we observe that the optimization problem is in a fact mixed-integer
programing problem and given by

max(29) subject to (21)–(28). (33)

Remark 2 The optimization problem (30) can be extended introducing an additional
equation for the flow of capital. We assume that each node in the network charges a
production cost βk, k = 0 : K per item delivered, and has a specific price bk per unit
delivered. The evolution of the amount of capital κn

k of node number k is therefore
given by the discretized equation

κn
k = κn−1

k + Δt
(
βkf n−1

k −
K∑

j=0

Akjβjf
n−1
j − bkφ

n−1
k

)
, n = 1 : N . (34)

In order to study the actual profitability of a given policy, it is necessary to adapt the
objective. The simplest choice is then to optimize the capitalization of all the interior
nodes at the final time:

J =
K∑

k=1

κN
k . (35)

In order to further incorporate bankruptcies, we make the possible orders dependent
of the capitalization rates of the individual nodes, and force each node to cease
ordering as soon as its capital falls below a certain threshold κk . In the context of the
MIP approach, we implement this by introducing another binary variable vn

k ∈ {0, 1}
and by defining the total rate at which node k orders as

σ n
k =

K∑

j=0

θkjΩ̃
n
kj. (36)

To force the node into bankruptcy as soon as its capital falls below the threshold,
we add the constraints

σ n
k ≤ Mvn

k , M(vn
k − 1) ≤ κn

k − κk ≤ Mvn
k , (37)

where M again denotes a sufficiently large a priori constant. Again, as in the Lemma 2,
there are two ways to satisfy the constraint (34). For vn

k = 1 we have 0 ≤ κn
k −κk and

essentially no constraint for σ n
k (provided that M is sufficiently large). For vn

k = 0,
the bankruptcy case, we have κn

k − κk ≤ 0 and σ n
k = 0. Adding the variables

κn
k and σ n

k to the the system together with the constraints (31–34) allows now for the
optimization of the cost functional (32) together with the possibilities of bankruptcies.
The optimization problem
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max(32) subject to (21) − (28), (31), (33), (34). (38)

gives rise to a case study where three different order and distribution rates are com-
pared:

I. As ‘benchmark’ scenario we denote the problem as stated in Eq. (35). The solu-
tion to this problem should give the maximal possible profit since there are no
additional constraints on the distribution and order rates.

II. We require the order policies to be time independent. This amounts to add the
constraints

Ωn+1
jk = Ωn

jk . (39)

This choice is reasonable if the suppliers do not want to change their policy
dynamically. Clearly, this additional constraint restricts the set of possible solu-
tions and we expect a lower profit. The optimization problem hence reads

max(32) subject to (21) − (28), (31), (33), (34) and (36) (40)

and this scenario will be called ’time–independent orders’ in the numerical
results.

III. We impose the following rule: whenever the supplier Sk is not bankrupt, the
supplier has to order up to his capacity μk :

∑

j

Ωn
jk ≤ vn

kμk . (41)

where vn
k is the binary variable introduced in Eq. (34). This rule is motivated

by the fact that the complete production line should have the highest possible
utilization.The optimization problem hence reads

max(32)subject to (21) − (28), (31), (33), (34) and (38) (42)

and this scenario will be called ‘order–up to capacity’ for short.

3.2 Computational Experiments

The optimization problem is solved using the mixed-integer programing framework.
We use the commercial software ILOG CPLEX V11.0 [53] with default parameters.
Here we study the behavior of the optimal controls Ωjk and Ajk on two different
networks and the three different cases I− III and study the complexity of the mixed-
integer problem. If not stated otherwise we use default parameters when running the
commercial solver with a maximum computation time of 24h. All computations are
done on a AMD 2 Ghz personal computer.
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Fig. 1 Sample network of
six suppliers and a customer
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Table 1 Specification of
suppliers Sk present in the
diamond network

Processor k bk μk βk

1 1 2 0
2 2 1 1
3 1 1 1
4 1 1 10
5 1 1 10

In the model we set τk ≡Δt ≡ ε ≡ 1 for all examples. The network we are inter-
ested in consists of seven suppliers and six vertices, see Fig. 1.
Each supplier (except for customer k = 6 and raw material supplier k = 0) has
specific prices, production capacities, and production costs as given in Table 1.
For each scenario we consider a constant inflow ψn

0 = 2 and a threshold for going
bankrupt of κk = −5. The total simulation time is T = 40. Note that, for the data
given the processing chains ’raw material supplier → supplier 1 → supplier 5 →
customer’ is the preferred one. However, the inflow of two parts per time cannot be
passed through supplier 5 and there is the possibility to either store the goods in the
input inventory of 5 or redistribute along suppliers 3 and 4.

