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Grounded in the interactive–predictive transcription framework drawn in the pre-
vious chapter, an interactive approach for efficient transcription of handwritten
text images, along with its more ergonomic and multimodal variants are pre-
sented. All these approaches, rather than full automation, aim at assisting the ex-
pert in the proper transcription process in an efficient way. In this sense, an in-
teractive scenario is stated, where both automatic handwriting recognition system
and human transcriber (user) cooperate to produce the final transcription of text-
images.

Additionally, an explanation of both basic off- and on-line HTR systems used
embedded in the CATTI approaches is given in some detail. This focusing mainly
on the preprocessing, feature extraction and on specific aspects of the modeling
and decoding-searching process, which complement the ones already introduced in
Sect. 2.2.

Moreover, in this chapter, it will be shown how user-interaction feedback di-
rectly allows us to improve system accuracy, while multimodality increases system
ergonomics and user acceptability. Multimodal interaction is approached in such a
way that both the main and the feedback data streams help each-other to optimize
overall performance and usability. All these are supported by experimental results
obtained on three cursive handwritten tasks suggesting that, using these approaches,
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considerable amounts of user effort can be saved with respect to both pure manual
work and non-interactive, post-editing processing.

3.1 Computer Assisted Transcription of Text Images: CATTI

So far, the interactive transcription framework, search approaches and assessment
measures presented in Sects. 2.3, 2.5 and 2.6, respectively, can be straightforwardly
applied to the transcription task of handwritten documents. The application per-
forming this kind of task, resulting from applying all the before-mentioned con-
cepts, shall be called from now on Computer Assisted Transcription of Text Images
(CATTI) [28, 30].

The CATTI application involves an interactive scenario, where both automatic
handwritten text recognition system (HTR) and human transcriber (which hence-
forth will be referred to as the user) cooperate together to produce the final tran-
scription of text-images. During the CATTI process, the user is directly involved in
the transcription process since he/she is responsible of validating and/or correcting
the HTR output. As illustrated in Fig. 3.1, and following the left-to-right protocol
for interactive transcription laid down in Sect. 2.3, the process starts when the HTR
system proposes a full transcription ŝ (or a set of n-best transcriptions) of a given
feature vector sequence x, representing a handwritten text line image.1 Then, the
user reads this transcription until he or she finds a mistake; i.e, he or she validates
a prefix p′ of the transcription which is error-free. Now, the user can enter some
keystrokes (letters or whole-words), κ , to correct the erroneous text that follows
the validated prefix. This action produces a new prefix p (the previously validated
prefix, p′ followed by κ). Taking into account this new prefix p, the HTR system
suggests a suitable continuation (or a set of the best possible continuations) to this
prefix (i.e., a new ŝ), thereby starting a new cycle. This process is repeated until a
correct, full transcription T of x is accepted by the user. A key point of this interac-
tive process is that, at each user-system iteration, the system can take advantage of
the prefix validated so far to attempt to improve prediction.

The example shown in Fig. 3.1 illustrates how a 67% estimated effort reduction
(EFR) is achieved (cf. Sect. 2.6). It is worth nothing that in this example the non-
interactive post-editing operation would have required the user to correct six errors
from the original recognized hypothesis whereas with the interaction feedback, only
two user-corrections (the red color text in the final transcription T ) are necessary to
get the final error-free transcription. In spite of Fig. 3.1, which shows an example
of interaction-correction at character level, only whole-word correction interactions
will be considered in this chapter for the reasons already commented in Sect. 2.3,

Next section is mostly devoted to explain the implementation details of the search
techniques based on word-graphs, employed to solve the optimization problem set

1For simplicity henceforward, we will refer x directly as the input handwritten text image.
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Fig. 3.1 Example of CATTI interaction to transcribe an image sentence “opposed the Government
Bill which brought”. Initially the prefix p is empty, and the system proposes a complete transcrip-
tion ŝ ≡ ŵ (as happens in the normal non-interactive HTR) of the input x. In each interaction
step the user reads this transcription, accepting a prefix p′ of it. Then, he or she types in some
keystrokes, κ , to correct some words of the transcription provided by the system, thereby generat-
ing a new prefix p (the accepted one p′ plus the text κ added by the user). At this point, the system
suggests a suitable continuation ŝ of this prefix p and this process is repeated until a complete and
correct transcription of the input image is reached. In the final transcription, T , the user-typed text
is typeset in different font and red color. In this example the correct transcription has six words
and the initial hypothesis, ŵ, has six errors. Therefore, the estimated post-editing effort (WER) is
100%, while in the corresponding interactive estimate (WSR) is 33%, since only two (word) cor-
rections are needed. This results in an estimated effort reduction (EFR) of 100 − 33/100 = 67%
(see Sect. 2.6 for definitions of WER, WSR and EFR)

up by Eq. (2.6). Section 3.3 depicts an additional interaction issue, along with the in-
volved theoretical background, which increases the performance of CATTI, mainly,
in terms of ergonomics and usability. Section 3.4 introduces and describes the multi-
modal version of CATTI. Complementing the information already given in Sect. 2.2,
a general description of the off- and on-line text processing systems is given in
Sect. 3.5. Application tasks, experimental data and reported results are finally shown
in Sect. 3.6.

3.2 CATTI Search Problem

As explained in Sect. 2.5.1, the optimal solution for the search problem set up by
Eq. (2.6) is solved by using the Viterbi algorithm on the corresponding finite-state
network restricted by a special language model built by the concatenation of a linear
model (which accounts for the words of the prefix p) and a conventional n-gram
model (which models all the possible words of the suffix s). However, given that the
direct adaptation of the Viterbi algorithm leads to a computational cost that grows
quadratically with the number of words of each sentence, more efficient techniques
based on word-graphs (WG) can be used to obtain a linear cost search.
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3.2.1 Word-Graph-Based Search Approach

As was stated in Sect. 2.5.2, a WG derived from a handwriting recognition process
can be seen as a compact representation of the highest P(w | x) transcriptions of a
given text image x. Moreover, the probability of a given WG edge p(e) is defined by
Eq. (2.13). Here, in order to avoid the numeric underflow problem, mainly occurring
during repeated multiplication of probabilities, we are going to use instead log-
probabilities. With this in mind, Eq. (2.13) can be rewritten in these terms as follows:

logp(e) = logP
(
x

t(j)

t (i)+1 | ω(e)
) + logP

(
ω(e)

)
. (3.1)

Similarly, as was pointed out at the end of Sect. 2.2, in order to balance the absolute
values of these both (log-) probability terms, they are weighted by the so-called
grammar scale factor (GSF) α, and the word insertion penalty (WIP) β (see [16]).
Hence, the final resulting score of each edge is then computed as

ϕ(e) = logP
(
x

t(j)

t (i)+1 | ω(e)
) + α logP

(
ω(e)

) + β. (3.2)

Note that Eqs. (3.1) and (3.2) become identical far α = 1 and β = 0.
During the CATTI process, the two step search approach previously explained in

Sect. 2.5.2 is performed on the above-defined WG in order to complete the prefixes
accepted by the user. That is, the decoder first parses the validated prefix p, defining
in this way a set of path end nodes Qp (cf. Sect. 2.5.2), and then, the most likely
transcription suffix departing from any of the nodes in Qp is obtained.

3.2.2 Word Graph Error-Correcting Parsing

As already commented, a WG is a compact representation of a large subset of
the highest possible likely transcriptions for a given input handwritten text image,
whose number depends mainly of the WG density. Hence, it may happen that some
prefixes given by the user cannot be exactly found in the WG. The solution is not
to use p, but using the prefix p̃ from all the possible prefixes on the WG that best
matches p. This prefix p̃ (that best matches the validated prefix p) can be consid-
ered as a hidden variable, so departing from Eq. (2.4), the problem of searching the
most likely suffix ŝ given p can be formulated as

ŝ = arg max
s

Pr(s | x,p)

≈ arg max
s

P (s | x,p)

= arg max
s

∑

p̃

P (s, p̃ | x,p)
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= arg max
s

∑

p̃

P (x | p, p̃, s) · P(p̃, s | p)

= arg max
s

∑

p̃

P (x | p, p̃, s) · P(s | p, p̃) · P(p̃ | p)

= arg max
p̃,s

∑

p̃

∑

q∈Qp̃

P (x, q | p, p̃, s) · P(s | p, p̃) · P(p̃ | p). (3.3)

We can make the naïve assumption that P(x, q | p, p̃, s) and P(s | p, p̃) do not
depend of p given p̃, to rewrite Eq. (3.3) as

ŝ ≈ arg max
s

∑

p̃

∑

q∈Qp̃

P (x, q | p̃, s) · P(s | p̃) · P(p̃ | p) (3.4)

and following similar assumptions made on Eq. (2.6), previous equation can be
rewritten as

ŝ ≈ arg max
s

max
p̃

max
q∈Qp̃

P
(
x

t(q)

