Chapter 9
Interactive Parsing

With Contribution Of: José Miguel Benedi, Joan Andreu Sanchez and Ricardo
Sanchez-Saez.

Contents

9.1 Introduction 180
9.2 Interactive Parsing Framework o000 182
9.3 Confidence MeasuresinIP 184
9.4 IPin Left-to-Right Depth-First Order 186
9.5 IPExperimentation 188
9.6 Conclusions 191
References e 192

This chapter introduces the Interactive Parsing (IP) framework for obtaining the
correct syntactic parse tree of a given sentence. This formal framework allows us to
make the construction of interactive systems for tree annotation. These interactive
systems can help to human annotators in creating error-free parse trees with little ef-
fort, when compared with manual post-editing of the trees provided by an automatic
parser.

In principle, the interaction protocol defined in the IP framework differs from
the left-to-right interaction protocol used throughout this book. Specifically, the TP
protocol will be of desultory order; that is, in IP the user can edit any part of the
parse tree and in any order.

However, in order to efficiently calculate the next best tree in IP framework, in
Sect. 9.4, a left-to-right depth-first tree review order will be introduced. In addi-
tion, this order also introduces computational advantages into the lookout of most
probable tree for interactive bottom-up parsing algorithms.

The use of Confidence Measures in IP is also presented as an efficient technique
to detect erroneous parse trees. Confidence Measures can be efficiently computed
in the IP framework and can help in detecting erroneous constituents within the
IP process more quickly, as they provide discriminant information over all the IP
process.

A H. Toselli et al., Multimodal Interactive Pattern Recognition and Applications, 179
DOI 10.1007/978-0-85729-479-1_9, © Springer-Verlag London Limited 2011

http://dx.doi.org/10.1007/978-0-85729-479-1_9

180 9 Interactive Parsing
9.1 Introduction

Probabilistic Parsing is an important problem related to Natural Language Process-
ing and Computational Linguistics, which has proven to be useful for Language
Modeling [2, 8, 24], RNA Modeling [25], and Machine Translation [7, 35], among
others [19]. In probabilistic parsing, a parse tree is obtained for an input sentence
that represents syntactic relations between different parts of the sentence. This parse
tree is obtained by using a probabilistic model and a parsing algorithm.

Probabilistic Context Free-Grammars (PCFG) are a powerful formalism that has
been widely used for Probabilistic Parsing [1, 10, 23, 24, 30]. PCFG represent an
appropriate trade-off between representation capability and time complexity of the
algorithms that are able to use them. The good results obtained in parsing have made
PCFG the most used formalism in order to tackle this problem. Therefore, we will
focus on the use of PCFG as probabilistic models.

A possible classification of the parsing algorithms can be done based on the
use of lexical information. In lexicalized parsing, lexical information is used in
the parsing process in order to disambiguate between non-lexical rules [5]. The
main drawback of the probabilistic lexicalized parsing is the high time complex-
ity of the parsing algorithms. Alternatively, unlexicalized parsing can be used. In
the last years, unlexicalized parsing has achieved very good parsing results with al-
gorithms of lower time complexity [18, 23]. For unlexicalized parsing, algorithms
can be grouped into two main approaches: those that are based on the Earley algo-
rithm [12], and those that are based on the Cocke—Kasami—Younger (CKY) algo-
rithm [15]. The Earley algorithm is a classical parsing algorithm that can deal with
PCFG in general format. Alternatively, the CKY algorithm has a similar perfor-
mance but it requires the PCFG in Chomsky Normal Form (CNF). Several reasons
have made more popular the use of the CKY algorithm in the last years: first, the
CKY algorithm makes easier the use of efficient techniques for obtaining a set of
n-best parse trees [16]; second, in recent years, efficient A* algorithms have been
proposed for unlexicalized parsing that are able to achieve very good performance
[13, 18]; third, efficient maximum-entropy techniques have been devised for CKY-
style parsing [6]; and fourth, efficient CK'Y-style parsing algorithms have been re-
cently proposed for Machine Translation [9, 14, 34]. Throughout this section we will
focus in probabilistic parsing with PCFG in CNF with the CKY-style algorithms, but
similar ideas could be applied to the Earley algorithm with PCFG in general format,
and other parsing formalisms.

