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Foreword

Traditionally, the aim of pattern recognition is to automatically solve complex
recognition problems. However, it has been realized that in many real world ap-
plications a correct recognition rate is needed that is higher than the one reachable
with completely automatic systems. Therefore, some sort of post-processing is ap-
plied where humans correct the errors committed by machine. It turns out, however,
that very often this post-processing phase is the bottleneck of a recognition system,
causing most of its operational costs.

The current book possesses two unique features that distinguish it from other
books on Pattern Recognition. First, it proposes a radically different approach to
correcting the errors committed by a system. This approach is characterized by hu-
man and machine being tied up in a much closer loop than usually. That is, the
human gets involved not only after the machine has completed producing its recog-
nition result, in order to correct errors, but during the recognition process. In this
way, many errors can be avoided beforehand and correction costs can be reduced.
The second unique feature of the book is that it proposes multimodal interaction
between man and machine in order to correct and prevent recognition errors. Such
multimodal interactions possibly include input via handwriting, speech, or gestures,
in addition to the conventional input modalities of keyboard and mouse.

The material of the book is presented on the basis of well founded mathemati-
cal principles, mostly Bayes theory. It includes various fundamental results that are
highly original and relevant for the emerging field of interactive and multimodal
pattern recognition. In addition, the book discusses in detail a number of concrete
applications where interactive multimodal systems have the potential of being su-
perior over traditional systems that consists of a recognition phase, conducted au-
tonomously by machine, followed by a human post-processing step. Examples of
such applications include unconstrained handwriting recognition, speech recogni-
tion, machine translation, text prediction, image retrieval, and parsing.

To summarize, this book provides a very fresh and novel look at the whole disci-
pline of pattern recognition. It is the first book, to my knowledge, that addresses the
emerging field of interactive and multimodal systems in a unified and integrated
way. This book may in fact become a standard reference for this emerging and
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fascinating new area. I highly recommend it to graduate students, academic and

industrial researchers, lecturers, and practitioners working in the field of pattern
recognition.

Bern, Switzerland Horst Bunke



Preface

Our interest in human—computer interaction started with our participation in the TT2
project (“Trans—Type-2”, 2002—-2005—http://www.tt2.atosorigin.es), funded by the
European Union (EU) and coordinated by Atos Origin, which dealt with the devel-
opment of statistical-based technologies for computer assisted translation.

Several years earlier, we had coordinated one of the first EU-funded projects
on spoken machine translation (EuTrans, 1996-2000—http://prhlt.iti.es/w/eutrans)
and, by the time TT2 started, we had already been working for years in machine
translation (MT) in general. So we knew very well which was one of the major bot-
tlenecks for the adoption of the MT technology available at that time by professional
translation agencies: Many professional translators preferred to type by themselves
all the text from scratch, rather than trying to take advantage of the (few) correct
words of a MT-produced text, while fixing the (many) translation errors and sloppy
sentences. Clearly, by post-editing the error-prone text produced by a MT system,
these professionals felt they were not in command of the translation process; in-
stead, they saw themselves just as dumb assistants of a foolish system which was
producing flaky results that they had to figure out how to amend (the state of affairs
about post-editing has improved over the years but the feeling of lack of control
persists).

In TT2 we learnt quite a few facts about the central role of human feedback in the
development of assistive technologies and how this feedback can lead to great hu-
man/machine performance improvements if it is adequately taken into account in the
mathematical formulation under which systems are developed. We also understood
very well that, in these technologies, the traditional, accuracy-based performance
criteria is not sufficiently adequate and performance has to be mainly assessed in
terms of estimated human—machine interaction effort. In one word, assistive tech-
nology has to be developed in such a way that the human user feels in command of
the system, rather than the other way around, and human-interaction effort reduc-
tion must be the fundamental driving force behind system design. In TT2 we also
started to realize that multimodal processing is somehow implicitly present in all
interactive systems and that this can be advantageously exploited to improve overall
system performance and usability.

vii
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viii Preface

After the success of TT2, our research group (PRHLT—http://prhlt.iti.upv.es),
started to look at how these ideas could be applied in many other Pattern Recog-
nition (PR) fields, where assistive technologies are in increasing demand. As a
result, we soon found ourselves coordinating a large and ambitious Spanish re-
search program, called Multimodal Interaction in Pattern Recognition and Com-
puter Vision (MIPRCYV, 2007-2012—nhttp://miprcv.iti.upv.es). This program, which
involves more that 100 highly qualified Ph.D. researchers from ten research institu-
tions, aims at developing core assistive technologies for interactive application fields
as diverse as language and music processing, medical image recognition, biometrics
and surveillance, advanced driving assistance systems and robotics, to name but a
few.

To a large extent, this book is the result of works carried out by the PRHLT
research group within the MIPRCV consortium. Therefore it owes credit to many
MIPRCYV researchers that have directly or indirectly contributed with ideas, dis-
cussions and technical collaborations in general, as well as to all the members of
PRHLT who, in one manner or another, have made it possible.

These works are presented in this book in a unified way, under the PR frame-
work of Statistical Decision Theory. First, fundamental concepts and general PR
approaches for Multimodal Interaction modelling and search (or inference) are pre-
sented. Then, systems developed on the base of these concepts and approaches are
described for several application fields. These include interactive transcription of
handwritten and spoken documents, computer assisted language translation, inter-
active text generation and parsing, and relevance-based image retrieval. Finally, sev-
eral prototypes developed for these applications are overviewed in the last chapter.
Most of these prototypes consist in live demonstrators which can be publicly ac-
cessed through the Internet. So, readers of this book can easily try them by them-
selves in order to get a first-hand idea of the interesting possibilities of placing
Pattern Recognition technologies within the Multimodal Interaction framework.

Chapter I provides an introduction to Interactive Pattern Recognition, examining
the challenges and research opportunities entailed by placing PR within the human-
interaction framework. Moreover, it provides an introduction to general approaches
available to solve the underlying interactive search problems on the basis of existing
methods to solve the corresponding non-interactive counterparts and, an overview of
modern machine learning approaches which can be useful in the interactive frame-
work.

Chapter 2 establishes the common basics and framework on which are grounded
the computer assisted transcription approaches described in the three subsequent
Chaps.: 3,4 and 5. On the one hand, Chaps. 3 and 5 are devoted to handwritten doc-
uments transcription providing different approaches, which cover different aspects
as multimodality, user interaction ways and ergonomics, active learning, etc. On the
other hand, Chap. 4 focuses directly on transcription of speech signals employing a
similar approach described in Chap. 3.

Likewise, Chap. 6 addresses the general topic of Interactive Machine Transla-
tion, providing an adequate human—machine-interactive framework to produce high-
quality translation between any pair of languages. It will be shown how this also al-
lows one to take advantage of some available multimodal interfaces to increase the
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productivity. Multimodal interfaces and adaptive learning in Interactive Machine
Translation will be covered in Chaps. 7 and 8, respectively.

With significant differences in relation to previous chapters, Chaps. 9-11 intro-
duce other three Interactive Pattern Recognition topics: Interactive Parsing, Interac-
tive Text Generation and Interactive Image Retrieval. The second one, for example,
is characterized by not using input signal, whereas the first and third by not follow-
ing the left-to-right protocol in the analysis of their corresponding inputs.

Finally, Chap. 12 presents several full working prototypes and demonstrators of
multimodal interactive pattern recognition applications. As previously commented,
all of these systems serve as validating examples for the approaches that have been
proposed and described throughout this book. Among other interesting things, they
are designed to enable a true human—computer interaction on selected tasks.

Valencia, Spain E. Vidal
A.H. Toselli
F. Casacuberta
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Chapter 1
General Framework
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Lately, the paradigm for Pattern Recognition (PR) systems design is shifting from
the concept of full-automation to systems where the decision process is conditioned
by human feedback. This shift is motivated by the fact that full automation often
proves elusive, or unnatural in many applications where technology is expected to
assist rather than replace the human agents.

This chapter examines the challenges and research opportunities entailed by plac-
ing PR within the human-interaction framework; namely: (a) taking direct advantage
of the feedback information provided by the user in each interaction step to improve
raw performance; (b) acknowledging the inherent multimodality of interaction to
improve overall system behavior and usability and (c) using the feedback-derived
data to tune the system to the user behavior and the specific task considered, by
means of adaptive learning techniques.

One of the most influential factors for the rapid development of PR technology
in the last few decades is the nowadays commonly adopted assessment paradigm
based on labeled training and testing corpora. This chapter includes a discussion
about simple but realistic “user models™ or interaction protocols and assessment
criteria which allow the successful labeled corpus-based assessment paradigm to be
applied also in the interactive scenario.

This chapter also provides an introduction to general approaches available to
solve the underlying interactive search problems on the basis of existing methods

A H. Toselli et al., Multimodal Interactive Pattern Recognition and Applications, 1
DOI 10.1007/978-0-85729-479-1_1, © Springer-Verlag London Limited 2011
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2 1 General Framework

to solve the corresponding non-interactive counterparts and an overview of modern
machine learning approaches which can be useful in the interactive framework.

1.1 Introduction

Classical Pattern Recognition (PR) has generally focused on “full automation”. Tra-
ditional PR technologies have been mainly developed with the ultimate aim of fully
replacing human beings in tasks that require complex perceptive and/or cognitive
skills. However, full automation often proves elusive or unnatural in many applica-
tions where technology is expected to assist rather than replace the human agents.
One should bear in mind that no PR system is error-free and, even in those applica-
tions where the full automation paradigm might make sense, PR developments often
end up in “semiautomatic systems” or systems for “computer-assisted”” operation.

On the other hand, one of the most popular and time-honored concepts in clas-
sical PR is that of relying system development on the availability of (large amounts
of) labeled data. These data are then adequately split into training and testing sets.
While this concept has proven very successful and has indeed led to very useful
practical systems and devices, it is becoming increasingly clear nowadays that many
practical applications do not fit well in the traditional fraining and testing corpora
development paradigm.

An example of this kind of applications is the task (described in Chaps. 3 and 5)
of transcribing a single large collection of handwritten documents. Of course one
can ask the users to produce a “training set” by transcribing an adequate part of the
collection manually and then consider the remaining batch of documents as a “test
set”. If the training set is too small, this will typically result in an undertrained sys-
tem that performs poorly on the “test” part of the collection. Therefore, the users
will have to devote large amounts of effort to correct system mistakes in that part.
Conversely, by increasing the amount of “training” pages or documents, the sys-
tem will perform better on the “test” part, but at the expense of a larger user effort
required to manually transcribe the larger “training” batch. Since the task is to tran-
scribe this whole collection, in the end it is the total user effort what matters and,
the classical idea of trying to achieve a “good” training/testing partition of the data
(and the user effort) does not seem like the best idea to follow.

Once we realize that, for one reason or another, human effort is needed not only to
produce training data, but also to supervise and/or correct system outputs in the test
phase, it becomes very clear that our traditional batch-processing paradigm needs
to be changed into an explicit person-machine interaction framework.

These facts are seldom acknowledged in the PR mainstream. Initial problem
statement typically pretends full automation and the “eventual” need for human in-
tervention is overlooked in the mathematical formulations. By ignoring the essential
need for human feedback, the resulting technologies and systems generally fail to
take advantage of the opportunities underlying the interactive framework. Perhaps
the most obvious of these opportunities is to directly profit from human feedback in
order to increase raw system performance. But, as will be discussed later, the inter-
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active framework also entails other important research challenges and opportunities
such as multi-modal processing and adaptive learning.

The idea of interaction between humans and machines is by no means new. In
fact, historically, tools and machines have mostly been developed with the aim of
assisting human beings in their work. With the introduction of computer machinery,
however, the appetence for fully automatic complex devices that would completely
substitute the humans in certain types of tasks, has been gaining increasing popular-
ity in the last few decades. This largely speculative goal notwithstanding, the inter-
est in interactive technologies has indeed gone on over the years. An early vision of
promises and challenges of the human-machine interaction framework appeared in
1974 in the Computer magazine [29]:

“An interactive computer environment is one which attempts to facilitate the interplay be-
tween man and machine in pursuit of a goal defined by man. Presumably, to be effective, this
environment should allow the calculating speed, precision, and structured logical/iterative
skill of the machine to serve the conceptual, intuitive, highly associative, and contextually
sensitive attributes of human mental function in the solution of problems [...] The areas of
graphics, image processing, and pattern recognition are particularly appropriate candidates
for this interactive approach.”

This vision has actually taken on in areas such as Computer Graphics, leading
nowadays to impressive graphical user interfaces and other systems such as virtual
reality devices. However, only a very small fraction of the huge potential of the hu-
man interaction framework has actually been exploited so far in Image Processing,
Computer Vision and Pattern Recognition [4].

Tapping this potential entails several research challenges and opportunities in
order to adapt PR approaches to the dynamic and changing environments of inter-
active systems. Here we explore some of these opportunities and challenges. We
also show how existing PR technologies can naturally evolve to help developing ad-
vanced multi-modal interactive systems that will hopefully realize the long standing
promises of a seamless synergy between persons and machines.

1.2 Classical Pattern Recognition Paradigm

Let x be an input stimulus, observation or signal and 4 a hypothesis or output,
which the system has to derive from x. Let M be a model or set of models used
by the system to derive its hypotheses. In general, M is obtained through a “batch”
training process from a given training sequence of pairs (x, h); from the task being
considered. Figure 1.1 shows a diagram of this kind of systems.

In traditional PR [17] decision theory is adopted to develop techniques that aim at
minimizing the cost of wrong hypotheses. In the simplest case, a 0/1 cost function
is used which corresponds to minimizing the number of wrong hypotheses. Under
this minimal error criterion, a best hypothesis is shown to be one which maximizes
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the posterior probability Pr(% | x). Using a model M, this is approximated as:'

fz:argmaxPr(h | x) &~ argmax Ppq(h | x) (1.1)
heH heH

where H is the (possibly infinite) set of valid hypotheses.

Minimal error is also the main criterion adopted to guide the development of
statistical learning approaches to train (the parameters of) M from the training data.
Maximum likelihood is among the most successful and popular of these approaches.
However, in many cases it is difficult to directly estimate Pa4 (4 | x) and it is better
to apply the Bayes rule in Eq. (1.1) to achieve the following decomposition:
P(x|h)-P(h)

~argmax —————— =argmax P(x | h) - P(h) (1.2)
heH P(x) heH

iyl

where the term P (x) has been dropped since it does not depend on the maximization
variable, /.

With this decomposition, two models have to be estimated. First the likelihood
model P(x | k), which can often be easily and independently estimated from the
available training pairs (x, h);, following the maximum likelihood approach. And
second the prior P(h), which can be estimated by using only the output data, (h);,
of the available training pairs [17].

Classification is one of the most traditional PR frameworks. Here, the set of pos-
sible hypotheses, H is just a finite (and typically small) set of class-labels—or just
integers; i.e., H = {1, ..., C}, where C is the number of classes. In this case, the
search needed to solve the optimization problem (1.2) (or Eq. (1.1)) amounts to a
straightforward exhaustive exploration of the corresponding C probability values.

While classification is in fact a useful framework within which many applications
can be naturally placed, there are many other practical problems of increasing inter-
est which need a less restrictive framework where hypotheses are not just labels, but
some kind of structured information. This is the case, for example, of Automatic
Speech or Handwritten Text Recognition (ASR, HTR), Machine Translation (MT),
etc. In these cases, the inputs, x, are structured into sequences of feature vectors
(ASR, HTR) or words (MT) and the outputs, A, are sequences of words or other

ITrue probabilities will be denoted as Pr(-), while modeled probabilities will be written as P (-),
where the model M can be omitted if it is understood from the context.
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adequate linguistic units. Many applications admit this kind of input and output se-
quential structuring, but there are also other practical problems, many of them in the
field of Image Processing and Computer Vision, which require more complex struc-
tures such as input and output arrays or graphs of vectors and labels, respectively.

When H is a structured space, the search (or inference) required to solve Eq. (1.2)
or Eq. (1.1) can become quite complex, but several adequate algorithmic solutions
or approximations, such as Viterbi search [30, 50], A* [15, 39], Probabilistic Relax-
ation [8, 32, 44], Belief Propagation [40], etc., have been developed over the last
few decades. In addition, training with structured input—output data also becomes
more complex, because in many cases (such as ASR, HTR, MT, etc.) the map-
ping from individual input elements (vector subsequences in ASR/HTR or words in
MT) to output tokens (linguistic units in these examples) is generally not explicitly
available and it has to me modeled as a hidden or latent variable. Expectation—
Maximization (EM) techniques such as the backward—forward algorithm [30] are
available to deal with the difficult training problem in the case of sequential data
and other (Bayesian) approaches such as [20, 21, 26], etc., have been developed for
more complex structures.

In order to illustrate the concepts introduced so far, as well as those to be in-
troduced later in this chapter, we will discuss in some detail a simplification of
a classical PR problem: the recognition of human karyotypes. While (individual)
chromosome recognition is a typical PR example of classification, the recognition
of a whole karyotype properly corresponds to the case of structured input/output, as
will be discussed below.

Example: Recognition of Human Karyotypes

For the sake of simplicity, we ignore here the initial image segmentation task and
assume that each of the 46 chromosomes in a normal unsorted karyotype is already
represented as an individual image.” Thus, the problem is stated as follows [43]:

Given a set of 46 unsorted images of stained (“banded”) human chromosomes, associate
each image with a label from a set of 24 labels, {17, “2”, ..., “22”, “X”, “Y”}, in such a
way that each label is assigned exactly to two images, except labels “X, Y, for which only
the following assignment pairs are possible: (“X”,“X”), (“X”,“Y”).

For the sake of illustration clarity, we will not consider the real, full karyotype
recognition problem, but a simpler setting in which only single chromosome images,
rather than pairs, are considered and sex chromosomes, “X”, “Y”, are ignored (see
Fig. 1.2):

Simplification: Given a set of 22 unsorted images of banded human chromosomes, associate

each image with a label from a set of 22 labels, {*“17, “2”, ..., “22”}, in such a way that
each label is assigned exactly to one image.

2Moreover, we are completely ignoring here recent advances in karyotype analysis, such as fluo-
rescent dye-based spectral karyotyping [45], which allow obtaining colored chromosome images
and may significantly simplify the real problem of human karyotyping.
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Fig. 1.2 Tllustration of simplified human karyotyping. A different label from “1” to “22” has to be
assigned to each chromosome. The labeling shown is the correct one in this case
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Fig. 1.3 Simplified human karyotyping: representation and notation. The correct labeling, h*, is
shown

In the simplified problem statement, x = x, ..., xo2 € X is an unsorted sequence
of 22 chromosome images, arranged from left to right in some arbitrary order. This
sequence will be denoted as xfz. Correspondingly, 7 = h%z € H is a sequence of
22 labels, h; € {“17,27,...,“22”}, 1 <i < 22. Note that H is finite but huge
(|H| = 22%). Figure 1.3 shows graphically this kind of representation and notation.
In what follows, we assume that each individual chromosome image is parametri-
cally represented by means of features extracted from this image; for example, each
x; can be represented as a grey-level projection profile of the chromosome image on
its median axis [23, 34, 35].

Following this notation, a solution to the simplified karyotype recognition prob-
lem is given by Eq. (1.2); i.e.,

h ~ argmax P(x | h) P (h) (1.3)
heH

where P(x | h) is the probability of an image sequence x, given the sequence of
labels & and P (h) is the prior probability of a labeling 4.
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The prior P(h) in this problem is well known, but not trivial. Ideally, it should
be null for those # which contain repeated symbols and flat otherwise; that is:

0. ifJistjh=h; 1<ij<22,
Pm)zil 7 Jihi=h /

(1.4)
5375 otherwise.

The likelihood, on the other hand, P(x | k), can be approached through a simple,
naive Bayes decomposition; that is:

22
P(x|hy=[]P@ilh) (1.5)

i=1

where each P(x; | h;) can be modeled, for instance, by a hidden Markov Model
[34, 42].

An exact solution to the search problem (1.3) is difficult because of the huge size
of H and the tangled restrictions entailed by P (%) (no repeated labels); but simple
greedy approximations can provide acceptable results [34, 35].

One of the simpler and most effective greedy approaches is as follows.
First, for each individual chromosome image, x;, compute its max-likelihood,
maxie(,...,22) P(x; | k). This is exactly the computation that would be carried out
for individual chromosome image classification. Now sort the images according to
these scores and, from now on, assume that the images are considered in this order.
Then, following this max-likelihood order, for each chromosome image, x;, assign
it the label h; = argmax, i P(x; | k), taking care that labels assigned to previous
images can no longer be assigned; that is }C = {“17, ..., “22”} — {fll, e, fzi_l}.

Obviously, this and other greedy solutions to Eq. (1.3) can only achieve lo-
cal optimization, since other complete labelings 7 # h may exist for which P(x |
WYP(h) > P(x | h)P(h).

1.2.1 Decision Theory and Pattern Recognition

As briefly discussed in Sect. 1.2, the decision theory (DT) provides support to sta-
tistical PR. Traditional PR often assumes a 0/1 cost function, or “loss”, in order
to obtain the optimal decision rule of Eq. (1.1). This assumption leads to systems
that aim at minimizing the number of incorrectly proposed hypotheses. However, in
many problems and tasks, the 0/1 loss cannot adequately reflect the complexity of
the performance measures used in these tasks. This happens, for example, when the
hypotheses are sequences, as in the MT, ASR or HTR tasks mentioned previously.
For the sake of illustration, consider the human karyotypes recognition example,
which was introduced above. In this example, the 0/1 loss has severe implications.
A hypothesis h%z, would be counted as one single error independently of how many
chromosomes are misclassified; i.e., independently of whether there are only two
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misclassified chromosomes or all the 22. In this example, one might rather pre-
fer a system which produces a high percentage, say 50%, of wrong full hypothesis
(karyotypes) with one misclassified chromosome per hypothesis, than a system that
achieves a low percentage, say 5%, of wrong full hypotheses but each having all the
chromosomes misclassified. Note that the first case yields a total of 2.28% misclas-
sified chromosomes, while the latter case results in a chromosome misclassification
rate of 5.00%.

This problem becomes even more important in IPR, where performance has to
be gauged mainly in terms of interaction effort. As will be discussed in Sect. 1.4,
human interaction effort can often be estimated on the base of adequately labeled
test corpora. Therefore DT opens the possibility of defining cost functions whose
minimization would lead to systems that, at least in theory, would perform optimally
for the given task.

Two intrinsically related decision problems arise in PR. The first one is hypothe-
ses decision; i.e., the problem of deciding which the best hypothesis is among a
set of possible hypotheses. For instance, the decision rule (1.1) is the solution to a
hypotheses decision problem with a 0/1 loss. The second is model decision which
consists in deciding which the best model M is, in order to approximate the proba-
bilities used for hypotheses decision. For instance, maximum likelihood estimation
is the solution to this problem under a 0/1 loss, among other assumptions. Both de-
cision problems become closely related under the DT framework, but here we focus
only on the first one.

Formally, a loss function is defined as ¢ : X x 'H x ‘H — R. The function
£(x, h, h*) defines the cost in which a system incurs if, for an input x, it proposes a
hypothesis &, while the correct hypothesis is 2*. For a given (PR) decision problem
(characterized by £), a solution is characterized by a decision function, § : X — H,
which decides an output / for each possible input, x. Given £ and &, the total ex-
pected loss for unseen inputs, of “global risk”, is defined as

R(8) =/ Pr(x) - Re(8(x) | x)dx, (1.6)
X

where Ry (h | x) (with h = §(x)) is the “conditional risk”, or expected loss in which
a hypothesis # is likely to incur for a given input x. The conditional risk is defined
as:

Re(h | x) = Z £(x, h, h*) -Pr(h* | x). (1.7)
h*eH

Note that each pair of decision and loss functions, has its own global risk.

A PR problem amounts to finding a decision function with the minimum global
risk. It is well known [17] that the global risk is minimized by minimizing the con-
ditional risk for each input. This is often known as the optimal Bayes’ decision rule,
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or simply Bayes’ decision rule:®

h =38;(x) =argmin Ry (h | x). (1.8)
heH

If the actual probabilities needed to compute Ry (4 | x) in (1.8) were exactly known,
then Ry (Sg (x) | x) is the minimum risk that can be achieved, and the corresponding
global risk (1.6) is called the Bayes’ risk.

The classical PR minimum-error criterion corresponds to a 0/1 loss function,
£(x,h,h*), defined to be 0 if 4~ = h* and 1 otherwise. In this case [17], the condi-
tional risk (1.7) and the corresponding Bayes’ decision rule (1.8) simplify to

Rey, (B | x) =1—Pr(h|x), (1.9)
850/1 (x) = argmax Pr(h | x). (1.10)
heH

Note that Eq. (1.10) is the rule used in Eq. (1.1).

The previous discourse still applies to structured hypothesis spaces and, in par-
ticular, when hypotheses are sequences. However, it is very common that although
the decision may have to be taken for the whole hypothesis, the loss has to be evalu-
ated at sequence-element level. For instance, in the karyotypes example, instead of
counting how many karyotypes the system has incorrectly classified, the quality is
assessed by counting how many chromosomes are incorrectly tagged. In such cases,
the loss is given by

22

L h i) =) 0(x, i, hY), (1.11)
k=1

where £(x, hg, h}) is a single-label 0/1 loss function. The difference between this
loss function and the conventional one lies in the preferred types of hypothesis in
an error-prone system. The Bayes’ decision rule induced by the latter would prefer
to minimize the number of wrongly proposed karyotypes, while that induced by the
former would prefer to minimize the number of wrongly tagged chromosomes, even
if that entails producing a larger number of wrong karyotypes.

1.3 Interactive Pattern Recognition and Multimodal Interaction

Placing PR within the human-interaction framework requires changes in the way
we look at problems in these areas. Classical PR minimum-error performance cri-
teria [17] should be complemented with more direct estimates of the amount of
effort that the interactive process will demand from the user. But, to estimate this

3Note that each loss function has its own optimal Bayes’ decision rule, although the most
widespread notation, h, does not explicitly highlight it.
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effort, we should stick with the traditional testing-corpus-based approach which has
proved so successful in PR. Furthermore, since all the existing PR techniques are
intrinsically grounded on error-minimization algorithms, they need to be revised
and adapted to the new, minimum human-effort performance criterion. Interestingly,
such a paradigm shift entails important research opportunities which hold promise
for a new generation of truly human-friendly PR devices. Three main types of op-
portunities can be identified:

Feedback: Take direct advantage of the feedback information provided by the
user in each interaction step to improve raw performance.

Multimodality: It arises as a natural property of interaction. By properly acknowl-
edging this fact, improved overall system performance and usability
can be achieved.

Adaptation: Use feedback-derived data to adaptively (re-)train the system and
tune it to the user behavior and the specific task considered.

The framework for the development of these ideas will be referred to as “Interac-
tive Pattern Recognition” (IPR). Figure 1.4 shows a schematic view of these ideas.
As in classical PR, x is an input stimulus, observation or signal and / is a hypothesis
or output, which the system derives from x. By observing x and %, an operator or
user provides some (perhaps null) feedback signal, f, which may iteratively help the
system refine or improve its hypothesis until it is finally accepted. M is a model or
set of models which is used by the system to derive its hypotheses. In general, M is
initially obtained in “batch mode”, as in traditional PR, from training pairs (x, 4);
(in grey color in the figure). Now, during the interactive operation, the valuable user
feedback signals produced in each interaction step are advantageously used in an
adaptive training process which progressively funes M to the specific task and/or
to the way the user makes use of the system in this task.

It should be noted that Multimodal Interaction may entail two types of multi-
modality. One corresponds to the input signal, which can be a complex blend of
different types of data, ranging from conventional keyboard data to complex im-
ages, audio and video streams. The other, a more subtle but no less important type,
is due to the generally different nature of input and feedback signals. It is this second
type that makes multimodality an inherent feature of human interaction.
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Consider for instance a IPR application in the context of fele-care for elderly
people. Here, x is itself a multimodal signal which comes from human monitor-
ing sensors such as microphones, cameras and perhaps other non-invasive medical
sensors. Now x is processed by a IPR system, which tracks the human activities in
order to detect possibly abnormal or risky situations. Clearly, such type of systems
will never be fully automatic. Instead, the system should set adequate alarms (/) for
another human to consider and act accordingly. It is this other human, or operator,
the one which is depicted in Fig. 1.4. For a specific system hypothesis 4, the oper-
ator may doubt about its correctness and, after examining x, may try to improve A
by providing some feedback f to the system. Feedback complexity may range from
simple directions for the system to improve “perceptive” parameters such as camera
focus or microphone gain, to much more subtle information directly aimed at im-
proving the system’s “cognitive” or decision-making performance (cf. Sect. 1.3.1).
In any case, the operator’s feedback signals will rarely be of the same nature as those
in x. Typically, they will probably involve keyboard-and-pointer signals and/or per-
haps hand gestures or voice commands; hence the claimed inherent multimodality
of interaction.

General approaches to deal with the opportunities and challenges of the IPR
framework are examined in the following subsections. It is important to point out
that most of the issues discussed below only make sense if the hypothesis space, H
is “structured”; for example, spaces of sets, sequences, arrays, etc.

1.3.1 Using the Human Feedback Directly

Without varying the model M, human interaction offers a unique opportunity to im-
prove the quality of system hypotheses %, using information directly derived from
the interaction process. As discussed in Sect. 1.2, for fixed M and x, a best hypothe-
sis, /1, is one which maximizes the posterior probability P (4 | x). Now interaction
allows adding more conditions, that is:

A

h =argmax Ppq(h | x, f) (1.12)
heH

where f € F stands for the feedback, interaction-derived information; e.g., in the
form of partial hypothesis or constraints on H. The new system hypothesis, h, may
prompt the user to provide further feedback information, thereby starting a new
interaction step. And the process continues in this way until the system output is
acceptable by the user.

Clearly, the richer the feedback information, f, the greater the opportunity to
obtain better /. But modeling the probability distribution in Eq. (1.12) and solving
the associated maximization, may be (much) more difficult than the corresponding
problems with our familiar Paq(h | x).

Equation (1.12) corresponds to a zero-order approach, where h is derived using
only the feedback obtained in the previous iteration step. However, as discussed
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below, feedback and prediction history can be jointly taken into account or “merged”
and used in Eq. (1.12) instead of f.

1.3.2 Explicitly Taking Interaction History into Account

In general, interactive processing makes history from previous interaction steps
readily available and, in many cases, taking it into account explicitly may signif-
icantly improve the prediction accuracy. Moreover, as we will see later, this does
not necessarily increase the complexity of the prediction problem.

Let i’ be the history. It can be represented by the optimal hypothesis, h, obtained
by the system in its previous interaction step* for the given x. Since previous hy-
potheses have been supervised/corrected by the user, a part of 4’ will be correct for
the given x. In the current interaction step, the feedback f aims at further correcting
element(s) of i’. Algorithm IPR—History, below, illustrates this interactive process.
Taking history into account, Eq. (1.12) becomes:

h =argmax Prq(h | x, b, f). (1.13)
heH

It is worth noting that, by jointly considering the pair (%', f) as a kind of “consoli-
dated history”, this equation becomes formally identical to Eq. (1.12).

Algorithm IPR-History /I Let x be the input and h the output hypothesis
h = argmax; ey Pr(h | x) // Initializa-

tion

do forever { // Interaction loop

f= Liser:jeedback(fl); if (f =“0OK”) return
h' =h; h =argmax;,cyy Prq(h | x, B, f)
}

1.3.3 Interaction with Deterministic Feedback

Using only traditional keyboard & mouse, and/or any other deterministic feedback
modality, greatly simplify matters. Let D be the space of decoded feedback signals.
Deterministic feedback decoding can then be specified as a function, d : F — D,
which maps each raw feedback signal, f, into its corresponding unique decoding
d =d(f). For instance, if f is the signal of a keystroke on the key “A”, d(f) is
the symbol “A” itself (keyboards are not expected to produce erroneous output sym-
bols!). Such determinism means that feedback signals do not need to be actually

4This would be a first-order approach but, more generally, &’ can represent an adequate combina-
tion of the optimal hypotheses obtained in all previous interaction steps for the given x.
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“decoded” and we can interchangeably use a feedback signal f and its (trivial and
unique) decoding d = d(f).

Using d rather than f in Eq. (1.13), applying the Bayes rule, and dropping M to
simplify notation, we can now write the prediction of h in more detail:

h=argmax P(h | x,h',d)=argmax P(x | h',d,h)P(h | K, d). (1.14)
heH heH

Note that H and D are typically closely related domains, in that d often embod-
ies information aimed to modify an element or a part of 4’. Therefore, the likelihood
model, P(x | k', d, h), can often be similar or identical to P(x | k), the model used
in the non-interactive version of the problem considered. On the other hand, the hy-
pothesis prior becomes now history and feedback conditioned. The pair (4’, d) can
often be seen as a partially amended version of &', where one or more errors from
the last step have been corrected. Therefore the conditioned prior, P(h | 1/, d), will
typically be (proportional to) the classical P(h), except for those i not compatible
with (4’, d), for which it should be null (or low).

In many cases, these model changes can be interpreted just as a part of the search
problem by substituting H with a smaller space, H' C H, in which the feedback-
derived restrictions apply. This way, an IPR problem can often be seen as a variation
of the corresponding non-interactive PR problem where identical models are used
but the search strategy has to be changed.

In any case, it is worth noting that history and feedback derived constraints may
significantly increase the difficulty of solving Eq. (1.14), with respect to solving
the classical Eq. (1.2). Nevertheless, as we will see throughout this book, classical
solutions can often be easily extended to provide at least approximate solutions to
Eq. (1.14).

Example: Interactive Human Karyotyping

In the non-interactive version of human karyotype recognition introduced in
Sect. 1.2, all the individual chromosome labeling errors made by the recognition
system had to be amended, one by one, by the human operator (the karyotyping
result must be completely correct before the operator can sign and supply it to the
medical doctor who has ordered the karyotype analysis!).

Obviously, such a “post-editing” procedure does not allow the operator to take
advantage of the system prediction capabilities to help her in the amending process.
Conversely, under the interactive framework, the system may take advantage of each
individual correction made by the operator in order to improve its hypotheses for the
remaining chromosome images. Clearly, this may significantly reduce the amount
of human effort needed to produce a correct karyotype.

The interactive human karyotyping problem becomes an instance of Eq. (1.14) as
follows. To begin with, the system provides an initial karyotype h using Egs. (1.3)-
(1.5) (and the greedy search outlined in Sect. 1.2). In the next interaction step, h be-
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comes the history, 4/, and a new h is obtained using Eq. (1.14). The same process
will go on through all the successive interaction steps.

The user feedback produced in each step of this interactive process, f € F, con-
sists of keystrokes to specify a position ¢ in 2’ where the last correct label appears,
and a label [ € {*17, “2”, ..., “22”} to fix the first labeling error. Since f is deter-
ministic, it is trivially “decoded” as d = d(f) = (c,[) € D. The first wrong label in
h'is b, 41 and its correct value should be /. Such an interaction-derived information
conditions the possible values of & as follows:

S =h'S
hey1 =1, (1.15)
hi ¢ (W), ... hl1}, c+2<i<22.

That is, the first ¢ elements of & must be the same as those of /', the (c + 1)th
element must be the feedback-given label and the remaining elements should be
different from the first ¢ 4 1 already validated.

If H'(W',c,1) is the subset of hypotheses, &, that comply with Eq. (1.15) the
conditioned prior model can be written as

P(h|h,d)=Pm|l,cl)

_JaP(h), (asinEq.(1.4)ifhe H'(W,c,1), (L16)
N 0, otherwise, '

where « is an adequate normalization factor.

On the other hand, for the likelihood model, interaction dependencies do not
make sense given the simple naive Bayes decomposition Eq. (1.5) adopted in
Eq. (1.4). Therefore we use here the same model as in the non-interactive case;
thatis: P(x | h',c,l,h) = P(x | h).

History and feedback constraints can also be interpreted in terms of search
by constraining the optimization in Eq. (1.14) to search only for hypotheses & €
H'(W', c,l) C H. In addition, it is not actually necessary to search for a complete
labeling, £, but just for the last 22 — ¢ — 1 labels of & that follow the already fixed
subsequence hi‘H. In any case, exact optimization is at least as difficult as in the
non-interactive case, although suboptimal non-interactive greedy approximations
can be easily modified to additionally enforce the prefix restrictions represented
by H'.

Figure 1.5 illustrates the above discussion. Chromosome labels erroneously pre-
dicted by the system are marked in red and underlined. The first of these errors cor-
responds to the fifth image in the sequence (which is assumed to be sorted according
to the greedy search carried out in the first, non-interactive step of the process). The
feedback provided by the operator to fix this error is (c, [) = (4, “5”) and, therefore,
the conditioned prior must be null for all & such that h? #“187, “107, “37, 9”7, “5”
or {he, ..., hoa} N {187, “107, “3”, “9”, “57} £ @.
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Fig. 1.5 Example of keyboard & pointer interaction in simplified human karyotyping. Labeling
errors are marked in red and underlined. User feedback consists in positioning the cursor over the
last correct label (¢ = 4) and then typing the correction (/ = “5”) on the next position
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Clearly, by fixing this error, the information gained by the system may help auto-
matically fixing other remaining errors. For instance, now the 20th chromosome la-
bel can no longer be “5” and hopefully the next-best system hypotheses for the 20th
image will be the correct label, “8” (cf. Fig. 1.3); similarly, now the 11th wrong la-
bel (“8”) would have to be changed, hopefully into the correct one, “7”. By actually
solving Eq. (1.14), many of the remaining errors are expected to be automatically
fixed without additional human intervention.

1.3.4 Interactive Pattern Recognition and Decision Theory

It is useful to recall that, in the IPR framework, performance is mainly measured in
terms of user interaction effort, which in some cases can be roughly estimated as
the number of interactions needed to complete a given task (cf. Sect. 1.4). Clearly,
this measure is not necessarily optimized by minimizing the number of wrong hy-
potheses (i.e., the 0/1 loss).

Under the decision theory viewpoint, after I interactions, the system has received
F=fM . fO user feedbacks and has produced H = AV, ..., hD) hypothe-

> With respect to the loss defined in Sect. 1.2.1, now the loss incurred by the
system after the timespan / should take into account the new information sources,
i.e., it should be defined as £(x, h, h*, H, F). Typically we may wish a loss that is
proportional to the number of interactions /.

As discussed in Sect. 1.2.1, for this loss function, ¢, a best hypothesis is given
by:

h=argminR;(h | x, H, F) (1.17)
heH

3 Although it might seem that under this approach the user is forced to interact after each hypothesis
proposed by the IPR system; this is not the case since the set of possible feedbacks F can be
extended with a null feedback, @.



16 1 General Framework

where Ry(h | x, H, F) is now the interactive conditional risk, defined as

Reth|x,H, F)= Z L(x,h,h*, H, F) -Pr(h* | x, H, F). (1.18)
h*eH

The way in which Eqgs. (1.17) and (1.18) can be simplified mainly depends on
the assumed interaction protocol (cf. Sect. 1.4). A basic simplification is to ignore
the user feedback except for the last interaction and/or hypothesis; that is, define
the loss as £(x, h, h*, kD, f(D) or £(x, h, h*, I', f), according to the notation of
Sect. 1.3.2. Under this assumption, if we consider a 0/1 loss function at whole
hypothesis level,

0, h=h*
Cx,h,h* 1, f) =: (1.19)

1, otherwise,

then the interactive conditional risk is simplified to
Re(h|x, 1, f)=1="Pr(h|x, 1, f). (1.20)

Taking into account this simplification in Eq. (1.17) leads to the following Bayes
interactive decision rule, which is the same as Eq. (1.13):

h =argmaxPr(h | x, ', f). (1.21)
heH

Note that all the developments of this section are presented under these simplifying
assumptions.

1.3.5 Multimodal Interaction

As has been already commented, in general, feedback information, f € F, does not
naturally belong to the original domain from which the main data, x, come from;
i.e., F # X. For instance, in a vehicle plate recognition system, it is quite unlikely
that user’s feedback comes in the form of images obtained by the same camera
used to capture the plate images. Instead, it will arrive in form of keystrokes, mouse
gestures, or perhaps spoken utterances.

This observation is particularly interesting in the case of non-deterministic feed-
back. In this case, human interaction naturally entails some sort of multimodality,
which adds to the possible multimodal nature that input signals themselves may ex-
hibit. Multimodality appears in many areas of Computer Science and Engineering.
The challenge here is to achieve an adequate modality synergy which finally allows
taking maximum advantage of all the modalities involved.
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Basic Multimodal Fusion

Let u and v be two signals of some multimodal datum. In a non-interactive frame-
work, the resulting modality fusion problem consists in finding a 7 which maximizes
the posterior probability Paq (4 | u, v). This can be straight-forwardly re-written as

~

h =argmax Parq(u,v | h) - Ppg(h). (1.22)
heH

In many applications it is natural and/or convenient to assume independence of u
and v given h. Consider for instance an image description or labeling problem where
u is an image and v the acoustic signal of a spoken utterance about the image. In
this case, a naive Bayes decomposition leads to

A~

h =argmax Ppaq, (u | h) - Ppaq, (v [ h) - Pag,, (R) (1.23)
heH

which allows a separate estimation of independent models, My, My and My,
for the image and speech components, and the labeling language, respectively. The
only “joint” problem here is the joint optimization in Eq. (1.23). In the multimodal
processing literature, this approximation is often known as “late fusion” [28].

In our IPR framework, # would correspond to the input signal, x, and v to the
feedback, f. Note, however, that this simplistic formulation does not care about
possible explicit decoding of the (non-deterministic) feedback information which,
in most cases, is one of the most important and interesting issues of multimodal
processing in IPR.

Using Interaction Information to Help Decoding Non-deterministic Feedback
Signals

In the previous formulation, the decoding of f, d, was a hidden variable. We can
uncover it as follows:

h =argmaxPr(h | x, k', f) =argmaxZPr(h,d | x, 1, f). (1.24)
h h
d

Approximating the sum with the value of the mode, applying basic probability rules
and ignoring terms which do not depend on the optimization variables (% and d):

A~

h %argmaxm(?xPr(h | d,x, f)-Pr(d | W, x)-Pr(f|d, I, x). (1.25)
h

Then, applying the Bayes rule and assuming independence of Pr(x | h’,d, x, f) on
f givenh/,d, x and of Pr(f |d,h',x) on I/, x given d:

A

h ~ arg max m;ler(f |d)-Pr(d | h',x)-Pr(h | W, d,x). (1.26)
h
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A final assumption is to consider that Pr(d | #’, x) is independent® on x given h’.
Then, decomposing the last term by means of the Bayes rule and assuming the
probabilities are modeled by adequate models:

A

h A arg max max P(f|d)-Pd|h) -P(x|h,d h)-Ph|W, d). (1.27)
h

The last two terms of Eq. (1.27) are the same used in Eq. (1.14) for the basic IPR
formulation with deterministic feedback. The other two terms are now needed to
deal with the non-deterministic feedback:

e P(f |d)isafeedback likelihood model, as in conventional PR for recognizing f.
e P(d | 1) is a history-conditioned feedback decoding prior.

That is, except for the history condition on the prior, these two terms are the same as
those that would be needed to apply Eq. (1.1) of conventional PR for the recognition
of feedback signals. But now we can condition the prior by the interaction history
and, moreover, Eq. (1.27) entails a joint optimization for simultaneous recognition
of main (x) and feedback (f) data. Obviously, this offers clear opportunities for
more accurate feedback decoding than using just a conventional, off-the-shelf PR
system for feedback signals recognition.

Unfortunately, the joint optimization Eq. (1.27) generally involves additional dif-
ficulties and it seldom admits exact and efficient search solutions. Nevertheless,
simple approximations often prove useful enough in many applications. Perhaps the
simplest idea for a suboptimal solution is to decompose Eq. (1.27) into a two-phase
computation:

First an “optimal” feedback decoding, d, is obtained by using the available his-
tory, but ignoring information directly related with the main data, (x):

c?:argmaxP(f|d)~P(d|h/). (1.28)
d

Second, using the fixed d, the first two terms of the optimization Eq. (1.27) be-
come independent of both d and &, which leads to the following expression, identi-
cal to Eq. (1.14).

A

h~argmax P(x | h',d,h)- P(h|},d). (1.29)
h

This simple idea can be easily improved to actually take into account information
from the main data to some extent. To this end, in the first phase, rather than com-
puting just an “optimal” d, we obtain a list of the n most probable decodings:

{di,....dy} = n-best P(f |d)- P |h),

h ~ arg max 1m‘ax P(f | c?,) . P(c?l- |h) - P(x | h’,c;'i,h) . P(h | h’,c?i). (1.30)
h <i<n

A less drastic assumption would keep the cross dependencies of f and x, leading to more inter-
esting, intermediate fusion schemes [28].
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Note that the optimization (1.30) can be easily solved by applying #n times the same
techniques used to solve Eq. (1.29) or Eq. (1.14) and, as a byproduct, an optimal d,
possibly better than the one given by Eq. (1.28), is obtained.

It is important to understand that non-deterministic feedback decoding will never
be error-free. Consequently, with respect to using deterministic feedback, non-
deterministic multimodal interfaces will always lead to an increase in the number of
interaction steps needed to accomplish a given task. In other words, some degree of
performance has to be sacrificed for a potentially improved ergonomy and/or user
friendliness. Therefore, the design of a good non-deterministic multimodal feedback
interface ultimately amounts to achieving a maximum feedback decoding accuracy
by taking the maximum possible advantage of contextual information provided by
the interactive framework. The concepts and formulation introduced in this section
may prove helpful for the development of this kind of feedback interfaces.

Example: Non-deterministic Feedback in Human Karyotyping

For the sake of illustration, we assume now that feedback is provided by an e-pen
interface. Thus f is a sequence of points or “trajectory” of the pen tip, which has to
be decoded using on-line Handwritten Text Recognition (HTR) technology [38, 41].

This sequence of points encompasses two different parts. The first one, denoted
by 7, is essentially deterministic: it is the first point of f, which is assumed to un-
ambiguously determine the position, ¢ + 1, of the first wrong label in 4’. The second
one, denoted by 7, is non-deterministic and corresponds to the remaining points of f
which define the actual trajectory of amending pen-strokes. This trajectory has to be
actually decoded into an optimal label, [. That is, for a feedback signal f = (z, 1),
its decoding will be d = (c, [).

This is illustrated in Fig. 1.6, where the first error (fifth label: “7”) is amended
by handwriting with an e-pen the correct label (in blue) over the wrong one. The
(horizontal coordinate of the) first point in the resulting trajectory unambiguously
determines which is the first wrong label (the fifth in this case), thereby determin-
ing the last correct label ¢ = 4. The whole trajectory is now submitted to the HTR
subsystem, which may provide several label decoding hypotheses, such as “3”, “5”,
“6”, etc., (hopefully) including the correct decoding, “5”.

In order to apply Eq. (1.27) here, the following modeling choices can be made:

o Feedback decoding likelihood models: P(f | d) = P(t,t|c,l) = P(t | 1), be-
cause 7 is deterministic and P (¢ | /, 7, ¢) can be assumed to be independent on
the place (r or c¢) were the correction is written. P(¢ | [) can be modeled as in
conventional on-line HTR; e.g., using Hidden Markov Models [41, 48].

o History-conditioned chromosome label prior: P(d | h') = P(c,l | h") = P(l |
I, c), because c is deterministic. This conditioned prior should be null for al-
ready validated labels in A’ and for the wrong /', 1; flat for the other labels.
It is interesting to note that if no interaction-derived information were taken into
account, the best prior would be just a uniform distribution over {“1”, “2”, ...,

&42277 } .
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Fig. 1.6 Example of e-pen multimodal interaction in simplified human karyotyping. Labeling
errors are marked in red and underlined. The correction made by the e-pen is shown in blue: a digit
“5”, handwritten over the first wrong (printed) label, “7”. The possible decodings of this feedback,
f, would be pairs (c,!) such as (4, “3”), (4, “5”), (4, “6”), ..., hopefully including the correct
decoding, “5”

e The other two models are as in the deterministic feedback case. In particular,
P(h | K, c,]) must be null for all 4 with repeated symbols and for those & such
that hi‘“ #Ny, ..., WL lorhi €f{hy,..., he 1}, c+2<i<22;flat otherwise.

To solve Eq. (1.27), on the other hand, both search solutions Egs. (1.28)-(1.29)
and (1.30) can be used, along with the greedy search of the conventional, non-
interactive case.

Of course, despite using all the available interaction-derived information to in-
crease feedback decoding accuracy, decoding errors will eventually occur. In these
situations, the operator may want to just try again the failed correction, or perhaps
simply resort to a fail-proof, deterministic device such as the keyboard.

1.3.6 Feedback Decoding and Adaptive Learning

As outlined at the beginning of Sect. 1.3, one of the main opportunities of the IPR
framework is that it very naturally allows using feedback-derived data to adaptively
tune the system to the user behavior and the specific task considered.

Now it is interesting to add that this concept applies not only for Adaptive Learn-
ing of the main system models (i.e., models needed to obtain hypotheses h for given
input data x). Models needed for feedback decoding can also be adapted by just us-
ing training data effortless derived from the very interaction process. More specif-
ically, the data needed for such a model adaptation are directly available from the
explicit feedback decoding, as given by the solution of Eq. (1.27), or its approxima-
tions Eq. (1.28) or Eq. (1.30).

Figure 1.7 shows an IPR diagram where this kind of learning is considered. In
this figure, M is assumed to include models for both main and feedback data. Both
types of models can be initially trained in batch mode and then successively adapted
to the task and/or the user by using training pairs derived from the user feedback
information.
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Example: Adapting HTR Feedback Models in Human Karyotyping

In the case of interactive karyotyping with e-pen feedback, the HTR likelihood
(HMM) models, P(t | I), needed for feedback decoding, can be easily adapted to
the specific handwriting style of the operator who is using the system. The training
data needed in this case are pairs (¢,1), where ¢ is an e-pen trajectory and / is the
correct text associated with ¢ (a one- or two-digits label from “1” to “22”). Clearly,
these pairs become readily available after every successful corrective interaction
step.

Similarly, rather than using a flat feedback decoding prior model, as suggested
in Sect. 1.3.5, P(l) can be adapted to the typical errors made by the chromosome
recognizer by increasing the prior probability of those handwriting labels that are
frequently needed in the interactive corrections. The data required for this adapta-
tion are just counts of the number of times the different labels have been used for
corrections, information which is also readily available after each successful inter-
action step.

1.4 Interaction Protocols and Assessment

In multimodal interactive systems, the human operator may interact with the sys-
tem in an unimaginable number of ways. Not only because many (combinations
of) feedback modalities are possible, but also because there may generally be many
ways or “actions” the operator can choose to provide the interaction feedback. Ob-
viously, in order to allow for proper implementations of (the models needed in) an
IPR system, human creativity has to be limited or predicted in some way so that the
system can take maximum advantage of the allowed or expected interactive actions.

In the HCI literature, this kind of limitation or prediction of operator actions is
often referred to as User Model [14, 18, 52]. Here only very simple, mathematically
tractable user models will be considered and we will prefer to use the more modest
term “Interaction Protocol” to refer to the set of allowed interactive actions and the
ways the user is allowed or expected to make use of these actions.
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Depending on the application and on the feedback modalities used, very differ-
ent types of protocols can be assumed for the operator to interact with the system
in a comfortable and productive manner. But the chosen protocols must also allow
efficient implementations because, to be effective, interactive processing is gener-
ally highly demanding in terms of response times. In the end, the design of a good,
friendly, effective and efficient interaction protocol is perhaps the most sensible de-
sign task for a given IPR application. Unfortunately, no adequate mathematical tools
are typically available for such a design task and only intuition and trial-and-error
can be used generally.

Once a specific interaction protocol has been defined it should be possible to
apply decision theory in order to model the expected interaction effort of this pro-
tocol in terms of an adequate loss function. This would allow one to search for a
corresponding decision function that minimizes the loss; i.e., the expected effort.
While this is certainly an exciting research direction, for the time being we will
only assume the simplifications of Sect. 1.3 that lead to the basic IPR Eq. (1.12), as
discussed in Sect. 1.3.4.

The definition of an interaction protocol has also implications in system testing,
as will be discussed latter.

1.4.1 General Types of Interaction Protocols

Perhaps the most basic taxonomy of interaction protocols attends to the way it is
decided which hypothesis elements (are likely to) require human supervision.

In the examples discussed so far, the operator was assumed to systematically su-
pervise each successive system hypothesis and find the point where the next labeling
error appears. From the system’s point of view this protocol is considered “passive”,
in that the system just waits for the human feedback, without concern about how she
makes her supervision decisions. In contrast, in “active” protocols it is the system,
rather than the human, which is in charge of making the relevant decisions about
the need of operator supervision. Typically, the system makes the required compu-
tations on its own predictions to estimate for which hypothesis elements it may pay
off to ask for operator supervision in order to optimize the overall system—human
performance.

Clearly, with a passive protocol, “perfect” results from the human point of view
can be guaranteed, since it is the operator herself who is fully responsible of the
accurateness of these results. With the active protocol, on the other hand, the quality
of the results may depend on the system ability to select appropriate hypothesis
elements for supervision. But active interaction may provide for better compromises
between overall human interaction effort and final accuracy.

In the case of passive protocols, the order in which hypothesis elements are pre-
sented to the user may be relevant; both in terms of efficiency and usability. For in-
stance, in a handwritten text transcription task (cf. Sect. 3), the hypothesis elements
are natural language words and it would be a bad idea to present these words in any
order other than the right sentence order. But in a task such as the one considered in



1.4 Interaction Protocols and Assessment 23

the interactive karyotyping examples, no natural ordering of the input images exists
and hypothesis elements could in principle be presented in any arbitrary order.

For the sake of specifying an interaction protocol, output hypotheses can gen-
erally be represented in terms of sequences of hypothesis elements. This is often
possible even if the outputs are naturally structured into more complex objects such
as sets, arrays, trees, etc. (see an example in Chap. 9). In this case, a secondary
dichotomy of passive protocols can be established.

The simplest of these protocol types corresponds to a “left-to-right order”. In this
case hypothesis elements are presented in a pre-specified or input-data-dependent
order and the operator supervises the sequence from left to right (or right to left). In
the other type of protocol a “desultory order” is assumed. At each interaction step,
the operator chooses which hypothesis element(s) might be more convenient to be
supervised, without following any systematic or precomputed order.

Obviously, with respect to the simple passive, left-to-right interaction, the greater
flexibility entailed by others forms of interaction may allow reducing the number
of required interaction steps, thereby reducing the overall human effort. But some
type of middle-out optimization may be required which, in general, may become
more complex than the simple left-to-right search required in the simplest case. On
the other hand, a common variant of all the protocols discussed above consist on
allowing the operator to supervise and/or fix herself more than one error in a single
interaction step, rather than amending just one and waiting for the system reaction
before carrying out further amendments. Clearly this may also lead to increased
search difficulty, but the greater flexibility achieved might pay off in terms of overall
user effort and usability.

The following hierarchy summarizes the interaction protocol types discussed so
far:

Passive: The operator decides which hypothesis elements need supervision

Left-to-right order: Hypothesis elements are supervised in fixed order
Desultory order: Hypothesis elements are supervised in unspecified order

Active: The system decides which hypothesis elements undergo operator supervi-
sion and in which order they are considered.

Example: Human Karyotyping Interaction Protocols

Fassive, left-to-right. Is the protocol that has been assumed in all the examples so
far. First, chromosome images are sorted according to their max-posterior prob-
ability in order to use the greedy search outlined in Sect. 1.2. In the successive
interaction steps, the operator is assumed to follow this order for supervision.

Passive, desultory. The operator might well prefer not to check the partial kary-
otype correctness in a strict left-to-right order, but perhaps by choosing herself
which is “the worst” or most notorious labeling error at each interaction step.

Active. At each interaction step, the system computes some confidence measure for
each chromosome label provided in that step. The one with lowest confidence is
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proposed for operator supervision. Then the operator validates or corrects this
label and the system uses the corresponding feedback (and history) to compute
its next prediction.