1 | p̃) · P (
xM
t(q)+1 | s) · P(s | p̃) · P(p̃ | p) (3.5)

where P(p̃ | p) models the similarity distribution probability between p̃ and p.
Moreover, P(p̃ | p) can be modeled in terms of probabilistic error correcting pars-
ing. To do so, firstly we add to each original WG edge e, a set of extra edges rep-
resenting different editing operations [1]. In Fig. 3.2, it is shown an example of
all the added new edges between two adjacent nodes i and j . The probabilities of
the added edges are considered to be proportional to exp−d(ω(e),v), where V is a
task vocabulary (cf. Sect. 1.5.1), v ∈ V ∪ {λ} and d(·, ·) is the Levenshtein distance
between ω(e) and v. As was seen in Sect. 1.5.1, an edge has been defined by its
start and end nodes. However, this is not longer possible due to the fact that now
there is more than one edge between two adjacent nodes. For this reason, each edge
must now be defined by its start and end nodes, and a word label related with this
edge: e′ = (i, j, v). Using log-probabilities, the score of the different edges can be

Fig. 3.2 Example of edges added between two adjacent nodes i and j of a WG for probabilistic er-
ror correcting parsing. The edge labeled with the word ω(e) is the original edge and corresponds to
the operation of substitution of word ω(e) with itself. The group of edges labeled with V − {ω(e)}
represents the substitution of ω(e) with any other word in the vocabulary excepting ω(e). The
edge labeled with λ (empty symbol) models a deletion operation, whereas the last group V models
insertion operations, involving an edge for each word in the vocabulary from the state i to itself
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reformulated as

ϕ(i, j, v) =
{

logP(x
t(j)

t (i)+1 | ω(e)) + α logP(ω(e)) + β − γ d(ω(e), v), i �= j,

β − γ d(λ, v), i = j,

(3.6)

where e is the original edge between the nodes i and j , and γ is a penalization
factor applied to control the number of different characters between ω(e) and v.
The γ value should be greater than 0 because, otherwise, we would be encouraging
WG paths, whose corresponding associated word-label sequences are more differ-
ent from the given prefix’s one. Note further that, if ω(e) = v, then the number of
different characters will be 0 and therefore Eqs. (3.6) and (3.2) become identical.

This heuristic can be implemented using dynamic programming and it can be
further improved by visiting the WG nodes in topological order [1], and by incorpo-
rating beam search techniques [12] to discard those nodes whose scores are worse
than the best score at the current stage of the parsing. Moreover, given the incremen-
tal nature of p, the error-correcting algorithm takes advantage of this peculiarity to
parse only the new appended words of p provided by the user in the last interaction.

3.3 Increasing Interaction Ergonomics in CATTI: PA-CATTI

In CATTI application, user is repeatedly interacting with transcription process, thus
trying to make this interaction process easier is really crucial for the success of such
application.

Section 3.1 describes the CATTI process in which the user, before typing a new
word in order to correct progressively a given hypothesis, needs first to position
the cursor in the place where he or she wants to type such word. This is done by
performing what, from now on, we will call Pointer Action (PA), which involves
any kind of pointer-device like a typical mouse for example. By doing so, the user is
already providing some very useful information to the system: he/she is validating
a prefix up to the position where he placed the cursor, and, additionally, is signaling
that the following word located after the cursor is incorrect. Hence, the system can
already capture this fact and directly propose a new suitable suffix in which its first
word is different from the first one in the previous suffix. This way, many explicit
user corrections are avoided.

In Fig. 3.3 we can see an example of the CATTI process with the new interac-
tion mode, which will be referred henceforth as PA-CATTI. As in the conventional
CATTI, the process starts when the HTR system proposes a full transcription ŝ ≡ ŵ

of the input image x. Then, the user reads this prediction until a transcription error
is found (denoted in this case by v) and makes a PA to position the cursor at this
point. This way, the user validates an error-free transcription prefix p′. Now, before
the user introduces a word to correct the erroneous one (as happens with the con-
ventional CATTI), the HTR system, taking into account this validated prefix and the
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Fig. 3.3 Example of CATTI operation with pointer actions (PA). Starting with an initial recog-
nized hypothesis ŝ ≡ ŵ, the user validates through a PA its longest well-recognized prefix p′,
which is used then by the system to suggest a new recognized hypothesis ŝ. In case the first word
of ŝ is also incorrect (see interaction 1), the user types the correct word κ (as in conventional
CATTI process), generating a new consolidated prefix p (p′ concatenated to κ), used later by the
system to suggest a new hypothesis ŝ starting again a new cycle. On the other hand, in case the
word following to p′ has been corrected in the new suggested hypothesis ŝ (see interaction 2),
no further corrective actions are required and the system start a new cycle. This whole process is
repeated until the final error-free transcription T is obtained. In this final transcription, words in
red color represent those which were corrected by user. Note that in the iteration 1, an unsuccessful
PA was performed followed by the necessary typing of the correct word “opposite”, whereas in
the iteration 2, the performed PA was successful in predicting the correct word “which” and also
the final full correct transcription is obtained

wrong word (v) that follows it, suggests a suitable continuation (i.e., a new ŝ). If the
wrong word v appears corrected in this new ŝ, then a new cycle starts. Otherwise,
as in the conventional CATTI, the user proceeds to correct it by directly typing the
correct word, κ , producing a new consolidated prefix p (the previously validated
prefix p′ followed by κ) which is used by the HTR system to suggest a new suffix
and a new cycle starts again. This process is repeated until a correct transcription of
x is accepted by the user.

In the example shown in Fig. 3.3, without interaction, a user should have to cor-
rect about six errors from the original recognized hypothesis ŵ. If the conventional
CATTI were used, two word corrections would have had to be performed. However
in this new PA-based interaction, which somehow tries to anticipate the possible
corrections that should be carried out by the user in the conventional CATTI con-
text, just one user-correction is required to get the final error-free transcription. Note
that in the iteration 1, the performed single PA is unsuccessful and the correct word
is finally typed.

This new kind of interaction needs not be restricted to a single PA. Several scenar-
ios arise, depending on the number of times the user performs a PA. In the simplest
one, the user only makes one PA (i.e. single PA) when it is necessary to displace the
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cursor. In this case, the PA does not involve any extra human effort, because it is also
the same action that the user should make in the conventional CATTI to position the
cursor before typing the correct word. Another interesting scenario to be considered
consists in performing systematically a PA before writing, although the cursor is
already in the correct position. In this case, however, there is a cost associated to
this kind of PAs, since the user does need to perform additional actions, which may
or may not be beneficial. Finally, this last scenario can be easily extended, allowing
the user to make several PAs before deciding to write the correct word.

Since we have already dealt with the problem of finding a suitable suffix ŝ for
a given consolidated prefix p (p′ plus κ), we focus now on the problem in which
the user only performs a single PA. In this case, in order to search for the best
transcription suffix ŝ, the decoder has to cope with the input image x, the validated
prefix p′ and its following wrong word v:

ŝ = arg max
s

Pr(s | x,p′, v) ≈ arg max
s

P (x | p′, s, v) · P(s | p′, v). (3.7)

PA-CATTI interaction falls within what was described in Sect. 1.4.4: Interaction
with Weaker Feedback where Eq. (1.34) is close related with Eq. (3.7), with h′, d and
h instantiated, respectively, by p′, v and s. Concerning the first term of Eq. (3.7),
P(x | p′, s, v), can be modeled following similar assumptions and developments
made for Eq. (2.6) (cf. Sect. 2.3). On the other hand, P(s | p′, v) can be provided by
a language model constrained by the validated prefix p′ and by the erroneous word
v that follows it.

With respect to the scenario which allows the user to perform several PAs before
deciding to write the correct word, the successive corresponding values of v must
be cached and P(s | p′, v) must be computed taking into account all the previously
discarded values of v (not just the one from the previous step).

3.3.1 Language Model and Search

P(s | p′, v) can be approached by adapting an n-gram language model so as to
cope with the validated prefix p′ and with the erroneous word v that follows it.
The language model described in Sect. 2.4 would provide a direct way to model
the probability P(s | p′), but as in addition we have to take into account that the
first word of s is conditioned by v, some extra considerations are needed to model
adequately P(s | p′, v).

Let p′ = wk
1 be a validated prefix and s = wl

k+1 be a possible suffix, consider-
ing that the wrong-recognized word v only affects the first word of the suffix wk+1.
Then, after following similar procedure to obtain Eq. (2.8), P(s | p′, v) can be com-
puted as

P(s | p′, v) � P
(
wk+1 | wk

k+2−n, v
) ·

k+n−1∏

i=k+2

P
(
wi | wi−1

i−n+1

) ·
l∏

i=k+n

P
(
wi | wi−1

i−n+1

)
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= P
(
s1 | p′k

k−n+2, v
) ·

n−1∏

j=2

P
(
sj | p′k

k−n+1+j , s
j−1
1

) ·
l−k∏

j=n

P
(
sj | sj−1

j−n+1

)

(3.8)

where p′k
1 = wk

1 = p′ and sl−k
1 = wl

k+1 = s. Now, taking into account that the first
word s1 of the possible suffix has to be different from the erroneous word v, P(s1 |
p′k

k−n+2, v) can be formulated as follows:

P
(
s1 | p′k

k−n+2, v
) =

⎧
⎨

⎩

0, s1 = v,

P (s1|p′k
k−n+2)

1−P(v|p′k
k−n+2)

, s1 �= v.
(3.9)

As in the conventional CATTI, the search problem involved by Eq. (3.7) can be
solved by building a special language model, where the “suffix language model” of
the Eq. (3.8) is modified in accordance with Eq. (3.9). Thanks to the finite-nature
of this special language model, the search involved in Eq. (3.7) can be carried out
using the Viterbi algorithm.