In probabilistic parsing, given a sentence x and a PCFG G, the problem in which
we are interested is to obtain the parse tree ¢ that best represents the relation between
the words of the sentence x according to model G. From a pattern recognition point
of view, the probabilistic parsing can be formulated as

{ = argmax pg(t | x), 9.1)
teT

where pg (¢ | x) is the probability of the parse tree ¢ given the input string x using a
PCFG G, and 7 is the set of all possible parse trees for x. In probabilistic parsing,

9.1 Introduction 181

a parse tree ¢ that is associated to a string x = x{' can be decomposed into subtrees
ti‘?, such that, A is the label of the root node and 7, j are indexes delimiting the
analyzed substring xi] . In this way, t = tfn where S is the axiom of the grammar. If
the PCFG is in CNF, then the maximization in Eq. (9.1) can be carried out with a
dynamic programming CKY-style algorithm. This CKY-style algorithm resembles
the Viterbi algorithm for finite-state models, and therefore sometimes is also called
a Viterbi algorithm. This algorithm fills in a (n x n) parse matrix) for a string
of size n. Each element of V is a probabilistic non-terminal vector such that each
component is defined as

VijlAl=p(t) = pe(ADx!) AeNi1<ij<n, 9.2)

where N is the set of non-terminal symbols of the grammar, and pg (A % xij) is

the probability of the most probable tree that generates the substring xl'.’ from the
non-terminal symbol A.

As we introduced in Chap. 1, within the syntactic and statistical pattern recog-
nition world, we can tell apart two different usage scenarios for automatic systems.
First, we have the cases in which the output of such systems is expected to be used
in a vanilla fashion, that is, without validating or correcting the results produced
by the system. Within this usage scheme, the most important factor of a given au-
tomatic system is the quality of the results. Although memory and computational
requirements of such systems are usually taken into account, the ultimate aim of
most research that relates to this scenario is to minimize the error rate of the results
that are being produced [17].

The second usage scenario arises when there exists the need for perfect and com-
pletely error-free results. In such a case, the intervention of a human user valida-
tor/corrector is unavoidable. The corrector will review the results and validate them,
or make the suitable corrections before the system output can be employed. In these
kind of problems, the most important factor that has to be minimized is the hu-
man effort that has to be applied to transform the potentially incorrect output of the
system into validated and error-free output. Measuring user effort has an intrinsic
subjectivity that makes it hard to be quantized. Given that the user output, most re-
search about problems associated to this scenario tried to minimize just the error
rate of the system as well.

Only recently, more formal work in this direction has started to be carried out,
in the form of Interactive Pattern Recognition (IPR) systems (see Chap. 1). These
systems formally integrate the correcting user into the loop, making him part of
an interactive system (see Fig. 1.4). In such systems the importance of the vanilla
error rate per-se is diminished. Instead, the intention is to measure how well the user
and the system work together. For this, formal user simulation protocols started to
be used as a benchmark. This dichotomy in evaluating system performance or user
effort applies to probabilistic parsing as well.

There are many problems within the parsing field where error-free results con-
sisting in perfectly annotated trees are needed. Building correct trees is needed for
tasks such as recognition of handwritten mathematical expressions [36] or creating

182 9 Interactive Parsing

new gold standard treebanks [11]. When using automatic parsers as a baseline for
building perfect syntactic trees, the role of the human annotator is to post-edit the
trees and correct the errors. This manner of operating results in the typical two-step
process for error correcting, in which the system first generates the whole output and
then the user verifies or amends it. This paradigm is rather inefficient and uncom-
fortable for the human annotator. For example, in the creation of the Penn Treebank
annotated corpus, a basic two-stage setup was employed: a rudimentary parsing sys-
tem provided a skeletal syntactic representation, which then was manually corrected
by human annotators [20]. Additional works within this field have presented systems
that act as a computerized aid to the user in obtaining the perfect annotation [4, 21].
Subjective measurements of the effort that is needed to obtain perfect annotations
were reported in [4], but we feel that a more comparable metric is needed.

With the objective of reducing the user effort and making the laborious task of
tree annotation easier, an IPR framework for probabilistic Interactive Parsing (IP)
will be presented. In this IP framework, the user is located in the loop, embedding
him as a part of the automatic parser, and allows him to interact in real time within
the system. Thus, the IP system can use the readily available user feedback to make
improved predictions about the parts that have not been validated by the corrector.

To reduce user effort in IPR systems in general, and in IP systems in particular,
one approach that can be followed is adding information of the system that helps
the user in finding the errors and so he can correct them in a hastier fashion. For
the users of such systems it is important to know, not only that the output may be
erroneous, but which parts of this more complex output blocks are more prone to
be erroneous. Confidence Measures (CM) are a formalism that goes along this di-
rection, allowing the system to assigning a probability of correctness for individual
erroneous constituents of a more complex output block of a PR system.

In fields such as HTR, MT or ASR the output sentences have a global probability,
or score, that reflects the likeness of the whole recognized or translated sentence of
being correct. CM allow precision beyond the sentence level in predicting the errors:
they allow one to label the individual generated words as either correct or incorrect.
This enables systems to identify possible erroneous parts to the user, or to propose
only those words that are likely to be correct. CM have been successfully applied in
many completely automatic PR systems [26, 31-33]. Recently, CM have also been
applied to IPR systems in the HTR [29] field.