1.4.2 Left-to-Right Interactive—Predictive Processing

The passive, left-to-right protocol discussed above is perhaps the simplest and
most natural protocol when output hypotheses can naturally be structured in terms
of sequences. This protocol will be often referred to as “left-to-right interactive—
predictive processing”.

Let & in Eq. (1.14) be a sequence of elementary output hypotheses, i1, A2, ....In
this case, the history 4’ and the (deterministic) corrective feedback d can be jointly
considered as a correct prefix, p, of h and Eq. (1.14) becomes

ﬁ:argmaxP(hlx,p). (1.31)
heH

Here P(h | x, p) should be null for those & that do not have p as a prefix, which
implies that 7 must be the concatenation of the given p and some optimal suffix §.
Correspondingly, Eq. (1.14) can be simplified to

s =argmax P(s | x, p) =argmax P(x | p,s) P(s | p) (1.32)
seH’ seH’

where H' is the set of possible suffixes.
Most of the applications to be described throughout this book correspond to left-
to-right interactive—predictive processing, or quite natural variants thereof.

1.4.3 Active Interaction

As previously discussed, in this case it is the system, rather than the human, which
proposes the next element of 4 to be supervised by the operator.

Let S(h) be a system-computed “supervision” function, which determines which
element of a given hypothesis & has to be supervised, and C(k, k) a “correction”
function, which represents a (may be void) corrective action made by the operator on
the hypothesis element /. This way, the (deterministic) feedback, d, in Eq. (1.14)
is C(W',S(K")), and we can write:

h=argmax P(h|x,n',C(h',S(1))). (1.33)
heH
An interesting feature of this way of interaction is that it can be easily formulated
to achieve adequate tradeoffs between human supervision effort and errors remain-
ing at the end of the process. This is in contrast with other protocols, which aim to
achieve perfect output with minimum supervision effort.
This way of interaction will be discussed in Chap. 5.
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1.4.4 Interaction with Weaker Feedback

In the interactive karyotyping example, the operator may like to just point the place
where an error exists and wait for the system to change its hypothesis, in an attempt
to anticipate the correction which she has in mind. Interestingly, this simple but
quite effective and user friendly interactive action can often be implemented easily
and with a low search complexity.

Departing again from Eq. (1.14), let now d be just the index of the wrong hy-
pothesis element. Then

h=argmax P(x |k ,d,h)Py(h | h') (1.34)
heH
where
0, if hg =h',,
Py(h | 1)) = H A=A (1.35)

aP(h|h), otherwise,

were « is an adequate normalization factor and P(h | h’) accounts for the prior
probability of a hypothesis, conditioned only by the (uncorrected) history, /'

Alternatively, this can be formulated as a change in the underlying search prob-
lem. Again departing from Eq. (1.14):

h=argmax P(x | K, h)P(h | h') (1.36)
heHy

where Hy = {h € H, hq # h/;}. That is, the wrong hypothesis element is excluded
from the search space.

In any case, since this simple interactive action is often used repeatedly, the suc-
cessive values of A/, must be cached and P;(h | h') (or Hy) must be computed
taking into account all the previously discarded values of //; (not just the one from
the previous step).

1.4.5 Interaction Without Input Data

There are interactive applications in which no input data, x, are given. An exam-
ple of this kind of applications is the interactive generation of text, which will be
discussed in detail in Chap. 10. In this application, the IPR system assists the user
in writing text by predicting what are the most probable continuations of the text
produced so far. Other applications, such as Relevance-based Image Retrieval (see
Chap. 9), can also be considered to fall in this category. In these cases the formula-
tion is essentially a trivial simplification of Eq. (1.14):

h=argmax P(h | I, d). (1.37)
heH

This simplification, however, allows taking further considerations into account
which will be discussed in detail in Chaps. 9 and 10.
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1.4.6 Assessing IPR Systems

The definition of an interaction protocol has strong implications in system testing.
Real testing, with a real operator working with the system, is much too expensive
to be used in the day-to-day system development work. In all the cases, we should
try our best to devise “objective” testing procedures which can be based on labeled
testing corpora, as in the time-honored tradition of classical PR. Obviously, for this
to be possible, an unambiguously defined interaction protocol is needed. However,
not every interaction protocol lends itself to corpus-based testing and this adds to
the set of tradeoffs that have to be considered when specifying a good interaction
protocol.

As previously commented, decision theory does provide an adequate framework
to rigorously define assessment criteria in terms of loss functions. Nevertheless,
again, not every loss function leads to mathematically tractable decision functions
and, for the moment, only the most basic simplifications are considered.

1.4.7 User Effort Estimation

Perhaps one of the most important factors of the rapid development of PR tech-
nology in the last few decades, is the nowadays commonly adopted assessment
paradigm based on labeled training and testing corpora. In this paradigm, differ-
ent approaches or algorithms can be easily, objectively and automatically tested and
compared, without having to implement complete prototypes or requiring human
intervention in the assessment procedures.

In the IPR framework, a human being is embedded “in the loop”, and system
performance has to be gauged mainly in terms of how much human effort is re-
quired to achieve the goals of the considered task. Apparently, evaluating system
performance in this scenario should require human work and judgment. However,
by carefully specifying precise goals and ground-truth, the corpus-based assessment
paradigm is still applicable in most IPR tasks.

A corpus designed for testing a traditional, non-interactive PR system typically
consists of a collection of objects, each one accompanied by its corresponding cor-
rect (structured) labeling. Performance is typically assessed in terms of elementary
hypothesis errors; i.e., by counting the number of times the a system hypothesis
element differs from the corresponding correct label.

As we will see throughout this book, natural interaction protocols can often be
assumed for which the very same corpus and labeling can be directly used for as-
sessing interactive performance. In this case, we no longer focus only on errors
(the operator will ensure the required level of accuracy) but the correct, reference
labeling for each object can be used to determine how many interaction steps are
needed to produce a fully correct hypothesis. This will allow us to obtain adequate
estimates of the amount of user interaction effort that would be needed to perform
the considered task, under the assumed interaction protocol.
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For example, if the interaction protocol is left-to-right, we can properly estimate
user interaction effort in terms of the number of user corrective interactions needed
to produce a given test-set labeling. At each interaction step, user behavior is sim-
ulated by computing the longest common prefix, p’ between the current system
hypothesis and the corresponding reference labeling. Then the first system wrong
hypothesis element after this common prefix is replaced with the correct reference
label, , and the number of corrective interactions is increased by one. Finally, the
resulting correct prefix, p = p’r, is used by the IPR system to compute a new suffix
prediction, §, as in Eq. (1.32).

In many applications discussed throughout this book, system hypotheses (and
test-set labelings) are (natural-language) sequences of words and the left-to-right
protocol applies very naturally. In these applications IPR performance is mainly
assessed by means of the so-called “Word Stroke Ratio” (WSR) which is just the
average number of (simulated) user corrective interactions needed to produce the
reference word labelings of the test-set data.

It should be noted that assessment measures such as the WSR ignore user su-
pervision effort; that is, only corrective interaction steps are considered relevant in
order to measure (or estimate) system/user performance. This can be an adequate
assumption in some practical applications. In particular, this is the case with passive
interaction, which is often used when perfect results have to be guaranteed (by the
user). Clearly, this entails a complete supervision of all the system hypotheses and
only corrective effort may make a difference in system performance. Nevertheless,
in general, performance measures should take into account (perhaps with different
weights) the cost of both corrective and supervision interaction steps.

Of course, when an IPR system is considered sufficiently mature, final testing
should be based on performance evaluations with human operators actually working
with the real tasks the system is designed for. As previously mentioned, this kind
of evaluation is generally extremely expensive and time consuming and cannot be
carried out frequently. Moreover, the results of this kind of test are typically affected
by many factors which are far away from the fundamental principles upon which
system design is based. How the final User Interface (UI) is designed is one of
these important factors. A good design should take into account the IPR design
principles used in system development and, in particular, it should be finely tuned
to the interaction protocol assumed in that development.

While the design of good IPR Uls and human subjective testing are clearly be-
yond the scope of this book, in the last chapter we present a series of prototypes
developed for the different applications considered. Most of these prototypes are
publicly available through the Internet, thereby allowing the readers to judge by
themselves the practical potential of the ideas presented in this book for the differ-
ent applications considered.

1.5 IPR Search and Confidence Estimation

In many of the applications to be presented in this book, multimodal interaction will
lead to difficult search problems for which adequate approximations are needed. For
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all the problems in which (input and) output data and can be arranged sequentially,
a useful tool for these approximations is the so-called word graph. In this section
general word-graph concepts are introduced. Among other things, word graphs are
useful tools to efficiently estimate confidence measures for hypothesis elements.
This is also briefly outlined at the end of this section.

1.5.1 “Word” Graphs

The term “word” is used here to denote an element of a structured hypothesis, 4.
This use obeys historical reasons. Word graphs were first proposed by several au-
thors some decades ago during the development of Automatic Speech Recognition
technology. They were introduced as a data structure to very efficiently represent
a large amount of sequences of words whose posterior probability is large enough,
according to the acoustic (likelihood) and language (prior) models used to decode a
spoken utterance, represented as a sequence of acoustic vectors.

Formally, a word graph (WG) is a weighted directed acyclic graph (weighted
DAG) defined by the eight-tuple (Q,ny, F, A,t, V,w, p), where:

e Q is a finite set of nodes. Since a WG is a DAG a topological order on the nodes
is assumed. Each node n is labeled with its corresponding index in this order:
0={0,1,2,...,]10] —1}.

e nj € Q is a special initial node: ny = 0.

o F C Q is the set of final nodes.

e A C Q x Q is a finite set of edges. Each edge e is denoted by its departing and
ending nodes: e = (i, j), where i, j € Q and i < j.

e t:0—{0,1,...,T}1is a position function that associates each node (except ny)
with a position of the input sequence x = xlT. It must comply: #(n;) =0 and
Voert(n)=T.

e V is avocabulary;i.e., is a non-empty set of all the possible hypothesis elements
or “words”.

e w: A — V isaword function that assigns a word, w(e), to each edge, e = (i, j).
This word corresponds to an element hypothesized between input sequence posi-
tions #(i) + 1 and #(j).

e p: A — [0,1]is an edge probability function. For a given edge, e = (i, j), p(e)
is the probability of the hypothesis that w(e) appears between (i) + 1 and 7 (j).

The word sequence hypotheses represented by a WG are the concatena-
tions of words on paths in the WG from the initial node to a final node. For-
mally, a path in a WG is a sequence of consecutive edges ¢ = ey, ez,...,¢€)p =
0,91),(q1,92)s - - (q1p1—-1- q19|)> Where gx € O — {n;}, 1 <k <|¢| and q|y| € F.
The probability of this path is computed as the product of the probabilities of the
edges along the path:

|p]
P¢)=]]pler). (1.38)

k=1
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The word sequence hypothesis associated with the path ¢ is h = w(e1), w(e2), ...,
w(ejp)). Given that WGs are generally ambiguous (for each node and word several
next nodes are possible), there may be more than one path associated with the se-
quence h. Let y (h) be the set of all the paths associated with £ and let ¢, be one of
these paths, the probability of the word sequence & is computed as:

Py="3_ P@w. (1.39)

éney (h)

Given a WG, the most probable word sequence can be written as:

h=argmax Y P(¢n). (1.40)
b ghey ()

In general, this maximization problem is NP-hard [6]. Nevertheless, adequate ap-
proximations can be obtained by approximating the sum in Eq. (1.39) by the dom-
inant addend. The resulting approximate probability, denoted by P(-), and the cor-
responding approximately optimal word sequence, /, are defined as:

P(h)~ P(h) = max P(dn), (1.41)
oney (h)
h~h= argmax max P(¢p). (1.42)
n Pney(h)

These optimization equations can be efficiently solved by means of dynamic pro-
gramming search algorithms, similar to Viterbi [50].

It is worth noting that the maximization Eq. (1.40) becomes quite simple in the
case of an unambiguous WG. In this case, since |y (h)|=1 Vh, there is only one
addend in the sum of Eq. (1.39) and Eq. (1.40) simplifies to:

N

h = argmax P (¢p) (1.43)
h

where ¢, is now the unique path associated with /. This optimization amounts to
finding the best path in a DAG, a problem for which very well know simple exact
solutions are available.

Sometimes it may be necessary not only to compute the best word sequence,
but also the n-best word sequences in the word graph. To this end, the algorithm
known as “Recursive Enumeration Algorithm” (REA) [31] is particularly useful
here, because of its ability to efficiently provide next-best paths on demand.

In (sequential) IPR problems, WGs may help solving optimization equations
such as Eq. (1.14). First, for a given input, x, a WG is computed, generally as a
byproduct of the non-interactive search used to solve Eq. (1.2). Therefore, according
to Egs. (1.40), (1.42), or Eq. (1.43), the most probable word sequence in this WG is
the optimal (non-interactive) solution to Eq. (1.2). Then, in a given interaction step,
some elements of the history, 4’, have been validated and are therefore fixed. These
elements can be searched for in the WG. With this information, we can search for
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complete hypotheses, /1, compatible with the fixed parts of 4" and select the one for
which the probability P(k | x, k', d) is maximum. Also, the edges associated with
the fixed elements and their neighbor edges hold all the context information needed
for the improved decoding Eq. (1.27) of non-deterministic feedback signals required
for multimodal IPR.

Given that the WG is a DAG, these computations can generally be made ef-
ficiently using Dynamic Programming methods. The computations become even
simpler in the case of left-to-right interaction protocols. Details of these procedures
will be given for specific applications presented in the following chapters of this
book.

Example: Word Graph of Human Karyotypes

In this case, a word graph represents the sequences of 22 labels with highest poste-
rior probability Pr(/ | x) for a given sequence of 22 chromosome images, x. Since,
for the sake of simplicity, we have ignored here the initial image segmentation task
and we assume that each chromosome is already represented as an individual image,
the word graphs for this problem are unambiguous.’

An example of a word graph for this application is shown in Fig. 1.8. This kind of
graph can typically be obtained as a byproduct of solving Eq. (1.3), using the prior
and likelihood models given by Egs. (1.4) and (1.5) and the greedy search procedure
outlined in the example of Sect. 1.2.

The function ¢ associates each node (except the initial one) with a chromosome
image. On the other hand, the function w (e) assigns a chromosome label to the edge
e = (i, j). This label is the hypothesis for the chromosome image associated with
the node j. The function p(e) is the probability of this hypothesis.

In this example, the two paths in black correspond to the correct labeling shown
in Fig. 1.3 and the erroneous hypothesis predicted by the system as in Fig. 1.5. The
probability of an arbitrary path such as:

¢ =(0,1),(1,4), 4,6), (6,8), (8,10), (10, 13), (13, 16), (16, 19), (19, 22),
(22,25), (25,28), (28,31), (31, 36), (36, 41), (41, 46), (46,49), (49, 52),
(52,55), (55,58), (58, 61), (61, 64), (64, 66)

is computed as:
P(¢1) = p0, Dp(1,4)p4,6)p(6,8)p(8,10) p(10, 13) p(13, 16) p(16, 19)
p(19,22)p(22,25)p(25,28) p(28,31) p(31,36) p(36, 41) p(41, 46)
Pp(46,49)p(49,52) p(52,55) p(55,58) p(58,61) p(61, 64) p(64, 66)

7 A more general example is given in Chap. 2.



1.5 IPR Search and Confidence Estimation 31

bl il

1200 6 16(0.8

s
© @77%): C daos

ENCNONT O

@
22|03 7 T110.687
>

ty t1 b t3 ty ts te ty tg tg tig ti1 typ tyz tyg tis tie tiz tig tig tro to1 tp

Fig. 1.8 Example of word graph used in Recognition of Human Karyotypes. Positions ¢;
are associated with the nodes as: t(0) =1 =0, t(1) =t(2) =t(3) =11, t(4) =t(5) = 1,
t®)=t(NH=t,...

=04-0.8-07-0.8-03-09-04-06-0.7-0.6-0.4-0.6-0.5-0.8
0.7-0.4-0.9-0.6-0.4-0.7-0.6-0.5=5.94-107°,

The label sequence associated with this path is hD =<0, 10, 3,9,5,19,18,2,13,
17,7,12,14,16, 11,21, 15, 6,22, 8, 1,4”. Given that this WG is not ambiguous,
each sequence /1 has a unique path associated with it. So, according to Eq. (1.39)
(or Eq. (1.43)), the exact probability of A1 is

P(h™V) = P(¢1) =5.94-107,

To obtain the most probable label sequence, all the word sequences on the WG must
be taken into account. Some of the label sequences on the WG in Fig. 1.8 and their
corresponding paths and probabilities are:

o 1D =%20,10,3,9,5,19,18,2,13,17,7,12, 14,16, 11,21, 15,6,22,8, 1,4”,
o1 = (0,1),(1,4),(4,6),(6,8), (8,10, (10, 13), (13, 16), (16, 19), (19, 22),
(22,25), (25, 28), (28, 31), (31, 36), (36, 41), (41, 46), (46, 49), (49, 52),

(52, 55), (55, 58), (58, 61), (61, 64), (64, 66),
P(hV) = P(p) =5.94-10"
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o h® =+18,10,3,9,5,19,20,2,13,17,7, 12, 14,16, 11,22, 15,1,21, 8,4, 6",
do = (0,3),(3,5),(5,7),(7,9), (9, 11), (11, 14), (14, 16), (16, 19), (19, 22),
(22,25), (25, 28), (28, 31), (31, 36), (36, 41), (41, 46), (46, 50), (50, 53),

(53, 56), (56, 59), (59, 63), (63, 65), (65, 67),
P(h®) = P(¢9) =8.19-107

o 112 =+18,10,3,9,5,19,16,2,13,17,7,12, 14,20, 11,22, 15, 1,21,8,4, 6",
$12 = (0,3),(3,5),(5,7).(7,9), 9, 11), (11, 14), (14,17), (17, 20), (20, 23),
(23,26), (26,29), (29,32), (32,37), (37,41), (41,46), (46, 50), (50, 53),
(53,56), (56, 59), (59, 63), (63, 65), (65, 67),

P(h12) = P(¢12) =3.07- 1073

o 119 =<1810,3,9,7,19,20,2,13,17,8,12, 14,16, 11,22, 15,1,21,5,4, 6",
o6 = (0,3),(3,5),(5,7),(7,9), 9, 12), (12, 15), (15, 18), (18, 21), (21, 24),
(24,27), (27, 30), (30, 34), (34, 39), (39, 43), (43, 47), (47, 51), (51, 54),
(54,57), (57, 60), (60, 63), (63, 65), (65, 67),

P(h10) = P(¢16) =1.4-107%

The most probable word sequence is h=h10 = “18,10,3,9,7,19, 20,2, 13,
17,8,12,14,16,11,22,15,1,21,5,4,6”, with P(h) = 0.00014. This is the opti-
mal solution to Eq. (1.3) (and Eq. (1.43)), and corresponds to the label sequence
predicted by the system in Fig. 1.5.

Since the interaction protocol assumed in this example is left-fo-right, this se-
quence is supervised by the operator in this direction until the first wrong label is
detected, which corresponds to the fifth image in the sequence. After correcting this
error, the prefix “18, 10, 3, 9, 5” becomes fixed. The search for this prefix ends in
node 11. Departing from this node, the system searches for an optimal suffix in the
WG and proposes the next-best hypotheses compatible with the prefix, 4?). This is
in fact the result of solving Eq. (1.14) or, more specifically, Eq. (1.32), given that
the protocol is left-to-right. In this new system hypotheses, the 20th and the 11th
wrong labels are corrected automatically. Then, in a new interaction step, the user
corrects the next error, in this case the 7th label in the sequence. Finally, the system
uses this new validated prefix to search for the next-best prefix-compatible hypoth-
esis in the WG. This yields K12 which is already the correct chromosome label
sequence.

As previously mentioned, all the required computations can be efficiently carried
out by simple and well-known graph-processing algorithms.

In the case of multimodal feedback, the WG can also be used to (approxi-
mately) deal with the optimization Eq. (1.27), needed for improved decoding of
non-deterministic e-pen feedback signals (some details of this procedure will be
given in Chap. 3).
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1.5.2 Confidence Estimation

Given that PR systems are in general error-prone, a desirable feature of these sys-
tems is the capability of predicting the reliability of the system hypotheses. A large
research effort has been devoted to this topic in the last two decades for many clas-
sical PR problems, e.g.: speech recognition [51], machine translation [49], hand-
written text recognition [3]; and nowadays is being applied for different purposes in
IPR [22, 46].

Confidence Estimation (CE) deals with the problem of assessing the correctness
of PR system outputs. CE is performed by computing a score C(k, x) (usually be-
tween O and 1), called confidence measure, which reflects the reliability of any PR
system output. Confidence measures can be useful in many IPR scenarios, such as
active interaction protocols (see Sect. 1.4.1) and different learning paradigms (see
Sect. 1.6). In this book, active learning techniques within an active interaction pro-
tocol based on CE is applied for computer-assisted transcription of handwritten text
(see Chap. 5). Also, an active interaction protocol based on CE is applied for inter-
active machine translation (see Chap. 6).

Perhaps the simplest approach for CE is to measure the confidence of a hypoth-
esis h by its (properly normalized) posterior probability, Pr(% | x). From Eq. (1.2),
this is computed as

~ CPr(x|h)-Pr(h)  Pr(x|h)-Prih)
Clh,x) =Pr(h | x) = ——F === S yor PrCx [ ) - Pr(i)

Equation (1.44) measures the reliability of a whole hypothesis /4 (e.g., a sequence
of 22 labels in the case of human karyotypes). However, for many IPR applications
it is more useful to predict the reliability of each one of the specific hypothesis
elements (e.g., individual chromosome labels in the case of human karyotypes).
Given a hypothesis #, the confidence measure (or posterior probability) for a spe-
cific hypothesis element h;, 1 <i < |h|, is computed by summing up the posterior
probabilities of all decoding hypotheses which contain £; at position i:

(1.44)

Clhi.x)=Pr(hi |x)= Y Pr(h'|x), M) ={h'eH|h=h;). (145)
W eH®i)

In general, the hypothesis space, H, may be infinite or exponentially large and it
can be hard to compute the posterior probabilities in Eq. (1.44) or Eq. (1.45) using
all possible hypotheses. Therefore, some approximations are needed for the sake of
efficiency.® A simple approximation consists in using not all but a (large) number
of most probable whole hypotheses, represented as a WG or an n-best list. Given
that a WG can represent a huge number of best hypotheses in a very compact way,
comparatively better performance is generally achieved using posterior probabili-
ties computed over WGs. The computation of these probabilities can be efficiently

8Note that we have been able to avoid the use of the unconditional probability Pr(x) in all the all
the PR and IPR optimization (search) equations discussed in the previous sections.
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Fig. 1.9 Example of the computation of the confidence measures (CM) for the most probable
decoded hypothesis, h, over the word graph used in Recognition of Human Karyotypes. Each edges
is tagged with the chromosome label and its posterior probability. The CM for each chromosome
label at position #; is computed by summing up the posterior probabilities of all edges which
contain this chromosome label and end at position f;. The correct labeling is #* and CM is the
confidence measure of each hypothesis element of h. The recognition errors are shown in red.
Using a threshold t = 0.75, four out of the five recognition errors would be rightly considered
wrong while the rest of the hypothesis elements would be considered correct

carried out using Dynamic Programming techniques, such as (a WG version of) the
well-known forward—backward algorithm [30].

Once the element-level (or hypothesis-level) confidence measure has been com-
puted, an adequate decision threshold 7 can be used to consider the element (or the
hypothesis) either correct or incorrect depending on whether its confidence exceeds
T or not.

Example: Estimating Confidence Measures of Human Karyograms

Figure 1.9 shows an example of confidence estimation over the same WG shown
in Fig. 1.8. Here posterior probabilities computed as explained above are assigned
to the edges. For example, the posterior probability of a given edge such as e =
(15, 18), with chromosome label “20”, is computed by summing up the posterior
probabilities of the three paths containing this edge; i.e.:
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e 916 = (0,3),(3,9).,(57),(7,9), (9, 12), (12, 15), (15, 18), (18, 21), (21, 24),
(24,27), (27, 30), (30, 34), (34, 39), (39, 43), (43, 47), (47, 51), (51, 54),
(54,57), (57, 60), (60, 63), (63, 65), (65, 67),

P(¢p16) =1.4-1074,

e 17 = (0,3),(3,9),(5,7),(7,9),(9,12), (12,15), (15, 18), (18, 21), (21, 24),
(24,27), (27, 30), (30, 35), (35, 40), (40, 44), (44, 47), (47, 51), (51, 54),
(54,57), (57, 60), (60, 63), (63, 65), (65, 67),

P(¢17) =6.50- 1077,

e 915 = (0,3),(3,9).,(57),(7,9), (9, 12), (12, 15), (15, 18), (18, 21), (21, 24),
(24,27), (27, 30), (30, 35), (35, 40), (40, 45), (45, 48), (48, 51), (51, 54),
(54,57), (57, 60), (60, 63), (63, 65), (65, 67),

P(¢p13) =2.43-1072,

(14-1074+6.50-107% +2.43-1077)
P(e =(15,18) |x) = 175103 =0.48

where P (x) =4.75 - 10~* is the sum of the probabilities P (¢) of all WG paths ¢.

Note that the posterior probability of an edge e = (i, j) is not necessarily the
confidence measure of the chromosome label w(e) at position #(j), since different
edges ¢’ = (i, j') can end at same position 7(j’) with the same chromosome la-
bel w(e’) = w(e). For this reason, the confidence measure for a specific hypothesis
element which finish at position # is computed by summing up the posterior prob-
abilities of all edges which contain this hypothesis element and finish at position #.
For example, in Fig. 1.9, the confidence measure for the most probable hypothesis
element at position #7 (chromosome label 20) is computed by summing up the poste-
rior probabilities of the two edges which contain the chromosome label 20 and finish
at position t7, i.e.: P(e; = (15, 18)|x) + P(ex = (14, 16)|x) =0.48 +0.25 =0.73.

1.6 Machine Learning Paradigms for IPR

So far all models, M, needed for IPR have been assumed to be fixed. But now
human interaction offers another unique opportunity to improve system’s behavior
by tuning the models, M. The feedback produced at each step of the interaction
process can generally be converted into new, fresh training information, useful for
adapting the system to changing environment.

For many years, adaptive learning and other related learning paradigms such
as on-line, semi-supervised, reinforcement, active, etc.) have been the focus of thor-
ough studies. However, most of these studies are mainly theoretically oriented. Prac-
tical applications of the theoretical results are generally scarce. Now the interactive
paradigm offers a natural framework where these learning paradigms can be used
advantageously.

The application of these ideas in our IPR framework require establishing ad-
equate training criteria. These criteria should allow the development of adaptive
training algorithms that take the maximum advantage of the interaction-derived data
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to ultimately minimize the overall human effort in the long term. Although a deep
review of these topics is clearly beyond the scope of this book, the main ideas will
be presented in some detail in this section.

1.6.1 Online Learning

During the interactions with the user, an IPR system obtains correct hypotheses for
unseen inputs. This feedback gives a great opportunity to learn from the new data.
As stated in Sect. 1.2, in IPR, the models M that approximate the probabilities of
the optimal decision rules, are initially estimated by a model trained with a batch
corpus T = {(x, h);}, as is done in traditional PR. After I interaction rounds, the
system has gathered a new corpus 7’ = {(x’, h’) j} of correct hypotheses and input
stimulus. Online learning aims at learning in scenarios like this, where the samples
can be considered as a stream of data.

It is worth highlighting that the initial or seed corpus and the online gathered cor-
pus have different properties. The former is intended to be a large corpus that com-
prises several use cases. The latter corpus, is domain specific which comprises an
initially small number of training pairs that slowly grow with the user interactions.
Then, the on-line corpus summarizes information from two sources: the specific do-
main of the current task and the user preferences. For instance consider an example
of handwritten recognition in which a corpus of text sentences is needed to estimate
language models. In this case, the more sentences are used to train the seed corpus,
the more general the language model would be and the less likely it is to find out of
vocabulary words.® However, as the system interacts with the user, the system is fed
with language constructions and vocabulary that are specific to the document that is
being supervised.

There are two approaches for a IPR system to make profit from the new hypothe-
ses supervised by the user. On the one hand, IPR systems can learn from them. On
the other hand, while performing online learning, IPR systems need to adapt to dif-
ferent domains. These two objectives are often opposed to each other. For instance,
in order to properly adapt, the system should be able to forget what it learnt from old
samples. However, by forgetting what old samples taught, the system performance
can decrease.

A simple online learning approach is to train the model by merging both corpora:
the seed corpus, T, and the online gathered corpus, T’. This approach is equivalent
to assume that initially, both corpora were part of the seed corpus. This technique
is usually called incremental learning, since we only increment the seed corpus. In
practice, this incremental learning can be efficiently implemented for many cases.
Specially, if maximum likelihood is taken as the modeling technique, then incremen-
tal learning boils down to update the sufficient statistics. These sufficient statistics

9Words for which the system has no previous example.
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mostly are the counts needed to estimate the model parameters if the model has no
latent variable.

In the case of latent variable models, the maximum likelihood estimates cannot
be computed in a closed form solution. A typical approach is to iteratively ascend the
gradient by means of the Expectation and Maximization (EM) algorithm [16]. Given
an initial parameter estimate, the EM algorithm computes, in the E(xpectation) step,
a set of sufficient statistics that are afterwards used in the M(aximization) step to
compute a new parameter estimate. This process is held until convergence. There is
an incremental version of the EM algorithm [36] that keeps track of the sufficient
statistics computed in the E-step. When a new training pair is observed, the suffi-
cient statistics computed in the incremental E-step are updated and a new M-step is
computed yielding new adapted parameters.

Incremental learning assumes that both corpora have the same bias in the sys-
tem modeling. Obviously, the online corpus resembles the probabilities of the task,
which the system is dealing with, better than the seed corpus does. However, the ini-
tial corpus is larger and, consequently, better estimated models can be built with it.
Therefore, a trade-off should be found between the two corpora; or in other words, a
trade-off between reliability and domain adaptation must be found. There are several
extensions to the incremental learning techniques that aim at finding this tradeoff.
For instance, for the case of latent variable models there are some online versions
of the EM algorithm [5, 36].

A simple approach that aims at finding a trade-off between both corpora is to use
a linear interpolation of two models: one trained with the seed corpus and another
trained with the online corpus. For instance, consider the modeling of the hypothesis
prior probability distribution. In this case the initial model P, (%), and the on-line
model P (h) can be combined to obtain an on-line model P, (/) as follows

Po(h) =a - Pp(h) + (1 —a) - Ppy(h) (1.46)

with o being an adaptation ration that if close to 1 generates a fixed system that
slowly learns from new inputs; and if it is close to 0, quickly takes into account the
new inputs. Ideally, at the beginning, when the on-line corpus is small, the adapta-
tion ratio should be almost 1; and as the on-line corpus is fed with new data the ratio
will drop to values closer to 0. The interpolation parameter o can be estimated by a
Bayesian approach [17].

A recurrent idea of adaptive learning methods is to find a trade-off between the
on-line corpus and the seed corpus. This problem is extended to the online corpus
itself since it is common that the on-line corpus varies from one domain to another.
For instance, in an interactive handwritten text recognition system, the user may use
the system to transcribe different books; or different users can use the same system
for transcribing parts of the same book.

A simple approach to adapt in changing environments, such as the one discussed,
is to consider a set of models { M1, ..., Mg} to be estimated instead of a simple
one, M’. Each model would gather a proportion of the online corpus to train its pa-
rameters. For instance, each model can sample at exponentially decreasing time in-
tervals [25]. Finally, the adapted model would be a combination of the initial model
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and the online models. In this scenario a log-linear adaptation model is specially
appealing

1 K
Py (h) = Z0 &P (1; i log (P, (h))) (1.47)

where A stands for the adaptation weights, and Z} (k) is a normalization constant to
ensure the probability to sum up to one. The previous idea can be extended to any
score as follows:

1 K
P = 3 exp(ékam) (1.48)

where fi(h) can be any suitable score such as the logarithm of a probability distri-
bution model. This modeling technique is know as maximum entropy models [2] or
log-linear models [37]. Maximum entropy models are not exclusive for model adap-
tation, and as a matter of fact, they have been applied for modeling probability dis-
tributions in many traditional PR tasks such as statistical machine translation [37],
or language modeling [33].

An alternative approach is to start with an initial model and adapt it to each newly
acquired sample pair as long as the model does not have to modify its parameter sig-
nificantly. For instance, the online passive aggressive technique [10], is an adaptive
training algorithm for linear classifiers that adapts to the new samples as long as they
do not require to modify the decision boundary more than a given threshold (aggres-
sive case). In such case, the classifier is modified so that the decision boundary is
modified just as much as the threshold (passive case). This technique, however, is
difficult to extend to many PR classifiers.

Bayesian Statistics

In the context of adaptative learning, Bayesian statistics is a very appealing frame-
work, which applies decision theory to the parameter selection phase. In conven-
tional statistics, each model is parametrized with a set of parameters, say 6. The
inferring problem is, then, stated as the problem of finding those parameters that
optimize a given criterion such as maximum likelihood. In this case, there is no un-
certainty assumed over the parameters. In other words, during the training phase,
it is assumed that there is enough information to obtain a reliable estimation of the
actual parameters.

In the Bayesian framework, parameters are considered random variables and,
hence, they are treated as such. Therefore, there are no optimal parameters to se-
lect, but a probability distribution over those parameters to model. A model in this
framework, is given by two probability distributions: a likelihood distribution and
a parameter-prior distribution. The likelihood distribution is the probability of the
random variable given the parameters; in other words, it corresponds to traditional
models. The parameter-prior distribution is a probability distribution over the value
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of the parameters that codifies our previous knowledge regarding to the parameters.
Note that the question of deciding one or another prior probability distribution is a
modeling issue.

Consider the example of modeling the input probability Pr(x | ) in Eq. (1.2).
This probability is traditionally modeled with a set of parameters 6. Given a train-
ing sample, T', the optimal parameters, 8, are selected so that they maximize the
likelihood of the training sample. Therefore, we can say that the model M is given
by this set of parameters and a known probability distribution, i.e., M = {Py(x |
h), é} = P;(x | h). A Bayesian model is defined by two probability distributions,
ie. M={P(x|h,0),7(0)}, where P(x | h,0) is equivalent to Pg(x | h), i.e., the
likelihood of x given the parameters #; and where 7 (0) is a prior probability distri-
bution over the parameters. Finally, in order to predict the probability of a new input
x given the model M and the training data 7', the parameters have to be marginal-
ized in order to compute the predictive probability distribution

PM(x|h,T)=/ P(x|h,8) - P@|T)do (1.49)
(¢}

where P(x | h, ) is the likelihood probability distribution and where P(@ | T) is
the parameter-posterior probability distribution.

The posterior probability distribution is a distribution over the parameters that
adjust the prior knowledge encoded into the parameter-prior distribution, 7, to the
events observed in the “training” sample 7. The parameter-posterior probability is
usually decomposed as

P@O|T)= w (1.50)
P(T)
where P(T) is a normalization constant that can be computed integrating out the
parameters of the numerator; and P (7T | @) is the traditional maximum likelihood
probability of the training sample.

As stated above, the “training” sample is not used for training a model but for
refining the system knowledge about the parameters. Although there is no training
stage in Bayesian framework, the integrations needed to compute the parameter-
posterior and the predictive probability distributions, have to be approximated,
which is typically done by means of sampling techniques such as Markov chain
Monte Carlo [1].

Theoretically, the Bayesian framework is very appealing in adaptive learning
since the effect that a new observation has over the model is simply to modify the
parameter-posterior probability distribution. Therefore, in theory, a Bayesian model
is easily adaptable to new evidence by simply updating the parameter-prior distribu-
tion with the parameter-posterior. In this way, the parameter-posterior becomes the
parameter-prior of the model for the following outcome, and so on.

More specifically, in IPR, an initial Bayesian model can be defined with the
parameter-prior initialized to the parameter-posterior distribution computed over the
initial batch training sample. Afterwards, this parameter-prior probability distribu-
tion would be adapted to the online corpus while it grows as given by Eq. (1.50).



40 1 General Framework

This approach, however, has a great practical disadvantage, since most of the tradi-
tional PR models are not easily extended to the Bayesian framework, due to com-
putational requirements.

1.6.2 Active Learning

In Sect. 1.4.1 we differentiated between two kinds of interactive protocols: passive
and active. In the former case, the user is monotonically inquired to fully correct
the proposed hypothesis for each input x in the same order they occur. In the latter
case, the system decides the order in which the hypotheses and inputs would be
supervised. In active interaction protocols, the system might decide to stop inquiring
the user if the assessment quality is beyond a given threshold, finishing in this way
the interaction with the user.

The active interaction protocols are closely related with the active learning. In
active learning [12], there is a pool of input samples for which correct hypotheses
are not known. There is also an oracle that is able to give the correct hypothesis to
each input stimulus. The objective is to minimize the number of queries to the oracle
while maximizing the performance. In order to do that, an active selection criterion
is applied to all the samples and then the best one is selected. The selected sample
is, then, queried to the oracle in order to obtain its correct hypothesis. This process
is repeated until no more samples are needed.

There are several active learning strategies [24] such as selecting the sample that
is closer to the bounds or the sample with the smaller confidence intervals, among
many others. Many active learning techniques are aimed to work in an online learn-
ing scenario. In general, we can classify active strategies into two categories de-
pending on the degree of modification an online model would suffer: aggressive
and mellow. Examples of aggressive techniques are for instance query by commit-
tee [19] or splitting index [11]. Most of the mellow techniques are based on the
generic mellow learner [9, 13].

One core idea in active learning that is important to keep in mind is the sampling
bias [12]. The sampling bias, can be stated as the distortion in the sample proba-
bility distribution generated by the active sampling strategy. If no active learning
strategy is applied then all the training examples occur with the actual probabil-
ity distribution of the data. However, when an active learning strategy is applied,
the sample probability is distorted provided that there are inputs that are not cor-
rected. For instance, consider the case of selecting the sentence with more out-of-
vocabulary words in an interactive machine translation system. In this scenario, the
user is asked to correct a translation that has more out of vocabulary words than the
other source sentences. In doing so, the system quickly extends its vocabulary. How-
ever, the actual data probability is being distorted, since out-of-vocabulary words are
rare and by actively selecting those sentences, unlikely events become likely. This
could eventually lead to a drop in the system performance.

A very interesting scenario in IPR is the active interaction protocol in which a
given threshold of error is required. In this scenario, the system selects inputs to
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query to the user until the system estimates that the error of the task is lower than
a given threshold. If we use an active learning in order to reduce the user effort, we
can produce quite the opposite if the active strategy is too aggressive. Therefore, the
sampling bias should be kept in mind while designing an active learning strategy.

1.6.3 Semi-Supervised Learning

In some IPR interactive active protocols, the system has two kinds of hypotheses:

e Validated hypotheses: the hypotheses that the user has supervised so far,
e Automatic hypotheses: the hypotheses produced by the system without user su-
pervision.

The validated hypotheses can be used to make the system better by online training or
adaptation techniques. However, the automatic hypotheses that may contain errors
can also be used in order to improve the system performance. There are several
techniques fitted to this sort of problems, the so called semi-supervised learning [7].
Semi-Supervised learning is stated as the problem of designing the best system using
two kind of corpus: one that is tagged with the correct hypotheses for each input;
and another that is composed only of input stimuli.

Although the semi-supervised learning does not totally fit the IPR learning prob-
lem, it is very common in semi-supervised learning to complete the sample with
the hypotheses given by an automatic system. Afterwards, many semi-supervised
techniques are built on this completed sample. For instance, a simple technique is to
use confidence intervals to select those samples that are reliable enough accordingly
to a confidence measure. Then, those reliable samples are used as if they where
user validated hypotheses. This process can be generalized giving at each sample a
reliability weight.

Another very common technique is to use the inputs without their corresponding
hypotheses to infer the input probability distribution. One way of accomplishing it
consists in building clusters with all the data (supervised and unsupervised). After-
wards, the supervised data are used to infer the best hypothesis for each cluster [12].
This technique is usually combined with active learning techniques so that new cor-
rected hypotheses can be queried whenever a cluster is confusing with regards to
which the best hypothesis is.

1.6.4 Reinforcement Learning

In some interaction protocols, the feedback given by the user is not always totally
informative. This is the case of weak feedback discussed in Sect. 1.4.1, where an in-
teractive system may receive the feedback that the hypothesis is not correct without
the actual correction. In those cases, the system can use this information to propose
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a new hypothesis. However, it could also inquire to the user additional information
regarding the previous hypothesis. Obviously, the aim of such question is to im-
prove the models so that the next time the system observes similar inputs it would
correctly classify them. This process may, in principle, increase the number of in-
teractions with the user. This problem is known in the machine learning literature as
learning with limited-feedback [47].

Limited-feedback can be understood as a branch of reinforcement learning [27].
In these problems, the system has a benefit function that rewards and reinforces the
system actions over time. Therefore, the system wishes to maximize the benefit (or
minimize the loss) that it can obtain from the environment while working. For doing
this, the system has to optimize two confronted objectives:

e Exploration: the system has to explore many possibilities in order to know its
surrounding “environment”, and

e Exploitation: the system uses its knowledge about the environment to make profit
from it.

A system that only explores would give a low benefit because it would use resources
to explore hypothesis that give low benefit in an attempt of obtaining a very accurate
probability distribution model. Oppositely, a system that only exploits would obtain
a pour benefit, because it would have a weak environment model. This duality is
usually formalized in terms of “regret”. The regret is the difference between the
reinforcement or benefit that the system has obtained from the environment with re-
spect to the maximum benefit it could have obtained during a past period of time T,
for which the system has already taken its hypotheses. In this context, the best sys-
tem is the one that minimizes the regret.

Formally, if 2V ... () are the T proposed hypotheses during a period of time;
and the function B(h(l), ...,h(T)) quantifies the benefit obtained from these hy-
potheses, then the regret is

R(h(l),...,h(T)):B(h(l),...,h<T))— arg max B(m(l),...,m(T)). (1.51)

mM . omT

A very simple IPR example is to model the user preferences. In an IPR task,
we can have two different IPR systems, each minimizing different loss functions.
Assuming that none of those loss functions minimizes the interactions with the user
directly, there is no way to know which is better in practice. Then, we can use
reinforcement learning strategies on the fly in order to infer which the best system
is while the system is interacting with the user. A possible approach, would be to
use the system A for a while and then change to the system B for another period of
time. After that sampling, we could have recorded some statistics, such as number
of corrections by the user, or number of proposed hypotheses. It is important to
highlight that this is an exploration phase. Once we have a proper model of the
environment, the best system can be used for a while in an exploitation phase. Note
that none of both strategies can be held forever if we want to minimize the regret.
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This chapter described the common basics on which are grounded the computer as-
sisted transcription approaches described in the three subsequent chapters: Chaps. 3,
4 and 5. Besides, a general overview is provided of the common features character-
izing the up-to-date systems we have employed for handwritten text and speech
recognition.

Specific mathematical formulation and modeling adequate for interactive tran-
scription of handwritten text images and speech signals are derived from a particu-
lar instantiation of the interactive—predictive general framework already introduced
in Sect. 1.3.3. Moreover, on this ground and by adopting the passive left-to-right
interaction protocol described in Sect. 1.4.2, the two basic computer assisted hand-
writing and speech transcription approaches were developed (detailed in Chaps. 3
and 4, respectively), along with the evaluation measures used to assess their perfor-
mance.

2.1 Introduction

The tasks of transcribing handwritten documents and speech signals are becom-
ing an important research topic, specially because of the increasing number of on-
line digital libraries publishing large quantities of digitized legacy manuscripts and
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audio-(visual) documents. The vast majority of this material, hundreds of terabytes
worth of digital text-image and speech-signal data, remain waiting to be transcribed
into a textual electronic format (such as ASCII or PDF) that would provide new
ways of indexing, consulting and querying these documents.

Up-to-date systems for both handwritten text recognition (HTR) and automatic
speech recognition (ASR) share the same consolidated technology based on Hid-
den Markov Models (HMMs), whose fundamentals will be given in the succeeding
Sect. 2.2. Unfortunately, these systems are not accurate enough to substitute the
users in these tasks. The open vocabulary issue added to the existing variety of
handwriting styles and the intrinsic complexity of the acoustic signal, explain most
of the difficulties encountered by these recognition systems. In order to produce
adequately good transcriptions using such systems, once the full automatic recogni-
tion process of one document has finished, heavy human expert revision is required.
But usually, given the high error rates involved, such a post-editing solution is quite
inefficient and uncomfortable for the human correctors.

Depending on the specific requirements of the different transcription tasks, two
kind of produced transcription qualities are distinguished: transcriptions containing
some controlled amount of errors and totally correct transcriptions. Transcriptions of
the first type can be used as metadata for indexing, consulting and querying (hand-
writing/audio) documents, while the second type corresponds to the conventional
literal transcriptions, such as, for example, the so-called paleographic transcription
in the case of old manuscript documents.

Transcription systems of the first type look for reducing error location effort,
by marking (if needed) recognized words for the user to supervise and correct, for
which the recognition system is not confident enough. While this partial supervision
does not guarantee perfect transcriptions, it does help the system to adaptively train
its statistical models for greater accuracy. Moreover, if (hopefully minor) recogni-
tion errors can be tolerated in non-supervised parts, it might result in considerable
supervision effort reduction. This semisupervised, active learning approach has
been developed within the GIDOC system [6] for handwriting transcription, which
is extensively described in Chap. 5.

In the case of totally correct transcriptions are needed, the approaches of the
so-called Computer Assisted Transcription of Text Images (CATTI) and Computer
Assisted Speech Transcription (CATS) can be used as an effective alternative to post-
editing. In these interactive—predictive approaches, the recognition system and the
human transcriber tightly cooperate to generate the final transcription, thereby com-
bining human accuracy with recognition system efficiency. The two implemented
systems (CATTI and CATS) are presented in detail in Chaps. 3 and 4, while the
remaining sections of this chapter are devoted to the common general framework on
which these two approaches are based.

2.2 Common Statistical Framework for HTR and ASR

Following the classical pattern recognition paradigm exposed in Sect. 1.2, both
handwriting and speech recognition tasks seek to decode their respective symbolic
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and phonetic representation in terms of characters and/or words. In the already con-
solidated approach for both systems, the input pattern x is a sequence of feature
vectors describing a fext image or speech signal along its corresponding horizontal
or time axis. On the other hand, system hypotheses are sequences of transcribed
words, w, from a certain language. In this context, following a similar procedure as
for Egs. (1.1) and (1.2) (see Sect. 1.2):

w = argmax Pr(w | x) = argmaxPr(x | w) - Pr(w)
w w

~argmax P(x | w) - P(w), 2.1)

where P(x | w) is given by morphological word models and P(w) by a language
model.

Morphological word models are built from respective lexical entries (words),
each of them modeled by a stochastic finite-state automaton which represents all
possible concatenations of individual characters/phonemes that may compose the
word. In turn, each character/phoneme is modeled by continuous density left-to-
right HMM, with a Gaussian mixture per state. This mixture serves as a probabilistic
law to the emission of feature vectors on each model state. By embedding the char-
acter/phoneme HMM s into the edges of the word automaton, a lexical HMM is ob-
tained. These HMMs (morphological word models) estimate the word-conditional
probabilities P(x | w) of Eq. (2.1). The number of states as well as Gaussians of
the HMMs define the total amount of parameters to be estimated. Therefore, these
numbers need to be empirically tuned to optimize the overall performance for the
given amount of training vectors available.

In general, the true probability Pr(w) of a specific concatenation of words w into
text lines or sentences is given by

l
Pr(w) = Pr(wy) - [ [Pr(w; | w}™"). (2.2)
=2

where Pr(w; | w’i_ 1) is the probability of the word w; when we have already seen the
sequence of words wy - - - w;_1. The sequence of words prior to w; is the so-called
history. In practice, estimating the probability Pr(w) for each possible w sequence
can become difficult since sentences can be arbitrarily long and, in fact, many of
them may be missing in the training set used for estimation process. Noting that for
a vocabulary of | V| different words, the number of distinct histories of length i is
|V |"_1 . Therefore, the correct estimation of Pr(w) can be really unworkable, and for
which reason this is often approximated using smoothed n-gram models, which use
the previous n — 1 words to predict the next one:

n—1 1
Pr(w) ~ P(w) = P(w) - [ [ P(wi |wi™") - T]P(wi w2}, ) (2.3)

i=2 i=n
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In this chapter, as well as in Chaps. 3, 4 and 5, we are going to use n-grams lan-
guage model (bi-grams in most of the cases), with Kneser—Ney back-off smooth-
ing [3, 4], estimated from the given transcriptions of the trained set. Bi-gram mod-
els estimate the probability P(w) in Eq. (2.1), and are the basis for the “dynamic”,
prefix-conditioned language model P(s | p) of Eq. (2.8), as will be explained in
Sect. 2.4.

To train HMMs and n-gram language model, a corpus is required in which each
training sample (handwritten text image or speech utterance) is accompanied by
its correct transcription. These transcriptions must accurately describe all the ele-
ments appearing in each sample, such as phonemes in the case of speech or let-
ters (lower-case and upper-case), symbols, abbreviations, etc., in the case of hand-
writing images. On one hand, HMMs are trained using a well-known instance of
the expectation-maximization (EM) algorithm called forward—backward or Baum—
Welch re-estimation [2]. And on the other hand, n-gram language model proba-
bilities can be estimated from the raw text of the training transcriptions (or from
external text corpora) based on the relative frequency of word sequences.

Once all the character/phoneme, word and language models are available, recog-
nition of new test sentences can be performed. Thanks to the homogeneous finite-
state (FS) nature of all these models, they can be easily infegrated into a single
global (huge) FS model, on which Eq. (2.1) is easily solved. Given an input se-
quence of feature vectors, the output word sequence hypothesis corresponds to a
path in the integrated network that, with highest probability, produces the input se-
quence. This optimal path search is very efficiently carried out by the well-known
(beam-search-accelerated) Viterbi algorithm [2]. This technique allows integration
to be performed “on the fly” during the decoding process. In this way, only the mem-
ory strictly required for the search is actually allocated. The Viterbi algorithm can
also be easily adapted to solve Eq. (2.6) required in the CATTI and CATS interactive
framework, as will be seen in Sect. 2.3.

It should be mentioned that, in practice, HMM and bi-grams (log-)probabilities
are generally “balanced” before being used in Egs. (2.1) or (2.6). This is carried out
by using a “Grammar Scale Factor” (GSF), the value of which is tuned empirically.

2.3 Common Statistical Framework for CATTI and CATS

The IPR paradigm framework using human feedback outlined in Sect. 1.3.3 (for in-
teraction with deterministic feedback) can be directly applied to the transcription of
handwritten documents and speech signals. According to this IPR paradigm, in the
interactive transcription framework the system should take into account the current
state to improve the following predictions. To start the process, the system makes
an initial prediction consisting in a whole transcription of the input image/speech
signal. Then, the user reads this prediction until an error is found. At this point, the
user corrects this error, generating a new, extended prefix (the previous validated
prefix plus the amendments introduced by the user). This new prefix is used by the
recognition system to attempt a new prediction, thereby starting a new cycle that is
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repeated until a final correct transcription is achieved. This interactive process fol-
lows the so-called “left-to-right interactive—predictive processing protocol” stated
in Sect. 1.4.2.

Ergonomics and user preferences dictate exactly when the system should start a
new cycle. Typically, it can start after each new user keystroke or after each user-
entered whole word. A timed system reaction scheme is also possible, where new
predictions are computed only upon detecting a short period of user inactivity. Even
though keystroke-level interaction is most preferable in practice, for the sake of
clarity and unless stated otherwise, only whole-word interactions will be considered
in the present study. This will allow us to properly estimate the user-effort reduction
achieved by the interactive transcription with respect to conventional post-editing of
automatic transcriptions (see Sect. 2.6).

Formally, the interactive transcription approach can be seen as an instantiation
of the problem formulated in Eq. (1.14) where, in addition to the given sequence
of feature vectors x, a user-validated prefix p of the transcription is available. This
prefix, which corresponds to the pair (%, d) in Eq. (1.14), contains information from
the previous system’s prediction (&) plus user’s actions, in the form of amendment
keystrokes (d). In this way, the HTR system should try to complete this prefix by
searching for the most likely suffix according to the already-given Eq. (1.32) (see
Sect. 1.4), which, for convenience, is shown again below:

s = argmaxPr(s | x, p) ~ argmax P(s | x, p)
N s

=argmax P(x | p,s)- P(s | p). 2.4)

Equation (2.4) is very similar to Eq. (2.1), where w is the concatenation of p and s.
The main difference is that here p is given. Therefore, the search must be performed
over all possible suffixes s of p and the language model probability P(s | p) must
account for the words that can be written after the fixed prefix p.

In order to solve Eq. (2.4), the image x can be considered split into two frag-
ments, x{’ and x%rl , where M is the length of x. By further considering the boundary
point b as a hidden variable, we can write:

§~argmax Y P(x,b|p.s) P(s|p). (2.5)
$ 0<b<M

We can now make the naive (but realistic) assumption that the probability of xi’
given p does not depend on the suffix and the probability of xgﬁ’H given s does not
depend on the prefix and, approximating the sum over all the possible segmentations
by the dominating term, Eq. (2.5) can be rewritten as

§~argmax max P(x?|p)- P(xM p ' )6
’ gs 0<b<M (7 1p) - Pxpiils) - P(s|p) (2.6)

This optimization problem entails finding an optimal boundary point, b, associ-
ated with the optimal suffix decoding, §. That is, the signal x is actually split into
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two segments, x, = xlb and x; = xg” D the first one corresponding to the prefix and
the second to the suffix. Therefore, the search can be performed just over segments
of the signal corresponding to the possible suffixes and, on the other hand, we can
take advantage of the information coming from the prefix to implement the language
model constraints modeled by P(s | p).

2.4 Adapting the Language Model

Perhaps the simplest way to deal with P(s | p) is to adapt an n-gram language model
to cope with the consolidated prefix. Given that a conventional n-gram models the
probability P(w) (where w is the concatenation of p and s, i.e the whole sentence),
it is necessary to modify this model to take into account the conditional probability
P(s | p).

Let p = wll‘ be a consolidated prefix and s = w,iJrl be a possible suffix. We can
compute P(s | p), as is shown in Eq. (2.7):

P(s|p)=P(p,s)/P(p)

I i) !
_ Hi:l P (w; | wi'—n-l-l) _ 1_[ P(wl' |wi_1 ) 2.7)

% -1 N i—n+1
[T Pwi lwiZ, ) 5

Moreover, for the terms from k + 1 to k£ + n — 1 of this factorization, we have
additional information coming from the already known words w],z_n 42» leading to:

k+n—1 l
Psip= [] Pwilwilp) [T P(wilwi,,)
i=k+1 i=k+n
n—1 I—k
k Jj-1 j—1
= H P(s; | Pr—n+1+j>51 )1 PG |Sj—n+1)’ (2.8)

j=1 j=n

where p’l‘ = w’f = p and si_k = w,l(Jrl =s. The first term of Eq. (2.8) accounts for

the probability of the n — 1 words of the suffix, whose probability is conditioned by
words from the validated prefix, and the second one is the usual n-gram probability
for the rest of the words in the suffix.

2.5 Search and Decoding Methods

In this section, we are going to proceed to discuss briefly some possible imple-
mentations of interactive transcription decoders based on Eq. (2.6). To begin with,
a simple possibility would be to perform the decoding in two steps: first, the vali-
dated prefix p could be used to segment the signal x into x, and x, and, then, x;
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Original Bi-gram Linear model for the prefix

Training samples

Bill in that thought

Bill which brought

in which the thought
Bill in which the that
Bill in which the thought
Bill in brought in

Combined model
)

Prefix = of the

Fig. 2.1 Example of interactive transcription dynamic language model building. First, a bi-gram
for the training set of the figure is obtained. Then, a linear model which accounts for the prefix “of
the” is constructed. Finally, these two models are combined into a single prefix-constrained model

could be decoded by using a “suffix language model” (SLM) as in Eq. (2.8). The
problem here is that the signal cannot be optimally segmented into x,, and x; if only
the information of the prefix p is considered.

