
Chapter 7
Variants and Extensions

The results developed so far in this book can be extended in many ways. In this
chapter we present a selection of possible variants and extensions. Some of these
introduce new combinations of techniques developed in the previous chapters, oth-
ers relax some of the previous assumptions in order to obtain more general results
or strengthen assumptions in order to derive stronger results. Several sections con-
tain algorithmic ideas which can be added on top of the basic NMPC schemes from
the previous chapters. Parts of this chapter contain results which are somewhat pre-
liminary and are thus subject to further research. Some sections have a survey like
style and, in contrast to the other chapters of this book, proofs are occasionally only
sketched with appropriate references to the literature.

7.1 Mixed Constrained–Unconstrained Schemes

The previous Chaps. 5 and 6 have featured two extreme cases, namely NMPC
schemes with terminal constraints X0 and costs F on the one hand and schemes
without both X0 and F on the other hand. However, it appears natural to consider
also intermediate or mixed cases, namely schemes in which (nonequilibrium) ter-
minal constraint sets X0 but no terminal costs F are used and schemes in which
terminal costs F but no terminal constraints sets X0 are used.

Schemes with terminal constraints X0 but without terminal costs F appear as a
special case of Algorithm 3.10 (or its time varying counterpart 3.11) with (OCPN,e)
= (5.15) and F ≡ 0. For this setting, it is not reasonable to expect that Assump-
tion 5.9(ii) holds. Consequently, the argument used in the proof of Theorem 5.13
does not apply; in fact, we are not aware of results in the literature analyzing such
schemes with the techniques from Chap. 5.

Fortunately, the stability analysis in Chap. 6 provides a remedy to this problem.
Observe that the main structural assumption on the control sequences from Assump-
tion 6.4 needed in the fundamental Lemmas 6.9 and 6.10 in Chap. 6 is that each
admissible control sequence u ∈ U

N(x) can be extended to an admissible control
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sequence û ∈ U
N+K(x) for each K ≥ 1. Since Lemma 5.2(i) ensures this property

for U
N
X0

(x) provided X0 is viable, we can incorporate the terminal constraint set X0
into the analysis from Chap. 6.

As a consequence, replacing U
N(x) by U

N
X0

(x) in Assumption 6.4 and assum-
ing Assumption 5.9(i), i.e., viability of X0, all results in Chap. 6 carry over to the
scheme with terminal constraint set. In particular, the stability results Theorem 6.18,
Corollary 6.19, Theorem 6.21 and Theorem 6.33 remain valid. However, like in The-
orem 5.13 the resulting controller μN is only defined on the feasible set XN from
Definition 3.9.

This combined scheme inherits certain advantages and disadvantages from both
schemes. From the terminal constrained scheme we inherit that the resulting con-
troller μN is only defined on the feasible set XN . On the other hand, as discussed
before Lemma 5.3, we do not need to assume viability of X but only for the termi-
nal constraint set X0 (further methods to avoid the viability assumption on X will
be discussed in Sects. 8.1–8.3).

From the unconstrained scheme we inherit the advantage that no terminal cost
satisfying Assumption 5.9(ii) needs to be constructed. On the other hand, we need
to ensure that the assumptions of one of the mentioned stability results from Chap. 6
hold whose rigorous verification may be involved, cf. also Sect. 6.6. For a more com-
prehensive discussion on advantages and disadvantages of different NMPC schemes
we refer to Sect. 8.4.

Another way of imposing terminal constraints without terminal costs which can
be found in the literature is via so-called contractive constraints. Here the termi-
nal constraint set depends on the initial value x0 of the optimal control problem
(OCPN,e) via

X0 = {
x ∈ X

∣∣ |x|x∗ ≤ γ |x0|x∗
}

for some constant γ ∈ (0,1); see, e.g., the book of Alamir [1] or the works of de
Oliveira Kothare and Morari [28] and De Nicolao, Magni and Scattolini [5]. How-
ever, for these constraints stability is only guaranteed if either the whole optimal
control sequence (as opposed to only the first element) is applied or if the optimiza-
tion horizon is treated as an optimization variable and the contractivity condition is
incorporated into the optimization objective [1, Chap. 4]. Since these approaches do
not conform with the MPC paradigm used throughout this book, we do not discuss
their analysis in detail.

Schemes with terminal cost F but without terminal constraint X0 have been in-
vestigated in several places in the literature, for instance in Grimm, Messina, Tuna
and Teel [13] and Jadbabaie and Hauser [22] (for more information on these ref-
erences see also the discussions at the end of Sect. 6.1 and in Sect. 6.9). In both
references stability results for such schemes are derived in which only positive defi-
niteness of F is assumed. Roughly speaking, these references show that the addition
of F does not destroy stability. While the authors emphasize the potential positive
effects of adding such costs, they do not rigorously analyze these positive effects.
In contrast to this, in the work of Parisini and Zoppoli [30] the specific properties of
the terminal cost described in Remark 5.15 were exploited in order to show stability.
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The proof in [30] uses that under suitable conditions and for sufficiently large opti-
mization horizon N for all initial values from a given region the open-loop optimal
trajectories end up in the terminal constraint set without actually imposing this as a
condition. The same proof idea has been generalized later by Limón, Alamo, Salas
and Camacho [24] for a more general terminal cost.

Here we outline an approach from Grüne and Rantzer [17] which we combine
with the analysis technique from Chap. 6. This approach rigorously shows the pos-
itive effect of adding a terminal cost also in the absence of stabilizing terminal con-
straints. In contrast to [30] or [24] the stability property is not restricted to sets of
initial values for which the open-loop optimal trajectories end up in a terminal con-
straint set. However, the fact that this happens for a set of initial values around the
origin will be used in our proof. We start from a terminal cost function F satisfy-
ing Assumption 5.9(ii) with a forward invariant neighborhood X0 of x∗, however,
we will not use X0 as a terminal constraint set. Instead, we assume that F ≡ c > 0
holds on the boundary ∂X0 with c ≥ supx∈X0

F(x). This is, for instance, satisfied if
F is constructed from a linearization via linear–quadratic techniques according to
Remark 5.15 and X0 is a sublevel set of F . Then we may extend F continuously to
the whole set X by setting F(x) := c for all x ∈ X \ X0.

With this setting we obtain the following theorem.

Theorem 7.1 Let the assumptions of Theorem 6.33 be satisfied for the NMPC Algo-
rithm 3.1 without terminal cost. Let F : X → R

+
0 and assume that Assumption 5.9

holds for some set X0 containing a ball Bη(x∗) for some η > 0. Assume, further-
more, that F ≡ c holds outside X0 with c ≥ supx∈X0

F(x) and that F(x) ≤ α̃2(|x|x∗)
holds for all x ∈ X0 and some α̃2 ∈ K∞. Consider the NMPC Algorithm 3.10 with
(OCPN,e) = (5.15) for this F but without terminal constraints, i.e., with X0 = X

in (5.15).
Then the nominal NMPC closed-loop system (3.5) with NMPC feedback law μN

is semiglobally asymptotically stable on X with respect to the parameter N in the
sense of Definition 6.28(i).

Proof We consider the following three optimal control problems

(a) (5.15) with X0 = X, which generates μN in this theorem
(b) (5.15) with X0 from Assumption 5.9 for F , which generates μN in Theorem 5.5
(c) (OCPN), which generates μN in Theorem 6.18

and denote the respective optimal value functions by V
(a)
N , V

(b)
N and V

(c)
N . For each

x ∈ X we obtain the inequalities V
(c)
N (x) ≤ V

(a)
N (x) ≤ V

(c)
N (x) + c and, for x ∈ XN

(where XN denotes the feasible set from Definition 3.9 for Problem (b)), we have
V

(a)
N (x) ≤ V

(b)
N (x).

In order to show semiglobal asymptotic stability, i.e., Definition 6.28(i), we fix
� > 0. For an arbitrary x ∈ X we consider the optimal control u� for Problem (a)
(which implies μN(x) = u�(0) for μN from this theorem) and distinguish two cases:
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(i) xu�(N,x) ∈ X0: This implies u� ∈ U
N
X0

(x) and hence x ∈ XN and V
(a)
N (x) =

V
(b)
N (x). Using xu�(1, x) = f (x,μN(x)) ∈ XN and V

(a)
N ≤ V

(b)
N on XN , the proof

of Theorem 5.5 yields

V
(a)
N (x) = V

(b)
N (x) ≥ �

(
x,μN(x)

) + V
(b)
N

(
f

(
x,μN(x)

))

≥ �
(
x,μN(x)

) + V
(a)
N

(
f

(
x,μN(x)

))
. (7.1)

This inequality will be used below in order to conclude asymptotic stability. Before
we turn to case (ii) we show that case (i) applies to all points x ∈ Bδ(x∗) for some
δ > 0:

Since (5.20) shows V
(b)
N (x) ≤ F(x) on X0, we obtain V

(a)
N (x) ≤ V

(b)
N (x) ≤

α̃2(|x|x∗) for x ∈ Bη(x∗) ⊆ X0. For δ = min{η, α̃−1
2 (c/2)} this implies V

(a)
N (x) ≤

c/2 for all x ∈ Bδ(x∗). On the other hand, xu�(N,x) /∈ X0 implies F(xu�(N,x)) = c

and thus V
(a)
N (x) ≥ c. Hence, case (i) occurs for all x ∈ Bδ(x∗).

(ii) xu�(N,x) /∈ X0: This implies F(xu�(N,x)) = c and thus V
(a)
N (x) = V

(c)
N (x)+

c. This implies that u� is an optimal control for V
(c)
N (x) and from the proof of The-

orem 6.33 we obtain that (5.1), i.e.,

V
(c)
N (x) ≥ α�

(
x,μN(x)

) + V
(c)
N

(
f

(
x,μN(x)

))

holds for all x ∈ Y = S \ P with S and P chosen as in the proof of Theorem 6.33.
The sets S and P are forward invariant and by choosing N ∈ N sufficiently large
we obtain α > 0, B�(x∗) ⊆ S and P ⊂ Bδ(x∗) for � fixed above and δ defined
at the end of case (i). Since V

(a)
N (x) = V

(c)
N (x) + c and V

(a)
N (f (x,μN(x))) ≤

V
(c)
N (f (x,μN(x))) + c we obtain

V
(a)
N (x) ≥ α�

(
x,μN(x)

) + V
(a)
N

(
f

(
x,μN(x)

))
(7.2)

for all y ∈ Y and some α > 0.
Now, the choice of N and P implies that for x ∈ S \ Bδ(x∗) Inequality (7.2)

holds while for x ∈ Bδ(x∗) Inequality (7.1) holds. This implies that Theorem 4.14
is applicable with S(n) = S which yields semiglobal practical stability using
Lemma 6.29(i). �

Comparing Theorem 7.1 with Theorem 6.33, one sees that the benefit of includ-
ing the terminal cost F is that here we obtain semiglobal asymptotic stability while
without F we can only guarantee semiglobal practical asymptotic stability. Loosely
speaking, the unconstrained scheme guarantees stability up to the neighborhood
Bδ(x∗), while F ensures asymptotic stability inside this neighborhood.

7.2 Unconstrained NMPC with Terminal Weights

Our next extension analyzes the effect of inclusion of terminal weights in (OCPN),
i.e., in NMPC schemes without stabilizing terminal constraints and costs. Both in
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numerical simulations and in practice one can observe that adding terminal weights
can improve the stability behavior of the NMPC closed loop. Formally, adding ter-
minal weights can be achieved by replacing the optimization criterion in (OCPN)
by

JN

(
x0, u(·)) :=

N−2∑

k=0

�
(
xu(k, x0), u(k)

) + ω�
(
xu(N − 1, x0), u(N − 1)

)
(7.3)

for some ω ≥ 1. For ω = 1 we thus obtain the original problem (OCPN). This exten-
sion is a special case of (OCPN,e) in which we specify X0 = X, F ≡ 0, ω1 = ω and
ω2 = ω3 = · · · = ωN = 1. In a similar way, such a terminal weight can be added to
the respective time variant problem (OCPn

N) leading to a special case of (OCPn
N,e).

Thus, all results developed in Chap. 3 apply to this problem. Given that the optimal
control value u(N − 1) in (7.3) will minimize �(xu(N − 1, x0), u(N − 1)), this ap-
proach is identical to choosing F(x) = ω�∗(x) and N = N − 1 in the terminal cost
approach discussed in the previous section, with �∗ from (6.2). However, the spe-
cific structure of the terminal cost allows for applying different and more powerful
analysis techniques which we explain now.

The terminal weight leads to an increased penalization of �(xu(N −1, x0), u(N −
1)) in JN and thus to an increased penalization of the distance of xu(N − 1, x0) to
x∗. Thus, for ω > 1 the optimizer selects a finite time optimal trajectory whose
terminal state xu�(N − 1, x0) has a smaller distance to x∗. Since our goal is that the
NMPC-feedback law μN steers the trajectory to x∗, this would intuitively explain
better stability behavior.

Formally, however, the analysis is not that easy because in closed loop we never
actually apply u�(1), . . . , u�(N −1) and the effect of ω on u�(0) is not that obvious.
Hence, we extend the technique developed in Chap. 6 in order to analyze the effect
of ω. To this end, we change the definition (6.8) of BN to

BN(r) :=
N−2∑

n=0

β(r, n) + ωβ(r,N − 1).

With this definition, all results in Sect. 6.3 remain valid for the extended problem.
Proposition 6.12 remains valid, too, if we change (6.11) to

N−2∑

n=k

λn + ωλN−1 ≤ BN−k(λk), k = 0, . . . ,N − 2.