In the following section we describe how the IPR framework can be stated for
probabilistic IP. Then, we explore the use of CM to the IP framework, to asses
how much is retained of their ability to detect erroneous constituents within the
interactive process.

9.2 Interactive Parsing Framework

As presented in Sect. 9.1, it is necessary to consider the human user in the pars-
ing process to achieve error-free parse trees. There are two possible approaches:
by including the human user in a process of post-editing, or by incorporating the

9.2 Interactive Parsing Framework 183

human user in the interactive recognition process itself. Following the guidance of
this book, this latter approach is what we consider in this section. The IPR formal
framework introduced in Chap. 1, and more particularly the case for explicitly tak-
ing interaction history into account (Sect. 1.3.2), can be directly applied to the IP
problem.

According to IPR paradigm, in each interaction, the system should propose a new
hypothesis (parse tree) compatible with the constraints imposed by the amendments
made by the user in previous interactions. Initially, for a given input string, the
system proposes a parse tree. Next, the user corrects a possible error of the proposed
parse tree. Then, the system must provide a new parse tree compatible with the user
correction. Obviously, this user correction restricts the set of solutions (parse trees)
possible. This interactive process continues until a correct parse tree is achieved.

In principle, this interaction protocol differs from the left-to-right interaction pro-
tocol, raised throughout this book. Following the interaction protocol taxonomy de-
scribed in Sect. 1.4.1, the IP protocol would be of desultory order. That is, in IP the
user can edit any part of the parse tree and in any order. Then we will formally char-
acterize the IP problem, and we will also analyze the implicit interaction protocols.
In Sect. 9.4 we will return to analyze the interaction protocols for IP and we will
propose some restrictions.

From a linguistic point of view, user annotation can be stated in terms of con-
stituents. A constituent is a word sequence that functions as a single linguistic unit.
More formally, from a parsing point of view, a constituent C iA is defined by the non-
terminal symbol (either a syntactic label or a POS tag) A and its span ij (the starting
and ending indexes which delimit the part of the input sentence encompassed by the
constituent). Notice that a parse subtree t{} defines a constituent set C (tl./?). This con-

stituent set is composed of several constituents C st with Csli eC (ti’;‘.) andi >s>j
and i > u > j for all constituents in the set. However, note that a given constituent
set C can be the result of different subtrees, if we consider cycles and unit rules.

In an IP approach, the user amends a particular constituent in every interaction
for some parse tree t. More precisely, he points out a particular node of the tree
and he amends the node label and/or its span. As in Sect. 1.3.2 (Eq. (1.13)), the

interactive formal framework for probabilistic parsing can be defined as

i =argmax p(t | x, C, Cfj), (9.3)
teT

where C i’;‘. is the (feedback) constituent validated by the user in the last interaction;

C is the set of constituents validated by the user (history); pg (¢ | x, C, C{;) is the
probability (using a model G) of a parse tree ¢ given the input string x, the user
feedback le‘}, and the history C; and finally 7 is the set of all possible parse trees
for x.

At this point, we consider that the user feedback is deterministic (mouse and/or
keyboard). That is, the decoding process of user feedback does not introduce new er-
rors. In Sect. 1.3.5 we will see how to include a non-deterministic multimodal feed-
back using interaction information to help decoding non-deterministic feedback.

184 9 Interactive Parsing

Note that the definition of C is general, so if we were to define a certain order
in the user review process, then the set C would not only include the constituents
directly amended by the user but also the components implicitly validated by each
interaction with the IP system. As seen in previous chapters, this also happens in
applications where the order of analysis is from left to right. In that case, when the
user edits a word, this means that this implicitly validates the previous prefix.

In Eq. (9.3), the search algorithm should take into account the restrictions intro-
duced by C and ij‘., that is, the search space defined by the possible parse trees. In
both cases, the restrictions introduced by the user should limit the possible solutions
represented in the parse matrix). Note that both C and CZA produce, somehow,
a partial labeled bracketing of the input sequence. In this way, and following [22],
we define a compatibility function c(Y, r, s) for all those subproblems defined on V
(Eq. (9.2)) compatible with the constituents of C. In other words, given a subprob-
lem V, s[Y], its compatibility with C can be defined using the following function:

¥Cy € (CU{ch))
Lo, =(p,q) A Y =X),

0, if(r,s)=(p,q) AN (Y #X),
clY,r,s)= 9.4)
1, if (r,s) # (p, q) but are consistent,

0, otherwise.

This function filters those derivations (or partial derivations) whose parsing is not
compatible with the validated constituents. The span (r, s) is not consistent with the
span (p,g) when p<r<g <s,orr<p<s<gq.

