
Chapter 4
Infinite Horizon Optimal Control

In this chapter we give an introduction to nonlinear infinite horizon optimal control.
The dynamic programming principle as well as several consequences of this prin-
ciple are proved. One of the main results of this chapter is that the infinite horizon
optimal feedback law asymptotically stabilizes the system and that the infinite hori-
zon optimal value function is a Lyapunov function for the closed loop system. Moti-
vated by this property we formulate a relaxed version of the dynamic programming
principle, which allows to prove stability and suboptimality results for nonoptimal
feedback laws and without using the optimal value function. A practical version of
this principle is provided, too. These results will be central in the following chapters
for the stability and performance analysis of NMPC algorithms. For the special case
of sampled-data systems we finally show that for suitable integral costs asymptotic
stability of the continuous time sampled data closed loop system follows from the
asymptotic stability of the associated discrete time system.

4.1 Definition and Well Posedness of the Problem

For the finite horizon optimal control problems from the previous chapter we can
define infinite horizon counterparts by replacing the upper limits N − 1 in the re-
spective sums by ∞. Since for this infinite horizon formulation the terminal state
xu(N) vanishes from the problem, it is not reasonable to consider terminal con-
straints. Furthermore, we will not consider any weights in the infinite horizon case.
Hence, the most general infinite horizon problem we consider is the following:

minimize J∞
(
n,x0, u(·)) :=

∞∑

k=0

�
(
n + k, xu(k, x0), u(k)

)

with respect to u(·) ∈ U
∞(x0), subject to

xu(0, x0) = x0, xu(k + 1, x0) = f
(
xu(k, x0), u(k)

)
.

(OCPn∞)

Here, the function � is as in (3.8), i.e., it penalizes the distance to a (possibly time
varying) reference trajectory xref. We optimize over the set of admissible control se-
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quences U
∞(x0) defined in Definition 3.2 and assume that this set is nonempty for

all x0 ∈ X, which is equivalent to the viability of X according to Assumption 3.3. In
order to keep the presentation self-contained all subsequent statements are formu-
lated for general time varying reference xref. In the special case of constant reference
xref ≡ x∗ the running cost � and the functional J∞ in (OCPn∞) do not depend on the
time n.

Similar to Definition 3.14 we define the optimal value function and optimal tra-
jectories.

Definition 4.1 Consider the optimal control problem (OCPn∞) with initial value
x0 ∈ X and time instant n ∈ N0.

(i) The function

V∞(n, x0) := inf
u(·)∈U∞(x0)

J∞
(
n,x0, u(·))

is called optimal value function.
(ii) A control sequence u�(·) ∈ U

∞(x0) is called optimal control sequence for x0 if

V∞(n, x0) = J∞
(
n,x0, u

�(·))

holds. The corresponding trajectory xu�(·, x0) is called optimal trajectory.

Since now—in contrast to the finite horizon problem—an infinite sum appears
in the definition of J∞, it is no longer straightforward that V∞ is finite. In order to
ensure that this is the case the following definition is helpful.

Definition 4.2 Consider the control system (2.1) and a reference trajectory xref :
N0 → X with reference control sequence uref ∈ U

∞(xref(0)). We say that the system
is (uniformly) asymptotically controllable to xref if there exists a function β ∈ K L
such that for each initial time n0 ∈ N0 and each admissible initial value x0 ∈ X there
exists an admissible control sequence u ∈ U

∞(x0) such that the inequality
∣∣xu(n, x0)

∣∣
xref(n+n0)

≤ β
(|x0|xref(n0)

, n
)

(4.1)

holds for all n ∈ N0. We say that this asymptotic controllability has the small control
property if u ∈ U

∞(x0) can be chosen such that the inequality
∣∣xu(n, x0)

∣∣
xref(n+n0)

+ ∣∣u(n)
∣∣
uref(n+n0)

≤ β
(|x0|xref(n0)

, n
)

(4.2)

holds for all n ∈ N0. Here, as in Sect. 2.3 we write |x1|x2 = dX(x1, x2) and |u1|u2 =
dU(u1, u2).

Observe that uniform asymptotic controllability is a necessary condition for uni-
form feedback stabilization. Indeed, if we assume asymptotic stability of the closed-
loop system x+ = g(n, x) = f (x,μ(n, x)), then we immediately get asymptotic
controllability with control u(n) = μ(n + n0, x(n + n0, n0, x0)). The small control
property, however, is not satisfied in general.
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In order to use Definition 4.2 for deriving bounds on the optimal value function,
we need a result known as Sontag’s K L-Lemma [24, Proposition 7]. This proposi-
tion states that for each K L-function β there exist functions γ1, γ2 ∈ K∞ such that
the inequality

β(r, n) ≤ γ1
(
e−nγ2(r)

)

holds for all r, n ≥ 0 (in fact, the result holds for real n ≥ 0 but we only need it for
integers here). Using the functions γ1 and γ2 we can define running cost functions

�(n, x,u) := γ −1
1

(|x|xref(n)

) + λγ −1
1

(|u|uref(n)

)
(4.3)

for λ ≥ 0. The following theorem states that under Definition 4.2 this running cost
ensures (uniformly) finite upper and positive lower bounds on V∞.

Theorem 4.3 Consider the control system (2.1) and a reference trajectory xref :
N0 → X with reference control sequence uref ∈ U

∞(xref(0)). If the system is asymp-
totically controllable to xref, then there exist α1, α2 ∈ K∞ such that the optimal
value function V∞ corresponding to the cost function � : N0 × X × U → R

+
0 from

(4.3) with λ = 0 satisfies

α1
(|x0|xref(n0)

) ≤ V∞(n0, x0) ≤ α2
(|x0|xref(n0)

)
(4.4)

for all n0 ∈ N0 and all x0 ∈ X.
If, in addition, the asymptotic controllability has the small control property then

the statement also holds for � from (4.3) with arbitrary λ ≥ 0.