Due to the nature of PA-CATTI approach, where the system must react immedi-
ately by emitting a new suggested suffix after each pointer action performed by the
user, the response speed becomes a very crucial factor to be taking into account. For
this reason, search implementation based on WG technique results the more conve-
nient solution. The restriction entailed by Eq. (3.9) can be easily implemented by
directly deleting the WG edge labeled with v after the prefix has been matched. An
example of this is shown in Fig. 3.4, where we have assumed that the user validated
the prefix “antiguos ciudadanos que en” and the wrong-recognized word
was “el”. Hence, the WG has the edge labeled with “el” disabled.

Fig. 3.4 Example of the WG generated after the user validates the prefix “antiguos
ciudadanos que en” (represented by thicker-edges path). The edge corresponding to the
wrong-recognized word “el” was disabled (dashed-line path)
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Fig. 3.5 Top: illustrations of CATTI multimodal user-interaction using keyboard and electron-
ic-pen, respectively, on a touch-screen device. Bottom: page fragment showing a line image being
processed, with a partially corrected system suggestion (in grey and black roman font) and the
(previous) corrections made by the user through pen strokes and handwriting input marked in bold
red

3.4 Multimodal Computer Assisted Transcription of Text
Images: MM-CATTI

As was described in the CATTI approach (see Sect. 3.1), the user is recurrently in-
teracting with the system in order to produce the final required transcription. Hence,
the quality and ergonomics of the interaction process is crucial for the success of the
system. Traditional peripherals like keyboard and mouse can be used to unambigu-
ously provide the feedback associated with the validations and/or corrections of the
successive system predictions. In this sense, in the previous Sect. 3.3, it has been
shown, based on the concept of what we have called PA, how the use of pointer-
devices like (for example) a mouse can foster the CATTI interaction process to
easily provide such a corrective feedback.

Nevertheless, using more ergonomic multimodal interfaces should result in an
easier and more comfortable human-machine interaction, at the expense of the feed-
back being less deterministic to the system. Different possibilities can be explored:
gaze and gesture tracking, spoken commands, etc. Here we will focus on touch-
screen communication, which is perhaps the most natural modality to provide the
required feedback in CATTI systems. Figure 3.5 (top) shows a user interacting with
a CATTI system using the keyboard and another one interacting by means of a
touch-screen. Both the original image and the successive off-line HTR system’s tran-
scription hypotheses can be easily aligned and jointly displayed on the touchscreen,
as shown in Fig. 3.5 (bottom).

More formally speaking, let x be the input image and s′ a suffix suggested by
the system as continuation of a consolidated prefix p in the previous interaction
step (see Fig. 3.6). Hence, ps′ constitutes a whole recognized hypothesis. Let t

be the on-line touchscreen pen strokes provided by the user, which are sequences
of real-valued vectors as described in Sect. 3.5.2. Let also p′ be the longest error-
free prefix validated by the user on the recognized hypothesis ps′, thereby resulting
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that ps′ ≡ p′σ , where σ corresponds to the remaining word sequence whose first
word(s) was/were incorrectly recognized. Actually, the validated prefix p′ is implic-
itly stated when the user performs some pen strokes t aiming at correcting the first
wrong word in ps′ or, what is the same, the first word of σ . Moreover, the user may
additionally type some keystrokes (κ) on the keyboard in order to correct (other)
parts of this σ and/or to add more text. Using this information, the system has to
suggest a new suffix s for the next interaction, as a continuation of the user-validated
prefix p′, conditioned by the on-line touchscreen pen-strokes t and the typed text κ .
That is, the problem is to find s given x and a feedback information composed of
p′σ , t and κ , considering all possible decodings, d , of the on-line data t (i.e., let-
ting d be a hidden variable). After some mathematical formulation development,
this general set-up scenario can be seen as an instantiation of the problem already
formulated in Eq. (1.27), where the (p′, σ ) and (t, κ) correspond with h′ and f ,
respectively:

ŝ ≈ arg max
s

max
d

P (t | d) · P(d | p′, σ ) · P(x | p′, σ, d, κ, s) · P(s | p′, σ, d, κ).

(3.10)

According to this very general discussion, it might be assumed that the user can
type with independence of the result of the on-line handwritten decoding process.
However, it can be argued that this generality is not realistically useful in practical
situations. Alternatively, it is much more natural that the user waits for a specific
system outcome (d̂) from the on-line touchscreen feedback data (t ), prior to start
typing amendments (κ) to the (remaining part of the previous) system hypothesis.
Furthermore, this allows the user to fix possible on-line handwritten recognition
errors in d̂ .

For this more pragmatic and simpler scenario, following a similar approach pre-
sented in Sect. 1.3.5, each interaction step can be formulated in two phases. In the
first one, the user produces some (may be null) on-line touchscreen data t (to correct
part of σ ) and the system has to decode t into a word (or word sequence) d̂ using
the previous hypothesis p′σ :

d̂ = arg max
d

P (t | d) · P(d | p′, σ ). (3.11)

Once d̂ is available, the user can enter adequate amendment keystrokes κ , if nec-
essary, and produce a new consolidated prefix p (based on the validated prefix p′,
the first incorrectly recognized words of σ , d̂ and κ), which leads to the following
expression, identical to Eq. (2.4):

ŝ ≈ arg max
s

P (x | p′, σ, d̂, κ, s) · P(s | p′, σ, d̂, κ)

= arg max
s

P (x | p, s) · P(s | p). (3.12)

The process continues in this way until p is accepted by the user as a full correct
transcription of x.
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Fig. 3.6 Example of MM-CATTI interaction with a CATTI system, to transcribe an image sen-
tence “opposed the Government Bill which brought”. Each interaction step starts with a transcrip-
tion prefix p that has been consolidated in the previous step. First, the system suggests a suffix ŝ

and the user handwrites some touchscreen text, t , to amend ŝ. This action also validates a correct
prefix p′ (and a remaining word sequence σ starting with the first wrong recognized word of ŝ),
which can be used by the on-line HTR subsystem to obtain a decoding of t . After observing this
decoding, d̂ , the user may type additional keystrokes, κ , to correct possible errors in d̂ (and perhaps
to amend other parts of ŝ). A new consolidated prefix, p, is built from the previous correct prefix
p′, the decoded on-line handwritten text, d̂ , and the typed text κ . System suggestions are printed
in boldface and typed text in typewriter font. User corrections are shown in different font and red
color. In the final transcription, T , typed text is additionally underlined. Assuming all interactions
as whole-word corrections, the post-editing WER would be 100% (5 substitutions plus one inser-
tion out of 6 correct words), while the MM-CATTI WSR is 50%; i.e., 2 touch-screen + 1 keyboard
word corrections (see definitions of WER and WSR in Sect. 2.6)

An example of this kind of inter-leaved off-line image recognition and on-line
touchscreen interaction is shown in Fig. 3.6. In this example, we are assuming that
on-line handwriting is the modality preferred by the user to make corrections, re-
laying on the keyboard mainly (or only) to correct eventual on-line text decoding
errors. Note that the potential increase in comfort of this setting comes at expense
of a hopefully small number of additional interaction steps using the keyboard. In
this example the user would need three interactions using MM-CATTI, compared
with the two interactive corrections needed by CATTI (in Fig. 3.1) and six post-
editing corrections required by the original, off-line recognized hypothesis.

Although Fig. 3.6 may suggest otherwise, we should remind that, as mentioned
in Sect. 3.1, only whole-word interactions are considered in the present chapter.
Furthering this assumption, but without loose of generality, we consider here that,
in each interaction, the user only attempts to correct the single word σ1 (first word
of the word sequence σ ); that is, d̂ consists in a single, whole word.

Since we have already dealt with Eq. (3.12) in Sect. 2.3 (Eqs. (2.4)–(2.6)), we
focus now on Eq. (3.11). As in Sect. 3.1, P(t | d) is provided by (HMM) mor-
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phological models of the word(s) in d (see Sect. 3.5.2). On the other hand, here,
P(d | p′, σ ) can be provided by a language model constrained by information de-
rived from the validated error-free prefix p′ and by the remaining words sequence
σ produced at the previous iteration. Equation (3.11) may lead to several scenarios
depending on the assumptions and constraints adopted for P(d | p′, σ ). We examine
some of them hereafter.

The simplest one corresponds to a conventional, non-interactive on-line HTR
setting, where all the available conditions are ignored; i.e., P(d | p′, σ ) ≡ P(d).
This scenario is considered here as a baseline.

A more informative setting arises by taking into account part of the informa-
tion derived from the previous off-line HTR prediction σ . The user introduces the
touchscreen data t in order to correct the first m wrong words σm

1 that follows the
validated prefix p′. Therefore, we can assume an error-conditioned model such as
P(d | p′, σ ) ≡ P(d | σm

1 ); clearly, knowing the word(s) that the user has already
deemed incorrect should prevent the on-line decoder making the same error(s).