A better approach is to explicitly rely on Eq. (2.6) to implement a decoding pro-
cess in one step, as in classical handwriting/speech recognition. The decoder should
be forced to match the previously validated prefix p and then continue searching
for a suffix § according to the constraints in Eq. (2.8). Two different possible im-
plementations for this last approach have been considered. The first one is based on
the well-known Viterbi algorithm [2], while the second one is based on word-graph
techniques similar to those described in [1, 5] for Computer Assisted Translation
and for multimodal speech post-editing. Both implementations are described in the
following sections.

2.5.1 Viterbi-Based Implementation

In this case, the search problem corresponding to Egs. (2.6) and (2.8) can be straight-
forwardly solved by building a special language model which can be seen as the
“concatenation” of a linear model which strictly accounts for the successive words
in p and a “suffix language model” of Eq. (2.8). First, an n-gram with the available
training set is built. Then, a linear model which accounts for the validated prefix is
constructed. Finally, these two models are combined into a single model as shown in
Fig. 2.1. Owing to the finite-state nature of this special language model, the search
involved in Eq. (2.6) can be efficiently carried out using the Viterbi algorithm [2].
Apart from the optimal suffix decoding, §, a correspondingly optimal segmentation
of the x is then obtained as a by-product.
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It should be noted that a direct adaptation of the Viterbi algorithm to imple-
ment these techniques leads to a computational cost that grows quadratically with
the number of words of each sentence. As for each user interaction a new derived
language model is dynamically built for performing the decoding search, this can
be problematic (very high time-consuming process) for large sentences and/or for
fine-grained (character-level) interaction schemes. Nevertheless, using word-graph
techniques similar to those described in [1, 5], very efficient, linear cost search can
be easily achieved.

2.5.2 Word-Graph Based Implementation

As previously explained in Sect. 1.5.1, a word graph (WG) is a data structure that
represents a set of strings in a very efficient way. In handwritten text as well as
speech recognition, a WG represents the transcriptions with the highest P(w | x)
(see Eq. (2.1)) of the given text image or speech utterance. In this case, the word
graph is just (a pruned version of) the Viterbi search trellis obtained when transcrib-
ing the given input x.

According to Egs. (1.38) and (1.39) (Sect. 1.5.1), the probability of a word se-
quence, w, in a word-graph is computed as the sum of the probabilities of all the
paths that generate w, y (w):

1
Pwy= Y []rten. (2.9)

Pwey (w)i=l1

where ¢, is a sequence of edges ey, ea, ..., e such that w = w(ey), w(ez), ...,
w(er). Given a WG, a word sequence with the greatest probability can be written as

I
W = arg max Z Hp(ei). (2.10)

¢u:6y(w) i=1

However, as this maximization problem is NP-hard, we approximate it by means of
the efficient Viterbi search algorithm:

!
P(w)~ max (€), 2.11)
¢wey<w>gpl
I
W A argmax max (e;). (2.12)
5 %ey(w)gp,

The edge probability function, p(e), where e = (i, j), is equal to the product of
1(J)

i1 | @(@) of the feature vector

the morphological/acoustic word probability P (x
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subsequence xtt ((lj)) 41 between i and j WG nodes, and the language model probability
P(w(e)) of the given word at the edge e. That is,
ple)=P(xid), 10() - P(w(e)). (2.13)
During the interactive transcription process the system has to make use of this
word graph in order to complete the prefixes accepted by the human transcriptor. In
other words, the search problem consists in finding the target suffix s that maximizes
the posterior probability P(s | x, p) given a prefix p as described in Eq. (2.4).
The search on the WG involves two phases. The first one deals with the parsing
of the previously validated prefix p over the WG, looking for a set of end nodes Q,
of the paths, whose associated word sequence is p. In the second phase, the decoder
continues searching for the suffix s, from any of the nodes in Q,, that maximizes the

posterior probability given by Eq. (2.4). In terms of WG, an analogous expression
of Eq. (2.6) can be obtained:

§=argmax max P(x [ p) - P(xlt. . 15)- P(s|p). (2.14)

s q€0p

The boundary point b in Eq. (2.6) is now restricted to values (g) Vg € Q.

This search problem can be efficiently carried out using dynamic programming.
In order to make the process faster, first, we apply a dynamic-programming Viterbi-
like algorithm backwards from the final node to the initial one. In this way, we
compute the best path and its probability from any node to the final node. Then, we
look for the set of boundary nodes Q). Then we should only have to multiply the
probability computed from the initial node to any node g € Q, by the probability
from ¢ to the final node (previously computed), and finally, choose the node with
the maximum probability score.

As the WG is a representation of a subset of the possible transcriptions for a
source handwritten text image or the speech signal, it may happen that some prefixes
given by the user cannot be exactly found in the WG. To circumvent this problem
some error-correcting parsing algorithms have been implemented as we will see
throughout this book for the different systems studied.

Example: Word Graph of Handwritten Text

Although the following example focuses on a specific WG obtained from the recog-
nition of a handwritten text image, this is completely analogous to one obtained from
the recognition of a speech signal. In Fig. 2.2 an example of a WG that represents a
set of the possible transcriptions of the handwritten sentence “antiguos ciudadanos
que en Castilla se llamaban” is shown. In this case, the function ¢ associates each
node with a horizontal position of the handwritten image. Following the WG nota-
tion given in Sect. 1.5.1, the function w (e) relates each edge with a word hypothesis
between horizontal image positions 7 (i) + 1 and #(j), and the function p(e) returns
the probability of the hypothesis that w (e) appears between #(i) + 1 and 7(j).
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.J—,-kj/?-'.-,"l//d#/ Mf ////’:x.'m: 4///42( f".//,%zmaﬁa/ﬂ

! cuidadores | 0.4 quien \10,3

llamadas | 0.6

0 Y ta 8 ty

Fig. 2.2 Image positions #; are associates with the nodes #(0) =17 =0,t(1) =1(2) =11,t(3) =12,
t4) =1(5) =1(6) =13, 1(7) =t (8) =14, 1(9) = 1(10) =15, 1(11) =16, £(12) = 1(13) = 17,
t(14)=1(15)=1(16) =13, t(17) =1 (18) =1 (19) =19

Given a path on the WG represented on Fig. 2.2, for example the path ¢y:
o1 = {(0, 1), (1,5),(5,7),(7,10), (10, 11), (11, 12), (12, 14), (14, 17)} (2.15)
whose probability is computed as
P(¢1) = p0, Dp(1,5)p(5, Tp(7,10)p(10, 1D p(11,12) p(12, 14) p(14, 17)
=0.6-03-0.8-0.8-0.5-0.6-0.6-0.6=0.012.

And the word sequence associated with it is w'") = “antiguos ciudadanos que en el
Castillo sus llamadas”. However, ¢ is not the unique path that generates w'". We
also have

¢ = {(O, D, (1,3),3,7),(7,10), (10, 11), (11, 12), (12, 14), (14, 17)}.
Therefore, the exact probability of w® is

P(w™) = P(@1) + P(¢2) = 0.012 +0.005 = 0.017

and approximating that by the Viterbi algorithm, P (w") will be the probability of
the path with the maximum probability, i.e:

Pw®)~ P(V) = P(¢1) = 0.012.

Now, to obtain the word sequence with the greatest probability, all the word se-
quences on the WG must be taken into account. Figure 2.2 shows all the word se-
quences on the WG and their corresponding paths:
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o wV = “antiguos ciudadanos que en el Castillo sus llamadas”,
¢1={(0,1),(1,5),(5,7),(7,10), (10, 11), (11, 12), (12, 14), (14, 17)},
¢>=1{(0,1),(1,3),(3,7),(7,10), (10, 11), (11, 12), (12, 14), (14, 17)},

o w? = “antiguos ciudadanos que en Castilla se llamaban”,
¢3={0,1),(1,5),(5,7), (7,10), (10, 13), (13, 15), (15, 18)},
¢4 =1{(0, 1), (1,3),(3,7), (7, 10), (10, 13), (13, 15), (15, 18)},

o w® = “antiguos ciudadanos que en Castilla su llamada”,
¢s ={0, 1), (1,5),(5,7), (7,10), (10, 13), (13, 16), (16, 19)},
¢ ={(0, 1), (1,3), 3,7), (7, 10), (10, 13), (13, 16), (16, 19)},

o w® = “antiguos cuidadores quien el Castillo sus llamadas”,
¢7={(0,1),(1,4),(4,9), 9, 11), (11,12), (12, 14), (14, I'))},

o w = “antiguos cuidadores que en el Castillo sus llamadas”,
¢ ={(0, 1), (1,4), (4,7),(7,10), (10, 11), (11, 12), (12, 14), (14, 17)},

o w® = “antiguos cuidadores que en Castilla se llamaban”,
¢ =1{(0,1),(1,4), 4,7),(7,10), (10, 13), (13, 15), (15, 18)},

o w7 = “antiguos cuidadores que en Castilla su llamada”,
¢10=1{(0, 1), (1,4), 4,7), (7, 10), (10, 13), (13, 16), (16, 19)},

o w® = “antiguas ciudadanas fue en el Castillo sus llamadas”,
¢11 ={(0,2),(2,6), (6,8), (8,10, (10, 11), (11, 12), (12, 14), (14, 17)},

o w® = “antiguas ciudadanas fue en Castilla se llamaban”,
#12=1{(0,2),(2,6), (6, 8), (8, 10), (10, 13), (13, 15), (15, 18)},

o w10 = “antiguas ciudadanas fue en Castilla su llamada”,
¢13=1{(0,2),(2,6), (6, 8), (8, 10), (10, 13), (13, 16), (16, 19)},

and their probabilities are

P(w) = P($1) + P(¢2) =0.01240.005=0.017, P(w'®) = P(¢9) =0.014,

P(w®) = P(¢3) + P(¢s) = 0.016 +0.007 = 0.023, P (w'”) = P(¢10) = 0.003,
P(w®) = P(¢s) + P(¢6) =0.004 +0.002=0.006, P(w®) = P(¢11) =0.008,
P(w®) = P(¢7) =0.009, P(w®) = P(¢12) =0.011,
P(w®) = P(gg) =0.010, P(w1) = P(¢13) =0.003.

Finally, the word sequence with the greatest probability is w® for both the ex-
act approach (P(w®) = 0.023) and the approximated by the Viterbi algorithm
(P(0®)=0.016).

Throughout the interactive transcription process, when the user validates a prefix,
the system uses this WG in order to complete this validated prefix following the
already above-explained WG search phases. For example, given the prefix “antiguos
ciudadanos”, on the first phase, the decoder parses this prefix over the WG finding
the set of nodes Q ), = {3, 5}, which correspond to paths from the initial node whose
associated word sequence is “antiguos ciudadanos”. Then, the decoder continues
searching for the suffix s that maximizes the posterior probability from any of the
nodes in Q. In this example, the suffix that maximizes the posterior probability is
§ =“que en Castilla se llamaban”.
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2.6 Assessment Measures

As was commented in Sect. 1.4.6, the corpus-based assessment paradigm could be
still applicable to IPR tasks. Although recognition errors are meaningless in IPR (as
the user will ensure that no errors will be produced), the correct labeling for each
object can be used to determine how many interaction steps are needed to produce a
correct hypothesis. In the case of interactive transcription systems, the effort needed
by a human transcriber to produce correct transcriptions is estimated by the Word
Stroke Ratio (WSR), which can be computed using the reference transcriptions. Af-
ter each recognized hypothesis, the longest common prefix between the hypothesis
and the reference is obtained and the first unmatching word from the hypothesis is
replaced by the corresponding reference word. This process is iterated until a full
match with the reference is achieved. Therefore, the WSR can be defined as the
number of (word level) user interactions that are necessary to achieve the reference
transcription of the text image considered, divided by the total number of reference
words.

On the other hand, the quality of non-interactive transcriptions can be properly
assessed with the well-known Word Error Rate (WER). It is defined as the minimum
number of words that need to be substituted, deleted or inserted to convert a sentence
recognized by the system into the corresponding reference transcription, divided by
the total number of reference words. The WER is a good estimate of post-editing
user effort.

These definitions make WER and WSR comparable. Moreover, the relative dif-
ference between them gives us a good estimate of the reduction in human effort that
can be achieved by using an interactive transcription system with respect to using a
conventional transcription system followed by human post-editing. This estimated
effort reduction will be denoted hereafter as “EFR”.

Another measure for assessing non-interactive transcriptions is the well-known
Sentence Error Rate (SER), also called string error, defined as the number of sen-
tences that have at least one misrecognized word. Because of SER is really stricter
than WER, it is not used at all in transcription evaluation, mainly because it does
not reflect the effort needed to correct all the misrecognized words within sentences.
However, it is rather widely used in speech recognition (Chap. 4), machine transla-
tion (Chaps. 4 and 7) and interactive text generation (Chap. 10).
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Grounded in the interactive—predictive transcription framework drawn in the pre-
vious chapter, an interactive approach for efficient transcription of handwritten
text images, along with its more ergonomic and multimodal variants are pre-
sented. All these approaches, rather than full automation, aim at assisting the ex-
pert in the proper transcription process in an efficient way. In this sense, an in-
teractive scenario is stated, where both automatic handwriting recognition system
and human transcriber (user) cooperate to produce the final transcription of text-
images.

Additionally, an explanation of both basic off- and on-line HTR systems used
embedded in the CATTTI approaches is given in some detail. This focusing mainly
on the preprocessing, feature extraction and on specific aspects of the modeling
and decoding-searching process, which complement the ones already introduced in
Sect. 2.2.

Moreover, in this chapter, it will be shown how user-interaction feedback di-
rectly allows us to improve system accuracy, while multimodality increases system
ergonomics and user acceptability. Multimodal interaction is approached in such a
way that both the main and the feedback data streams help each-other to optimize
overall performance and usability. All these are supported by experimental results
obtained on three cursive handwritten tasks suggesting that, using these approaches,
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considerable amounts of user effort can be saved with respect to both pure manual
work and non-interactive, post-editing processing.

3.1 Computer Assisted Transcription of Text Images: CATTI

So far, the interactive transcription framework, search approaches and assessment
measures presented in Sects. 2.3, 2.5 and 2.6, respectively, can be straightforwardly
applied to the transcription task of handwritten documents. The application per-
forming this kind of task, resulting from applying all the before-mentioned con-
cepts, shall be called from now on Computer Assisted Transcription of Text Images
(CATTI) [28, 30].

The CATTI application involves an interactive scenario, where both automatic
handwritten text recognition system (HTR) and human transcriber (which hence-
forth will be referred to as the user) cooperate together to produce the final tran-
scription of text-images. During the CATTI process, the user is directly involved in
the transcription process since he/she is responsible of validating and/or correcting
the HTR output. As illustrated in Fig. 3.1, and following the left-fo-right protocol
for interactive transcription laid down in Sect. 2.3, the process starts when the HTR
system proposes a full transcription § (or a set of n-best transcriptions) of a given
feature vector sequence x, representing a handwritten text line image.! Then, the
user reads this transcription until he or she finds a mistake; i.e, he or she validates
a prefix p’ of the transcription which is error-free. Now, the user can enter some
keystrokes (letters or whole-words), k, to correct the erroneous text that follows
the validated prefix. This action produces a new prefix p (the previously validated
prefix, p’ followed by «). Taking into account this new prefix p, the HTR system
suggests a suitable continuation (or a set of the best possible continuations) to this
prefix (i.e., a new &), thereby starting a new cycle. This process is repeated until a
correct, full transcription 7 of x is accepted by the user. A key point of this interac-
tive process is that, at each user-system iteration, the system can take advantage of
the prefix validated so far to attempt to improve prediction.

The example shown in Fig. 3.1 illustrates how a 67% estimated effort reduction
(EFR) is achieved (cf. Sect. 2.6). It is worth nothing that in this example the non-
interactive post-editing operation would have required the user to correct six errors
from the original recognized hypothesis whereas with the interaction feedback, only
two user-corrections (the red color text in the final transcription T') are necessary to
get the final error-free transcription. In spite of Fig. 3.1, which shows an example
of interaction-correction at character level, only whole-word correction interactions
will be considered in this chapter for the reasons already commented in Sect. 2.3,

Next section is mostly devoted to explain the implementation details of the search
techniques based on word-graphs, employed to solve the optimization problem set

!For simplicity henceforward, we will refer x directly as the input handwritten text image.
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s=w | opposite this Comment Bill inthat thought
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STEP-1 | « ed
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3 the Government Bill inthat thought
P opposed the Government Bill
STEP-2 | & which
P opposed the Government Bill which
§ brought
Y opposed the Government Bill which  brought
FINAL K
p=T| opposed the Government Bill which brought

Fig. 3.1 Example of CATTI interaction to transcribe an image sentence “opposed the Government
Bill which brought”. Initially the prefix p is empty, and the system proposes a complete transcrip-
tion § = w (as happens in the normal non-interactive HTR) of the input x. In each interaction
step the user reads this transcription, accepting a prefix p’ of it. Then, he or she types in some
keystrokes, «, to correct some words of the transcription provided by the system, thereby generat-
ing a new prefix p (the accepted one p’ plus the text k added by the user). At this point, the system
suggests a suitable continuation § of this prefix p and this process is repeated until a complete and
correct transcription of the input image is reached. In the final transcription, 7', the user-typed text
is typeset in different font and red color. In this example the correct transcription has six words
and the initial hypothesis, w, has six errors. Therefore, the estimated post-editing effort (WER) is
100%, while in the corresponding interactive estimate (WSR) is 33%, since only two (word) cor-
rections are needed. This results in an estimated effort reduction (EFR) of 100 — 33/100 = 67%
(see Sect. 2.6 for definitions of WER, WSR and EFR)

up by Eq. (2.6). Section 3.3 depicts an additional interaction issue, along with the in-
volved theoretical background, which increases the performance of CATTI, mainly,
in terms of ergonomics and usability. Section 3.4 introduces and describes the multi-
modal version of CATTI. Complementing the information already given in Sect. 2.2,
a general description of the off- and on-line text processing systems is given in
Sect. 3.5. Application tasks, experimental data and reported results are finally shown
in Sect. 3.6.

3.2 CATTI Search Problem

As explained in Sect. 2.5.1, the optimal solution for the search problem set up by
Eq. (2.6) is solved by using the Viterbi algorithm on the corresponding finite-state
network restricted by a special language model built by the concatenation of a linear
model (which accounts for the words of the prefix p) and a conventional n-gram
model (which models all the possible words of the suffix s). However, given that the
direct adaptation of the Viterbi algorithm leads to a computational cost that grows
quadratically with the number of words of each sentence, more efficient techniques
based on word-graphs (WG) can be used to obtain a linear cost search.
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3.2.1 Word-Graph-Based Search Approach

As was stated in Sect. 2.5.2, a WG derived from a handwriting recognition process
can be seen as a compact representation of the highest P(w | x) transcriptions of a
given text image x. Moreover, the probability of a given WG edge p(e) is defined by
Eq. (2.13). Here, in order to avoid the numeric underflow problem, mainly occurring
during repeated multiplication of probabilities, we are going to use instead log-
probabilities. With this in mind, Eq. (2.13) can be rewritten in these terms as follows:

log p(e) =log P(x)}) | | @(e)) +log P(w(e)). (3.1)

Similarly, as was pointed out at the end of Sect. 2.2, in order to balance the absolute
values of these both (log-) probability terms, they are weighted by the so-called
grammar scale factor (GSF) «, and the word insertion penalty (WIP) B (see [16]).
Hence, the final resulting score of each edge is then computed as

¢(e) =log P(xI]), | w(e)) + alog P(w(e)) + . (3.2)

Note that Egs. (3.1) and (3.2) become identical far « = 1 and 8 = 0.

During the CATTI process, the two step search approach previously explained in
Sect. 2.5.2 is performed on the above-defined WG in order to complete the prefixes
accepted by the user. That is, the decoder first parses the validated prefix p, defining
in this way a set of path end nodes Q) (cf. Sect. 2.5.2), and then, the most likely
transcription suffix departing from any of the nodes in Q, is obtained.

3.2.2 Word Graph Error-Correcting Parsing

As already commented, a WG is a compact representation of a large subset of
the highest possible likely transcriptions for a given input handwritten text image,
whose number depends mainly of the WG density. Hence, it may happen that some
prefixes given by the user cannot be exactly found in the WG. The solution is not
to use p, but using the prefix p from all the possible prefixes on the WG that best
matches p. This prefix p (that best matches the validated prefix p) can be consid-
ered as a hidden variable, so departing from Eq. (2.4), the problem of searching the
most likely suffix § given p can be formulated as

§ = argmaxPr(s | x, p)
S

~ argmax P(s | x, p)
)

= arg max P(s,plx,p)
er 2,,: plx.p
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= arg max E Px|p,p,s) P(p,s|p)
N ~
p

=argmax Y P(x | p,p.s) P(s | p,p)- P(F|p)
N ~

=argmaxy Y P(x,q|p,p,8)-P(s|p.p)-P(Flp).  (33)
ps p q€0p

We can make the naive assumption that P(x,q | p, p,s) and P(s | p, p) do not
depend of p given p, to rewrite Eq. (3.3) as

§%argmaxz E P(x,q|p,s)-P(s|p)-P(plp) (3.4)
N ~
P q9€Qjp

and following similar assumptions made on Eq. (2.6), previous equation can be
rewritten as

§ A arg max max max P(x{1p)-P(xM i 15) P(s|1p)-P(5Ip) (35)
N P P

where P(p | p) models the similarity distribution probability between p and p.
Moreover, P(p | p) can be modeled in terms of probabilistic error correcting pars-
ing. To do so, firstly we add to each original WG edge e, a set of extra edges rep-
resenting different editing operations [1]. In Fig. 3.2, it is shown an example of
all the added new edges between two adjacent nodes i and j. The probabilities of
the added edges are considered to be proportional to exp~¢@(©-?) where V is a
task vocabulary (cf. Sect. 1.5.1), v € VU {1} and d(, -) is the Levenshtein distance
between w(e) and v. As was seen in Sect. 1.5.1, an edge has been defined by its
start and end nodes. However, this is not longer possible due to the fact that now
there is more than one edge between two adjacent nodes. For this reason, each edge
must now be defined by its start and end nodes, and a word label related with this
edge: ¢ = (i, j, v). Using log-probabilities, the score of the different edges can be

Fig. 3.2 Example of edges added between two adjacent nodes i and j of a WG for probabilistic er-
ror correcting parsing. The edge labeled with the word w (e) is the original edge and corresponds to
the operation of substitution of word w (e) with itself. The group of edges labeled with V — {w(e)}
represents the substitution of w(e) with any other word in the vocabulary excepting w(e). The
edge labeled with A (empty symbol) models a deletion operation, whereas the last group V models
insertion operations, involving an edge for each word in the vocabulary from the state i to itself
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reformulated as

log P(x;(),y |@(e)) + alog P (e)) + B — yd(w(e),v), i),
ﬁ_yd()"vv)v l:]7
(3.6)

@@, j,v) =

where e is the original edge between the nodes i and j, and y is a penalization
factor applied to control the number of different characters between w(e) and v.
The y value should be greater than 0 because, otherwise, we would be encouraging
WG paths, whose corresponding associated word-label sequences are more differ-
ent from the given prefix’s one. Note further that, if w(e) = v, then the number of
different characters will be 0 and therefore Egs. (3.6) and (3.2) become identical.
This heuristic can be implemented using dynamic programming and it can be
further improved by visiting the WG nodes in topological order [1], and by incorpo-
rating beam search techniques [12] to discard those nodes whose scores are worse
than the best score at the current stage of the parsing. Moreover, given the incremen-
tal nature of p, the error-correcting algorithm takes advantage of this peculiarity to
parse only the new appended words of p provided by the user in the last interaction.

3.3 Increasing Interaction Ergonomics in CATTI: PA-CATTI

In CATTI application, user is repeatedly interacting with transcription process, thus
trying to make this interaction process easier is really crucial for the success of such
application.

Section 3.1 describes the CATTI process in which the user, before typing a new
word in order to correct progressively a given hypothesis, needs first to position
the cursor in the place where he or she wants to type such word. This is done by
performing what, from now on, we will call Pointer Action (PA), which involves
any kind of pointer-device like a typical mouse for example. By doing so, the user is
already providing some very useful information to the system: he/she is validating
a prefix up to the position where he placed the cursor, and, additionally, is signaling
that the following word located after the cursor is incorrect. Hence, the system can
already capture this fact and directly propose a new suitable suffix in which its first
word is different from the first one in the previous suffix. This way, many explicit
user corrections are avoided.

In Fig. 3.3 we can see an example of the CATTI process with the new interac-
tion mode, which will be referred henceforth as PA-CATTI. As in the conventional
CATTI, the process starts when the HTR system proposes a full transcription § = W
of the input image x. Then, the user reads this prediction until a transcription error
is found (denoted in this case by v) and makes a PA to position the cursor at this
point. This way, the user validates an error-free transcription prefix p’. Now, before
the user introduces a word to correct the erroneous one (as happens with the con-
ventional CATTI), the HTR system, taking into account this validated prefix and the
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Fig. 3.3 Example of CATTI operation with pointer actions (PA). Starting with an initial recog-
nized hypothesis § = 0, the user validates through a PA its longest well-recognized prefix p’,
which is used then by the system to suggest a new recognized hypothesis §. In case the first word
of § is also incorrect (see interaction 1), the user types the correct word « (as in conventional
CATTI process), generating a new consolidated prefix p (p’ concatenated to «), used later by the
system to suggest a new hypothesis § starting again a new cycle. On the other hand, in case the
word following to p’ has been corrected in the new suggested hypothesis s (see interaction 2),
no further corrective actions are required and the system start a new cycle. This whole process is
repeated until the final error-free transcription T is obtained. In this final transcription, words in
red color represent those which were corrected by user. Note that in the iteration 1, an unsuccessful
PA was performed followed by the necessary typing of the correct word “opposite”, whereas in
the iteration 2, the performed PA was successful in predicting the correct word “which” and also
the final full correct transcription is obtained

wrong word (v) that follows it, suggests a suitable continuation (i.e., a new §). If the
wrong word v appears corrected in this new §, then a new cycle starts. Otherwise,
as in the conventional CATTI, the user proceeds to correct it by directly typing the
correct word, k, producing a new consolidated prefix p (the previously validated
prefix p’ followed by «) which is used by the HTR system to suggest a new suffix
and a new cycle starts again. This process is repeated until a correct transcription of
x is accepted by the user.

In the example shown in Fig. 3.3, without interaction, a user should have to cor-
rect about six errors from the original recognized hypothesis w. If the conventional
CATTI were used, two word corrections would have had to be performed. However
in this new PA-based interaction, which somehow tries to anticipate the possible
corrections that should be carried out by the user in the conventional CATTI con-
text, just one user-correction is required to get the final error-free transcription. Note
that in the iteration 1, the performed single PA is unsuccessful and the correct word
is finally typed.

This new kind of interaction needs not be restricted to a single PA. Several scenar-
ios arise, depending on the number of times the user performs a PA. In the simplest
one, the user only makes one PA (i.e. single PA) when it is necessary to displace the
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cursor. In this case, the PA does not involve any extra human effort, because it is also
the same action that the user should make in the conventional CATTI to position the
cursor before typing the correct word. Another interesting scenario to be considered
consists in performing systematically a PA before writing, although the cursor is
already in the correct position. In this case, however, there is a cost associated to
this kind of PAs, since the user does need to perform additional actions, which may
or may not be beneficial. Finally, this last scenario can be easily extended, allowing
the user to make several PAs before deciding to write the correct word.

Since we have already dealt with the problem of finding a suitable suffix § for
a given consolidated prefix p (p’ plus «), we focus now on the problem in which
the user only performs a single PA. In this case, in order to search for the best
transcription suffix §, the decoder has to cope with the input image x, the validated
prefix p’ and its following wrong word v:

§ =argmaxPr(s | x, p/,v) ~argmax P(x | p/,s,v) - P(s | p/,v). (3.7)
s N

PA-CATTI interaction falls within what was described in Sect. 1.4.4: Interaction
with Weaker Feedback where Eq. (1.34) is close related with Eq. (3.7), with &, d and
h instantiated, respectively, by p’, v and s. Concerning the first term of Eq. (3.7),
P(x | p',s,v), can be modeled following similar assumptions and developments
made for Eq. (2.6) (cf. Sect. 2.3). On the other hand, P(s | p’, v) can be provided by
a language model constrained by the validated prefix p’ and by the erroneous word
v that follows it.

With respect to the scenario which allows the user to perform several PAs before
deciding to write the correct word, the successive corresponding values of v must
be cached and P(s | p’, v) must be computed taking into account all the previously
discarded values of v (not just the one from the previous step).

3.3.1 Language Model and Search

P(s | p’,v) can be approached by adapting an n-gram language model so as to
cope with the validated prefix p’ and with the erroneous word v that follows it.
The language model described in Sect. 2.4 would provide a direct way to model
the probability P(s | p), but as in addition we have to take into account that the
first word of s is conditioned by v, some extra considerations are needed to model
adequately P(s | p/, v).

Let p' = w’l‘ be a validated prefix and s = wf( 41 be a possible suffix, consider-
ing that the wrong-recognized word v only affects the first word of the suffix wy41.
Then, after following similar procedure to obtain Eq. (2.8), P(s | p’, v) can be com-
puted as

k+n—1 1

P(s|p'v) = P(wirt [ wipyov) - [T Plwilwil) - JT Plwilw,,,)
i=k+2 i=k+n
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n—1 I—k
= P(Sl | p/lli—n-&-Z’ U) : l_[ P(sj | p/i—n-i-l-i-j’sf_l) ' 1_[ P(SJ |s;:rlz+1)
Jj=2 j=n

(3.8)

where p”f = wlf = p’ and sifk = wf( 41 = 5. Now, taking into account that the first

word s of the possible suffix has to be different from the erroneous word v, P(sy |
P ],z_n 12, V) can be formulated as follows:

0, S| =0,

k
P(Sl | P/k—n+2, U) = P(S1|p/£,n+2) 51 75 v (39)
1=PQIp' 40 ’

As in the conventional CATTI, the search problem involved by Eq. (3.7) can be
solved by building a special language model, where the “suffix language model” of
the Eq. (3.8) is modified in accordance with Eq. (3.9). Thanks to the finite-nature
of this special language model, the search involved in Eq. (3.7) can be carried out
using the Viterbi algorithm.

Due to the nature of PA-CATTTI approach, where the system must react immedi-
ately by emitting a new suggested suffix after each pointer action performed by the
user, the response speed becomes a very crucial factor to be taking into account. For
this reason, search implementation based on WG technique results the more conve-
nient solution. The restriction entailed by Eq. (3.9) can be easily implemented by
directly deleting the WG edge labeled with v after the prefix has been matched. An
example of this is shown in Fig. 3.4, where we have assumed that the user validated
the prefix “antiguos ciudadanos que en” and the wrong-recognized word
was “el”. Hence, the WG has the edge labeled with “el” disabled.

quien
cuidadores

llamadas

antiguos

.

PO Skt
S 2 Castillo™ llamaban

4 (%) O

antiguas se
@—Y Castilla su
ciudadanas fue @
llamada

Fig. 3.4 Example of the WG generated after the user validates the prefix “antiguos
ciudadanos que en” (represented by thicker-edges path). The edge corresponding to the
wrong-recognized word “el” was disabled (dashed-line path)
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Fig. 3.5 Top: illustrations of CATTI multimodal user-interaction using keyboard and electron-
ic-pen, respectively, on a touch-screen device. Bottom: page fragment showing a line image being
processed, with a partially corrected system suggestion (in grey and black roman font) and the
(previous) corrections made by the user through pen strokes and handwriting input marked in bold
red

3.4 Multimodal Computer Assisted Transcription of Text
Images: MM-CATTI

As was described in the CATTI approach (see Sect. 3.1), the user is recurrently in-
teracting with the system in order to produce the final required transcription. Hence,
the quality and ergonomics of the interaction process is crucial for the success of the
system. Traditional peripherals like keyboard and mouse can be used to unambigu-
ously provide the feedback associated with the validations and/or corrections of the
successive system predictions. In this sense, in the previous Sect. 3.3, it has been
shown, based on the concept of what we have called PA, how the use of pointer-
devices like (for example) a mouse can foster the CATTI interaction process to
easily provide such a corrective feedback.

Nevertheless, using more ergonomic multimodal interfaces should result in an
easier and more comfortable human-machine interaction, at the expense of the feed-
back being less deterministic to the system. Different possibilities can be explored:
gaze and gesture tracking, spoken commands, etc. Here we will focus on fouch-
screen communication, which is perhaps the most natural modality to provide the
required feedback in CATTI systems. Figure 3.5 (top) shows a user interacting with
a CATTI system using the keyboard and another one interacting by means of a
touch-screen. Both the original image and the successive off-line HTR system’s tran-
scription hypotheses can be easily aligned and jointly displayed on the touchscreen,
as shown in Fig. 3.5 (bottom).

More formally speaking, let x be the input image and s’ a suffix suggested by
the system as continuation of a consolidated prefix p in the previous interaction
step (see Fig. 3.6). Hence, ps’ constitutes a whole recognized hypothesis. Let ¢
be the on-line touchscreen pen strokes provided by the user, which are sequences
of real-valued vectors as described in Sect. 3.5.2. Let also p’ be the longest error-
free prefix validated by the user on the recognized hypothesis ps’, thereby resulting
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that ps’ = p’o, where o corresponds to the remaining word sequence whose first
word(s) was/were incorrectly recognized. Actually, the validated prefix p’ is implic-
itly stated when the user performs some pen strokes ¢ aiming at correcting the first
wrong word in ps’ or, what is the same, the first word of o. Moreover, the user may
additionally type some keystrokes («) on the keyboard in order to correct (other)
parts of this o and/or to add more text. Using this information, the system has to
suggest a new suffix s for the next interaction, as a continuation of the user-validated
prefix p’, conditioned by the on-line touchscreen pen-strokes ¢ and the typed text «.
That is, the problem is to find s given x and a feedback information composed of
p'o, t and k, considering all possible decodings, d, of the on-line data ¢ (i.e., let-
ting d be a hidden variable). After some mathematical formulation development,
this general set-up scenario can be seen as an instantiation of the problem already
formulated in Eq. (1.27), where the (p’, o) and (¢, k) correspond with 7’ and f,
respectively:

S %argmaxmij(t |d)-Pd|p,o0) - P(x|p,o,d«,s) P(s|p,o,dx).
S
(3.10)

According to this very general discussion, it might be assumed that the user can
type with independence of the result of the on-line handwritten decoding process.
However, it can be argued that this generality is not realistically useful in practical
situations. Alternatively, it is much more natural that the user waits for a specific
system outcome (cf) from the on-line touchscreen feedback data (¢), prior to start
typing amendments (k) to the (remaining part of the previous) system hypothesis.
Furthermore, this allows the user to fix possible on-line handwritten recognition
errors in d.

For this more pragmatic and simpler scenario, following a similar approach pre-
sented in Sect. 1.3.5, each interaction step can be formulated in two phases. In the
first one, the user produces some (may be null) on-line touchscreen data ¢ (to correct
part of o) and the system has to decode ¢ into a word (or word sequence) d using
the previous hypothesis p'o:

d=argmax P(t |d)- Pd | p',0). (3.11)

d
Once d is available, the user can enter adequate amendment keystrokes «, if nec-
essary, and produce a new consolidated prefix p (based on the validated prefix p/,

the first incorrectly recognized words of o, d and k), which leads to the following
expression, identical to Eq. (2.4):

§~argmax P(x | p/,o,d,k,s)- P(s | p',o,d, k)
N

=argmax P(x | p,s)- P(s | p). (3.12)

The process continues in this way until p is accepted by the user as a full correct
transcription of x.
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Fig. 3.6 Example of MM-CATTI interaction with a CATTI system, to transcribe an image sen-
tence “opposed the Government Bill which brought”. Each interaction step starts with a transcrip-
tion prefix p that has been consolidated in the previous step. First, the system suggests a suffix §
and the user handwrites some touchscreen text, ¢, to amend s. This action also validates a correct
prefix p’ (and a remaining word sequence o starting with the first wrong recognized word of §),
which can be used by the on-line HTR subsystem to obtain a decoding of ¢. After observing this
decoding, d, the user may type additional keystrokes, «, to correct possible errors in d (and perhaps
to amend other parts of §). A new consolidated prefix, p, is built from the previous correct prefix
p’, the decoded on-line handwritten text, d, and the typed text x. System suggestions are printed
in boldface and typed text in typewriter font. User corrections are shown in different font and red
color. In the final transcription, 7', typed text is additionally underlined. Assuming all interactions
as whole-word corrections, the post-editing WER would be 100% (5 substitutions plus one inser-
tion out of 6 correct words), while the MM-CATTI WSR is 50%; i.e., 2 touch-screen + 1 keyboard
word corrections (see definitions of WER and WSR in Sect. 2.6)

An example of this kind of inter-leaved off-line image recognition and on-line
touchscreen interaction is shown in Fig. 3.6. In this example, we are assuming that
on-line handwriting is the modality preferred by the user to make corrections, re-
laying on the keyboard mainly (or only) to correct eventual on-line text decoding
errors. Note that the potential increase in comfort of this setting comes at expense
of a hopefully small number of additional interaction steps using the keyboard. In
this example the user would need three interactions using MM-CATTI, compared
with the rwo interactive corrections needed by CATTI (in Fig. 3.1) and six post-
editing corrections required by the original, off-line recognized hypothesis.

Although Fig. 3.6 may suggest otherwise, we should remind that, as mentioned
in Sect. 3.1, only whole-word interactions are considered in the present chapter.
Furthering this assumption, but without loose of generality, we consider here that,
in each interaction, the user only attempts to correct the single word o (first word
of the word sequence o); that is, d consists in a single, whole word.

Since we have already dealt with Eq. (3.12) in Sect. 2.3 (Egs. (2.4)-(2.6)), we
focus now on Eq. (3.11). As in Sect. 3.1, P(t | d) is provided by (HMM) mor-
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phological models of the word(s) in d (see Sect. 3.5.2). On the other hand, here,
P(d | p’,0) can be provided by a language model constrained by information de-
rived from the validated error-free prefix p’ and by the remaining words sequence
o produced at the previous iteration. Equation (3.11) may lead to several scenarios
depending on the assumptions and constraints adopted for P(d | p’, o). We examine
some of them hereafter.

The simplest one corresponds to a conventional, non-interactive on-line HTR
setting, where all the available conditions are ignored; i.e., P(d | p’,0) = P(d).
This scenario is considered here as a baseline.

A more informative setting arises by taking into account part of the informa-
tion derived from the previous off-line HTR prediction o. The user introduces the
touchscreen data ¢ in order to correct the first m wrong words o{" that follows the
validated prefix p’. Therefore, we can assume an error-conditioned model such as
P(d | p',0) = P(d | o"); clearly, knowing the word(s) that the user has already
deemed incorrect should prevent the on-line decoder making the same error(s).

If, in addition to o}", the information derived by the accepted prefix p’ is also
taken into account, a particularly useful scenario arises. In this case the decodings
of ¢ are further constrained to be suitable continuations of the prefix accepted; that
is: P(d| p',0) = P(d| p',of") and Eq. (3.11) becomes

d~argmax P(t |d)- P(d | p',of"). (3.13)
d

This multimodal model, referred to as MM-CATTI [29, 30], is the one studied in
more detail in this chapter.

3.4.1 Language Model and Search for MM-CATTI

Language modeling and search techniques needed for the on-line HTR feedback
subsystem in MM-CATTI are essentially similar to those described in Sect. 2.4 for
the main, off-line HTR system. Language model constraints are implemented on the
base of n-grams, depending on each multimodal scenario considered.

The simplest baseline scenario does not take into account any interaction-derived
information and P(d) could be provided by the same n-gram used for the off-line
decoder. However, if only single whole-word touchscreen corrections are assumed,
as discussed in the previous subsection, only uni-grams actually make sense.

The whole-word assumption also simplifies the error-conditioned model,
P(d | o{"), because only the first (wrong) word of o is to be taken into account.
Let v = o1 be this wrong word. Therefore the error-conditioned language model
probability can be written as

0, d=v,
P(d|v)= P(d) d (3.14)
—pw) 47V
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Original bi-gram Model (L) Conditioned bi-gram Model (L)

Fig. 3.7 Example of MM-CATTI dynamic bi-gram language model generation. L is the origi-
nal bi-gram model used by off-line HTR system, whereas L, is the bi-gram sub-model, derived
from L, which takes as initial state that corresponding to the prefix “the”. This simplified lan-
guage model is used by the on-line HTR subsystem to recognize the touchscreen handwritten
word “brought”, intended to replace the wrong off-line recognized word “thought”, which
was disabled in L, (displayed in dashed line)

Finally, in MM-CATTI the language model probability is approximated by P (d |
p’,v). That is, the on-line HTR subsystem should produce a hypothesis d for the
touchscreen strokes ¢, taking into account a user-validated prefix, p’, and the first
wrong word, v = o1, in the off-line HTR suggestion. In this case, arguments similar
to those in Sect. 3.3.1 apply and, under the same single whole-word assumption, we
can use Eq. (3.9) changing s; with d, leading to

0, d=v,

PA|p.v)=1 pupt . d4v (3.15)
1=PQIp} i)’

where k is the length of p’.

A simple implementation of Eq. (3.15) is shown in Fig. 3.7, based on the same
language model example of Fig. 2.1. In this case, p’ =“of the” and the user wants
to correct the wrong off-line recognized word “thought”, by handwriting the word
“brought” (for example) on the touchscreen. The on-line HTR subsystem uses a
bi-gram model, conditioned by the context word “the” (which is now the initial
state) and the word transition edge “thought” is disabled.

As shown in the example, and unlike it happened in CATTI (cf. Fig 2.1), the lin-
ear language model of the prefix p’ is no longer required, because the corresponding
on-line touchscreen data of the prefix p’ do no exist in this case. Moreover, as we
are assuming only single whole-word corrections, only the direct transitions from
the starting node (the “the” node in the example) need be considered.
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As in CATTI searching (Sect. 3.2), owing to the finite-state nature of the n-gram
language model, the search involved in Egs. (3.13) and (3.15) can be efficiently car-
ried out using the Viterbi algorithm [10]. Note that under the assumption of just one
whole-word correction per interaction, Viterbi search implementation is the only
choice that makes sense for the on-line HTR feedback decoding. Moreover, and as
in CATTI, decoding search in MM-CATTI (specially decoding related to Eq. (3.12))
can be implemented using one of the two different approximations presented in
Sect. 2.5. The on-line decoding phase (Eq. (3.13)) may also be implemented using
WaGs, particularly for the case we decide that it is possible to write/correct more
than one word with the e-pen touchscreen.

3.5 Non-interactive HTR Systems

This section is devoted to describe in more detail the HTR systems employed for
both the off-line and the on-line versions. In particular, it will be shed more light on
the preprocessing and feature extraction phases carried out for each HTR version,
along with additional specific information related to the modelling topic itself used
in each case.

3.5.1 Main Off-Line HTR System Overview

The off-line HTR system used here follows a classical architecture composed of
three modules: (a) preprocessing, aimed at correcting image degradations and ge-
ometry distortions, and dedicated to decompose page images into their constituent
line images; (b) feature extraction, where a real-value vector sequence representa-
tion of each line image is obtained; and (c) recognition, which obtains a most likely
word sequence for the given input sequence of feature vectors. The following sub-
sections describe the three modules in some detail.

Off-Line HTR Preprocessing

Image degradation is a quite common problem in many text images and more so
in ancient documents [6]. Typical degradations include the presence of smear and
skew, backgrounds with big variations and uneven illumination, spots due to the hu-
midity or marks resulting from the ink that goes through the paper (commonly called
bleed-through). In addition, other kinds of difficulties appear in these images, such
as different character styles and sizes, underlined and/or crossed-out words, etc. The
combination of these problems contributes to make the recognition process difficult.
Therefore, preprocessing becomes essential to reduce the impact of these problems,
as well as to extract the actual (line) images of the text to be recognized. A survey
of preprocessing techniques proposed for text images can be seen in [17, 21]. In this
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Fig. 3.8 Preprocessing example: (a) original page image; (b) result after page skew correction,
background removal, noise reduction and increase of contrast

work, the following preprocessing steps take place in order: background removal
and noise reduction, skew correction, line extraction, slope-slant correction and size
normalization.

Background removal and noise reduction are performed by applying a 2-
dimensional median filter [5, p. 540] on the whole page image and subtracting the
result from the original image. This is often followed by a grey-level normalization
to increase the foreground/background image contrast (see Figs. 3.8a and 3.8b).

Skew is one of the distortions introduced during document scanning process. It is
understood as the angle of the document paper image with respect to the horizontal
x-axis. Skew correction is carried out globally on each page image by searching
for the angle which maximizes the variance of the horizontal projection profile.
It is assumed here that this maximal variance value should correspond with the
horizontal projection profile of the de-skewed text lines [19, 26] (see again Figs. 3.8a
and 3.8b).

Line detection is based again on the horizontal projection profile of the opti-
mally de-skewed input image. Local minima in this curve are potential cut-points
between consecutive text lines (see Fig. 3.9a). Obviously, clear separation is not al-
ways possible and cut-points detection needs to be adequately combined with con-
nected components techniques [14]. Figure 3.9b shows some line images obtained
with this method.
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Fig. 3.9 Preprocessing example: (a) image with cutting lines computed from the horizontal pro-
jection profile; (b) separated line images from the highlighted region; (c¢) a separated line image;
(d) slant correction; (e) size normalization

The slant is the angle between the vertical and the dominant direction of the
written vertical strokes. Slant correction is applied to each previously separated line
image. Much in the same way as in the case of line detection, the slant is computed
by searching for the angle which maximizes the variance of the vertical projection
profile of the de-slanted text [19]. This tends to render the written text strokes in
an upright position (see Fig. 3.9d) and significantly improves the accuracy of the
HMM recognition techniques.

The slope is the angle between the direction of the line on which the writer
aligned the words on a text line and the horizontal direction. The slope correction
processes an original image to put the text line into horizontal position by applying
a rotation operation with the same slope angle, but in the opposite direction. To ob-
tain the angle we use a method based on horizontal projections, very similar to the
method used on the skew correction operation.
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Finally, (non-linear) size normalization aims at making the optimally de-slanted
line images invariant to character size and attempts to reduce large areas of back-
ground pixels which remain on the image because of the presence of long ascenders
and descenders of some letters [23] (see Fig. 3.9¢).

Off-Line HTR Feature Extraction

As our HTR system is based on HMMs, each preprocessed text line image has to be
represented as a sequence of feature vectors. Several approaches have been proposed
to obtain this kind of sequences [2, 3, 14]. The approach used in this chapter follows
the ideas described in [2].

First, a grid is applied to divide the text line image into N x M rectangular
cells. N is chosen empirically, whereas M is such that M /N is proportional to
the original text line image aspect ratio, with a proportionality coefficient tuned
empirically. Each cell of the grid is characterized by three features: average gray
level, horizontal gray level derivative and vertical gray level derivative [26], which
are computed from a n x m pixels analysis window, S, centered in that cell. The size
of the analysis window (centered in a cell) is also empirically adjusted and its area
typically overlaps partially (or completely) the neighbor cell areas.

The average gray level, g, is computed through convolution with two 1-d Gaus-
sian filters, w; and w;:

B 1a=-n/2?\ 1(j —m/2)?
wi —exp< 2 (n/4)2 ), w;j _eXp<_EW) (316)

The horizontal gray level derivative, dy, is calculated as the slope of the line which
best fits the horizontal function of column-average gray level in the analysis window.
The fitting criterion is the sum of squared errors weighted by a 1-d Gaussian filter:

—1 . m—1 —1 .
O wig) (g wij) — (g w) (g wigsij)
R 1 1 .
(Zj:() wjj)* = (Zm—o wj)(ZTzo w;j?)
where g; is, in this case, the column-average gray level at column j, defined by

XS SG.))

j =

dp, = (3.17)

n

The vertical gray level derivative, d,), is computed in a similar way.

Columns of cells (also called frames) are processed from left to right and a fea-
ture vector is constructed for each frame by stacking the three features computed
in their constituent cells. Hence, at the end of this process, a sequence of M (3N)-
dimensional feature vectors is obtained. Figure 3.10 shows a graphical representa-
tion of the feature vectors sequence extracted for the word image sometimes.
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Fig. 3.10 Example of feature-vector sequence and HMM modeling of instances of the character
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m” within the word “sometimes”. The model is shared among all instances of characters of the
same class. The zones modeled by each state show graphically subsequences of feature vectors
compounded by stacking the normalized grey level and its both derivatives features

Modeling and Search

As already explained in Sect. 2.2, characters (considered in this case as the ba-
sic recognition units) are modeled by continuous density left-to-right HMMs, with
state emission probabilities given by mixtures of Gaussian densities. The number of
Gaussian densities of the mixtures as well as the number of states were empirically
chosen after tuning the system. It is also important to mention here that all the ex-
perimental results reported in Sect. 3.6.2 have been obtained using HMM topologies
with the same number of states for all the character classes. Figure 3.10 shows an
example of how a HMM models two feature vector subsequences corresponding to
the character “m”.

Concerning to the modeling of lexical entries (words) and syntactic constraints
derived from each specific task, as well as the way they are used to perform the
search decoding, have been already described in Sect. 2.2.

3.5.2 On-Line HTR Subsystem Overview

The on-line HTR subsystem is intended to decode the feedback touchscreen data
for multimodal text correction; i.e. to recognize the pen strokes (words) written by
the user in successive CATTI interactions in order to correct or replace the errors
produced by the main, off-line HTR decoder. In general, touchscreen data consist
of a series of pen-positions (x;, y;), sampled at regular time instants t = 1,2, ....
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Each sample of this frajectory can be accompanied by information about the pen
pressure, or at least by one bit indicating whether the pen is actually touching the
screen or it is “up”. In this work no pressure information is used.

The conceptual architecture adopted for the on-line HTR subsystem is analogous
to that used in the main off-line HTR system, with exception of the preprocessing
and feature extraction modules, which are explained hereafter.

On-Line HTR Preprocessing

An overview of preprocessing techniques for on-line HTR can be seen in [§8]. In
this chapter, the preprocessing of each trajectory involves only two simple steps:
repeated points elimination and noise reduction. Repeated points appear in a trajec-
tory when the pen remains down and motionless for some time. These uninformative
data are trivially removed, along with the points marked as “pen-up”. Noise in pen
strokes is due to erratic hand motion and inaccuracy of the digitalization process. To
reduce this kind of noise, a simple smoothing technique is used which replaces ev-
ery point (x;, y;) in the trajectory by the mean value of its neighbors [9]. Note that
the temporal order of the data points is preserved throughout these preprocessing
steps.

On-Line HTR Feature Extraction

Each preprocessed trajectory is transformed into a new temporal sequence of 6-
dimensional real-valued feature vectors [27]. These time-domain features are point
locations (although in this case only y coordinate is considered), first and second
time derivatives and curvature.

Normalized Vertical Position: first, the coordinate pairs of each trajectory point are
linearly scaled and translated to obtain new pairs of values (x;, y;), so that y; is in
the range [0, 100] and the original aspect-ratio of the trajectory is preserved.

Normalized First Derivatives: x, and y, are calculated using the method given
in [32]:

, Ax ;A

X =—>, V= (3.18)
LV LV
where

r

,
Axp=) i (ogi =X, Ay=Y_ iVt — Yiei):

i=1 i=

IVII =/ Axi* + Ay?,

and r defines a window of size 2r 4+ 1 which determines the neighbor points in-
volved in the computation. Setting r = 2 has provided satisfactory results in this
case.
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It is worth noting that the normalization of derivatives by || V|| implicitly entails an
effective writing speed normalization. In our experiments, this has proved to lead
to better results than using explicit speed normalization preprocessing techniques
such as trace segmentation, based on re-sampling the trajectory at equal-length
(rather than equal time) intervals [20, 31].

Second derivatives: x;' and y,’, are computed in the same way as the first deriva-
tives, but using x; and y; instead of x; and y;.

Curvature: k;, is the inverse of the local radius of the trajectory in each point. It is
calculated as

/ 4 4 !/
X Ve =X W

2, 230
Xy

Although this feature is an explicit combination of the previous features, it has lead
to slightly but consistently improved results in our experiments.

k= (3.19)

Character, Word and Language Modeling and Search

Modeling and search for on-line recognition follow almost the same schemes used
in off-line recognition, described in Sect. 3.5.1.

As in the off-line case, we use continuous density left-to-right character HMMs
with Gaussian densities assigned to each state mixture. However, instead of using
a fixed number of states for all HMMs, it is variable for each character class. The
number of states s, chosen for each HMM character class M. was computed as
sc =1./f, where [. is the average length of the sequences of feature vectors used
to train M., and f is a design parameter measuring the average number of feature
vectors modeled per state (state load factor). This rule of setting up s, tries to bal-
ance modeling effort across states and, for our task, has significantly improved the
recognition accuracy. On the other hand, lexical modeling is carried out in exactly
the same way as in the off-line HTR case.

Language modeling and search are simpler in this case because, as discussed
in Sect. 3.4.1, we have restricted our present MM-CATTI study to single whole-
word touchscreen corrections. That is, the language models used in the MM-
CATTI search only allow one word per user-interaction. As mentioned at the end
of Sect. 2.2, a GSF is also used here in practice to balance the HMM and language
model probabilities of Eq. (3.11).

3.6 Tasks, Experiments and Results

The experimental framework adopted to assess the effectiveness of the basic HTR
systems (off-line and on-line) and for the three approaches proposed in this chap-
ter: CATTI, PA-CATTI and MM-CATT]I, is described in the following subsections.
This includes information about the different corpora and performance measures
employed in the experiments as well as the obtained results.
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3.6.1 HTR Corpora

Three off-line corpora were employed in the experiments. Two of them, ODEC-
M3 [25] and TAMDB [13, 15], contain handwritten text in modern Spanish and
English, respectively. IAMDB is publicly available, thereby serving as a reference
to compare the obtained results. The third corpus, CS [24], consists of cursive hand-
written page images in old Spanish, which allow us to report results on the kind of
legacy documents.

Sentence-segmented images are used both in ODEC-M3 and IAMDB, while only
line-segmented images are available in CS. Each sentence or line image is accom-
panied by its ground truth transcription as the corresponding sequence of words.
To better focus on the essential issues of the considered problems, no punctuation
marks, diacritics, or different word capitalizations are included in the transcriptions.
These transcriptions are used to train the bi-gram language models for ODEC-M3
and CS. IAMDB, on the other hand, consists of hand-copied sentences from the
much larger electronic text LOB corpus [11] which contains about 1000 000 run-
ning words. Therefore, in this case, the whole LOB corpus (after removing all the
test sentences) was used for bi-gram training. Finally, the lexicon of each task is
defined as the set of words found in training or in test transcriptions. Such a “closed
vocabulary” scheme is commonly used in Automatic Speech Recognition [4, 10] to
ease results reproducibility.

On the other hand, to train the on-line HTR feedback subsystem and test the MM-
CATTI approach, the on-line handwriting UNIPEN corpus, which also is publicly
available, was chosen.

In the next subsections, detailed descriptions of all off-line corpora as well the
on-line corpus are given.

ODEC-M3

This corpus consists of images of casual handwritten Spanish paragraphs. It was
compiled from spontaneous answers extracted from survey forms made for a
telecommunication company.”> These answers were written by a heterogeneous
group of people, without any explicit or formal restriction. In addition, since no
guidelines were given as to the kind of pen or the writing style to be used, para-
graphs are very variable and noisy. Many of them were written using different case
and font types, variable sizes and include words which are underlined, crossed-out
or contain orthographic mistakes, unusual abbreviations, symbols, etc. Examples of
these difficulties are shown in Fig. 3.11.