Proof For each x0, n0 and u ∈ U
∞(x0) we get

J∞(n0, x0, u) =
∞∑

k=0

�
(
n0 + k, xu(k, x0), u(k)

) ≥ �
(
n,xu(0, x0), u(0)

)

≥ γ −1
1

(|x0|xref(n0)

)

for each λ ≥ 0. Hence, from the definition of V∞ we get

V∞(n0, x0) = inf
u(·)∈U∞(x0)

J∞
(
n0, x0, u(·)) ≥ γ −1

1

(|x0|xref(n0)

)
.

This proves the lower bound in (4.4) for α1 = γ −1
1 .

For proving the upper bound, we first consider the case λ = 0. For all n0 and x0
the control u ∈ U

∞(x0) from Definition 4.2 yields

V∞(n0, x0) ≤ J∞(n0, x0, u)

=
∞∑

k=0

�
(
n0 + k, xu(k, x0), u(k)

)

=
∞∑

k=0

γ −1
1

(∣∣xu(k, x0)
∣∣
xref(n0+k)

)
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≤
∞∑

k=0

γ −1
1

(
β
(|x0|xref(n0)

, k
)) ≤

∞∑

k=0

e−kγ2
(|x0|xref(n0)

)

= e

e − 1
γ2

(|x0|xref(n0)

)
,

i.e., the upper inequality from (4.4) with α2(r) = eγ2(r)/(e − 1). If the small
control property holds, then the upper bound for λ > 0 follows similarly with
α2(r) = (1 + λ)eγ2(r)/(e − 1). �

In fact, the specific form (4.3) is just one possible choice of � for which this
theorem holds. It is rather easy to extend the result to any � which is bounded from
below by some K∞-function in x (uniformly for all u and n) and bounded from
above by � from (4.3) in balls Bε(x

ref(n)). Since, however, the choice of appropriate
cost functions � for infinite horizon optimal control problems is not a central topic
of this book, we leave this extension to the interested reader.

4.2 The Dynamic Programming Principle

In this section we essentially restate and reprove the results from Sect. 3.4 for the
infinite horizon case. We begin with the dynamic programming principle for the
infinite horizon problem (OCPn∞). Throughout this section we assume that V∞(x)

is finite for all x ∈ X as ensured, e.g., by Theorem 4.3.

Theorem 4.4 Consider the optimal control problem (OCPn∞) with x0 ∈ X and n ∈
N0. Then for all K ∈ N the equation

V∞(n, x0) = inf
u(·)∈UK(x0)

{
K−1∑

k=0

�
(
n + k, xu(k, x0), u(k)

)

+ V∞
(
n + K,xu(K,x0)

)
}

(4.5)

holds. If, in addition, an optimal control sequence u�(·) exists for x0, then we get
the equation

V∞(n, x0) =
K−1∑

k=0

�
(
n + k, xu�(k, x0), u

�(k)
) + V∞

(
n + K,xu�(K,x0)

)
. (4.6)

In particular, in this case the “inf” in (4.5) is a “min”.

Proof From the definition of J∞ for u(·) ∈ U
∞(x0) we immediately obtain

J∞
(
n,x0, u(·))

=
K−1∑

k=0

�
(
n + k, xu(k, x0), u(k)

) + J∞
(
n + K,xu(K,x0), u(· + K)

)
, (4.7)
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where u(· + K) denotes the shifted control sequence defined by u(· + K)(k) =
u(k + K), which is admissible for xu(K,x0).

We now prove (4.5) by showing “≥” and “≤” separately: From (4.7) we obtain

J∞
(
n,x0, u(·)) =

K−1∑

k=0

�
(
n + k, xu(k, x0), u(k)

) + J∞
(
n + K,xu(K,x0), u(· + K)

)

≥
K−1∑

k=0

�
(
n + k, xu(k, x0), u(k)

) + V∞
(
n + K,xu(K,x0)

)
.

Since this inequality holds for all u(·) ∈ U
∞, it also holds when taking the infimum

on both sides. Hence we get

V∞(n, x0) = inf
u(·)∈U∞(x0)

J∞
(
n,x0, u(·))

≥ inf
u(·)∈UK(x0)

{
K−1∑

k=0

�
(
n + k, xu(k, x0), u(k)

) + V∞
(
n + K,xu(K,x0)

)
}

,

i.e., (4.5) with “≥”.
In order to prove “≤”, fix ε > 0 and let uε(·) be an approximately optimal control

sequence for the right hand side of (4.7), i.e.,

K−1∑

k=0

�
(
n + k, xuε (k, x0), u

ε(k)
) + J∞

(
n + K,xuε (K,x0), u

ε(· + K)
)

≤ inf
u(·)∈U∞(x0)

{
K−1∑

k=0

�
(
n + k, xu(k, x0), u(k)

)

+ J∞
(
n + K,xu(K,x0), u(· + K)

)
}

+ ε.

Now we decompose u(·) ∈ U
∞(x0) analogously to Lemma 3.12(ii) and (iii) into

u1 ∈ U
K(x0) and u2 ∈ U

∞(xu1(K,x0)) via

u(k) =
{

u1(k), k = 0, . . . ,K − 1,

u2(k − K), k ≥ K .

This implies

inf
u(·)∈U∞(x0)

{
K−1∑

k=0

�
(
n + k, xu(k, x0), u(k)

) + J∞
(
n + K,xu(K,x0), u(· + K)

)
}

= inf
u1(·)∈U

K(x0)
u2(·)∈U

∞(xu1 (K,x0))

{
K−1∑

k=0

�
(
n + k, xu1(k, x0), u1(k)

)

+ J∞
(
n + K,xu1(K,x0), u2(·)

)
}
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= inf
u1(·)∈UK(x0)

{
K−1∑

k=0

�
(
n + k, xu1(k, x0), u1(k)

) + V∞
(
n + K,xu1(K,x0)

)
}

.