If, in addition to σm
1 , the information derived by the accepted prefix p′ is also

taken into account, a particularly useful scenario arises. In this case the decodings
of t are further constrained to be suitable continuations of the prefix accepted; that
is: P(d | p′, σ ) ≡ P(d | p′, σm

1 ) and Eq. (3.11) becomes

d̂ ≈ arg max
d

P (t | d) · P (
d | p′, σm

1

)
. (3.13)

This multimodal model, referred to as MM-CATTI [29, 30], is the one studied in
more detail in this chapter.

3.4.1 Language Model and Search for MM-CATTI

Language modeling and search techniques needed for the on-line HTR feedback
subsystem in MM-CATTI are essentially similar to those described in Sect. 2.4 for
the main, off-line HTR system. Language model constraints are implemented on the
base of n-grams, depending on each multimodal scenario considered.

The simplest baseline scenario does not take into account any interaction-derived
information and P(d) could be provided by the same n-gram used for the off-line
decoder. However, if only single whole-word touchscreen corrections are assumed,
as discussed in the previous subsection, only uni-grams actually make sense.

The whole-word assumption also simplifies the error-conditioned model,
P(d | σm

1 ), because only the first (wrong) word of σ is to be taken into account.
Let v = σ1 be this wrong word. Therefore the error-conditioned language model
probability can be written as

P(d | v) =
{

0, d = v,
P (d)

1−P(v)
, d �= v.

(3.14)
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Fig. 3.7 Example of MM-CATTI dynamic bi-gram language model generation. L is the origi-
nal bi-gram model used by off-line HTR system, whereas Ld is the bi-gram sub-model, derived
from L, which takes as initial state that corresponding to the prefix “the”. This simplified lan-
guage model is used by the on-line HTR subsystem to recognize the touchscreen handwritten
word “brought”, intended to replace the wrong off-line recognized word “thought”, which
was disabled in Ld (displayed in dashed line)

Finally, in MM-CATTI the language model probability is approximated by P(d |
p′, v). That is, the on-line HTR subsystem should produce a hypothesis d̂ for the
touchscreen strokes t , taking into account a user-validated prefix, p′, and the first
wrong word, v = σ1, in the off-line HTR suggestion. In this case, arguments similar
to those in Sect. 3.3.1 apply and, under the same single whole-word assumption, we
can use Eq. (3.9) changing s1 with d , leading to

P(d | p′, v) =
⎧
⎨

⎩

0, d = v,

P (d|p′k
k−n+2)

1−P(v|p′k
k−n+2)

, d �= v
(3.15)

where k is the length of p′.
A simple implementation of Eq. (3.15) is shown in Fig. 3.7, based on the same

language model example of Fig. 2.1. In this case, p′ =“of the” and the user wants
to correct the wrong off-line recognized word “thought”, by handwriting the word
“brought” (for example) on the touchscreen. The on-line HTR subsystem uses a
bi-gram model, conditioned by the context word “the” (which is now the initial
state) and the word transition edge “thought” is disabled.

As shown in the example, and unlike it happened in CATTI (cf. Fig 2.1), the lin-
ear language model of the prefix p′ is no longer required, because the corresponding
on-line touchscreen data of the prefix p′ do no exist in this case. Moreover, as we
are assuming only single whole-word corrections, only the direct transitions from
the starting node (the “the” node in the example) need be considered.
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As in CATTI searching (Sect. 3.2), owing to the finite-state nature of the n-gram
language model, the search involved in Eqs. (3.13) and (3.15) can be efficiently car-
ried out using the Viterbi algorithm [10]. Note that under the assumption of just one
whole-word correction per interaction, Viterbi search implementation is the only
choice that makes sense for the on-line HTR feedback decoding. Moreover, and as
in CATTI, decoding search in MM-CATTI (specially decoding related to Eq. (3.12))
can be implemented using one of the two different approximations presented in
Sect. 2.5. The on-line decoding phase (Eq. (3.13)) may also be implemented using
WGs, particularly for the case we decide that it is possible to write/correct more
than one word with the e-pen touchscreen.

3.5 Non-interactive HTR Systems

This section is devoted to describe in more detail the HTR systems employed for
both the off-line and the on-line versions. In particular, it will be shed more light on
the preprocessing and feature extraction phases carried out for each HTR version,
along with additional specific information related to the modelling topic itself used
in each case.

3.5.1 Main Off-Line HTR System Overview

The off-line HTR system used here follows a classical architecture composed of
three modules: (a) preprocessing, aimed at correcting image degradations and ge-
ometry distortions, and dedicated to decompose page images into their constituent
line images; (b) feature extraction, where a real-value vector sequence representa-
tion of each line image is obtained; and (c) recognition, which obtains a most likely
word sequence for the given input sequence of feature vectors. The following sub-
sections describe the three modules in some detail.

Off-Line HTR Preprocessing

Image degradation is a quite common problem in many text images and more so
in ancient documents [6]. Typical degradations include the presence of smear and
skew, backgrounds with big variations and uneven illumination, spots due to the hu-
midity or marks resulting from the ink that goes through the paper (commonly called
bleed-through). In addition, other kinds of difficulties appear in these images, such
as different character styles and sizes, underlined and/or crossed-out words, etc. The
combination of these problems contributes to make the recognition process difficult.
Therefore, preprocessing becomes essential to reduce the impact of these problems,
as well as to extract the actual (line) images of the text to be recognized. A survey
of preprocessing techniques proposed for text images can be seen in [17, 21]. In this
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Fig. 3.8 Preprocessing example: (a) original page image; (b) result after page skew correction,
background removal, noise reduction and increase of contrast

work, the following preprocessing steps take place in order: background removal
and noise reduction, skew correction, line extraction, slope-slant correction and size
normalization.

Background removal and noise reduction are performed by applying a 2-
dimensional median filter [5, p. 540] on the whole page image and subtracting the
result from the original image. This is often followed by a grey-level normalization
to increase the foreground/background image contrast (see Figs. 3.8a and 3.8b).

Skew is one of the distortions introduced during document scanning process. It is
understood as the angle of the document paper image with respect to the horizontal
x-axis. Skew correction is carried out globally on each page image by searching
for the angle which maximizes the variance of the horizontal projection profile.
It is assumed here that this maximal variance value should correspond with the
horizontal projection profile of the de-skewed text lines [19, 26] (see again Figs. 3.8a
and 3.8b).

Line detection is based again on the horizontal projection profile of the opti-
mally de-skewed input image. Local minima in this curve are potential cut-points
between consecutive text lines (see Fig. 3.9a). Obviously, clear separation is not al-
ways possible and cut-points detection needs to be adequately combined with con-
nected components techniques [14]. Figure 3.9b shows some line images obtained
with this method.
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Fig. 3.9 Preprocessing example: (a) image with cutting lines computed from the horizontal pro-
jection profile; (b) separated line images from the highlighted region; (c) a separated line image;
(d) slant correction; (e) size normalization

The slant is the angle between the vertical and the dominant direction of the
written vertical strokes. Slant correction is applied to each previously separated line
image. Much in the same way as in the case of line detection, the slant is computed
by searching for the angle which maximizes the variance of the vertical projection
profile of the de-slanted text [19]. This tends to render the written text strokes in
an upright position (see Fig. 3.9d) and significantly improves the accuracy of the
HMM recognition techniques.

The slope is the angle between the direction of the line on which the writer
aligned the words on a text line and the horizontal direction. The slope correction
processes an original image to put the text line into horizontal position by applying
a rotation operation with the same slope angle, but in the opposite direction. To ob-
tain the angle we use a method based on horizontal projections, very similar to the
method used on the skew correction operation.
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Finally, (non-linear) size normalization aims at making the optimally de-slanted
line images invariant to character size and attempts to reduce large areas of back-
ground pixels which remain on the image because of the presence of long ascenders
and descenders of some letters [23] (see Fig. 3.9e).

Off-Line HTR Feature Extraction

As our HTR system is based on HMMs, each preprocessed text line image has to be
represented as a sequence of feature vectors. Several approaches have been proposed
to obtain this kind of sequences [2, 3, 14]. The approach used in this chapter follows
the ideas described in [2].

First, a grid is applied to divide the text line image into N × M rectangular
cells. N is chosen empirically, whereas M is such that M/N is proportional to
the original text line image aspect ratio, with a proportionality coefficient tuned
empirically. Each cell of the grid is characterized by three features: average gray
level, horizontal gray level derivative and vertical gray level derivative [26], which
are computed from a n×m pixels analysis window, S, centered in that cell. The size
of the analysis window (centered in a cell) is also empirically adjusted and its area
typically overlaps partially (or completely) the neighbor cell areas.

The average gray level, g, is computed through convolution with two 1-d Gaus-
sian filters, wi and wj :

g = 1

nm

n−1∑

i=0

m−1∑

j=0

S(i, j) · wi · wj ,

wi = exp

(
−1

2

(i − n/2)2

(n/4)2

)
, wj = exp

(
−1

2

(j − m/2)2

(m/4)2

)
. (3.16)

The horizontal gray level derivative, dh, is calculated as the slope of the line which
best fits the horizontal function of column-average gray level in the analysis window.
The fitting criterion is the sum of squared errors weighted by a 1-d Gaussian filter:

dh = (
∑m−1

j=0 wjgj )(
∑m−1

j=0 wjj) − (
∑m−1

j=0 wj)(
∑m−1

j=0 wjgj j)

(
∑m−1

j=0 wjj)2 − (
∑m−1

j=0 wj)(
∑m−1

j=0 wjj2)
(3.17)

where gj is, in this case, the column-average gray level at column j , defined by

gj =
∑n−1

i=0 S(i, j)

n
.