Because of some of these difficulties, line extraction was carried out in a
semi-automatic way, based on a conventional line-extraction method mentioned in
Sect. 3.5.1. Most of the phrases were processed automatically, but manual supervi-
sion was applied to difficult line-overlapping cases such as that shown in Fig. 3.11

2Data kindly provided by ODEC, S.A. (www.odec.es).
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Fig. 3.11 Examples of difficulties found in several paragraphs of the ODEC-M3 Corpus

Table 3.1 Basic statistics of the database ODEC, where OOV stands for out-of-vocabulary words

Number of Training Test Total Lexicon (610)% Tr. Ratio
Writers/phrases 676 237 913 - - -

Words 12287 4084 16371 2790 518 4.4
Characters 64 666 21533 86199 80 0 808

(top-left). By adequately pasting the lines extracted from each paragraph, a single-
line (long) image which encompasses the whole paragraph was obtained. This re-
sulted in 913 binary images, which were partitioned into a training set of 676 im-
ages and a test set of 237 images. The transcriptions of all the images are also
available, containing 16371 words with a vocabulary of 2790 different words. It
is important to remark that we do not distinguish between words written in lower-
case characters or uppercase. Therefore, to train the n-gram models, the transcrip-
tion of the 676 training images were converted to uppercase and the punctuation
signs {—/;: +* ()], !?} were eliminated. The average ratio for n-gram training is
4.4 running word instances per vocabulary word. Nevertheless, to train the charac-
ter HMMs we use the transcription that describes with detail and accuracy all the
elements appearing in each handwritten text images, such as lowercase or upper-
case letters, symbols, abbreviations, spacing between words and characters, crossed-
words, etc. All this information is summarized in Table 3.1. More information on
this corpus can be found in [25].
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Fig. 3.12 Examples of handwritten lines from the IAMDB corpus

IAMDB

This corpus was compiled by the Research Group on Computer Vision and Arti-
ficial Intelligence (FKI) at Institute of Computer Science an Applied Mathematics
(IAM) in Bern (Switzerland). The IAM Handwriting Database [13, 15] (IAMDB)
consists of grey-level images of unconstrained handwritten English text forms. It
is publicly accessible and freely available upon request for non-commercial re-
search purposes.’ The IAMDB images correspond to handwritten texts copied from
the Lancaster-Oslo/Bergen Corpus [11] (LOB), which encompasses around 500
printed English texts of about 2000 words each and about 1000000 total running
words.

The TAMDB version 3.0 (the latest at this moment) is composed of 1539 scanned
text pages, handwritten by 657 different writers. No restriction was imposed on the
writing style or the type of pen to be used. This dataset is also provided at sen-
tence level. Line detection and extraction, as well as (manually) detecting sentence
boundaries, was carried out by the IAM institute [14]. Using this information, lines
could be easily merged into whole sentence line-images. Figure 3.12 shows exam-
ples of handwritten lines images from this corpus. This corpus was partitioned into
a training set composed of 2 124 sentences, handwritten by 448 different writers,
and a writer independent test set composed of 200 sentences written by 100 writers.
Table 3.2 summarizes all this information.

Note that the amount of data available for training the (n-gram) language mod-
els for this task (the whole LOB corpus) is very much larger than the amount of
data contained in the transcriptions of the available text images. Following [33],
we take advantage of this opportunity by using the whole LOB corpus (except the

3http://iamwww.unibe.ch/~fki/iamDB
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Table 3.2 Basic statistics of the database IAM, where OOV stands for out-of-vocabulary words

Number of Training Test Total Lexicon (el0)Y% Tr. Ratio
Writers 448 100 548 - - -
Sentences 2124 200 2324 - - -

Words 42832 3957 46789 8017 921 81
Characters 216774 20726 237500 78 0 2779
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Fig. 3.13 Examples of pages images from CS corpus

200 sentences of the image test set) for n-gram training, while setting a reduced
vocabulary which encompasses only the 8§ 017 different words found in the IAMDB
text images. Only 651462 running words of the LOB corpus belong to the TAMDB
vocabulary proper. Therefore, for n-gram training we have a quite good effective av-
erage ratio of 81 word instances per IAMDB vocabulary word. As in the ODEC-M3
corpus, here we do not distinguish between words written in lowercase characters
or uppercase.

CS MANUSCRIPT

This corpus was compiled from a XIX century Spanish manuscript identified as
“Cristo-Salvador” (CS), which was kindly provided by the Biblioteca Valenciana
Digital (BiVaLDi).* This is a rather small document composed of 50 color images
of text pages, written by a single writer. Some examples are shown in Fig. 3.13.
The page images were preprocessed and divided into lines, as described in
Sect. 3.5.1. The results were visually inspected and the few detection errors

“http://bv2.gva.es
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Table 3.3 Basic statistics of the partition page of the database Cristo-Salvador. OOV stands for
out-of-vocabulary words

Number of Training Test Total Lexicon ooV Tr. Ratio
Pages 53 53 53 - - -

Text lines 681 491 1172 - - -

Words 6435 4483 10918 2277 1010 2.8
Characters 36729 25487 62216 78 0 470

(around 4%) were manually corrected, resulting in a dataset of 1 172 text line im-
ages. It is worth mentioning that, unlike the two previous corpora, in this case the
extracted lines are not merged into sentence or paragraph images. The transcriptions
of these line images are also available, containing 10918 running words with a vo-
cabulary of 2277 different words. Note that as in the other two corpora, we do not
distinguish between words written in lowercase characters or uppercase.

Two different partitions, page (or “soft”’) and book (or “hard”) are defined for this
dataset [24]. Here we only consider the (easier) page partition. Its test set contains
491 samples corresponding to the last ten lines of each document page, whereas
the training set is composed of the 681 remaining lines. Table 3.3 summarizes this
information.

For n-gram training, the average ratio of running word instances per vocabulary
word is 2.8. It is important to remark that such a small ratio will certainly result in
under-trained language models, which clearly increase the difficulty of the recogni-
tion task and prevent CATTI, PA-CATTI or MM-CATTI to take much advantage of
prefix-derived constraints.

UNIPEN Corpus

The UNIPEN Train-R01/V07 dataset’ comes organized into several cate-
gories [7] such as lower- and uppercase letters, digits, symbols, isolated words and
full sentences. Unfortunately, the UNIPEN isolated words category does not contain
all (or almost none of) the required word instances to be handwritten by the user in
the MM-CATTI interaction process with the ODEC, IAMDB, or CS text images.
Therefore, they were generated by concatenating random character instances from
three UNIPEN categories: 1a (digits), 1c (lowercase letters) and 1d (symbols). Ta-
ble 3.4 shows the basic statistics of these words, needed to test the HTR feedback
subsystem for each off-line HTR task. We have just taken into account here, for each
task (corpus), all the words that the user must introduce in a standard CATTI itera-
tion process when the Viterbi-search implementation is used (cf. Sect. 2.5.1). Note
that in the case of WG-search implementation had been used, probably slightly dif-
ferent words and/or number of their instances would have been obtained. Anyway,

SFor a detailed description of this dataset, see http:/www.unipen.org.
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Table 3.4 For each off-line HTR task: number of on-line unique words and word instances needed
as feedback to correct the word errors made by the plain off-line HTR system

Task Unique words Word instances
ODEC-M3 378 753

IAMDB 510 755

CS 648 1196

Fig. 3.14d E)'(amp}lles of words Words from concatenated UNIPEN chars

generated using characters ‘
from the three selected BH P(maQ S w\ﬂ \\ e valenca canvla Poo

UNIPEN test writers (BH, k : ( . ai <
BR, BS), along with samples BR | Prendans  pun(1C Volowta CQW+O F

of the same v'vords‘ written by Bs | P/ endoS wA:(Q uarem()a C Ovﬂfo Pais
two other writers in our labs

Real word writing
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since we are interested in evaluating the feedback decoding subsystem (i.e. the on-
line HTR subsystem), only Viterbi-search implementation is going to be considered.
Even so, as we will see in Sect. 12.2, the demonstrator of MM-CATTI (MM-IHT)
is implemented using an hybrid search-decoding scheme; that is, the off-line decod-
ing phase is based on WG, whereas the feedback decoding phase relies directly on
Viterbi.

To increase realism, the generation of each of these test words was carried out
employing characters belonging to a same writer. Three different writers were ran-
domly chosen, taking care that sufficient samples of all the characters needed for
the generation of the required word instances were available from each writer. Each
character needed to generate a given word was plainly aligned along a common
word baseline, except if it had a descender, in which case the character baseline was
raised 1/3 of its height. The horizontal separation between characters was randomly
selected from one to three trajectory points. The selected writers are identified by
their name initials as BS, BH and BR. Figure 3.14 shows some examples of words
generated in this way, along with real samples of the same words written by two
writers (EV and VR).

Training data were produced in a similar way using 17 different UNIPEN writ-
ers. For each of these writers, a sample of each of the 42 symbols and digits needed
was randomly selected and one sample of each of the 1000 most frequent Span-
ish and English words was generated, resulting in 34 714 training tokens (714 iso-
lated characters plus 34000 generated words). To generate these tokens, 186881
UNIPEN character instances were used, using as many repetitions as required out
of the 17 177 unique character samples available. Table 3.5 summarizes the amount
of UNIPEN training and test data used in the experiments.
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Table 3.5 Basic statistics of the UNIPEN training and test data used in the experiments

Number of different Train Test Lexicon
Writers 17 3 -

Digits (1a) 1301 234 10
Letters (1c) 12298 2771 26
Symbols (1d) 3578 3317 32
Total characters 17177 6322 68

3.6.2 Results

The three measures (WER, WSR and EFR) adopted to assess interactive tran-
scription systems in Sect. 2.6 have been used to evaluate CATTI performance. In
addition, to assess the new interaction mode of PA-CATTI approach, it has been
introduced the so-called Pointer Action Rate (PAR). This can be defined as the
number of additional PAs per word that the user has to do using the new user in-
teraction mode. Note that the human effort needed for the verification of the tran-
scription and positioning the cursor in the appropriate place in the conventional
CATTI is the same as in the new CATTI system using single-PA interactions. In
both cases the user should read the transcription proposed by the system until he
or she finds an error and then positions the cursor in the place where the new word
has to be typed. Moreover, since only single-word corrections have been consid-
ered, the feedback decoding error rate (FER) (that is, the conventional classifica-
tion error rate) will be used to assess the accuracy of the on-line HTR feedback
subsystem under the different constraints entailed by the MM-CATTT interaction
process.

Different experiments have been carried out to assess the feasibility and potential
of CATTI, PA-CATTI and MM-CATTI. In addition, non-interactive (off- and on-
line) handwritten text recognition experiments have been performed to establish
baseline performance figures.

Baseline Off-Line HTR Results

Conventional, non-interactive off-line HTR experiments were performed on the
three off-line corpora described in Sect. 3.6.1, ODEC-M3, IAMDB and CS, us-
ing the basic system explained in Sect. 3.5.1. All the morphological (HMMs) and
language (bi-gram) models were trained from the respective training images and
transcriptions of each corpus. Although, as was noted earlier, in the training of
IAMDB bi-gram language model not only the own IAMDB transcription corpus,
but also the whole LOB corpus was used to. The HTR WER percentages obtained
for the test images of each corpus were 22.9, 25.3 and 28.5, for ODEC-M3, IAMBD
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and CS, respectively. All these results have been obtained after optimizing the pa-
rameters values corresponding to the preprocessing and the feature extraction pro-
cesses explained in Sect. 3.5.1 for each of the tasks. The WER obtained for IAMDB
(25.3%) is comparable with non-interactive, state-of-the-art results published for
this dataset [33].

Baseline On-Line HTR Results

These experiments were carried out using the basic on-line HTR subsystem ex-
plained in Sect. 3.5.2. As discussed in Sect. 3.6.1, UNIPEN data were used to assess
the performance of the on-line HTR feedback subsystem.

All the samples were preprocessed using the preprocessing and feature extraction
methods outlined in Sect. 3.5.2. In order to tune the parameters of the 68 on-line
character HMMSs needed, isolated character recognition experiments were carried
out on each of the 1a, 1c and 1d UNIPEN categories. The classification error
rates (ER) obtained for test digits, letters and symbols were 1.7%, 5.9% and 21.8%,
respectively. These results are comparable with state-of-the-art results obtained for
this dataset [18, 22].

In order to establish a word decoding baseline accuracy for the on-line HTR feed-
back subsystem, a simple word recognition experiment was carried out. The words
needed to train and test the feedback subsystem for each task were generated by
concatenating adequate UNIPEN characters. Therefore, new character HMMs were
trained from these training words, using the parameters previously tuned through
the isolated character recognition experiments. On the other hand, since only single
words are to be recognized, a uni-gram language model was trained (from the train-
ing transcriptions of each off-line task) to estimate the corresponding prior word
probabilities. The following word recognition error percentages (FER) were ob-
served for ODEC-M3, IAMDB and CS, respectively: 5.1, 4.6 and 6.4.

Note that these FER values are obtained without taking advantage of any
interaction-derived contextual information (i.e., just using plain uni-grams). There-
fore these figures represent the highest accuracies that could be expected if, e.g.,
an off-the-shelf on-line HTR system were adopted to implement the MM-CATTI
feedback decoder.

CATTI Results

The CATTI approach presented in Sect. 3.1 was applied to the three off-line HTR
tasks before-described, using the same parameter values used for the baseline, non-
interactive off-line HTR results presented earlier. Table 3.6 shows the estimated in-
teractive human effort (WSR) required for each task using the Viterbi-based imple-
mentation presented in Sect. 2.5.1, in comparison with the corresponding estimated
post-editing effort (WER) before reported in the subsection of baseline off-line HTR
results. Besides, it shows the estimated effort reduction (EFR), computed as the rel-
ative difference between WER and WSR (see Sect. 2.6).
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Table 3.6 Performance of non-interactive off-line HTR (baseline WER) and CATTI (WSR), along
with their relative difference (Estimated Effort Reduction—EFR) using the Viterbi-based search.
All results are percentages

Corpus WER WSR EFR
ODEC-M3 229 18.9 17.5
IAMDB 253 21.1 16.6
CS 28.5 26.9 5.7

According to these results, to produce 100 words of a correct transcription in the
ODEC-M3 task, for example, a CATTI user should have to type only less than 20
words; the remaining 80 are automatically predicted by CATTI. That is to say, the
CATTI user would save about 80% of the (typing and, in part thinking) effort needed
to produce all the text manually. On the other hand, when interactive transcription
is compared with post-editing, from every 100 (non-interactive) word errors, the
CATTI user should have to interactively correct only less than 78. The remaining 17
errors would be automatically corrected by CATTI, thanks to the feedback informa-
tion derived from other interactive corrections.

The different performance figures achieved in the different tasks can be explained
by quality differences in the original images and also by the relative lexicon sizes
and bi-gram estimation robustness. The later is particularly problematic in the case
of CS which, in addition, suffers from a segmentation into relatively short, syntac-
tically meaningless lines, which further hinders the ability of the bi-gram language
model to capture relevant contextual information.

It is interesting to realize that CATTI is more effective for lines or sentences
that have several errors; clearly, if a sentence has just one (word) error, it must
be interactively corrected by the user and the best CATTI can do is to keep the
remaining text unchanged. Obviously, this is not guaranteed by Eq. (2.4) and, in the
worst case, a single word change made by the user may lead to more errors; that
is, WSR might be greater than WER. To analyze this behavior, Fig. 3.15 presents
WER, WSR and EFR values for increasing initial numbers of errors per sentence,
for ODEC-M3 and TAMDB (similar tendencies are observed for CS).

As expected, the estimated effort reduction increases with the number of errors
per sentence, which clearly assess the ability of CATTI to correct more than one er-
ror per interaction step in sentences with several wrong-recognized words. Also, for
sentences with a single error, CATTI does not help at all or is even worse than post-
editing. Therefore, in practice, a good implementation of a CATTI user interface
should allow the user to disable CATTI predictions when doing some (single-word)
corrections. Taking this into account, the results of Table 3.6 can be recomputed
after excluding all the sentences with zero or one errors, leading to better EFR.
Namely, the EFR becomes 17.9%, 18.4% and 6.9% for ODEC-M3, IAMDB and
CS, respectively.

On Table 3.7 we can see the WSR and the EFR obtained for each task using
WG search (see Sect. 3.2.1) in comparison with the corresponding WER. The WGs
used in the experiments were generated with the same GSF and WIP values used
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Fig. 3.15 WER, WSR and EFR (all in %) for varying number of errors per sentence, for
ODEC-M3 (left) and IAMDB (right) corpora

Table 3.7 Performance of non-interactive off-line HTR (WER) and CATTI (WSR), along with the
relative difference between them (Estimated Effort-Reduction—EFR) using the WG-based search
approach. All results are percentages

Corpus WER WSR EFR
ODEC-M3 229 21.5 6.1
IAMDB 253 22.5 11.1
CS 28.5 27.7 2.8

for the baseline results. As we have expected, the results obtained using the Viterbi-
based search are better than those obtained with WGs. This is owing to the fact that
the WG is just a pruned version of the Viterbi search trellis. Therefore, not all the
possible transcriptions for the input handwritten text image are available, leading
to some loss of system accuracy. However, the computational cost of using WGs is
much lower than that using Viterbi adaptation, allowing in the former case, the user
to interact in real-time with the system.

Nevertheless, from the reported results of Tables 3.6 and 3.7, it is clear that the
estimated saved human effort (EFR) to produce error-free transcriptions with this
CATTI approach is reduced in all the tasks. Furthermore, as previously explained,
CATTI has the change to be more effective for lines/sentences with several errors.
The EFR recomputed after excluding all the sentences with zero or one errors using
the WG search approach are 6.8%, 12.9% and 3.8% for ODEC-M3, IAMDB and
CS, respectively.

PA-CATTI Results

As commented at the end of Sect. 3.3.1, in order to be effective and fully useful,
PA-CATTI approach requires short response times to emit a new suffix each time a
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Table 3.8 Performance of the PA-CATTI with the single-PA interaction mode scenario (WSR
single PA), along with the Estimated Effort-Reduction computed for WSR single PA with respect
to conventional CATTI WSR (EFRcartr) and WSR single PA with respect to the non-interactive
HTR WER (EFRpgpyt). All results are percentages

Corpus WSR single PA EFRCATTI EFRPEDIT
ODEC-M3 18.2 15.3 20.5
IAMDB 18.6 17.3 26.5
CS 23.7 14.4 16.8

PA is performed. A search implementation based on WG techniques is the solution
which best fits this requirement. Table 3.8 reports the results obtained with the new
single-PA interaction mode, which is the simplest one of the PA-related scenarios
explained in Sect. 3.3. The first column shows the WSR obtained using the single-
PA interaction mode, whereas the second and third columns show respectively the
relative differences between the WSR single PA with respect to the conventional
CATTI WSR (see second column of Table 3.7), and with respect to the WER of
a conventional HTR system followed by human post-editing (see first column of
Table 3.7).

According to Table 3.8, the estimated human effort to produce error-free tran-
scription using PA-CATTI is significantly reduced with respect to using the con-
ventional CATTTI approach, and of course, with respect to the non-interactive HTR
followed by manual post-editing. For example, in the TAMDB task, the new interac-
tion mode can save about 26% of the overall effort, whereas the conventional CATTI
would only save 11.1% using the WG-based search approach, or 16.6% using the
Viterbi-based search approach (reported in Table 3.6).

Figure 3.16 plots the WSR, the EFR and the Pointer-Action Rate (PAR) as a
function of the maximum number of allowed PAs before the user decides to write the
correct word. These results are reported for both ODEC-M3 and IAMDB corpora
(similar tendency has been observed for CS corpus as well). The EFR values have
been computed between corresponding WSR and WER. From the both plots, it is
revealed that a good trade-off between EFR and PAR can be obtained, for example,
by setting the maximum number of PAs to 3, for which a significant amount of
expected user effort is saved with a fairly low number of extra PAs per word.

MM-CATTI Results

The aim of these experiments is to assess the effectiveness of MM-CATTI in the
scenarios described in Sect. 3.4.1. Multimodal operation offers ergonomics and in-
creased usability at the expense of the system having to deal with non-deterministic
feedback signals. Therefore, the main concern here is the accuracy of the on-line
HTR feedback decoding and the experiments aim to determine how much this ac-
curacy can be boosted by taking into account information derived from the proper
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Fig. 3.16 Word stroke ratio (WSR), estimated effort reduction (EFR) and pointer-action rate
(PAR) as a function of the maximum number of PAs allowed before the user decides to write
the correct word. The first point “0” corresponds (without performing any PA) to the conventional
CATTI, whereas the point “S” corresponds to the single-PA interaction scenario already discussed
in Sect. 3.3

Table 3.9 Writer average MM-CATTI feedback decoding error rates (FER) for the different cor-
pora and three language models: plain uni-gram (U, baseline), error-conditioned uni-gram (U,)
and prefix-and-error-conditioned bi-gram (B,). The relative accuracy improvements for U, and
B, with respect to U are shown in the last two columns

Corpus FER (%) Relative Improv. (%)
U U, B, Uy By
ODEC-M3 5.1 5.0 3.1 1.9 39.2
IAMDB 4.6 4.3 3.5 6.5 23.9
CS 6.4 6.2 5.8 3.1 9.3

interaction process. Ultimately, experiments aim at assessing which degree of syn-
ergy can actually be expected by taking into account both interactivity and multi-
modality.

Table 3.9 presents the writer average feedback decoding error rates (FER) for the
different corpora considered and three language models which embody increasingly
strong interaction-derived constraints (see Sect. 3.4.1). The first one corresponds to
a plain uni-gram estimate of P(d), already reported in “Baseline On-line HTR Re-
sults” in Sect. 3.6.2 as a baseline. The second corresponds to an error-conditioned
uni-gram estimate of P(d | v) (Eq. (3.14)). The third model is a prefix-and-error-
conditioned bi-gram estimate of P(d | p’, v) (Eq. (3.15)). These models are derived
from the original language models employed for the main, off-line HTR system,
as explained in Sect. 3.4.1. As observed in Table 3.9, feedback decoding accu-
racy increases significantly as more interaction-derived constraints are taken into
account.

As a final overview, Table 3.10 summarizes all the CATTI and MM-CATTI re-
sults obtained in this chapter. The forth and fifth columns show respectively the
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Table 3.10 From left-to-right: post-editing corrections (WER), interactive corrections needed
(WSR), e-pen feedback decoding error rate for baseline case (FERpy) and multimodal decod-
ing (FERMMm), overall multimodal interactive corrections (WSRy ), and overall estimated effort
reduction (EFR) achieved by the proposed approaches. All results are percentages

Corpus Post-edit CATTI MM-CATTI Overall EFR

WER WSR FERg, FERuMm WSRum CATTI  MM-CATTI
ODEC-M3 229 18.9 5.1 3.1 19.5 17.5 14.8
IAMDB 253 21.1 4.6 35 21.8 16.6 13.8
CS 28.5 26.9 6.4 5.8 28.4 5.6 0.4

e-pen FER baseline (BL) and FER multimodal decoding (MM), while the sixth col-
umn reports the total MM-CATTI WSR achieved. These figures correspond to the
three-writers averaged decoding errors reported in Table 3.9. The last two columns
show the overall estimated effort reductions (EFR) in both the conventional CATTI
and MM-CATTI approaches.

The MM-CATTI EFR is calculated under the simplifying (but reasonable) as-
sumption that the cost of keyboard-correcting a feedback on-line decoding error is
similar to that of another on-line touchscreen interaction step.6 That is, each correc-
tion using keyboard is counted twice: one for the failed touch-screen attempt and an-
other for the keyboard correction itself. According to these results, the expected user
effort for the more ergonomic and user-preferred touch-screen-based MM-CATTT is
only moderately higher than that of CATTI in the ODEC-M3 and on the [AMDB
corpora. On the CS corpora the results shown that the expected user effort is very
similar to the expected effort on a post-editing system. However, this extra human
effort entails an human-machine interaction more easier and comfortable.

3.7 Conclusions

In this chapter, the approaches CATTI, PA-CATTI and MM-CATTI presented in
Sects. 3.1, 3.3 and 3.4 have been tested in three different tasks: ODEC, IAMDB and
CS. These tasks involve the transcription of handwritten answers from survey forms,
handwritten full English sentences of different categories (editorial, religion, fiction,
love, humor, ...) and an ancient handwritten document from 1853, respectively.

At deeper depths it has been proposed a new interactive, on-line framework,
which combines the efficiency of automatic HTR system with the accuracy of the
user in the transcription of handwritten documents. We have called this approach

5This is most probably a pessimistic assumption since, in this application, interaction through
touch-screen is clearly more ergonomic than through keyboard. Moreover, in practice, it seems
often preferable to try again a failed touch-screen correction, rather than typing a definitive fix on
the keyboard.
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“Computer Assisted Transcription of Text Images” (CATTI). Here, the words cor-
rected by user become part of increasingly longer prefixes of the final target tran-
scription. These prefixes are used by the CATTI system to suggest new suffixes that
user can iteratively accept or modify until a satisfactory, correct target transcription
is finally produced. The experimental results obtained in the three above-mentioned
tasks are encouraging and show that the CATTI approach speed up the human error-
correction process.

Moreover, two different search-decoding implementations have been tested. The
first one is based directly on the Viterbi algorithm, whereas the second one on word-
graph techniques. From the obtained results, it can be concluded that, although the
results obtained using the Viterbi-based approach are better than those using word-
graph, the last one is preferable because the accuracy loss is not too high and the
computational cost is much lower. In fact, this last issue allows the human tran-
scriber to interact with the system in real time.

In order to foster the usability and ergonomics of CATTI, a new interaction way
was proposed by considering what we called “Pointer Action” (PA-CATTI). This
consists in that the system takes advantage of the positioning made by the user
prior to correct the following word error, by proposing quickly (from that position)
a new, hopefully more correct prediction. Therefore, PA-based user-feedback goes
some way to anticipating upcoming user corrections. Implementation of PA-CATTI
was carried out also on the base of word-graphs, which are the best solution to
the fast-reaction-time required by PA-CATTI to have an acceptable usability. From
experimental results it can be seen that this new kind of user-feedback can pro-
duce significant benefits, in terms of word stroke reductions, and this is specially
noticeable for single-PA interaction scenario where the new prediction is obtained
practically without extra human effort.

We have also studied the use of on-line touch-screen handwritten pen strokes
as a complementary means to input the required CATTI correction feedback. We
have called this multimodal approach “MM-CATTI”. From the results, we observe
that the use of this more ergonomic feedback modality comes at the cost of only a
reasonably small number of additional interaction steps needed to correct the few
feedback decoding errors. The number of these extra steps is kept very small thanks
to the MM-CATTI ability to use interaction-derived constraints to considerably im-
prove the on-line HTR feedback decoding accuracy. Clearly, this would have not
been possible if just a conventional, off-the-shelf on-line HTR decoder were triv-
ially used for the correction steps.

The advantage of CATTI, PA-CATTI and MM-CATTT over traditional HTR fol-
lowed by post-editing goes beyond the good estimates of human effort reductions
achieved. When difficult transcription tasks with high WER are considered, expert
users generally refuse to post-edit conventional HTR output. In contrast, the pro-
posed interactive approaches constitute a much more natural way of producing cor-
rect text. With an adequate user interface, CATTI, PA-CATTI or MM-CATTI let
the users be dynamically in command: if predictions are not good enough, then the
user simply keeps typing at his/her own pace; otherwise, he/she can accept (partial)
predictions and thereby save both thinking and typing effort.
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It should be mentioned here that, in addition to the laboratory experiments re-
ported in previous section, a complete CATTI prototype (which includes PA and
multimodality) has been implemented (see Sect. 12.2) and already submitted to pre-
liminary, informal tests with real users. According to these tests, the system does
meet the expectations derived from the laboratory experiments; both in terms of
usability and performance. This is particularly true for the on-line HTR feedback
decoding accuracy: even though the on-line HTR HMMs were trained from artifi-
cially built words using UNIPEN character samples, the accuracy in real operation
with real users is observed to be similar to that shown in the laboratory results here
reported. Of course even higher accuracy can be easily achieved by retraining the
models with the text handwritten by the actual users.
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Automatic Speech Recognition has been widely employed in the last years. How-
ever, when a perfect transcription of the input is required, it is still necessary to
rely on a human operator that supervises and corrects the mistakes that recogni-
tion systems usually make. Although the use of automatic systems can speed up the
transcription process significantly, the intervention of these human supervisors can
slow down this job considerably. Owing to this fact, the application of the Interac-
tive Pattern Recognition approach to this task turns out to be a good opportunity to
improve the cooperation between the computer and the human when an error-free
transcribed document is needed.

In this chapter, an interactive multimodal approach for efficient transcriptions
of speech signal is presented. This approach, rather than full automation, aims at
assisting the expert in the proper transcription process. In this sense, an interactive
scenario is proposed and it is based on a cooperative process between an automatic
recognition system and a human transcriber to generate the final transcription of the
speech signal. It will be shown how user’s feedback directly allows one to improve
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the system accuracy, while multimodality increases system ergonomics and user
acceptability.

4.1 Computer Assisted Transcription of Audio Streams

Speech recognition is a good candidate to apply the approach described in Chap. 2
since Automatic Speech Recognition (ASR) systems are far from being perfect.
Complex tasks with large vocabularies, noisy environments, spontaneous speech,
etc. result in a significant number of errors in transcriptions. When high quality
transcriptions are needed, a human transcriber is required to verify and correct the
(imperfect) system’s transcriptions.

This process is usually performed off-line. First, the system returns a full tran-
scription of the input audio signal. Next, the human transcriber reads it sequen-
tially (while listening to the original audio signal) and corrects the possible mistakes
made. This solution is rather uncomfortable and inefficient for the human corrector.

As in the case of the CATTI application described in Chap. 3, an interactive
on-line scenario can allow for a more efficient approach. Again, the ASR and the
human transcriber cooperate to generate the final transcription of the input signal.
The rationale behind this approximation is to combine the accuracy provided by the
human transcriber with the efficiency of the ASR. This approach is called “Com-
puter Assisted Transcription of Speech” (CATS).

4.2 Foundations of CATS

This section overviews our approach to CATS. The process is quite similar to what
was described for CATTI. As illustrated in Fig. 4.1, the process starts when the
ASR system proposes a full transcription § (or a set with N-best transcriptions)
of a suitable segment of the input signal x. Then, the human transcriber (named
user from now on) reads this transcription until he or she finds a mistake; i.e., he or
she validates a prefix p’ of the transcription which is error-free. Now, the user can
enter a word (or words), k, to correct the erroneous text that follows the validated
prefix. This action produces a new prefix p (the previously validated prefix, p/,
followed by «). Then, the ASR system takes into account the new prefix to suggest
a suitable continuation (or a set of best possible continuations) to this prefix (i.e.,
a new §), thereby starting a new cycle. This process is repeated until a correct, full
transcription T of x is accepted by the user. A key point on this interactive process
is that, at each user-system iteration, the system can take advantage of the prefix
validated so far to attempt an improved prediction.
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ITER-0 ®» 10O
(%) (Nine extra soul are planned half beam discovered these years)
() | (Nine)
ITER-1 (c) (extrasolar)
(p) (Nine extrasolar)
(8) (planets have been discovered these years)
($p) (planets have been discovered)
ITER-2
(c) (this)
(p) (Nine extrasolar planets have been discovered this)
%) (vear)
FINAL (c) (#)
(p=t) (Nine extrasolar planets have been discovered this year)

Fig. 4.1 Example of CATS. See the text for details

4.3 Introduction to Automatic Speech Recognition

An automatic speech recognition (ASR) system takes an input audio signal and
decodes this signal producing a text transcription of the words uttered. We will start
by describing all the stages needed to achieve this goal.

4.3.1 Speech Acquisition

The human voice generates a series of variations in the air pressure that are transmit-
ted through the air. These pressure changes can be captured by using a special type
of transducer (microphone). As a result, this transducer produces an analog electric
signal suitable to be stored and processed. However, analog processing presents im-
portant drawbacks (noise, need of specific hardware, etc.). Computers, on the other
hand, are digital systems unable to directly deal with analog inputs. Hence, this
signal is converted into the digital domain. In this process, the analog input is peri-
odically sampled and a set of discrete samples is produced as a result. The sampling
frequency (that is, the number of samples taken per second) is crucial to ensure
an accurate codification of the original signal. According to the Nyquist—-Shannon
theorem [8] the sampling frequency must be, at least, two times the maximum fre-
quency in the signal. Otherwise, it is not possible to obtain a perfect representation.
The maximum frequencies present in a speech signal are around 8 KHz and, there-
fore, a sampling frequency of 16 KHz is typically used.
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4.3.2 Pre-process and Feature Extraction

Once the signal is in the digital domain, the relevant information for speech recog-
nition has to be extracted. Different representations have been proposed for speech
signals. One of the most widely employed in ASR is based on the use of the so-called
Mel Frequency Cepstrum Coefficients (MFCCs). These coefficients are obtained as
follows. Initially, the signal is split into a sequence of overlapped fragments (‘“win-
dows” or “frames”) where each fragment of signal can be considered a stationary
process (each window typically has a size between 10 and 20 milliseconds). The
spectrum of every window is then computed and frequencies are grouped into a
(non-linear) series of bands (collectively known as filter bank) according to the Mel
scale, which is, approximately, linear below 1 KHz and logarithmic above. This
way, each speech window (frame) is represented as a vector storing the average of
the energy of the frame after passing through the corresponding filter (usually from
20 to 40 filters are employed). Finally, the Discrete Cosine Transform (DCT) is ap-
plied to each output vector and the first DCT components (usually from 10 to 15)
are chosen. The first and second time-derivative of each DCT vector are usually
computed as well.

As a result of this process, the signal is represented as a sequence of feature
vectors of dimension between 30 and 40. This signal representation will be used in
a latter stage to produce the transcription of the original input signal.

4.3.3 Statistical Speech Recognition

Now that we have the input signal properly pre-processed and represented as a se-
quence x of feature vectors, we can discuss the recognition process itself. In statisti-
cal ASR, given an input signal x, we have to obtain the optimal sequence of uttered
words w as was stated in Eq. (2.1):

w =argmax P(x | w) - P(w). 4.1)

As was explained in Sect. 2.2, the first term P(x | w) corresponds to an acous-
tic word model, which accounts for the distribution of word sounds present in the
signal. Acoustic word models are seen as being composed of valid concatenations
of phonetic sounds, which are modeled by Hidden Markov Models (HMMs), so far
the most successful paradigm for stochastic modeling of phonetic units.

The second term P (w) is called language model and deals with the distribution
of the sentences in the language so that correct sentences in the language are (hope-
fully) scored with high probability and, consequently, incorrect sentences are scored
with low probability. This can be estimated by a n-gram model (see Eq. (2.3)), where
each word is conditioned by just the n — 1 previous words.

Once all the models are available, the transcription is obtained by constructing
an integrated network, where each word in the language model is expanded as a
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set of HMMs. This network produces words according to the acoustic and language
model probabilities. The Viterbi algorithm is applied to obtain the most likely path
in the network, thereby solving the maximization stated in Eq. (2.1).

4.4 Search in CATS

As explained in Sect. 2.5.1, the optimal solution for the searching problem given by
Eq. (2.6) can be approached by using the Viterbi algorithm over the corresponding
finite-state network restricted by an special language model (Eq. (2.6)) built by the
concatenation of a /inear model (which accounts for the words of the prefix p) and
a conventional n-gram model (which models all the possible words of the suffix s).

Nevertheless, this direct approach can lead to a slow system response, since the
computational cost entailed by a complete speech recognition search is usually high.

4.5 Word-Graph-Based CATS

CATS is an interactive application and, as such, some specific requirements have to
be fulfilled. For instance, no matter how precise the ASR can be if the time needed
to obtain a hypothesis is too high. In the most extreme case, if the prediction sys-
tem is as slow as the user performing the task manually, CATS does not make any
sense. To summarize, we can claim that, in order for the user to feel comfortable
with the system, we have to ensure an appropriate time response. Although some
experiments in this sense will be described later, we can say, for the time being, that
the direct implementation presents a response time higher than 3 seconds in some
tasks. In consequence, we need to explore an alternative CATS implementation.

In speech decoding, there are many computations to be performed for each frame
of the input signal. The acoustic score, for instance, requires to calculate the proba-
bility of a Gaussian mixture for each state in all the actives HMMs. We could save
a lot computation effort if we were able to obtain, for each input to be transcribed,
a representation that stores a sufficient number of decoding hypotheses along with
their scores. This way, all the interactive CATS search would be performed on this
model, achieving a better time response.

The previous discussion suggests the use of a well known ASR data structure,
a word graph (WG). Formally defined in Sect. 1.5.1, a WG is, indeed, a compact way
to represent a very large set of n-best hypotheses along with additional information
about how they were produced.

WGs can be constructed as a byproduct of the speech decoding process by storing
the best acoustic and language model probabilities for each partial hypothesis. Then
all the paths starting from initial states and reaching final states are added to the
graph [7, 9].

Once the WG is available for a specific input, it can be used to perform the search
described in Eq. (2.6). Now, we will study how to address this search. Basically,
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the idea consists in, when a new user prefix is available, parsing this prefix over
the word graph. This is aimed at obtaining a set of nodes that approximates the
best signal segmentation (the first two terms in Eq. (2.6)). Moreover, the prefix-
based language model probability in Eq. (2.6) can be easily computed from the arcs
leaving these nodes. Once this set of nodes is available, we can produce a CATS
hypothesis (suffix) by searching for the best (or the n-best) path starting from these
nodes. In the upcoming sections, different details of this process are discussed.

4.5.1 Error Correcting Prefix Parsing

In our case, we have a directed acyclic graph and have to find the best path com-
patible with the prefix. Ideally, this graph would contain all the possible recognition
outcomes for the input signal but, unfortunately, this is not actually true in practice.

Firstly, the stochastic model that conducts the WG generation has been trained
from a finite set of samples (although smoothed models can be used, there is still the
problem of out-of-vocabulary words). Secondly, a pruning search is usually applied
because of computer memory constraints. As a result of this, we cannot expect the
WG to account for every possible user prefix. For that reason, a more sophisticated
approach has to be adopted. This is the case of the Error Correcting Parsing (ECP)
described as follows. To start with, we can define an error model to address the
problem of generating a string y = yi, ..., ¥, from another string z = z1, ..., Zm.
This generation is based on a well defined set of operations:

e Substitution: Consists in replacing a symbol y; in the source string with a symbol
z;j in the target string (denoted as y; — z;).

e Deletion: Consists in removing a symbol y; in the source string (denoted as
Vi —> )\,)

o Insertion: Consists in inserting a symbol z; in the target string (denoted as
A—>2Z j)

Each operation has an associated cost. This cost is usually chosen according to
the specific task to be solved. The overall cost of generating one string from another
is computed by summing up all the editing costs involved in transforming the source
string into the target one. For a given sequence of editing operations € =€y, ..., €,
the total cost of € is then defined as

L

Cle)=) cen, (4.2)

=1

where c(¢€;) denotes the cost of the editing operation ¢;. It is easy to see that a specific
target string can be generated from a given source in very different ways. Generally,
we are only interested in the sequence of minimum cost. This optimal sequence is
known as the (weighted) Levenshtein distance [11]:

d(y,2) =min{C(e) |y 5z}, 43)
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where y 5 zdenotes a sequence of edition operations to reach z from y. To compute
the Levenshtein distance in a polynomial time, the following dynamic programming
algorithm can be followed (notice that i and j denote positions in the source and the
target sentence respectively). Given two strings y and z, d(y, z) is computed as

e Recursive general term:

d(i, jy=min{d(i —1,j — 1) +c(y; = z;),
di—1, ) +c(yi—=> A, di, j— 1D +ch—zj)}

e Base case:

d(0,0) =0,
Vi di,00=di—1,0)4+c(y;i > A),
Vj d©,j)=d0,j—1+c— z;).

In CATS we have a string (prefix) and a representation of many strings along
with their probabilities (word graph) and we have to parse the prefix over this graph.
This problem is similar to the problem of finding the minimum distance between a
regular language and a given string [1].

This algorithm returns the Levenshtein distance along with the graph nodes
(“non-terminals”) reached after parsing the input string. The search for the best
suffix can then be performed by applying a Viterbi-like search from these nodes.

4.5.2 A General Model for Probabilistic Prefix Parsing

So far, we have a tool (Error Correcting Parsing) that allows us to perform a CATS
search within WGs. However, there are some issues to be discussed before going on
with this approach. On the one hand, it is not clear how to relate the ECP procedure
to Eq. (2.4). On the other, as a result of the ECP, we have a set of states with an
associated cost (the ECP cost) and probability (the probability given by the path(s)
in the word graph that reaches the state). The question is how to combine these two
terms to carry out the search for the suffix as Eq. (2.4) shows.

To overcome this problem, a new formulation can be attempted in order to prop-
erly include ECP into WG CATS approximation. Starting from Eq. (2.4), we can
introduce a hidden variable g; to represent a possible boundary node between the
prefix and the suffix in the WG:

§=argmax P(s | p)- P(x | p,s)
N

=argmax P(s | p) - Z P(x,qp| p,s)
5 qr€Q
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=argmax P(s | p) - E P(x |gp, p,s)- P(qp | p,s). 4.4
S
qp€Q

Notice that in Eq. (2.5) the boundary point b was defined on the input signal.
Here that point has to be approximated according to the nodes in the word graphs
(which are tied to a specific frame in the input signal). We can make the assumption
that P(x | gp, p, s) does not depend of p given g, to rewrite Eq. (2.4) as

s =argmax P(s | p) - E P(x|qp,s) - P(gp | p,s).
N
Y

Additionally, we can assume that g, only depends on the prefix (this issue will be
discussed later), leading to

§=argmax P(s | p) - E P(x|qp,s)- P(gp | p).
S
qpeQ

Finally, the usual approximation of the sum by the dominating term can be adopted
to obtain

§ ~argmax P(s | p) - max P(x | gp,s) - P(qp | p),
s ar€Q

where the first term corresponds the already known prefix-conditioned language
model, the second one to the probability given by the acoustic word HMMs, and
the last one, P(gp | p), to the computed probability-like ECP cost. In other words,
P(gp | p) is the probability with which p can be distorted to produce the best prefix
reaching the WG node ¢ ; that is:

P(gp | p)= max P(p|p),
PEP(gp)

where P(qp) is the set of prefixes reaching g, and P(p | p) is the maximum prob-
ability of edition p into p. Assuming editing operations independently applied, the
edition probability is computed as the product of the probability of elementary inser-
tion, deletion and substitution probabilities. Therefore, we need to define the editing
operations in a probabilistic way. This can easily be done by constructing an stochas-
tic automaton representing the string to be parsed (in our case, the prefix) so that the
different editing operations can be modeled as in Sect. 3.2.2, as groups of arcs in the
automaton (see Fig. 3.2).

In the ECP cost-based approach, all the operations are usually defined to have
a similar cost except the substitution of a symbol by itself which is usually a no-
cost operation. Directly translating these costs into probabilities is not trivial at all.
Intuitively, the case of the no-cost could be mapped to a probability of one, since the
substitution of a symbol by itself does not entail a real transformation of the string.
However, this would imply to use a null score for the remaining set of operations.
Alternatively, some uncertainty can be assigned to this special operation and, this
way, some probability mass is available to be distributed among the other ones.
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To start with, we can consider any editing operation equivalent. To this end, we
can group the probability so that any insertion, deletion and real substitution are
equally likely. This actually means that all the arcs in the ECP automaton should be
labeled with the same probability. Those arcs not involving a real transformation of
the string, however, will have a different treatment in which much higher probability
should be considered for them. By assigning, for instance, half of the overall prob-
ability mass to these arcs and equally distributing the other half among the other
operations, we can reach the following expressions:

5, Pi =Djs
N e Pi# B,
Pleps)=Ppi—pp=1" (4.5)
4_5 pz:)\»
4
1 s
vy Pi=h

where V represents the vocabulary. Here, the score of each editing operation is set
so that each arc in the ECP automaton has the same probability (except those arcs
that do not transform the input string). Notice that in the case of substitutions and
insertions, the probability mass is grouped for all the symbols in the vocabulary (the
amount of probability assigned to these groups of arcs would be |X||\;Jl and %
for substitutions and insertions respectively). For that reason, a specific insertion of
substitution will be scored with the same probability as a deletion.

Now, we can define €p5 = €pq,,...,€pq,» qL = g, as a sequence of L editing
operations that allows to reach the node g given the current prefix p. Assuming
independence among these operations, we can compute this sequence probability as

L
P(e,,) = max P(e,;), (4.6)
e ﬁeP(q)E e

where P(€),,) is the maximum probability of transforming p into p, according to
the elementary edition probabilities of Eq. (4.5).
From this, we can easily define the optimal sequence €, as

€pg = argmax P (€q) 4.7
€pq

to finally compute the probability P(gp | p) as

P(él’%)
Ygeo PEpg)’

where Q is the set of all nodes in the WG.

Pgv | p) = (4.8)

4.6 Experimental Results

In the following sections, our CATS experimental framework is described in detail.
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Table 4.1 Features of the EUTRANS, XEROX and WSJ test corpora

EUTRANS XEROX WSJ 5k WSJ 20K

Test sentences 336 875 330 333
Running words 3340 8569 5683 5974
Test-set perplexity (3-grams) 7 41 60 155
Table 4.2 Features of the ) )
Spanish ALBAYZIN and Spanish ALBAYZIN English WSJ
English WS1J acoustic
training corpus (K = x1000) Speakers 164 45

Running words 42K 136K
Table 4.3 Features of the
EUTRANS, XEROX and WSJ EUTRANS XEROX WSJS5K WSJ 20K
LM-training corpora

Training sentences 10k 55k 1612k 1612k

Running words 97k 627581 38500k 38500k

Vocabulary size 684 10835 4989 19982

4.6.1 Corpora

Two different tasks have been mainly used. The first one corresponds to the EU-
TRANS corpus [2], composed of sentences used in conversations between a tourist
and a hotel receptionist. The second one is the XEROX corpus [5], consisting of spo-
ken utterances from printer manuals. The initial version of this corpus consisted of
fragment sentence utterances aimed at testing a speech interface proposal for Com-
puter Assisted Translation (CAT) systems. It was later extended to be employed in
CATS. The main features of both corpora are presented in Table 4.1. In addition,
the well known Wall Street Journal (WSJ) corpus [10] was used in the word graph
CATS experiments.

Regarding the training corpora, the acoustic models, on the one hand, were
estimated from the ALBAZYIN and WSJ corpora, as shown in Table 4.2. In the
EUTRANS and XEROX experiments, monophone HMMs (obtained with the HTK
toolkit [14]) were employed. For WSJ, triphones were used. Speech pre-processing
and feature extraction consisted in speech boundary detection, followed by the com-
putation of the first ten MEL cepstral coefficients plus the energy, along with the
corresponding first and second derivatives [6].

On the other hand, the language models for both tasks were estimated from
the corpora described in Table 4.3. The SRILM toolkit [12] was used to estimate
Kneser—Ney smoothed 3-grams [3].
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4.6.2 Error Measures

The metrics used in the experiments tries to gives an estimation of the user effort
required to transcribe a set of sentences through a CATS approach. As already in-
troduced in Sect. 2.6, the well known word error rate (WER) and the word stroke
ratio (WSR [4, 5]) measures have been adopted.

As explained, the WSR is computed by using reference transcriptions of the
speech segments considered. After a first CATS hypothesis, the longest common
prefix between this hypothesis and the reference sentence is obtained, and the first
unmatching word from the hypothesis is replaced by the corresponding reference
word. This process is iterated until a full match with the reference sentence is
achieved. The WSR is, therefore, the number of required corrections divided by
the overall number of reference words.

The comparison between WER and WSR would give us an idea about the amount
of effort required by a CATS user with respect to the effort needed by using a clas-
sical speech recognition system followed by a manual post-editing process (see
Sect. 2.6 for more details). Henceforth, we will refer to this as Estimated effort
reduction (EFR).

4.6.3 Experiments

The experiments consisted in a series of block validation on the test corpora. Train-
ing is always carried out on the whole set of acoustic and text training data summa-
rized in Tables 4.2 and 4.3. This way of proceeding slightly resembles the approach
called K-fold cross validation but, in this case, one block (development) was cho-
sen for optimizing some parameters of the search. Once these parameters have been
set on the development block, the remaining blocks (test) were used as the proper
test set. This framework is aimed at trying to draw more general conclusions on
the sparse test data available. In the usually employed holdout method, one single
partition of the original test data into development and test sets is considered. In our
experiments, the original test was split into several blocks so that different develop-
ment and test sets could be derived from these blocks. Specifically, five blocks, with
sizes of 67 and 175 sentences, have been considered for EUTRANS and XEROX,
respectively. The experiments were actually carried out in five trials. In trial number
i the block number i was used as development set and the four remaining blocks
were used as test. Here we are trying to follow a realistic approach, where only a
small development set is available during the system design. The real test for the
system is bigger since it consists of all the transcriptions obtained during its normal
operation mode. Notice that in K-fold cross validation only one block is used as test
and the remaining ones are used for training.

On the other hand, WSJ 5k and WSJ 20K corpora have also been used to test the
WG-based approximation, which constitutes the most feasible technique to actually
use CATS in real environments.
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Table 4.4 Results obtained on the EUTRANS, XEROX and WSJ corpora. The mean and the stan-
dard deviation for the test sets in the five block validation series are shown. The first row cor-
responds to the post-editing approach. The second and the third rows show the results for the
interactive baseline approach and the ECP word-graph-based approach described in Sect. 4.5.1
respectively. In the fourth row, the results correspond to the Probabilistic Word ECP (PWECP)
discussed in Sect. 4.5.2. All results are percentages

EUTRANS XEROX WSJ 5K WSJ 20K

mean sd mean sd mean sd mean sd

Direct WER 7.7 1.3 229 24 62 1.5 10.6 1.7
WSR 4.7 1.4 18.6 2.1 - - - -

Word graph ~ ECP WSR 4.8 14 195 21 59 1.3 9.9 1.6

PWECP WSR 4.7 1.3 193 21 56 1.4 9.5 2.0

The development sets were specifically used to tune the Language Model Scale
Factor which, as was mentioned, is basically a scaling factor for the second term in
Eq. (4.1).

4.6.4 Results

In Table 4.4 the mean and the standard deviation of the results on the five test sets
obtained as described in Sect. 4.6.3 are reported. In the first two rows, a comparison
between two estimations of the off-line (WER) and interactive (WSR) user effort
is shown. As can be observed, significant improvements are obtained when using
the CATS approach with respect to the classical ASR followed by a human post-
processing approach. In addition, the WSR results for the WG-based techniques are
also presented (third and four rows).

As can be noticed, the use of the WGs does not affect the performance sig-
nificantly, while improving the WER baseline. The results obtained by the initial
ECP presented in Sect. 4.5.1 and the probabilistic word ECP (PWECP) described
in Sect. 4.5.2 are quite similar. However, we have to take into consideration that the
margin of improvement is actually constrained by the WSR results on the original
CATS implementation. On the other hand, a significant number of sentences in both
corpora require no interactions (see Fig. 4.2), which causes some improvements to
have a small impact on the overall results. In order to clarify this a little more, the
XEROX corpus has been split into different sets based on the cumulative distribu-
tion, shown in Fig. 4.2; that is, the first set contains all the sentences that require at
least one interaction, the second one contains the sentences that require at least two
interactions and so on.

Table 4.5 shows the WSR results for the baseline CATS approach, the initial
ECP and the new PWECP based on this sentence distribution. Notice that for sen-
tences with exactly one error, the post-editing approach should be similar to CATS
in effort terms, since a properly designed user interface should permit to disable the
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Fig. 4.2 Cumulative
sentence distribution of the
XEROX corpus, based on the
number of user interactions 80
needed to obtain a perfect
transcription. The first bar

shows the percentage of 601 1
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transcribed with zero or more
interactions (the whole corpus 401 ]
in this case), the second bar
the percentage for one or
more interactions and so on
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Table 4.5 Results (WER and WSR) on the XEROX corpus for different CATS techniques based on
the distribution of the sentences shown in Fig. 4.2. The baseline column shows the results obtained
by the original CATS approach without using word graphs. All results are percentages

WER WSR
Baseline ECP PWECP
1 interaction or more 39.6 33.1 35.1 34.3
2 interactions or more 50.9 40.1 44.3 432
3 interactions or more 54.6 45.6 51.0 49.8

Table 4.6 Average interaction time response. The first row shows the time response of the base-
line approach to CATS. The second row reports the interactive time response of the word-graph
approximation. Finally, in the third row the average time needed to generate the WGs is shown.
All the times are in seconds

Approach EUTRANS XEROX
Baseline CATS 0.9 33
Word-graph CATS 0.4 0.5
Including word-graph generation time 1.7 1.9

prediction engine when only one mistake is found (for sentences with more than one
interaction an EFR of 22.4% is achieved, as is shown in Table 4.5).

The previous results show that the use of WGs is competitive in terms of WSR.
However, it is still necessary to check whether this new approximation can actually
improve or not the system time response. To this end, the CATS system latency
was measured in the following way. First, experiments corresponding to the direct
approach (in the first two rows of Table 4.4) were carried out, where, for each user
interaction, a complete speech recognition process is conducted. Since an exhaustive
search in speech recognition is usually prohibitive, a pruned search approach was
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Fig. 4.3 Average word-graph 0.6
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adopted in these experiments to achieve an appropriate tradeoff between accuracy
and time response as shown in Tables 4.4 and 4.6.

In the case of the WG approaches, we have to take into account two different
kinds of computations. Firstly, we have to generate the WG from the input signal.
This process entails a standard speech decoding plus some additional work nec-
essary to obtain the word graph. Nevertheless, it is reasonable to assume that we
can generate the WGs “in advance” before starting a CATS session (or as a look-
ahead background computation). This assumption is based on the fact that, in our
case, speech transcription is carried out from recorded signals. Therefore, we can
consider the construction of the WGs as a batch and separate process from the in-
teractive transcription task itself. In any case, this WG generation time is included
in the third row in Table 4.6 for informative purposes. In the case of the direct ap-
proach, it is not possible to perform any off-line work apart from the usual signal
pre-processing and feature extraction. To summarize, the interactive WG time re-
sponse is exclusively given by the cost of the search for the suffix on the WGs.

As expected, the WG approach notably outperforms the baseline. Especially, in
the case of XEROX, where the baseline technique seems to be too slow to be even
considered and the WG approach proves to be the best solution to implement CATS
in a real environment. In addition, we can expect a diminishing time response when
using WGs as the number of interactions grows for a sentence. Whereas the initial
system hypothesis is actually a whole sentence prediction, the following predictions
tend to be shorter as the prefix length increases. Since the computational cost of the
prefix parsing is significantly lower than the search for the suffix, the time response
goes down. To quantify this fact, Fig. 4.3 shows the average response (XEROX cor-
pus) time based on the specific number of interaction performed; that is, the first
point in the graph is for the initial system prediction, the second one for the pre-
diction after one user interaction and so on. The cumulative distribution histogram
shown in Fig. 4.2 for the XEROX may help to better understand the previous results.

In order to give a reference point for the different time results, we can mention
that all the experiments were performed on a 3.2 GHz Intel Xeon CPU.
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4.7 Multimodality in CATS

As was mentioned in Chap. 1, multimodality is a natural part of IPR systems. In
the case of CATS, we have two different inputs: a speech signal to be transcribed
and the user feedback. This user feedback is mainly aimed at selecting parts of the
system suggestions as well as at introducing some corrections to these suggestions.
This interaction can be performed by means of typical input interfaces (i.e., mouse
and/or keyboard) but we can naturally introduce in CATS alternative interaction
modalities, hopefully leading to a more friendly multimodal interface.

Speech is a very natural way for humans to communicate. In the case of human-
computer interaction speech recognition-based feedback is really appreciated by the
users if the decoding accuracy is high enough.