Now (4.7) yields

V∞(n, x0) ≤ J∞
(
n,x0, u

ε(·))

=
K−1∑

k=0

�
(
n + k, xuε (k, x0), u

ε(k)
)

+ J∞
(
n + K,xuε (K,x0), u

ε(· + K)
)

≤ inf
u(·)∈UK(x0)

{
K−1∑

k=0

�
(
n + k, xu(k, x0), u(k)

)

+ V∞
(
n + K,xu(K,x0)

)
}

+ ε,

i.e.,

V∞(n, x0) ≤ inf
u(·)∈UK(x0)

{
K−1∑

k=0

�
(
n + k, xu(k, x0), u(k)

)

+ V∞
(
n + K,xu(K,x0)

)
}

+ ε.

Since ε > 0 was arbitrary and the expressions in this inequality are independent of
ε, this inequality also holds for ε = 0, which shows (4.5) with “≤” and thus (4.5).

In order to prove (4.6) we use (4.7) with u(·) = u�(·). This yields

V∞(n, x0) = J∞
(
n,x0, u

�(·))

=
K−1∑

k=0

�
(
n + k, xu�(k, x0), u

�(k)
) + J∞

(
n + K,xu�(K,x0), u

�(· + K)
)

≥
K−1∑

k=0

�
(
n + k, xu�(k, x0), u

�(k)
) + V∞

(
n + K,xu�(K,x0)

)

≥ inf
u(·)∈UK(x0)

{
K−1∑

k=0

�
(
n + k, xu(k, x0), u(k)

) + V∞
(
n + K,xu(K,x0)

)
}

= V∞(n, x0),

where we used the (already proved) Equality (4.5) in the last step. Hence, the two
“≥” in this chain are actually “=” which implies (4.6). �

The following corollary states an immediate consequence from the dynamic pro-
gramming principle. It shows that tails of optimal control sequences are again opti-
mal control sequences for suitably adjusted initial value and time.
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Corollary 4.5 If u�(·) is an optimal control sequence for (OCPn∞) with initial value
x0 and initial time n, then for each K ∈ N the sequence u�

K(·) = u�(· + K), i.e.,

u�
K(k) = u�(K + k), k = 0,1, . . .

is an optimal control sequence for initial value xu�(K,x0) and initial time n + K .

Proof Inserting V∞(n, x0) = J∞(n, x0, u
�(·)) and the definition of u�

K(·) into (4.7)
we obtain

V∞(n, x0) =
K−1∑

k=0

�
(
n + k, xu�(k, x0), u

�(k)
) + J∞

(
n + K,xu�(K,x0), u

�
K(·)).

Subtracting (4.6) from this equation yields

0 = J∞
(
n + K,xu�(K,x0), u

�
K(·)) − V∞

(
n + K,xu�(K,x0)

)

which shows the assertion. �

The next two results are the analogs of Theorem 3.17 and Corollary 3.18 in the
infinite horizon setting.

Theorem 4.6 Consider the optimal control problem (OCPn∞) with x0 ∈ X and n ∈
N0 and assume that an optimal control sequence u�(·) exists. Then the feedback law
μ∞(n, x0) = u∗(0) satisfies

μ∞(n, x0) = argminu∈U1(x0)

{
�(n, x0, u) + V∞

(
n + 1, f (x0, u)

)}
(4.8)

and

V∞(n, x0) = �
(
n,x0,μ∞(n, x0)

) + V∞
(
n + 1, f

(
x0,μ∞(n, x0)

))
(4.9)

where in (4.8)—as usual—we interpret U
1(x0) as a subset of U , i.e., we identify the

one element sequence u = u(·) with its only element u = u(0).

Proof The proof is identical to the finite horizon counterpart Theorem 3.17. �

As in the finite horizon case, the following corollary shows that the feedback law
(4.8) can be used in order to construct the optimal control sequence.

Corollary 4.7 Consider the optimal control problem (OCPn∞) with x0 ∈ X and n ∈
N0 and consider an admissible feedback law μ∞ : N0 × X → U in the sense of
Definition 3.2(iv). Denote the solution of the closed-loop system

x(0) = x0, x(k + 1) = f
(
x(k),μ∞

(
n + k, x(k)

))
, k = 0,1, . . . (4.10)

by xμ∞ and assume that μ∞ satisfies (4.8) for initial values x0 = xμ∞(k) for all
k = 0,1, . . . . Then

u�(k) = μ∞
(
n + k, xu�(k, x0)

)
, k = 0,1, . . . (4.11)

is an optimal control sequence for initial time n and initial value x0 and the solution
of the closed-loop system (4.10) is a corresponding optimal trajectory.



74 4 Infinite Horizon Optimal Control

Proof From (4.11) for x(n) from (4.10) we immediately obtain

xu�(n, x0) = x(n), n = 0,1, . . . .

Hence we need to show that

V∞(n, x0) = J∞
(
n,x0, u

�
)
,

where it is enough to show “≥” because the opposite inequality follows by definition
of V∞. Using (4.11) and (4.9) we get

V∞(n + k, x0) = �
(
n + k, x(k), u�(k)

) + V∞
(
n + k + 1, x(k + 1)

)

for k = 0,1, . . . . Summing these equalities for k = 0, . . . ,K −1 for arbitrary K ∈ N

and eliminating the identical terms V∞(n + k, x0), k = 1, . . . ,K − 1 on the left and
on the right we obtain

V∞(n, x0) =
K−1∑

k=0

�
(
n + k, x(k), u�(k)

) + V∞
(
n + K,x(K)

)

≥
K−1∑

k=0

�
(
n + k, x(k), u�(k)

)
.