The vertical gray level derivative, dv , is computed in a similar way.
Columns of cells (also called frames) are processed from left to right and a fea-

ture vector is constructed for each frame by stacking the three features computed
in their constituent cells. Hence, at the end of this process, a sequence of M (3N)-
dimensional feature vectors is obtained. Figure 3.10 shows a graphical representa-
tion of the feature vectors sequence extracted for the word image sometimes.
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Fig. 3.10 Example of feature-vector sequence and HMM modeling of instances of the character
“m” within the word “sometimes”. The model is shared among all instances of characters of the
same class. The zones modeled by each state show graphically subsequences of feature vectors
compounded by stacking the normalized grey level and its both derivatives features

Modeling and Search

As already explained in Sect. 2.2, characters (considered in this case as the ba-
sic recognition units) are modeled by continuous density left-to-right HMMs, with
state emission probabilities given by mixtures of Gaussian densities. The number of
Gaussian densities of the mixtures as well as the number of states were empirically
chosen after tuning the system. It is also important to mention here that all the ex-
perimental results reported in Sect. 3.6.2 have been obtained using HMM topologies
with the same number of states for all the character classes. Figure 3.10 shows an
example of how a HMM models two feature vector subsequences corresponding to
the character “m”.

Concerning to the modeling of lexical entries (words) and syntactic constraints
derived from each specific task, as well as the way they are used to perform the
search decoding, have been already described in Sect. 2.2.

3.5.2 On-Line HTR Subsystem Overview

The on-line HTR subsystem is intended to decode the feedback touchscreen data
for multimodal text correction; i.e. to recognize the pen strokes (words) written by
the user in successive CATTI interactions in order to correct or replace the errors
produced by the main, off-line HTR decoder. In general, touchscreen data consist
of a series of pen-positions (xt , yt ), sampled at regular time instants t = 1,2, . . . .
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Each sample of this trajectory can be accompanied by information about the pen
pressure, or at least by one bit indicating whether the pen is actually touching the
screen or it is “up”. In this work no pressure information is used.

The conceptual architecture adopted for the on-line HTR subsystem is analogous
to that used in the main off-line HTR system, with exception of the preprocessing
and feature extraction modules, which are explained hereafter.

On-Line HTR Preprocessing

An overview of preprocessing techniques for on-line HTR can be seen in [8]. In
this chapter, the preprocessing of each trajectory involves only two simple steps:
repeated points elimination and noise reduction. Repeated points appear in a trajec-
tory when the pen remains down and motionless for some time. These uninformative
data are trivially removed, along with the points marked as “pen-up”. Noise in pen
strokes is due to erratic hand motion and inaccuracy of the digitalization process. To
reduce this kind of noise, a simple smoothing technique is used which replaces ev-
ery point (xt , yt ) in the trajectory by the mean value of its neighbors [9]. Note that
the temporal order of the data points is preserved throughout these preprocessing
steps.

On-Line HTR Feature Extraction

Each preprocessed trajectory is transformed into a new temporal sequence of 6-
dimensional real-valued feature vectors [27]. These time-domain features are point
locations (although in this case only y coordinate is considered), first and second
time derivatives and curvature.

Normalized Vertical Position: first, the coordinate pairs of each trajectory point are
linearly scaled and translated to obtain new pairs of values (xt , yt ), so that yt is in
the range [0,100] and the original aspect-ratio of the trajectory is preserved.

Normalized First Derivatives: x′
t and y′

t are calculated using the method given
in [32]:

x′
t = 
xt

‖∇‖ , y′
t = 
yt

‖∇‖ , (3.18)

where


xt =
r∑

i=1

i · (xt+i − xt−i ), 
yt =
r∑

i=1

i · (yt+i − yt−i ),

‖∇‖ =
√


xt
2 + 
yt

2,

and r defines a window of size 2r + 1 which determines the neighbor points in-
volved in the computation. Setting r = 2 has provided satisfactory results in this
case.
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It is worth noting that the normalization of derivatives by ‖∇‖ implicitly entails an
effective writing speed normalization. In our experiments, this has proved to lead
to better results than using explicit speed normalization preprocessing techniques
such as trace segmentation, based on re-sampling the trajectory at equal-length
(rather than equal time) intervals [20, 31].

Second derivatives: x′′
t and y′′

t , are computed in the same way as the first deriva-
tives, but using x′

t and y′
t instead of xt and yt .

Curvature: kt , is the inverse of the local radius of the trajectory in each point. It is
calculated as

kt = x′
t · y′′

t − x′′
t · y′

t

(x′
t
2 + y′

t
2
)3/2

. (3.19)

Although this feature is an explicit combination of the previous features, it has lead
to slightly but consistently improved results in our experiments.

Character, Word and Language Modeling and Search

Modeling and search for on-line recognition follow almost the same schemes used
in off-line recognition, described in Sect. 3.5.1.

As in the off-line case, we use continuous density left-to-right character HMMs
with Gaussian densities assigned to each state mixture. However, instead of using
a fixed number of states for all HMMs, it is variable for each character class. The
number of states sc chosen for each HMM character class Mc was computed as
sc = lc/f , where lc is the average length of the sequences of feature vectors used
to train Mc , and f is a design parameter measuring the average number of feature
vectors modeled per state (state load factor). This rule of setting up sc tries to bal-
ance modeling effort across states and, for our task, has significantly improved the
recognition accuracy. On the other hand, lexical modeling is carried out in exactly
the same way as in the off-line HTR case.

Language modeling and search are simpler in this case because, as discussed
in Sect. 3.4.1, we have restricted our present MM-CATTI study to single whole-
word touchscreen corrections. That is, the language models used in the MM-
CATTI search only allow one word per user-interaction. As mentioned at the end
of Sect. 2.2, a GSF is also used here in practice to balance the HMM and language
model probabilities of Eq. (3.11).

3.6 Tasks, Experiments and Results

The experimental framework adopted to assess the effectiveness of the basic HTR
systems (off-line and on-line) and for the three approaches proposed in this chap-
ter: CATTI, PA-CATTI and MM-CATTI, is described in the following subsections.
This includes information about the different corpora and performance measures
employed in the experiments as well as the obtained results.
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3.6.1 HTR Corpora

Three off-line corpora were employed in the experiments. Two of them, ODEC-
M3 [25] and IAMDB [13, 15], contain handwritten text in modern Spanish and
English, respectively. IAMDB is publicly available, thereby serving as a reference
to compare the obtained results. The third corpus, CS [24], consists of cursive hand-
written page images in old Spanish, which allow us to report results on the kind of
legacy documents.

Sentence-segmented images are used both in ODEC-M3 and IAMDB, while only
line-segmented images are available in CS. Each sentence or line image is accom-
panied by its ground truth transcription as the corresponding sequence of words.
To better focus on the essential issues of the considered problems, no punctuation
marks, diacritics, or different word capitalizations are included in the transcriptions.
These transcriptions are used to train the bi-gram language models for ODEC-M3
and CS. IAMDB, on the other hand, consists of hand-copied sentences from the
much larger electronic text LOB corpus [11] which contains about 1 000 000 run-
ning words. Therefore, in this case, the whole LOB corpus (after removing all the
test sentences) was used for bi-gram training. Finally, the lexicon of each task is
defined as the set of words found in training or in test transcriptions. Such a “closed
vocabulary” scheme is commonly used in Automatic Speech Recognition [4, 10] to
ease results reproducibility.

On the other hand, to train the on-line HTR feedback subsystem and test the MM-
CATTI approach, the on-line handwriting UNIPEN corpus, which also is publicly
available, was chosen.

In the next subsections, detailed descriptions of all off-line corpora as well the
on-line corpus are given.

ODEC-M3

This corpus consists of images of casual handwritten Spanish paragraphs. It was
compiled from spontaneous answers extracted from survey forms made for a
telecommunication company.2 These answers were written by a heterogeneous
group of people, without any explicit or formal restriction. In addition, since no
guidelines were given as to the kind of pen or the writing style to be used, para-
graphs are very variable and noisy. Many of them were written using different case
and font types, variable sizes and include words which are underlined, crossed-out
or contain orthographic mistakes, unusual abbreviations, symbols, etc. Examples of
these difficulties are shown in Fig. 3.11.