We give computational results for the scenarios I–III by solving (35), (37), and
(39), respectively. In Table 2 we report on the size of the optimization problem
(non–zero variables), the computational time used by CPLEX (CPU time), the opti-
mal profit

∑
k κk(T), and the amount of delivered parts over time at customer, i.e.,

∫ T
0 f6(t)dt.

On a simple factory of six suppliers rule (I) yields the highest profit, but rule (III)
yields the most delivered parts since the policy requires to order as many parts as
possible. The highest profit is only obtained at the expense of the bankruptcy of some
internal suppliers for a very long time. The optimal choice in the benchmark case is
to accept the bankruptcy of most of suppliers in order to maximize the total profit.
In the case of the time-dependent policy most of the suppliers do not go bankrupt,
however, there is nearly no part delivered and the overall profit is the least of all
cases.

We have seen that a modeling approach based on nonlinear(!) differential equa-
tions can be transformed and interpreted as a discrete optimization problem. The
underlying dynamic is still conserved in this context. Therefore it is possible to
determine time-dependent order strategies for several highly complex problems.
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Table 2 Comparison of computation results for the diamond network

Benchmark (I) Time–independent orders (II) Order up to capacity (III)

# nonzero vars 1497 1907 1600
CPU-times [sec] 3480 406 140
Bankruptcy percentage 24% 1% 14.5%
Optimal profit 260,4 16,72 31,00
Delivered parts 3,6 1,54 4,00

4 Conclusion

The presented production network is suitable for a wide range of applications
including order and distribution policies and money flow as well. The model is an
essential extension to recently proposed continuous production network
models. The distribution and order rates are determined by an optimization prob-
lem for maximizing the money flow, where the discretized maximization problem
is solved by mixed-integer programing techniques. We added a case study for a
sample network where we studied a priori determined order and distribution strate-
gies, namely, each supplier can decide at every time on his own how to order and
deliver (I), each supplier has to fix an order and delivery rule for the full produc-
tion process (II), or each supplier has to order up to his capacity as long as he is
not bankrupt (III). As indicated by the case study, the presented model might be
used to compare different a priori given rules (e.g., I–III) or to detect costly sup-
pliers. Concluding, future work should include two essential issues: the speed-up of
the black-box solver CPLEX and the extension to stochastic processing times and
demands. The former needs the derivation of suitable heuristics to provide good start-
ing solutions. For simulation purposes only, the latter can be achieved by introducing
time-dependent randomness and the performance of Monte Carlo simulations. How-
ever, stochastic optimization problems require more sophisticated methods.
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The Production Planning Problem: Clearing
Functions, Variable Lead Times, Delay
Equations and Partial Differential Equations

D. Armbruster

Abstract Determining the production rate of a factory as a function of current
and previous states is at the heart of the production planning problem. Different
approaches to this problem presented in this book are reviewed and their relationship
is discussed. Necessary conditions for the success of a clearing function as a quasi
steady approximation are presented and more sophisticated approaches allowing the
prediction of outflow in transient situations are discussed. Open loop solutions to
the deterministic production problem are introduced and promising new research
directions are outlined.