Since the sum is monotone increasing in K and bounded from above, for K → ∞
the right hand side converges to J∞(n, x0, u

�) showing the assertion. �

Corollary 4.7 implies that infinite horizon optimal control is nothing but NMPC
with N = ∞: Formula (4.11) for k = 0 yields that if we replace the optimization
problem (OCPn

N) in Algorithm 3.7 by (OCPn∞), then the feedback law resulting from
this algorithm equals μ∞. The following theorem shows that this infinite horizon
NMPC-feedback law yields an asymptotically stable closed loop and thus solves
the stabilization and tracking problem.

Theorem 4.8 Consider the optimal control problem (OCPn∞) for the control system
(2.1) and a reference trajectory xref : N0 → X with reference control sequence uref ∈
U

∞(xref(0)). Assume that there exist α1, α2, α3 ∈ K∞ such that the inequalities

α1
(|x|xref(n)

) ≤ V∞(n, x) ≤ α2
(|x|xref(n)

)
and �(n, x,u) ≥ α3

(|x|xref(n)

)

(4.12)

hold for all x ∈ X, n ∈ N0 and u ∈ U . Assume furthermore that an optimal feedback
μ∞ exists, i.e., an admissible feedback law μ∞ : N0 × X → U satisfying (4.8) for
all n ∈ N0 and all x ∈ X. Then this optimal feedback asymptotically stabilizes the
closed-loop system

x+ = g(n, x) = f
(
x,μ∞(n, x)

)

on X in the sense of Definition 2.16.
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Proof For the closed-loop system, (4.9) and the last inequality in (4.12) yield

V∞(n, x) = �
(
n,x,μ∞(n, x)

) + V∞
(
n + 1, f

(
x,μ∞(n, x)

))

≥ α3
(|x|xref(n)

) + V∞
(
n + 1, f

(
x,μ∞(n, x)

))
.

Together with the first two inequalities in (4.12) this shows that V∞ is a Lyapunov
function on X in the sense of Definition 2.21 with αV = α3. Thus, Theorem 2.22
yields asymptotic stability on X. �

By Theorem 4.3 we can replace (4.12) by the asymptotic controllability condition
from Definition 4.2 if � is of the form (4.3). This is used in the following corollary
in order to give a stability result without explicitly assuming (4.12).

Corollary 4.9 Consider the optimal control problem (OCPn∞) for the control sys-
tem (2.1) and a reference trajectory xref : N0 → X with reference control sequence
uref ∈ U

∞(xref(0)). Assume that the system is asymptotically controllable to xref

and that an optimal feedback μ∞, i.e., a feedback satisfying (4.8), exists for the cost
function � : N0 × X × U → R

+
0 from (4.3) with λ = 0. Then this optimal feedback

asymptotically stabilizes the closed-loop system

x+ = g(n, x) = f
(
x,μ∞(n, x)

)

on X in the sense of Definition 2.16.
If, in addition, the asymptotic controllability has the small control property then

the statement also holds for � from (4.3) with arbitrary λ ≥ 0.

Proof Theorem 4.3 yields

α1
(|x0|xref(n0)

) ≤ V∞(n0, x0) ≤ α2
(|x0|xref(n0)

)

for suitable α1, α2 ∈ K∞. Furthermore, by (4.3) the third inequality in (4.12) holds
with α3 = γ −1

1 . Hence, (4.12) holds and Theorem 4.8 yields asymptotic stability
on X. �

4.3 Relaxed Dynamic Programming

The last results of the previous section show that infinite horizon optimal control can
be used in order to derive a stabilizing feedback law. Unfortunately, a direct solution
of infinite horizon optimal control problems is in general impossible, both analyti-
cally and numerically. Still, infinite horizon optimal control plays an important role
in our analysis since we will interpret the model predictive control algorithm as an
approximation of the infinite horizon optimal control problem. Here the term “ap-
proximation” is not necessarily to be understood in the sense of “being close to”
(although this aspect is not excluded) but rather in the sense of “sharing the impor-
tant structural properties”.

Looking at the proof of Theorem 4.8 we see that the important property for sta-
bility is the inequality



76 4 Infinite Horizon Optimal Control

V∞(n, x) ≥ �
(
n,x,μ∞(n, x)

) + V∞
(
n + 1, f

(
x,μ∞(n, x)

))

which follows from the feedback version (4.9) of the dynamic programming princi-
ple. Observe that although (4.9) yields equality, only this inequality is needed in the
proof of Theorem 4.8.

This observation motivates a relaxed version of this dynamic programming in-
equality which on the one hand yields asymptotic stability and on the other hand
provides a quantitative measure of the closed-loop performance of the system. This
relaxed version will be formulated in Theorem 4.11, below. In order to quantitatively
measure the closed-loop performance, we use the infinite horizon cost functional
evaluated along the closed-loop trajectory which we define as follows.

Definition 4.10 Let μ : N0 × X → U be an admissible feedback law. For the tra-
jectories xμ(n) of the closed-loop system x+ = f (x,μ(n, x)) with initial value
xμ(n0) = x0 ∈ X we define the infinite horizon cost as

J∞(n0, x0,μ) :=
∞∑

k=0

�
(
n0 + k, xμ(n0 + k),μ

(
n0 + k, xμ(n0 + k)

))
.

Since by (3.8) our running cost � is always nonnegative, either the infinite sum
has a well defined finite value or it diverges to infinity, in which case we write
J∞(n0, x0,μ) = ∞.

By Corollary 4.7 for the infinite horizon optimal feedback law μ∞ we obtain

J∞(n0, x0,μ∞) = V∞(n0, x0)

while for all other admissible feedback laws μ we get

J∞(n0, x0,μ) ≥ V∞(n0, x0).

In other words, V∞ is a strict lower bound for J∞(n0, x0,μ).
The following theorem now gives a relaxed dynamic programming condition

from which we can derive both asymptotic stability and an upper bound on the
infinite horizon cost J∞(n0, x0,μ) for an arbitrary admissible feedback law μ.