Speech feedback can be introduced into CATS as a completely “decoupled” pro-
cess. This way, we can approach the problem of decoding the user feedback as a
classical speech recognition problem, where we have the user feedback in the form
of a speech signal x s and we are interested in obtaining the sequence of words w ¢
in x as (notice that this is basically Eq. (4.1)):

Wy =argmax P(wy | xf). 4.9)
Clearly, it can be argued that this approach can be followed with any kind of appli-
cation (the only difference is that in CATS a speech recognizer is already included
as part of the application itself). On account of this, we could regard this problem as
a mere implementation issue. However, in IPR, the user feedback is clearly embed-
ded into the very interaction process. In our CATS application, the user feedback
utterances are intended to correct part of the system suggestion to the input signal x
to be transcribed. We can take advantage to this fact to rewrite Eq. (4.9) as

Wy =argmax P(wy | xf,x). (4.10)

Notice that we can consider this problem as a familiar “re-speaking” problem, where
the user is actually re-speaking part of the input utterance. Nevertheless, in a CATS
environment we can benefit from additional information as follows. Let w be the
concatenation of p and s in the previous CATS iteration, which represents the whole
transcription of the input signal currently returned by the CATS system; the user
amendments will be based on this transcription. After decoding the user feedback,
a new CATS iteration will be performed obtaining in a new transcription for the
input speech signal x, according to

§=argmax P(s | x, w, xy). 4.11)
)

The transcription of the user feedback speech w s can be seen as a hidden variable,
leading to

§ = arg max E P(s,wy|x,w,xy)
s



114 4 Computer Assisted Transcription of Speech Signals

:argmaxZP(x s,wr,w,xf) - P(xp|s, wr, w)

N wy

P(s|wpw)- P(wy | w). 4.12)

By assuming that P(x | s, wy, w, xr) does not depend on x given wy, and that
P(xy|s,wg, w) does not depend on s and w given w y, we reach the following
expression:

s :argmaxZP(x |s,wr,w)- Plxglwy) - Pls|wp,w)- Pwy |w). (4.13)

K wy
Finally, adopting the usual approximation of the sum by the dominating term and
rearranging the terms, we achieve the following expression:

S, Wp)=argmax P(xy |wys)- P(wys|w) - P(x|s,wp,w)- P(s|wyr, w) (4.14)

S, wg

which can be seen essentially as an instantiation of the problem already formulated
in Eq. (1.27), where the w, xy, s and wy correspond with &', h, f and d, respec-
tively.

At this point we can discuss what the terms in Eq. (4.14) represent. On the one
hand, the first two terms are a classical speech recognition model for the user feed-
back utterance. The only difference is that the words decoded are somehow related
to the CATS current hypothesis w. The other two terms are, basically, a CATS
search, that is: the search for a suffix after the user amends the previous CATS
hypothesis.

Now we are going to adopt a specific interaction scenario aimed at both clarifying
how Eq. (4.14) can be implemented and allowing for an appropriate experimental
framework. Let us suppose that, given the current CAT hypothesis, the user is going
to select an error-free prefix in this utterance and, at the same time, to introduce
a correction after this prefix by uttering exactly two words. The first uttered word
will correspond to the last word in this error-free prefix and the second one is the
word that should be after this prefix. As a result, we will have a new prefix p to
start a new CATS iteration as is shown in Eq. (2.6). Now that a scenario for the user
feedback has been defined, we can approach the implementation of Eq. (4.14). The
first two terms can be seen, as was commented, as a classical speech recognition
problem. The only difference is that the language model probability is conditioned
by the current system suggestion w. Since this constraint comes from the fact that
the first word in w ¢ has to be a word in w, we can simply consider a model where
all the wy hypotheses having a first word not appearing in w are scored with null
probability.

Regarding the last two models, they correspond to a CATS search in which the
prefix is constructed according to w and W ¢. This prefix can be instantiated by con-
catenating all the words in w that come before the first word in w ¢ with the second
word in ﬁ)f (remember that, in this scenario, the first word in the user utterance is
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Table 4.7 Features of the

Xerox corpora Full Fragments
Test utterances 875 775
Speakers 5 10
Running words 3340 1550

used to set the prefix and the second one is used to dictate a new word after this
prefix).

The implementation of the whole model in Eq. (4.14) can be approached as fol-
lows. Firstly a list of n-best hypotheses is obtained according to first two terms in
the formula. Then, each element in the n-best list is re-scored according to the last
two terms. In order to perform this re-scoring, a prefix from each n-best hypothe-
sis, obtained as explained in the previous paragraph, is completed according to the
CATS search implementation.

Finally, it is worth mentioning that this speech interface is introduced into the
system not to replace the classical interaction modalities (keyboard, mouse) but as
a multimodal alternative.

4.8 Experimental Results

To assess the CATS multimodal approximation, different experiments were carried
out. These experiments are intended, in the one hand, to test the accuracy of the
CATS approach and, on the other, to assess the multimodal interface here proposed.

4.8.1 Corpora

In the experiments, the Xerox corpus [5], consisting of spoken utterances from
printer manuals, was used. This corpus was originally designed to be used in inter-
active pattern recognition experiments. Specifically, the initial version of this corpus
consisted of fragments of whole sentence utterances aimed at testing a speech in-
terface proposal for Computer Assisted Translation (CAT) systems [13] and will be
used here to test the CATS speech interface. This corpus was posteriorly extended
by adding whole sentence utterances to be employed in CATS. The main features of
both corpora are presented in Table 4.7.

Regarding the corpora used to train the CATS models, the acoustic models, on
the one hand, were estimated from the corpus shown in Table 4.8. In all the exper-
iments, monophone HMMs (obtained with the HTK toolkit [14]) were employed.
Speech pre-processing and feature extraction consisted in speech boundary detec-
tion, followed by the computation the first ten MEL cepstral coefficients plus the
energy, along with the corresponding first and second derivatives [6].
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Table 4.8 Features of the
acoustic training corpus Speakers 164
(K= x1000) Running words (4 hours) 42K

Table 4.9 WER and SER results for the user speech interface. The numbers in the first column
have been obtained by performing a completely separated ASR process. In the second column, the
recognition is based on the constraints included in Eq. (4.14). All results are percentages

Baseline CATS ASR Improvement
WER 7.3 5.0 31.0
SER 12.0 9.8 19.4

4.8.2 Experiments

For the speech feedback experiments, a real CATS session was simulated according
to the corpus shown in the first column of Table 4.7 so that each user feedback
speech utterance in the corpus shown in the second column of Table 4.7 corresponds
to a user interacting in a real CATS session.

In Table 4.9, the WER and SER for the user feedback speech interface are re-
ported. The first column corresponds to the baseline described in Eq. (4.9) while
the second column shows the results for the coupled speech interface shown in
Eq. (4.14). The average size of the n-best list employed is 496. We can see how
the performance of the speech feedback interface can be significantly improved by
taking advantage of the constraints provided by the CATS environment.

4.9 Conclusions

The CAST approach described in this chapter constitutes an alternative approxima-
tion to the subject of obtaining perfect speech transcriptions. In this new paradigm,
an automatic speech recognition system is used within an interactive system that
allows a human user to take advantage of the efficiency of this kind of automation.
The key point here is that the user takes active part of the process, correcting the
different transcription suggestions that the recognition system makes and allowing,
on the other hand, the automatic system to take advantage of these user interactions.

The results reported show that the adoption of CAST can reduce the amount of
effort that a human transcriber has to make in the case of correcting the outputs of an
automatic speech recognition system. This is even more noticeable when comparing
to a completely manual transcription process. However, real transcription sessions
involving a CAST application and a real human transcriber should be conducted in
order to draw more reliable conclusions about the real gain that could be reached by
adopting this sort of interactive paradigm.



References 117

References

10.

11.

12.

13.

14.

Amengual, J. C., & Vidal, E. (1998). Efficient error-correcting Viterbi parsing. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, PAMI-20(10), 1109-1116.

Amengual, J. C., Benedi, J. M., Casacuberta, F., Castafio, A., Castellanos, A., Jiménez, V.,
Llorens, D., Marzal, A., Pastor, M., Prat, F., Vidal, E., & Vilar, J. M. (2000). The EuTrans-I
speech translation system. Machine Translation, 15, 75-103.

Chen, S. F,, & Goodman, J. (1996). An empirical study of smoothing techniques for language
(Technical Report).

Civera, J., Vilar, J. M., Cubel, E., Lagarda, A. L., Casacuberta, F., Vidal, E., Pic6, D., &
Gonzilez, J. (2004). A syntactic pattern recognition approach to computer assisted translation.
In A. Fred, T. Caelli, A. Campilho, R. P. Duin & D. de Ridder (Eds.), Lecture notes in computer
science. Advances in statistical, structural and syntactical pattern recognition—joint IAPR
international workshops on syntactical and structural pattern recognition (SSPR 2004) and
statistical pattern recognition (SPR 2004). Berlin: Springer.

Cubel, E., Civera, J., Vilar, J. M., Lagarda, A. L., Barrachina, S., Vidal, E., Casacuberta, F.,
Pic6, D., Gonzilez, J., & Rodriguez, L. (2004). Finite-state models for computer assisted trans-
lation. In Proceedings of the 16th European conference on artificial intelligence (ECA104) (pp.
586-590), Valencia, Spain.

Llorens, D., Casacuberta, F., Segarra, E., Sdnchez, J. A., & Aibar, P. (1999). Acoustical and
syntactical modeling in ATROS system. In Proceedings of international conference on acous-
tic, speech and signal processing (ICASSP99) (pp. 641-644), Phoenix, Arizona, USA.

Ney, H., & Ortmanns, S. (1997). Extensions to the word graph method for large vocabulary
continuous speech recognition. In /EEE international conference on acoustics, speech, and
signal processing (Vol. 3, pp. 1791-1794), Munich, Germany.

Nyquist, H. (2002). Certain topics in telegraph transmission theory. Proceedings of the IEEE,
90(2), 280-305.

Ortmanns, S., Ney, H., & Aubert, X. (1997). A word graph algorithm for large vocabulary
continuous speech recognition. Computer Speech and Language, 11(1), 43-72.

Paul, D. B., & Baker, J. M. (1992). The design for the wall street journal-based csr corpus.
In HLT’91: Proceedings of the workshop on speech and natural language (pp. 357-362),
Morristown, NJ, USA. Menlo Park: Association for Computational Linguistics.

Sankoff, D., & Kruskal, J. B. (1983). Time warps, string edits, and macromolecules: The
theory and practice of sequence comparison. Reading: Addison-Wesley.

Stolcke, A. (2002). SRILM—an extensible language modeling toolkit. In Proceedings of the
international conference on spoken language processing (ICSLP02) (pp. 901-904), Denver,
Colorado, USA.

Vidal, E., Casacuberta, F., Rodriguez, L., Civera, J., & Martinez, C. (2006). Computer-assisted
translation using speech recognition. IEEE Transactions on Speech and Audio Processing,
14(3), 941-951.

Young, S. J. (1994). The htk hidden Markov model toolkit: Design and philosophy. Entropic
Cambridge Research Laboratory, Ltd, 2, 2-44.



Chapter 5
Active Interaction and Learning in Handwritten
Text Transcription

With Contribution Of: Nicolas Serrano, Adria Giménez, Alberto Sanchis and
Alfons Juan.

Contents

5.1 Imtroduction . . . . . . . ..o 119
5.2 Confidence Measures . . . . . . ... ... ... Lo 121
5.3 Adaptation from Partially Supervised Transcriptions . . . . . ... ... ... 122
5.4 Active Interaction and Active Learning . . . . . . . .. ... ... 122
5.5 Balancing Error and Supervision Effort . . . . ... ... 00000000 124
5.6 Experiments . . . . . ... oo e 126
5.7 Conclusions . . . . .. ... 132
References . . . . . . . . . . e 132

Computer-assisted systems are being increasingly used in a variety of real-world
tasks, though their application to handwritten text transcription in old manuscripts
remains largely unexplored. The basic idea explored in this chapter is to follow a
sequential, line-by-line transcription of the whole manuscript in which a continu-
ously retrained system interacts with the user to efficiently transcribe each new line.
User interaction is expensive in terms of time and cost. Our top priority is to take
advantage of these interactions, while trying to reduce them as most as possible.

To this end, we study three different frameworks: (a) improve a recognition sys-
tem from newly recognized transcriptions via adaptation techniques, using semi-
supervised learning techniques; (b) study how to best adapt from limited user super-
visions, which is related to active learning; and (c) develop a simple error estimate,
which is used to let the user adjust the error in a computer-assisted transcription
task. In addition, we test these approaches in the sequential transcription of two old
text documents.

5.1 Introduction

Transcription of handwritten text in (old) documents is an important, time-
consuming task for digital libraries. It might be carried out by first processing all
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document images off-line, and then manually supervising system transcriptions to
edit incorrect parts. However, state-of-the-art technologies for automatic page lay-
out analysis, text line detection and handwritten text recognition are still far from
perfect [4, 6], and thus post-editing automatically generated output is not clearly
better than simply ignoring it.

A more effective approach to transcribe old text documents is to follow an
interactive—predictive paradigm in which both, the system is guided by the human
supervisor, and the supervisor is assisted by the system to complete the transcription
task as efficiently as possible. This computer-assisted transcription approach has
been successfully followed in the DEBORA [3] and iDoc [7] research projects, for
old-style printed and handwritten text, respectively. In the case of iDoc, a computer-
assisted transcription system prototype called GIDOC (Gimp-based Interactive tran-
scription of old text DOCuments) has been developed to provide user-friendly, in-
tegrated support for interactive—predictive page layout analysis, text line detection
and handwritten text transcription. A detailed description of the GIDOC prototype
can be found in Chap. 12.

All works presented in this chapter were performed using GIDOC. As in most
of the advanced handwriting recognizers today, it is based on standard speech tech-
nology adapted to handwritten text images; that is, HMM-based text image mod-
eling and n-gram language modeling, as introduced in Chap. 2 of this book. The
system is trained from manually transcribed text lines during early stages of the
transcription task. Then, each new text line image is processed in turn, by first
predicting its most likely transcription, and then locating and editing system er-
rors. In order to reduce the effort in locating these errors, GIDOC again resorts
to standard speech technology and, in particular, to confidence measures (at word
level), which are calculated as posterior word probabilities estimated from word
graphs [10]. Recognized words below a given confidence threshold are marked as
possible errors, and the decision on how to proceed is left to the user. For instance,
if a small number of transcription errors can be tolerated for the sake of efficiency,
then the user might validate the system output after only supervising (a few) marked
words.

Following previous ideas in the areas of machine translation and speech recog-
nition, a prefix-based interactive—predictive approach is proposed in previous chap-
ters of this book in which the user supervises each new line, in the usual reading
order, and corrects the first incorrectly recognized word, if any. The prefix of the
current hypothesis is thus validated up to the corrected word, and hence the sys-
tem updates the current hypothesis by searching for the most probable suffix after
the validated prefix. This two-step interactive—predictive process is continued until
validation of the whole current hypothesis. It is worth noting that this approach is
designed to produce complete, error-free transcriptions of handwritten text. Accord-
ing to the taxonomy outlined in Sect. 1.4.1, this corresponds to a Passive, Left-to-
right interaction protocol in which the user has to supervise all recognized words.
In contrast, the ideas presented in this chapter assume an Active interaction proto-
col which does not need complete supervison (and does not guarantee error-free
results).
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Fig. 5.1 Word-graph example aligned with its corresponding text line image and its recognized
and true transcriptions. Each recognized word is labeled (above) with its associated confidence
measure

The remainder of this chapter is organized as follows: in Sect. 5.2 the use of
confidences measures for error locating is explained. Sections 5.3, 5.4 and 5.5 de-
scribed in detail the main contributions under three different frameworks: adaptive
learning, active interaction and learning, and development of simple good error
estimate to allow user adjust the error in a computer-assisted transcription task.
In the last Sect. 5.6, we test the presented approaches in two real handwriting
tasks.

5.2 Confidence Measures

As indicated in the introduction, confidence measures on recognized words are
calculated as posterior word probabilities estimated from word graphs. Generally
speaking, word graphs are used to represent, in a compact form, large sets of tran-
scription hypotheses with relatively high probability of being correct. See Sect. 1.5.1
for details.

Consider the example in Fig. 5.1, where a small (pruned) word graph is shown
aligned with its corresponding text line image and its recognized and true transcrip-
tions.

Each word-graph node is aligned with a discrete point in space, and each edge
is labeled with a word (above) and its associated posterior probability (below). For
instance, in Fig. 5.1, the word “sus” has a posterior probability of 0.69 to occur
between “estaba” and “un”, and 0.03 to occur between “estaba” and “con”. Note
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that all word posteriors sum to 1 at each point in space. Therefore, the posterior
probability for a word w to occur at a specific point p is given by the sum of all edges
labeled with w that are found at p; e.g. “sus” has a posterior probability of 0.72 at
any point in which the two edges labeled with “sus” are simultaneously found. As
discussed in Sect. 1.5.2, the confidence measure of a recognized word is calculated
from these point-dependent posteriors, by simply maximizing over all points where
it is most likely to occur (Viterbi-aligned). As an example, each recognized word in
Fig. 5.1 is labeled (above) with its associated confidence measure. Please see [10]
for more details.

5.3 Adaptation from Partially Supervised Transcriptions

In this section, we introduce an interactive transcription framework, where suc-
cessively produced transcriptions can be used to better adapt image and language
models to the task by, for instance, re-training them from the previous and newly
acquired transcribed data. However, if transcriptions are only partially supervised,
then (hopefully minor) recognition errors may go unnoticed to the user and have a
negative effect on model adaptation.

We study this effect as a function of the degree of supervision, i.e. the number
of words supervised per line, and as a function of the adaptation strategies used
to re-train the system. Concretely, we consider three adaptation strategies: from all
data, only from supervised parts, and from high-confidence parts. Re-training from
all data is commonly known as unsupervised learning, where a system learns from
its own (unmodified) output. Given the user supervisions we can choose to train
uniquely from user supervised transcription, as it is typically performed in active
learning systems. In the last strategy, re-training from high-confidence parts, we
use the best of the two previous approaches. It is inspired in [11], where confi-
dence measures were successfully used to restrict unsupervised learning of acoustic
models for large vocabulary continuous speech recognition. It must be noted that,
high-confidence parts include both, unsupervised words above certain confidence
threshold, and supervised words. Figure 5.2 shows an example of the three strate-
gies.

5.4 Active Interaction and Active Learning

Active learning strategies are being increasingly used in a variety of real-world
tasks where user supervision is difficult, time-consuming, or expensive to ob-
tain [9]. Active learning is particularly adequate for active interaction protocols,
as those studied in this chapter. In interactive transcription of old text documents,
the simplest active interaction strategy is to supervise the least confident words of a
given recognizer output. Next, active learning consists in adapting the system mod-
els by means of these corrected transcriptions, as discussed in the previous sec-
tion.
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098 0.72 061 1 0.98 11 1 1 1 1
estaba sus una del éxito de la empresa . En este estado de

[From all data (Unsupervised)]

estaba sus una del éxito de la empresa . En este estado de

[From user supervised parts]

estaba sus una del éxito de la empresa . En este estado de

[From high confidence parts (cm > 0.95)]

estaba sus una del éxito de la empresa . En este estado de

Fig. 5.2 Example showing words (marked in bold) which will be used in the next re-training,
when using the different adaptation technique. The first row shows the recognized line along with
its confidence measure (above), as well as the words “empresa” and “.” supervised by the user

In this section, we focus on active interaction and explore how it can be used
to further enhance system performance. That is, we take advantage of the user
feedback, in form of corrected words, to further improve the transcription accu-
racy. The conventional, non-interactive recognition strategy is improved by letting
the system recompute the most probable hypotheses with the constraints imposed
by user supervisions. In particular, two strategies, called iterative and delayed, are
studied which differ in the frequency of hypothesis recomputation on the current
line.

An application example of the conventional, iterative and delayed strategies is
shown in Fig. 5.3, with user supervision limited to three words. The conventional
approach leads to the correction of the three words recognized with less confidence
(ras, me and &), resulting in a corrected transcription which still contains two in-
correctly recognized words (vn and Aguas). The iterative strategy first asks for
the supervision of ras, which is substituted by Pirus, and then recomputes the
most probable hypothesis, where four more recognized words of the previous hy-
pothesis are substituted or deleted (me, Aguas, & and vn). The second iteration
reduces to substituting te for me. In the third iteration, the user substitutes Vegas
for vengar, which results in the correct transcription but, somewhat surprisingly,
recomputation of the most probable hypothesis ends up with a recognition error
(vna). The delayed strategy, shown at the bottom of Fig. 5.3, simply amounts to
recompute the most probable hypothesis after the conventional (manual) correc-
tion of the three words recognized with less confidence. In contrast to the con-
ventional approach, only one recognition error remains in the final transcription
(vengar).

An important issue regarding the implementation of the iterative and delayed
strategies is how to compute a most probable hypothesis compatible with user su-
pervisions and corrections. Following Kristjansson [2], we have implemented a con-
strained Viterbi decoding algorithm in which the search for the most probable path
is constrained to pass through subpaths that conform user supervisions and correc-
tions. More precisely, word scores in supervised segments are set to null for all
words but those supervised and possibly corrected.
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He ! f;- TH‘:‘!F [r’f’:":]:!fﬂa ,7;1r,4.‘:r»f ally ynas Yegas @ qrar

ue. E Pirus porque vio que Auia alli vnas Vegas & gran
Conventional:

ST .9 4 1 1 1 1 1 1 9 9 1 1

me & E ras porque vio que Auia alli wvnas wvn Aguas & gran
ue. E  Pirus porque vio que Aunia alli wvnas vn Aguas & gran
Iterative:

8 LT 0.0 4 1 1 1 1 1 1 9 9 1 1
me & E ras  porque vio que Auia alli vnas vn Aguas & gran
5 1 1 1 9 1 1 | 8 .6 1 1
te E Pirus porque vio que Auia alli wvnas vengar & gran
1 1 1 1 9 1 1 1 .8 .6 1 1
ue. E Pirus porque vio que Auia alli wvnas vengar & gran
ue. E Pirus porque vio que Auia alli vna Vegas & gran

Delayed:

BT .9 4 1 1 1 1 1 1 9 9 1 1
me & E ras porque vio que Auia alli  wvnas wvn Aguas & gran
ue. E Pirus porque vio que Auia alli  vnas vengar & gran

Fig. 5.3 Application example of the conventional, iterative and delayed strategies for interac-
tive—predictive transcription of a text line image with user supervision limited to three words.
Recognized words are labeled above with their associated confidence measures. Supervised words
and transcription errors are marked with plain and wavy underlining, respectively

5.5 Balancing Error and Supervision Effort

In this section, we study how to automatically balance recognition error and super-
vision effort. Our starting point is a system applying the best adaptation strategy
from Sect. 5.3, where we have compared several model adaptation techniques from
partially supervised transcriptions. Experiments showed that it is better not to adapt
models from all data, but only from high-confidence parts, or just simply from su-
pervised parts. More importantly, it has been shown that a certain degree of super-
vision is required for model adaptation, although it remains unclear how to adjust
it properly. To this end, we propose a simple yet effective method to find an opti-
mal balance between recognition error and supervision effort. The user decides on
a maximum tolerance threshold for the recognition error (in non-supervised parts),
and the system “actively” adjusts the required supervision effort on the basis of an
estimate for this error.

Recognition error is measured in terms of Word Error Rate (WER); that is, as
the average number of elementary editing operations needed to produce a refer-
ence (correctly transcribed) word from recognized words. Given a collection of
reference-recognized transcription pairs, its WER may be simply expressed as

E
WER = —,
N
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where E is the total number of editing operations required to transform recognized
transcriptions into their corresponding references, and N is the total number of ref-
erence words. In this work, however, we need to decompose these three variables
additively, as

WER = WERT + WER™,
E=ET4+E~ and N=N"T+4+N",

where the superscripts + and ~ denote supervised and unsupervised parts, respec-
tively, and thus

v _ET -_E
WER" = and WER™ = —.
N N

In order to balance error and supervision effort, we propose the system to ask
for supervision effort only when WER™ becomes greater than a given, maximum
tolerance threshold, say WER*. However, as we do not know the values of £~ and
N7, they have to be estimated from the available data. A reasonable estimate for
N~ is simply

~_ NT
N ZF 5

where R* and R~ denote the number of recognized words in the supervised and
unsupervised parts, respectively. Similarly, a reasonable estimate for E~ is

and thus the desired estimate for WER ™ is

Et p—
WER = o
N++R—+R7

Each recognized word will be accepted without supervision if it does not lead to a
WER ™ estimate greater that WER*.

Note that the above estimate for WER™ is pessimistic, since it assumes that,
on average, correction of unsupervised parts requires similar editing effort to that
required for supervised parts. However, the user is asked to supervise recognized
words in increasing order of confidence, and hence unsupervised parts should re-
quire less correction effort. In order to better estimate WER™, we may group rec-
ognized words by their level of confidence c, from 1 to a certain maximum level C,
and compute a c-dependent estimate for E as above,
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where EJ, R and R, are c-dependent versions of ET, RT and R, respectively.
The global estimate for E is obtained by simply summing these c-dependent esti-
mates,

c
E-=Y E:
c=1
and, therefore, the estimate for WER ™ becomes

c Ef ,_
— Zc:l R RC
Nt + T R~
which reduces to the previous, pessimistic estimate when only a single confidence
level is considered (C = 1).

5.6 Experiments

In the following sections, the active learning and interactive transcription strategies
described are applied in two real handwritten tasks: GERMANA and RODRIGO.

5.6.1 User Interaction Model

In order to validate our interactive transcription techniques, we need to perform
a high number of experiments. As our experiments require from user supervision,
dealing with real users would be impossible because of time and cost. In this section,
we propose a simple yet realistic user interaction model to simulate user actions at
different degrees of supervision. The degree of supervision is modeled as the (max-
imum) number of recognized words (per line) that are supervised: O (unsupervised),
1, ..., oo (fully supervised). It is assumed that recognized words are supervised in
non-decreasing order of confidence.

In order to predict the user actions associated with each word supervision, we
first compute a minimum edit (Levenshtein) distance path between the recognized
and true transcriptions of a given text line. For instance, the example text line image
in Fig. 5.1 is also used in Fig. 5.4 to show an example of minimum edit distance path
between its recognized and true transcriptions. As usual, three elementary editing
operations are considered: substitution (of a recognized word by a different word),
deletion (of a recognized word) and insertion (of a missing word in the recognized
transcription). Substitutions and deletions are directly assigned to their correspond-
ing recognized words. In Fig. 5.4, for instance, there is a substitution assigned to
“sus”, a deletion assigned to “una”, and a second substitution that corresponds to
“camarera”. Insertions, however, have not direct assignments to recognized words
and, hence, it is not straightforward to predict when they are carried out by the user.
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estaba  suspensa del éxito de la empresa . En este estado de

Fig. 5.4 Example of minimum edit distance path between the recognized and true transcriptions
of a text line image

To this end, we first compute the Viterbi segmentations of the text line image from
the true and recognized transcriptions. Given a word to be inserted, it is assigned
to the recognized word whose Viterbi segment covers most part of its true Viterbi
segment. For instance, in Fig. 5.4, the period is completely covered by “camarera”,
and thus its insertion is assumed to be done when “camarera” is supervised.

5.6.2 Sequential Transcription Tasks

Experiments were carried out on two datasets recently introduced: GERMANA [5]
and RODRIGO [8]. GERMANA is the result of digitizing and annotating a 764-
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Table 5.1 Statistics of

GERMANA and RODRIGO. GERMANA RODRIGO

Singletons corresponds to

words appearing once in the ~ Pages 764 853

document. Perplexity drawn Lines 20529 20357

from a bigram language .

model in a ten-fold validation Running words (K) 217 232
Lexicon size (K) 27.1 17.3
Singletons (%) 57.4 54.4
Character set size 115 115
Perplexity 290 166

page Spanish manuscript from 1891, in which most pages only contain nearly cal-
ligraphed text written on ruled sheets of well-separated lines. The example shown in
Fig. 5.1 contains a text line image from GERMANA. GERMANA is solely written
in Spanish up to p. 180, but then it includes many parts written in languages other
than Spanish. RODRIGO is similar to GERMANA both, in size and page layout.
However, it comes from a much older manuscript, from 1545, and it is completely
written in Spanish. As can be seen in text line image shown at the top of Fig. 5.3,
which was extracted from p. 65, the writing style has clear Gothic influences. Some
basic statistics of GERMANA and RODRIGO are provided in Table 5.1.

5.6.3 Adaptation from Partially Supervised Transcriptions

Due to its sequential book structure, the very basic task on GERMANA is to tran-
scribe it from the beginning to the end, though here we only consider its transcrip-
tion up to p. 180. Starting from p. 3, we dividled GERMANA into nine consecutive
blocks of 20 pages each (18 in block 9). The first two blocks (pp. 3—42) were used to
train initial image and language models from fully supervised transcriptions. Then,
from block 3 to 8, each new block was recognized, partially supervised and added
to the training set built from its preceding blocks.

As it has been said in Sect. 5.3, we perform the sequential transcription of GER-
MANA as function of: the degree of supervision and the adaptation technique used.
We considered three degrees of supervision: zero (unsupervised), one and three su-
pervised words per line; and the three adaptation (re-training) strategies: from all
data, only from high-confidence parts, and only from supervised parts. The results
are shown in Fig. 5.5 in terms of Word Error Rate (WER) on block 9 (pp. 163-180).

From the results in Fig. 5.5, it becomes clear that baseline models can be im-
proved by adaptation from partially supervised transcriptions, though a certain de-
gree of supervision is required to obtain significant improvements. In particular,
supervision of three words per line leads to a reduction of more than a 10% of
WER with respect to unsupervised learning (baseline models), though there is still
room for improvement since full supervision achieves a further reduction of 5%
(34%). The adaptation strategy, on the other hand, has a relatively minor effect on
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the results. Nevertheless, it seems better not to re-train from all data, but only from
high-confidence parts, or just simply from supervised parts.

Apart from the above experiment on GERMANA, we did a similar experiment
on the well-known IAM dataset, using a standard partition into a training, validation
and test sets [1]. The training set was further divided into three subsets; the first
one was used to train initial models, while the other two were recognized, partially
supervised (four words per line) and added to the training set. The results obtained
in terms of test-set WER are: 42.6%, using only the first subset; 42.8%, after adding
the second subset; and 42.0%, using also the third subset. In contrast to GERMANA,
there is no significant reduction in terms of WER after adding partially supervised
data to the training set. We think that this result is due to the more complex nature
of the IAM task.

5.6.4 Active Interaction and Learning

In this section, we describe the experiments done to test the active learning strate-
gies referred in Sect. 5.4. In this set of experiments, we used the best system from
the previous experiment. Again, the quality of the successively produced models
was measured in terms of WER on block 9, and it is shown in Fig. 5.6 (left). Full
supervision (co) and the conventional strategy (C) are compared with the two strate-
gies discussed; that is, iterative (I) and delayed (D). The C, I and D strategies were
limited to three supervised words per line, which is not too much since, on average,
text lines are of 11 words approximately.

Experiments similar to those previously described were also carried out on RO-
DRIGO. The 20K lines of RODRIGO were divided into 20 consecutive blocks of
1000 lines approximately, except for the first 1 000 lines, which were divided into
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‘ ‘ ‘ 55 ‘
58 WER@®) WER(%)
GERMANA RODRIGO
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Fig. 5.6 Word Error Rate (WER) on the last block of lines, as a function of the number of train-
ing lines, for full supervision (co), and partial supervision (of three words per line), using three
active learning strategies: conventional (C), iterative (I), and delayed(D). Left: GERMANA. Right:
RODRIGO

the line blocks 1-100, 101-200, 201-500 and 501—-1 000. The results are also shown
in Fig. 5.6 (right).

From the results in Fig. 5.6, it becomes clear that the proposed iterative and
delayed strategies are better than the basic, conventional approach. In the case of
RODRIGO, conventional supervision of three words per line results in a WER of
43.1%, which is 6.6 points above full supervision (36.5%). By contrast, the iterative
and delayed strategies are only 3.3 and 3.0 points above, respectively. That is, the
increase of WER due to supervising only three words per line is halved by using
the proposed strategies. Moreover, it is worth noting that this increase of 3 points
over a WER of 36.5% is just a small degradation in terms of WER, as compared
with the considerable user effort reduction achieved by only supervising three out
of 11 words per line. On the other hand, it seems that the iterative and delayed
strategies produce nearly identical results, though this should be further explored by
also considering the effect of varying the supervision degree (number of supervised
words per line).

In the case of GERMANA, the iterative and delayed strategies also provide better
results than the conventional approach, though the WER improvements are more
moderate. This might be due to the fact that GERMANA models are produced from
training sets much smaller than those used for RODRIGO. Note that GERMANA is
easier to recognize than RODRIGO, since WER results similar to those obtained on
RODRIGO are achieved from much less training lines.

5.6.5 Balancing User Effort and Recognition Error

Perfect transcription of old text documents is not always mandatory. Transcriptions
containing a few number of errors are perfectly readable and can be easily obtained
using a computer-assisted system. In Sect. 5.5 we introduce a simple yet effective
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Fig. 5.7 Word Error Rate (WER) on transcribed lines (excluding the first 200), as a function
of the (number of) training lines, for varying tolerance thresholds on the recognition error (in
unsupervised parts). Left: GERMANA dataset. Right: RODRIGO dataset

method to balance error and user effort. Here, we consider the transcription under
three tolerance thresholds on the recognition error (in unsupervised parts): 0% (fully
supervised), 9% (one recognition error per line, on average) and 18%.

In this case, we dividled GERMANA into consecutive blocks of 100 lines each
(37 blocks). The first two blocks were used to train initial image and language mod-
els from fully supervised transcriptions. Then, from block 3 to 37, each new block
was recognized, partially supervised as discussed in Sect. 5.5 for C = 4 confidence
levels, and added to the previous training set. The first three confidence levels cor-
respond, respectively, to the first three words in each line that were recognized with
smaller confidence; the remaining recognized words were all grouped into the fourth
level. Re-training of image and language models was carried out from only high-
confidence parts [7]. The results are shown in Fig. 5.7 (left) in terms of WER on
transcribed lines (excluding the first 200).

From the results in Fig. 5.7 (left), it becomes clear that the proposed balancing
method takes full advantage of the allowed tolerance to reduce the supervision ef-
fort. Moreover, the total WER of the system trained with partial transcriptions does
not deviate significantly from that of the fully supervised system. The average user
effort reduction ranges from 29% (for WER* = 9%) to 49% (for WER™ = 18%).
That is, if one recognition error per line is allowed for on average (WER* = 9%),
then the user will save 29% of the supervision actions that are required in the case
of a fully supervised system. Here, supervision actions refers to elementary editing
operations, and also to check that a correctly recognized word is certainly correct.

In order to better assess the proposed method, a larger experiment was also con-
ducted on RODRIGO, which was divided into blocks of 1000 lines each, except
for the first 1 000 lines, which were divided into the line blocks 1-100, 101-200,
201-500 and 501-1 000. The experiment and results, shown in Fig. 5.7 (right), are
analogous to those described above for GERMANA.



132 5 Active Interaction and Learning in Handwritten Text Transcription

Although the results presented in Fig. 5.7 are quite satisfactory, we have observed
that the proposed balancing method does not clearly favor supervision of low con-
fidence words over those recognized with high confidence. We think that this is
mainly due to the fact that it works on a word-by-word basis and, in order to decide
whether a given word has to be supervised or not, its contribution to the current
estimate of WER™ is not as important as the closeness of this estimate to WER*.
We think that this behavior can be alleviated by using more confidence levels or,
more directly, by working on a line-by-line basis. That is, by first assuming that all
balancing error recognized words in a line are not supervised, and then supervis-
ing words in increasing order of confidence while the current estimate of WER™ is
above WER*.

5.7 Conclusions

In this chapter we described three different frameworks to deal with the interactive
transcription process of handwritten documents, where the recognizer output is par-
tially supervised. The basic idea is to assist the user in the transcription process,
while keeping his interactions as low as possible. It has been shown that, a sys-
tem can be trained from partially (and possibly erroneous) supervised transcription,
while achieving similar results to a fully supervised trained system. We showed that
user interaction can be used to further improve the current transcription, constrain-
ing the current hypothesis search space. Lastly, we created a framework that allows
the user to adjust the error in exchange of user effort. Experiments were performed
on two real transcription tasks, GERMANA and RODRIGO, showing the effective-
ness of the proposed frameworks.
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Achieving high-quality translation between any pair of languages is not possible
with the current Machine-Translation (MT) technology a human post-editing of the
outputs of the MT system being necessary. Therefore, MT is a suitable area to ap-
ply the Interactive Pattern Recognition (IPR) framework and this application has
led to what nowadays is known as Interactive Machine Translation (IMT). IMT
can predict the translation of a given source sentence, and the human translator
can accept or correct some of the errors. The text amended by the human transla-
tor can be used by the system to suggest new improved translations with the same
translation models in an iterative process until the whole output is accepted by the
human.

As in other areas where IPR is being applied, IMT offers a nice framework for
adaptive learning. The consolidated translations obtained through the successive
steps of the interaction process can easily be converted into new, fresh, training
data, useful for dynamically adapting the system to the changing environment. On
the other hand, IMT also allows one to take advantage of some available multi-
modal interfaces to increase of the productivity of high-quality translations. Multi-
modal interfaces and adaptive learning in IMT will be covered in Chaps. 7 and 8,
respectively.
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136 6 Interactive Machine Translation

6.1 Introduction

The application of statistical pattern recognition techniques to the field of Ma-
chine Translation (MT) has allowed the development of new MT systems with
less effort than was previously required under the formerly dominant rule-based
paradigm [22]. These systems (which are known as Statistical MT systems—
SMT systems) together with the memory-based ones constitute the data-driven ap-
proach to MT. However, the quality of the translations produced by any (statistical,
memory-based or rule-based) MT system remains below that of human translation.
This quality could be enough for many applications, but for other applications, the
output of the MT systems has to be revised in a post-editing phase. An alternative
to the use of pure post-editing is the approach proposed in the TransType project
[16, 25, 26] and its successor TransType2 (TT2) [2, 11]. In this approach, a full-
fledged MT engine is embedded in an interactive editing environment and used
to generate suggested completions of each target sentence being translated. These
completions may be accepted or partially amended by the translator; but the vali-
dated words are exploited by the MT engine to produce further, hopefully improved
suggestions. This new approach is known as Interactive Machine Translation (IMT).
TransType allowed only for single-token completions, where a token could be either
a word or a short sequence of words from a predefined set of sequences. This idea
was extended to complete full target sentences in the TT2 project. This interactive
approach offers a significant advantage over traditional post-editing, where there is
no way for the system to benefit from the corrections of the user.

Interactivity in translation (more precisely, in Computer-Assisted Translation—
CAT) has been explored for a long time to solve different types of ambiguities [2].
However, there are only few research groups that have published, to our knowledge,
contributions in this IMT topic. As we have mentioned, the first publications are
related with the TransType project [16, 17, 25, 26, 29, 34, 37]. The second group of
publications are around the TransType2 project [2, 3, 11-15, 32, 38]. More recently
other research groups have started to work on this topic [23].

In this section, we present a summary of the state-of-the-art in SMT. Section 6.2
is devoted to the applications of IPR in MT. The specific search problem in IMT
is presented in Sect. 6.3. The adopted tasks, the evaluation measures and experi-
mental settings, and the results obtained are presented in Sect. 6.4. All the aspects
related with adaptability and multi-modality in IMT are introduced in the next chap-
ters.

6.1.1 Statistical Machine Translation

SMT is based on the application of the Bayes decision rule to the problem of con-
version of a source sentence x from a source language X to a target sentence h
from a target language H. This decision rule can be stated as the search for a target
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sentence /1 that maximizes the posterior probability that a sentence # is a translation
of a given x [5, 6]:

h= argmax Pr(a | x). (6.1)
h

The state-of-the-art in SMT is based on bilingual segments or bilingual phrases
as translation units and log-linear models to approach Pr(4 | x) [22]. Bilingual
phrases are pairs of word sequences (%, /1) in which all words within the source-
language phrase x are aligned only to words of the target-language phrase h and
vice versa [22]. On the other hand, log-linear models [31] are combinations of N

different feature functions f;(x, k) for 1 <i < N:

exp YN Ai fi(x, h)
S exp Y Ai fi(x, h')

Pr(h|x)~ P(h|x;)A) = (6.2)

A feature function f;(x, h) [22] can be any model that represents an important fea-
ture for the translation. N is the number of models (or features) and A; are the
weights of the log-linear combination.

Some of these feature functions are based on the segmentation of the pair (x, /)
in terms of a sequence of phrases X1, ...,Xg (x = X1 ---Xg) and hi,....hg (h=
ﬁl h k) for a given K. If the correspondence (alignment) between source and
target phrases is represented as a function a : {1, ..., K} — {1,..., K}, Eq. (6.1)
can be rewritten using a modified version of Eq. (6.2) as

h= argmaxmakaiﬁ(x, h,a). (6.3)
h a =

One of these feature functions can represent the direct translation:

K

fitx.h.a) =" "(log par | ar—1) +log p (i | %a,)). (6.4)
k=1

where p(ay | ax—1) is the probability that a source phrase in position k is aligned
with a target phrase in position ay, given that a previous source phrase in position
k — 1 was aligned with a target phrase in position ax_1, and p(hy | X') is the prob-
ability that a target phrase hy is the translation of a given source phrase X;/. Another
feature function is based on a target language model, typically a n-gram model (tri-
grams for example for a target sentence of length J):

J
fite,hoay="Y logp(h; | hj 2, hj1). (6.5)
j=1

Other feature functions are based on the inverse version of Eq. (6.4) and on other
target-language models and diverse (target and/or source) length models. There is an
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interesting feature function that is based on a language model (trigrams for example
and with a(j) = j) of bilingual phrases:

K

filx,h,a) = Zlogp(fk, B | Zx—2y hi—2, T, hi—1). (6.6)
k=1

This model can also be efficiently implemented with Stochastic Finite-state Trans-
ducers (SFSTs) [9, 10] or as another feature in the log-linear modeling [28].

In the learning phase, all bilingual phrases are extracted from a bilingual training
corpus and the normalized counts of how often a bilingual phrase occurred in the
aligned training corpus are computed [22, 24, 33]. The parameters of the n-grams
are estimated by a counting process on a target training set. On the other hand,
the weights of the log-linear combination in Eq. (6.2) are computed by means of
Minimum Error Rate Training (MERT) [30]. In the case that SFSTs are adopted,
the Grammatical Inference Algorithms for Transducer Inference (GIATI) algorithm
can be used [9].

The search for the best translation of a given source sentence x is carried out
by producing the target sentence in left-to-right order using the log-linear model
in Eq. (6.2). At each step of the generation algorithm, a set of active hypotheses
are maintained and one of them is chosen for extension. A segment of the target
language is then added to the chosen hypothesis and its costs get updated [22, 31].
If SFSTs are adopted, the Viterbi algorithm can used for the generation of the target
sentence [10]. In both cases, the search space can be huge and pruning techniques
have to be used.

6.2 Interactive Machine Translation

The systems described in Sect. 6.1.1 are still far from perfect. This implies that,
in order to achieve good, or even acceptable, translations, manual post-editing is
needed. An alternative to this serial approach (first MT, then manual correction)
is given by the IMT paradigm. This approach is exemplified in Fig. 6.1. Let us
suppose that a source English sentence x = “Click OK to close the print dialog” is
to be translated into a target Spanish sentence /. Initially, with no user information,
the system provides a complete translation suggestion (s = “Haga clic para cerrar
el didlogo de impresion”). From this translation, the user marks a prefix as correct
(“Haga clic”) and begins to type the rest of the target sentence. Depending on the
system or the user’s preferences, the new input can be the next word or some letters
from it (in our example, the input is the next correct word, “en’). A new target prefix
p is then defined by the previously validated prefix together with the new input the
user has just typed (p = “Haga clic en”). The system then generates a new suffix s
to complete the translation: “ACEPTAR para cerrar el didlogo de impresién”. The
interaction continues with a new validation, followed, if necessary, by new input
from the user, and so on, until a complete and satisfactory translation is obtained.
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Input (z) ‘ Click OK to close the print dialog
0 System (S) | Haga clic para cerrar el didlogo de impresién
1 User (p) | Haga clic en

System  (5) ACEPTAR para cerrar el didlogo de impresion
2 User (p) | Haga clic en ACEPTAR para cerrar el cuadro
System  (3) de didlogo de impresion

3 User (p) | Haga clic en ACEPTAR para cerrar el cuadro de didlogo de impresion #

Output  (h) ‘ Haga clic en ACEPTAR para cerrar el cuadro de didlogo de impresion

Fig. 6.1 An example of IMT with keyboard interaction. The aim is to translate the English sen-
tence “Click OK to close the print dialog” into Spanish. Each step starts with a previously fixed
target-language prefix p, from which the system suggests a suffix § (in blue color). Then the user
accepts a part of this suffix (in black color) and types some key-strokes (in red color), possibly in
order to amend the remaining part of s. This produces a new prefix, composed by the prefix from
the previous iteration and the accepted and typed text, to be used as p in the next step. The process
ends when the user enters the special keystroke “#”. System suggestions are printed in italics and
user input in boldface typewriter font. In the final translation #, text that has been typed by the user
is underlined

In this problem, we can apply the concepts and ideas that have been developed
in Sect. 1.4.2 in the algorithm IPR-History of Sect. 1.3.2. More specifically, we
can use the concepts of prefix and suffix introduced in the left-to-right interactive-
predictive processing: Given a source sentence x and a target prefix p validated by
the human, the optimization problem can be stated as the search for a target suffix s
that completes p as a translation of the source sentence x:

§ = argmaxPr(s | x, p). 6.7)
N

This equation can be rewritten as

§ =argmaxPr(p, s | x). (6.8)
N

Since ps = h, this equation is very similar to Eq. (6.1). The main difference is that
the maximization search now is performed over the set of suffixes s that complete
p instead of complete sentences (2 in Eq. (6.1)). This implies that we can use the
same models if the search procedures are adequately modified [2].

The optimization problem in IMT have been reduced as a search problem con-
strained by the prefix; obviously, there can be other alternatives, but this one has the
advantage that in this approach we used the same models as for SMT and therefore
we use the same training algorithm as for SMT [2]. On the other hand, the search for
IMT is similar as for SMT but constrained by a fixed prefix in each iteration. This
search can be carried out by a modification of the available search algorithms [2].
However, high speed is needed because typically a new system hypothesis must be
produced in real time after each user keystroke [2, 32], therefore, we use a word
graph that represents all (or a selected part of) possible translations of the given
source sentence.
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6.2.1 Interactive Machine Translation with Confidence Estimation

Under the IMT paradigm, the user is asked to mark a correct prefix and, possibly,
type some corrections for each suffix provided by the system. To interact with the
system, the user makes use of his knowledge about the languages being translated,
but, potentially, user effort reductions could be achieved if information about the
correctness of the suffixes provided by the system is made available to the user. This
information can be derived by estimating the confidence the system has on their
predicted suffixes, as introduced in Sect. 1.5.2. For a given source sentence x and
a validated target prefix p we compute the confidence measure CM(5s, x, p) for the
target suffix § generated.

Confidence estimation have been extensively studied for other Natural Language
Processing (NLP) applications and more recently have been applied to SMT [4, 18,
35, 39, 40]. Confidence information have been previously used in IMT to improve
translation prediction accuracy [17, 18, 39]. Alternatively, confidence information
can be used, not only to improve the translations provided by the system, but also to
reduce the user effort.

The use of confidence information within the IMT scenario results in a modifica-
tion of the interaction protocol. In the IMT scenarios discussed so far, the operator
was assumed to systematically supervise each system suffix and find the point where
the next translation error appears. As discussed in Sect. 1.4.1, within these “passive”
protocols the system just waits for the human feedback, without taking into account
how the supervision is performed by the user. In contrast, in an “active” protocol,
the system is in charge of taking decisions about what needs user supervision (see
Sect. 1.4.3). Suffix confidence measures can be used to estimate which hypothesis
may be worth asking for user supervision in order to optimize the overall human-
computer performance.

According to this “active” protocol, we define an alternative IMT scenario where
not all the sentences are interactively translated by the user. Specifically, only those
suffixes classified as incorrect, according to a confidence measure, are interactively
amended by the user [19, 20]. Therefore, the quality of the final translations may
depend on the system ability to select appropriate suffixes for supervision. How-
ever, this “active” interaction may provide a better trade-off between overall human
interaction effort and translation accuracy.

This “active* protocol can be seen as a generalization of the IMT scenario in
which confidence estimation acts as a regulator of the effort required for the user.
Depending on the confidence threshold defined, the behavior of the system can range
from a fully automatic SMT system, where all suffixes are considered to be correct,
to a conventional IMT system, where all suffixes are considered to be incorrect.

Confidence Measure for IMT

We estimate the reliability of the suffixes generated by the system by combining the
confidence scores of their individual words. We choose a word confidence measure
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based on the IBM model 1 [6]. The confidence score of a word §; of the suffix §
generated from the source sentence x given the prefix p from Eq. (6.7) is computed
as

CM i, x. p) ~ CM (i, x) = max PG |x)) (6.9)
<J=

where P(5; | x ;) is a bilingual lexicon probability [6] J is the number of words in x
and x is the empty source word.

We choose this confidence measure instead of using the posterior probability
due to response-time constrains. The confidence score based on the simplest model
proposed in [6] (Model 1) is much faster to compute than applying the forward—
backward algorithm, as described in Sect. 1.5.2. Moreover, it performs similarly to
the word confidence measures based on word graphs as shown in [4, 35, 40].

The confidence measure for the full suffix s is computed as the ratio of its words
classified as correct by the word confidence measure. A word §; is classified as
correct if its confidence score CM (§;, x) exceeds a word classification threshold ,,.

U8 | CM (i, x) > Tl

CM(@S, x, p) ~ CM@, x) = 5 (6.10)
S

Each suffix is classified as either correct or incorrect depending on whether its con-
fidence score does or does not exceed a suffix classification threshold zy. It is worth
of notice that with a threshold value 7, = 0.0 all the suffixes will be classified as
correct whereas with a threshold value 7, = 1.0 all the suffixes will be classified as
incorrect.

6.3 Search in Interactive Machine Translation

As mentioned above, the search problem in IMT can be seen as a search constrained
by the prefix p validated by the user. Real-time user interaction dictates the need
of efficient search techniques, such as the word-graph representation and Viterbi
algorithm presented in Sect. 1.5.1.

Analogously to the search procedure in CATTI and CAST (see Sect. 2.5), the
first step is to generate a word graph as a pruned version of the search space for
the translation of the source sentence x [2]. Once the word graph is constructed,
error-correcting parsing is used to accommodate the user-validated prefix to those
prefixes available in the word graph. This step is followed by a Viterbi suffix search
to provide the most probable completion.

6.3.1 Word-Graph Generation

For each source sentence, a word graph representing possible translations is gener-
ated. This word graph is generated once for each source sentence, so it is repeatedly
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Fig. 6.2 Example of a word graph for the source Spanish sentence “seleccionar el siguiente”,
being the English reference translation “select the next”. A is the empty string

used to find the completions of all the different prefixes provided by the user. Using
the word graph in such a way makes the system able to interact with the user under
tight real-time constraints [2].

A word graph may also be understood as a weighted directed acyclic graph, in
which each node represents a partial translation hypothesis, and each edge is labeled
with the word or the segment of the target sentence being expanded and is weighted
according to the underlying models. Indeed, if no pruning is applied in the produc-
tion of the word graph, it represents all possible sequences of target words for which
the posterior probability is greater than zero, according to the models used. An ex-
ample of a word graph for the source Spanish sentence “seleccionar el siguiente” is
shown in Fig. 6.2.

However, due to the pruning performed in the word-graph generation for effi-
ciency and response-time constraints, the word graph only contains a subset of the
possible translations. Moreover, it is also possible that the user incorporates words
unknown by the system. For these reasons, it may occur that the prefix validated
by the user is not present in the word graph. This problem requires the application
of error-correcting parsing to allow for user prefixes that may not exist in the word
graph.

6.3.2 Error-Correcting Parsing

As mentioned above, it is feasible that the user defines a prefix containing words
not found in the word graph. In order to solve this problem, we take the same ap-
proximation as presented in Sect. 3.2.2, but adapted to the IMT scenario. In this
scenario, the search of the most probable completion § given the source sentence x
and a user-validated prefix p is formulated starting from Eq. (6.8) as follows:

§ =argmax P(s, p | x)
S
=argmax Y P(s,p,p | x)
er %: p.p

:argmaxZP(s,p’|x)-Pr(p|x,s,p/), (6.11)
§ /
P
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p’ being a prefix in the word graph. At this point we consider the following assump-
tion: the probability of the user-validated prefix p does not depend on the source
sentence x and the suffix s given the word-graph prefix p’. By doing so and using
the maximum as an approach to the sum, Eq. (6.11) becomes

§~argmaxmax P(p’,s | x)- P(p|p)). (6.12)
s P

On the one hand, the first term in Eq. (6.12) is the conventional term for SMT that
appears in Eq. (6.1) being & = p’s. On the other hand, P(p | p’) is an “error model”
which provides the probability that a word-graph prefix p’ is changed into the prefix
p given by the user.!

In practice, this last term is computed by applying a probabilistic version of
the error-correcting algorithm for regular grammars [41]. As in Sect. 3.2.2, an effi-
cient implementation is achieved by visiting the states in topological order [1], and
using beam-search techniques [27]. Moreover, under the left-to-right interactive-
predictive processing, we can take advantage of the incremental nature of the user
prefix p, so that the error-correcting algorithm only parses the new part of this pre-
fix.

An example of the search process is illustrated in Fig. 6.3 when translating the
Spanish sentence “seleccionar el siguiente” into the English reference translation
“select the next”. First, the word graph is generated from the source sentence (see
Fig. 6.2). Then, provided that no user prefix has been entered yet, the topmost sub-
figure highlights in blue the most probable path. Just underneath, we can observe
how the correction of the user by typing the word “select” is reflected in the word
graph defining an alternative partial path in red, compatible with this correction.
Finally, considering the word-graph prefix defined by the user correction, the most
probable completing path is computed according to Eq. (6.12). Obviously, the words
along this path constitute the suffix suggested by the system to the user.

6.3.3 Search for n-Best Completions

A desirable feature of an IMT system is the possibility of producing a list of alter-
native suffixes, instead of only one. This feature can be easily added by computing
the N-best suffixes.

To this purpose, an algorithm that searches for the n-best paths in a word graph
is required. As mentioned in Sect. 1.5.1, among the n-best algorithms available, the
Recursive Enumeration Algorithm (REA) described in [21] was selected. The main
two features that support this decision are its simplicity to calculate best paths on
demand and its smooth integration with the error-correcting parsing algorithm.

!Following the tradition in the error-correcting literature, it is assumed that the input data are a
“distorted” version of the “correct” data represented by the model.
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Fig. 6.3 Example of the search process for the source Spanish sentence “seleccionar el siguiente”,
being the English reference translation “select the next”. The first hypothesis generated by the
system corresponds to the best path (in blue) in the word graph: “click the following”. Then,
the user types “select” to correct the first word of the first hypothesis, and the system reacts by
searching the best path (in blue) from the node reached by the word “select”

6.4 Tasks, Experiments and Results

The IMT techniques introduced in the previous sections were assessed through a
series of experiments involving different corpora. These corpora were pre-processed
to obtain a simplified representation of the bilingual text which is used internally by
the IMT system. This internal representation of the text is reverted by means of the
application of post-processing techniques.