Keywords Supply chains · Production planning problem · Conservation laws ·
Clearing functions

1 Introduction

The production planning problem, the starts into a factory that generate a desired
production profile in the future, is either explicitly or implicitly a major theme of
almost half of the chapters in this book. Aouam and Uzsoy [1] have production
planning in the title, Lefeber [15] deals with the issue in the context of the reference
tracking problem using Model Predictive Control, Göttlich et al. [11] change the
control variable from production starts to outing probabilities and then try to match
a particular output pattern, Braun and Schwartz [7] assume a model for a production
planning problem and deal with the nervousness of the scheduling algorithm, Perdaen
et al. [20] measured the success of controlling a reentrant manufacturing line through
the Push-Pull-Point via its missed production targets and Ringhofer [21] uses traffic
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type models based on hyperbolic partial differential equations (PDEs) to study the
production planning problem with priority rules.
The common problem of determining the output of a production unit (machine,
factory, supply chain node) is dealt with at very different levels of sophistication.
This paper will connect some of these approaches and determine their applicability
and their approximation errors. Finally we discuss some of the practical questions of
choosing an appropriate clearing function mode for a production planning problem
and identify the open questions associated with those problems in general and the
clearing function approach in particular.

2 Clearing Function Models

Typically, all production units are stochastic and hence the production process is a
stochastic process. As a result, the mathematical model that comes closest to real-
ity is a discrete event simulation model. However, even if every production detail
is modeled, the characterization of the stochastic processes involved is non-trivial
generating another model of reality. Given the fact that the stochastic processes are
not well understood and given that they are very time consuming to simulate, the need
for aggregate models is generally accepted and this need drives the discussion. Hence
we will discuss deterministic models that, one hopes, represent average behavior in
some sense.
Depending on the perspective of the author the number of items a production unit
produces is either characterized by a flux (or outflux), typically denoted by F(t)
and defined as the rate of production as a function of time, or by the number of
units produced in a time interval n (shift, day, etc.) often called Xn . Given that the
production unit has a finite production rate μ or capacity C the simplest constraint is
to require that

Xn = Cn, or

F(t) = μ.
(1)

This constraint is only true for a system that is overloaded and hence produces at
constant average production rate μ. At the same time, due to the stochastic nature
of the production process, a truly overloaded system leads to increasing work in
progress (wip), making this an unrealistic assumption for the characterization of the
production process for any significant length of time.

If arrival rates are less than maximal production rates, mass-balance equations
model the time evolution of an inventory I:

In+1 = In + Rn − Xn, or

dI

dt
(t) = λ(t) − F(t),

(2)
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where Rn are the starts in the time interval n (Aouam and Uzsoy [1] use the term
release rates) and λ(t) and F(t) are the start rate and the outflux, respectively. Notice
that Rn = ∫ tn

tn−1
λ(s)ds. As only λ(t), (or Rn) is controlled, the system is not defined

without a model for the outflux F(t) (or Xn). This is where the clearing function first
introduced by Karmarkar [14] comes in. The clearing function is a state equation
that defines the outflux F as a function of the wip W in steady state, i.e.

F = �(W ). (3)

The functional form of the clearing function � has been determined in many different
ways: Measured in real factories, modeled via an M/M/1 queue, modeled after the
fundamental diagram of a traffic model [17] etc. (see e.g. [1, 11]),

� = μW

1 + W
M/M/1

� = μW − W 2 fundamental diagram of traffic.
(4)

Lefeber [15] defines the clearing function by its functional inverse, i.e. the wip as a
function of the flux, approximated as an M/G/1 queue:

W = c2
B + c2

E

2

r2

1 − r
+ r (5)

where r is the utilization of the machine r = λ
μ and cB and cE are the coefficient

of variation of the arrival and machine departure processes. Both Aouam [1] and
Lefeber [15] notice that the clearing function can be approximated by piecewise
linear functions, making the production planning problem an Integer-LP optimization
problem.

Even at this low level of approximation there is a basic inconsistency: the clearing
function is supposed to describe the outflux in steady state as a function of wip level.
However, the clearing function is used with a wip level that is a function of time and is
updated constantly to determine the outflux as a function of time. Hence, by making
the outflux follow instantaneously any change in the wip level, the fundamental
assumption is that the wip level changes slowly relative to the damping time of the
underlying stochastic process. Therefore the fundamental assumption that justifies
the use of a clearing function is that by the time the wip-level has reached a new state,
the stochastic process determining the outflux is back in steady state. As a result the
outflux is never in transient and always characterized by its steady state behavior.
This is known as the quasi-steady assumption or the adiabatic model.