Theorem 4.11 Consider a running cost � : N0 × X × U → R
+
0 and a function

V : N0 × X → R
+
0 . Let μ : N0 × X → U be an admissible feedback law and let

S(n) ⊆ X, n ∈ N0 be a family of forward invariant sets for the closed-loop system

x+ = g(n, x) = f
(
x,μ(n, x)

)
. (4.13)

Assume there exists α ∈ (0,1] such that the relaxed dynamic programming inequal-
ity

V (n,x) ≥ α�
(
n,x,μ(n, x)

) + V
(
n + 1, f

(
x,μ(n, x)

))
(4.14)

holds for all n ∈ N0 and all x ∈ S(n). Then the suboptimality estimate

J∞(n, x,μ) ≤ V (n,x)/α (4.15)

holds for all n ∈ N0 and all x ∈ S(n).
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If, in addition, there exist α1, α2, α3 ∈ K∞ such that the inequalities

α1
(|x|xref(n)

) ≤ V (n,x) ≤ α2
(|x|xref(n)

)
and �(n, x,u) ≥ α3

(|x|xref(n)

)

hold for all x ∈ X, n ∈ N0, u ∈ U and a reference trajectory xref : N0 → X, then
the closed-loop system (4.13) is asymptotically stable on S(n) in the sense of Defi-
nition 2.16.

Proof In order to prove (4.15) consider n ∈ N0, x ∈ S(n) and the trajectory xμ(·) of
(4.13) with xμ(n) = x. By forward invariance of the sets S(n) this trajectory satisfies
xμ(n + k) ∈ S(n + k). Hence from (4.14) for all k ∈ N0 we obtain

α�
(
n + k, xμ(n + k),μ

(
n + k, xμ(n + k)

))

≤ V
(
n + k, xμ(n + k)

) − V
(
n + k + 1, xμ(n + k + 1)

)
.

Summing over k yields for all K ∈ N

α

K−1∑

k=0

�
(
n + k, xμ(n + k),μ

(
n + k, xμ(n + k)

))

≤ V
(
n,xμ(n)

) − V
(
n + K,xμ(n + K)

)

≤ V (n,x)

since V (n+K,xμ(n+K)) ≥ 0 and xμ(n) = x. Since the running cost � is nonneg-
ative, the term on the left is monotone increasing and bounded, hence for K → ∞
it converges to αJ∞(n, x,μ). Since the right hand side is independent of K , this
yields (4.15).

The stability assertion now immediately follows by observing that V satisfies all
assumptions of Theorem 2.22 with αV = αα3. �

Remark 4.12 An inspection of the proof of Theorems 2.19 and 2.22 reveals that
for fixed α1, α2 ∈ K∞ and αV = α α3 with fixed α3 ∈ K∞ and varying α ∈ (0,1]
the attraction rate β ∈ K L constructed in this proof depends on α in the following
way: if βα and βα′ are the attraction rates from Theorem 2.22 for αV = α α3 and
αV = α′α3, respectively, with α′ ≥ α, then βα′(r, t) ≤ βα(r, t) holds for all r, t ≥ 0.
This in particular implies that for every ᾱ ∈ (0,1) the attraction rate βᾱ is also an
attraction rate for all α ∈ [ᾱ,1], i.e., we can find an attraction rate β ∈ K L which is
independent of α ∈ [ᾱ,1].

Remark 4.13 Theorem 4.11 proves asymptotic stability of the discrete time closed-
loop system (4.13) or (2.5). For a sampled data system (2.8) with sampling period
T > 0 this implies the discrete time stability estimate (2.47) for the sampled data
closed-loop system (2.30). For sampled data systems we may define the running
cost � as an integral over a function L according to (3.4), i.e.,

�(x,u) :=
∫ T

0
L

(
ϕ(t,0, x,u),u(t)

)
dt.
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We show that for this choice of � a mild condition on L ensures that the sampled
data closed-loop system (2.30) is also asymptotically stable in the continuous time
sense, i.e., that (2.48) holds. For simplicity, we restrict ourselves to a time invariant
reference xref ≡ x∗.

The condition we use is that there exists δ ∈ K∞ such that the vector field fc in
(2.6) satisfies

∥∥fc(x,u)
∥∥ ≤ max

{
ε, δ(1/ε)L(x,u)

}
(4.16)

for all x ∈ X, all u ∈ U and all ε > 0. For instance, in a linear–quadratic problem
with X = R

d , U = R
m and x∗ = 0 we have ‖fc(x,u)‖ = ‖Ax + Bu‖ ≤ C1(‖x‖ +

‖u‖) and L(x,u) = x�Qx + u�Ru ≥ C2(‖x‖ + ‖u‖)2 for suitable constants C1,
C2 > 0 provided Q and R are positive definite. In this case, (4.16) holds with δ(r) =
C2

1/C2r , since ‖fc(x,u)‖ > ε implies C1(‖x‖ + ‖u‖) > ε and thus

C1
(‖x‖ + ‖u‖) ≤ C2

1

ε

(‖x‖ + ‖u‖)2 ≤ C2
1

C2ε
C2

(‖x‖ + ‖u‖)2 = δ(1/ε)L(x,u).

In the general nonlinear case, (4.16) holds if fc is continuous with fc(x∗, u∗) = 0,
L(x,u) is positive definite and the inequality ‖fc(x,u)‖ ≤ CL(x,u) holds for some
constant C > 0 whenever ‖fc(x,u)‖ is sufficiently large.