In the rest of this section we show a subset of the results obtained in the above
mentioned experiments. The interested reader can consult the references given be-
low for more detailed results. In addition, we briefly describe the pre- and post-
processing techniques that were applied to the corpora used in the experiments.
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6.4.1 Pre- and Post-processing

Pre-processing provides a simpler representation of the training corpus which makes
token or word forms more homogeneous. Pre-processing involves the execution of
the following steps: tokenization, removing unnecessary case information, and tag-
ging some special tokens like numerical sequences, e-mail addresses and URLs.
Post-processing takes place after the translation in order to hide the internal repre-
sentation of the text from the user. In detail, post-processing involves the following
steps: de-tokenization, true-casing, and replacing the tags with their corresponding
words.

In an IMT scenario, the pre-/post-processing stages must run in real time and
should be reversible as much as possible. In each human—machine interaction, the
current prefix has to be pre-processed for the interactive-predictive engine and then
the generated completion has to be post-processed for the user.

6.4.2 Tasks

Two different tasks have been selected to report IMT results: the XEROX task [36]
and the European Union (EU) task [36].

The XEROX task consists in the translation of printer manuals from English to
Spanish, French and German languages. Here we will only show the obtained IMT
results for the English—Spanish corpus. The main figures of such corpus are shown
in Table 6.1.

The EU task consists in the translation of the Bulletin of the European Union,
which exists in the 23 official languages of the European Union. In this document
we report results when translating from French to English. The main statistics of the
French—English EU corpus are shown in Table 6.1.

It is worthy of note that the size of the vocabulary of the EU corpus is at least
three times larger than that of the XEROX corpus. These figures together with the
amount of running words and sentences reflect the challenging nature of this task.

6.4.3 Evaluation Measures

As mentioned in Sect. 1.4.6, the corpus-based evaluation paradigm is widely ap-
plied in MT. However, evaluation in MT is still an open problem [8], since many
possible translations are acceptable for a single source sentence. This problem is
further accentuated in the case of IMT, where the evaluation depends on the interac-
tion protocol between a fictitious user that knows the reference translation and the
IMT system.

In IMT systems, the effort needed by a human translator to obtain the reference
translation is approximated by the measure Word Stroke Ratio (WSR) computed



146 6 Interactive Machine Translation

Table 6.1 Main figures of the English—Spanish (Eng—Spa) XEROX task and the French-English
(Fre-Eng) EU task (K and M denote thousands and millions, respectively). The training/test full-
sentence overlap and the rate of out-of-vocabulary test-set words were less than 10% and 1%,
respectively. Trigram models were used to compute the test word perplexity. A development set
was used for both corpora with similar characteristics to the test set

XEROX (Eng—Spa) EU (Fre-Eng)
Training
Sent. pairs (K) 56 215
Running words (M) 0.7/0.7 5.3/6.0
Vocabulary (K) 17/15 84/91
Test
Sentences (K) 1.1 0.8
Running words (K) 10/8 20/23
Running chars. (K) 59/46 117/132
Perplexity 58/99 58/45

in a simulated user-computer scenario. The interaction protocol in this scenario is
similar to that described in Sect. 2.6 for computer-assisted transcription. After each
translation provided by the system, the longest common prefix is computed compar-
ing it with a single reference translation.> The first unmatching word is replaced by
their corresponding word in the reference translation. This process is repeated un-
til the reference translation is produced. Thus, the WSR in IMT is redefined as the
number of (word level) user interactions that are necessary to achieve the reference
translation, divided by the total number of words in the reference translation.

On the other hand, the off-line measure Word Error Rate (WER) is also reported
to gain insight into the translation quality of the underlying SMT system.> WER is
defined in SMT as the Levenshtein (edit) distance between the system translation
and the reference translation, divided by the total number of words of the reference
translation. This measure is a coarse estimator of the post-editing user effort. How-
ever, WER and WSR are not directly comparable in IMT due to tight response-time
constraints and a search space bounded by the limited set of translation hypotheses
represented in the word graph.

6.4.4 Results

We carried out experiments to test the IMT techniques proposed here. The experi-
ments consisted in interactively translating the test corpora of the above mentioned

2 Although multiple reference translations would be desirable; because of the high cost of obtaining
alternative reference translations only one reference translation is usually at our disposal.

3The interested reader is referred to [7] for a detailed comparative of SMT evaluation measures.
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Table 6.2 WER results for

the English—Spanish XEROX Task WER

task and the French—English

EU task XEROX (Spa-Eng) 3.1
XEROX (Eng—Spa) 295
EU (Fre-Eng) 416
EU (Eng-Fre) 48.9

Table 6.3 WSR results for

the English—Spanish XEROX Task WSR

task and the French—English

EU task XEROX (Spa-Eng) 36.0
XEROX (Eng—Spa) 31.9
EU (Fre-Eng) 446
EU (Eng-Fre) 48.0

tasks using a word-graph-based IMT system. This IMT system uses phrase-based
models to generate word graphs at the first interaction of the interactive translation
process. After this first interaction, error-correcting techniques are applied to parse
the prefixes given by the user in subsequent iterations.

As a preliminary experiment, the translation quality in terms of WER obtained
by the underlying SMT system was obtained. Specifically, the WER measure is cal-
culated from the target sentences that were generated by the IMT system at the first
interaction of the IMT process. The results are shown in Table 6.2 for the English—
Spanish XEROX task and the French—English EU task and for both translation di-
rections. According to the values of the WER measure presented in the table, the
XEROX English—Spanish language pair is the one for which the best translations
can be produced.

As was mentioned above, the WSR measure constitutes one possible way to ap-
proximate the effort needed by IMT system users to obtain the translations of the
source sentences. Table 6.3 shows the obtained WSR results when the English—
Spanish XEROX corpus and the French-English EU corpus are interactively trans-
lated. The results are shown for both translation directions. According to the ob-
tained values of the WSR measure, a human translator assisted by the IMT tech-
niques proposed here would only need an effort equivalent to typing about 40% of
the words of the translations for the French to English EU task, or only 30% for the
English to Spanish XEROX task.

The obtained results are similar to those reported in [2]. That work presents IMT
experiments using different translation technologies and involving all the existing
language pairs and translation directions that are included in the XEROX and the
EU tasks. Moreover, the IMT systems presented in [2] were evaluated by profes-
sional translators in the framework of the TT2 project. The productivity increased
during the evaluation period as the participants grew accustomed to translating with
this new tool. Overall, it seems fair to conclude that IMT systems can allow trans-
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lators to increase their productivity while maintaining a high quality; and while this
increasing may not be spectacular, it is certainly substantial [11].

6.4.5 Results Using Confidence Information

A series of experiments on the English—Spanish XEROX task and the French—
English EU were carried out to test the evolution of both the user effort measured
in terms of WSR and the translation quality using WER, as a function of the suf-
fix confidence classification threshold ;. WER allows us to gauge the quality of
the translated text after supervising only those suffixes classified as incorrect. As
mentioned in Sect. 6.2.1, a threshold value of 7, = 0.0 classifies all the suffixes as
correct, i.e. the system behaves as a fully automatic SMT system. On the other hand,
a threshold value of ty = 1.0 implies that all the suffixes are classified as incorrect,
therefore the system behavior is equal to a conventional IMT system.

Figure 6.4 shows WSR and WER for the EU task as a function of the suffix con-
fidence threshold ranging from 0.0 to 1.0; similar curves were obtained for the XE-
ROX task. Additionally, WER for a fully automatic SMT system is also displayed
as a translation error baseline, and the WSR score of a conventional IMT system
is shown as a user effort baseline. The confidence measure used in the experimen-
tation (Sect. 6.2.1) depends on a word classification threshold t,,. The value of 7,
modifies the smoothness of the transition between the SMT and the IMT behaviors.
We present results for t,, = 0.5 because the smoothest transition is obtained for this
threshold value.

This figure shows a smooth transition curve from fully automatic SMT (zy =
0.0) through IMT scenarios enriched with confidence measures (0.0 < 7y < 1.0) to
conventional IMT (t; = 1.0). The threshold value 7, acts as a regulator that allows
one to balance the trade-off between the user effort required by the system and the
final translation quality expected. Modifying the value of the threshold allows us to
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adapt the system to the quality requirements of the task or the limitations in human
effort, and, consequently, the time needed for a professional translator to complete
the task. For example, if we are allowed to provide translations with a low WER
around 10, then we can reduce user effort from almost 50 (WSR IMT baseline) to
less than 40 (WSR IMT-CM) setting the suffix confidence threshold (z;) to 0.5.

Example 6.1 shows the source sentence (src), the reference translation (ref) and
the final translation (tra) for three sentences whose suffixes generated by the sys-
tem were classified as correct at confidence threshold 7y, = 0.5, and thus were not
interactively translated by the user.

Example 6.1 Sentences in the EU task whose suffixes were classified as correct at
confidence threshold 7, = 0.5.

sre-1 DECLARATION (no 17) relative au droit d’acces a I’information
ref-1 DECLARATION (No 17) on the right of access to information
tra-1 DECLARATION (No 17) on the right of access to information

src-2 Conclusions du Conseil sur le commerce électronique et la fiscalité indirecte
ref-2 Council conclusions on electronic commerce and indirect taxation
tra-2 Council conclusions on e-commerce and indirect taxation

src-3 la participation des pays candidats aux programmes communautaires
ref-3 participation of the applicant countries in Community programmes
tra-3 the participation of applicant countries in Community programmes

6.5 Conclusions

The IMT paradigm proposed in this chapter allows for a close collaboration between
a translator and an MT system. This paradigm entails an iterative process where, in
each iteration, a data-driven MT system suggests a completion for the current prefix
of a target sentence which a user can accept, modify, or ignore.

Behind this iterative process, there is an adaptation of the search procedure in
order to take the user prefix into account for improved suffix prediction. The main
components of the adapted search are error-correcting parsing and n-best comple-
tions that have been described. An additional component in these IMT systems is
the integration of confidence measures to let the system play an active role in mini-
mizing the user effort.

The evaluation procedure has simulated the behavior of a user working with an
IMT system in order to assess the effort reduction with respect to a conventional
post-editing system. The results reported reflect significant user effort savings in the
IMT scenario, while the usage of confidence measures provides us with a powerful
tool to find a trade-off between user effort and final translation quality.

However, human interaction offers a unique opportunity to improve the perfor-
mance of the IMT systems by tuning the translation models. At each iteration, the
translation obtained by the user in collaboration with the IMT system, together with
the corresponding source sentence can generally be converted into more training
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data at hand to adapt the underlying models. This idea will be the central topic in
Chap. 8.

Finally, one challenge in IMT is how to achieve an adequate synergy among di-
verse interactive feedback inputs, so that the maximum advantage of all the modal-
ities involved is obtained. Chapter 7 is devoted to multi-modality for IMT.
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In the Interactive Machine Translation (IMT) framework, a human translator can
interact with the IMT system to achieve a high-quality translation. This is done by
basic editing operations, i.e. substitution or deletion of erroneous words or inser-
tion of missing words. This process is usually performed with the keyboard. While
keyboard is considered as the principal way of introducing text to a computer, other
modalities can provide useful information to improve IMT performance or to in-
crease system ergonomics.

Examples of modalities that can improve performance are pointer interactions,
which give implicit and explicit information that can be of great use to an IMT
system. Additionally, the speech and handwritten text modalities are able to increase
the system’s usability and ergonomics. This is specially true for the new kind of
keyboard-less devices that are gaining popularity incredibly fast, as touch-screen
tablets and mobile phones.

7.1 Introduction

In Chap. 6 the Interactive Machine Translation (IMT) paradigm is described. In
IMT, a human translator interacts with the system to achieve a high-quality trans-
lation. This is basically done by amending iteratively the erroneous words. Unless

A H. Toselli et al., Multimodal Interactive Pattern Recognition and Applications, 153
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stated to the contrary, this process is carried out using a keyboard. At best, a mouse
is used to put the focus of the keyboard in the right position.

Although this paradigm has proven to be beneficial to potential users, such an in-
teraction scheme is very restricted, and one could easily picture a scenario in which
the user would desire to interact with the system in many other different ways, such
as by means of spoken utterances, handwritten words, mouse gestures, or even gaze
tracking. These alternative modalities could provide useful information to improve
IMT performance or to increase system ergonomics in specific systems where key-
board is inadequate or even not accessible. The challenge is then to achieve an ad-
equate modality synergy, which finally allows for taking maximum advantage of
all the modalities involved, with the final purpose of allowing for a more efficient
collaboration between the IMT system and the human user.

In this chapter, several ways to introduce multi-modality into the classical IMT
paradigm are analyzed. Section 7.2 presents an extension of such paradigm, in which
a pointer device is considered as additional interaction device between the user and
the IMT system. Speech recognition is considered as an efficient modality for cor-
recting system errors in Sect. 7.3. Alternatively, handwritten text recognition is also
considered for this purpose in Sect. 7.4. Experimental results showing the perfor-
mance gains achieved within these different scenarios are shown in Sect. 7.5, and
the conclusions derived are presented in Sect. 7.6.

7.2 Making Use of Weaker Feedback

In the traditional IMT setting, the system only received feedback whenever the user
typed in a new word. Although such a set-up has proven to provide benefits, it
implies that the IMT system only relies on the information provided by the user
through the keyboard. Nevertheless, a human user sitting in front of a typical desk-
top computer is also interacting with the machine by means of the mouse, but such
an interaction is not taken into account by traditional IMT systems. In this sec-
tion, we consider Pointer Actions (PA) as an additional information source for the
system, which the user provides usually without even noticing it. In this set-up,
we will consider two different PA types, i.e. non-explicit (or positioning) PAs and
interaction-explicit PAs [15, 16].

7.2.1 Non-explicit Positioning Pointer Actions

The key idea behind considering PAs as an additional communication vehicle be-
tween the system and the user is that, in order to correct a hypothesis, the user first
needs to position the cursor in the place where she wants to type a word, be it for
correcting it, for introducing a new word, or for deleting an existing one. In this
case, we will assume that this is done by performing a PA. By doing so, the user
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Input () \ Click OK to close the print dialog

0 System (5) | Haga clic para cerrar el didlogo de impresion
1 User (p) | Haga clic |

System  (3) en ACEPTAR para cerrar el didlogo de impresion
2 User (p) | Haga clic en ACEPTAR para cerrar el |
System  (5) de didlogo de impresion

3 User (p) | Haga clic en ACEPTAR para cerrar el cuadro de didlogo de impresion #

Output  (h) ‘ Haga clic en ACEPTAR para cerrar el cuadro de didlogo de impresién

Fig. 7.1 Example of non-explicit positioning PA which solves two errors. In this case, the system
produces the correct suffix s immediately after the user validates a prefix p, implicitly indicating
that she wants the suffix to be changed, without need of any further action. The character | indicates
the position where a PA was performed

is already providing a very valuable information to the system. Namely, she is sig-
naling that whatever information is located before the cursor is to be considered as
correct, hence validating the current prefix p. More importantly, however, she is also
signaling that she does not like whatever word comes after p, and that she is about
to change it. At this point, the system can capture this fact and, knowing that such
suffix is to be considered as incorrect, provide a new translation hypothesis in which
the prefix remains unchanged and the suffix is replaced by a new one in which the
first word is different from the first word of the previous suffix.

Obviously, having the system change the incorrect suffix does not mean that the
new suffix will be correct. However, given that the system knows that the first word
in the current suffix is incorrect, the worst case would only imply that the newly in-
troduced word would still be incorrect. This entails that the user would need to type
in the correct word, as she was going to do anyway. However, if the new proposed
suffix happens to be correct, the system will have spared the user one interaction,
which is typing in the new word, and the user will happily find that she only needs
to accept such word, or perhaps even the complete suffix.

An example of such behavior can be seen in Fig. 7.1. In this example, the SMT
system first provides a translation which the user does not like. Hence, she positions
the cursor before word “para”, with the purpose of typing in “en”. By doing so,
she is validating the prefix “Haga click”, and signaling that she wants “para” to be
replaced. Before typing in anything, the system realizes that she is going to change
the word located after the cursor, and replaces the suffix by another one, which is
the one the user had in mind in the first place. A similar behavior can be seen with
the wrong word “didlogo”. Finally, the user only has to accept the final translation.

We are naming this kind of PA non-explicit because the user does not need to
perform an explicit action in order to inform the system that it needs to change the
suffix: it is the system itself who realizes that the user is going to type in a word
and anticipates the user’s intentions, suggesting a new suffix hypothesis. For this
reason, and given the fact that the user would need to position the cursor anyway,
it is important to point out that any improvement achieved by this kind of PA is an
improvement per se, since it requires no further effort from the user. For this reason,
it is assumed to have no cost.
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The positioning PAs can be formulated thus: Given a source sentence x, a con-
solidated prefix p and a suffix s’ suggested by the system in the previous interaction,
search for another suffix § such that the first word in § is different from the first word
ins’

§=argmax P(s | x, p, ). (7.1)
$151758]

7.2.2 Interaction-Explicit Pointer Actions

In contrast to non-explicit PAs, one could easily picture a scenario where the user
simply wants a given suffix to be changed, independently of the position of the cur-
sor. Assuming that the underlying IMT system is efficient enough when attempting
to provide high-quality hypotheses, the human expert would just need to click be-
fore the first word of the suffix she intends to change in order to have it replaced
without any further action. This PA is named interaction-explicit [16] because, as
opposed to positioning PAs, the user needs to explicitly ask the system for another
hypothesis. Obviously, this could also be done by using some other different device,
but in this case we assume this is done using the mouse. Note that this kind of PA
does imply an added cost, since the user needs to perform an explicit action for
signaling the system that she wants the suffix to be replaced. However, if the under-
lying MT engine providing suffixes is powerful enough, the benefit obtained may
easily be worth the hassle, since performing a PA is less costly than introducing one
(or several) whole new word. Of course, in this kind of PA the system is expecting a
participative and collaborative attitude from the user, which was not the case in the
case of non-explicit PAs. An example of such behavior is shown in Fig. 7.2.

Input () ‘ A message appears stating that this action is processing

System (5) | Hay un mensaje que establece que dicha accion se estd realizando
1 User ) ||
System (S) | Aparece un mensaje que establece que dicha accién estd realizandose
2 User (p) | Aparece un mensaje que |
System  (5) afirma que dicha accion esta realizindose
3 User (p) | Aparece un mensaje que |
System  (5) indica que dicha accion estd realizandose
4  User (p) | Aparece un mensaje que indica que dicha accién esta realizandose #

Output  (h) ‘ Aparece un mensaje que indica que dicha accion estd realizdndose

Fig. 7.2 Example of interaction-explicit PA which solves an error. In the case of the first error, the
first word proposed by the system is considered incorrect. For this reason, the user positions the
cursor before the first word, and such action already corrects the word and amends the error the
user intended to correct. In the second error, the user first positions the cursor, hence performing
a non-explicit PA, and then performs a second PA, an interaction-explicit PA, in order to ask the
system for a new hypothesis. The system then returns a new suffix, which is the one the user had in
mind. Finally, the user validates the complete hypothesis. As in the previous image, the character |
indicates where the PA has been performed
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Assuming the user has already performed » PAs until the current moment and
is demanding yet another suffix § from the system, the explicit PA problem can be
formalized in a very similar way to the case of non-explicit PAs:

§=  argmax P(s|x,p,s(1),s(2),...,s(”)) (7.2)
s:sl;ésfi),\fie{l..n}

where sfi) is the first word of the ith suffix discarded, and sV, s@, ..., s® is the
set of all n suffixes discarded.

7.3 Correcting Errors with Speech Recognition

The use of speech recognition to perform MT tasks is a topic that has received
moderate attention [3-5, 11-14]. The early idea of these systems consisted on a hu-
man translator dictating aloud the translation in the target language. Then, a speech
recognition system transcribed the speech signal. The recognition errors could be
reduced if the source text was used by the recognition system to reduce transcrip-
tion errors. These approaches, however, were focused on fully automatic systems,
which needed from a human expert post-editing the system output.

Conversely, multi-modal interaction (Sect. 1.3.5) suggests a new interesting ap-
plication where speech recognition can be used as an alternative modality to interact
with an IMT system. Here, a human translator is allowed to make corrections to the
IMT system by reading (with possible modifications) parts of the suggestions of the
IMT system [17]. The IMT framework allows one to introduce a lower degree of
freedom in the speech transcription process with the corresponding increasing of
the recognition accuracy. On the other hand, if the recognition system is fully in-
tegrated within the IMT paradigm, the user can also make use of the conventional
means (keyboard and/or mouse) to guarantee that the produced text exhibits an ad-
equate level of quality. This idea is exemplified in Fig. 7.3.

The following is a formalization of this problem. Let x be the source text and p a
“correct” prefix of the target sentence. The user is now allowed to utter some words,
v, generally aimed at amending parts of the suffix s” suggested by the system in the
previous iteration. Then, the most probable suffix § is searched by the system. Fol-
lowing Eq. (1.26), the feedback is introduced by an utterance f = v and assuming
a left-to-right protocol (h = p, s; h’ = p, s’), the search problem can be formulated
as

5~ arg max max P(w|d)-Pd|p,s',x)-P(s|p,s', d, x), (7.3)
N

where d is the transcription of the utterance v. Finally, the user can enter additional
amendment keystrokes to produce a new consolidated prefix, p, based on the previ-
ous p, d and parts of s.

This maximization is typically carried out in two steps (Sect. 1.3.5), since the
joint optimization does not usually admit an efficient solution. First, the feedback
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Input (z) ‘ Click OK to close the print dialog
0 System () | Haga clic para cerrar el didlogo de impresion
1 Utterance (v)
System (d) | Hagaclic a
User (p) | Haga clic en
System (3) ACEPTAR para cerrar el didlogo de impresion
2 Utterance (v)
System (d) cerrar el cuadro
User () para cerrar el cuadro
System (3) de didlogo de impresion
3 User (p) de didlogo de impresion #

Output (h) ‘ Haga clic en ACEPTAR para cerrar el cuadro de didlogo de impresion

Fig. 7.3 An example of IMT with speech and keyboard interaction. The aim is to translate the
English sentence “Click OK to close the print dialog” into Spanish. Each step starts with a pre-
viously fixed target-language prefix p, from which the system suggests a suffix §. Then the user
utters some words for positioning (and accepting some words) and correcting a word in the 5. In
iteration 1, the utterance is to position and to accept “Haga clic” and to correct “para”, however, the
user does not agree with the decoding of the last word of the utterance and then she types another
word. The system suggests a new suffix to complete the translation. In the iteration 2 the user ac-
cepts the decoding proposed by the system using some special stroke (1). In the final translation /,
text that has been typed by the user is underlined

data v are “optimally” decoded into d,

d=argmax P(v|d)- P(d| p,s’, x) (7.4)
d

where P (v | d) is implemented using acoustic models, typically Hidden Markov
Models (HMM, see Sect. 4.3.3) and P(d | p, s’, x) by a language model constrained
by the prefix, the previous suffix and the input.

Second, assuming that P(s | p, s’, d, x) does not depend on the previous suffix s/,
Eq. (7.3) can be rewritten using the fixed d into

§~argmax P(s | p, d, x). (7.5)
N

Note that the last term of Eq. (7.5) is equivalent to the basic formulation of IMT in
Eq. (6.7) since a new validated prefix can be created concatenating p and d in an
appropriate manner.

There are different scenarios, depending on the assumptions of the constraints
made on language modeling in Eq. (7.4). What follows is a comprehensive list of
such scenarios.

7.3.1 Unconstrained Speech Decoding (DEC)

The less restrictive one (referred as DEC) is the case where the language model is
approximated as P (d), dropping all dependencies on the prefix, previous suffix and
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input. As a result, the problem can be solved by regular speech decoding:

A

d=argmax P(d) - P(v|d). (7.6)
d

The language model for P(d) is implemented as a (smoothed) n-gram, estimated
from the same target sentences used to estimate the translation models for other
scenarios. Since the n-gram is estimated from complete target sentences, but v is
typically an utterance of a sentence fragment, this language model has to be adapted
to properly accept any possible subsequence of words. To this end, the language
model is modified adequately and the resulting search space is significantly larger
than that of the original n-gram. The acoustic models for P (v | d) are conventional
HMMs of monophone units.

DEC is more difficult than the translation dictation setting discussed at the be-
ginning of this section, not only because DEC does not take advantage of the infor-
mation provided by the source-language text, but also because it deals with the de-
coding of fragments of the target sentence, rather than whole sentences as in [2—4].

7.3.2 Prefix-Conditioned Speech Decoding (DEC-PREF)

The second pure speech-decoding scenario is referred to as DEC-PREF. Now the
available prefix p is introduced as an additional constraint; but, again, no informa-
tion about the source text is used. In this case,

A

d=argmax P(d | p)- P(v|d). (7.7)
d

The implementation of Eq. (7.7) is similar to that of Eq. (7.6), except for the search,
which is now constrained to start only with the final n-grams in p.

7.3.3 Prefix-Conditioned Speech Decoding (IMT-PREF)

The least constrained IMT scenario is called IMT-PREF. It corresponds to a real-
ization of Eq. (7.4), where the source sentence, x, the previous prefix, p, and a
human-translator utterance, v, are available. The goal of the IMT system is to de-
code v into an optimal d and to produce a suggested suffix § as a continuation of
this decoding,

d=argmax P(d | x, p)- P(v|d). (7.8)
d
Here, the constrained language model for estimating P(d | x, p) in Eq. (7.8) can

be implemented as an adaptation of the target (smoothed) n-grams used in DEC-
PREF (where p was already taken into account) based on the source sentence x.
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The adapted weight of each n-gram (h'l') is the product of the original n-gram prob-
ability in DEC-PREF (P (4, | h’l’_l)) and the largest probability of translating &,
from any source word in x; i.e., max<;<x| P(x; | h,), where |x| is the number
of words in x. The lexical translation probabilities P(x; | h,) are obtained from a
stochastic dictionary estimated using a parallel corpus and the GIZA-++ toolkit [7].
The acoustic models for estimating P (v | d) in Eq. (7.8), are the same HMMs used
in DEC and DEC-PREF.

7.3.4 Prefix Selection (IMT-SEL)

The most constrained scenario, called IMT-SEL, corresponds to a realization of
Eq. (7.9). It is similar to IMT-PREF but here the human translator can only utter
exact prefixes of the suggestion made by the IMT system (s”). These utterances are
aimed at selecting acceptable prefixes of the system suggestions (hence the name,
IMT-SEL). The possible amendments of the remaining parts of the suggestions can
only be made by typing. We have

d=argmax P(d |s")- P(v|d). (7.9)
d

In practice, Eq. (7.9) can be implemented as a search for d in the (small) set of
possible prefixes of the target suffix §; that is, P(d | §) is estimated by a special
finite-state language model in which only those d that are prefixes of § have non-
null probability. The acoustic models for estimating P(v | d) in Eq. (7.9) are the
same HMMs as in all the previous cases.

7.4 Correcting Errors with Handwritten Text Recognition

On-line Handwritten Text Recognition (HTR) can be considered as an alternative
(or complementary) modality to speech. In this case, the human writes down the
correction of a target word in a graphic tablet or in a touch-screen. This correction
can be another word or a gesture to indicate a word deletion or an insertion of a new
word at a given point.

Although the scenario is quite similar to the one for speech, there are some differ-
ences. To begin with, the cursor is placed in a position using the pen by the human
when she writes down the correction. This allows for a deterministic way of validat-
ing the prefix. Furthermore, as a result, a non-explicit mouse action is performed in a
similar way to Sect. 7.2.1, which allows the system to take into account the valuable
extra information encoded in the rejected suffix. In addition, the user is only permit-
ted to introduce one word at a time, simplifying the recognition process. Of course,
as in the speech interaction scenario, the touch-screen input is non-deterministic.
Therefore, the user may need to correct the HTR decoding using the keyboard in
case of error.



7.4  Correcting Errors with Handwritten Text Recognition 161

Input () ‘ Si alguna funcién no se encuentra disponible en su red
0 System () | If any feature not is available on your network
1 Handwriting (¢) | If any feature | v
System (d) in
User (p) | If any feature | is
System (8) not available at your network
2 Handwriting (¢) | If any feature is not available |
System (d) in
User (p) not available in?
System (3) your network
3 User (p) your network #
Output (h) ‘ If any feature is not available in your network

Fig. 7.4 Example of IMT session for a task from Spanish to English for the Xerox corpus. The
diagram shows the translation from the source sentence x to the target sentence /. At each iteration,
s is the suffix proposed by the system. ¢ are the pen strokes introduced by the user. If the decoding
d of the pen strokes correct it is displayed in boldface. On the contrary, if d is incorrect it is shown
in red. In that case, the correct word is introduced by the user using the keyboard, which results in
a new validated prefix p. Finally, the # symbol marks the end of the string

Figure 7.4 is an example of this interaction modality. Initially, the system starts
with an empty prefix. At the first iteration, the systems proposes a full hypothesis,
which would be the equivalent to the output of a fully automated system. The user
finds the first error, not, and amends it by handwriting is with on a touch-screen. The
HTR system mistakenly recognizes in. Thus, the user falls back to the keyboard and
enters is. Since the user validates sequentially from left to right, the system assumes
that the prefix if any feature is is correct. Based on this validated prefix, the system
produces a new suffix, in which the first word, not, has been automatically corrected.
In the second iteration the user replaces ar by the word in. Finally, the system sug-
gests a new suffix that is correct and the user ends the process by accepting the
sentence.

Let x be the source text and ¢ a representation of the on-line handwritten word
that corrects the first erroneous word s,, of the previous suffix s’. The problem is to
search for a transcription d of ¢ that corrects the target word s, and a new suffix s
that completes the target sentence from the consolidate prefix p (all the words in
s” until the previous position of s, followed by d) as a translation of x. Following
Eq. (1.26), the feedback is introduced by handwriting f = ¢ on a touch-screen. On
the other hand, a left-to-right protocol (h = p,s; h' = p,s’) is assumed. We also
assume independence of P(s | p,s’,d, x) on s’ given the rest of the dependencies
and we take into account that the position of s, is fixed in a deterministic way,
therefore P(d | p,s’, x) in Eq. (1.26) can be written as P(d | p, s,, x). Finally, the
search problem can be formulated as

S~ argmaxmjlx P(t|d)-Pd]|p,s, x)-P(s|p,d,x), (7.10)
N

where P (¢ | d) is a regular morphological model for on-line handwritten text recog-
nition (see more details in Sect. 3.5.2). Similarly to the speech modality, the last
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term, P(s | p,d, x), is equivalent to the IMT model in Eq. (6.7) for which p and
d has been concatenated into a new validated prefix. Finally, P(d | p,s,,x) is a
constrained language model. On the one hand, the language model must provide the
probabilities for words following the prefix p which, at the same time, are among
the possible translations of the words in x. On the other hand, s encodes non-explicit
information of the user feedback, that is, the user is correcting a word s; in the pre-
dicted suffix s” which is known to be wrong. Thus, the constrained language model
probability can be approximated as (assuming that P(d | p, s,, x) does not depend
on x given p)

) 0, d=s),
P|p,se, X))~ pup

(7.11)
T=PGlp)° d#s,,

where P(d | p) can be approximated by a n-gram conditioned to the prefix p.

Two problems must be tackled with Eq. (7.10). First, as the dynamic range of
the estimated probabilities are quite different, it is necessary to balance the absolute
values of these probabilities [9]. Second, the estimated probabilities are rough ap-
proximations to the true probabilities and need to be smoothed with more general,
better estimated models. Log-linear models can be used to accomplish both things.
They have been successfully applied for other natural language tasks [1, 8, 10]. Fol-
lowing this framework, the decision rule in Eq. (7.10) can be rewritten as

M
(5,3):argrgaxZ)\mfm(d,t,x,p,s;,s), (7.12)
5.

m=1
where we have a set of M feature functions f,,(d, t, x, p, sé, s) and scale factors A,,.
The following feature functions have been considered to form part of the log-
lineal model. First, fhmm = log P(¢ | d) is a morphological model for HTR that
is modeled as a HMM. Second, f. = log P(d | s,) is an error-conditioned model
to assign zero probability to the word w that has been wrongly predicted by the
IMT system and a uniform probability for the rest of the vocabulary. Third, fi; =
log P(s | d, p,x) is an IMT model. And finally, fio = log P(d) as a 1-gram is
added for smoothing.

7.5 Tasks, Experiments and Results

7.5.1 Results when Incorporating Weaker Feedback

The use of the pointer as input feedback (see Sect. 7.2) was evaluated through ex-
periments on some of the corpora that were used for the baseline system.

First, results for including the non-explicit positioning PA into the IMT system
are shown in Table 7.1. In such table, it can be seen that the non-explicit PAs allow
us to obtain a relative improvement of about 11.3% for the XEROX corpus and 6.0%
for the EU corpus without any additional action [15].
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Table 7.1 Experimental results with the XEROX and the EU corpora when considering pointer
actions. Results are given in WSR percentage

Corpus Languages WSR baseline WSR considering positioning PA

XEROX English—Spanish 41.7 37.8

EU French—English 51.9 45.9

Fig. 7.5 WSR improvement French -> English EU corpus

when considering one to five 50 WSR "

maximum explicit PAs for PAR --+-- ,*l

translating the EU corpus. {150

95% level confidence

intervals are shown % 5

= o

1100
150

max. PAs per incorrect word

In addition, considering repeated PAs to find the right suffix yields further im-
provements [16], as can be seen in Fig. 7.5. Such improvements can achieve a further
reduction of WSR by up to 30% relative. However, when increasing the maximum
allowed amount of explicit PAs from 1 to 5, relative improvement in WSR drops
significantly. For this reason, it is easy to imagine that a human user will rarely per-
form more than two or three PAs before actually typing in a new word. Despite this
fact, it should be noted that by just asking the system to replace the suffix twice
before actually typing in a word, the user might already be saving about 15% of
word-strokes.

7.5.2 Results for Speech as Input Feedback

To measure the performance of the speech modality, the well known Word Error
Rate (WER) has been used. It is explained in Sect. 6.4.3. Sentence Error Rate (SER)
has been considered as well, which is computed as the percentage of incorrectly
recognized sentences.

The experiments of speech enabled IMT have been carried out for the XEROX
task explained at Sect. 6.4.2. For the speech experiments, a test corpus was ac-
quired consisting of utterances of fragments of target-language (Spanish) sentences,
extracted from the test part of the original parallel TT2 corpus. These utterances
were used as a test-set to simulate real interactions of the IMT system with human
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Table 7.2 Speech-decoding results (in %) for different scenarios

DEC DEC-PREF IMT-PREF IMT-SEL
WER 18.6 16.1 10.6 1.6
SER 50.2 44.4 30.0 3.6

translators.! For this acquisition, ten different users read aloud an average of 580
segments of sentences from the XEROX corpus, amounting to a total of 4 hours
of speech signal. The speech data were acquired using high-quality microphones
and 16 KHz sampling frequency. A 3-gram language model was trained using the
Spanish XEROX corpus. Finally, the acoustic models were trained on a relatively
large speech corpus, containing phonetically balanced spoken sentences in Spanish,
which were acquired in this work [6]. This corpus was used here only to train the
acoustic HMMs needed in all the speech-related experiments. See more details in
Sect. 4.6 and [17].

Results for the different scenarios described in Sect. 7.3 are shown in Table 7.2.
According to these results, speech recognition accuracy increases as the language
model becomes more constrained. If only prefix-derived constraints are added to
DEC, a modest improvement of 2.5 points of WER and 5.8 points of SER is obtained
in DEC-PREF. By further including constraints derived from the source text, a more
significant improvement is achieved in IMT-PREF: 5.5 points of WER and 14.4
points of SER (or 8.0 points of WER and 20.2 points of SER with respect to the
least constrained baseline). The constraints added in the last scenario, IMT-SEL,
are derived from the (simulated) suggestions of the IMT system. In this case, the
improvement is very important: 9.0 points of WER and 26.4 points of SER with
respect to the last scenario (or 17 points of WER and 46.6 points of SER with
respect to the baseline).

These results clearly suggest that using knowledge about the source sentence is
more important than using only user-validated prefixes. Moreover, if the translation
difficulty of the test-set is taken into account (which according to Table 6.2 is quite
large), the impact of using the translation information is remarkable. Therefore, bet-
ter results are expected for IMT-PREF with less problematic texts and/or better (use
of) translation models. Additionally, the decoding computational demands of the
speech decoder are much less for the more constrained scenarios since the perplex-
ity of their language models are lower.

The relative accuracy that can be achieved in the different scenarios has been as-
sessed in terms of WER and SER. However, at least for the IMT-SEL setting, only
the SER figure really matters, since it directly estimates the voice-driven cursor-
positioning accuracy. The 3.6% SER achieved means that a manual (mouse or key-
board) correction of cursor position is required every 28 voice-driven successful

IReal experiments for IMT-PREF and IMT-SEL would involve having real human translators in-
teracting with the system, which is prohibitive for this study; not only for the high costs involved,
but also because of the associated lack of experimentation flexibility.
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actions, on average. We think this figure can be easily improved by using better
acoustic modeling for speech decoding.

7.5.3 Results for Handwritten Text as Input Feedback

The experiments of this modality evaluate the performance of the decoding algo-
rithm in Eq. (7.12). Specifically, the interest is to evaluate the performance of the
on-line HTR system, which has been assessed with the Classification Error Rate
(CER). CER is the ratio between the number of misrecognized words and the total
number of words.

The results presented in this section were performed on the XEROX English—
Spanish corpus detailed in Sect. 6.4.2. From the experiments in Sect. 6.4.4, the
words that were corrected by the user by typing the correct solution were gathered.
With that list of words, a synthetic test corpus was generated from three held-out
users from the UNIPEN dataset, which was introduced in Sect. 3.6.1. The words
were generated by concatenating random characters from character instances of
the same user. More details on how these words were produced can be found in
Sect. 3.6.1. This set of generated samples established the test corpus, which was
decoded using the on-line HTR subsystem is explained in detail in Sect. 3.5.2. With
respect to the rest of the models used in Eq. (7.12), they where the same as obtained
in Sect. 6.4.4.

Table 7.3 summarizes the results for different combinations of feature func-
tions. The systems are, from left to right: a pure HMM system ( fimm), a tradi-
tional on-line HTR system with a 1-gram ( fhmm, figr), @ log-linear (LL) model
(fhmms, fes fur» figr), and a log-linear model with a menu for punctuation symbols
(LL+menu). Values are average ER for the three users and relative improvements
with respect to the baseline (HMM system) are presented as well. It is important
to note that the log-linear model outperformed the traditional on-line HTR system.
Besides, the addition of the menu for punctuation symbols provides remarkable im-
provements. The motivation of adding such menu will be explained in the next para-
graph. With respect to IMT results, the user would have needed to correct the 31.9%
of the words to achieve the reference translation (Sect. 6.4.4). The most important
result that can be drawn is that just 1.6% of the total words of the translation are

Table 7.3 Summary of the CER results for various systems (combination of lambda parameters).
R.L are the relative improvements w.r.t. the baseline system (HMM). The systems are from left to
right: a pure HMM system ( fhmm), @ traditional on-line HTR system with a 1-gram ( fhmm, figr)s
a log-linear (LL) model ( famm, fe, fir» f1gr), and a log-linear model with a menu for punctuation
symbols (LL+menu)

System HMM HTR LL LL+menu

ER 18.7 11.0 10.6 5.0
R.I (%) - 41.2 43.3 73.3
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needed to be written using a keyboard. Conversely, the rest of the errors (30.3%) of
the total words) are amended with the touch-screen. The rest of the words remain
untouched.

By looking carefully into the results of the on-line HTR system, six type of
classes of errors were identified. A detailed analysis of the errors committed by
the best system showed that most errors were provoked by short pen strokes (punc-
tuation and up-to-three letter words). The case of punctuation is specially inter-
esting since it covered 47% of the errors. Since the number of punctuation sym-
bols is very limited, a special deterministic interface could be designed so that
it is still quite touch-screen friendly. For example, when clicking on a punctua-
tion symbol, a circular menu with the complete list of punctuation symbols could
pop up. As this menu is completely error-free, the total number of errors produced
by the touch-screen modality would be reduced by half. Besides, the cost for the
user to introduce these symbols would be very reasonable and at no cost of er-
gonomics.

Finally, regarding the optimization of the log-linear model, it must be said that
the lambda parameters were adjusted on a development corpus to optimize CER. It
was observed that the optimum lambda values from the development set approxi-
mated quite well the test optimum values, which is a desirable feature. Additional
experiments showed that if the lambda values were estimated separately for each
user, the average CER would be identical (10.6% vs. 10.6%). Therefore, the es-
timation of these parameters can be deemed as rather robust to the variability of
users.

7.6 Conclusions

One important research area when dealing with an IMT scenario is precisely how to
provide the user with an appropriate interface so as to obtain the most benefit from
the interaction paradigm. In this chapter, several alternatives have been presented.
Some of them, such as the non-explicit positioning mouse actions, are almost trans-
parent for the user, and present one example of how the users actions can be analyzed
in order to make the user-machine interaction more efficient. Others, such as using
handwritten text recognition or speech recognition for correcting errors, provide an
almost orthogonal way of increasing the effectiveness of the synergy between the
final human translator and the IMT system. In addition, the experiments have shown
that coupling the IMT subsystem and the feedback subsystem can boost the perfor-
mance of the feedback recognition compared to a decoupled independent feedback
subsystem.

Although several possibilities have been explored in the present chapter, such
interaction schemes are only examples of a much broader scenario. For instance,
one could easily imagine a system which follows the user while it reads a given
sentence by means of some sort of gaze tracking device. Such a system would open
a whole new range of interaction schemes.
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High-quality translation between any pair of languages can be achieved by human
post-editing of the outputs of a MT system or, as mentioned in Chap. 6, by follow-
ing the Interactive Machine Translation (IMT) approach. In the interactive pattern
recognition framework, IMT can predict the translation of the next words in the out-
put, and can suggest them to the human translator who, iteratively, can accept or
correct the suggested translations. The consolidated translations obtained through
the successive steps of the interaction process can be considered as “perfect trans-
lations” due to the fact that they have been validated by a human expert. Therefore,
this consolidated translations can easily be converted into new, fresh, training data,
useful for dynamically adapting the system to the changing environment. Taking
that into account, on the one hand, the IMT paradigm offers an appropriate frame-
work for incremental and adaptive learning in SMT. On the other hand, incremental
and adaptive learning offers the possibility to substantially save human effort by
simply avoiding the user to perform the same corrections again and again.

8.1 Introduction

IMT can be seen as an evolution of the SMT framework (see Sect. 6.2), where the
same statistical models and search algorithms can be used with little modification.

A H. Toselli et al., Multimodal Interactive Pattern Recognition and Applications, 169
DOI 10.1007/978-0-85729-479-1_8, © Springer-Verlag London Limited 2011


http://dx.doi.org/10.1007/978-0-85729-479-1_8

170 8 Incremental and Adaptive Learning for Interactive Machine Translation

Because of these similarities, a whole set of proposals for domain adaptation [2, 7,
9, 18, 21] that were initially introduced in the SMT framework can also be applied
to IMT. However, human interaction offers another unique opportunity to improve
the performance of the IMT systems by tuning the statistical models involved in the
translation process. In particular, at each interaction, the text segments validated by
the user together with the corresponding aligned source segments can generally be
converted into new, fresh training data, useful for adapting the system to a changing
environment. An early example of this can be found in the TransType framework,
where a cache-based technique both for target language models and translation mod-
els is used [13]. Another example can be found in [4], where the output of a post-
editing system is used for adaptation. More recently, in [16], a purely statistical
IMT system with online learning capabilities is introduced, where the system can
incrementally update the parameters of all of the different models that are involved
in the translation process, and therefore automatically adapted to new users, new
translation styles, or even to new target languages.

In the following sections, we describe different proposals that try to take advan-
tage of user feedback to extend the statistical models of the IMT system. Specif-
ically, in Sect. 8.2, an IMT system with online learning capabilities is described.
In addition to this, other topics related with adaptation in IMT are presented in
Sect. 8.3.

8.2 On-Line Learning

8.2.1 Concept of On-Line Learning

In the IMT framework, the target sentences validated by the user along with the
corresponding source sentences constitute new training samples that can be used to
extend the statistical models of the IMT system. Unfortunately, the vast majority of
the existing work on IMT makes use of the well-known batch learning paradigm.
In the batch learning paradigm, the training of the IMT system and the interactive
translation process are carried out in separate stages. This paradigm is not able to
take advantage of the new knowledge produced by the user of the IMT system. To
solve this problem, the on-line learning paradigm to the IMT framework can be
applied. In the on-line learning paradigm, the training and prediction stages are no
longer separated.

The on-line learning paradigm has been previously applied to train discrimina-
tive models in SMT [1, 6, 11, 20]. The application of online learning techniques in
IMT has not been extensively studied, one previous work is [5], where a very con-
strained version of on-line learning is presented. This constrained version of on-line
learning is not able to extend the translation models due to technical problems with
the efficiency of the learning process.

We present a purely statistical IMT system which is able to incrementally up-
date the parameters of all the different models that are used in the system, including
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the translation model, breaking with the above mentioned constraints. Our proposal
uses a conventional IMT system which is based on a log-linear model. Such a log-
linear model is composed of a set of feature functions governing different aspects
of the translation process. We will briefly describe the required techniques to in-
crementally update the statistical models used by the system. To do this, a set of
sufficient statistics is incrementally updated for each feature function.

8.2.2 Basic IMT System

As was mentioned above, the basic IMT system that we propose uses a log-linear
model to generate its translations. According to Eq. (6.3), we introduce a set of seven
feature functions (from f to f7): a language model ( f1), an inverse sentence-length
model (f>), inverse and direct translation models (f3 and f4, respectively), a tar-
get phrase-length model (f5), a source phrase-length model ( f5), and a distortion
model ( f7).

The f; feature function is implemented by means of smoothed n-gram language
models. In particular, we adopt an interpolated n-gram model with Kneser—Ney
smoothing.

The f> feature function constitutes an inverse sentence-length model imple-
mented by means of a set of Gaussian distributions whose parameters are estimated
for each source sentence length.

The inverse translation model (feature function f3) is implemented with an in-
verse phrase-based model. This phrase-based model is smoothed with an HMM-
based alignment model [19] by means of linear interpolation. It is illustrative to
consider the exact formulation of f3 so as to later explain how it can be incremen-
tally updated in the following section. Specifically, f3 is defined as follows:

K
f3(x, h,a) =log<H P (% |ﬁak)> 8.1)

k=1

where x and % are the source and the target sentences, respectively, and the hidden
alignment variable a determines a phrase alignment of length K between x and
h. The probability of translation between phrase pairs, P(Xk | hy,), is defined as
follows:

P (% | hay) =B - Pone(Fx | ) + (1 = B) - Phnm (s | 7y ) (8.2)

In Eq. (8.2), B is the linear interpolation parameter, Ppp (X | fzak) denotes the prob-
ability given by a statistical phrase-based dictionary used in regular phrase-based
models (see [10] for more details) and Pypym (X% | fzak) is the probability given by an
HMM-based alignment model defined at phrase level:

1]

thmx|h —EZH Xj|hb “P(bj|bj-1,

il j=1
bl J=

hl) (8.3)
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where € is a small, fixed number which accounts for the probability of the length of
the source sentence (see [3] for more details), bllx| represents a word-level hidden
alignment variable between X and h, P(% il hp ;) is the lexical probability and P (b; |
bj_1, |h) is the alignment probability.

Analogously, feature function f4 is implemented by means of a direct, smoothed
phrase-based model.

Regarding the target phrase-length model (feature function fs), it is imple-
mented by means of a geometric distribution. The use of a geometric distribution
penalises the length of the target phrases. A geometric distribution can also be used
to model fg, such distribution penalizes the difference between the source and tar-
get phrase lengths. Finally, we use again a geometric distribution to implement a
distortion model for the phrase translations (feature function f7). Such distribution
penalises the reorderings.

The log-linear model, which includes the above described feature functions, is
used to generate the suffix s given the user-validated prefix p. Specifically, the IMT
system generates a partial phrase-based alignment between the user prefix p and a
portion of the source sentence x, and returns the suffix s as the translation of the
remaining portion of x (see [15]).

8.2.3 Online IMT System

After translating a source sentence x, a new sentence pair (x, k) is available to feed
the IMT system. In this section we describe how the log-linear model described
in the previous section is updated given the new sentence pair. To do this, a set of
sufficient statistics that can be incrementally updated is maintained for each feature
function f;(-). A sufficient statistic for a statistical model is a statistic that captures
all the information that is relevant to estimate this model. If the estimation of the
statistical model does not require the use of the Expectation-Maximisation (EM)
algorithm (e.g. n-gram language models), then it is generally easy to incrementally
extend the model given a new training sample. By contrast, if the EM algorithm is
required (e.g. word alignment models), the estimation procedure has to be modi-
fied, since the conventional EM algorithm is designed for its use in batch learning
scenarios. To solve this problem, we apply the incremental version of the EM algo-
rithm [12].

The parameters of the n-gram language model with Kneser—Ney smoothing that
implements the f; feature function can be incrementally adjusted with an appropri-
ate algorithm which is shown in [16]. Since the estimation does not involve the EM
algorithm, the algorithm is relatively simple.

Regarding the f, feature function, its incremental estimation requires updating
the parameters of a set of Gaussian distributions. This problem has been extensively
studied in the literature, specifically, we apply the incremental update rules given
in [8].
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Feature functions f3 and f1 implement inverse and direct smoothed phrase-based
models, respectively. Since phrase-based models are symmetric models, only an in-
verse phrase-based model is maintained (direct probabilities can be efficiently ob-
tained using appropriate data structures, see [14]). It is interesting to see how this in-
verse phrase-based model can be incrementally updated, since, as will be explained
below, such incremental update involves the application of the incremental version
of the EM algorithm.

Given a new sentence pair (x, &), the standard phrase-based model estimation
method uses a word alignment matrix between x and % to extract the set of phrase
pairs that are consistent with the word alignment matrix (see [10] for more details).
Once the consistent phrase pairs have been extracted, the phrase counts are updated
following the equation:

c(x, h)
Zf/ C(f/, lji)

where ¢(%, h) represents the count of the phrase pair (¥, h) in the set of consistent
phrase pairs extracted from the training corpus.

The word alignment matrices required for the extraction of phrase pairs are gen-
erated by means of the HMM-based models used in the feature functions f3 and f3.

Inverse and direct HMM-based models are used here for two purposes: to smooth
the phrase-based models via linear interpolation and to generate word alignment ma-
trices. The weights of the interpolation can be estimated from a development corpus.
Since the alignment in the HMM-based model is determined by a hidden variable,
the EM algorithm is required to estimate the parameters of the model. However,
the conventional EM algorithm is not appropriate for its use in our online learning
scenario. To solve this problem, the incremental version of the EM algorithm that
was mentioned above is applied. As was mentioned above, HMM-based alignment
models are composed of lexical and alignment probabilities. Lexical probabilities
are obtained following the equation:

P(%|h)= (8.4)

c(u|v)

P(u|v)= —ZM/C(M’ )

(8.5)
where c(u | v) is the expected number of times that the word v is aligned to the
word u. The alignment probability is defined in a similar way:

cbjlbj—1,D)
Zb//_c(b} [bj-1,0)

Pj|bj1,1)= (8.6)

and c(b;j | bj_1,1) denotes the expected number of times that the alignment b; has
been seen after the previous alignment b;_; given a source sentence composed of /
words.

Finally, the parameters of the geometric distributions associated to the feature
functions fs, fe and f7 are left fixed. Because of this, there are no sufficient statistics
to store for these feature functions.
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8.3 Related Topics

8.3.1 Active Learning on IMT via Confidence Measures

As outlined in Sect. 1.3, the Interactive Pattern Recognition scenario allows to use
the valuable user feedback signals produced in the interaction in an adaptive training
process which progressively tunes the models to the specific task and/or to the way
the user makes use of the systems in this task. Final outputs contain lot of informa-
tion provided by the user to help the system refine or improve its hypothesis. For the
IMT scenario this information consists in correct translations of the input sentences
that can be used to improve the translation models as shown in Sect. 8.2.

Regarding the alternative IMT scenario presented in Sect. 6.2.1, confidence mea-
sures are used to reduce the effort required for the user, so final translations are
composed of segments validated by the user and segments automatically translated
by the system. This information can be used to perform a mixed active and semi-
supervised learning to exploit both what the system thinks it knows about the unla-
beled data and the new information provided by the user for the data the system is
not confident enough of.

8.3.2 Bayesian Adaptation

In IMT, it is quite common to have a model trained on a given domain where lots
of data are available, but the purpose is to translate another domain, where only few
data are available. Such a problem has not been confronted as of yet in the context
of IMT, although some work exists in the context of traditional SMT. This is the
case of Bayesian adaptation [17], which is an instantiation of the Bayesian learning
paradigm to the case of adaptation in SMT.

The weights of the log-linear combination in Eq. (6.3), can be adapted to new
situations by the application of the MERT algorithm of Chap. 6, estimating a new
set of weights on the adaptation data and substituting the old ones. However, if the
adaptation set made available to the system is not big enough, MERT will most
likely become unstable and fail in obtaining an appropriate weight vector. This sit-
uation is common in IMT.

The main idea behind Bayesian learning is that parameters are viewed as random
variables which have some kind of a priori distribution. Given a training set 7' to
build the initial models and an adaptation set A, the problem can be stated as

h= argmax P(h | x; T, A)
h

= argmax/ PO\ |T,A)P(h|x;))dA. (8.7)
h

In last equation, the integral over the complete parametric space forces the model to
take into account all possible values of the model parameters (in this case, only the
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A in Eq. (6.3)), although the prior over the parameters implies that our model will
prefer parameter values which are closer to our prior knowledge. Two assumptions
are adopted: first, the output sentence /4 only depends on the model parameters (and
not on the complete training and adaptation data), and second, that the model pa-
rameters do not depend on the actual input sentence x. Such simplifications lead to
a decomposition of the integral into two parts: the first one, P(A | T', A) will assess
how good the current model parameters are, and the second one, P(h | x; 1), will
account for the quality of the translation £ given the current model parameters.

8.4 Results

We carried out experiments to test the IMT system with online learning techniques
proposed in Sect. 8.2. The proposals that were presented in Sect. 8.3 have not yet
been adequately tested in the IMT framework.

All the experiments were executed using the XEROX task described in Sect. 6.4.
The XEROX task was used to perform IMT experiments in two different scenar-
ios. In the first one, the first 10 000 sentences extracted from the English—Spanish
training corpora were interactively translated by means of an IMT system without
any pre-existent model stored in memory. Each time a new sentence pair was val-
idated, it was used to incrementally train the system. The results obtained in this
first experimentation scenario are shown in Fig. 8.1. In the figure, the evolution of
the WSR measure as a function of the number of interactively translated sentences
is represented. As can be seen, the results clearly demonstrate that the IMT system
is able to learn from scratch. The results obtained for the translation from English
to Spanish were similar for the rest of language pairs of the XEROX corpora, as is
shown in [16].

Alternatively, we carried out experiments in a different learning scenario. Specif-
ically, we compared the performance of a batch IMT system with that of an online
IMT system when translating the XEROX test corpora. In this experiment, the statis-
tical models used by both the batch and the online IMT systems were initialized by
means of the XEROX training corpora. The obtained WSR results for the English—
Spanish language pair are shown in Table 8.1.
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Table 8.1 On-line learning

results for the Task System WSR

English—Spanish XEROX

task XEROX (Eng—Spa) batch 32.0
on-line 26.6

As can be seen in the table, the proposed on-line learning techniques allow the
IMT system to learn from previously estimated models (further results in this ex-
perimentation scenario can be found in [16]).

8.5 Conclusions

Human interaction offers a unique opportunity to improve the performance of the
IMT systems by tuning the translation models. In particular, at each interaction of
the IMT process, the text validated by the user along with the source sentence con-
stitute new training data that can be used to extend the statistical models used by
the system. The IMT techniques proposed in this chapter allow us to take advantage
of such user feedback by means of different techniques, including online learning,
active learning and Bayesian adaptation.
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This chapter introduces the Interactive Parsing (IP) framework for obtaining the
correct syntactic parse tree of a given sentence. This formal framework allows us to
make the construction of interactive systems for tree annotation. These interactive
systems can help to human annotators in creating error-free parse trees with little ef-
fort, when compared with manual post-editing of the trees provided by an automatic
parser.