Because of some of these difficulties, line extraction was carried out in a
semi-automatic way, based on a conventional line-extraction method mentioned in
Sect. 3.5.1. Most of the phrases were processed automatically, but manual supervi-
sion was applied to difficult line-overlapping cases such as that shown in Fig. 3.11

2Data kindly provided by ODEC, S.A. (www.odec.es).

http://www.odec.es
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Fig. 3.11 Examples of difficulties found in several paragraphs of the ODEC-M3 Corpus

Table 3.1 Basic statistics of the database ODEC, where OOV stands for out-of-vocabulary words

Number of Training Test Total Lexicon OOV Tr. Ratio

Writers/phrases 676 237 913 – – –

Words 12 287 4 084 16 371 2 790 518 4.4

Characters 64 666 21 533 86 199 80 0 808

(top-left). By adequately pasting the lines extracted from each paragraph, a single-
line (long) image which encompasses the whole paragraph was obtained. This re-
sulted in 913 binary images, which were partitioned into a training set of 676 im-
ages and a test set of 237 images. The transcriptions of all the images are also
available, containing 16 371 words with a vocabulary of 2 790 different words. It
is important to remark that we do not distinguish between words written in lower-
case characters or uppercase. Therefore, to train the n-gram models, the transcrip-
tion of the 676 training images were converted to uppercase and the punctuation
signs {−/; : + ∗ ()|, !?} were eliminated. The average ratio for n-gram training is
4.4 running word instances per vocabulary word. Nevertheless, to train the charac-
ter HMMs we use the transcription that describes with detail and accuracy all the
elements appearing in each handwritten text images, such as lowercase or upper-
case letters, symbols, abbreviations, spacing between words and characters, crossed-
words, etc. All this information is summarized in Table 3.1. More information on
this corpus can be found in [25].
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Fig. 3.12 Examples of handwritten lines from the IAMDB corpus

IAMDB

This corpus was compiled by the Research Group on Computer Vision and Arti-
ficial Intelligence (FKI) at Institute of Computer Science an Applied Mathematics
(IAM) in Bern (Switzerland). The IAM Handwriting Database [13, 15] (IAMDB)
consists of grey-level images of unconstrained handwritten English text forms. It
is publicly accessible and freely available upon request for non-commercial re-
search purposes.3 The IAMDB images correspond to handwritten texts copied from
the Lancaster-Oslo/Bergen Corpus [11] (LOB), which encompasses around 500
printed English texts of about 2 000 words each and about 1 000 000 total running
words.

The IAMDB version 3.0 (the latest at this moment) is composed of 1 539 scanned
text pages, handwritten by 657 different writers. No restriction was imposed on the
writing style or the type of pen to be used. This dataset is also provided at sen-
tence level. Line detection and extraction, as well as (manually) detecting sentence
boundaries, was carried out by the IAM institute [14]. Using this information, lines
could be easily merged into whole sentence line-images. Figure 3.12 shows exam-
ples of handwritten lines images from this corpus. This corpus was partitioned into
a training set composed of 2 124 sentences, handwritten by 448 different writers,
and a writer independent test set composed of 200 sentences written by 100 writers.
Table 3.2 summarizes all this information.

Note that the amount of data available for training the (n-gram) language mod-
els for this task (the whole LOB corpus) is very much larger than the amount of
data contained in the transcriptions of the available text images. Following [33],
we take advantage of this opportunity by using the whole LOB corpus (except the

3http://iamwww.unibe.ch/~fki/iamDB

http://iamwww.unibe.ch/~fki/iamDB
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Table 3.2 Basic statistics of the database IAM, where OOV stands for out-of-vocabulary words

Number of Training Test Total Lexicon OOV Tr. Ratio

Writers 448 100 548 – – –

Sentences 2 124 200 2 324 – – –

Words 42 832 3 957 46 789 8 017 921 81

Characters 216 774 20 726 237 500 78 0 2 779

Fig. 3.13 Examples of pages images from CS corpus

200 sentences of the image test set) for n-gram training, while setting a reduced
vocabulary which encompasses only the 8 017 different words found in the IAMDB
text images. Only 651 462 running words of the LOB corpus belong to the IAMDB
vocabulary proper. Therefore, for n-gram training we have a quite good effective av-
erage ratio of 81 word instances per IAMDB vocabulary word. As in the ODEC-M3
corpus, here we do not distinguish between words written in lowercase characters
or uppercase.

CS MANUSCRIPT

This corpus was compiled from a XIX century Spanish manuscript identified as
“Cristo-Salvador” (CS), which was kindly provided by the Biblioteca Valenciana
Digital (BiVaLDi).4 This is a rather small document composed of 50 color images
of text pages, written by a single writer. Some examples are shown in Fig. 3.13.

The page images were preprocessed and divided into lines, as described in
Sect. 3.5.1. The results were visually inspected and the few detection errors

4http://bv2.gva.es

http://bv2.gva.es
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Table 3.3 Basic statistics of the partition page of the database Cristo-Salvador. OOV stands for
out-of-vocabulary words

Number of Training Test Total Lexicon OOV Tr. Ratio

Pages 53 53 53 – – –

Text lines 681 491 1 172 – – –

Words 6 435 4 483 10 918 2 277 1 010 2.8

Characters 36 729 25 487 62 216 78 0 470

(around 4%) were manually corrected, resulting in a dataset of 1 172 text line im-
ages. It is worth mentioning that, unlike the two previous corpora, in this case the
extracted lines are not merged into sentence or paragraph images. The transcriptions
of these line images are also available, containing 10 918 running words with a vo-
cabulary of 2 277 different words. Note that as in the other two corpora, we do not
distinguish between words written in lowercase characters or uppercase.

Two different partitions, page (or “soft”) and book (or “hard”) are defined for this
dataset [24]. Here we only consider the (easier) page partition. Its test set contains
491 samples corresponding to the last ten lines of each document page, whereas
the training set is composed of the 681 remaining lines. Table 3.3 summarizes this
information.

For n-gram training, the average ratio of running word instances per vocabulary
word is 2.8. It is important to remark that such a small ratio will certainly result in
under-trained language models, which clearly increase the difficulty of the recogni-
tion task and prevent CATTI, PA-CATTI or MM-CATTI to take much advantage of
prefix-derived constraints.

UNIPEN Corpus

The UNIPEN Train-R01/V07 dataset5 comes organized into several cate-
gories [7] such as lower- and uppercase letters, digits, symbols, isolated words and
full sentences. Unfortunately, the UNIPEN isolated words category does not contain
all (or almost none of) the required word instances to be handwritten by the user in
the MM-CATTI interaction process with the ODEC, IAMDB, or CS text images.
Therefore, they were generated by concatenating random character instances from
three UNIPEN categories: 1a (digits), 1c (lowercase letters) and 1d (symbols). Ta-
ble 3.4 shows the basic statistics of these words, needed to test the HTR feedback
subsystem for each off-line HTR task. We have just taken into account here, for each
task (corpus), all the words that the user must introduce in a standard CATTI itera-
tion process when the Viterbi-search implementation is used (cf. Sect. 2.5.1). Note
that in the case of WG-search implementation had been used, probably slightly dif-
ferent words and/or number of their instances would have been obtained. Anyway,

5For a detailed description of this dataset, see http://www.unipen.org.

http://www.unipen.org
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Table 3.4 For each off-line HTR task: number of on-line unique words and word instances needed
as feedback to correct the word errors made by the plain off-line HTR system

Task Unique words Word instances

ODEC-M3 378 753

IAMDB 510 755

CS 648 1 196

Fig. 3.14 Examples of words
generated using characters
from the three selected
UNIPEN test writers (BH,
BR, BS), along with samples
of the same words written by
two other writers in our labs

since we are interested in evaluating the feedback decoding subsystem (i.e. the on-
line HTR subsystem), only Viterbi-search implementation is going to be considered.
Even so, as we will see in Sect. 12.2, the demonstrator of MM-CATTI (MM-IHT)
is implemented using an hybrid search-decoding scheme; that is, the off-line decod-
ing phase is based on WG, whereas the feedback decoding phase relies directly on
Viterbi.

To increase realism, the generation of each of these test words was carried out
employing characters belonging to a same writer. Three different writers were ran-
domly chosen, taking care that sufficient samples of all the characters needed for
the generation of the required word instances were available from each writer. Each
character needed to generate a given word was plainly aligned along a common
word baseline, except if it had a descender, in which case the character baseline was
raised 1/3 of its height. The horizontal separation between characters was randomly
selected from one to three trajectory points. The selected writers are identified by
their name initials as BS, BH and BR. Figure 3.14 shows some examples of words
generated in this way, along with real samples of the same words written by two
writers (EV and VR).

Training data were produced in a similar way using 17 different UNIPEN writ-
ers. For each of these writers, a sample of each of the 42 symbols and digits needed
was randomly selected and one sample of each of the 1 000 most frequent Span-
ish and English words was generated, resulting in 34 714 training tokens (714 iso-
lated characters plus 34 000 generated words). To generate these tokens, 186 881
UNIPEN character instances were used, using as many repetitions as required out
of the 17 177 unique character samples available. Table 3.5 summarizes the amount
of UNIPEN training and test data used in the experiments.
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Table 3.5 Basic statistics of the UNIPEN training and test data used in the experiments

Number of different Train Test Lexicon

Writers 17 3 –

Digits (1a) 1 301 234 10

Letters (1c) 12 298 2 771 26

Symbols (1d) 3 578 3 317 32

Total characters 17 177 6 322 68

3.6.2 Results

The three measures (WER, WSR and EFR) adopted to assess interactive tran-
scription systems in Sect. 2.6 have been used to evaluate CATTI performance. In
addition, to assess the new interaction mode of PA-CATTI approach, it has been
introduced the so-called Pointer Action Rate (PAR). This can be defined as the
number of additional PAs per word that the user has to do using the new user in-
teraction mode. Note that the human effort needed for the verification of the tran-
scription and positioning the cursor in the appropriate place in the conventional
CATTI is the same as in the new CATTI system using single-PA interactions. In
both cases the user should read the transcription proposed by the system until he
or she finds an error and then positions the cursor in the place where the new word
has to be typed. Moreover, since only single-word corrections have been consid-
ered, the feedback decoding error rate (FER) (that is, the conventional classifica-
tion error rate) will be used to assess the accuracy of the on-line HTR feedback
subsystem under the different constraints entailed by the MM-CATTI interaction
process.