The compatibility function between V, ;[Y] and C i,‘q defined in Eq. (9.4) requires
that when the spans are equal also the labels Y and X must be equal. However, if the
grammar G has unary rules (A — B) then this restriction is excessive, and should

be relaxed as X = Y or ¥ = X.

9.3 Confidence Measures in IP

Annotating trees syntactically, even with the aid of automatic systems, generally
requires human intervention with a high degree of specialization. This fact partially
justifies the shortage in large manually annotated treebanks. Endeavors directed at
easing the burden for the experts performing this task could be of great help. One
approach that can be followed in reducing user effort within an IPR paradigm is
adding information that helps the user to locate the individual errors in a sentence,
so he can correct them in a hastier fashion. The use of the Confidence Measure (CM)
formalism goes in this direction, allowing us to assign a probability of correctness
for individual erroneous constituents of a more complex output block of a Pattern
Recognition system.

9.3 Confidence Measures in IP 185

Fig. 9.1 The product of the S
inside and outside
probabilities for each
constituent comprises the

upper part of Eq. (9.6) aa(i, j)

ﬁA(i: .])

x Ti-1 T Tj Tjr1 T

It is interesting to see this issue from the perspective of interaction protocols
introduced in Sect. 1.4.1. That section discussed two main types of interactive pro-
tocols: passive, when the user decides which parse tree (hypothesis) elements need
supervision; and active, when the system decides which parse tree elements undergo
user supervision. The IP paradigm framework seen so far is clearly based on a pas-
sive strategy. The introduction of CM associated to the parse tree elements provided
by the system can be seen as a first step toward an active approach, where the system
suggests/helps the user in the correction process.

However, until recent advances, the use of CM remained largely unexplored in
probabilistic parsing despite having several applications of great interest within this
field. Assessing the correctness of the different parts of a parsing tree can be useful
in improving the efficiency and usability of an IP systems, not only by coloring
parts with low confidence for the user to spot on, but also the automatic part of the
interactive process by forcing the user to correct constituents with low confidence.
Additionally, CM could also help improving the parsing process itself, either by
being used as a component of an n-best reranker, or by being directly employed by
a parsing system for recalculating parts with low confidence.

CM for parsing in the form of combination of characteristics calculated from
n-best lists were explored in [3]. Computation of CM from n-best list makes sense
mainly when the parsing algorithm prunes the search space by using some A* strat-
egy [6]. However, when no pruning strategy is used in the parsing process, CM can
be computed efficiently from the posterior probability of the tree constituent [27].

CM have been also explored in the IP framework. CM of each one of the parse
subtrees (subproblems) can be calculated in terms of their posterior probability [27],
which can be considered as a measure of the degree to which the subtree is believed
to be correct for a given input sentence x. This is formulated as

th, SR MY pe (!
pG(ti?|x)=pG(lj X):Zte’f (,j ij)pG(t' | x) ©.5)
PG (x) PG (x)

with 6() being the Kronecker delta function. Equation (9.5) is the posterior proba-
bility of the subtree tl.‘? given x. The numerator stands for the probability of all parse

trees of x that contain the subtree tlf/‘. (see Fig. (9.1)).

186 9 Interactive Parsing

The posterior probability is computed with the well know Inside B and Outside
o probabilities. The Inside probability is defined as B4 (i, j) = pGg(A = Xi. . Xj),
and it can be computed with the Inside algorithm. The Outside probability is defined
as ap(i, j) = pg(S = X1...Xi—1AXj11...x,) and it can be computed with the
Outside algorithm [1]. In this way, Eq. (9.5) can be written as follows:

Ay . -
pG(tl:?'x):pG(l]’):,BA(I,‘])(XA(I,]). (96)
PG (x) Bs(1,n)
It should be noted that the calculation of CM reviewed here is generalizable for any
problem that employs PCFG, and not just IP tasks. In the experiments presented
in Sect. 9.5, we show that the CM can be used within IP to detect erroneous con-
stituents.

9.4 IP in Left-to-Right Depth-First Order

Parting from the general desultory order framework defined in Sect. 9.2 we can
instantiate the left-fo-right tree review order, similarly to what has been done in
previous chapters through this book. For that, we take a cue from the prefix/suffix
paradigm in order to introduce a predefined review order for the user checking the
constituents in each parse trees: a left-to-right depth-first exploration order. In addi-
tion to seeming a reasonable and ergonomic review order for the structure of a tree
(the reviewer would check constituents in a hierarchical order) this order also intro-
duces computational advantages into the most probable tree lookout for interactive
bottom-up parsing algorithms. Another key benefit of adopting this order is that it
facilitates the automatic simulation of user interaction, allowing one to calculate
metrics that estimate the amount of effort reduction.