If, furthermore, in the subsequent statements we replace
∑N−1

n=0 λn by
∑N−2

n=0 λn +
ωλN−1, then it can be shown that Proposition 6.17 remains valid if we replace (6.19)
by

αω
N := 1 − (γN − 1)(γ2 − ω)

∏N
i=3(γi − 1)

∏N
i=2 γi − (γ2 − ω)

∏N
i=3(γi − 1)

. (7.4)

The proof is similar to the proof of Proposition 6.17 and can be found in Grüne,
Pannek, Seehafer and Worthmann [20].
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Fig. 7.1 Suboptimality index
α depending on terminal
weight ω

With this expression, Theorem 6.18 and its corollaries remain valid, except for
the inequalities VN(x)/α ≤ V∞(x)/α and CVN(x) ≤ CV∞(x), which do in general
no longer hold because of the additional weight which is present in VN but not
in V∞.

Figure 7.1 shows the values from (7.4) for an exponential β of type (6.3)
with C = 2 and σ = 0.55, optimization horizon N = 5 and terminal weights
ω = 1,2, . . . ,20. The figure illustrates that our analysis reflects the positive effect
the terminal weight has on the stability: while for ω = 1,2 we obtain negative val-
ues for α and thus stability cannot be ensured, for ω ≥ 3 stability is guaranteed.
However, one also sees that for ω ≥ 10 the value of α is decreasing, again. For more
examples for the effect of terminal weights we refer to [20] and Example 7.14, be-
low.

7.3 Nonpositive Definite Running Cost

In many regulator problems one is not interested in driving the whole state to a
reference trajectory or point. Rather, often one is only interested in certain output
quantities. The following example illustrates such a situation.

Example 7.2 We reconsider Example 2.2, i.e.,
(

x+
1

x+
2

)
=

(
x1 + x2 + u/2

x2 + u

)
=: f (x,u)

with running cost

�(x,u) = x2
1 + u2.

In contrast to our standing assumption (3.2), no matter how we choose x∗ ∈ R
2, this

function does not satisfy �(x,u) > 0 for all x ∈ X and u ∈ U with x �= x∗. Instead,
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Fig. 7.2 MPC closed-loop
trajectory with N = 5

following the interpretation of x1 and x2 as position and velocity of a vehicle in a
plane, the running cost only penalizes the distance of the position x1 from 0 but not
the velocity.

However, the only way to put the system at rest with x1 = 0 is to set x2 = 0.
Hence, one may expect that the NMPC controller will “automatically” steer x2 to
0, too. The numerical simulation shown in Fig. 7.2 (performed with optimization
horizon N = 5 without stabilizing terminal constraints and with state constraints
X = [−1,1]2 and control constraints U = [−1/4,1/4]) confirms that this is exactly
what happens: the system is perfectly stabilized at x∗ = 0 even though the running
cost does not “tell” the optimization problem to steer x2 to 0.

How can this behavior be explained theoretically? The decisive difference of �

from this example to � used in the theorems in the previous chapters is that the
lower bound �(x,u) ≥ α3(|x|x∗) imposed in all our results is no longer valid. In
other words, the running cost is no longer positive definite.

For NMPC schemes with stabilizing terminal constraints and costs satisfying
Assumption 5.9, the notion of input/output-to-state stability (IOSS) provides a way
to deal with this setting. IOSS can be seen as a nonlinear detectability condition
which ensures that the state converges to x∗ if both the output and the input converge
to their steady state values, which can in turn be guaranteed by suitable bounds on �.
We sketch this approach for time invariant reference xref ≡ x∗ with corresponding
control value u∗ satisfying f (x∗, u∗) = x∗.

To this end, we relax the assumptions of Theorem 5.13 as follows: instead of
assuming (5.2) we consider an output function h : X → Y for another metric space
Y . In Example 7.2 we have X = R

2, Y = R and h(x) = x1.
Now we change (5.2) to

α1
(∣∣h(x)

∣∣
y∗

) ≤ VN(x) ≤ α2
(|x|x∗

)
and

�(x,u) ≥ α3
(∣∣h(x)

∣
∣
y∗

) + α3
(|u|u∗

) (7.5)
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with y∗ = h(x∗) and |h(x)|y∗ = dY (h(x), y∗), where dY (·,·) is the metric on Y . Fur-
thermore, we assume that the system with output y = h(x) is IOSS in the following
sense: There exist β ∈ K L and γ1, γ2 ∈ K∞ such that for each x ∈ X and each
admissible control u ∈ U

∞(x) the inequality
∣∣xu(n, x)

∣∣
x∗ ≤ max

{
β
(|x|x∗ , n

)
, γ1

(
max

k=0,...,n−1

∣∣u(k)
∣∣
u∗

)
,

γ2

(
max

k=0,...,n−1

∣∣y(k)
∣∣
y∗

)}

holds for all n ∈ N0 with y(k) = h(xu(k, x)).
With these changed assumptions, the assertion of Theorem 5.13 remains valid.

The proof relies on the fact that the function VN still satisfies

VN(x) ≥ �
(
x,μN(x)

) + VN

(
f

(
x,μN(x)

))
.

This implies that VN(xμN
(n, x)) is monotone decreasing in n and since it is bounded

from below by 0 it converges to some value as n → ∞, although not neces-
sarily to 0. However, the convergence of VN(xμN

(n, x)) implies convergence of
�(xμN

(n, x),μN(xμN
(n, x))) → 0 which by means of the last inequality in (7.5)

yields h(xμN
(n, x)) → 0 and μN(xμN

(n, x)) → 0. Now the IOSS property can be
used to conclude asymptotic stability of the closed loop. For more details of this
approach, we refer to the book of Rawlings and Mayne [31, Sect. 2.7 and the refer-
ences therein].

While the approach just sketched relies on stabilizing terminal constraints, the
simulation in Example 7.2 shows that asymptotic stability can also be expected
without such constraints. For this setting, a stability proof was given in the work of
Grimm, Messina, Tuna and Teel [13] and the main result in this reference extends
Theorem 6.33. Again, a detectability condition is used, but this time it is formu-
lated via a suitable auxiliary function W : we assume the existence of a function
W : X → R

+
0 which satisfies the inequalities

W(x) ≤ αW

(|x|x∗
)
,

W
(
f (x,u)

) − W(x) ≤ −αW

(|x|x∗
) + γW

(
�(x,u)

) (7.6)

for all x ∈ X, u ∈ U(x) and suitable functions αW ,αW ,γW ∈ K∞. In turn, we
remove the lower bound α3(|x|x∗) ≤ �∗(x) for �∗ from (6.2) from the assumptions
of Theorem 6.33. Observe that whenever this lower bound holds, the detectability
condition is trivially satisfied with W ≡ 0, γW (r) = r and αW = α3.

Under these modified assumptions, it is shown in [13, Theorem 1] that the
semiglobal practical stability assertion of Theorem 6.33 remains valid. Furthermore,
[13, Corollary 2 and Corollary 3] provide counterparts to Theorems 6.31 and 6.21
which prove semiglobal and “real” asymptotic stability, respectively. In contrast to
the IOSS-based result for stabilizing terminal constraints, the proof of [13, Theo-
rem 1] yields a Lyapunov function constructed from the optimal value function VN

and the function W from the detectability condition. In the simplest case, which oc-
curs under suitable bounds on the involved K∞-functions, this Lyapunov function
is given by VN + W . In general, a weighted sum has to be used.
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In Example 7.2, numerical evaluation suggests that the detectability condition is
satisfied for W(x) = max{−|x1x2|+x2

2 ,0}/2 and γW (r) = r . Plots of the difference
W(x) − W(f (x,u)) + �(x,u) in MAPLE indicate that this expression is positive
definite and can hence be bounded from below by some function αW(|x|x∗); a rig-
orous proof of this property is, however, missing up to now.

As discussed in Sect. 6.9, the analysis in [13] uses a condition of the form
VN(x) ≤ αV (r) in order to show stability, which compared to our Assumptions 6.4
or 6.30 has the drawback to yield fewer information for the design of “good” run-
ning costs �. Furthermore, suboptimality estimates are not easily available. It would
hence be desirable to extend the statement and proof of Theorem 6.18 to the case
of nonpositive definite running costs. A first attempt in this direction is the follow-
ing: suppose that we are able to find a function W : X → R

+
0 satisfying (7.6) with

γW (r) = r . Then the function

�W (x,u) := W(x) − W
(
f (x,u)

) + �(x,u)

satisfies a lower bound of the form

�∗
W(x) := min

u∈U
�W (x,u) ≥ αW

(|x|x∗
)

for all x ∈ X. Let u� be an optimal control for VN(x), i.e.,

VN(x) = JN

(
x,u�

) =
N−1∑

k=0

�
(
xu�(k, x), u�(k)

)

and define

ṼN (x) :=
N−1∑

k=0

�W

(
xu�(k, x), u�(k)

)
.

The definition of �W then implies

ṼN (x) = W(x) − W
(
xu�(N,x)

) + VN(x).

Changing the inequality in Assumption 6.30 to

Vk(x) ≤ Bk

(
�∗
W(x)

) − W(x)

then implies

Ṽk(x) ≤ Bk

(
�∗
W(x)

)
.

Using this inequality, it should be possible to carry over all results in Sect. 6.3 to ṼN

using �W in place of �. A rigorous investigation of this approach as well as possible
extensions will be the topic of future research.

In this context we would like to emphasize once again that even if the running
cost � only depends on an output y, the resulting NMPC-feedback law is still a state
feedback law because the full state information is needed in order to compute the
prediction xu(·, x0) for x0 = x(n).



174 7 Variants and Extensions

7.4 Multistep NMPC-Feedback Laws

Next we investigate what happens if instead of only the first control value u�(0) we
implement the first m values u�(0), . . . , u�(m − 1) before optimizing again. For-
mally, we can write this NMPC variant as a multistep feedback law

μN(x, k) := u�(k), k = 0, . . . ,m − 1,

where u� is an optimal control sequence for problem (OCPN,e) (or one of its vari-
ants) with initial value x0 = x. The resulting generalized closed-loop system then
reads

x(n + 1) = f
(
x(n),μN

(
x
([n]m

)
, n − [n]m

))
, (7.7)

where [n]m denotes the largest product km, k ∈ N0, with km ≤ n. The value m ∈
{1, . . . ,N − 1} is called the control horizon.

When using stabilizing terminal constraints, the respective stability proofs from
Chap. 5 are easily extended to this setting which we illustrate for Theorem 5.13.
Indeed, from VN(x) ≤ VN−1(x) one immediately gets the inequality VN(x) ≤
VN−m(x) for each m ∈ {1, . . . ,N − 1} and each x ∈ XN−m. Proceeding as in the
proof of Theorem 5.13 using Equality (3.20) inductively for N,N − 1, . . . ,N −
m + 1 and VN(x) ≤ VN−m(x) one obtains

VN(x) ≥
m−1∑

k=0

�
(
xμN

(k, x),μN(k, x)
) + VN

(
xμN

(m,x)
)
.

This shows that VN is a Lyapunov function for the closed-loop system at the times
0,m,2m, . . . . Since a similar argument shows that VN(xμN

(k, x)) is bounded by
VN(x) for k = 1, . . . ,m − 1, this proves asymptotic stability of the closed loop.

Without stabilizing terminal constraints, our analysis can be adjusted to the mul-
tistep setting, too, by extending Proposition 6.17 as well as the subsequent stability
results, accordingly. The respective extension of Formulas (6.19) and (7.4) (includ-
ing both control horizons m ≥ 1 and terminal weights ω ≥ 1) is given by

αω
N,m = 1 − (γm+1−ω)

∏N
i=m+2(γi−1)

∏N
i=N−m+1(γi−1)

(
∏N

i=m+1 γi−(γm+1−ω)
∏N

i=m+2(γi−1))(
∏N

i=N−m+1 γi−∏N
i=N−m+1(γi−1))

.

Again, the proof proceeds along the lines of the proof of Proposition 6.17 but be-
comes considerably more involved, cf. the paper by Grüne, Pannek, Seehafer and
Worthmann [20].

It is worth noting that these extended stability and performance results remain
valid if m is time varying, i.e., if the control horizon is changed dynamically, e.g.,
by a network induced perturbation. This has interesting applications in NMPC for
networked control systems, cf. the work of Grüne, Pannek and Worthmann [18].

Figure 7.3 shows how α = αω
N,m depends on m for an exponential β of type

(6.3) with C = 2 and σ = 0.75, optimization horizon N = 11, terminal weight ω =
1 and control horizons m = 1, . . . ,10. Here one observes two facts: first, the α-
values are symmetric, i.e., αω

N,m = αω
N,N−m and second, the values increase until

m = (N − 1)/2 and then decrease, again. This is not a particular feature of this
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Fig. 7.3 Suboptimality index
α depending on control
horizon m

Fig. 7.4 Numerically
measured values for α for a
linear inverted pendulum and
various initial values. The
thick line represents the
minimum

example. In fact, it can be rigorously proved for a general class of β ∈ K L0; see
[20] for details.

It is interesting to compare Fig. 7.3 with α-values which have been obtained
numerically from an NMPC simulation for the linear inverted pendulum, cf. Exam-
ple 2.10 and Sect. A.2 or [18] for the precise description of the problem. Figure 7.4
shows the resulting values for a set of different initial values. These values have
been computed by Algorithm 7.8 described in Sect. 7.7, below.

While the monotonicity is—at least approximately—visible in this example, the
perfect symmetry from Fig. 7.3 is not reflected in Fig. 7.4. A qualitatively similar
behavior can be observed for the nonlinear inverted pendulum; see Example 7.14,
below. In fact, so far we have not been able to find an example for which the symme-
try could be observed in simulations. This may be due to the fact that our stability
estimate is tight not for a single system but rather for the whole class of systems
satisfying Assumption 6.4, cf. Theorem 6.23. Our numerical findings suggest that
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the conservativity induced by this “worst case approach” is higher for small m than
for large m. This is also supported by Monte Carlo simulations performed by Grüne
in [14].

7.5 Fast Sampling

Let us now turn to the special case of sampled data systems. In this case, according
to (2.12) the discrete time solution xu(n, x0) represents the continuous time solution
ϕ(t,0, x0, v) at sampling times t = nT . In this setting, it is natural to define the
optimization horizon not in terms of the discrete time variable n but in terms of the
continuous time t . Fixing an optimization horizon Topt > 0 and picking a sampling
period T > 0 where we assume for simplicity of exposition that Topt is an integer
multiple of T , the discrete time optimization horizon becomes N = Topt/T , cf. also
Sect. 3.5.