Different experiments have been carried out to assess the feasibility and potential
of CATTI, PA-CATTI and MM-CATTI. In addition, non-interactive (off- and on-
line) handwritten text recognition experiments have been performed to establish
baseline performance figures.

Baseline Off-Line HTR Results

Conventional, non-interactive off-line HTR experiments were performed on the
three off-line corpora described in Sect. 3.6.1, ODEC-M3, IAMDB and CS, us-
ing the basic system explained in Sect. 3.5.1. All the morphological (HMMs) and
language (bi-gram) models were trained from the respective training images and
transcriptions of each corpus. Although, as was noted earlier, in the training of
IAMDB bi-gram language model not only the own IAMDB transcription corpus,
but also the whole LOB corpus was used to. The HTR WER percentages obtained
for the test images of each corpus were 22.9, 25.3 and 28.5, for ODEC-M3, IAMBD
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and CS, respectively. All these results have been obtained after optimizing the pa-
rameters values corresponding to the preprocessing and the feature extraction pro-
cesses explained in Sect. 3.5.1 for each of the tasks. The WER obtained for IAMDB
(25.3%) is comparable with non-interactive, state-of-the-art results published for
this dataset [33].

Baseline On-Line HTR Results

These experiments were carried out using the basic on-line HTR subsystem ex-
plained in Sect. 3.5.2. As discussed in Sect. 3.6.1, UNIPEN data were used to assess
the performance of the on-line HTR feedback subsystem.

All the samples were preprocessed using the preprocessing and feature extraction
methods outlined in Sect. 3.5.2. In order to tune the parameters of the 68 on-line
character HMMs needed, isolated character recognition experiments were carried
out on each of the 1a, 1c and 1d UNIPEN categories. The classification error
rates (ER) obtained for test digits, letters and symbols were 1.7%, 5.9% and 21.8%,
respectively. These results are comparable with state-of-the-art results obtained for
this dataset [18, 22].

In order to establish a word decoding baseline accuracy for the on-line HTR feed-
back subsystem, a simple word recognition experiment was carried out. The words
needed to train and test the feedback subsystem for each task were generated by
concatenating adequate UNIPEN characters. Therefore, new character HMMs were
trained from these training words, using the parameters previously tuned through
the isolated character recognition experiments. On the other hand, since only single
words are to be recognized, a uni-gram language model was trained (from the train-
ing transcriptions of each off-line task) to estimate the corresponding prior word
probabilities. The following word recognition error percentages (FER) were ob-
served for ODEC-M3, IAMDB and CS, respectively: 5.1, 4.6 and 6.4.

Note that these FER values are obtained without taking advantage of any
interaction-derived contextual information (i.e., just using plain uni-grams). There-
fore these figures represent the highest accuracies that could be expected if, e.g.,
an off-the-shelf on-line HTR system were adopted to implement the MM-CATTI
feedback decoder.

CATTI Results

The CATTI approach presented in Sect. 3.1 was applied to the three off-line HTR
tasks before-described, using the same parameter values used for the baseline, non-
interactive off-line HTR results presented earlier. Table 3.6 shows the estimated in-
teractive human effort (WSR) required for each task using the Viterbi-based imple-
mentation presented in Sect. 2.5.1, in comparison with the corresponding estimated
post-editing effort (WER) before reported in the subsection of baseline off-line HTR
results. Besides, it shows the estimated effort reduction (EFR), computed as the rel-
ative difference between WER and WSR (see Sect. 2.6).
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Table 3.6 Performance of non-interactive off-line HTR (baseline WER) and CATTI (WSR), along
with their relative difference (Estimated Effort Reduction—EFR) using the Viterbi-based search.
All results are percentages

Corpus WER WSR EFR

ODEC-M3 22.9 18.9 17.5

IAMDB 25.3 21.1 16.6

CS 28.5 26.9 5.7

According to these results, to produce 100 words of a correct transcription in the
ODEC-M3 task, for example, a CATTI user should have to type only less than 20
words; the remaining 80 are automatically predicted by CATTI. That is to say, the
CATTI user would save about 80% of the (typing and, in part thinking) effort needed
to produce all the text manually. On the other hand, when interactive transcription
is compared with post-editing, from every 100 (non-interactive) word errors, the
CATTI user should have to interactively correct only less than 78. The remaining 17
errors would be automatically corrected by CATTI, thanks to the feedback informa-
tion derived from other interactive corrections.

The different performance figures achieved in the different tasks can be explained
by quality differences in the original images and also by the relative lexicon sizes
and bi-gram estimation robustness. The later is particularly problematic in the case
of CS which, in addition, suffers from a segmentation into relatively short, syntac-
tically meaningless lines, which further hinders the ability of the bi-gram language
model to capture relevant contextual information.

It is interesting to realize that CATTI is more effective for lines or sentences
that have several errors; clearly, if a sentence has just one (word) error, it must
be interactively corrected by the user and the best CATTI can do is to keep the
remaining text unchanged. Obviously, this is not guaranteed by Eq. (2.4) and, in the
worst case, a single word change made by the user may lead to more errors; that
is, WSR might be greater than WER. To analyze this behavior, Fig. 3.15 presents
WER, WSR and EFR values for increasing initial numbers of errors per sentence,
for ODEC-M3 and IAMDB (similar tendencies are observed for CS).

As expected, the estimated effort reduction increases with the number of errors
per sentence, which clearly assess the ability of CATTI to correct more than one er-
ror per interaction step in sentences with several wrong-recognized words. Also, for
sentences with a single error, CATTI does not help at all or is even worse than post-
editing. Therefore, in practice, a good implementation of a CATTI user interface
should allow the user to disable CATTI predictions when doing some (single-word)
corrections. Taking this into account, the results of Table 3.6 can be recomputed
after excluding all the sentences with zero or one errors, leading to better EFR.
Namely, the EFR becomes 17.9%, 18.4% and 6.9% for ODEC-M3, IAMDB and
CS, respectively.

On Table 3.7 we can see the WSR and the EFR obtained for each task using
WG search (see Sect. 3.2.1) in comparison with the corresponding WER. The WGs
used in the experiments were generated with the same GSF and WIP values used
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Fig. 3.15 WER, WSR and EFR (all in %) for varying number of errors per sentence, for
ODEC-M3 (left) and IAMDB (right) corpora

Table 3.7 Performance of non-interactive off-line HTR (WER) and CATTI (WSR), along with the
relative difference between them (Estimated Effort-Reduction—EFR) using the WG-based search
approach. All results are percentages

Corpus WER WSR EFR

ODEC-M3 22.9 21.5 6.1

IAMDB 25.3 22.5 11.1

CS 28.5 27.7 2.8

for the baseline results. As we have expected, the results obtained using the Viterbi-
based search are better than those obtained with WGs. This is owing to the fact that
the WG is just a pruned version of the Viterbi search trellis. Therefore, not all the
possible transcriptions for the input handwritten text image are available, leading
to some loss of system accuracy. However, the computational cost of using WGs is
much lower than that using Viterbi adaptation, allowing in the former case, the user
to interact in real-time with the system.

Nevertheless, from the reported results of Tables 3.6 and 3.7, it is clear that the
estimated saved human effort (EFR) to produce error-free transcriptions with this
CATTI approach is reduced in all the tasks. Furthermore, as previously explained,
CATTI has the change to be more effective for lines/sentences with several errors.
The EFR recomputed after excluding all the sentences with zero or one errors using
the WG search approach are 6.8%, 12.9% and 3.8% for ODEC-M3, IAMDB and
CS, respectively.

PA-CATTI Results

As commented at the end of Sect. 3.3.1, in order to be effective and fully useful,
PA-CATTI approach requires short response times to emit a new suffix each time a
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Table 3.8 Performance of the PA-CATTI with the single-PA interaction mode scenario (WSR
single PA), along with the Estimated Effort-Reduction computed for WSR single PA with respect
to conventional CATTI WSR (EFRCATTI) and WSR single PA with respect to the non-interactive
HTR WER (EFRPEDIT). All results are percentages

Corpus WSR single PA EFRCATTI EFRPEDIT

ODEC-M3 18.2 15.3 20.5

IAMDB 18.6 17.3 26.5

CS 23.7 14.4 16.8

PA is performed. A search implementation based on WG techniques is the solution
which best fits this requirement. Table 3.8 reports the results obtained with the new
single-PA interaction mode, which is the simplest one of the PA-related scenarios
explained in Sect. 3.3. The first column shows the WSR obtained using the single-
PA interaction mode, whereas the second and third columns show respectively the
relative differences between the WSR single PA with respect to the conventional
CATTI WSR (see second column of Table 3.7), and with respect to the WER of
a conventional HTR system followed by human post-editing (see first column of
Table 3.7).

According to Table 3.8, the estimated human effort to produce error-free tran-
scription using PA-CATTI is significantly reduced with respect to using the con-
ventional CATTI approach, and of course, with respect to the non-interactive HTR
followed by manual post-editing. For example, in the IAMDB task, the new interac-
tion mode can save about 26% of the overall effort, whereas the conventional CATTI
would only save 11.1% using the WG-based search approach, or 16.6% using the
Viterbi-based search approach (reported in Table 3.6).