This order can be formalized by defining a prefix tree t,(t, C f}) that is defined

for each correction performed by the user over a constituent Ci’?. The prefix tree
is comprised of all the ancestors of the corrected constituent and all constituents
whose end span is lower than the start span of the corrected constituent. In terms of
subtrees, the prefix tree can be represented with the following expression:

tp(t, C{J‘.) =(@—15)—{th et:p>j} 9.7)

with t — ¢ meaning to remove the subtree ¢’ from the tree ¢.
In terms of constituents, Eq. (9.7) is equivalent to

(t.Cl)={Ch, eC):m=in=j.d(Ch,) <d(C]})}

u{ch ec :q<i} 9.8)
with d(C%)) being the depth (distance from root) of constituent C%,. In Fig. 9.2d
one can see that the slash-outlined part becomes the prefix tree and the dot-outlined
subtree part becomes recalculated.

9.4 1P in Left-to-Right Depth-First Order 187

In this way, the history from Eq. (9.3) in Sect. 9.2 becomes the prefix C =
tp(C i/}). Because of this, the compatibility function becomes further restricted:

¥Cyg € (CU{ch))

1, if(r,s)=(p,q) NY =X,
0, if(r,s)=((p,g9)ANY#X,

c¥,r,s)= . . 9.9)
1, if(r,s) # (p,q) Ar > p and are consistent,

0, otherwise.

Notice that the restriction » > p comes from the converse of Eq. (9.7).

9.4.1 Efficient Calculation of the Next Best Tree

If we employ PCFGs as the underlying parse model for IP, then computing the next
best tree as expressed in Eq. (9.3) becomes simpler when one uses a left-to-right
depth-first tree review order.

The following calculation takes advantage of the fact that there are two types
of subtrees that do not have to be recalculated: subtrees that are part of the prefix
because they have already been implicitly validated, and subtrees that are not part
of the prefix but do not descend from the parent of the corrected constituent. This
follows from the fact that under the left-to-right review order we know that the
parent of an amended constituent is already correct so, owing to the context-freeness
of PCFG, a change in a constituent only affects its descendants and its right sibling
subtrees at most.

In the following expressions we show how 7, which is the next best tree produced
by the IP framework can be calculated in an efficient manner by reusing parts of 7/,
the best tree obtained in the previous user iteration.

Let the corrected constituent be Cf} and its parent C then the next tree 7 can be
calculated in the following manner:

i =argmax pg (¢ | x,C.Cfj) = (I' = i7) + 17 (9.10)
teT
with
i = argmax pg (1,7 | <}, Cf}) (9.11)
12eT,

where £/}, is the subtree of ¢ that has constituent C;}, as the root.

Equation (9.10) calculates the newly proposed tree 7 by subtracting the subtree
rooted at the parent of the corrected constituent (7' — 7/P) and appending a newly
calculated subtree 7/P, whose oot is the parent of the corrected constituent and is
calculated taking into account just the corrected constituent as shown in Eq. (9.11).

188 9 Interactive Parsing

S S
/\ /\
A Y A Y
S PN
B V4 X Z
/N VAN
co o lwe] L
a b c d a b c d a b ¢ d
(a) Refer- (b) Tter- (c) Iter- (e) Tter-
ence tree ation 0: ation 0: ation 1: ation 1:
Proposed Erroneus User Proposed
out- constituents corrected output
put tree 1 constituent tree 2

Fig. 9.2 Synthetic example of user interaction with the IP system. (a) The reference tree. (b) The
system proposes an initial tree. (¢) The user simulation subsystem looks at the tree and detects
two incorrect constituents. (d) The first error is corrected by the user simulation subsystem. Note
the implicitly validated prefix (slashed outline) and the recalculated part (dotted outline). (e) The
system produces a new tree which equals the reference

This new maximization is more limited in extent and easier to perform because we
only consider the last corrected constituent rather than the whole history of corrected
constituents.

9.5 IP Experimentation

Based on the theoretical framework instantiated in Sect. 9.4, we devised an exper-
imental setup to obtain an automatic assessment of user effort savings when using
an IP system compared to a traditional system. The experimental setup is based
on a user simulation subsystem that uses the gold reference trees to imitate system
interaction by a human corrector and provides a comparable benchmark.

9.5.1 User Simulation Subsystem

Again, we devised an automatic evaluation protocol following the aforementioned
left-to-right depth-first review order. The protocol is quite simple, and an example
can be seen in Fig. 9.2a.

1. The IP system proposes a full parse tree 7 for the input sentence.

2. The user simulation subsystem finds the first incorrect constituent by exploring
the tree in the order defined by the prefix tree definition (left to right, depth-first)
and comparing it with the reference tree. When the first erroneous constituent is
found, it is amended by being replaced by the correct one C i’;‘., operation which
implicitly validates the prefix tree tp(Cf}).

3. The IP system produces the most probable tree that is compatible with the vali-
dated prefix tree.

9.5 IP Experimentation 189

4. These steps are iterated until a final, perfect parse tree is produced by the IP
system and validated against the reference by the user simulation subsystem.