We now show that (4.16) together with Theorem 4.11 implies the continuous
time stability estimate (2.48). If the assumptions of Theorem 4.11 hold, then (4.15)
implies �(x,μ(x)) ≤ V (x)/α ≤ α2(|x|x∗)/α. Thus, for t ∈ [0, T ] Inequality (4.16)
yields

∣∣ϕ(t,0, x,μ)
∣∣
x∗ ≤ |x|x∗ +

∫ t

0

∥∥fc

(
ϕ(τ,0, x,μ),μ(x)(τ )

)∥∥dτ

≤ |x|x∗ + max

{

tε, δ(1/ε)

∫ t

0
L

(
ϕ(τ,0, x,μ),μ(x)(τ )

)
dτ

}

≤ |x|x∗ + max
{
T ε, δ(1/ε)�(x,u)

}

≤ |x|x∗ + max
{
T ε, δ(1/ε)α2

(|x|x∗
)
/α

}
.

Setting ε = γ̃ (|x|x∗) with

γ̃ (r) = 1

δ−1( 1√
α2(r)

)

for r > 0 and γ̃ (0) = 0 yields γ̃ ∈ K∞ and

δ(1/ε)α2
(|x|x∗

) =
√

α2
(|x|x∗

)
.

Hence, defining

γ (r) = r + max
{
T γ̃ (r),

√
α2(r)/α

}

we finally obtain
∣∣ϕ(t,0, x,μ)

∣∣
x∗ ≤ γ

(|x|x∗
)

for all t ∈ [0, T ] with γ ∈ K∞.
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Hence, if (4.16) and the assumptions of Theorem 4.11 hold, then the sampled
data closed-loop system (2.30) fulfills the uniform boundedness over T property
from Definition 2.24 and consequently by Theorem 2.27 the sampled data closed-
loop system (2.30) is asymptotically stable.

We now turn to investigating practical stability. Recalling Definitions 2.15
and 2.17 of P -practical asymptotic stability and their Lyapunov function characteri-
zations in Theorems 2.20 and 2.23 we can formulate the following practical version
of Theorem 4.11.

Theorem 4.14 Consider a running cost � : N0 × X × U → R
+
0 and a function

V : N0 × X → R
+
0 . Let μ : N0 × X → U be an admissible feedback law and let

S(n) ⊆ X, and P(n) ⊂ S(n), n ∈ N0 be families of forward invariant sets for the
closed-loop system (4.13).

Assume there exists α ∈ (0,1] such that the relaxed dynamic programming in-
equality (4.14) holds for all n ∈ N0 and all x ∈ S(n) \ P(n). Then the suboptimality
estimate

Jk∗(n, x,μ) ≤ V (n,x)/α (4.17)

holds for all n ∈ N0 and all x ∈ S(n), where k∗ ∈ N0 is the minimal time with
xμ(k∗ + n,n, x) ∈ P(k∗ + n) and

Jk∗(n, x,μ) :=
k∗−1∑

k=0

�
(
n + k, xμ(n + k,n, x),μ

(
n + k, xμ(n + k,n, x)

))

is the truncated closed-loop performance functional from Definition 4.10.
If, in addition, there exist α1, α2, α3 ∈ K∞ such that the inequalities

α1
(|x|xref(n)

) ≤ V (n,x) ≤ α2
(|x|xref(n)

)
and �(n, x,u) ≥ α3

(|x|xref(n)

)

hold for all x ∈ X, n ∈ N0 and u ∈ U and a reference xref : N0 → X, then the closed-
loop system (4.13) is P -asymptotically stable on S(n) in the sense of Definition 2.17.

Proof The proof follows with analogous arguments as the proof of Theorem 4.11 by
only considering k < k∗ in the first part and using Theorem 2.23 with Y(n) = S(n)

instead of Theorem 2.22 in the second part. �

Remark 4.15

(i) Note that Remark 4.12 holds accordingly for Theorem 4.14. Furthermore, it
is easily seen that both Theorem 4.11 and Theorem 4.14 remain valid if f in
(4.13) depends on n.

(ii) The suboptimality estimate (4.17) states that the closed-loop trajectories
xμ(·, x) from (4.13) behave like suboptimal trajectories until they reach the
sets P(·).

As a consequence of Theorem 4.11, we can show the existence of a stabilizing
almost optimal infinite horizon optimal feedback even if no infinite horizon optimal
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feedback exists. The assumptions of the following Theorem 4.16 are identical with
the assumptions of Theorem 4.8 except that we do not assume the existence of an
infinite horizon optimal feedback law μ∞.

Theorem 4.16 Consider the optimal control problem (OCPn∞) with running cost
� of the form (3.8) for the control system (2.1) and a reference trajectory xref :
N0 → X with reference control sequence uref ∈ U

∞(xref(0)). Assume that there exist
α1, α2, α3 ∈ K∞ such that the Inequalities (4.12) hold for all x ∈ X, n ∈ N0 and
u ∈ U .

Then for each α ∈ (0,1) there exists an admissible feedback μα : N0 × X → U

which asymptotically stabilizes the closed-loop system

x+ = g(n, x) = f
(
x,μα(n, x)

)

on X in the sense of Definition 2.16 and satisfies

J∞(n, x,μα) ≤ V∞(n, x)/α

for all x ∈ X and n ∈ N0.

Proof Fix α ∈ (0,1) and pick an arbitrary x ∈ X. From (4.5) for K = 1 for each
x ∈ X and each ε > 0 there exists uε

x ∈ U
1(x) with

V∞(n, x) ≥ �
(
n,x,uε

x

) + V∞
(
n + 1, f

(
x,uε

x

)) − ε.