Having introduced this notation, an interesting question is what happens to sta-
bility and performance of the NMPC closed loop if we keep Topt fixed but vary the
sampling period T . In particular, it is interesting to see what happens if we sample
faster and faster, i.e., if we let T → 0. Clearly, in a practical NMPC implementation
we cannot arbitrarily reduce T because we need some time for solving the optimal
control problem (OCPN) or its variants online. Still, in particular in the case of zero
order hold it is often desirable to sample as fast as possible in order to approximate
the ideal continuous time control signal as good as possible, cf., e.g., the paper of
Nešić and Teel [26], and thus one would like to make sure that this does not have
negative effects on the stability and performance of the closed loop.

In the case of equilibrium endpoint constraint from Sect. 5.2 it is immediately
clear that the stability result itself does not depend on T , however, the feasible set
XN may change with T . In the case of zero order hold, i.e., when the continuous
time control function ν is constant on each sampling interval [nT , (n + 1)T ), cf.
the discussion after Theorem 2.7, it is easily seen that each trajectory for sampling
period T is also a trajectory for each sampling period T/k for each k ∈ N. Hence,
the feasible set XkN for sampling period T/k always contains the feasible set XN

for sampling period T , i.e., the feasible set cannot shrink for k → ∞ and hence for
sampling period T/k we obtain at least the same stability properties as for sampling
period T .

In the case of Lyapunov function terminal costs F as discussed in Sect. 5.3 either
the terminal costs or the running costs need to be adjusted to the sampling period
T in order to ensure that Assumption 5.9 remains valid. One way to achieve this
is to choose a running cost in integral form (3.4) and the terminal cost F such
that the following condition holds: for each x ∈ X0 and some T0 > 0 there exists a
continuous time control v satisfying ϕ(t,0, x, v) ∈ X0 and

V
(
ϕ(t,0, x, v)

) − V (x) ≤ −
∫ t

0
L

(
ϕ(τ,0, x, v), v(τ )

)
dτ (7.8)
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for all t ∈ [0, T ], cf. also Findeisen [9, Sect. 4.4.2]. Under this condition one easily
checks that Assumption 5.9 holds for � from (3.4) and all T ≤ T0, provided the
control function v in (7.8) is of the form v|[nT ,(n+1)T )(t) = u(n)(t) for an admissible
discrete time control sequence u(·) with u(n) ∈ U . If U = L∞([0, T ],R

m) then this
last condition is not a restriction but if we use some smaller space for U (as in the
case of zero order hold, cf. the discussion after Theorem 2.7), then this may be more
difficult to achieve; see also [9, Remark 4.7].

Since the schemes from Chap. 6 do not use stabilizing terminal constraints X0
and terminal costs F , the difficulties just discussed vanish. However, the price to
pay for this simplification is that the analysis of the effect of small sampling periods
which we present in the remainder of this section is somewhat more complicated.

Fixing Topt and letting T → 0 we obtain that N = Topt/T → ∞. Looking at
Theorem 6.21, this is obviously a good feature, because this theorem states that the
larger N becomes, the better the performance will be. However, we cannot directly
apply this theorem because we have to take into account that β in the Controllability
Assumption 6.4 will also depend on T .

In order to facilitate the analysis, let us assume that in our discrete time NMPC
formulation we use a running cost � that only takes the states ϕ(nT ,0, x0, v) at the
sampling instants and the respective control values into account.1 For the continuous
time system, the controllability assumption can be formulated in discrete time. We
denote the set of admissible continuous time control functions (in analogy to the
discrete time notation) by V

τ (x). More precisely, for the admissible discrete time
control values U(x) ⊆ U ⊆ L∞([0, T ],R

m) (recall that these “values” are actually
functions on [0, T ], cf. the discussion after Theorem 2.7) and any τ > 0 we define

V
τ (x) := {

v ∈ L∞([0, τ ],R
m
) ∣∣ there exists u ∈ U

N(x) with N ≥ τ/T + 1

such that u(n) = v|[nT ,(n+1)T ](· + nT )

holds for all n ∈ N0 with nT < τ
}
.

Then, the respective assumption reads as follows.

Assumption 7.3 We assume that the continuous time system is asymptotically con-
trollable with respect to � with rate β ∈ K L0, i.e., for each x ∈ X and each τ > 0
there exists an admissible control function vx ∈ V

τ (x) satisfying

�
(
ϕ(t,0, x, vx), vx(t)

) ≤ β
(
�∗(x), t

)

for all t ∈ [0, τ ].

For the discrete time system (2.8) satisfying (2.12) the Controllability Assump-
tion 7.3 translates to the discrete time Assumption 6.4 as

�
(
xux (n, x),ux(n)

) ≤ β
(
�∗(x), nT

)
.

1Integral costs (3.4) can be treated, too, but this is somewhat more technical, cf. Grüne, von Lossow,
Pannek and Worthmann [21, Sect. 4.2].
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Fig. 7.5 Suboptimality index
α from (6.19) for fixed Topt
and varying sampling
period T

In the special case of exponential controllability, β in Assumption 7.3 is of the form

β(r, t) = Ce−λt r (7.9)

for C ≥ 1 and λ > 0. Thus, for the discrete time system, the Controllability As-
sumption 6.4 becomes

�
(
xux (n, x),ux(n)

) ≤ Ce−λnT �∗(x) = C
(
e−λT

)n
�∗(x)

and we obtain a K L0-function of type (6.3) with C from (7.9) and σ = e−λT .
Summarizing, if we change the sampling period T , then not only the discrete time

optimization horizon N but also the decay rate σ in the exponential controllability
property will change, more precisely we have σ → 1 as T → 0. When evaluating
(6.19) with the resulting values

γk =
k−1∑

j=0

Ce−λjT ,

it turns out that the convergence σ → 1 counteracts the positive effect of the growing
optimization horizons N → ∞. In fact, the negative effect of σ → 1 is so strong
that α diverges to −∞ as T → 0. Figure 7.5 illustrates this fact (which can also be
proven rigorously, cf. [21]) for C = 2, λ = 1 and Topt = 5.

This means that whenever we choose the sampling period T > 0 too small, then
performance may deteriorate and eventually instability may occur. This predicted
behavior is not consistent with observations in numerical examples. How can this
be explained?

The answer lies in the fact that our stability and performance estimate is only tight
for one particular system in the class of systems satisfying Assumption 6.4, cf. The-
orem 6.23 and the discussion preceding this theorem, and not for the whole class.
In particular, the subclass of sampled data systems satisfying Assumption 6.4 may
well behave better than general systems. Thus, we may try to identify the decisive
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Fig. 7.6 α for fixed Topt and varying sampling period T without Assumption 7.4 (lower graphs)
and with Assumption 7.4 (upper graphs) with L = 2 (left) and L = 10 (right)

property which makes sampled data systems behave better and try to incorporate
this property into our computation of α.

To this end, note that so far we have not imposed any continuity properties of f

in (2.1). Sampled data systems, however, are governed by differential equations (2.6)
for which we have assumed Lipschitz continuity in Assumption 2.4. Let us assume
for simplicity of exposition that the Lipschitz constant in this assumption is inde-
pendent of r . Then, for a large class of running costs � the following property for
the continuous time system can be concluded from Gronwall’s Lemma; see [21] for
details.

Assumption 7.4 There exists a constant L > 0 such that for each x ∈ X and each
τ > 0 there exists an admissible control function vx ∈ V

τ (x) satisfying

�
(
ϕ(t,0, x, vx), vx(t)

) ≤ eLt�∗(x)

for all t ∈ [0, τ ].

The estimates on � induced by this assumption can now be incorporated into the
analysis in Chap. 6. As a result, the values γk in Formula (6.19) change to

γk = min

{
k−1∑

j=0

Ce−λjT ,

k−1∑

j=0

eLjT

}

.

The effect of this change is clearly visible in Fig. 7.6. The α-values from (6.19) no
longer diverge to −∞ but rather converge to a finite—and for the chosen parameters
also positive—value as T → 0. Again, this convergence behavior can be rigorously
proved; for details we refer to [21].
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Fig. 7.7 Scheme of the NMPC closed-loop components

7.6 Compensation of Computation Times

Throughout the previous chapters we assumed that the solution of the optimal con-
trol problems (OCPN,e) and its variants in Step (2) of Algorithms 3.1, 3.7, 3.10
and 3.11 can be obtained instantaneously, i.e., with negligible computation time.
Clearly, this is not possible in general, as the algorithms for solving such problems,
cf. Chap. 10 for details, need some time to compute a solution. If this time is large
compared to the sampling period T , the computational delay caused by Step (2) is
not negligible and needs to be considered. One way for handling these delays would
be to interpret them as perturbations and use techniques similar to the robustness
analysis in Sects. 8.5–8.9. In this section we pursue another idea in which a delay
compensation mechanism is added to the NMPC scheme.

Taking a look at the structure of the NMPC algorithm from Chap. 3, we see that
Steps (1)–(3) correspond to different physical tasks: measuring, computing and ap-
plying the control. These tasks are operated by individual components as shown
schematically in Fig. 7.7. Note that in the following actuator, sensor and controller
are not required to be physically decomposed, however, this case is also not ex-
cluded.

While it is a necessity to consider different clocks in a decomposed setting, it
may not be the case if the components are physically connected. Here, we assume
that every single component possesses its own clock and, for simplicity of expo-
sition, that these clocks are synchronized (see the work of Varutti and Findeisen
[34, Sect. III.C] for a possible way to relax this assumption). To indicate that a time
instant n is considered with respect to a certain clock, we indicate this by adding
indices s for the sensor, c for the NMPC controller and a for the actuator.

The idea behind the compensation approach is to run the NMPC controller com-
ponent with a predefined time offset. This offset causes the controller to compute a
control ahead of time, such that the computed control value is readily available at
the time it is supposed to be applied, cf. Fig. 7.8. In this figure, τc denotes the actual
computational delay and τmax

c denotes the predefined offset. In order to be operable,
this offset needs to be chosen such that it is larger than the maximal computing time
required to solve the optimal control problem in Step (2) of the considered NMPC
algorithm. At time nc this optimal control problem is solved with a prediction x̃(na)

of the initial value x(na) based on the available measurement x(nc) = x(ns). This
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Fig. 7.8 Operation of time
decoupled NMPC scheme

Fig. 7.9 Scheme of the time decoupled NMPC closed-loop components

prediction is performed using the same model which is used for the NMPC predic-
tion in (OCPN,e) or its variants, i.e., using (2.1).

In order to perform this prediction, the control values μN(n,x(n)), n ∈
{ns, . . . , na} which are to be applied at the plant during the time interval [ns, na]
and which have been computed before by the NMPC controller are needed and are
therefore buffered. Thus, we extend the scheme given in Fig. 7.7 by adding the re-
quired predictor to the controller. The structure of the resulting scheme is shown in
Fig. 7.9.

Observe that in this scheme we buffer the control values twice: within the predic-
tor, but also at the actuator since the computation of μ(na, x(na)) will be finished
ahead of time if τc < τmax

c , which is the typical case. Alternatively, one could use
only one buffer at the controller and send each control value “just in time”. Using
two buffers has the advantage that further delays induced, e.g., by network delays
between the controller and the actuator can be compensated; see also the discussion
at the end of this section.

The corresponding algorithm has the following form. Since all NMPC algorithms
stated in Chap. 3 can be modified in a similar manner, we only show the algorithm
for the most general form given in Algorithm 3.11:

Algorithm 7.5 (Time decoupled NMPC algorithm for time varying reference) At
each sampling time tn, n = 0,1,2, . . .:

(1) Measure the state x(ns) := x(n) ∈ X of the system and send pair (ns, x(ns))

to controller.
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(2a) Delete pair (nc − 1,μN(nc − 1, x(nc − 1))) from buffer Bc and compute the
predicted state x̃(nc + τmax

c ) from the measured state x(nc).
(2b) Set ñ := nc + τmax

c , x0 = x̃(ñ) and solve the optimal control problem

minimize JN

(
ñ, x0, u(·)) :=

N−1∑

k=0

ωN−k�
(
ñ+k, xu(k, x0), u(k)

)

+ F
(
ñ + N,xu(N,x0)

)

with respect to u(·) ∈ U
N
X0

(ñ, x0), subject to

xu(0, x0) = x0, xu(k + 1, x0) = f
(
xu(k, x0), u(k)

)

(OCPn
N,e)

and denote the obtained optimal control sequence by u�(·) ∈ U
N
X0

(ñ, x0).
(2c) Add pair (ñ,μN(ñ, x̃(ñ))) := (ñ, u�(0)) to Buffer Bc and send it to actuator.
(3a) Delete pair (na − τmax

c − 1,μN(na − τmax
c − 1, x̃(na − τmax

c − 1))) and add
received pair (na,μN(na, x̃(na))) to buffer Ba .

(3b) Use μN(na − τmax
c , x̃(na − τmax

c )) in the next sampling period.

At a first glance, writing this algorithm using three different clocks and sending
time stamped information in Steps (1) and (2c) may be considered as overly compli-
cated, given that ns in Step (1) is always equal to nc in Step (2a) and nc in Step (2c)
always equals na in Step (3a). However, this way of writing the algorithm allows us
to easily separate the components—sensor, predictor/controller and actuator—of the
NMPC scheme and to assume that the “sending” in Steps (1) and (2c) is performed
via a digital network. Then, we can assign Step (1) to the sensor, Steps (2a)–(2c) to
the controller and Steps (3a) and (3b) to the actuator. Assuming that all transmis-
sions between the components can be done with negligible delay, we can run these
three steps as separate algorithms in parallel. Denoting the real time by n, the re-
sulting scheduling structure is sketched in Fig. 7.10 for τmax

c = 2. For comparison,
the structure of the NMPC Algorithm 3.11 without prediction is indicated by the
dashed lines.