The quasi-steady assumption poses a major problem for the applicability of any
type of clearing function approach. Since almost no research in production planning
is concerned with the specific nature of the stochastic process, there are no good
estimates to my knowledge about the damping time of the stochastic processes. In
fact, even the concept is ill-defined without discussing the timescales and magnitudes
of the stochastic disturbances. One way presumably would be analogous to Aouam
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and Uzsoy’s [1] formulation of their ZOIP algorithm in assuming that there is the
everyday stochasticity (in their case restricted to the demand variability) which would
be captured by the clearing function and there are extraordinary events that require
extraordinary measures for which the clearing function approach is not well suited.
I would consider operator overload, operator negligence and scheduled machine
maintenance to be part of the everyday stochasticity. For semiconductor production
lines the time that e.g. a scheduled machine shutdown would be felt could be described
as of an order less than the cycle time. The stochastic damping time would therefore
be of the order of a day or two. Hence, to stay with the semiconductor production
model, ramping start-ups by 20% over a weekly schedule would not violate the
quasi-steady assumption of a clearing function model but ramping up within a day
would.

3 Dealing with Delays

All clearing function approaches so far have considered the wip at the current time
interval as the independent variable determining the outflux at the current time. As
most production is not started and completed within a day and no production process
is instantaneous this is in general not a good model. This is especially true for cycle
times that are long relative to the planning period since parts that have just entered the
production process will not be involved in determining the current outflux, unless
the factory is reentrant or some other special circumstances apply. There are two
approaches that cover the delayed response of a production unit in this book (but see
also Hackman and Leachman [12] who have a detailed discussion of delayed timing
issues for linear models of production systems): Effective processing times (EPT)
and partial differential equation models.

3.1 The Effective Processing Time Approach

The effective processing time te is the mean time that a part needs to get through a
stochastic processing unit, without considering the waiting time [13, 15]. Hence for
a single machine it can be considered as 1

μ , with μ the average machine processing
rate. By focussing on the start rates of the machines the delay experienced by a part
will be fixed, independent of the buffer length. We define uup to be the uptake rate
of the machine immediately upstream and te its effective processing time. Calling
the ud the uptake rate of the machine immediately downstream of an inventory I (t)
(buffer), its time evolution can be written as

dI

dt
= uup(t − te) − ud(t). (6)
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By using an ordinary differential equation for the time evolution of the inventory,
parts are losing their identity and, without additional modeling, the cycle time through
a factory cannot be recovered from this model unless queuing is minimal. However,
by using the functional inverse of the clearing function (Eq. 5) to bound the uptake
of a machine, we can approximate the overall production rate of a production line
rather accurately. Notice though that using the clearing function (or its functional
inverse) still makes the effective process time model a quasi-steady state model with
all the problems discussed before. In particular, the production rates of a machine
are based on the average behavior of the machine and arrival processes and hence
fast changing transients may not be resolved properly.

The relationship between the effective processing time approach and clearing
functions in fact is complicated and not completely understood. In particular, a
constant effective processing time is not equivalent to a linear clearing function.
A clearing function describes the interaction between the stochastic processes that
describe the machine availability and the stochastic processes that describe the prod-
uct availability whereas the effective processing time focusses on the machine avail-
ability alone, making it necessary to develop a model for the uptake of the machine
again. Lefeber [15] uses the clearing function as a bound for this uptake model but
one could imagine more sophisticated approaches.

3.2 Transport Equations

Considering a factory as a pipe and parts flowing through the factory as a fluid,
we can describe the transport through the factory via standard transport equations
studied extensively in fluid mechanics. In contrast to fluid mechanics, the spatial
variable defining the transport direction is not given by physical space but rather
by the degree of completion of the part, or the stage of the production. Calling
x ∈ [0, 1] the degree of completion, ρ(x, t) describes the density of parts at stage x
at time t. If the fluid moves with a velocity field v(x, t) then the flux is described as
F(x, t) = v(x, t)ρ(x, t). Mass conservation then is given by the partial differential
equation

∂ρ

∂t
+ ∂F

∂x
= 0. (7)

Since v(x, t) ≥ 0 the fluid moves from left to right, allowing a boundary condition
to be imposed at x = 0. Typically the boundary condition is F(0, t) = λ(t), i.e.
the local flux at zero is the arrival rate of the parts into the factory. Together with an
initial wip profile ρ(x, 0) = ρ0(x) this sets up a well defined hyperbolic problem.
Notice that we are describing a flow that is continuous in its parts and continuous in
its spatial direction. This should be distinguished from the so-called fluid equation
models of queueing theory [6] which are continuous in its parts but describe a flow
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through a finite and distinct number of queues, leading to a set of Ordinary Differential
Equations (ODEs).