If V∞(n, x) > 0, then (4.12) implies x �= xref(n) and thus again (4.12) yields the
inequality infu∈U �(n, x,u) > 0. Hence, choosing ε = (1 − α) infu∈U �(n, x,u) and
setting μα(n, x) = uε

x yields

V∞(n, x) ≥ α�
(
n,x,μα(n, x)

) + V∞
(
n + 1, f

(
x,μα(n, x)

))
. (4.18)

If V∞(n, x) = 0, then (4.12) implies x = xref(n) and thus from the definition
of uref we get f (x,uref(n)) = xref(n + 1). Using (4.12) once again gives us
V∞(n + 1, f (x,uref(n))) = 0 and from (3.8) we get �(n, x,uref(n)) = 0. Thus,
μα(n, x) = uref(n) satisfies (4.18). Hence, we obtain (4.14) with V = V∞ for all
x ∈ X. In conjunction with (4.12) this implies that all assumptions of Theorem 4.11
are satisfied for V = V∞ with S(n) = X. Thus, the assertion follows. �

Again we can replace (4.12) by the asymptotic controllability condition from
Definition 4.2.

Corollary 4.17 Consider the optimal control problem (OCPn∞) for the control sys-
tem (2.1) and a reference trajectory xref : N0 → X with reference control sequence
uref ∈ U

∞(xref(0)). Assume that the system is asymptotically controllable to xref and
that the cost function � : N0 × X × U → R

+
0 is of the form (4.3) with λ = 0. Then

for each α ∈ (0,1) there exists an admissible feedback μα : N0 × X → U which
asymptotically stabilizes the closed-loop system

x+ = g(n, x) = f
(
x,μα(n, x)

)
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on X in the sense of Definition 2.16 and satisfies

J∞(n, x,μα) ≤ V∞(n, x)/α

for all x ∈ X and n ∈ N0.
If, in addition, the asymptotic controllability has the small control property then

the statement also holds for � from (4.3) with arbitrary λ ≥ 0.

Proof Theorem 4.3 yields

α1
(|x0|xref(n0)

) ≤ V∞(n0, x0) ≤ α2
(|x0|xref(n0)

)

for suitable α1, α2 ∈ K∞. Furthermore, by (4.3) the third inequality in (4.12) holds
with α3 = γ −1

1 . Hence, (4.12) holds and Theorem 4.16 yields the assertion. �

While Theorem 4.16 and Corollary 4.17 are already nicer than Theorem 4.8 and
Corollary 4.9, respectively, in the sense that no existence of an optimal feedback law
is needed, for practical applications both theorems require the (at least approximate)
solution of an infinite horizon optimal control problem, which is in general a hard,
often infeasible computational task, see also the discussion in Sect. 4.4, below.

Hence, in the following chapters we are going to use Theorem 4.11 and Theo-
rem 4.14 in a different way: we will derive conditions under which (4.14) is satisfied
by the finite horizon optimal value function V = VN and the corresponding NMPC-
feedback law μ = μN . The advantage of this approach lies in the fact that in order
to compute μN(n0, x0) it is sufficient to know the finite horizon optimal control se-
quence u� for initial value x0. This is a much easier computing task, at least if the
optimization horizon N is not too large.

4.4 Notes and Extensions

Infinite horizon optimal control is a classical topic in control theory. The version
presented in Sect. 4.1 can be seen as a nonlinear generalization of the classical (dis-
crete time) linear–quadratic regulator (LQR) problem, see, e.g., Dorato and Levis
[6]. A rather general existence result for optimal control sequences and trajecto-
ries in the metric space setting considered here was given by Keerthi and Gilbert
[15]. Note, however, that by Theorem 4.16 we do not need the existence of optimal
controls for the existence of almost optimal stabilizing feedback controls.

Dynamic programming as introduced in Sect. 4.2 is a very common approach
also for infinite horizon optimal control and we refer to the discussion in Sect. 3.5
for some background information. As in the finite horizon case, the monographs of
Bertsekas [2, 3] provide a good source for more information on this method.

The connection between infinite horizon optimal control and stabilization prob-
lems for nonlinear systems has been recognized for quite a while. Indeed, the well
known construction of control Lyapunov functions in continuous time by Sontag
[23] is based on techniques from infinite horizon optimal control. As already ob-
served after Corollary 4.7, discrete time infinite horizon optimal control is nothing
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but NMPC with N = ∞. This has lead to the investigation of infinite horizon NMPC
algorithms, e.g., by Keerthi and Gilbert [16], Meadows and Rawlings [19], Alamir
and Bornard [1]. For linear systems, this approach was also considered in the mono-
graph of Bitmead, Gevers and Wertz [4].

The stability results in this chapter are easily generalized to the stability of sets
Xref(n) ⊂ X when � is of the form (3.24). In this case, it suffices to replace the
bounds αj (|x|xref(n)), j = 1,2,3, in, e.g., Theorem 4.11 by bounds of the form

αj

(
min

y∈Xref(n)
|x|y

)
. (4.19)

Alternatively, one could formulate these bounds via so-called proper indicator func-
tions as used, e.g., by Grimm et al. in [8].

By Formula (4.8) the optimal—and stabilizing—feedback law μ∞ can be com-
puted by solving a rather simple optimization problem once the optimal value func-
tion V∞ is known. This has motivated a variety of approaches for solving the dy-
namic programming equation (4.5) (usually for K = 1) numerically in order to ob-
tain an approximation of μ∞ from a numerical approximation of V∞. Approxi-
mation techniques like linear and multilinear approximations are proposed, e.g.,
in Kreisselmeier and Birkhölzer [17], Camilli, Grüne and Wirth [5] or by Falcone
[7]. A set oriented approach was developed in Junge and Osinga [14] and used for
computing stabilizing feedback laws in Grüne and Junge [10] (see also [11, 12] for
further improvements of this method). All such methods, however, suffer from the
so-called curse of dimensionality which means that the numerical effort grows expo-
nentially with the dimension of the state space X. In practice, this means that these
approaches can only be applied for low-dimensional systems, typically not higher
than 4–5. For homogeneous systems, Tuna [25] (see also Grüne [9]) observed that it
is sufficient to compute V∞ on a sphere, which reduces the dimension of the prob-
lem by one. Still, this only slightly reduces the computational burden. In contrast to
this, a numerical approximation of the optimal control sequence u� for finite hori-
zon optimal control problems like (OCPN) and its variants is possible also in rather
high space dimensions, at least when the optimization horizon N is not too large.
This makes the NMPC approach computationally attractive.