In principle, the interaction protocol defined in the IP framework differs from
the left-to-right interaction protocol used throughout this book. Specifically, the TP
protocol will be of desultory order; that is, in IP the user can edit any part of the
parse tree and in any order.

However, in order to efficiently calculate the next best tree in IP framework, in
Sect. 9.4, a left-to-right depth-first tree review order will be introduced. In addi-
tion, this order also introduces computational advantages into the lookout of most
probable tree for interactive bottom-up parsing algorithms.

The use of Confidence Measures in IP is also presented as an efficient technique
to detect erroneous parse trees. Confidence Measures can be efficiently computed
in the IP framework and can help in detecting erroneous constituents within the
IP process more quickly, as they provide discriminant information over all the IP
process.

A H. Toselli et al., Multimodal Interactive Pattern Recognition and Applications, 179
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9.1 Introduction

Probabilistic Parsing is an important problem related to Natural Language Process-
ing and Computational Linguistics, which has proven to be useful for Language
Modeling [2, 8, 24], RNA Modeling [25], and Machine Translation [7, 35], among
others [19]. In probabilistic parsing, a parse tree is obtained for an input sentence
that represents syntactic relations between different parts of the sentence. This parse
tree is obtained by using a probabilistic model and a parsing algorithm.

Probabilistic Context Free-Grammars (PCFG) are a powerful formalism that has
been widely used for Probabilistic Parsing [1, 10, 23, 24, 30]. PCFG represent an
appropriate trade-off between representation capability and time complexity of the
algorithms that are able to use them. The good results obtained in parsing have made
PCFG the most used formalism in order to tackle this problem. Therefore, we will
focus on the use of PCFG as probabilistic models.

A possible classification of the parsing algorithms can be done based on the
use of lexical information. In lexicalized parsing, lexical information is used in
the parsing process in order to disambiguate between non-lexical rules [5]. The
main drawback of the probabilistic lexicalized parsing is the high time complex-
ity of the parsing algorithms. Alternatively, unlexicalized parsing can be used. In
the last years, unlexicalized parsing has achieved very good parsing results with al-
gorithms of lower time complexity [18, 23]. For unlexicalized parsing, algorithms
can be grouped into two main approaches: those that are based on the Earley algo-
rithm [12], and those that are based on the Cocke—Kasami—Younger (CKY) algo-
rithm [15]. The Earley algorithm is a classical parsing algorithm that can deal with
PCFG in general format. Alternatively, the CKY algorithm has a similar perfor-
mance but it requires the PCFG in Chomsky Normal Form (CNF). Several reasons
have made more popular the use of the CKY algorithm in the last years: first, the
CKY algorithm makes easier the use of efficient techniques for obtaining a set of
n-best parse trees [16]; second, in recent years, efficient A* algorithms have been
proposed for unlexicalized parsing that are able to achieve very good performance
[13, 18]; third, efficient maximum-entropy techniques have been devised for CKY-
style parsing [6]; and fourth, efficient CK'Y-style parsing algorithms have been re-
cently proposed for Machine Translation [9, 14, 34]. Throughout this section we will
focus in probabilistic parsing with PCFG in CNF with the CKY-style algorithms, but
similar ideas could be applied to the Earley algorithm with PCFG in general format,
and other parsing formalisms.

In probabilistic parsing, given a sentence x and a PCFG G, the problem in which
we are interested is to obtain the parse tree ¢ that best represents the relation between
the words of the sentence x according to model G. From a pattern recognition point
of view, the probabilistic parsing can be formulated as

{ = argmax pg(t | x), 9.1)
teT

where pg (¢ | x) is the probability of the parse tree ¢ given the input string x using a
PCFG G, and 7 is the set of all possible parse trees for x. In probabilistic parsing,
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a parse tree ¢ that is associated to a string x = x}' can be decomposed into subtrees
ti‘?, such that, A is the label of the root node and 7, j are indexes delimiting the
analyzed substring xi] . In this way, t = tfn where S is the axiom of the grammar. If
the PCFG is in CNF, then the maximization in Eq. (9.1) can be carried out with a
dynamic programming CKY-style algorithm. This CKY-style algorithm resembles
the Viterbi algorithm for finite-state models, and therefore sometimes is also called
a Viterbi algorithm. This algorithm fills in a (n x n) parse matrix V) for a string
of size n. Each element of V is a probabilistic non-terminal vector such that each
component is defined as

VijlAl=p(t) = pe(ADx!) AeNi1<ij<n, 9.2)

where N is the set of non-terminal symbols of the grammar, and pg (A % xij ) is

the probability of the most probable tree that generates the substring xl'.’ from the
non-terminal symbol A.

As we introduced in Chap. 1, within the syntactic and statistical pattern recog-
nition world, we can tell apart two different usage scenarios for automatic systems.
First, we have the cases in which the output of such systems is expected to be used
in a vanilla fashion, that is, without validating or correcting the results produced
by the system. Within this usage scheme, the most important factor of a given au-
tomatic system is the quality of the results. Although memory and computational
requirements of such systems are usually taken into account, the ultimate aim of
most research that relates to this scenario is to minimize the error rate of the results
that are being produced [17].

The second usage scenario arises when there exists the need for perfect and com-
pletely error-free results. In such a case, the intervention of a human user valida-
tor/corrector is unavoidable. The corrector will review the results and validate them,
or make the suitable corrections before the system output can be employed. In these
kind of problems, the most important factor that has to be minimized is the hu-
man effort that has to be applied to transform the potentially incorrect output of the
system into validated and error-free output. Measuring user effort has an intrinsic
subjectivity that makes it hard to be quantized. Given that the user output, most re-
search about problems associated to this scenario tried to minimize just the error
rate of the system as well.

Only recently, more formal work in this direction has started to be carried out,
in the form of Interactive Pattern Recognition (IPR) systems (see Chap. 1). These
systems formally integrate the correcting user into the loop, making him part of
an interactive system (see Fig. 1.4). In such systems the importance of the vanilla
error rate per-se is diminished. Instead, the intention is to measure how well the user
and the system work together. For this, formal user simulation protocols started to
be used as a benchmark. This dichotomy in evaluating system performance or user
effort applies to probabilistic parsing as well.

There are many problems within the parsing field where error-free results con-
sisting in perfectly annotated trees are needed. Building correct trees is needed for
tasks such as recognition of handwritten mathematical expressions [36] or creating
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new gold standard treebanks [11]. When using automatic parsers as a baseline for
building perfect syntactic trees, the role of the human annotator is to post-edit the
trees and correct the errors. This manner of operating results in the typical two-step
process for error correcting, in which the system first generates the whole output and
then the user verifies or amends it. This paradigm is rather inefficient and uncom-
fortable for the human annotator. For example, in the creation of the Penn Treebank
annotated corpus, a basic two-stage setup was employed: a rudimentary parsing sys-
tem provided a skeletal syntactic representation, which then was manually corrected
by human annotators [20]. Additional works within this field have presented systems
that act as a computerized aid to the user in obtaining the perfect annotation [4, 21].
Subjective measurements of the effort that is needed to obtain perfect annotations
were reported in [4], but we feel that a more comparable metric is needed.

With the objective of reducing the user effort and making the laborious task of
tree annotation easier, an IPR framework for probabilistic Interactive Parsing (IP)
will be presented. In this IP framework, the user is located in the loop, embedding
him as a part of the automatic parser, and allows him to interact in real time within
the system. Thus, the IP system can use the readily available user feedback to make
improved predictions about the parts that have not been validated by the corrector.

To reduce user effort in IPR systems in general, and in IP systems in particular,
one approach that can be followed is adding information of the system that helps
the user in finding the errors and so he can correct them in a hastier fashion. For
the users of such systems it is important to know, not only that the output may be
erroneous, but which parts of this more complex output blocks are more prone to
be erroneous. Confidence Measures (CM) are a formalism that goes along this di-
rection, allowing the system to assigning a probability of correctness for individual
erroneous constituents of a more complex output block of a PR system.

In fields such as HTR, MT or ASR the output sentences have a global probability,
or score, that reflects the likeness of the whole recognized or translated sentence of
being correct. CM allow precision beyond the sentence level in predicting the errors:
they allow one to label the individual generated words as either correct or incorrect.
This enables systems to identify possible erroneous parts to the user, or to propose
only those words that are likely to be correct. CM have been successfully applied in
many completely automatic PR systems [26, 31-33]. Recently, CM have also been
applied to IPR systems in the HTR [29] field.

In the following section we describe how the IPR framework can be stated for
probabilistic IP. Then, we explore the use of CM to the IP framework, to asses
how much is retained of their ability to detect erroneous constituents within the
interactive process.

9.2 Interactive Parsing Framework

As presented in Sect. 9.1, it is necessary to consider the human user in the pars-
ing process to achieve error-free parse trees. There are two possible approaches:
by including the human user in a process of post-editing, or by incorporating the
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human user in the interactive recognition process itself. Following the guidance of
this book, this latter approach is what we consider in this section. The IPR formal
framework introduced in Chap. 1, and more particularly the case for explicitly tak-
ing interaction history into account (Sect. 1.3.2), can be directly applied to the IP
problem.

According to IPR paradigm, in each interaction, the system should propose a new
hypothesis (parse tree) compatible with the constraints imposed by the amendments
made by the user in previous interactions. Initially, for a given input string, the
system proposes a parse tree. Next, the user corrects a possible error of the proposed
parse tree. Then, the system must provide a new parse tree compatible with the user
correction. Obviously, this user correction restricts the set of solutions (parse trees)
possible. This interactive process continues until a correct parse tree is achieved.

In principle, this interaction protocol differs from the left-to-right interaction pro-
tocol, raised throughout this book. Following the interaction protocol taxonomy de-
scribed in Sect. 1.4.1, the IP protocol would be of desultory order. That is, in IP the
user can edit any part of the parse tree and in any order. Then we will formally char-
acterize the IP problem, and we will also analyze the implicit interaction protocols.
In Sect. 9.4 we will return to analyze the interaction protocols for IP and we will
propose some restrictions.

From a linguistic point of view, user annotation can be stated in terms of con-
stituents. A constituent is a word sequence that functions as a single linguistic unit.
More formally, from a parsing point of view, a constituent Cl.A. is defined by the non-
terminal symbol (either a syntactic label or a POS tag) A and its span ij (the starting
and ending indexes which delimit the part of the input sentence encompassed by the
constituent). Notice that a parse subtree t{} defines a constituent set C (tl/?). This con-
stituent set is composed of several constituents C5, with C8 e C (ti’;‘.) andi > s> j
and i > u > j for all constituents in the set. However, note that a given constituent
set C can be the result of different subtrees, if we consider cycles and unit rules.

In an IP approach, the user amends a particular constituent in every interaction
for some parse tree t. More precisely, he points out a particular node of the tree
and he amends the node label and/or its span. As in Sect. 1.3.2 (Eq. (1.13)), the
interactive formal framework for probabilistic parsing can be defined as

i =argmax pg(t | x, C, C;?), 9.3)
teT

where C i’;‘. is the (feedback) constituent validated by the user in the last interaction;

C is the set of constituents validated by the user (history); pg (¢ | x, C, C{;) is the
probability (using a model G) of a parse tree ¢ given the input string x, the user
feedback le‘}, and the history C; and finally 7 is the set of all possible parse trees
for x.

At this point, we consider that the user feedback is deterministic (mouse and/or
keyboard). That is, the decoding process of user feedback does not introduce new er-
rors. In Sect. 1.3.5 we will see how to include a non-deterministic multimodal feed-
back using interaction information to help decoding non-deterministic feedback.
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Note that the definition of C is general, so if we were to define a certain order
in the user review process, then the set C would not only include the constituents
directly amended by the user but also the components implicitly validated by each
interaction with the IP system. As seen in previous chapters, this also happens in
applications where the order of analysis is from left to right. In that case, when the
user edits a word, this means that this implicitly validates the previous prefix.

In Eq. (9.3), the search algorithm should take into account the restrictions intro-
duced by C and ij‘., that is, the search space defined by the possible parse trees. In
both cases, the restrictions introduced by the user should limit the possible solutions
represented in the parse matrix ). Note that both C and CZA produce, somehow,
a partial labeled bracketing of the input sequence. In this way, and following [22],
we define a compatibility function c(Y, r, s) for all those subproblems defined on V
(Eq. (9.2)) compatible with the constituents of C. In other words, given a subprob-
lem V, s[Y], its compatibility with C can be defined using the following function:

¥Cy € (CU{ch))
Lo, =(p,q) A Y =X),

0, if(r,s)=(p,q) AN (Y #X),
clY,r,s)= 9.4)
1, if (r,s) # (p, q) but are consistent,

0, otherwise.

This function filters those derivations (or partial derivations) whose parsing is not
compatible with the validated constituents. The span (r, s) is not consistent with the
span (p,g) when p<r<g <s,orr<p<s<gq.

The compatibility function between V, ;[Y] and C i,‘q defined in Eq. (9.4) requires
that when the spans are equal also the labels Y and X must be equal. However, if the
grammar G has unary rules (A — B) then this restriction is excessive, and should

be relaxed as X = Y or ¥ = X.

9.3 Confidence Measures in IP

Annotating trees syntactically, even with the aid of automatic systems, generally
requires human intervention with a high degree of specialization. This fact partially
justifies the shortage in large manually annotated treebanks. Endeavors directed at
easing the burden for the experts performing this task could be of great help. One
approach that can be followed in reducing user effort within an IPR paradigm is
adding information that helps the user to locate the individual errors in a sentence,
so he can correct them in a hastier fashion. The use of the Confidence Measure (CM)
formalism goes in this direction, allowing us to assign a probability of correctness
for individual erroneous constituents of a more complex output block of a Pattern
Recognition system.



9.3 Confidence Measures in IP 185

Fig. 9.1 The product of the S
inside and outside
probabilities for each
constituent comprises the

upper part of Eq. (9.6) aa(i, j)

ﬁA(i: .])

x Ti-1 T Tj Tjr1 T

It is interesting to see this issue from the perspective of interaction protocols
introduced in Sect. 1.4.1. That section discussed two main types of interactive pro-
tocols: passive, when the user decides which parse tree (hypothesis) elements need
supervision; and active, when the system decides which parse tree elements undergo
user supervision. The IP paradigm framework seen so far is clearly based on a pas-
sive strategy. The introduction of CM associated to the parse tree elements provided
by the system can be seen as a first step toward an active approach, where the system
suggests/helps the user in the correction process.

However, until recent advances, the use of CM remained largely unexplored in
probabilistic parsing despite having several applications of great interest within this
field. Assessing the correctness of the different parts of a parsing tree can be useful
in improving the efficiency and usability of an IP systems, not only by coloring
parts with low confidence for the user to spot on, but also the automatic part of the
interactive process by forcing the user to correct constituents with low confidence.
Additionally, CM could also help improving the parsing process itself, either by
being used as a component of an n-best reranker, or by being directly employed by
a parsing system for recalculating parts with low confidence.

CM for parsing in the form of combination of characteristics calculated from
n-best lists were explored in [3]. Computation of CM from n-best list makes sense
mainly when the parsing algorithm prunes the search space by using some A* strat-
egy [6]. However, when no pruning strategy is used in the parsing process, CM can
be computed efficiently from the posterior probability of the tree constituent [27].

CM have been also explored in the IP framework. CM of each one of the parse
subtrees (subproblems) can be calculated in terms of their posterior probability [27],
which can be considered as a measure of the degree to which the subtree is believed
to be correct for a given input sentence x. This is formulated as

th, SR MY pe (!
pG(ti?|x)=pG(lj X):Zte’f (,j ij )pG(t' | x) ©.5)
PG (x) PG (x)

with 6() being the Kronecker delta function. Equation (9.5) is the posterior proba-
bility of the subtree tl.‘? given x. The numerator stands for the probability of all parse

trees of x that contain the subtree tlf/‘. (see Fig. (9.1)).
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The posterior probability is computed with the well know Inside B and Outside
o probabilities. The Inside probability is defined as B4 (i, j) = pGg(A = Xi. . Xj),
and it can be computed with the Inside algorithm. The Outside probability is defined
as ap(i, j) = pg(S = X1...Xi—1AXj11...x,) and it can be computed with the
Outside algorithm [1]. In this way, Eq. (9.5) can be written as follows:

Ay . -
pG(tl:?'x):pG(l]’ ):,BA(I,‘])(XA(I,]). (96)
PG (x) Bs(1,n)
It should be noted that the calculation of CM reviewed here is generalizable for any
problem that employs PCFG, and not just IP tasks. In the experiments presented
in Sect. 9.5, we show that the CM can be used within IP to detect erroneous con-
stituents.

9.4 IP in Left-to-Right Depth-First Order

Parting from the general desultory order framework defined in Sect. 9.2 we can
instantiate the left-fo-right tree review order, similarly to what has been done in
previous chapters through this book. For that, we take a cue from the prefix/suffix
paradigm in order to introduce a predefined review order for the user checking the
constituents in each parse trees: a left-to-right depth-first exploration order. In addi-
tion to seeming a reasonable and ergonomic review order for the structure of a tree
(the reviewer would check constituents in a hierarchical order) this order also intro-
duces computational advantages into the most probable tree lookout for interactive
bottom-up parsing algorithms. Another key benefit of adopting this order is that it
facilitates the automatic simulation of user interaction, allowing one to calculate
metrics that estimate the amount of effort reduction.

This order can be formalized by defining a prefix tree t,(t, C f}) that is defined

for each correction performed by the user over a constituent Ci’?. The prefix tree
is comprised of all the ancestors of the corrected constituent and all constituents
whose end span is lower than the start span of the corrected constituent. In terms of
subtrees, the prefix tree can be represented with the following expression:

tp(t, C{J‘.) =(@—15)—{th et:p>j} 9.7)

with t — ¢ meaning to remove the subtree ¢’ from the tree ¢.
In terms of constituents, Eq. (9.7) is equivalent to

(t.Cl)={Ch, eC):m=in=j.d(Ch,) <d(C]})}

u{ch ec :q<i} 9.8)
with d(C%)) being the depth (distance from root) of constituent C%,. In Fig. 9.2d
one can see that the slash-outlined part becomes the prefix tree and the dot-outlined
subtree part becomes recalculated.
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In this way, the history from Eq. (9.3) in Sect. 9.2 becomes the prefix C =
tp(C i/}). Because of this, the compatibility function becomes further restricted:

¥Cyg € (CU{ch))

1, if(r,s)=(p,q) NY =X,
0, if(r,s)=((p,g9)ANY#X,

c¥,r,s)= . . 9.9)
1, if(r,s) # (p,q) Ar > p and are consistent,

0, otherwise.

Notice that the restriction » > p comes from the converse of Eq. (9.7).

9.4.1 Efficient Calculation of the Next Best Tree

If we employ PCFGs as the underlying parse model for IP, then computing the next
best tree as expressed in Eq. (9.3) becomes simpler when one uses a left-to-right
depth-first tree review order.

The following calculation takes advantage of the fact that there are two types
of subtrees that do not have to be recalculated: subtrees that are part of the prefix
because they have already been implicitly validated, and subtrees that are not part
of the prefix but do not descend from the parent of the corrected constituent. This
follows from the fact that under the left-to-right review order we know that the
parent of an amended constituent is already correct so, owing to the context-freeness
of PCFG, a change in a constituent only affects its descendants and its right sibling
subtrees at most.

In the following expressions we show how 7, which is the next best tree produced
by the IP framework can be calculated in an efficient manner by reusing parts of 7/,
the best tree obtained in the previous user iteration.

Let the corrected constituent be Cf} and its parent C then the next tree 7 can be
calculated in the following manner:

i =argmax pg (¢ | x,C.Cfj) = (I' = i7) + 17 (9.10)
teT
with
i = argmax pg (1,7 | <}, Cf}) (9.11)
12eT,

where £/}, is the subtree of ¢ that has constituent C;}, as the root.

Equation (9.10) calculates the newly proposed tree 7 by subtracting the subtree
rooted at the parent of the corrected constituent (7' — 7/P) and appending a newly
calculated subtree 7/P, whose oot is the parent of the corrected constituent and is
calculated taking into account just the corrected constituent as shown in Eq. (9.11).



188 9 Interactive Parsing

S S
/\ /\
A Y A Y
S PN
B V4 X Z
/N VAN
co o lwe ] L
a b c d a b c d a b ¢ d
(a) Refer- (b) Tter- (c) Iter- (e) Tter-
ence tree ation 0: ation 0: ation 1: ation 1:
Proposed Erroneus User Proposed
out- constituents corrected output
put tree 1 constituent tree 2

Fig. 9.2 Synthetic example of user interaction with the IP system. (a) The reference tree. (b) The
system proposes an initial tree. (¢) The user simulation subsystem looks at the tree and detects
two incorrect constituents. (d) The first error is corrected by the user simulation subsystem. Note
the implicitly validated prefix (slashed outline) and the recalculated part (dotted outline). (e) The
system produces a new tree which equals the reference

This new maximization is more limited in extent and easier to perform because we
only consider the last corrected constituent rather than the whole history of corrected
constituents.

9.5 IP Experimentation

Based on the theoretical framework instantiated in Sect. 9.4, we devised an exper-
imental setup to obtain an automatic assessment of user effort savings when using
an IP system compared to a traditional system. The experimental setup is based
on a user simulation subsystem that uses the gold reference trees to imitate system
interaction by a human corrector and provides a comparable benchmark.

9.5.1 User Simulation Subsystem

Again, we devised an automatic evaluation protocol following the aforementioned
left-to-right depth-first review order. The protocol is quite simple, and an example
can be seen in Fig. 9.2a.

1. The IP system proposes a full parse tree 7 for the input sentence.

2. The user simulation subsystem finds the first incorrect constituent by exploring
the tree in the order defined by the prefix tree definition (left to right, depth-first)
and comparing it with the reference tree. When the first erroneous constituent is
found, it is amended by being replaced by the correct one C i’;‘., operation which
implicitly validates the prefix tree tp(Cf}).

3. The IP system produces the most probable tree that is compatible with the vali-
dated prefix tree.
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4. These steps are iterated until a final, perfect parse tree is produced by the IP
system and validated against the reference by the user simulation subsystem.

9.5.2 Evaluation Metrics

With the user simulation in place, we need some metrics to measure the effort re-
duction. Parsing quality is generally assessed by the classical evaluation metrics,
Precision, Recall, and F-measure:

e Precision: number of correct constituents divided by the number of constituents
in the gold reference parse tree.

e Recall: number of correct constituents divided by the number of constituents in
the proposed parse.

o F-measure:

Precision - Recall

" Precision + Recall’

However, for the assessment of an IP process, we need two comparable metrics:
one that reports the amount of human correcting work needed to obtain the gold tree
in a classical two-step process (i.e. the number of operations needed to post-edit the
proposed tree in order to obtain the gold one); and a second one that measures the
amount of effort needed to obtain the gold tree with the human interacting within
the presented IP system.

We defined the following metric that measures the amount of effort needed in
order to post-edit a proposed tree and obtain the gold reference parse tree, akin to
the Word Error Rate used in Statistical Machine Translation and related fields:

o Tree Constituent Error Rate (TCER): Minimum number of constituent substitu-
tion, deletion and insertion operations needed to convert the proposed parse tree
into the corresponding gold reference tree, divided by the total number of con-
stituents in the reference tree.

The TCER is in fact strongly related to the F-measure: the higher the F-measure
is, the lower TCER will be.

Finally, the relevant evaluation metric that assesses the IP system performance
represents the amount of effort that the operator would have to spend using the
system in order to obtain the gold tree, and is directly comparable to the TCER:

e Tree Constituent Action Rate (TCAC): Number of constituent corrections per-
formed using the IP system to obtain the reference tree, divided by the total num-
ber of constituents in the reference tree.
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9.5.3 Experimental Results

An IP system was implemented over the classical CKY-Viterbi algorithm. Experi-
mentation was run over the Penn Treebank (English language) and the UAM Tree-
bank (Spanish language). Within the Penn Treebank, sections 2 to 21 were used to
obtain a vanilla Penn Treebank Grammar; test set was the section 23. We divided
the UAM Treebank into two sets as well: the set used to obtain the grammars com-
prised was of the first 1400 sentences of the corpus; and the test set consisted of the
remaining 100 sentences.

Parsers based on CKY work with grammars in CNF, which is a subtype of CFG
in which all the production rules must be in the form:

A—BC or A—a or S—e. (9.12)

Notice that for every CFG (or PCFG) there is an equivalent version of this grammar
in CNE.

In order to obtain the CNF grammars from the vanilla PCFG for each of the
languages we used the CNF transformation method from the toolkit NLTK.! In
addition to obtaining a plain right-factored CNF transformation, the CNF method
from the NLTK allows to augment the performance of the obtained unlexicalized
binary grammars by introducing additional context information in the non-terminals
names. This process is called grammar markovization and is controlled by the ver-
tical (v) and horizontal (4) markovization parameters [18]. A plain right-factored
CNF transformed grammar corresponds to a markovization with both v and 4 set
to 0.

A basic schema was introduced for parsing sentences with out-of-vocabulary
words: when an input word could not be derived by any of the preterminals in the
vanilla treebank grammar, a very small probability for that word was uniformly
added to all of the preterminals.

For our experiments we obtained several CNF grammars of different sizes
through the use of different v and % values. Results for the metrics discussed on
Sect. 9.5.2 for the different markovizations of the obtained grammars can be seen
in Tables 9.1 and 9.2. We observe that the percentage of corrections needed using
the IP system is much lower than the rate of corrections needed on just post-editing
the proposed trees: from 42% to 47% effort reduction by the human supervisor.
These results clearly show that an IP system can relieve manual annotators of a lot
of burden in their task.

Additionally, we performed experimentation with CM used over an IP process,
to assess their power to detect incorrect constituents. We assessed that CM retain all
of their error detection capabilities during the IP process: they are able to discern
between 18% and 25% of incorrect constituents at most stages of the IP process,
with a bump up to 27% after about seven user interactions. The complete details can
be found at [28].

Thttp://ltk.sourceforge.net/.
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Table 9.1 Results for the test

set of the Penn Treebank: PCFG Baseline P RelRed

F) and TCER for the baseline F TCER TCAC

system; TCAC for the IP

system; relative reduction h=0,v=1 0.67 0.40 0.22 45%

between TCERand TCAC '\ 5 (68 0.39 0.21 46%
h=0,v=3 0.70 0.38 0.22 42%

Table 9.2 Results for the test -

set of the UAM Treebank: PCFG Baseline P RelRed

F) and TCER for the baseline F TCER TCAC

system; TCAC for the IP

system; relative reduction h=0,v=0 0.57 0.48 0.26 46%

between TCER and TCAC h=0.v=1 0.59 047 025 41%
h=0,v=2 0.62 0.44 0.24 46%
h=0,v=3 0.61 0.45 0.24 47%

Note that the presented experiments were done using parsing models that per-
form far from the latest F; results; their intention was to assess the utility of the IP
schema. However, we expect that relative reductions with IP systems incorporating
state-of-the-art parsers would be relevant as well.

9.6 Conclusions

In this chapter, we have introduced a novel Interactive Parsing framework which can
be operated by a user to obtain error-free syntactic parse trees. This compares to the
classical two-step schema of manually post-editing the erroneous constituents pro-
duced by the parsing system. In the general IP framework presented, the interaction
protocol that we have initially defined is desultory type: the user can edit any part of
the parse tree and in any order. However, to efficiently increase the computation of
next best parse tree, a left-to-right depth-first tree review order has been introduced.

To make an automatic experimental assessment, we have simulated the user inter-
action with the system. Since we have the reference parser, this experimental feature
has been possible. We have also defined and calculated some evaluation metrics. In
general, the achieved results showed that in an IP system is produced a high amount
of effort reduction for a manual annotator compared to a two-step system.

In addition, we have proved that using confidence measures to discriminate in-
correct from correct constituents helps to some extent in the IP process. In this point,
a purely statistical confidence measure (based on inside-outside estimated posterior
probability of constituents) for probabilistic parsing has been introduced.

Finally, is important to note that, in addition to the automatic experimental eval-
uation reported in previous section, a complete IP prototype has been implemented
(see Chap. 12) and made available to potential real users.



192 9 Interactive Parsing
References

1. Baker, J. K. (1979). Trainable grammars for speech recognition. The Journal of the Acoustical
Society of America, 65, 31-35.

2. Benedi, J. M., & Séanchez, J. A. (2005). Estimation of stochastic context-free grammars and
their use as language models. Computer Speech & Language, 19(3), 249-274.

3. Benedi, J. M., Sanchez, J. A., & Sanchis, A. (2007). Confidence measures for stochastic pars-
ing. In Proceedings of the international conference recent advances in natural language pro-
cessing (pp. 58-63), Borovets, Bulgaria.

4. Carter, D. (1997). The TreeBanker. A tool for supervised training of parsed corpora. In Pro-
ceedings of the workshop on computational environments for grammar development and lin-
guistic engineering (pp. 9-15), Madrid, Spain.

5. Charniak, E. (1997). Statistical parsing with a context-free grammar and word statistics. In
Proceedings of the national conference on artificial intelligence (pp. 598-603), Providence,
Rhode Island, USA.

6. Charniak, E. (2000). A maximum-entropy-inspired parser. In Proceedings of the first confer-
ence on North American chapter of the association for computational linguistics (pp. 132—
139), Seattle, Washington, USA.

7. Charniak, E., Knight, K., & Yamada, K. (2003). Syntax-based language models for statistical
machine translation. In Machine translation summit, IX international association for machine
translation, New Orleans, Louisiana, USA.

8. Chelba, F., & Jelinek, C. (2000). Structured language modeling. Computer Speech and Lan-
guage, 14(4), 283-332.

9. Chiang, D. (2007). Hierarchical phrase-based translation. Computational Linguistics, 33(2),
201-228.

10. Collins, M. (2003). Head-driven statistical models for natural language parsing. Computa-
tional Linguistics, 29(4), 589-637.

11. de la Clergerie, E. V., Hamon, O., Mostefa, D., Ayache, C., Paroubek, P., & Vilnat, A. (2008).
PASSAGE: from French parser evaluation to large sized treebank. In Proceedings of the sixth
international language resources and evaluation (pp. 3570-3577), Marrakech, Morocco.

12. Earley, J. (1970). An efficient context-free parsing algorithm. Communications of the ACM,
8(6), 451-455.

13. Gascd, G., & Sanchez, J. A. (2007). A* parsing with large vocabularies. In Proceedings of
the international conference recent advances in natural language processing (pp. 215-219),
Borovets, Bulgaria.

14. Gasco, G., Sanchez, J. A., & Benedi, J. M. (2010). Enlarged search space for sitg parsing. In
Proceedings of the North American chapter of the association for computational linguistics—
human language technologies conference (pp. 653—-656), Los Angeles, California.

15. Hopcroft, J. E., & Ullman, J. D. (1979). Introduction to automata theory, languages and com-
putation. Reading: Addison-Wesley.

16. Huang, L., & Chiang, D. (2005). Better k-best parsing. In Proceedings of the ninth inter-
national workshop on parsing technology (pp. 53—64), Vancouver, British Columbia. Menlo
Park: Association for Computational Linguistics.

17. Jain, A. K., Duin, R. P., & Mao, J. (2000). Statistical pattern recognition: A review. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22, 4-317.

18. Klein, D., & Manning, C. D. (2003). Accurate unlexicalized parsing. In Proceedings of the
41st annual meeting on association for computational linguistics (Vol. 1, pp. 423—430), As-
sociation for Computational Linguistics Morristown, NJ, USA.

19. Lease, M., Charniak, E., Johnson, M., & McClosky, D. (2006). A look at parsing and its
applications. In Proceedings of the twenty-first national conference on artificial intelligence,
Boston, Massachusetts, USA.

20. Marcus, M. P, Santorini, B., & Marcinkiewicz, M. A. (1994). Building a large annotated
corpus of English: The Penn Treebank. Computational Linguistics, 19(2), 313-330.



References 193

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

3s.

36.

Oepen, S., Flickinger, D., Toutanova, K., & Manning, C. D. (2004). LinGO redwoods. Re-
search on Language and Computation, 2(4), 575-596.

Pereira, F., & Schabes, Y. (1992). Inside-outside reestimation from partially bracketed corpora.
In Proceedings of the 30th annual meeting of the association for computational linguistics (pp.
128-135). Newark: University of Delaware.

Petrov, S., & Klein, D. (2007). Improved inference for unlexicalized parsing. In Conference
of the North American chapter of the association for computational linguistics; proceedings
of the main conference (pp. 404—411), Rochester, New York.

Roark, B. (2001). Probabilistic top-down parsing and language modeling. Computational Lin-
guistics, 27(2), 249-276.

Salvador, 1., & Benedi, J. M. (2002). RNA modeling by combining stochastic context-free
grammars and n-gram models. International Journal of Pattern Recognition and Artificial
Intelligence, 16(3), 309-315.

San-Segundo, R., Pellom, B., Hacioglu, K., Ward, W., & Pardo, J. M. (2001). Confidence
measures for spoken dialogue systems. In IEEE international conference on acoustic speech
and signal processing (Vol. 1), Salt Lake City, Utah, USA.

Séanchez-Séez, R., Sanchez, J. A., & Benedi, J. M. (2009). Statistical confidence measures for
probabilistic parsing. In Proceedings of the international conference on recent advances in
natural language processing (pp. 388-392), Borovets, Bulgaria.

Sanchez-Sdez, R., Leiva, L., Sanchez, J. A., & Benedi, J. M. (2010). Confidence measures
for error discrimination in an interactive predictive parsing framework. In 23rd International
conference on computational linguistics (pp. 1220-1228), Beijing, China.

Serrano, N., Sanchis, A., & Juan, A. (2010). Balancing error and supervision effort in
interactive-predictive handwriting recognition. In Proceeding of the 14th international con-
ference on intelligent user interfaces (pp. 373-376), Hong Kong, China.

Stolcke, A. (1995). An efficient probabilistic context-free parsing algorithm that computes
prefix probabilities. Computational Linguistics, 21(2), 165-200.

Tarazoén, L., Pérez, D., Serrano, N., Alabau, V., Terrades, O. R., Sanchis, A., & Juan, A. (2009).
Confidence measures for error correction in interactive transcription of handwritten text. In
LNCS: Vol. 5716. Proceedings of the 15th international conference on image analysis and
processing (pp. 567-574), Salerno, Italy.

Ueffing, N., & Ney, H. (2007). Word-level confidence estimation for machine translation.
Computational Linguistics, 33(1), 9-40.

Wessel, F., Schluter, R., Macherey, K., & Ney, H. (2001). Confidence measures for large vo-
cabulary continuous speech recognition. IEEE Transactions on Speech and Audio Processing,
9(3), 288-298.

Wu, D. (1997). Stochastic inversion transduction grammars and bilingual parsing of parallel
corpora. Computational Linguistics, 23(3), 377-404.

Yamada, K., & Knight, K. (2002). A decoder for syntax-based statistical MT. In Meeting of
the association for computational linguistics, Philadelphia, Pensilvania, USA.

Yamamoto, R., Sako, S., Nishimoto, T., & Sagayama, S. (2006). On-line recognition of hand-
written mathematical expressions based on stroke-based stochastic context-free grammar. In
10th international workshop on frontiers in handwriting recognition (pp. 249-254), La Baule,
France.



Chapter 10
Interactive Text Generation

With Contribution Of: José Oncina and Luis Rodriguez.

Contents

10.1 Introduction . . . . . . . . . . . . . . e e e 195
10.2 Interactive Text Generation at the Word Level . . . . . ... ... ... ... 197
10.3 Predicting at Character Level . . . . ... ... ... ... .......... 205
104 Conclusions . . . . . . . . . . e e e e 207
References . . . . . . . . . . . e 207

Using a computer to produce text documents is essentially a manual task nowadays.
The computer is basically seen as an electronic typewriter and all the effort required
falls on the human user who has to, firstly, think of a grammatically and semantically
correct piece of text and, then, type on the computer. Although human beings are
usually quite efficient when performing this task, in some cases, this process can be
very time consuming. Writing text in a non-native language, using devices having
highly constrained input interfaces, or the case of impaired people using computers
are only a few examples. Providing some kind of automation in these scenarios
could be really useful.

Interactive Text Prediction deals with providing assistance in document typing
tasks. IPR techniques are used to predict what the user is going to type, given the
text typed previously. Prediction is studied both at the word level and at the character
level but, in both cases, the aim is to predict multi-word text chunks, not just a single
next word or word fragment. Empirical tests suggest that significant amounts of user
typing (and to some extent also thinking) effort can be saved using the proposed
approaches. In this chapter, alternative strategies to perform the search in this type
of tasks are also presented and discussed in detail.

10.1 Introduction

Since the adoption of the written language by the ancient human societies, writing
texts has become a very common task. The introduction of electronic computers has
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made this process significantly easier. Thanks to word processing software, comput-
ers allow us to generate text faster and more comfortably than ever. However, so far,
the approach adopted is essentially the same as centuries ago. Computers are, essen-
tially, much more sophisticated replacements of paper, pencil and eraser, but typing
text is still a manual process and the incredible computational power that computers
provide is barely used. Even in the most modern word processing developments,
only basic tools such as orthographic and grammatical checkers and thesaurus are
generally implemented to help the user in the generation of correct text.

The development of advanced assistance tools for generating text is thus of great
interest for general-purpose word-processing applications and more so for applica-
tions needed in many other more specific environments where text-input is needed.
In all the cases, the ability of automatically predicting what someone is going to
type can save considerable amounts of human effort and could therefore be utterly
helpful.

In some situations, the typing task can become too slow and uncomfortable. For
instance, in devices such as mobile phones and PDA’s, no satisfactory interfaces
for text-input have been developed so far. In addition, even with adequate typing
devices such as a conventional keyboard, people with certain disabilities can be
unable to achieve a sufficient typing speed; and, unfortunately, for many of them
text generation may be the only appropriate communication channel.

Different approaches to the text prediction problem can be found in the literature.
Most of them only attempt to predict the next single word [4] or focus on measuring
the accuracy of off-line text predictions [1]. Here, we consider a more general setting
under the IPR paradigm where, not only single words, but multi-word fragments or
full sentences are predicted.

10.1.1 Interactive Text Generation and Interactive Pattern
Recognition

Providing assistance in text typing is a problem that could fit in the interactive tran-
scription or translation frameworks presented Chaps. 2—4 or Chaps. 6-8. The basic
process consists in predicting (or “completing”) some portion of text based on the
text previously typed. Using the terminology adopted in Chap. 2, the problem is
to find a text suffix which is a suitable continuation for a given text prefix. How-
ever, there is a big difference in this case with respect to the problems considered in
previous chapters of this book.

In the general IPR framework, the goal is to decode some input signal or data.
In contrast, for text prediction, no input is available. That is, the only information
source available to produce its outcome is the user feedback.! This makes the text
prediction task more difficult since the system outputs can not constrained by input

! Actually, this formulation could be interpreted in a different way by considering the prefix as the
input pattern leading to a classical Pattern Recognition problem.
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patterns. Therefore, the set of possible system hypotheses is much larger and predic-
tion accuracy is expected to be significantly lower than in the problems considered
so far in this book.

Following the concepts introduced in Sect. 1.4.1, the text prediction problem
clearly entails a type of passive interaction protocol “without input data”, which can
be formulated as in Eq. (1.37):

h=argmax P(h | I, d). (10.1)
heH

In addition, as in Sect. 2.3, we can quite naturally assume a left-to-right processing
protocol. This way the hypotheses, &, are text suffixes (called s from now on), and
the history, i/, along with the user feedback, d, correspond to the given text prefix
(referred to as p in the sequel). Therefore, Eq. (10.1) becomes:

§=argmax P(s | p). (10.2)
)

Initially, no prefix is available, and the system makes an initial prediction. The user
validates part of the prediction, selecting a correct prefix, and adds some text to
this prefix (this corresponds to the feedback, d in Eq. (10.1)). Then, the system will
complete this user-validated and corrected text and the process continues in this way
until the whole text is satisfactory. Figure 10.1 shows an example of an ITG session.

Some practical aspects that arise in this task are worth discussing. On the one
hand, the initial prediction (when no prefix is available) would be always identical,
since the conditional probability in Eq. (10.2) only depends on an empty prior. Be-
cause of this, an initial prediction can be useless and it might be better to wait for
the user to type something before starting the prediction process. Nonetheless, an
initial prediction could be adequate in some applications involving the generation
of documents starting with fixed or typical sequences of words.

Another practical problem arises because of the lack of input data. In all IPR tasks
previously considered in this book, the input pattern is somehow used to estimate
a best length for the prediction. On the contrary, in text generation, other strategies
have to be developed for this estimation. Predicting just one word after the prefix
seems to be the easiest strategy to do, but multi-word predictions can clearly be more
beneficial. Predicting whole sentences, on the other hand, could be a considered a
best choice, but a full-sentence language model would be needed and, so far, models
of this kind have not proved sufficiently good for language modeling. Letting the
user set the length of predictions is, maybe, a good alternative but letting the system
itself deal with this problem could be worth it.

10.2 Interactive Text Generation at the Word Level

Now we address the development of an Interactive Text Generation (ITG) system.
We consider this problem at the word level in this section and at the character



198 10 Interactive Text Generation

Step 1

Prediction: Check the printer before sending jobs

Prefix: Check the

Amendment:  Check the following

Step 2

Prediction: Check the following conditions before continuing
Prefix: Check the following conditions

Amendment:  Check the following conditions 7o

Step 3

Prediction: Check the following conditions to ensure an optimum work
Prefix: Check the following conditions to ensure an optimum

Amendment:  Check the following conditions to ensure an optimum performance

RESULT: Check the following conditions fo ensure an optimum performance

3
WSR = 9= 0.33 - 33%

Fig. 10.1 Example of text generation session and the corresponding word stroke ratio (WSR)
computation for producing the text “Check the following conditions to ensure an optimum per-
formance”. The system generates an initial prediction. Then, the user validates a correct prefix
(boldfaced) and introduces a word amendment (shown in italics). The system, taking into account
this information, generates a new prediction. The process is iterated until a correct, full sentence is
achieved. In the final result, the user only had to type the two words shown in italics. The WSR is
obtained by dividing the number of user word strokes between the overall number of words

level in the next section. We begin describing the models involved in ITG and then
we consider search approaches to solve Eq. (10.2). With respect to the search ap-
proaches considered in previous chapters of this book, it is worth noting that, here,
the lack of input data entails interesting simplifications, which lead to much simpler
and more effective search techniques.

10.2.1 N-Gram Language Modeling

N-grams [2] are the most widely used language models in NLP applications. Our
approach to text generation also lies on n-grams but taking into account some con-
siderations that are discussed in the following paragraphs. As described in Sect. 2.4,
the basic idea is to rely on the n — 1 last words of the prefix to predict an appropri-
ate continuation. Clearly, these models fail in benefiting from the whole wealth of
information available and just a small part of it is actually considered. Nevertheless,
n-gram language modeling (LM) generally entails important useful simplifications
both in search and (mainly) in training, as discussed in Sect. 2.2.
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10.2.2 Searching for a Suffix

The conditional probability maximization entailed by Eq. (10.2) can in principle be
solved by Dynamic Programming as discussed in Sect. 2.5.1. Notice, however, that,
because of the lack of input data, the decoding process here becomes easier than in
text images or speech transcription solutions such as CATTI or CATS (Chaps. 2—4).

Here the problem only consists in constructing suffixes according to the given
LM. At this point, we can anticipate a problem that will be discussed later. In most
pattern recognition tasks, we have an input pattern to decode and the search algo-
rithm can be stopped when the end of the pattern is reached. In ITG, no input exists
and, therefore, no clue to stop predicting words is available. Moreover, due to the
nature of the n-grams, the probability of a word sequence quickly drops with the
number of words and longer predictions are penalized over shorter ones. Therefore,
we will need a function, Fiengw(.), wWhich, given a prediction hypothesis, will re-
turn a score for this hypothesis according to its length. Taking into account all these
considerations, the Algorithm 10.1 (called “MaxPost”), shown on p. 200, provides
a (maximum posterior probability) solution to Eq. (10.2).

Surprisingly enough, the (Viterbi search) maximization of the posterior proba-
bility is not necessarily the best strategy for ITG. Recently, a better and simpler
approach has been proposed [3], which will be discussed below.

10.2.3 Optimal Greedy Prediction of Suffixes

The MaxPost strategy actually aims at minimizing “whole line or sentence” errors;
that is it assumes a 01 loss function, as outlined in Sects. 1.2.1 and 1.3.4, which
leads to optimizing the number of whole sentences or lines correctly predicted.” In
other words, the well-known Sentence Error Rate (SER) metric is the optimization
goal for MaxPost.

In an interactive task like ITG, the real goal is to save user interaction effort and
not necessarily maximizing the number of correctly predicted whole sentences or
lines. As discussed in Sect. 1.3.4, adequate estimations of user interaction effort
can be achieved by using different /oss functions. Following this idea, an optimal
strategy to predict suffixes in an interactive environment is proposed in [3]. This
strategy turns out to entail a greedy-like search (called Greedy from now on) which
constructs the final hypothesis just as a concatenation of locally optimal decisions.
This strategy is described by Algorithm 10.2 on p. 201.

The superiority of the Greedy approach could be alternatively derived by apply-
ing the optimal decision rule properly. Without loss of generality, let us consider
that exactly one word is predicted after the prefix. Only two possibilities arise: If

2Here we are considering that ITG works in a “sentence-by-sentence” or “line-by-line” basis. In
NLP this approach is often followed since working with too long chunks of text is generally un-
practical.
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Algorithm 10.1: (MaxPost algorithm) Dynamic-programming Viterbi-like al-
gorithm to search for the best continuation to a prefix. n-gram states are identi-
fied as substrings of length n — 1. Therefore, if (for example) n =3, g = wl’: 42
denotes a state identified as the 2-gram w;_jwj;. It is assumed that, if j < i,
wif is the empty string (A). The function Flength(i, g) provides the length-
conditioned score for an i-words sentence with likelihood g. Different imple-
mentations of this function are discussed in Sect. 10.2.4

input : user-validated prefix (p), vocabulary (V'), maximum prediction length

(maxLen), n-gram size (n), length score function (Fiength)
output: whole sentence prediction
begin
i=pl+1lig=p)

0 ={q}; /I States
Glq] = 0; // Likelihoods;
Wlq] = p; // Word sequences
8best = 0; Wpest = A
while i < maxLen do
0'=0;G'=G;
W =W;Q0=0;
forall ¢’ € Q' do
forall v e V do

q =q'5~" v I/ concatenate v to w

if ¢ ¢ O then

0=0Uf{q}h

Glgl=G'lq1P(v|q");

Wigl=W'[q'] - v;

else if G[g] < G'[¢] P(v | ¢’) then
Glgl=G'lq1P(v|q");
Wigl=W'q'] - v;

i—1
i—n+2

if G[g] > g* then
g*=Glql;
w*=W|q]; //best result for length i

if gbest < Flength (7, g*) then

8best = Flength (7, g");

| Wpest = w™; // best result so far
L i=i+1;

return Wpeg;

end
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Algorithm 10.2: Greedy strategy to complete a user-validated prefix. Note that
the greedy solutions shorter than maxLen are just the prefixes of the resulting
w.
input : user-validated prefix (p), vocabulary (V'), maximum prediction length
(maxLen), n-gram size (n)
output: whole sentence prediction (w)
begin
w=p;i=|p[+1;
while i < maxLen do
v¥=2; g*=0;
forall v e V do
if ¢* < P(v|w!~!, ) then

i—n+1
* i—1 .
g =P(v]| w;_ +l)’
v =,
w=uw- v
Li=i+1;
return w;

end

Fig. 10.2 Simple stochastic

language model "b" (0.6

i=1 "a" (0.4)

the prediction was correct, the word is added to the prefix (thereby generating a new
prefix) and the process is iterated; if the word was not correctly predicted, a word
stroke is computed and the correct word is added, again, to form a new prefix. It is
easy to see that this process is completely equivalent to the more general one with
respect to the number of word strokes needed to produce a sentence. Therefore, the
conclusions reached here can be applied, as well, to our multi-word prediction case.

From this new point of view, we can consider that we are addressing an iterative
classification problem where, in each iteration, we have a prefix and we obtain a
label class (the predicted word) for this prefix. By making the reasonable assump-
tion that each classification step is independent from the previous ones, the optimal
decision rule follows. This rule tells us that we have to maximize the posterior prob-
ability of the class (single word) given the pattern (prefix). This way, we should
choose, in each iteration, the most probable word given the prefix, which turns out
to be, indeed, a greedy prediction algorithm.

To illustrate and analyze the behavior of both strategies, MaxPost and Greedy,
we show an example based on the simple LM shown in Fig. 10.2.

Let us suppose that the texts we want to generate are all the strings modeled
by this LM; namely, aa, ba and bb (we assume here that each letter represents
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a single word). Now, we can compute the expected number of interactive steps (/)
required to generate these texts when using MaxPost. The string aa is generated with
probability 0.4 and does not need any interaction (notice that aa is the most probable
text generated by the model). Next, the string ba, is generated with probability 0.24
and it needs one interaction step (with no prefix, MaxPost predicts the string aa and
after setting b as a prefix, the string ba is finally achieved). Finally, the string bb is
generated with probability 0.36 and two interaction steps. Therefore:

MaxPost: E(I)=0-0441-0.2442-0.36=0.96.

On the other hand, the Greedy approach starts predicting bb when no prefix is avail-
able, without needing any interaction step (the third addend in the equation below)
and two and one interaction steps are needed for the strings aa and ba, respectively
(first and second addends in the equation below). Therefore, the corresponding ex-
pected value for the Greedy approach is

Greedy: E(I)=1-04+41-0.24+0-0.36=0.64.

Thus, the Greedy approach is expected to require less overall interaction effort.
But what can be expected about the prediction errors? We can notice that the (ex-
pected) number of prediction errors corresponds to the (expected) number of inter-
actions. When the system fails to generate a perfect suffix a user interaction step
is required. Therefore, we conclude that, in this case, the number of (single word)
prediction errors is also minimized by Greedy and not by MaxPost.

This apparent paradox is solved by considering the proper loss function that
MaxPost aims to optimize; namely, the number of full-suffix prediction error cor-
rections, C. In the previous example, the expected value of this number, considering
all the possible situations, can be easily computed: There are three different decision
problems, given by the three different prefixes that the strings in the model can have:
A (the empty string), a and b. In the case of MaxPost, first consider the empty prefix,
A, which is produced with probability 1 and makes the algorithm predict the string
aa; then, the correct suffix will be predicted with probability 0.4 (probability of aa)
and, therefore, a wrong suffix will be suggested with probability 0.6 (probability
of ba and bb). The second prefix, a, is generated with probability 0.4; in this case,
the algorithm will predict the only possible suffix a and the probability of making
a wrong prediction is 0. Finally, the prefix b is produced with probability 0.6 and b
will be suggested as the best continuation; therefore, the probability of the correct
prediction will be 0.6 (probability of b given b) and the probability of making a
mistake will be 0.4 (probability of a given b). Thus, the expected value for MaxPost
is

MaxPost: E(C)=1-064+0.4-0+0.6-0.4=0.84.

Similar considerations apply in the Greedy case, leading to

Greedy: E(C)=1-0.64+04-040.6-0.4=0.88.
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10.2.4 Dealing with Sentence Length

As previously mentioned, the problem of determining when to stop generating
words in ITG could be regarded, for simplicity, as one of the practical issues of the
system. This way, simple solutions such as letting the user set a maximum prediction
length can be adopted. Nevertheless, there is also an important problem related to
the nature of the models used in predictions that can not be overlooked. When using
a dynamic programming approach, a trellis containing all the explored hypotheses
is constructed. Each stage of the trellis contains same-length hypotheses. Initially,
the 1-word hypotheses are considered. Next, 2-words hypotheses are generated and
evaluated and so on. On the other hand, an n-gram language model scores a sentence
by computing the product of the probabilities of all the n-grams of the sentence.
Since all these probabilities are numbers between 0 and 1, the fewer amount of n-
grams in the hypothesis the higher the score is or, in other words, shorter predictions
would have (in average) a better score than longer ones. In the most extreme case,
our system would always produce a 1-word prediction. We propose two different
alternatives to approach this problem.

The first one is based on normalizing each hypothesis probability by its length.
This normalized score, S(s | p), can be better expressed by following the usual
log-prob computation:

l

1 -
S(slp):m -y log P(wi |wiT) ). (10.3)
i=k+1

where w = p - s, k is the length of p and [ is the length of w.

According to this equation, the best hypotheses are those whose individual 7n-
gram log-probabilities are higher on average. An important drawback of this ap-
proach is that, because of the normalization, the model is not a probabilistic model
anymore and some of the desirable properties that characterizes this kind of models
are lost.

As an alternative, we propose, a different approach which uses a separate model
to account for the length (denoted as P;(-)). For instance, a Gaussian can be chosen
to approximate the distribution over all the possible lengths. This Gaussian distri-
bution can be easily maximum-likelihood trained on the training samples. Once an
explicit length model is available, a linear interpolation is performed between the
n-gram model and this new length model:

l
PisIp)=a-P(lpl+lIsl) +(1—a)- ]_[ P(wi |wiZ),,) (10.4)
i=k+1

In the case of the Greedy approach, this is not actually an issue. In MaxPost,
multiple partial hypotheses are considered in parallel. In Greedy, however, a sin-
gle prediction is constructed by just adding locally optimally computed words after
the successive prefixes. That means that the length of the prediction does not sig-
nificantly modify the content of the prediction itself That is, the best prediction of
length m will always be a prefix of the best prediction of length m + 1.
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10.2.5 Word-Level Experiments

The evaluation method followed here is based on the use of the already defined
Word Stroke Ratio (WSR) metric (cf. Sect. 2.6). An example of WSR computation
is shown in Fig. 10.1.

Three different tasks are considered. The first two, EUTRANS and XEROX, were
already used in CAST (see Chap. 4). The third one, ALBAYZIN, consists of a set
of natural language queries to a geographic database. The main features of these
corpora are shown in Table 10.1.

The experiments performed in this section aim at evaluating two different aspects
of ITG. On the one hand, the prediction accuracy has to be measured. On the other,
a comparison between the two techniques MaxPost and Greedy is needed to validate
the optimality of the last one. In Table 10.2 the main results of the experiments are
shown. In this table, the Length Model column refers to the linear interpolation
shown in Eq. (10.4). The final two columns correspond, respectively, to the length
normalization of Eq. (10.3) in the MaxPost approach and to predictions of a defined
length in the case of the Greedy approach. The best result for each corpus is shown
in boldface.

We can see that Greedy significantly outperforms MaxPost in all the corpora. It
is noticeable, as well, that in simple tasks the system can accurately predict about

Table 10.1 Features of the

corpora used EUTRANS ALBAYZIN XEROX

Test sentences 2996 1440 875
Running words 35023 13566 8257
Running characters 188707 81246 53337
Training vocabulary 688 1271 10913
Training sentences 10000 9893 53740
Test-set perplexity (3-grams) 4.9 6.6 41

Table 10.2 WSR results on different corpora. A comparison between the two search algorithm
proposed is shown for the three corpus considered. The columns under Length model show the
result of interpolating the n-gram with a probabilistic length model under different values for the
o parameter in Eq. (10.4). The column under Length normalization shows the result of applying a
length normalization on this algorithm. The final column reports the results achieved by the greedy
approach

Corpus MaxPost Greedy
Length model («) Length norm.
0.1 0.3 0.5 0.7 0.9
EUTRANS 57.6 57.6 60.4 62.7 62.7 62.5 50.9
ALBAYZIN 62.5 62.5 62.5 62.5 62.8 60.4 53.6

XEROX 79.6 79.6 79.7 80.0 80.0 71.3 66.3
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half of the overall words in the reference sets. It is also worth mentioning that the
Xerox test is the same as used in CAST, where a WSR of 18.6% was achieved.
By comparing both results we can get a picture about the prediction accuracy lost
because of the lack of input data.