To clarify issues, let us examine the solutions to the mass conservation Eq. (7) for
a constant velocity v(x, t) = c. In this case the transport equation becomes a linear
first-order wave equation with the solution

ρ(x, t) =
{

ρ0(x − ct) for t < x
c

λ(t− x
c )

c for t > x
c .

(8)

Integrating Eq. (7) over x and defining the total wip W (t) = ∫ 1
0 ρ(x, t)dx we get

dW

dt
= F(0, t) − F(1, t) = λ(t) − λ

(
t − 1

c

)
. (9)

Comparing the inventory I (t) in the EPT approach and the wip W (t) in the PDE
approach, we see that the two delay Eqs. (6) and (9) only differ in their accounting
of the parts—the EPT approach counts them after the machine whereas the PDE
approach counts it in the machine.

When we integrate the transport equation over the completion space all wip is
aggregated into one variable, the total wip, and any uneven distribution of the wip is
lost. Hence again, cycle time of an individual part cannot be recovered in the delay
equation model nor are we resolving short term fluctuations of the outflux.

In contrast, in the PDE model, we can clearly follow the transport of any local wip
portion given by ρ(x, t)dx over time through the factory. Hence, if the observation
time interval �t and the cycle time τ satisfy τ � �t , a PDE model (or its discretiza-
tion) is the only one that allows us to follow the flow of parts through the production
unit. For cycle time of the order of the observation times, the clearing functions
based on the total wip are appropriate. This observation is independent of the veloc-
ity model that is used to describe the flow through the factory, i.e. independent of the
type of clearing function that is used.

3.2.1 Clearing Functions for PDEs

Since the Karmarkar clearing function F = μW
1+W [14] is only a good approximation if

the cycle time is of the order of the observation time, a clearing function describing
the flux in a spatially extended partial differential equation should depend on the
local variable x. In particular F(1, t) should depend on the density ρ(1, t). We have
argued in [3] that for a strongly re-entrant flow with FIFO dispatching rules the
velocity should be uniform over the total completion space and hence

F(x, t) = v(W (t))ρ(x, t) = μ

1 + W
ρ(x, t) (10)

would be a good flux function.
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For acyclic flows (linear production lines) heuristic discussions lead to space
dependent clearing functions given the local production rate at stage x either just as
a function of the local density e.g.

F(x, t) = μ

1 + ρ(x, t)
ρ(x, t) (11)

or, as in Ringhofer’s chapter [21] as a linear interpolation between the flux expected
for the whole factory and the flux expected at the very last machine.

F(x, t) = 1 − x

τ
( ∫ 1

0 ρ(z, t)dz − xτ0
)ρ(x, t), (12)

where τ (x, t) is the time to completion of a production sitting at stage x at time t.
Another heuristic model that develops a clearing function for a linear production

line with finite buffers has recently been developed by Armbruster et al. [4],

F(x, t) :=
{ μρ

1+ρ+kρ(1−x)
for ρ < M

0 for ρ ≥ M,
(13)

where k is an adjustable constant and M is the maximal buffer space. Experiments
(Goossens [10]) that shut down the last machine in the factory and subsequently
restart the whole factory with full buffers show a cascading collapse of production
traveling upstream in the factory and, once the last machine has been repaired, a
slower recovery to steady state. PDE simulations using the flux (Eq. 13) show good,
though not perfect, agreement with the discrete event simulations.