9.5.2 Evaluation Metrics

With the user simulation in place, we need some metrics to measure the effort re-
duction. Parsing quality is generally assessed by the classical evaluation metrics,
Precision, Recall, and F-measure:

e Precision: number of correct constituents divided by the number of constituents
in the gold reference parse tree.

e Recall: number of correct constituents divided by the number of constituents in
the proposed parse.

o F-measure:

Precision - Recall

" Precision + Recall’

However, for the assessment of an IP process, we need two comparable metrics:
one that reports the amount of human correcting work needed to obtain the gold tree
in a classical two-step process (i.e. the number of operations needed to post-edit the
proposed tree in order to obtain the gold one); and a second one that measures the
amount of effort needed to obtain the gold tree with the human interacting within
the presented IP system.

We defined the following metric that measures the amount of effort needed in
order to post-edit a proposed tree and obtain the gold reference parse tree, akin to
the Word Error Rate used in Statistical Machine Translation and related fields:

o Tree Constituent Error Rate (TCER): Minimum number of constituent substitu-
tion, deletion and insertion operations needed to convert the proposed parse tree
into the corresponding gold reference tree, divided by the total number of con-
stituents in the reference tree.

The TCER is in fact strongly related to the F-measure: the higher the F-measure
is, the lower TCER will be.

Finally, the relevant evaluation metric that assesses the IP system performance
represents the amount of effort that the operator would have to spend using the
system in order to obtain the gold tree, and is directly comparable to the TCER:

e Tree Constituent Action Rate (TCAC): Number of constituent corrections per-
formed using the IP system to obtain the reference tree, divided by the total num-
ber of constituents in the reference tree.

190 9 Interactive Parsing

9.5.3 Experimental Results

An IP system was implemented over the classical CKY-Viterbi algorithm. Experi-
mentation was run over the Penn Treebank (English language) and the UAM Tree-
bank (Spanish language). Within the Penn Treebank, sections 2 to 21 were used to
obtain a vanilla Penn Treebank Grammar; test set was the section 23. We divided
the UAM Treebank into two sets as well: the set used to obtain the grammars com-
prised was of the first 1400 sentences of the corpus; and the test set consisted of the
remaining 100 sentences.

Parsers based on CKY work with grammars in CNF, which is a subtype of CFG
in which all the production rules must be in the form:

A—BC or A—a or S—e. (9.12)

Notice that for every CFG (or PCFG) there is an equivalent version of this grammar
in CNE.

In order to obtain the CNF grammars from the vanilla PCFG for each of the
languages we used the CNF transformation method from the toolkit NLTK.! In
addition to obtaining a plain right-factored CNF transformation, the CNF method
from the NLTK allows to augment the performance of the obtained unlexicalized
binary grammars by introducing additional context information in the non-terminals
names. This process is called grammar markovization and is controlled by the ver-
tical (v) and horizontal (4) markovization parameters [18]. A plain right-factored
CNF transformed grammar corresponds to a markovization with both v and 4 set
to 0.

A basic schema was introduced for parsing sentences with out-of-vocabulary
words: when an input word could not be derived by any of the preterminals in the
vanilla treebank grammar, a very small probability for that word was uniformly
added to all of the preterminals.

For our experiments we obtained several CNF grammars of different sizes
through the use of different v and % values. Results for the metrics discussed on
Sect. 9.5.2 for the different markovizations of the obtained grammars can be seen
in Tables 9.1 and 9.2. We observe that the percentage of corrections needed using
the IP system is much lower than the rate of corrections needed on just post-editing
the proposed trees: from 42% to 47% effort reduction by the human supervisor.
These results clearly show that an IP system can relieve manual annotators of a lot
of burden in their task.

Additionally, we performed experimentation with CM used over an IP process,
to assess their power to detect incorrect constituents. We assessed that CM retain all
of their error detection capabilities during the IP process: they are able to discern
between 18% and 25% of incorrect constituents at most stages of the IP process,
with a bump up to 27% after about seven user interactions. The complete details can
be found at [28].

Thttp://ltk.sourceforge.net/.

http://nltk.sourceforge.net/

9.6 Conclusions 191

Table 9.1 Results for the test

set of the Penn Treebank: PCFG Baseline P RelRed

F) and TCER for the baseline F TCER TCAC

system; TCAC for the IP

system; relative reduction h=0,v=1 0.67 0.40 0.22 45%

between TCER and TCAC ' 5 068 039 0.21 46%
h=0,v=3 0.70 0.38 0.22 42%

Table 9.2 Results for the test -

set of the UAM Treebank: PCFG Baseline P RelRed

F; and TCER for the baseline F TCER TCAC

system; TCAC for the IP

system; relative reduction h=0,v=0 0.57 0.48 0.26 46%

between TCER and TCAC 5 | 059 047 0.25 47%
h=0,v=2 0.62 0.44 0.24 46%
h=0,v=3 0.61 0.45 0.24 47%

Note that the presented experiments were done using parsing models that per-
form far from the latest F; results; their intention was to assess the utility of the IP
schema. However, we expect that relative reductions with IP systems incorporating
state-of-the-art parsers would be relevant as well.