Since the algorithm is already applicable to work in parallel, it can be extended to
a more complex networked control context in which transmission delays and packet
loss may occur. To this end, such delays have to be considered in the prediction
and an appropriate error handling must be added for handling dropouts; see, e.g.,
the paper by Grüne, Pannek and Worthmann [19]. In the presence of transmission
delays and dropouts, we cannot expect that all control values are actually available
at the actuator when they are supposed to be applied. Using NMPC, this can be
compensated easily using the multistep feedback concept and the respective stability
results from Sect. 7.4 as presented by Grüne et al. in [18].

Besides [19], which forms the basis for the presentation in this section, model
based prediction for compensating computational delay in NMPC schemes has been
considered earlier, e.g., in the works of Chen, Ballance and O’Reilly [4] and Find-
eisen and Allgöwer [10]. Note that the use of the nominal model (2.1) for predicting
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Fig. 7.10 Comparison of scheduling structure between NMPC Algorithms 3.11 (dashed lines)
and 7.5 (solid lines) with τmax

c = 2T

future states may lead to wrong predictions in case of model uncertainties, distur-
bances etc. In this case, the predicted state x̃(ñ) may differ from the actual state
x(na) at time na = ñ and hence (OCPN,e) is solved with a wrong initial value. In
the paper of Zavala and Biegler [35] a method for correcting this mismatch based
on NLP sensitivity techniques is presented, cf. also Sect. 10.5.

7.7 Online Measurement of α

In the analysis of NMPC schemes without stabilizing terminal constraints in
Chap. 6, one of the central aims was to establish conditions to rigorously guarantee
the existence of α ∈ (0,1] such that the inequality

VN(n, x) ≥ α�
(
n,x,μN(n, x)

) + VN

(
n + 1, f

(
x,μN(n, x)

))
(5.1)

holds for all x ∈ X and n ∈ N0. While Theorem 6.14 and Proposition 6.17 provide
computational methods for estimating α from the problem data, the assumptions
needed for these computations—in particular Assumption 6.4—may be difficult to
check.

In this section we present methods from Grüne and Pannek [15] and Pannek [29]
which allow for the online computation or estimation of α along simulated NMPC
closed-loop trajectories. There are several motivations for proceeding this way. First,
as already mentioned, it may be difficult to check the assumptions needed for the
computation of α using Theorem 6.14 or Proposition 6.17. Although a simulation
based computation of α for a selection of closed-loop trajectories cannot rigorously
guarantee stability and performance for all possible closed-loop trajectories, it may
still give valuable insight into the performance of the controller. In particular, the
information obtained from such simulations may be very useful in order to tune
the controller parameters, in particular the optimization horizon N and the running
cost �.

Second, requiring (5.1) to hold for all x ∈ X may result in a rather conservative
estimate for α. As we will see in Proposition 7.6, below, for assessing the perfor-
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mance of the controller along one closed-loop trajectory it is sufficient that (5.1)
holds only for those points x ∈ X which are actually visited by this trajectory.

Finally, the knowledge of α may be used for an online adaptation of the opti-
mization horizon N ; some ideas in this direction are described in the subsequent
Sect. 7.8.

Our first result shows that for assessing stability and performance of the NMPC
controller along one specific closed-loop trajectory it is sufficient to find α such that
(5.1) holds for the points actually visited by this trajectory.

Proposition 7.6 Consider the feedback law μN : N0 × X → U computed from
Algorithm 3.7 and the closed-loop trajectory x(·) = xμN

(·) of (3.9) with initial value
x(0) ∈ X at initial time 0. If the optimal value function VN : N0 × X → R

+
0 satisfies

VN

(
n,x(n)

) ≥ VN

(
n + 1, x(n + 1)

) + α�
(
n,x(n),μN

(
n,x(n)

))
(7.10)

for some α ∈ (0,1] and all n ∈ N0, then

αV∞
(
n,x(n)

) ≤ αJ∞
(
n,x(n),μN

) ≤ VN

(
n,x(n)

) ≤ V∞
(
n,x(n)

)
(7.11)

holds for all n ∈ N0.
If, in addition, there exist α1, α2, α3 ∈ K∞ such that (5.2) holds for all (n, x) ∈

N0 × X with n ∈ N0 and x = x(n), then there exists β ∈ K L which only depends on
α1, α2, α3 and α such that the inequality

∣∣x(n)
∣∣
xref(n)

≤ β
(∣∣x(0)

∣∣
xref(0)

, n
)

holds for all n ∈ N0, i.e., x behaves like a trajectory of an asymptotically stable
system.

Proof The proof of (7.11) is similar to the proof of Theorem 4.11.
The existence of β follows with the same construction as in the proof of Theo-

rem 2.19, observing that the definition of β in this proof only depends on α1, α2 and
αV = αα3 and not on the specific form of V = VN . �

Proposition 7.6 gives us a way to compute α from the data available at runtime
and guarantees the performance estimate (7.11) as well as—under the additional
assumption that (5.2) holds—asymptotic stability-like behavior for the considered
closed-loop trajectory if α > 0. Moreover, under this additional assumption (7.10)
immediately implies that VN strictly decreases along the trajectory, i.e., it behaves
like a Lyapunov function.

Since the values of α for which (5.1) holds for all x ∈ X and for which (7.10)
holds along a specific trajectory xμN

will be different in general, we introduce the
following definition.

Definition 7.7

(1) We call α := max{α | (5.1) holds for all x ∈ X} the global suboptimality degree.
(2) For fixed x ∈ X the maximal value of α satisfying (5.1) for this x is called local

suboptimality degree in x.
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(3) Given a closed-loop trajectory xμN
(·) of (3.9) with initial time 0 we call

α := max{α | (7.10) holds for all n ∈ N0 with x(·) = xμN
(·)} the closed-loop

suboptimality degree along xμN
(·).

An algorithm to evaluate α from (7.10) can easily be obtained and integrated into
Algorithm 3.7:

Algorithm 7.8 (NMPC algorithm for time varying reference xref with a posteriori
suboptimality estimate) Set α = 1. At each sampling time tn, n = 0,1,2, . . . :

(1) Measure the state x(n) ∈ X of the system.
(2) Set x0 = x(n) and solve the optimal control problem

minimize JN

(
n,x0, u(·)) :=

N−1∑

k=0

�
(
n+k, xu(k, x0), u(k)

)

with respect to u(·) ∈ U
N(x0), subject to

xu(0, x0) = x0, xu(k + 1, x0) = f
(
xu(k, x0), u(k)

)

(OCPn
N)

and denote the obtained optimal control sequence by u�(·) ∈ U
N(x0).

(3) Define the NMPC-feedback value μN(n,x(n)) := u�(0) ∈ U and use this con-
trol value in the next sampling period.

(4) If n ≥ 1 compute α via

αl = VN(n − 1, x(n − 1)) − VN(n, x(n))

�(n − 1, x(n − 1),μN(n − 1, x(n − 1)))
,

α = min{α,αl}.

Proposition 7.6 and Algorithm 7.8 are easily extended to the multistep NMPC
case described in Sect. 7.4. In this case, (7.10) is replaced by

VN

(
n,x(n)

) ≥ VN

(
n + m + 1, x(n + m + 1)

)

+ α

m∑

k=0

�
(
n + k, xu

(
k, x(n)

)
, u�

(
k, x(n)

))

and the definition of αl in Step (4) is changed, accordingly.
Note that in Step (4) of Algorithm 7.8, the computation of αl does not provide

the value of α in (7.10) for the current time instant n but for n − 1. This is why
we call α from Algorithm 7.8 an a posteriori estimate. The distinction between
the current value of αl and α in Step (4) is required in order to be consistent with
Proposition 7.6 since αl corresponds to the local suboptimality degree in x(n − 1)

while the suboptimality degree according to Proposition 7.6 is the minimum over
all αl along the closed loop.

While Algorithm 7.8 is perfectly suited in order to evaluate the performance of
an NMPC controller via numerical simulations, its a posteriori nature is not suitable
if we want to use the estimated α in order to adjust the optimization horizon N . For



186 7 Variants and Extensions

instance, if we detect that at some time n the value of α in (7.10) is too small—or
even negative—then we may want to increase N in order to increase α (see Sect. 7.8
for more details on such procedures). However, in Algorithm 7.8 the value of α in
(7.10) only becomes available at time n + 1, which is too late in order to adjust N .

A simple remedy for this problem is to solve at time n a second optimal control
problem (OCPn

N) with initial value xu(1, x(n)) and initial time n := n+1. However,
since solving the problem (OCPn

N) is the computationally most expensive part of the
NMPC algorithm, this solution would be rather inefficient.

In order to obtain an a priori estimate with reduced additional computing costs,
a few more insights into the local NMPC problem structure are required. The main
tool we are going to use is the following lemma.

Lemma 7.9 Consider the feedback law μN : N0 × X → U computed from Algo-
rithm 3.7 and the closed-loop trajectory x(·) = xμN

(·) of (3.9) with initial value
x(0) = x0 ∈ X at initial time 0. If

VN

(
n + 1, x(n + 1)

) − VN−1
(
n + 1, x(n + 1)

)

≤ (1 − α)�
(
n,x(n),μN

(
n,x(n)

))
(7.12)

holds for some α ∈ [0,1] and some n ∈ N0, then (7.11) holds for this n.

Proof Using the dynamic programming principle (3.16) with K = 1 we obtain

VN

(
n,x(n)

) = �
(
n,x(n),μN

(
n,x(n)

)) + VN−1
(
n + 1, x(n + 1)

)

≥ �
(
n,x(n),μN

(
n,x(n)

)) + VN

(
n + 1, x(n + 1)

)

− (1 − α)�
(
n,x(n),μN

(
n,x(n)

))

= VN

(
n + 1, x(n + 1)

) + α�
(
n,x(n),μN

(
n,x(n)

))
.

Hence, (7.10) holds and Proposition 7.6 guarantees the assertion. �

Now, we would not gain much if we tried to compute α using (7.12) directly,
since we would again need the future information VN(n + 1, x(n + 1)), i.e., the
solution of another optimal control problem (in contrast to that VN−1(n + 1, x(n +
1)) is readily available at time n since by the dynamic programming principle it can
be computed from VN(n, x(n)) and �(x(n),μN(x(n)))). There is, however, a way
to reduce the size of the additional optimal control problem that needs to be solved.
To this end, we introduce the following assumption which will later be checked
numerically in our algorithm.

Assumption 7.10 For given N , N0 ∈ N, N ≥ N0 ≥ 2, there exists a constant γ > 0
such that for the optimal open-loop solution xu�(·, x(n)) of (OCPn

N) in Algorithm 3.7
the inequalities

VN0(n + N − N0, xu�(N − N0, x(n)))

γ + 1
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≤ max
j=N−N0,...,N−2

�
(
n + j, xu

(
n + j, x(n)

)
,μN−j−1

(
n + j, xu�

(
j, x(n)

)))
,

Vk(n + N − k, xu�(N − k, x(n)))

γ + 1

≤ �
(
n + N − k, xu�

(
N − k, x(n)

)
,μk

(
n + N − k, xu�

(
N − k, x(n)

)))

hold for all k ∈ {N0 + 1, . . . ,N} and all n ∈ N0.

Note that computing γ for which this assumption holds requires only the com-
putation of μj for j = 1, . . . ,N0 − 1 in the first inequality, since μk in the second
inequality can be obtained from u� via (3.23). This corresponds to solving N0 − 2
additional optimal control problems which may look like a step backward, but since
these optimal control problems are defined on a significantly smaller horizon, the
computing costs are actually reduced. In fact, in the special case that � does not
depend on u, no additional computations have to be performed, at all. In this as-
sumption, the value N0 is a design parameter which affects the computational effort
for checking Assumption 7.10 as well as the accuracy of the estimate for α obtained
from this assumption.

Under Assumption 7.10 we can relate the minimal values of two optimal control
problems with different horizon lengths.

Proposition 7.11 Suppose that Assumption 7.10 holds for N ≥ N0 ≥ 2. Then

(γ + 1)N−N0

(γ + 1)N−N0 + γ N−N0+1
VN

(
n,x(n)

) ≤ VN−1
(
n,x(n)

)

holds for all n ∈ N0.

Proof In the following we use the abbreviation xu(j) := xu(j, x(n)), j = 0, . . . ,N ,
since all our calculations use the open-loop trajectory with fixed initial value x(n).

Set ñ := N −k. Using the principle of optimality and Assumption 7.10 we obtain

Vk−1
(
n + ñ + 1, f

(
xu(ñ),μk

(
n + ñ, xu(ñ)

)))

≤ γ �
(
n + ñ, xu(ñ),μk

(
n + ñ, xu(ñ)

))
(7.13)

for all k ∈ {N0 + 1, . . . ,N} and all n ∈ N0.

We abbreviate ηk = (γ+1)k−N0

(γ+1)k−N0 +γ k−N0+1 and prove the main assertion

ηkVk(n + ñ, xu(ñ)) ≤ Vk−1(n + ñ, xu(ñ)) by induction over k = N0, . . . ,N . By
choosing
xu(0) = x(n) with n being arbitrary but fixed we obtain

VN0

(
n + N − N0, xu(N − N0)

)

≤ (γ + 1) max
j=2,...,N0

�
(
n + N − j, xu(N − j),μj−1

(
n + N − j, xu(N − j)

))

≤ (γ + 1)

N0∑

j=2

�
(
n + N − j, xu(N − j),μj−1

(
n + N − j, xu(N − j)

))
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= 1

ηN0

VN0−1
(
n + N − N0, xu(N − N0)

)
.