4 Transient Clearing Functions

We have seen that, using any type of clearing function model, whether in a discrete
mass balance equation describing inventories or in a continuous flow model which is
characterized as a hyperbolic PDE, the model assumes that the local production rate
instantaneously adjusts to the one given by the equilibrium relationship between flux
and wip described by the clearing function. Recently Missbauer [19] has studied the
issue of clearing functions for systems that are not in steady state. He considers a
simple M/M/1 queue with a production rate of μ = 1 and studies the expected output
E[X ] over five time units as a function of the expected load E[L] at the end of the
five time units, depending on the initial wip w0 and the arrival rate λ(t), i.e.

E[L] = w0 +
∫ 5

0
λ(s)ds. (14)

He argues that clearing functions that describe such transient behavior should not
just depend on the total load of the system but on three variables:
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Fig. 1 Simulation of an M/M/1 system for different initial wip and load, 103 simulations per data
point. a Deterministic initial wip, b Initial wips sampled from steady state distributions

• the expected initial wip level,
• the expected input during the period,
• the probability distribution of the wip level at the beginning of the period.

Fonteijn [9] extended Missbauer’s study. Figure 1a shows that with a deterministic
intial wip and a constant rate of influx λ = E[L]−w0

5 , the output over five time periods
depends crucially on the initial wip as shown before by Missbauer.

However, if the initial wip is randomly distributed corresponding to an expected
value of the initial wip of w0, the curves describing the mean outflux behavior
(averaged over the initial wip distribution) as a function of the expected load all
pretty much collapse into each other. Figure 1b shows that the differences between
different mean initial wips become very small.

The assertion that the total expected input during the observation period deter-
mines the outflux can be shown to be wrong by looking at the outflux for the same
total input, distributed differently over time: Fig. 2a shows the clearing function for
an experiment where the necessary influx to generate the expected load over the time
period of five time units is generated at the beginning of the time period. As a result,
the initial wip is instantaneously increased and hence the outflux is higher than in
the case of a constant influx in time as shown in Fig. 1b. Figure 2b shows the clearing
function for an experiment where the necessary influx to generate the expected load
over the time period of five time units is generated at the end of the time period. As
a result, none of the influx will come out of the factory within the time period and
the outflux is only determined by the initial wip.

We can conclude from these four figures that a steady state-based clearing function
will be a reasonably good description of the outflux, if the system is increased from an
average of 20% of production capacity to an average of 90% of production capacity
with a constant ramp within five cycle times. If ramping is done much faster or if
the system is prepared in a particular initial state, the initial condition matters and so
does the timing of the ramp.
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Fig. 2 Clearing functions for an M/M/1 queue with different average initial wips and (a) all influx
arriving at the beginning of the observation interval and (b) at the end of the observation interval

Another approach to go beyond the quasi-static models based on regular clearing
functions follows from Armbruster et al. [2]. They have developed a hierarchical set
of moment equations that models the time dependent behavior of the flux and higher
order moments like the variance, etc. The hierarchy of moments generate an infi-
nite set of hyperbolic equations which by itself is not of practical use. The standard
approach to such hierarchies is to truncate them at some level via a moment closure
that defines a higher-order moment whose time dependence is not resolved any more
by a relationship to lower-order moments. The simplest such closure is the clear-
ing function, defining the flux in terms of the density. The next more sophisticated
approach leads to a system of two PDEs where the flux becomes a dynamic variable.
In [2] the following system of two partial differential equations is derived:

∂ρ

∂t
+ ∂F

∂x
= 0

∂F

∂t
+ ∂v(x, t)F

∂x
= 0,

(15)

where again F(x, t) = v(x, t)ρ(x, t). Intuitively, the second equation describes the
fact that a perturbation in the production rate, e.g. a region of high production rate,
travels downstream with a velocity v . Treating again a factory as a single M/M/1
queue, the flux at the beginning of the factory is given as

F(0, t) = ρ(0, t)
v0

1 + W
. (16)

This model performs better than any other model for Missbauer’s test cases [19] but
the errors are still significant for highly variable inputs [9].
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5 Solving the Production Planning Problem Using PDE Models

In [18] La Marca et al. determine the start rate as a function of time that minimizes
the mismatch between a desired production rate over a given time interval and the
actual production rate according to the solution of a PDE model of a production flow.
Specifically they define the cost function