Relaxed dynamic programming in the form introduced in Sect. 4.3 was origi-
nally developed by Lincoln and Rantzer [18] and Rantzer [20] in order to lower
the computational complexity of numerical dynamic programming approaches. In-
stead of trying to solve the dynamic programming equation (4.5) exactly, it is only
solved approximately using numerical approximations for V∞ from a suitable class
of functions, e.g., polynomials. The idea of using such relaxations is classical and
can be realized in various other ways, too; see, e.g., [2, Chap. 6]. Here we use re-
laxed dynamic programming not for solving (4.5) but rather for proving properties
of closed-loop solutions, cf. Theorems 4.11 and 4.14. While the specific form of
the assumptions in these theorems were first used in an NMPC context in Grüne
and Rantzer [13], the conceptual idea is actually older and can be found, e.g., in
Shamma and Xiong [22] or in Scokaert, Mayne and Rawlings [21]. The fact that
stability of the sampled data closed loop can be derived from the stability of the
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associated discrete time system for integral costs (3.4), cf. Remark 4.13, was, to the
best of our knowledge, not observed before.

4.5 Problems

1. Consider the problem (OCPn∞) with finite optimal value function V∞ : N0 ×
X → R

+
0 and asymptotically stabilizing admissible optimal feedback law μ∞ :

N0 × X → U . Let V : N0 × X → R
+
0 be a function which satisfies

V (n,x0) = min
u∈U1(x0)

{
�(n, x0, u) + V

(
n + 1, f (x0, u)

)}
(4.20)

for all n ∈ N0 and all x0 ∈ X.
(a) Prove that V (n,x) ≥ V∞(n, x) holds for all n ∈ N0 and all x ∈ X.
(b) Prove that for the optimal feedback law the inequality

V (n,x) − V∞(n, x) ≤ V
(
n + 1, f

(
x,μ∞(n, x)

))

− V∞
(
n + 1, f

(
x,μ∞(n, x)

))

holds for all n ∈ N0 and all x ∈ X.
(c) Assume that in addition there exist α2 ∈ K∞ such that the inequality

V (n,x) ≤ α2
(|x|xref(n)

)

holds for all n ∈ N0, x ∈ X and a reference trajectory xref : N0 → X. Prove
that under this condition V (n,x) = V∞(n, x) holds for all n ∈ N0 and all
x ∈ X.

(d) Find a function V : N0 ×X → R
+
0 satisfying (4.20) but for which V (n,x) =

V∞(n, x) does not hold. Of course, for this function the additional condition
on V from (c) must be violated.

Hint for (a): Define a feedback μ which assigns to each pair (n, x) a minimizer
of the right hand side of (4.20), check that Theorem 4.11 is applicable for S(n) =
X (for which α ∈ (0,1]?) and conclude the desired inequality from (4.15).

Hint for (c): Perform an induction over the inequality from (b) along the opti-
mal closed-loop trajectory.

2. Consider the unconstrained linear control system

x+ = Ax + Bu

with matrices A ∈ R
d×d , B ∈ R

d×m. Consider problem (OCPn∞) with

�(x,u) = x�Qx + u�Ru

with symmetric positive definite matrices Q,R of appropriate dimension (this
setting is called the linear–quadratic regulator (LQR) problem). If the pair (A,B)

is stabilizable, then it is known that the discrete time algebraic Riccati equation

P = Q + A�(
P − PB

(
B�PB + R

)−1
B�P

)
A

has a unique symmetric and positive definite solution P ∈ R
d×d .
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(a) Show that the function V (x) = x�Px satisfies (4.20). Note that since the
problem here is time invariant we do not need the argument n.

(b) Use the results from Problem 1 to conclude that V∞(x) = x�Px holds. You
may assume without proof that an optimal feedback μ∞ exists.

(c) Prove that the corresponding optimal feedback law asymptotically stabilizes
the equilibrium x∗ = 0.

Hint for (a): For matrices C,D,E of appropriate dimensions with C,D symmet-
ric and D positive definite the formula

min
u∈Rm

{
x�Cx + u�Du + u�E�x + x�Eu

} = x�(
C − ED−1E�)

x

holds. This formula is proved by computing the zero of the derivative of the
expression in the “min” with respect to u (which is also a nice exercise).

Hint for (b) and (c): For any symmetric and positive definite matrix M ∈ R
d×d

there exist constants C2 ≥ C1 > 0 such that the inequality C1‖x‖2 ≤ x�Mx ≤
C2‖x‖2 holds for all x ∈ R

d .
3. Consider the finite horizon counterpart (OCPN) of Problem 2. For this setting

one can show that the optimal value function is of the form VN(x) = x�PNx

and that the matrix PN converges to the matrix P from Problem 2 as N → ∞.
This convergence implies that for each ε > 0 there exists Nε > 0 such that the
inequality

∣∣x�PNx − x�Px
∣∣ ≤ ε‖x‖2

holds for all N ≥ Nε . Use this property and Theorem 4.11 in order to prove that
the NMPC-feedback law from Algorithm 3.1 is asymptotically stabilizing for
sufficiently large optimization horizon N > 0.

Hint: Look at the hint for Problem 2(b) and (c).
4. Consider the scalar control system

x+ = x + u

with x ∈ X = R, u ∈ U = R which shall be controlled via the NMPC Algo-
rithm 3.1 using the quadratic running cost function

�(x,u) = x2 + u2.

Compute VN(x0) and J∞(x0,μN(·)) for N = 2 (cf. Chap. 3, Problem 3). Using
these values, derive the degree of suboptimality α from the relaxed dynamic
programming inequality (4.14) and from the suboptimality estimate (4.15).
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