For the induction step k → k +1 the following holds, using (7.13) and the induction
assumption:

Vk

(
n + ñ, xu(ñ)

)

= Vk−1
(
n + ñ + 1, f

(
xu(ñ),μk

(
n + ñ, xu(ñ)

)))

+ �
(
n + ñ, xu(ñ),μk

(
n + ñ, xu(ñ)

))

≥ ηk

(
1 + 1 − ηk

γ + ηk

)
Vk

(
n + ñ + 1, f

(
xu(ñ),μk

(
n + ñ, xu(ñ)

)))

+
(

1 − γ
1 − ηk

γ + ηk

)
�
(
n + ñ, xu(ñ),μk

(
n + ñ, xu(ñ)

))

= ηk

γ + 1

γ + ηk

(
Vk

(
n + ñ + 1, f

(
xu(ñ),μk

(
n + ñ, xu(ñ)

)))

+ �
(
n + ñ, xu(ñ),μk

(
n + ñ, xu(ñ)

)))

using the dynamic programming principle (3.16) with K = 1 in the last step. Hence,
we obtain Vk(n + ñ, xu(ñ)) ≥ ηk

γ+1
γ+ηk

Vk+1(n + ñ, xu(ñ)) with

ηk

γ + 1

γ + ηk

= (γ + 1)k−2

(γ + 1)k−2 + γ k−1

γ + 1

γ + (γ+1)k−2

(γ+1)k−2+γ k−1

= (γ + 1)k−1

(γ + 1)k−1 + γ k
= ηk+1.

If we choose k = N then we get ñ = 0. Inserting this into our induction result we
can use xu(0) = xu(0, x(n)) = x(n) and the assertion holds. �

Finally, we can now use Proposition 7.11 within the NMPC closed loop. This al-
lows us to verify Condition (7.12) and to estimate α directly from Assumption 7.10.

Theorem 7.12 Consider γ > 0 and N , N0 ∈ N, N ≥ N0 such that (γ + 1)N−N0 >

γ N−N0+2 holds. If Assumption 7.10 is fulfilled for these γ , N and N0, then the
estimate (7.11) holds for all n ∈ N0 where

α := (γ + 1)N−N0 − γ N−N0+2

(γ + 1)N−N0
. (7.14)

Proof From Proposition 7.11 we know

VN

(
n,x(n)

) − VN−1
(
n,x(n)

) ≤ γ N−N0+1

(γ + 1)N−N0
VN−1

(
n,x(n)

)
.

Setting j = n − 1, we can reformulate this and obtain

VN

(
j + 1, x(j + 1)

) − VN−1
(
j + 1, x(j + 1)

)

≤ γ N−N0+1

(γ + 1)N−N0
VN−1

(
j + 1, f

(
xu

(
0, x(j)

)
,μN

(
j, xu

(
0, x(j)

))))
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using the dynamics of the optimal open-loop solution. Now, we can use (7.13) with
k = N and get

VN

(
j + 1, x(j + 1)

) − VN−1
(
j + 1, x(j + 1)

)

≤ γ N−N0+2

(γ + 1)N−N0
�
(
j, x(j),μN

(
j, x(j)

))
.

Hence, the assumptions of Lemma 7.9 are fulfilled with

α = 1 − γ N−N0+2

(γ + 1)N−N0
= (γ + 1)N−N0 − γ N−N0+2

(γ + 1)N−N0

and the assertion follows. �

Similar to Proposition 7.6, the required values of γ and α are easily computable
and allow us to extend Algorithm 3.7 in a similar manner as we did in Algorithm 7.8.

Algorithm 7.13 (NMPC algorithm for time varying reference xref with a priori sub-
optimality estimate) Set α = 1. At each sampling time tn, n = 0,1,2, . . . :

(1) Measure the state x(n) ∈ X of the system.
(2) Set x0 = x(n) and solve the optimal control problem

minimize JN

(
n,x0, u(·)) :=

N−1∑

k=0

�
(
n+k, xu(k, x0), u(k)

)

with respect to u(·) ∈ U
N(x0), subject to

xu(0, x0) = x0, xu(k + 1, x0) = f
(
xu(k, x0), u(k)

)

(OCPn
N)

and denote the obtained optimal control sequence by u�(·) ∈ U
N(x0).

(3) Define the NMPC-feedback value μN(n,x(n)) := u�(0) ∈ U and use this con-
trol value in the next sampling period.

(4) Compute α via

Find the minimal γ which satisfies the inequalities

in Assumption 7.10 for the current n and set

α = min

{
α,

(γ + 1)N−N0 − γ N−N0+2

(γ + 1)N−N0

}
.

Note that checking the additional condition (γ + 1)N−N0 > γ N−N0+2 from The-
orem 7.12 is unnecessary, since a violation would lead to a negative α in which case
asymptotic stability cannot be guaranteed by means of Theorem 7.12, anyway.

Similar to Proposition 7.6, the results from Theorem 7.12 are easily carried over
to the multistep NMPC case described in Sect. 7.4 by extending Assumption 7.10.

Example 7.14 To illustrate these results, we consider the inverted pendulum on a
cart problem from Example 2.10 with parameters g = 9.81, l = 10 and kR = kL =
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Fig. 7.11 Vector field and cost function

0.01 and control constraint set U = [−15,15]. Our aim is to stabilize one of the
upright positions x ∈ S := {((k + 1)π,0,0,0)� | k ∈ 2Z}. For this example we will
provide online measurements of α using Algorithm 7.8 for one fixed initial value
and varying terminal weights ω, cf. Sect. 7.2, and control horizons, cf. Sect. 7.4. For
a comparison of Algorithms 7.8 and 7.13 we refer to [15] and [29].

In order to obtain a suitable cost function, we follow the guidelines from Sect. 6.6
and construct a cost function for which—at least in the first two components—
the overshoot of � along a typical stable trajectory becomes small. To this end, we
have used the geometry of the vector field of the first two differential equations
representing the pendulum, see Fig. 7.11(a), and shaped the cost function such that
it exhibits local maxima at the downward equilibria and “valleys” along the stable
manifolds of the upright equilibria to be stabilized. The resulting cost function � is
of the integral type (3.4) with

L(x,u) := 10−4u2 + (
3.51 sin(x1 − π)2 + 4.82 sin(x1 − π)x2

+ 2.31x2
2 + 0.1

((
1 − cos(x1 − π)

) · (1 + cos(x2)
2))2

+ 0.01x2
3 + 0.1x2

4

)2
,

cf. Fig. 7.11(b). Using the terminal weights from Sect. 7.2, the cost functional be-
comes

JN(x0, u) =
N−2∑

i=0

�
(
x(i), u(i)

) + ω�
(
x(N − 1), u(N − 1)

)
.

This way of adjusting the cost function to the dynamics allows us to considerably
reduce the length of the optimization horizon for obtaining stability in the NMPC
scheme without stabilizing terminal constraints compared to simpler choices of �.
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Fig. 7.12 Computed value for αω
70,m for the nonlinear inverted pendulum example 2.10 with con-

trol horizons m ∈ {1, . . . ,20} and terminal weights ω ∈ {1, . . . ,10}

However, for the initial value x0 = (2π +1.5,0,0,0) and sampling period T = 0.05,
which have been used in the subsequent computations, we still need a rather large
optimization horizon of N = 70 to obtain stability of the closed loop.

Since the cost function is 2π -periodic it does not penalize the distance to a spe-
cific equilibrium in S ; rather, it penalizes the distance to the whole set. For a better
comparison of the solutions for different parameters we want to force the algorithm
to stabilize one specific upright position in S . To this end, we add box-constraints
to X limiting the x1-component to the interval [−π + 0.01,3π − 0.01]. The toler-
ances of the optimization routine and the differential equation solver are set to 10−6

and 10−7, respectively. The NMPC closed-loop trajectories displayed in Fig. 7.12
are simulated for terminal weights ω = 1, . . . ,10, cf. Sect. 7.2, and control horizons
m = 1, . . . ,10, cf. Sect. 7.4. The resulting α-values from Algorithm 7.8, denoted by
αω

N,m, are shown in Fig. 7.12.
Note that for ω = 1 the α values are negative for control horizons m = 1, . . . ,4.

Still, larger control horizons exhibit a positive α value such that stability is guaran-
teed. This is in accordance with the theoretical results from Sect. 7.4, even though
these simulation based results do not share the monotonicity of the theoretical
bounds from Fig. 7.3. Additionally, an increase of α can be observed for all con-
trol horizons m if ω is increased. This confirms the stabilizing effect of terminal
costs shown theoretically in Sect. 7.2; cf. Fig. 7.1.

Summarizing, these results show that the online measurement of α yields valu-
able insights into the performance analysis of NMPC schemes without terminal
constraints and thus nicely complements the theoretical results from Chap. 6 and
Sects. 7.2 and 7.4.

7.8 Adaptive Optimization Horizon

In the previous Sect. 7.7 we have shown how the suboptimality degree α can be
computed at runtime of the NMPC scheme without stabilizing terminal constraints.
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If the horizon length N is not chosen adequately, then it is likely that during runtime
a value α < 0 is obtained. In this case, stability of the closed loop cannot be guaran-
teed by Proposition 7.6 or Theorem 7.12. However, the ability to compute α for each
point x(n) on the closed-loop trajectory using the techniques from Sect. 7.7 natu-
rally leads to the idea of adapting the optimization horizon N at each time n such
that stability and desired performance can be guaranteed. In this section, we will
show some algorithms for this purpose, taken from Pannek [29]. Here we restrict
ourselves to the basic idea and refer to [29] for more sophisticated approaches.

The fundamental idea of such an adaptive algorithm is rather simple: introducing
a stability and suboptimality threshold α > 0, at each sampling instant n we prolong
the optimization horizon if α for the current horizon is smaller than α. If α > α

holds, then we may reduce N in order to save computational time. This leads to the
following algorithm.

Algorithm 7.15 (Adaptive horizon NMPC algorithm for time varying reference)
Set N0 > 0 and α > 0. At each sampling time tn, n = 0,1,2, . . . :

(1) Measure the state x(n) ∈ X of the system and set α = 0.
(2) While α > α

(a) Set x0 = x(n), N = Nn and solve the optimal control problem

minimize JN

(
n,x0, u(·)) :=

N−1∑

k=0

�
(
n+k, xu(k, x0), u(k)

)

with respect to u(·) ∈ U
N(x0), subject to

xu(0, x0) = x0, xu(k + 1, x0) = f
(
xu(k, x0), u(k)

)
.

(OCPn
N)

Denote the obtained optimal control sequence by u�(·) ∈ U
N(x0).

(b) Compute α via Proposition 7.6 or Theorem 7.12.
(c) If α > α call reducing strategy for Nn, else call increasing strategy for Nn;

obtain u�(·) for the new N = Nn and an initial guess for Nn+1.
(3) Define the NMPC-feedback value μN(n,x(n)) := u�(0) ∈ U and use this con-

trol value in the next sampling period.

Here, the initial guess Nn+1 in Step (2c) will typically be Nn+1 = Nn, however,
as we will see below, in the case of reducing Nn the choice Nn+1 = Nn − 1 is more
efficient, cf. the discussion after Proposition 7.18.

If this algorithm is successful in ensuring α ≥ α for each n, then the assumptions
of Proposition 7.6 or Theorem 7.12 are satisfied. However, these results require the
optimization horizon N to be fixed and hence do not apply to Algorithm 7.15 in
which Nn changes with time.

To cope with this issue, we generalize Proposition 7.6 to varying optimization
horizons. To this end, for each x ∈ X and N ∈ N we denote the maximal α from
(7.10) by α(N). We then introduce the following assumption, which guarantees that
for any horizon N satisfying α(N) ≥ α the controller shows a bounded guaranteed
performance if the horizon length is increased.
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Assumption 7.16 Given n ∈ N0, x ∈ X, N < ∞ and a value α ∈ (0,1) with
α(N) ≥ α, we assume that there exist constants Cl,Cα > 0 such that the inequalities

Cl�
(
n,x,μN(n, x)

)

≤ �
(
n,x,μÑ (n, x)

)VÑ (n, x) − VÑ (n + 1, f (x,μN(n, x)))

VÑ (n, x) − VÑ (n + 1, f (x,μÑ (n, x)))
, (7.15)

Cαα(N) ≤ α(Ñ) (7.16)

hold for all Ñ ≥ N .

The reason for Assumption 7.16 is that it is possible that the performance of the
controller μN may not improve monotonically as N increases; see Di Palma and
Magni [6]. Consequently, we cannot expect α(Ñ) ≥ α(N) for Ñ > N . Still, we need
to ensure that α(Ñ) does not become too small compared to α(N), in particular,
α(Ñ) should not drop below zero if the horizon length is increased; this is ensured
by (7.16). Furthermore, we need an estimate for the dependence of �(n, x,μN(n, x))

on N which is given by (7.15). Unfortunately, for both inequalities so far we were
not able to provide sufficient conditions in terms of the problem data, like, e.g., a
controllability condition similar to Assumption 6.4. Still, numerical evaluation for
several examples showed that these inequalities are satisfied and that Cl and Cα

attain reasonable values.
Using Assumption 7.16, we obtain a stability and performance estimate of the

closed loop in the context of changing horizon lengths similar to Proposition 7.6.
Since the closed-loop control resulting from Algorithm 7.15 now depends on a se-
quence of horizons (Nn)n∈N0 we obtain a sequence of control laws (μNn)n∈N0 . The
closed-loop trajectory generated by this algorithm is then given by

x(n + 1) = f
(
x(n),μNn

(
n,x(n)

))
. (7.17)

Theorem 7.17 Consider the sequence of feedback laws (μNn) computed from Al-
gorithm 7.15 and the corresponding closed-loop trajectory x(·) from (7.17). Assume
that for optimal value functions VNn : N0 × X → R

+
0 of (OCPn

N) with N = Nn the
inequality

VNn

(
n,x(n)

) ≥ VNn

(
n + 1, x(n + 1)

) + α�
(
n,x(n),μNn

(
n,x(n)

))
(7.18)

holds for all n ∈ N0 and that Assumption 7.16 is satisfied for all triplets (n, x,N) =
(n, x(n),Nn), n ∈ N0, with constants C

(n)
l , C

(n)
α . Then

αCV∞
(
n,x(n)

) ≤ αCJ∞
(
n,x(n),μ(Nn)

) ≤ VN�

(
n,x(n)

) ≤ V∞
(
n,x(n)

)
(7.19)

holds for all n ∈ N0 where αC := mini∈N≥n
C

(i)
α C

(i)
l α.