J (ρ,λ) := 1

2

∫ τ

0
(d(t) − F(1, t))2 dt, (17)

where d(t) is the instantaneous demand rate and F(1, t) = ρ(1, t)v(1, t) is the
instantaneous outflux. Minimizing the cost functional J (ρ,λ) over all possible influx
functions λ(t), subject to the PDE–dynamics introduced previously, i.e.

minλ(t) J (ρ,λ) subject to

∂ρ(x, t)

∂t
+ ∂

∂x
(F(x, t)) = 0

λ(t) = v(ρ)ρ(0, t)

ρ0(x) = ρ(x, 0)

F(x, t) = μρ(x, t)

1 + ∫ 1
0 ρ(s, t)ds

(18)

solves the production planning problem over the time horizon τ . The method is
based on the formal adjoint method for constrained optimization, incorporating the
hyperbolic PDE as a constraint of a nonlinear optimization problem.

Figure 3 shows the optimal influx for a sinusoidally varying demand. Notice that
the nonlinear dependence of the lead time on the wip in the system generates a
sawtooth-like form of the optimal influx. In contrast, a constant lead time would
have lead to an input function that has the exact same functional form as the demand,
just phase-shifted.

6 Conclusion and Open Problems

6.1 Practical Considerations

The production planning problem can be considered a prototype problem of mul-
tiscale modeling. We have seen that, depending on the modeling context, different
time scales become relevant. At the same time different approximations are appro-
priate for those different time scales. It is my contention that the current literature on
production planning and clearing function does not pay enough attention to the time
scale issue and how the purpose and usage of the model chooses its time scale and
model sophistication.
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Fig. 3 A sinusoidally
oscillating demand function
(from [18])
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A clearing function approach (and all derivatives discussed here) is based on a
model that assumes that the production rate is described by a steady state relationship
to the wip. Since the processes that are described here are stochastic processes, the
definition of the stochastic process becomes very important. In particular, a steady
state that allows us to determine a clearing function is defined by a stationary process,
where the average quantities (e.g. wip and outflux) over the the relevant time interval
do not differ in a relevant way from the long term averages. The concept of ordi-
nary (captured in the average description) versus extraordinary events (not captured)
becomes crucial. No extraordinary event can be incorporated into a clearing function
approach although extraordinary events may define initial conditions and recovery
from the initial conditions may be modeled by a clearing function approach. Specifi-
cally, a disaster like the Japan earthquake in 2011 cannot be modeled in an aggregate
description of a supply chain but modeling the recovery from the disaster could be
attempted.

Hence any situation that allows the production system to adjust to its steady state
before the outflux is measured can in principle be well approximated by a clearing
function approach. Any situation that requests a higher temporal resolution for the
outflux will be badly modeled by a clearing function and will need models that
describe the time evolution of the wip in the factory and the flux together.

When a clearing function model is appropriate there are still other timescale
considerations that influence the choice of a model: If the cycle time is much larger
than the observation time interval a PDE model (Eq. 7) or an effective processing
time model (Eq. 6) with a suitable delay are the only ones that properly model the
flow of parts through the production unit. If the cycle time is of the order of the
observation times, an instantaneous clearing function model (Eqs. 2 and 3) without
additional delays based on the total wip is appropriate. If the cycle time is much
shorter than the observation time, an instantaneous clearing function based on the
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wip at the moment of the change in influx is appropriate. For instance, if a change
in influx is done at the beginning of the time interval, the outflux should be based on
the wip at the end of the time interval. If the influx is changed at the end of the time
interval, the outflux is based on the wip at the beginning, etc.