10.3 Predicting at Character Level

The results shown in the previous section were obtained by considering each user
interaction step as a whole-word correction. However, an alternative arises if we
consider a character-based approach, where the user feedback consists of single
keystrokes rather than whole words. This alternative would also entail estimating
interaction effort in terms of key strokes (KSR), rather than word strokes (WSR),
where the KSR is defined as the number of key strokes needed to achieve the refer-
ence tesx divided by running characters in this text.

In principle, it is clear when to estimate the text-generating user effort in terms
of word or key strokes. For constrained interfaces, where the bottleneck is the very
typing process, computing keystrokes seems to be reasonable, since a significant
amount of time is spent in introducing the information instead of thinking about
what it is going to be typed. Otherwise, if the bottleneck is not typing but finding
(i.e., thinking) the right words to compose the intended text, it is the WSR what
makes more sense.

In character-level interaction, as soon as the user types a single character, the sys-
tem provides a continuation without waiting for a full word correction. The process
is essentially the same as described for word-level ITG, but taking into account that,
when searching for the suffix, we have to deal with incomplete words (that is, the fi-
nal characters of the prefix can be a word-prefix and not necessarily a whole word).
Under this premise, we firstly have to complete the final characters in the prefix,
which will usually be an incomplete word. In Fig. 10.3 an example of interaction
with a character-ITG system is shown, along with an example of KSR computation.

Formally, let ¢, be the sequence of characters that comes after the last blank in
the prefix. We have to search for a word v for which c,,, is a prefix. In the case of
an n-gram language model, this amounts to the following optimization equation:

U= argmax P(v | w,’z:,iﬂ) (10.5)
veV:icy, € pref(v)

where pref(v) denotes the set of all the prefixes of the word v.

10.3.1 Character-Level Experiments

Table 10.3 shows the results of character-level interaction on the corpora described
in Sect. 10.2.5.

At this point, it can be interesting to recall the discussion about which measure
(WSR or KSR) to adopt to better estimate the user interaction effort. In a normal
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Step 1

Prediction: Check the printer before sending jobs

Prefix: Check the

Amendment: Check the f

Step 2

Prediction: Check the f inal configuration before continuing

Prefix: Check the f

Amendment: Check the fo

Step 3

Prediction: Check the fo 11lowing conditions to ensure an optimum work
Prefix: Check the following conditions to ensure an optimum

Amendment: Check the following conditions to ensure an optimum p

Step 4

Prediction:  Check the following conditions to ensure an optimum p erformance
RESULT: Check the following conditions to ensure an optimum performance
KSR = 64_5 =0.06 - 6%

Fig. 10.3 Example of character-level text generation session and the corresponding KSR compu-
tation for producing the text “Check the following conditions to ensure an optimum performance”.
The system generates an initial prediction. Then, the user validates a correct prefix (boldfaced)
and introduces an amendment (shown in ifalics). The system, taking into account this information,
generates a new prediction. The process is iterated until a correct, full sentence is achieved. In
the final result, the user only had to type the three characters shown in italics. A final acceptation
keystroke is also assumed. The KSR measure is obtained by dividing the number of user strokes
between the overall number of characters

Table 10.3 Character

prediction results (KSR in %) Corpus KSR WSR
corresponding to the Greedy
approach. The previously EUTRANS 14.1 50.9

reported WSR results for the
same corpora are also

included for informative XEROX 19.5 66.3
purposes

ALBAYZIN 13.3 53.6

situation where a user generates a whole text document in a desktop computer, it
is not clear which estimation is more reliable. If the system is planned to help a
user in how to write a document (that is, to suggest grammatical constructions, spe-
cific words, etc.), WSR seems quite adequate since words can be considered as the
minimum meaningful units in human language and, therefore, the effort should be
expressed in these terms. On the other hand, if ITG is to be used as an assistive tech-
nology in problematic environments, where the effort needed to merely do typing is
significant, then KSR is clearly the metric to be adopted. The results obtained so far
(on simple tasks) seem to suggest that, for the time being, ITG is only of moderate
help to solve the first situation. On the contrary, the KSR results indicate that ITG
turns out to be an interesting approach for constrained-typing situations.
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10.4 Conclusions

In this chapter, a different type of application derived of the Interactive Pattern
Recognition paradigm has been presented. The aim of this proposal is to provide
assistance in the generation of text documents. The main difference with respect to
other IPR applications is that no input pattern is available and the system only has
the user feedback to produce the predictions. This makes the process more difficult
in the sense that the possible set of adequate system outputs is less constrained than
in the applications described in previous chapters.

One of the main contribution of this chapter is the adoption of a different, sim-
pler, greedy search strategy which proves to be optimal to achieve the best possible
continuation to a text prefix.

The experiments performed show that this kind of approach can save a significant
amount of typing effort. This can be quite interesting when a user has to deal with
situations where typing is a burdensome process.
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This chapter presents search methods for image retrieval which are boosted using
the user’s supervision by means of the human—computer interaction methodology.
Two contributions are presented which cover different aspects of this problem.

The first one deals with classical relevance feedback, content-based image re-
trieval, but with a formulation directly derived from the IPR paradigm adopted
throughout this book. This formulation helps putting forward the improving role
of “consistency” among the retrieved images. The second contribution considers
the use of a complementary text-based “modality” to express the user relevance
feedback information, which leads to improved retrieval results.

11.1 Introduction

This chapter presents two different approaches which aim at improving the results
of the image retrieval problem by means of user interaction and multimodality. The
first one is a relevance feedback approach which relies on the user feedback and im-
age dissimilarities in order to provide better retrievals in an iterative way. It adopts
a probabilistic model of the interactive process which leads to an algorithm to max-
imize the relevance of the images retrieved. The second approach is based on user
relevance feedback as well, but we focus our attention on adding new modalities
to the retrieval mechanism. In particular, we propose a multimodal retrieval system
that uses both visual and textual features.

A H. Toselli et al., Multimodal Interactive Pattern Recognition and Applications, 209
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11.2 Relevance Feedback for Image Retrieval

In this section we propose a probabilistic model to handle user interaction in infor-
mation retrieval applications. User feedback in these applications usually consists
of hints about the relevance of the information retrieved by the system. The model
presented can be useful for general information retrieval systems but here we focus
on image retrieval. Image retrieval has been investigated since the 1980s and, in the
1990s, content-based image retrieval (CBIR) became an active area of research. In
CBIR, the objective is to find relevant images where the query is often described
by an example image of the type of images that the user is looking for. In practice,
CBIR is still far away from being a solved problem. One way to increase retrieval
performance is to capitalize on user feedback, i.e., a user starts his query with an
example image and is then presented with a set of hopefully relevant images; from
these images the user selects those images which are relevant and those which are
not (possibly leaving some images unmarked) and then the retrieval system refines
its results, hopefully leading to better results after each interaction step.

Related Work Relevance feedback has been studied in the field of image retrieval
and information retrieval nearly as long as the field of information retrieval ex-
ists [11]. An overview of the early related work on relevance feedback in image
retrieval is given in [20]. Most approaches use the marked images as individual
queries and combine the retrieved results. More recent approaches follow a query-
instance-based approach [5] or use support vector machines to learn a two-class
classifier [13]. In this work, we follow a probabilistic approach to model the rele-
vance of candidate image sets. This leads to a significant boost in performance and
also opens new ways to integrate consistency checks into the retrieval procedure.
Another related field of research is browsing of image and video databases. The
approach most closely related to the approach presented here is Bayesian brows-
ing [18]. The formulation presented here follows the concepts for interactive pattern
recognition first proposed in [19], which are developed in more detail in Chap. 1 of
this book. A previous version of this work was presented in [10].

11.2.1 Probabilistic Interaction Model

The proposed probabilistic model and a greedy algorithm to solve the resulting in-
teractive search problem are presented here. Notation, modeling and search are par-
ticularized for the image retrieval problem but they can be easily adapted to other
information retrieval tasks.

Let U be the universal set of images and let C C U be a fixed, finite collection
of images. We assume the user “has in mind” some relevant set of images R C U.
This set is unknown and the system’s objective is to discover n images of it, among
the images in C. The interactive retrieval process starts with a given query image,
q € U proposed by the user. Then the system provides an initial set X C C of n
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images that are “similar” to ¢g. These images are judged by the user who provides
a feedback by selecting which images are relevant (and, implicitly, which are not
relevant). Such feedback information is used by the system to obtain a new set of
images X and the process is repeated until the user is satisfied, which means that he
considers all images X to be relevant.

Following the framework stated in Chap. 1, at any step of this interactive process,
the history can be represented as a set H' € C™, where m > n is the number of im-
ages previously supervised by the user.! This set contains all the images that the user
has considered to be relevant in previous interaction steps and other images provided
by the system. In the current step, the (deterministic) feedback, f = d, provided by
the user, consists in marking as relevant some of the (previously unmarked) images
from H'.

To optimize the user experience, we propose to maximize the probability that the
images in X are relevant according to H’ and d; that is:

X =argmaxPr(X | g, H',d) (11.1)
XeCn
where we have ignored C since it is fixed for all the queries. Note that this equa-
tion is formally the same as the general equation (1.14) for interaction with explicit
history representation and deterministic feedback.
In the task here considered, the initial query image can be considered just as one
more image in the subset of relevant supervised images in H'. This way we can
write

X =argmaxPr(X | H', d). (11.2)
XeCn
That is, the interactive protocol in this task can be considered as an instance of
Eq. (1.37), called “Interaction without input data” in Sect. 1.4.1.

Now, let X’ = (H’, d) denote a “consolidated history”, consisting of m images
from which the subset Q™ C R (with ¢ € Q) is marked as relevant and the remain-
ing ones, O~ C C — R, are considered as non-relevant; thatis, X' = (QT U Q™) €
C™. According to Eq. (11.2), the images in the system hypothesis, X, should be
“similar” to the images in Q" (and may also be similar among each other) and
“different” from images in Q. Using this notation, applying the Bayes’ rule and
dropping terms which do not depend on the optimization variable, X, Eq. (11.2)
becomes

X = argmaxPr(X’ | X) - Pr(X). (11.3)
XeCn

For the first term of Eq. (11.3) we can use a model directly based on image
distances:

Pr(X’' | X) o ]_[ P(X'|x) (11.4)

xeX

1Since H' can be the result of several interaction steps, the total number of supervised images, m,
can be greater than the number of images retrieved in each interaction step, n.
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where each term in the product? is a smooth version of the classical class-conditional
probability estimate based on nearest neighbors [2] using a suitable image distance
d('s )

quQ+ d(q’ x)_l
Y exrdlg )™

Note that we use a product to combine probabilities in Eq. (11.4). This enables using
the greedy search strategy proposed in Sect. 11.2.2 to find approximate solutions to
Eq. (11.3).

For the second term of Eq. (11.3), we assume that the prior probability of a set X
should be high if it is “consistent”; that is, if all its images are similar among them.
Applying the chain rule, we obtain

P(X'|x)= (11.5)

Pr(X) =Pr(x1,x2,...,x,)
= Pr(xy) Pr(xz | x1), ..., Pr(x, [ x1 - xp-1). (11.6)

As before, each term of this product can be adequately modeled in terms of image
distances:

Pxy---xi)
Pr(x; | X1+ Xi—1) o (11.7)
where
1 i i
P(xl-nx,-):l_(i_l)z Z d(x;,x)~" (11.8)
j=1k#j,k=1

Intuitively, Egs. (11.5) and (11.7), respectively, measure relevancy and consis-
tency of images in X. Therefore, in practice, it is convenient to balance the impor-
tance of both factors by means of a parameter «, where o = 1 denotes that no con-
sistency information is used and o = 0 denotes that only consistency information is
considered. Taking this into account, Eq. (11.3) can be expanded as

n l—a

N P e X

X%argmaxP(X’|x1)P(x1)l_[P(X/|x,~)°’<M) . (119
XeCn iz2 P()C] "'xl'*l)

In the following sections we describe an efficient procedure to find an approximately
optimal set of images X.

2We recall that only the notation Pr() stands for true probabilities; here we abuse the notation by
letting P () denote arbitrary functions used as models.



11.2  Relevance Feedback for Image Retrieval 213

X = GARF(C, 0", 07) {
for each x € Cy/ {V = P(X' | x)}
B =select(V,t); max = —o0
for each x € B {
Xr41 = X3 S = {xr+l}
fori=r+2,...,n{
x; =argmax,cg_g P(X" | x)%(
S=SU{x;}
1
se=P(X" | xr) [Tioy i POX' | x0)* (priicsletilyla

Pxpqr..xi—1)

P(xp41,-00Xi—1,X) )1701
P(Xr41seXi—1)

if (sc > max) {
max = sc; SBest=S
}
}
X = 0% U SBest
return X

Fig. 11.1 GARF: Greedy approximative algorithm to determine the most relevant and consistent
images. The value of ¢ has to be tuned empirically

11.2.2 Greedy Approximation Relevance Feedback Algorithm

Let Cxr = C — X’ be the set of the images in the collection that have not been
retrieved. In the following notation, m, r and 7 are the sizes of X', Ot and 0,
respectively. We propose an algorithm to approximate the maximization presented
in Eq. (11.9). This algorithm works as follows. First of all the r images in Q" are
selected as the first r images in X. The remaining n — r images are to be selected
from the set Cy since the images in @+ and Q™ have just been supervised by the
user. This entails a slight modification of the maximization in Eq. (11.9):

P(xy---xi) >1a
P(xy - xi—1) '

(11.10)
We assume that Pr(x) follows an uniform distribution, so the term P (x, 1) is con-
stant in the maximization process and can be dropped. To solve the maximization,
the t-best images, t > (n — r), with the highest values of P(X’ | x;) are determined.
We refer to this set as 3. Each image that belongs to B is tentatively hypothesized
to be the first image, x,41. Subsequently, the following images can be determined
by greedy maximization of the index Eq. (11.10), using the GARF algorithm shown
in Fig. 11.1.

n
X~ Q" U argmax P(X' [ x4 )PGopn) [] P(X/|x,~)°‘<
XeCy" i=r+2
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X = GARFs(C, 0%, 07) {
for each x € Cy {V = P(X' | x)}
B =select(V,n —r)
X=0"UB
return X

Fig. 11.2 GARFs: Simplified GARF algorithm not considering image consistency

11.2.3 A Simplified Version of GARF

If « = 1, image consistency is not taken into account and thus the expression to
maximize becomes

n
X = 01 Uargmax ]_[ P(X' | xi), (11.11)
XeCy" i=r+1

which further simplifies the procedure. To maximize this expression, only those
images with maximum values for P (X’ | x;) have to be chosen, yielding the GARFs
algorithm shown in Fig. 11.2.

Due to this simplification, GARFs is no longer an approximation, but an exact so-
lution to Eq. (11.11) instead. We prefer to refer to this algorithm as GARFs because
it can be considered as a simplified version of GARF. The computational complex-
ity of GARFs is the same as the relevance feedback baseline methods presented in
Sect. 11.2.6.

11.2.4 Experiments

The proposed algorithm is evaluated using a well known data set, Corel/Wang. For
the sake of experimental clarity and reproducibility, in all the experiments, relevance
feedback was simulated, i.e. no real users were involved. Nevertheless the methods
proposed here can directly be used with any user interface that allows users to mark
images as relevant and/or non-relevant in interactive retrieval processes such as that
described in Chap. 12, or those presented in [8, 12].

WANG Database It consists of a subset of 1000 images of the Corel stock photo
database which have been manually selected and which form 10 classes of 100
images each. Example images are shown in Fig. 11.3a. The WANG database can be
considered similar to common stock photo retrieval tasks with several images from
each category and a potential user having an image from a particular category and
looking for similar images which have cheaper royalties or which have not been
used by other media. The 10 classes are used for user relevance simulation: given
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Fig. 11.3 Example images from the WANG database

a query image, it is assumed that the user is searching for images from the same
class. Therefore, to specify the ground truth, the remaining 99 images from the same
class are considered relevant and the images from all other classes are considered
irrelevant.

11.2.5 Image Feature Extraction

For our experiments, we choose to represent our images using color histograms and
Tamura texture histograms. Although there are image descriptors that perform far
better for special applications, it was recently shown that these features are a very
reasonable baseline for general image databases [1]. Furthermore, the probabilistic
model for relevance feedback investigated here can be applied on top of any image
descriptor that allows for distance calculation between images. In the following, we
describe how these features are compared and obtained.

To compare the histograms, we use the L; distance, which was shown to be
identical to histogram intersection if the histograms share the same bins,

1
d(h,h’):Zm,- —h, (11.12)

i=1

where 4 and i’ are two histograms to be compared and /; and % are the ith bins.

Color Histograms Color histograms are among the most basic approaches and
widely used in image retrieval [4, 14, 16]. To show performance improvements in
image retrieval, systems using only color histograms are often used as a baseline.
The color space is partitioned and for each partition the pixels with a color within
its range are counted, resulting in a representation of the relative frequencies of
the occurring colors. We use the RGB color space for the histograms, and split
each dimension into eight bins leading to an 8 = 512 dimensional histogram. We
observed only minor differences with other color spaces, which was also observed
in [15].
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Tamura Features In [17] the authors propose six texture features corresponding
to human visual perception: coarseness, contrast, directionality, line-likeness, reg-
ularity, and roughness. From experiments testing the significance of these features
with respect to human perception, it was concluded that the first three features are
very important. Thus, in our experiments we use coarseness, contrast, and direction-
ality, calculate each of these values in a neighborhood for each pixel, quantize each
of these values into eight discrete values and create a 512-dimensional joint his-
togram for each image. In the QBIC system [4] histograms of these features were
used as well.

11.2.6 Baseline Methods

The proposed approach is compared with some baseline methods:

Simple Method The simple method is accomplished by performing the next
search of n — r images among the set of images in Cx, keeping the relevant images,
and performing the next search exactly equal as the initial one but over this reduced
collection Cx-.

Relevance Score Relevance score (R) was proposed by [5], and has been inspired
by the nearest neighbor classification method. Instead of only finding the best match
for each query image among the database images, for each database image only the
best matching query image is considered among the positive and negative query
images. The ratio between the nearest relevant and the nearest non-relevant image
is considered for ranking the images. In [5], R is computed as

+ _ ming, o+ d(x,q+) -1
R(x, Q ,Q_)—(1+minqu_d(x’q_) (11.13)

and then images are ranked such that the images with smallest relevance score are
presented first.

Rocchio Relevance Feedback Rocchio’s method for relevance feedback [11] can
be considered a de facto standard in textual information retrieval. In CBIR, it has
been investigated in the context of the GIFT system [9]. In Rocchio relevance feed-
back, the individual query documents are combined into a single query according
to

G=q+wy- Y qr-w_- Y q-. (11.14)
q+€0* q-€0~

where ¢ is the new query, ¢ is the query from the last feedback iteration and w4
and w_ are weighting factors to determine the influence of relevance feedback;
commonly the parameters are chosen wy = |QF|~!, w_ =0~ |71
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Table 11.1 Precision (in %) for successive interaction steps, using different methods on the
WANG database

Method I I I3 Iy Is

Simple 73.6 83.2 88.0 91.0 92.9
Rocchio 73.6 92.7 97.3 99.2 99.8
RS 73.6 92.2 97.8 99.5 99.9
GARFs 73.6 94.5 98.9 99.9 99.9

Fig. 11.4 Results using T T T T
GARF on the WANG
database for different values
of @ and ¢
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Once ¢ is determined it is used to query the database and find the most similar
images.

In all the experiments, we set the number of images to be retrieved to n = 20 and
the query image is always contained in set of retrieved images. Up to four feedback
iteration steps were performed. The precision was measured for each iteration step
obtaining five values for each method Iy, ..., Is. The precision is the ratio of the
relevant images among the n retrieved ones and is given in percent.

For the evaluation of the different relevance feedback methods on this database
a Leaving-One-Out approach has been followed. Every image is used as query and
the rest of the images are used as reference set C.

The results for the database are shown in Table 11.1. The simplified version of
GARF obtains the best results. It is worth to mention that the user is interested
to obtain high precision values for the first feedback iterations, and, in this case,
GAREFs is the best method.

Figure 11.4 shows the results of the GARF algorithm for the first feedback iter-
ation (/) with varying o-parameter and the size of the set 3. The o parameter is
varied from 0 (no consistency information considered, simplified GARF) to 1 (only
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consistency information considered). The size of the set 3, the ¢-parameter, is given
relatively to the number of relevant images still needed, n — r. The results obtained
for t = 100% does not vary with respect to « because this value means that B has
only n — r images. The highest precision for the first feedback iteration is 94.62 and
is obtained using GARF with « = 0.3 and r = 130%.

11.2.7 Discussion

In this subsection a novel probabilistic model for relevance feedback in image re-
trieval has been described. In contrast with other approaches, we incorporate con-
sistency among the retrieved images in a probabilistic sound way. A simpler model
which does not take into account such consistency is also proposed.

The results obtained by this simplified version are already clearly better than
the results obtained by the state-of-the-art techniques tested. On the other hand the
incorporation of the consistency model can increase the performance of the retrieval
system even further. The improvements contributed by this consistency model have
shown to be effective mainly when the classes of the images are consistent enough
under an appearance point of view.

While these improvements are really marginal, they show that the novel approach
to information retrieval proposed here provides a suitable framework to develop new
techniques that better take advantage of all the information sources available.

11.3 Multimodal Relevance Feedback

Many research systems for web image retrieval use interactive relevance feedback
techniques to integrate keywords and visual features. They require the users to spec-
ify the textual/visual combination and thus add heavy burden to the users. Therefore,
an approach that can improve the retrieval accuracy of a search engine with less user
involvement is valuable [6].

One of the most interesting issues in multimedia information retrieval is to use
different modalities (e.g. text, image) in a cooperative way. The fusion between
several methods usually leads to better results in precision. Some queries may be
solved by just using visual information. If for example we think about “tigers”, the
visual part is really important and therefore the visual retrieval technique will per-
form much better. In other cases, visual information may not help at all but possibly
available textual annotations may help solving the problem. In many other cases an
adequate fusion between these two extremes can lead to a higher precision. More-
over, visual and textual information are usually “orthogonal”. When the tagging is
unsupervised, as in the present work, visual features make it easy to find similar
looking images. On the other hand, with textual information we are able to find “se-
mantically” similar images, but in order to find this similarity it is important to have
clean and complete annotations for all the images.
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Fig. 11.5 A Relevance Based Image Retrieval prototype using “fusion by refining”, with several
images selected as relevant

A recent tendency to fuse visual and textual features has been observed in differ-
ent evaluation tracks such as TRECVID and ImageCLEF, with the belief that these
sources of information more than competing are complementary, and that the actual
problem may be reduced to finding a way of adequately fusing them. This kind of
fusion is a sort of multimodal information retrieval, and it can be performed either
as early or late fusion. Research on these two directions has already been developed,
but current performance of these methods remains poor, showing the need of fur-
ther research to find better fusion alternatives and to select better individual relevant
models.

11.3.1 Fusion by Refining

The first approach is really obvious (see Fig. 11.5). The user introduces a text query
in the web browser. Images have small captions or annotations, therefore the sys-
tem searches for those images that textually correspond with the query. Then the
system provides the user with visual examples and the user selects those images he
considers relevant. This can be considered a simple case of multimodal interaction,
since text information is used in the first iteration and then for the next iterations
only visual information is needed. This is called “fusion by refining”, since textual
information is only used to provide a rough set of pictures, which are later refined
using only visual techniques.

11.3.2 Early Fusion

It is a supervised learning process where images are trained manually and classified
into different classes (Fig. 11.6). This type of fusion is commonly used in automatic
annotation problems. It consists in linking image features with semantic concepts.
After each image is selected into a class, a binary classifier is trained to detect the
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class. When a new image comes, the visual similarity to each class is computed.
More or less, early fusion tries to discover the statistical dependencies between vi-
sual features and semantic concepts using unsupervised learning methods. Early
fusion is difficult due to several reasons.

(1) The annotations of the images often contain keywords that are not strongly as-
sociated with particular visual features. They correspond to abstract concepts.
Examples of such keywords are “friendship”, “north” or “tournament”.

(2) Even if there are some relationships between keywords and visual features,
these relationships may be difficult to extract because there is a huge amount
of possible visual features. In fact, visual features are continuous. Even if we
use discretization techniques, the number is still too high to allow for associat-
ing features to some keywords. For example, for a set of images associated with
the keyword “water”, one would expect to extract strong relationships between
the keyword and the texture or color. However, water in many images may only
take a small portion or region of the image. There may be many other objects in
the image making it really difficult to isolate the typical features of “water”.

11.3.3 Late Fusion

Late fusion is the approach chosen here. This is motivated by the hypothesis that
two images with a very strong visual similarity should share some common seman-
tics [7]. Late fusion of independent retrieval methods is the simpler approach and it
is widely used for combining visual and textual information for the search process.
Usually each retrieval method is based on a single modality, or even, when sev-
eral methods are considered per modality, all of them use the same information for
indexing/querying (see Fig. 11.7). The latter reduces the diversity and complemen-
tariness of documents considered for the fusion and, as a consequence, the perfor-
mance of the fusion approach tends to be poor [3]. In multimodal image retrieval,
the sources of information are visual features extracted from the image and tex-
tual features in the form of associated captions. These sources of information have
been mostly used individually and separately. In many tasks, with relatively clean
figure captions, textual features have proved to be more effective than their visual
counterparts. However, a problem generally found in both cases is the lack of gen-
eralization, which makes systems fail with varied sets of queries. A more specific
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Fig. 11.7 Graphical General Diagram showing Late Fusion for heterogeneous methods. The out-
put is combined for obtaining a single list of ranked documents
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Fig. 11.8 Visual and textual late fussion

diagram showing this behavior for only visual and textual retrieval engines can be
seen in Fig. 11.8.

For each query g, the N different retrieval methods work separately. This results
in a set of N ranked list of documents or images. The information of the N ranked
lists is used to obtain a single list of ranked documents, which is returned to the
user in response the query ¢. The final list is obtained by assigning a score to each
document appearing in at least one of the N lists. A high score indicates that the
document is more likely to be relevant to query g. Documents are sorted in decreas-
ing order of their score and the top k documents are considered for the final list of
ranked documents.

In this work we consider a simple (yet very effective) score based on a weighted
linear combination of the documents rank through the different lists. The proposed
score takes into account redundancy of documents and the individual performance
of each retrieval method. Diversity and complementariness are brought to play by
the heterogeneousness of the considered independent retrieval methods (IRMs),
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Fig. 11.9 Example of late
fusion ranking algorithm
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while redundancy is considered through the use of several IRMs per modality. Given
a document (image plus text) x and N lists L;, 1 <i < N, a score S(x) is computed
as follows:
N
Sy =|{i:xeL}]- Y

i=1

% (11.15)
R (x 5 Ll‘)
where R(x, H) is the position of document x in the ranked list H and «;, with
Z,](vz 1 o = 1, is the importance weighting for the ith IRM, which can be determined
using prior knowledge. Documents appearing in several lists at the top positions will
receive a higher score, while documents appearing in few lists or appearing at the
bottom positions most of the times will be scored low.

If only two IRMs (visual an textual) are considered, a simpler linear combination
can be used:

R(x) = aRy(x) + (1 — )R, (x) (11.16)

where R(x) is the combined rank of x, « is the (now single) importance weight and
Ry(x) = R(x, Ly), R;/(x) = R(x, L;) are the visual and textual rankings, respec-
tively.

Figure 11.9 illustrate these ideas. This is a simple and intuitive way of merging
the output of IRMs which has proved to be quite useful in practice.

11.3.4 Proposed Approach: Dynamic Linear Fusion

At a given point, the visual and text retrieval engines have to cooperate in order to
obtain a higher precision. But there is a main problem when using late fusion, the
« value in the previous equation has to be fixed for each considered task. However,
for a given task, no unique value of o may exist that is adequate for all the types
of queries expected in this task. Mostly visual queries may need high values, while
other queries, mostly textual, may need very low values. To deal with this dynami-
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cally variable weighting, we propose solving this maximization problem:

&=argmax Y > R(y)—R(x)

xeQtyeQ~
=argmax » Y a(Ry(y) = Ry(x) + (1 —a)(Ri(y) — Ri(x))
* xeQtyeo-
(11.17)

where R(), R,() and R;() are as in Eq. (11.16), and Q" and Q™ are the sets of
relevant and non-relevant images, respectively, at the present step of the interaction
process.

At each interaction step, the system proposes a set of images which the user
marks as relevant or non-relevant. Without further disturbing the user, the weighting
is updated on the base of the user’s intention, determined by the images marked so
far in the present query.

Intuitively speaking, the above equation searches for a best area under the ROC
curve which would make the difference between the non-relevant images and the
relevant images very high by globally ranking them as far as possible.

11.3.5 Experiments

To simulate the users’ relevance feedback a set of 21 (text) queries was considered.
For each of these queries, 200 images were crawled from the web using a public
search engine and each image was manually taged as really relevant or not relevant

T
,bmﬁ"# - A
v W © >
Banana Baseballl Baseball2 Bikel Bike2 Bird Carl
32 25 19 13 36 9 36

Tiger2 Tiger3 Volcano
26 26 16 9 25

Fig. 11.10 Examples of relevant images (and total number of relevants) for each of the 21 in-
spected queries
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Table 11.2 Queries and their descriptions as they appear in the test corpus

Query Description

Banana Real yellow bananas. Cartoon or drawn bananas are considered not relevant
Baseballl Baseball balls
Baseball2 Baseball players in the baseball pitch

Bikel Catalog motorbikes but not only with white background

Bike2 Catalog bicycles. People can appear but the bike appears completely
Bird Birds flying

Carl Real cars with no people or other cars around. Car appears completely
Car2 Car engines

Corn Corn pictures with no human hands

Cow Real cow on mountain, land or grass

Gun Catalog guns with white background

Hat People wearing hat and looking at the camera. Hats by themselves are not relevant
Horn Trumpets

Lake Panoramic landscape pictures with or without houses around the lakes
Rain Pictures where one can appreciate rain falling

Snake Not only snake heads but also some body must appear in the picture
Team Group of people

Tigerl Full body real tigers

Tiger2 Tiger Woods by himself. Either playing golf or not, but alone

Tiger3 Tiger sneakers or shoes

Volcano With lava or fire around

for the corresponding query. A brief description of each query is given in Table 11.2
and image examples are shown in Fig. 11.10.

Given an image collection and the description of each image, we know which
image is relevant or irrelevant to each query. This way the user feedback can be
simulated automatically. In the experiments we simulate a user who wants N images
to be seen at a time. In each iteration he would see N images and judge which are
relevant or not according to the criteria specified for each query. Results reported
below correspond to N = 10.

Figure 11.11 (left) shows evolution of the accuracy with the successive inter-
action steps for the best o in comparison with both pure text and visual retrieval,
which was expected to perform worse than the average best percentage for each
query. (We do not have all the relevant images of a concept; we only know the rele-
vant and non-relevant images for an interaction step.) After one interaction step, the
dynamic linear fusion approach proposed here performs better on the average than
both modalities involved. Obviously it falls below best linear combination for each
concept, which is just un upper bound.

It can be observed in Fig. 11.11 (right) that the system quickly gains accuracy
with the progression of the user interaction steps. That is, the more information the
system has about what the user considered relevant (and non-relevant) in previous
steps, the better it can predict the best « for the current step. In the first step, there is
a clearly ascendant slope toward the visual strategy, achieving high precision when
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Fig. 11.11 RISE evaluation test results, for N = 10 images to be seen at a time. Left: Comparison
of image retrieval techniques. Right: Precision as a function of «, for several feedback iteration
steps

full visual search is used. However, in the following iterations the best precision
is not obtained on the extremes, which shows the importance of having a dynamic
user/query-adaptative o to achieve always the best precision.

An important fact about this o parameter is that it has no memory. The user can
change her mind while looking at a query or concept. The user can start looking at
“apples”, choosing real, eatable apples. Then maybe she starts selecting as relevant
the company “Apple”. So, the user can change the value of & and the system will be
tuned for her needs. This allows for much more flexibility in the relevance of results
for the user.

11.3.6 Discussion

In this subsection we have considered several approaches for Relevance-based Im-
age Retrieval. The first one, late fusion, mixes the visual ranking and the text rank-
ing depending on a « value. This is a fixed value we need to know before using
the method. Some experiments were done to prove that depending on the type of
the query a different « is needed. If we took the best possible « for each query, we
would have a much more precise system. This led us to propose the dynamic linear
fusion. It learns from the user intentions the type of query the user is searching for
and automatically computes an optimal « at each interaction step. The experimental
results show that this dynamic value performs much better than each of the retrieval
engines separately.
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This chapter presents several full working prototypes and demonstrators of multi-
modal interactive pattern recognition applications. These systems serve as validating
examples of the approaches that have been proposed and described throughout this
book. Among other interesting things, they are designed to enable a true human—
computer interaction on selected tasks.

To begin, we shall expound the different protocols that were tested, namely
Passive Left-to-Right, Passive Desultory, and Active. The overview of each demon-
strator is sufficiently detailed to give the reader an overview of the underlying tech-
nologies. The prototypes covered in this chapter are related to transcription of text
images (IHT, GIDOC), machine translation (IMT), speech transcription (IST), text
generation (ITG), and image retrieval (RISE). Additionally, most of these proto-
types shall present evaluation measures about the amount of user effort reduction at
the end of the process. Finally, some of such demonstrators come with web-based
versions, whose addresses are included to allow the reader to test and practice with
the different implemented applications.

A H. Toselli et al., Multimodal Interactive Pattern Recognition and Applications, 227
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228 12 Prototypes and Demonstrators
12.1 Introduction

Throughout this book, the multimodal interactive—predictive paradigm to pattern
recognition (MIPR) has been theoretically studied. The proposed paradigm has
been empirically validated on controlled laboratory experiments with computer-
simulated users. Although this set-up provides a reasonable framework for research,
it is relatively optimistic regarding user interaction when dealing with real applica-
tions.

In this chapter we present some implementations of prototypes for several MIPR
tasks. They all entail a multimodal, interactive strategy, and they all fully integrate
the user’s knowledge into the Pattern Recognition (PR) process. These demo sys-
tems seek two goals: (1) allow potential users to have a quick view into the MIPR
technologies, and (2) facilitate data acquisition to study real user interaction for
evaluation purposes in a more realistic scenario. As we will expound in the next sec-
tions, the use of these prototypes may entail a drastic reduction of user effort with-
out sacrificing usability—quite the opposite, since, as stated before, the Human—
Computer Interaction (HCI) paradigm is considered the main actor in front of a PR
scenario.

The organization of each section in this chapter is as follows. After a brief in-
troduction, a description of the prototype’s demonstration is presented. In each de-
scription, a user interaction protocol is both established and itemized. Then a section
about the technologies involved in the creation of the prototype is introduced. Fi-
nally, a discussion about both the evaluation of the prototype (if available) and the
main achieved results are delineated. In all user evaluations, there is a noticeable
improvement over the traditional PR approaches. Thus, as commented in this chap-
ter’s preface, these demos serve as validating examples of the MIPR framework
proposed and described throughout this book. User’s feedback directly allows us
to improve system accuracy, while multimodality increases system ergonomy and
user acceptability. Multimodal interaction is approached in such a way that both the
main and the feedback data streams help each other to optimize overall performance
and usability. The prototypes presented below can be classified on the basis of the
interaction protocols described in Sect. 1.4. Now we briefly introduce an outline of
each prototype based on the above-mentioned schema.

12.1.1 Passive, Left-to-Right Protocol

The prototypes classified under this interaction protocol fulfill two requirements.
On the one hand, this being a passive protocol, they are directed toward a full super-
vision, where a ‘perfect’ (high-quality) result is needed. On the other hand, in this
interaction protocol a left-to-right order in the output constituents is assumed, which
makes such protocol appropriate for human language processing tasks (notice that a
right-to-left protocol is also perfectly applicable for those languages that require so,
e.g., arabic or persian).
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The passive, left-to-right protocol is defined by the next procedure: First, the
system proposes a fully automatic output. Then, the user validates the longest prefix
of the output which is error-free by entering some amendment keystrokes to correct
the first error in the suffix. If the prototype supports multimodality, the interaction
can be performed by different kinds of feedback channel, such as touchscreen pen
strokes and/or other possible interaction modalities such as speech input. The system
then suggests a suitable, new extended consolidated prefix based on the previous
validated prefix, the multimodality decoding, and the keystroke amendments. These
steps are repeated until the user is satisfied with the system’s output.

The series of prototypes for natural language processing tasks that have been
implemented following this protocol are introduced now.

Multimodal Interactive Handwritten Transcription (MM-IHT) Given a text image
which corresponds to a line of a digitized handwritten document, the user tran-
scribes the text in the image with the help of the system. Multimodality can be
achieved by entering some pen strokes to amend the first error in the suffix.

Interactive Speech Transcription (IST) The user transcribes speech utterances from
parliamentary proceedings, public speeches, video lectures, etc. Corrections are
made by using the mouse and the keyboard.

Interactive Machine Translation (IMT) A document in a source language is loaded
into the system. The application splits the document into sentences, which are then
translated into a target language by using the keyboard, the mouse, and/or pen
strokes.

Interactive Text Generation (ITG) The system works by predicting what the user
is going to type based on the topic of the document, the context, and previously
typed documents from the same user. Several input modalities can be used in order
to adapt the system to different scenarios and/or user preferences.

Multimodal Interactive Parsing (MM-IP) The user generates interactively a syntac-
tic analysis for an input sentence. One can perform modifications to the presented
tree, using either the keyboard, the mouse, or other advanced input modalities.

As we shall see, most of these prototypes are built with the same communication
toolkit [1], which offers an Application Programming Interface (API) that allows
a TCP socket connection between client(s) and PR engine(s). Using sockets has
several advantages over other communication channels. On the one hand it allows
much faster message exchanging and lower latency responses. On the other hand,
a multiuser environment can be easily implemented, so that several user across the
globe can work concurrently on the same task. In addition, the web server and the
PR engine do not need to be physically at the same place. Therefore, a dedicated
PR engine can be run per task to deal with high CPU demanding corpora, or several
web servers can be set up with the same task to serve an increasing amount of users.

Three basic functions summarize the above-mentioned API:

e set_source: selects the source phrase to be transcribed.
e set_prefix: sets the longest error-free prefix and amends the first error with
keyboard strokes.
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Fig. 12.1 Diagram of (common) system architecture for passive, left-to-right prototypes

e set_prefix online: sets the longest error-free prefix and amends the first
error with pen strokes.

Additionally, such prototypes share a common architecture, which is schematized
in Fig. 12.1. The online form of such an architecture allows to carry out collabora-
tive tasks with thousands of users across the globe, thus notably reducing the overall
PR process. Since the users operate within a web browser window, the system also
provides cross-platform compatibility and requires no disk space on the client ma-
chine.

12.1.2 Passive, Desultory Protocol

Like the previous protocol, here, the user is expected to supervise the whole system’s
output to achieve a high-quality result. However, in this case the user can perform
the amendments in a desultory order. This is especially useful when the elements of
the output do not have a particular order or hierarchy between them.

Many different scenarios can fall under this category. However, in this book we
analyze the case of information retrieval where the user types a natural language de-
scription of an object she is looking for. The system outputs a set of objects matching
this description so the user can select which ones fit her needs and which do not.
The system, then, implicitly rejects the objects with negative feedback and tries to
fill the set with new objects taking into account the user preferences from the previ-
ous iterations. The procedure stops when the user chooses not to reject any further
object from the set. The goal is to obtain such a set in the minimum number of
interactions.

Relevant Image Search Engine (RISE) The user looks for images that can be de-
scribed by a sentence in natural language. She selects the images she likes and
asks for more images, until she decides that the retrieved results are good enough.
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12.1.3 Active Protocol

Contrarily to passive protocols, active protocols are not oriented toward a perfect
solution but a trade-off between effort and output quality. In this scenario, the sys-
tem typically selects actively a part of the solution for which it has a low confidence,
and asks the user for the correct solution. The procedure stops when a certain com-
promise between user effort and recognition rate has been achieved. Note that in
this protocol the order of the output constituent is not specially relevant, since the
whole output does not need to be supervised by the user. Instead, it is the system
that decides the parts to be corrected and the order in which they are presented to
the user.

GIMP-based Interactive Document Transcription (GIDOC) This system provides
a user-friendly, integrated support for interactive-predictive layout analysis, line
detection and handwriting transcription. GIDOC is designed to work with large
collections of homogeneous documents (i.e. similar structure and writing styles).
The system pursues a similar goal to MM-IHT. However, in this case the doc-
uments are transcribed by partially supervising system hypotheses. Furthermore,
statistical models are constantly being updated with an increasing number of avail-
able annotated documents.

12.1.4 Prototype Evaluation

It is worth mentioning that the cost of a formal field study of this kind of systems
is exceedingly high, since it typically involves expensive work by a panel of experts
(for instance, qualified paleographers, professional translators, or trained computa-
tional linguists). For that reason, we decided to start doing a preliminary exploration,
recruiting regular computer users instead. By now, the IHT prototype is the only
demonstrator that has been formally evaluated, since it was the most advanced over-
all. However, we plan to do so with all prototypes in a near future. We encourage
the reader to try the freely available demos and draw their own conclusions.

12.2 MM-IHT: Multimodal Interactive Handwritten
Transcription

Transcribing handwritten text is a laborious task which, in general, is currently car-
ried out manually. As the accuracy of automatic handwritten text recognizers im-
proves, post-editing the output of these recognizers is foreseen as a possible alterna-
tive. However, given the high error rates of current approaches, post-editing is usu-
ally both inefficient and uncomfortable for the users. As alternative, an interactive-
predictive paradigm has gained an increasing popularity due to promising empirical
results that estimated considerable reductions of user effort.
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In this section we introduce a web-based demonstrator of the interactive multi-
modal approach presented in Chap. 3. This new multimodal interactive approach for
handwritten transcription, also known as MM-CATTI, MM-IHT, or simply IHT for
short, is shown to work quite well by an implemented web-based demonstrator. The
reader can access the online demo at http://cat.iti.upv.es/iht/.

12.2.1 Prototype Description

In this prototype [22] the server—engine communication is made through binary
sockets [1]. A web application loads initially an index of all available pages in the
document to be transcribed (Fig. 12.3). The user then navigates to a page and begins
to transcribe the handwritten text images line by line (Fig. 12.5). She can make
corrections with any kind of pointing device (e.g. touchscreen or stylus), and also
she can use the keyboard. If pen strokes are available, the IHT engine uses an on-line
HTR feedback subsystem to decode them. Finally, taking into account the decoded
word and the off-line models, the engine responds with a suitable continuation to
the prefix validated by the user.

On the other hand, keystrokes data directly interact with the aforementioned IHT
engine. All corrections are stored in plain text logs on the server, so the user can
retake them in any moment. Other client—server communications, such as managing
logs or loading the sockets interface, are made via AJAX (Asynchronous JavaScript
And XML), thus providing a richer interactive experience.

User Interaction Protocol

In the MM-IHT web-based demonstrator, the user is tightly involved with the tran-
scription process, where following a preset protocol, she validates and/or corrects
the HTR output during the process. Such a protocol, which rules this interaction
process, is formulated in the following steps:

e The IHT engine proposes a full transcription of the input handwritten text line
image.

e The user validates the longest prefix of the transcription which is error-free and
enters some on-line touchscreen pen-strokes and/or some amendment keystrokes
to correct the first error in the suffix.

e If pen strokes were available, an on-line HTR feedback subsystem is used to
decode this input.

e In this way, a new extended consolidated prefix is produced based on the previous
validated prefix, the on-line decoded word and the keystroke amendments. Using
this new prefix, the IHT engine suggests a suitable continuation of it.

e These previous steps are iterated until a final, perfect transcription is produced.
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Fig. 12.2 An example of pen strokes-related operations in the MM-IHT prototype

The interaction between the user and the system is not only limited to write the
full correct word, but other different operations can be carried out using both pen-
strokes and/or keystrokes. The types of operations that can be carried out are the
following.

Substitute The first erroneous word is substituted by the correct word. The validated
prefix consists of all the words preceding the substituted word and the new correct
word.

Delete The incorrect word is deleted. The validated prefix consists of all the words
preceding the deleted word plus the word that follows the deleted word.

Reject All the words that precede the incorrect word constitute the validated prefix.
The system proposes a new suffix where the first word is different to the incorrect
word.

Insert A new word is inserted. The validated prefix are all the word precedent the
inserted word, the inserted word and the word that follows the inserted word.

Accept The proposed transcription is fully validated.

In Fig. 12.2 one can see different interaction modes making use of pen-strokes.
The user can write down the correct word directly, make a diagonal line to delete an
erroneous word, make a vertical line followed by a word for inserting that word, or
make a single click to ask for another suitable suffix continuation [20].

12.2.2 Technology

IHT Engine

The IHT engine combines all the information received from the client and compute
a suitable solution. It follows the approach presented in Chap. 3, where both online
and offline HTR systems are based on HMMs and n-gram language models.

The offline system is implemented using word-graphs. These word-graphs are a
pruned version of the Viterbi search trellis obtained when transcribing the whole
image sentence. In order to make the system able to interact with the user in a time-
efficient way, they are computed beforehand.
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Fig. 12.3 Once a corpus is selected on the IHT index (a), a thumbnail for each page of the docu-
ment is presented to the user (b)

Once the user selects the line to transcribe, the client application send to the
IHT engine the set_source message. The IHT engine loads the word-graph cor-
responding to the selected line and proposes a full transcription as explained in
Sect. 2.2 of Chap. 2.

When the user makes some correction, if pen strokes are available, the IHT en-
gine uses an on-line HTR feedback subsystem to decode them. After preprocessing
and extracting the features, as is explained in Sect. 3.5.2, the pen strokes are decoded
following the last scenario presented in Chap. 3, taking into account information de-
rived from the validated prefix and the previous suffix as shown in Eq. (3.13).

Once the pen strokes have been decoded, a new prefix can be generated taking
into account the validated prefix, the new decoded word and the operation that the
user has carried out (substitution, deletion, insertion, etc.). Then, this new prefix
is parsed in the off-line word-graph, and a suitable continuation is provided fol-
lowing techniques described in Chap. 3. It could happen that the prefix was not
in the word-graphs, so, the error correcting parsing explained in Sect. 3.2.2 is ap-
plied.

Web Interface

The Web Interface is responsible for showing the user interface and capturing the
user actions on the different modalities of interaction, i.e, keyboard and pen strokes.
On the main page (Fig. 12.3a) of the demonstrator the user must choose one of the
available documents to transcribe by clicking on the “transcribe” button. Also, by
clicking on “use custom server?” link, the user can specify a custom IHT engine
while her session is active.

Once the user has selected the document to transcribe, an index of all pages in
the corpus appears, allowing the user to navigate to any page. In Fig. 12.3b we can
see different pages from the IAMDB modern English corpus and from the Spanish
19th century handwritten document “Cristo Salvador”.
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Fig. 12.4 Corpora examples for the IHT prototype
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Fig. 12.5 Screenshot (detail) of two feedback modalities: keyboard input and e-pen

To begin with, once the user selects a thumbnail page from the index, the full page
is loaded (Fig. 12.4). The center block is the page to transcribe itself. The tidy menu
at the right side is a pagination item, to allow the user browsing all pages quickly.
There is a page slider to allow a visual pagination of the selected corpus, and also a
bottom menu intended to help the user with common tasks (such as closing session,
changing the corpus, or displaying application shortcuts).

Then, the user can select a line from the current page by clicking on its image,
and the system will propose an initial, full transcription. If no error is detected,
the user chooses another text line image to transcribe. Otherwise, the user edits it
interactively as explained before. All the corrections made by the user are stored
in plain text logs on the web server. In this way, she can retake them at any mo-
ment.

12.2.3 Evaluation

The empirical tests on cursive handwritten tasks suggested that, using the IHT ap-
proach, considerable amounts of user effort could be saved with respect to both pure
manual work and non-interactive, post-editing processing (see Sect. 3.1). While, of
course, no definitive conclusions could be derived from these empirical tests, they
clearly raised great expectations about the effectiveness and usability of this kind of
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interactive HTR technology. Therefore, in order to assess whether such expectations
were in the right direction, we conducted a preliminary field study that compared
the theoretical results with real users working with the implemented demonstra-
tor.

Assessment Measures In interactive PR systems the importance of the well-
known error rate metric is diminished per-se. Instead, the intention is to measure
how well the user and the system work together. For this reason, to better judge the
quality of the user transcriptions we used the two objective test-set-based measures
introduced in Sect. 2.6: word error rate (WER) and word stroke ratio (WSR). Both
metrics have proven to be useful for estimating the reduction in human effort that
can be expected by using IHT with respect to using a conventional HTR system
followed by human post-editing. On the other hand, in our subjective tests with real
users we measured the time needed to fully transcribe each page with the different
transcription possibilities (fully manual, post-editing, and IHT) as well as the resid-
ual WER (rWER)—defined as the WER which remains after the user has typed the
transcriptions or corrected/accepted the transcriptions proposed by the system (this
value is expected to be greater than zero due to human errors).

Corpus The corpus used on the experiments was the one identified as “Cristo
Salvador” (CS), which has been previously presented in Sect. 3.6.1.

Participants Fourteen members from our Computer Science department volun-
teered to cooperate, aged 28 to 61 (M = 37.3, three females). Most of them were
knowledgeable with handwriting transcription tasks, although none was a tran-
scriber expert.

Apparatus The presented IHT demonstrator was modified to carry out the field
study. We developed three kind of HTR engines to assist the document transcription:
a trivial manual system, a post-editing system, and an interactive-predictive system.
The user interface (UI) was common to all engines (see Fig. 12.4). Also, a log-
ging mechanism was embedded in the web application. It allowed to register all
user interactions in a fine-grained level of detail (e.g., keyboard and mouse events,
client/server messages exchanging, etc.). The generated log files were reported in
XML format for later postprocessing.

Procedure To carry out the experiments we used two pages (#45 and #46) from
the test partition of the CS corpus. The WER and WSR of these pages are 24.5% and
23.0%, respectively. Participants accessed the web-based application via a special
URLs that were sent to them by email. In order to familiarize with the UI, users
informally tested each transcription engine with some test pages, different from the
ones reserved for the user-test. Only three participants were aware of the existence
of such a demonstrator prior to the study. Then, people transcribed the two user-test
pages; each one with the three transcription engines. The two user-test pages for the
field study were selected because they had very similar test-set-based performance
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metrics (CS page #45: WER = 24.35%, WSR = 23.07%; CS page #46: WER =
24.69%, WSR = 23.04%; respectively). It is important to remark that nobody saw
these pages before the study. For that reason, it is clear that the engine that were
tested at first would lead to poorer results than the rest of engines—in the next trials
users would need less effort in reading the image lines. Thus, to avoid possible
biases due to human learnability, page #45 was transcribed in this order: manual,
post-edition, and IHT. Then the order was inverted for page #46. Finally, participants
filled out a SUS questionnaire for each engine, including a text field to enter free
comments and ideas about their testing experience as well as give some insights
about possible enhancements and/or related applicability.

Design A within-subjects repeated measures design was carried out. We tested
two conditions: transcribing a page when it has not been seen before and when it has
been seen at least once. Since both normality assumptions and homocedasticity in
the data were met, we performed a four-way ANOVA experiment. The independent
variables were time, TWER, and WSR, respectively.

Discussion of Results

In sum, we can assert that regarding effectiveness there are no significative differ-
ences, i.e., users can achieve their goals with any of the proposed systems. However,
in terms of efficiency the IHT system seems to be the better choice. Regarding user
satisfaction, Fig. 12.6 clearly shows that IHT is the most preferable of the three op-
tions. Now let us delve into a more detailed analysis in order to shed more light to
the obtained results.

For the sake of saving time for the users, the post-editing engine was tested al-
ways as the second option. However, we must emphasize that the daily use of any
system designed to assist handwriting transcription would involve not having seen
previously any of the pages (users usually read a page once and at the same time
they just transcribe it).
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e Analysis of Time: Overall, post-editing attained the best time. This was ex-
pected, since for both user-test pages such system was tested after users had
read each page once. However, the manual and IHT engines were tested un-
der the same conditions, and we observed that IHT is approximately 1 minute
faster. In any case, these differences are not statistically significant (F2 76 =
1.98, p = 0.14). In general, the last used system achieves the best time, be-
cause the user already knows the text. The remarkable result is that when the
user reads a page in first place the chosen engine is not determinant, because
one must spend time to accustom to the writing style, interpreting the cal-
ligraphy, etc. Additionally, though, we might count the number of times that
one system outperforms the other for a given user, and thereby, measure the
probability of improvement (POI) [4]. In this case the POI of the IHT en-
gine with respect to the manual engine is 53%, and 42% regarding to post-
edition.

e Analysis of rWER: Overall, IHT was the best choice regarding to residual WER
in all situations, although the differences are not statistically significant (F> 75 =
0.67, p = 0.51). The interesting observation is that IHT is the most stable of
the systems, even better than when using the manual engine on an already read
page (the post-editing system was expected to perform similarly, since it was
tested in both conditions in second place). We must recall that the more sta-
ble in tWER a system is, the fewer residual transcription errors are expected.
In this case, considering the first time that the user reads a page, the POI of
the IHT engine over the manual engine is 69%, and 68% with respect to post-
edition.

e Analysis of WSR: Interestingly, the WSR when using the manual engine was
below 100%, since there are inherent errors (some users were unable to cor-
rectly read all the lines). That means that some users wrote less words in their
final transcriptions than they really should have to. Overall, ANOVA showed
that IHT was the best performer in both conditions. Differences were statisti-
cally significant (/2,76 = 1014.71, p < 0.0001, nz = 26.7). This means that the
number of words a user must write and/or correct under the IHT paradigm is al-
ways lower than with any of the other systems. Additionally, this fact increases
the probability of achieving a high-quality final transcription, since users per-
form fewer interactions and are prone thus to less errors. In this case the POI
of the IHT engine regarding the manual engine is 100%, and 65% with re-
spect to post-edition. It is also interesting to note that, on average, the real WSR
achieved by the participants is fairly close to the objective user-test based es-
timates for the same pages and even closer to the theoretical test-set estimates
overall.

o Analysis of User Subjectivity: Regarding user responses to the SUS question-
naire, while no statistically significant differences were achieved (F 3, = 0.11,
p = 0.9), there is a clear tendency in favor of IHT (see Fig. 12.6). What is
more, participants chose the manual engine over post-editing most of the time.
This would explain why, considering difficult transcription tasks, users generally
refuse to post-edit the output of a conventional HTR system, since it has too many
recognition errors.
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Most of the users’ comments were alas related to the web Ul rather than
the transcription engines themselves. Some included “when clicking on a
text field, the whole word is selected”, ‘it is hard to remember some [key-
board] shortcuts”, or “a clear and visual user manual would allow not hav-
ing to learn almost anything before using the system.” Additionally, four
users complained about the segmentation of lines, which “made especially
difficult reading those images where words had many ascenders/descenders.”
On the other hand, three users noticed that punctuation chars did not con-
tribute to improve predictions in the IHT system. In fact, they were re-
moved from the language models when training the IHT engine, since we
used bi-grams and punctuation chars do not improve notably the predic-
tions.

Limitations of the Study and Conclusion

There are a number of reasons why we were unfortunately not able to achieve statis-
tically significant differences between the three tested engines in some cases. First,
most of the participants had never faced neither any of the implemented engines nor
the web UI before the study, so it is expected a logical learning curve prior to using
such systems in a daily basis. Second, the web interface was just a prototype, and
it is well known that a careful design of the UI is a primary factor to tap the pos-
sibilities of the IHT technology. Third, the pages were really deteriorated, making
thus the reading difficult for the users. For that reason, there is a great difference be-
tween the first time that a user had to transcribe a page and the subsequent attempts.
Fourth, the post-edition engine was not tested under the same circumstances as the
other two engines, i.e., it was always used in