Proof Given (i, x(i),Ni) for some i ∈ N0, Assumption 7.16 for (n, x,N) =
(i, x(i),Ni) guarantees α(Ni) ≤ α(Ñ)/C

(i)
α for Ñ ≥ Ni . Choosing Ñ = N�, we ob-

tain α ≤ α(Ni) ≤ α(N�)/C
(i)
α using the relaxed Lyapunov Inequality (7.18). Multi-

plying by the stage cost �(i, x(i),μNi
(i, x(i))), we can conclude
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α�
(
i, x(i),μNi

(
i, x(i)

))

≤ α(N�)

C
(i)
α

�
(
i, x(i),μNi

(
i, x(i)

))

= VN�(i, x(i)) − VN�(i + 1, f (x(i),μN�(i, x(i))))

C
(i)
α �(i, x(i),μN�(i, x(i)))

�
(
i, x(i),μNi

(
i, x(i)

))

≤ VN�(i, x(i)) − VN�(i + 1, f (x(i),μNi
(i, x(i))))

C
(i)
α C

(i)
l

using (7.18) and (7.15). In particular, the latter condition allows us to use an identical
telescope sum argument as in the proof of Proposition 7.6 since it relates the closed-
loop varying optimization horizon to a fixed one. Hence, summing the running costs
along the closed-loop trajectory reveals

αC

K∑

i=n

�
(
i, x(i),μNi

(
i, x(i)

)) ≤ VN�

(
n,x(n)

) − VN�

(
K + 1, x(K + 1)

)

where we defined αC := mini∈[n,...,K] C(i)
α C

(i)
l α. Since VN�(K + 1, x(K + 1)) ≥ 0

holds, we can neglect it in the last inequality. Taking K to infinity yields

αCV
μ(Ni )∞

(
n,x(n)

) = αC lim
K→∞

K∑

i=n

�
(
i, x(i),μNi

(
i, x(i)

)) ≤ VN�

(
n,x(n)

)
.

Since the first and the last inequality of (7.19) hold by definition of VN and V∞, the
assertion follows. �

If the conditions of this theorem hold, then stability-like behavior of the closed
loop can be obtained analogously to Proposition 7.6.

Having shown the analytical background, we now present adaptation strategies
which can be used for increasing or reducing the optimization horizon N in Step (2c)
of Algorithm 7.15. For simplicity of exposition, we restrict ourselves to two simple
strategies and consider a posteriori estimates based variants only. Despite their sim-
plicity, these methods have shown to be reliable and fast in numerical simulations.
A more detailed analysis, further methods and comparisons can be found in [29].
The following proposition yields the basis for a strategy for reducing Nn.

Proposition 7.18 Consider the optimal control problem (OCPn
N) with initial value

x0 = x(n), Nn ∈ N, and denote the optimal control sequence by u�. For fixed α ∈
(0,1), suppose there exists an integer i ∈ N0, 0 ≤ i < N such that

VNn−i

(
n + i + 1, xu�

(
i + 1, x(n)

))

+ α�
(
n + i, xu�

(
i, x(n)

)
,μNn−i

(
n + i, xu�

(
i, x(n)

)))

≤ VNn−i

(
n + i, xu�

(
i, x(n)

))
(7.20)

holds for all 0 ≤ i ≤ i. Then, setting Nn+i = Nn − i and μNn+i
(n + i, x(n + i)) =

u�(i) for 0 ≤ i ≤ i − 1, Inequality (7.18) holds for n = n, . . . , n + i − 1.
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Proof The proof follows immediately from the fact that for μNn+i
(n + i, x(n +

i)) = u�(i) the closed-loop trajectory (7.17) satisfies x(n+ i) = xu�(i, x(n)). Hence,
(7.18) follows from (7.20). �

Observe that Proposition 7.18 is quite similar to the results from Sect. 7.4, since
μNn+i

(n + i, x(n + i)) as defined in this theorem coincides with the multistep feed-
back law from Sect. 7.4. Thus, Proposition 7.18 guarantees that if i > 1, then the
multistep NMPC feedback from Sect. 7.4 can be applied with m = i steps such that
the suboptimality threshold α can be guaranteed. With the choice Nn+i = Nn − i,
due to the principle of optimality we obtain that the optimal control problems within
the next i − 1 NMPC iterations are already solved since μNn+i

(n + i, x(n + i)) can
be obtained from the optimal control sequence u�(·) ∈ U

N(x(n)) computed at time
n. This implies that the most efficient way for the reducing strategy in Step (2c) of
Algorithm 7.15 is not to reduce Nn itself but rather to reduce the horizons Nn+i by
i for the subsequent sampling instants n + 1, . . . , n + i, i.e., we choose the initial
guess in Step (2c) as Nn+1 = Nn − 1. Still, if the a posteriori estimate is used, the
evaluation of (7.20) requires the solution of an additional optimal control problem
in each step in order to compute VNn−i (n + i + 1, xu�(i + 1, x(n))).

In contrast to this efficient and simple shortening strategy, it is quite difficult
to obtain efficient methods for prolonging the optimization horizon N in Step (2c)
of Algorithm 7.15. In order to understand why this is the case, we first introduce
the basic idea behind any such prolongation strategy: at each sampling instant we
iteratively increase the horizon Nn until (7.18) is satisfied and use this horizon for
the next NMPC step. In order to ensure that iteratively increasing Nn will eventually
lead to a horizon for which (7.18) holds, we make the following assumption.

Assumption 7.19 Given α ∈ (0,1), for all x0 ∈ X and all n ∈ N0 there exists a
finite horizon length N = N(n,x0) ∈ N such that (7.18) holds with α(Nn) ≥ α for
x(n) = x0 and Nn ≥ N .

Assumption 7.19 can be seen as a performance assumption which requires the
existence of a horizon length Nn such that the predefined threshold α can be sat-
isfied. If no such horizon exists, no prolongation strategy can be designed which
can guarantee closed-loop suboptimality degree α > α. Assumption 7.19 is, for in-
stance, satisfied if the conditions of Theorem 6.21 hold.

The following proposition shows that under this assumption any iterative strategy
which increases the horizon will terminate after finitely many steps with a horizon
length N for which the desired local suboptimality degree holds.

Proposition 7.20 Consider the optimal control problem (OCPn
N) with initial value

x0 = x(n) and Nn ∈ N. For fixed α ∈ (0,1) suppose that Assumption 7.19 holds.
Then, any algorithm which iteratively increases the optimization horizon Nn and
terminates if (7.18) holds will terminate in finite time with an optimization hori-
zon Nn for which (7.18) holds. In particular, Theorem 7.17 is applicable provided
Assumption 7.16 holds.
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Proof The proof follows immediately from Assumption 7.19. �

Unfortunately, if (7.18) does not hold it is in general difficult to assess by how
much Nn should be increased such that (7.18) holds for the increased Nn. The most
simple strategy of increasing Nn by one in each iteration shows satisfactory results
in practice, however, in the worst case it requires us to check (7.18) N − Nn + 1
times at each sampling instant. In contrast to the shortening strategy, the principle
of optimality cannot be used here to establish a relation between the optimal con-
trol problems for different Nn and, moreover, these problems may exhibit different
solution structures which makes it a hard task to provide a suitable initial guess for
the optimization algorithm; see also Sect. 10.5.

In order to come up with more efficient strategies, different methods have been
developed [29] which utilize the structure of the suboptimality estimate itself to
determine by how much Nn should be increased. Compared to these methods, how-
ever, the performance of the simple strategy of increasing Nn by one is still ac-
ceptable. In the following example we illustrate the performance of this strategy for
Example 2.11.

Example 7.21 For the ARP system (2.19)–(2.26) we have already analytically de-
rived a continuous time tracking feedback in (2.28). However, this feedback law per-
forms poorly under sampling, in particular, for the sampling period T = 0.2 which
we consider here we obtain an unstable closed-loop sampled data system.

In order to obtain a sampled data feedback law which shows better performance
we use the digital redesign technique proposed by Nešić and Grüne in [27]: given
a signal v(t) to track, we numerically simulate the continuous time controlled sys-
tem in order to generate the output xref which in turn will be used as the refer-
ence trajectory for an NMPC tracking problem. The advantage of proceeding this
way compared to the direct formulation of an NMPC tracking problem lies in the
fact that—according to our numerical experience—the resulting NMPC problem is
much easier to solve and in particular requires considerably smaller optimization
horizons in order to obtain a stable NMPC closed loop.

Specifically, we consider the piecewise constant reference function

v(t) =
{

10, t ∈ [0,5) ∪ [9,10),

0, t ∈ [5,9) ∪ [10,15)

for the x5-component of the trajectory of the system. In order to obtain short tran-
sient times for the continuous time feedback, we set the design parameters ci in
(2.28) to (c0, c1, c2, c3) = (10 000,3500,500,35). Then, we incorporate the result-
ing trajectory displayed in Fig. 7.13 as reference xref(·) in the NMPC algorithm.
Since our goal is to track the reference with the x5-component of the trajectory, we
use the simple quadratic cost function

J (x0, u) =
N∑

j=0

∫ tj+1

tj

∣∣x5,u(t, x0) − x5,ref(t)
∣∣dt
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Fig. 7.13 Reference function
for the continuous time
feedback (solid) and state
trajectory using the
continuous time feedback
(dashed). The latter will be
used as reference function
within the NMPC algorithm

Fig. 7.14 Optimization
horizons computed by the
adaptive NMPC
Algorithm 7.15 for the ARP
problem using the a posteriori
estimate (solid) and the a
priori estimate (dashed)

within the adaptive horizon NMPC Algorithm 7.15. Moreover, we select the sam-
pling period T = 0.2 and fix the initial value x(0) = (0,0,0,0,10,0,0,0) for both
the continuously and the sampled-data controlled system.

Using the a posteriori and a priori estimation techniques within the adaptive
NMPC Algorithm 7.15, we obtain the evolutions of horizons Nn along the closed
loop for the suboptimality bound α = 0.1 as displayed in Fig. 7.14. Comparing the
horizons chosen by the a priori and the a posteriori estimates, one sees that the a
posteriori algorithms yields smaller optimization horizons which makes the result-
ing scheme computationally more efficient, however, at the expense that the evalua-
tion of the a posteriori criterion itself is computationally more demanding; see also
Fig. 7.15, below.

It is also interesting to compare these horizons to the standard NMPC Algo-
rithm 3.7 with fixed N which needs a horizon of N = 6 in order to guarantee α ≥ α

along the closed loop. Here, one observes that the required horizon Nn for the adap-
tive NMPC approach is typically smaller than N = 6 for both the a posteriori and
the a priori estimate based variant. One also observes that the horizon is increased
at the jump points of the reference function v(·), which is the behavior one would
expect in a “critical” situation and nicely reflects the ability of the adaptive horizon
algorithm to adapt to the new situation.

Although the algorithm chooses to modify the horizon length throughout the run
of the closed loop, one can barely see a difference between the resulting x5 trajecto-
ries and the (dashed) reference trajectory given in Fig. 7.13. For this reason, we do
not display the closed-loop solutions. Instead, we additionally plotted the computing
times of the two adaptive NMPC variants in Fig. 7.15. Again, one can immediately
see the spikes in the graph right at the points in which v(·) jumps. This figure also
illustrates the disadvantage of the algorithm of having to solve multiple additional
optimal control problems whenever N is increased, which clearly shows up in the
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Fig. 7.15 Computing times
of the adaptive NMPC
Algorithm 7.15 for the ARP
problem using the a posteriori
estimate (solid) and the a
priori estimate (dashed)

higher computation times at these points, in particular for the computationally more
expensive a posteriori estimation.

While the adaptive optimization horizon algorithm produces good results in this
example, we would like to mention that there are other examples—like, e.g., the
swing-up of the inverted pendulum—for which the algorithm performs less con-
vincing. We conjecture that a better understanding of Assumption 7.16 may provide
the insight needed in order to tell the situations in which the adaptive algorithms
provides good results from those in which it does not.

7.9 Nonoptimal NMPC

In the case of limited computational resources and/or fast sampling, the time avail-
able for solving the optimization problems (OCPN) or its variants may not be suf-
ficient to obtain an arbitrary accurate solution. Typically, the algorithms for solving
these problems, i.e., for obtaining u� and thus μN(x(n)) = u�(0), work iteratively2

and with limited computation time may we may be forced to terminate this algo-
rithm prior to convergence to the optimal control sequence u�.

It is therefore interesting to derive conditions which ensure stability and perfor-
mance estimates for the NMPC closed loop in this situation. To this end, we modify
Algorithm 3.1 as follows.

Algorithm 7.22 We replace Steps (2) and (3) of Algorithm 3.1 (or its variants) by
the following:

(2′) For initial value x0 = x(n), given an initial guess u0
n(·) ∈ UN we iteratively

compute u
j
n(·) ∈ UN by an iterative optimization algorithm such that

JN

(
x0, u

j+1
n (·)) ≤ JN

(
x0, u

j
n(·)

)
.

We terminate this iteration after j∗ ∈ N iterations, set un(·) := u
j∗
n (·) and

ṼN (n) := JN(x0, un(·)).

2For more information on these algorithms see Chap. 10 and for numerical aspects of the theory in
this chapter in particular Sect. 10.6.
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(3′) Define the NMPC-feedback value μN(x(n)) := un(0) ∈ U and use this control
value in the next sampling period.