6.2 Continuous Versus Discrete Models

There are two ways to consider the relationships between the different approaches
discussed here: Once could start with time intervals based on production time units
(shifts, days, weekly schedules) and on production intervals based on machines and
come to the iterative model shown in Eq. (2). Going to a continuum in time leads to
ODE models which are called fluid models in the queuing theory context and are the
bases of the effective processing time models (Eq. 6). Assuming a large number of
machines allows us to go to the continuum in production space leading to the PDE
models (Eq. 7). Alternatively one could consider the ODE model a discretization of
the PDE in space and the discrete time model a subsequent discretization of the ODE
model in time. Usually discretization of a PDE in space and time can be done on any
scale and with many different schemes while the discretizations in Eqs. (2) and (6) are
based on the granularity of the actual production process. However, for simulations
of hyperbolic PDEs, the space and time discretization are not independent. In order to
have a stable algorithm they have to satisfy a necessary condition known as the CFL
condition [16]. Daganzo [8] has shown that the CFL condition is not just a numerical
analysis issue but that it is equivalent in choosing order policies that prevent the
bullwhip effect.

6.3 Further Work

The current understanding of the production planning problem and the promising
approaches presented in this book generate a multitude of research problems, at
least some of which are well within reach of current mathematical modeling and
optimization techniques.

• As Aouam [1] noted, the production planning problem has really two parts,
production planning under nonlinear lead times, which has been the topic for
most of this chapter, and production planning under stochasticity leading to sto-
chastic optimization. While La Marca et al. [18] conceptually solved the tracking
problem for nonlinear lead times, their approach falls short of a usable and robust
algorithm since it deals only with the open loop problem. Hence, any perturbation
that disturbs demand or production during the planning time horizon will typically
invalidate the optimal production plan calculated with La Marca’s algorithm and
hence will require a complete replanning. Model predictive control linking the



The Production Planning Problem 301

tracking algorithm to a discrete event simulation that provides the reality against
which the re-planning will have to occur is a promising direction. However other
stochastic optimization approaches should also be tried for the PDE-based clearing
function models.
At this point we also have a connection to the control theoretical approaches dis-
cussed by Braun and Schwartz [7]. Any closed loop feedback control system will
have to deal with schedule nervousness and limit the amount of variations that
are allowed for an optimal schedule. Inherently, the approaches in [7] do not care
where the errors in the model come from—they could be coming from variations
in the demand but they could also be coming from the linearization of a fundamen-
tally nonlinear clearing function. As the modeling errors increase and the request
for scheduling stability stays the same, at some time there will not be a feasible
solution that is at the same time smooth enough and accurate enough. Whether
real industrial problems can satisfy these constraints and whether general rules for
the success of this approach can be developed are open problems.
Alternatively, limiting schedule changes in a closed loop version of La Marca’s
model could be done in much the same way as in [7] through frozen horizons,
move suppressions and schedule change suppression. This would have the advan-
tage of a much better—nonlinear—model but the disadvantage that the LP-based
optimization tools would not suffice any more.

• Deriving clearing function models from first principles is an extremely hard prob-
lem as it adds another layer to the already very hard problem of the relationship
between queuing systems and their fluid models. A fluid model as it is used in
approximation theory for queuing theory treats the products arriving at a queue
as a continuum flux leading to an ODE description for the average behavior of a
queuing system. That problem is still not completely solved for multi-class queue-
ing networks and arbitrary priority rules at the machines. However for single class
queueing networks the equivalence between the fluid model and the long term
average behavior is well understood (see [6] for a introduction into this subject).
To derive a clearing function for a supply chain or a factory with a large number of
machines requires the additional limit of infinitely many production steps modeled
through a continuum motion along the completion line. No first principle theory
dealing with the interplay of a large number of products going through a large
number of production steps exists to my knowledge.

• It will be much easier to determine more sophisticated approaches for highly
transient systems. While the studies of Fonteijn suggest that using two PDEs
(Eq. 15) based on the multi-moment expansion is better than one, a complete
study of the approximation errors associated with these equations has not been
done. In particular, it is unclear for which acyclic production systems the closure
(Eq. 16) is the correct one and what other closure options are available.

• Asmundsson [5] has discussed the production planning problem for production
of more than one product type. The Asmundsson ACF approach is a rough way
of doing this with big time buckets and potentially restrictive assumptions, but
seems to work well in many cases as a practical approach. There is an obvious
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relationship to Ringhofer’s [21] service rule discussion for PDE models that has
not been explored.

It is hoped that this book serves as an incentive for many researchers in applied
mathematics, industrial engineering and operations research to study some of these
fascinating problems.
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