9.6 Conclusions

In this chapter, we have introduced a novel Interactive Parsing framework which can
be operated by a user to obtain error-free syntactic parse trees. This compares to the
classical two-step schema of manually post-editing the erroneous constituents pro-
duced by the parsing system. In the general IP framework presented, the interaction
protocol that we have initially defined is desultory type: the user can edit any part of
the parse tree and in any order. However, to efficiently increase the computation of
next best parse tree, a left-to-right depth-first tree review order has been introduced.

To make an automatic experimental assessment, we have simulated the user inter-
action with the system. Since we have the reference parser, this experimental feature
has been possible. We have also defined and calculated some evaluation metrics. In
general, the achieved results showed that in an IP system is produced a high amount
of effort reduction for a manual annotator compared to a two-step system.

In addition, we have proved that using confidence measures to discriminate in-
correct from correct constituents helps to some extent in the IP process. In this point,
a purely statistical confidence measure (based on inside-outside estimated posterior
probability of constituents) for probabilistic parsing has been introduced.

Finally, is important to note that, in addition to the automatic experimental eval-
uation reported in previous section, a complete IP prototype has been implemented
(see Chap. 12) and made available to potential real users.

192 9 Interactive Parsing
References

1. Baker, J. K. (1979). Trainable grammars for speech recognition. The Journal of the Acoustical
Society of America, 65, 31-35.

2. Benedi, J. M., & Séanchez, J. A. (2005). Estimation of stochastic context-free grammars and
their use as language models. Computer Speech & Language, 19(3), 249-274.

3. Benedi, J. M., Sanchez, J. A., & Sanchis, A. (2007). Confidence measures for stochastic pars-
ing. In Proceedings of the international conference recent advances in natural language pro-
cessing (pp. 58-63), Borovets, Bulgaria.

4. Carter, D. (1997). The TreeBanker. A tool for supervised training of parsed corpora. In Pro-
ceedings of the workshop on computational environments for grammar development and lin-
guistic engineering (pp. 9-15), Madrid, Spain.

5. Charniak, E. (1997). Statistical parsing with a context-free grammar and word statistics. In
Proceedings of the national conference on artificial intelligence (pp. 598-603), Providence,
Rhode Island, USA.

6. Charniak, E. (2000). A maximum-entropy-inspired parser. In Proceedings of the first confer-
ence on North American chapter of the association for computational linguistics (pp. 132—
139), Seattle, Washington, USA.

7. Charniak, E., Knight, K., & Yamada, K. (2003). Syntax-based language models for statistical
machine translation. In Machine translation summit, IX international association for machine
translation, New Orleans, Louisiana, USA.

8. Chelba, F., & Jelinek, C. (2000). Structured language modeling. Computer Speech and Lan-
guage, 14(4), 283-332.

9. Chiang, D. (2007). Hierarchical phrase-based translation. Computational Linguistics, 33(2),
201-228.

10. Collins, M. (2003). Head-driven statistical models for natural language parsing. Computa-
tional Linguistics, 29(4), 589-637.

11. de la Clergerie, E. V., Hamon, O., Mostefa, D., Ayache, C., Paroubek, P., & Vilnat, A. (2008).
PASSAGE: from French parser evaluation to large sized treebank. In Proceedings of the sixth
international language resources and evaluation (pp. 3570-3577), Marrakech, Morocco.

12. Earley, J. (1970). An efficient context-free parsing algorithm. Communications of the ACM,
8(6), 451-455.

13. Gascd, G., & Sanchez, J. A. (2007). A* parsing with large vocabularies. In Proceedings of
the international conference recent advances in natural language processing (pp. 215-219),
Borovets, Bulgaria.

14. Gasco, G., Sanchez, J. A., & Benedi, J. M. (2010). Enlarged search space for sitg parsing. In
Proceedings of the North American chapter of the association for computational linguistics—
human language technologies conference (pp. 653—-656), Los Angeles, California.

15. Hopcroft, J. E., & Ullman, J. D. (1979). Introduction to automata theory, languages and com-
putation. Reading: Addison-Wesley.

16. Huang, L., & Chiang, D. (2005). Better k-best parsing. In Proceedings of the ninth inter-
national workshop on parsing technology (pp. 53—64), Vancouver, British Columbia. Menlo
Park: Association for Computational Linguistics.