Figure 3.16 plots the WSR, the EFR and the Pointer-Action Rate (PAR) as a
function of the maximum number of allowed PAs before the user decides to write the
correct word. These results are reported for both ODEC-M3 and IAMDB corpora
(similar tendency has been observed for CS corpus as well). The EFR values have
been computed between corresponding WSR and WER. From the both plots, it is
revealed that a good trade-off between EFR and PAR can be obtained, for example,
by setting the maximum number of PAs to 3, for which a significant amount of
expected user effort is saved with a fairly low number of extra PAs per word.

MM-CATTI Results

The aim of these experiments is to assess the effectiveness of MM-CATTI in the
scenarios described in Sect. 3.4.1. Multimodal operation offers ergonomics and in-
creased usability at the expense of the system having to deal with non-deterministic
feedback signals. Therefore, the main concern here is the accuracy of the on-line
HTR feedback decoding and the experiments aim to determine how much this ac-
curacy can be boosted by taking into account information derived from the proper
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Fig. 3.16 Word stroke ratio (WSR), estimated effort reduction (EFR) and pointer-action rate
(PAR) as a function of the maximum number of PAs allowed before the user decides to write
the correct word. The first point “0” corresponds (without performing any PA) to the conventional
CATTI, whereas the point “S” corresponds to the single-PA interaction scenario already discussed
in Sect. 3.3

Table 3.9 Writer average MM-CATTI feedback decoding error rates (FER) for the different cor-
pora and three language models: plain uni-gram (U, baseline), error-conditioned uni-gram (Uv)
and prefix-and-error-conditioned bi-gram (Bv). The relative accuracy improvements for Uv and
Bv with respect to U are shown in the last two columns

Corpus FER (%) Relative Improv. (%)

U Uv Bv Uv Bv

ODEC-M3 5.1 5.0 3.1 1.9 39.2

IAMDB 4.6 4.3 3.5 6.5 23.9

CS 6.4 6.2 5.8 3.1 9.3

interaction process. Ultimately, experiments aim at assessing which degree of syn-
ergy can actually be expected by taking into account both interactivity and multi-
modality.

Table 3.9 presents the writer average feedback decoding error rates (FER) for the
different corpora considered and three language models which embody increasingly
strong interaction-derived constraints (see Sect. 3.4.1). The first one corresponds to
a plain uni-gram estimate of P(d), already reported in “Baseline On-line HTR Re-
sults” in Sect. 3.6.2 as a baseline. The second corresponds to an error-conditioned
uni-gram estimate of P(d | v) (Eq. (3.14)). The third model is a prefix-and-error-
conditioned bi-gram estimate of P(d | p′, v) (Eq. (3.15)). These models are derived
from the original language models employed for the main, off-line HTR system,
as explained in Sect. 3.4.1. As observed in Table 3.9, feedback decoding accu-
racy increases significantly as more interaction-derived constraints are taken into
account.

As a final overview, Table 3.10 summarizes all the CATTI and MM-CATTI re-
sults obtained in this chapter. The forth and fifth columns show respectively the
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Table 3.10 From left-to-right: post-editing corrections (WER), interactive corrections needed
(WSR), e-pen feedback decoding error rate for baseline case (FERBL) and multimodal decod-
ing (FERMM), overall multimodal interactive corrections (WSRMM), and overall estimated effort
reduction (EFR) achieved by the proposed approaches. All results are percentages

Corpus Post-edit CATTI MM-CATTI Overall EFR
WER WSR FERBL FERMM WSRMM CATTI MM-CATTI

ODEC-M3 22.9 18.9 5.1 3.1 19.5 17.5 14.8

IAMDB 25.3 21.1 4.6 3.5 21.8 16.6 13.8

CS 28.5 26.9 6.4 5.8 28.4 5.6 0.4

e-pen FER baseline (BL) and FER multimodal decoding (MM), while the sixth col-
umn reports the total MM-CATTI WSR achieved. These figures correspond to the
three-writers averaged decoding errors reported in Table 3.9. The last two columns
show the overall estimated effort reductions (EFR) in both the conventional CATTI
and MM-CATTI approaches.

The MM-CATTI EFR is calculated under the simplifying (but reasonable) as-
sumption that the cost of keyboard-correcting a feedback on-line decoding error is
similar to that of another on-line touchscreen interaction step.6 That is, each correc-
tion using keyboard is counted twice: one for the failed touch-screen attempt and an-
other for the keyboard correction itself. According to these results, the expected user
effort for the more ergonomic and user-preferred touch-screen-based MM-CATTI is
only moderately higher than that of CATTI in the ODEC-M3 and on the IAMDB
corpora. On the CS corpora the results shown that the expected user effort is very
similar to the expected effort on a post-editing system. However, this extra human
effort entails an human-machine interaction more easier and comfortable.

3.7 Conclusions

In this chapter, the approaches CATTI, PA-CATTI and MM-CATTI presented in
Sects. 3.1, 3.3 and 3.4 have been tested in three different tasks: ODEC, IAMDB and
CS. These tasks involve the transcription of handwritten answers from survey forms,
handwritten full English sentences of different categories (editorial, religion, fiction,
love, humor, . . . ) and an ancient handwritten document from 1853, respectively.

At deeper depths it has been proposed a new interactive, on-line framework,
which combines the efficiency of automatic HTR system with the accuracy of the
user in the transcription of handwritten documents. We have called this approach

6This is most probably a pessimistic assumption since, in this application, interaction through
touch-screen is clearly more ergonomic than through keyboard. Moreover, in practice, it seems
often preferable to try again a failed touch-screen correction, rather than typing a definitive fix on
the keyboard.
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“Computer Assisted Transcription of Text Images” (CATTI). Here, the words cor-
rected by user become part of increasingly longer prefixes of the final target tran-
scription. These prefixes are used by the CATTI system to suggest new suffixes that
user can iteratively accept or modify until a satisfactory, correct target transcription
is finally produced. The experimental results obtained in the three above-mentioned
tasks are encouraging and show that the CATTI approach speed up the human error-
correction process.

Moreover, two different search-decoding implementations have been tested. The
first one is based directly on the Viterbi algorithm, whereas the second one on word-
graph techniques. From the obtained results, it can be concluded that, although the
results obtained using the Viterbi-based approach are better than those using word-
graph, the last one is preferable because the accuracy loss is not too high and the
computational cost is much lower. In fact, this last issue allows the human tran-
scriber to interact with the system in real time.

In order to foster the usability and ergonomics of CATTI, a new interaction way
was proposed by considering what we called “Pointer Action” (PA-CATTI). This
consists in that the system takes advantage of the positioning made by the user
prior to correct the following word error, by proposing quickly (from that position)
a new, hopefully more correct prediction. Therefore, PA-based user-feedback goes
some way to anticipating upcoming user corrections. Implementation of PA-CATTI
was carried out also on the base of word-graphs, which are the best solution to
the fast-reaction-time required by PA-CATTI to have an acceptable usability. From
experimental results it can be seen that this new kind of user-feedback can pro-
duce significant benefits, in terms of word stroke reductions, and this is specially
noticeable for single-PA interaction scenario where the new prediction is obtained
practically without extra human effort.

We have also studied the use of on-line touch-screen handwritten pen strokes
as a complementary means to input the required CATTI correction feedback. We
have called this multimodal approach “MM-CATTI”. From the results, we observe
that the use of this more ergonomic feedback modality comes at the cost of only a
reasonably small number of additional interaction steps needed to correct the few
feedback decoding errors. The number of these extra steps is kept very small thanks
to the MM-CATTI ability to use interaction-derived constraints to considerably im-
prove the on-line HTR feedback decoding accuracy. Clearly, this would have not
been possible if just a conventional, off-the-shelf on-line HTR decoder were triv-
ially used for the correction steps.

The advantage of CATTI, PA-CATTI and MM-CATTI over traditional HTR fol-
lowed by post-editing goes beyond the good estimates of human effort reductions
achieved. When difficult transcription tasks with high WER are considered, expert
users generally refuse to post-edit conventional HTR output. In contrast, the pro-
posed interactive approaches constitute a much more natural way of producing cor-
rect text. With an adequate user interface, CATTI, PA-CATTI or MM-CATTI let
the users be dynamically in command: if predictions are not good enough, then the
user simply keeps typing at his/her own pace; otherwise, he/she can accept (partial)
predictions and thereby save both thinking and typing effort.
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It should be mentioned here that, in addition to the laboratory experiments re-
ported in previous section, a complete CATTI prototype (which includes PA and
multimodality) has been implemented (see Sect. 12.2) and already submitted to pre-
liminary, informal tests with real users. According to these tests, the system does
meet the expectations derived from the laboratory experiments; both in terms of
usability and performance. This is particularly true for the on-line HTR feedback
decoding accuracy: even though the on-line HTR HMMs were trained from artifi-
cially built words using UNIPEN character samples, the accuracy in real operation
with real users is observed to be similar to that shown in the laboratory results here
reported. Of course even higher accuracy can be easily achieved by retraining the
models with the text handwritten by the actual users.
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