One way to ensure proper operation of such an algorithm is by assuming that the
sampling period is so small such that the optimal control from sampling instant n−1
is still “almost optimal” at time n. In this case, one iteration starting from u0

n = un−1,
i.e., j∗ = 1, may be enough in order to be sufficiently close to an optimal control,
i.e., to ensure JN(x(n),u1

n) ≈ VN(x(n)). This procedure is, e.g., investigated by
Diehl, Findeisen, Allgöwer, Bock and Schlöder in [8].

An alternative but conceptually similar idea is presented in work of Graichen and
Kugi [11]. In this reference a sufficiently large number of iterations j∗ is fixed and

conditions are given under which the control sequences u
j∗
n become more and more

optimal as n increases, i.e., they satisfy JN(x(n),u
j∗
n ) ≈ VN(u�) for sufficiently

large n. Using suitable bounds during the transient phase in which this approximate
optimality does not yet hold then allows the authors to conclude stability estimates.

While these results use that u
j∗
n is close to u� in an appropriate sense, here we

investigate the case in which u
j∗
n may be far away from the optimal solution. As we

will see, asymptotic stability in the sense of Definition 2.14 is in general difficult to
establish in this case. However, it will still be possible to prove the following weaker
property.

Definition 7.23 Given a set S ⊆ X, we say that the NMPC closed loop (2.5) is
attractive on S if for each x ∈ S the convergence

lim
k→∞xμN

(k, x) = x∗

holds.

Contrary to asymptotic stability, a merely attractive solution xμN
which starts

close to the equilibrium x∗ may deviate far from it before it eventually converges
to x∗. In order to exclude this undesirable behavior, one may wish to require the
following stability property in addition to attraction.

Definition 7.24 Given a set S ⊆ X, we say that the NMPC closed loop (2.5) is
stable on S if there exists αS ∈ K such that the inequality

∣∣xμN
(k, x)

∣∣
x∗ ≤ αS

(|x|x∗
)

holds for all x ∈ S and all k = 0,1,2, . . . .

It is well known that under suitable regularity conditions attractivity and stability
imply asymptotic stability; see, e.g., the book of Khalil [23, Chap. 4]. Since this is
not the topic of this book, we will not go into technical details here and rather work
with the separate properties attractivity and stability in the remainder of this section.

The following variant of Proposition 7.6 will be used in order to ensure attractiv-
ity and stability.
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Proposition 7.25 Consider the solution x(n) = xμN
(n, x0) of the NMPC closed

loop (2.5), a set S ⊆ X, a value α ∈ (0,1]. Assume that � satisfies

�∗(x) ≥ α3
(|x|x∗

)
(7.21)

for some α3 ∈ K∞ and all x ∈ S and that for each x0 ∈ S there exists a function
ṼN : N0 → R

+
0 which for all n ∈ N0 satisfies

ṼN (n) ≥ ṼN (n + 1) + α�
(
x(n),μN

(
x(n)

))
. (7.22)

Then the closed loop (2.5) is attractive on S and the inequality

J∞(x0,μN) ≤ ṼN (0) (7.23)

holds for J∞(x0,μN) from Definition 4.10.
If, in addition, there exists α̃2 ∈ K∞ independent of x0 such that the functions ṼN

satisfy

ṼN (0) ≤ α̃2
(∣∣x(0)

∣∣
x∗

)
, (7.24)

then the closed loop (2.5) is stable on S.

Proof Iterating Inequality (7.22) for n = 0, . . . , k and using ṼN (n) ≥ 0 yields

k∑

n=0

�
(
x(n),μN

(
x(n)

)) ≤ ṼN (0) − ṼN (k + 1) ≤ ṼN (0).

Letting k → ∞ we obtain

J∞(x,μN) = lim
k→∞

k∑

n=0

�
(
x(n),μN

(
x(n)

)) ≤ ṼN (0),

i.e., (7.23). Now nonnegativity of � implies limn→∞ �(x(n),μN(x(n))) = 0 and
thus (7.21) implies x(n) → 0, i.e., attractivity.

In order to prove stability under the additional assumption (7.24), observe that
(7.22) together with the nonnegativity of ṼN and (7.21) implies

ṼN (n) ≥ α�
(
x(n),μN

(
x(n)

)) ≥ α α3
(∣∣x(n)

∣∣
x∗

) =: α̃1
(∣∣x(n)

∣∣
x∗

)
.

Furthermore, (7.22) implies that ṼN (n) is decreasing in n. Using these properties,
stability immediately follows from

∣∣x(n)
∣∣
x∗ ≤ α̃−1

1

(
ṼN (n)

) ≤ α̃−1
1

(
ṼN (0)

) ≤ α̃−1
1

(
α̃2

(|x0|x∗
)) =: αS

(|x0|x∗
)
. �

The precise conditions on u
j
n and un in Algorithm 7.22 which ensure attractiv-

ity, stability and suboptimality estimates now depend on whether stabilizing termi-
nal constraints are used or not. We first consider the case of stabilizing terminal
constraints which was investigated, e.g., by Michalska and Mayne [25], Scokaert,
Mayne and Rawlings [32] and Rawlings and Mayne [31, Sect. 2.8] which all use
conceptually similar ideas. Here, we follow the latter reference.

The approach in [31, Sect. 2.8] can be written as a variant of Theorem 5.13. In
particular, we assume that Assumption 5.9 is satisfied. In order to obtain a more
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convenient notation, on the terminal constraint set X0 we define a map κ : X0 → U

which assigns to each x ∈ X0 the control value ux ∈ U(x) from Assumption 5.9(ii).
With this notation, the corresponding theorem reads as follows.

Theorem 7.26 Assume that the conditions of Theorem 5.13 are satisfied. Consider
Algorithm 3.10 with Steps (2) and (3) replaced by Steps (2′) and (3′) of Algo-
rithm 7.22 under the following assumptions for a set S ⊆ XN .

(i) For n = 0, we are able to find an admissible initial guess u0
0(·) ∈ U

N
X0

(x0) for
each initial value x0 = x(0) ∈ S.

(ii) For n = 1,2, . . . , the initial guess u0
n(·) is chosen as u0

n(k) = un−1(k + 1),
k = 0, . . . ,N − 2 and u0

n(N − 1) = κ(xu0
n
(N − 1, x0)).

(iii) For all n = 0,1,2, . . . the control sequences un(·) = u
j∗
n (·) satisfy u

j∗
n (·) ∈

U
N
X0

(x0), i.e., they are admissible.

Then the NMPC closed loop (2.5) is attractive on S and the inequality

J∞(x,μN) ≤ ṼN (0)

holds. If, in addition, there exists α̃3 ∈ K∞ such that the inequality JN(x0, u
0
0(·)) ≤

α̃3(|x|x∗) holds for u0
0(·) from (i), then (2.5) is also stable on S.

Proof First note that (i) ensures that u0
0 is admissible at time n = 0 and that (iii)

ensures that u0
n in (ii) is admissible for n = 1,2, . . . , cf. also Lemma 5.10(i).

We abbreviate x(n) = xμn(n). Then, (ii) and the same computation as in the proof
of Lemma 5.12 yield the inequality JN(x(n+1), u0

n+1(·)) ≤ JN−1(x(n+1), un(·+
1)) for each n ≥ 0. On the other hand, the definition of JN in Algorithm 3.10 implies

ṼN (n) = JN

(
x(n),un(·)

) = �
(
x(n),un(0)

) + JN−1
(
f

(
x(n),un(x)

)
, un(· + 1)

)
.

The identities f (x(n),un(x)) = x(n + 1), un(0) = μN(x(n)) and the inequality
ṼN (n + 1) ≤ JN(x(n + 1), u0

n+1(·)) then lead to

ṼN (n) ≥ �
(
x(n),un(0)

) + JN

(
x0, u

0
n(·)

) ≥ �
(
x(n),μN

(
x(n)

)) + ṼN (n + 1),

i.e., (7.22). Now all properties follow directly from Proposition 7.25. �

Remark 7.27

(i) If the assumptions of Proposition 5.14(ii) hold, then for x0 ∈ X0, the additional
stability condition JN(x0, u

0
0(·)) ≤ α̃3(|x|x∗) can be guaranteed if we define

u0
0(·) by u0

0(k) := κ(xu0
0
(k, x0)), k = 0, . . . ,N − 1. From Assumption 5.9(ii) it

follows that this choice implies JN(x0, u
0
0(·)) ≤ F(x0) ≤ α̃2(|x|x∗) and thus the

desired inequality follows with α̃3 = α̃2. Hence, this choice guarantees stability
locally around x∗.

One may also apply this definition to u0
n in (ii) for those n in which

x(n) ∈ X0 holds. This way, stability is ensured at least for the tail of the result-
ing closed-loop trajectory. If we use this choice of u0

n and do not perform the



202 7 Variants and Extensions

iterative optimization in Step (2′) of Algorithm 7.22, i.e., if we choose j∗ = 0,
then we obtain an algorithm similar to the so-called dual mode strategy from
[25].

(ii) Iterative optimizations algorithms are usually designed such that the intermedi-
ate results satisfy the desired constraints as soon as the algorithm has succeeded
in finding an admissible solution; see Sect. 10.6 for details. Since condition (ii)
in Theorem 7.26 ensures that we already initialize the iterative optimization
with an admissible solution, most common optimization algorithms will yield
solutions u

j∗
n (·) satisfying condition (iii) of Theorem 7.26 regardless of how

j∗ is chosen.
(iii) Theorem 7.26 yields attractivity for arbitrary j∗ ∈ N0. In particular, it applies

to j∗ = 0, i.e., to the case in which we do not optimize at all. This means
that attractivity follows readily from the stabilizing terminal constraints and
the particular construction of the initial guesses. An important consequence of
this property is that we can fix j∗ a priori, e.g., determined by the available
computation time, which makes this approach suitable for real-time NMPC
schemes.

Without stabilizing terminal constraints, stability is inherited from optimality and
we can no longer expect attractivity or stability for arbitrary j∗. Instead, we need to

make sure that u
j∗
n is at least “good enough” to ensure (7.22). This is the idea of the

following algorithm for determining j∗ taken from Grüne and Pannek [16].

Algorithm 7.28 Given α ∈ (0,1), in Step (2′) of Algorithm 7.22 we iterate over
u

j
n(·) ∈ U

N(x(n)) for j = 1,2, . . . until the termination criterion

JN

(
x(n),u

j∗
n (·)) ≤ ṼN (n − 1) − α�

(
x(n − 1), un−1(0)

)
(7.25)

is satisfied.

The following theorem shows attractivity, suboptimality and stability for this al-
gorithm.

Theorem 7.29 Consider a set S ⊆ XN , α ∈ (0,1] and Algorithm 3.1 with Steps (2)

and (3) replaced by Steps (2′) and (3′) of Algorithm 7.22. Assume that Algo-
rithm 7.28 is used in Step (2′) of Algorithm 7.22 and that (7.25) is feasible for each

n ∈ N, i.e., that for each n ∈ N there exists u
j∗
n ∈ U

N(x(n)) such that (7.25) holds.
Assume furthermore that (7.21) holds for the running cost �.

Then the NMPC closed loop (2.5) is attractive on S and the inequality

J∞(x,μN) ≤ ṼN (0)

holds. If, in addition, there exists α̃3 ∈ K∞ such that the inequality JN(x0, u
0
0(·)) ≤

α̃3(|x|x∗) holds for the initial guess u0
0(·) in Step (2′) of Algorithm 7.22 for each

x(0) ∈ S, then (2.5) is also stable on S.
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Proof Under the stated assumptions, all properties follow directly from Proposi-
tion 7.25. �

Remark 7.30 In contrast to what was observed in Remark 7.27(iii) for the terminal
constrained scheme, here we cannot in general fix j∗ a priori. Indeed, the number
of iterations of the optimization algorithm which are needed until (7.25) is satisfied
depends on various factors—particularly on the choice of un−1 and u0

n—and is in
general unknown before the optimization is started. We assume that for sufficiently
small sampling periods similar techniques as developed by Diehl, Findeisen, All-
göwer, Bock and Schlöder [8] or Graichen and Kugi [11] can be used in order to
bound the number of needed iterations when setting u0

n = un−1, but this has not yet
been investigated rigorously.

In the general case, the feasibility assumption for (7.25) in Theorem 7.29 may
not even be satisfied. Before we investigate this issue, we illustrate the performance
of this algorithm by a numerical example.

Example 7.31 We consider the nonlinear pendulum from Example 2.10, where the
task is now to stabilize the downward equilibrium x∗ = (0,0,0,0)T . Figures 7.16
and 7.17 below show parts of the closed-loop trajectories of x1 and x3 using Algo-
rithm 7.22 and Algorithm 7.28 in Step (2′) for varying α. The running cost is of type
(3.4) with

L(x,u) = 100 sin2(0.5x1) + x2
2 + 10.0x2

3 + x2
4 + u2,

and sampling period T = 0.15 and the NMPC algorithm was run with optimization
horizon N = 17 and input constraints U = [−1,1] using a recursive discretization
and a line-search (SQP) method to solve the resulting optimization problem; see
Chap. 10 for details on such methods.

One can see clearly from Figs. 7.16 and 7.17 that the closed-loop system is sta-
ble for all values of α. Moreover, one can nicely observe the improvement of the
closed-loop behavior visible in the decreasing time until the system comes to rest
for increasing values of α.

This is also reflected in the total closed-loop costs: While for α = 0.1 the costs
sum up to V

μ̃N∞ (x0) ≈ 2512.74, we obtain a total cost of V
μ̃N∞ (x0) ≈ 2485.83 for α =

0.95. Note that the majority of the costs, i.e., approximately 2435, is accumulated on
the interval [0,5] on which the trajectories for different α are almost identical and
which is therefore not displayed in Figs. 7.16 and 7.17. However, the choice of α has
a visible impact on the closed-loop performance in the remaining part of the interval.

Regarding the computational cost, the total number of (SQP) steps which are
executed during the run of the NMPC procedure reduces from 455 for α = 0.95
and 407 for α = 0.9, to 267 and 246 for α = 0.5 and α = 0.1, respectively. Hence,
we obtain an average of approximately 2.5–4.5 optimization iterations per MPC
step over the entire interval [0,15], while using standard termination criteria 9.5
optimization iterations per NMPC step are required.