17. Jain, A. K., Duin, R. P., & Mao, J. (2000). Statistical pattern recognition: A review. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22, 4-317.

18. Klein, D., & Manning, C. D. (2003). Accurate unlexicalized parsing. In Proceedings of the
41st annual meeting on association for computational linguistics (Vol. 1, pp. 423—430), As-
sociation for Computational Linguistics Morristown, NJ, USA.

19. Lease, M., Charniak, E., Johnson, M., & McClosky, D. (2006). A look at parsing and its
applications. In Proceedings of the twenty-first national conference on artificial intelligence,
Boston, Massachusetts, USA.

20. Marcus, M. P, Santorini, B., & Marcinkiewicz, M. A. (1994). Building a large annotated
corpus of English: The Penn Treebank. Computational Linguistics, 19(2), 313-330.

References 193

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

3s.

36.

Oepen, S., Flickinger, D., Toutanova, K., & Manning, C. D. (2004). LinGO redwoods. Re-
search on Language and Computation, 2(4), 575-596.

Pereira, F., & Schabes, Y. (1992). Inside-outside reestimation from partially bracketed corpora.
In Proceedings of the 30th annual meeting of the association for computational linguistics (pp.
128-135). Newark: University of Delaware.

Petrov, S., & Klein, D. (2007). Improved inference for unlexicalized parsing. In Conference
of the North American chapter of the association for computational linguistics; proceedings
of the main conference (pp. 404—411), Rochester, New York.

Roark, B. (2001). Probabilistic top-down parsing and language modeling. Computational Lin-
guistics, 27(2), 249-276.

Salvador, 1., & Benedi, J. M. (2002). RNA modeling by combining stochastic context-free
grammars and n-gram models. International Journal of Pattern Recognition and Artificial
Intelligence, 16(3), 309-315.

San-Segundo, R., Pellom, B., Hacioglu, K., Ward, W., & Pardo, J. M. (2001). Confidence
measures for spoken dialogue systems. In IEEE international conference on acoustic speech
and signal processing (Vol. 1), Salt Lake City, Utah, USA.

Séanchez-Séez, R., Sanchez, J. A., & Benedi, J. M. (2009). Statistical confidence measures for
probabilistic parsing. In Proceedings of the international conference on recent advances in
natural language processing (pp. 388-392), Borovets, Bulgaria.

Sanchez-Sdez, R., Leiva, L., Sanchez, J. A., & Benedi, J. M. (2010). Confidence measures
for error discrimination in an interactive predictive parsing framework. In 23rd International
conference on computational linguistics (pp. 1220-1228), Beijing, China.

Serrano, N., Sanchis, A., & Juan, A. (2010). Balancing error and supervision effort in
interactive-predictive handwriting recognition. In Proceeding of the 14th international con-
ference on intelligent user interfaces (pp. 373-376), Hong Kong, China.

Stolcke, A. (1995). An efficient probabilistic context-free parsing algorithm that computes
prefix probabilities. Computational Linguistics, 21(2), 165-200.

Tarazoén, L., Pérez, D., Serrano, N., Alabau, V., Terrades, O. R., Sanchis, A., & Juan, A. (2009).
Confidence measures for error correction in interactive transcription of handwritten text. In
LNCS: Vol. 5716. Proceedings of the 15th international conference on image analysis and
processing (pp. 567-574), Salerno, Italy.

Ueffing, N., & Ney, H. (2007). Word-level confidence estimation for machine translation.
Computational Linguistics, 33(1), 9-40.

Wessel, F., Schluter, R., Macherey, K., & Ney, H. (2001). Confidence measures for large vo-
cabulary continuous speech recognition. IEEE Transactions on Speech and Audio Processing,
9(3), 288-298.

Wu, D. (1997). Stochastic inversion transduction grammars and bilingual parsing of parallel
corpora. Computational Linguistics, 23(3), 377-404.

Yamada, K., & Knight, K. (2002). A decoder for syntax-based statistical MT. In Meeting of
the association for computational linguistics, Philadelphia, Pensilvania, USA.

Yamamoto, R., Sako, S., Nishimoto, T., & Sagayama, S. (2006). On-line recognition of hand-
written mathematical expressions based on stroke-based stochastic context-free grammar. In
10th international workshop on frontiers in handwriting recognition (pp. 249-254), La Baule,
France.

	Chapter 9: Interactive Parsing
	9.1 Introduction
	9.2 Interactive Parsing Framework
	9.3 Confidence Measures in IP
	9.4 IP in Left-to-Right Depth-First Order
	9.4.1 Efficient Calculation of the Next Best Tree

	9.5 IP Experimentation
	9.5.1 User Simulation Subsystem
	9.5.2 Evaluation Metrics
	9.5.3 Experimental Results

	9.6 Conclusions
	 References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