A closer look at the numerical simulation in this example reveals that for each
α there were some sampling instants n at which it was not possible to satisfy the



204 7 Variants and Extensions

Fig. 7.16 Angle of the
pendulum x1 for varying α

Fig. 7.17 Position of the cart
x3 for varying α

suboptimality based termination criterion (7.25). In this case we simply iterated the
SQP optimization routine until convergence.

While this fact is not visible in Figs. 7.16 and 7.17 and obviously does not af-
fect stability and performance in our example, this observation raises the question
whether (7.25) is feasible, i.e., whether at time n we can ensure the existence of
u

j∗
n such that (7.25) is satisfied regardless of how un−1 was chosen, before. In order

to analyze this question, let us suppose that Assumption 6.4 holds. Then, observing
that for optimal controls (7.25) coincides with (5.1), Theorem 6.14 yields that (7.25)
is feasible if un−1 is an optimal control sequence and α in (7.25) is smaller than α

from (6.14). However, even with this choice of α in (7.25), condition (7.25) may not
be feasible for nonoptimal control sequences un−1.

In order to understand why this is the case we investigate how Proposition 6.12—
which provides the crucial ingredient for deriving (6.14)—changes if the optimal
control sequence u� in this proposition is replaced by a nonoptimal control sequence
un−1. To this end, we fix n ∈ N and set x = xμN

(n) and u = un−1. Now, first observe
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that the inequalities in (6.12) remain valid regardless of the optimality of u�. All
inequalities in (6.11), however, require optimality of the control sequence u� gener-
ating the λn. In order to maintain at least some of these inequalities we can pick an
optimal control sequence u� for initial value xu(1, x) and horizon length N − 1 and
define a control sequence ũ via ũ(0) = u(0), ũ(n) = u�(n − 1), n = 1, . . . ,N − 1.
Then, abbreviating

λ̃n = �
(
xũ(n, x), ũ(n)

)
, n = 0, . . . ,N − 1 and

ν̃ = VN

(
xu(1, x)

) = VN

(
xũ(1, x)

)
,

(7.26)

we arrive at the following version of Proposition 6.12.

Proposition 7.32 Let Assumption 6.4 hold. Then the inequalities

N−1∑

n=k

λ̃n ≤ BN−k(λ̃k) and ν̃ ≤
j−1∑

n=0

λ̃n+1 + BN−j (λ̃j+1) (7.27)

hold for k = 1, . . . ,N − 2 and j = 0, . . . ,N − 2.

Proof Analogous to the proof of Proposition 6.12. �

The subtle but crucial difference of (7.27) to (6.11), (6.12) is that the left in-
equality in (7.27) is not valid for k = 0. As a consequence, λ̃0 does not appear
in any of the inequalities, thus for any λ̃1, . . . , λ̃n and ν̃ satisfying (7.27) and any
δ > 0 the values δλ̃1, . . . , δλ̃n and δν̃ satisfy (7.27), too. Hence, unless (7.27) im-
plies ν̃ ≤ ∑N−1

n=0 λ̃n—which is a very particular case—replacing (6.11), (6.12) in
(6.14) by (7.27) will lead to the optimal value α = −∞. Consequently, feasibility
of (7.25) cannot be concluded for any positive α.

The following example shows that this undesirable result is not simply due to an
insufficient estimate for α but that infeasibility of (7.25) can indeed happen.

Example 7.33 Consider the 1d system

x+ = x/2 + u (7.28)

with �(x,u) = |x|, input constraint u ≥ 0 and optimization horizon N = 3. A simple
computation using ux ≡ 0 shows that for this system Assumption 6.4 is satisfied
with β(r, k) = Cσkr with C = 1 and σ = 1/2. Hence, Corollary 6.19 applies and
we can use (6.19) in order to compute that for N = 3 Inequality (5.1) holds for
α = 7/8. If un−1 in the termination criterion (7.25) is chosen as the optimal control
u�, then (7.25) implies that (5.1) is feasible for this α.

For x(n − 1) = 0, it is obvious that the control u� ≡ 0 is optimal. Using the
nonoptimal control given by un−1(0) = ε > 0 and un−1(1) = un−1(2) = 0 yields
the trajectory xun−1(0) = x(n − 1) = 0, xun−1(k) = ε2−k+1, k = 1,2, which implies
x(n) = ε and

J3
(
x(n − 1), un−1

) =
1∑

k=0

ε2−k = 3ε/2.
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On the other hand, for the initial value x(n) = ε it is easily seen that for each control
un the inequality

J3
(
x(n),un

) ≥
2∑

k=0

ε2−k = 7ε/4 > 3ε/2 = JN

(
x(n − 1), un−1

)

holds. Hence, for this choice of un−1 the Inequality (7.25) is not feasible for any
α > 0.

Clearly, in order to rigorously ensure attraction and guaranteed performance one
should derive conditions which exclude these situations and we briefly discuss two
possible approaches for this purpose.

One way to guarantee feasibility of (7.25) is to add the missing inequality in
(7.27) (i.e., the left inequality for k = 0) as an additional constraint in the optimiza-
tion. This guarantees feasibility of (7.25) for any α smaller than the value from
(6.19). One drawback of this approach is that—similar to the terminal constraint
case—an additional constraint in the optimization is needed which needs to be en-
sured for all j ≥ 1 or at least for j∗. This makes the optimization more demanding,
since in contrast to Remark 7.27(ii) here we do not have a canonical candidate for
an admissible solution which can be used for initializing the iterative optimization.
Another drawback is that the value BN(λ̃0) depends on the in general unknown
function β from Assumption 6.4 and thus needs to be determined either by an a
priori analysis or by a try-and-error procedure.

Another way to guarantee feasibility is to choose � in such a way that there exists
γ > 0 for which

γ �(x,u) ≥ �∗(f (x,u)
)

(7.29)

holds for all x ∈ X and all u ∈ U . Then from (7.29) and the controllability Assump-
tion 6.4 for x = f (x(n − 1), ũn−1(0)) we get

N−1∑

k=0

λ̃k ≤ λ̃0 + BN−1
(
�∗(f

(
x(n − 1), ũn−1(0)

))) ≤ λ̃0 + BN−1(γ λ̃0).

Replacing β(r,0) by max{β(r, t), β̃(r, t)} with β̃(r,0) = β(γ r,0)+ r and β̃(r, k) =
β(γ r, k) for k ≥ 1, this right hand side is ≤ BN(λ̃0) which again yields the left
inequality in (7.27) for k = 0 and thus feasibility of (7.25). Note that (7.29) holds
for our example (7.28) if we change �(x,u) = |x| to �(x,u) = |x| + |u|/γ . For this
� and the points and control sequences considered in the example, we obtain

J3
(
x(n − 1), un−1

) = 3ε/2 + ε = 5ε/2

from which one computes that (7.25) is now feasible.
The advantage of this method is that no additional constraints have to be imposed

in the optimization. Its disadvantages are that constructing � satisfying (7.29) may
be complicated for more involved dynamics and that the overshoot encoded in β will
in general increase for the re-designed �. As outlined in Sect. 6.6, this may lower the
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NMPC closed-loop performance and cause the need for larger optimization horizons
N in order to obtain stability.

An in depth study of these approaches and in particular their algorithmic imple-
mentation and numerical evaluation will be the topic of further research.

7.10 Beyond Stabilization and Tracking

All NMPC variants discussed so far have in common that the cost function � penal-
izes the distance to some desired reference, either to an equilibrium x∗ or to a time
varying reference xref. These variants may hence be called stabilizing NMPC. There
is, however, a large variety of optimal control problems where this is not the case.
For instance, in economic applications one typically uses a running cost �e which
reflects an economic cost rather than a distance to some reference, cf., e.g., Seier-
stad and Sydsæter [33]. In what follows we will refer to �e as the economic cost. In
such problems, the desired limit behavior of the optimal trajectories is not given a
priori in terms of a reference x∗ or xref but is rather an outcome of the optimization
itself. Even for rather simple nonlinear models, this limit behavior can be surpris-
ingly complex, as, e.g., the examples in the book of Grass, Caulkins, Feichtinger,
Tragler and Behrens [12]—for optimal control problems mainly motivated by social
sciences—show.

One way to use stabilizing NMPC for such problems is as follows. In a first step,
the optimal limit behavior for the economic running cost �e is identified. Assuming
that this problem can be solved analytically or numerically we obtain an optimal
reference solution xref which, however, does not need to be asymptotically stable.
Hence, a stabilizing controller needs to be designed in order to stabilize the optimal
reference. To this end, in a second step a cost function �—which we will refer to
as stabilizing cost—penalizing the distance to xref is designed which is suitable for
running a stabilizing NMPC scheme in order to obtain a stable closed loop.

Proceeding this way guarantees asymptotic stability of the optimal equilibrium
(e.g., under the various conditions on f , � and the particular NMPC scheme dis-
cussed in this book) but the resulting closed-loop trajectories based on the optimiza-
tion of the stabilizing cost � may be very different from the optimal trajectories using
the economic cost �e. In particular, they may be far from optimal when performance
is measured via the economic cost function �e.

Due to the fact that for running the NMPC Algorithms 3.1 and its variants no par-
ticular conditions on � are needed, it is a natural idea to try to run these algorithms
using the economic cost �e in (OCPN) and its variants instead of taking the detour
via the stabilizing cost function �. Formally, most usual NMPC algorithms (in par-
ticular those discussed in this book) are perfectly suited for doing so, however, the
theoretical results ensuring stability and performance are in general not applicable,
because the economic cost �e will not satisfy the conditions needed for these results.
Hence, new conditions for ensuring stability and performance are needed.

Here we summarize some recent results in this direction. In [3] (see also the ref-
erences in this paper for earlier research on this subject), Angeli, Amrit and Rawl-
ings observe that if one adds the optimal limit behavior as a terminal constraint
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to the NMPC scheme, then performance estimates for the NMPC closed loop can
be given. More precisely, assume that the optimal control problem exhibits an op-
timal equilibrium x∗ with related control value u∗, i.e., f (x∗, u∗) = x∗ holds and
�e(x∗, u∗) is minimal among all possible equilibria. Then, using the NMPC scheme
from Sect. 5.2 with � = �e and X0 = {x∗}, for each x ∈ XN one obtains the perfor-
mance estimate

J∞(x,μN) ≤ �e(x∗, u∗), (7.30)

where J∞ denotes the averaged infinite horizon cost functional

J∞(x0,μN) := lim
K→∞

1

K

K∑

k=0

�e

(
xμN

(k, x0),μ
(
xμN

(k)
))

. (7.31)

Observe that J∞(x0,μN) is not simply J∞(x0,μN) from (4.10) with � replaced by
�e. The important difference between J∞ and J∞ is that J∞ contains the additional
averaging term 1/K . This term is necessary since in general for economic running
costs �e we cannot expect the infinite sum in (4.10) to converge. This approach
can be extended to periodic optimal trajectories xref instead of equilibria by using
suitable periodic terminal constraint sets; for details see [3].

It is interesting to note that—at least in the case of an optimal equilibrium x∗
with control value u∗—the estimate (7.30) may also hold for controllers μN from
stabilizing NMPC schemes. To this end, we use a stabilizing running cost � satisfy-
ing

�(x,u) ≥ α1
(|x|x∗ + |u|u∗

)
(7.32)

for some α1 ∈ K∞ and assume that J∞(x0,μN) is finite and that the economic cost
�e is continuous. Then, since J∞(x0,μN) is finite, �e(xμN

(n),μN(xμN
(n))) con-

verges to 0 as n → ∞ and hence the lower bound (7.32) implies xμN
(n) → x∗ and

μN(xμN
(n)) → u∗ as n → ∞. This, in turn, implies �e(xμN

(n),μN(xμN
(n))) →

�e(x∗, u∗) as n → ∞ from which (7.30) follows. Hence, although it seems reason-
able to expect that for NMPC with economic running cost �e one obtains a better
performance of the closed-loop trajectories in terms of the economic objective �e ,
this is not reflected in the asymptotic estimate (7.30).

In the usual NMPC setting, a finite value of J∞(x0,μN) from (4.10) together
with positive definiteness of � allows one to conclude that the closed-loop trajectory
must converge to x∗, because otherwise J∞(x0,μN) would be unbounded. This is
not the case for the averaged functional J∞(x0,μ) from (7.31) and, indeed, one
needs additional conditions in order to ensure that the closed-loop solution satisfy-
ing (7.30) does converge to x∗. Such a condition has been presented in Diehl, Amrit
and Rawlings [7] for the case of an optimal steady state and finite-dimensional state
space X = R

d . The condition, called strong duality, demands the existence of a
value λ∗ ∈ R

d such that x∗ and u∗ minimize the expression

�e(x,u) + [
x − f (x,u)

]T
λ∗
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over all admissible states x ∈ X and control values u ∈ U(x). Furthermore, the exis-
tence of α1 ∈ K∞ with

�e(x,u) + [
x − f (x,u)

]T
λ∗ − �e(x∗, u∗) ≥ α1

(|x|x∗
)

is required. Under these conditions, a Lyapunov function can be constructed by
adding suitable correction terms to the finite horizon optimal value function VN (cor-
responding to the economic running cost �e). In [2], Angeli and Rawlings further
observed that strong duality can be interpreted as a dissipativity condition, which
links this condition to more classical concepts used in the stability analysis of con-
trol systems.

Summarizing, the results sketched in this section show that NMPC can be used
for obtaining optimal feedback controllers also for optimal control problems differ-
ent from the classical NMPC objectives stabilization and tracking. We conjecture
that NMPC will prove valuable also for other types of optimization criteria, how-
ever, we are also convinced that there are problems which are not solvable using the
receding horizon NMPC paradigm. An in depth analysis of the structural properties
an optimal control problem needs to exhibit in order to be tractable with NMPC
techniques would certainly be an interesting research project.
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